Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-17
... are given ultraviolet (UV) radiation doses produced by a solar simulator (i.e., a UV lamp). Under... increasingly higher UV doses produced by the solar simulator. However, because the solar simulator can produce far higher UV radiation doses than a consumer would ever receive even under the most severe sun...
21 CFR 352.72 - General testing procedures.
Code of Federal Regulations, 2010 CFR
2010-04-01
... administered the doses of UV radiation. After UV radiation exposure from the solar simulator is completed, all... specified dosage of UV radiation, in a series of UV radiation exposures, in which the test site area is... subsites should be exposed to the varying doses of UV radiation in a randomized manner. (f) Waiting period...
An ultraviolet simulator for the incident Martian surface radiation and its applications
NASA Astrophysics Data System (ADS)
Kolb, C.; Abart, R.; Bérces, A.; Garry, J. R. C.; Hansen, A. A.; Hohenau, W.; Kargl, G.; Lammer, H.; Patel, M. R.; Rettberg, P.; Stan-Lotter, H.
2005-10-01
Ultraviolet (UV) radiation can act on putative organic/biological matter at the Martian surface in several ways. Only absorbed, but not transmitted or reflected, radiation energy can be photo-chemically effective. The most important biological UV effects are due to photochemical reactions in nucleic acids, DNA or RNA, which constitute the genetic material of all cellular organisms and viruses. Protein or lipid effects generally play a minor role, but they are also relevant in some cases. UV radiation can induce wavelengths-specific types of DNA damage. At the same time it can also induce the photo-reversion reaction of a UV induced DNA photoproduct of nucleic acid bases, the pyrimidine dimers. Intense UVB and UVC radiation, experienced on early Earth and present-day Mars, has been revealed to be harmful to all organisms, including extremophile bacteria and spores. Moreover, the formation of oxidants, catalytically produced in the Martian environment through UV irradiation, may be responsible for the destruction of organic matter on Mars. Following this, more laboratory simulations are vital in order to investigate and understand UV effects on organic matter in the case of Mars. We have designed a radiation apparatus that simulates the anticipated Martian UV surface spectrum between 200 and 400 nm (UVC UVA). The system comprises a UV enhanced xenon arc lamp, special filter-sets and mirrors to simulate the effects of the Martian atmospheric column and dust loading. We describe the technical setup and performance of the system and discuss its uses for different applications. The design is focused on portability, therefore, the Mars-UV simulator represents a device for several different Mars simulation facilities with specific emphasis on Mars research topics.
Reconstruction of solar spectral surface UV irradiances using radiative transfer simulations.
Lindfors, Anders; Heikkilä, Anu; Kaurola, Jussi; Koskela, Tapani; Lakkala, Kaisa
2009-01-01
UV radiation exerts several effects concerning life on Earth, and spectral information on the prevailing UV radiation conditions is needed in order to study each of these effects. In this paper, we present a method for reconstruction of solar spectral UV irradiances at the Earth's surface. The method, which is a further development of an earlier published method for reconstruction of erythemally weighted UV, relies on radiative transfer simulations, and takes as input (1) the effective cloud optical depth as inferred from pyranometer measurements of global radiation (300-3000 nm); (2) the total ozone column; (3) the surface albedo as estimated from measurements of snow depth; (4) the total water vapor column; and (5) the altitude of the location. Reconstructed daily cumulative spectral irradiances at Jokioinen and Sodankylä in Finland are, in general, in good agreement with measurements. The mean percentage difference, for instance, is mostly within +/-8%, and the root mean square of the percentage difference is around 10% or below for wavelengths over 310 nm and daily minimum solar zenith angles (SZA) less than 70 degrees . In this study, we used pseudospherical radiative transfer simulations, which were shown to improve the performance of our method under large SZA (low Sun).
Determination of minimal erythema dose and anomalous reactions to UVA radiation by skin phototype.
Pérez Ferriols, A; Aguilera, J; Aguilera, P; de Argila, D; Barnadas, M A; de Cabo, X; Carrrascosa, J M; de Gálvez Aranda, M V; Gardeazábal, J; Giménez-Arnau, A; Lecha, M; Lorente, J; Martínez-Lozano, J A; Rodríguez Granados, M T; Sola, Y; Utrillas, M P
2014-10-01
Phototesting is a technique that assesses the skin's sensitivity to UV radiation by determining the smallest dose of radiation capable of inducing erythema (minimal erythema dose [MED]) and anomalous responses to UV-A radiation. No phototesting protocol guidelines have been published to date. This was a multicenter prospective cohort study in which 232 healthy volunteers were recruited at 9 hospitals. Phototests were carried out with solar simulators or fluorescent broadband UV-B lamps. Each individual received a total of 5 or 6 incremental doses of erythemal radiation and 4 doses of UV-A radiation. The results were read at 24hours. At hospitals where solar simulators were used, the mean (SD) MED values were 23 (8), 28 (4), 35 (4), and 51 (6) mJ/cm(2) for skin phototypes i to iv, respectively. At hospitals where broadband UV-B lamps were used, these values were 28 (5), 32 (3), and 34 (5) mJ/cm(2) for phototypes ii to iv, respectively. MED values lower than 7, 19, 27, and 38 mJ/cm(2) obtained with solar simulators were considered to indicate a pathologic response for phototypes I to IV, respectively. MED values lower than 18, 24, and 24mJ/cm(2) obtained with broadband UV-B lamps were considered to indicate a pathologic response for phototypes ii to iv, respectively. No anomalous responses were observed at UV-A radiation doses of up to 20J/cm(2). Results were homogeneous across centers, making it possible to standardize diagnostic phototesting for the various skin phototypes and establish threshold doses that define anomalous responses to UV radiation. Copyright © 2014 Elsevier España, S.L.U. y AEDV. All rights reserved.
Hurtubise, R.D.; Havel, J.E.; Little, E.E.
1998-01-01
There is concern that decreases in stratospheric ozone will lead to hazardous levels of ultraviolet-B (UV-B) radiation at the Earth's surface. In clear water, UV-B may penetrate to significant depths. The purpose of the current study was to compare the sensitivity of freshwater invertebrates to UV-B. We used a solar simulator, calibrated to match local ambient solar radiation, to expose five species of freshwater invertebrates to enhanced levels of UV-B radiation. UV-B measurements in a eutrophic pond revealed that 10% of the irradiance penetrated to 30-cm depth and 1% to 57-cm depth. The irradiance at the upper 5-20 cm was comparable to levels used in the simulator. Median lethal dose (LD50) values were determined for the cladocerans Ceriodaphnia reticulata, Scapholeberis kingii (two induced color morphs), and Daphnia magna; the ostracod Cyprinotus incongruens; and the amphipod Hyalella azteca. Among the species, 96-h LD50 estimates were quite variable, ranging from 4.2 to 84.0 ??W cm-2. These estimates indicated S. kingii to be highly sensitive and H. azteca, C. reticulata, and D. magna to be moderately sensitive, whereas the ostracod C. incongruens was very tolerant to UV-B radiation. Overall, this study suggests that, in shallow ponds without physical refuges, UV-B radiation would have the strongest effects upon cladocerans and amphipods occurring in the water column, whereas ostracods would be better protected.
NASA Astrophysics Data System (ADS)
Bérces, Attila; ten Kate, I. L.; Fekete, A.; Hegedus, M.; Garry, J. R. C.; Lammer, Helmut; Ehrenfreund, Pascale; Peeters, Zan; Kovacs, G.; Ronto, G.
Mars is considered as a main target for astrobiologically relevant exploration programmes. In order to explain the non-detection of organic material to a detection level of several parts per billion (ppb) by the Viking landers, several hypotheses have been suggested, including degradation processes occurring on the martian surface and in the martian soil and subsurface. UV exposure experiments have been performed in which thin layers of glycine ( 300 nm), and aqueous suspensions of phage T7 and isolated T7 DNA were irradiated with a Deuterium lamp and for comparison with a Xenon arc lamp, modified to simulate the solar irradiation on the surface of Mars (MarsUV). The glycine sample was subjected to 24 hours of irradiation with MarsUV. The results of this glycine experiment show a destruction rate comparable to the results of previous experiments in which thin layers of glycine were irradiated with a deuterium lamp (ten Kate et al., 2005, 2006). After exposure of different doses of simulated Martian UV radiation a decrease of the biological activity of phages and characteristic changes in the UV absorption spectrum have been detected, indicating the UV damage of isolated and intraphage T7 DNA. The results of our experiments show that intraphage DNA is 4 times more sensitive to simulated martian UV and deuterium lamp radiation than isolated T7 DNA. This result indicates the significant role that phage proteins play in the UV damage. The effect of simulated martian radiation is smaller than the biological defects observed after the exposure with a deuterium lamp for both cases, in intraphage and isolated DNA, despite of the 100 times larger intensity of the MarsUV lamp. The detected spectral differences are about ten times smaller; the biological activity is about 3 - 4 times smaller, indicating that the shorter wavelength UV radiation from the deuterium lamp is more effective in inducing DNA damage, irrespective of being intraphage or isolated.
Bao, Tao; Zhu, Renbin; Wang, Pei; Ye, Wenjuan; Ma, Dawei; Xu, Hua
2018-02-27
Stratospheric ozone has begun to recover in Antarctica since the implementation of the Montreal Protocol. However, the effects of ultraviolet (UV) radiation on tundra greenhouse gas fluxes are rarely reported for Polar Regions. In the present study, tundra N 2 O and CH 4 fluxes were measured under the simulated reduction of UV radiation in maritime Antarctica over the last three-year summers. Significantly enhanced N 2 O and CH 4 emissions occurred at tundra sites under the simulated reduction of UV radiation. Compared with the ambient normal UV level, a 20% reduction in UV radiation increased tundra emissions by an average of 8 μg N 2 O m -2 h -1 and 93 μg CH 4 m -2 h -1 , whereas a 50% reduction in UV radiation increased their emissions by an average of 17 μg N 2 O m -2 h -1 and 128 μg CH 4 m -2 h -1 . No statistically significant correlation (P > 0.05) was found between N 2 O and CH 4 fluxes and soil temperature, soil moisture, total carbon, total nitrogen, NO 3 - -N and NH 4 + -N contents. Our results confirmed that UV radiation intensity is an important factor affecting tundra N 2 O and CH 4 fluxes in maritime Antarctica. Exclusion of the effects of reduced UV radiation might underestimate their budgets in Polar Regions with the recovery of stratospheric ozone.
Simulation of the UV-radiation at the Martian surface
NASA Astrophysics Data System (ADS)
Kolb, C.; Stimpfl, P.; Krenn, H.; Lammer, H.; Kargl, G.; Abart, R.; Patel, M. R.
The UV-radiation at the Martian surface is for several reasons of importance. UV radiation can cause specific damages in the DNA-containing living systems and is involved in the formation of catalytically produced oxidants such as superoxide ions and peroxides. These are capable to oxidize and subsequently destroy organic matter. Lab simulations are necessary to investigate and understand the effects of organic matter removal at the Martian surface. We designed a radiation apparatus which simulates the solar spectrum at the Martian surface between 200 and 700 nm. The system consists of an UV-enhanced xenon arc lamp and special exchangeable filter-sets and mirrors for simulating the effects of the Martian atmospheric column and dust loading. A special collimating system bundles the final parallel beam so that the intensity at the target spot is independent from the distance between the ray source and the sample. The system was calibrated by means of an optical photo-spectrometer to align the ray output with the theoretical target spectrum and to ensure spectral homogeneity. We present preliminary data on calibration and performance of our system, which is integrated in the Austrian Mars simulation facility.
UV filters for lighting of plants
NASA Astrophysics Data System (ADS)
Doehring, T.; Koefferlein, M.; Thiel, S.; Seidlitz, H. K.; Payer, H. D.
1994-03-01
The wavelength dependent interaction of biological systems with radiation is commonly described by appropriate action spectra. Particularly effective plant responses are obtained for ultraviolet (UV) radiation. Excess shortwave UV-B radiation will induce genetic defects and plant damage. Besides the ecological discussion of the deleterious effects of the excess UV radiation there is increasing interest in horticultural applications of this spectral region. Several metabolic pathways leading to valuable secondary plant products like colors, odors, taste, or resulting in mechanical strength and vitality are triggered by UV radiation. Thus, in ecologically as well as in economically oriented experiments the exact generation and knowledge of the spectral irradiance, particularly near the UV absorption edge, is essential. The ideal filter 'material' to control the UV absorption edge would be ozone itself. However, due to problems in controlling the toxic and chemically aggressive, instable gas, only rather 'small ozone filters' have been realized so far. In artificial plant lighting conventional solid filter materials such as glass sheets and plastic foils (celluloseacetate or cellulosetriacetate) which can be easily handled have been used to absorb the UV-C and the excess shortwave UV-B radiation of the lamp emissions. Different filter glasses are available which provide absorption properties suitable for gradual changes of the spectral UV-B illumination of artificial lighting. Using a distinct set of lamps and filter glasses an acceptable simulation of the UV-B part of natural global radiation can be achieved. The aging of these and other filter materials under the extreme UV radiation in the lamphouse of a solar simulator is presently unavoidable. This instability can be dealt with only by a precise spectral monitoring and by replacing the filters accordingly. For this reason attempts would be useful to develop real ozone filters which can replace glass filters. In any case chamber experiments require a careful selection of the filter material used and must be accompanied by a continuous UV-B monitoring.
UV filters for lighting of plants
NASA Technical Reports Server (NTRS)
Doehring, T.; Koefferlein, M.; Thiel, S.; Seidlitz, H. K.; Payer, H. D.
1994-01-01
The wavelength dependent interaction of biological systems with radiation is commonly described by appropriate action spectra. Particularly effective plant responses are obtained for ultraviolet (UV) radiation. Excess shortwave UV-B radiation will induce genetic defects and plant damage. Besides the ecological discussion of the deleterious effects of the excess UV radiation there is increasing interest in horticultural applications of this spectral region. Several metabolic pathways leading to valuable secondary plant products like colors, odors, taste, or resulting in mechanical strength and vitality are triggered by UV radiation. Thus, in ecologically as well as in economically oriented experiments the exact generation and knowledge of the spectral irradiance, particularly near the UV absorption edge, is essential. The ideal filter 'material' to control the UV absorption edge would be ozone itself. However, due to problems in controlling the toxic and chemically aggressive, instable gas, only rather 'small ozone filters' have been realized so far. In artificial plant lighting conventional solid filter materials such as glass sheets and plastic foils (celluloseacetate or cellulosetriacetate) which can be easily handled have been used to absorb the UV-C and the excess shortwave UV-B radiation of the lamp emissions. Different filter glasses are available which provide absorption properties suitable for gradual changes of the spectral UV-B illumination of artificial lighting. Using a distinct set of lamps and filter glasses an acceptable simulation of the UV-B part of natural global radiation can be achieved. The aging of these and other filter materials under the extreme UV radiation in the lamphouse of a solar simulator is presently unavoidable. This instability can be dealt with only by a precise spectral monitoring and by replacing the filters accordingly. For this reason attempts would be useful to develop real ozone filters which can replace glass filters. In any case chamber experiments require a careful selection of the filter material used and must be accompanied by a continuous UV-B monitoring.
PARTIAL INHIBITION OF IN VITRO POLLEN GERMINATION BY SIMULATED SOLAR ULTRAVIOLET-B RADIATION
Pollen from four temperate-latitude taxa were treated with UV radiation in a portion of the UV-B (280-320 nm) waveband during in vitro germination. Inhibition of germination was noted in this pollen compared to samples treated identically except for the exclusion of the UV-B port...
The present study investigated the impact of solar UV radiation on ZnO nanoparticle toxicity through photocatalytic ROS generation and photo-induced dissolution. Toxicity of ZnO nanoparticles to Daphnia magna was examined under laboratory light versus simulated solar UV radiatio...
Two ultraviolet radiation datasets that cover China
NASA Astrophysics Data System (ADS)
Liu, Hui; Hu, Bo; Wang, Yuesi; Liu, Guangren; Tang, Liqin; Ji, Dongsheng; Bai, Yongfei; Bao, Weikai; Chen, Xin; Chen, Yunming; Ding, Weixin; Han, Xiaozeng; He, Fei; Huang, Hui; Huang, Zhenying; Li, Xinrong; Li, Yan; Liu, Wenzhao; Lin, Luxiang; Ouyang, Zhu; Qin, Boqiang; Shen, Weijun; Shen, Yanjun; Su, Hongxin; Song, Changchun; Sun, Bo; Sun, Song; Wang, Anzhi; Wang, Genxu; Wang, Huimin; Wang, Silong; Wang, Youshao; Wei, Wenxue; Xie, Ping; Xie, Zongqiang; Yan, Xiaoyuan; Zeng, Fanjiang; Zhang, Fawei; Zhang, Yangjian; Zhang, Yiping; Zhao, Chengyi; Zhao, Wenzhi; Zhao, Xueyong; Zhou, Guoyi; Zhu, Bo
2017-07-01
Ultraviolet (UV) radiation has significant effects on ecosystems, environments, and human health, as well as atmospheric processes and climate change. Two ultraviolet radiation datasets are described in this paper. One contains hourly observations of UV radiation measured at 40 Chinese Ecosystem Research Network stations from 2005 to 2015. CUV3 broadband radiometers were used to observe the UV radiation, with an accuracy of 5%, which meets the World Meteorology Organization's measurement standards. The extremum method was used to control the quality of the measured datasets. The other dataset contains daily cumulative UV radiation estimates that were calculated using an all-sky estimation model combined with a hybrid model. The reconstructed daily UV radiation data span from 1961 to 2014. The mean absolute bias error and root-mean-square error are smaller than 30% at most stations, and most of the mean bias error values are negative, which indicates underestimation of the UV radiation intensity. These datasets can improve our basic knowledge of the spatial and temporal variations in UV radiation. Additionally, these datasets can be used in studies of potential ozone formation and atmospheric oxidation, as well as simulations of ecological processes.
Martin, Andrew; Hall, Julie; Ryan, Ken
2009-12-01
Experiments simulating the sea ice cycle were conducted by exposing microbes from Antarctic fast ice to saline and irradiance regimens associated with the freeze-thaw process. In contrast to hypersaline conditions (ice formation), the simulated release of bacteria into hyposaline seawater combined with rapid exposure to increased UV-B radiation significantly reduced metabolic activity.
UV Disinfection System for Cabin Air
NASA Astrophysics Data System (ADS)
Lim, Soojung
Ultraviolet (UV) radiation is commonly used for disinfection of water. As a result of advancements made in the last 10-15 years, the analysis and design of UV disinfection systems for water is well developed. UV disinfection is also used for disinfection of air; however, despite the fact the UV-air systems have a longer record of application than UV-water systems, the methods used to analyze and design UV-air disinfection systems remain quite empirical. It is well-established that the effectiveness of UV-air systems is strongly affected by the type of microorganisms, the irradiation level/type (lamp power and wavelength), duration of irradiation (exposure time), air movement pattern (mixing degree), and relative humidity. This paper will describe ongoing efforts to evaluate, design and test a UV-air system based on first principles. Specific issues to be addressed in this work will include laboratory measurements of relevant kinetics (i.e., UV dose-response behavior) and numerical simulations designed to represent fluid mechanics and the radiation intensity field. UV dose-response behavior of test microorganism was measured using a laboratory (bench-scale) system. Target microorganisms (e.g., bacterial spores) were first applied to membrane filters at sub-monolayer coverage. The filters were then transferred to an environmental chamber at fixed relative humidity (RH) and allowed to equilibrate with their surroundings. Microorganisms were then subjected to UV exposure under a collimated beam. The experiment was repeated at RH values ranging from 20% to 100%. UV dose-response behavior was observed to vary with RH. For example, at 100% RH, a UV dose of 20 mJ/cm2 accomplished 90% (1 log10 units) of the B. subtilis spore inactivation, whereas 99 % (2 log10 units) inactivation was accomplished at this same UV dose under 20% RH conditions. However, at higher doses, the result was opposite of that in low dose. Reactor behavior is simulated using an integrated application of computational fluid dynamics (CFD) and radiation intensity field models. These simulations followed a Lagrangian approach, wherein the UV radiation intensity field was mapped onto simulated particle trajectories for prediction of the UV dose delivered to each particle. By repeating these calculations for a large number of simulated particle trajectories, an estimate of the UV dose distribution delivered by the reactor can be made. In turn, these dose distribution estimates are integrated with the UV dose-response behavior described above to yield an estimate of microbial inactivation accomplished by the reactor. This modeling approach has the advantage of allowing simulation of many reactor configurations in a relatively short period of time. Moreover, by following this approach of "numerical prototyping," it is possible to "build" and analyze several virtual reactors before the construction of a physical prototype. As such, this procedure allows effective development of efficient reactors.
Sources and measurement of ultraviolet radiation.
Diffey, Brian L
2002-09-01
Ultraviolet (UV) radiation is part of the electromagnetic spectrum. The biological effects of UV radiation vary enormously with wavelength and for this reason the UV spectrum is further subdivided into three regions: UVA, UVB, and UVC. Quantities of UV radiation are expressed using radiometric terminology. A particularly important term in clinical photobiology is the standard erythema dose (SED), which is a measure of the erythemal effectiveness of a UV exposure. UV radiation is produced either by heating a body to an incandescent temperature, as is the case with solar UV, or by passing an electric current through a gas, usually vaporized mercury. The latter process is the mechanism whereby UV radiation is produced artificially. Both the quality (spectrum) and quantity (intensity) of terrestrial UV radiation vary with factors including the elevation of the sun above the horizon and absorption and scattering by molecules in the atmosphere, notably ozone, and by clouds. For many experimental studies in photobiology it is simply not practicable to use natural sunlight and so artificial sources of UV radiation designed to simulate the UV component of sunlight are employed; these are based on either optically filtered xenon arc lamps or fluorescent lamps. The complete way to characterize an UV source is by spectroradiometry, although for most practical purposes a detector optically filtered to respond to a limited portion of the UV spectrum normally suffices.
Methods for assessing the impacts of ultraviolet-B radiation on aquatic invertebrates
Hurtubise, R.D.; Little, Edward E.; Havel, J.E.; Little, Edward E.; Greenberg, Bruce M.; Delonay, Aaron J.
1998-01-01
A standard methodology for assessing the impacts of simulated solar ultraviolet-B radiation (UV-B) on aquatic invertebrates was established. A solar simulator was used to expose a variety of aquatic invertebrates to different levels of UV-B. The simulator was calibrated as close as possible to match local ambient solar radiation measured in and out of water with a scanning spectroradiometer. A series of repeated exposures were conducted to determine the effects of UV-B on two species of Ceriodaphnia. Survivorship of C. reticulata declined with increasing UV-B with 100% mortality occurring after four daily 5 hr exposures to a UV-B irradiance that was 14% of ambient sunlight (40.8/μW/cm2) and 70% mortality for C. dubia after seven days of an exposure to 5% of ambient (14.5μW/cm2). Significant reductions in fertility (#young/adult) was observed in both low and high light adapted individuals with low light individuals appearing to be more sensitive. This methodology allowed us to make comparisons to natural conditions in aquatic habitats and to make risk assessments for individual species.
Calfee, Robin D.; Little, Edward E.; Pearl, Christopher A.; Hoffman, Robert L.
2010-01-01
Solar ultraviolet radiation (UV) has received much attention as a factor that could play a role in amphibian population declines. UV can be hazardous to some amphibians, but the resultant effects depend on a variety of environmental and behavioral factors. In this study, the potential effects of UV on the Northwestern Salamander, Ambystoma gracile, from three lakes were assessed in the laboratory using a solar simulator. We measured the survival of embryos and the survival and growth of larvae exposed to four UV treatments in controlled laboratory studies, the UV absorbance of egg jelly, oviposition depths in the lakes, and UV absorbance in water samples from the three lakes. Hatching success of embryos decreased in the higher UV treatments as compared to the control treatments, and growth of surviving larvae was significantly reduced in the higher UVB irradiance treatments. The egg jelly exhibited a small peak of absorbance within the UVB range (290–320 nm). The magnitude of UV absorbance differed among egg jellies from the three lakes. Oviposition depths at the three sites averaged 1.10 m below the water surface. Approximately 66% of surface UVB radiation was attenuated at 10-cm depth in all three lakes. Results of this study indicate that larvae may be sensitive to UVB exposure under laboratory conditions; however, in field conditions the depths of egg deposition in the lakes, absorbance of UV radiation by the water column, and the potential for behavioral adjustments may mitigate severe effects of UV radiation.
Calfee, R.D.; Little, E.E.; Pearl, C.A.; Hoffman, R.L.
2010-01-01
Solar ultraviolet radiation (UV) has received much attention as a factor that could play a role in amphibian population declines. UV can be hazardous to some amphibians, but the resultant effects depend on a variety of environmental and behavioral factors. In this study, the potential effects of UV on the Northwestern Salamander, Ambystoma gracile, from three lakes were assessed in the laboratory using a solar simulator. We measured the survival of embryos and the survival and growth of larvae exposed to four UV treatments in controlled laboratory studies, the UV absorbance of egg jelly, oviposition depths in the lakes, and UV absorbance in water samples from the three lakes. Hatching success of embryos decreased in the higher UV treatments as compared to the control treatments, and growth of surviving larvae was significantly reduced in the higher UVB irradiance treatments. The egg jelly exhibited a small peak of absorbance within the UVB range (290-320 nm). The magnitude of UV absorbance differed among egg jellies from the three lakes. Oviposition depths at the three sites averaged 1.10 m below the water surface. Approximately 66 of surface UVB radiation was attenuated at 10-cm depth in all three lakes. Results of this study indicate that larvae may be sensitive to UVB exposure under laboratory conditions; however, in field conditions the depths of egg deposition in the lakes, absorbance of UV radiation by the water column, and the potential for behavioral adjustments may mitigate severe effects of UV radiation. Copyright 2010 Society for the Study of Amphibians and Reptiles.
NASA Astrophysics Data System (ADS)
Mendez, Y.; Vives, M.
2017-07-01
This work is the first study to describe native bacteria from the semi-arid areas in Candelaria and Tatacoa in Colombia, able to withstand a simulation of UV radiation, in order to draw an analogy with microbial growth on the surface of Mars. Sampling was carried out in the areas mentioned taking 50 samples of sediment divided into 25 samples of surface and 25 deep samples. As soon as the samples were transferred, they were subjected to a test of UV radiation in an atmospheric simulation chamber designed for the experiment, for periods of 1, 6 and 12 hours of exposure. Microbiological analysis as a method of plate dilution and isolation were performed using the modified AIS growth medium, macroscopic and microscopic description of morphotypes, biochemical identification of the morphotypes found, extraction of the feasible mycelium, DNA extraction and amplification of the gene 16 S by PCR. 13 morphotypes of bacteria resistant to UV radiation were found, mostly compatible with the gender of Streptomyces. One of the morphotypes found resisted 12 hours exposure. Molecular analyzes did not produce any results, because it was not possible to amplify the 16S by PCR, this may be due to that the exposure to UV radiation can degrade the DNA in existence, a affecting the results. The finding of native bacteria capable of withstanding conditions UV radiation can give us an approximation of microbial growth, mechanisms of resistance and survival under extreme conditions such as those found on Mars, in order to develop biotechnological applications and establish planetary analogues to understand the origin and evolution of the universe.
UVR2 ensures transgenerational genome stability under simulated natural UV-B in Arabidopsis thaliana
Willing, Eva-Maria; Piofczyk, Thomas; Albert, Andreas; Winkler, J. Barbro; Schneeberger, Korbinian; Pecinka, Ales
2016-01-01
Ground levels of solar UV-B radiation induce DNA damage. Sessile phototrophic organisms such as vascular plants are recurrently exposed to sunlight and require UV-B photoreception, flavonols shielding, direct reversal of pyrimidine dimers and nucleotide excision repair for resistance against UV-B radiation. However, the frequency of UV-B-induced mutations is unknown in plants. Here we quantify the amount and types of mutations in the offspring of Arabidopsis thaliana wild-type and UV-B-hypersensitive mutants exposed to simulated natural UV-B over their entire life cycle. We show that reversal of pyrimidine dimers by UVR2 photolyase is the major mechanism required for sustaining plant genome stability across generations under UV-B. In addition to widespread somatic expression, germline-specific UVR2 activity occurs during late flower development, and is important for ensuring low mutation rates in male and female cell lineages. This allows plants to maintain genome integrity in the germline despite exposure to UV-B. PMID:27905394
UV filters for lighting of plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doehring, T.; Koefferlein, M.; Thiel, S.
1994-12-31
Different filter glasses are available which provide absorption properties suitable for gradual changes of the spectral UV-B illumination of artificial lighting. Using a distinct set of lamps and filter glasses an acceptable simulation of the UV-B part of natural global radiation can be achieved. The ageing of these and other filter materials under the extreme UV radiation in the lamphouse of a solar simulator is presently unavoidable. This instability can be dealt with only by a precise spectral monitoring and by replacing the filters accordingly. For this reason attempts would be useful to develop real ozone filters which can replacemore » glass filters. In any case chamber experiments require a careful selection of the filter material used and must be accompanied by a continuous UV-B monitoring.« less
Nicholson, Wayne L; Schuerger, Andrew C; Setlow, Peter
2005-04-01
The environment in space and on planets such as Mars can be lethal to microorganisms because of the high vacuum and high solar radiation flux, in particular UV radiation, in such environments. Spores of various Bacillus species are among the organisms most resistant to the lethal effects of high vacuum and UV radiation, and as a consequence are of major concern for planetary contamination via unmanned spacecraft or even natural processes. This review focuses on the spores of various Bacillus species: (i) their mechanisms of UV resistance; (ii) their survival in unmanned spacecraft, space flight and simulated space flight and Martian conditions; (iii) the UV flux in space and on Mars; (iv) factors affecting spore survival in such high UV flux environments.
NASA Astrophysics Data System (ADS)
Canestrari, N.; Bisogni, V.; Walter, A.; Zhu, Y.; Dvorak, J.; Vescovo, E.; Chubar, O.
2014-09-01
A "source-to-sample" wavefront propagation analysis of the Electron Spectro-Microscopy (ESM) UV / soft X-ray beamline, which is under construction at the National Synchrotron Light Source II (NSLS-II) in the Brookhaven National Laboratory, has been conducted. All elements of the beamline - insertion device, mirrors, variable-line-spacing gratings and slits - are included in the simulations. Radiation intensity distributions at the sample position are displayed for representative photon energies in the UV range (20 - 100 eV) where diffraction effects are strong. The finite acceptance of the refocusing mirrors is the dominating factor limiting the spatial resolution at the sample (by ~3 μm at 20 eV). Absolute estimates of the radiation flux and energy resolution at the sample are also obtained from the electromagnetic calculations. The analysis of the propagated UV range undulator radiation at different deflection parameter values demonstrates that within the beamline angular acceptance a slightly "red-shifted" radiation provides higher flux at the sample and better energy resolution compared to the on-axis resonant radiation of the fundamental harmonic.
NASA Astrophysics Data System (ADS)
Nakajima, Hideaki; Miyauchi, Masaatsu; Hirai, Chizuko
2013-04-01
After the discovery of Antarctic ozone hole, the negative effect of exposure of human body to harmful solar ultraviolet (UV) radiation is widely known. However, there is positive effect of exposure to UV radiation, i.e., vitamin D synthesis. Although the importance of solar UV radiation for vitamin D3 synthesis in the human body is well known, the solar exposure time required to prevent vitamin D deficiency has not been well determined. This study attempted to identify the time of solar exposure required for vitamin D3 synthesis in the body by season, time of day, and geographic location (Sapporo, Tsukuba, and Naha, in Japan) using both numerical simulations and observations. According to the numerical simulation for Tsukuba at noon in July under a cloudless sky, 2.3 min of solar exposure are required to produce 5.5 μg vitamin D3 per 600 cm2 skin. This quantity of vitamin D represents the recommended intake for an adult by the Ministry of Health, Labour and Welfare, and the 2010 Japanese Dietary Reference Intakes (DRIs). In contrast, it took 49.5 min to produce the same amount of vitamin D3 at Sapporo in the northern part of Japan in December, at noon under a cloudless sky. The necessary exposure time varied considerably with the time of the day. For Tsukuba at noon in December, 14.5 min were required, but at 09:00 68.7 min were required and at 15:00 175.8 min were required for the same meteorological conditions. Naha receives high levels of UV radiation allowing vitamin D3 synthesis almost throughout the year. According to our results, we are further developing an index to quantify the necessary time of UV radiation exposure to produce required amount of vitamin D3 from a UV radiation data.
A study on resistance to ultraviolet radiation of POSS-TiO2/epoxy nanocomposites
NASA Astrophysics Data System (ADS)
Peng, Dequn; Qin, Wei; Wu, Xiaohong
2015-06-01
Ultraviolet (UV) radiation is a severe space environmental factor, which is harmful to the durability of the polymeric materials of the spacecraft. For this reason, a novel POSS-TiO2/EP nanocomposite was synthesized by incorporating the POSS-TiO2 organic-inorganic hybrid into the epoxy (EP) resin. The effects of UV radiation on EP resin and on POSS-TiO2/EP nanocomposites were investigated in a ground-based simulator that simulates space radiation conditions. Compared with EP resin, the value of bend strength for 5.0 wt% POSS-TiO2/EP varied in a small range before and after UV radiation. Meanwhile, a typical tough feature was observed from the SEM photo for POSS-TiO2/EP nanocomposite after UV exposure. This result indicated that the POSS-TiO2/EP exhibited the excellent properties of anti-space ultraviolet radiation. The thermo gravimetric (TG) results showed that the addition of POSS-TiO2 improved the thermal-stability of EP resin matrix. The synthesized nanocomposites in this work could be used in the satellites to enhance their adaptability to the space environment and extend their service life.
NASA Astrophysics Data System (ADS)
Watanabe, S.; Takemura, T.; Sudo, K.; Yokohata, T.; Kawase, H.
2012-06-01
The historical anthropogenic change in the surface all-sky UV-B (solar ultraviolet: 280-315 nm) radiation through 1850-2005 is evaluated using an Earth system model. Responses of UV-B dose to anthropogenic changes in ozone and aerosols are separately evaluated using a series of historical simulations including/excluding these changes. Increases in these air pollutants cause reductions in UV-B transmittance, which occur gradually/rapidly before/after 1950 in and downwind of industrial and deforestation regions. Furthermore, changes in ozone transport in the lower stratosphere, which is induced by increasing greenhouse gas concentrations, increase ozone concentration in the extratropical upper troposphere and lower stratosphere. These transient changes work to decrease the amount of UV-B reaching the Earth's surface, counteracting the well-known effect increasing UV-B due to stratospheric ozone depletion, which developed rapidly after ca. 1980. As a consequence, the surface UV-B radiation change between 1850 and 2000 is negative in the tropics and NH extratropics and positive in the SH extratropics. Comparing the contributions of ozone and aerosol changes to the UV-B change, the transient change in ozone absorption of UV-B mainly determines the total change in the surface UV-B radiation at most locations. On the other hand, the aerosol direct and indirect effects on UV-B play an equally important role to that of ozone in the NH mid-latitudes and tropics. A typical example is East Asia (25° N-60° N and 120° E-150° E), where the effect of aerosols (ca. 70%) dominates the total UV-B change.
NASA Astrophysics Data System (ADS)
Watanabe, S.; Takemura, T.; Sudo, K.; Yokohata, T.; Kawase, H.
2012-02-01
The historical anthropogenic change in the surface all-sky UV-B (solar ultraviolet: 280-315 nm) radiation through 1850-2005 is evaluated using an Earth system model. Responses of UV-B dose to anthropogenic changes in ozone and aerosols are separately evaluated using a series of historical simulations including/excluding these changes. Increases in these air pollutants cause reductions in UV-B transmittance, which occur gradually/rapidly before/after 1950 in and downwind of industrial and deforestation regions. Furthermore, changes in ozone transport in the lower stratosphere, which is induced by increasing greenhouse gas concentrations, increase ozone concentration in the extratropical upper troposphere and lower stratosphere. These transient changes work to decrease the amount of UV-B reaching the Earth's surface, counteracting the well-known effect increasing UV-B due to stratospheric ozone depletion, which developed rapidly after ca. 1980. As a consequence, the surface all-sky UV-B radiation change between 1850 and 2000 is negative in the tropics and NH extratropics and positive in the SH extratropics. Comparing the contributions of ozone and aerosol changes to the UV-B change, the transient change in ozone absorption of UV-B mainly determines the total change in the surface all-sky UV-B radiation at most locations. On the other hand, the aerosol direct and indirect effects on UV-B play an equally important role to that of ozone in the NH mid-latitudes and tropics. A typical example is East Asia (25° N-60° N and 120° E-150° E), where the effect of aerosols (ca. 70%) dominates the total UV-B change.
NASA Astrophysics Data System (ADS)
Rettberg, P.; Moller, R.; Pogoda de La Vega, U.; Rabbow, E.; Panitz, C.; Mohlmann, D.; Reitz, G.
For the development of adequate instruments and methods for in situ life detection analysis and for the avoidance of contaminating of Mars by terrestrial life forms introduced to it's surface unintentionally, it is necessary to understand the potential and limits of life on Earth. Whereas it is possible to test most of the environmental parameters of Mars separately in the laboratory, like diurnal and seasonal temperature cyles, pressure, atmospheric composition, and to investigate their biological effects in detail, it is technically more difficult to simulate two or more parameters at the same time. The realistic simulation of a complete Martian surface environment is a considerable technical challenge. It is especially difficult to reproduce the Martian UV climate realistically. Up to now no total Mars simulation was performed in one single experiment which should include diurnal cycles of temperature, UV radiation and humidity in a simulated Martian atmosphere and at Martian pressure, with Martian soil analogues, dust particles, and ionising radiation. However, it is absolutely essential to investigate the biological effects of combined environmental parameters, because it is already known for some cases that biological effects might not necessarily be additive, but can be synergistic or antagonistic. A prominent example is the synergistic effect of vacuum and UV radiation on the survivability of B. subtilis spores. From several investigations in the last decades the Martian UV climate with it's energy-rich short-wavelength radiation down to 200 nm turned out to be the most important deleterious environmental parameter on Mars. Direct UV exposure caused a rapid and nearly complete inactivation of spores. However, thin layers of Martian soil analogue material, like simulated standard Mars JSC-1 or Fe-montmorillonite, are sufficient to shield spores from the deleterious effects of UV radiation. From these results it can be concluded that in spite of the destructive UV climate at least a part of a microbial population might be able to escape the inactiviation by UV radiation, if covered accidentally by Martian dust and soil particles. Up to now the molecular basis of the strong oxidizing properties of Martian soil found 1 by the Viking landers is not completely understood. This chemical reactivity capable of decomposing organic molecules was attributed to the presence of one or more as- yet-unidentified inorganic superoxides or peroxides in the Martian soil. The biological consequences of these photochemical reactions are not yet investigated in detail, although it is known that B. subtilis spores are able to withstand oxidative conditions to a certain degree. The determination of the survival of microorganisms under the physical and chemical `extremes' of Mars will provide detailed insights into the potential for contamination that will allow the development and improvement of planetary protection measures. 2
Generation of reactive oxygen species (ROS) by titanium dioxide nanoparticles (nano-TiO2) and its consequent phototoxicity to Daphnia magna were measured under different solar UV radiation spectrum by applying a series of optical filters in a solar simulator. Removing UVB (280-32...
Luengo Escobar, Ana; Alberdi, Miren; Acevedo, Patricio; Machado, Mariana; Nunes-Nesi, Adriano; Inostroza-Blancheteau, Claudio; Reyes-Díaz, Marjorie
2017-05-01
Despite the Montreal protocol and the eventual recovery of the ozone layer over Antarctica, there are still concerns about increased levels of ultraviolet-B (UV-B) radiation in the Southern Hemisphere. UV-B induces physiological, biochemical and morphological stress responses in plants, which are species-specific and different even for closely related cultivars. In woody plant species, understanding of long-term mechanisms to cope with UV-B-induced stress is limited. Therefore, a greenhouse UV-B daily course simulation was performed for 21 days with two blueberry cultivars (Legacy and Bluegold) under UV-B BE irradiance doses of 0, 0.07 and 0.19 W m -2 . Morphological changes, photosynthetic performance, antioxidants, lipid peroxidation and metabolic features were evaluated. We found that both cultivars behaved differently under UV-B exposure, with Legacy being a UV-B-resistant cultivar. Interestingly, Legacy used a combined strategy: initially, in the first week of exposure its photoprotective compounds increased, coping with the intake of UV-B radiation (avoidance strategy), and then, increasing its antioxidant capacity. These strategies proved to be UV-B radiation dose dependent. The avoidance strategy is triggered early under high UV-B radiation in Legacy. Moreover, the rapid metabolic reprogramming capacity of this cultivar, in contrast to Bluegold, seems to be the most relevant contribution to its UV-B stress-coping strategy. © 2016 Scandinavian Plant Physiology Society.
Kobayashi, Fumihisa; Maki, Teruya; Kakikawa, Makiko; Yamada, Maromu; Puspitasari, Findya; Iwasaka, Yasunobu
2015-05-01
Kosa (Asian dust) is a well-known weather phenomenon in which aerosols are carried by the westerly winds from inland China to East Asia. Recently, the frequency of this phenomenon and the extent of damage caused have been increasing. The airborne bacteria within Kosa are called Kosa bioaerosols. Kosa bioaerosols have affected ecosystems, human health and agricultural productivity in downwind areas. In order to develop a new and useful bacterial source and to identify the source region of Kosa bioaerosols, sampling, isolation, identification, measurement of ultraviolet (UV) radiation tolerance and experimental simulation of UV radiation conditions were performed during Kosa bioaerosol transportation. We sampled these bioaerosols using a Cessna 404 airplane and a bioaerosol sampler at an altitude of approximately 2900 m over the Noto Peninsula on March 27, 2010. The bioaerosol particles were isolated and identified as Bacillus sp. BASZHR 1001. The results of the UV irradiation experiment showed that the UV radiation tolerance of Kosa bioaerosol bacteria was very high compared with that of a soil bacterium. Moreover, the UV radiation tolerance of Kosa bioaerosol spores was higher than that of soil bacterial spores. This suggested that Kosa bioaerosols are transported across the atmosphere as living spores. Similarly, by the experimental simulation of UV radiation conditions, the limited source region of this Kosa bioaerosol was found to be southern Russia and there was a possibility of transport from the Kosa source area. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, S.A.; Robinson, G.E.; Conner, J.K.
Two species of mustard, Brassica nigra and B. rapa, were grown under simulated ambient and enhanced ultraviolet-B (UV-B) radiation and exposed to pollinators, Apis mellifera L. Observations were made to determine whether UV-B-induced changes in these plants affected pollinator behavior. Total duration of the foraging trip, number of flowers visited, foraging time per flower, search time per flower, total amount of pollen collected, and pollen collected per flower were measured. There were no significant differences between UV-B treatments in any of the behaviors measured or in any of the pollen measurements. These results suggest that increases in the amount ofmore » solar UV-B reaching the earth`s surface may not have a negative effect on the relationship between these members of the genus Brassica and their honey bee pollinators. 28 refs., 2 figs., 1 tab.« less
DSMC simulation of two-phase plume flow with UV radiation
NASA Astrophysics Data System (ADS)
Li, Jie; Liu, Ying; Wang, Ning; Jin, Ling
2014-12-01
Rarefied gas-particle two-phase plume in which the phase of particles is liquid or solid flows from a solid propellant rocket of hypersonic vehicle flying at high altitudes, the aluminum oxide particulates not only impact the rarefied gas flow properties, but also make a great difference to plume radiation signature, so the radiation prediction of the rarefied gas-particle two-phase plume flow is very important for space target detection of hypersonic vehicles. Accordingly, this project aims to study the rarefied gas-particle two-phase flow and ultraviolet radiation (UV) characteristics. Considering a two-way interphase coupling of momentum and energy, the direct simulation Monte Carlo (DSMC) method is developed for particle phase change and the particle flow, including particulate collision, coalescence as well as separation, and a Monte Carlo ray trace model is implemented for the particulate UV radiation. A program for the numerical simulation of the gas-particle two-phase flow and radiation in which the gas flow nonequilibrium is strong is implemented as well. Ultraviolet radiation characteristics of the particle phase is studied based on the calculation of the flow field coupled with the radiation calculation, the radiation model for different size particles is analyzed, focusing on the effects of particle emission, absorption, scattering as well as the searchlight emission of the nozzle. A new approach may be proposed to describe the rarefied gas-particle two-phase plume flow and radiation transfer characteristics in this project.
Wassmann, Marko; Moeller, Ralf; Rabbow, Elke; Panitz, Corinna; Horneck, Gerda; Reitz, Günther; Douki, Thierry; Cadet, Jean; Stan-Lotter, Helga; Cockell, Charles S; Rettberg, Petra
2012-05-01
In the space experiment "Molecular adaptation strategies of microorganisms to different space and planetary UV climate conditions" (ADAPT), bacterial endospores of the highly UV-resistant Bacillus subtilis strain MW01 were exposed to low-Earth orbit (LEO) and simulated martian surface conditions for 559 days on board the European Space Agency's exposure facility EXPOSE-E, mounted outside the International Space Station. The survival of B. subtilis MW01 spores from both assays (LEO and simulated martian conditions) was determined by a colony-formation assay after retrieval. It was clearly shown that solar extraterrestrial UV radiation (λ≥110 nm) as well as the martian UV spectrum (λ≥200 nm) was the most deleterious factor applied; in some samples only a few spore survivors were recovered from B. subtilis MW01 spores exposed in monolayers. However, if shielded from solar irradiation, about 8% of MW01 spores survived in LEO conditions, and 100% survived in simulated martian conditions, compared to the laboratory controls. The results demonstrate the effect of shielding against the high inactivation potential of extraterrestrial solar UV radiation, which limits the chances of survival of even the highly UV-resistant strain of B. subtilis MW01 in the harsh environments of outer space and the martian surface.
NASA Astrophysics Data System (ADS)
Chen, Maosi
Solar radiation impacts many aspects of the Earth's atmosphere and biosphere. The total solar radiation impacts the atmospheric temperature profile and the Earth's surface radiative energy budget. The solar visible (VIS) radiation is the energy source of photosynthesis. The solar ultraviolet (UV) radiation impacts plant's physiology, microbial activities, and human and animal health. Recent studies found that solar UV significantly shifts the mass loss and nitrogen patterns of plant litter decomposition in semi-arid and arid ecosystems. The potential mechanisms include the production of labile materials from direct and indirect photolysis of complex organic matters, the facilitation of microbial decomposition with more labile materials, and the UV inhibition of microbes' population. However, the mechanisms behind UV decomposition and its ecological impacts are still uncertain. Accurate and reliable ground solar radiation measurements help us better retrieve the atmosphere composition, validate satellite radiation products, and simulate ecosystem processes. Incorporating the UV decomposition into the DayCent biogeochemical model helps to better understand long-term ecological impacts. Improving the accuracy of UV irradiance data is the goal of the first part of this research and examining the importance of UV radiation in the biogeochemical model DayCent is the goal of the second part of the work. Thus, although the dissertation is separated into two parts, accurate UV irradiance measurement links them in what follows. In part one of this work the accuracy and reliability of the current operational calibration method for the (UV-) Multi-Filter Rotating Shadowband Radiometer (MFRSR), which is used by the U.S. Department of Agriculture UV-B Monitoring and Research Program (UVMRP), is improved. The UVMRP has monitored solar radiation in the 14 narrowband UV and VIS spectral channels at 37 sites across U.S. since 1992. The improvements in the quality of the data result from an improved cloud screening algorithm that utilizes an iterative rejection of cloudy points based on a decreasing tolerance of unstable optical depth behavior when calibration information is unknown. A MODTRAN radiative transfer model simulation showed the new cloud screening algorithm was capable of screening cloudy points while retaining clear-sky points. The comparison results showed that the cloud-free points determined by the new cloud screening algorithm generated significantly (56%) more and unbiased Langley offset voltages (VLOs) for both partly cloudy days and sunny days at two testing sites, Hawaii and Florida. The V¬LOs are proportional to the radiometric sensitivity. The stability of the calibration is also improved by the development of a two-stage reference channel calibration method for collocated UV-MFRSR and MFRSR instruments. Special channels where aerosol is the only contributor to total optical depth (TOD) variation (e.g. 368-nm channel) were selected and the radiative transfer model (MODTRAN) used to calculate direct normal and diffuse horizontal ratios which were used to evaluate the stability of TOD in cloud-free points. The spectral dependence of atmospheric constituents' optical properties and previously calibrated channels were used to find stable TOD points and perform Langley calibration at spectrally adjacent channels. The test of this method on the UV-B program site at Homestead, Florida (FL02) showed that the new method generated more clustered and abundant VLOs at all (UV-) MFRSR channels and potentially improved the accuracy by 2-4% at most channels and over 10% at 300-nm and 305-nm channels. In the second major part of this work, I calibrated the DayCent-UV model with ecosystem variables (e.g. soil water, live biomass), allowed maximum photodecay rate to vary with litter's initial lignin fraction in the model, and validated the optimized model with LIDET observation of remaining carbon and nitrogen at three semi-arid sites. I also explored the ecological impacts of UV decomposition with the optimized DayCent-UV model. The DayCent-UV model showed significant better performance compared to models without UV decomposition in simulating the observed linear carbon loss pattern and the persistent net nitrogen mineralization in the 10-year LIDET experiment at the three sites. The DayCent-UV equilibrium model runs showed that UV decomposition increased aboveground and belowground plant production, surface net nitrogen mineralization, and surface litter nitrogen pool, while decreased surface litter carbon, soil net nitrogen mineralization and mineral soil carbon and nitrogen. In addition, UV decomposition showed minimal impacts (i.e. less than 1% change) on trace gases emission and biotic decomposition rates. Overall, my dissertation provided a comprehensive solution to improve the calibration accuracy and reliability of MFRSR and therefore the quality of radiation products. My dissertation also improved the understanding of UV decomposition and its long-term ecological impacts.
Behn, Helen; Albert, Andreas; Marx, Friedhelm; Noga, Georg; Ulbrich, Andreas
2010-06-23
Solar radiation is a key environmental signal in regulation of plant secondary metabolism. Since metabolic responses to light and ultraviolet (UV) radiation exposure are known to depend on the ratio of spectral ranges (e.g., UV-B/PAR), we examined effects of different UV-B radiation (280-315 nm) and photosynthetically active radiation (PAR, 400-700 nm) levels and ratios on yield and pattern of monoterpenoid essential oil of peppermint. Experiments were performed in exposure chambers, technically equipped for realistic simulation of natural climate and radiation. The experimental design comprised four irradiation regimes created by the combination of two PAR levels including or excluding UV-B radiation. During flowering, the highest essential oil yield was achieved at high PAR (1150 micromol m(-2) s(-1)) and approximate ambient UV-B radiation (0.6 W m(-2)). Regarding the monoterpene pattern, low PAR (550 micromol m(-2) s(-1)) and the absence of UV-B radiation led to reduced menthol and increased menthone contents and thereby to a substantial decrease in oil quality. Essential oil yield could not be correlated with density or diameter of peltate glandular trichomes, the epidermal structures specialized on biosynthesis, and the accumulation of monoterpenes. The present results lead to the conclusion that production of high quality oils (fulfilling the requirements of the Pharmacopoeia Europaea) requires high levels of natural sunlight. In protected cultivation, the use of UV-B transmitting covering materials is therefore highly recommended.
Wu, Hongyan; Gao, Kunshan; Wu, Haiyan
2009-02-09
UV radiation (280-400 nm) is known to affect phytoplankton in negative, neutral and positive ways depending on the species or levels of irradiation energy. However, little has been documented on how photosynthetic physiology and growth of red tide alga respond to UVR in a long-term period. We exposed the cells of the marine red tide diatom Skeletonema costatum for 6 days to simulated solar radiations with UV-A (320-400 nm) or UV-A+UV-B (295-400 nm) and examined their changes in photosynthesis and growth. Presence of UV-B continuously reduced the effective photosynthetic quantum yield of PSII, and resulted in complete growth inhibition and death of cells. When UV-B or UV-B+UV-A was screened off, the growth rate decreased initially but regained thereafter. UV-absorbing compounds and carotenoids increased in response to the exposures with UVR. However, mechanisms for photoprotection associated with the increased carotenoids or UV-absorbing compounds were not adequate under the continuous exposure to a constant level of UV-B (0.09 Wm(-2), DNA-weighted). In contrast, under solar radiation screened off UV-B, the photoprotection was first accomplished by an initial increase of carotenoids and a later increase in UV-absorbing compounds. The overall response of this red tide alga to prolonged UV exposures indicates that S. costatum is a UV-B-sensitive species and increased UV-B irradiance would influence the formation of its blooms.
Hui, Rong; Li, Xinrong; Chen, Cuiyun; Zhao, Xin; Jia, Rongliang; Liu, Lichao; Wei, Yongping
2013-04-01
Our understanding of plant responses to enhanced ultraviolet-B (UV-B) radiation has improved over recent decades. However, research on cryptogams is scarce and it remains controversial whether UV-B radiation causes changes in physiology related to photosynthesis. To investigate the effects of supplementary UV-B radiation on photosynthesis and chloroplast ultrastructure in Bryum argenteum Hedw., specimens were cultured for 10 days under four UV-B treatments (2.75, 3.08, 3.25 and 3.41 W m(-2) ), simulating depletion of 0% (control), 6%, 9% and 12% of stratospheric ozone at the latitude of Shapotou, a temperate desert area of northwest China. Analyses showed malondialdehyde content significantly increased, whereas chlorophyll (Chl) fluorescence parameters and Chl contents decreased with increased UV-B intensity. These results corresponded with changes in thylakoid protein complexes and chloroplast ultrastructure. Overall, enhanced UV-B radiation leads to significant decreases in photosynthetic function and serious destruction of the chloroplast ultrastructure of B. argenteum. The degree of negative influences increased with the intensity of UV-B radiation. These results may not only provide a potential mechanism for supplemental UV-B effects on photosynthesis of moss crust, but also establish a theoretical basis for further studies of adaptation and response mechanisms of desert ecosystems under future ozone depletion. Copyright © Physiologia Plantarum 2012.
NASA Astrophysics Data System (ADS)
Popov, A. P.; Priezzhev, A. V.; Lademann, J.; Myllylä, R.
2009-05-01
In this paper, by means of the Mie theory and Monte Carlo simulations we investigate modification of optical properties of the superficial layer of human skin (stratum corneum) for 310- and 400-nm ultraviolet (UV) radiation by embedding of 35-200-nm-sized particles of titanium dioxide (TiO2) and silicon (Si). Problem of skin protection against UV light is of major importance due to increased frequency of skin cancer provoked by excessive doses of accepted UV radiation. For 310-nm light, the optimal sizes of the TiO2 and Si particles are found to be 62 and 55 nm, respectively, and for 400-nm radiation, 122 and 70 nm, respectively.
Nrf2 Activation Protects against Solar-Simulated Ultraviolet Radiation in Mice and Humans.
Knatko, Elena V; Ibbotson, Sally H; Zhang, Ying; Higgins, Maureen; Fahey, Jed W; Talalay, Paul; Dawe, Robert S; Ferguson, James; Huang, Jeffrey T-J; Clarke, Rosemary; Zheng, Suqing; Saito, Akira; Kalra, Sukirti; Benedict, Andrea L; Honda, Tadashi; Proby, Charlotte M; Dinkova-Kostova, Albena T
2015-06-01
The transcription factor Nrf2 determines the ability to adapt and survive under conditions of electrophilic, oxidative, and inflammatory stress by regulating the expression of elaborate networks comprising nearly 500 genes encoding proteins with versatile cytoprotective functions. In mice, disruption of Nrf2 increases susceptibility to carcinogens and accelerates disease pathogenesis. Paradoxically, Nrf2 is upregulated in established human tumors, but whether this upregulation drives carcinogenesis is not known. Here we show that the incidence, multiplicity, and burden of solar-simulated UV radiation-mediated cutaneous tumors that form in SKH-1 hairless mice in which Nrf2 is genetically constitutively activated are lower than those that arise in their wild-type counterparts. Pharmacologic Nrf2 activation by topical biweekly applications of small (40 nmol) quantities of the potent bis(cyano enone) inducer TBE-31 has a similar protective effect against solar-simulated UV radiation in animals receiving long-term treatment with the immunosuppressive agent azathioprine. Genetic or pharmacologic Nrf2 activation lowers the expression of the pro-inflammatory factors IL6 and IL1β, and COX2 after acute exposure of mice to UV radiation. In healthy human subjects, topical applications of extracts delivering the Nrf2 activator sulforaphane reduced the degree of solar-simulated UV radiation-induced skin erythema, a quantifiable surrogate endpoint for cutaneous damage and skin cancer risk. Collectively, these data show that Nrf2 is not a driver for tumorigenesis even upon exposure to a very potent and complete carcinogen and strongly suggest that the frequent activation of Nrf2 in established human tumors is a marker of metabolic adaptation. ©2015 American Association for Cancer Research.
Nrf2 activation protects against solar-simulated ultraviolet radiation in mice and humans
Knatko, Elena V.; Ibbotson, Sally H.; Zhang, Ying; Higgins, Maureen; Fahey, Jed W.; Talalay, Paul; Dawe, Robert S.; Ferguson, James; Huang, Jeffrey T.-J.; Clarke, Rosemary; Zheng, Suqing; Saito, Akira; Kalra, Sukirti; Benedict, Andrea L.; Honda, Tadashi; Proby, Charlotte M.; Dinkova-Kostova, Albena T.
2015-01-01
The transcription factor Nrf2 determines the ability to adapt and survive under conditions of electrophilic, oxidative and inflammatory stress by regulating the expression of elaborate networks comprising nearly 500 genes encoding proteins with versatile cytoprotective functions. In mice, disruption of Nrf2 increases susceptibility to carcinogens and accelerates disease pathogenesis. Paradoxically, Nrf2 is upregulated in established human tumors, but whether this upregulation drives carcinogenesis is not known. Here we show that the incidence, multiplicity and burden of solar-simulated UV radiation-mediated cutaneous tumors that form in SKH-1 hairless mice in which Nrf2 is genetically constitutively activated, are lower than those that arise in their wild-type counterparts. Pharmacological Nrf2 activation by topical bi-weekly applications of small (40 nmol) quantities of the potent bis(cyano enone) inducer TBE-31 has a similar protective effect against solar-simulated UV radiation in animals receiving long-term treatment with the immunosuppressive agent azathioprine. Genetic or pharmacological Nrf2 activation lowers the expression of the pro-inflammatory factors interleukin (IL)-6 and IL-1β, and cyclooxygenase (COX)-2 after acute exposure of mice to UV radiation. In healthy human subjects, topical applications of extracts delivering the Nrf2 activator sulforaphane, reduced the degree of solar-simulated UV radiation-induced skin erythema, a quantifiable surrogate end-point for cutaneous damage and skin cancer risk. Collectively, these data show that Nrf2 is not a driver for tumorigenesis even upon exposure to a very potent and complete carcinogen, and strongly suggest that the frequent activation of Nrf2 in established human tumors is a marker of metabolic adaptation. PMID:25804610
A geometric ultraviolet-B radiation transfer model applied to vegetation canopies
Wei Gao; Richard H. Grant; Gordon M. Heisler; James R. Slusser
2002-01-01
The decrease in stratospheric ozone (O3) has prompted continued efforts to assess the potential damage to plant and animal life due to enhanced levels of solar ultraviolet (UV)-B (280-320 nm) radiation. The objective of this study was to develop and evaluate an analytical model to simulate the UV-B irradiance loading on horizontal below- canopy...
NASA Astrophysics Data System (ADS)
Cai, Xiaoni; Hutchins, David A.; Fu, Feixue; Gao, Kunshan
2017-10-01
Biological effects of ultraviolet radiation (UVR; 280-400 nm) on marine primary producers are of general concern, as oceanic carbon fixers that contribute to the marine biological CO2 pump are being exposed to increasing UV irradiance due to global change and ozone depletion. We investigated the effects of UV-B (280-320 nm) and UV-A (320-400 nm) on the biogeochemically critical filamentous marine N2-fixing cyanobacterium Trichodesmium (strain IMS101) using a solar simulator as well as under natural solar radiation. Short exposure to UV-B, UV-A, or integrated total UVR significantly reduced the effective quantum yield of photosystem II (PSII) and photosynthetic carbon and N2 fixation rates. Cells acclimated to low light were more sensitive to UV exposure compared to high-light-grown ones, which had more UV-absorbing compounds, most likely mycosporine-like amino acids (MAAs). After acclimation under natural sunlight, the specific growth rate was lower (by up to 44 %), MAA content was higher, and average trichome length was shorter (by up to 22 %) in the full spectrum of solar radiation with UVR, than under a photosynthetically active radiation (PAR) alone treatment (400-700 nm). These results suggest that prior shipboard experiments in UV-opaque containers may have substantially overestimated in situ nitrogen fixation rates by Trichodesmium, and that natural and anthropogenic elevation of UV radiation intensity could significantly inhibit this vital source of new nitrogen to the current and future oligotrophic oceans.
NASA Astrophysics Data System (ADS)
Peretyagin, Vladimir S.; Korolev, Timofey K.; Chertov, Aleksandr N.
2017-02-01
The problems of dressability the solid minerals are attracted attention of specialists, where the extraction of mineral raw materials is a significant sector of the economy. There are a significant amount of mineral ore dressability methods. At the moment the radiometric dressability methods are considered the most promising. One of radiometric methods is method photoluminescence. This method is based on the spectral analysis, amplitude and kinetic parameters luminescence of minerals (under UV radiation), as well as color parameters of radiation. The absence of developed scientific and methodological approaches of analysis irradiation area to UV radiation as well as absence the relevant radiation sources are the factors which hinder development and use of photoluminescence method. The present work is devoted to the development of multi-element UV radiation source designed for the solution problem of analysis and sorting minerals by their selective luminescence. This article is presented a method of theoretical modeling of the radiation devices based on UV LEDs. The models consider such factors as spectral component, the spatial and energy parameters of the LEDs. Also, this article is presented the results of experimental studies of the some samples minerals.
Letfullin, Renat R; George, Thomas F
2017-05-01
We introduce a new method for selectively destroying cancer cell organelles by electrons emitted from the surface of intracellularly localized nanoparticles exposed to the nonionizing ultraviolet (UV) radiation. We propose to target cancerous intracellular organelles by nanoparticles and expose them to UV radiation with energy density safe for healthy tissue. We simulate the number of photoelectrons produced by the nanoparticles made of various metals and radii, calculate their kinetic energy and compare it to the threshold energy for producing biological damage. Exposure of metal nanoparticles to UV radiation generates photoelectrons with kinetic energies up to 11 eV, which is high enough to produce single- to double-strand breaks in the DNA and damage the cancerous cell organelles.
Hartmann, Anja; Albert, Andreas; Ganzera, Markus
2015-01-01
Extremophilic green algae and cyanobacteria are the most abundant species in high mountain habitats, where rough climate conditions such as temperature differences, limited water retention and high ultraviolet (UV) radiation are the cause for a restricted biological diversity in favor of a few specialized autotrophic microorganisms. In this study, we investigated four algal species from alpine habitat in a sun simulator for their defense strategies in response to UV-A radiation (315–400 nm) up to 13.4 W/m2 and UV-B radiation (280–315 nm) up to 2.8 W/m2. Besides changes in pigment composition we discovered that primary polar metabolites like aromatic amino acids, nucleic bases and nucleosides are increasingly produced when the organisms are exposed to elevated UV radiation. Respective compounds were isolated and identified, and in order to quantify them an HPLC-DAD method was developed and validated. Our results show that especially tyrosine and guanosine were found to be generally two to three times upregulated in the UV-B exposed samples compared to the non-treated control. PMID:26065817
Suchar, Vasile Alexandru; Robberecht, Ronald
2016-07-01
A process based model integrating the effects of UV-B radiation to molecular level processes and their consequences to whole plant growth and development was developed from key parameters in the published literature. Model simulations showed that UV-B radiation induced changes in plant metabolic and/or photosynthesis rates can result in plant growth inhibitions. The costs of effective epidermal UV-B radiation absorptive compounds did not result in any significant changes in plant growth, but any associated metabolic costs effectively reduced the potential plant biomass. The model showed significant interactions between UV-B radiation effects and temperature and any factor leading to inhibition of photosynthetic production or plant growth during the midday, but the effects were not cumulative for all factors. Vegetative growth were significantly delayed in species that do not exhibit reproductive cycles during a growing season, but vegetative growth and reproductive yield in species completing their life cycle in one growing season did not appear to be delayed more than 2-5 days, probably within the natural variability of the life cycles for many species. This is the first model to integrate the effects of increased UV-B radiation through molecular level processes and their consequences to whole plant growth and development.
Effective UV radiation from model calculations and measurements
NASA Technical Reports Server (NTRS)
Feister, Uwe; Grewe, Rolf
1994-01-01
Model calculations have been made to simulate the effect of atmospheric ozone and geographical as well as meteorological parameters on solar UV radiation reaching the ground. Total ozone values as measured by Dobson spectrophotometer and Brewer spectrometer as well as turbidity were used as input to the model calculation. The performance of the model was tested by spectroradiometric measurements of solar global UV radiation at Potsdam. There are small differences that can be explained by the uncertainty of the measurements, by the uncertainty of input data to the model and by the uncertainty of the radiative transfer algorithms of the model itself. Some effects of solar radiation to the biosphere and to air chemistry are discussed. Model calculations and spectroradiometric measurements can be used to study variations of the effective radiation in space in space time. The comparability of action spectra and their uncertainties are also addressed.
Radiative and Kinetic Feedback by Low-Mass Primordial Stars
NASA Astrophysics Data System (ADS)
Whalen, Daniel; Hueckstaedt, Robert M.; McConkie, Thomas O.
2010-03-01
Ionizing UV radiation and supernova (SN) flows amidst clustered minihalos at high redshift regulated the rise of the first stellar populations in the universe. Previous studies have addressed the effects of very massive primordial stars on the collapse of nearby halos into new stars, but the absence of the odd-even nucleosynthetic signature of pair-instability SNe in ancient metal-poor stars suggests that Population III stars may have been less than 100 M sun. We extend our earlier survey of local UV feedback on star formation to 25-80 M sun stars and include kinetic feedback by SNe for 25-40 M sun stars. We find radiative feedback to be relatively uniform over this mass range, primarily because the larger fluxes of more massive stars are offset by their shorter lifetimes. Our models demonstrate that prior to the rise of global UV backgrounds, Lyman-Werner (LW) photons from nearby stars cannot prevent halos from forming new stars. These calculations also reveal that violent dynamical instabilities can erupt in the UV radiation front enveloping a primordial halo, but that they ultimately have no effect on the formation of a star. Finally, our simulations suggest that relic H II regions surrounding partially evaporated halos may expel LW backgrounds at lower redshifts, allowing stars to form that were previously suppressed. We provide fits to radiative and kinetic feedback on star formation for use in both semianalytic models and numerical simulations.
NASA Astrophysics Data System (ADS)
Rettberg, Petra; Wassmann, Marko; Rabbow, Elke; Moeller, Ralf; Panitz, Corinna; Horneck, Gerda; Douki, Thierry; Cadet, Jean
The effects of one of the most important environmental factors that have influenced the biolog-ical evolution on earth, solar UV radiation, was investigated in the space experiment ADAPT in the ESA facility EXPOSE on the European ISS module Columbus. Three highly resistant microorganims from very distinct terrestrial habitats were selected: Bacillus subtilis, a well characterised spore forming soil bacterium, a natural community of cyanobacteria colonising rocks and a species of halophilic archaea isolated from rock salt, Halococcus dombrowskii. The capability of the three different microorganisms to survive in a qualitatively and quantitatively different UV climate like that in space and on Mars was investigated in EXPOSE and its effects as well as its interaction with other environmental parameters were characterised at the cellular and molecular level. In the EXPOSE facility the environmental parameters of space were provided by the exposure of samples in vented sample carriers under MgF2 windows allowing the transmittance of solar UV wavelengths down to 110 nm. In addition, the environmental conditions on the surface of Mars were simulated in earth orbit by using closed sample carriers with martian atmosphere and pressure and a martian UV climate realised by the use of suitable cut-off filters and the extraterrestrial solar UV radiation. Due to the different composition of the martian atmosphere and it's low pressure, the martian UV radiation climate is significantly different from that of today's earth. Energy-rich biologically harmful UVB and UVC radiation can penetrate to the surface of Mars. This UV radiation spectrum resembles that of the early earth before the rise of the atmospheric oxygen concentration. In the experiment ADAPT I the model organism Bacillus subtilis was used to test the hypothesis experimentally whether longer-lasting selective pressure by a mars-like UV radiation spectrum results in a higher UV resistance as well as in a higher resistance against the simultaneous action of further `extreme' environmental factors that exist in space or on other planets like vacuum / low pressure or cosmic radiation. In preparation of ADAPT a continuos culture of Bacillus subtilis 168 cells was grown for 700 generations under periodical polychromatic mars-like UV irradiation. Populations that evolved under this UV stress were about 4.7fold more resistant than the ancestral and non-UV evolved populations. In addition to the acquired increased UV resistance, further changes in microbial stress response to hydrogen peroxide, increased salinity and desiccation were observed in UV-evolved cells. For the space experiment spores of the strain MW01, isolated from this UV-resistant population, were exposed in earth orbit to space and simulated martian conditions. The biological endpoints under investigation include among others survival, mutation induction, loss of sporulation capability. The results of this experiment will contribute to our understanding of the adaptability of life to extreme environments on earth and on other planets in general.
Takahashi, Akihisa; Kumatani, Toshihiro; Usui, Saori; Tsujimura, Ryoko; Seki, Takaharu; Morimoto, Kouichi; Ohnishi, Takeo
2005-01-01
Photoreactivation (PR) is an efficient survival mechanism that helps protect cells against the harmful effects of solar-ultraviolet (UV) radiation. The PR mechanism involves photolyase, just one enzyme, and can repair DNA damage, such as cyclobutane-pyrimidine dimers (CPD) induced by near-UV/blue light, a component of sunlight. Although the balance of near-UV/blue light and far-UV light reaching the Earth's surface could be altered by the atmospheric ozone layer's depletion, experiments simulating this environmental change and its possible effects on life have not yet been performed. To quantify the strength of UVB in sunlight reaching the Earth's surface, we measured the number of CPD generated in plasmid DNA after UVB irradiation or exposure to sunlight. To simulate the increase of solar-UV radiation resulting from the ozone layer depletion, Paramecium tetraurelia was exposed to UVB and/or sunlight in clear summer weather. PR recovery after exposure to sunlight was complete at a low dose rate of 0.2 J/m2 x s, but was less efficient when the dose rate was increased by a factor of 2.5 to 0.5 J/m2 x s. It is suggested that solar-UV radiation would not influence the cell growth of P. tetraurelia for the reason of high PR activity even when the ozone concentration was decreased 30% from the present levels.
Cela, Eliana M; Friedrich, Adrian; Paz, Mariela L; Vanzulli, Silvia I; Leoni, Juliana; González Maglio, Daniel H
2015-05-01
The modulatory effects of solar UV radiation on the immune system have been widely studied. As the skin is the main target of UV radiation, our purpose was to compare the impact on skin innate immunity of two contrasting ways to be exposed to sunlight. Hairless mice were UV irradiated with a single high UV dose simulating a harmful exposure, or with repetitive low UV doses simulating short occasional daily exposures. Skin samples were taken at different times after UV irradiation to evaluate skin histology, inflammatory cell recruitment, epidermal T-cell population and the mitochondrial function of epidermal cells. The transcriptional profiles of pro-inflammatory cytokines, chemokines, antimicrobial peptides and Toll-like receptors were evaluated by RT-PCR and ELISA in tissue homogenates. Finally, a lymphangiography was performed to assess modification in the lymphatic vessel system. A single high UV dose produces a deep inflammatory state characterized by the production of pro-inflammatory cytokines and chemokines that, in turn, induces the recruitment of neutrophils and macrophages into the irradiated area. On the other hand, repetitive low UV doses drive the skin to a photo-induced alert state in which there is no sign of inflammation, but the epithelium undergoes changes in thickness, the lymphatic circulation increases, and the transcription of antimicrobial peptides is induced. © 2014 John Wiley & Sons Ltd.
Götz, Michael; Albert, Andreas; Stich, Susanne; Heller, Werner; Scherb, Hagen; Krins, Andreas; Langebartels, Christian; Seidlitz, Harald K; Ernst, Dieter
2010-07-01
Long-term effects of ultraviolet (UV) radiation on flavonoid biosynthesis were investigated in Arabidopsis thaliana using the sun simulators of the Helmholtz Zentrum München. The plants, which are widely used as a model system, were grown (1) at high photosynthetically active radiation (PAR; 1,310 micromol m(-2) s(-1)) and high biologically effective UV irradiation (UV-B(BE) 180 mW m(-2)) during a whole vegetative growth period. Under this irradiation regime, the levels of quercetin products were distinctively elevated with increasing UV-B irradiance. (2) Cultivation at high PAR (1,270 micromol m(-2) s(-1)) and low UV-B (UV-B(BE) 25 mW m(-2)) resulted in somewhat lower levels of quercetin products compared to the high-UV-B(BE) conditions, and only a slight increase with increasing UV-B irradiance was observed. On the other hand, when the plants were grown (3) at low PAR (540 micromol m(-2) s(-1)) and high UV-B (UV-B(BE) 180 mW m(-2)), the accumulation of quercetin products strongly increased from very low levels with increasing amounts of UV-B but the accumulation of kaempferol derivatives and sinapoyl glucose was less pronounced. We conclude (4) that the accumulation of quercetin products triggered by PAR leads to a basic UV protection that is further increased by UV-B radiation. Based on our data, (5) a combined effect of PAR and different spectral sections of UV radiation is satisfactorily described by a biological weighting function, which again emphasizes the additional role of UV-A (315-400 nm) in UV action on A. thaliana.
The impact of solar UV radiation on the early biosphere
NASA Astrophysics Data System (ADS)
Horneck, G.
2007-08-01
Stratospheric ozone, photochemically produced from atmospheric oxygen, is a protective filter of the Earth's atmosphere by absorbing most of the biologically harmful UV radiation of our sun in the UV-C (190-280 nm) and short wavelength-region of the UV-B (280-315 nm). Numerous lines of isotopic and geologic evidence suggest that the Archean atmosphere was essentially anoxic. As a result the column abundance of ozone would have been insufficient to affect the surface UV radiation environment. Thus, as well as UV-B radiation, UV-C radiation would have penetrated to the Earth's surface with its associated biological consequences. The history of this ultraviolet stress for the early Earth has been determined from theoretical data and data obtained in Earth orbit on the inactivation of Bacillus subtilis spores under a simulated ozone layer of different thicknesses. Although the UV-C and UV-B regions contribute only 2 % of the entire solar extraterrestrial irradiance, photobiological experiments in space have demonstrated a high mutagenicity and lethality of this UV range to living organisms. The reason for these severe effects of extraterrestrial solar UV radiation - compared to conditions on present-day Earth - lies in the absorption characteristics of the DNA, which is the decisive target for inactivation and mutation induction at this UV range. Being a strong mutagen, UV-radiation is considered as a powerful promoter of biological evolution on the one hand, one the other hand, it may have deleterious consequences to individual cells and organisms, e.g. by causing inactivation, mutations or cancer induction. In response to potential harmful effects of environmental UV radiation, life on Earth has developed several strategies of survival, either avoiding exposure to UV radiation or restoring UV damage. Mechanisms of avoidance of exposure to UV radiation include (i) moving away from the UV radiation into shadowed areas, which requires the development of UV radiation sensing mechanisms; (ii) application of external shielding, such as covering by mud, sand or rock material; (iii) development of intrinsic UV screening pigments, such as tanning, inductive flavonoid production of plants, intracellular mycosporin production in cyanobacteria, (iv) accumulation of antioxidants and quenching substances. However, if UV damage has been induced - in spite of all avoidance efforts, organisms may restore their functionality by numerous repair processes. Repair pathways of a rich diversity and functional universality include (i) direct repair with the reversal of photochemical abnormalities, e.g. in the DNA; (ii) recombination repair removing the UV-induced abnormality by homologous recombination; and (iii) excision repair, where the section of the DNA strand containing the abnormality is removed and a repair patch is synthesized using the intact strand as a template. In addition to efficient repair systems for radiation-induced DNA injury, life has developed a variety of defense mechanisms, such as the increase in the production of stress proteins and the activation of the immune defence system. Some of these capacities have certainly already been evolved in the early biosphere, when it was exposed to the extended UV-spectrum of the sun. Only since the early Proterozoic, due to a rapid rise in the atmospheric oxygen concentration and consequently a photochemical built up of the stratospheric ozone layer, a more moderate UV radiation climate prevailed with wavelengths shorter than 295 nm being effectively cut off.
Response of biological uv dosimeters to the simulated extraterrestrial uv radiation
NASA Astrophysics Data System (ADS)
Bérces, A.; Rontó, G.; Kerékgyártó, T.; Kovács, G.; Lammer, H.
In the Laboratory polycrystalline uracil thin layer and bacteriophage T7 detectors have been developed for UV dosimetry on the EarthSs surface. Exponential response of the uracil polycrystal has been detected both by absorption spectroscopy and measurements of the refractive index under the influence of terrestrial solar radiation or using UV-C sources. In UV biological dosimetry the UV dose scale is additive starting at a value of zero according to the definition of CIE (Technical Report TC-6-18). The biological dose can be defined by a measured end-effect. In our dosimeters (phage T7 and uracil dosimeter) exposed to natural (terrestrial) UV radiation the proportion of pyrimidin photoproducts among the total photoproducts is smaller than 0.1 and the linear correlation between the biological and physical dose is higher than 0.9. According to the experimental data this linear relationship is often not valid. We observed that UV radiation did not only induce dimerisation but shorter wavelengths caused monomerisation of pyrimidin dimers. Performing the irradiation in oxygen free environment and using a Deuterium lamp as UV source, we could increase monomerisation against dimerisation thus the DNA-based dosimetrySs additivity rule is not fulfilled in these conditions. In this study we will demonstrate those non-linear experiments which constitute the basis of our biological experiments on the International Space Station.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, Chi-Ho; Krolik, Julian H.
2017-07-01
Near-Eddington radiation from active galactic nuclei (AGNs) has significant dynamical influence on the surrounding dusty gas, plausibly furnishing AGNs with geometrically thick obscuration. We investigate this paradigm with radiative magnetohydrodynamics simulations. The simulations solve the magnetohydrodynamics equations simultaneously with the infrared (IR) and ultraviolet (UV) radiative transfer (RT) equations; no approximate closure is used for RT. We find that our torus, when given a suitable sub-Keplerian angular momentum profile, spontaneously evolves toward a state in which its opening angle, density distribution, and flow pattern change only slowly. This “steady” state lasts for as long as there is gas resupply towardmore » the inner edge. The torus is best described as a midplane inflow and a high-latitude outflow. The outflow is launched from the torus inner edge by UV radiation and expands in solid angle as it ascends; IR radiation continues to drive the wide-angle outflow outside the central hole. The dusty outflow obscures the central source in soft X-rays, the IR, and the UV over three-quarters of solid angle, and each decade in column density covers roughly equal solid angle around the central source; these obscuration properties are similar to what observations imply.« less
Hui, Rong; Zhao, Ruiming; Song, Guang; Li, Yixuan; Zhao, Yang; Wang, Yanli
2018-05-01
A simulation experiment was conducted to explore the influence of enhanced ultraviolet-B (UV-B) radiation, water deficit, and their combination on UV-absorbing compounds and osmotic adjustment substances of mosses Bryum argenteum and Didymodon vinealis isolated from biological soil crusts (BSCs) growing in a revegetated area of the Tengger Desert, China. Four levels of UV-B radiation and two gradients of water regime were employed. Compared with their controls, amounts of total flavonoids, chlorophyll, carotenoids, soluble sugars, and soluble proteins significantly decreased (p < 0.05), but proline content significantly increased (p < 0.05), when exposed to either enhanced UV-B or water deficit. The negative effects of enhanced UV-B were alleviated when water deficit was applied. There were increases in UV-absorbing compounds and osmotic adjustment substances when exposed to a combination of enhanced UV-B and water deficit compared with single stresses, except for the proline content in D. vinealis. In addition, our results also indicated interspecific differences in response to enhanced UV-B, water deficit, and their combination. Compared with B. argenteum, D. vinealis was more resistant to enhanced UV-B and water deficit singly and in combination. These results suggest that the damage of enhanced UV-B on both species might be alleviated by water deficit. This alleviation is important for understanding the response of BSCs to UV-B radiation in future global climate change. This also provides novel insights into assessment damages of UV-B to BSC stability in arid and semiarid regions.
Photoemission Experiments for Charge Characteristics of Individual Dust Grains
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Spann, James F., Jr.; Craven, Paul D.; West, E.; Pratico, Jared; Scheianu, D.; Tankosic, D.; Venturini, C. C.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
Photoemission experiments with UV radiation have been performed to investigate the microphysics and charge characteristics of individual isolated dust grains of various compositions and sizes by using the electrodynamic balance facility at NASA Marshall Space Flight Center. Dust particles of 1 - 100 micrometer diameter are levitated in a vacuum chamber at pressures approx. 10(exp -5) torr and exposed to a collimated beam of UV radiation in the 120-300 nanometers spectral range from a deuterium lamp source with a MgF2 window. A monochromator is used to select the UV radiation wavelength with a spectral resolution of 8 nanometers. The electrodynamic facility permits measurements of the charge and diameters of particles of known composition, and monitoring of photoemission rates with the incident UV radiation. Experiments have been conducted on Al2O3 and silicate particles, and in particular on JSC-1 Mars regolith simulants, to determine the photoelectron yields and surface equilibrium potentials of dust particles when exposed to UV radiation in the 120-250 micrometers spectral range. A brief discussion of the experimental procedure, the results of photoemission experiments, and comparisons with theoretical models will be presented.
Morozova, Daria; Moeller, Ralf; Rettberg, Petra; Wagner, Dirk
2015-11-01
Permafrost-affected soils are characterized by a high abundance and diversity of methanogenic communities, which are considered suitable model organisms for potential life on Mars. Methanogens from Siberian permafrost have been proven to be highly resistant against divers stress conditions such as subzero temperatures, desiccation, and simulated thermophysical martian conditions. Here, we studied the radiation resistance of the currently described new species Methanosarcina soligelidi SMA-21, which was isolated from a Siberian permafrost-affected soil, in comparison to Methanosarcina barkeri, which is used as a reference organism from a nonpermafrost soil environment. Both strains were exposed to solar UV and ionizing radiation to assess their limits of survival. Methanosarcina soligelidi exhibit an increase in radiation resistance to UV (2.5- to 13.8-fold) and ionizing radiation (46.6-fold) compared to M. barkeri. The F10 (UVC) and D10 (X-rays) values of M. soligelidi are comparable to values for the well-known, highly radioresistant species Deinococcus radiodurans. In contrast, the radiation response of M. barkeri was highly sensitive to UV and ionizing radiation comparably to Escherichia coli and other radiosensitive microorganisms. This study showed that species of the same genus respond differently to UV and ionizing radiation, which might reflect the adaptation of Methanosarcina soligelidi SMA-21 to the harsh environmental conditions of the permafrost habitat. Methanogenic archaea-Environmental UV-Ionizing radiation-Permafrost-Radiation resistance-Mars.
Effects of a simulated martian UV flux on the cyanobacterium, Chroococcidiopsis sp. 029.
Cockell, Charles S; Schuerger, Andrew C; Billi, Daniela; Friedmann, E Imre; Panitz, Corinna
2005-04-01
Dried monolayers of Chroococcidiopsis sp. 029, a desiccation-tolerant, endolithic cyanobacterium, were exposed to a simulated martian-surface UV and visible light flux, which may also approximate to the worst-case scenario for the Archean Earth. After 5 min, there was a 99% loss of cell viability, and there were no survivors after 30 min. However, this survival was approximately 10 times higher than that previously reported for Bacillus subtilis. We show that under 1 mm of rock, Chroococcidiopsis sp. could survive (and potentially grow) under the high martian UV flux if water and nutrient requirements for growth were met. In isolated cells, phycobilisomes and esterases remained intact hours after viability was lost. Esterase activity was reduced by 99% after a 1-h exposure, while 99% loss of autofluorescence required a 4-h exposure. However, cell morphology was not changed, and DNA was still detectable by 4',6-diamidino-2-phenylindole staining after an 8-h exposure (equivalent to approximately 1 day on Mars at the equator). Under 1 mm of simulant martian soil or gneiss, the effect of UV radiation could not be detected on esterase activity or autofluorescence after 4 h. These results show that under the intense martian UV flux the morphological signatures of life can persist even after viability, enzymatic activity, and pigmentation have been destroyed. Finally, the global dispersal of viable, isolated cells of even this desiccation-tolerant, ionizing-radiation-resistant microorganism on Mars is unlikely as they are killed quickly by unattenuated UV radiation when in a desiccated state. These findings have implications for the survival of diverse microbial contaminants dispersed during the course of human exploratory class missions on the surface of Mars.
Fast simulation tool for ultraviolet radiation at the earth's surface
NASA Astrophysics Data System (ADS)
Engelsen, Ola; Kylling, Arve
2005-04-01
FastRT is a fast, yet accurate, UV simulation tool that computes downward surface UV doses, UV indices, and irradiances in the spectral range 290 to 400 nm with a resolution as small as 0.05 nm. It computes a full UV spectrum within a few milliseconds on a standard PC, and enables the user to convolve the spectrum with user-defined and built-in spectral response functions including the International Commission on Illumination (CIE) erythemal response function used for UV index calculations. The program accounts for the main radiative input parameters, i.e., instrumental characteristics, solar zenith angle, ozone column, aerosol loading, clouds, surface albedo, and surface altitude. FastRT is based on look-up tables of carefully selected entries of atmospheric transmittances and spherical albedos, and exploits the smoothness of these quantities with respect to atmospheric, surface, geometrical, and spectral parameters. An interactive site, http://nadir.nilu.no/~olaeng/fastrt/fastrt.html, enables the public to run the FastRT program with most input options. This page also contains updated information about FastRT and links to freely downloadable source codes and binaries.
Radiative transfer and radiative driving of outflows in active galactic nuclei and starbursts
NASA Astrophysics Data System (ADS)
Novak, G. S.; Ostriker, J. P.; Ciotti, L.
2012-12-01
To facilitate the study of black hole fuelling, star formation and feedback in galaxies, we outline a method for treating the radial forces on interstellar gas due to absorption of photons by dust grains. The method gives the correct behaviour in all of the relevant limits [dominated by the central point source; dominated by the distributed isotropic source; optically thin; optically thick to ultraviolet (UV)/optical; optically thick to infrared (IR)] and reasonably interpolates between the limits when necessary. The method is explicitly energy conserving so that UV/optical photons that are absorbed are not lost, but are rather redistributed to the IR where they may scatter out of the galaxy. We implement the radiative transfer algorithm in a two-dimensional hydrodynamical code designed to study feedback processes in the context of early-type galaxies. We find that the dynamics and final state of simulations are measurably but only moderately affected by radiative forces on dust, even when assumptions about the dust-to-gas ratio are varied from zero to a value appropriate for the Milky Way. In simulations with high gas densities designed to mimic ultraluminous IR galaxies with a star formation rate of several hundred solar masses per year, dust makes a more substantial contribution to the dynamics and outcome of the simulation. We find that, despite the large opacity of dust to UV radiation, the momentum input to the flow from radiation very rarely exceeds L/c due to two factors: the low opacity of dust to the re-radiated IR and the tendency for dust to be destroyed by sputtering in hot gas environments. We also develop a simplification of our radiative transfer algorithm that respects the essential physics but is much easier to implement and requires a fraction of the computational cost.
Lavigne, Claire; Durand, Gérard; Roblin, Antoine
2006-12-20
Light scattering in the atmosphere by particles and molecules gives rise to an aureole surrounding the source image that tends to reduce the contrast of the source with respect to the background. However, UV scattering phase functions of the haze droplets present a very important forward peak. The spreading of a detected signal in the UV is not as important as in the case of a clear atmosphere where Rayleigh scattering predominates. This physical property has to be taken into account to evaluate the potential of UV radiation as an aircraft landing aid under low visibility conditions. Different results characterizing UV runway lights, simulations of UV radiation propagation in the atmosphere, and the use of a simple detection algorithm applied to one particular sensor are presented.
Comont, David; Winters, Ana; Gomez, Leonardo D; McQueen-Mason, Simon J; Gwynn-Jones, Dylan
2013-01-01
Few studies to date have considered the responses of agriculturally important forage grasses to UV-B radiation. Yet grasses such as Lolium perenne have a wide current distribution, representing exposure to a significant variation in ambient UV-B. The current study investigated the responses of L. perenne (cv. AberDart) to a simulated latitudinal gradient of UV-B exposure, representing biologically effective UV-B doses at simulated 70, 60, 50, 40, and 30° N latitudes. Aspects of growth, soluble compounds, and digestibility were assessed, and results are discussed in relation to UV-B effects on forage properties and the implications for livestock and bio-ethanol production. Aboveground biomass production was reduced by approximately 12.67% with every 1 kJ m–2 day–1 increase in biologically weighted UV-B. As a result, plants grown in the highest UV-B treatment had a total biomass of just 13.7% of controls. Total flavonoids were increased by approximately 76% by all UV-B treatments, while hydroxycinnamic acids increased in proportion to the UV-B dose. Conversely, the digestibility of the aboveground biomass and concentrations of soluble fructans were reduced by UV-B exposure, although soluble sucrose, glucose, and fructose concentrations were unaffected. These results highlight the capacity for UV-B to directly affect forage productivity and chemistry, with negative consequences for digestibility and bioethanol production. Results emphasize the need for future development and distribution of L. perenne varieties to take UV-B irradiance into consideration. PMID:23580749
Simulating the UV Environment For the Synthesis of Prebiotic Molecules
NASA Astrophysics Data System (ADS)
Ranjan, S.; Sasselov, D.
2014-03-01
UV radiation plays a key role in the era of biogenesis. The young Sun was more UV-active than the modern Sun (Ribas et al. 2010), and the Earth lacked an ozone layer, implying a larger UV flux both on Earth, as well as on asteroids/comets. Ultraviolet radiation can help drive prebiotic molecule synthesis (e.g., Chyba et al. 1992; Powner et al. 2009) or destroy biologically important molecules (e.g., Johns et al. 1967). These effects are wavelength dependent: they are sensitive to ionzation, bond, and ro-vibrational transition energies of biologically relevant molecules and their precursors. When simulating the environment at biogenesis it is therefore important to ensure realistic levels of UV input, in both magnitude and spectral shape. Many laboratory simulations of biomolecule synthesis under prebiotic conditions to date have been done with atomic lamps (e.g., Powner et al. 2007). These lamps are safe, stable, and affordable UV sources, well-suited for initial studies. However, their emission spectra are a poor match to prebiotic conditions: low-pressure lamps are characterized by line emission, while higher-pressure lamps do not well-reproduce the spectrum of the young Sun. In this paper, we present spectra that are more realistic approximations to prebiotic conditions. Using published opacity lists and atmospheric models, we compute the attenuation of the flux from a young Sunanalog due to water, and from the present-day Sun due to a planetary atmosphere. We compare these spectra to those emitted by lamps used in studies today, and explore the potential biological implications of the differences. We conclude by discussing possibilities for better simulating the prebiotic UV environment in lab setups.
Hansen, Aviaja A; Jensen, Lars L; Kristoffersen, Tommy; Mikkelsen, Karina; Merrison, Jonathan; Finster, Kai W; Lomstein, Bente Aa
2009-03-01
Indigenous bacteria and biomolecules (DNA and proteins) in a freeze-dried and homogenized Arctic permafrost were exposed to simulated martian conditions that correspond to about 80 days on the surface of Mars with respect to the accumulated UV dose. The simulation conditions included UV radiation, freeze-thaw cycles, the atmospheric gas composition, and pressure. The homogenized permafrost cores were subjected to repeated cycles of UV radiation for 3 h followed by 27 h without irradiation. The effects of the simulation conditions on the concentrations of biomolecules; numbers of viable, dead, and cultured bacteria; as well as the community structure were determined. Simulated martian conditions resulted in a significant reduction of the concentrations of DNA and amino acids in the uppermost 1.5 mm of the soil core. The total number of bacterial cells was reduced in the upper 9 mm of the soil core, while the number of viable cells was reduced in the upper 15 mm. The number of cultured aerobic bacteria was reduced in the upper 6 mm of the soil core, whereas the community structure of cultured anaerobic bacteria was relatively unaffected by the exposure conditions. As explanations for the observed changes, we propose three causes that might have been working on the biological material either individually or synergistically: (i) UV radiation, (ii) UV-generated reactive oxygen species, and (iii) freeze-thaw cycles. Currently, the production and action of reactive gases is only hypothetical and will be a central subject in future investigations. Overall, we conclude that in a stable environment (no wind-/pressure-induced mixing) biological material is efficiently shielded by a 2 cm thick layer of dust, while it is relatively rapidly destroyed in the surface layer, and that biomolecules like proteins and polynucleotides are more resistant to destruction than living biota.
NASA Astrophysics Data System (ADS)
Hansen, Aviaja A.; Jenson, Lars L.; Kristoffersen, Tommy; Mikkelsen, Karina; Merrison, Jonathan; Finster, Kai W.; Lomstein, Bente Aa.
2009-03-01
Indigenous bacteria and biomolecules (DNA and proteins) in a freeze-dried and homogenized Arctic permafrost were exposed to simulated martian conditions that correspond to about 80 days on the surface of Mars with respect to the accumulated UV dose. The simulation conditions included UV radiation, freeze-thaw cycles, the atmospheric gas composition, and pressure. The homogenized permafrost cores were subjected to repeated cycles of UV radiation for 3 h followed by 27 h without irradiation. The effects of the simulation conditions on the concentrations of biomolecules; numbers of viable, dead, and cultured bacteria; as well as the community structure were determined. Simulated martian conditions resulted in a significant reduction of the concentrations of DNA and amino acids in the uppermost 1.5 mm of the soil core. The total number of bacterial cells was reduced in the upper 9 mm of the soil core, while the number of viable cells was reduced in the upper 15 mm. The number of cultured aerobic bacteria was reduced in the upper 6 mm of the soil core, whereas the community structure of cultured anaerobic bacteria was relatively unaffected by the exposure conditions. As explanations for the observed changes, we propose three causes that might have been working on the biological material either individually or synergistically: (i) UV radiation, (ii) UV-generated reactive oxygen species, and (iii) freeze-thaw cycles. Currently, the production and action of reactive gases is only hypothetical and will be a central subject in future investigations. Overall, we conclude that in a stable environment (no wind-/pressure-induced mixing) biological material is efficiently shielded by a 2 cm thick layer of dust, while it is relatively rapidly destroyed in the surface layer, and that biomolecules like proteins and polynucleotides are more resistant to destruction than living biota.
Comparison of skin responses from macroscopic and microscopic UV challenges
NASA Astrophysics Data System (ADS)
Seo, InSeok; Bargo, Paulo R.; Chu, Melissa; Ruvolo, Eduardo; Kollias, Nikiforos
2011-03-01
The minimal erythema dose induced by solar-simulated radiation is a useful measure of UV sensitivity of skin. Most skin phototests have been conducted by projecting a flat field of UV radiation onto the skin in an area greater than 15 cm × 15 cm with an increment of radiation doses. In this study, we investigated the responses of human skin to solar-simulated radiation of different field sizes. Twelve human subjects of skin phototype I-IV were exposed to solar-simulated radiation (SSR) on their upper inner arm or on their lower back with a series of doses in increments of 20% in order to determine the threshold dose to induce a minimal perceptible erythema response (MED). Each dose was delivered with a liquid light guide (8 mm diameter on the back or 6 mm on the upper inner arm) and with quartz optical fibers of 200 μm diameter. The resulting skin responses were evaluated visually and investigated with a reflectance confocal microscope and imaging. The erythema response to the microscopic challenge was always diffuse with no clear boundaries extending to several times the exposed site diameter at doses greater than 2 MED. The skin returned to normal appearance from the microscopic challenge after two weeks of exposure while change in appearance for the larger areas persisted for several weeks to months. This new modality of testing provides the possibility to study skin at the microscopic level with a rapid recovery following challenge.
Noblet, Audrey; Stalport, Fabien; Guan, Yuan Yong; Poch, Olivier; Coll, Patrice; Szopa, Cyril; Cloix, Mégane; Macari, Frédérique; Raulin, Francois; Chaput, Didier; Cottin, Hervé
2012-05-01
The search for organic molecules at the surface of Mars is a top priority of the next Mars exploration space missions: Mars Science Laboratory (NASA) and ExoMars (ESA). The detection of organic matter could provide information about the presence of a prebiotic chemistry or even biological activity on this planet. Therefore, a key step in interpretation of future data collected by these missions is to understand the preservation of organic matter in the martian environment. Several laboratory experiments have been devoted to quantifying and qualifying the evolution of organic molecules under simulated environmental conditions of Mars. However, these laboratory simulations are limited, and one major constraint is the reproduction of the UV spectrum that reaches the surface of Mars. As part of the PROCESS experiment of the European EXPOSE-E mission on board the International Space Station, a study was performed on the photodegradation of organics under filtered extraterrestrial solar electromagnetic radiation that mimics Mars-like surface UV radiation conditions. Glycine, serine, phthalic acid, phthalic acid in the presence of a mineral phase, and mellitic acid were exposed to these conditions for 1.5 years, and their evolution was determined by Fourier transform infrared spectroscopy after their retrieval. The results were compared with data from laboratory experiments. A 1.5-year exposure to Mars-like surface UV radiation conditions in space resulted in complete degradation of the organic compounds. Half-lives between 50 and 150 h for martian surface conditions were calculated from both laboratory and low-Earth orbit experiments. The results highlight that none of those organics are stable under low-Earth orbit solar UV radiation conditions.
Assessment of the impact of increased solar ultraviolet radiation upon marine ecosystems
NASA Technical Reports Server (NTRS)
Worrest, R. C.; Vandyke, H.
1978-01-01
Reduction of the earth's ozone layer, with a resultant increase in transmission of solar ultraviolet radiation in the 290 to 320nm waveband (UV-B), via space shuttle operations through the stratosphere is considered. It is shown that simulated solar ultraviolet radiation can, under experimental conditions, detrimentally affect the marine organisms that form the base of the food web of oceanic and estuarine ecosystems. Whether a small increase in biologically harmful ultraviolet radiation might overwhelm these mechanisms and produce changes that will have damaging consequences to the biosphere is discussed. The potential for irreversible damage to the productivity, structure and/or functioning of a model estuarine ecosystem by increased UV-B radiation and whether these ecosystems are highly stable or amenable to adaptive change is studied. Data are provided to assess the potential impact upon marine ecosystems if space shuttle operations contribute to a reduction of the stratospheric ozone layer and the sensitivity of key community components to increased UV-B radiation is examined.
Sensitivity of two salamander (Ambystoma) species to ultraviolet radiation
Calfee, R.D.; Bridges, C.M.; Little, E.E.
2006-01-01
Increased ultraviolet-B (UV-B) radiation reaching the Earth's surface has been implicated in amphibian declines. Recent studies have shown that many amphibian species have differences in sensitivity depending on developmental stage. Embryos and larvae of Ambystoma maculatum (Spotted Salamander) and larvae of Ambystoma talpoideum (Mole Salamander) were exposed to five simulated UV-B treatments in controlled laboratory experiments to determine the relative sensitivity of different lifestages. Hatching success of the embryos exceeded 95% in all treatments; however, the larvae of both species exhibited greater sensitivity to UV-B exposure. Older larvae of A. maculatum that were not exposed to UV-B as embryos were more sensitive than larvae that had hatched during exposure to UV-B. Growth of surviving larvae of A. maculatum was significantly reduced as UV-B intensity increased, whereas growth of A. talpoideum was unaffected. These results were compared to ambient UV-B conditions in natural environments. It appears that the embryo stage is relatively unaffected by UV-B levels observed in natural habitats, probably because of protection from vegetation, organic matter in the water column, oviposition depth, and egg jelly. The larval stage of these species may be at greater risk, particularly if there is an increase in UV-B radiation exposure caused by increases in water clarity and/or decreases in dissolved organic carbon.
Constraining the Accretion Mode in LINER 1.9s
NASA Astrophysics Data System (ADS)
Sabra, Bassem; Der Sahaguian, Elias; Badr, Elie
2016-01-01
The accretion mode and the dominant power source in low-ionization nuclear emission-line regions (LINERs), a class of active galactic nuclei (AGN), are still elusive. We focus on a sample of 22 LINER 1.9s (Ho et al. 1997), a subclass of LINERs that show broad Halpha lines, a signature of blackhole-powered accretion, to test the hypothesis that the ionizing continuum emitted by a radiatively inefficient accretion flow (RIAF) could lead to the LINER ultraviolet (UV) emission-line ratios. Optical line-ratio diagrams are a weak diagnostic tool in distinguishing between possible power sources (Sabra et al. 2003). We search the Mikulski Archive for Space Telescopes (MAST) for UV spectra of the objects in the above sample and also perform photoionization simulations using CLOUDY (Ferland et al. 2013). Unfortunately, only one object (NGC 1052; Gabel et al. 2000) of the 22 LINER 1.9s has UV spectra that cover many emission lines; the rest of the objects either do not have any UV spectra, the spectral coverage is in-adequate, or the spectra have very low signal-to-noise ratios. Our photoionization simulations set up two identical grids of clouds with a range of densities and ionization parameters. We illuminate one grid with radiation emitted by a thin accretion disk (AD) and we illuminate the other grid with radiation from a RIAF. We overplot the UV emission-line ratio predictions for AD and RIAF illumination, together with the available line ratios for NGC 1052. Initial results show that UV lines could be used as diagnostics for the accretion mode in AGN. More UV spectral coverage of LINER 1.9s is needed in order to more fully utilize the diagnostic powers of UV emission line ratios.
NASA Astrophysics Data System (ADS)
Hui, Rong; Li, Xinrong; Zhao, Yang; Pan, Yanxia
2016-04-01
Our understanding of plant responses to supplementary ultraviolet-B (UV-B) radiation due to stratospheric ozone depletion has improved over recent decades. However, research on biological soil crusts (BSCs) is scarce and it remains controversial. Laboratory studies were conducted to investigate the influence of UV-B radiation on the Bryum argenteum and Didymodon vinealis isolated from BSCs, which are both dominant species in moss crusts found within patches of shrubs and herbs in the Tengger Desert of northern China. The aim of the current work was to evaluate whether supplementary UV-B radiation affected photosynthetic properties and chloroplast ultrastructure of two moss crusts and whether response differences were observed between the crusts. Four levels of UV-B radiation of 2.75 (control), 3.08, 3.25, and 3.41 W m-2 was achieved using fluorescence tube systems for 10 days, simulating 0, 6, 9, and 12% of stratospheric ozone at the latitude of Shapotou, respectively. We measured photosynthetic apparatus as assessed by chlorophyll a fluorescence parameters, photosynthetic pigment contents, and observations of chloroplast ultrastructure. Additionally, soluble proteins and UV-B absorbing compounds were simultaneously investigated. The results of this study showed that chlorophyll a fluorescence parameters (i.e., the maximal quantum yield of PSII photochemistry, the effective quantum yield of PSII photochemistry, and photochemical quenching coefficient), photosynthetic pigment contents, soluble protein contents, total flavonoid contents and the ultrastructure were negatively influenced by elevated UV-B radiation and the degree of detrimental effects significantly increased with the intensity of UV-B radiation. Moreover, results demonstrated that the negative effects on photosynthesis and chloroplast ultrastructure were more serious in B. argenteum than that in D. vinealis. These results may not only provide a potential mechanism for supplemental UV-B effects on photosynthesis of moss crusts, but also establish a theoretical basis for further studies of adaptation and response mechanisms of desert ecosystems under further ozone depletion.
NASA Technical Reports Server (NTRS)
Dever, Joyce A.; Bruckner, Eric J.; Rodriguez, Elvin
1992-01-01
The photovoltaic (PV) power system for Space Station Freedom (SSF) uses solar array blankets which provide structural support for the solar cells and house the electrical interconnections. In the low earth orbital (LEO) environment where SSF will be located, surfaces will be exposed to potentially damaging environmental conditions including solar ultraviolet (UV) radiation, thermal cycling, and atomic oxygen. It is necessary to use ground based tests to determine how these environmental conditions would affect the mass loss and optical properties of candidate SSF blanket materials. Silicone containing, silicone coated, and SiO(x) coated polyimide film materials were exposed to simulated LEO environmental conditions to determine their durability and whether the environmental conditions of UV, thermal cycling and oxygen atoms act synergistically on these materials. A candidate PV blanket material called AOR Kapton, a polysiloxane polyimide cast from a solution mixture, shows an improvement in durability to oxygen atoms erosion after exposure to UV radiation or thermal cycling combined with UV radiation. This may indicate that the environmental conditions react synergistically with this material, and the damage predicted by exposure to atomic oxygen alone is more severe than that which would occur in LEO where atomic oxygen, thermal cycling and UV radiation are present together.
NASA Technical Reports Server (NTRS)
Dever, Joyce A.; Bruckner, Eric J.; Rodriguez, Elvin
1992-01-01
The photovoltaic (PV) power system for Space Station Freedom (SSF) uses solar array blankets which provide structural support for the solar cells and house the electrical interconnections. In the low Earth orbital (LEO) environment where SSF will be located, surfaces will be exposed to potentially damaging environmental conditions including solar ultraviolet (UV) radiation, thermal cycling, and atomic oxygen. It is necessary to use ground based tests to determine how these environmental conditions would affect the mass loss and optical properties of candidate SSF blanket materials. Silicone containing, silicone coated, and SiO(x) coated polyimide film materials were exposed to simulated LEO environmental conditions to determine there durability and whether the environmental conditions of UV, thermal cycling and oxygen atoms act synergistically on these materials. A candidate PV blanket material called AOR Kapton, a polysiloxane polyimide cast from a solution mixture, shows an improvement in durability to oxygen atoms erosion after exposure to UV radiation or thermal cycling combined with UV radiation. This may indicate that the environmental conditions react synergistically with this material, and the damage predicted by exposure to atomic oxygen alone is more severe than that which would occur in LEO where atomic oxygen, thermal cycling and UV radiation are present together.
NASA Astrophysics Data System (ADS)
Lindfors, A. V.; Arola, A.; Kaurola, J.; Taalas, P.; Svenøe, T.
2003-04-01
A method for estimating daily erythemal UV doses using total ozone, sunshine duration and snow depth has been developed. The method consists of three steps: (1) daily clear-sky UV doses were simulated using the UVSPEC radiative transfer program, with daily values of total ozone as input data, (2) an empirical relationship was sought between the simulated clear-sky UV doses, the measured UV doses and the duration of bright sunshine, (3) daily erythemal UV doses were estimated using this relationship. The method accounts for the varying surface albedo by dividing the period of interest into winter and summer days, depending on the snow depth. Using this method, the daily erythemal UV doses at Sodankylä were estimated for the period 1950--99. This was done using Tromsø's total ozone together with Sodankylä's own sunshine duration and snow depth as input data. Although the method is fairly simple, the results are in good agreement, even on the daily scale, with the UV radiation measured with the Brewer spectrophotometer at Sodankylä. Statistically significant increasing trends in erythemal UV doses of a few percents per decade over the period 1950--99 were found for March and April, suggesting a connection to the stratospheric ozone depletion. For July, on the other hand, a significant decreasing trend of about 3% per decade, supported by the changes in both total ozone and sunshine duration, was found. The produced data set of erythemal UV doses is the longest time series of estimated UV known to the authors.
Experiments on Dust Grain Charging
NASA Technical Reports Server (NTRS)
Abbas, M. N.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; West, E. A.
2004-01-01
Dust particles in various astrophysical environments are charged by a variety of mechanisms generally involving collisional processes with other charged particles and photoelectric emission with UV radiation from nearby sources. The sign and the magnitude of the particle charge are determined by the competition between the charging processes by UV radiation and collisions with charged particles. Knowledge of the particle charges and equilibrium potentials is important for understanding of a number of physical processes. The charge of a dust grain is thus a fundamental parameter that influences the physics of dusty plasmas, processes in the interplanetary medium and interstellar medium, interstellar dust clouds, planetary rings, cometary and outer atmospheres of planets etc. In this paper we present some results of experiments on charging of dust grains carried out on a laboratory facility capable levitating micron size dust grains in an electrodynamic balance in simulated space environments. The charging/discharging experiments were carried out by exposing the dust grains to energetic electron beams and UV radiation. Photoelectric efficiencies and yields of micron size dust grains of SiO2, and lunar simulates obtained from NASA-JSC will be presented.
Ma, Hongbo; Wallis, Lindsay K; Diamond, Steve; Li, Shibin; Canas-Carrell, Jaclyn; Parra, Amanda
2014-10-01
The present study investigated the impact of solar UV radiation on ZnO nanoparticle toxicity through photocatalytic ROS generation and photo-induced dissolution. Toxicity of ZnO nanoparticles to Daphnia magna was examined under laboratory light versus simulated solar UV radiation (SSR). Photocatalytic ROS generation and particle dissolution were measured on a time-course basis. Two toxicity mitigation assays using CaCl2 and N-acetylcysteine were performed to differentiate the relative importance of these two modes of action. Enhanced ZnO nanoparticle toxicity under SSR was in parallel with photocatalytic ROS generation and enhanced particle dissolution. Toxicity mitigation by CaCl2 to a less extent under SSR than under lab light demonstrates the role of ROS generation in ZnO toxicity. Toxicity mitigation by N-acetylcysteine under both irradiation conditions confirms the role of particle dissolution and ROS generation. These findings demonstrate the importance of considering environmental solar UV radiation when assessing ZnO nanoparticle toxicity and risk in aquatic systems. Copyright © 2014 Elsevier Ltd. All rights reserved.
Characteristic correlation study of UV disinfection performance for ballast water treatment
NASA Astrophysics Data System (ADS)
Ba, Te; Li, Hongying; Osman, Hafiiz; Kang, Chang-Wei
2016-11-01
Characteristic correlation between ultraviolet disinfection performance and operating parameters, including ultraviolet transmittance (UVT), lamp power and water flow rate, was studied by numerical and experimental methods. A three-stage model was developed to simulate the fluid flow, UV radiation and the trajectories of microorganisms. Navier-Stokes equation with k-epsilon turbulence was solved to model the fluid flow, while discrete ordinates (DO) radiation model and discrete phase model (DPM) were used to introduce UV radiation and microorganisms trajectories into the model, respectively. The UV dose statistical distribution for the microorganisms was found to move to higher value with the increase of UVT and lamp power, but moves to lower value when the water flow rate increases. Further investigation shows that the fluence rate increases exponentially with UVT but linearly with the lamp power. The average and minimum resident time decreases linearly with the water flow rate while the maximum resident time decrease rapidly in a certain range. The current study can be used as a digital design and performance evaluation tool of the UV reactor for ballast water treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-03-15
The species of seagrasses were selected on the basis of their dominance in the marine system, contribution to total productivity, and importance to the life histories of organisms in the Indian River lagoon system along the central Florida east coast. The three seagrasses were Halophilia engelmannii, Halodule wrightii, and Syringodium filiforme. These seagrasses form an excellent experimental system as their areas of dominance fall more or less along a natural gradient of UV-B and photosynthetically active radiation (PAR) penetration. The sensitivity of photosynthesis in the seagrasses was determined and their photosynthetic response to levels of UV-B simulating atmospheric ozone depletionmore » was monitored. Further experiments explore the possible attenuation or repair of UV-B induced photosynthetic inhibition by PAR, the role of epiphytic growth upon seagrasses as a protective UV-B shield, and the inhibition of photosynthesis in response to UV-A is studied.« less
Photosynthethic carbon reduction by seagrasses exposed to ultraviolet B radiation
NASA Technical Reports Server (NTRS)
1979-01-01
The species of seagrasses were selected on the basis of their dominance in the marine system, contribution to total productivity, and importance to the life histories of organisms in the Indian River lagoon system along the central Florida east coast. The three seagrasses were Halophilia engelmannii, Halodule wrightii, and Syringodium filiforme. These seagrasses form an excellent experimental system as their areas of dominance fall more or less along a natural gradient of UV-B and photosynthetically active radiation (PAR) penetration. The sensitivity of photosynthesis in the seagrasses was determined and their photosynthetic response to levels of UV-B simulating atmospheric ozone depletion was monitored. Further experiments explore the possible attenuation or repair of UV-B induced photosynthetic inhibition by PAR, the role of epiphytic growth upon seagrasses as a protective UV-B shield, and the inhibition of photosynthesis in response to UV-A is studied.
Atmospheric scattering of middle uv radiation from an internal source.
Meier, R R; Lee, J S; Anderson, D E
1978-10-15
A Monte Carlo model has been developed which simulates the multiple-scattering of middle-uv radiation in the lower atmosphere. The source of radiation is assumed to be monochromatic and located at a point. The physical effects taken into account in the model are Rayleigh and Mie scattering, pure absorption by particulates and trace atmospheric gases, and ground albedo. The model output consists of the multiply scattered radiance as a function of look-angle of a detector located within the atmosphere. Several examples are discussed, and comparisons are made with direct-source and single-scattered contributions to the signal received by the detector.
Horikoshi, Satoshi; Tsuchida, Akihiro; Abe, Masahiko; Ohba, Naoki; Uchida, Masayoshi; Serpone, Nick
2010-01-01
This short article examines the microwave-assisted photolytic disinfection of aqueous solutions contaminated by Bacillus subtilis microorganisms using UV and vacuum-UV radiation emitted from a microwave discharge electrodeless lamp (MDEL), a device containing a Hg/Ar gas-fill that was proposed recently for use in Advanced Oxidation Processes (AOPs). Results of the disinfection are compared with those obtained from UV radiation emitted by a low-pressure electrode Hg lamp and by an excimer lamp. Also examined is the disinfection of B. subtilis aqueous media that contained Au3+ or Ni2+ ions, species often found in the treatment of electroplating wash wastewaters.
NASA Astrophysics Data System (ADS)
Lindfors, A. V.; Arola, A.; Kaurola, J.; Taalas, P.; SvenøE, T.
2003-08-01
A method for estimating daily erythemal UV doses using total ozone, sunshine duration, and snow depth has been developed. The method consists of three steps: (1) daily clear-sky UV doses were simulated using the UVSPEC radiative transfer program, with daily values of total ozone as input data, (2) an empirical relationship was sought between the simulated clear-sky UV doses, the measured UV doses, and the duration of bright sunshine, and (3) daily erythemal UV doses were estimated using this relationship. The method accounts for the varying surface albedo by dividing the period of interest into winter and summer days, depending on the snow depth. Using this method, the daily erythemal UV doses at Sodankylä were estimated for the period 1950-1999. This was done using Tromsø's total ozone together with Sodankylä's own sunshine duration and snow depth as input data. Although the method is fairly simple, the results are in good agreement, even on the daily scale, with the UV radiation measured with the Brewer spectrophotometer at Sodankylä. Over the period 1950-1999 a statistically significant increasing trend of 3.9% per decade in erythemal UV doses was found for March. The fact that this trend is much more pronounced during the latter part of the period, which is also the case for April, suggests a connection to the stratospheric ozone depletion. For July, on the other hand, a significant decreasing trend of 3.3% per decade, supported by the changes in both total ozone and sunshine duration, was found.
Saffary, Roya; Nandakumar, Renu; Spencer, Dennis; Robb, Frank T; Davila, Joseph M; Swartz, Marvin; Ofman, Leon; Thomas, Roger J; DiRuggiero, Jocelyne
2002-09-24
We have recovered new isolates from hot springs, in Yellowstone National Park and the Kamchatka Peninsula, after gamma-irradiation and exposure to high vacuum (10(-6) Pa) of the water and sediment samples. The resistance to desiccation and ionizing radiation of one of the isolates, Bacillus sp. strain PS3D, was compared to that of the mesophilic bacterium, Deinococcus radiodurans, a species well known for its extraordinary resistance to desiccation and high doses of ionizing radiation. Survival of these two microorganisms was determined in real and simulated space conditions, including exposure to extreme UV radiation (10-100 nm) during a rocket flight. We found that up to 15 days of desiccation alone had little effect on the viability of either bacterium. In contrast, exposure to space vacuum ( approximately 10(-6) Pa) decreased cell survival by two and four orders of magnitude for Bacillus sp. strain PS3D and D. radiodurans, respectively. Simultaneous exposure to space vacuum and extreme UV radiation further decreased the survival of both organisms, compared to unirradiated controls. This is the first report on the isolated effect of extreme UV at 30 nm on cell survival. Extreme UV can only be transmitted through high vacuum, therefore its penetration into the cells may only be superficial, suggesting that in contrast to near UV, membrane proteins rather than DNA were damaged by the radiation.
Study of UV cloud modification factors in Southern Patagonia
NASA Astrophysics Data System (ADS)
Wolfram, Elian A.; Orte, Facundo; Salvador, Jacobo; Quiroga, Jonathan; D'Elia, Raúl; Antón, Manuel; Alados-Arboledas, Lucas; Quel, Eduardo
2017-02-01
Anthropogenic perturbation of the ozone layer has induced change in the amount of UV radiation that reaches the Earth's surface, mainly through the Antarctic ozone hole, making the ozone and ultraviolet (UV) radiation two important issues in the study of Earth atmosphere in the scientific community. Also the clouds have been identified as the main modulator of UV amount in short time scales and produce the main source of uncertainty in the projection of surface UV level as consequence of projected ozone recovery. While clouds can decrease direct radiation, they can produce an increase in the diffuse component, and as consequence the surface UV radiation may be higher than an equivalent clear sky scenario for several minutes. In particular this situation can be important when low ozone column and partially cloud cover skies happen simultaneously. These situations happen frequently in southern Patagonia, where the CEILAP Lidar Division has established the Atmospheric Observatory of Southern Patagonia, an atmospheric remote sensing site near the city of Río Gallegos (51°55'S, 69°14'W). In this paper, the impact of clouds over the UV radiation is investigated by the use of ground based measurements from the passive remote sensing instruments operating at this site, mainly of broad and moderate narrow band filter radiometers. We analyzed the UV Index obtained from a multiband filter radiometer GUV-541 (UVI) [Biospherical Inc.] installed in the Observatorio Atmosférico de la Patagonia Austral, Río Gallegos, since 2005. Cloud modification factors (CMF, ratio between the measured UV radiation in a cloudy sky and the simulated radiation under cloud-free conditions) are evaluated for the study site. The database used in this work covers the period 2005-2012 for spring and summer seasons, when the ozone hole can affect these subpolar regions. CMF higher than 1 are found during spring and summer time, when lower total ozone columns, higher solar elevations and high cloud cover occur simultaneously, producing extreme erythemal irradiance at ground surface. Enhancements as high as 25% were registered. The maximum duration of the enhancement was around 30 minute. This produces dangerous sunbathing situations for the Río Gallegos citizen.
A method for optimizing the cosine response of solar UV diffusers
NASA Astrophysics Data System (ADS)
Pulli, Tomi; Kärhä, Petri; Ikonen, Erkki
2013-07-01
Instruments measuring global solar ultraviolet (UV) irradiance at the surface of the Earth need to collect radiation from the entire hemisphere. Entrance optics with angular response as close as possible to the ideal cosine response are necessary to perform these measurements accurately. Typically, the cosine response is obtained using a transmitting diffuser. We have developed an efficient method based on a Monte Carlo algorithm to simulate radiation transport in the solar UV diffuser assembly. The algorithm takes into account propagation, absorption, and scattering of the radiation inside the diffuser material. The effects of the inner sidewalls of the diffuser housing, the shadow ring, and the protective weather dome are also accounted for. The software implementation of the algorithm is highly optimized: a simulation of 109 photons takes approximately 10 to 15 min to complete on a typical high-end PC. The results of the simulations agree well with the measured angular responses, indicating that the algorithm can be used to guide the diffuser design process. Cost savings can be obtained when simulations are carried out before diffuser fabrication as compared to a purely trial-and-error-based diffuser optimization. The algorithm was used to optimize two types of detectors, one with a planar diffuser and the other with a spherically shaped diffuser. The integrated cosine errors—which indicate the relative measurement error caused by the nonideal angular response under isotropic sky radiance—of these two detectors were calculated to be f2=1.4% and 0.66%, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trumbull, V.L.; McCloud, E.S.; Paige, K.N.
1994-06-01
Two ecotypes of Arabidopsis thaliana, collected from Libya and Norway, were grown in the greenhouse under. UV-B doses of 0 and 10.5 kJ m[sup [minus]2] UV-B[sub BE]. The high UV-B dose simulated midsummer ambient conditions over Libya and a 40% reduction in stratospheric ozone over Norway. The Libyan ectotype, which originated from latitudes where solar UV-B is high, showed no UV-B induced damage to plant growth. However the Norwegian ecotype, which originated from latitudes where solar UV-B is low, showed a significant reduction in plant height, inflorescence weight, and rosette weight in response to enhanced UV-B. Although fruit and seedmore » number for both ecotypes were unaffected by enhanced UV-B radiation the germination success of the seeds harvested from the irradiated Norwegian plants were significantly reduced. The two ecotypes also differed with respect to their accumulation of kaempferol, a putative UV-B protective filter. The Libyan ecotype increased kaempferol concentration by 38% over the 0 kJ treatment whereas the Norwegian ecotype increased by only 15%. These data suggest that, for these ecotypes, variation in UV-B sensitivity may be explained by the differential induction of UV-absorbing leaf pigments.« less
Cucumber (Cucumis sativus) and radish (Raphanus sativus) were grown under several levels of water stress in a growth chamber programmed with a day-night rhythm to simulate the diurnal course of temperature and irradiation. In addition to white light, the seedlings received UV-B r...
NASA Astrophysics Data System (ADS)
Kumar, Devinder; Smith, Leon; Richardson, Mark A.; Ayling, Richard; Barlow, Nick
2014-10-01
The Ultraviolet (UV) band of the electromagnetic (EM) spectrum has the potential to be used as the host medium for the operation of guided weapons. Unlike in the Infrared (IR), a target propelled by an air breathing jet engine produces no detectable radiation in the UV band, and is opaque to the background UV produced by the Sun. Successful engineering of spectral airborne IR countermeasures (CM) against existing two colour IR seekers has encouraged missile counter-countermeasure (CCM) designers to utilise the silhouette signature of an aircraft in the UV as a means of distinguishing between a true target and a flare CM. In this paper we describe the modelling process of a dual band IR and UV rosette scan seeker using CounterSim, a missile engagement and countermeasure simulation software package developed by Chemring Countermeasures Ltd. Results are shown from various simulated engagements of the dual band MANPAD with a C-130 Hercules modelled by Chemring Countermeasures. These results have been used to estimate the aircrafts' vulnerability to this MANPAD threat. A discussion on possible future optical countermeasures against dual band IR-UV seekers is given in conclusion to the simulation results.
Ozone (O3), particulate matter (PM), and nitrogen dioxide (NO2) are criteria pollutants used to evaluate air quality. Using a 14.3-m3 Teflon-lined smog chamber with 120 UV bulbs to simulate solar radiation, we generated 2 simulated-smog atmospheres (SSA-1 & SSA-2) with differ...
Hydrophobic Characteristics of Composite Insulators in Simulated Inland Arid Desert Environment
NASA Astrophysics Data System (ADS)
Khan, Yasin; Al-Arainy, Abdulrehman Ali; Malik, Nazar Hussain; Qureshi, Muhammad Iqbal
2010-06-01
Presently along with traditional insulators i.e. glass and porcelain, etc., the polymeric insulators are also used world widely. These polymeric insulators are very sensitive to various environmental parameters e.g. UV radiations, heat, etc. The UV radiation level in the central region of Saudi Arabia is high as compared to the recommended IEC-61109 standard for the accelerated aging of the composite insulators. In this study, thermoplastic elastomer (TPE) and Ethylene Propylene Diene Monomer (EPDM) insulators were subjected to accelerated aging stress as per IEC standard as well as modified IEC standard simulating the inland arid desert's atmospheric conditions. The hydrophobic characteristics were studied by measuring the contact angle along the insulator surface before and after the accelerated aging of the samples. It was found that TPE loses its hydrophobic properties more as compared to EPDM insulator. This loss was proportional to the intensity of UV irradiation. The rate of recovery is also low for both the tested materials as compared to Silicone Rubber insulators.
Changes in the Optical Properties of Simulated Shuttle Waste Water Deposits: Urine Darkening
NASA Technical Reports Server (NTRS)
Albyn, Keith; Edwards, David; Alred, John
2003-01-01
Manned spacecraft have historically dumped the crew generated waste water overboard, into the environment in which the spacecraft operates, sometimes depositing the waste water on the external spacecraft surfaces. The change in optical properties of wastewater deposited on spacecraft external surfaces, from exposure to space environmental effects, is not well understood. This study used nonvolatile residue (NVR) from Human Urine to simulate wastewater deposits and documents the changes in the optical properties of the NVR deposits after exposure to ultra violet(UV)radiation. Twenty four NVR samples of, 0-angstromes/sq cm to 1000-angstromes/sq cm, and one sample contaminated with 1 to 2-mg/sq cm were exposed to UV radiation over the course of approximately 6151 equivalent sun hours (ESH). Random changes in sample mass, NVR, solar absorbance, and infrared emission were observed during the study. Significant changes in the UV transmittance were observed for one sample contaminated at the mg/sq cm level.
Changes in the Optical Properties of Simulated Shuttle Waste Water Deposits- Urine Darkening
NASA Technical Reports Server (NTRS)
Albyn, Keith; Edwards, David; Alred, John
2004-01-01
Manned spacecraft have historically dumped the crew generated waste waster overboard, into the environment in which the spacecraft operates, sometimes depositing the waste water on the external spacecraft surfaces. The change in optical properties of wastewater deposited on spacecraft external surfaces, from exposure to space environmental effects, is not well understood. This study used nonvolatile residue (NVR) from Human Urine to simulate wastewater deposits and documents the changes in the optical properties of the NVR deposits after exposure to ultra violet (UV) radiation. Twenty NVR samples of, 0-angstromes/sq cm to 1000-angstromes/sq cm, and one sample contaminated with 1 to 2-mg/sq cm were exposed to UV radiation over the course of approximately 6151 equivalent sun hours (ESH). Random changes in sample mass, NVR, solar absorbance, and infrared emission were observed during the study. Significant changes in the UV transmittance were observed for one sample contaminated at the mg/sq cm level.
HYDROPHOBIC CHARACTERISTICS OF COMPOSITE INSULATORS IN SIMULATED INLAND ARID DESERT ENVIRONMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, Yasin; Al-Arainy, Abdulrehman Ali; Malik, Nazar Hussain
2010-06-15
Presently along with traditional insulators i.e. glass and porcelain, etc., the polymeric insulators are also used world widely. These polymeric insulators are very sensitive to various environmental parameters e.g. UV radiations, heat, etc. The UV radiation level in the central region of Saudi Arabia is high as compared to the recommended IEC-61109 standard for the accelerated aging of the composite insulators. In this study, thermoplastic elastomer (TPE) and Ethylene Propylene Diene Monomer (EPDM) insulators were subjected to accelerated aging stress as per IEC standard as well as modified IEC standard simulating the inland arid desert's atmospheric conditions. The hydrophobic characteristicsmore » were studied by measuring the contact angle along the insulator surface before and after the accelerated aging of the samples. It was found that TPE loses its hydrophobic properties more as compared to EPDM insulator. This loss was proportional to the intensity of UV irradiation. The rate of recovery is also low for both the tested materials as compared to Silicone Rubber insulators.« less
Photoenhanced toxicity of a weathered oil on Ceriodaphnia dubia reproduction
Calfee, R.D.; Little, E.E.; Cleveland, L.; Barron, M.G.
1999-01-01
Traditionally, the toxic effects of petroleum have been investigated by conducting studies in the absence of ultraviolet radiation (UV). Photomediated toxicity is often not considered, and the toxic effects of an oil spill can be grossly underestimated. The toxicity of a weathered oil collected from a monitoring well at an abandoned oil field toCeriodaphnia dubia was examined in the presence of UV. A solar simulator equipped with UVB, UVA, and cool white lamps was used to generate environmentally comparable solar radiation intensities.C. dubia were exposed to six concentrations of water accommodated fractions (WAF) of weathered oil in conjunction with three levels of laboratory simulated UV (Reference = < 0.002 μW/cm2UVB; 3.0 μW/cm2UVA; Low = 0.30 μW/cm2 UVB; 75.0 μW/cm2 UVA; High = 2.0 μW/cm2 UVB; 340.0 μW/cm2UVA) and visible light. Seven day static renewal bioassays were used to characterize WAF/UV toxicity. WAF toxicity significantly (p < 0.05) increased when the organisms were exposed to WAF in the presence of UV. The photoenhanced toxicity of the WAF increased with WAF concentration within each UV regime. Relative to the reference light regime, the average number of neonates from adults exposed to 1.6 mg TPH/L decreased significantly by 20% within the low light regime, and by 60% within the high light regime. These results indicate that organisms exposed to dissolved-phase weathered oil in the presence of environmentally realistic solar radiation, exhibit 1.3–2.5 times greater sensitivity, relative to organisms exposed under traditional laboratory fluorescent lighting.
Uranium plasma radiates in the UV spectrum
NASA Technical Reports Server (NTRS)
Williams, M. D.
1973-01-01
Description of an experiment designed to produce and spectroscopically analyze a simulated gas core reactor plasma in the spectral range from 300 to 1300 A. The plasma was produced by focusing the radiation of a Q-spoiled ruby laser onto the flat surface of a pure U-238 specimen.
Germ, Mateja; Mazej, Zdenka; Gaberscik, Alenka; Häder, Donat P
2002-02-01
The responses of two amphibious species, Batrachium trichophyllum and Potamogeton alpinus to different UV-B environments were studied. Plant material from natural environments, as well as from outdoor treatments was examined. In long-term outdoor experiments plants were grown under three different levels of UV-B radiation: reduced and ambient UV-B levels, and a UV-B level simulating 17% ozone depletion. The following parameters were monitored: contents of total methanol soluble UV-absorbing compounds and chlorophyll a, terminal electron transport system (ETS) activity and optimal and effective quantum yield of photosystem II. No effect of the different UV-B levels on the measured parameters was observed. The amount of UV-B absorbing compounds seems to be saturated, since no differences were observed between treatments and no increase was found in peak season, when natural UV-B levels were the highest. Physiological measurements revealed no harmful effects; neither on potential and actual photochemical efficiency, nor on terminal ETS activity. The contents of UV-B absorbing compounds were examined also in plant material sampled in low and high altitude environments during the growth season. Both species exhibited no seasonal dynamics of production of UV-absorbing compounds. The contents were variable and showed no significant differences between high and low altitude populations.
A proposal for in vitro/GFR molecular erythema action spectrum
NASA Astrophysics Data System (ADS)
de Souza, João A. V.; Lorenzini, Fabiane; Rizzatti, Mara R.
2008-08-01
We propose an erythema action spectrum based on experimental molecular measurements named molecular erythema action spectrum or in vitro/GFR, where the acronym GFR represents our research group name, Grupo de Física das Radiaçöes. The in vitro methodology was developed by using a derma tissue simulator (TSD), as a radiation protection shield, and monochromatic ultraviolet (UV) sources of 254, 310, 365, 380, and 400 nm. The irradiance from each source was monitored through spectroradiometry in order to obtain the exposure dose over a period of time. Changes in the chemical structure were monitored by Fourier transform infrared spectroscopy (FTIR) and UV and visible spectroscopy (UV-vis). The samples were analyzed by UV-vis at each 200 up to 1000 J/m2 and at each 400 up to 2000 J/m2. FTIR was performed only for samples exposed to a maximum dose of 2000 J/m2. The in vitro action parameters were obtained by considering the redshift revealed through UV-vis analysis, as being the molecular quantification of minimal erythema, and the chemical bond rupture of TSD molecules associated with erythema, revealed through FTIR. The in vitro/GFR action spectrum shows that UV-A and UV-B radiation are equally responsible for the damage observed in TSD. When this proposal was compared to the CIE erythema action spectrum from ISO [ISO17166 CIE S 007/E, Erythema Reference Action Spectrum and Standard Erythema Dose (CIE Central Bureau, Austria, 1998)], similarities could be observed in wavelengths less than 280 nm in UV-B region. However, for wavelengths higher than 300 nm, the efficiency of this radiation to induce damage, mainly in the UV-A part, was much higher than predicted in CIE model. The increasing concern on UV-A radiation, assumed to be as responsible as UV-B for inducing most of the already observed skin injuries, may be better understood when observing the experimental model presented in in vitro/GFR action spectrum.
Müller, Viola; Albert, Andreas; Barbro Winkler, J; Lankes, Christa; Noga, Georg; Hunsche, Mauricio
2013-10-05
We investigated the effects of environmentally relevant dose of ultraviolet (UV)-B and photosynthetic active radiation (PAR) on saponin accumulation in leaves on the example of Centella asiatica L. Urban. For this purpose, plants were exposed to one of four light regimes i.e., two PAR intensities with or without UV-B radiation. The experiment was conducted in technically complex sun simulators under almost natural irradiance and climatic conditions. As observed, UV-B radiation increased herb and leaf production as well as the content of epidermal flavonols, which was monitored by non-destructive fluorescence measurements. Specific fluorescence indices also indicate an increase in the content of anthocyanins under high PAR; this increase was likewise observed for the saponin concentrations. In contrast, UV-B radiation had no distinct effects on saponin and sapogenin concentrations. Our findings suggest that besides flavonoids, also saponins were accumulated under high PAR protecting the plant from oxidative damage. Furthermore, glycosylation of sapogenins seems to be important either for the protective function and/or for compartmentalization of the compounds. Moreover, our study revealed that younger leaves contain higher amounts of saponins, while in older leaves the sapogenins were the most abundant constituents. Concluding, our results proof that ambient dose of UV-B and high PAR intensity distinctly affect the accumulation of flavonoids and saponins, enabling the plant tissue to adapt to the light conditions. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Vuilleumier, Laurent; Milon, Antoine; Bulliard, Jean-Luc; Moccozet, Laurent; Vernez, David
2013-05-01
Exposure to solar ultraviolet (UV) radiation is the main causative factor for skin cancer. UV exposure depends on environmental and individual factors, but individual exposure data remain scarce. While ground UV irradiance is monitored via different techniques, it is difficult to translate such observations into human UV exposure or dose because of confounding factors. A multi-disciplinary collaboration developed a model predicting the dose and distribution of UV exposure on the basis of ground irradiation and morphological data. Standard 3D computer graphics techniques were adapted to develop a simulation tool that estimates solar exposure of a virtual manikin depicted as a triangle mesh surface. The amount of solar energy received by various body locations is computed for direct, diffuse and reflected radiation separately. Dosimetric measurements obtained in field conditions were used to assess the model performance. The model predicted exposure to solar UV adequately with a symmetric mean absolute percentage error of 13% and half of the predictions within 17% range of the measurements. Using this tool, solar UV exposure patterns were investigated with respect to the relative contribution of the direct, diffuse and reflected radiation. Exposure doses for various body parts and exposure scenarios of a standing individual were assessed using erythemally-weighted UV ground irradiance data measured in 2009 at Payerne, Switzerland as input. For most anatomical sites, mean daily doses were high (typically 6.2-14.6 Standard Erythemal Dose, SED) and exceeded recommended exposure values. Direct exposure was important during specific periods (e.g. midday during summer), but contributed moderately to the annual dose, ranging from 15 to 24% for vertical and horizontal body parts, respectively. Diffuse irradiation explained about 80% of the cumulative annual exposure dose.
Optical function of the finite-thickness corrugated pellicle of euglenoids.
Inchaussandague, Marina E; Skigin, Diana C; Dolinko, Andrés E
2017-06-20
We explore the electromagnetic response of the pellicle of selected species of euglenoids. These microorganisms are bounded by a typical surface pellicle formed by S-shaped overlapping bands that resemble a corrugated film. We investigate the role played by this structure in the protection of the cell against UV radiation. By considering the pellicle as a periodically corrugated film of finite thickness, we applied the C-method to compute the reflectance spectra. The far-field results revealed reflectance peaks with a Q-factor larger than 10 3 in the UV region for all the illumination conditions investigated. The resonant behavior responsible for this enhancement has also been illustrated by near-field computations performed by a photonic simulation method. These results confirm that the corrugated pellicle of euglenoids shields the cell from harmful UV radiation and open up new possibilities for the design of highly UV-reflective surfaces.
Optical Analysis of Transparent Polymeric Material Exposed to Simulated Space Environment
NASA Technical Reports Server (NTRS)
Edwards, David L.; Finckenor, Miria M.
1999-01-01
Transparent polymeric materials are being designed and utilized as solar concentrating lenses for spacecraft power and propulsion systems. These polymeric lenses concentrate solar energy onto energy conversion devices such as solar cells and thermal energy systems. The conversion efficiency is directly related to the transmissivity of the polymeric lens. The Environmental Effects Group of the Marshall Space Flight Center's Materials, Processes, and Manufacturing Department exposed a variety of materials to a simulated space environment and evaluated them for an, change in optical transmission. These materials include Lexan(TM), polyethylene terephthalate (PET). several formulations of Tefzel(TM). and Teflon(TM), and silicone DC 93-500. Samples were exposed to a minimum of 1000 Equivalent Sun Hours (ESH) of near-UV radiation (250 - 400 nm wavelength). Data will be presented on materials exposed to charged particle radiation equivalent to a five-year dose in geosynchronous orbit. These exposures were performed in MSFC's Combined Environmental Effects Test Chamber, a unique facility with the capability to expose materials simultaneously or sequentially to protons, low-energy electrons, high-energy electrons, near UV radiation and vacuum UV radiation.Prolonged exposure to the space environment will decrease the polymer film's transmission and thus reduce the conversion efficiency. A method was developed to normalize the transmission loss and thus rank the materials according to their tolerance to space environmental exposure. Spectral results and the material ranking according to transmission loss are presented.
Singh, Moirangthem Kameshwor; Sharma, Jai Gopal; Chakrabarti, Rina
2015-08-01
UV-B radiation is a potential stressor to the aquacultural species. Catla catla, catla larvae (1.08±0.065g) were exposed to different doses of UV-B radiation, 0 (control), 504, 1008, 1512 and 2016mJ/cm(2) at a mean radiant energy of 80μW/cm(2) for 21days. The dose of UV-B radiation was selected on the basis of the field study conducted in Lake Naini, Delhi, India (Latitude: 28°41'26″N and Longitude: 77°12″37″E). Significantly (P<0.05) lower survival, average weight and specific growth rate were found in UV-B irradiated larvae compared to the control one. Food conversion ratio was 1.5-4-fold higher in UV-B treated larvae compared to the control one. The carbonyl protein (CP), thiobarbituric acid reactive substances (TBARS), superoxide dismutase (SOD) levels were significantly (P <0.05) higher in UV-B irradiated larvae compared to the control group. Among the treated larvae, CP and SOD were significantly (P <0.05) higher in larvae exposed at 1512mJ/cm(2) UV-B. A correlation was found between the CP and SOD (R(2)=0.834). Highest TBARS level was found in 2016mJ/cm(2) UV-B exposed catla. Nitric oxide synthase level was significantly (P <0.05) lower in UV-B exposed larvae compared to the control one. A 3-fold increased Hsp 70 level was recorded in UV-B irradiated catla compared to the control larvae. Comet assay analysis indicated that UV-B irradiation enhanced DNA fragmentation. Tail extent moment and the olive tail moment were significantly (P <0.05) higher in 2016mJ/cm(2) UV-B exposed catla compared to others. The tail length was significantly (P <0.05) higher in 1512 and 2016mJ/cm(2) UV-B exposed larvae compared to the other doses. The present study suggests that the catla is a useful species for the biomonitoring of stress in the aquatic environment. Copyright © 2015 Elsevier B.V. All rights reserved.
Ma, Hongbo; Brennan, Amanda; Diamond, Stephen A
2012-09-01
Generation of reactive oxygen species (ROS) by titanium dioxide nanoparticles (nano-TiO(2)) and its consequent phototoxicity to Daphnia magna were measured under different solar ultraviolet (UV) spectra by applying a series of optical filters in a solar simulator. Removing UV-B (280-320 nm) from solar radiation had no significant impact on photocatalytic ROS production of nano-TiO(2), whereas removal of UV-A (320-400 nm) decreased ROS production remarkably. Removal of wavelengths below 400 nm resulted in negligible ROS production. A linear correlation between ROS production and D. magna immobilization suggests that photocatalytic ROS production may be a predictor of phototoxicity for nano-TiO(2). Intracellular ROS production within D. magna was consistent with the immobilization of the organism under different solar UV spectra, indicating that oxidative stress was involved in phototoxicity. The dependence of nano-TiO(2) phototoxicity on environmentally realistic variations in solar radiation suggests that risk assessment of these nanomaterials requires careful evaluation of exposure conditions in the environment. Copyright © 2012 SETAC.
Yuan, Xiao-Ying; Liu, Wei; Hao, Jian-Chun; Gu, Wei-Jie; Zhao, Yan-Shuang
2012-01-01
The purpose of this study was to investigate whether grape seed proanthocyanidin extract (GSPE) can provide photoprotection against ultraviolet (UV) irradiation. Study has shown that GSPE is a natural oxidant, and is used in many fields such as ischemia-reperfusion injury, chronic pancreatitis, and even cancer. However, the effect of GSPE on UV irradiation is as yet unknown. Cutaneous areas on the backs of normal volunteers were untreated or treated with GSPE solutions or vehicles 30 min before exposure to two minimal erythema doses (MED) of solar simulated radiation. Cutaneous areas at different sites were examined histologically for the number of sunburn cells, or immunohistochemically for Langerhans cells and mutant p53 epidermal cells. On histological and immunohistochemical examination, skin treated with GSPE before UV radiation showed fewer sunburn cells and mutant p53-positive epidermal cells and more Langerhans cells compared with skin treated with 2-MED UV radiation only (p<0.001, p<0.001, and p<0.01, respectively). GSPE may be a possible preventive agent for photoprotection.
Study of The Non-linear Uv Dosimetry In Simulated Extraterrestrial Conditions
NASA Astrophysics Data System (ADS)
Berces, A.; Kerekgyarto, T.; Ronto, G.; Lammer, H.; Kargl, G.; Komle, N. I.
In UV biological dosimetry the UV dose scale is additive starting at a value of zero ac- cording to the definition of CIE (Technical Report TC-6-18). The biological dose can be defined by a measured end-effect. In our dosimeters (phage T7 and uracil dosime- ter) exposed to natural (terrestrial) UV radiation the proportion of pyrimidin photo- products among the total photoproducts is smaller than 10 and the linear correlation between the biological and physical dose is higher than 0.9. According to the experi- mental data this linear relationship is often not valid. We observed that UV radiation did not only induce dimerisation but shorter wavelengths caused monomerisation of pyrimidin dimers. Performing the irradiation in oxygen free environment and using a Deuterium lamp as UV source, we could increase monomerisation against dimerisa- tion thus the DNA-based dosimetrySs additivity rule is not fulfilled in these conditions. In this study we will demonstrate those non-linear experiments which constitute the basis of our biological experiments on the International Space Station.
Dias, Luciana P; Araújo, Claudinéia A S; Pupin, Breno; Ferreira, Paulo C; Braga, Gilberto Ú L; Rangel, Drauzio E N
2018-06-01
The low survival of insect-pathogenic fungi when used for insect control in agriculture is mainly due to the deleterious effects of ultraviolet radiation and heat from solar irradiation. In this study, conidia of 15 species of entomopathogenic fungi were exposed to simulated full-spectrum solar radiation emitted by a Xenon Test Chamber Q-SUN XE-3-HC 340S (Q-LAB ® Corporation, Westlake, OH, USA), which very closely simulates full-spectrum solar radiation. A dendrogram obtained from cluster analyses, based on lethal time 50 % and 90 % calculated by Probit analyses, separated the fungi into three clusters: cluster 3 contains species with highest tolerance to simulated full-spectrum solar radiation, included Metarhizium acridum, Cladosporium herbarum, and Trichothecium roseum with LT 50 > 200 min irradiation. Cluster 2 contains eight species with moderate UV tolerance: Aschersonia aleyrodis, Isaria fumosorosea, Mariannaea pruinosa, Metarhizium anisopliae, Metarhizium brunneum, Metarhizium robertsii, Simplicillium lanosoniveum, and Torrubiella homopterorum with LT 50 between 120 and 150 min irradiation. The four species in cluster 1 had the lowest UV tolerance: Lecanicillium aphanocladii, Beauveria bassiana, Tolypocladium cylindrosporum, and Tolypocladium inflatum with LT 50 < 120 min irradiation. The QSUN Xenon Test Chamber XE3 is often used by the pharmaceutical and automotive industry to test light stability and weathering, respectively, but it was never used to evaluate fungal tolerance to full-spectrum solar radiation before. We conclude that the equipment provided an excellent tool for testing realistic tolerances of fungi to full-spectrum solar radiation of microbial agents for insect biological control in agriculture. Copyright © 2018 British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Simulations of dust in interacting galaxies
NASA Astrophysics Data System (ADS)
Jonsson, Patrik
This dissertation studies the effects of dust in N-body simulations of interacting galaxies. A new Monte-Carlo radiative-transfer code, Sunrise , is used in conjunction with hydrodynamic simulations. Results from radiative- transfer calculations in over 20 SPH simulations of disk-galaxy major mergers (Cox, 2004) are presented. Dust has a profound effect on the appearance of these simulations. At peak luminosities, 90% of the bolometric luminosity is absorbed by dust. The dust obscuration increases with luminosity in such a way that the brightness at UV/ visual wavelengths remains roughly constant. A general relationship between the fraction of energy absorbed and the ratio of bolometric luminosity to baryonic mass is found to hold in galaxies with metallicities >0.7 [Special characters omitted.] over a factor of 50 in mass. The accuracy to which the simulations describe observed starburst galaxies is evaluated by comparing them to observations by Meurer et al. (1999) and Heckman et al. (1998). The simulations are found to follow a relation similar to the IRX-b relation found by Meurer et al. (1999) when similar luminosity objects are considered. The highest-luminosity simulated galaxies depart from this relation and occupy the region where local LIRGs/ULIRGs are found. Comparing to the Heckman et al. (1998) sample, the simulations are found to obey the same relations between UV luminosity, UV color, IR luminosity, absolute blue magnitude and metallicity as the observations. This agreement is contingent on the presence of a realistic mass-metallicity relation, and Milky-Way-like dust. SMC-like dust results in far too red a UV continuum slope. On the whole, the agreement between the simulated and observed galaxies is impressive considering that the simulations have not been fit to agree with the observations, and we conclude that the simulations provide a realistic replication of the real universe. The simulations are used to study the performance of star-formation indicators in the presence of dust. The far-infrared luminosity is found to be reliable. In contrast, the Ha and far-ultraviolet luminosities suffer severely from dust attenuation, and dust corrections can only partially remedy the situation.
Urban UV environment in a sub-tropical megacity - A measurement and modelling study
NASA Astrophysics Data System (ADS)
Wai, Ka-Ming; Yu, Peter K. N.; Chan, Pok-Man
The variations of solar total UV (UVA + UVB) exposure rates in a megacity featured with high-rise buildings during summer months were measured and relevant model predictions were evaluated. The maximum pedestrian-level total solar UV exposure rate was less than the un-obstructed exposure rate at any time, attributing to the prevailing reduction in the diffuse solar radiation due to the obstruction effects of distant buildings. Comparing with the measurements, our coupled model well captured the spatial and temporal variations of the reduction of UV exposure rates. By measurements, large reduction in the solar total UV exposure rate down to 12% of un-obstructed exposure rate due to the building obstruction effects was found, agreeing with our previous simulation results and results from an Australian megacity. On the other hand, building reflection from reflective curtain walls could reach 23% of the un-obstructed solar total UV exposure rate at the ground level. This implied improper building design creating additional harmful effects of solar UV radiation on the environment. The coupled model was also applied to predict the urban UV exposure rates during a tropical-cyclone induced aerosol episode. A well-evaluated urban solar UV model is an important tool for sustainable urban design.
Do tanning salons adhere to new legal regulations? Results of a simulated client trial in Germany.
Möllers, Tobias; Pischke, Claudia R; Zeeb, Hajo
2016-03-01
In August 2009 and January 2012, two regulations were passed in Germany to limit UV exposure in the general population. These regulations state that no minors are allowed to use tanning devices. Personnel of tanning salons is mandated to offer counseling regarding individual skin type, to create a dosage plan with the customer and to provide a list describing harmful effects of UV radiation. Furthermore, a poster of warning criteria has to be visible and readable at all times inside the tanning salon. It is unclear whether these regulations are followed by employees of tanning salons in Germany, and we are not aware of any studies examining the implementation of the regulations at individual salons. We performed a simulated client study visiting 20 tanning salons in the city-state of Bremen in the year 2014, using a short checklist of criteria derived from the legal requirements, to evaluate whether legal requirements were followed or not. We found that only 20 % of the tanning salons communicated adverse health effects of UV radiation in visible posters and other materials and that only 60 % of the salons offered the required determination of the skin type to customers. In addition, only 60 % of the salons offered to complete the required dosage plan with their customers. To conclude, our results suggest that the new regulations are insufficiently implemented in Bremen. Additional control mechanisms appear necessary to ensure that consumers are protected from possible carcinogenic effects of excessive UV radiation.
NASA Astrophysics Data System (ADS)
Zempila, Melina Maria; Davis, John; Janson, George; Olson, Becky; Chen, Maosi; Durham, Bill; Simpson, Scott; Straube, Jonathan; Sun, Zhibin; Gao, Wei
2017-09-01
The USDA UV-B Monitoring and Research Program (UVMRP) is an ongoing effort aiming to establish a valuable, longstanding database of ground-based ultraviolet (UV) solar radiation measurements over the US. Furthermore, the program aims to achieve a better understanding of UV variations through time, and develop a UV climatology for the Northern American section. By providing high quality radiometric measurements of UV solar radiation, UVMRP is also focusing on advancing science for agricultural, forest, and range systems in order to mitigate climate impacts. Within these foci, the goal of the present study is to investigate, analyze, and validate the accuracy of the measurements of the UV multi-filter rotating shadowband radiometer (UV-MFRSR) and Yankee (YES) UVB-1 sensor at the high altitude, pristine site at Mauna Loa, Hawaii. The response-weighted irradiances at 7 UV channels of the UV-MFRSR along with the erythemal dose rates from the UVB-1 radiometer are discussed, and evaluated for the period 2006-2015. Uncertainties during the calibration procedures are also analyzed, while collocated groundbased measurements from a Brewer spectrophotometer along with model simulations are used as a baseline for the validation of the data. Besides this quantitative research, the limitations and merits of the existing UVMRP methods are considered and further improvements are introduced.
Optical system design of solar-blind UV target simulator with long focal length
NASA Astrophysics Data System (ADS)
Chen, Yu; Huo, Furong; Zheng, Liqin
2014-11-01
Ultraviolet (UV) radiation of 200nm-300nm waveband from the sun is absorbed by atmosphere, which is often referred to the solar-blind region of the solar spectrum. Solar-blind characteristics of this waveband have important application value, especially in military fields. The application of solar-blind waveband has developed very rapidly, which is receiving more and more attention. Sometimes, to test the performance of a UV optical system, a standard solar-blind UV target simulator is needed as the UV light source. In this paper, an optical system of a solar-blind UV target simulator is designed with waveband 240nm-280nm. To simulate a far UV target, the focal length of this UV optical system needs to be long. Besides, different field of view (FOV) of the system should meet aplanatic condition. The optional materials are very few for UV optical systems, in which only CaF2 and JGS1 are commonly used. Various aberrations are difficult to be corrected. To save production cost and enhance the precision of fabrication and test, aspheric surfaces and binary elements are not adopted in the system. Moreover, doublet or triplet cannot be used in UV optical system considering possible cracking for different thermal expansion coefficients of different materials. After optimization, the system is composed of 4 lenses with focal length 500mm. MTF curves of different FOV coincide together. The maximum RMS radius of the optimized system has almost the same size as Airy disk, which proves the good image quality after system optimization. The aplanatic condition is met very well in this system. In the spot diagram, root mean square (RMS) radius changes from 3 microns to 3.6 microns, which has similar size with Airy disk and meets aplanatic condition very well. This optical system of solar-blind UV target simulator also has relatively loose tolerance data, which can prove the system is designed in an optimal state.
Harmful and favourable ultraviolet conditions for human health over Northern Eurasia
NASA Astrophysics Data System (ADS)
Chubarova, Nataly; Zhdanova, Ekaterina
2014-05-01
We provide the analysis of the spatial and temporal distribution of ultraviolet (UV) radiation over Northern Eurasia taking into account for both its detrimental (erythema and eye-damage effects) and favourable (vitamin D synthesis) influence on human health. The UV effects on six different skin types are considered in order to cover the variety of skin types of European and Asian inhabitants. To better quantifying the vitamin D irradiance threshold we accounted for an open body fraction S as a function of effective air temperature. The spatial and temporal distribution of UV resources was estimated by radiative transfer (RT) modeling (8 stream DISORT RT code) with 1x 1 degree grid and monthly resolution. For this purpose special datasets of main input geophysical parameters (total ozone content, aerosol characteristics, surface UV albedo, UV cloud modification factor) have been created over the territory of Northern Eurasia, which can be of separate interest for the different multidisciplinary scientific applications over the PEEX domain. The new approaches were used to retrieve aerosol and cloud transmittance from different satellite and re-analysis datasets for calculating the solar UV irradiance at ground. Using model simulations and some experimental data we provide the altitude parameterization for different types of biologically active irradiance in mountainous area taking into account not only for the effects of molecular scattering but for the altitude dependence of aerosol parameters and surface albedo. Based on the new classification of UV resources (Chubarova, Zhdanova, 2013) we show that the distribution of harmful (UV deficiency and UV excess) and favorable UV conditions is regulated by various geophysical parameters (mainly, total ozone, cloudiness and open body fraction) and can significantly deviate from latitudinal dependence. The interactive tool for providing simulations of biologically active irradiance and its attribution to the different classes of UV resources is demonstrated. Reference: Natalia Chubarova, Yekaterina Zhdanova. Ultraviolet resources over Northern Eurasia, Photochemistry and Photobiology, Elsevier, 127, 2013, p. 38-51
Rick, Ingolf P; Mehlis, Marion; Eßer, Elisabeth; Bakker, Theo C M
2014-02-01
Exposure to enhanced levels of ambient ultraviolet (UV) radiation (UVR) can have adverse effects on aquatic organisms including damage at the cellular and molecular level and impairment of development, fecundity and survival. Much research has been conducted on the role of the harmful UVB radiation. However, due to its greater penetration in water the more abundant UVA radiation can also act as an environmental stressor. Little is known about UVR effects on sperm characteristics although sperm cells should be especially prone to UV-induced oxidative stress. Moreover, UV-related changes in oxidative status may affect the phenotypic expression of energetically costly sexual ornaments. We investigated the effects of long-term exposure to ecologically relevant levels of simulated UVA radiation on sperm quality and sexual ornamentation in three-spined sticklebacks (Gasterosteus aculeatus). Males were assigned to three spectral exposure treatments differing in the UV spectral part so that they received either enhanced, moderate or no UVA radiation. The results reveal that exposure to enhanced ambient UVA levels had detrimental effects on both male breeding coloration and sperm velocity providing evidence that UVR affects traits targeted by pre- and post-copulatory sexual selection. By highlighting the role of UVA as a factor influencing fitness-relevant traits, our findings may contribute to a better understanding of the consequences of current and future levels of solar UVR for mating systems and life history.
Synchrotron Radiation Workshop (SRW)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chubar, O.; Elleaume, P.
2013-03-01
"Synchrotron Radiation Workshop" (SRW) is a physical optics computer code for calculation of detailed characteristics of Synchrotron Radiation (SR) generated by relativistic electrons in magnetic fields of arbitrary configuration and for simulation of the radiation wavefront propagation through optical systems of beamlines. Frequency-domain near-field methods are used for the SR calculation, and the Fourier-optics based approach is generally used for the wavefront propagation simulation. The code enables both fully- and partially-coherent radiation propagation simulations in steady-state and in frequency-/time-dependent regimes. With these features, the code has already proven its utility for a large number of applications in infrared, UV, softmore » and hard X-ray spectral range, in such important areas as analysis of spectral performances of new synchrotron radiation sources, optimization of user beamlines, development of new optical elements, source and beamline diagnostics, and even complete simulation of SR based experiments. Besides the SR applications, the code can be efficiently used for various simulations involving conventional lasers and other sources. SRW versions interfaced to Python and to IGOR Pro (WaveMetrics), as well as cross-platform library with C API, are available.« less
Activity and stability of a complex bacterial soil community under simulated Martian conditions
NASA Astrophysics Data System (ADS)
Hansen, Aviaja Anna; Merrison, Jonathan; Nørnberg, Per; Aagaard Lomstein, Bente; Finster, Kai
2005-04-01
A simulation experiment with a complex bacterial soil community in a Mars simulation chamber was performed to determine the effect of Martian conditions on community activity, stability and survival. At three different depths in the soil core short-term effects of Martian conditions with and without ultraviolet (UV) exposure corresponding to 8 Martian Sol were compared. Community metabolic activities and functional diversity, measured as glucose respiration and versatility in substrate utilization, respectively, decreased after UV exposure, whereas they remained unaffected by Martian conditions without UV exposure. In contrast, the numbers of culturable bacteria and the genetic diversity were unaffected by the simulated Martian conditions both with and without UV exposure. The genetic diversity of the soil community and of the colonies grown on agar plates were evaluated by denaturant gradient gel electrophoresis (DGGE) on DNA extracts. Desiccation of the soil prior to experimentation affected the functional diversity by decreasing the versatility in substrate utilization. The natural dominance of endospores and Gram-positive bacteria in the investigated Mars-analogue soil may explain the limited effect of the Mars incubations on the survival and community structure. Our results suggest that UV radiation and desiccation are major selecting factors on bacterial functional diversity in terrestrial bacterial communities incubated under simulated Martian conditions. Furthermore, these results suggest that forward contamination of Mars is a matter of great concern in future space missions.
UV photostability of insect repellents evaluated through Raman spectroscopy
NASA Astrophysics Data System (ADS)
Bório, Viviane G.; Fernandes, Adjaci U.; Silveira, Landulfo
2016-02-01
The use of insect repellents either indoors or at places with incidence of solar radiation has been common due to dengue epidemics in Brazil. The lack of studies on the photostability of these substances has motivated this study, where the main goal was to verify the photostability and photodegradation of some of the commercially insect repellents available under the simulated ultraviolet (UV) radiation, by evaluating the molecular changes using dispersive Raman spectroscopy (830 nm excitation). A laboratory-made chamber was used for irradiating the repellents, where UV-A + UV-B radiations (UV-A: 5.5 mW/cm2 and UV-B 1.5 mW/cm2) can be obtained. The chamber internal temperature did not exceed 31 °C during experiments. The compounds n,n-diethyl-m-toluamide (DEET), IR-3535, andiroba and citronella oils, used as active ingredients in insect repellents, and commercial formula containing DEET (14.5% in ethanol and isopropyl myristate) and IR-3535 (16% in carbopol) were continuously irradiated for 8 h. The Raman spectrum of each sample was obtained before and after UV exposure. The compounds and the commercial formula containing IR-3535 showed photo-stability when irradiated, since no changes in the peaks were found. The commercial formula containing DEET showed spectral decrease at 524, 690, 1003 and 1606 cm-1, assigned to the DEET, and increase at 884 cm-1, assigned to the ethanol. These results indicate that the excipient could influence the photostability of the active ingredient. The Raman spectroscopy can be suitable to monitor the photodegradation under UV irradiation rapidly and reliably.
NASA Astrophysics Data System (ADS)
Yoshimura, Haruka; Zhu, Hui; Wu, Yunying; Ma, Ruijun
2010-03-01
Human exposure to harmful ultraviolet (UV) radiation has important public health implications. Actual human exposure to solar UV radiation depends on ambient UV irradiance, and the latter is influenced by ground reflection. In urban areas with higher reflectivity, UV exposure occurs routinely. To discover the solar UV radiation regulation mechanism of vegetation, the spectral reflectance and transmittance of plant leaves were measured with a spectrophotometer. Typically, higher plants have low leaf reflectance (around 5%) and essentially zero transmittance throughout the UV region regardless of plant species and seasonal change. Accordingly, incident UV radiation decreases to 5% by being reflected and is reduced to zero by passing through a leaf. Therefore, stratified structures of vegetation are working as another terminator of UV rays, protecting whole terrestrial ecosystems, while vegetation at waterfronts contributes to protect aquatic ecosystems. It is possible to protect the human population from harmful UV radiation by urban landscape design of tree shade and the botanical environment. Even thin but uniformly distributed canopy is effective in attenuating UV radiation. To intercept diffuse radiation, UV screening by vertical structures such as hedges should be considered. Reflectivity of vegetation is around 2%, as foliage surfaces reduce incident UV radiation via reflection, while also eliminating it by transmittance. Accordingly, vegetation reduces incident UV radiation to around 2% by reflection. Vegetation influence on ambient UV radiation is broad-spectrum throughout the UV region. Only trees provide cool UV protective shade. Urban landscapes aimed at abating urban heat islands integrated with a reduction of human UV over-exposure would contribute to mitigation of climate change.
CO2 Enhancement of Growth and Photosynthesis in Rice (Oryza sativa) 1
Ziska, Lewis H.; Teramura, Alan H.
1992-01-01
Two cultivars of rice (Oryza sativa L.) IR-36 and Fujiyama-5 were grown at ambient (360 microbars) and elevated CO2 (660 microbars) from germination through reproduction in unshaded greenhouses at the Duke University Phytotron. Growth at elevated CO2 resulted in significant decreases in nighttime respiration and increases in photosynthesis, total biomass, and yield for both cultivars. However, in plants exposed to simultaneous increases in CO2 and ultraviolet-B (UV-B) radiation, CO2 enhancement effects on respiration, photosynthesis, and biomass were eliminated in IR-36 and significantly reduced in Fujiyama-5. UV-B radiation simulated a 25% depletion in stratospheric ozone at Durham, North Carolina. Analysis of the response of CO2 uptake to internal CO2 concentration at light saturation suggested that, for IR-36, the predominant limitation to photosynthesis with increased UV-B radiation was the capacity for regeneration of ribulose bisphosphate (RuBP), whereas for Fujiyama-5 the primary photosynthetic decrease appeared to be related to a decline in apparent carboxylation efficiency. Changes in the RuBP regeneration limitation in IR-36 were consistent with damage to the photochemical efficiency of photosystem II as estimated from the ratio of variable to maximum chlorophyll fluorescence. Little change in RuBP regeneration and photochemistry was evident in cultivar Fujiyama-5, however. The degree of sensitivity of photochemical reactions with increased UV-B radiation appeared to be related to leaf production of UV-B-absorbing compounds. Fujiyama-5 had a higher concentration of these compounds than IR-36 in all environments, and the production of these compounds in Fujiyama-5 was stimulated by UV-B fluence. Results from this study suggest that in rice alterations in growth or photosynthesis as a result of enhanced CO2 may be eliminated or reduced if UV-B radiation continues to increase. PMID:16668910
UV Lidar Receiver Analysis for Tropospheric Sensing of Ozone
NASA Technical Reports Server (NTRS)
Pliutau, Denis; DeYoung, Russell J.
2013-01-01
A simulation of a ground based Ultra-Violet Differential Absorption Lidar (UV-DIAL) receiver system was performed under realistic daytime conditions to understand how range and lidar performance can be improved for a given UV pulse laser energy. Calculations were also performed for an aerosol channel transmitting at 3 W. The lidar receiver simulation studies were optimized for the purpose of tropospheric ozone measurements. The transmitted lidar UV measurements were from 285 to 295 nm and the aerosol channel was 527-nm. The calculations are based on atmospheric transmission given by the HITRAN database and the Modern Era Retrospective Analysis for Research and Applications (MERRA) meteorological data. The aerosol attenuation is estimated using both the BACKSCAT 4.0 code as well as data collected during the CALIPSO mission. The lidar performance is estimated for both diffuseirradiance free cases corresponding to nighttime operation as well as the daytime diffuse scattered radiation component based on previously reported experimental data. This analysis presets calculations of the UV-DIAL receiver ozone and aerosol measurement range as a function of sky irradiance, filter bandwidth and laser transmitted UV and 527-nm energy
Tanaka, Yohei; Nakayama, Jun
2016-01-01
Humans are increasingly exposed to near-infrared (NIR) radiation from both natural (eg, solar) and artificial (eg, electrical appliances) sources. Although the biological effects of sun and ultraviolet (UV) exposure have been extensively investigated, the biological effect of NIR radiation is still unclear. We previously reported that NIR as well as UV induces photoaging and standard UV-blocking materials, such as sunglasses, do not sufficiently block NIR. The objective of this study was to investigate changes in gene expression in three-dimensional reconstructed corneal epithelial tissue culture exposed to broad-spectrum NIR irradiation to simulate solar NIR radiation that reaches human tissues. DNA microarray and quantitative real-time polymerase chain reaction analysis were used to assess gene expression levels in a three-dimensional reconstructed corneal epithelial model composed of normal human corneal epithelial cells exposed to water-filtered broad-spectrum NIR irradiation with a contact cooling (20°C). The water-filter allowed 1,000-1,800 nm wavelengths and excluded 1,400-1,500 nm wavelengths. A DNA microarray with >62,000 different probes showed 25 and 150 genes that were up- or downregulated by at least fourfold and twofold, respectively, after NIR irradiation. In particular, epidermal growth factor receptor (EGFR) was upregulated by 19.4-fold relative to control cells. Quantitative real-time polymerase chain reaction analysis revealed that two variants of EGFR in human corneal epithelial tissue were also significantly upregulated after five rounds of 10 J/cm(2) irradiation (P<0.05). We found that NIR irradiation induced the upregulated expression of EGFR in human corneal cells. Since over half of the solar energy reaching the Earth is in the NIR region, which cannot be adequately blocked by eyewear and thus can induce eye damage with intensive or long-term exposure, protection from both UV and NIR radiation may prevent changes in gene expression and in turn eye damage.
Horneck, Gerda; Klaus, David M.; Mancinelli, Rocco L.
2010-01-01
Summary: The responses of microorganisms (viruses, bacterial cells, bacterial and fungal spores, and lichens) to selected factors of space (microgravity, galactic cosmic radiation, solar UV radiation, and space vacuum) were determined in space and laboratory simulation experiments. In general, microorganisms tend to thrive in the space flight environment in terms of enhanced growth parameters and a demonstrated ability to proliferate in the presence of normally inhibitory levels of antibiotics. The mechanisms responsible for the observed biological responses, however, are not yet fully understood. A hypothesized interaction of microgravity with radiation-induced DNA repair processes was experimentally refuted. The survival of microorganisms in outer space was investigated to tackle questions on the upper boundary of the biosphere and on the likelihood of interplanetary transport of microorganisms. It was found that extraterrestrial solar UV radiation was the most deleterious factor of space. Among all organisms tested, only lichens (Rhizocarpon geographicum and Xanthoria elegans) maintained full viability after 2 weeks in outer space, whereas all other test systems were inactivated by orders of magnitude. Using optical filters and spores of Bacillus subtilis as a biological UV dosimeter, it was found that the current ozone layer reduces the biological effectiveness of solar UV by 3 orders of magnitude. If shielded against solar UV, spores of B. subtilis were capable of surviving in space for up to 6 years, especially if embedded in clay or meteorite powder (artificial meteorites). The data support the likelihood of interplanetary transfer of microorganisms within meteorites, the so-called lithopanspermia hypothesis. PMID:20197502
NASA Astrophysics Data System (ADS)
Czerwińska, Agnieszka E.; Krzyścin, Janusz W.; Jarosławski, Janusz; Posyniak, Michał
2016-11-01
Specific aerosols and cloud properties over large urban regions seem to generate an island, similar to the well-known urban heat island, leading to lower ultraviolet (UV) radiation intensity compared to the surrounding less polluted areas, thus creating a shield against excessive human exposure to UV radiation. The present study focuses on differences between erythemal and UVA (324 nm) doses measured by the Brewer spectrophotometers in Warsaw (52.3° N, 21.0° E) and Belsk (51.8° N, 20.8° E). The latter is a rural region located about 60 km south-west of the city. Ratios between erythemal and UVA partly daily doses, obtained during all-sky and cloudless-sky conditions for the period May 2013-December 2015, were analysed to infer a specific cloud and aerosol forcing on the surface UV doses over Warsaw. Radiative model simulations were carried out to find sources of the observed differences between the sites. It was found that Warsaw urban agglomeration induced 8 and 6 % attenuation of the erythemal and UVA doses respectively. This is mostly due to the lower sun elevation in Warsaw during the near-noon measurements and the larger optical depth of the city aerosols and increased cloudiness. It could be hypothesised that the expected stronger absorption of the solar UV radiation by urban aerosols is compensated for here by a higher surface reflectivity over the city.
Equivalence between solar irradiance and solar simulators in aging tests of sunglasses.
Masili, Mauro; Ventura, Liliane
2016-08-26
This work is part of a broader research that focuses on ocular health. Three outlines are the basis of the pyramid that comprehend the research as a whole: authors' previous work, which has provided the public to self-check their own sunglasses regarding the ultraviolet protection compatible to their category; Brazilian national survey in order to improve nationalization of sunglasses standards; and studies conducted on revisiting requirements of worldwide sunglasses standards, in which this work is inserted. It is still controversial on the literature the ultraviolet (UV) radiation effects on the ocular media, but the World Health Organization has established safe limits on the exposure of eyes to UV radiation based on the studies reported in literature. Sunglasses play an important role in providing safety, and their lenses should provide adequate UV filters. Regarding UV protection for ocular media, the resistance-to-irradiance test for sunglasses under many national standards requires irradiating lenses for 50 uninterrupted hours with a 450 W solar simulator. This artificial aging test may provide a corresponding evaluation of exposure to the sun. Calculating the direct and diffuse solar irradiance at a vertical surface and the corresponding radiant exposure for the entire year, we compare the latter with the 50-h radiant exposure of a 450 W xenon arc lamp from a solar simulator required by national standards. Our calculations indicate that this stress test is ineffective in its present form. We provide evidence of the need to re-evaluate the parameters of the tests to establish appropriate safe limits for UV irradiance. This work is potentially significant for scientists and legislators in the field of sunglasses standards to improve the requirements of sunglasses quality and safety.
Bernerd, Francoise; Marionnet, Claire; Duval, Christine
2012-06-01
Cutaneous damages such as sunburn, pigmentation, and photoaging are known to be induced by acute as well as repetitive sun exposure. Not only for basic research, but also for the design of the most efficient photoprotection, it is crucial to understand and identify the early biological events occurring after ultraviolet (UV) exposure. Reconstructed human skin models provide excellent and reliable in vitro tools to study the UV-induced alterations of the different skin cell types, keratinocytes, fibroblasts, and melanocytes in a dose- and time-dependent manner. Using different in vitro human skin models, the effects of UV light (UVB and UVA) were investigated. UVB-induced damages are essentially epidermal, with the typical sunburn cells and DNA lesions, whereas UVA radiation-induced damages are mostly located within the dermal compartment. Pigmentation can also be obtained after solar simulated radiation exposure of pigmented reconstructed skin model. Those models are also highly adequate to assess the potential of sunscreens to protect the skin from UV-associated damage, sunburn reaction, photoaging, and pigmentation. The results showed that an effective photoprotection is provided by broad-spectrum sunscreens with a potent absorption in both UVB and UVA ranges.
Optical radiative properties of ablating polymers exposed to high-power arc plasmas
NASA Astrophysics Data System (ADS)
Becerra, Marley; Pettersson, Jonas
2018-03-01
The radiative properties of polymers exposed to high-intensity radiation are of importance for the numerical simulation of arc-induced ablation. The paper investigates the optical properties of polymethylmethacrylate PMMA and polyamide PA6 films exposed to high-power arc plasmas, which can cause ablation of the material. A four-flux radiative approximation is first used to estimate absorption and scattering coefficients of the tested materials in the ultraviolet (UV) and in the visible (VIS) ranges from spectrophotometric measurements. The temperature-induced variation of the collimated transmissivity of the polymers is also measured from room temperature to the glass temperature of PMMA and the melting temperature of PA6. Furthermore, band-averaged absorption and scattering coefficients of non-ablating and ablating polymers are estimated from the UV to the short-wavelength infrared (SWIR), covering the range of interest for the simulation of arc-induced ablation. These estimates are obtained from collimated transmissivities measured with an additional in situ photometric system that uses a high-power, transient arc plasma to both illuminate the samples and to induce ablation. It is shown that the increase in the bulk temperature of PA6 leads to a strong reversible increase in collimated transmissivity, significantly reducing the absorption and scattering coefficients of the material. A weaker but opposite effect of temperature on the optical properties is found in PMMA. As a consequence, it is suggested that the absorption coefficient of polymers used for arc-induced ablation estimates should not be taken directly from direct collimated transmissivity measurements at room temperature. The band-averaged radiation measurements also show that the layer of products released by ablation of PMMA produces scattering radiation losses mainly in the VIS-SWIR ranges, which are only a small fraction of the total incident arc radiation. In a similar manner, the ablation layer of PA6 leads to weak absorption radiation losses, although mainly in the UV range.
The response of aggregated Pseudomonas putida CP1 cells to UV-C and UV-A/B disinfection.
Maganha de Almeida, Ana C; Quilty, Bríd
2016-11-01
UV radiation is a spread method used worldwide for the disinfection of water. However, much of the research on the disinfection of bacterial cells by UV has focused on planktonic cells. Many bacterial cells in nature are present in clumps or aggregates, and these aggregates, which are more resistant to disinfection than their planktonic counterparts, can be problematic in engineered water systems. The current research used Pseudomonas putida (P. putida) CP1, an environmental and non-pathogenic microorganism which autoaggregates when grown under certain conditions, as a model organism to simulate aggregated cells. The study investigated the response of both the planktonic and the aggregated forms of the bacterium to UV-C (λ = 253.7 nm) and UV-A/B (λ > 300 nm) disinfection at laboratory scale in a minimal medium. The planktonic cells of P. putida CP1 were inactivated within 60 s by UV-C and in 60 min by UV-A/B; however, the aggregated cells required 120 min of UV-C treatment and 240 min of UV-A/B radiation to become inactive. The size of the aggregate was reduced following UV treatment. Although all the cells had lost culturability, viability as measured by the LIVE/DEAD ® stain and epifluorescence microscopy was not completely lost and the cells all demonstrated regrowth after overnight incubation in the dark.
Xia, Zhen; Yang, Zaixing; Huynh, Tien; King, Jonathan A.; Zhou, Ruhong
2013-01-01
Age-onset cataracts are believed to be expedited by the accumulation of UV-damaged human γD-crystallins in the eye lens. Here we show with molecular dynamics simulations that the stability of γD-crystallin is greatly reduced by the conversion of tryptophan to kynurenine due to UV-radiation, consistent with previous experimental evidences. Furthermore, our atomic-detailed results reveal that kynurenine attracts more waters and other polar sidechains due to its additional amino and carbonyl groups on the damaged tryptophan sidechain, thus breaching the integrity of nearby dry center regions formed by the two Greek key motifs in each domain. The damaged tryptophan residues cause large fluctuations in the Tyr-Trp-Tyr sandwich-like hydrophobic clusters, which in turn break crucial hydrogen-bonds bridging two β-strands in the Greek key motifs at the “tyrosine corner”. Our findings may provide new insights for understanding of the molecular mechanism of the initial stages of UV-induced cataractogenesis. PMID:23532089
Fisher, M S; Menter, J M; Willis, I
1989-03-01
Contact hypersensitivity (CHS) in mice can be induced by cutaneous sensitization followed by elicitation via ear-painting with trinitrochlorobenzene (TNCB). This CHS reaction is systemic and can be suppressed by exposure of mice to suberythemogenic doses of 280-315 nm radiation. In this study, we investigated whether a commercially available water-resistant sunscreen, either SPF-6 or SPF-15, containing Padimate O (UVB absorber) and oxybenzone (UVA absorber), was effective in preventing systemic suppression of CHS induced by either FS36 sunlamp exposure or solar simulating radiation. We observed that these two sunscreen preparations were totally incapable of preventing the immunologic suppression of contact hypersensitivity by UV radiation. These results indicate that application of sunscreen does not retard the development of suppression of CHS following repeated UV exposure under conditions where erythema is not clinically observed. Thus, erythema may not be a good end point for assessing systemic immune suppression and its consequences.
Machida, I; Saeki, T; Nakai, S
1986-03-01
The effects of far (254 nm) and near (290-350 nm) ultraviolet (UV) light on mutations, intragenic and intergenic recombinations were compared in diploid strains of Saccharomyces cerevisiae. At equivalent survival levels there was not much difference in the induction of nonsense and missense mutations between far- and near-UV radiations. However, frameshift mutations were induced more frequently by near-UV than by far-UV radiation. Near-UV radiation induced intragenic recombination (gene conversion) as efficiently as far-UV radiation and the induced levels were similar in both radiations at equitoxic doses. A strikingly higher frequency was observed for the intergenic recombination induced by near-UV radiation than by far-UV radiation when compared at equivalent survival levels. Photoreactivation reduced the frequency only slightly in far-UV induced intergenic recombination and not at all in near-UV induction. These results indicate that near-UV damage involves strand breakage in addition to pyrimidine dimers and other lesions induced, whereas far-UV damage consists largely of photoreactivable lesions, pyrimidine dimers, and near-UV induced damage is more efficient for the induction of crossing-over.
Chang, Cheng-Ping; Liu, Hung-Hsin; Peng, Chiung-Yu; Fang, Hsin-Yu; Tsao, Ta-Ho; Lan, Cheng-Hang
2008-04-01
Ultraviolet radiation (UVR) exposure is known to cause potential effects such as erythema in skin. For UV-induced erythema (sunburn), the action spectrum from the Commission Internationale de l'Eclairage, International Commission on Illumination (CIE) was adopted. Erythemal UV effects from UVR lamp exposure were investigated with commercial spectroradiometry devices in this research. Three kinds of portable UV germicidal lamps with broadband UVA (BB UVA, 350-400 nm), broadband UVB (BB UVB, 280-350 nm), and narrowband UVC (NB UVC, 254 nm) wavelengths served as the UVR emission sources. An action spectrum expresses the effectiveness of radiation for assessing the hazard of UVR in the erythemal action spectrum from 250-400 nm. The UV Index (UVI) is an irradiance scale computed by multiplying the CIE erythemal irradiance integral in milliwatts per square meter by 0.04 m mW. A comprehensive approach to detecting erythemal UVR magnitude was developed to monitor the effective exposure from UV lamps. The erythemal UVR measurement was established and the exposure assessment was applied to monitor erythemal UVR magnitude from shield metal arc welding (SMAW) processing. From this study, the erythemal UVR exposures were assessed and evaluated with environmental solar simulation of the UVI exposure.
Planetary and Space Simulation Facilities PSI at DLR for Astrobiology
NASA Astrophysics Data System (ADS)
Rabbow, E.; Rettberg, P.; Panitz, C.; Reitz, G.
2008-09-01
Ground based experiments, conducted in the controlled planetary and space environment simulation facilities PSI at DLR, are used to investigate astrobiological questions and to complement the corresponding experiments in LEO, for example on free flying satellites or on space exposure platforms on the ISS. In-orbit exposure facilities can only accommodate a limited number of experiments for exposure to space parameters like high vacuum, intense radiation of galactic and solar origin and microgravity, sometimes also technically adapted to simulate extraterrestrial planetary conditions like those on Mars. Ground based experiments in carefully equipped and monitored simulation facilities allow the investigation of the effects of simulated single environmental parameters and selected combinations on a much wider variety of samples. In PSI at DLR, international science consortia performed astrobiological investigations and space experiment preparations, exposing organic compounds and a wide range of microorganisms, reaching from bacterial spores to complex microbial communities, lichens and even animals like tardigrades to simulated planetary or space environment parameters in pursuit of exobiological questions on the resistance to extreme environments and the origin and distribution of life. The Planetary and Space Simulation Facilities PSI of the Institute of Aerospace Medicine at DLR in Köln, Germany, providing high vacuum of controlled residual composition, ionizing radiation of a X-ray tube, polychromatic UV radiation in the range of 170-400 nm, VIS and IR or individual monochromatic UV wavelengths, and temperature regulation from -20°C to +80°C at the sample size individually or in selected combinations in 9 modular facilities of varying sizes are presented with selected experiments performed within.
Solar UV-A and UV-B radiation fluxes at two Alpine stations at different altitudes
NASA Astrophysics Data System (ADS)
Blumthaler, M.; Ambach, W.; Rehwald, W.
1992-03-01
Daily totals of UV-A and UV-B radiation fluxes and global radiation were measured since 1981 at Jungfraujoch (3576 m) a.s.l.) and in Innsbruck (577 m a.s.l.) in their seasonal course. The altitude effect of annual totals yields 19%/1000 m (UV-B), 11%/1000 m (UV-A) and 9%/1000 m (global radiation) with reference to Innsbruck station. The ratio of the daily totals of UV-B/global radiation shows a significant seasonal course with the maximum in summer, whereas the ratio of the daily totals of UV-A/global radiation shows no significant seasonal variation. The biological effective doses of erythema reaction, delayed tanning and immediate tanning by UV-A and UV-B radiant exposure are reported in the seasonal course at Jungfraujoch and in Innsbruck.
Survival and death of the haloarchaeon Natronorubrum strain HG-1 in a simulated martian environment
NASA Astrophysics Data System (ADS)
Peeters, Z.; Vos, D.; ten Kate, I. L.; Selch, F.; van Sluis, C. A.; Sorokin, D. Yu.; Muijzer, G.; Stan-Lotter, H.; van Loosdrecht, M. C. M.; Ehrenfreund, P.
2010-11-01
Halophilic archaea are of interest to astrobiology due to their survival capabilities in desiccated and high salt environments. The detection of remnants of salty pools on Mars stimulated investigations into the response of haloarchaea to martian conditions. Natronorubrum sp. strain HG-1 is an extremely halophilic archaeon with unusual metabolic pathways, growing on acetate and stimulated by tetrathionate. We exposed Natronorubrum strain HG-1 to ultraviolet (UV) radiation, similar to levels currently prevalent on Mars. In addition, the effects of low temperature (4, -20, and -80 °C), desiccation, and exposure to a Mars soil analogue from the Atacama desert on the viability of Natronorubrum strain HG-1 cultures were investigated. The results show that Natronorubrum strain HG-1 cannot survive for more than several hours when exposed to UV radiation equivalent to that at the martian equator. Even when protected from UV radiation, viability is impaired by a combination of desiccation and low temperature. Desiccating Natronorubrum strain HG-1 cells when mixed with a Mars soil analogue impaired growth of the culture to below the detection limit. Overall, we conclude that Natronorubrum strain HG-1 cannot survive the environment currently present on Mars. Since other halophilic microorganisms were reported to survive simulated martian conditions, our results imply that survival capabilities are not necessarily shared between phylogenetically related species.
Carbonell-Bejerano, Pablo; Diago, Maria-Paz; Martínez-Abaigar, Javier; Martínez-Zapater, José M; Tardáguila, Javier; Núñez-Olivera, Encarnación
2014-07-09
Ultraviolet (UV) radiation modulates secondary metabolism in the skin of Vitis vinifera L. berries, which affects the final composition of both grapes and wines. The expression of several phenylpropanoid biosynthesis-related genes is regulated by UV radiation in grape berries. However, the complete portion of transcriptome and ripening processes influenced by solar UV radiation in grapes remains unknown. Whole genome arrays were used to identify the berry skin transcriptome modulated by the UV radiation received naturally in a mid-altitude Tempranillo vineyard. UV radiation-blocking and transmitting filters were used to generate the experimental conditions. The expression of 121 genes was significantly altered by solar UV radiation. Functional enrichment analysis of altered transcripts mainly pointed out that secondary metabolism-related transcripts were induced by UV radiation including VvFLS1, VvGT5 and VvGT6 flavonol biosynthetic genes and monoterpenoid biosynthetic genes. Berry skin phenolic composition was also analysed to search for correlation with gene expression changes and UV-increased flavonols accumulation was the most evident impact. Among regulatory genes, novel UV radiation-responsive transcription factors including VvMYB24 and three bHLH, together with known grapevine UV-responsive genes such as VvMYBF1, were identified. A transcriptomic meta-analysis revealed that genes up-regulated by UV radiation in the berry skin were also enriched in homologs of Arabidopsis UVR8 UV-B photoreceptor-dependent UV-B -responsive genes. Indeed, a search of the grapevine reference genomic sequence identified UV-B signalling pathway homologs and among them, VvHY5-1, VvHY5-2 and VvRUP were up-regulated by UV radiation in the berry skin. Results suggest that the UV-B radiation-specific signalling pathway is activated in the skin of grapes grown at mid-altitudes. The biosynthesis and accumulation of secondary metabolites, which are appreciated in winemaking and potentially confer cross-tolerance, were almost specifically triggered. This draws attention to viticultural practices that increase solar UV radiation on vineyards as they may improve grape features.
Climatic Consequences and Agricultural Impact of Regional Nuclear Conflict
NASA Astrophysics Data System (ADS)
Toon, O. B.; Robock, A.; Mills, M. J.; Xia, L.
2013-05-01
A nuclear war between India and Pakistan, with each country using 50 Hiroshima-sized atom bombs as airbursts on urban areas, would inject smoke from the resulting fires into the stratosphere.This could produce climate change unprecedented in recorded human history and global-scale ozone depletion, with enhanced ultraviolet (UV) radiation reaching the surface.Simulations with the Whole Atmosphere Community Climate Model (WACCM), run at higher vertical and horizontal resolution than a previous simulation with the NASA Goddard Institute for Space Studies ModelE, and incorporating ozone chemistry for the first time, show a longer stratospheric residence time for smoke and hence a longer-lasting climate response, with global average surface air temperatures still 1.1 K below normal and global average precipitation 4% below normal after a decade.The erythemal dose from the enhanced UV radiation would greatly increase, in spite of enhanced absorption by the remaining smoke, with the UV index more than 3 units higher in the summer midlatitudes, even after a decade. Scenarios of changes in temperature, precipitation, and downward shortwave radiation from the ModelE and WACCM simulations, applied to the Decision Support System for Agrotechnology Transfer crop model for winter wheat, rice, soybeans, and maize by perturbing observed time series with anomalies from the regional nuclear war simulations, produce decreases of 10-50% in yield averaged over a decade, with larger decreases in the first several years, over the midlatitudes of the Northern Hemisphere. The impact of the nuclear war simulated here, using much less than 1% of the global nuclear arsenal, would be devastating to world agricultural production and trade, possibly sentencing a billion people now living marginal existences to starvation.The continued environmental threat of the use of even a small number of nuclear weapons must be considered in nuclear policy deliberations in Russia, the U.S., and the rest of the world.
Climatic Consequences and Agricultural Impact of Regional Nuclear Conflict
NASA Astrophysics Data System (ADS)
Robock, Alan; Mills, Michael; Toon, Owen Brian; Xia, Lili
2013-04-01
A nuclear war between India and Pakistan, with each country using 50 Hiroshima-sized atom bombs as airbursts on urban areas, would inject smoke from the resulting fires into the stratosphere. This could produce climate change unprecedented in recorded human history and global-scale ozone depletion, with enhanced ultraviolet (UV) radiation reaching the surface. Simulations with the NCAR Whole Atmosphere Community Climate Model (WACCM), run at higher vertical and horizontal resolution than a previous simulation with the NASA Goddard Institute for Space Studies ModelE, and incorporating ozone chemistry for the first time, show a longer stratospheric residence time for smoke and hence a longer-lasting climate response, with global average surface air temperatures still 1.1 K below normal and global average precipitation 4% below normal after a decade. The erythemal dose from the enhanced UV radiation would greatly increase, in spite of enhanced absorption by the remaining smoke, with the UV index more than 3 units higher in the summer midlatitudes, even after a decade. Scenarios of changes in temperature, precipitation, and downward shortwave radiation from the ModelE and WACCM simulations, applied to the Decision Support System for Agrotechnology Transfer crop model for winter wheat, rice, soybeans, and maize by perturbing observed time series with anomalies from the regional nuclear war simulations, produce decreases of 10-50% in yield averaged over a decade, with larger decreases in the first several years, over several regions in the midlatitudes of the Northern Hemisphere. The impact of the nuclear war simulated here, using much less than 1% of the global nuclear arsenal, would be devastating to world agricultural production and trade, possibly sentencing a billion people now living marginal existences to starvation. The continued environmental threat of the use of even a small number of nuclear weapons must be considered in nuclear policy deliberations in Russia, the U.S., and the rest of the world
UV-B Radiation Induces Root Bending Through the Flavonoid-Mediated Auxin Pathway in Arabidopsis.
Wan, Jinpeng; Zhang, Ping; Wang, Ruling; Sun, Liangliang; Wang, Wenying; Zhou, Huakun; Xu, Jin
2018-01-01
Ultraviolet (UV)-B radiation-induced root bending has been reported; however, the underlying mechanisms largely remain unclear. Here, we investigate whether and how auxin and flavonoids are involved in UV-B radiation-induced root bending in Arabidopsis using physiological, pharmacological, and genetic approaches. UV-B radiation modulated the direction of root growth by decreasing IAA biosynthesis and affecting auxin distribution in the root tips, where reduced auxin accumulation and asymmetric auxin distribution were observed. UV-B radiation increased the distribution of auxin on the nonradiated side of the root tips, promoting growth and causing root bending. Further analysis indicated that UV-B induced an asymmetric accumulation of flavonoids; this pathway is involved in modulating the accumulation and asymmetric distribution of auxin in root tips and the subsequent redirection of root growth by altering the distribution of auxin carriers in response to UV-B radiation. Taken together, our results indicate that UV-B radiation-induced root bending occurred through a flavonoid-mediated phototropic response to UV-B radiation.
UV-B Radiation Induces Root Bending Through the Flavonoid-Mediated Auxin Pathway in Arabidopsis
Wan, Jinpeng; Zhang, Ping; Wang, Ruling; Sun, Liangliang; Wang, Wenying; Zhou, Huakun; Xu, Jin
2018-01-01
Ultraviolet (UV)-B radiation-induced root bending has been reported; however, the underlying mechanisms largely remain unclear. Here, we investigate whether and how auxin and flavonoids are involved in UV-B radiation-induced root bending in Arabidopsis using physiological, pharmacological, and genetic approaches. UV-B radiation modulated the direction of root growth by decreasing IAA biosynthesis and affecting auxin distribution in the root tips, where reduced auxin accumulation and asymmetric auxin distribution were observed. UV-B radiation increased the distribution of auxin on the nonradiated side of the root tips, promoting growth and causing root bending. Further analysis indicated that UV-B induced an asymmetric accumulation of flavonoids; this pathway is involved in modulating the accumulation and asymmetric distribution of auxin in root tips and the subsequent redirection of root growth by altering the distribution of auxin carriers in response to UV-B radiation. Taken together, our results indicate that UV-B radiation-induced root bending occurred through a flavonoid-mediated phototropic response to UV-B radiation. PMID:29868074
Radiative Feedback from Primordial Protostars and Final Mass of the First Stars
NASA Technical Reports Server (NTRS)
Hosokawa, Takashi; Omukai, Kazuyuki; Yoshida, Naoki; Yorke, Harold W.
2012-01-01
In this contribution, we review our efforts toward understanding the typical mass-scale of primordial stars. Our direct numerical simulations show that, in both of Population III.1 and III.2 cases, strong UV stellar radiative feedback terminatesmass accretion onto a protostar.AnHII region formed around the protostar very dynamically expands throughout the gas accreting envelope, which cuts off the gas supply to a circumstellar disk. The disk is exposed to the stellar UV radiation and loses its mass by photoevaporation. The derived final masses are 43 Stellar Mass and 17 Stellar Mass in our fiducial Population III.1 and III.2 cases. Much more massive stars should form in other exceptional conditions. In atomic-cooling halos where H2 molecules are dissociated, for instance, a protostar grows via very rapid mass accretion with the rates M* approx. 0.1 - 1 Stellar Mass/yr. Our newstellar evolution calculations show that the protostar significantly inflates and never contracts to reach the ZAMS stage in this case. Such the "supergiant protostars" have very low UV luminosity, which results in weak radiative feedback against the accretion flow. In the early universe, supermassive stars formed through this process might provide massive seeds of supermassive black holes.
UV protection of euglenoids: computation of the electromagnetic response
NASA Astrophysics Data System (ADS)
Dolinko, Andrés.; Valencia, Claudio; Skigin, Diana C.; Inchaussandague, Marina E.; Tolivia, Analía.; Conforti, Visitación
2015-06-01
Euglenoids are a group of predominantly free-living unicellular microorganisms that mostly live in freshwater bodies but can also be found in marine and brackish waters. These organisms have a characteristic that distinguishes them form the other protists: they are covered by a surface pellicle formed by S-shaped overlapping bands which resemble a diffraction grating. These microorganisms have developed numerous protection mechanisms intended to avoid or reduce the damage produced by UV radiation, such as the production of pigments and the repair mechanisms in hours of darkness and during daylight. In a recent paper we have investigated the role played by the pellicle of Euglenoids in the protection of the cell against UV radiation, by means of an electromagnetic approach based on the approximation of the pellicle profile by a one-dimensional diffraction grating. This simplified model allowed us to confirm that under certain incidence conditions, the corrugation of the pellicle helps increase the UV reflection, and consequently, diminish the UV radiation that enters the cell. In order to analyze the electromagnetic response of the whole cell, we extend two different approaches to calculate the reflected response: a simulation method especially developed to deal with complex biological structures that permits the introduction of the scattering object via an electron microscopy image, and the integral method, which has been widely used to compute the electromagnetic response of finite structures. Numerical results of near and far fields are shown.
Comparison of Observed Beta Cloth Interactions with Simulated and Actual Space Environment
NASA Technical Reports Server (NTRS)
Kamenetzy, R. R.; Finckenor, M. M.
1999-01-01
A common component of multilayer insulation blankets is beta cloth, a woven fiberglass cloth impregnated with Teflon(TM). It is planned for extensive use on the International Space Station. The Environmental Etl'ects Group of the Marshall Space Flight Center Materials, Processing, and Manufacturing Department has investigated the impact of atomic oxygen (AO) and ultraviolet (UV) radiation on the optical properties of plain and aluminized beta cloth. both in the laboratory and as part of long-duration flight experiments. These investigations indicate that beta cloth is susceptible to darkening in the presence of UV radiation, dependent on the additives used. AO interactions resulted in bleaching of the beta cloth.
The effects of RF plasma ashing on zinc orthotitanate/potassium silicate thermal control coatings
NASA Technical Reports Server (NTRS)
Dever, Joyce A.; Bruckner, Eric J.
1992-01-01
Samples of YB-71, a white thermal control coating composed of zinc orthotitanate pigment in a potassium silicate binder, were exposed in air plasma and in oxygen plasma to determine optical property and surface chemistry changes. Results show that YB-71 undergoes a significant reflectance decrease upon exposure to the simulated LEO atomic oxygen environment provided by an air plasma asher. YB-71 samples exposed to the same effective fluence in oxygen plasma, or in a UV screening Faraday cage in air or oxygen, do not undergo as severe reflectance decreases as the samples exposed in the air plasma asher environment. The UV and VUV radiation present in the plasma ashers affects the YB-71 degradation. It is noted that, when using plasma ashers to determine LEO degradation, it is necessary to take into account the sensitivity of the material to the synergistic effects of atomic oxygen and accelerated UV radiation.
NASA Astrophysics Data System (ADS)
Kim, Jeong-Gyu; Kim, Woong-Tae; Ostriker, Eve C.
2018-05-01
UV radiation feedback from young massive stars plays a key role in the evolution of giant molecular clouds (GMCs) by photoevaporating and ejecting the surrounding gas. We conduct a suite of radiation hydrodynamic simulations of star cluster formation in marginally bound, turbulent GMCs, focusing on the effects of photoionization and radiation pressure on regulating the net star formation efficiency (SFE) and cloud lifetime. We find that the net SFE depends primarily on the initial gas surface density, Σ0, such that the SFE increases from 4% to 51% as Σ0 increases from 13 to 1300 {M}ȯ {pc}}-2. Cloud destruction occurs within 2–10 Myr after the onset of radiation feedback, or within 0.6–4.1 freefall times (increasing with Σ0). Photoevaporation dominates the mass loss in massive, low surface density clouds, but because most photons are absorbed in an ionization-bounded Strömgren volume, the photoevaporated gas fraction is proportional to the square root of the SFE. The measured momentum injection due to thermal and radiation pressure forces is proportional to {{{Σ }}}0-0.74, and the ejection of neutrals substantially contributes to the disruption of low mass and/or high surface density clouds. We present semi-analytic models for cloud dispersal mediated by photoevaporation and by dynamical mass ejection, and show that the predicted net SFE and mass loss efficiencies are consistent with the results of our numerical simulations.
Protective mechanisms and acclimation to solar ultraviolet-B radiation in Oenothera stricta
NASA Technical Reports Server (NTRS)
Robberecht, R.; Caldwell, M. M.
1981-01-01
Plant adaptations ameliorating or repairing the damaging effects of ultraviolet-B (UV-B) radiation on plant tissue were investigated. The degree of phenotype plasticity in UV protective mechanisms and acclimation in relation to the natural solar UV-B radiation flux and in an enhanced UV-B irradiance environment was also examined. Mechanisms by which plants avoid radiation, adaptations altering the path of radiation incident on the leaf, and repair processes were considered. Attenuation of UV-B by tissues, UV-B irradiation into the leaf, and the effects of UV-B on photosynthesis were investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rastogi, Rajesh P.; Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi 221005; Singh, Shailendra P.
2010-07-02
The generation of reactive oxygen species (ROS) under simulated solar radiation (UV-B: 0.30 Wm{sup -2}, UV-A: 25.70 Wm{sup -2} and PAR: 118.06 Wm{sup -2}) was studied in the cyanobacterium Anabaena variabilis PCC 7937 using the oxidant-sensing fluorescent probe 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA). DCFH-DA is a nonpolar dye, converted into the polar derivative DCFH by cellular esterases that are nonfluorescent but switched to highly fluorescent DCF when oxidized by intracellular ROS and other peroxides. The images obtained from the fluorescence microscope after 12 h of irradiation showed green fluorescence from cells covered with 295, 320 or 395 nm cut-off filters, indicating themore » generation of ROS in all treatments. However, the green/red fluorescence ratio obtained from fluorescence microscopic analysis showed the highest generation of ROS after UV-B radiation in comparison to PAR or UV-A radiation. Production of ROS was also measured by a spectrofluorophotometer and results obtained supported the results of fluorescence microscopy. Low levels of ROS were detected at the start (0 h) of the experiment showing that they are generated even during normal metabolism. This study also showed that UV-B radiation causes the fragmentation of the cyanobacterial filaments which could be due to the observed oxidative stress. This is the first report for the detection of intracellular ROS in a cyanobacterium by fluorescence microscopy using DCFH-DA and thereby suggesting the applicability of this method in the study of in vivo generation of ROS.« less
Combined Space Environmental Exposure Tests of Multi-Junction GaAs/Ge Solar Array Coupons
NASA Technical Reports Server (NTRS)
Hoang, Bao; Wong, Frankie; Corey, Ron; Gardiner, George; Funderburk, Victor V.; Gahart, Richard; Wright, Kenneth H.; Schneider, Todd; Vaughn, Jason
2010-01-01
A set of multi-junction GaAs/Ge solar array test coupons were subjected to a sequence of 5-year increments of combined environmental exposure tests. The purpose of this test program is to understand the changes and degradation of the solar array panel components, including its ESD mitigation design features in their integrated form, after multiple years (up to 15) of simulated geosynchronous space environment. These tests consist of: UV radiation, electrostatic discharge (ESD), electron/proton particle radiation, thermal cycling, and ion thruster plume exposures. The solar radiation was produced using a Mercury-Xenon lamp with wavelengths in the UV spectrum ranging from 230 to 400 nm. The ESD test was performed in the inverted-gradient mode using a low-energy electron (2.6 - 6 keV) beam exposure. The ESD test also included a simulated panel coverglass flashover for the primary arc event. The electron/proton radiation exposure included both 1.0 MeV and 100 keV electron beams simultaneous with a 40 keV proton beam. The thermal cycling included simulated transient earth eclipse for satellites in geosynchronous orbit. With the increasing use of ion thruster engines on many satellites, the combined environmental test also included ion thruster exposure to determine whether solar array surface erosion had any impact on its performance. Before and after each increment of environmental exposures, the coupons underwent visual inspection under high power magnification and electrical tests that included characterization by LAPSS, Dark I-V, and electroluminescence. This paper discusses the test objective, test methodologies, and preliminary results after 5 years of simulated exposure.
A thermal vacuum-UV solar simulator test system for assessing microbiological viability
NASA Technical Reports Server (NTRS)
Ross, D. S.; Wardle, M. D.; Taylor, D. M.
1975-01-01
Microorganisms were exposed to a simulated space environment in order to assess the photobiological effect of broad spectrum, nonionizing solar electromagnetic radiation in terms of viability. A thermal vacuum chamber capable of maintaining a vacuum of 0.000133n/sq m and an ultraviolet rich solar simulator were the main ingredients of the test system. Results to date indicate the system to be capable of providing reliable microbiological data.
UV-B Radiation Contributes to Amphibian Population Declines
NASA Astrophysics Data System (ADS)
Blaustein, Andrew
2007-05-01
UV-B (280-315 nm) radiation is the most significant biologically damaging radiation at the terrestrial surface. At the organismal level, UV-B radiation can slow growth rates, cause immune dysfunction and result in sublethal damage. UV-B radiation can lead to mutations and cell death. Over evolutionary time, UV radiation has been an important stressor on living organisms. Natural events, including impacts from comets and asteroids, volcanic activity, supernova explosions and solar flares, can cause large-scale ozone depletion with accompanying increases in UV radiation. However, these natural events are transient. Moreover, the amount of ozone damage due to natural events depends upon a number of variables, including the magnitude of the event. This is different from modern-day human-induced production of chlorofluorocarbons (CFCs) and other chemicals that deplete stratospheric ozone continuously, resulting in long-term increases in UV-B radiation at the surface of the earth. We will briefly review the effects of UV-B exposure in one group of aquatic organisms_amphibians. UV-B has been implicated as a possible factor contributing to global declines and range reductions in amphibian populations.
NASA Technical Reports Server (NTRS)
Jaworske, Donald A.; Tuan, George C.; Westheimer, David T.; Peters, Wanda C.; Kauder, Lonny R.
2008-01-01
Spacecraft radiators reject heat to their surroundings and coatings play an important role in this heat rejection. The coatings provide the combined optical properties of low solar absorptance and high infrared emittance. The coatings are applied to the radiator panel in a number of ways, including conventional spraying, plasma spraying, or as an applique. Not designed for a terrestrial weathering environment, the durability of spacecraft paints, coatings, and appliques upon exposure to weathering and subsequent exposure to ascent heating, solar wind, and ultraviolet radiation was studied. In addition to traditional aluminum panels, new isocyanate ester composite panels were exposed for a total of 90 days at the Atmospheric Exposure Site of Kennedy Space Center's (KSC) Beach Corrosion Facility for the purpose of identifying their durability to weathering. Selected panel coupons were subsequently exposed to simulated ascent heating, solar wind, and vacuum ultraviolet (UV) radiation to identify the effect of a simulated space environment on as-weathered surfaces. Optical properties and adhesion testing were used to document the durability of the paints, coatings, and appliques.
NASA Astrophysics Data System (ADS)
Neale, Patrick J.; Thomas, Brian C.
2016-04-01
Two atmospheric responses to simulated astrophysical ionizing radiation events significant to life on Earth are production of odd-nitrogen species, especially NO2, and subsequent depletion of stratospheric ozone. Ozone depletion increases incident short-wavelength ultraviolet radiation (UVB, 280-315 nm) and longer (>600 nm) wavelengths of photosynthetically available radiation (PAR, 400-700 nm). On the other hand, the NO2 haze decreases atmospheric transmission in the long-wavelength UVA (315-400 nm) and short-wavelength PAR. Here, we use the results of previous simulations of incident spectral irradiance following an ionizing radiation event to predict changes in terran productivity focusing on photosynthesis of marine phytoplankton. The prediction is based on a spectral model of photosynthetic response, which was developed for the dominant genera in central regions of the ocean (Synechococcus and Prochlorococcus), and on remote-sensing-based observations of spectral water transparency, temperature, wind speed, and mixed layer depth. Predicted productivity declined after a simulated ionizing event, but the effect integrated over the water column was small. For integrations taking into account the full depth range of PAR transmission (down to 0.1% of utilizable PAR), the decrease was at most 2-3% (depending on strain), with larger effects (5-7%) for integrations just to the depth of the surface mixed layer. The deeper integrations were most affected by the decreased utilizable PAR at depth due to the NO2 haze, whereas shallower integrations were most affected by the increased surface UV. Several factors tended to dampen the magnitude of productivity responses relative to increases in surface-damaging radiation, for example, most inhibition in the modeled strains is caused by UVA and PAR, and the greatest relative increase in damaging exposure is predicted to occur in the winter when UV and productivity are low.
The Photostabilizing Effect of Grape Seed Extract on Three Common Sunscreen Absorbers.
Martincigh, Bice S; Ollengo, Moses A
2016-11-01
The photostabilizing ability of grape seed extract on three common sunscreen absorbers, 2-ethylhexyl-p-methoxycinnamate (EHMC), benzophenone-3 (BP3) and tert-butylmethoxy dibenzoylmethane (BMDBM), was investigated. Samples were exposed to simulated solar radiation and monitored by spectrophotometric and chromatographic methods. The chemical composition of the grape seed extract was determined by GC-MS and HPLC-MS, and the major secondary metabolites were found to be epicatechin and catechin. Exposure of the extract to UV radiation increased the UV absorption capacity of the extract. All sunscreens showed an improved photostability in the extract. The inherent photo-instability of BMDBM when exposed to UV radiation was almost eliminated in the presence of grape seed extract. A mixture of all three sunscreens in the extract showed very high photostability and a red shift covering the entire UVB and UVA regions, thereby improving the broad-spectrum protection. The incorporation of grape seed extract in sunscreen and other cosmetic formulations for topical application boosts photoprotection by stabilizing the UV filters and enhancing broad-spectrum coverage. This in turn helps in reducing the amounts of absorbers and other additives incorporated in a sunscreen product and consequently lowers the risk of an unprecedented buildup of photoproducts whose toxicities are currently unknown. © 2016 The American Society of Photobiology.
Claro, Elis Marina Turini; Bidoia, Ederio Dino; de Moraes, Peterson Bueno
2016-07-15
Photocatalytic water treatment has a currently elevated electricity demand and maintenance costs, but the photocatalytic water treatment may also assist in overcoming the limitations and drawbacks of conventional water treatment processes. Among the Advanced Oxidation Processes, heterogeneous photocatalysis is one of the most widely and efficiently used processes to degrade and/or remove a wide range of polluting compounds. The goal of this work was to find out a highly efficient photocatalytic disinfection process in superficial water with different doped photocatalysts and using three sources of radiation: mercury vapor lamp, solar simulator and UV-A LED. Three doped photocatalysts were prepared, SiZnO, NSiZnO and FNSiZnO. The inactivation efficiency of each synthesized photocatalysts was compared to a TiO2 P25 (Degussa(®)) 0.5 g L(-1) control. Photolysis inactivation efficiency was 85% with UV-A LED, which is considered very high, demanding low electricity consumption in the process, whereas mercury vapor lamp and solar simulator yielded 19% and 13% inactivation efficiency, respectively. The best conditions were found with photocatalysts SiZnO, FNSiZnO and NSiZnO irradiated with UV-A LED, where efficiency exceeded 95% that matched inactivation of coliforms using the same irradiation and photocatalyst TiO2. All photocatalysts showed photocatalytic activity with all three radiation sources able to inactivate total coliforms from river water. The use of UV-A LED as the light source without photocatalyst is very promising, allowing the creation of cost-effective and highly efficient water treatment plants. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sensing and Responding to UV-A in Cyanobacteria
Moon, Yoon-Jung; Kim, Seung Il; Chung, Young-Ho
2012-01-01
Ultraviolet (UV) radiation can cause stresses or act as a photoregulatory signal depending on its wavelengths and fluence rates. Although the most harmful effects of UV on living cells are generally attributed to UV-B radiation, UV-A radiation can also affect many aspects of cellular processes. In cyanobacteria, most studies have concentrated on the damaging effect of UV and defense mechanisms to withstand UV stress. However, little is known about the activation mechanism of signaling components or their pathways which are implicated in the process following UV irradiation. Motile cyanobacteria use a very precise negative phototaxis signaling system to move away from high levels of solar radiation, which is an effective escape mechanism to avoid the detrimental effects of UV radiation. Recently, two different UV-A-induced signaling systems for regulating cyanobacterial phototaxis were characterized at the photophysiological and molecular levels. Here, we review the current understanding of the UV-A mediated signaling pathways in the context of the UV-A perception mechanism, early signaling components, and negative phototactic responses. In addition, increasing evidences supporting a role of pterins in response to UV radiation are discussed. We outline the effect of UV-induced cell damage, associated signaling molecules, and programmed cell death under UV-mediated oxidative stress. PMID:23208372
Soriano-Melgar, Lluvia de Abril Alexandra; Alcaraz-Meléndez, Lilia; Méndez-Rodríguez, Lía C; Puente, María Esther; Rivera-Cabrera, Fernando; Zenteno-Savín, Tania
2014-05-01
Ultraviolet type C (UV-C) radiation has higher energy than the UV-B radiation and has been less studied because it is completely absorbed by the ozone layer. However, artificial UV-C radiation can generate diverse modifications in the plants. Given that exposure to UV-C for short periods of time increases the antioxidant content, improving the appearance and shelf-life of products, its potential application in postharvest treatments to modify the antioxidant content of medicinal plants, such as damiana (Turnera diffusa), is novel and relevant. To determine the effects of UV-C radiation on enzymatic and non-enzymatic antioxidant defenses, as well as oxidative damage levels, in damiana (Turnera diffusa) plants in vitro. UV-C radiation decreased superoxide dismutase (SOD, EC 1.15.1.1) and total peroxidases (POX, EC 1.11.1) activities, the concentration of chlorophylls (a and b), carotenes, vitamin C, and total antioxidant capacity. UV-C radiation increased the phenolic compound levels in damiana. Loss of antioxidant defenses was higher in damiana plants exposed to higher UV-C doses and/or for longer periods. This study suggests that UV-C radiation induces oxidative stress, evidenced as increased protein carbonyls and phenolic compound content, in damiana (T. diffusa). Low dose, short exposure to UV-C stimulates phenolic compound content in damiana. Thus, controlled UV-C treatments could be used as postharvest treatment to increase phenolic compound content in damiana plants. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
Hernández Moresino, Rodrigo D.; Helbling, E. Walter
2010-01-01
The aim of our study was to assess the combined impact of UVR (280–400 nm) and temperature on the first larval stage (Zoea I) of three crab species from the Patagonian coast: Cyrtograpsus altimanus, C. angulatus, and Leucippa pentagona. We determined the survival response of newly hatched Zoea I after being exposed for 8–10 h under a solar simulator (Hönle SOL 1200) at 15 and 20 °C. There was no mortality due to Photosynthetic Active Radiation (PAR, 400–700 nm) or ultraviolet-A radiation (UV-A, 315–400 nm), and all the observed mortality was due to ultraviolet-B radiation (UV-B, 280–315 nm). The data of larval mortality relative to exposure time was best fit using a sigmoid curve. Based on this curve, a threshold (Th) and the lethal dose for 50% mortality (LD50) were determined for each species. Based on the Th and LD50, C. altimanus was found to be the most resistant species, while L. pentagona was found to be the most sensitive to UV-B. For both species of Cyrtograpsus, mortality was significantly lower at 20 °C than at 15 °C; however, no significant differences between the two temperature treatments were found in L. pentagona. Bioaccumulation of UV-absorbing compounds in the gonads and larvae of C. altimanus, and to a lesser extent in C. angulatus, might have contributed for counteracting the impact of UV-B. However, most of the resilience to UV-B observed with the increase in temperature might be due to an increase in metabolic activity caused by a repair mechanism mediated by enzymes. PMID:20559492
Applying UV cameras for SO2 detection to distant or optically thick volcanic plumes
Kern, Christoph; Werner, Cynthia; Elias, Tamar; Sutton, A. Jeff; Lübcke, Peter
2013-01-01
Ultraviolet (UV) camera systems represent an exciting new technology for measuring two dimensional sulfur dioxide (SO2) distributions in volcanic plumes. The high frame rate of the cameras allows the retrieval of SO2 emission rates at time scales of 1 Hz or higher, thus allowing the investigation of high-frequency signals and making integrated and comparative studies with other high-data-rate volcano monitoring techniques possible. One drawback of the technique, however, is the limited spectral information recorded by the imaging systems. Here, a framework for simulating the sensitivity of UV cameras to various SO2 distributions is introduced. Both the wavelength-dependent transmittance of the optical imaging system and the radiative transfer in the atmosphere are modeled. The framework is then applied to study the behavior of different optical setups and used to simulate the response of these instruments to volcanic plumes containing varying SO2 and aerosol abundances located at various distances from the sensor. Results show that UV radiative transfer in and around distant and/or optically thick plumes typically leads to a lower sensitivity to SO2 than expected when assuming a standard Beer–Lambert absorption model. Furthermore, camera response is often non-linear in SO2 and dependent on distance to the plume and plume aerosol optical thickness and single scatter albedo. The model results are compared with camera measurements made at Kilauea Volcano (Hawaii) and a method for integrating moderate resolution differential optical absorption spectroscopy data with UV imagery to retrieve improved SO2 column densities is discussed.
Ultraviolet Light Curves of Gaia16apd in Superluminous Supernova Models
NASA Astrophysics Data System (ADS)
Tolstov, Alexey; Zhiglo, Andrey; Nomoto, Ken'ichi; Sorokina, Elena; Kozyreva, Alexandra; Blinnikov, Sergei
2017-08-01
Observations of Gaia16apd revealed extremely luminous ultraviolet emission among superluminous supernovae (SLSNe). Using radiation hydrodynamics simulations, we perform a comparison of UV light curves, color temperatures, and photospheric velocities between the most popular SLSN models: pair-instability supernova, magnetar, and interaction with circumstellar medium. We find that the interaction model is the most promising to explain the extreme UV luminosity of Gaia16apd. The differences in late-time UV emission and in color evolution found between the models can be used to link an observed SLSN event to the most appropriate model. Observations at UV wavelengths can be used to clarify the nature of SLSNe and more attention should be paid to them in future follow-up observations.
Arrieta, Jesús María; Weinbauer, Markus G.; Herndl, Gerhard J.
2000-01-01
The interspecific variability in the sensitivity of marine bacterial isolates to UV-B (295- to 320-nm) radiation and their ability to recover from previous UV-B stress were examined. Isolates originating from different microenvironments of the northern Adriatic Sea were transferred to aged seawater and exposed to artificial UV-B radiation for 4 h and subsequently to different radiation regimens excluding UV-B to determine the recovery from UV-B stress. Bacterial activity was assessed by thymidine and leucine incorporation measurements prior to and immediately after the exposure to UV-B and after the subsequent exposure to the different radiation regimens. Large interspecific differences among the 11 bacterial isolates were found in the sensitivity to UV-B, ranging from 21 to 92% inhibition of leucine incorporation compared to the bacterial activity measured in dark controls and from 14 to 84% for thymidine incorporation. Interspecific differences in the recovery from the UV stress were also large. An inverse relation was detectable between the ability to recover under dark conditions and the recovery under photosynthetic active radiation (400 to 700 nm). The observed large interspecific differences in the sensitivity to UV-B radiation and even more so in the subsequent recovery from UV-B stress are not related to the prevailing radiation conditions of the microhabitats from which the bacterial isolates originate. Based on our investigations on the 11 marine isolates, we conclude that there are large interspecific differences in the sensitivity to UV-B radiation and even larger differences in the mechanisms of recovery from previous UV stress. This might lead to UV-mediated shifts in the bacterioplankton community composition in marine surface waters. PMID:10742228
NASA Astrophysics Data System (ADS)
Chubarova, Nataly; Zhdanova, Yekaterina; Nezval, Yelena
2016-09-01
A new method for calculating the altitude UV dependence is proposed for different types of biologically active UV radiation (erythemally weighted, vitamin-D-weighted and cataract-weighted types). We show that for the specified groups of parameters the altitude UV amplification (AUV) can be presented as a composite of independent contributions of UV amplification from different factors within a wide range of their changes with mean uncertainty of 1 % and standard deviation of 3 % compared with the exact model simulations with the same input parameters. The parameterization takes into account for the altitude dependence of molecular number density, ozone content, aerosol and spatial surface albedo. We also provide generalized altitude dependencies of the parameters for evaluating the AUV. The resulting comparison of the altitude UV effects using the proposed method shows a good agreement with the accurate 8-stream DISORT model simulations with correlation coefficient r > 0.996. A satisfactory agreement was also obtained with the experimental UV data in mountain regions. Using this parameterization we analyzed the role of different geophysical parameters in UV variations with altitude. The decrease in molecular number density, especially at high altitudes, and the increase in surface albedo play the most significant role in the UV growth. Typical aerosol and ozone altitude UV effects do not exceed 10-20 %. Using the proposed parameterization implemented in the on-line UV tool (http://momsu.ru/uv/) for Northern Eurasia over the PEEX domain we analyzed the altitude UV increase and its possible effects on human health considering different skin types and various open body fraction for January and April conditions in the Alpine region.
Radiation studies of optical and electronic components used in astronomical satellite studies
NASA Technical Reports Server (NTRS)
Becher, J.; Kernell, R. L.
1981-01-01
The synchronous orbit of the IUE carries the satellite through Earth's outer electron belt. A 40 mCi Sr90 source was used to simulate these electrons. A 5 mCi source of Co60 was used to simulate bremmstrahlung. A 10 MeV electron Linac and a 1.7 MeV electron Van de Graaf wer used to investigate the energy dependence of radiation effects and to perform radiations at a high flux rate. A 100 MeV proton cyclotron was used to simulate cosmic rays. Results are presented for three instrument systems of the IUE and measurements for specific components are reported. The three instrument systems were the ultraviolet converter, the fine error sensor (FES), and the SEC vidicon camera tube. The components were optical glasses, electronic components, silicon photodiodes, and UV window materials.
Tanaka, Yohei; Nakayama, Jun
2016-01-01
Background and objective Humans are increasingly exposed to near-infrared (NIR) radiation from both natural (eg, solar) and artificial (eg, electrical appliances) sources. Although the biological effects of sun and ultraviolet (UV) exposure have been extensively investigated, the biological effect of NIR radiation is still unclear. We previously reported that NIR as well as UV induces photoaging and standard UV-blocking materials, such as sunglasses, do not sufficiently block NIR. The objective of this study was to investigate changes in gene expression in three-dimensional reconstructed corneal epithelial tissue culture exposed to broad-spectrum NIR irradiation to simulate solar NIR radiation that reaches human tissues. Materials and methods DNA microarray and quantitative real-time polymerase chain reaction analysis were used to assess gene expression levels in a three-dimensional reconstructed corneal epithelial model composed of normal human corneal epithelial cells exposed to water-filtered broad-spectrum NIR irradiation with a contact cooling (20°C). The water-filter allowed 1,000–1,800 nm wavelengths and excluded 1,400–1,500 nm wavelengths. Results A DNA microarray with >62,000 different probes showed 25 and 150 genes that were up- or downregulated by at least fourfold and twofold, respectively, after NIR irradiation. In particular, epidermal growth factor receptor (EGFR) was upregulated by 19.4-fold relative to control cells. Quantitative real-time polymerase chain reaction analysis revealed that two variants of EGFR in human corneal epithelial tissue were also significantly upregulated after five rounds of 10 J/cm2 irradiation (P<0.05). Conclusion We found that NIR irradiation induced the upregulated expression of EGFR in human corneal cells. Since over half of the solar energy reaching the Earth is in the NIR region, which cannot be adequately blocked by eyewear and thus can induce eye damage with intensive or long-term exposure, protection from both UV and NIR radiation may prevent changes in gene expression and in turn eye damage. PMID:27536083
Long-term solar UV radiation reconstructed by Artificial Neural Networks (ANN)
NASA Astrophysics Data System (ADS)
Feister, U.; Junk, J.; Woldt, M.
2008-01-01
Artificial Neural Networks (ANN) are efficient tools to derive solar UV radiation from measured meteorological parameters such as global radiation, aerosol optical depths and atmospheric column ozone. The ANN model has been tested with different combinations of data from the two sites Potsdam and Lindenberg, and used to reconstruct solar UV radiation at eight European sites by more than 100 years into the past. Annual totals of UV radiation derived from reconstructed daily UV values reflect interannual variations and long-term patterns that are compatible with variabilities and changes of measured input data, in particular global dimming by about 1980-1990, subsequent global brightening, volcanic eruption effects such as that of Mt. Pinatubo, and the long-term ozone decline since the 1970s. Patterns of annual erythemal UV radiation are very similar at sites located at latitudes close to each other, but different patterns occur between UV radiation at sites in different latitude regions.
Ultraviolet Radiations: Skin Defense-Damage Mechanism.
Mohania, Dheeraj; Chandel, Shikha; Kumar, Parveen; Verma, Vivek; Digvijay, Kumar; Tripathi, Deepika; Choudhury, Khushboo; Mitten, Sandeep Kumar; Shah, Dilip
2017-01-01
UV-radiations are the invisible part of light spectra having a wavelength between visible rays and X-rays. Based on wavelength, UV rays are subdivided into UV-A (320-400 nm), UV-B (280-320 nm) and UV-C (200-280 nm). Ultraviolet rays can have both harmful and beneficial effects. UV-C has the property of ionization thus acting as a strong mutagen, which can cause immune-mediated disease and cancer in adverse cases. Numbers of genetic factors have been identified in human involved in inducing skin cancer from UV-radiations. Certain heredity diseases have been found susceptible to UV-induced skin cancer. UV radiations activate the cutaneous immune system, which led to an inflammatory response by different mechanisms. The first line of defense mechanism against UV radiation is melanin (an epidermal pigment), and UV absorbing pigment of skin, which dissipate UV radiation as heat. Cell surface death receptor (e.g. Fas) of keratinocytes responds to UV-induced injury and elicits apoptosis to avoid malignant transformation. In addition to the formation of photo-dimers in the genome, UV also can induce mutation by generating ROS and nucleotides are highly susceptible to these free radical injuries. Melanocortin 1 receptor (MC1R) has been known to be implicated in different UV-induced damages such as pigmentation, adaptive tanning, and skin cancer. UV-B induces the formation of pre-vitamin D3 in the epidermal layer of skin. UV-induced tans act as a photoprotection by providing a sun protection factor (SPF) of 3-4 and epidermal hyperplasia. There is a need to prevent the harmful effects and harness the useful effects of UV radiations.
DNA damage under simulated extraterrestrial conditions in bacteriophage T7
NASA Astrophysics Data System (ADS)
Fekete, A.; Módos, K.; Hegedüs, M.; Kovács, G.; Rontó, Gy.; Péter, Á.; Lammer, H.; Panitz, C.
The experiment "Phage and Uracil response" will be accommodated in the EXPOSE facility of the International Space Station. Its objective is to examine and quantify the effect of specific space conditions on nucleic acid models, especially on bacteriophage T7 and isolated T7 DNA thin films. In order to define the environmental and technical requirements of the EXPOSE, the samples were subjected to the experiment verification test (EVT). During EVT, the samples were exposed to vacuum (10 -4-10 -6 Pa) and polychromatic UV-radiation (200-400 nm) in air, in inert atmosphere, as well as in simulated space vacuum. The effect of extreme temperature in vacuum and the influence of temperature fluctuations around 0 °C were also studied. The total intraphage/isolated DNA damage was determined by quantitative PCR using 555 and 3826 bp fragments of T7 DNA. The type of the damage was resolved using a combination of enzymatic probes and neutral and alkaline agarose gel electrophoresis; the structural/chemical effects were analyzed by spectroscopic and microscopical methods. We obtained substantial evidence that DNA lesions accumulate throughout exposure, but the amount of damage depends on the thickness of the layers. According to our preliminary results, the damages by exposure to conditions of dehydration and UV-irradiation are larger than the sum of vacuum alone, or radiation alone case, suggesting a synergistic action of space vacuum and UV radiation with DNA being the critical target.
UV-absorbing bacteria in coral mucus and their response to simulated temperature elevations
NASA Astrophysics Data System (ADS)
Ravindran, J.; Kannapiran, E.; Manikandan, B.; Francis, K.; Arora, Shruti; Karunya, E.; Kumar, Amit; Singh, S. K.; Jose, Jiya
2013-12-01
Reef-building corals encompass various strategies to defend against harmful ultraviolet (UV) radiation. Coral mucus contains UV-absorbing compounds and has rich prokaryotic diversity associated with it. In this study, we isolated and characterized the UV-absorbing bacteria from the mucus of the corals Porites lutea and Acropora hyacinthus during the pre-summer and summer seasons. A total of 17 UV-absorbing bacteria were isolated and sequenced. The UV-absorbing bacteria showed UV absorption at wavelengths ranging from λ max = 333 nm to λ min = 208 nm. Analysis of the DNA sequences revealed that the majority of the UV-absorbing bacteria belonged to the family Firmicutes and the remaining belonged to the family Proteobacteria (class Gammaproteobacteria). Comparison of the sequences with the curated database yielded four distinct bacterial groups belonging to the genus Bacillus, Staphylococcus, Salinicoccus and Vibrio. The absorption peaks for the UV-absorbing bacteria shifted to the UV-A range (320-400 nm) when they were incubated at higher temperatures. Deciphering the complex relationship between corals and their associated bacteria will help us to understand their adaptive strategies to various stresses.
NASA Astrophysics Data System (ADS)
Hu, Bo; Wang, Yuesi; Liu, Guangren
2008-09-01
Ultraviolet (UV) solar radiation has a significant influence on human health, the environment and climate. A series of measurements, including UV radiation (290-400 nm) and global solar radiation ( R s), were continuously recorded from August 2004 at the Lhasa and Haibei sites on the Tibetan Plateau. Both observation sites’ altitudes are above 3000 m and have similar meteorological conditions. The data from 2005-2006 was used to identify the varying characteristics of UV radiation. It’s relation to the clearness index K s, the relative optical mass m r, and R s were established. The annual mean values of total daily UV radiation are 0.92 and 0.67 MJ m-2 at Lhasa and Haibei, respectively. The UV radiation in Lhasa represented 4.6% of the global solar radiation while in Haibei this percentage was 4.2%. In the case of clear days ( K s > 0.8), these percentages ranged between 4.0% and 4.5% in Lhasa and between 5.1% and 5.5% in Haibei. In the case of cloudy days ( K s < 0.4), these percentages ranged from 4.4% to 6.8% in Lhasa and from 5.1% to 5.5% in Haibei. The maximum values of UV radiation for each relative optical mass diminished exponentially with m r. Thus, for Lhasa and Haibei, UV=46.25 m {4/-1.29}, and UV=51.76 m {r/-1.42}, respectively. The results of this study can be used to obtain more UV radiation data for the study of UV climate characteristics, the effects of UV on ecological processes and the feedback of the thinning of the stratospheric ozone, from more routine measurements R s data.
UV EFFECTS IN TOOTH ENAMEL AND THEIR POSSIBLE APPLICATION IN EPR DOSIMETRY WITH FRONT TEETH
Sholom, S.; Desrosiers, M.; Chumak, V.; Luckyanov, N.; Simon, S.L.; Bouville, A.
2009-01-01
The effects of ultraviolet (UV) radiation on ionizing radiation biodosimetry were studied in human tooth enamel samples using the technique of electron paramagnetic resonance (EPR) in X-band. For samples in the form of grains, UV-specific EPR spectra were spectrally distinct from that produced by exposure to gamma radiation. From larger enamel samples, the UV penetration depth was determined to be in the 60–120 μm range. The difference in EPR spectra from UV exposure and from exposure to gamma radiation samples was found to be a useful marker of UV equivalent dose (defined as the apparent contribution to the gamma dose in mGy that results from UV radiation absorption) in tooth enamel. This concept was preliminarily tested on front teeth from inhabitants of the region of the Semipalatinsk Nuclear Test Site (Kazakhstan) who might have received some exposure to gamma radiation from the nuclear tests conducted there as well as from normal UV radiation in sunlight. The technique developed here to quantify and subtract the UV contribution to the measured tooth is currently limited to cumulative dose measurements with a component of UV equivalent dose equal to or greater than 300 mGy. PMID:20065706
Gentili, Pier Luigi; Giubila, Maria Sole; Germani, Raimondo; Romani, Aldo; Nicoziani, Andrea; Spalletti, Anna; Heron, B Mark
2017-06-19
Neuromorphic engineering promises to have a revolutionary impact in our societies. A strategy to develop artificial neurons (ANs) is to use oscillatory and excitable chemical systems. Herein, we use UV and visible radiation as both excitatory and inhibitory signals for the communication among oscillatory reactions, such as the Belousov-Zhabotinsky and the chemiluminescent Orban transformations, and photo-excitable photochromic and fluorescent species. We present the experimental results and the simulations regarding pairs of ANs communicating by either one or two optical signals, and triads of ANs arranged in both feed-forward and recurrent networks. We find that the ANs, powered chemically and/or by the energy of electromagnetic radiation, can give rise to the emergent properties of in-phase, out-of-phase, anti-phase synchronizations and phase-locking, dynamically mimicking the communication among real neurons. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thompson, Benjamin C.; Halliday, Gary M.; Damian, Diona L.
2015-01-01
Arsenic-induced skin cancer is a significant global health burden. In areas with arsenic contamination of water sources, such as China, Pakistan, Myanmar, Cambodia and especially Bangladesh and West Bengal, large populations are at risk of arsenic-induced skin cancer. Arsenic acts as a co-carcinogen with ultraviolet (UV) radiation and affects DNA damage and repair. Nicotinamide (vitamin B3) reduces premalignant keratoses in sun-damaged skin, likely by prevention of UV-induced cellular energy depletion and enhancement of DNA repair. We investigated whether nicotinamide modifies DNA repair following exposure to UV radiation and sodium arsenite. HaCaT keratinocytes and ex vivo human skin were exposed to 2μM sodium arsenite and low dose (2J/cm2) solar-simulated UV, with and without nicotinamide supplementation. DNA photolesions in the form of 8-oxo-7,8-dihydro-2′-deoxyguanosine and cyclobutane pyrimidine dimers were detected by immunofluorescence. Arsenic exposure significantly increased levels of 8-oxo-7,8-dihydro-2′-deoxyguanosine in irradiated cells. Nicotinamide reduced both types of photolesions in HaCaT keratinocytes and in ex vivo human skin, likely by enhancing DNA repair. These results demonstrate a reduction of two different photolesions over time in two different models in UV and arsenic exposed cells. Nicotinamide is a nontoxic, inexpensive agent with potential for chemoprevention of arsenic induced skin cancer. PMID:25658450
NASA Astrophysics Data System (ADS)
Kim, Jeong-Gyu; Kim, Woong-Tae; Ostriker, Eve C.; Skinner, M. Aaron
2017-12-01
We present an implementation of an adaptive ray-tracing (ART) module in the Athena hydrodynamics code that accurately and efficiently handles the radiative transfer involving multiple point sources on a three-dimensional Cartesian grid. We adopt a recently proposed parallel algorithm that uses nonblocking, asynchronous MPI communications to accelerate transport of rays across the computational domain. We validate our implementation through several standard test problems, including the propagation of radiation in vacuum and the expansions of various types of H II regions. Additionally, scaling tests show that the cost of a full ray trace per source remains comparable to that of the hydrodynamics update on up to ∼ {10}3 processors. To demonstrate application of our ART implementation, we perform a simulation of star cluster formation in a marginally bound, turbulent cloud, finding that its star formation efficiency is 12% when both radiation pressure forces and photoionization by UV radiation are treated. We directly compare the radiation forces computed from the ART scheme with those from the M1 closure relation. Although the ART and M1 schemes yield similar results on large scales, the latter is unable to resolve the radiation field accurately near individual point sources.
Accumulation of flavonoids and related compounds in birch induced by UV-B irradiance.
Lavola, Anu
1998-01-01
A growth chamber experiment was conducted to examine the effects of UV-B exposure (4.9 kJ m(-2) day(-1) of biologically effective UV-B, 280-320 nm) on shoot growth and secondary metabolite production in Betula pendula (Roth) and B. resinifera (Britt.) seedlings originating from environments in Finland, Germany and Alaska differing in solar UV-B radiation and climate. Neither shoot growth nor the composition of secondary metabolites was affected by UV-B irradiance, but the treatment induced significant changes in the amounts of individual secondary metabolites in leaves. Leaves of seedlings exposed to UV-B radiation contained higher concentrations of several flavonoids, condensed tannins and some hydroxycinnamic acids than leaves of control seedlings that received no UV-B radiation. At the population level, there was considerable variation in secondary metabolite responses to UV-B radiation: among populations, the induced response was most prominent in Alaskan populations, which were adapted to the lowest ambient UV-B radiation environment. I conclude that solar UV-B radiation plays an important role in the formation of secondary chemical characteristics in birch trees.
Huang, Guangrong; Wang, Lihong; Zhou, Qing
2013-01-01
Ultraviolet-B (UV-B, 280-320 nm) radiation has seriously affected the growth of plants. Finding the technology/method to alleviate the damage of UV-B radiation has become a frontal topic in the field of environmental science. The pretreatment with rare earth elements (REEs) is an effective method, but the regulation mechanism of REEs is unknown. Here, the regulation effects of lanthanum (La(III)) on nitrogen assimilation in soybean seedlings (Glycine max L.) under ultraviolet-B radiation were investigated to elucidate the regulation mechanism of REEs on plants under UV-B radiation. UV-B radiation led to the inhibition in the activities of the key enzymes (nitrate reductase, glutamine synthetase, glutamate synthase) in the nitrogen assimilation, the decrease in the contents of nitrate and soluble proteins, as well as the increase in the content of amino acid in soybean seedlings. The change degree of UV-B radiation at the high level (0.45 W m(-2)) was higher than that of UV-B radiation at the low level (0.15 W m(-2)). The pretreatment with 20 mg L(-1) La(III) could alleviate the effects of UV-B radiation on the activities of nitrate reductase, glutamine synthetase, glutamate synthase, and glutamate dehydrogenase, promoting amino acid conversion and protein synthesis in soybean seedlings. The regulation effect of La(III) under UV-B radiation at the low level was better than that of UV-B radiation at the high level. The results indicated that the pretreatment with 20 mg L(-1) La(III) could alleviate the inhibition of UV-B radiation on nitrogen assimilation in soybean seedlings.
Cechin, Inês; Corniani, Natália; de Fátima Fumis, Terezinha; Cataneo, Ana Catarina
2008-07-01
The effects and interaction of drought and UV-B radiation were studied in sunflower plants (Helianthus annuus L. var. Catissol-01), growing in a greenhouse under natural photoperiod conditions. The plants received approximately 1.7 W m(-2) (controls) or 8.6 W m(-2) (+UV-B) of UV-B radiation for 7 h per day. The UV-B and water stress treatments started 18 days after sowing. After a period of 12 days of stress, half of the water-stressed plants (including both UV-B irradiated or non-irradiated) were rehydrated. Both drought and UV-B radiation treatments resulted in lower shoot dry matter per plant, but there was no significant interaction between the two treatments. Water stress and UV-B radiation reduced photosynthesis, stomatal conductance and transpiration. However, the amplitude of the effects of both stressors was dependent on the interactions. This resulted in alleviation of the negative effect of drought on photosynthesis and transpiration by UV-B radiation as the water stress intensified. Intercelluar CO(2) concentration was initially reduced in all treatments compared to control plants but it increased with time. Photosynthetic pigments were not affected by UV-B radiation. Water stress reduced photosynthetic pigments only under high UV-B radiation. The decrease was more accentuated for chlorophyll a than for chlorophyll b. As a measure for the maximum efficiency of photosystem II in darkness F (v)/F (m) was used, which was not affected by drought stress but initially reduced by UV-B radiation. Independent of water supply, UV-B radiation increased the activity of pirogalol peroxidase and did not increase the level of malondialdehyde. On the other hand, water stress did not alter the activity of pirogalol peroxidase and caused membrane damage as assessed by lipid peroxidation. The application of UV-B radiation together with drought seemed to have a protective effect by lowering the intensity of lipid peroxidation caused by water stress. The content of proline was not affected by UV-B radiation but was increased by water stress under both low and high UV-B radiation. After 24 h of rehydration, most of the parameters analyzed recovered to the same level as the unstressed plants.
Warren, Jeffrey M; Bassman, John H; Mattinson, D Scott; Fellman, John K; Edwards, Gerald E; Robberecht, Ronald
2002-03-01
Chromatographic analyses of foliage from several tree species illustrate the species-specific effects of UV-B radiation on both quantity and composition of foliar flavonoids. Pinus ponderosa, Quercus rubra and Pseudotsuga menziesii were field-grown under modulated ambient (1x) and enhanced (2x) biologically effective UV-B radiation. Foliage was harvested seasonally over a 3-year period, extracted, purified and the flavonoid fraction applied to a mu Bondapak/C(18) column HPLC system sampling at 254 nm. Total flavonoid concentrations in Quercus rubra foliage were more than twice (leaf area basis) that of the other species; Pseudotsuga menziesii foliage had intermediate levels and P. ponderosa had the lowest concentrations of total flavonoids. No statistically significant UV-B radiation-induced effects were found in total foliar flavonoid concentrations for any species; however, concentrations of specific compounds within each species exhibited significant treatment effects. Higher (but statistically insignificant) levels of flavonoids were induced by UV-B irradiation in 1- and 2-year-old P. ponderosa foliage. Total flavonoid concentrations in 2-year-old needles increased by 50% (1x ambient UV-B radiation) or 70% (2x ambient UV-B radiation) from that of 1-year-old tissue. Foliar flavonoids of Q. rubra under enhanced UV-B radiation tended to shift from early-eluting compounds to less polar flavonoids eluting later. There were no clear patterns of UV-B radiation effects on 1-year-old P. menziesii foliage. However, 2-year-old tissue had slightly higher foliar flavonoids under the 2x UV-B radiation treatment compared to ambient levels. Results suggest that enhanced UV-B radiation will alter foliar flavonoid composition and concentrations in forest tree species, which could impact tissue protection, and ultimately, competition, herbivory or litter decomposition.
Xu, Defu; Wu, Yinjuan; Li, Yingxue; Howard, Alan; Jiang, Xiaodong; Guan, Yidong; Gao, Yongxia
2014-09-01
A surface- and vertical subsurface-flow-constructed wetland were designed to study the response of chlorophyll and antioxidant enzymes to elevated UV radiation in three types of wetland plants (Canna indica, Phragmites austrail, and Typha augustifolia). Results showed that (1) chlorophyll content of C. indica, P. austrail, and T. augustifolia in the constructed wetland was significantly lower where UV radiation was increased by 10 and 20 % above ambient solar level than in treatment with ambient solar UV radiation (p < 0.05). (2) The malondialdehyde (MDA) content, guaiacol peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) activities of wetland plants increased with elevated UV radiation intensity. (3) The increased rate of MDA, SOD, POD, and CAT activities of C. indica, P. australis, and T. angustifolia by elevated UV radiation of 10 % was higher in vertical subsurface-flow-constructed wetland than in surface-flow-constructed wetland. The sensitivity of MDA, SOD, POD, and CAT activities of C. indica, P. austrail, and T. augustifolia to the elevated UV radiation was lower in surface-flow-constructed wetland than in the vertical subsurface-flow-constructed wetland, which was related to a reduction in UV radiation intensity through the dissolved organic carbon and suspended matter in the water. C. indica had the highest SOD and POD activities, which implied it is more sensitive to enhanced UV radiation. Therefore, different wetland plants had different antioxidant enzymes by elevated UV radiation, which were more sensitive in vertical subsurface-flow-constructed wetland than in surface-flow-constructed wetland.
Protective effect of rare earth against oxidative stress under ultraviolet-B radiation.
Wang, Lihong; Huang, Xiaohua; Zhou, Qing
2009-04-01
The effects of lanthanum (III) (La(III)) in protecting soybean leaves against oxidative stress induced by ultraviolet-B (UV-B) radiation were investigated. The increase in contents of hydrogen peroxide (H(2)O(2)) and superoxide (O2*-) due to UV-B radiation suggested oxidative stress. The increase in the content of malondialdehyde (MDA) and the decrease in the index of unsaturated fatty acid (IUFA) indicated oxidative damage on cell membrane induced by UV-B radiation. La(III) partially reversed UV-B-radiation-induced damage of plant growth. The reduction in the contents of H(2)O(2), O2*-, and MDA and increase in the content of IUFA, compared with UV-B treatment, also indicated that La(III) alleviated the oxidative damage induced by UV-B radiation. The increase in the activities of superoxide dismutase and peroxidase and the contents of ascorbate, carotenoids, and flavonoids were observed in soybean leaves with La(III) + UV-B treatment, compared with UV-B treatment. Our data suggested that La(III) could protect soybean plants from UV-B-radiation-induced oxidative stress by reacting with reactive oxygen species directly or by improving the defense system of plants.
Mainster, Martin A; Turner, Patricia L
2010-04-01
Ultraviolet-B (UV-B) radiation can cause phototoxic macular injuries in young people who have been sunbathing but not sungazing and in welders. Welders have a reportedly increased risk of uveal melanoma. We analyze phakic and pseudophakic risks for solar and welding arc UV-B exposure. Optical radiation measurement, analysis, and perspective. Spectral transmittances were measured for UV-transmitting, UV-blocking, and blue-blocking intraocular lenses (IOLs). The photoprotective performances of crystalline and intraocular lenses were analyzed using relevant epidemiologic and laboratory data and action spectra for acute retinal phototoxicity and melanoma photocarcinogenesis. Crystalline lens UV-B retinal protection is deficient in children and young adults, increasing their potential susceptibility to acute retinal phototoxicity and hypothetical photomelanomagenesis. UV-B radiation has sufficient energy/photon to induce primary melanomagenic DNA lesions, unlike blue light or UV-A radiation. UV-blocking and blue-blocking IOLs have negligible UV-B transmittance. UV-transmitting IOL transmittance of UV-B radiation is equivalent to that of a 15-year-old crystalline lens. If optical radiation exposure is responsible for welders' increased risk of uveal melanoma, then UV-B radiation is the most probable causative agent and spectacle wear is a potential confounding factor in epidemiologic studies of ocular melanoma. Welders under 30 years of age are at greater risk for welding maculopathy than older welders. Children, adults under 30 years of age, and pseudophakic individuals with UV-transmitting IOLs should wear sunglasses in bright environments because of the UV-B window in their crystalline lenses or IOLs. Copyright 2010 Elsevier Inc. All rights reserved.
Ma, Meng; Wang, Pei; Yang, Runqiang; Gu, Zhenxin
2018-06-01
In this study, the effects of UV-B radiation on the isoflavones accumulation, physiological and nutritional quality, water status, and characteristics of proteins in germinated soybeans were investigated. The results showed that isoflavones content in soybeans increased with appropriate intensity and time of UV-B radiation and decreased with excessive treatment. Fresh weight, length, free amino acids, reducing sugar contents and bulk water (T 23 ) in germinated soybeans decreased with increasing radiation time, indicating that UV-B inhibited the growth and nutrients metabolism of soybean during germination. Cell damage was detected in germinated soybeans with excessive UV-B radiation, as shown by the black spots in cotyledons and the increased intercellular water determined by LF-NMR. Germination resulted in an increase in random coil structures, while UV-B radiation induced no obvious changes in FT-IR spectrum and protein conformation of soybeans. Both UV-B radiation and germination caused the increase in soluble proteins, especially in 1.0-75.0 kDa fraction. Copyright © 2018 Elsevier Ltd. All rights reserved.
Driving Turbulence and Triggering Star Formation by Ionizing Radiation
NASA Astrophysics Data System (ADS)
Gritschneder, Matthias; Naab, Thorsten; Walch, Stefanie; Burkert, Andreas; Heitsch, Fabian
2009-03-01
We present high-resolution simulations on the impact of ionizing radiation of massive O stars on the surrounding turbulent interstellar medium (ISM). The simulations are performed with the newly developed software iVINE which combines ionization with smoothed particle hydrodynamics (SPH) and gravitational forces. We show that radiation from hot stars penetrates the ISM, efficiently heats cold low-density gas and amplifies overdensities seeded by the initial turbulence. The formation of observed pillar-like structures in star-forming regions (e.g. in M16) can be explained by this scenario. At the tip of the pillars gravitational collapse can be induced, eventually leading to the formation of low-mass stars. Detailed analysis of the evolution of the turbulence spectra shows that UV radiation of O stars indeed provides an excellent mechanism to sustain and even drive turbulence in the parental molecular cloud.
NASA Astrophysics Data System (ADS)
Paulino-Lima, Ivan Gláucio; Pilling, Sérgio; Janot-Pacheco, Eduardo; de Brito, Arnaldo Naves; Barbosa, João Alexandre Ribeiro Gonçalves; Leitão, Alvaro Costa; Lage, Claudia de Alencar Santos
2010-08-01
The radiation-resistant bacterium Deinococcus radiodurans was exposed to a simulated interplanetary UV radiation at the Brazilian Synchrotron Light Laboratory (LNLS). Bacterial samples were irradiated on different substrates to investigate the influence of surface relief on cell survival. The effects of cell multi-layers were also investigated. The ratio of viable microorganisms remained virtually the same (average 2%) for integrated doses from 1.2 to 12 kJ m -2, corresponding to 16 h of irradiation at most. The asymptotic profiles of the curves, clearly connected to a shielding effect provided by multi-layering cells on a cavitary substrate (carbon tape), means that the inactivation rate may not change significantly along extended periods of exposure to radiation. Such high survival rates reinforce the possibility of an interplanetary transfer of viable microbes.
Favory, Jean-Jacques; Stec, Agnieszka; Gruber, Henriette; Rizzini, Luca; Oravecz, Attila; Funk, Markus; Albert, Andreas; Cloix, Catherine; Jenkins, Gareth I; Oakeley, Edward J; Seidlitz, Harald K; Nagy, Ferenc; Ulm, Roman
2009-01-01
The ultraviolet-B (UV-B) portion of the solar radiation functions as an environmental signal for which plants have evolved specific and sensitive UV-B perception systems. The UV-B-specific UV RESPONSE LOCUS 8 (UVR8) and the multifunctional E3 ubiquitin ligase CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) are key regulators of the UV-B response. We show here that uvr8-null mutants are deficient in UV-B-induced photomorphogenesis and hypersensitive to UV-B stress, whereas overexpression of UVR8 results in enhanced UV-B photomorphogenesis, acclimation and tolerance to UV-B stress. By using sun simulators, we provide evidence at the physiological level that UV-B acclimation mediated by the UV-B-specific photoregulatory pathway is indeed required for survival in sunlight. At the molecular level, we demonstrate that the wild type but not the mutant UVR8 and COP1 proteins directly interact in a UV-B-dependent, rapid manner in planta. These data collectively suggest that UV-B-specific interaction of COP1 and UVR8 in the nucleus is a very early step in signalling and responsible for the plant's coordinated response to UV-B ensuring UV-B acclimation and protection in the natural environment. PMID:19165148
Yao, Xiaoqin; Chu, Jianzhou; He, Xueli; Ma, Chunhui; Han, Chao; Shen, Haiyu
2015-05-01
The paper mainly reported the changes in quality ingredients of Qi chrysanthemum flowers treated with elevated UV-B radiation at different growth stages. The experiment included two levels of UV-B radiation (ambient UV-B, a 10% increase in ambient UV-B). Elevated UV-B radiation was carried out for 10-days during seedling, vigorous growth, bud and flower stages of Qi chrysanthemum, respectively. Elevated UV-B treatments applied during four development stages did not significantly affect flower yield, the rate of superoxide radical production and malondialdehyde concentration in flowers, while increased free amino acid concentration. The amino acid concentration induced by elevated UV-B radiation applied during bud stage was higher than that during the other stages. Elevated UV-B radiation applied during vigorous growth (except for flavone), bud and flower stages of chrysanthemum significantly increased hydrogen peroxide concentration, phenylalanine ammonia lyase enzyme activity, vitamin C, chlorogenic acid and flavone concentrations in flowers. These results suggested that active and nutritional ingredients in flowers of chrysanthemum could be increased by elevated UV-B radiation applied during the later growth stages of chrysanthemum. The paper supplied a simple and environmental-friendly method to improve quality of medicinal plants. Copyright © 2015 Elsevier B.V. All rights reserved.
Measurements of DNA Damage and Repair in Bacillus anthracis Sterne Spores by UV Radiation
2014-09-18
MEASUREMENTS OF DNA DAMAGE AND REPAIR IN BACILLUS ANTHRACIS STERNE SPORES BY UV RADIATION...AFIT-ENP-T-14-S-01 MEASUREMENTS OF DNA DAMAGE AND REPAIR IN BACILLUS ANTHRACIS STERNE SPORES BY UV RADIATION THESIS Presented to the... DAMAGE AND REPAIR IN BACILLUS ANTHRACIS STERNE SPORES BY UV RADIATION Chelsea C. Marcum, BS Approved
GOME-2A retrievals of tropospheric NO2 in different spectral ranges - influence of penetration depth
NASA Astrophysics Data System (ADS)
Behrens, Lisa K.; Hilboll, Andreas; Richter, Andreas; Peters, Enno; Eskes, Henk; Burrows, John P.
2018-05-01
In this study, we present a novel nitrogen dioxide (NO2) differential optical absorption spectroscopy (DOAS) retrieval in the ultraviolet (UV) spectral range for observations from the Global Ozone Monitoring Instrument 2 on board EUMETSAT's MetOp-A (GOME-2A) satellite. We compare the results to those from an established NO2 retrieval in the visible (vis) spectral range from the same instrument and investigate how differences between the two are linked to the NO2 vertical profile shape in the troposphere. As expected, radiative transfer calculations for satellite geometries show that the sensitivity close to the ground is higher in the vis than in the UV spectral range. Consequently, NO2 slant column densities (SCDs) in the vis are usually higher than in the UV if the NO2 is close to the surface. Therefore, these differences in NO2 SCDs between the two spectral ranges contain information on the vertical distribution of NO2 in the troposphere. We combine these results with radiative transfer calculations and simulated NO2 fields from the TM5-MP chemistry transport model to evaluate the simulated NO2 vertical distribution. We investigate regions representative of both anthropogenic and biomass burning NO2 pollution. Anthropogenic air pollution is mostly located in the boundary layer close to the surface, which is reflected by large differences between UV and vis SCDs of ˜ 60 %. Biomass burning NO2 in contrast is often uplifted into elevated layers above the boundary layer. This is best seen in tropical Africa south of the Equator, where the biomass burning NO2 is well observed in the UV, and the SCD difference between the two spectral ranges is only ˜ 36 %. In tropical Africa north of the Equator, however, the biomass burning NO2 is located closer to the ground, reducing its visibility in the UV. While not enabling a full retrieval of the vertical NO2 profile shape in the troposphere, our results can help to constrain the vertical profile of NO2 in the lower troposphere and, when analysed together with simulated NO2 fields, can help to better interpret the model output.
Effects of different levels of vitamin C on UV radiation-induced DNA damage
NASA Astrophysics Data System (ADS)
Zhou, Dianfeng; Heng, Hang; Ji, Kang; Ke, Weizhong
2005-05-01
The Raman spectra of DNA in different levels of vitamin C with 10- and 30-min ultraviolet (UV) radiations were reported. The intensity of UV radiation was 18.68 W/m2. The experimental results proved that vitamin C could alone prevent UV radiation from damaging DNA, but the effects depended on the concentration of vitamin C. When the concentration of vitamin C was about 0.08-0.4 mmol/L, vitamin C decreased UV radiation-induced DNA's damage. When the concentration of vitamin C exceeded 0.4 mmol/L, vitamin C accelerated DNA's damage instead. Maybe the reason is that when DNA in aqueous solution is radiated by UV, free radicals come into being, and vitamin C can scavenge free radicals, so vitamin C in lower concentration can protect DNA. The quantity of free radicals is finite, when vitamin C is superfluous, free radicals have been scavenged absolutely and vitamin C is residual. Vitamin C is a strong reductant. When the mixture of DNA and residual vitamin C is radiated by UV, vitamin C reacts with DNA. The more residual vitamin C and the longer time of UV radiation, the more DNA is damaged.
Turtola, Satu; Sallas, Leena; Holopainen, Jarmo K; Julkunen-Tiitto, Riitta; Kainulainen, Pirjo
2006-11-01
The effects of long-term enhanced UV-B radiation on growth and secondary compounds of two conifer species were studied in an outdoor experiment. Scots pine (Pinus sylvestris) seedlings were exposed for two growing seasons and Norway spruce (Picea abies) seedlings for three growing seasons to supplemental UV-B radiation, corresponding to a 30% increase in ambient UV-B radiation. The experiment also included appropriate controls for ambient and increased UV-A radiation. Enhanced UV-B did not affect the growth of the conifer seedlings. In addition, neither the concentrations of terpenes and phenolics in the needles nor the concentrations of terpenes in the wood were affected. However, in the UV-A control treatment the concentrations of diterpenes in the wood of Scots pine decreased significantly compared to the ambient control. Apparently, a small increase in UV-B radiation has no significant effects on the secondary compounds and growth of Scots pine and Norway spruce seedlings.
The effect of ultraviolet radiation on the pathogenesis of Candida albicans in mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denkins, Y.M.
1991-01-01
This dissertation addresses questions concerning the effects of UV radiation on the pathogenesis of opportunistic fungal pathogens such as Candida albicans. UV radiation decreased the survival of Candida-infected mice; however, no correlation was found between suppression of the delayed type hypersensitivity (DTH) response and the course of lethal infection. This suggested that DTH was not protective against lethal disease with this organism. UV radiation also changed the persistence of the organism in the internal organs. UV-irradiated, infected animals had increased numbers of Candida in their kidneys compared to non-irradiated mice. Sensitization prior to UV irradiation aided clearance of the organismmore » from the kidneys of UV-irradiated mice. These data show that UV radiation suppresses cell-mediated immunity to Candida albicans in mice and increases mortality of Candida-infected mice. Moreover, the data suggest that an increase in environmental UV radiation could increase the severity of pathogenic infections.« less
Huang, Guangrong; Wang, Lihong; Sun, Zhaoguo; Li, Xiaodong; Zhou, Qing; Huang, Xiaohua
2015-02-01
Rare earth element pollution and elevated ultraviolet-B (UV-B) radiation occur simultaneously in some regions, but the combined effects of these two factors on plants have not attracted enough attention. Nitrogen nutrient is vital to plant growth. In this study, the combined effects of lanthanum(III) and elevated UV-B radiation on nitrate reduction and ammonia assimilation in soybean (Glycine max L.) roots were investigated. Treatment with 0.08 mmol L(-1) La(III) did not change the effects of elevated UV-B radiation on nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), glutamate synthase (GOGAT), glutamate dehydrogenase (GDH), nitrate, ammonium, amino acids, or soluble protein in the roots. Treatment with 0.24 mmol L(-1) La(III) and elevated UV-B radiation synergistically decreased the NR, NiR, GS, and GOGAT activities as well as the nitrate, amino acid, and soluble protein levels, except for the GDH activity and ammonium content. Combined treatment with 1.20 mmol L(-1) La(III) and elevated UV-B radiation produced severely deleterious effects on all test indices, and these effects were stronger than those induced by La(III) or elevated UV-B radiation treatment alone. Following the withdrawal of La(III) and elevated UV-B radiation, all test indices for the combined treatments with 0.08/0.24 mmol L(-1) La(III) and elevated UV-B radiation recovered to a certain extent, but they could not recover for treatments with 1.20 mmol L(-1) La(III) and elevated UV-B radiation. In summary, combined treatment with La(III) and elevated UV-B radiation seriously affected nitrogen nutrition in soybean roots through the inhibition of nitrate reduction and ammonia assimilation.
Raman spectroscopic analysis of the responds of desert cyanobacterium Nostoc sp under UV-B radiation
NASA Astrophysics Data System (ADS)
Wang, Gaohong; Hao, Zongjie; Hu, Chunxiang; Liu, Yongding
Cyanobacteria are renowned for tolerating extremes of desiccation, UV radiation, freezethaw cycles, hypersalinity and oligotrophy, which make them as candidate par excellence for terraforming in extraterrestrial planet. Recently Raman spectrum was applied to study the biochemical information changes in different field of life science. In this study, we investigated the respond of desert cyanobactreium Nostoc sp under UV-B radiation via FT-Raman spectra. It was found that the spectral biomarkers of protectant molecular of UV radiation such as β-carotene and scytonemin were induced by UV-B radiation, but Chlorophyll a content was decreased, and also the photosynthesis activity was inhibited significantly. After light adaptation without UV-B radiation, the Chlorophyll a content and photosynthesis activity returned to high level, butβ-carotene and scytonemin content remained in the cells. Those results indicated that desert Cyanobacteria have good adaptation ability for UV-B radiation and synthesis of protectant molecular may be an effective strategy for its adaptation in evolution.
Ultraviolet Light Curves of Gaia16apd in Superluminous Supernova Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tolstov, Alexey; Zhiglo, Andrey; Nomoto, Ken’ichi
2017-08-10
Observations of Gaia16apd revealed extremely luminous ultraviolet emission among superluminous supernovae (SLSNe). Using radiation hydrodynamics simulations, we perform a comparison of UV light curves, color temperatures, and photospheric velocities between the most popular SLSN models: pair-instability supernova, magnetar, and interaction with circumstellar medium. We find that the interaction model is the most promising to explain the extreme UV luminosity of Gaia16apd. The differences in late-time UV emission and in color evolution found between the models can be used to link an observed SLSN event to the most appropriate model. Observations at UV wavelengths can be used to clarify the naturemore » of SLSNe and more attention should be paid to them in future follow-up observations.« less
Hibbert, Sarah A; Watson, Rachel E B; Gibbs, Neil K; Costello, Patrick; Baldock, Clair; Weiss, Anthony S; Griffiths, Christopher E M; Sherratt, Michael J
2015-08-01
Excessive ultraviolet radiation (UVR) exposure of the skin is associated with adverse clinical outcomes. Although both exogenous sunscreens and endogenous tissue components (including melanins and tryptophan-derived compounds) reduce UVR penetration, the role of endogenous proteins in absorbing environmental UV wavelengths is poorly defined. Having previously demonstrated that proteins which are rich in UVR-absorbing amino acid residues are readily degraded by broadband UVB-radiation (containing UVA, UVB and UVC wavelengths) here we hypothesised that UV chromophore (Cys, Trp and Tyr) content can predict the susceptibility of structural proteins in skin and the eye to damage by physiologically relevant doses (up to 15.4 J/cm(2)) of solar UVR (95% UVA, 5% UVB). We show that: i) purified suspensions of UV-chromophore-rich fibronectin dimers, fibrillin microfibrils and β- and γ-lens crystallins undergo solar simulated radiation (SSR)-induced aggregation and/or decomposition and ii) exposure to identical doses of SSR has minimal effect on the size or ultrastructure of UV chromophore-poor tropoelastin, collagen I, collagen VI microfibrils and α-crystallin. If UV chromophore content is a factor in determining protein stability in vivo, we would expect that the tissue distribution of Cys, Trp and Tyr-rich proteins would correlate with regional UVR exposure. From bioinformatic analysis of 244 key structural proteins we identified several biochemically distinct, yet UV chromophore-rich, protein families. The majority of these putative UV-absorbing proteins (including the late cornified envelope proteins, keratin associated proteins, elastic fibre-associated components and β- and γ-crystallins) are localised and/or particularly abundant in tissues that are exposed to the highest doses of environmental UVR, specifically the stratum corneum, hair, papillary dermis and lens. We therefore propose that UV chromophore-rich proteins are localised in regions of high UVR exposure as a consequence of an evolutionary pressure to express sacrificial protein sunscreens which reduce UVR penetration and hence mitigate tissue damage. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
A potential role for endogenous proteins as sacrificial sunscreens and antioxidants in human tissues
Hibbert, Sarah A.; Watson, Rachel E.B.; Gibbs, Neil K.; Costello, Patrick; Baldock, Clair; Weiss, Anthony S.; Griffiths, Christopher E.M.; Sherratt, Michael J.
2015-01-01
Excessive ultraviolet radiation (UVR) exposure of the skin is associated with adverse clinical outcomes. Although both exogenous sunscreens and endogenous tissue components (including melanins and tryptophan-derived compounds) reduce UVR penetration, the role of endogenous proteins in absorbing environmental UV wavelengths is poorly defined. Having previously demonstrated that proteins which are rich in UVR-absorbing amino acid residues are readily degraded by broadband UVB-radiation (containing UVA, UVB and UVC wavelengths) here we hypothesised that UV chromophore (Cys, Trp and Tyr) content can predict the susceptibility of structural proteins in skin and the eye to damage by physiologically relevant doses (up to 15.4 J/cm2) of solar UVR (95% UVA, 5% UVB). We show that: i) purified suspensions of UV-chromophore-rich fibronectin dimers, fibrillin microfibrils and β- and γ-lens crystallins undergo solar simulated radiation (SSR)-induced aggregation and/or decomposition and ii) exposure to identical doses of SSR has minimal effect on the size or ultrastructure of UV chromophore-poor tropoelastin, collagen I, collagen VI microfibrils and α-crystallin. If UV chromophore content is a factor in determining protein stability in vivo, we would expect that the tissue distribution of Cys, Trp and Tyr-rich proteins would correlate with regional UVR exposure. From bioinformatic analysis of 244 key structural proteins we identified several biochemically distinct, yet UV chromophore-rich, protein families. The majority of these putative UV-absorbing proteins (including the late cornified envelope proteins, keratin associated proteins, elastic fibre-associated components and β- and γ-crystallins) are localised and/or particularly abundant in tissues that are exposed to the highest doses of environmental UVR, specifically the stratum corneum, hair, papillary dermis and lens. We therefore propose that UV chromophore-rich proteins are localised in regions of high UVR exposure as a consequence of an evolutionary pressure to express sacrificial protein sunscreens which reduce UVR penetration and hence mitigate tissue damage. PMID:25911998
Pinto, M E; Casati, P; Hsu, T P; Ku, M S; Edwards, G E
1999-02-01
The effects of UV-B radiation on growth, photosynthesis, UV-B-absorbing compounds and NADP-malic enzyme have been examined in different cultivars of Phaseolous vulgaris L. grown under 1 and 12 mM nitrogen. Low nitrogen nutrition reduces chlorophyll and soluble protein contents in the leaves and thus the photosynthesis rate and dry-matter accumulation. Chlorophyll, soluble protein and Rubisco contents and photosynthesis rate are not significantly altered by ambient levels of UV-B radiation (17 microW m-2, 290-320 nm, 4 h/day for one week). Comparative studies show that under high nitrogen, UV-B radiation slightly enhances leaf expansion and dry-matter accumulation in cultivar Pinto, but inhibits these parameters in Vilmorin. These results suggest that the UV-B effect on growth is mediated through leaf expansion, which is particularly sensitive to UV-B, and that Pinto is more tolerant than Vilmorin. The effect of UV-B radiation on UV-B-absorbing compounds and on NADP-malic enzyme (NADP-ME) activity is also examined. Both UV-B radiation and low-nitrogen nutrition enhance the content of UV-B-absorbing compounds, and among the three cultivars used, Pinto exhibits the highest increases and Arroz the lowest. The same trend is observed for the specific activity and content of NADP-ME. On a leaf-area basis, the amount of UV-B-absorbing compounds is highly correlated with the enzyme activity (r2 = 0.83), suggesting that NADP-ME plays a key role in biosynthesis of these compounds. Furthermore, the higher sensitivity of Vilmorin than Pinto to UV-B radiation appears to be related to the activity of NADP-ME and the capacity of the plants to accumulate UV-B-absorbing compounds.
Microwave-radiation-induced molecular structural rearrangement of hen egg-white lysozyme
NASA Astrophysics Data System (ADS)
Singh, Anang K.; Burada, P. S.; Bhattacharya, Susmita; Bag, Sudipta; Bhattacharya, Amitabha; Dasgupta, Swagata; Roy, Anushree
2018-05-01
We have investigated the nonthermal effect of 10 GHz/22 dBm microwave radiation on hen egg-white lysozyme (HEWL) over different irradiation times, ranging from 2 min to 1 h. To ensure a control over the radiation parameters, a pair of microwave rectangular waveguides is used to irradiate the samples. Optical spectroscopic measurements, which include UV-visible absorption spectroscopy, Raman spectroscopy, and far UV CD spectroscopy, reveal the exposure of the buried tryptophan (Trp) residues of the native molecule between 15 and 30 min of radiation. The higher duration of the perturbation leads to a compact structure of the protein and Trp residues are buried again. Interestingly, we do not find any change in the secondary structure of the protein even for 1 h duration of radiation. The relaxation dynamics of the irradiated molecules also has been discussed. We have shown that the molecules relax to their native configuration in 7-8 h after the radiation field is turned off. The structural rearrangement over the above timescale has further been probed by a model calculation, based on a modified Langevin equation. Our coarse-grained simulation approach utilizes the mean of atomic positions and net atomic charge of each amino acid of native HEWL to mimic the initial conformation of the molecule. The modified positions of the residues are then calculated for the given force fields. The simulation results reveal the nonmonotonous change in overall size of the molecule, as observed experimentally. The radiation parameters used in our experiments are very similar to those of some of the electronic devices we often come across. Thus, we believe that the results of our studies on a simple protein structure may help us in understanding the effect of radiation on complex biological systems as well.
Nazir, Ahsan; Saleem, Muhammad Asad; Nazir, Faiza; Hussain, Tanveer; Faizan, Muhammad Qasim; Usman, Muhammad
2016-03-01
UV radiations are high-energy radiations present in sunlight that can damage human skin. Protection against these radiations becomes vital especially in those areas of the globe where UV index is quite high that makes the inhabitants more prone to dangerous effects of UV radiations. Clothing materials are good blockers of UV radiations, particularly when the fabric cover factor is high and/or the fabrics contain suitable UV-blocking finishes. In this study, effect of application of aqueous and methanolic extracts of two different plants, i.e., Achyranthes aspera and Alhagi maurorum on UV protection properties of cotton fabric was investigated. The results showed that the fabric samples treated with extracts of both the plants have excellent UV protection properties as indicated by their ultraviolet protection factor. It was concluded that both the aqueous and methanolic plant extracts are very effective in blocking UVA and UVB radiations, when applied on cotton fabrics. The UV protection performance of Achyranthes aspera extracts was much better as compared to that of Alhagi maurorum, and methanolic extracts of both the plants outperformed the aqueous extracts in terms of UV protection. © 2016 The American Society of Photobiology.
Zavala, Jorge A; Mazza, Carlos A; Dillon, Francisco M; Chludil, Hugo D; Ballaré, Carlos L
2015-05-01
Solar UV-B radiation (280-315 nm) has a significant influence on trophic relationships in natural and managed ecosystems, affecting plant-insect interactions. We explored the effects of ambient UV-B radiation on the levels of herbivory by stink bugs (Nezara viridula and Piezodorus guildinii) in field-grown soybean crops. The experiments included two levels of UV-B radiation (ambient and attenuated UV-B) and four soybean cultivars known to differ in their content of soluble leaf phenolics. Ambient UV-B radiation increased the accumulation of the isoflavonoids daidzin and genistin in the pods of all cultivars. Soybean crops grown under attenuated UV-B had higher numbers of unfilled pods and damaged seeds than crops grown under ambient UV-B radiation. Binary choice experiments with soybean branches demonstrated that stink bugs preferred branches of the attenuated UV-B treatment. We found a positive correlation between percentage of undamaged seeds and the contents of daidzin and genistin in pods. Our results suggest that constitutive and UV-B-induced isoflavonoids increase plant resistance to stink bugs under field conditions. © 2014 John Wiley & Sons Ltd.
Vidović, Marija; Morina, Filis; Milić, Sonja; Zechmann, Bernd; Albert, Andreas; Winkler, Jana Barbro; Veljović Jovanović, Sonja
2015-05-01
We used variegated Plectranthus coleoides as a model plant with the aim of clarifying whether the effects of realistic ultraviolet-B (UV-B) doses on phenolic metabolism in leaves are mediated by photosynthesis. Plants were exposed to UV-B radiation (0.90 W m(-2) ) combined with two photosynthetically active radiation (PAR) intensities [395 and 1350 μmol m(-2) s(-1) , low light (LL) and high light (HL)] for 9 d in sun simulators. Our study indicates that UV-B component of sunlight stimulates CO2 assimilation and stomatal conductance, depending on background light. UV-B-specific induction of apigenin and cyanidin glycosides was observed in both green and white tissues. However, all the other phenolic subclasses were up to four times more abundant in green leaf tissue. Caffeic and rosmarinic acids, catechin and epicatechin, which are endogenous peroxidase substrates, were depleted at HL in green tissue. This was correlated with increased peroxidase and ascorbate peroxidase activities and increased ascorbate content. The UV-B supplement to HL attenuated antioxidative metabolism and partly recovered the phenolic pool indicating stimulation of the phenylpropanoid pathway. In summary, we propose that ortho-dihydroxy phenolics are involved in antioxidative defence in chlorophyllous tissue upon light excess, while apigenin and cyanidin in white tissue have preferentially UV-screening function. © 2014 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnes, P.W.; Flint, S.D.; Caldwell, M.M.
Recent evidence of a general, global decline of stratospheric ozone has heightened concern about possible ecological consequences of increases in solar ultraviolet-B (UV-B, 280-320 nm) radiation resulting from ozone depletion. The influence of UV-B radiation (280-320 nanometers) on the morphology of 12 common dicot and monocot crop or weed species was examined to determine whether any common responses could be found that might, in turn, be useful in predicting possible changes in competitive balance under solar UV-B enhancement. Under glasshouse conditions, UV-B exposure (simulating a 20% reduction in stratospheric ozone at Logan, Utah) was found to reduce leaf blade andmore » internode lengths and increase leaf and axillary shoot production in several species. Overall, the directions of these trends were similar in the majority of species that exhibited a significant response. These morphological changes occurred without any significant reduction in total shoot dry matter production. There was no clear distinction in the response of crops and weeds, though monocots were found to be generally more responsive than dicots. Previous work in dense canopies has shown that the photomorphogenetic effects of UV-B alter leaf placement and thereby influence competition for light. Our results suggest that, under these conditions, changes in competitive balance resulting from increased UV-B might be expected more frequently when monocots are involved in mixtures, rather than mixtures of only dicots.« less
The first H II regions in the universe
NASA Astrophysics Data System (ADS)
Whalen, Daniel James
State of the art simulations of primordial star formation suggest that the first stars in the universe were likely very massive, from 30 to 300 solar masses. These metal-free, Population III stars were prodigious sources of ionizing UV radiation that permeated the early intergalactic medium (IGM). As agents of early reionization, Pop III stars likely contributed to the cosmic free electrons recently observed at high redshifts by the WMAP satellite. However, until recently it was unknown what percentage of ionizing photons escaped the cosmological minihalos hosting these luminous objects, seriously hampering the power of large scale reionization calculations to predict the optical depths to electron scattering revealed by WMAP. UV escape from high-redshift minihalos crucially depends on the radiation hydrodynamics of ionization front transitions deep within the halos. I describe a multistep integration scheme for radiative transfer and reactive flow hydrodynamics developed for the accurate propagation of I-fronts and ionized flows from UV point sources or plane waves in cosmological simulations. The algorithm is a photon-conserving method which correctly tracks the position of I-fronts at much lower resolutions than non-conservative techniques. The method applies direct hierarchical updates to ionic species, bypassing the need for the costly matrix solutions required by implicit updates while retaining sufficient accuracy to capture the true evolution of the fronts. This radiation-matter coupling scheme is a significant advance beyond the radiative transfer performed in static media that is the current industry standard in cosmological reionization simulations. I review the major analytical and numerical studies of H II regions performed to date as well as the physics of ionization fronts in uniform and stratified media. My algorithm development greatly benefited from some recent analyses of I-front evolution in radially-symmetric power-law envelopes. These studies provided benchmarks that became severe tests of my code's accuracy. I present tests of I-front propagation in both static and hydrodynamical media, in both constant and radial density gradients. The code converges to the proper results with grid resolution and exhibits excellent agreement with theory in the density gradients most likely to be encountered in cosmological simulations. I next describe 1D radiation-hydrodynamical calculations of UV escape from minihalo density profiles taken from adaptive mesh refinement calculations of first star formation. These simulations demonstrate that in excess of 90% of the ionizing photons will exit the halo if the central star is greater than 80 solar masses, and that the final H II regions range from 2000 pc to 5000 pc in radius for 80 [Special characters omitted.] < M star < 500 [Special characters omitted.] . Of equal interest, they show the rise of shocked ionized flows capable of ejecting half of the baryons from the halo over the main sequence lifetime of the star, with important consequences to chemical enrichment of the early IGM and subsequent star formation. Finally, I detail the first three-dimensional massively parallel simulations of I-front instabilities ever performed. This suite is a survey of the morphological features we expect to arise in 3D minihalo evaporation studies currently in progress. Our numerical work has uncovered important evolutionary departures from earlier 2D work that may be due to the higher dimensionality of our 3D flows. I-front instabilities in high-redshift minihalos may have serious impact on the escape of metals into the early universe as well as foster the formation of the second generation of stars.
The onset of anthracene phototoxicity to Lemna gibba and the protective effects of humic acid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gensemer, R.W.; Dixon, D.G.; Greenberg, B.M.
1994-12-31
The toxicity of anthracene to the freshwater duckweed Lemna gibba is strongly photo-induced in the presence of light containing natural levels of ultraviolet (UV) radiation. This was demonstrated using 8-day static renewal bioassays at an anthracene concentration of 2 mg-L{sup {minus}1}. Plants were incubated under simulated solar radiation (SSR) which mimics UV levels found in natural sunlight at a visible:UV-A:UV-B ratio of 100:10:1. Anthracene phototoxicity was expressed as inhibition of population growth and fluorescence induction decreases in chlorophyll content, and changes in low-temperature chlorophyll fluorescence emission scans. Furthermore, adding 6.2 mg-L-1 of an artificial humic acid ameliorated anthracene phototoxicity evenmore » though HA is also photo modified by UV light. However, anthracene inhibited photosynthesis days before the endpoint assays were performed. Therefore, the authors repeated these experiments at short time intervals following exposure to both light and chemical. Anthracene phototoxicity occurred after only 1 hour as detected by chlorophyll fluorescence induction, whereas chlorophyll contents and low-temperature fluorescence emission scans were not affected until 24--48 hours, respectively. Humic acid again ameliorated anthracene toxicity by delaying the negative physiological events by approximately 24 hours.« less
NASA Technical Reports Server (NTRS)
Hammer, Melanie S.; Martin, Randall V.; Donkelaar, Aaron van; Buchard, Virginie; Torres, Omar; Ridley, David A.; Spurr, Robert J. D.
2016-01-01
Satellite observations of the ultraviolet aerosol index (UVAI) are sensitive to absorption of solar radiation by aerosols; this absorption affects photolysis frequencies and radiative forcing. We develop a global simulation of the UVAI using the 3-D chemical transport model GEOSChem coupled with the Vector Linearized Discrete Ordinate Radiative Transfer model (VLIDORT). The simulation is applied to interpret UVAI observations from the Ozone Monitoring Instrument (OMI) for the year 2007. Simulated and observed values are highly consistent in regions where mineral dust dominates the UVAI, but a large negative bias (-0.32 to -0.97) exists between simulated and observed values in biomass burning regions. We determine effective optical properties for absorbing organic aerosol, known as brown carbon (BrC), and implement them into GEOS-Chem to better represent observed UVAI values over biomass burning regions. The inclusion of absorbing BrC decreases the mean bias between simulated and OMI UVAI values from -0.57 to -0.09 over West Africa in January, from -0.32 to +0.0002 over South Asia in April, from -0.97 to -0.22 over southern Africa in July, and from -0.50 to +0.33 over South America in September. The spectral dependence of absorption after including BrC in the model is broadly consistent with reported observations for biomass burning aerosol, with absorbing Angstrom exponent (AAE) values ranging from 2.9 in the ultraviolet (UV) to 1.3 across the UV-Near IR spectrum. We assess the effect of the additional UV absorption by BrC on atmospheric photochemistry by examining tropospheric hydroxyl radical (OH) concentrations in GEOS-Chem. The inclusion of BrC decreases OH by up to 30% over South America in September, up to 20% over southern Africa in July, and up to 15% over other biomass burning regions. Global annual mean OH concentrations in GEOS-Chem decrease due to the presence of absorbing BrC, increasing the methyl chloroform lifetime from 5.62 to 5.68 years, thus reducing the bias against observed values. We calculate the direct radiative effect (DRE) of BrC using GEOS-Chem coupled with the radiative transfer model RRTMG (GC-RT). Treating organic aerosol as containing more strongly absorbing BrC changes the global annual mean all-sky top of atmosphere (TOA) DRE by +0.03Wm(exp -2) and all-sky surface DRE by -0.08Wm(exp -2). Regional changes of up to +0.3Wm(exp -2) at TOA and down to -1.5Wm(exp -2) at the surface are found over major biomass burning regions.
The enhancement of biological ocular UV radiation on beaches compared to the radiation on grass.
Liu, Guang-Cong; Wang, Fang; Gao, Yan-Yan; Yang, Zheng; Hu, Li-Wen; Gao, Qian; Ri, Jun-Chol; Liu, Yang
2014-12-01
The influence of albedo on ocular UV exposure has seldom been reported. This paper aimed to explore the enhancement effect on measured ocular UV radiation due to a sand surface compared to measured ocular UV radiation due to a grass surface. We measured ambient and ocular UV radiation over the beach and grass surface in Sanya City of China (18.4°N, 109.7°E). The experimental apparatus was composed of a manikin and a dual-detector spectrometer. Integration of both UVA and UVB radiation was used to denote UV radiation. Then biologically effective ocular UVB radiation (UVBE) and the ratios of UVBE of two surfaces were calculated. Maximum of ocular UV radiation versus time over the two surfaces is bimodal. UVBE on the beach is significantly larger than UVBE on the sand, and UVBE peaked at different solar elevation angle (SEA) over the two surfaces (about 53° and 40° on the beach and grass, respectively, according to Bayesian regression). The maximum of ocular UVBE ratios is greater than two, which peaked SEA was about 50°. One hour's cumulative radiation under sunny weather exceeds thresholds for photokeratitis, conjunctivitis and lens damage. Higher albedo significantly increased biological ocular UV radiation. Tourists on tropical beaches should take protective measures and avoid facing the sun directly, especially when SEA is around 50°. Copyright © 2014 Elsevier B.V. All rights reserved.
The Laboratory Production of Complex Organic Molecules in Simulated Interstellar Ices
NASA Technical Reports Server (NTRS)
Dworkin, J. P.; Sandford, S. A.; Bernstein, M. P.; Allamandola, L. J.
2002-01-01
Much of the volatiles in interstellar dense clouds exist in ices surrounding dust grains. Their low temperatures preclude most chemical reactions, but ionizing radiation can drive reactions that produce a suite of new species, many of which are complex organics. The Astrochemistry Lab at NASA Ames studies the UV radiation processing of interstellar ice analogs to better identify the resulting products and establish links between interstellar chemistry, the organics in meteorites, and the origin of life on Earth. Once identified, the spectral properties of the products can be quantified to assist with the search for these species in space. Of particular interest are findings that UV irradiation of interstellar ice analogs produces molecules of importance in current living organisms, including quinones, amphiphiles, and amino acids.
Guan, Linna; Suggs, Amanda; Ahsanuddin, Sayeeda; Tarrillion, Madeline; Selph, Jacqueline; Lam, Minh; Baron, Elma
2016-09-01
Exposure of the skin to ultraviolet (UV) irradiation causes many detrimental effects through mechanisms related to oxidative stress and DNA damage. Excessive oxidative stress can cause apoptosis and cellular dysfunction of epidermal cells leading to cellular senescence and connective tissue degradation. Direct and indirect damage to DNA predisposes the skin to cancer formation. Chronic UV exposure also leads to skin aging manifested as wrinkling, loss of skin tone, and decreased resilience. Fortunately, human skin has several natural mechanisms for combating UV-induced damage. The mechanisms operate on a diurnal rhythm, a cycle that repeats approximately every 24 hours. It is known that the circadian rhythm is involved in many skin physiologic processes, including water regulation and epidermal stem cell function. This study evaluated whether UV damage and the skin's natural mechanisms of inflammation and repair are also affected by circadian rhythm. We looked at UV-induced erythema on seven human subjects irradiated with simulated solar radiation in the morning (at 08:00 h) versus in the afternoon (at 16:00 h). Our data suggest that the same dose of UV radiation induces significantly more inflammation in the morning than in the afternoon. Changes in protein expression relevant to DNA damage, such as xeroderma pigmentosum, complementation group A (XPA), and cyclobutane pyrimidine dimers (CPD) from skin biopsies correlated with our clinical results. Both XPA and CPD levels were higher after the morning UV exposure compared with the afternoon exposure.
J Drugs Dermatol. 2016;15(9):1124-1130.
Are the surgeons safe during UV-A radiation exposure in collagen cross-linking procedure?
Shetty, Rashmi; Shetty, Rohit; Mahendradas, Padmamalini; Shetty, Bhujang K
2012-02-01
To quantify the effect of scattered UV-A radiation used in the collagen cross-linking (CXL) procedure and the amount of radiation reaching the surgeon and the surrounding area and to estimate the dampening effect by various protective devices. In this case series, 3 patients [aged 25-30 (±2.5) years] with keratoconus underwent a CXL procedure with UV-A light and riboflavin. Irradiance was measured using a spectrometer (Model USB2000; Ocean Optics, Inc) for various distances from the source, at various angles, and for different durations of radiation. The spectrometer was also used to measure the dampening effect produced by gown, latex gloves, and UV-protective glasses. Maximum UV-A radiation (1.4 × 10(-9) mW/cm(2)) was measured at 2 cm from the limbus, when the probe was held at a 45-degree angle to the floor. UV-A radiation reaching the surgeon's eye and the abdomen was 3.403 × 10(-11) and 2.36 × 10(-11) mW/cm(2), respectively. Gown, latex gloves, and UV-protective glasses showed dampening effects of 99.58%, 95.01%, and 99.73%, respectively. CXL appears to be a safe procedure with respect to UV-A radiation exposure to the surgeon. Further safety can be ensured by UV-protective devices.
Siipola, Sari M; Kotilainen, Titta; Sipari, Nina; Morales, Luis O; Lindfors, Anders V; Robson, T Matthew; Aphalo, Pedro J
2015-05-01
Plants synthesize phenolic compounds in response to certain environmental signals or stresses. One large group of phenolics, flavonoids, is considered particularly responsive to ultraviolet (UV) radiation. However, here we demonstrate that solar blue light stimulates flavonoid biosynthesis in the absence of UV-A and UV-B radiation. We grew pea plants (Pisum sativum cv. Meteor) outdoors, in Finland during the summer, under five types of filters differing in their spectral transmittance. These filters were used to (1) attenuate UV-B; (2) attenuate UV-B and UV-A < 370 nm; (3) attenuate UV-B and UV-A; (4) attenuate UV-B, UV-A and blue light; and (5) as a control not attenuating these wavebands. Attenuation of blue light significantly reduced the flavonoid content in leaf adaxial epidermis and reduced the whole-leaf concentrations of quercetin derivatives relative to kaempferol derivatives. In contrast, UV-B responses were not significant. These results show that pea plants regulate epidermal UV-A absorbance and accumulation of individual flavonoids by perceiving complex radiation signals that extend into the visible region of the solar spectrum. Furthermore, solar blue light instead of solar UV-B radiation can be the main regulator of phenolic compound accumulation in plants that germinate and develop outdoors. © 2014 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Lee, Y. G.; Koo, J. H.
2015-12-01
Solar UV radiation in a wavelength range between 280 to 400 nm has both positive and negative influences on human body. Surface UV radiation is the main natural source of vitamin D, providing the promotion of bone and musculoskeletal health and reducing the risk of a number of cancers and other medical conditions. However, overexposure to surface UV radiation is significantly related with the majority of skin cancer, in addition other negative health effects such as sunburn, skin aging, and some forms of eye cataracts. Therefore, it is important to estimate the optimal UV exposure time, representing a balance between reducing negative health effects and maximizing sufficient vitamin D production. Previous studies calculated erythemal UV and vitamin-D UV from the measured and modelled spectral irradiances, respectively, by weighting CIE Erythema and Vitamin D3 generation functions (Kazantzidis et al., 2009; Fioletov et al., 2010). In particular, McKenzie et al. (2009) suggested the algorithm to estimate vitamin-D production UV from erythemal UV (or UV index) and determined the optimum conditions of UV exposure based on skin type Ⅱ according to the Fitzpatrick (1988). Recently, there are various demands for risks and benefits of surface UV radiation on public health over Korea, thus it is necessary to estimate optimal UV exposure time suitable to skin type of East Asians. This study examined the relationship between erythemally weighted UV (UVEry) and vitamin D weighted UV (UVVitD) over Korea during 2004-2012. The temporal variations of the ratio (UVVitD/UVEry) were also analyzed and the ratio as a function of UV index was applied in estimating the optimal UV exposure time. In summer with high surface UV radiation, short exposure time leaded to sufficient vitamin D and erythema and vice versa in winter. Thus, the balancing time in winter was enough to maximize UV benefits and minimize UV risks.
Chen, Yi-Ping
2009-07-01
To determine the response of antioxidant defense system to laser radiation apical meristem of Isatis indigotica seedlings, Isatis indigotica seedlings were subjected to UV-B radiation (10.08 kJ m(-2)) for 8 h day(-1) for 8 days (PAR, 220 micromol m(-2) s(-1)) and then exposed to He-Ne laser radiation (633 nm; 5.23 mW mm(-2); beam diameter: 1.5 mm) for 5 min each day without ambient light radiation. Changes in free radical elimination systems were measured, the results indicate that: (1) UV-B radiation enhanced the concentration of Malondialdahyde (MDA) and decreased the activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) in seedlings compared with the control. The concentration of MDA was decreased and the activities of SOD, CAT and POD were increased when seedlings were subjected to elevated UV-B damage followed by laser; (2) the concentration of UV absorbing compounds and proline were increased progressively with UV-B irradiation, laser irradiation and He-Ne laser irradiation plus UV-B irradiation compared with the control. These results suggest that laser radiation has an active function in repairing UV-B-induced lesions in seedlings.
Wang, Gaohong; Deng, Songqiang; Liu, Jiafeng; Ye, Chaoran; Zhou, Xiangjun; Chen, Lanzhou
2017-10-01
Phormidium tenue, a cyanobacterium that grows in the topsoil of biological soil crusts (BSCs), has the highest recovery rate among desert crust cyanobacteria after exposure to ultraviolet B (UV-B) radiation. However, the mechanism underlying its recovery process is unclear. To address this issue, we measured chlorophyll a fluorescence, generation of reactive oxygen species (ROS), lipid peroxidation, and repair of DNA breakage in P. tenue following exposure to UV-B. We found that UV-B radiation at all doses tested reduced photosynthesis and induced cell damage in P. tenue. However, P. tenue responded to UV-B radiation by rapidly reducing photosynthetic activity, which protects the cell by leaking less ROS. Antioxidant enzymes, DNA damage repair systems, and UV absorbing pigments were then induced to mitigate the damage caused by UV-B radiation. The addition of exogenous antioxidant chemicals ascorbate and N-acetylcysteine also mitigated the harmful effects caused by UV-B radiation and enhanced the recovery process. These chemicals could aid in the resistance of P. tenue to the exposure of intense UV-B radiation in desertified areas when inoculated onto the sand surface to form artificial algal crusts. Copyright © 2017. Published by Elsevier Inc.
Detection of ultraviolet radiation using tissue equivalent radiochromic gel materials
NASA Astrophysics Data System (ADS)
Bero, M. A.; Abukassem, I.
2009-05-01
Ferrous Xylenol-orange Gelatin gel (FXG) is known to be sensitive to ionising radiation such as γ and X-rays. The effect of ionising radiation is to produce an increase in the absorption over a wide region of the visible spectrum, which is proportional to the absorbed dose. This study demonstrates that FXG gel is sensitive to ultraviolet radiation and therefore it could functions as UV detector. Short exposure to UV radiation produces linear increase in absorption measured at 550nm, however high doses of UV cause the ion indicator colour to fad away in a manner proportional to the incident UV energy. Light absorbance increase at the rate of 1.1% per minute of irradiation was monitored. The exposure level at which the detector has linear response is comparable to the natural summer UV radiation. Evaluating the UV ability to pass through tissue equivalent gel materials shows that most of the UV gets absorbed in the first 5mm of the gel materials, which demonstrate the damaging effects of this radiation type on human skin and eyes. It was concluded that FXG gel dosimeter has the potential to offer a simple, passive ultraviolet radiation detector with sensitivity suitable to measure and visualises the natural sunlight UV exposure directly by watching the materials colour changes.
NASA Astrophysics Data System (ADS)
Krzyscin, J. W.
2003-04-01
A method of reconstruction of the UV variations for periods when UV-B measurements were not carried out is proposed. The reconstruction is based on observations of total (Sun+sky) radiation by a pyranometer, Dobson total ozone, sunshine duriation from the Campbel Stokes heliograph, and atmospheric column water content taken from NCEP/NOAA reanalysis. Modeled all-sky erythemaly weighted daily dose is calculated as a product of the cloud reduction factor (CRF) over UV range and clear-sky dose from a radiative transfer model. CRF over UV range is estimated from measured CRF for total solar radiation and the statistical dependence relating CRF over UV with that over whole solar spectrum. The measured daily UV doses and daily sum of total radiation taken at Belsk, Poland (52N, 21E) for the period 1976-2001 have been used to construct the regressions for various solar zenith angles. The time series of monthly means from the modeled daily UV doses follows the observed monthly means supporting the possibility of reconstruction of the UV time series for other periods. An inspection of the long-term stability of total radiation measurements is necessary to discuss trends in the reconstructed time series. We examine the data homogeneity analyzing the ratio of the observed to modeled total radiation for fully clear sky days that are selected from the daily values of sunshine duration measured by the Campbel-Stokes heliograph. Combining reconstructed and observed monthly means of the UV doses we found a positive trend in the UV radiation in the period 1980-1995 and almost constant UV level for other periods (early 60s up to 1980, and 1995-2001). The trend pattern suggests dominating role of the long-term total ozone forcing on the UV level with a small impact of the long-term changes in the cloud/aerosol properties.
UV-Induced cell death in plants.
Nawkar, Ganesh M; Maibam, Punyakishore; Park, Jung Hoon; Sahi, Vaidurya Pratap; Lee, Sang Yeol; Kang, Chang Ho
2013-01-14
Plants are photosynthetic organisms that depend on sunlight for energy. Plants respond to light through different photoreceptors and show photomorphogenic development. Apart from Photosynthetically Active Radiation (PAR; 400-700 nm), plants are exposed to UV light, which is comprised of UV-C (below 280 nm), UV-B (280-320 nm) and UV-A (320-390 nm). The atmospheric ozone layer protects UV-C radiation from reaching earth while the UVR8 protein acts as a receptor for UV-B radiation. Low levels of UV-B exposure initiate signaling through UVR8 and induce secondary metabolite genes involved in protection against UV while higher dosages are very detrimental to plants. It has also been reported that genes involved in MAPK cascade help the plant in providing tolerance against UV radiation. The important targets of UV radiation in plant cells are DNA, lipids and proteins and also vital processes such as photosynthesis. Recent studies showed that, in response to UV radiation, mitochondria and chloroplasts produce a reactive oxygen species (ROS). Arabidopsis metacaspase-8 (AtMC8) is induced in response to oxidative stress caused by ROS, which acts downstream of the radical induced cell death (AtRCD1) gene making plants vulnerable to cell death. The studies on salicylic and jasmonic acid signaling mutants revealed that SA and JA regulate the ROS level and antagonize ROS mediated cell death. Recently, molecular studies have revealed genes involved in response to UV exposure, with respect to programmed cell death (PCD).
UV-Induced Cell Death in Plants
Nawkar, Ganesh M.; Maibam, Punyakishore; Park, Jung Hoon; Sahi, Vaidurya Pratap; Lee, Sang Yeol; Kang, Chang Ho
2013-01-01
Plants are photosynthetic organisms that depend on sunlight for energy. Plants respond to light through different photoreceptors and show photomorphogenic development. Apart from Photosynthetically Active Radiation (PAR; 400–700 nm), plants are exposed to UV light, which is comprised of UV-C (below 280 nm), UV-B (280–320 nm) and UV-A (320–390 nm). The atmospheric ozone layer protects UV-C radiation from reaching earth while the UVR8 protein acts as a receptor for UV-B radiation. Low levels of UV-B exposure initiate signaling through UVR8 and induce secondary metabolite genes involved in protection against UV while higher dosages are very detrimental to plants. It has also been reported that genes involved in MAPK cascade help the plant in providing tolerance against UV radiation. The important targets of UV radiation in plant cells are DNA, lipids and proteins and also vital processes such as photosynthesis. Recent studies showed that, in response to UV radiation, mitochondria and chloroplasts produce a reactive oxygen species (ROS). Arabidopsis metacaspase-8 (AtMC8) is induced in response to oxidative stress caused by ROS, which acts downstream of the radical induced cell death (AtRCD1) gene making plants vulnerable to cell death. The studies on salicylic and jasmonic acid signaling mutants revealed that SA and JA regulate the ROS level and antagonize ROS mediated cell death. Recently, molecular studies have revealed genes involved in response to UV exposure, with respect to programmed cell death (PCD). PMID:23344059
Wargent, J J; Nelson, B C W; McGhie, T K; Barnes, P W
2015-05-01
UV-B radiation is often viewed as a source of stress for higher plants. In particular, photosynthetic function has been described as a common target for UV-B impairment; yet as our understanding of UV-B photomorphogenesis increases, there are opportunities to expand the emerging paradigm of regulatory UV response. Lactuca sativa is an important dietary crop species and is often subjected to rapid sunlight exposure at field transfer. Acclimation to UV-B and visible light conditions in L. sativa was dissected using gas exchange and chlorophyll fluorescence measurements, in addition to non-destructive assessments of UV epidermal shielding (SUV ). After UV-B treatment, seedlings were subjected to wide-range metabolomic analysis using liquid chromatography hybrid quadrupole time-of-flight high-resolution mass spectrometry (LC-QTOF-HRMS). During the acclimation period, net photosynthetic rate increased in UV-treated plants, epidermal UV shielding increased in both subsets of plants transferred to the acclimatory conditions (UV+/UV- plants) and Fv /Fm declined slightly in UV+/UV- plants. Metabolomic analysis revealed that a key group of secondary compounds was up-regulated by higher light conditions, yet several of these compounds were elevated further by UV-B radiation. In conclusion, acclimation to UV-B radiation involves co-protection from the effects of visible light, and responses to UV-B radiation at a photosynthetic level may not be consistently viewed as damaging to plant development. © 2014 John Wiley & Sons Ltd.
Wang, Jing; Liu, Lingli; Wang, Xin; Chen, Yiwei
2015-05-01
Elevated ultraviolet (UV) radiation has been demonstrated to stimulate litter decomposition. Despite years of research, it is still not fully understood whether the acceleration in litter degradation is primarily attributed to abiotic photodegradation or the combined effects of abiotic photodegradation and microbial decomposition. In this study, we used meta-analysis to synthesize photodegradation studies and compared the effects of UV radiation on litter decomposition between abiotic and biotic conditions. We also conducted a microcosm experiment to assess the effects of UV radiation on litter biodegradability and microbial activity. Overall, our meta-analysis found that under abiotic photodegradation, UV radiation reduced the remaining litter mass by 1.44% (95% CI: 0.85% to 2.08%), did not affect the remaining lignin and increased the dissolved organic carbon (DOC) concentration by 14.01% (1.49-23.67%). Under combined abiotic photodegradation and microbial decomposition, UV radiation reduced the remaining litter mass and lignin by 1.60% (0.04-3.58%) and 16.07% (9.27-24.23%), respectively, but did not alter DOC concentration. UV radiation had no significant impact on soil microbial biomass carbon (MBC), but it reduced microbial respiration by 44.91% (2.26-78.62%) and altered the composition of the microbial community. In addition, UV radiation reduced nitrogen (N) immobilization by 19.44% (4.77-37.92%). Our microcosm experiment further indicated that DOC concentration and the amount of respired C in UV-treated litter increased with UV exposure time, suggesting that longer UV exposure resulted in greater biodegradability. Overall, our study suggested that UV exposure could increase litter biodegradability by increasing the microbial accessibility of lignin, as well as the labile carbon supply to microbes. However, the remaining litter mass was not different between the abiotic and biotic conditions, most likely because the positive effect of UV radiation on litter biodegradability was offset by its negative effect on microbial activity. Our results also suggested that UV radiation could alter the N cycle during decomposition, primarily by inhibiting N immobilization. © 2014 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Thines, Nicole J.; Bassman, John H.; Shipley, Lisa A.; Slusser, James R.
2004-10-01
Herbivores represent the interface between primary production and higher trophic levels. The effects of enhanced UV-B radiation on microbes, invertebrate herbivores, and detritivores has received limited study in both terrestrial and aquatic ecosystems. However, although direct effects (e.g. melanoma, cataracts) on mammals have been documented, indirect effects (e.g., resulting from changes in plant chemistry) of enhanced UV-B on mammalian herbivores have not been evaluated. Although the diet of mammalian herbivores has little effect on nutritional quality for their associated predators, to the extent changes in plant chemistry affect aspects of population dynamics (e.g., growth, fecundity, densities), higher trophic levels can be affected. In this study, different forage species of varying inherent levels of key secondary metabolites are being grown in the field under either ambient or ambient plus supplemental UV-B radiation simulating a 15% stratospheric ozone depletion for Pullman, Washington. At various time intervals, foliage is being sampled and analyzed for changes in secondary metabolites and other attributes. Using controlled feeding trials, changes in plant secondary metabolites are being related to preference and digestibility in specialist and generalist mammalian hindgut herbivores, digestion in ruminants and non-ruminants, and to selected aspects of population dynamics in mammalian herbivores. Results suggest how UV-B-induced changes in plant secondary chemistry affect animal nutrition, and thus animal productivity in a range of mammalian herbivores. Reductions in palatability and digestibility of plant material along with reductions in fecundity and other aspects of population dynamics could have significant economic ramifications for farmers, ranchers and wildlife biologists.
Ultraviolet radiation and the snow alga Chlamydomonas nivalis (Bauer) Wille.
Gorton, Holly L; Vogelmann, Thomas C
2003-06-01
Aplanospores of Chlamydomonas nivalis are frequently found in high-altitude, persistent snowfields where they are photosynthetically active despite cold temperatures and high levels of visible and ultraviolet (UV) radiation. The goals of this work were to characterize the UV environment of the cells in the snow and to investigate the existence and localization of screening compounds that might prevent UV damage. UV irradiance decreased precipitously in snow, with UV radiation of wavelengths 280-315 nm and UV radiation of wavelengths 315-400 nm dropping to 50% of incident levels in the top 1 and 2 cm, respectively. Isolated cell walls exhibited UV absorbance, possibly by sporopollenin, but this absorbance was weak in images of broken or plasmolyzed cells observed through a UV microscope. The cells also contained UV-absorbing cytoplasmic compounds, with the extrachloroplastic carotenoid astaxanthin providing most of the screening. Additional screening compound(s) soluble in aqueous methanol with an absorption maximum at 335 nm played a minor role. Thus, cells are protected against potentially high levels of UV radiation by the snow itself when they live several centimeters beneath the surface, and they rely on cellular screening compounds, chiefly astaxanthin, when located near the surface where UV fluxes are high.
NASA Astrophysics Data System (ADS)
Feister, U.; Junk, J.; Woldt, M.; Bais, A.; Helbig, A.; Janouch, M.; Josefsson, W.; Kazantzidis, A.; Lindfors, A.; den Outer, P. N.; Slaper, H.
2008-06-01
Artificial Neural Networks (ANN) are efficient tools to derive solar UV radiation from measured meteorological parameters such as global radiation, aerosol optical depths and atmospheric column ozone. The ANN model has been tested with different combinations of data from the two sites Potsdam and Lindenberg, and used to reconstruct solar UV radiation at eight European sites by more than 100 years into the past. Special emphasis will be given to the discussion of small-scale characteristics of input data to the ANN model. Annual totals of UV radiation derived from reconstructed daily UV values reflect interannual variations and long-term patterns that are compatible with variabilities and changes of measured input data, in particular global dimming by about 1980/1990, subsequent global brightening, volcanic eruption effects such as that of Mt. Pinatubo, and the long-term ozone decline since the 1970s. Patterns of annual erythemal UV radiation are very similar at sites located at latitudes close to each other, but different patterns occur between UV radiation at sites in different latitude regions.
NASA Astrophysics Data System (ADS)
Mancinelli, R. L.
2015-01-01
We have shown using ESA's Biopan facility flown in Earth orbit that when exposed to the space environment for 2 weeks the survival rate of Synechococcus (Nägeli), a halophilic cyanobacterium isolated from the evaporitic gypsum-halite crusts that form along the marine intertidal, and Halorubrum chaoviator a member of the Halobacteriaceae isolated from an evaporitic NaCl crystal obtained from a salt evaporation pond, were higher than all other test organisms except Bacillus spores. These results led to the EXPOSE-R mission to extend and refine these experiments as part of the experimental package for the external platform space exposure facility on the ISS. The experiment was flown in February 2009 and the organisms were exposed to low-Earth orbit for nearly 2 years. Samples were either exposed to solar ultraviolet (UV)-radiation (λ > 110 nm or λ > 200 nm, cosmic radiation (dosage range 225-320 mGy), or kept in darkness shielded from solar UV-radiation. Half of each of the UV-radiation exposed samples and dark samples were exposed to space vacuum and half kept at 105 pascals in argon. Duplicate samples were kept in the laboratory to serve as unexposed controls. Ground simulation control experiments were also performed. After retrieval, organism viability was tested using Molecular Probes Live-Dead Bac-Lite stain and by their reproduction capability. Samples kept in the dark, but exposed to space vacuum had a 90 +/- 5% survival rate compared to the ground controls. Samples exposed to full UV-radiation for over a year were bleached and although results from Molecular Probes Live-Dead stain suggested ~10% survival, the data indicate that no survival was detected using cell growth and division using the most probable number method. Those samples exposed to attenuated UV-radiation exhibited limited survival. Results from of this study are relevant to understanding adaptation and evolution of life, the future of life beyond earth, the potential for interplanetary transfer of viable microbes via meteorites and dust particles as well as spacecraft, and the physiology of halophiles.
NASA Technical Reports Server (NTRS)
Mancinelli, R. L.
2014-01-01
We have shown using ESA's Biopan facility flown in Earth orbit that when exposed to the space environment for 2 weeks the survival rate of Synechococcus (Nageli), a halophilic cyanobacterium isolated from the evaporitic gypsum-halite crusts that form along the marine intertidal, and Halorubrum chaoviator a member of the Halobacteriaceae isolated from an evaporitic NaCl crystal obtained from a salt evaporation pond, were higher than all other test organisms except Bacillus spores. These results led to the EXPOSE-R mission to extend and refine these experiments as part of the experimental package for the external platform space exposure facility on the ISS. The experiment was flown in February 2009 and the organisms were exposed to low-Earth orbit for nearly 2 years. Samples were either exposed to solar ultraviolet (UV)-radiation (lambda is greater than 110 nm or lambda is greater than 200 nm, cosmic radiation (dosage range 225-320 mGy), or kept in darkness shielded from solar UV-radiation. Half of each of the UV-radiation exposed samples and dark samples were exposed to space vacuum and half kept at 105 pascals in argon. Duplicate samples were kept in the laboratory to serve as unexposed controls. Ground simulation control experiments were also performed. After retrieval, organism viability was tested using Molecular Probes Live-Dead Bac-Lite stain and by their reproduction capability. Samples kept in the dark, but exposed to space vacuum had a 90 +/- 5% survival rate compared to the ground controls. Samples exposed to full UV-radiation for over a year were bleached and although results from Molecular Probes Live-Dead stain suggested approximately 10% survival, the data indicate that no survival was detected using cell growth and division using the most probable number method. Those samples exposed to attenuated UV-radiation exhibited limited survival. Results from of this study are relevant to understanding adaptation and evolution of life, the future of life beyond earth, the potential for interplanetary transfer of viable microbes via meteorites and dust particles as well as spacecraft, and the physiology of halophiles.
The effects of ultraviolet-B radiation on the toxicity of fire-fighting chemicals
Calfee, R.D.; Little, E.E.
2003-01-01
The interactive effects of ultraviolet (UV) and fire-retardant chemicals were evaluated by exposing rainbow trout (Oncorhyncus mykiss) juveniles and tadpoles of southern leopard frogs (Rana sphenocephala) to six fire-retardant formulations with and without sodium ferrocyanide (yellow prussiate of soda [YPS]) and to YPS alone under three simulated UV light treatments. Yellow prussiate of soda is used as a corrosion inhibitor in some of the fire-retardant chemical formulations. The underwater UV intensities measured were about 2 to 10% of surface irradiance measured in various aquatic habitats and were within tolerance limits for the species tested. Mortality of trout and tadpoles exposed to Fire-Trol?? GTS-R, Fire-Trol 300-F, Fire-Trol LCA-R, and Fire-Trol LCA-F was significantly increased in the presence of UV radiation when YPS was present in the formulation. The boreal toad (Bufo boreas), listed as endangered by the state of Colorado (USA), and southern leopard frog were similar in their sensitivity to these chemicals. Photoenhancement of fire-retardant chemicals can occur in a range of aquatic habitats and may be of concern even when optical clarity of water is low; however, other habitat characteristics can also reduce fire retardant toxicity.
NASA Astrophysics Data System (ADS)
Zhou, Kaishang; Feng, Chao; Wang, Dong
2016-10-01
The echo enabled harmonic generation (EEHG) scheme holds the ability for the generation of fully coherent soft x-ray free-electron laser (FEL) pulses directly from external UV seeding sources. In this paper, we study the feasibility of using a single stage EEHG to generate coherent radiation in the "water window" and beyond. Using the high-order operating modes of the EEHG scheme, intensive numerical simulations have been performed considering various three-dimensional effects. The simulation results demonstrated that coherent soft x-ray radiation at 150th harmonic (1.77 nm) of the seed can be produced by a single stage EEHG. The decreasing of the final bunching factor at the desired harmonic caused by intra beam scattering (IBS) effect has also been analyzed.
UV-B radiation and photosynthetic irradiance acclimate eggplant for outdoor exposure
NASA Technical Reports Server (NTRS)
Latimer, J. G.; Mitchell, C. A.; Mitchell, G. A.
1987-01-01
Treatment of greenhouse-grown eggplant (Solanum melongena L. var. esculentum Nees. 'Burpee's Black Beauty') seedlings with supplemental photosynthetically active radiation from cool-white fluorescent lamps increased growth of plants subsequently transferred outdoors relative to growth of plants that received no supplemental radiation or were shaded to 45% of solar irradiation in the greenhouse before transfer outdoors. Eggplant seedlings transferred outdoors were placed under plastic tarps either to provide relative protection from solar ultraviolet-B (UV-B) radiation (280-315 nm) using Mylar film or to allow exposure to UV-B using cellulose acetate. Protection of seedlings from UV-B radiation resulted in greater leaf expansion than for UV-B-exposed seedlings, but no change in leaf or shoot dry weight occurred after 9 days of treatment. Specific leaf weight increased in response to UV-B exposure outdoors. Exposure of eggplant to UV-B radiation from fluorescent sunlamps in the greenhouse also decreased leaf expansion and leaf and shoot dry weight gain after 5 days of treatment. However, there were no differences in leaf or shoot dry weight relative to control plants after 12 days of UV-B treatment, indicating that UV-B treated plants had acclimated to the treatment and actually had caught up with non-UV-B-irradiated plants in terms of growth.
NASA Astrophysics Data System (ADS)
Rettberg, P.; Horneck, G.; Zittermann, A.; Heer, M.
1998-11-01
The vitamin D synthesis in the human skin, is absolutely dependent on UVB radiation. Natural UVB from sunlight is normally absent in the closed environment of a space station like MIR. Therefore it was necessary to investigate the UV radiation climate inside the station resulting from different lamps as well as from occasional solar irradiation behind a UV-transparent quartz window. Biofilms, biologically weighting and integrating UV dosimeters successfully applied on Earth (e.g. in Antarctica) and in space (D-2, Biopan I) were used to determine the biological effectiveness of the UV radiation climate at different locations in the space station. Biofilms were also used to determine the personal UV dose of an individual cosmonaut. These UV data were correlated with the concentration of vitamin D in the cosmonaut's blood and the dietary vitamin D intake. The results showed that the UV radiation climate inside the Mir station is not sufficient for an adequate supply of vitamin D, which should therefore be secured either by vitamin D supplementat and/or by the regular exposure to special UV lamps like those in sun-beds. The use of natural solar UV radiation through the quartz window for `sunbathing' is dangerous and should be avoided even for short exposure periods.
UV-B radiation and photosynthetic irradiance acclimate eggplant for outdoor exposure.
Latimer, J G; Mitchell, C A; Mitchell, G A
1987-06-01
Treatment of greenhouse-grown eggplant (Solanum melongena L. var. esculentum Nees. 'Burpee's Black Beauty') seedlings with supplemental photosynthetically active radiation from cool-white fluorescent lamps increased growth of plants subsequently transferred outdoors relative to growth of plants that received no supplemental radiation or were shaded to 45% of solar irradiation in the greenhouse before transfer outdoors. Eggplant seedlings transferred outdoors were placed under plastic tarps either to provide relative protection from solar ultraviolet-B (UV-B) radiation (280-315 nm) using Mylar film or to allow exposure to UV-B using cellulose acetate. Protection of seedlings from UV-B radiation resulted in greater leaf expansion than for UV-B-exposed seedlings, but no change in leaf or shoot dry weight occurred after 9 days of treatment. Specific leaf weight increased in response to UV-B exposure outdoors. Exposure of eggplant to UV-B radiation from fluorescent sunlamps in the greenhouse also decreased leaf expansion and leaf and shoot dry weight gain after 5 days of treatment. However, there were no differences in leaf or shoot dry weight relative to control plants after 12 days of UV-B treatment, indicating that UV-B treated plants had acclimated to the treatment and actually had caught up with non-UV-B-irradiated plants in terms of growth.
Kim, Bo-Mi; Rhee, Jae-Sung; Lee, Kyun-Woo; Kim, Min-Jung; Shin, Kyung-Hoon; Lee, Su-Jae; Lee, Young-Mi; Lee, Jae-Seong
2015-01-01
Ultraviolet B (UV-B) radiation presents an environmental hazard to aquatic organisms. To understand the molecular responses of the intertidal copepod Tigriopus japonicus to UV-B radiation, we measured the acute toxicity response to 96 h of UV-B radiation, and we also assessed the intracellular reactive oxygen species (ROS) levels, glutathione (GSH) content, and antioxidant enzyme (GST, GR, GPx, and SOD) activities after 24 h of exposure to UV-B with LD50 and half LD50 values. Also, expression patterns of p53 and hsp gene families with phosphorylation of p38 MAPK were investigated in UV-B-exposed copepods. We found that the ROS level, GSH content, and antioxidant enzyme activity levels were increased with the transcriptional upregulation of antioxidant-related genes, indicating that UV-B induces oxidative stress by generating ROS and stimulating antioxidant enzymatic activity as a defense mechanism. Additionally, we found that p53 expression was significantly increased after UV-B irradiation due to increases in the phosphorylation of the stress-responsive p38 MAPK, indicating that UV-B may be responsible for inducing DNA damage in T. japonicus. Of the hsp family genes, transcriptional levels of hsp20, hsp20.7, hsp70, and hsp90 were elevated in response to a low dose of UV-B radiation (9 kJ m(-2)), suggesting that these hsp genes may be involved in cellular protection against UV-B radiation. In this paper, we performed a pathway-oriented mechanistic analysis in response to UV-B radiation, and this analysis provides a better understanding of the effects of UV-B in the intertidal benthic copepod T. japonicus. Copyright © 2014 Elsevier Inc. All rights reserved.
UV RADIATION EFFECTS ON MICROBES AND MICROBIAL PROCESSES
The ultraviolet (UV) region of solar radiation is defined as wavelengths in the range of 200 to 400 nm. In contrast to visible radiation (400 - 800 nm), which has a well-defined role as the energy source for most of the Earth's primary production, the effects of UV radiation on b...
ULTRAVIOLET PROTECTIVE PIGMENTS AND DNA DIMER INDUCTION AS RESPONSES TO ULTRAVIOLET RADIATION
Life on Earth has evolved adaptations to many environmental stresses over the epochs. One consistent stress has been exposure to ultraviolet (UV) radiation. The most basic effect of UV radiation on biological systems is damage to DNA. In response to UV radiation organisms have ad...
The protective roles of TiO2 nanoparticles against UV-B toxicity in Daphnia magna.
Liu, Jie; Wang, Wen-Xiong
2017-09-01
Aquatic environments are increasingly under environmental stress due to ultraviolet (UV) radiation and potential inputs of nanoparticles with intense application of nanotechnology. In this study, we investigated the interaction between UV-B radiation and titanium nanoparticles (TiO 2 -NPs) in a model freshwater cladoceran Daphnia magna. UV-B toxicity to Daphnia magna was examined when the daphnids were exposed to a range of TiO 2 -NPs concentrations with an initial 5 or 10min of 200μW/cm 2 UV-B radiation. In addition, UV-B toxicity was also examined in the presence of TiO 2 -NPs in the body of daphnids. Our results demonstrated that the daphnid mortality under UV-B radiation decreased significantly in the presence of TiO 2 -NPs both in the water and in the body, indicating that TiO 2 -NPs had some protective effects on D. magna against UV-B. Such protective effect was mainly caused by the blockage of UV-B by TiO 2 -NPs adsorption. UV-B produced reactive oxygen species (ROS) in the water and in the daphnids, which was not sufficient to cause mortality of daphnids over short periods of radiation. Previous studies focused on the effects of TiO 2 -NPs on the toxicity of total UV radiation, and did not attempt to differentiate the potential diverse roles of UV-A and UV-B. Our study indicated that TiO 2 -NPs may conversely protect the UV-B toxicity to daphnids. Copyright © 2017 Elsevier B.V. All rights reserved.
García-Cela, Maria Esther; Marín, Sonia; Reyes, Monica; Sanchis, Vicent; Ramos, Antonio J
2016-04-01
Bio-geographical differences in fungal infection distribution have been observed around the world, confirming that climatic conditions are decisive in colonization. This research is focused on the impact of ultraviolet radiation (UV) on Aspergillus species, based on the consideration that an increase in UV-B radiation may have large ecological effects. Conidia of six mycotoxigenic Aspergillus species isolated from vineyards located in the northeast and south of Spain were incubated for 15 days under light/dark cycles and temperatures between 20 and 30 °C per day. Additionally, 6 h of exposure to UV-A or UV-B radiation per day were included in the light exposure. UV irradiance used were 1.7 ± 0.2 mW cm(-2) of UV-A (peak 365 nm) and 0.10 ± 0.2 mW cm(-2) of UV-B (peak 312 nm). The intrinsic decrease in viability of conidia over time was accentuated when they were UV irradiated. UV-B radiation was more harmful. Conidial sensitivity to UV light was marked in Aspergillus section Circumdati. Conidia pigmentation could be related to UV sensitivity. Different resistance was observed within species belonging to sections Flavi and Nigri. An increase in UV radiation could lead to a reduction in the Aspergillus spp. inoculum present in the field (vineyards, nuts, cereal crops). In addition, it could unbalance the spore species present in the field, leading to a higher predominance of dark-pigmented conidia. © 2015 Society of Chemical Industry.
Wargent, Jason J; Elfadly, Eslam M; Moore, Jason P; Paul, Nigel D
2011-08-01
Plant responses to solar UV radiation are numerous and have often been considered from a perspective of negative outcomes for plant productivity. In this study, we used two experimental approaches consisting of: (1) field-based spectrally modifying filters in addition to (2) controlled indoor exposure to UV-B, to examine the effects of UV radiation on growth and photosynthetic performance of lettuce (Lactuca sativa L.) seedlings. Various aspects of growth were affected in plants grown under a UV-inclusive environment compared to a UV-depleted environment, including reductions in leaf expansion, increases in leaf thickness and the rate of net photosynthesis. After transplantation to a uniform field environment, lettuce plants initially propagated under the UV-inclusive environment exhibited higher harvestable yields than those from a UV-depleted environment. In controlled conditions, photosynthetic rates were higher in plants grown in the presence of UV-B radiation, and relative growth of plants pre-acclimatized to UV-B was also increased, in addition to higher maximum photochemical efficiency of photosystem II (PSII) (F(v) /F(m) ) following subsequent exposure to high photosynthetically active radiation (PAR) and temperature stress. Our findings are discussed within the context of sustainability in agriculture and the paradigm shift in photobiology which such beneficial responses to UV radiation could represent. © 2011 Blackwell Publishing Ltd.
Optical Analysis of Transparent Polymeric Material Exposed to Simulated Space Environment
NASA Technical Reports Server (NTRS)
Edwards, David L.; Finckenor, Miria M.
2000-01-01
Many innovations in spacecraft power and propulsion have been recently tested at NASA, particularly in non-chemical propulsion. One improvement in solar array technology is solar concentration using thin polymer film Fresnel lenses. Weight and cost savings were proven with the Solar Concentrator Arrays with Refractive Linear Element Technology (SCARLET)-II array on NASA's Deep Space I spacecraft. The Fresnel lens concentrates solar energy onto high-efficiency solar cells, decreasing the area of solar cells needed for power. Continued efficiency of this power system relies on the thin film's durability in the space environment and maintaining transmission in the 300 - 1000 nm bandwidth. Various polymeric materials have been tested for use in solar concentrators, including Lexan(TM), polyethylene terephthalate (PET), several formulations of Tefzel(Tm) and Teflon(TM), and DC 93-500, the material selected for SCARLET-II. Also tested were several innovative materials including Langley Research Center's CPI and CP2 polymers and atomic oxygen- resistant polymers developed by Triton Systems, Inc. The Environmental Effects Group of the Marshall Space Flight Center's Materials, Processes, and Manufacturing Department exposed these materials to simulated space environment and evaluated them for any change in optical transmission. Samples were exposed to a minimum of 1000 equivalent Sun hours of near-UV radiation (250 - 400 nm wavelength). Materials that appeared robust after near-UV exposure were then exposed to charged particle radiation equivalent to a five-year dose in geosynchronous orbit. These exposures were performed in MSFC's Combined Environmental Effects Test Chamber, a unique facility with the capability to expose materials simultaneously or sequentially to protons, low-energy electrons, high-energy electrons, near UV radiation and vacuum UV radiation. Reflectance measurements can be made on the samples in vacuum. Prolonged exposure to the space environment will decrease the polymer film's transmission and thus reduce the conversion efficiency. A method was developed to normalize the transmission loss and thus rank the materials according to their tolerance to space environmental exposure. Spectral results and the material ranking according to transmission loss are presented.
Wu, Lei; Lou, Yun-sheng; Meng, Yan; Wang, Wei-qing; Cui, He-yang
2015-01-01
A pot experiment was conducted to investigate the effects of silicon (Si) supply on diurnal variations of photosynthesis and transpiration-related physiological parameters at rice heading stage under elevated UV-B radiation. The experiment was designed with two UV-B radiation levels, i.e. ambient UV-B. (ambient, A) and elevated UV-B (elevated by 20%, E), and four Si supply levels, i.e. Sio (control, 0 kg SiO2 . hm-2), Si, (sodium silicate, 100 kg SiO2 . hm-2), Si2 (sodium silicate, 200 kg SiO2 . hm2), Si3 (slag fertilizer, 200 kg SiO2 . hm-2). The results showed that, compared with ambient UV-B radiation, elevated UV-B radiation decreased the net photosynthesis rate (Pn) , intercellular CO2 concentration (Ci), transpiration rate (Tr), stomatal conductivity (gs) and water use efficiency (WUE) by 11.3%, 5.5%, 10.4%, 20.3% and 6.3%, respectively, in the treatment without Si supply (Si, level), and decreased the above parameters by 3.8%-5.5%, 0.7%-4.8%, 4.0%-8.7%, 7.4%-20.2% and 0.7%-5.9% in the treatments with Si supply (Si1, Si2 and Si3 levels) , respectively. Namely, elevated UV-B radiation decreased the photosynthesis and transpiration-related physiological parameters, but silicon supply could obviously mitigate the depressive effects of elevated UV-B radiation. Under elevated UV-B radiation, compared with control (Si0 level), silicon supply increased Pn, Ci, gs and WUE by 16.9%-28.0%, 3.5%-14.3%, 16.8% - 38.7% and 29.0% - 51.2%, respectively, but decreased Tr by 1.9% - 10.8% in the treatments with Si supply (Si1 , Si2 and Si3 levels). That is, silicon supply could mitigate the depressive effects of elevated UV-B radiation through significantly increasingnP., CigsgK and WUE, but decreasing T,. However, the difference existed in ameliorating the depressive effects of elevated UV-B radiation on diurnal variations of physiological parameters among the treatments of silicon supply, with the sequence of Si3>Si2>1i >Si0. This study suggested that fertilizing slag was helpful not only in recycling industrial wastes, but also in effectively mitigating the depressive effects of elevated UV-B radiation on photosynthesis and transpiration in rice production.
Behar-Cohen, Francine; Baillet, Gilles; de Ayguavives, Tito; Garcia, Paula Ortega; Krutmann, Jean; Peña-García, Pablo; Reme, Charlotte; Wolffsohn, James S
2014-01-01
Ultraviolet (UV) radiation potentially damages the skin, the immune system, and structures of the eye. A useful UV sun protection for the skin has been established. Since a remarkable body of evidence shows an association between UV radiation and damage to structures of the eye, eye protection is important, but a reliable and practical tool to assess and compare the UV-protective properties of lenses has been lacking. Among the general lay public, misconceptions on eye-sun protection have been identified. For example, sun protection is mainly ascribed to sunglasses, but less so to clear lenses. Skin malignancies in the periorbital region are frequent, but usual topical skin protection does not include the lids. Recent research utilized exact dosimetry and demonstrated relevant differences in UV burden to the eye and skin at a given ambient irradiation. Chronic UV effects on the cornea and lens are cumulative, so effective UV protection of the eyes is important for all age groups and should be used systematically. Protection of children's eyes is especially important, because UV transmittance is higher at a very young age, allowing higher levels of UV radiation to reach the crystalline lens and even the retina. Sunglasses as well as clear lenses (plano and prescription) effectively reduce transmittance of UV radiation. However, an important share of the UV burden to the eye is explained by back reflection of radiation from lenses to the eye. UV radiation incident from an angle of 135°-150° behind a lens wearer is reflected from the back side of lenses. The usual antireflective coatings considerably increase reflection of UV radiation. To provide reliable labeling of the protective potential of lenses, an eye-sun protection factor (E-SPF®) has been developed. It integrates UV transmission as well as UV reflectance of lenses. The E-SPF® compares well with established skin-sun protection factors and provides clear messages to eye health care providers and to lay consumers.
Interactive effects of elevated ozone and UV-B radiation on soil nematode diversity.
Bao, Xuelian; Li, Qi; Hua, Jianfeng; Zhao, Tianhong; Liang, Wenju
2014-01-01
Ultraviolet-B (UV-B) radiation and elevated tropospheric ozone may cause reductions in the productivity and quality of important agricultural crops. However, research regarding their interactive effect is still scarce, especially on the belowground processes. Using the open top chambers experimental setup, we monitored the response of soil nematodes to the elevated O3 and UV-B radiation individually as well as in combination. Our results indicated that elevated O3 and UV-B radiation have impact not only on the belowground biomass of plants, but also on the community structure and functional diversity of soil nematodes. The canonical correspondence analysis suggested that soil pH, shoot biomass and microbial biomass C and N were relevant parameters that influencing soil nematode distribution. The interactive effects of elevated O3 and UV-B radiation was only observed on the abundance of bacterivores. UV-B radiation significantly increased the abundance of total nematodes and bacterivores in comparison with the control at pod-filling stage of soybean. Following elevated O3, nematode diversity index decreased and dominance index increased relative to the control at pod-filling stage of soybean. Nematode functional diversity showed response to the effects of elevated O3 and UV-B radiation at pod-bearing stage. Higher enrichment index and lower structure index in the treatment with both elevated O3 and UV-B radiation indicated a stressed soil condition and degraded soil food web. However, the ratios of nematode trophic groups suggested that the negative effects of elevated O3 on soil food web may be weakened by the UV-B radiations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sargentini, N.J.; Smith, K.C.
1983-03-01
After N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis of Escherichia coli K-12 (xthA14), an X-ray-sensitive mutant was isolated. This sensitivity is due to a mutation, radB101, which is located at 56.5 min on the E.coli K-12 linkage map. The radB101 mutation sensitized wild-type cells to ..gamma.. and uv radiation, and to methyl methanesulfonate. When known DNA repair-deficient mutants were ranked for their ..gamma..-radiation sensitivity relative to their uv-radiation sensitivity, their order was (starting with the most selectively ..gamma..-radiation-sensitive strain): recB21, radB101, wild type, polA1, recF143, lexA101, recA56, uvrD3, and uvrA6. The radB mutant was normal for ..gamma..- and uv-radiation mutagenesis, it showed only a slightmore » enhancement of ..gamma..- and uv-radiation-induced DNA degradation, and it was approx. 60% deficient in recombination ability. The radB gene is suggested to play a role in the recA gene-dependent (Type III) repair of DNA single-strand breaks after ..gamma.. irradiation and in postreplication repair after uv irradiation for the following reasons: the radB strain was normal for the host-cell reactivation of ..gamma..- and uv-irradiated bacteriophage lambda; the radB mutation did not sensitize a recA strain, but did sensitize a polA strain to ..gamma.. and uv radiation; the radB mutation sensitized a uvrB strain to uv radiation.« less
Life and the solar uv environment on the early Earth
NASA Astrophysics Data System (ADS)
Bérces, A.; Kovács, G.; Rontó, G.; Lammer, H.; Kargl, G.; Kömle, N.; Bauer, S.
2003-04-01
The solar UV radiation environment on planetary surfaces and within their atmospheres is of importance in a wide range of scientific disciplines. Solar UV radiation is the driving force of chemical and organic evolution and serves also as a constraint in biological evolution. Studies of the solar UV environment of the early Earth 2.0 Gyr to 3.8 Gyr ago suggest that the terrestrial atmosphere was essentially anoxic, resulting in an ozone column abundance insufficient for protecting the planetary surface in the UV-B and the UV-C ranges. Since, short wavelength solar UV radiation in the UV-B ind UV-C range penetrated through the unprotected atmosphere to the surface on early Earth, associated biological consequences may be expected. For DNA-based terrestrial solar UV dosimetry, bacteriophage T7, isolated phage-DNA ind polycrystalline Uracil samples have been used. The effect of solar UV radiation can be measured by detecting the biological-structural consequences of the damage induced by UV photons. We show model calculations for the Biological Effective Dose (BED) rate of Uracil and bacteriophage T7, for various ozone concentrations representing early atmospheric conditions on Earth up to a UV protecting ozone layer comparable to present times. Further, we discuss experimental data which show the photo-reverse effect of Uracil molecules caused by short UV wavelengths. These photoreversion effect highly depend on the wavelength of the radiation. Shorter wavelength UV radiation of about 200 nm is strongly effective in monomerisation, while the longer wavelengths prefer the production of dimerisation. We could demonstrate experimentally, for the case of an Uracil thin-layer that the photo-reaction process of the nucleotides can be both, dimerization and the reverse process: monomerization. These results are important for the study of solar UV exposure on organisms in the terrestrial environment more than 2 Gyr ago where Earth had no UV protecting ozone layer as well as for the search for life on Mars since we can show that biological harmful effects can also be reduced by shorter wavelength UV radiation, which is of importance in reducing DNA damages provoked by wavelengths longer than about 240 nm.
NASA Astrophysics Data System (ADS)
Kita, Hajime; Misawa, H.; Tsuchiya, F.; Tao, C.; Morioka, A.
2012-10-01
Jupiter's synchrotron radiation (JSR) is the emission from relativistic electrons, and it is the most effective probe for remote sensing of Jupiter's radiation belt from the Earth. Recent observations reveal short term variations of JSR with the time scale of days to weeks. Brice and McDonough (1973) proposed that the solar UV/EUV heating for Jupiter's upper atmosphere causes enhancement of total flux density. If such a process occurs at Jupiter, it is also expected that diurnal wind system produces dawn-dusk asymmetry of the JSR brightness distribution. Preceding studies confirmed that the short term variations in total flux density correspond to the solar UV/EUV. However, the effect of solar UV/EUV heating on the brightness distribution has not been confirmed. Hence, the purpose of this study is to confirm the solar UV/EUV heating effect on total flux density and brightness distribution. We made radio imaging analysis using the National Radio Astronomy Observatory (NRAO) archived data of the Very Large Array (VLA) obtained in 2000, and following results were shown. 1, Total flux density varied corresponding to the solar UV/EUV. 2, Dawn side emission was brighter than dusk side emission almost every day. 3, Variations of the dawn-dusk asymmetry did not correspond to the solar UV/EUV. In order to explain the second result, we estimate the diurnal wind velocity from the observed dawn-dusk ratio by using the model brightness distribution of JSR. Estimated neutral wind velocity is 46+/-11 m/s, which reasonably corresponds to the numerical simulation of Jupiter's upper atmosphere. In order to explain the third result, we examined the effect of the global convection electric field driven by tailward outflow of plasma in Jupiter's magnetosphere. As the result, it is suggested that typical fluctuation of the convection electric field strength was enough to cause the observed variations of the dawn-dusk asymmetry.
NASA Astrophysics Data System (ADS)
KrzyśCin, Janusz W.
1996-07-01
Monthly means of UV erythemal dose at ground level from the Robertson-Berger (RB) sunburn meter (1976-1992) and the UV-Biometer model 501 MED meter (1993-1994) located at Belsk (21°E, 52°N), Poland, are examined. The monthly means are calculated from all-sky daily means of UV erythemal dose. Ancillary measurements of column ozone (by Dobson spectrophotometer), sunshine duration (by Campbell-Stokes heliograph), and total (sun and sky) radiation (by a pyranometer) are considered to explain variations in the UV data. A multiple regression model is proposed to study trends in the UV data. The model accounts for the UV erythemal dose changes induced by total ozone, sunshine duration (surrogate for cloud cover variations), or total solar radiation (surrogate for combined cloud cover and atmospheric turbidity impact on the UV radiation), trends due to instrument drift, step changes in the data, and serial correlations. A strong relationship between monthly all-sky UV erythemal dose changes and total ozone (and total solar radiation) is found. Calculations show that an erythemal radiative amplification factor (RAF) due to ozone under all skies is close to its clear-sky value (about 1). However, the model gives evidence that the RAF due to ozone is smaller for cloudier (and/or more turbid) atmospheres than long-term reference. Total solar radiation change of 1% is associated with a change of 0.7% in the UV erythemal dose. Modeled trends in the Belsk's UV data, inferred from the model using ozone and total solar radiation as the UV forcing factors, are 2.3% ± 0.4% (1σ) per decade in the period 1976-1994. The large increase in the UV erythemal dose, of the order of 4% per decade due to ozone depletion (-3.2% per decade), is partially compensated by a decreasing tendency (-2.8% per decade) in total solar radiation. The model estimates the trend in the UV data of the order of 0.1% per decade (not statistically significant) due to superposition of the instrument drift and long-term effects related to other UV influencing factors (not parameterized by the model).
Simulations of Supernova Shock Breakout
NASA Astrophysics Data System (ADS)
Frey, Lucille; Fryer, C. L.; Hungerford, A. L.
2009-01-01
Massive stars at the end of their lives release huge amounts of energy in supernova explosions which can be detected across cosmological distances. Even if prior observations exist, such distances make supernova progenitors difficult to identify. Very early observations of supernovae give us a rare view of these short-lived stars immediately before core collapse. Several recently observed X-ray and UV bursts associated with supernova have been interpreted as shock breakout observations. When the radiation-dominated shock wave from core collapse approaches the stellar surface, the optical depth of the plasma ahead of the shock decreases until the radiation can escape in a burst. If a dense wind is present, the shock breaks out beyond the stellar surface. Occurring days or weeks before the optical light from radioactive decay peaks, shock breakout radiation can be used to determine the radius of the progenitor star or its recent mass loss history. Whether the durations and spectra of the observed X-ray and UV bursts match those expected for shock breakout is currently being debated. A similar phenomenon would occur when the shockwave interacts with gas shells such as those ejected by luminous blue variable outbursts. Full radiation-hydrodynamics calculations are necessary to reproduce the behavior of the radiation-dominated shock and shock breakout. We use a radiation-hydrodynamics code with adaptive mesh refinement to follow the motion of the shock wave with high resolution. We run a suite of one dimensional simulations using binary and single progenitors with a range of mass loss histories, wind velocities and explosion energies. These simulations will better constrain the properties of the progenitor star and its environment that can be derived from shock breakout observations. This work was funded in part under the auspices of the U.S. Dept. of Energy, and supported by its contract W-7405-ENG-36 to Los Alamos National Laboratory.
Neale, Patrick J; Thomas, Brian C
2016-04-01
Two atmospheric responses to simulated astrophysical ionizing radiation events significant to life on Earth are production of odd-nitrogen species, especially NO2, and subsequent depletion of stratospheric ozone. Ozone depletion increases incident short-wavelength ultraviolet radiation (UVB, 280-315 nm) and longer (>600 nm) wavelengths of photosynthetically available radiation (PAR, 400-700 nm). On the other hand, the NO2 haze decreases atmospheric transmission in the long-wavelength UVA (315-400 nm) and short-wavelength PAR. Here, we use the results of previous simulations of incident spectral irradiance following an ionizing radiation event to predict changes in terran productivity focusing on photosynthesis of marine phytoplankton. The prediction is based on a spectral model of photosynthetic response, which was developed for the dominant genera in central regions of the ocean (Synechococcus and Prochlorococcus), and on remote-sensing-based observations of spectral water transparency, temperature, wind speed, and mixed layer depth. Predicted productivity declined after a simulated ionizing event, but the effect integrated over the water column was small. For integrations taking into account the full depth range of PAR transmission (down to 0.1% of utilizable PAR), the decrease was at most 2-3% (depending on strain), with larger effects (5-7%) for integrations just to the depth of the surface mixed layer. The deeper integrations were most affected by the decreased utilizable PAR at depth due to the NO2 haze, whereas shallower integrations were most affected by the increased surface UV. Several factors tended to dampen the magnitude of productivity responses relative to increases in surface-damaging radiation, for example, most inhibition in the modeled strains is caused by UVA and PAR, and the greatest relative increase in damaging exposure is predicted to occur in the winter when UV and productivity are low.
Golob, Aleksandra; Kavčič, Jan; Stibilj, Vekoslava; Gaberščik, Alenka; Vogel-Mikuš, Katarina; Germ, Mateja
2017-02-01
UV radiation as an evolutionarily important environmental factor, significantly affects plants traits and alters the effects of other environmental factors. Single and combined effects of ambient UV radiation, its exclusion, and Se foliar treatments on Si concentrations and production of Si phytoliths in wheat (Triticum aestivum L.) cv. 'Reska' were studied. The effects of these treatments on growth parameters of the plants, structural and biochemical traits of the leaves, and interactions of the leaves with light, as Si incrustation is the first barrier to light at the leaf surface were also examined. Under ambient UV radiation and foliar treatment with 10mgL -1 sodium selenate solution, there was a trade-off between the plant investment in primary and secondary metabolism, as the production of UV-absorbing compounds was enhanced while photosynthetic pigment levels were reduced. Independent of Se treatment, ambient UV radiation lowered respiratory potential, Ca concentration, and leaf thickness, and increased Si concentration, Si phytoliths formation, and cuticle thickness. The Se treatment has little effect on plant traits and biomass production but it increased Se concentrations in the plants by >100-fold, independent of UV radiation. In combination with UV radiation Se strengthen the protection of plants against stress by increasing the amount of UV absorbing compounds, light reflectance and transmittance. Copyright © 2016 Elsevier Inc. All rights reserved.
Casati, Paula; Walbot, Virginia
2003-01-01
Microarray hybridization was used to assess acclimation responses to four UV regimes by near isogenic maize (Zea mays) lines varying in flavonoid content. We found that 355 of the 2,500 cDNAs tested were regulated by UV radiation in at least one genotype. Among these, 232 transcripts are assigned putative functions, whereas 123 encode unknown proteins. UV-B increased expression of stress response and ribosomal protein genes, whereas photosynthesis-associated genes were down-regulated; lines lacking UV-absorbing pigments had more dramatic responses than did lines with these pigments, confirming the shielding role of these compounds. Sunlight filtered to remove UV-B or UV-B plus UV-A resulted in significant expression changes in many genes not previously associated with UV responses. Some pathways regulated by UV radiation are shared with defense, salt, and oxidative stresses; however, UV-B radiation can activate additional pathways not shared with other stresses. PMID:12913132
Kheyrandish, Ataollah; Mohseni, Madjid; Taghipour, Fariborz
2018-06-15
Determining fluence is essential to derive the inactivation kinetics of microorganisms and to design ultraviolet (UV) reactors for water disinfection. UV light emitting diodes (UV-LEDs) are emerging UV sources with various advantages compared to conventional UV lamps. Unlike conventional mercury lamps, no standard method is available to determine the average fluence of the UV-LEDs, and conventional methods used to determine the fluence for UV mercury lamps are not applicable to UV-LEDs due to the relatively low power output, polychromatic wavelength, and specific radiation profile of UV-LEDs. In this study, a method was developed to determine the average fluence inside a water suspension in a UV-LED experimental setup. In this method, the average fluence was estimated by measuring the irradiance at a few points for a collimated and uniform radiation on a Petri dish surface. New correction parameters were defined and proposed, and several of the existing parameters for determining the fluence of the UV mercury lamp apparatus were revised to measure and quantify the collimation and uniformity of the radiation. To study the effect of polychromatic output and radiation profile of the UV-LEDs, two UV-LEDs with peak wavelengths of 262 and 275 nm and different radiation profiles were selected as the representatives of typical UV-LEDs applied to microbial inactivation. The proper setup configuration for microorganism inactivation studies was also determined based on the defined correction factors.
Study of UV radiation dose received by the Spanish population.
Gurrea, Gonzalo; Cañada, Javier
2007-01-01
Excess exposure to UV radiation can affect our health by causing sunburn, skin cancer, etc. It is therefore useful to determine the UV dosage received by people as a way of protecting them from the possible negative effects that this kind of radiation can cause. In this work, the personal outdoor percentage, which shows the time spent in outdoor activities, as well as personal UV doses, has been calculated by means of global UV radiation on a horizontal plane. A database of average daily UVB radiation on the horizontal plane given by the National Institute of Meteorology has been used. In this work we evaluate the standard erythema dose of the Spanish population throughout the year.
Anti-Adhesion Elastomer Seal Coatings for Ultraviolet and Atomic Oxygen Protection
NASA Technical Reports Server (NTRS)
De Groh, Henry C., III; Puleo, Bernadette J.; Waters, Deborah L.; Miller, Sharon K.
2015-01-01
Radiation blocking sunscreen coatings have been developed for the protection of elastomer seals used in low-Earth-orbit (LEO). The coatings protect the seals from ultraviolet (UV) radiation and atomic oxygen (AO) damage. The coatings were developed for use on NASA docking seals. Docking seal damage from the UV and AO present in LEO can constrain mission time-line, flight mode options, and increases risk. A low level of adhesion is also required for docking seals so undocking push-off forces can be low. The coatings presented also mitigate this unwanted adhesion. Greases with low collected volatile condensable materials (CVCM) and low total mass loss (TML) were mixed with slippery and/or UV blocking powders to create the protective coatings. Coatings were applied at rates up to 2 milligrams per square centimeter. Coated seals were exposed to AO and UV in the NUV (near-UV) and UV-C wavelength ranges (300 to 400 nanometers and 254 nanometers, respectively). Ground based ashers were used to simulate the AO of space. The Sun's UV energy was mimicked assuming a nose forward flight mode, resulting in an exposure rate of 2.5 megajoules per square meter per day. Exposures between 0 and 147 megajoules per square meter (UV-C) and 245 megajoules per square meter (NUV) were accomplished. The protective coatings were durable, providing protection from UV after a simulated docking and undocking cycle. The level of protection begins to decline at coverage rates less than 0.9 milligrams per square centimeter. The leakage of seals coated with Braycote plus 20 percent Z-cote ZnO sunscreen increased by a factor of 40 after moderate AO exposure; indicating that this coating might not be suitable due to AO intolerance. Seals coated with DC-7-16.4 percent Z-cote ZnO sunscreen were not significantly affected by combined doses of 2 x 10 (sup 21) atoms per square AO with 73 megajoules per square meter UV-C. Unprotected seals were significantly damaged at UV-C exposures of 0.3 megajoules per square meter and DC-7-16.4 percent Z-cote coated seals were undamaged at all exposures up to the limits tested thus far which were 147 megajoules per square meter UV-C and 245 megajoules per square meter NUV. The coatings decreased adhesion sufficiently for docking seals at temperatures equal to or greater than -8 degrees Centigrade thus offer a simple and inexpensive way to mitigate adhesion.
Radiation damage of all-silica fibers in the UV region
NASA Astrophysics Data System (ADS)
Gombert, Joerg; Ziegler, M.; Assmus, J.; Klein, Karl-Friedrich; Nelson, Gary W.; Clarkin, James P.; Pross, H.; Kiefer, J.
1999-04-01
Since several years, UVI-fibers having higher solarization- resistance are well known stimulating new fiber-optic applications in the UV-region below 250 nm. Besides the description of the improved transmission properties of UV- light from different UV-sources, the mechanisms of improvement have been discussed in detail. The UV-defects, mainly the E'- center with the UV-absorption band around 215 nm, were passivated by using hydrogen-doping. Besides DUV-light, ionizing radiation like Gamma-radiation or X-rays can create similar defects in the UV-region. In the past, the radiation- damage in the UV-region was studied on silica bulk samples: again, E'-centers were generated. Up to now, no UV- transmission through a 1 m long fiber during or after Gamma- radiation had been observed. However, the hydrogen in the UVI- fibers behaves the same for Gamma-irradiation, leading to a passivation of the radiation-induced defects and an improved transmission in the UV-C region below 250 nm. On this report, the influence of total dose and fiber diameter on the UV- damage after irradiation will be described and discussed. In addition, we will include annealing studies, with and without UV-light. Based on our results, the standard process of Gamma- sterilization with a total dose of approx. 2 Mrad can be used for UVI-fibers resulting in a good UV-transmission below 320 nm. Excimer-laser light at 308 nm (XeCl) and 248 nm (KrF) and deuterium-lamp light with the full spectrum starting at 200 nm can also be transmitted.
Are current guidelines for sun protection optimal for health? Exploring the evidence.
Lucas, Robyn M; Neale, Rachel E; Madronich, Sasha; McKenzie, Richard L
2018-06-15
Exposure of the skin to ultraviolet (UV) radiation is the main risk factor for skin cancer, and a major source of vitamin D, in many regions of the world. Sun protection messages to minimize skin cancer risks but avoid vitamin D deficiency are challenging, partly because levels of UV radiation vary by location, season, time of day, and atmospheric conditions. The UV Index provides information on levels of UV radiation and is a cornerstone of sun protection guidelines. Current guidelines from the World Health Organization are that sun protection is required only when the UV Index is 3 or greater. This advice is pragmatic rather than evidence based. The UV Index is a continuous scale; more comprehensive sun protection is required as the UV Index increases. In addition, a wide range of UVA doses is possible with a UVI of 3, from which there may be health consequences, while full sun protection when the UVI is "moderate" (between 3 and 5) may limit vitamin D production. Finally, the duration of time spent in the sun is an essential component of a public health message, in addition to the intensity of ambient UV radiation as measured by the UV Index. Together these provide the dose of UV radiation that is relevant to both skin cancer genesis and vitamin D production. Further education is required to increase the understanding of the UV Index; messages framed using the UV Index need to incorporate the importance of duration of exposure and increasing sun protection with increasing dose of UV radiation.
Moore, M H; Hudson, R L; Gerakines, P A
2001-03-15
Infrared (IR) studies of laboratory ices can provide information on the evolution of cosmic-type ices as a function of different simulated space environments involving thermal, ultraviolet (UV), or ion processing. Laboratory radiation experiments can lead to the formation of complex organic molecules. However, because of our lack of knowledge about UV photon and ion fluxes, and exposure lifetimes, it is not certain how well our simulations represent space conditions. Appropriate laboratory experiments are also limited by the absence of knowledge about the composition, density, and temperature of ices in different regions of space. Our current understanding of expected doses due to UV photons and cosmic rays is summarized here, along with an inventory of condensed-phase molecules identified on outer solar system surfaces, comets and interstellar grains. Far-IR spectra of thermally cycled H2O are discussed since these results reflect the dramatic difference between the amorphous and crystalline phases of H2O ice, the most dominant condensed-phase molecule in cosmic ices. A comparison of mid-IR spectra of products in proton-irradiated and UV-photolyzed ices shows that few differences are observed for these two forms of processing for the simple binary mixtures studied to date. IR identification of radiation products and experiments to determine production rates of new molecules in ices during processing are discussed. A new technique for measuring intrinsic IR band strengths of several unstable molecules is presented. An example of our laboratory results applied to Europa observations is included.
Mazza, Carlos A; Giménez, Patricia I; Kantolic, Adriana G; Ballaré, Carlos L
2013-03-01
Ultraviolet-B radiation (UV-B: 280-315 nm) has damaging effects on cellular components and macromolecules. In plants, natural levels of UV-B can reduce leaf area expansion and growth, which can lead to reduced productivity and yield. UV-B can also have important effects on herbivorous insects. Owing to the successful implementation of the Montreal Protocol, current models predict that clear-sky levels of UV-B radiation will decline during this century in response to ozone recovery. However, because of climate change and changes in land use practices, future trends in UV doses are difficult to predict. In the experiments reported here, we used an exclusion approach to study the effects of solar UV-B radiation on soybean crops, which are extensively grown in many areas of the world that may be affected by future variations in UV-B radiation. In a first experiment, performed under normal management practices (which included chemical pest control), we found that natural levels of UV-B radiation reduced soybean yield. In a second experiment, where no pesticides were applied, we found that solar UV-B significantly reduced insect herbivory and, surprisingly, caused a concomitant increase in crop yield. Our data support the idea that UV-B effects on agroecosystems are the result of complex interactions involving multiple trophic levels. A better understanding of the mechanisms that mediate the anti-herbivore effect of UV-B radiation may be used to design crop varieties with improved adaptation to the cropping systems that are likely to prevail in the coming decades in response to agricultural intensification. Copyright © Physiologia Plantarum 2012.
Aspicilia fruticulosa: A new model for Astrobiology
NASA Astrophysics Data System (ADS)
Sánchez Iñigo, Fco. Javier; de La Torre Noetzel, Rosa; Martinez-Frias, Jesus; Mateo Mart, Eva; Horneck, Gerda
In order to avoid the technological constraints that prevent the performance of experiments in other planets, Astrobiology research implies the development of models that simulate the conditions present in outer space or in planetary bodies. Extremophile organisms, like lichens have been widely studied in Astrobiology due to their high resistance to extremely harsh envi-ronments(5). The vagrant lichen species, Aspicilia fruticulosa lives detached from the substrate, and has a coralloid thalli up to 2.5 cm, which provides a very compact internal structure(6). This species typically grows in deserts and arid areas. Its resistance has been tested several times and amazing results about their vitality have been obtained. Two main experiments have been per-formed: 1. LITHOPANSPERMIA experiment(1): Integrated on board of BIOPAN (multi-user exposure facility, designed for exobiology, radiation biology, radiation dosimetry and material science investigations in space (http://www.spaceflight.esa.int/users/index.cfm?act=default.pagelevel=11p foton-next-pay-Bpan) launched on the Foton M3 satellite in September 2007); the resistance of this lichen species to the combination of the following space conditions during 10 days was tested: Ultraviolet (UV) extraterrestrial radiation, Mars UV-climate, UV-B radiation and Photosynthetically Active Radiation (PAR), microgravity, space vacuum of 1x10-6 mbar and extreme temperatures ranging from -23o C to +16o C. After the flight, the samples were revital-ized for a 72h period in a climatic chamber before taking measurements of their photosynthetic activity with a Mini-PAM fluorometer (Heinz Walz GmbH) as described by R. de la Torre et al. 2007b (2). The results showed that the samples exposed to space environment except solar UV radiation, reached a 76.5-1002. A step further on these investigations was carried out in order to study how the viability of this lichen species were affected by a combination of different sim-ulated martian conditions. For this purpose, we used an environmental simulation chamber(4) placed at the CAB (Centro de Astrobiologé to reproduce martian conditions. Three different ıa) exposures, each of them during 80 hours, were performed: a) martian atmosphere (7mbar of atmospheric pressure, with a standard concentration of martian surface gases) and tempera-ture (-93o C); b) martian UV radiation (200-400nm), temperature(-93o C) and space vacuum (1x10-7 mbar); c) combination of martian UV radiation (200-400nm), atmosphere (7mbar of atmospheric pressure) and temperature (-93o C). A set of 8 samples were located on two levels: exposure level (L-1) and dark control level (L-2). A general tendence was observed: all the samples survived. The analysis of the results compared to the pre-simulation data showed: a) photosynthetic activity decreased (74 References: 1 R. DE LA TORRE (2009): Likelihood of interplanetary transfer of rock-inhabiting microbial communities: Results from the space experiment Lithopanspermia. Icarus. Under revision 2 R. DE LA TORRE, L.G. SANCHO, A. PINTADO, P. RETTBERG, E. RABBOW, C. PANITZ, U. DEUTSCHMANN, M. REINA, G. HORNECK (2007b): BIOPAN experi-ment LICHENS on the Foton M2 mission: Pre-flight verification tests of the Rhizocarpon geographicum-granite ecosystem. Advances in Space Research. Volume 40, Issue 11, 2007, Pages 1665-1671 3 G. HORNECK (1994): Exobiology, the study of the origin, evolution and distribution of life within the context of cosmic evolution: a review. Planetary and Space Science. 1995 Jan-Feb; 43(1-2):189-217 4 E. MATEO MARTé et al. (2006): A chamber for I studying planetary environments and its applications to astrobiology. Measurement science technology. 2006, vol. 17, no8, pp. 2274-2280 5 L.G. SANCHO, R. de la TORRE A. PIN-TADO (2009): Lichens, new and promising material from experiments in astrobiology. Fungal Biology Reviews. Volume 22, Issues 3-4, Aug-Nov 2008, Pages 103-109 6 L.G. SANCHO, B. SCHROETER R. DEL PRADO (2000): Ecophysiology and morphology of the globular erratic lichen Aspicilia fruticulosa (EVERSM.) FLAG. from Central Spain. Bibliotheca Lichenologica. Band 75, Pages 137-147
Influence of clouds on UV-B penetration to the earth's surface
NASA Technical Reports Server (NTRS)
Green, A. E. S.
1979-01-01
Radiometric measurements of cloud influence on ultraviolet B radiation (UV-B) were obtained. Mathematical models of the influence were defined to lay the groundwork for the construction of the global UV-B climatology from satellite determined ozone data. More refined measurements comparing UV-B radiation with total solar radiation were carried out. The cloudy case is referred to the cloudless sky irradiance and convenient transmission ratios are given An approach to the inversion of scattering data is summarized. An improved characterization of the UV-B radiation from a cloudless sky is also presented.
Solar UV exposures measured simultaneously to all arbitrarily oriented leaves on a plant.
Parisi, Alfio V; Schouten, Peter; Downs, Nathan J; Turner, Joanna
2010-05-03
The possible ramifications of climate change include the influence it has upon the amount of cloud cover in the atmosphere. Clouds cause significant variation in the solar UV radiation reaching the earth's surface and in turn the amount incident on ecosystems. The consequences of changes in solar UV radiation delivered to ecosystems due to climate change may be significant and should be investigated. Plants are an integral part of the world wide ecological balance, and research has shown they are affected by variations in solar UV radiation. Therefore research into the influence of solar UV radiation on plants is of particular significance. However, this requires a means of obtaining detailed information on the solar UV radiation received by plants. This research describes a newly developed dosimetric technique employed to gather information on solar UV radiation incident to the leaves of plants in combination with the measurement of spectral irradiances in order to provide an accurate method of collecting detailed information on the solar UV radiation affecting the canopy and lower leaf layers of individual plants. Variations in the measurements take into account the inclination and orientation of each leaf investigated, as well as the influence of shading by other leaves in the plant canopy. Copyright 2010 Elsevier B.V. All rights reserved.
UV RADIATION MEASUREMENTS/ATMOSPHERIC CHARACTERIZATION
Because exposure to ultraviolet (UV) radiation is an ecosystem stressor and poses a human health risk, the National Exposure Research Laboratory (NERL) has undertaken a research program to measure the intensity of UV-B radiation at various locations throughout the U.S. In Septem...
Wasielewski, Oskar; Wojciechowicz, Tatiana; Giejdasz, Karol; Krishnan, Natraj
2015-08-01
The effects of enhanced UV-B radiation on the oogenesis and morpho-anatomical characteristics of the European solitary red mason bee Osmia bicornis L. (Hymenoptera: Megachilidae) were tested under laboratory conditions. Cocooned females in the pupal stage were exposed directly to different doses (0, 9.24, 12.32, and 24.64 kJ/m(2) /d) of artificial UV-B. Our experiments revealed that enhanced UV-B radiation can reduce body mass and fat body content, cause deformities and increase mortality. Following UV exposure at all 3 different doses, the body mass of bees was all significantly reduced compared to the control, with the highest UV dose causing the largest reduction. Similarly, following UV-B radiation, in treated groups the fat body index decreased and the fat body index was the lowest in the group receiving the highest dose of UV radiation. Mortality and morphological deformities, between untreated and exposed females varied considerably and increased with the dose of UV-B radiation. Morphological deformities were mainly manifested in the wings and mouthparts, and occurred more frequently with an increased dose of UV. Cell death was quantified by the Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay (DNA fragmentation) during early stages of oogenesis of O. bicornis females. The bees, after UV-B exposure exhibited more germarium cells with fragmented DNA. The TUNEL test indicated that in germarium, low doses of UV-B poorly induced the cell death during early development. However, exposure to moderate UV-B dose increased programmed cell death. In females treated with the highest dose of UV-B the vast majority of germarium cells were TUNEL-positive. © 2014 Institute of Zoology, Chinese Academy of Sciences.
Ultraviolet-induced responses in two species of climax tropical marine macrophytes.
Detrés, Y; Armstrong, R A; Connelly, X M
2001-09-01
In tropical regions nominal reductions in stratospheric ozone could be detrimental to marine organisms that live near their upper tolerance levels of ultraviolet (UV) radiation and temperature. Well-known plant responses to UV include inhibition of photosynthesis, reductions in chlorophyll content, morphological changes and production of UV absorbing compounds such as flavonoids. An assessment of the effects and responses of two tropical marine macrophytes to full solar radiation and solar radiation depleted of UV were conducted in southwestern Puerto Rico. Changes in concentration of photosynthetic and photoprotective pigments, and in leaf optical properties of the red mangrove Rhizophora mangle and the seagrass Thalassia testudinum, were evaluated in field exclusion experiments. Rhizophora mangle exposed to full solar radiation showed lower leaf reflectance and a shift of 5 nm in the inflection point of the red edge. Thalassia testudinum samples excluded from UV had significant increases in total chlorophyll and carotenoid concentrations. These marine macrophytes showed increments in their concentration of UV-B absorbing compounds with exposure to UV radiation. Results indicate that even minor increases in UV radiation at low latitudes could have significant effects on the pigment composition of these climax species.
NASA Astrophysics Data System (ADS)
Bai, Jianhui; Wang, Gengchen
2003-09-01
On the basis of analyzing observational data on solar radiation, meteorological parameters, and total ozone amount for the period of January 1990 to December 1991 in the Beijing area, an empirical calculation method for ultraviolet radiation (UV) in clear sky is obtained. The results show that the calculated values agree well with the observed, with maximum relative bias of 6.2% and mean relative bias for 24 months of 1.9%. Good results are also obtained when this method is applied in Guangzhou and Mohe districts. The long-term variation of UV radiation in clear sky over the Beijing area from 1979 to 1998 is calculated, and the UV variation trends and causes are discussed: direct and indirect UV energy absorption by increasing pollutants in the troposphere may have caused the UV decrease in clear sky in the last 20 years. With the enhancement of people’s quality of life and awareness of health, it will be valuable and practical to provid UV forecasts for typical cities and rural areas. So, we should develop and enhance UV study in systematic monitoring, forecasting, and developing a good and feasible method for UV radiation reporting in China, especially for big cities.
NASA Astrophysics Data System (ADS)
Jaritz, M.; Behm, H.; Hopmann, Ch; Kirchheim, D.; Mitschker, F.; Awakowicz, P.; Dahlmann, R.
2017-01-01
The influence of ultraviolet (UV) radiation from oxygen and argon pretreatment plasmas on a plastic substrate has not been fully understood yet. In particular, its influence on the adhesion properties has not been sufficiently researched so far. This paper addresses this issue by comparing the bond strength of a plasmapolymerized silicon organic coating (SiO x C y H z ) on polypropylene (PP) after oxygen and argon plasma pretreatment and pretreatment by UV radiation emitted by the same plasmas. The UV radiation is isolated from the other species from the plasma by means of a magnesium fluoride (MgF2) optical filter. It could be shown that UV radiation originating from an oxygen plasma has a significant impact on both substrate surface chemistry and coating adhesion. The same maximum bond strength enhancement can be reached by pretreating the polypropylene surface either with pulsed oxygen plasma, or with only the UV radiation from this oxygen plasma. Also, similar surface chemistry and topography modifications are induced. For argon plasma no significant influence of its UV radiation on the substrate could be observed in this study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mutzhas, M.F.; Holzle, E.; Hofmann, C.
1981-01-01
A new apparatus (UVASUN 5000) is presented with high radiation energy between 320 to 460 nm. The radiator is a specially developed source for high uv-A intensity, housing a quartz bulb with a mixture of argon, mercury and metal-halides. The uv-A energy in the range of 320 to 400 nm is about 84% of the total radiation energy. Effects of very high doses of uv-A on human skin were studied. Following single uv-A applications the minimal tanning dose uv-A (MTD) and the immediate pigment darkening (IPD) dose of uv-A were established. Repeated exposure to this uv-A delivering system yields longmore » lasting dark brown skin pigmentation without any clinical or histological signs of sunburn (uv-B) damage, epidermal hyperplasia or thickening of the stratum corneum. Minimal therapeutic results were seen in the phototherapy of vitiligo and inflammatory acne.« less
NASA Astrophysics Data System (ADS)
Filiouguine, Igor V.; Kostiouchenko, S. V.; Koudryavtsev, N. N.; Vasilyak, Leonid M.; Yakimenko, A. V.
1993-11-01
The bacteriological disinfective action of UV-radiation is well known. The pioneer work on UV-radiation used for bacteriological disinfection of waste water was made in 1910. Because of the high cost and low living time of the UV-radiation sources, the alternative technique for waste water purification by chlorine introducing was spread out. During the second stage of the UV purification development, beginning in approximately 1970, the interest for bacteriological cleaning of water, increased again. Two reasons were responsible for this event: first, the significant improvement of technology and design of UV-bacteriological purificators, and second, recognition of the serious danger of chlorine compounds introduced into water under purification because of the toxicity of these compounds. Further investigations gave excellent results in the creation and industrial applications of UV- bacteriological purificators. Now we can see a rapid development of industrial technology in UV-purification of drinking and waste waters.
Shi, Yunzhou; Manco, Megan; Moyal, Dominique; Huppert, Gil; Araki, Hitoshi; Banks, Anthony; Joshi, Hemant; McKenzie, Richard; Seewald, Alex; Griffin, Guy; Sen-Gupta, Ellora; Wright, Donald; Bastien, Philippe; Valceschini, Florent; Seité, Sophie; Wright, John A; Ghaffari, Roozbeh; Rogers, John; Balooch, Guive; Pielak, Rafal M
2018-01-01
Excessive ultraviolet (UV) radiation induces acute and chronic effects on the skin, eye and immune system. Personalized monitoring of UV radiation is thus paramount to measure the extent of personal sun exposure, which could vary with environment, lifestyle, and sunscreen use. Here, we demonstrate an ultralow modulus, stretchable, skin-mounted UV patch that measures personal UV doses. The patch contains functional layers of ultrathin stretchable electronics and a photosensitive patterned dye that reacts to UV radiation. Color changes in the photosensitive dyes correspond to UV radiation intensity and are analyzed with a smartphone camera. A software application has feature recognition, lighting condition correction, and quantification algorithms that detect and quantify changes in color. These color changes are then correlated with corresponding shifts in UV dose, and compared to existing UV dose risk levels. The soft mechanics of the UV patch allow for multi-day wear in the presence of sunscreen and water. Two evaluation studies serve to demonstrate the utility of the UV patch during daily activities with and without sunscreen application.
Shi, Yunzhou; Manco, Megan; Moyal, Dominique; Huppert, Gil; Araki, Hitoshi; Banks, Anthony; Joshi, Hemant; McKenzie, Richard; Seewald, Alex; Griffin, Guy; Sen-Gupta, Ellora; Wright, Donald; Bastien, Philippe; Valceschini, Florent; Seité, Sophie; Wright, John A.; Ghaffari, Roozbeh; Rogers, John; Balooch, Guive
2018-01-01
Excessive ultraviolet (UV) radiation induces acute and chronic effects on the skin, eye and immune system. Personalized monitoring of UV radiation is thus paramount to measure the extent of personal sun exposure, which could vary with environment, lifestyle, and sunscreen use. Here, we demonstrate an ultralow modulus, stretchable, skin-mounted UV patch that measures personal UV doses. The patch contains functional layers of ultrathin stretchable electronics and a photosensitive patterned dye that reacts to UV radiation. Color changes in the photosensitive dyes correspond to UV radiation intensity and are analyzed with a smartphone camera. A software application has feature recognition, lighting condition correction, and quantification algorithms that detect and quantify changes in color. These color changes are then correlated with corresponding shifts in UV dose, and compared to existing UV dose risk levels. The soft mechanics of the UV patch allow for multi-day wear in the presence of sunscreen and water. Two evaluation studies serve to demonstrate the utility of the UV patch during daily activities with and without sunscreen application. PMID:29293664
Reconstruction of daily solar UV irradiation from 1893 to 2002 in Potsdam, Germany
NASA Astrophysics Data System (ADS)
Junk, Jürgen; Feister, Uwe; Helbig, Alfred
2007-08-01
Long-term records of solar UV radiation reaching the Earth’s surface are scarce. Radiative transfer calculations and statistical models are two options used to reconstruct decadal changes in solar UV radiation from long-term records of measured atmospheric parameters that contain information on the effect of clouds, atmospheric aerosols and ground albedo on UV radiation. Based on earlier studies, where the long-term variation of daily solar UV irradiation was derived from measured global and diffuse irradiation as well as atmospheric ozone by a non-linear regression method [Feister et al. (2002) Photochem Photobiol 76:281 293], we present another approach for the reconstruction of time series of solar UV radiation. An artificial neural network (ANN) was trained with measurements of solar UV irradiation taken at the Meteorological Observatory in Potsdam, Germany, as well as measured parameters with long-term records such as global and diffuse radiation, sunshine duration, horizontal visibility and column ozone. This study is focussed on the reconstruction of daily broad-band UV-B (280 315 nm), UV-A (315 400 nm) and erythemal UV irradiation (ER). Due to the rapid changes in cloudiness at mid-latitude sites, solar UV irradiance exhibits appreciable short-term variability. One of the main advantages of the statistical method is that it uses doses of highly variable input parameters calculated from individual spot measurements taken at short time intervals, which thus do represent the short-term variability of solar irradiance.
NASA Astrophysics Data System (ADS)
Mazzillo, M.; Sciuto, A.; Mannino, G.; Renna, L.; Costa, N.; Badalà, P.
2016-10-01
Exposure to ultraviolet (UV) radiation is a major risk factor for most skin cancers. The sun is our primary natural source of UV radiation. The strength of the sun's ultraviolet radiation is expressed as Solar UV Index (UVI). UV-A (320-400 nm) and UV-B (290-320 nm) rays mostly contribute to UVI. UV-B is typically the most destructive form of UV radiation because it has enough energy to cause photochemical damage to cellular DNA. Also overexposure to UV-A rays, although these are less energetic than UV-B photons, has been associated with toughening of the skin, suppression of the immune system, and cataract formation. The use of preventive measures to decrease sunlight UV radiation absorption is fundamental to reduce acute and irreversible health diseases to skin, eyes and immune system. In this perspective UV sensors able to monitor in a monolithic and compact chip the UV Index and relative UV-A and UV-B components of solar spectrum can play a relevant role for prevention, especially in view of the integration of these detectors in close at hand portable devices. Here we present the preliminary results obtained on our UV-A sensor technology based on the use of hydrogenated Silicon Nitride (SiN:H) thin passivating layers deposited on the surface of thin continuous metal film Ni2Si/4H-SiC Schottky detectors, already used for UV-Index monitoring. The first UV-A detector prototypes exhibit a very low leakage current density of about 0.2 pA/mm2 and a peak responsivity value of 0.027 A/W at 330 nm, both measured at 0V bias.
Wang, Yanhan; Zhu, Wenhong; Shu, Muya; Jiang, Yong; Gallo, Richard L.; Liu, Yu-Tsueng; Huang, Chun-Ming
2012-01-01
Recent global radiation fears reflect the urgent need for a new modality that can simply determine if people are in a radiation risk of developing cancer and other illnesses. Ultraviolet (UV) radiation has been thought to be the major risk factor for most skin cancers. Although various biomarkers derived from the responses of human cells have been revealed, detection of these biomarkers is cumbersome, probably requires taking live human tissues, and varies significantly depending on human immune status. Here we hypothesize that the reaction of Propionibacterium acnes (P. acnes), a human resident skin commensal, to UV radiation can serve as early surrogate markers for radiation risk because the bacteria are immediately responsive to radiation. In addition, the bacteria can be readily accessible and exposed to the same field of radiation as human body. To test our hypothesis, P. acnes was exposed to UV-B radiation. The production of porphyrins in P. acnes was significantly reduced with increasing doses of UV-B. The porphyrin reduction can be detected in both P. acnes and human skin bacterial isolates. Exposure of UV-B to P. acnes- inoculated mice led to a significant decrease in porphyrin production in a single colony of P. acnes and simultaneously induced the formation of cyclobutane pyrimidine dimers (CPD) in the epidermal layers of mouse skin. Mass spectrometric analysis via a linear trap quadrupole (LTQ)-Orbitrap XL showed that five peptides including an internal peptide (THLPTGIVVSCQNER) of a peptide chain release factor 2 (RF2) were oxidized by UV-B. Seven peptides including three internal peptides of 60 kDa chaperonin 1 were de-oxidized by UV-B. When compared to UV-B, gamma radiation also decreased the porphyrin production of P. acnes in a dose-dependent manner, but induced a different signature of protein oxidation/de-oxidation. We highlight that uncovering response of skin microbiome to radiation will facilitate the development of pre-symptomatic diagnosis of radiation risk in a battlefield exposure, nuclear accidents, terrorist attacks, or cancer imaging/therapy. PMID:23133525
Wang, Yanhan; Zhu, Wenhong; Shu, Muya; Jiang, Yong; Gallo, Richard L; Liu, Yu-Tsueng; Huang, Chun-Ming
2012-01-01
Recent global radiation fears reflect the urgent need for a new modality that can simply determine if people are in a radiation risk of developing cancer and other illnesses. Ultraviolet (UV) radiation has been thought to be the major risk factor for most skin cancers. Although various biomarkers derived from the responses of human cells have been revealed, detection of these biomarkers is cumbersome, probably requires taking live human tissues, and varies significantly depending on human immune status. Here we hypothesize that the reaction of Propionibacterium acnes (P. acnes), a human resident skin commensal, to UV radiation can serve as early surrogate markers for radiation risk because the bacteria are immediately responsive to radiation. In addition, the bacteria can be readily accessible and exposed to the same field of radiation as human body. To test our hypothesis, P. acnes was exposed to UV-B radiation. The production of porphyrins in P. acnes was significantly reduced with increasing doses of UV-B. The porphyrin reduction can be detected in both P. acnes and human skin bacterial isolates. Exposure of UV-B to P. acnes- inoculated mice led to a significant decrease in porphyrin production in a single colony of P. acnes and simultaneously induced the formation of cyclobutane pyrimidine dimers (CPD) in the epidermal layers of mouse skin. Mass spectrometric analysis via a linear trap quadrupole (LTQ)-Orbitrap XL showed that five peptides including an internal peptide (THLPTGIVVSCQNER) of a peptide chain release factor 2 (RF2) were oxidized by UV-B. Seven peptides including three internal peptides of 60 kDa chaperonin 1 were de-oxidized by UV-B. When compared to UV-B, gamma radiation also decreased the porphyrin production of P. acnes in a dose-dependent manner, but induced a different signature of protein oxidation/de-oxidation. We highlight that uncovering response of skin microbiome to radiation will facilitate the development of pre-symptomatic diagnosis of radiation risk in a battlefield exposure, nuclear accidents, terrorist attacks, or cancer imaging/therapy.
Decontamination Efficacy of Ultraviolet Radiation against Biofilms of Common Nosocomial Bacteria.
Tingpej, Pholawat; Tiengtip, Rattana; Kondo, Sumalee
2015-06-01
Ultraviolet radiation (UV) is commonly used to destroy microorganisms in the health-care environment. However, the efficacy of UV radiation against bacteria growing within biofilms has never been studied. To measure the sterilization effectiveness of UV radiation against common healthcare associated pathogens growing within biofilms. Staphylococcus aureus, Methicillin-resistant S. aureus (MRSA), Streptococcus epidermidis, Escherichia coli, ESBL-producing E. coli, Pseudomonas aeruginosa and Acinetobacter baumannii were cultivated in the Calgary Biofilm Device. Their biofilms were placed 50 cm from the UV lamp within the Biosafety Cabinet. Viability test, crystal violet assay and a scanning electron microscope were used to evaluate the germicidal efficacy. Within 5 minutes, UV radiation could kill S. aureus, MRSA, S. epidermidis, A. baumannii and ESBL-producing E. coli completely while it required 20 minutes and 30 minutes respectively to kill E. coli and P. aeruginosa. However, the amounts of biomass and the ultrastructure between UV-exposed biofilms and controls were not significantly different. UV radiation is effective in inactivating nosocomial pathogens grown within biofilms, but not removing biofilms and EPS. The biofilm of P. aeruginosa was the most durable.
UV protection for sunglasses: revisiting the standards
NASA Astrophysics Data System (ADS)
Masili, Mauro; Schiabel, Homero; Ventura, Liliane
2014-02-01
In a continuing work of establishing safe limits for UV protection on sunglasses, we have estimated the incident UV radiation for the 280 nm - 400 nm range for 5500 locations in Brazil. Current literature establishes safe limits regarding ultraviolet radiation exposure in the spectral region 180nm-400nm for weighted and unweighted UV radiant exposure. British Standard BSEN1836(2005) and American Standard ANZI Z80.3(2009) require the UV protection in the spectral range 280nm-380nm, and The Brazilian Standard for sunglasses protection, NBR15111(20013), currently requires protection for the 280nm - 400nm range as established by literature. However, none of them take into account the total (unweighted) UVA radiant exposure.Calculations of these limits have been made for 5500 Brazilian locations which included the geographic position of the city; altitude, inclination angle of the Earth; typical atmospheric data (ozone column; water vapor and others) as well as scattering from concrete, grass, sand, water, etc.. Furthermore, regarding UV safety for the ocular media, the resistance to irradiance test required on this standard of irradiating the lenses for 25 continuous hours with a 450W sunlight simulator leads to a correspondence of 26 hours and 10 minutes of continuous exposure to the Sun. Moreover, since the sun irradiance in Brazil is quite large, integrations made for the 280-400 nm range shows an average of 45% of greater ultraviolet radiant exposure than for the 280-380 nm range. Suggestions on the parameters of these tests are made in order to establish safe limits according to the UV irradiance in Brazil.
Plant Responses to Increased UV-B Radiation: A Research Project
NASA Technical Reports Server (NTRS)
DAntoni, H. L.; Skiles, J. W.; Armstrong, R.; Coughlan, J.; Daleo, G.; Mayoral, A.; Lawless, James G. (Technical Monitor)
1994-01-01
Ozone decrease implies more ultraviolet-B (UV-B) radiation reaching the surface of the Earth. Increased UV-B radiation triggers responses by living organisms. Despite the large potential impacts on vegetation, little is known about UV-B effects on terrestrial ecosystems. Long-term ecological studies are needed to quantify the effects of increased UV radiation on terrestrial ecosystems, asses the risks, and produce reliable data for prediction. Screening pigments are part of one of the protective mechanism in plants. Higher concentrations of screening pigments in leaves may be interpreted as a response to increased UV radiation. If the screening effect is not sufficient, important molecules will be disturbed by incoming radiation. Thus, genetics, photosynthesis, growth, plant and leaf shape and size, and pollen grains may be affected. This will have an impact on ecosystem dynamics, structure and productivity. It is necessary to monitor selected terrestrial ecosystems to permit detection and interpretation of changes attributable to global climate change and depleted ozone shield. The objectives of this project are: (1) To identify and measure indicators of the effects of increased solar UV-B radiation on terrestrial plants; (2) to select indicators with the greatest responses to UV-B exposure; (3) to test, adapt or create ecosystem models that use the information gathered by this project for prediction and to enhance our understanding of the effects of increased UV-B radiation on terrestrial ecosystems. As a first step to achieve these objectives we propose a three-year study of forest and steppe vegetation on the North slope of the Brooks Range (within the Arctic circle, in Alaska), in the Saguaro National Monument (near Tucson, Arizona) and in the forests and steppes of Patagonia (Argentina). We selected (1) vegetation north of the Polar Circle because at 70N there is 8% risk of plant damage due to increased UV-B radiation; (2) the foothills of Catalina Mountains because there is anecdotal evidence of plant damage on the saguaros that has been linked to increased UV radiation, and (3) the forests of Nothofagus spp. and the steppe of Patagonia where the risk of plant damage at 35S is 5% and increases to as much as 15% at 55S due to increased UV-B radiation. Measurements of UV-B radiation impinging on the surface at 55S largely exceed the predicted UV-B radiation values at 50 latitude and 0% ozone depletion. Preliminary HPLC analyses of UV-B absorbing compounds in Nothofagus antartica, N. pumilio, N. betuloides and Rumex sp. in natural conditions show species-specific patterns. The spectrum of N. antartica grown at 38S differs significantly from that of N. antartica in natural conditions in Ushuaia (55S). These results suggest that the selected main area (Patagonia) is appropriate for assessing the problem and its magnitude and that Nothofagus is appropriate for our study.
Changes in biologically active ultraviolet radiation reaching the Earth's surface.
Madronich, S; McKenzie, R L; Björn, L O; Caldwell, M M
1998-10-01
Stratospheric ozone levels are near their lowest point since measurements began, so current ultraviolet-B (UV-B) radiation levels are thought to be close to their maximum. Total stratospheric content of ozone-depleting substances is expected to reach a maximum before the year 2000. All other things being equal, the current ozone losses and related UV-B increases should be close to their maximum. Increases in surface erythemal (sunburning) UV radiation relative to the values in the 1970s are estimated to be: about 7% at Northern Hemisphere mid-latitudes in winter/spring; about 4% at Northern Hemisphere mid-latitudes in summer/fall; about 6% at Southern Hemisphere mid-latitudes on a year-round basis; about 130% in the Antarctic in spring; and about 22% in the Arctic in spring. Reductions in atmospheric ozone are expected to result in higher amounts of UV-B radiation reaching the Earth's surface. The expected correlation between increases in surface UV-B radiation and decreases in overhead ozone has been further demonstrated and quantified by ground-based instruments under a wide range of conditions. Improved measurements of UV-B radiation are now providing better geographical and temporal coverage. Surface UV-B radiation levels are highly variable because of cloud cover, and also because of local effects including pollutants and surface reflections. These factors usually decrease atmospheric transmission and therefore the surface irradiances at UV-B as well as other wavelengths. Occasional cloud-induced increases have also been reported. With a few exceptions, the direct detection of UV-B trends at low- and mid-latitudes remains problematic due to this high natural variability, the relatively small ozone changes, and the practical difficulties of maintaining long-term stability in networks of UV-measuring instruments. Few reliable UV-B radiation measurements are available from pre-ozone-depletion days. Satellite-based observations of atmospheric ozone and clouds are being used, together with models of atmospheric transmission, to provide global coverage and long-term estimates of surface UV-B radiation. Estimates of long-term (1979-1992) trends in zonally averaged UV irradiances that include cloud effects are nearly identical to those for clear-sky estimates, providing evidence that clouds have not influenced the UV-B trends. However, the limitations of satellite-derived UV estimates should be recognized. To assess uncertainties inherent in this approach, additional validations involving comparisons with ground-based observations are required. Direct comparisons of ground-based UV-B radiation measurements between a few mid-latitude sites in the Northern and Southern Hemispheres have shown larger differences than those estimated using satellite data. Ground-based measurements show that summertime erythemal UV irradiances in the Southern Hemisphere exceed those at comparable latitudes of the Northern Hemisphere by up to 40%, whereas corresponding satellite-based estimates yield only 10-15% differences. Atmospheric pollution may be a factor in this discrepancy between ground-based measurements and satellite-derived estimates. UV-B measurements at more sites are required to determine whether the larger observed differences are globally representative. High levels of UV-B radiation continue to be observed in Antarctica during the recurrent spring-time ozone hole. For example, during ozone-hole episodes, measured biologically damaging radiation at Palmer Station, Antarctica (64 degrees S) has been found to approach and occasionally even exceed maximum summer values at San Diego, CA, USA (32 degrees N). Long-term predictions of future UV-B levels are difficult and uncertain. Nevertheless, current best estimates suggest that a slow recovery to pre-ozone depletion levels may be expected during the next half-century. (ABSTRACT TRUNCATED)
Caldwell, M M; Bornman, J F; Ballaré, C L; Flint, S D; Kulandaivelu, G
2007-03-01
There have been significant advances in our understanding of the effects of UV-B radiation on terrestrial ecosystems, especially in the description of mechanisms of plant response. A further area of highly interesting research emphasizes the importance of indirect UV radiation effects on plants, pathogens, herbivores, soil microbes and ecosystem processes below the surface. Although photosynthesis of higher plants and mosses is seldom affected by enhanced or reduced UV-B radiation in most field studies, effects on growth and morphology (form) of higher plants and mosses are often manifested. This can lead to small reductions in shoot production and changes in the competitive balance of different species. Fungi and bacteria are generally more sensitive to damage by UV-B radiation than are higher plants. However, the species differ in their UV-B radiation sensitivity to damage, some being affected while others may be very tolerant. This can lead to changes in species composition of microbial communities with subsequent influences on processes such as litter decomposition. Changes in plant chemical composition are commonly reported due to UV-B manipulations (either enhancement or attenuation of UV-B in sunlight) and may lead to substantial reductions in consumption of plant tissues by insects. Although sunlight does not penetrate significantly into soils, the biomass and morphology of plant root systems of plants can be modified to a much greater degree than plant shoots. Root mass can exhibit sizeable declines with more UV-B. Also, UV-B-induced changes in soil microbial communities and biomass, as well as altered populations of small invertebrates have been reported and these changes have important implications for mineral nutrient cycling in the soil. Many new developments in understanding the underlying mechanisms mediating plant response to UV-B radiation have emerged. This new information is helpful in understanding common responses of plants to UV-B radiation, such as diminished growth, acclimation responses of plants to UV-B radiation and interactions of plants with consumer organisms such as insects and plant pathogens. The response to UV-B radiation involves both the initial stimulus by solar radiation and transmission of signals within the plants. Resulting changes in gene expression induced by these signals may have elements in common with those elicited by other environmental factors, and generate overlapping functional (including acclimation) responses. Concurrent responses of terrestrial systems to the combination of enhanced UV-B radiation and other global change factors (increased temperature, CO2, available nitrogen and altered precipitation) are less well understood. Studies of individual plant responses to combinations of factors indicate that plant growth can be augmented by higher CO2 levels, yet many of the effects of UV-B radiation are usually not ameliorated by the elevated CO2. UV-B radiation often increases both plant frost tolerance and survival under extreme high temperature conditions. Conversely, extreme temperatures sometimes influence the UV-B radiation sensitivity of plants directly. Plants that endure water deficit stress effectively are also likely to be tolerant of high UV-B flux. Biologically available nitrogen is exceeding historical levels in many regions due to human activities. Studies show that plants well supplied with nitrogen are generally more sensitive to UV-B radiation. Technical issues concerning the use of biological spectral weighting functions (BSWFs) have been further elucidated. The BSWFs, which are multiplication factors assigned to different wavelengths giving an indication of their relative biological effectiveness, are critical to the proper conduct and interpretation of experiments in which organisms are exposed to UV radiation, both in the field and in controlled environment facilities. The characteristics of BSWFs vary considerably among different plant processes, such as growth, DNA damage, oxidative damage and induction of changes in secondary chemicals. Thus, use of a single BSWF for plant or ecosystem response is not appropriate. This brief review emphasizes progress since the previous report toward the understanding of solar ultraviolet radiation effects on terrestrial systems as it relates to ozone column reduction and the interaction of climate change factors.
Sharma, Jaigopal; Rao, Y Vasudeva; Kumar, S; Chakrabarti, Rina
2010-03-01
Ultraviolet radiation is a potent threat to the aquatic animals. Exposure to such stressor affects metabolic and immunological processes. The present investigation aims to study the effect of UV-B radiation on digestive enzymes and immunity of larvae of Catla catla. Larvae were exposed to ultraviolet-B (UV-B, 280-320 nm) radiation (145 microW/cm(2)) for three different exposure times of 5, 10 and 15 min on every other day. After 55 days, important digestive enzymes were assayed. For immunological study, lysozyme, glutamate oxaloacetate transaminase (GOT) and glutamate pyruvate transaminase (GPT) levels were measured. Then the fish were kept for one month without radiation and lysozyme level was measured. Protein concentration varied directly with the duration of exposure and was highest among fish that had received the 15 min UV-B irradiation. Significantly higher amylase, protease, trypsin and chymotrypsin activities were found in 5 min exposed fish compared to others. Lysozyme level was significantly higher in control group compared to the UV-B treated fish. The lysozyme level decreased with the increasing duration of UV-B radiation. When fish were kept without UV-B radiation for one month, lysozyme level was brought to the normal level in all treatments, except 15 min exposed fish. The GOT and GPT levels were significantly higher in the 15 min exposed group than others. The effects of UV-B radiation on the digestive physiology and immune system of catla have been clearly observed in the present study. The decreased enzyme activities in UV-B radiated fish results into improper digestion and poor growth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Day, T.A.; Howells, B.W.; Ruhland, C.T.
1995-06-01
In growth-chamber and greenhouse studies, garden pea is typically quite sensitive to enhanced UV-B radiation (280-320 nm). We assessed whether growth of pea was reduced under more ecologically relevant UV-B enhancements by employing modulated field lampbanks simulating 0, 16 or 24% ozone depletion. We also examined if these UV-B treatments altered leaf anatomy and concentrations of chlorophyll and UV-B-absorbing compounds, and whether this was dependent on leaf age. We used Pisum sativum mutant Argenteum which has an easily detachable epidermis that allowed us to compare concentrations in epidermal and mesophyll tissues. There were no significant UV-B effects on whole-plant growth.more » Of the 15 leaf-level parameters we examined, UV-B had a strong effect on only two parameters: the ratio of UV-B-absorbing compounds to chlorophyll (which increased with UV-B dose), and stomatal density of the adaxial surface (which decreased with UV-B dose). Chlorophyll concentrations tended to decrease, while the proportion of UV-B-absorbing compounds in the adaxial epidermis tended to increase with UV-B dose (p = 0.11 for both). In contrast to UV-B effects, we found strong leaf-age effects on nearly all parameters except the ratio of UV-B-absorbing compounds to chlorophyll, which remained relatively constant with leaf age.« less
[UV-radiation--sources, wavelength, environment].
Hölzle, Erhard; Hönigsmann, Herbert
2005-09-01
The UV-radiation in our environment is part of the electromagnetic radiation, which emanates from the sun. It is designated as optical radiation and reaches from 290-4,000 nm on the earth's surface. According to international definitions UV irradiation is divided into short-wave UVC (200-280 nm), medium-wave UVB (280-320 nm), and long-wave UVA (320-400 nm). Solar radiation which reaches the surface of the globe at a defined geographical site and a defined time point is called global radiation. It is modified quantitatively and qualitatively while penetrating the atmosphere. Besides atmospheric conditions, like ozone layer and air pollution, geographic latitude, elevation, time of the season, time of the day, cloudiness and the influence of indirect radiation resulting from stray effects in the atmosphere and reflection from the underground play a role in modifying global radiation, which finally represents the biologically effective radiation. The radiation's distribution on the body surface varies according to sun angle and body posture. The cumulative UV exposure is mainly influenced by outdoor profession and recreational activities. The use of sun beds and phototherapeutic measures additionally may contribute to the cumulative UV dose.
UV-B Radiation Impacts Shoot Tissue Pigment Composition in Allium fistulosum L. Cultigens
Abney, Kristin R.; Kopsell, Dean A.; Sams, Carl E.; Zivanovic, Svetlana; Kopsell, David E.
2013-01-01
Plants from the Allium genus are valued worldwide for culinary flavor and medicinal attributes. In this study, 16 cultigens of bunching onion (Allium fistulosum L.) were grown in a glasshouse under filtered UV radiation (control) or supplemental UV-B radiation [7.0 μmol·m−2 ·s−2 (2.68 W·m−2)] to determine impacts on growth, physiological parameters, and nutritional quality. Supplemental UV-B radiation influenced shoot tissue carotenoid concentrations in some, but not all, of the bunching onions. Xanthophyll carotenoid pigments lutein and β-carotene and chlorophylls a and b in shoot tissues differed between UV-B radiation treatments and among cultigens. Cultigen “Pesoenyj” responded to supplemental UV-B radiation with increases in the ratio of zeaxanthin + antheraxanthin to zeaxanthin + antheraxanthin + violaxanthin, which may indicate a flux in the xanthophyll carotenoids towards deepoxydation, commonly found under high irradiance stress. Increases in carotenoid concentrations would be expected to increase crop nutritional values. PMID:23606817
Erickson III, David J.; Sulzberger, Barbara; Zepp, Richard G.; ...
2014-11-07
Climate change modulates the effects of solar UV radiation on biogeochemical cycles in terrestrial and aquatic ecosystems, particularly for carbon cycling, resulting in UV-mediated positive or negative feedbacks on climate. Possible positive feedbacks discussed in this assessment include: (i) enhanced UV-induced mineralisation of above ground litter due to aridification; (ii) enhanced UV-induced mineralisation of photoreactive dissolved organic matter (DOM) in aquatic ecosystems due to changes in continental runoff and ice melting; (iii) reduced efficiency of the biological pump due to UV-induced bleaching of coloured dissolved organic matter (CDOM) in stratified aquatic ecosystems, where CDOM protects phytoplankton from the damaging solarmore » UV-B radiation. Mineralisation of organic matter results in the production and release of CO 2, whereas the biological pump is the main biological process for CO 2 removal by aquatic ecosystems. This research also assesses the interactive effects of solar UV radiation and climate change on the biogeochemical cycling of aerosols and trace gases other than CO 2, as well as of chemical and biological contaminants. Lastly,, interacting effects of solar UV radiation and climate change on biogeochemical cycles are particularly pronounced at terrestrial-aquatic interfaces.« less
The mechanisms of protection of antioxidants on Nostoc sphaeroides against UV-B radiation
NASA Astrophysics Data System (ADS)
Wang, G. H.
UV radiation is one of space harmful factor for earth organisms in space exploration In the present work we studied on the role of antioxidant system in Nostoc sphaeroides K u tz Cyanobacteria and the effects of exogenous antioxidant molecules on its photosynthetic rate under UV-B radiation It was found that UV-B radiation decreased the photosynthetic activity of cyanobacterium but promoted the activity of antioxidant system to protect photosystem II PSII and exogenous antioxidant sodium nitroprusside SNP N-acetylcysteine NAC had an obvious protection on PSII activity under UV-B radiation The activity of SOD Superoxide Dismutase EC 1 15 1 1 CAT Catalase EC 1 11 1 6 POD Peroxidase EC 1 11 1 7 and content of MDA and ASC were improved by 0 5mM and 1mM SNP but 0 1mM SNP decreased the activity of antioxide system Exogenous NAC addition decreased the activity of SOD POD CAT and the content MDA and ASC but exogenous NAC addition increased the content of GSH The results suggested that exogenous SNP and NAC may protect algae by different mechanisms in which SNP maybe play double roles as sources of reactive free radicals or ROS scavengers in formation of algae s protection of PSII under UV-B radiation while NAC does function as antioxidant reagent or precursor of glutathione which could protect PSII directly from UV-B radiation Keyword antioxidant system exogenous or endogenous antioxidant Nostoc sphaeroides photosynthesis UV-B radiation
Surdu, Simona; Fitzgerald, Edward F.; Bloom, Michael S.; Boscoe, Francis P.; Carpenter, David O.; Haase, Richard F.; Gurzau, Eugen; Rudnai, Peter; Koppova, Kvetoslava; Févotte, Joëlle; Leonardi, Giovanni; Vahter, Marie; Goessler, Walter; Kumar, Rajiv; Fletcher, Tony
2013-01-01
Background Studies suggest that ambient sunlight plays an important role in the pathogenesis of non-melanoma skin cancers (NMSC). However, there is ongoing controversy regarding the relevance of occupational exposure to natural and artificial ultraviolet radiation (UV) radiation. Objectives We investigated potential associations between natural and artificial UV radiation exposure at work with NMSC in a case-control study conducted in Hungary, Romania, and Slovakia. Methods Occupational exposures were classified by expert assessment for 527 controls and 618 NMSC cases (515 basal cell carcinoma, BCC). Covariate information was collected via interview and multiple logistic regression models were used to assess associations between UV exposure and NMSC. Results Lifetime prevalence of occupational exposure in the participants was 13% for natural UV radiation and 7% for artificial UV radiation. Significant negative associations between occupational exposure to natural UV radiation and NMSC were detected for all who had ever been exposed (odds ratio (OR) 0.47, 95% confidence interval (CI) 0.27–0.80); similar results were detected using a semi-quantitative metric of cumulative exposure. The effects were modified by skin complexion, with significantly decreased risks of BCC among participants with light skin complexion. No associations were observed in relation to occupational artificial UV radiation exposure. Conclusions The protective effect of occupational exposure to natural UV radiation was unexpected, but limited to light-skinned people, suggesting adequate sun-protection behaviors. Further investigations focusing on variations in the individual genetic susceptibility and potential interactions with environmental and other relevant factors are planned. PMID:23638051
Development of UV-B screening compounds in response to variation in ambient levels of UV-B radiation
NASA Astrophysics Data System (ADS)
Sullivan, Joe H.; Xu, Chenping; Gao, Wei; Slusser, James R.
2005-08-01
The induction of UV-B screening compounds in response to exposure to UV-B radiation is a commonly reported response and is generally considered to be an adaptive response of plants for protection from UVinduced damage. However, a number of questions remain to be answered including the importance of qualitative and localization differences among species in providing protection, indirect consequences of changes in leaf secondary chemistry on ecological processes and the dose response of metabolite accumulation. In this study we utilized UV monitoring data provided on site by the USDA UV-B Monitoring and Research Program to monitor the changes in UV-screening compounds in soybeans under a range of UV-B levels due to natural variation in ambient UV-B radiation. Soybean cultivars Essex, Clark and Clark-magenta, an isoline of Clark that produces minimal levels of flavonols, were grown beneath shelters covered either with polyester to block most UV-B radiation or teflon which is nearly transparent in the UV range and harvested at regular intervals for pigment and protein analysis. Daily levels of weighted UV-B varied from <1 to >7 kJ m-2. Increases in UV-screening compounds showed a positive dose response to UV-B radiation in all cultivars with Essex showing the steepest dose response. UV-A also induced screening compounds in all species The hydroxycinnimates of the magenta isoline showed a steep dose response to UV-A and a rather constant (non dose specific) but small additional increment in response to UV-B. The Clark isoline, which produced primarily the flavonol quercetin, showed a dose response to UV-B intermediate between that of Clark-magenta and Essex. All three cultivars show similar tolerance to UV-B in field conditions indicating that UV-induced pigment production is adequate to protect them from excessive UV-B damage.
Occupational skin cancer induced by ultraviolet radiation and its prevention.
Diepgen, T L; Fartasch, M; Drexler, H; Schmitt, J
2012-08-01
Skin cancer is by far the most common kind of cancer diagnosed in many western countries and ultraviolet radiation is the most important risk factor for cutaneous squamous cell carcinoma (SCC) and basal cell carcinoma (BCC). Although employees at several workplaces are exposed to increased levels of UV radiation, skin cancer due to long-term intense occupational exposure to UV radiation is often not considered as occupational disease. The actually available evidence in the epidemiological literature clearly indicates that occupational UV radiation exposure is a substantial and robust risk factor for the development of cutaneous SCC and also clearly shows a significant risk for developing BCC. There is enough scientific evidence that outdoor workers have an increased risk of developing work-related occupational skin cancer due to natural UV radiation exposure and adequate prevention strategies must be implemented. The three measures which are successful and of particular importance in the prevention of nonmelanoma skin cancer in outdoor workers are changes in behaviour regarding awareness of health and disease resulting from exposure to natural UV radiation, protection from direct UV radiation by wearing suitable clothing, and regular and correct use of appropriate sunscreens. © 2012 The Authors. BJD © 2012 British Association of Dermatologists.
Behar-Cohen, Francine; Baillet, Gilles; de Ayguavives, Tito; Garcia, Paula Ortega; Krutmann, Jean; Peña-García, Pablo; Reme, Charlotte; Wolffsohn, James S
2014-01-01
Ultraviolet (UV) radiation potentially damages the skin, the immune system, and structures of the eye. A useful UV sun protection for the skin has been established. Since a remarkable body of evidence shows an association between UV radiation and damage to structures of the eye, eye protection is important, but a reliable and practical tool to assess and compare the UV-protective properties of lenses has been lacking. Among the general lay public, misconceptions on eye-sun protection have been identified. For example, sun protection is mainly ascribed to sunglasses, but less so to clear lenses. Skin malignancies in the periorbital region are frequent, but usual topical skin protection does not include the lids. Recent research utilized exact dosimetry and demonstrated relevant differences in UV burden to the eye and skin at a given ambient irradiation. Chronic UV effects on the cornea and lens are cumulative, so effective UV protection of the eyes is important for all age groups and should be used systematically. Protection of children’s eyes is especially important, because UV transmittance is higher at a very young age, allowing higher levels of UV radiation to reach the crystalline lens and even the retina. Sunglasses as well as clear lenses (plano and prescription) effectively reduce transmittance of UV radiation. However, an important share of the UV burden to the eye is explained by back reflection of radiation from lenses to the eye. UV radiation incident from an angle of 135°–150° behind a lens wearer is reflected from the back side of lenses. The usual antireflective coatings considerably increase reflection of UV radiation. To provide reliable labeling of the protective potential of lenses, an eye-sun protection factor (E-SPF®) has been developed. It integrates UV transmission as well as UV reflectance of lenses. The E-SPF® compares well with established skin-sun protection factors and provides clear messages to eye health care providers and to lay consumers. PMID:24379652
NASA Technical Reports Server (NTRS)
Dorodnitsyn, Anton; Kallman, Tim; Bisno\\vatyiI-Kogan, Gennadyi
2011-01-01
We explore a detailed model in which the active galactic nucleus (AGN) obscuration results from the extinction of AGN radiation in a global ow driven by the pressure of infrared radiation on dust grains. We assume that external illumination by UV and soft X-rays of the dusty gas located at approximately 1pc away from the supermassive black hole is followed by a conversion of such radiation into IR. Using 2.5D, time-dependent radiation hydrodynamics simulations in a ux-limited di usion approximation we nd that the external illumination can support a geometrically thick obscuration via out ows driven by infrared radiation pressure in AGN with luminosities greater than 0:05 L(sub edd) and Compton optical depth, Tau(sub T) approx > & 1.
Moeller, Ralf; Cadet, Jean; Douki, Thierry; Mancinelli, Rocco L.; Nicholson, Wayne L.; Panitz, Corinna; Rabbow, Elke; Rettberg, Petra; Spry, Andrew; Stackebrandt, Erko; Vaishampayan, Parag; Venkateswaran, Kasthuri J.
2012-01-01
Abstract Spore-forming bacteria are of particular concern in the context of planetary protection because their tough endospores may withstand certain sterilization procedures as well as the harsh environments of outer space or planetary surfaces. To test their hardiness on a hypothetical mission to Mars, spores of Bacillus subtilis 168 and Bacillus pumilus SAFR-032 were exposed for 1.5 years to selected parameters of space in the experiment PROTECT during the EXPOSE-E mission on board the International Space Station. Mounted as dry layers on spacecraft-qualified aluminum coupons, the “trip to Mars” spores experienced space vacuum, cosmic and extraterrestrial solar radiation, and temperature fluctuations, whereas the “stay on Mars” spores were subjected to a simulated martian environment that included atmospheric pressure and composition, and UV and cosmic radiation. The survival of spores from both assays was determined after retrieval. It was clearly shown that solar extraterrestrial UV radiation (λ≥110 nm) as well as the martian UV spectrum (λ≥200 nm) was the most deleterious factor applied; in some samples only a few survivors were recovered from spores exposed in monolayers. Spores in multilayers survived better by several orders of magnitude. All other environmental parameters encountered by the “trip to Mars” or “stay on Mars” spores did little harm to the spores, which showed about 50% survival or more. The data demonstrate the high chance of survival of spores on a Mars mission, if protected against solar irradiation. These results will have implications for planetary protection considerations. Key Words: Planetary protection—Bacterial spores—Space experiment—Simulated Mars mission. Astrobiology 12, 445–456. PMID:22680691
Measurements of Photoelectric Yield and Physical Properties of Individual Lunar Dust Grains
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, F. A.; Taylor, L.; Hoover, R.
2005-01-01
Micron size dust grains levitated and transported on the lunar surface constitute a major problem for the robotic and human habitat missions for the Moon. It is well known since the Apollo missions that the lunar surface is covered with a thick layer of micron/sub-micron size dust grains. Transient dust clouds over the lunar horizon were observed by experiments during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar UV radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and the levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon's surface with its observed adhesive characteristics is believed to have a severe impact on the human habitat and the lifetime and operations of a variety of equipment, it is necessary to investigate the phenomena and the charging properties of the lunar dust in order to develop appropriate mitigating strategies. We will present results of some recent laboratory experiments on individual micro/sub-micron size dust grains levitated in electrodynamic balance in simulated space environments. The experiments involve photoelectric emission measurements of individual micron size lunar dust grains illuminated with UV radiation in the 120-160 nm wavelength range. The photoelectric yields are required to determine the charging properties of lunar dust illuminated by solar UV radiation. We will present some recent results of laboratory measurement of the photoelectric yields and the physical properties of individual micron size dust grains from the Apollo and Luna-24 sample returns as well as the JSC-1 lunar simulants.
Laihia, J K; Jansen, C T
2000-08-01
It has been postulated that Langerhans cells (LC) provide tolerogenic signals in the local impairment of cutaneous immune functions and antigen-specific tolerance induced by UV radiation. Studies in vitro and ex vivo have indicated that UV radiation may down-regulate the expression of costimulatory molecules on LC, leading to reduced antigen-presenting function. In contrast, we recently observed an up-regulatory stage in the number of human epidermal LC with induced expression of B7 costimulatory molecules 12-24 h after solar-simulating UV radiation (SSR) in vivo. To examine the apparent discrepancy between the observed human LC responses in vitro, ex vivo and in vivo, we compared the three protocols in a parallel fashion. The intact skin as well as skin explants and epidermal cell suspensions from the same individuals were irradiated with a single erythematogenic dose of SSR. The expression of cell surface markers in the epidermal cells was analysed with flow cytometry 24 h later. The number of CD1a+/HLA-DR+ LC increased post-SSR in vivo by a factor of 2.8+/-0.4, whereas in irradiated skin explants ex vivo or in cell suspensions in vitro, reduced numbers were seen. HLA-DR expression intensities were found to have increased on DR+ and CD1a+/DR+ cells in vivo. Similarly, SSR induced B7-2 (CD86) expression in CD1a+ cells significantly in vivo (P=0.031) but reduced the expression ex vivo or in vitro. We conclude that the early up-regulatory stage of human LC number and membrane markers, recorded at 24 h after a single exposure to SSR, is exclusively an in vivo phenomenon.
Design of wideband solar ultraviolet radiation intensity monitoring and control system
NASA Astrophysics Data System (ADS)
Ye, Linmao; Wu, Zhigang; Li, Yusheng; Yu, Guohe; Jin, Qi
2009-08-01
According to the principle of SCM (Single Chip Microcomputer) and computer communication technique, the system is composed of chips such as ATML89C51, ADL0809, integrated circuit and sensors for UV radiation, which is designed for monitoring and controlling the UV index. This system can automatically collect the UV index data, analyze and check the history database, research the law of UV radiation in the region.
NASA Technical Reports Server (NTRS)
Kalashnikova, Olga V.; Mills, Franklin P.; Eldering, Annmarie; Anderson, Don
2007-01-01
An understanding of the effect of aerosols on biologically- and photochemically-active UV radiation reaching the Earth's surface is important for many ongoing climate, biophysical, and air pollution studies. In particular, estimates of the UV characteristics of the most common Australian aerosols will be valuable inputs to UV Index forecasts, air quality studies, and assessments of the impact of regional environmental changes. By analyzing climatological distributions of Australian aerosols we have identified sites where co-located ground-based UV-B and ozone measurements were available during episodes of relatively high aerosol activity. Since at least June 2003, surface UV global irradiance spectra (285-450 nm) have been measured routinely at Darwin and Alice Springs in Australia by the Australian Bureau of Meteorology (BoM). Using colocated sunphotometer measurements at Darwin and Alice Springs, we identified several episodes of relatively high aerosol activity. Aerosol air mass types were analyzed from sunphotometer-derived angstrom parameter, MODIS fire maps and MISR aerosol property retrievals. To assess aerosol effects we compared the measured UV irradiances for aerosol-loaded and clear-sky conditions with each other and with irradiances simulated using the libRadtran radiative transfer model for aerosol-free conditions. We found that for otherwise similar atmospheric conditions, smoke aerosols over Darwin reduced the surface UV irradiance by as much as 40-50% at 290-300 nm and 20-25% at 320-400 nm near active fires (aerosol optical depth, AOD, at 500 nm approximately equal to 0.6). Downwind of fires, the smoke aerosols over Darwin reduced the surface irradiance by 15-25% at 290-300 nm and approximately 10% at 320-350 nm (AOD at 500 nm approximately equal to 0.2). The effect of smoke increased with decrease of wavel strongest in the UV-B. The aerosol attenuation factors calculated for the selected cases suggest smoke over Darwin has an effect on surface 340-380 nm irradiances that is comparable to that produced by smoke over Sub-Saharan Africa. Dust activity was very low at Alice Springs during 2004, therefore we were not able to identify strong dust events to fully assess the UVeffect of dust. For the cases studied, smoke aerosols seem to produce a stronger reduction in surface UV irradiances than dust aerosols.
Solar UV radiation, climate and other drivers of global change are undergoing significant changes and models forecast that these changes will continue for the remainder of this century. Here we assess the effects of solar UV radiation on biogeochemical cycles and the interactions...
Plants of Vicia faba were grown in the field during early to midsummer while receiving two levels of supplemental UV-B radiation. Light-saturated photosynthesis and stomatal diffusive conductance of intact leaves did not show any indications of UV-radiation damage. Supplemental U...
Segura, Antígona; Walkowicz, Lucianne M; Meadows, Victoria; Kasting, James; Hawley, Suzanne
2010-09-01
Main sequence M stars pose an interesting problem for astrobiology: their abundance in our galaxy makes them likely targets in the hunt for habitable planets, but their strong chromospheric activity produces high-energy radiation and charged particles that may be detrimental to life. We studied the impact of the 1985 April 12 flare from the M dwarf AD Leonis (AD Leo), simulating the effects from both UV radiation and protons on the atmospheric chemistry of a hypothetical, Earth-like planet located within its habitable zone. Based on observations of solar proton events and the Neupert effect, we estimated a proton flux associated with the flare of 5.9 × 10⁸ protons cm⁻² sr⁻¹ s⁻¹ for particles with energies >10 MeV. Then we calculated the abundance of nitrogen oxides produced by the flare by scaling the production of these compounds during a large solar proton event called the Carrington event. The simulations were performed with a 1-D photochemical model coupled to a 1-D radiative/convective model. Our results indicate that the UV radiation emitted during the flare does not produce a significant change in the ozone column depth of the planet. When the action of protons is included, the ozone depletion reaches a maximum of 94% two years after the flare for a planet with no magnetic field. At the peak of the flare, the calculated UV fluxes that reach the surface, in the wavelength ranges that are damaging for life, exceed those received on Earth during less than 100 s. Therefore, flares may not present a direct hazard for life on the surface of an orbiting habitable planet. Given that AD Leo is one of the most magnetically active M dwarfs known, this conclusion should apply to planets around other M dwarfs with lower levels of chromospheric activity.
The Molecular and Physiological Responses of Physcomitrella patens to Ultraviolet-B Radiation1[W][OA
Wolf, Luise; Rizzini, Luca; Stracke, Ralf; Ulm, Roman; Rensing, Stefan A.
2010-01-01
Ultraviolet-B (UV-B) radiation present in sunlight is an important trigger of photomorphogenic acclimation and stress responses in sessile land plants. Although numerous moss species grow in unshaded habitats, our understanding of their UV-B responses is very limited. The genome of the model moss Physcomitrella patens, which grows in sun-exposed open areas, encodes signaling and metabolic components that are implicated in the UV-B response in flowering plants. In this study, we describe the response of P. patens to UV-B radiation at the morphological and molecular levels. We find that P. patens is more capable of surviving UV-B stress than Arabidopsis (Arabidopsis thaliana) and describe the differential expression of approximately 400 moss genes in response to UV-B radiation. A comparative analysis of the UV-B response in P. patens and Arabidopsis reveals both distinct and conserved pathways. PMID:20427465
Soriano-Melgar, Lluvia de Abril Alexandra; Alcaraz-Meléndez, Lilia; Méndez-Rodríguez, Lía C; Puente, María Esther; Rivera-Cabrera, Fernando; Zenteno-Savín, Tania
2014-05-01
Ultraviolet type B (UV-B) radiation effects on medicinal plants have been recently investigated in the context of climate change, but the modifications generated by UV-B radiation might be used to increase the content of antioxidants, including phenolic compounds. To generate information on the effect of exposure to artificial UV-B radiation at different highdoses in the antioxidant content of damiana plants in an in vitro model. Damiana plantlets (tissue cultures in Murashige- Skoog medium) were irradiated with artificial UV-B at 3 different doses (1) 0.5 ± 0.1 mW cm-2 (high) for 2 h daily, (2) 1 ± 0,1 mW cm-2 (severe) for 2 h daily, or (3) 1 ± 0.1 mW cm-2 for 4 h daily during 3 weeks. The concentration of photosynthetic pigments (chlorophylls a and b, carotenoids), vitamins (C and E) and total phenolic compounds, the enzymatic activity of superoxide dismutase (SOD, EC 1.15.1.1) and total peroxidases (POX, EC 1.11.1), as well as total antioxidant capacity and lipid peroxidation levels were quantified to assess the effect of high artificial UV-B radiation in the antioxidant content of in vitro damiana plants. Severe and high doses of artificial UV-B radiation modified the antioxidant content by increasing the content of vitamin C and decreased the phenolic compound content, as well as modified the oxidative damage of damiana plants in an in vitro model. UV-B radiation modified the antioxidant content in damiana plants in an in vitro model, depending on the intensity and duration of the exposure. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
Dillon, Francisco M; Chludil, Hugo D; Zavala, Jorge A
2017-09-01
Although it is well known that solar ultraviolet B (UV-B) radiation enhances plant defenses, there is less knowledge about traits that define insect resistance in field-grown soybean. Here we study the effects of solar UV-B radiation on: a) the induction of phenolic compounds and trypsin proteinase inhibitors (TPI) in soybean undamaged leaves or damaged by Anticarsia gemmatalis neonates during six days, and b) the survival and mass gain of A. gemmatalis larvae that fed on soybean foliage. Two soybean cultivars (cv.), Charata and Williams, were grown under plastic with different transmittance to solar UV-B radiation, which generated two treatments: ambient UV-B (UVB+) and reduced UV-B (UVB-) radiation. Solar UV-B radiation decreased survivorship by 30% and mass gain by 45% of larvae that fed on cv. Charata, but no effect was found in those larvae that fed on cv. Williams. TPI activity and malonyl genistin were induced by A. gemmatalis damage in both cultivars, but solar UV-B radiation and damage only synergistically increased the induction of these compounds in cv. Williams. Although TPI activity and genistein derivatives were induced by herbivory, these results did not explain the differences found in survivorship and mass gain of larvae that fed on cv. Charata. However, we found a positive association between lower larval performance and the presence of two quercetin triglycosides and a kaempferol triglycoside in foliage of cv. Charata, which were identified by HPLC-DAD/MS 2 . We conclude that exclusion of solar UV-B radiation reduce resistance to A. gemmatalis, due to a reduction in flavonol concentration in a cultivar that has low levels of genistein derivatives like cv. Charata. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ferreira, Paulo C; Pupin, Breno; Rangel, Drauzio E N
2018-06-01
Microorganisms are essential to the functionality of the soil, particularly in organic matter decomposition and nutrient cycling, which regulate plant productivity and shape the soil structure. However, biotic and abiotic stresses greatly disrupt soil fungal communities and, thereby, disturb the ecosystem. This study quantified seasonal tolerances to UV-B radiation and heat of fungal communities, which could be cultured, found in soil from two native Atlantic forest fragments called F1 and F2, five reforested areas (RA) planted in 1994, 1997, 2004, 2007, and 2009 with native species of the Atlantic forest, and one sand mining degraded soil (SMDS). The cold activity of the soil fungal communities (FC) from the eight different areas was also studied. Higher tolerance to UV-B radiation and heat was found in the FC from the SMDS and the 2009RA, where the incidence of heat and UV radiation from sun was more intense, which caused selection for fungal taxa that were more UV-B and heat tolerant in those areas. Conversely, the FC from the native forests and older reforested sites were very susceptible to heat and UV-B radiation. The cold activity of the soil FC from different areas of the study showed an erratic pattern of responses among the sampling sites. Little difference in tolerance to UV-B radiation and heat was found among the FC of soil samples collected in different seasons; in general soil FC collected in winter were less tolerant to UV-B radiation, but not for heat. In conclusion, FC from SMDS soil that receive intense heat and UV radiation, as well as with low nutrient availability, were more tolerant to both UV-B radiation and heat. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.
The role of coccoliths in protecting Emiliania huxleyi against stressful light and UV radiation
NASA Astrophysics Data System (ADS)
Xu, Juntian; Bach, Lennart T.; Schulz, Kai G.; Zhao, Wenyan; Gao, Kunshan; Riebesell, Ulf
2016-08-01
Coccolithophores are a group of phytoplankton species which cover themselves with small scales (coccoliths) made of calcium carbonate (CaCO3). The reason why coccolithophores form these calcite platelets has been a matter of debate for decades but has remained elusive so far. One hypothesis is that they play a role in light or UV protection, especially in surface dwelling species like Emiliania huxleyi, which can tolerate exceptionally high levels of solar radiation. In this study, we tested this hypothesis by culturing a calcified and a naked strain under different light conditions with and without UV radiation. The coccoliths of E. huxleyi reduced the transmission of visible radiation (400-700 nm) by 7.5 %, that of UV-A (315-400 nm) by 14.1 % and that of UV-B (280-315 nm) by 18.4 %. Growth rates of the calcified strain (PML B92/11) were about 2 times higher than those of the naked strain (CCMP 2090) under indoor constant light levels in the absence of UV radiation. When exposed to outdoor conditions (fluctuating sunlight with UV radiation), growth rates of calcified cells were almost 3.5 times higher compared to naked cells. Furthermore, the relative electron transport rate was 114 % higher and non-photochemical quenching (NPQ) was 281 % higher in the calcified compared to the naked strain, implying higher energy transfer associated with higher NPQ in the presence of calcification. When exposed to natural solar radiation including UV radiation, the maximal quantum yield of photosystem II was only slightly reduced in the calcified strain but strongly reduced in the naked strain. Our results reveal an important role of coccoliths in mitigating light and UV stress in E. huxleyi.
Slieman, Tony A.; Nicholson, Wayne L.
2000-01-01
The loss of stratospheric ozone and the accompanying increase in solar UV flux have led to concerns regarding decreases in global microbial productivity. Central to understanding this process is determining the types and amounts of DNA damage in microbes caused by solar UV irradiation. While UV irradiation of dormant Bacillus subtilis endospores results mainly in formation of the “spore photoproduct” 5-thyminyl-5,6-dihydrothymine, genetic evidence indicates that an additional DNA photoproduct(s) may be formed in spores exposed to solar UV-B and UV-A radiation (Y. Xue and W. L. Nicholson, Appl. Environ. Microbiol. 62:2221–2227, 1996). We examined the occurrence of double-strand breaks, single-strand breaks, cyclobutane pyrimidine dimers, and apurinic-apyrimidinic sites in spore DNA under several UV irradiation conditions by using enzymatic probes and neutral or alkaline agarose gel electrophoresis. DNA from spores irradiated with artificial 254-nm UV-C radiation accumulated single-strand breaks, double-strand breaks, and cyclobutane pyrimidine dimers, while DNA from spores exposed to artificial UV-B radiation (wavelengths, 290 to 310 nm) accumulated only cyclobutane pyrimidine dimers. DNA from spores exposed to full-spectrum sunlight (UV-B and UV-A radiation) accumulated single-strand breaks, double-strand breaks, and cyclobutane pyrimidine dimers, whereas DNA from spores exposed to sunlight from which the UV-B component had been removed with a filter (“UV-A sunlight”) accumulated only single-strand breaks and double-strand breaks. Apurinic-apyrimidinic sites were not detected in spore DNA under any of the irradiation conditions used. Our data indicate that there is a complex spectrum of UV photoproducts in DNA of bacterial spores exposed to solar UV irradiation in the environment. PMID:10618224
NASA Astrophysics Data System (ADS)
Lee, Y. G.; Koo, J. H.
2016-12-01
Solar UV radiation in a wavelength range between 280 to 400 nm has both positive and negative influences on human body. Surface UV radiation is the main natural source of vitamin D, providing the promotion of bone and musculoskeletal health and reducing the risk of a number of cancers and other medical conditions. However, overexposure to surface UV radiation is significantly related with the majority of skin cancer, in addition other negative health effects such as sunburn, skin aging, and some forms of eye cataracts. Therefore, it is important to estimate the optimal UV exposure time, representing a balance between reducing negative health effects and maximizing sufficient vitamin D production. Previous studies calculated erythemal UV and vitamin-D UV from the measured and modelled spectral irradiances, respectively, by weighting CIE Erythema and Vitamin D3 generation functions (Kazantzidis et al., 2009; Fioletov et al., 2010). In particular, McKenzie et al. (2009) suggested the algorithm to estimate vitamin-D production UV from erythemal UV (or UV index) and determined the optimum conditions of UV exposure based on skin type Ⅱ according to the Fitzpatrick (1988). Recently, there are various demands for risks and benefits of surface UV radiation on public health over Korea, thus it is necessary to estimate optimal UV exposure time suitable to skin type of East Asians. This study examined the relationship between erythemally weighted UV (UVEry) and vitamin D weighted UV (UVVitD) from spectral UV measurements during 2006-2010. The temporal variations of the ratio (UVVitD/UVEry) were also analyzed and the ratio as a function of UV index was applied to the broadband UV measured by UV-Biometer at 6 sites in Korea Thus, the optimal UV exposure time for vitamin D3 synthesis and erythema was estimated for diurnal, seasonal, and annual scales over Korea. In summer with high surface UV radiation, short exposure time leaded to sufficient vitamin D and erythema and vice versa in winter. Thus, the balancing time in winter was enough to maximize UV benefits and minimize UV risks.
La Duc, Myron T; Benardini, James N; Kempf, Michael J; Newcombe, David A; Lubarsky, Michael; Venkateswaran, Kasthuri
2007-04-01
The microbial diversity of Kali chimney plumes, part of a hydrothermal vent field in the Rodriguez Triple Junction, Indian Ocean (depth approximately 2,240 m), was examined in an attempt to discover "extremotolerant" microorganisms that have evolved unique resistance capabilities to this harsh environment. Water and sediment samples were collected from the vent and from sediments located at various distances (2-20 m) away from and surrounding the chimney. Samples were screened for hypertolerant microbes that are able to withstand multiple stresses. A total of 46 isolates were selected for exposure to a number of perturbations, such as heat shock, desiccation, H(2)O(2), and ultraviolet (UV) and gamma-irradiation. The survival of Psychrobacter sp. L0S3S-03b following exposure to >1,000 J/m(2) UV(254) radiation was particularly intriguing amid a background of varying levels of resistance. Vegetative cells of this non-spore-forming microbe not only survived all of the treatments, but also exhibited a 90% lethal dose of 30 s when exposed to simulated martian UV radiation and a 100% lethal dose of 2 min when exposed to full spectrum UV, which is comparable to findings for bacterial endospores.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kopecky, K.E.; Pugh, G.W. Jr.; Hughes, D.E.
1980-09-01
Cellulose acetate filtered ultraviolet (uv) radiation and unfiltered uv radiation were used on calves that were subsequently challenge exposed with Moraxella bovis. The onset, course, and severity of infectious bovine keratoconjunctivitis (IBK) were studied. Ten calves irradiated with unfiltered uv had the disease 1 to 2 days after M bovis challenge exposure. Ten calves irradiated with filtered uv and 10 calves not irradiated manifested IBK in a similar manner. Evidence is presented to support the contention that the wavelengths (around 270 nm) which are eliminated by cellulose acetate enhance the course of IBK. The effects on IBK of environmentally increasedmore » solar uv radiation is also discussed.« less
Catola, Stefano; Castagna, Antonella; Santin, Marco; Calvenzani, Valentina; Petroni, Katia; Mazzucato, Andrea; Ranieri, Annamaria
2017-08-01
The introgression of the A ft allele into domesticated tomato induced a shift from flavonol to anthocyanin production in response to UV-B radiation, while the hp - 1 allele negatively influenced the response of flavonoid biosynthesis to UV-B. Introgression of the dominant allele Anthocyanin fruit (Aft) from Solanum chilense induces anthocyanin accumulation in the peel of tomato (Solanum lycopersicum L.) fruit. UV-B radiation can influence plant secondary metabolism regulating the expression of several genes, among which those involved in flavonoid biosynthesis. Here, we investigated whether post-harvest UV-B treatment could up-regulate flavonoid production in tomato fruits and whether the Aft allele could affect flavonoid biosynthesis under UV-B radiation. Mature green fruits of an anthocyanin-rich tomato mutant line (SA206) and of its wild-type reference, cv. Roma, were daily subjected to post-harvest UV-B treatment until full ripening. Up-regulation of CHS and CHI transcription by UV-B treatment induced flavonoid accumulation in the peel of cv. Roma. Conversely, UV-B decreased the total flavonoid content and CHS transcript levels in the SA206 peel. SA206 being a double mutant containing also hp-1 allele, we investigated also the behavior of hp-1 fruit. The decreased peel flavonoid accumulation and gene transcription in response to UV-B suggest that hp-1 allele is involved in the marked down-regulation of the flavonoid biosynthesis observed in SA206 fruit. Interestingly, in SA206, UV-B radiation promoted the synthesis of delphinidin, petunidin, and malvidin by increasing F3'5'H and DFR transcription, but it decreased rutin production, suggesting a switch from flavonols to anthocyanins. Finally, although UV-B radiation does not reach the inner fruit tissues, it down-regulated flavonoid biosynthesis in the flesh of both genotypes. This study provides, for the first time, evidence that the presence of the functional Aft allele, under UV-B radiation, redirects flavonoid synthesis towards anthocyanin production and suggests that the hp-1 allele negatively influences the response of flavonoid biosynthesis to UV-B.
Ferroni, Lorenzo; Klisch, Manfred; Pancaldi, Simonetta; Häder, Donat-Peter
2010-01-01
Mycosporine-like amino acids (MAAs) and scytonemin are UV-screening compounds that have presumably appeared early in the history of life and are widespread in cyanobacteria. Natural colonies of the UV-insensitive Nostoc flagelliforme were found to be especially rich in MAAs (32.1 mg g DW−1), concentrated in the glycan sheath together with scytonemin. MAAs are present in the form of oligosaccharide-linked molecules. Photosystem II activity, measured using PAM fluorescence and oxygen evolution, was used as a most sensitive physiological parameter to analyse the effectiveness of UV-protection. Laboratory experiments were performed under controlled conditions with a simulated solar radiation specifically deprived of UV-wavebands with cut-off filters (295, 305, 320, 345 and 395 nm). The UV-insensitivity of N. flagelliforme was found to cover the whole UV-A (315–400 nm) and UV-B (280–320 nm) range and is almost certainly due to the complementary UV-absorption of MAAs and scytonemin. The experimental approach used is proposed to be suitable for the comparison of the UV-protection ability in organisms that differ in their complement of UV-sunscreen compounds. Furthermore, this study performed with a genuinely terrestrial organism points to the relevance of marine photoprotective compounds for life on Earth, especially for the colonization of terrestrial environments. PMID:20161974
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strakhovskaya, M.G.; Lavrukhina, O.G.; Fraikin, G.Y.
The results of a comparative analysis of the resistance of Pamirs high-mountain and lowland strains of the yeast Cryptococcus albidus to UV radiation of an ecological range are presented. A high-mountain strain, adapted to elevated UV radiation in its habitat, was found to be more resistant to UV light of a total ecorange (290-400 nm), including medium-wave (290-320 nm) and long-wave (320-400 nm) UV ranges. The enhanced UV light resistance of the high-mountain strain can be explained by efficient functioning of the excision DNA repair system. 7 refs., 3 tabs.
Madronich, S; Shao, M; Wilson, S R; Solomon, K R; Longstreth, J D; Tang, X Y
2015-01-01
UV radiation is an essential driver for the formation of photochemical smog, which includes ground-level ozone and particulate matter (PM). Recent analyses support earlier work showing that poor outdoor air quality is a major environmental hazard as well as quantifying health effects on regional and global scales more accurately. Greater exposure to these pollutants has been linked to increased risks of cardiovascular and respiratory diseases in humans and is associated globally with several million premature deaths per year. Ozone also has adverse effects on yields of crops, leading to loss of billions of US dollars each year. These detrimental effects also may alter biological diversity and affect the function of natural ecosystems. Future air quality will depend mostly on changes in emission of pollutants and their precursors, but changes in UV radiation and climate will contribute as well. Significant reductions in emissions, mainly from the energy and transportation sectors, have already led to improved air quality in many locations. Air quality will continue to improve in those cities/states that can afford controls, and worsen where the regulatory infrastructure is not available. Future changes in UV radiation and climate will alter the rates of formation of ground-level ozone and photochemically-generated particulate matter and must be considered in predictions of air quality. The decrease in UV radiation associated with recovery of stratospheric ozone will, according to recent global atmospheric model simulations, lead to increases in ground-level ozone at most locations. If correct, this will add significantly to future ground-level ozone trends. However, the spatial resolution of these global models is insufficient to inform policy at this time, especially for urban areas. UV radiation affects the atmospheric concentration of hydroxyl radicals, ˙OH, which are responsible for the self-cleaning of the atmosphere. Recent measurements confirm that, on a local scale, ˙OH radicals respond rapidly to changes in UV radiation. However, on large (global) scales, models differ in their predictions by nearly a factor of two, with consequent uncertainties for estimating the atmospheric lifetime and concentrations of key greenhouse gases and air pollutants. Projections of future climate need to consider these uncertainties. No new negative environmental effects of substitutes for ozone depleting substances or their breakdown-products have been identified. However, some substitutes for the ozone depleting substances will continue to contribute to global climate change if concentrations rise above current levels.
NASA Astrophysics Data System (ADS)
Popov, Dmitri; Jones, Jeffrey; Maliev, Slava
Key Words: Ultraviolet radiation,Standard Erythema Dose(SED), Minimal Erythema Dose(MED), Sun Burns, Solar Dermatitis, Sun Burned Disease, DNA Damage,Cell Damage, Antiradiation UV Vaccine, Immune-Prophylaxis of Sun Burned Diseases, Immune-Prophylaxis of Sun Burns, Immune-Therapy of Sun-Burned Disease and Sun Burns,Basal Cell Carcinoma (BCC), Squamous Cell Carcinoma (SCC), Toxic Epidermal Necrolysis(TEN). Introduction: High doses of UV generated by solar source and artificial sources create an exposure of mammals and other species which can lead to ultraviolet(UV)radiation- associated disease (including erythema, epilation, keratitis, etc.). UV radiation belongs to the non-ionizing part of the electromagnetic spectrum and ranges between 100 nm and 400 nm with 100 nm having been chosen arbitrarily as the boundary between non-ionizing and ionizing radiation, however EMR is a spectrum and UV can produce molecular ionization. UV radiation is conventionally categorized into 3 areas: UV-A (>315-400 nm),UV-B (>280-315 nm)and UV-C (>100-280 nm) [IARC,Working Group Reports,2005] An important consequence of stratospheric ozone depletion is the increased transmission of solar ultraviolet (UV)radiation to the Earth's lower atmosphere and surface. Stratospheric ozone levels have been falling, in certain areas, for the past several decades, so current surface ultraviolet-B (UV-B) radiation levels are thought to be close to their modern day maximum. [S.Madronich et al.1998] Overexposure of ultraviolet radiation a major cause of skin cancer including basal cell carcinoma (BCC), squamous cell carcinoma (SCC) { collectively referred to as “non-melanoma" skin cancer (NMSC) and melanoma as well, with skin cancers being the most common cancer in North America. [Armstrong et al. 1993, Gallagher et al. 2005] Methods and Experimental Design: Our experiments and testing of a novel UV “Antiradiation Vaccine” have employed a wide variety of laboratory animals which include : Chinchilla rabbits, 11-12 months old, live weight 3.5-3.7 (n=11), Balb mice, 2-3 months old, live weight 20-22 g (n=33), Wistar rats, 3-4 months old, live weight 180-220 g(n=33). The studies were approved by the Animal Care and Use Committee for ethical animal research equivalent, at each institution. Seven rabbits, ten mice, eleven Wistar rats were vaccinated with a UV antiradiation vaccine. A second group of animals was used as biological control which received vaccine but no UV Radiation and a third group of animals was used as control without any interventions. Before and after UV Radiation, Vaccination with the UV antiradiation vaccine were provided 17 days prior to UV exposure. The animals were irradiated by a DRT-1 UV generator lamp. The dose of irradiation for laboratory, experimental animals was 10-12 * Standard Erythema Dose (SED) at L=283,7 Laboratory animals were placed in to the box with ventilation. Results: Ultraviolet irradiation of the skin was performed with high doses and causes an inflammation or erythema in all experimental animals. However the grade of skin damage and inflammation was significantly different between animals protected by vaccination and non-protected, non-vaccinated animals. Animals UV-irradiated, but who did not receive the antiradiation vaccine suffered from extensive UV skin burns of second or third degree (grade 2-3). However, animals protected with the UV antiradiation vaccine demonstrated much mild forms of skin cellular injury - mainly erythema, first degree skin burns and a few small patches with second degree skin burns (grade 1-2). Discussion: The severity of skin damage depended on area of exposed skin, time and dose of UV irradiation. Skin injury could be divided into 4 major grades: 1. Faint erythema with dry desquamation. 2. Moderate to severe erythema. 3. Severe erythema with blistering, moist desquamation. 4. Toxic epidermal necrolysis. Mild doses of UV radiation and ionizing radiation can induce cell death by apoptosis and moderate and high doses of UV and ionizing radiation induce cell death by necrosis and generate systemic inflammatory response syndrome (SIRS), toxic multiple organ injury (TMOI), toxic multiple organ dysfunction syndromes (TMODS),and finally, toxic multiple organ failure (TMOF). [D.Popov et al.2012, Fliedner T.et al. 2005, T. Azizova et al. 2004] UV-B is a complete carcinogen that is absorbed by DNA and directly damages DNA. DNA damage induced by UV-B irradiation typically includes the formation of cyclobutane pyrimidine dimmers (CPD) and 6-4 photoproducts (6-4P)[IARC, Working Group Reports, M.Saraiya et al. 2004]. The pre-vaccinated animals seem to have a blunted injury response relative to the unvaccinated animals, presumably by reduction in the inflammatory response and secondary injury effects. The mechanism of action of the antiradiation vaccine, needs further evaluation. Conclusion: A UV antiradiation vaccine appears to demonstrate efficacy as a prophylactic agent for acute solar burns and toxicity. An antiradiation UV vaccine could be used in conjunction with adjunctive measures, e.g. antioxidants and UV barriers to reduce UV radiation toxicity. The authors of this experiments would like to propose further development work of the antiradiation UV vaccine to enhance the armamentarium for prophylaxis and prevention of the various forms skin cancer.
Pulgar, José; Waldisperg, Melany; Galbán-Malagón, Cristóbal; Maturana, Diego; Pulgar, Victor M; Aldana, Marcela
2017-02-01
The amount of ultraviolet (UV) radiation reaching the earth's surface has increased due to ozone layer depletion, and this fact represents an opportunity to evaluate the physiological and behavioral responses of animals to this global-scale stressor. The transitory fish Girella laevifrons inhabits pools in the upper intertidal zone, which is characterized by exposure to a wide range of stressors, including UV radiation. We documented the field magnitude and the impact of UV radiation on oxygen consumption, body mass variations, and shelter (rocky and algae) selection by G. laevifrons. UV-exposed animals showed increased oxygen consumption, slower body weight increase, and active rocky shelter selection. Control fish showed increased body weight and no evident shelter selection. The results indicated that UV exposure affects fish energetic balance and habitat selection to favor greater protection against radiation. Increased UV exposure in transitory intertidal animals at levels observed in upper intertidal pools may alter the residency time of fish before leaving for the subtidal zone. Therefore, UV-induced energetic changes may determine animal performance and ontogenetic physiological itineraries, whereas shelter quality might determine habitat use. Copyright © 2016 Elsevier B.V. All rights reserved.
Xie, Laiqing; Cheng, Long; Xu, Guoxu; Zhang, Ji; Ji, Xiaoyan; Song, E
2017-06-10
Excessive Ultra violet (UV) radiation induces injuries to retinal pigment epithelium (RPE) cells (RPEs) and retinal ganglion cells (RGCs), causing retinal degeneration. Cyclophilin D (Cyp-D)-dependent mitochondrial permeability transition pore (mPTP) opening mediates UV-induced cell death. In this study, we show that a novel Cyp-D inhibitor compound 19 efficiently protected RPEs and RGCs from UV radiation. Compound 19-mediated cytoprotection requires Cyp-D, as it failed to further protect RPEs/RGCs from UV when Cyp-D was silenced by targeted shRNAs. Compound 19 almost blocked UV-induced p53-Cyp-D mitochondrial association, mPTP opening and subsequent cytochrome C release. Further studies showed that compound 19 inhibited UV-induced reactive oxygen species (ROS) production, lipid peroxidation and DNA damage. Together, compound 19 protects RPEs and RGCs from UV radiation, possibly via silencing Cyp-D-regulated intrinsic mitochondrial death pathway. Compound 19 could a lead compound for treating UV-associated retinal degeneration diseases. Copyright © 2017 Elsevier Inc. All rights reserved.
Validation of High Speed Earth Atmospheric Entry Radiative Heating from 9.5 to 15.5 km/s
NASA Technical Reports Server (NTRS)
Brandis, A. M.; Johnston, C. O.; Cruden, B. A.; Prabhu, D. K.
2016-01-01
This paper presents an overview of the analysis and measurements of equilibrium radiation obtained in the NASA Ames Research Center's Electric Arc Shock Tube (EAST) facility as a part of recent testing aimed at reaching shock velocities up to 15.5 km/s. The goal of these experiments was to measure the level of radiation encountered during high speed Earth entry conditions, such as would be relevant for an asteroid, inter-planetary or lunar return mission. These experiments provide the first spectrally and spatially resolved data for high speed Earth entry and cover conditions ranging from 9.5 to 15.5 km/s at 13.3 and 26.6 Pa (0.1 and 0.2 Torr). The present analysis endeavors to provide a validation of shock tube radiation measurements and simulations at high speed conditions. A comprehensive comparison between the spectrally resolved absolute equilibrium radiance measured in EAST and the predictive tools, NEQAIR and HARA, is presented. In order to provide a more accurate representation of the agreement between the experimental and simulation results, the integrated value of radiance has been compared across four spectral regions (VUV, UV/Vis, Vis/NIR and IR) as a function of velocity. Results have generally shown excellent agreement between the two codes and EAST data for the Vis through IR spectral regions, however, discrepancies have been identified in the VUV and parts of the UV spectral regions. As a result of the analysis presented in this paper, an updated parametric uncertainty for high speed radiation in air has been evaluated to be [9.0%, -6.3%]. Furthermore, due to the nature of the radiating environment at these high shock speeds, initial calculations aimed at modeling phenomena that become more significant with increasing shock speed have been performed. These phenomena include analyzing the radiating species emitting ahead of the shock and the increased significance of radiative cooling mechanisms.
Ultraviolet Radiation Round-Robin Testing of Various Backsheets for Photovoltaic Modules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koehl, Michael; Ballion, Amal; Lee, Yu-Hsien
2015-06-14
Durability testing of materials exposed to natural weathering requires testing of the ultraviolet (UV) stability, especially for polymeric materials. The type approval testing of photovoltaic (PV) modules according to standards IEC 61215 and IEC 61646, which includes a so-called UV preconditioning test with a total UV dose of 15 kWh/m2, does not correspond to the real loads during lifetime. Between 3%-10% of the UV radiation has to be in the spectral range between 280 and 320 nm (UV-B) in the recent editions of the standards. However, the spectral distribution of the radiation source is very important because different samples showmore » very individual spectral sensitivity for the radiation offered. Less than 6% of the intensity of solar radiation exists in the UV range. In the case of an increase of the intensity of the light source for accelerating the UV test, overheating of the samples would have to be prevented more rigorously and the temperature of the samples have to be measured to avoid misinterpretation of the test results.« less
Hazards Caused by UV Rays of Xenon Light Based High Performance Solar Simulators.
Dibowski, Gerd; Esser, Kai
2017-09-01
Solar furnaces are used worldwide to conduct experiments to demonstrate the feasibility of solar-chemical processes with the aid of concentrated sunlight, or to qualify high temperature-resistant components. In recent years, high-flux solar simulators (HFSSs) based on short-arc xenon lamps are more frequently used. The emitted spectrum is very similar to natural sunlight but with dangerous portions of ultraviolet light as well. Due to special benefits of solar simulators the increase of construction activity for HFSS can be observed worldwide. Hence, it is quite important to protect employees against serious injuries caused by ultraviolet radiation (UVR) in a range of 100 nm to 400 nm. The UV measurements were made at the German Aerospace Center (DLR), Cologne and Paul-Scherrer-Institute (PSI), Switzerland, during normal operations of the HFSS, with a high-precision UV-A/B radiometer using different experiment setups at different power levels. Thus, the measurement results represent UV emissions which are typical when operating a HFSS. Therefore, the biological effects on people exposed to UVR was investigated systematically to identify the existing hazard potential. It should be noted that the permissible workplace exposure limits for UV emissions significantly exceeded after a few seconds. One critical value was strongly exceeded by a factor of 770. The prevention of emissions must first and foremost be carried out by structural measures. Furthermore, unambiguous protocols have to be defined and compliance must be monitored. For short-term activities in the hazard area, measures for the protection of eyes and skin must be taken.
Rastogi, Rajesh P; Incharoensakdi, Aran
2014-07-01
Mycosporine-like amino acids (MAAs) are ecologically important biomolecules with great photoprotective potential. The present study aimed to investigate the biosynthesis of MAAs in the cyanobacterium Arthrospira sp. CU2556. High-performance liquid chromatography (HPLC) with photodiode-array detection studies revealed the presence of a UV-absorbing compound with an absorption maximum at 310 nm. Based on its UV absorption spectrum and ion trap liquid chromatography/mass spectrometry (LC/MS) analysis, the compound was identified as a primary MAA mycosporine-glycine (m/z: 246). To the best of our knowledge this is the first report on the occurrence of MAA mycosporine-glycine (M-Gly) in Arthrospira strains studied so far. In contrast to photosynthetic activity under UV-A radiation, the induction of the biosynthesis of M-Gly was significantly more prominent under UV-B radiation. The content of M-Gly was found to increase with the increase in exposure time under UV-B radiation. The MAA M-Gly was highly stable under UV radiation, heat, strongly acidic and alkaline conditions. It also exhibited good antioxidant activity and photoprotective ability by detoxifying the in vivo reactive oxygen species (ROS) generated by UV radiation. Our results indicate that the studied cyanobacterium may protect itself by synthesizing the UV-absorbing/screening compounds as important defense mechanisms, in their natural brightly-lit habitat with high solar UV-B fluxes.
Dzakovich, Michael P; Ferruzzi, Mario G; Mitchell, Cary A
2016-09-14
Fruits harvested from off-season, greenhouse-grown tomato plants have a poor reputation compared to their in-season, garden-grown counterparts. Presently, there is a gap in knowledge with regard to the role of UV-B radiation (280-315 nm) in determining greenhouse tomato quality. Knowing that UV-B is a powerful elicitor of secondary metabolism and not transmitted through greenhouse glass and some greenhouse plastics, we tested the hypothesis that supplemental UV-B radiation in the greenhouse will impart quality attributes typically associated with garden-grown tomatoes. Environmentally relevant doses of supplemental UV-B radiation did not strongly affect antioxidant compounds of fruits, although the flavonol quercetin-3-O-rutinoside (rutin) significantly increased in response to UV-B. Physicochemical metrics of fruit quality attributes and consumer sensory panels were used to determine if any such differences altered consumer perception of tomato quality. Supplemental UV-A radiation (315-400 nm) pre-harvest treatments enhanced sensory perception of aroma, acidity, and overall approval, suggesting a compelling opportunity to environmentally enhance the flavor of greenhouse-grown tomatoes. The expression of the genes COP1 and HY5 were indicative of adaptation to UV radiation, which explains the lack of marked effects reported in these studies. To our knowledge, these studies represent the first reported use of environmentally relevant doses of UV radiation throughout the reproductive portion of the tomato plant life cycle to positively enhance the sensory and chemical properties of fruits.
Abengózar-Vela, Antonio; Arroyo, Cristina; Reinoso, Roberto; Enríquez-de-Salamanca, Amalia; Corell, Alfredo; González-García, María Jesús
2015-01-01
To develop an in vitro method to determine the protective effect of UV-blocking contact lenses (CLs) in human corneal epithelial (HCE) cells exposed to UV-B radiation. SV-40-transformed HCE cells were covered with non-UV-blocking CL, UV-blocking CL or not covered, and exposed to UV-B radiation. As control, HCE cells were covered with both types of CLs or not covered, but not exposed to UV-B radiation. Cell viability at 24, 48 and 72 h, after UV-B exposure and removing CLs, was determined by alamarBlue(®) assay. Percentage of live, dead and apoptotic cells was also assessed by flow cytometry after 24 h of UV-B exposure. Intracellular reactive oxygen species (ROS) production after 1 h of exposure was assessed using the dye H(2)DCF-DA. Cell viability significantly decreased, apoptotic cells and intracellular ROS production significantly increased when UVB-exposed cells were covered with non-UV-blocking CL or not covered compared to non-irradiated cells. When cells were covered with UV-blocking CL, cell viability significantly increased and apoptotic cells and intracellular ROS production did not increase compared to exposed cells. UV-B radiation induces cell death by apoptosis, increases ROS production and decreases viable cells. UV-blocking CL is able to avoid these effects increasing cell viability and protecting HCE cells from apoptosis and ROS production induced by UV-B radiation. This in vitro model is an alternative to in vivo methods to determine the protective effect of UV-blocking ophthalmic biomaterials because it is a quicker, cheaper and reliable model that avoids the use of animals.
Topcu, Yasin; Dogan, Adem; Kasimoglu, Zehra; Sahin-Nadeem, Hilal; Polat, Ersin; Erkan, Mustafa
2015-08-01
In this study, the effects of supplementary UV radiation during the vegetative period on antioxidant compounds, antioxidant activity and postharvest quality of broccoli heads during long term storage was studied. The broccolis were grown under three different doses of supplementary UV radiation (2.2, 8.8 and 16.4 kJ/m(2)/day) in a soilless system in a glasshouse. Harvested broccoli heads were stored at 0 °C in modified atmosphere packaging for 60 days. The supplementary UV radiation (280-315 nm) during the vegetative period significantly decreased total carotenoid, the chlorophyll a and chlorophyll b content but increased the ascorbic acid, total phenolic and flavonoid contents of broccolis. All supplementary UV treatments slightly reduced the antioxidant activity of the broccolis, however, no remarkable change was observed between 2.2 and 8.8 kJ/m(2) radiation levels. The sinigrin and glucotropaeolin contents of the broccolis were substantially increased by UV treatments. The prolonged storage period resulted in decreased ascorbic acid, total phenolic and flavonoid contents, as well as antioxidant activity. Discoloration of the heads, due to decreased chlorophyll and carotenoid contents, was also observed with prolonged storage duration. Glucosinolates levels showed an increasing tendency till the 45th day of storage, and then their levels started to decline. The weight loss of broccoli heads during storage progressively increased with storage time in all treatments. Total soluble solids, solids content and titratable acidity decreased continuously during storage. Titratable acidity was not affected by UV radiation doses during the storage time whereas soluble solids and solids content (dry matter) were significantly affected by UV doses. Supplementary UV radiation increased the lightness (L*) and chroma (C*) values of the broccoli heads. Pre-harvest UV radiation during vegetative period seems to be a promising tool for increasing the beneficial health components of broccolis. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Laboratory Measurements of Optical Properties of Micron Size Individual Dust Grains
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; Witherow, W. K.; Camata, R.; Gerakines, P.
2003-01-01
A laboratory program is being developed at NASA Marshall Space Flight Center for experimental determination of the optical and physical properties individual dust grains in simulated astrophysical environments. The experimental setup is based on an electrodynamic balance that permits levitation of single 0.1 - 10 micron radii dust grains in a cavity evacuated to pressures of approx. 10(exp -6) torr. The experimental apparatus is equipped with observational ports for measurements in the UV, visible, and infrared spectral regions. A cryogenic facility for cooling the particles to temperature of approx. 10-50K is being installed. The current and the planned measurements include: dust charging processes, photoelectric emissions and yields with UV irradiation, radiation pressure measurements, infrared absorption and scattering properties, and condensation processes, involving the analogs of cosmic dust grains. Selected results based on photoemissions, radiation pressure, and other laboratory measurements will be presented.
Study of the effect of simulated space environment on nucleoprotein and DNA thin films
NASA Astrophysics Data System (ADS)
Fekete, A.; Módos, K.; Hegedüs, M.; Rontó, Gy.; Kovács, G.; Bérces, A.; Kargl, G.; Kömle, N. I.; Lammer, H.
2002-11-01
The main goal of PUR experiment (phage and uracil response) is to examine and quantify the effect of specific space conditions on nucleic acid models. To achieve this an improved method was elaborated for the preparation of DNA and bacteriophage thin films. The homogeneity of the films was controlled by UV spectroscopy and microscopy. To provide experimental evidence for the hypothesis that interplanetary transfer of life is possible, phage T7 and isolated T7 DNA thin films have been exposed to selected space conditions: intense UVC radiation (λ = 254 nm) and high vacuum (10-5 mbar). The effects of DNA hydration, conformation and packing on UV radiation damage were examined. Characteristic changes in the absorption spectrum, in the electrophoretic pattern of DNA and the decrease of the amount of PCR products have been detected indicating the photodamage of isolated and intraphage DNA.
Simulation experiments of the effect of space environment on bacteriophage and DNA thin films
NASA Astrophysics Data System (ADS)
Fekete, A.; Rontó, Gy.; Hegedüs, M.; Módos, K.; Bérces, A.; Kovács, G.; Lammer, H.; Panitz, C.
2004-01-01
The main goal of PUR experiment (phage and uracil response) is to examine and quantify the effect of specific space conditions on nucleic acid models. To achieve this an improved method was elaborated for the preparation of DNA and bacteriophage thin films. The homogeneity of the films was controlled by UV spectroscopy and microscopy. To provide experimental evidence for the hypothesis that interplanetary transfer of the genetic material is possible, phage T7 and isolated T7 DNA thin films have been exposed to selected space conditions: intense UVC radiation ( λ=254 nm) and high vacuum (10 -4 Pa). The effects of DNA hydration, conformation and packing on UV radiation damage were examined. Characteristic changes in the absorption spectrum, in the electrophoretic pattern of DNA and the decrease of the amount of PCR products have been detected indicating the photodamage of isolated and intraphage DNA.
Satellite estimation of surface spectral ultraviolet irradiance using OMI data in East Asia
NASA Astrophysics Data System (ADS)
Lee, H.; Kim, J.; Jeong, U.
2017-12-01
Due to a strong influence to the human health and ecosystem environment, continuous monitoring of the surface ultraviolet (UV) irradiance is important nowadays. The amount of UVA (320-400 nm) and UVB (290-320 nm) radiation at the Earth surface depends on the extent of Rayleigh scattering by atmospheric gas molecules, the radiative absorption by ozone, radiative scattering by clouds, and both absorption and scattering by airborne aerosols. Thus advanced consideration of these factors is the essential part to establish the process of UV irradiance estimation. Also UV index (UVI) is a simple parameter to show the strength of surface UV irradiance, therefore UVI has been widely utilized for the purpose of UV monitoring. In this study, we estimate surface UV irradiance at East Asia using realistic input based on OMI Total Ozone and reflectivity, and then validate this estimated comparing to UV irradiance from World Ozone and Ultraviolet Radiation Data Centre (WOUDC) data. In this work, we also try to develop our own retrieval algorithm for better estimation of surface irradiance. We use the Vector Linearized Discrete Ordinate Radiative Transfer (VLIDORT) model version 2.6 for our UV irradiance calculation. The input to the VLIDORT radiative transfer calculations are the total ozone column (TOMS V7 climatology), the surface albedo (Herman and Celarier, 1997) and the cloud optical depth. Based on these, the UV irradiance is calculated based on look-up table (LUT) approach. To correct absorbing aerosol, UV irradiance algorithm added climatological aerosol information (Arola et al., 2009). The further study, we analyze the comprehensive uncertainty analysis based on LUT and all input parameters.
Moderate salt treatment alleviates ultraviolet-B radiation caused impairment in poplar plants
NASA Astrophysics Data System (ADS)
Ma, Xuan; Ou, Yong-Bin; Gao, Yong-Feng; Lutts, Stanley; Li, Tao-Tao; Wang, Yang; Chen, Yong-Fu; Sun, Yu-Fang; Yao, Yin-An
2016-09-01
The effects of moderate salinity on the responses of woody plants to UV-B radiation were investigated using two Populus species (Populus alba and Populus russkii). Under UV-B radiation, moderate salinity reduced the oxidation pressure in both species, as indicated by lower levels of cellular H2O2 and membrane peroxidation, and weakened the inhibition of photochemical efficiency expressed by O-J-I-P changes. UV-B-induced DNA lesions in chloroplast and nucleus were alleviated by salinity, which could be explained by the higher expression levels of DNA repair system genes under UV-B&salt condition, such as the PHR, DDB2, and MutSα genes. The salt-induced increase in organic osmolytes proline and glycine betaine, afforded more efficient protection against UV-B radiation. Therefore moderate salinity induced cross-tolerance to UV-B stress in poplar plants. It is thus suggested that woody plants growing in moderate salted condition would be less affected by enhanced UV-B radiation than plants growing in the absence of salt. Our results also showed that UV-B signal genes in poplar plants PaCOP1, PaSTO and PaSTH2 were quickly responding to UV-B radiation, but not to salt. The transcripts of PaHY5 and its downstream pathway genes (PaCHS1, PaCHS4, PaFLS1 and PaFLS2) were differently up-regulated by these treatments, but the flavonoid compounds were not involved in the cross-tolerance since their concentration increased to the same extent in both UV-B and combined stresses.
Anstey, A; Taylor, D; Chalmers, I; Ansari, E
1999-10-01
Nine brands of contact lens marketed as "UV protective" were tested for ultraviolet (UV) transmission in order to assess potential suitability for psoralen-sensitised patients. UV-transmission characteristics of hydrated lenses was tested with a Bentham monochromator spectro-radiometer system. All lenses showed minimal transmission loss in the visible band. The performance of the nine lenses was uniform for ultraviolet B radiation with negligible transmission, but showed variation in transmission for ultraviolet A radiation. None of the lenses complied with UV-transmission criteria used previously to assess UV-blocking spectacles. Only two lenses had UV-blocking characteristics which came close to the arbitrary criteria used. The performance of ordinary soft and hard lenses was very similar, with negligible blocking of UV radiation. None of the nine contact lenses marketed as "UV protective" excluded sufficient UVA to comply with criteria in current use to assess UV protection in spectacles for psoralen-sensitised patients. However, the improved UV-blocking characteristics of contact lenses identified in this paper compared to previous studies suggests that such a contact lens will soon become available. Meanwhile, contact lens-wearing systemically sensitised PUVA patients should continue to wear approved spectacles for eye protection whilst photosensitised with psoralen.
Lipoxin A4 inhibits UV radiation-induced skin inflammation and oxidative stress in mice.
Martinez, R M; Fattori, V; Saito, P; Melo, C B P; Borghi, S M; Pinto, I C; Bussmann, A J C; Baracat, M M; Georgetti, S R; Verri, W A; Casagrande, R
2018-04-27
Lipoxin A4 (LXA 4 ) is a metabolic product of arachidonic acid. Despite potent anti-inflammatory and pro-resolution activities, it remains to be determined if LXA 4 has effect on ultraviolet (UV) radiation-induced skin inflammation. To investigate the effects of systemic administration with LXA 4 on UV radiation-induced inflammation and oxidative damage in the skin of mice. Varied parameters of inflammation and oxidative stress in the skin of mice were evaluated after UV radiation (4.14 J/cm 2 ). Pretreatment with LXA 4 significantly inhibited UV radiation-induced skin edema and myeloperoxidase activity. LXA 4 efficacy was enhanced by increasing the time of pre-treatment to up to 72 h. LXA 4 reduced UV radiation-induced skin edema, neutrophil recruitment (myeloperoxidase activity and LysM-eGFP + cells), MMP-9 activity, deposition of collagen fibers, epidermal thickness, sunburn cell counts, and production of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6 and IL-33). Depending on the time point, LXA 4 increased the levels of anti-inflammatory cytokines (TGF-β and IL-10). LXA 4 significantly attenuated UV radiation-induced oxidative damage returning the oxidative status to baseline levels in parameters such as ferric reducing ability, scavenging of free radicals, GSH levels, catalase activity and superoxide anion production. LXA 4 also reduced UV radiation-induced gp91 phox [nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) subunit] mRNA expression and enhanced nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream target enzyme nicotinamide adenine dinucleotide (phosphate) quinone oxidoreductase (Nqo1) mRNA expression. LXA 4 inhibited UV radiation-induced skin inflammation by diminishing pro-inflammatory cytokine production and oxidative stress as well as inducing anti-inflammatory cytokines and Nrf2. Copyright © 2018. Published by Elsevier B.V.
INDICATORS OF UV EXPOSURE IN CORALS: RELEVANCE TO GLOBAL CLIMATE CHANGE AND CORAL BLEACHING
Increased exposure to solar UV radiation and elevated water temperatures are believed to play a role in the bleaching of corals. To provide additional tools for evaluating the role of UV radiation, we have examined UV-specific effects in coral and have characterized factors that ...
NASA Technical Reports Server (NTRS)
Lindner, Bernhard Lee
1992-01-01
Research activities to date are discussed. Selected Mariner 9 UV spectra were obtained. Radiative transfer models were updated and then exercised to simulate spectra. Simulated and observed spectra compare favorably. It is noted that large amounts of ozone are currently not retrieved with reflectance spectroscopy, raising large doubts about earlier published ozone abundances. As these published abundances have been used as a benchmark for all theoretical photochemical models of Mars, this deserves further exploration. Three manuscripts were published, and one is in review. Papers were presented and published at three conferences, and are planned for five more conferences in the next six months. The research plan for the next reporting period is discussed and involves continuing studies of reflectance spectroscopy, further examination of Mariner 9 data, and climate change studies of ozone.
DNA damage and repair in plants under ultraviolet and ionizing radiations.
Gill, Sarvajeet S; Anjum, Naser A; Gill, Ritu; Jha, Manoranjan; Tuteja, Narendra
2015-01-01
Being sessile, plants are continuously exposed to DNA-damaging agents present in the environment such as ultraviolet (UV) and ionizing radiations (IR). Sunlight acts as an energy source for photosynthetic plants; hence, avoidance of UV radiations (namely, UV-A, 315-400 nm; UV-B, 280-315 nm; and UV-C, <280 nm) is unpreventable. DNA in particular strongly absorbs UV-B; therefore, it is the most important target for UV-B induced damage. On the other hand, IR causes water radiolysis, which generates highly reactive hydroxyl radicals (OH(•)) and causes radiogenic damage to important cellular components. However, to maintain genomic integrity under UV/IR exposure, plants make use of several DNA repair mechanisms. In the light of recent breakthrough, the current minireview (a) introduces UV/IR and overviews UV/IR-mediated DNA damage products and (b) critically discusses the biochemistry and genetics of major pathways responsible for the repair of UV/IR-accrued DNA damage. The outcome of the discussion may be helpful in devising future research in the current context.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, K. X.
2011-05-31
This presentation provides an overview of robust, radiation hard AlGaN optoelectronic devices and their applications in space exploration & high energy density physics. Particularly, deep UV LED and deep UV photodiodes are discussed with regard to their applications, radiation hardness and space qualification. AC charge management of UV LED satellite payload instruments, which were to be launched in late 2012, is covered.
NASA Astrophysics Data System (ADS)
Oikarinen, L.
Solar UV and visible radiation scattered at the limb of the Earth's atmosphere is used for measuring density profiles of atmosperic trace gases. For example, the OSIRIS instrument on Odin and SCIAMACHY on Envisat use this technique. A limb-viewing instrument does not see Earth's surface or tropospheric clouds directly. However, in- direct light reflected from the surface or low altitude clouds can make up tens of per cents of the signal. Furthermore, the surface area that contributes to limb intensity ex- tends over 1000 km along the instrument line-of-sight and 200 km across it. Over this area surface reflectivity can vary from almost 0% to 100%. Inaccurate modelling of reflected intensity is a potential source of error in the trace gas retrieval. Generally, radiative transfer models used for analysing limb measure- ments have to assume that the surface has a constant albedo. We have used a three- dimensional Monte Carlo radiative transfer model to study the effects of surface vari- ation to limb radiance. Based on the simulations, we have developed an approximate method for averaging surface albedo for limb scattering measurements with the help of a simple single scattering radiative transfer model.
Moehrle, Matthias; Soballa, Martin; Korn, Manfred
2003-08-01
There is increasing knowledge about the hazards of solar and ultraviolet (UV) radiation to humans. Although people spend a significant time in cars, data on UV exposure during traveling are lacking. The aim of this study was to obtain basic information on personal UV exposure in cars. UV transmission of car glass samples, windscreen, side and back windows and sunroof, was determined. UV exposure of passengers was evaluated in seven German middle-class cars, fitted with three different types of car windows. UV doses were measured with open or closed windows/sunroof of Mercedes-Benz E 220 T, E 320, and S 500, and in an open convertible car (Mercedes-Benz CLK). Bacillus subtilis spore film dosimeters (Viospor) were attached to the front, vertex, cheeks, upper arms, forearms and thighs of 'adult' and 'child' dummies. UV wavelengths longer than >335 nm were transmitted through car windows, and UV irradiation >380 nm was transmitted through compound glass windscreens. There was some variation in the spectral transmission of side windows according to the type of glass. On the arms, UV exposure was 3-4% of ambient radiation when the car windows were shut, and 25-31% of ambient radiation when the windows were open. In the open convertible car, the relative personal doses reached 62% of ambient radiation. The car glass types examined offer substantial protection against short-wave UV radiation. Professional drivers should keep car windows closed on sunny days to reduce occupational UV exposure. In individuals with polymorphic light eruption, produced by long-wave UVA, additional protection by plastic films, clothes or sunscreens appears necessary.
Irradiation of Frozen Solutions of Ferrous Sulphate as Dosimeter for Low Temperature Irradiations
NASA Astrophysics Data System (ADS)
Sánchez-Mejorada, G.; Frias, D.
2006-09-01
A theoretical model is presented for the evaluation of the energy transferred during the interaction of high energy radiation with icy bodies. Numerical simulations of the chemical reaction system reproduce the behavior of the icy systems (frozen solution of iron salts) after its interaction with the gamma radiation. Simulation experiments of extraterrestrial bodies are useful for space research, where low temperature dosimetry is necessary, especially in trips with humans or in the International Space Station (ISS) where humans are exposed to high radiation doses. The results showed that theoretical model applied for the irradiated system for different doses (from 10 to 2500Gy) and at different temperature (from 77 to 298 °K). The system under study was frozen solutions of iron salts and were analyzed (after Melting) by UV-spectroscopy. The systems were irradiates with gamma radiation. It is also shown that the response of the system is a function of the temperature and it was linear with as a function of dose.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez-Mejorada, G.; Frias, D.
A theoretical model is presented for the evaluation of the energy transferred during the interaction of high energy radiation with icy bodies. Numerical simulations of the chemical reaction system reproduce the behavior of the icy systems (frozen solution of iron salts) after its interaction with the gamma radiation. Simulation experiments of extraterrestrial bodies are useful for space research, where low temperature dosimetry is necessary, especially in trips with humans or in the International Space Station (ISS) where humans are exposed to high radiation doses. The results showed that theoretical model applied for the irradiated system for different doses (from 10more » to 2500Gy) and at different temperature (from 77 to 298 deg. K). The system under study was frozen solutions of iron salts and were analyzed (after Melting) by UV-spectroscopy. The systems were irradiates with gamma radiation. It is also shown that the response of the system is a function of the temperature and it was linear with as a function of dose.« less
Wadsworth, Jennifer; Cockell, Charles S
2017-05-01
The surface of the early Earth was probably subjected to a higher flux of ultraviolet (UV) radiation than today. UV radiation is known to severely damage DNA and other key molecules of life. Using a liquid culture and a rock analogue system, we investigated the interplay of protective and deleterious effects of iron oxides under UV radiation on the viability of the model organism, Bacillus subtilis. In the presence of hydrogen peroxide, there exists a fine balance between iron oxide's protective effects against this radiation and its deleterious effects caused by Photo-Fenton reactions. The maximum damage was caused by a concentration of hematite of ∼1 mg/mL. Concentrations above this confer increasing protection by physical blockage of the UV radiation, concentrations below this cause less effective UV radiation blockage, but also a correspondingly less effective Photo-Fenton reaction, providing an overall advantage. These results show that on anoxic worlds, surface habitability under a high UV flux leaves life precariously poised between the beneficial and deleterious effects of iron oxides. These results have relevance to the Archean Earth, but also the habitability of the Martian surface, where high levels of UV radiation in combination with iron oxides and hydrogen peroxide can be found. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Wang, Gaohong; Hao, Zongjie; Anken, Ralf H.; Lu, Jinying; Liu, Yongding
2010-04-01
The higher plant Wolffia arrhiza is regarded to be well suited concerning the provision of photosynthetic products in the cycle of matter of a Controlled Ecological Life Support System (CELSS) to be established in the context of extraterrestrial, human-based colonization and long-term space flight. Since UV radiation is one major extraterrestrial environmental stress for growth of any plant, effects of UV-B radiation on W. arrhiza were assessed in the present study. We found that UV-B radiation significantly inhibited photosynthetic CO2 assimilation activity, and the contents of chlorophyll a, chlorophyll b (Chl a, Chl b) and carotenoids considerably decreased when plants were exposed to UV-B radiation for 12 h. High UV-B radiation also declined the quantum yield of primary photochemistry (φpo), the quantum yield for electron transport (φEo) and the efficiency per trapped excitation (Ψo) in W. arrhiza simultaneously, while the amount of active PSII reaction centers per excited cross section (RC/CS) and the total number of active reaction centers per absorption (RC/ABS) had comparative changes. These results indicate that the effects of UV-B radiation on photosynthesis of W. arrhiza is due to an inhibition of the electron transport and via inactivation of reaction centers, but the inhibition may take place at more than one site in the photosynthetic apparatus.
Changes in biologically active ultraviolet radiation reaching the Earth's surface.
McKenzie, Richard L; Björn, Lars Olof; Bais, Alkiviadis; Ilyasad, Mohammad
2003-01-01
Since publication of the 1998 UNEP Assessment, there has been continued rapid expansion of the literature on UV-B radiation. Many measurements have demonstrated the inverse relationship between column ozone amount and UV radiation, and in a few cases long-term increases due to ozone decreases have been identified. The quantity, quality and availability of ground-based UV measurements relevant to assessing the environmental impacts of ozone changes continue to improve. Recent studies have contributed to delineating regional and temporal differences due to aerosols, clouds, and ozone. Improvements in radiative transfer modelling capability now enable more accurate characterization of clouds, snow-cover, and topographical effects. A standardized scale for reporting UV to the public has gained wide acceptance. There has been increased use of satellite data to estimate geographic variability and trends in UV. Progress has been made in assessing the utility of satellite retrievals of UV radiation by comparison with measurements at the Earth's surface. Global climatologies of UV radiation are now available on the Internet. Anthropogenic aerosols play a more important role in attenuating UV irradiances than has been assumed previously, and this will have implications for the accuracy of UV retrievals from satellite data. Progress has been made inferring historical levels of UV radiation using measurements of ozone (from satellites or from ground-based networks) in conjunction with measurements of total solar radiation obtained from extensive meteorological networks. We cannot yet be sure whether global ozone has reached a minimum. Atmospheric chlorine concentrations are beginning to decrease. However, bromine concentrations are still increasing. While these halogen concentrations remain high, the ozone layer remains vulnerable to further depletion from events such as volcanic eruptions that inject material into the stratosphere. Interactions between global warming and ozone depletion could delay ozone recovery by several years, and this topic remains an area of intense research interest. Future changes in greenhouse gases will affect the future evolution of ozone through chemical, radiative, and dynamic processes In this highly coupled system, an evaluation of the relative importance of these processes is difficult: studies are ongoing. A reliable assessment of these effects on total column ozone is limited by uncertainties in lower stratospheric response to these changes. At several sites, changes in UV differ from those expected from ozone changes alone, possibly as a result of long-term changes in aerosols, snow cover, or clouds. This indicates a possible interaction between climate change and UV radiation. Cloud reflectance measured by satellite has shown a long-term increase at some locations, especially in the Antarctic region, but also in Central Europe, which would tend to reduce the UV radiation. Even with the expected decreases in atmospheric chlorine, it will be several years before the beginning of an ozone recovery can be unambiguously identified at individual locations. Because UV-B is more variable than ozone, any identification of its recovery would be further delayed.
NASA Technical Reports Server (NTRS)
Mckenzie, Richard L.; Frederick, John E.; Ilyas, Mohammad; Filyushkin, V.; Wahner, Andreas; Stamnes, K.; Muthusubramanian, P.; Blumthaler, M.; Roy, Colin E.; Madronich, Sasha
1991-01-01
A major consequence of ozone depletion is an increase in solar ultraviolet (UV) radiation received at the Earth's surface. This chapter discusses advances that were made since the previous assessment (World Meteorological Organization (WMO)) to our understanding of UV radiation. The impacts of these changes in UV on the biosphere are not included, because they are discussed in the effects assessment.
Climate warming in North America is likely to be accompanied by changes in other environmental stresses such as UV-B radiation. We apply an empirical model to available DOC (dissolved organic C) data to estimate the depths to which 1% of surface UV-B and UV-A radiation penetrate ...
Kannaujiya, Vinod K; Sinha, Rajeshwar P
2017-01-01
The effects of diurnal variation of photosynthetically active radiation (PAR; 400-700 nm) and ultraviolet-B (UV-B; 280-315 nm) radiation on phycobiliproteins (PBPs) and photosynthetic pigments (PP) have been studied in the hot-spring cyanobacterium Nostoc sp. strain HKAR-2. The variations in PBPs and PP were monitored by alternating light and dark under PAR, UV-B, and PAR + UV-B radiations over a period of 25 h. There was a decline in the amount of Chl a and PBPs during light periods of UV-B and PAR + UV-B and an increase during dark periods showing a circadian rhythm by destruction and resynthesis of pigment-protein complex. However, a marked induction in carotenoids was recorded during light periods of the same radiations. Moreover, the ratio of Chl a/PE and Chl a/PC was increased in dark periods showing the resynthesis of bleached Chl a. The wavelength shift in emission fluorescence of PBPs toward shorter wavelengths further indicated the bleaching and destruction of PBPs during light periods. Oxidative damage upon exposure to PAR, UV-B, and PAR + UV-B was alleviated by induction of antioxidative enzymes such as superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX). The studied cyanobacterium exhibits a significant increase in the activities of SOD, CAT, and APX upon exposure to UV-B and PAR + UV-B radiations. The results indicate that pigment-protein composition of Nostoc sp. stain HKAR-2 was significantly altered during diurnal variation of light/radiation, which might play an important role in optimization for their productivity in a particular cyanobacterium.
Growth of a mat-forming photograph in the presence of UV radiation
NASA Technical Reports Server (NTRS)
Pierson, Beverly K.; Ruff, A. L.
1989-01-01
Knowledge of the survival and growth of microorganisms in the presence of ultraviolet radiation is important for understanding the potential for life to exist in environments exposed to high fluxes of UV radiation. The growth of a mat-forming phototrophic prokaryote, Chloroflexus aurantiacus, was examined in the presence of continuous high UV irradiation under otherwise optimal growth conditions. Evidence was sought for an intrinsic ability to grow in the presence of UV radiation in a carefully chosen organism known to be unusually resistant to UV radiation, of ancient lineage among the phototrophs, to resemble ancient microfossils from the Precambrian, and to be a mat-former. It was assumed that even a high intrinsic UV resistance would be inadequate for survival and growth in the presence of very high UV fluxes, and iron (Fe3+) was selected as a common, abundant UV-absorbing substance that might protest microorganisms growing in or under iron-bearing sediments. The effectiveness of Fe(3+) was tested as a UV protective agent at low concentrations in thin layers. It was concluded that intrinsic UV resistance in some organisms may account for growth, not just survival, of these organisms when exposed to high UV fluxes under otherwise optimal growth conditions in an anoxic environment. It was also concluded that Fe(3+) bearing sediments of 1 mm or less in thickness may provide an adequate shield against high UV fluxes permitting the growth of microorganisms just below their surface. As long as growth conditions were met, then the evolution and development of microorganisms would not be hampered by high UV fluxes impinging upon the surface of iron-bearing sediments.
An immunohistochemical panel to assess ultraviolet radiation-associated oxidative skin injury.
Mamalis, A; Fiadorchanka, N; Adams, L; Serravallo, M; Heilman, E; Siegel, D; Brody, N; Jagdeo, J
2014-05-01
Ultraviolet (UV) radiation results in a significant loss in years of healthy life, approximately 1.5 million disability-adjusted life years (DALYs), and is associated with greater than 60,000 deaths annually worldwide that are attributed to melanoma and other skin cancers. Currently, there are no standardized biomarkers or assay panels to assess oxidative stress skin injury patterns in human skin exposed to ionizing radiation. Using biopsy specimens from chronic solar UV-exposed and UV-protected skin, we demonstrate that UV radiation-induced oxidative skin injury can be evaluated by an immunohistochemical panel that stains 8-hydroxydeoxyguanosine (8-OH-dG) to assess DNA adducts, 4-hydroxy-2-nonenal (HNE) to assess lipid peroxidation, and advanced glycation end products (AGEs) to assess protein damage. We believe this panel contains the necessary cellular biomarkers to evaluate topical agents, such as sunscreens and anti-oxidants that are designed to prevent oxidative skin damage and may reduce UV-associated skin aging, carcinogenesis, and inflammatory skin diseases. We envision that this panel will become an important tool for researchers developing topical agents to protect against UV radiation and other oxidants and ultimately lead to reductions in lost years of healthy life, DALYs, and annual deaths associated with UV radiation.
Modelling of the Saturnian Kilometric Radiation (SKR)
NASA Astrophysics Data System (ADS)
Cecconi, B.; Lamy, L.; Prangé, R.; Zarka, P.; Hess, S.; Clarke, J. T.; Nichols, J.
2008-12-01
The Saturnian Kilometric Radiation (SKR), discovered by the Voyager spacecraft in the 1980's, is observed quasi-continuously by Cassini since 2003. Study of 3 years of SKR observations by RPWS (Radio and Plasma Wave Science) revealed three recurrent features of SKR dynamic spectra : (i) discrete arcs, presumably caused by the anisotropy of the radio emission pattern combined to the observer's motion, (ii) an equatorial shadow zone around the planet (observed near perikrones) and (iii) signal extinctions at high northern latitudes. We model these features using the code PRES (Planetary Radio Emission Simulator) that assumes radio emissions to be generated via the Cyclotron Maser Instability for simulating observed dynamic spectra. We show that observed arc-like structures imply radio sources in partial (~90%) corotation, located on magnetic field lines of invariant latitude 70° to 75°, and emitting at oblique angle from the local magnetic field with a cone angle that varies with frequency. Then, based on the previously demonstrated conjugacy between UV and SKR sources, we successfully model the equatorial shadow zone as well as northern latitude SKR extinctions assuming time variable radio sources distributed along field lines with footprints along the daily UV oval measured from HST images.
NASA Astrophysics Data System (ADS)
Sánchez, Francisco Javier; Meeßen, Joachim; del Carmen Ruiz, M.; Sancho, Leopoldo G.; Ott, Sieglinde; Vílchez, Carlos; Horneck, Gerda; Sadowsky, Andres; de la Torre, Rosa
2014-01-01
Many experiments were carried out in order to evaluate the survival capacity of extremotolerant lichens when facing harsh conditions, including those of outer space or of simulated Martian environment. For further progress, a deeper study on the physiological mechanisms is needed that confer the unexpected levels of resistance detected on these symbiotic organisms. In this work, the response of the lichenized green algae Trebouxia sp. (a predominant lichen photobiont) to increasing doses of UV-C radiation is studied. UV-C (one of the most lethal factors to be found in space together with vacuum and cosmic-ionizing radiation with high atomic number and energy (HZE) particles) has been applied in the present experiments up to a maximum dose analogue to 67 days in Low Earth Orbit (LEO). For that purpose we selected two extremotolerant and space-tested lichen species in which Trebouxia sp. is the photosynthetic partner: the crustose lichen Rhizocarpon geographicum and the fruticose lichen Circinaria gyrosa. In order to evaluate the effect of the physiological state of the lichen thallus (active when wet and dormant when dry) and of protective structures (cortex and photoprotective pigments) on the resistance of the photobiont to UV-C, four different experimental conditions were tested: (1) dry intact samples, (2) wet intact samples, (3) dry samples without cortex/acetone-rinsed and (4) wet samples without cortex/acetone-rinsed. After irradiation and a 72 hours period of recovery, the influence of UV-C on the two lichen's photobiont under each experimental approach was assessed by two complimentary methods: (1) By determining the photosystem II (PSII) activity in three successive 24 hours intervals (Mini-PAM fluorometer) to investigate the overall state of the photosynthetic process and the resilience of Trebouxia sp. (2) By performing high performance liquid chromatography (HPLC)-quantification of four essential photosynthetic pigments (chlorophyll a, chlorophyll b, β-carotene and lutein) of one sample of each species and dose. Results indicate that the physiological state of the thallus is the most important factor impairing the tolerance of Trebouxia sp. to UV-C radiation in both lichen species. Desiccated thalli were demonstrated to be more resistant to UV-C. No clear influence of UV-C radiation on the carotenoid content was detected. Comparing the respective doses applied, the individuals of R. geographicum are more sensitive than C. gyrosa.
Response of Two Legumes to Two Ultraviolet-B Radiation Regimes
NASA Technical Reports Server (NTRS)
Levy, Daniel L.; Skiles, J. W.
2000-01-01
Depletion of the stratospheric ozone layer has been directly linked to increased levels of UV radiation at the earth's surface. The purpose of this study was to evaluate the responses of soybean (Glycine max) and alfalfa (Medicago sativa) to increased UV-B radiation (280-320 nm). Soybean and alfalfa were grown successively in a growth chamber that provided UV-B intensities 45% above nominal summer field levels. Mylar-D (UVB opaque) and mono-acetate (UV-B transparent) films were used to establish the two UV-B treatments. Soybean grown under increased UV showed 21% smaller internodal lengths and higher concentrations of UV-B absorbing pigments (i.e. flavonoids) compared to plants grown under no UV. Significant results for alfalfa included 22% greater leaf flavonoid concentration under increased UV, 14% greater leaf chlorophyll concentration under no UV, and 32% greater above-ground biomass with no UV. These leguminous species possess mechanisms that protect against UV-B damage as indicated by increases in foliar concentrations of UV-B absorbing compounds. Alfalfa appears to be more sensitive to UV-B damage than soybean. Remote sensing of chlorophyll fluorescence may offer a means of monitoring UV-induced plant stress and damage.
Probing Jupiter's Radiation Environment with Juno-UVS
NASA Astrophysics Data System (ADS)
Kammer, J.; Gladstone, R.; Greathouse, T. K.; Hue, V.; Versteeg, M. H.; Davis, M. W.; Santos-Costa, D.; Becker, H. N.; Bolton, S. J.; Connerney, J. E. P.; Levin, S.
2017-12-01
While primarily designed to observe photon emission from the Jovian aurora, Juno's Ultraviolet Spectrograph (Juno-UVS) has also measured background count rates associated with penetrating high-energy radiation. These background counts are distinguishable from photon events, as they are generally spread evenly across the entire array of the Juno-UVS detector, and as the spacecraft spins, they set a baseline count rate higher than the sky background rate. During eight perijove passes, this background radiation signature has varied significantly on both short (spin-modulated) timescales, as well as longer timescales ( minutes to hours). We present comparisons of the Juno-UVS data across each of the eight perijove passes, with a focus on the count rate that can be clearly attributed to radiation effects rather than photon events. Once calibrated to determine the relationship between count rate and penetrating high-energy radiation (e.g., using existing GEANT models), these in situ measurements by Juno-UVS will provide additional constraints to radiation belt models close to the planet.
Khakhaleva-Li, Zimu; Gnedin, Nickolay Y.
2016-03-30
In this study, we compare the properties of stellar populations of model galaxies from the Cosmic Reionization On Computers (CROC) project with the exiting UV and IR data. Since CROC simulations do not follow cosmic dust directly, we adopt two variants of the dust-follows-metals ansatz to populate model galaxies with dust. Using the dust radiative transfer code Hyperion, we compute synthetic stellar spectra, UV continuum slopes, and IR fluxes for simulated galaxies. We find that the simulation results generally match observational measurements, but, perhaps, not in full detail. The differences seem to indicate that our adopted dust-follows-metals ansatzes are notmore » fully sufficient. While the discrepancies with the exiting data are marginal, the future JWST data will be of much higher precision, rendering highly significant any tentative difference between theory and observations. It is, therefore, likely, that in order to fully utilize the precision of JWST observations, fully dynamical modeling of dust formation, evolution, and destruction may be required.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khakhaleva-Li, Zimu; Gnedin, Nickolay Y.
In this study, we compare the properties of stellar populations of model galaxies from the Cosmic Reionization On Computers (CROC) project with the exiting UV and IR data. Since CROC simulations do not follow cosmic dust directly, we adopt two variants of the dust-follows-metals ansatz to populate model galaxies with dust. Using the dust radiative transfer code Hyperion, we compute synthetic stellar spectra, UV continuum slopes, and IR fluxes for simulated galaxies. We find that the simulation results generally match observational measurements, but, perhaps, not in full detail. The differences seem to indicate that our adopted dust-follows-metals ansatzes are notmore » fully sufficient. While the discrepancies with the exiting data are marginal, the future JWST data will be of much higher precision, rendering highly significant any tentative difference between theory and observations. It is, therefore, likely, that in order to fully utilize the precision of JWST observations, fully dynamical modeling of dust formation, evolution, and destruction may be required.« less
Effective UV attenuation in the outer leaf layers may represent an important protective mechanism against potentially damaging solar UV-B radiation. Epidermal optical properties for Rumex patientia and Rumex obtusifolius were examined on field collected and greenhouse grown plant...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erickson III, David J.; Sulzberger, Barbara; Zepp, Richard G.
Climate change modulates the effects of solar UV radiation on biogeochemical cycles in terrestrial and aquatic ecosystems, particularly for carbon cycling, resulting in UV-mediated positive or negative feedbacks on climate. Possible positive feedbacks discussed in this assessment include: (i) enhanced UV-induced mineralisation of above ground litter due to aridification; (ii) enhanced UV-induced mineralisation of photoreactive dissolved organic matter (DOM) in aquatic ecosystems due to changes in continental runoff and ice melting; (iii) reduced efficiency of the biological pump due to UV-induced bleaching of coloured dissolved organic matter (CDOM) in stratified aquatic ecosystems, where CDOM protects phytoplankton from the damaging solarmore » UV-B radiation. Mineralisation of organic matter results in the production and release of CO 2, whereas the biological pump is the main biological process for CO 2 removal by aquatic ecosystems. This research also assesses the interactive effects of solar UV radiation and climate change on the biogeochemical cycling of aerosols and trace gases other than CO 2, as well as of chemical and biological contaminants. Lastly,, interacting effects of solar UV radiation and climate change on biogeochemical cycles are particularly pronounced at terrestrial-aquatic interfaces.« less
Camouse, Melissa M; Domingo, Diana Santo; Swain, Freddie R; Conrad, Edward P; Matsui, Mary S; Maes, Daniel; Declercq, Lieve; Cooper, Kevin D; Stevens, Seth R; Baron, Elma D
2009-06-01
Tea polyphenols have been found to exert beneficial effects on the skin via their antioxidant properties. We sought to determine whether topical application of green tea or white tea extracts would prevent simulated solar radiation-induced oxidative damages to DNA and Langerhans cells that may lead to immune suppression and carcinogenesis. Skin samples were analysed from volunteers or skin explants treated with white tea or green tea after UV irradiation. In another group of patients, the in vivo immune protective effects of green and white tea were evaluated using contact hypersensitivity to dinitrochlorobenzene. Topical application of green and white tea offered protection against detrimental effects of UV on cutaneous immunity. Such protection is not because of direct UV absorption or sunscreen effects as both products showed a sun protection factor of 1. There was no significant difference in the levels of protection afforded by the two agents. Hence, both green tea and white tea are potential photoprotective agents that may be used in conjunction with established methods of sun protection.
NASA Astrophysics Data System (ADS)
La, Duong Duc; Rananaware, Anushri; Phuong Nguyen Thi, Hoai; Jones, Lathe; Bhosale, Sheshanath V.
2017-03-01
The solar spectrum consists of 8% UV radiation, while 45% of solar energy is from visible light. It is therefore desirable to fabricate a hybrid material which is able to harvest energy from a wide range of photons from the sun for applications such as solar cells, photovoltaics, and photocatalysis. In this study we report on the fabrication of a TiO2@porphyrin hybrid material by surfactant-assisted co-assembly of monomeric porphyrin molecules with TiO2 nanoparticles. The obtained TiO2@porphyrin composite shows excellent integration of TiO2 particles with diameters of 15-30 nm into aggregated porphyrin nanofibers, which have a width of 70-90 nm and are several µm long. SEM, XPS, XRD, FTIR, UV-Vis and fluorescence spectroscopy were employed to characterize the TiO2@TCPP hybrid material. This material exhibits efficient photocatalytic performance under simulated sunlight, due to synergistic photocatalytic activities of the porphyrin aggregates in visible light and TiO2 particles in the UV region. A plausible mechanism for photocatalytic degradation is also proposed and discussed.
Yao, Xiao-Qin; Chu, Jian-Zhou; He, Xue-Li; Si, Chao
2014-01-01
The article studied UV-B effects on biochemical parameters and active ingredients in flowers of Qi chrysanthemum and Huai chrysanthemum during the bud stage. The experiment included four UV-B radiation levels (CK, ambient UV-B; T1, T2 and T3 indicated a 5%, 10% and 15% increase in ambient UV-BBE, respectively) to determine the optimal UV-B radiation intensity in regulating active ingredients level in flowers of two chrysanthemum varieties. Flower dry weight of two cultivars was not affected by UV-B radiation under experimental conditions reported here. UV-B treatments significantly increased the rate of superoxide radical production, hydrogen peroxide (H2O2) (except for T1) and malondialdehyde concentration in flowers of Huai chrysanthemum and H2O2 concentration in flowers of Qi chrysanthemum. T2 and T3 treatments induced a significant increase in phenylalanine ammonia lyase enzyme (PAL) activity, anthocyanins, proline, ascorbic acid, chlorogenic acid and flavone content in flowers of two chrysanthemum varieties, and there were no significant differences in PAL activity, ascorbic acid, flavone and chlorogenic acid content between the two treatments. These results indicated that appropriate UV-B radiation intensity did not result in the decrease in flower yield, and could regulate PAL activity and increase active ingredients content in flowers of two chrysanthemum varieties. © 2014 The American Society of Photobiology.
Yang, Qing; Li, Yueli; Wang, Lihong; Zhou, Qing; Huang, Xiaohua
2014-06-01
The enhanced ultraviolet-B (UV-B) radiation caused by ozone depletion may exert deleterious effects on plants. Therefore, studies on the effect of UV-B radiation on plants, as well as studies on the methods for alleviating the deleterious effects by chemical control, are of great significance. In this study, after soybean (Glycine max) seedlings were exposed to UV-B radiation (10.2 and 13.8kJ m(-2)day(-1)) for 5 days and the followed 6 days of restoration, respectively, the effects of 20mg L(-1) lanthanum (III) [La(III)] on leaf phenotype, photosynthetic rate, and production of ethylene and reactive oxygen species (ROS) were investigated. The results indicated that the exposure to 10.2 and 13.8kJ m(-2)day(-1) UV-B radiation could cause injury to the leaf phenotype, and lead to the decrease in the content of chlorophyll and the net photosynthetic rate, and the increase in the contents of ROS, ethylene and 1-aminocyclopropanecarboxylic acid, and 1-aminocyclopropanecarboxylic acid synthase activity in soybean seedlings. Following the withdrawal of the enhanced UV-B radiation, the above mentioned parameters gradually recovered, and the recovery of soybean seedlings exposed to 10.2kJ m(-2)day(-1) UV-B radiation was faster than those in soybean seedlings exposed to 13.8kJ m(-2)day(-1) UV-B radiation. The leaf injury and the changes in the above indices that were induced by the enhanced UV-B radiation, especially at 10.2kJ m(-2)day(-1), were alleviated after the pretreatment of soybean seedlings with 20mg L(-1) La(III). The results of the correlation analysis demonstrated that the injury to the leaf phenotype and the decrease in the photosynthetic rate of soybean seedlings were correlated with the increase in the ROS content that was induced by ethylene in soybean seedlings. The pretreatment with 20mg L(-1) La(III) alleviated the injury caused by the enhanced UV-B radiation through the regulation of the ROS production. Copyright © 2014 Elsevier Inc. All rights reserved.
Zepp, R G; Erickson, D J; Paul, N D; Sulzberger, B
2011-02-01
Solar UV radiation, climate and other drivers of global change are undergoing significant changes and models forecast that these changes will continue for the remainder of this century. Here we assess the effects of solar UV radiation on biogeochemical cycles and the interactions of these effects with climate change, including feedbacks on climate. Such interactions occur in both terrestrial and aquatic ecosystems. While there is significant uncertainty in the quantification of these effects, they could accelerate the rate of atmospheric CO(2) increase and subsequent climate change beyond current predictions. The effects of predicted changes in climate and solar UV radiation on carbon cycling in terrestrial and aquatic ecosystems are expected to vary significantly between regions. The balance of positive and negative effects on terrestrial carbon cycling remains uncertain, but the interactions between UV radiation and climate change are likely to contribute to decreasing sink strength in many oceanic regions. Interactions between climate and solar UV radiation will affect cycling of elements other than carbon, and so will influence the concentration of greenhouse and ozone-depleting gases. For example, increases in oxygen-deficient regions of the ocean caused by climate change are projected to enhance the emissions of nitrous oxide, an important greenhouse and ozone-depleting gas. Future changes in UV-induced transformations of aquatic and terrestrial contaminants could have both beneficial and adverse effects. Taken in total, it is clear that the future changes in UV radiation coupled with human-caused global change will have large impacts on biogeochemical cycles at local, regional and global scales.
Meng, Yan; Lou, Yun-sheng; Wu, Lei; Cui, He-yang; Wang, Wei-qing
2015-01-01
A pot experiment was conducted to investigate the effects of silicon supply on rice growth and methane (CH4) emission in paddy field under elevated UV-B radiation. The experiment was designed with two UV-B radiation levels, i.e. ambient UV-B (ambient, A) and elevated UV-B radiation (elevated by 20%, E) ; with four silicon supply levels, i.e., Si0 (control, without silicon), Si2 (as sodium silicate, 100 kg SiO2 . hm-2), Si2 (as sodium silicate, 200 kg SiO2 hm-2) and Si3 (as slag fertilizer, 200 kg SiO2 . hm-2). The results indicated that, silicon supply obviously alleviated the depressive effect of elevated UV-B radiation on rice growth, and increased the tiller numbers, chlorophyll content, and shoot and root dry masses. Silicon supply promoted rice growth, which increased with the silicon supply level (sodium silicate). Slag fertilizer was better than*sodium silicate in promoting rice growth. CH4 flux and accumulated CH4emission were obviously increased by elevated UV-B radiation, but significantly decreased by silicon application. CH4 emission was reduced with increasing the silicon supply level. Under the same silicon supply level, slag fertilizer was better than sodium silicate in inhibiting CH4 flux and accumulated CH4 emission. This research suggested that fertilizing slag in rice production was helpful not only in utilizing industrial wastes, but also in significantly mitigating CH4 emissions in rice paddy under elevated UV-B radiation.
PAR and UV effects on vertical migration and photosynthesis in Euglena gracilis.
Richter, Peter; Helbling, Walter; Streb, Christine; Häder, Donat-P
2007-01-01
Recently it was shown that the unicellular flagellate Euglena gracilis changes the sign of gravitaxis from negative to positive upon excessive radiation. This sign change persists in a cell culture for hours even if subsequently transferred to dim light. To test the ecological relevance of this behavior, a vertical column experiment was performed (max. depth 65 cm) to test distribution, photosynthetic efficiency and motility in different horizons of the column (surface, 20, 40 and 65 cm). One column was covered with a UV cut-off filter, which transmits photosynthetically active radiation (PAR) only, the other with a filter which transmits PAR and UV. The columns were irradiated with a solar simulator (PAR 162 W m(-2), UV-A 32.6 W m(-2), UV-B 1.9 W m(-2)). The experiment was conducted for 10 days, normally with a light/dim light cycle of 12 h:12 h, but in some cases the light regime was changed (dim light instead of full radiation). Under irradiation the largest fraction of cells was found at the bottom of the column. The cell density decreased toward the surface. Photosynthetic efficiency, determined with a pulse amplitude modulated fluorometer, was negligible at the surface and increased toward the bottom. While the cell suspension showed a positive gravitaxis at the bottom, the cells in the 40 cm horizon were bimodally oriented (about the same percentage of cells swimming upward and downward, respectively). At 20 cm and at the surface the cells showed negative gravitaxis. Positive gravitaxis was more pronounced in the UV + PAR samples. At the surface and in the 20 and 40 cm horizons photosynthetic efficiency was better in the PAR-only samples than in the PAR + UV samples. At the bottom photosynthetic efficiency was similar in both light treatments. The data suggest that high light reverses gravitaxis of the cells, so that they move downward in the water column. At the bottom the light intensity is lower (attenuation of the water column and self shading of the cells) and the cells recover. After recovery the cells swim upward again until the negative gravitaxis is reversed again.
NASA Astrophysics Data System (ADS)
Sato, Tomohiro O.; Sato, Takao M.; Sagawa, Hideo; Noguchi, Katsuyuki; Saitoh, Naoko; Irie, Hitoshi; Kita, Kazuyuki; Mahani, Mona E.; Zettsu, Koji; Imasu, Ryoichi; Hayashida, Sachiko; Kasai, Yasuko
2018-03-01
We performed a feasibility study of constraining the vertical profile of the tropospheric ozone by using a synergetic retrieval method on multiple spectra, i.e., ultraviolet (UV), thermal infrared (TIR), and microwave (MW) ranges, measured from space. This work provides, for the first time, a quantitative evaluation of the retrieval sensitivity of the tropospheric ozone by adding the MW measurement to the UV and TIR measurements. Two observation points in East Asia (one in an urban area and one in an ocean area) and two observation times (one during summer and one during winter) were assumed. Geometry of line of sight was nadir down-looking for the UV and TIR measurements, and limb sounding for the MW measurement. The retrieval sensitivities of the ozone profiles in the upper troposphere (UT), middle troposphere (MT), and lowermost troposphere (LMT) were estimated using the degree of freedom for signal (DFS), the pressure of maximum sensitivity, reduction rate of error from the a priori error, and the averaging kernel matrix, derived based on the optimal estimation method. The measurement noise levels were assumed to be the same as those for currently available instruments. The weighting functions for the UV, TIR, and MW ranges were calculated using the SCIATRAN radiative transfer model, the Line-By-Line Radiative Transfer Model (LBLRTM), and the Advanced Model for Atmospheric Terahertz Radiation Analysis and Simulation (AMATERASU), respectively. The DFS value was increased by approximately 96, 23, and 30 % by adding the MW measurements to the combination of UV and TIR measurements in the UT, MT, and LMT regions, respectively. The MW measurement increased the DFS value of the LMT ozone; nevertheless, the MW measurement alone has no sensitivity to the LMT ozone. The pressure of maximum sensitivity value for the LMT ozone was also increased by adding the MW measurement. These findings indicate that better information on LMT ozone can be obtained by adding constraints on the UT and MT ozone from the MW measurement. The results of this study are applicable to the upcoming air-quality monitoring missions, APOLLO, GMAP-Asia, and uvSCOPE.
Joshi, Devika; Mohandass, C; Dhale, Mohan
2018-01-01
Increased awareness regarding the harmful effects of ultraviolet (UV)-B radiation has led to the search for new sources of natural UV-B protecting compounds. Mycosporine-like amino acids are one of such promising compounds found in several organisms. Cyanobacteria are ideal organisms for isolation of these compounds due to their compatibility and adaptability to thrive under harsh environmental conditions. In the following investigation, we report the production of shinorine in Leptolyngbya sp. isolated from the intertidal region. Based on the spectral characteristics and liquid chromatography-mass spectrometry analysis, the UV-absorbing compound was identified as shinorine. To the best of our knowledge, this is the first report on the occurrence of shinorine in Leptolyngbya sp. We also investigated the effect of artificial UV-B radiation and periodic desiccation on chlorophyll-a, total carotenoids, and mycosporine-like amino acids (MAAs) production. The UV-B radiation had a negative effect on growth and chlorophyll concentration, whereas it showed an inductive effect on the production of total carotenoids and MAAs. Desiccation along with UV-B radiation led to an increase in the concentration of photoprotective compounds. These results indicate that carotenoids and MAAs thus facilitate cyanobacteria to avoid and protect themselves from the deleterious effects of UV-B and desiccation.
Radiation-driven Turbulent Accretion onto Massive Black Holes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, KwangHo; Wise, John H.; Bogdanović, Tamara, E-mail: kwangho.park@physics.gatech.edu
Accretion of gas and interaction of matter and radiation are at the heart of many questions pertaining to black hole (BH) growth and coevolution of massive BHs and their host galaxies. To answer them, it is critical to quantify how the ionizing radiation that emanates from the innermost regions of the BH accretion flow couples to the surrounding medium and how it regulates the BH fueling. In this work, we use high-resolution three-dimensional (3D) radiation-hydrodynamic simulations with the code Enzo , equipped with adaptive ray-tracing module Moray , to investigate radiation-regulated BH accretion of cold gas. Our simulations reproduce findingsmore » from an earlier generation of 1D/2D simulations: the accretion-powered UV and X-ray radiation forms a highly ionized bubble, which leads to suppression of BH accretion rate characterized by quasi-periodic outbursts. A new feature revealed by the 3D simulations is the highly turbulent nature of the gas flow in vicinity of the ionization front. During quiescent periods between accretion outbursts, the ionized bubble shrinks in size and the gas density that precedes the ionization front increases. Consequently, the 3D simulations show oscillations in the accretion rate of only ∼2–3 orders of magnitude, significantly smaller than 1D/2D models. We calculate the energy budget of the gas flow and find that turbulence is the main contributor to the kinetic energy of the gas but corresponds to less than 10% of its thermal energy and thus does not contribute significantly to the pressure support of the gas.« less
A novel research model for evaluating sunscreen protection in the UV-A1.
Figueiredo, Sônia Aparecida; de Moraes, Dayane Cristina; Vilela, Fernanda Maria Pinto; de Faria, Amanda Natalina; Dos Santos, Marcelo Henrique; Fonseca, Maria José Vieira
2018-01-01
The use of a broad spectrum sunscreen is considered one of the main and most popular measures for preventing the damaging effects of ultraviolet radiation (UVR) on the skin. In this study we have developed a novel in vitro method to assess sunscreens efficacy to protect calcineurin enzyme activity, a skin cell marker. The photoprotective efficacy of sunscreen products was assessed by measuring the UV-A1 radiation-induced depletion of calcineurin (Cn) enzyme activity in primary neonatal human dermal fibroblast (HDFn) cell lysates. After exposure to 24J/cm 2 UV-A1 radiation, the sunscreens containing larger amounts of UV-A1 filters (brand B), the astaxanthin (UV-A1 absorber) and the Tinosorb® M (UV-A1 absorber) were capable of preventing loss of Cn activity when compared to the sunscreens formulations of brand A (low concentration of UV-A1 filters), with the Garcinia brasiliensis extract (UV-B absorber) and with the unprotected cell lysate and exposed to irradiation (Irradiated Control - IC). The Cn activity assay is a reproducible, accurate and selective technique for evaluating the effectiveness of sunscreens against the effects of UV-A1 radiation. The developed method showed that calcineurin activity have the potential to act as a biological indicator of UV-A1 radiation-induced damages in skin and the assay might be used to assess the efficacy of sunscreens agents and plant extracts prior to in vivo tests. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Abrevaya, Ximena C.; Cortón, Eduardo; Mauas, Pablo J. D.
2012-07-01
At present, dwarf M stars are being considered as potential hosts for habitable planets. However, an important fraction of these stars are flare stars, which among other kind of radiation, emit large amounts of UV radiation during flares, and it is unknown how this events can affect life, since biological systems are particularly vulnerable to UV. In this work we evaluate a well known dMe star, EV Lacertae (GJ 873) as a potential host for the emergence and evolution of life, focusing on the effects of the UV emission associated with flare activity. Since UV-C is particularly harmful for living organisms, we studied the effect of UV-C radiation on halophile archaea cultures. The halophile archaea or haloarchaea are extremophile microorganisms, which inhabit in hypersaline environments and which show several mechanisms to cope with UV radiation since they are naturally exposed to intense solar UV radiation on Earth. To select the irradiance to be tested, we considered a moderate flare on this star. We obtained the mean value for the UV-C irradiance integrating the IUE spectrum in the impulsive phase, and considering a hypothetical planet in the center of the liquid water habitability zone. To select the irradiation times we took the most frequent duration of flares on this star which is from 9 to 27 minutes. Our results show that even after considerable UV damage, the haloarchaeal cells survive at the tested doses, showing that this kind of life could survive in a relatively hostile UV environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dillenburg, L.R.; Sullivan, J.H.; Teramura, A.H.
1995-07-01
In order to perform their functions as photosynthetic organs, leaves must cope with excess heat and potentially damaging ultraviolet radiation. Possible increases in the UV-B portion of the solar spectrum may place an additional burden on leaves, and this could be particularly important for young expanding leaves with poorly developed UV-B defense mechanisms. We evaluated the effects of supplemental UV-B radiation on leaf expansion and the development of photosynthetic capacity and pigments in sweetgum (Liquidambar styraciflua L.) seedlings. Seedlings were grown in the field under either ambient or ambient plus 3 or 5.0 kJ of biologically effective supplemental UV-B radiation.more » Although final leaf size was unaffected, the rate of leaf elongation and accumulation of leaf area was slower in leaves exposed to the lower supplemental UV-B irradiance. In contrast, chlorophyll accumulation and the development of photosynthetic capacity was more rapid in plants exposed to the higher, compared to the lower supplemental UV-B irradiance. The accumulation of anthocyanins and other putative flavonoids or UV-absorbing compounds was scarcely affected by exposure to supplemental UV-B radiation. These results suggest that the UV-B portion of the solar spectrum may, in the absence of gross affects on biomass, exert subtle influences on leaf ontogeny and the development of photosynthetic pigments and capacity in sweetgum. 44 refs., 6 figs.« less
Yokawa, Ken; Kagenishi, Tomoko; Baluška, František
2016-01-01
UV-B radiation is an important part of the electromagnetic spectrum emitted by the sun. For much of the period of biological evolution organisms have been exposed to UV radiation, and have developed diverse mechanisms to cope with this potential stress factor. Roots are usually shielded from exposure to UV by the surrounding soil, but may nevertheless be exposed to high energy radiation on the soil surface. Due to their high sensitivity to UV-B radiation, plant roots need to respond rapidly in order to minimize exposure on the surface. In addition to root gravitropism, effective light perception by roots has recently been discovered to be essential for triggering negative root phototropism in Arabidopsis. However, it is not fully understood how UV-B affects root growth and phototropism. Here, we report that UV-B induces rapid generation of reactive oxygen species which in turn promotes the formation of BFA-induced compartments in the Arabidopsis root apex. During unilateral UV-B irradiation of roots changes in auxin concentration on the illuminated side have been recorded. In conclusion, UV-B-induced and ROS-mediated stimulation of vesicle recycling promotes root growth and induces negative phototropism. PMID:26793199
Zheng, Wen; Komatsu, Setsuko; Zhu, Wei; Zhang, Lin; Li, Ximin; Cui, Lei; Tian, Jingkui
2016-09-01
Taxus chinensis var. mairei is a species endemic to south-eastern China and one of the natural sources for the anticancer medicine paclitaxel. To investigate the molecular response and defense mechanisms of T. chinensis leaves to enhanced ultraviolet-A (UV-A) radiation, gel-free/label-free and gel-based proteomics and gas chromatography-mass spectrometry (GC-MS) analyses were performed. The transmission electron microscopy results indicated damage to the chloroplast under UV-A radiation. Proteomics analyses in leaves and chloroplasts showed that photosynthesis-, glycolysis-, secondary metabolism-, stress-, and protein synthesis-, degradation- and activation-related systems were mainly changed under UV-A radiation. Forty-seven PSII proteins and six PSI proteins were identified as being changed in leaves and chloroplasts under UV-A treatment. This indicated that PSII was more sensitive to UV-A than PSI as the target of UV-A light. Enhanced glycolysis, with four glycolysis-related key enzymes increased, provided precursors for secondary metabolism. The 1-deoxy-d-xylulose-5-phosphate reductoisomerase and 4-hydroxy-3-methylbut-2-enyl diphosphate reductase were identified as being significantly increased during UV-A radiation, which resulted in paclitaxel enhancement. Additionally, mRNA expression levels of genes involved in the paclitaxel biosynthetic pathway indicated a down-regulation under UV-A irradiation and up-regulation in dark incubation. These results reveal that a short-term high dose of UV-A radiation could stimulate the plant stress defense system and paclitaxel production. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Understanding the Potential Toxic Properties of Lunar Dust
NASA Technical Reports Server (NTRS)
2009-01-01
Lunar dust causes a variety of problems for spacecraft. It can obscure vision, clog equipment, cause seal failures and abrade surfaces. Additionally, lunar dust is potentially toxic and therefore hazardous to astronauts. Lunar dust can be activated by meteorites, UV radiation and elements of solar wind and, if inhaled, could produce reactive species in the lungs (freshly fractured quartz). Methods of lunar dust deactivation must be determined before new lunar missions. This requires knowledge of how to reactivate lunar dust on Earth - thus far crushing/grinding, UV activation and heating have been tested as activation methods. Grinding of lunar dust leads to the production of hydroxyl radicals in solution and increased dissolution of lunar simulant in buffers of different pH. Decreases in pH lead to increased lunar simulant leaching. Additionally, both ground and unground lunar simulant and unground quartz have been shown to promote the production of IL-6 and IL-8, pro-inflammatory cytokines, by alveolar epithelial cells. The results suggest the need for further studies on lunar dust and simulants prior to returning to the lunar surface.
Karam, P Andrew
2003-03-01
Four billion years ago, sea-level UV exposure was more than 400 times as intense as today, the dose from solar cosmic rays was five times present levels, and galactic cosmic rays accounted for only about 10% their current contribution to sea-level radiation doses. Exposure to cosmic radiation accounts for about 10% of natural background radiation exposure today and includes dose from galactic cosmic rays and solar charged particles. There is little exposure to ionizing wavelengths of UV due to absorption by ozone. The sun has evolved significantly over its life; in the past there were higher levels of particulate radiation and lower UV emissions from the sun, and a stronger solar wind reduced radiation dose in the inner solar system from galactic cosmic rays. Finally, since the early atmosphere contained little to no oxygen, surface levels of UV radiation were far higher in the past.
Adverse Effects of UV-B Radiation on Plants Growing at Schirmacher Oasis, East Antarctica.
Singh, Jaswant; Singh, Rudra P
2014-01-01
This study aimed to assess the impacts of ultraviolet-B (UV-B) radiation over a 28-day period on the levels of pigments of Umbilicaria aprina and Bryum argenteum growing in field. The depletion of stratospheric ozone is most prominent over Antarctica, which receives more UV-B radiation than most other parts of the planet. Although UV-B radiation adversely affects all flora, Antarctic plants are better equipped to survive the damaging effects of UV-B owing to defenses provided by UV-B absorbing compounds and other screening pigments. The UV-B radiations and daily average ozone values were measured by sun photometer and the photosynthetic pigments were analyzed by the standard spectrophotometric methods of exposed and unexposed selected plants. The daily average atmospheric ozone values were recorded from 5 January to 2 February 2008. The maximum daily average for ozone (310.7 Dobson Units (DU)) was recorded on 10 January 2008. On that day, average UV-B spectral irradiances were 0.016, 0.071, and 0.186 W m(-2) at wavelengths of 305, 312, and 320 nm, respectively. The minimum daily average ozone value (278.6 DU) was recorded on 31 January 2008. On that day, average UV-B spectral irradiances were 0.018, 0.085, and 0.210 W m(-2) at wavelengths of 305, 312, and 320 nm, respectively. Our results concludes that following prolonged UV-B exposure, total chlorophyll levels decreased gradually in both species, whereas levels of UV-B absorbing compounds, phenolics, and carotenoids gradually increased.
Adverse Effects of UV-B Radiation on Plants Growing at Schirmacher Oasis, East Antarctica
Singh, Jaswant; Singh, Rudra P.
2014-01-01
This study aimed to assess the impacts of ultraviolet-B (UV-B) radiation over a 28-day period on the levels of pigments of Umbilicaria aprina and Bryum argenteum growing in field. The depletion of stratospheric ozone is most prominent over Antarctica, which receives more UV-B radiation than most other parts of the planet. Although UV-B radiation adversely affects all flora, Antarctic plants are better equipped to survive the damaging effects of UV-B owing to defenses provided by UV-B absorbing compounds and other screening pigments. The UV-B radiations and daily average ozone values were measured by sun photometer and the photosynthetic pigments were analyzed by the standard spectrophotometric methods of exposed and unexposed selected plants. The daily average atmospheric ozone values were recorded from 5 January to 2 February 2008. The maximum daily average for ozone (310.7 Dobson Units (DU)) was recorded on 10 January 2008. On that day, average UV-B spectral irradiances were 0.016, 0.071, and 0.186 W m-2 at wavelengths of 305, 312, and 320 nm, respectively. The minimum daily average ozone value (278.6 DU) was recorded on 31 January 2008. On that day, average UV-B spectral irradiances were 0.018, 0.085, and 0.210 W m-2 at wavelengths of 305, 312, and 320 nm, respectively. Our results concludes that following prolonged UV-B exposure, total chlorophyll levels decreased gradually in both species, whereas levels of UV-B absorbing compounds, phenolics, and carotenoids gradually increased. PMID:24748743
Aerosol Particle Shape and Radiative Coupling in a Three Dimensional Titan GCM
NASA Astrophysics Data System (ADS)
Larson, Erik J.; Toon, O. B.; Friedson, A. J.; West, R. A.
2010-10-01
Understanding the aerosols on Titan is imperative for understanding the atmosphere as a whole. The aerosols affect the albedo, optical depth, as well as heating and cooling rates which in turn affect the circulation on Titan leading to feedback with the aerosol distribution. Correctly representing the aerosols in atmospheric models is crucial to understanding this atmosphere. Friedson et al. (2009, A global climate model of Titan's atmosphere and surface. Planet. SpaceSci. 57, 1931-1949.) produced a three-dimensional model for Titan using the NCAR CAM3 model, to which we coupled the aerosol microphysics model CARMA. We have also made the aerosols produced by CARMA interactive with the radiation code in CAM. We compare simulations with radiatively interactive aerosols with those using a prescribed aerosol radiative effect. Preliminary results show that this model is capable of reproducing the seasonal changes in aerosols on Titan and many of the associated phenomena. For instance, the radiatively interactive aerosols are lofted by winds more in the summer hemisphere than the non-radiatively interactive aerosols, which is necessary to reproduce the observed seasonal cycle of the albedo. We compare simulations using spherical particles to simulations using fractal aggregate particles, which are expected from laboratory and observational data. Fractal particles have higher absorption in the UV, slower fall velocities and faster coagulation rates than equivalent mass spherical particles. We compare model simulations with observational data from the Cassini and Huygens missions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, L.C.; Thompson, T.L.; Maxcy, R.B.
1982-02-01
A highly radiation-resistant member of the Moraxella-Acinetobacter group, isolate 4, obtained from meat, was studied to determine the effect of preexposure to UV radiation on subsequent UV light resistance. Cultures that were preexposed to UV light and incubated for a short time in plate count broth exhibited increased survival of a UV light challenge dose. This response was inhibited in the presence of chloramphenicol. Frequencies of mutation to streptomycin, trimethoprim, and sulfanilamide resistance remained the same after the induction of this survival response and were not altered by treatment with mutagens, with the exception of mutation to streptomycin resistance aftermore » ..gamma..-irradiation or nitrosoguanidine or methyl methane sulfonate treatment. The results indicated that isolate 4 has a UV light-inducible UV light resistance mechanism which is not associated with increased mutagenesis. The characteristics of the radiation resistance response in this organism are similar to those of certain other common food contaminants. Therefore, considered as part of the total microflora of meat, isolate 4 and the other radiation-resistant Moraxella-Acinetobacter isolates should not pose unique problems in a proposed radappertizaton process.« less
An ESR study of the UV degradation of FEP
NASA Technical Reports Server (NTRS)
George, G. A.; Hill, D. J. T.; Odonnell, J. H.; Pomery, P. J.; Rasoul, F.
1992-01-01
Spacecraft in low earth orbit are subjected to significant levels of high energy radiation, including ultraviolet (UV) and visible ultraviolet (VUV) wavelengths. The effects of UV radiation are enhanced over those at the surface of the earth, where the only incident wavelengths are greater than 290 nm. In low earth orbit the incident UV wavelengths extend below 290 nm into the VUV region, where the Lyman alpha-emissions of atomic hydrogen occur at 121 nm. In addition to electromagnetic radiation, in low earth orbit polymer materials may also be subjected to atomic oxygen particle radiation, which will result in direct oxidation of the polymer.
The TROPOMI surface UV algorithm
NASA Astrophysics Data System (ADS)
Lindfors, Anders V.; Kujanpää, Jukka; Kalakoski, Niilo; Heikkilä, Anu; Lakkala, Kaisa; Mielonen, Tero; Sneep, Maarten; Krotkov, Nickolay A.; Arola, Antti; Tamminen, Johanna
2018-02-01
The TROPOspheric Monitoring Instrument (TROPOMI) is the only payload of the Sentinel-5 Precursor (S5P), which is a polar-orbiting satellite mission of the European Space Agency (ESA). TROPOMI is a nadir-viewing spectrometer measuring in the ultraviolet, visible, near-infrared, and the shortwave infrared that provides near-global daily coverage. Among other things, TROPOMI measurements will be used for calculating the UV radiation reaching the Earth's surface. Thus, the TROPOMI surface UV product will contribute to the monitoring of UV radiation by providing daily information on the prevailing UV conditions over the globe. The TROPOMI UV algorithm builds on the heritage of the Ozone Monitoring Instrument (OMI) and the Satellite Application Facility for Atmospheric Composition and UV Radiation (AC SAF) algorithms. This paper provides a description of the algorithm that will be used for estimating surface UV radiation from TROPOMI observations. The TROPOMI surface UV product includes the following UV quantities: the UV irradiance at 305, 310, 324, and 380 nm; the erythemally weighted UV; and the vitamin-D weighted UV. Each of these are available as (i) daily dose or daily accumulated irradiance, (ii) overpass dose rate or irradiance, and (iii) local noon dose rate or irradiance. In addition, all quantities are available corresponding to actual cloud conditions and as clear-sky values, which otherwise correspond to the same conditions but assume a cloud-free atmosphere. This yields 36 UV parameters altogether. The TROPOMI UV algorithm has been tested using input based on OMI and the Global Ozone Monitoring Experiment-2 (GOME-2) satellite measurements. These preliminary results indicate that the algorithm is functioning according to expectations.
Stoebner, Pierre E; Rahmoun, Massilva; Ferrand, Christophe; Meunier, Laurent; Yssel, Hans; Pène, Jérôme
2006-08-01
Solar ultraviolet (UV) radiation has hazardous effects on human health that are, in part, associated with its immunosuppressive effects via the induction of interleukin (IL)-10 production. Although IL-10 is produced by both T helper type 2 (Th2) cells and T-regulatory type 1 (Tr1) cells, the relative contribution of either subset in UV radiation-induced immunosuppression has not been established. Here, we show that T cells isolated from non-treated allergic contact dermatitis (ACD) reactions, 48 h following nickel challenge and propagated for 7-10 days in the presence of IL-2, were mainly CD4(+) and produced IL-10, but little interferon-gamma. A single sub-erythematous solar-simulated radiation (SSR) prior to antigen challenge exposure resulted in a clinical attenuation of the intensity of ACD reactions which was associated with a significant increase in both the magnitude of IL-10 production by skin-infiltrating T cells and the frequency of IL-10-producing Tr1 cells. Skin-infiltrating T cells in SSR-exposed, as well as non-exposed, ACD reactions showed a perturbed T-cell receptor (TCR)-Vbeta repertoire, without overexpression of a particular TCR-Vbeta gene product, indicating the presence of high frequencies of nickel non-specific T cells in ACD reactions. These results show that a single sub-erythematous SSR induces immunosuppression via the cutaneous infiltration of IL-10-producing Tr1, and to a lesser extent, Th2 cells.
Hader, D P; Liu, S M
1990-09-01
The effects of ultraviolet radiation on the gravitactic orientation of the freshwater flagellate, Euglena gracilis, were determined by a real time image analysis system. Both artificial UV radiation and solar radiation in a temperature-controlled growth chamber were employed. Histograms of gravitaxis showed that the degree of orientation decreased with increasing exposure time; this can be quantified using the Rayleigh test and upper quadrant summation. The effects of artificial UV radiation on the orientation are considerably stronger than those of solar radiation, probably because the radiation source emits higher fluence rates below 300 nm than found in solar radiation. The effects of monochromatic ultraviolet radiation on motility have been determined, and an action spectrum has been calculated.
Plant response to solar ultraviolet radiation
NASA Technical Reports Server (NTRS)
Caldwell, M. M.
1981-01-01
Plant reactions and mechanisms of reaction to solar UV radiation are reviewed, along with characteristics of plants which enhance UV tolerance. Wavelength regions to which proteins are particularly sensitive are examined and the possibility of synergistic effects from photoreactions to multiple wavelengths is considered, along with available evidence of nonadditive plant spectral responses to UV radiation. Decreases in atmospheric ozone content are explored in terms of UV wavelengths which would increase with the ozone decreases, particularly for UV-B, which depresses photosynthesis and would increase 1% with a 16% reduction of stratospheric ozone. Higher elevations are projected to display effects of increased UV incident flux first, and global distributions of UV increases due to atmospheric inhomogeneity and water surface clarity are examined. Finally, the response of plant nucleic acids, DNA, chlorophyll to enhanced UV are described, along with repair, avoidance, and optical mechanisms which aid plant survival
NASA Technical Reports Server (NTRS)
Cockell, C. S.; Rothschild, L. J.
1999-01-01
Photosynthetic primary production, the basis of most global food chains, is inhibited by UV radiation. Evaluating UV inhibition is therefore important for assessing the role of natural levels of UV radiation in regulating ecosystem behavior as well as the potential impact of stratospheric ozone depletion on global ecosystems. As both photosynthesis and UV fluxes are subject to diurnal variations, we examined the diurnal variability of the effect of UV radiation on photosynthesis in three diverse algal mats. In one of the mats (Cyanidium caldarium) a small mean decrease in primary productivity over the whole day occurred when both UVA and UVB were screened out. In two of the mats (Lyngbya aestuarii and Zygogonium sp.) we found a mean increase in the total primary productivity over the day when UVB alone was screened and a further increase when UVA and UVB were both screened out. Variations in the effects of UV radiation were found at different times of the day. This diurnal variability may be because even under the same solar radiation flux, there are different factors that may control photosynthetic rate, including nutritional status and other physiological processes in the cell. The results show the importance of assessing the complete diurnal productivity. For some of the time points the increase in the mean was still within the standard deviations in primary productivity, illustrating the difficulty in dissecting UV effects from other natural variations.
A new UV-A/B protecting pigment in the terrestrial cyanobacterium Nostoc commune
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scherer, S.; Chen, T.W.; Boeger, P.
1988-12-01
A new ultraviolet (UV)-A/B absorbing pigment with maxima at 312 and 330 nanometers from the cosmopolitan terrestrial cyanobacterium Nostoc commune is described. The pigment is found in high amounts (up to 10% of dry weight) in colonies grown under solar UV radiation but only in low concentrations in laboratory cultures illuminated by artificial light without UV. Its experimental induction by UV as well as its capacity to efficiently protect Nostoc against UV radiation is reported.
Are lichens and cyanobacteria suitable candidates to test the theory of lithopanspermia?
NASA Astrophysics Data System (ADS)
de La Torre Noetzel, Rosa; Martinez Frías, Jesús; Mateo-Martí, Eva; Sanchez Iñigo, Francisco Javier; García Sancho, Leopoldo; Horneck, Gerda
2010-05-01
Lichens, endolithic- and endoevaporitic communities of cyanobacteria and bacteria has been exposed to real- and simulated space conditions to demonstrate likelihood of the lithopanspermia hypothesis, that postulates a viable transport of microorganisms between planets by means of meteorites, i.e. impact expelled rocks from a planets surface, which serve as vehicles for spreading living material from one planet or solar system to another (Nicholson et al. 2000, Benardini et al. 2003, Cockell 2008, Horneck et al. 2008, Valtonen et al. 2009). Three experiments (LICHENS, Foton M2 mission, 2005, and LITHOPANSPERMIA, Foton-M3 satellite, 2007), have been performed in space, the first two on a short mission, onboard of Biopan of the Foton-M satellite recoverable capsule, and the third one in a long-term mission on the Expose facility of the ISS to test the survival of prokaryotic- and eukaryotic symbiotic organisms in relation to lithopanspermia. The first two experiments allowed for the first time the demonstration- and intercomparison of the high survival capacity of eukaryotic- and prokaryotic symbiotic organisms in space (the epilithic lichen species Rhizocarpon geographicum and Xanthoria elegans, endoevaporitic microbial communities, epilithic microbial communities with cyanobacterial akinetes of Anabaena, and a vagrant lichen species, Aspicilia fruticulosa). Exposure to different UV-conditions of a low Earth orbit (LEO, 300 km) were performed: solar extraterrestrial UV radiation, Mars simulated UV-climate, UV-B radiation and PAR, space vacuum at 10-6 mbar, microgravity and temperatures between -23°C and +16°C. To check the resistance of the selected organisms to space before these missions, space simulation experiments were performed at INTA (Spasolab) and DLR (Institute of Aerospace Medicine), which were decisive to show the high survival capacity of these species to space vacuum (10-4 - 10-6 mbar), space UV radiation (200-400 nm) and extreme temperatures. The results obtained after flight, showed a exceptionally high survivability of the epilithic lichen (de la Torre et al. 2007; Sancho et al., 2007), and of the vagrant lichen A. fruticulosa, giving us the opportunity to learn, that organisms adapted to tolerate extreme conditions on our planet, like epilitihic- and vagrant lichens, and resting state phototrophic organisms of microbial communities, could resist an interplanetary travel through space. This step have lead us to test the next objective: the survival to Mars environmental conditions. For this reason, the most resistant lichen species until now to harsh space conditions, A. fruticulosa, collected in the steppic highlands of Central Spain, were exposed in a Planetary Atmosphere and Surfaces Chamber (PASC, (Mateo-et al. 2006), CAB, Center of Astrobiology, INTA) to the following conditions: 1) Mars simulated UV-radiation (200-400nm) + temperature (-93°C), 2) Mars simulated atmosphere (7mbar and CO2) + temperature (-93°C), and 3) all these conditions together, Mars simulated UV-radiation (200-400nm) + atmosphere (7mbar and CO2) + temperature (-93°C). Each test were performed during 120 hours. Analysis has to be performed to determine the photosynthetic activity with chlorophyll-a fluorescence, in order to demonstrate the high resistance of these organisms to conditions on other planets, like Mars. References Benardini, J.N., Sawyer, J., Venkateswaran, K., Nicholson, W.L. 2003. Spore UV and acceleration resistance of endolithic Bacillus pumilus and Bacillus subtilis isolates obtained from Sonoran desert basalt: implications for lithopanspermia. Astrobiology 3,709-717. Cockell, C. S. 2008. The interplanetary exchange of photosynthesis. Orig. Life Evol. Biosph. 38, 87-104 De la Torre et al. (2007). BIOPAN experiment LICHENS on the Foton-M2 mission: pre-flight verification tests of the Rhizocarpon geographicum-granite ecosystem, Adv. Space Res. 40, 1665-1671. Horneck, G., Stöffler, D., Ott, S., Hornemann, U., Cockell, C.S., Möller, R., Meyer, C., de Vera, J.P., Fritz, J., Schade, S., Artemieva, N. 2008. Microbial rock inhabitants survive hypervelocity impacts on Mars-like host planets: First phase of Lithopanspermia experimentally tested. Astrobiology 8, 17-44. Mateo-Martí, E., Prieto-Ballesteros, O., Sobrado J.M., Gómez-Elvira, J. and Martín-Gago, J.A. "A chamber for studying planetary environments and its applications to astrobiology" Meassurement and Science Technology 17 (2006) 2274-2280. Nicholson, W.L., Munakata, N., Horneck, G., Melosh, H. J., Setlow P., 2000. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microb. Mol. Biol. Rev. 64, 548-572. Sancho L. et al. (2007). Lichens survive in space. Astrobiology, 7: 443-454. Valtonen, M., Nurmi, P., Zheng, J.-Q., Cucinotta, F. A., Wilson, J. W., Horneck, G., Lindegren, L., Melosh, J., Rickman, H., Mileikowsky C. 2009. Natural transfer of viable microbes in space from planets in the extra-solar systems to a planet in our solar system and vice-versa, Astrophys. J. 690: 210-215.
Analysis of reflectance spectra of UV-absorbing aerosol scenes measured by SCIAMACHY
NASA Astrophysics Data System (ADS)
de Graaf, M.; Stammes, P.; Aben, E. A. A.
2007-01-01
Reflectance spectra from 280-1750 nm of typical desert dust aerosol (DDA) and biomass burning aerosol (BBA) scenes over oceans are presented, measured by the space-borne spectrometer Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY). DDA and BBA are both UV-absorbing aerosols, but their effect on the top-of-atmosphere (TOA) reflectance is different due to differences in the way mineral aerosols and smoke reflect and absorb radiation. Mineral aerosols are typically large, inert particles, found in warm, dry continental air. Smoke particles, on the other hand, are usually small particles, although often clustered, chemically very active and highly variable in composition. Moreover, BBA are hygroscopic and over oceans BBA were invariably found in cloudy scenes. TOA reflectance spectra of typical DDA and BBA scenes were analyzed, using radiative transfer simulations, and compared. The DDA spectrum was successfully simulated using a layer with a bimodal size distribution of mineral aerosols in a clear sky. The spectrum of the BBA scene, however, was determined by the interaction between cloud droplets and smoke particles, as is shown by simulations with a model of separate aerosol and cloud layers and models with internally and externally mixed aerosol/cloud layers. The occurrence of clouds in smoke scenes when sufficient water vapor is present usually prevents the detection of optical properties of these aerosol plumes using space-borne sensors. However, the Absorbing Aerosol Index (AAI), a UV color index, is not sensitive to scattering aerosols and clouds and can be used to detect these otherwise obscured aerosol plumes over clouds. The amount of absorption of radiation can be expressed using the absorption optical thickness. The absorption optical thickness in the DDA case was 0.42 (340 nm) and 0.14 (550 nm) for an aerosol layer of optical thickness 1.74 (550 nm). In the BBA case the absorption optical thickness was 0.18 (340 nm) and 0.10 (550 nm) for an aerosol/cloud layer of optical thickness 20.0 (550 nm). However, this reduced the cloud albedo by about 0.2 (340 nm) and 0.15 (550 nm). This method can be an important tool to estimate the global impact of absorption of shortwave radiation by smoke and industrial aerosols inside clouds.
NASA Astrophysics Data System (ADS)
Wang, Gaohong; Hu, Chunxiang; Li, Dunhai; Zhang, Delu; Li, Xiaoyan; Chen, Kun; Liu, Yongding
UV radiation is one of many harmful factors found in space that are detrimental to organisms on earth in space exploration. In the present work, we examined the role of antioxidant system in Nostoc sphaeroides Kütz (Cyanobacterium) and the effects of exogenously applied antioxidant molecules on its photosynthetic rate under UV-B radiation. It was found that UV-B radiation promoted the activity of antioxidant system to protect photosystem II (PSII) and exogenously applied antioxidant: sodium nitroprusside (SNP) and N-acetylcysteine (NAC) had an obvious protection on PSII activity under UV-B radiation. The activity of superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), peroxidase (POD, EC 1.11.1.7) and content of MDA (malondialdehyde) and ASC (ascorbate) were improved by 0.5 mM and 1 mM SNP, but 0.1 mM SNP decreased the activity of antioxidant system. Addition of exogenous NAC decreased the activity of SOD, POD, CAT and the content MDA and ASC. In contrast, exogenously applied NAC increased GSH content. The results suggest that exogenous SNP and NAC may protect algae by different mechanisms: SNP may play double roles as both sources of reactive free radicals as well as ROS scavengers in mediating the protective role of PSII on algae under UV-B radiation. On the other hand, NAC functions as an antioxidant or precursor of glutathione, which could protect PSII directly from UV-B radiation.
UV Induced Oxidation of Nitric Oxide
NASA Technical Reports Server (NTRS)
Parrish, Clyde, F. (Inventor); Luecke, Dale E. (Inventor)
2007-01-01
Nitric oxide in a gaseous stream is converted to nitrogen dioxide using oxidizing species generated at least in part using in situ UV radiation sources. The sources of the oxidizing species include oxygen and/or hydrogen peroxide. The oxygen may be a component of the gaseous stream or added to the gaseous stream, preferably near a UV radiation source, and is converted to ozone by the UV irradiation. The hydrogen peroxide is decomposed through a combination of vaporization and UV irradiation. The hydrogen peroxide is preferably stored at stable concentration levels, i.e., approximately 50% by volume and increased in concentration in a continuous process preceding vaporization within the flow channel of the gaseous stream and in the presence of the UV radiation sources.
Photosynthetic carbon reduction by seagrasses exposed to ultraviolet A radiation
NASA Technical Reports Server (NTRS)
1979-01-01
The seagrasses Halophila engelmannii, Halodule wrightii, and Syringodium filiforme were examined for their intrinsic sensitivity to ultraviolet-A-UV-A and ultraviolet-B-UV-B radiation. The effect of UV-A on photosynthetically active radiation (PAR) was also determined. Ultraviolet-A and ultraviolet-B were studied with emphasis on the greater respective environmental consequence in terms of seagrass distribution and abundance. Results indicate that an intrinsic sensitivity to UV-A alone is apparent only in Halophila, while net photosynthesis in Halodule and Syringodium seems unaffected by the level of UV-A provided. The sensitivity of Halophila to UV-A in the absense of (PAR) indicates that the photosynthetic reaction does not need to be in operation for damage to occur. Other significant results are reported.
Constraints on the Early Terrestrial Surface UV Environment Relevant to Prebiotic Chemistry.
Ranjan, Sukrit; Sasselov, Dimitar D
2017-03-01
The UV environment is a key boundary condition to abiogenesis. However, considerable uncertainty exists as to planetary conditions and hence surface UV at abiogenesis. Here, we present two-stream multilayer clear-sky calculations of the UV surface radiance on Earth at 3.9 Ga to constrain the UV surface fluence as a function of albedo, solar zenith angle (SZA), and atmospheric composition. Variation in albedo and latitude (through SZA) can affect maximum photoreaction rates by a factor of >10.4; for the same atmosphere, photoreactions can proceed an order of magnitude faster at the equator of a snowball Earth than at the poles of a warmer world. Hence, surface conditions are important considerations when computing prebiotic UV fluences. For climatically reasonable levels of CO 2 , fluence shortward of 189 nm is screened out, meaning that prebiotic chemistry is robustly shielded from variations in UV fluence due to solar flares or variability. Strong shielding from CO 2 also means that the UV surface fluence is insensitive to plausible levels of CH 4 , O 2 , and O 3 . At scattering wavelengths, UV fluence drops off comparatively slowly with increasing CO 2 levels. However, if SO 2 and/or H 2 S can build up to the ≥1-100 ppm level as hypothesized by some workers, then they can dramatically suppress surface fluence and hence prebiotic photoprocesses. H 2 O is a robust UV shield for λ < 198 nm. This means that regardless of the levels of other atmospheric gases, fluence ≲198 nm is only available for cold, dry atmospheres, meaning sources with emission ≲198 (e.g., ArF excimer lasers) can only be used in simulations of cold environments with low abundance of volcanogenic gases. On the other hand, fluence at 254 nm is unshielded by H 2 O and is available across a broad range of [Formula: see text], meaning that mercury lamps are suitable for initial studies regardless of the uncertainty in primordial H 2 O and CO 2 levels. Key Words: Radiative transfer-Origin of life-Planetary environments-UV radiation-Prebiotic chemistry. Astrobiology 17, 169-204.
Yao, Xiaoqin; Chu, Jian-Zhou; Ma, Chun-Hui; Si, Chao; Li, Ji-Gang; Shi, Xiao-Fei; Liu, Chao-Nan
2015-08-01
The article studied UV-B effects on biochemical traits and proteomic changes in postharvest flowers of medicinal chrysanthemum. The experiment about UV-B effects on biochemical traits in flowers included six levels of UV-B treatments (0 (UV0), 50 (UV50), 200 (UV200), 400 (UV400), 600 (UV600) and 800 (UV800) μWcm(-2)). UV400, UV600 and UV800 treatments significantly increased the contents of hydrogen peroxide, malondialdehyde and UV-B absorbing compounds, and the activity of phenylalanine ammonia lyase enzyme over the control. The contents of chlorogenic acid and flavone in flowers were significantly increased by UV-B treatments (except for UV50 and UV800). Two-dimensional gel electrophoresis was utilized to analyze proteomic changes in flowers with or without UV-B radiation. Results indicated that 43 protein spots (>1.5-fold difference in volume) were detected, including 19 spots with a decreasing trend and 24 spots with an increasing trend, and 19 differentially expressed protein spots were successfully indentified by MALDI-TOF MS. The indentified proteins were classified based on functions, the most of which were involved in photosynthesis, respiration, protein biosynthesis and degradation and defence. An overall assessment using biochemical and differential proteomic data revealed that UV-B radiation could affect biochemical reaction and promote secondary metabolism processes in postharvest flowers. Copyright © 2015 Elsevier B.V. All rights reserved.
DNA Damage and Repair in Plants under Ultraviolet and Ionizing Radiations
Gill, Sarvajeet S.; Gill, Ritu; Jha, Manoranjan; Tuteja, Narendra
2015-01-01
Being sessile, plants are continuously exposed to DNA-damaging agents present in the environment such as ultraviolet (UV) and ionizing radiations (IR). Sunlight acts as an energy source for photosynthetic plants; hence, avoidance of UV radiations (namely, UV-A, 315–400 nm; UV-B, 280–315 nm; and UV-C, <280 nm) is unpreventable. DNA in particular strongly absorbs UV-B; therefore, it is the most important target for UV-B induced damage. On the other hand, IR causes water radiolysis, which generates highly reactive hydroxyl radicals (OH•) and causes radiogenic damage to important cellular components. However, to maintain genomic integrity under UV/IR exposure, plants make use of several DNA repair mechanisms. In the light of recent breakthrough, the current minireview (a) introduces UV/IR and overviews UV/IR-mediated DNA damage products and (b) critically discusses the biochemistry and genetics of major pathways responsible for the repair of UV/IR-accrued DNA damage. The outcome of the discussion may be helpful in devising future research in the current context. PMID:25729769
Singh, J; Gautam, S; Bhushan Pant, A
2012-12-22
The survival of Antarctic flora under ozone depletion depends on their ability to acclimate against increasing UV—B radiation by employing photo protective mechanisms either by avoiding or repairing UV—B damage. A fifteen days experiment was designed to study moss (Bryum argenteum) and lichen (Umbilicaria aprina) under natural UV—B exposure and under UV filter frames at the Maitri region of Schirmacher oasis, East Antarctica. Changes in UV absorbing compounds, phenolics, carotenoids and chlorophyll content were studied for continuous fifteen days and significant changes were observed in the UV exposed plants of B. argenteum and U. aprina. The change in the UV absorbing compounds was more significant in B. argenteum (P<0.0001) than U. aprina (P<0.0002). The change in phenolic contents and total carotenoid content was significant (P<0.0001) in both B. argenteum and lichen U. aprina indicating that the increase in UV absorbing compounds, phenolic contents and total carotenoid content act as a protective mechanism against the deleterious effect of UV—B radiations.
Fan, Caixia; Hu, Huiqing; Wang, Lihong; Zhou, Qing; Huang, Xiaohua
2014-01-01
In order to probe into the enzymological mechanism for the regulation of lanthanum chloride (LaCl3) on flavonoid synthesis in plants under enhanced ultraviolet-B (UV-B) radiation, the effects of LaCl₃ (20 and 60 mg l(-1)) on the content of flavonoids as well as the activities of phenylalanine ammonia-lyase (PAL), cinnamate-4-hydroxylase (C4H), 4-coumarate : coenzyme A ligase (4CL), and chalcone synthase (CHS) in soybean seedlings under enhanced UV-B radiation (2.6 and 6.2 kJ m(-2) day(-1)) were investigated. Enhanced UV-B radiation (2.6 and 6.2 kJ m(-2) day(-1)) caused the increase in the content of flavonoids as well as the activities of PAL, C4H, 4CL, and CHS in soybean seedlings. The treatment of 20 mg l(-1) LaCl₃ also efficiently increased these indices, which promoted the flavonoid synthesis and provided protective effects for resisting enhanced UV-B radiation. On the contrary, the treatment of 60 mg l(-1) LaCl₃ decreased the content of flavonoids as well as the activities of C4H, 4CL, and CHS in soybean seedlings except increasing the activity of PAL, which were not beneficial to the flavonoid synthesis and provided negative effects for resisting enhanced UV-B radiation. In conclusion, enhanced UV-B radiation caused the increase in the flavonoid synthesis by promoting the activities of PAL, C4H, 4CL, and CHS in soybean seedlings. The treatment of LaCl₃ could change flavonoid synthesis in soybean seedlings under enhanced UV-B radiation by regulating the activities of PAL, C4H, 4CL, and CHS, which is an enzymological mechanism for the regulation of LaCl₃ on flavonoid synthesis in plants under enhanced UV-B radiation.
Survivability of Microbes in Mars Wind Blown Dust Environment
NASA Technical Reports Server (NTRS)
Mancinelli, Rocco L.; Klovstad, Melisa R.; Fonda, Mark L.; DeVincenzi, Donald (Technical Monitor)
2000-01-01
Although the probability of Earth microbes growing (dividing) in the Martian environment is extremely low, the probability of their survival on the Martian surface is unknown. During the course of landed missions to Mars terrestrial microbes may reach the surface of Mars via inadequately sterilized spacecraft landers, rovers, or through accidental impact of orbiters. This investigation studied the potential for Earth microbes to survive in the windblown dust on the surface of Mars. The rationale for the study comes from the fact that Mars regularly has huge dust storms that engulf the planet, shading the surface from solar UV radiation. These storms serve as a mechanism for global transfer of dust particles. If live organisms were to be transported to the surface of Mars they could be picked up with the dust during a dust storm and transported across the planet. Washed, dried spores of Bacillus subtilis strain HA 101 were aseptically mixed with sterile sieved (size range of 1-5microns) Mars soil standard (obtained from NASA Johnson Space Center, Houston, Texas, USA), or Fe-montmorillonite such that the number of microbes equals 5 x 10(exp 6)/g dry wt soil. The microbe soil mixture was placed in a spherical 8 L Mars simulation chamber equipped with a variable speed rotor, gas ports and an Oriel deuterium UV lamp emitting light of wave lengths 180-400 nm. The chamber was sealed, flushed with a simulated Martian atmosphere (96.9% CO2, 3% O2, 0.1% H2O), and the pressure brought to 10 torr. The lamp and rotor were switched on to begin the experiment. Periodically samples were collected from the chamber, and the numbers of microbial survivors g soil was determined using plate counts and the most probable number method (MPN). The data indicate that Bacillus subtilis spores dispersed with Mars analog soil in a Mars atmosphere (wind blown dust) survive exposure to 5.13 KJ m-2 UV radiation, suggesting that Mars wind blown dust has potential to the protect microbes from solar UV radiation.
Sakalauskaitė, Jurga; Viskelis, Pranas; Dambrauskienė, Edita; Sakalauskienė, Sandra; Samuolienė, Giedrė; Brazaitytė, Aušra; Duchovskis, Pavelas; Urbonavičienė, Dalia
2013-04-01
The effects of short-term ultraviolet B (UV-B) irradiation on sweet basil (Ocimum basilicum L. cv. Cinnamon) plants at the 3-4 leaf pair and flowering stages were examined in controlled environment growth chambers. Plants were exposed to 0 (reference), 2 and 4 kJ UV-B m(-2) day(-1) over 7 days. Exposure of basil plants to supplementary UV-B light resulted in increased assimilating leaf area, fresh biomass and dry biomass. Stimulation of physiological functions in young basil plants under either applied UV-B dose resulted in increased total chlorophyll content but no marked variation in carotenoid content. At the flowering stage the chlorophyll and carotenoid contents of basil were affected by supplementary UV-B radiation, decreasing with enhanced UV-B exposure. Both total antioxidant activity (2,2-diphenyl-1-picrylhydrazyl free radical assay) and total phenolic compound content were increased by UV-B light supplementation. Young and mature basil plants differed in their ascorbic acid content, which was dependent on UV-B dose and plant age. UV-B radiation resulted in decreased nitrate content in young basil plants (3-4 leaf pair stage). These results indicate that the application of short-exposure UV-B radiation beneficially influenced both growth parameters and biochemical constituents in young and mature basil plants. © 2012 Society of Chemical Industry.
In-Flight Ultraviolet Radiation on Commercial Airplanes.
Cadilhac, Pascal; Bouton, Marie-Christine; Cantegril, Monique; Cardines, Catherine; Gisquet, Alain; Kaufman, Noël; Klerlein, Michel
2017-10-01
Epidemiological studies suggest that pilots and cabin crew have higher incidences and mortality rates of cutaneous malignant melanoma than those of the general population. Exposure to UV radiation is one of the main risk factors for this type of cancer. The aim of this study was to evaluate the level of UV radiation in an airliner in flight. Measurements were taken with a three sensor-integrated electronics UV radiometer (A, B, and C) during 14 flights from July to October 2016. They were performed during daylight hours once the airliner had reached cruising altitude. We failed to find UVC radiation. The measurements detected neither UV A nor B in any parts of the cabins of the planes tested, nor in the Airbus cockpits. UVA radiation was however found in the cockpit of Boeing 777s. But UVA levels remained well below the values found at ground level and they were also strongly reduced (more than 10 times) by cockpit sun visors. Few studies have assessed the level of UV radiation in an airplane. They suggested that the cockpit windshields reduced this type of radiation to some degree (according mainly to the wavelength of the radiation and the nature of the windshield). Our study strongly confirms these results and suggests that increased incidence of melanoma and mortality by this type of illness found among pilots and airline cabin crews may not be related to in-flight UV radiation exposure.Cadilhac P, Bouton M-C, Cantegril M, Cardines C, Gisquet A, Kaufman N, Klerlein M. In-flight ultraviolet radiation on commercial airplanes. Aerosp Med Hum Perform 2017; 88(10):947-951.
Activities report in quantum optics
NASA Astrophysics Data System (ADS)
1985-03-01
Soft X-ray radiation from laser plasmas, intense Planck radiation, X-ray spectroscopy with transmission gratings, simulation of laser-produced shock waves, self-similar expansion in vacuum, radiation hydrodynamics, electronic structure of highly compressed matter, and heavy-ion beams for inertial confinement were investigated, and a high power iodine laser was developed. Laser-spectroscopy experiments, as well as a gravitational wave experiments were conducted. The fundamentals of light-matter interaction and nonlinear dynamics were studied. Many-photon ionization of molecules; spectroscopy of shock pairs; interaction of excited molecules with surfaces; IR laser applications; organic photochemistry with UV lasers; theoretical chemistry; and a ClF laser were investigated. Thin layers, and a high-pressure CO2 laser were studied.
Ultraviolet Radiation Dose National Standard of México
NASA Astrophysics Data System (ADS)
Cardoso, R.; Rosas, E.
2006-09-01
We present the Ultraviolet (UV) Radiation Dose National Standard for México. The establishment of this measurement reference at Centro Nacional de Metrología (CENAM) eliminates the need of contacting foreign suppliers in the search for traceability towards the SI units when calibrating instruments at 365 nm. Further more, the UV Radiation Dose National Standard constitutes a highly accurate and reliable source for the UV radiation dose measurements performed in medical and cosmetic treatments as in the the food and pharmaceutics disinfection processes, among other.
The Solar Ultraviolet Environment at the Ocean.
Mobley, Curtis D; Diffey, Brian L
2018-05-01
Atmospheric and oceanic radiative transfer models were used to compute spectral radiances between 285 and 400 nm onto horizontal and vertical plane surfaces over water. The calculations kept track of the contributions by the sun's direct beam, by diffuse-sky radiance, by radiance reflected from the sea surface and by water-leaving radiance. Clear, hazy and cloudy sky conditions were simulated for a range of solar zenith angles, wind speeds and atmospheric ozone concentrations. The radiances were used to estimate erythemal exposures due to the sun and sky, as well as from radiation reflected by the sea surface and backscattered from the water column. Diffuse-sky irradiance is usually greater than direct-sun irradiance at wavelengths below 330 nm, and reflected and water-leaving irradiance accounts for <20% of the UV exposure on a vertical surface. Total exposure depends strongly on solar zenith angle and azimuth angle relative to the sun. Sea surface roughness affects the UV exposures by only a few percent. For very clear waters and the sun high in the sky, the UV index within the water can be >10 at depths down to two meters and >6 down to 5 m. © 2018 The American Society of Photobiology.
Impact of preschool environment upon children's physical activity and sun exposure.
Boldemann, Cecilia; Blennow, Margareta; Dal, Henrik; Mårtensson, Fredrika; Raustorp, Anders; Yuen, Katarina; Wester, Ulf
2006-04-01
The physical qualities of outdoor environments are important to trigger healthy behavior in children. We studied the impact of outdoor environments upon spontaneous physical activity and exposure to ultraviolet (UV) radiation in 4- to 6-year-old children at 11 preschools in Stockholm county. In May-June 2004, pedometry and measurement of UV radiation were carried out on 197 children from 11 preschools in Stockholm county. Outdoor environments differed regarding vegetation, topography, space, and education. Ambient global UV radiation data were collected, free sky, and ground surface assessed. Arrival, in- and outdoor stay, and departure were recorded. For analysis, linear mixed model analysis was applied. In environments with trees, shrubbery, and broken ground, the mean step count/min was 21.5, and mean exposure to UV radiation as fraction of available UV during play outdoors 14.6%. In delimited environments with little vegetation, the mean step count/min was 17.7 and mean exposure fraction to UV radiation 24.3% (P < 0.001, crude). Step/min range was 8.9-30.0 (girls) and 8.8-37.2 (boys), UV radiation exposure range 4-60% (no difference between genders). Spacious preschool environments with trees, shrubbery, and broken ground trigger physical activity and yield sun protection in outdoor play. As many children attend preschool, access to such environments is recommended in community architecture.
The effect of melatonin on eye lens of rats exposed to ultraviolet radiation.
Anwar, M M; Moustafa, M A
2001-05-01
We investigated the influence of exogenously administered melatonin on adult rats eye lenses exposed to ultraviolet radiation (UV) A and B ranging from 356-254 nm irradiation at 8 microW/cm(2). Rats exposed to this range of UV for 15 min for one week showed a significant (P<0.05) reduction in antioxidant enzymes activities; superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and elevated (P<0.001) lipid peroxidation served as an index of cellular damage by free radicals. UV-radiation significantly (P<0.001) elevated calcium ions (Ca(2+)) and lactate dehydrogenase (LDH) activity in lenses. Depleting animals of their stores of important intracellular antioxidant and elevating lenticular Ca(2+) by UV irradiation, may be the main cause of lens opacification. Melatonin injection with radiation significantly reduced (P<0.05) lipid peroxidation, Ca(2+) and (P<0.001) for LDH. When melatonin was injected after radiation, SOD and GSH-Px enzyme activities increased significantly (P<0.01), and lipid peroxidation, Ca(2+) levels and LDH activities were reduced significantly. Melatonin injection after UV radiation was as effective as melatonin treatment concurrent with UV irradiation. We conclude that melatonin may protect the eye lens from the damaging effects of UV exposure, and its actions protect lens from oxidative stress, elevating Ca(2+) levels, which are considered as an important causes of cataractogenesis.
Acierno, Mark J; Mitchell, Mark A; Roundtree, Marlana K; Zachariah, Trevor T
2006-12-01
To determine whether there are increased concentrations of 25-hydroxyvitaminn D(3) in red-eared slider turtles (Trachemys scripta elegans) after exposure to UV radiation. 12 yearling turtles recently removed from aestivation. Turtles were randomly allocated to 2 groups (6 turtles/group). An initial blood sample was collected from all turtles for measurement of 25-hydroxyvitamin D(3) concentrations. Turtles of 1 group were then provided no supplemental lighting, whereas turtles of the other group were exposed to full-spectrum coil bulbs at a distance of 22.86 cm. The UV-A and UV-B radiation generated by the supplemental lighting was measured by use of a radiometer-photometer at weekly intervals. Measurements were collected 2.54 and 22.86 cm from the bulb surface. The study was continued for a 4-week period. At the end of the study, a second blood sample was collected from all turtles for measurement of 25-hydroxyvitamin D(3). Mean +/- SD 25-hydroxyvitamin D(3) concentrations differed significantly between turtles provided supplemental UV radiation (71.7 +/- 46.9 nmol/L) and those not provided UV radiation (31.4 +/- 13.2 nmol/L). Appropriate husbandry recommendations for raising and maintaining red-eared slider turtles should include use of sunlight that is unobstructed by UV-B filtering material or provision of an artificial source of UV-B radiation.
Development of a low cost UV index datalogger and comparison between UV index sensors
NASA Astrophysics Data System (ADS)
Gomes, L. M.; Ventura, L.
2018-02-01
Ultraviolet radiation (UVR) is the part of radiation emitted by the Sun, with range between 280 nm and 400 nm, and that reaches the Earth's surface. The UV rays are essential to the human because it stimulates the production of vitamin D but this radiation may be related to several health problems, including skin cancer and ocular diseases like pterygium, photokeratitis, cataract and more. To inform people about UV radiation, it is adopted the Ultraviolet Index (UVI). This UVI consists in a measure of solar UV radiation level, which contributes to cause sunburn on skin, also known as Erythema, and is indicated as an integer number between 1 and 14, associated to categories from low to extreme respectively. The aim of this work was to develop a low cost UVI datalogger capable of measuring three different UVI sensors simultaneously, record their data with timestamp and serve the measures online through a dedicated server, so general public can access their data and see the current UV radiation conditions. We also compared three different UVI sensors (SGlux UV cosine, Skye SKU440 and SiLabs SI1145) between them and with meteorological models during a period of months to verify their compliance. With five months data, we could verify the sensors working characteristics and decide which among them are the most suitable for research purposes.
Exclusion of solar UV radiation improves photosynthetic performance and yield of wheat varieties.
Kataria, Sunita; Guruprasad, K N
2015-12-01
Field studies were conducted to determine the potential for alterations in photosynthetic performance and grain yield of four wheat (Triticum aestivum) varieties of India- Vidisha, Purna, Swarna and Naveen Chandausi by ambient ultraviolet radiation (UV). The plants were grown in specially designed UV exclusion chambers, wrapped with filters that excluded UV-B (<315 nm), UV-A/B (<400 nm) or transmitted ambient UV or lacked filters. The results indicated that solar UV exclusion increased the leaf mass per area ratio, leaf weight ratio and chlorophylls per unit area of flag leaves in all the four varieties of wheat. Polyphasic chlorophyll a fluorescence transients from the flag leaves of UV excluded wheat plants gave a higher fluorescence yield. Exclusion of solar UV significantly enhanced photosynthetic performance as a consequence of increased efficiency of PS II, performance index (PIABS) and rate of photosynthesis in the flag leaves of wheat varieties along with a remarkable increase in carbonic anhydrase, Rubisco and nitrate reductase activities. This additional fixation of carbon and nitrogen by exclusion of UV was channelized towards the improvement in grain yield of wheat varieties as there was a decrease in the UV-B absorbing substances and an increase in soluble protein content in flag leaves of all the four varieties of wheat. The magnitude of response for UV exclusion for all the measured parameters was higher in two varieties of wheat Vidisha and Purna as compared to Swarna and Naveen Chandausi. Cumulative stress response index (CSRI) for each variety was developed from the cumulative sum of physiological and yield parameters such as leaf mass area ratio of flag leaf, total chlorophyll content, performance index at absorption basis, rate of photosynthesis and grain yield. All the varieties had a negative CSRI, demonstrating a negative impact of ambient UV radiation. Naveen Chandausi and Swarna are less sensitive to ambient UV radiation; Vidisha is more sensitive to both UV-A and UV-B and Purna is more sensitive to ambient UV-B radiation. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Dual Band Deep Ultraviolet AlGaN Photodetectors
NASA Technical Reports Server (NTRS)
Aslam, S.; Miko, L.; Stahle, C.; Franz, D.; Pugel, D.; Guan, B.; Zhang, J. P.; Gaska, R.
2007-01-01
We report on the design, fabrication and characterization of a back-illuminated voltage bias selectable dual-band AlGaN UV photodetector. The photodetector can separate UVA and W-B band radiation by bias switching a two terminal n-p-n homojunction structure that is fabricated in the same pixel. When a forward bias is applied between the top and bottom electrodes, the detector can sense UV-A and reject W-B band radiation. Alternatively, under reverse bias, the photodetector can sense UV-B and reject UV-A band radiation.
Luna: What Did We Learn and What Should We Expect?
NASA Technical Reports Server (NTRS)
Wallace, William T.
2009-01-01
This presentation presents a look at the space program's background prior to lunar exploration and highlights the Apollo program and lessons learned from lunar exploration. The possibilities of exposures and difficulties attributed to lunar dust are described, including obscured vision, clogged equipment, coated surfaces, and inhalation, among others. A lunar dust simulant is proposed to support preliminary studies. Lunar dust is constantly activated by meteorite lunar dust, UV radiation and elements of solar wind - this active dust could produce reactive species. Methods of deactivation must be determined before new lunar missions, but first we must understand how to reactivate dust on Earth. Activation methods tested and described here include crushing/grinding or UV activation. Grinding time has a direct effect on amount of hydroxyl radicals produced upon addition of ground quartz to a solution. An increase in hydroxyl production was also seen for a lunar simulant with increased grinding.
Diurnal changes in CN metabolism and response of rice seedlings to UV-B radiation.
Yun, Hyejin; Lim, Sunhyung; Kim, Yangmin X; Lee, Yejin; Lee, Seulbi; Lee, Deogbae; Park, Keewoong; Sung, Jwakyung
2018-03-13
Plants regulate a number of primary metabolites, including carbohydrates, organic acids, and amino acids, in response to UV-B radiation. Therefore, it is essential to understand the time-dependent response of rice plants to UV-B stress. This study focused on the response of plants to UV-B at different leaf developmental phases (emerging, growing, and maturing) in an attempt to fully comprehend the metabolic shift. We analyzed the expression levels of genes related to starch/sucrose metabolism in the leaf blades of rice seedlings (Oryza sativa L. "Saechuchenog") exposed to UV-B irradiation for short (1 day) and long terms (5 days) using quantitative real-time polymerase chain reaction. We also examined the diurnal variations in the contents of primary metabolites using an established GCTOF-MS (gas chromatography time of flight-mass spectrometry) method. The results showed that the levels of primary metabolites were largely dependent upon the diurnal rhythm and leaf developmental phase. The young leaves (sink) produced and accumulated starch rather than sucrose. The short-term (4 h, 1 day) UV-B exposure inhibited sucrose synthesis, which could be the first target of UV-B radiation. Following short- and long-term (5 days) exposure to UV-B radiation, the dynamic response of primary metabolites was evaluated. It was found that the content of carbohydrates decreased throughout the period of exposure to UV-B stress, especially in terms of sucrose concentration. However, the content of the majority of amino acids increased after an early decrease. Our data revealed that the metabolic response, as well as the gene expression, differed with the period (intensity) of exposure to UV-B radiation and with the phase of leaf development. These findings provide new insights for a better understanding of the metabolic response of a variety of plant species exposed to a wide range of UV-B radiation. Copyright © 2018. Published by Elsevier GmbH.
NASA Technical Reports Server (NTRS)
Middleton, Elizabeth M.; Smith, David E. (Technical Monitor)
2000-01-01
Many amphibian species have experienced substantial population declines, or have disappeared altogether, during the last several decades at a number of amphibian census sites in Central and South America. This study addresses the use of satellite-derived trends in solar ultraviolet-B (UV-B; 280-320 nm) radiation exposures at these sites over the last two decades, and is intended to demonstrate a role for satellite observations in determining whether UV-B radiation is a contributing factor in amphibian declines. UV-B radiation levels at the Earth's surface were derived from the Total Ozone Mapping Spectrometer (TOMS) satellite data, typically acquired daily since 1979. These data were used to calculate the daily erythemal (sunburning) UV-B, or UV-B(sub ery), exposures at the latitude, longitude, and elevation of each of 20 census sites. The annually averaged UV-B(sub ery) dose, as well as the maximum values, have been increasing in both Central and South America, with higher levels received at the Central American sites. The annually averaged UV-B(sub ery) exposures increased significantly from 1979-1998 at all 11 Central American sites examined (r(exp 2) = 0.60 - 0.79; P<=0.015), with smaller but significant increases at five of the nine South American sites (r(exp 2) = 0.24-0.42; P<=0.05). The contribution of the highest UV-B(sub ery) exposure levels (>= 6750 J/sq m*d) to the annual UV-B(sub ery) total has increased from approx. 5% to approx. 15% in Central America over the 19 year period, but actual daily exposures for each species are unknown. Synergy among UV-B radiation and other factors, especially those associated with alterations of water chemistry (e.g., acidification) in aqueous habitats is discussed. These findings justify further research concerning whether UV-B(sub ery) radiation plays a role in amphibian population declines and extinctions.
Kern, Christoph; Deutschmann, Tim; Werner, Cynthia; Sutton, A. Jeff; Elias, Tamar; Kelly, Peter J.
2012-01-01
Sulfur dioxide (SO2) is monitored using ultraviolet (UV) absorption spectroscopy at numerous volcanoes around the world due to its importance as a measure of volcanic activity and a tracer for other gaseous species. Recent studies have shown that failure to take realistic radiative transfer into account during the spectral retrieval of the collected data often leads to large errors in the calculated emission rates. Here, the framework for a new evaluation method which couples a radiative transfer model to the spectral retrieval is described. In it, absorption spectra are simulated, and atmospheric parameters are iteratively updated in the model until a best match to the measurement data is achieved. The evaluation algorithm is applied to two example Differential Optical Absorption Spectroscopy (DOAS) measurements conducted at Kilauea volcano (Hawaii). The resulting emission rates were 20 and 90% higher than those obtained with a conventional DOAS retrieval performed between 305 and 315 nm, respectively, depending on the different SO2 and aerosol loads present in the volcanic plume. The internal consistency of the method was validated by measuring and modeling SO2 absorption features in a separate wavelength region around 375 nm and comparing the results. Although additional information about the measurement geometry and atmospheric conditions is needed in addition to the acquired spectral data, this method for the first time provides a means of taking realistic three-dimensional radiative transfer into account when analyzing UV-spectral absorption measurements of volcanic SO2 plumes.
Nascimento, Luana Beatriz dos Santos; Moreira, Nattacha dos Santos; Leal-Costa, Marcos Vinícius; Costa, Sônia Soares; Tavares, Eliana Schwartz
2015-01-01
Background and Aims UV-B radiation can be stressful for plants and cause morphological and biochemical changes. Kalanchoe pinnata is a CAM leaf-succulent species distributed in hot and dry regions, and is rich in flavonoids, which are considered to be protective against UV-B radiation. This study aims to verify if K. pinnata has morphological or anatomical responses as a strategy in response to high UV-B levels. Methods Kalanchoe pinnata plants of the same age were grown under white light (control) or white light plus supplemental UV-B radiation (5 h d–1). The plants were treated with the same photoperiod, photosynthetically active radiation, temperature and daily watering system. Fragments of the middle third of the leaf blade and petiole were dehydrated and then embedded in historesin and sectioned in a rotary microtome. Sections were stained with toluidine blue O and mounted in Entellan®. Microchemical analyses by optical microscopy were performed on fresh material with Sudan III, Sudan IV and phloroglucinol, and analysed using fluorescence microscopy. Key Results Supplemental UV-B radiation caused leaf curling and the formation of brown areas on the leaves. These brown areas developed into a protective tissue on the adaxial side of the leaf, but only in directly exposed regions. Anatomically, this protective tissue was similar to a wound-periderm, with outer layer cell walls impregnated with suberin and lignin. Conclusions This is the first report of wound-periderm formation in leaves in response to UV-B radiation. This protective tissue could be important for the survival of the species in desert regions under high UV-B stress conditions. PMID:26346722
NASA Astrophysics Data System (ADS)
Qi, Yadong; Bai, Shuju; Vogelmann, Thomas C.; Heisler, Gordon M.
2003-11-01
The depth of light penetration from the adaxial surfaces of the mature leaves of pecan (Carya illinoensis) was measured using a fiber optic microprobe system at four wavelengths: UV-B (310nm), UV-A (360 nm), blue light (430nm), and red light (680nm). The average thickness of the leaf adaxial epidermal layer was 15um and the total leaf thickness was 219um. The patterns of the light attenuation by the leaf tissues exhibited strong wavelength dependence. The leaf adaxial epidermal layer was chiefly responsible for absorbing the UV-A UV-B radiation. About 98% of 310 nm light was steeply attenuated within the first 5 um of the adaxial epidermis; thus, very little UV-B radiation was transmitted to the mesophyll tissues where contain photosynthetically sensitive sites. The adaxial epidermis also attenuated 96% of the UV-A radiation. In contrast, the blue and red light penetrated much deeper and was gradually attenutated by the leaves. The mesophyll tissues attenuated 17% of the blue light and 42% of the red light, which were available for photosynthesis use. Since the epidermal layer absorbed nearly all UV-B light, it acted as an effective filter screening out the harmful radiation and protecting photosynthetically sensitive tissues from the UV-B damage. Therefore, the epidermal function of the UV-B screening effectiveness can be regarded as one of the UV-B protection mechanisms in pecan.
Effects of ultraviolet-B radiation on fungal disease development in Cucumis sativus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orth, A.B.; Teramura, A.H.; Sisler, H.D.
1990-09-01
Stratospheric ozone depletion due to increased atmospheric pollutants has received considerable attention because of the potential increase in ultraviolet-B (UV-B, 280-320 nm) radiation that will reach the earth's surface. Three cucumber (Cucumis sativus L.) cultivars were exposed to a daily dose of 11.6 kJ m{sup {minus}2} biologically effective ultraviolet-B (UV-B{sub BE}) radiation in an unshaded greenhouse before and/or after injection by Colletotrichum lagenarium (Pass.) Ell. and Halst. or Cladosporium cucumerinum Ell. and Arth. and analyzed for disease development. Two of these cultivars, Poinsette and Calypso Hybrid, were disease resistant, while the third cultivar, Straight-8, was disease susceptible. Preinfectional treatment ofmore » 1 to 7 days with UV-B{sub BE} in Straight-8 led to greater severity of both diseases. Postinfectional UV treatment did not lead to increased disease severity caused by C. lagenarium, while preinfectional UV treatment in both Straight-8 and Poinsette substantially increased disease severity. Although resistant cultivars Poinsette and Calypso Hybrid showed increased anthracnose disease severity when exposed to UV-B, this effect was apparent only on the cotyledons. Both higher spore concentration and exposure to UV-B radiation resulted in greater disease severity. Of the cucumber cultivars tested for UV-B sensitivity, growth in Poinsette was most sensitive and Calypso Hybrid was least sensitive. These preliminary results indicate that the effects of UV-B radiation on disease development in cucumber vary depending on cultivar, timing and duration of UV-B exposure, inoculation level, and plant age.« less
Stan Lebow; R. Sam Williams; Patricia Lebow
2003-01-01
The release of arsenic from wood pressure-treated with chromated copper arsenate (CCA) can be decreased by application of wood finishes, but little is known about the types of finishes that are best suited for this purpose. This study evaluated the effects of finish water repellent content and ultraviolet (UV) radiation on the release of arsenic, copper, and chromium...
NASA Astrophysics Data System (ADS)
Park, Sang Seo; Jung, Yeonjin; Lee, Yun Gon
2016-07-01
Radiative transfer model simulations were used to investigate the erythemal ultraviolet (EUV) correction factors by separating the UV-A and UV-B spectral ranges. The correction factor was defined as the ratio of EUV caused by changing the amounts and characteristics of the extinction and scattering materials. The EUV correction factors (CFEUV) for UV-A [CFEUV(A)] and UV-B [CFEUV(B)] were affected by changes in the total ozone, optical depths of aerosol and cloud, and the solar zenith angle. The differences between CFEUV(A) and CFEUV(B) were also estimated as a function of solar zenith angle, the optical depths of aerosol and cloud, and total ozone. The differences between CFEUV(A) and CFEUV(B) ranged from -5.0% to 25.0% for aerosols, and from -9.5% to 2.0% for clouds in all simulations for different solar zenith angles and optical depths of aerosol and cloud. The rate of decline of CFEUV per unit optical depth between UV-A and UV-B differed by up to 20% for the same aerosol and cloud conditions. For total ozone, the variation in CFEUV(A) was negligible compared with that in CFEUV(B) because of the effective spectral range of the ozone absorption band. In addition, the sensitivity of the CFEUVs due to changes in surface conditions (i.e., surface albedo and surface altitude) was also estimated by using the model in this study. For changes in surface albedo, the sensitivity of the CFEUVs was 2.9%-4.1% per 0.1 albedo change, depending on the amount of aerosols or clouds. For changes in surface altitude, the sensitivity of CFEUV(B) was twice that of CFEUV(A), because the Rayleigh optical depth increased significantly at shorter wavelengths.
Hunter, W R; Purcell, J D; Steele, G N
1973-08-01
Extreme ultraviolet (XUV) spectroheliographs require thin metal film filters that transmit the XUV radiation and eliminate scattered visible and near-uv radiation that would fog the photographic film on which the XUV images are recorded. Pinholes in the filters cause local fogging of the film during exposures in flight. It will be shown that the best way for preflight evaluation of pinhole effects is by using the filter in the flight instrument and photographing the sun from the earth's surface. An alternative method that appears to be as good, and is more convenient. is to test the filters in a simulated flight instrument. The results of evaluations using both the flight instrument and a simulated flight instrument will be shown.
NASA Astrophysics Data System (ADS)
Kaplan, Kyle; Dinerstein, Harriet L.; Jaffe, Daniel Thomas
2017-01-01
UV radiation regulates the energetics, ionization, and chemistry in much of the ISM. Regions between hot ionized and cool molecular gas where non-ionizing far-UV radiation dominates the state of the gas are called Photo-Dissociation or Photon-Dominated Regions (PDRs). PDRs are found in regions of high-mass star formation, planetary nebulae, and other environments that contain strong far-UV radiation fields. Hydrogen molecules (H2) are pumped by far-UV photons into excited rotational-vibrational levels of the ground electronic state, which give rise to a rich array of transitions in the near to mid-infrared. These transitions make an excellent probe of the physical conditions within a PDR. I will present near-IR spectra taken with the Immersion GRating Infrared Spectrometer (IGRINS; Park et al. 2014, Proc. SPIE, 9147), a novel, sensitive spectrometer with high spectral resolving power (R~45000) and instantaneous broad wavelength coverage (1.45-2.45 μm). Using IGRINS, I obtained deep spectra and measured up to 100 H2 rotational-vibrational transitions in the well-studied Orion Bar PDR, four other star formation complexes, and over a dozen planetary nebulae. Measurements of many lines from a wide range of vibrational states (v=1 to 13), rotational states (J=1 to 13), and excitation energies provides leverage for constraining the overall level populations and discerning the state of and physical processes within the gas. This combination of high spectral and spatial resolution enables us to distinguish previously unresolved spatio-kinematical components with distinct intrinsic spectra and excitation mechanisms (e.g. shocks vs. radiative excitation) within some individual planetary nebulae. I use the plasma simulation code Cloudy (Ferland et al. 2013, ApJ, 757, 79) as a tool for interpreting the observed H2 line ratios. Some sources are well fit by models with a single temperature and density, consistent with emission from a narrow region of the overall PDR structure. Populations of certain levels are more sensitive than others to specific physical parameters such as gas kinetic temperature or density.I acknowledge support from the following grants: NSF 1229522, NSF 0708245, and JPL RSA 1427884.
Casadevall, Romina; Rodriguez, Ramiro E.; Debernardi, Juan M.; Palatnik, Javier F.; Casati, Paula
2013-01-01
Because of their sessile lifestyle, plants are continuously exposed to solar UV-B radiation. Inhibition of leaf growth is one of the most consistent responses of plants upon exposure to UV-B radiation. In this work, we investigated the role of GROWTH-REGULATING FACTORs (GRFs) and of microRNA miR396 in UV-B–mediated inhibition of leaf growth in Arabidopsis thaliana plants. We demonstrate that miRNA396 is upregulated by UV-B radiation in proliferating tissues and that this induction is correlated with a decrease in GRF1, GRF2, and GRF3 transcripts. Induction of miR396 results in inhibition of cell proliferation, and this outcome is independent of the UV-B photoreceptor UV resistance locus 8, as well as ATM AND RAD3–RELATED and the mitogen-activated protein kinase MPK6, but is dependent on MPK3. Transgenic plants expressing an artificial target mimic directed against miR396 (MIM396) with a decrease in the endogenous microRNA activity or plants expressing miR396-resistant copies of several GRFs are less sensitive to this inhibition. Consequently, at intensities that can induce DNA damage in Arabidopsis plants, UV-B radiation limits leaf growth by inhibiting cell division in proliferating tissues, a process mediated by miR396 and GRFs. PMID:24076976
Dillon, Francisco M; Tejedor, M Daniela; Ilina, Natalia; Chludil, Hugo D; Mithöfer, Axel; Pagano, Eduardo A; Zavala, Jorge A
2018-02-01
Solar UV-B radiation has been reported to enhance plant defenses against herbivore insects in many species. However, the mechanism and traits involved in the UV-B mediated increment of plant resistance are unknown in crops species, such as soybean. Here, we studied defense-related responses in undamaged and Anticarsia gemmatalis larvae-damaged leaves of two soybean cultivars grown under attenuated or full solar UV-B radiation. We determined changes in jasmonates, ethylene (ET), salicylic acid, trypsin protease inhibitor activity, flavonoids, and mRNA expression of genes related with defenses. ET emission induced by Anticarsia gemmatalis damage was synergistically increased in plants grown under solar UV-B radiation and was positively correlated with malonyl genistin concentration, trypsin proteinase inhibitor activity and expression of IFS2, and the pathogenesis protein PR2, while was negatively correlated with leaf consumption. The precursor of ET, aminocyclopropane-carboxylic acid, applied exogenously to soybean was sufficient to strongly induce leaf isoflavonoids. Our results showed that in field-grown soybean isoflavonoids were regulated by both herbivory and solar UV-B inducible ET, whereas flavonols were regulated by solar UV-B radiation only and not by herbivory or ET. Our study suggests that, although ET can modulate UV-B-mediated priming of inducible plant defenses, some plant defenses, such as isoflavonoids, are regulated by ET alone. © 2017 John Wiley & Sons Ltd.
Ramasubramaniam, Rajagopal; Roy, Arindam; Sharma, Bharati; Nagalakshmi, Surendra
2011-12-01
Most of the studies on sunlight-induced pigmentation of skin are mainly focused on ultraviolet (UV) radiation-induced pigmentation and ways to prevent it. Recent studies have shown that the visible component of sunlight can also cause significant skin pigmentation. In the current study, the extent of pigmentation induced by UV and visible regions of sunlight in subjects with Fitzpatrick skin type IV-V was measured and compared with pigmentation induced by total sunlight. The immediate pigment darkening (IPD) induced by the visible fraction of sunlight is not significantly different from that induced by the UV fraction. However, the persistent pigment darkening (PPD) induced by visible fraction of sunlight in significantly lower than that induced by the UV fraction. The dose responses of IPD induced by UV, visible light and total sunlight suggest that both UV and visible light interact with the same precursor although UV is 25 times more efficient in inducing pigmentation per J cm(-2) of irradiation compared to visible radiation. The measured diffused reflection spectra and decay kinetics of UV and visible radiation-induced pigmentation are very similar, indicating that the nature of the transient and persistent species involved in both the processes are also likely to be same.
Examples for the importance of radiophysical measurements in clinical phototherapy.
Schneider, Lars Alexander; Wlaschek, Meinhard; Dissemond, Joachim; Scharffetter-Kochanek, Karin
2007-05-01
Optimal UV therapy requires regular surveillance of the variables that influence therapeutic success. In daily practice, phototherapy equipment is often operated with an attitude of "autocontrol." This implies that thorough control measurements of the emission spectra and calibration of UV fluences are not routinely performed. For both quality control and patient safety, it is essential to regularly check whether a UV source is providing the right target spectrum with the correct dose to the skin. We have exemplarily taken three UV sources currently used in clinical practice and performed radiophysical measurements, i. e. determined emission spectra, radiation output and correctness of dose calculation. All three sources revealed either a largely inhomogeneous distribution pattern of radiation intensity, variation of radiation intensity over time or insufficient filtering of the UV lamp emission spectrum. Furthermore the dose calculation procedures had to be revised because of significant differences between the estimated and the administered UV doses. Radiophysical measurement of all UV-equipment in clinical use is a simple and effective way to improve the safety and reliability of phototherapy. Such measurements help to uncover technical flaws in radiation sources and prevent unnecessary side effects and UV exposure risks for the patient.
Reichrath, Jörg; Reichrath, Sandra
2012-01-01
Abstract Solar ultraviolet (UV)-radiation is the most important environmental risk factor for the development of non-melanoma skin cancer (most importantly basal and squamous cell carcinomas), that represent the most common malignancies in Caucasian populations. To prevent these malignancies, public health campaigns were developed to improve the awareness of the general population of the role of UV-radiation. The requirements of vitamin D is mainly achieved by UV-B-induced cutaneous photosynthesis, and the vitamin D-mediated positive effects of UV-radiation were not always adequately considered in these campaigns; a strict "no sun policy" might lead to vitamin D-deficiency. This dilemma represents a serious problem in many populations, for an association of vitamin D-deficiency and multiple independent diseases has been convincingly demonstrated. It is crucial that guidelines for UV-exposure (e.g. in skin cancer prevention campaigns) consider these facts and give recommendations how to prevent vitamin D-deficiency. In this review, we analyze the present literature to help developing well-balanced guidelines on UV-protection that ensure an adequate vitamin D-status without increasing the risk to develop UV-induced skin cancer.
Measurement of the solar ultraviolet radiation at ground level in Bangi, Malaysia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aljawi, Ohoud; Gopir, Geri; Duay, Abdul Basit
2015-04-24
Understanding the amount of ultraviolet (UV) radiation received by human, plant, and animal organisms near the earth’s surface is important to a wide range of fields such as cancer research, agriculture and forestry. The solar ultraviolet spectral irradiance at ground level was measured using the Avantes spectrometer for the period of January to March 2014 at Bangi (2°55´N, 101°46´E, 50 m above sea level) in Malaysia. These data were used to estimate the diurnal variation of UV irradiance (300 – 400 nm). The maximum irradiance of UV radiation was 45 W m{sup −2} on horizontal surface. The maximum irradiance ofmore » UV received in the local noon time, and the minimum values of UV irradiance was received in the local morning time. It is found a bigger value of UV radiation was observed on clear sky in January. The estimation of daily flux average of UV irradiance was (921± 91) kJ m{sup −2}.« less
Transmittance of tinted and UV-blocking disposable contact lenses.
Harris, M G; Haririfar, M; Hirano, K Y
1999-03-01
Tinted and ultraviolet (UV)-blocking disposable contact lenses have become increasingly popular over the last decade. Wearers of UV-blocking contact lenses could benefit greatly by protecting their eyes from potential UV radiation damage. A Uvikon 930 dual beam spectrophotometer was used to measure three enhancement-tinted lenses (royal blue, evergreen, and aqua), two types of UV-blocking lenses, and two types of non-UV-blocking lenses. Enhancement-tinted lenses did show a decrease in transmittance at certain wavelengths on the visible spectrum, but they did not reduce the transmittance of UV radiation to the extent of the UV-blocking lenses designed specifically for this purpose.
Kotilainen, Titta; Venäläinen, Tuulia; Tegelberg, Riitta; Lindfors, Anders; Julkunen-Tiitto, Riitta; Sutinen, Sirkka; O'Hara, Robert B; Aphalo, Pedro J
2009-01-01
In research concerning stratospheric ozone depletion, action spectra are used as biological spectral weighting functions (BSWFs) for describing the effects of UV radiation on plant responses. Our aim was to evaluate the appropriateness of six frequently used BSWFs that differ in effectiveness with increasing wavelength. The evaluation of action spectra was based on calculating the effective UV radiation doses according to 1-2) two formulations of the generalized plant action spectrum, 3) a spectrum for ultraviolet induced erythema in human skin, 4) a spectrum for the accumulation of a flavonol in Mesembryanthemum crystallinum, 5) a spectrum for DNA damage in alfalfa seedlings and 6) the plant growth action spectrum. We monitored effects of UV radiation on the concentration of individual UV absorbing metabolites and chlorophyll concentrations in leaves and growth responses of silver birch (Betula pendula) seedlings. Experiments were conducted outdoors using plastic films attenuating different parts of the UV spectrum. Chlorophyll concentrations and growth were not affected by the UV treatments. The response to UV radiation varied between and within groups of phenolics. In general, the observed responses of phenolic groups and individual flavonoids were best predicted by action spectra extending into the UV-A region with moderate effectiveness.
Slaninova, Eva; Sedlacek, Petr; Mravec, Filip; Mullerova, Lucie; Samek, Ota; Koller, Martin; Hesko, Ondrej; Kucera, Dan; Marova, Ivana; Obruca, Stanislav
2018-02-01
Numerous prokaryotes accumulate polyhydroxyalkanoates (PHA) in the form of intracellular granules. The primary function of PHA is the storage of carbon and energy. Nevertheless, there are numerous reports that the presence of PHA granules in microbial cells enhances their stress resistance and fitness when exposed to various stress factors. In this work, we studied the protective mechanism of PHA granules against UV irradiation employing Cupriavidus necator as a model bacterial strain. The PHA-accumulating wild type strain showed substantially higher UV radiation resistance than the PHA non-accumulating mutant. Furthermore, the differences in UV-Vis radiation interactions with both cell types were studied using various spectroscopic approaches (turbidimetry, absorption spectroscopy, and nephelometry). Our results clearly demonstrate that intracellular PHA granules efficiently scatter UV radiation, which provides a substantial UV-protective effect for bacterial cells and, moreover, decreases the intracellular level of reactive oxygen species in UV-challenged cells. The protective properties of the PHA granules are enhanced by the fact that granules specifically bind to DNA, which in turn provides shield-like protection of DNA as the most UV-sensitive molecule. To conclude, the UV-protective action of PHA granules adds considerable value to their primary storage function, which can be beneficial in numerous environments.
Highly Sensitive Detection of UV Radiation Using a Uranium Coordination Polymer.
Liu, Wei; Dai, Xing; Xie, Jian; Silver, Mark A; Zhang, Duo; Wang, Yanlong; Cai, Yawen; Diwu, Juan; Wang, Jian; Zhou, Ruhong; Chai, Zhifang; Wang, Shuao
2018-02-07
The accurate detection of UV radiation is required in a wide range of chemical industries and environmental or biological related applications. Conventional methods taking advantage of semiconductor photodetectors suffer from several drawbacks such as sophisticated synthesis and manufacturing procedure, not being able to measure the accumulated UV dosage as well as high defect density in the material. Searching for new strategies or materials serving as precise UV dosage sensor with extremely low detection limit is still highly desirable. In this work, a radiation resistant uranium coordination polymer [UO 2 (L)(DMF)] (L = 5-nitroisophthalic acid, DMF = N,N-dimethylformamide, denoted as compound 1) was successfully synthesized through mild solvothermal method and investigated as a unique UV probe with the detection limit of 2.4 × 10 -7 J. On the basis of the UV dosage dependent luminescence spectra, EPR analysis, single crystal structure investigation, and the DFT calculation, the UV-induced radical quenching mechanism was confirmed. Importantly, the generated radicals are of significant stability which offers the opportunity for measuring the accumulated UV radiation dosage. Furthermore, the powder material of compound 1 was further upgraded into membrane material without loss in luminescence intensity to investigate the real application potentials. To the best of our knowledge, compound 1 represents the most sensitive coordination polymer based UV dosage probe reported to date.
Influence of temperature and UVR on photosynthesis and morphology of four species of cyanobacteria.
Giordanino, M Valeria Fiorda; Strauch, Sebastian M; Villafañe, Virginia E; Helbling, E Walter
2011-04-04
During the late austral spring of 2009 we carried out experiments (4days of duration) with four cyanobacteria species, Anabaena sp., Nostoc sp., Arthrospira platensis and Microcystis sp., to assess the combined effects of temperature and solar radiation on photosynthesis performance and morphology. Two experimental temperatures (18°C and 23°C, simulating a 5°C increase under a scenario of climate change) and three radiation treatments (by using different filters/materials) were implemented: (i) P (PAR, 400-700nm), (ii) PA (PAR+UV-A, 320-700nm) and, (iii) PAB (PAR+UV-A+UV-B, 280-700nm). In general, samples under the P treatment had less decrease/higher recovery rates of effective photochemical quantum yield (Y) than those receiving UV-A or UV-A+UV-B. The effects of increased temperature were species-specific: At the end of the experiments, it was seen that increased temperature benefited photosynthetic performance of Anabaena sp. and Nostoc sp. but not of Microcystis sp. and A. platensis. Higher temperature was also associated to an increase in the chain area of Anabaena sp., and to bigger trichomes in A. platensis; however, no morphological effects were observed in Microcystis sp. In addition, in Nostoc sp. the increase in temperature counteracted the UVR impact on the reduction of the chain area. How these effects and mechanisms will affect the trophodynamics and production of aquatic ecosystems is still uncertain, but the specificity of the responses suggests that not all cyanobacteria would be equally benefited by temperature increases therefore affecting the balance and interaction among species in the water column. Copyright © 2011 Elsevier B.V. All rights reserved.
UV And X-Ray Emission from Impacts of Fragmented Accretion Streams on Classical T Tauri Stars
NASA Astrophysics Data System (ADS)
Colombo, Salvatore; Orlando, Salvatore; Peres, Giovanni; Argiroffi, Costanza; Reale, Fabio
2016-07-01
According to the magnetoshperic accretion scenario, during their evo- lution, Classical T Tauri stars accrete material from their circumstellar disk. The accretion process is regulated by the stellar magnetic eld and produces hot and dense post-shocks on the stellar surface as a result of impacts of the downfalling material. The impact regions are expected to strongly radiate in UV and X-rays. Several lines of evidence support the magnetospheric accretion scenario, especially in optical and infrared bands. However several points still remain unclear as, for instance,where the complex-pro le UV lines originate, or whether and how UV and X-ray emission is produced in the same shock region. The analysis of a large solar eruption has shown that EUV excesses might be e ectively produced by the impact of dense fragments onto the stellar surface. Since a steady accretion stream does not reprouce observations, in this work we investi- gate the e ects of a fragmented accretion stream on the uxes and pro les of C IV and O VIII emission lines. To this end we model the impact of a fragmented accretion stream onto the chromosphere of a CTTS with 2D axysimmetric magneto-hydrodynamic simulations. Our model takes into account of the gravity, the stellar magnetic eld, the thermal conduction and the radiative cooling from an optically thin plasma. From the model results, we synthesize the UV and X-ray emission including the e ect of Doppler shift along the line of sight. We nd that a fragmented accretion stream produces complex pro les of UV emission lines which consists of multiple components with di erent Doppler shifts. Our model predicts line pro les that are consistent with those observed and explain their origin as due to the stream fragmentation.
Biofilms and planktonic cells of Deinococcus geothermalis in extreme environments
NASA Astrophysics Data System (ADS)
Panitz, Corinna; Reitz, Guenther; Rabbow, Elke; Rettberg, Petra; Flemming, Hans-Curt; Wingender, Jost; Froesler, Jan
In addition to the several extreme environments on Earth, Space can be considered as just another exceptional environment with a unique mixture of stress factors comprising UV radiation, vacuum, desiccation, temperature, ionizing radiation and microgravity. Life that processes in these environments can depend on the life forms and their state of living. The question is whether there are different strategies for individual microorganisms compared to communities of the same organisms to cope with the different factors of their surroundings. Comparative studies of the survi-val of these communities called biofilms and planktonic cell samples of Deinococcus geothermalis stand at the focal point of the presented investigations. A biofilm is a structured community of microorganisms that live encapsulated in a matrix of extracellular polymeric substances on a surface. Microorganisms living in a biofilm usually have significantly different properties to cooperate than individually living microorganisms of the same species. An advantage of the biofilm is increased resistance to various chemical and physical effects, while the dense extracellular matrix and the outer layer of the cells protect the interior of the microbial consortium. The space experiment BOSS (Biofilm organisms surfing Space) as part the ESA experimental unit EXPOSE R-2 with a planned launch date in July 2014 will be subsequently mounted on the Russian Svesda module outside the ISS. An international team of scientists coordinated by Dr. P. Rettberg will investigate the hypothesis whether microorganisms organized as biofilm outmatch the same microorganisms exposed individually in the long-term survival of the harsh environmental conditions as they occur in space and on Mars. Another protective function in the samples could be dust par-ticles for instance Mars regolith simulant contained inside the biofilms or mixed with the planktonic cells, as additional shelter especially against the extraterrestrial UV radiation. D. geothermalis besides others, like co-cultures of Halomonas muralis and Halococcus morrhuae, Bacillus horneckiae, Chroococcidiopsis CCMEE 029 and Streptomyces + Polaromonas and Arthrobacter strains from volcanic rocks, was involved in the several preparatory test runs at the Planetary and Space Simulation facilities at the German Aerospace Center in Cologne. Results of the already carried out EVTs (Experiment Verification Test) and the SVT (Science verification test) as EXPOSE-R2 mission pre-paration tests, where investigated parameters like dehydration, temperature extremes, extraterrestrial UV radiation, simulated Martian atmosphere, and a Mars-like UV climate were tested individually as well as in combination will be presented. Following exposure to the parameters listed above, the survival of both biofilms and planktonic cells of D. geothermalis was assessed in terms of (i) culturability by colony counts on R2A medium, (ii) membrane integrity by using the Live/Dead differential staining kit, (iii) ATP content by using a commercial luminometric assay, and (iv) the presence of 16S rRNA by fluorescence in situ hybridization. So far, the results suggest that Deinococcus geothermalis remains viable in the desiccated state over weeks to months, whereas culturability, intracellular ATP levels, and membrane integrity were preserved in biofilm cells at a significantly higher level than in planktonic cells. Furthermore, cells of both sample types were able to survive simulated space and Martian conditions and showed high resistance after irradiation with monochromatic and polychromatic UV. The results will contribute to the fundamental understanding of the opportunities and limitations of viability of microorganisms organized in biofilms or as planktonic cells under the extreme environ-mental conditions of space or other planets.
Effectiveness of eye drops protective against ultraviolet radiation.
Daxer, A; Blumthaler, M; Schreder, J; Ettl, A
1998-01-01
To test the effectiveness of commercially available ultraviolet (UV)-protective eye drops (8-hydroxy-1-methylchinolinium methylsulphate) which are recommended for protection against both solar and artificial UV radiation. The spectral transmission in the wavelength range from 250 to 500 nm was investigated in 1-nm steps using a high-resolution double monochromator with holographic gratings of 2,400 lines/mm and a 1,000-watt halogen lamp as light source. The transmission spectrum was measured for different values of the layer thickness. The transmission of a liquid layer of about 10 microns, which corresponds to the thickness of the human tear film, shows a cut-off at 290 nm with a transmission of about 25-50% at shorter wavelengths. For wavelengths longer than 290 nm the transmission is higher than 90%. The threshold time ratio for keratitis formation with and without eye drops is above 0.93 considering solar radiation on the earth's surface and above 0.65 considering radiation from arc-welding, respectively. The transmission spectrum of the eye drops under realistic conditions does not show a protective effect against solar UV radiation. However, there exists reduction of UVC radiation in the spectral range typical of artificial UV sources such as arc-welding. We cannot recommend the application of these eye drops as an UV-protective aid against eye damage by solar UV radiation.
NASA Astrophysics Data System (ADS)
Buntoung, Sumaman; Pattarapanitchai, Somjet; Wattan, Rungrat; Masiri, Itsara; Promsen, Worrapass; Tohsing, Korntip; Janjai, Serm
2013-05-01
Islands on the southern coasts of Thailand are famous attractions for local and foreign tourists. Tourists usually expose their skins to solar radiation for tanning. Thus information on solar ultraviolet radiation (UV) is of importance for tourists to protect themselves from adverse effects of UV. In this work, solar erythemal ultraviolet radiation (EUV) at two touristic sites namely Samui island (9.451°N, 100.033°E) and Phuket island (8.104°N, 98.304°E) was investigated. In investigating EUV, broadband UV radiometers (Kipp & Zonen, model UVS-B-C) were installed at existing meteorological stations in Samui and Phuket islands. A one-year period of EUV data from these two sites was analyzed. The level of UV index at these sites was studied. The values of UV index higher than 12 at noon time of clear days are usually found in the summer at both sites. Seasonal variation of EUV at both sites was investigated. It was found that the tropical monsoons have strong influence on this variation. Finally, global broadband radiation measured at the sites was also used to establish a correlation between EUV and global broadband radiation. Higher correlation was found for the case of clear sky, as compared to the case of cloudy sky. The correlation obtained from this analysis can be used to estimate EUV from global broadband radiation at these two sites.
Lee, Tse-Min; Shiu, Chia-Tai
2009-02-01
Ultraviolet-B (UV-B) radiation (0.5, 1.0, 1.5, and 3.0Wm(-2)) induced higher H(2)O(2) production and lipid peroxidation in alga Gelidium amansii inhabiting in lower subtidal regions than upper subtidal alga Ptercladiella capillacea. Compared to G. amansii, mycosporine-like amino acid (MAA) concentration in P. capillacea was higher and can be increased by 0.5-1.0Wm(-2) UV-B, while carotenoid concentration was lower but also increased by 1.5-3.0Wm(-2) UV-B. UV-B increased ascorbate concentration, but to a higher degree in P. capillacea. UV-B decreased glutathione concentration, but to a higher degree in G. amansii. UV-B increased ascorbate peroxidase (APX) and glutathione reductase (GR) activities in P.capillacea but decreased them in G. amansii. UV-B increased superoxide dismutase and catalase activities, but to a higher degree in G. amansii. So, G. amansii suffered greater oxidative stress from UV-B radiation. P. capillacea can effectively reduce UV-B sensitivity by increasing sunscreen ability and antioxidant defense capacity.
Experimental evaluation of optimization method for developing ultraviolet barrier coatings
NASA Astrophysics Data System (ADS)
Gonome, Hiroki; Okajima, Junnosuke; Komiya, Atsuki; Maruyama, Shigenao
2014-01-01
Ultraviolet (UV) barrier coatings can be used to protect many industrial products from UV attack. This study introduces a method of optimizing UV barrier coatings using pigment particles. The radiative properties of the pigment particles were evaluated theoretically, and the optimum particle size was decided from the absorption efficiency and the back-scattering efficiency. UV barrier coatings were prepared with zinc oxide (ZnO) and titanium dioxide (TiO2). The transmittance of the UV barrier coating was calculated theoretically. The radiative transfer in the UV barrier coating was modeled using the radiation element method by ray emission model (REM2). In order to validate the calculated results, the transmittances of these coatings were measured by a spectrophotometer. A UV barrier coating with a low UV transmittance and high VIS transmittance could be achieved. The calculated transmittance showed a similar spectral tendency with the measured one. The use of appropriate particles with optimum size, coating thickness and volume fraction will result in effective UV barrier coatings. UV barrier coatings can be achieved by the application of optical engineering.
Mao, Chun Xia; Chen, Min Min; Wang, Lei; Zou, Hua; Liang, Chan Juan; Wang, Li Hong; Zhou, Qing
2012-06-01
Effects of cerium ion (Ce(III)) on water relations of soybean seedlings (Glycine max L.) under ultraviolet B radiation (UV-B, 280-320 nm) stress were investigated under laboratory conditions. UV-B radiation not only affected the contents of two osmolytes (proline, soluble sugar) in soybean seedlings, but also inhibited the transpiration in soybean seedlings by decreasing the stomatal density and conductance. The two effects caused the inhibition in the osmotic and metabolic absorption of water, which decreased the water content and the free water/bound water ratio. Obviously, UV-B radiation led to water stress, causing the decrease in the photosynthesis in soybean seedlings. The pretreatment with 20 mg L(-1) Ce(III) could alleviate UV-B-induced water stress by regulating the osmotic and metabolic absorption of water in soybean seedlings. The alleviated effect caused the increase in the photosynthesis and the growth of soybean seedlings. It is one of the protective effect mechanisms of Ce(III) against the UV-B radiation-induced damage to plants.
Aziz, Nagy H; Smyk, B
2002-04-01
The effects of UV radiation and nitrosamines on the induction of mycotoxin biosynthesis by some nontoxigenic moulds isolated from feed samples collected from Egypt and Poland was investigated. Nontoxigenic strains of Aspergillus flavus P-63, A. niger EN-200 and A. ochraceus P-157 synthesized mycotoxins (aflatoxins and ochratoxin, A) after exposure to near UV radiation for 120-210 min. Nitrosamines (DMNA and DENA) at 30 up to 1000 ppm induced the synthesis of aflatoxins by nontoxigenic species of A. flavus ES-255 and P-63 and A. niger EN 200. Near-UV radiation and nitrosamines had no influence on the induction of mycotoxin synthesis by Penicillium and Fusarium isolates. All nontoxigenic strains of Aspergilli which synthesized aflatoxins in the presence of 1000 ppm nitrosamines, also synthesized continuously aflatoxins during the next fifteen generations. Near-UV radiation and nitrosamines had a mutagenic effect on the induction of mycotoxins synthesis by nontoxigenic moulds.
Szczawiński, J; Tomaszewski, H; Jackowska-Tracz, A; Szczawińska, M E
2011-01-01
The aim of this study was to determine and compare the antimicrobial activity of UV radiation of wavelength 253.7 nm (used in typical germicidal lamps) against Staphylococcus aureus on the surfaces of conventionally produced white ceramic wall tiles (matt and shiny) and the same tiles coated with TiO2 using three different methods: RF diode sputtering, atmospheric pressure chemical vapour deposition (APCVD) and spray pyrolysis deposition (SPD). Results clearly indicate that the bactericidal action of UV radiation is much stronger on the surfaces of tiles coated with TiO2 than on the tiles uncovered. The strongest bactericidal effect of UV radiation was found for film prepared by APCVD. Results of experiments for shiny and matt tiles did not differ statistically. The use of ceramic wall tiles coated with TiO2 films in hospitals, veterinary clinics, laboratories, food processing plants and other places where UV radiation is applied for disinfection should greatly improve the efficiency of this treatment.
Reactor for simulation and acceleration of solar ultraviolet damage
NASA Technical Reports Server (NTRS)
Laue, E.; Gupta, A.
1979-01-01
An environmental test chamber providing acceleration of UV radiation and precise temperature control (+ or -)1 C was designed, constructed and tested. This chamber allows acceleration of solar ultraviolet up to 30 suns while maintaining temperature of the absorbing surface at 30 C - 60 C. This test chamber utilizes a filtered medium pressure mercury arc as the source of radiation, and a combination of selenium radiometer and silicon radiometer to monitor solar ultraviolet (295-340 nm) and total radiant power output, respectively. Details of design and construction and operational procedures are presented along with typical test data.
NASA Technical Reports Server (NTRS)
Linton, R. C.; Finckenor, M. M.; Kamenetzky, R. R.; Gray, P.
1993-01-01
Research was conducted at MSFC on the behavior of elastomeric materials after exposure to simulated space environment. Silicone S383 and Viton V747 samples were exposed to thermal vacuum, ultraviolet radiation, and atomic oxygen and then evaluated for changes in material properties. Characterization of the elastomeric materials included weight, hardness, optical inspection under normal and black light, spectrofluorescence, solar absorptance and emittance, Fourier transform infrared spectroscopy, and permeability. These results indicate a degree of sensitivity to exposure and provided some evidence of UV and atomic oxygen synergism.
NASA Astrophysics Data System (ADS)
Frösler, Jan; Panitz, Corinna; Wingender, Jost; Flemming, Hans-Curt; Rettberg, Petra
2017-05-01
Biofilm formation represents a successful survival strategy for bacteria. In biofilms, cells are embedded in a matrix of extracellular polymeric substances (EPS). As they are often more stress-tolerant than single cells, biofilm cells might survive the conditions present in space and on Mars. To investigate this topic, the bacterium Deinococcus geothermalis was chosen as a model organism due to its tolerance toward desiccation and radiation. Biofilms cultivated on membranes and, for comparison, planktonically grown cells deposited on membranes were air-dried and exposed to individual stressors that included prolonged desiccation, extreme temperatures, vacuum, simulated martian atmosphere, and UV irradiation, and they were exposed to combinations of stressors that simulate space (desiccation + vacuum + UV) or martian (desiccation + Mars atmosphere + UV) conditions. The effect of sulfatic Mars regolith simulant on cell viability during stress was investigated separately. The EPS produced by the biofilm cells contained mainly polysaccharides and proteins. To detect viable but nonculturable (VBNC) cells, cultivation-independent viability indicators (membrane integrity, ATP, 16S rRNA) were determined in addition to colony counts. Desiccation for 2 months resulted in a decrease of culturability with minor changes of membrane integrity in biofilm cells and major loss of membrane integrity in planktonic bacteria. Temperatures between -25°C and +60°C, vacuum, and Mars atmosphere affected neither culturability nor membrane integrity in both phenotypes. Monochromatic (254 nm; ≥1 kJ m-2) and polychromatic (200-400 nm; >5.5 MJ m-2 for planktonic cells and >270 MJ m-2 for biofilms) UV irradiation significantly reduced the culturability of D. geothermalis but did not affect cultivation-independent viability markers, indicating the induction of a VBNC state in UV-irradiated cells. In conclusion, a substantial proportion of the D. geothermalis population remained viable under all stress conditions tested, and in most cases the biofilm form proved advantageous for surviving space and Mars-like conditions.
de Oliveira, Isadora Rubin; Crizel, Giseli Rodrigues; Severo, Joseana; Renard, Catherine M G C; Chaves, Fabio Clasen; Rombaldi, Cesar Valmor
2016-11-01
Ultraviolet C (UV-C) radiation is known for preventing fungal decay and enhancing phytochemical content in fruit when applied postharvest. However, limited knowledge is available regarding fruit responses to preharvest application of UV-C radiation. Thus, the effects of UV-C radiation on photosynthetic efficiency, dry matter accumulation and partitioning, fruit yield and decay, phytochemical content, and relative transcript accumulation of genes associated with these metabolic pathways were monitored in strawberry (Fragaria x ananassa Duch.) cv. Camarosa. A reduction in photosynthetic efficiency was followed by a decrease in light harvesting complex LhcIIb-1 mRNA accumulation as well as a decrease in yield per plant. Phenylalanine ammonia lyase activity, phenolic, anthocyanin, and L-ascorbic acid contents were higher in UV-C treated fruit. In addition, preharvest UV-C treatment reduced microorganism incidence in the greenhouse and on the fruit surface, increased the accumulation of β-1,3-Gluc and PR-1 mRNA, and prevented fruit decay. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Arsenic oxidation by UV radiation combined with hydrogen peroxide.
Sorlini, S; Gialdini, F; Stefan, M
2010-01-01
Arsenic is a widespread contaminant in the environment around the world. The most abundant species of arsenic in groundwater are arsenite [As(III)] and arsenate [As(V)]. Several arsenic removal processes can reach good removal yields only if arsenic is present as As(V). For this reason it is often necessary to proceed with a preliminary oxidation of As(III) to As(V) prior to the removal technology. Several studies have focused on arsenic oxidation with conventional reagents and advanced oxidation processes. In the present study the arsenic oxidation was evaluated using hydrogen peroxide, UV radiation and their combination in distilled and in real groundwater samples. Hydrogen peroxide and UV radiation alone are not effective at the arsenic oxidation. Good arsenic oxidation yields can be reached in presence of hydrogen peroxide combined with a high UV radiation dose (2,000 mJ/cm(2)). The quantum efficiencies for As(III) oxidation were calculated for both the UV photolysis and the UV/H(2)O(2) processes.
UNLAMINATED GAFCHROMIC EBT3 FILM FOR ULTRAVIOLET RADIATION MONITORING.
Welch, David; Randers-Pehrson, Gerhard; Spotnitz, Henry M; Brenner, David J
2017-11-01
Measurement of ultraviolet (UV) radiation is important for human health, especially with the expanded usage of short wavelength UV for sterilization purposes. This work examines unlaminated Gafchromic EBT3 film for UV radiation monitoring. The authors exposed the film to select wavelengths in the UV spectrum, ranging from 207 to 328 nm, and measured the change in optical density. The response of the film is wavelength dependent, and of the wavelengths tested, the film was most sensitive to 254 nm light, with measurable values as low as 10 µJ/cm2. The film shows a dose-dependent response that extends over more than four orders of magnitude. The response of the film to short wavelength UV is comparable to the daily safe exposure limits for humans, thus making it valuable as a tool for passive UV radiation monitoring. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Photoenhanced toxicity of a carbamate insecticide to early life stage anuran amphibians
Zaga, A.; Little, E.E.; Rabeni, C.F.; Ellersieck, Mark R.
1998-01-01
Aican clawed frog (Xenopus laevis) and gray tree frog (Hyla versicolor) embryos and tadpoles were exposed to sublethal levels of carbaryl, a broad-spectrum insecticide, and ultraviolet radiation to determine interactive and sublethal effects. Ultraviolet intensity (UV-B [285–320 nm] plus UV-A [321–400 nm]) was controlled with various types of plastic filters and quantified with a scanning spectroradiometer. Significant differences in swimming activity and mortality of both species were evident during the 96-h experiments. Ultraviolet-B radiation alone and carbaryl in the presence of UV-B significantly decreased swimming activity of both species. As little as 1.5% intensity of ambient solar UV-B radiation photoactivated carbaryl. Toxicity of 7.5 mg/L carbaryl increased by 10-fold in the presence of UV-B in all species and life stages tested. Our results indicate that photoenhancement by solar UV-B radiation should be considered when evaluating the toxicity of contaminants to amphibians and other organisms.
[Analysis of the cumulative solar ultraviolet radiation in Mexico].
Castanedo-Cázares, Juan Pablo; Torres-Álvarez, Bertha; Portales-González, Bárbara; Martínez-Rosales, Karla; Hernández-Blanco, Diana
2016-01-01
The incidence of skin cancer has increased in Mexico in recent years. Ultraviolet radiation is the main risk factor associated. Due to the need to develop strategies to prevent skin cancer, the aim of the study was to estimate the UV intensity in several representative regions of Mexico, the average annual UV dose of these populations, and the potential benefit of applying sunscreen at different ages. The intensity of UV radiation was quantified by remote and terrestrial radiometry. The dose of UV exposure was measured in minimal erythema doses using validated models for face and arms. The benefit of using a sunscreen was calculated with the use of a sunscreen with SPF 15 from birth to age 70. The UV radiation is lower in December and greater in the period from May to July. The region with a lower annual dose is Tijuana; and the higher annual dose is in the Mexico City area. The annual difference between these regions was 58 %. Through life, a low SPF sunscreen can reduce up to 66 % of the received UV dose. The geographical location is a risk factor for accumulation of UV radiation in Mexico. Since childhood, people receive high amounts of it; however, most of this dose can be reduced using any commercially available sunscreen, if applied strategically.
Suthaparan, Aruppillai; Pathak, Ranjana; Solhaug, Knut Asbjørn; Gislerød, Hans Ragnar
2018-01-01
Controlled environment chamber experiments at Petri dish level were conducted to examine the wavelength and dose dependent efficacy of ultraviolet (UV) radiation, the recovery action potential of optical radiation applied concomitantly/subsequently to effective UV treatment, and the lapse time between UV treatment and subsequent exposure to recovery wavelength on germination efficiency of Oidium neolycopersici conidia. Conidia of eight- to nine-day-old colonies were dusted on water agar surface in Petri dishes and exposed to UV treatments (without lid). Immediately after UV treatments, Petri dishes were sealed and incubated in darkness or differing optical environments generated using seven different radiation sources (range 290nm to 780nm). Twenty-four hours after UV treatment, fifty conidia from each sample were assessed for germination. Compared to non-UV controls, <10% of the conidia germinated after 30s of exposure to 254nm or 283nm UV and subsequent dark incubation. Conidia germination was almost negligible if the exposure duration increased to 4min. Germination was about 60% with broad spectrum UV after 1min of exposure, and about 35% after 2 to 4min of exposure. There was no reduction of conidia germination with the exposure of ≤4min with 310nm. With the tested wavelength and dose ranges, germination recovery was effective in the 350nm to 500nm range. Germination efficiency of conidia treated with effective UV was significantly higher (>73%) if incubated subsequently in the 350nm to 500nm range (germination recovery). Furthermore, germination recovery depends on the characteristics of UV treatment (wavelength, and duration of exposure) and the lapse time between UV treatment and subsequent exposure to optical radiation in the recovery range. The findings of this study provide key criteria for wavelength selection, combination and application time in the optical radiation range, enabling improved design of optical based management strategies against powdery mildews. Copyright © 2017 Elsevier B.V. All rights reserved.
Responses of Crepis japonica induced by supplemental blue light and UV-A radiation.
Constantino, L F da S; Nascimento, L B Dos S; Casanova, L M; Moreira, N Dos S; Menezes, E A; Esteves, R L; Costa, S S; Tavares, E S
2017-02-15
Crepis japonica (L.) D.C. (Asteraceae), a weed with antioxidant, antiallergenic, antiviral and antitumor properties displays both medicinal properties and nutritional value. This study aims to assess the effects of a supplementation of blue light and UV-A radiation on the growth, leaf anatomical structure and phenolic profile of the aerial parts of Crepis japonica. Plants were grown under two light treatments: W (control - white light), W + B (white light supplemented with blue light) and W + UV-A (white light supplemented with UV-A radiation). We recorded the length, width, and weight of fresh and dry leaves, the thickness of the epidermis and mesophyll, and stomata density. The phenolic profiles of the aqueous extracts of the aerial parts were analyzed by HPLC-DAD. There was an increase in the leaf size, stomatal density, and phenolic production, and a thickening of the mesophyll and epidermis. UV-A radiation increased the phenolic production more than blue light. Blue light and UV-A radiation both improved the production of caffeic acid by about 6 and 3 times, respectively, in comparison to control. This compound was first reported as a constituent of the extract from the aerial parts together with caftaric acid. UV-A also promoted the production of chlorogenic acid (about 1.5 times in comparison to the control). We observed that the morphological and chemical parameters of C. japonica are modified in response to blue light and UV-A radiation, which can be used as tools in the cultivation of this species in order to improve its medicinal properties and nutritional value.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Applegate, L.A.; Goldberg, L.H.; Ley, R.D.
Basal cell nevus syndrome (BCNS) is an autosomal dominant genetic disorder in which the afflicted individuals are extremely susceptible to sunlight-induced skin cancers, particularly basal cell carcinomas. However, the cellular and molecular basis for BCNS is unknown. To ascertain whether there is any relationship between genetic predisposition to skin cancer and increased sensitivity of somatic cells from BCNS patients to killing by UV radiation, we exposed skin fibroblasts established from unexposed skin biopsies of several BCNS and age- and sex-matched normal individuals to either UV-B (280-320 nm) or UV-C (254 nm) radiation and determined their survival. The results indicated thatmore » skin fibroblasts from BCNS patients were hypersensitive to killing by UV-B but not UV-C radiation as compared to skin fibroblasts from normal individuals. DNA repair studies indicated that the increased sensitivity of BCNS skin fibroblasts to killing by UV-B radiation was not due to a defect in the excision repair of pyrimidine dimers. These results indicate that there is an association between hypersensitivity of somatic cells to killing by UV-B radiation and the genetic predisposition to skin cancer in BCNS patients. In addition, these results suggest that DNA lesions (and repair processes) other than the pyrimidine dimer are also involved in the pathogenesis of sunlight-induced skin cancers in BCNS patients. More important, the UV-B sensitivity assay described here may be used as a diagnostic tool to identify presymptomatic individuals with BCNS.« less
Rettberg, P; Eschweiler, U; Strauch, K; Reitz, G; Horneck, G; Wanke, H; Brack, A; Barbier, B
2002-01-01
During the early evolution of life on Earth, before the formation of a protective ozone layer in the atmosphere, high intensities of solar UV radiation of short wavelengths could reach the surface of the Earth. Today the full spectrum of solar UV radiation is only experienced in space, where other important space parameters influence survival and genetic stability additionally, like vacuum, cosmic radiation, temperature extremes, microgravity. To reach a better understanding of the processes leading to the origin, evolution and distribution of life we have performed space experiments with microorganisms. The ability of resistant life forms like bacterial spores to survive high doses of extraterrestrial solar UV alone or in combination with other space parameters, e.g. vacuum, was investigated. Extraterrestrial solar UV was found to have a thousand times higher biological effectiveness than UV radiation filtered by stratospheric ozone concentrations found today on Earth. The protective effects of anorganic substances like artificial or real meteorites were determined on the MIR station. In the experiment EXOBIOLOGIE of the French PERSEUS mission (1999) it was found that very thin layers of anorganic material did not protect spores against the deleterious effects of energy-rich UV radiation in space to the expected amount, but that layers of UV radiation inactivated spores serve as a UV-shield by themselves, so that a hypothetical interplanetary transfer of life by the transport of microorganisms inside rocks through the solar system cannot be excluded, but requires the shielding of a substantial mass of anorganic substances. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
Ali, Arif; Rashid, Muhammad Adnan; Huang, Qiu Ying; Lei, Chao-Liang
2016-09-01
The ultraviolet light (UV-A) range of 320-400 nm is widely used as light trap for insect pests. Present investigation was aimed to determine the effect of UV light-A radiation on development, adult longevity, reproduction, and development of F1 generation of Mythimna separata. Our results revealed that the mortality of the second instar larvae was higher than the third and fourth instar larvae after UV-A radiation. As the time of UV-A irradiation for pupae prolonged, the rate of adult emergence reduced. Along with the extension of radiation time decreased the longevity of adult females and males. However, the radiation exposure of 1 and 4 h/day increased fecundity of female adults, and a significant difference was observed in a 1 h/day group. The oviposition rates of female adults in all the treatments were significantly higher than the control. In addition, UV-A radiation treatments resulted in declined cumulative survival of F1 immature stages (eggs, larvae, and pupae). After exposure time of 4 and 7 h/day, the developmental periods of F1 larvae increased significantly, but no significant effects on F1 pupal period were recorded.
Beblo, Kristina; Douki, Thierry; Schmalz, Gottfried; Rachel, Reinhard; Wirth, Reinhard; Huber, Harald; Reitz, Günther; Rettberg, Petra
2011-11-01
In this study, we investigated the ability of several (hyper-) thermophilic Archaea and phylogenetically deep-branching thermophilic Bacteria to survive high fluences of monochromatic UV-C (254 nm) and high doses of ionizing radiation, respectively. Nine out of fourteen tested microorganisms showed a surprisingly high tolerance against ionizing radiation, and two species (Aquifex pyrophilus and Ignicoccus hospitalis) were even able to survive 20 kGy. Therefore, these species had a comparable survivability after exposure to ionizing radiation such as Deinococcus radiodurans. In contrast, there was nearly no difference in survival of the tested strains after exposure to UV-C under anoxic conditions. If the cells had been dried in advance of UV-C irradiation, they were more sensitive to UV-C radiation compared with cells irradiated in liquid suspension; this effect could be reversed by the addition of protective material like sulfidic ores before irradiation. By exposure to UV-C, photoproducts were formed in the DNA of irradiated Archaea and Bacteria. The distribution of the main photoproducts was species specific, but the amount of the photoproducts was only partly dependent on the applied fluence. Overall, our results show that tolerance to radiation seems to be a common phenomenon among thermophilic and hyperthermophilic microorganisms.
Anjum, Sumaira; Abbasi, Bilal Haider; Doussot, Joël; Favre-Réguillon, Alain; Hano, Christophe
2017-02-01
Lignans and neolignans are principal bioactive components of Linum usitatissimum L. (Flax), having multiple pharmacological activities. In present study, we are reporting an authoritative abiotic elicitation strategy of photoperiod regimes along with UV-C radiations. Cell cultures were grown in different photoperiod regimes (24h-dark, 24h-light and 16L/8D h photoperiod) either alone or in combination with various doses (1.8-10.8kJ/m 2 ) of ultraviolet-C (UV-C) radiations. Secoisolariciresinol diglucoside (SDG), lariciresinol diglucoside (LDG), dehydrodiconiferyl alcohol glucoside (DCG), and guaiacylglycerol-β-coniferyl alcohol ether glucoside (GGCG) were quantified by using reverse phase-high performance liquid chromatography (RP-HPLC). Results showed that the cultures exposed to UV-C radiations, accumulated higher levels of lignans, neolignans and other biochemical markers than cultures grown under different photoperiod regimes. 3.6kJ/m 2 dose of UV-C radiations resulted in 1.86-fold (7.1mg/g DW) increase in accumulation of SDG, 2.25-fold (21.6mg/g DW) in LDG, and 1.33-fold (9.2mg/g DW) in GGCG in cell cultures grown under UV+photoperiod than their respective controls. Furthermore, cell cultures grown under UV+dark showed 1.36-fold (60.0mg/g DW) increase in accumulation of DCG in response to 1.8kJ/m 2 dose of UV-C radiations. Smilar trends were observed in productivity of SDG, LDG and GGCG. Additionally, 3.6kJ/m 2 dose of UV-C radiations also resulted in 2.82-fold (195.65mg/l) increase in total phenolic production, 2.94-fold (98.9mg/l) in total flavonoid production and 1.04-fold (95%) in antioxidant activity of cell cultures grown under UV+photoperiod. These findings open new dimensions for feasible production of biologically active lignans and neolignans by Flax cell cultures. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lydon, J.
The concentration of cannabinoids in Cannabis sativa L. is correlated with high ultraviolet-B (UV-B) radiation environments. ..delta../sup 9/-Tetrahydrocannabinolic acid and cannabidiolic acid, both major secondary products of C. sativa, absorb UV-B radiation and may function as solar screens. The object of this study was to test the effects of UV-B radiation on the physiology and cannabinoid production of C. sativa. Drug and fiber-type C. sativa were irradiated with three levels of UV-B radiation for 40 days in greenhouse experiments. Physiological measurements on leaf tissues were made by infra-red gas analysis. Drug and fiber-type control plants had similar CO/sub 2/ assimilationmore » rates from 26 to 32/sup 0/C. Drug-type control plant had higher dark respiration rates and stomatal conductances than fiber-type control plants. The concentration of ..delta../sup 9/-THC, but not of other cannabinoids) in both vegetative and reproductive tissues increased with UV-B dose in drug-type plants. None of the cannabinoids in fiber-type plants were affected by UV-B radiation. The increased level of ..delta../sup 9/-THC found in leaves after irradiation may account for the physiological and morphological insensitivity to UV-B radiation in the drug-type plants. However, fiber plants showed no comparable change in the level of cannabidoil (CBD). Resin stripped form fresh fiber-type floral tissue by sonication was spotted on filter paper and irradiated continuously for 7 days. Cannabidiol (CBD) gradually decreased when irradiated but ..delta../sup 9/-THC and cannabichromene did not.« less
NASA Astrophysics Data System (ADS)
Lou, Yun-sheng; Wu, Lei; Lixuan, Ren; Meng, Yan; Shidi, Zhao; Huaiwei, Zhu; Yiwei, Zhang
2016-02-01
We investigated the effects of silicon (Si) application on diurnal variations of photosynthetic and transpiration physiological parameters in potted rice ( Oryza sativa L. cv Nanjing 45) at the heading stage. The plants were subjected to two UV-B radiation levels, i.e., reference UV-B (A, ambient, 12.0 kJ m-2 day-1) and elevated UV-B radiation (E, a 20 % higher dose of UV-B than the reference, 14.4 kJ m-2 day-1), and four Si application levels, i.e., Si0 (no silicon supplementation, 0 kg SiO2 ha-1), Si1 (sodium silicate, 100 kg SiO2 ha-1), Si2 (sodium silicate, 200 kg SiO2 ha-1), and Si3 (slag silicon fertilizer, 200 kg SiO2 ha-1). Compared with the reference, elevated UV-B radiation decreased the diurnal mean values of the net photosynthetic rate ( Pn), intercellular carbon dioxide (CO2) concentration ( Ci), transpiration rate ( Tr), stomatal conductivity ( Gs), and water use efficiency (WUE) by 11.3, 5.5, 10.4, 20.3, and 6.3 %, respectively, in plants not supplemented with silicon (Si0), and decreased the above parameters by 3.8-5.5, 0.7-4.8, 4.0-8.7, 7.4-20.2, and 0.7-5.9 %, respectively, in plants treated with silicon (Si1, Si2, and Si3), indicating that silicon application mitigates the negative effects of elevated UV-B radiation. Under elevated UV-B radiation, silicon application (Si1, Si2, and Si3) increased the diurnal mean values of Pn, Ci, Gs, and WUE by 16.9-28.0, 3.5-14.3, 16.8-38.7, and 29.0-51.2 %, respectively, but decreased Tr by 1.9-10.8 %, compared with plants not treated with silicon (E+Si0), indicating that silicon application mitigates the negative effects of elevated UV-B radiation by significantly increasing the P n, C i, G s, and WUE and decreasing the T r of rice. Evident differences existed in mitigating the depressive effects of elevated UV-B radiation on diurnal variations of physiological parameters among different silicon application treatments, exhibiting as Si3>Si2>Si1>Si0. In addition to recycling steel industrial wastes, the application of slag silicon fertilizer mitigates the negative effects of elevated UV-B radiation on photosynthesis and transpiration in rice.
Lou, Yun-sheng; Wu, Lei; Lixuan, Ren; Meng, Yan; Shidi, Zhao; Huaiwei, Zhu; Yiwei, Zhang
2016-02-01
We investigated the effects of silicon (Si) application on diurnal variations of photosynthetic and transpiration physiological parameters in potted rice (Oryza sativa L. cv Nanjing 45) at the heading stage. The plants were subjected to two UV-B radiation levels, i.e., reference UV-B (A, ambient, 12.0 kJ m(-2) day(-1)) and elevated UV-B radiation (E, a 20% higher dose of UV-B than the reference, 14.4 kJ m(-2) day(-1)), and four Si application levels, i.e., Si0 (no silicon supplementation, 0 kg SiO2 ha(-1)), Si1 (sodium silicate, 100 kg SiO2 ha(-1)), Si2 (sodium silicate, 200 kg SiO2 ha(-1)), and Si3 (slag silicon fertilizer, 200 kg SiO2 ha(-1)). Compared with the reference, elevated UV-B radiation decreased the diurnal mean values of the net photosynthetic rate (Pn), intercellular carbon dioxide (CO2) concentration (Ci), transpiration rate (Tr), stomatal conductivity (Gs), and water use efficiency (WUE) by 11.3, 5.5, 10.4, 20.3, and 6.3%, respectively, in plants not supplemented with silicon (Si0), and decreased the above parameters by 3.8-5.5, 0.7-4.8, 4.0-8.7, 7.4-20.2, and 0.7-5.9%, respectively, in plants treated with silicon (Si1, Si2, and Si3), indicating that silicon application mitigates the negative effects of elevated UV-B radiation. Under elevated UV-B radiation, silicon application (Si1, Si2, and Si3) increased the diurnal mean values of Pn, Ci, Gs, and WUE by 16.9-28.0, 3.5-14.3, 16.8-38.7, and 29.0-51.2%, respectively, but decreased Tr by 1.9-10.8%, compared with plants not treated with silicon (E+Si0), indicating that silicon application mitigates the negative effects of elevated UV-B radiation by significantly increasing the P n, C i, G s, and WUE and decreasing the T r of rice. Evident differences existed in mitigating the depressive effects of elevated UV-B radiation on diurnal variations of physiological parameters among different silicon application treatments, exhibiting as Si3>Si2>Si1>Si0. In addition to recycling steel industrial wastes, the application of slag silicon fertilizer mitigates the negative effects of elevated UV-B radiation on photosynthesis and transpiration in rice.
Spectral variability of photospheric radiation due to faculae. I. The Sun and Sun-like stars
NASA Astrophysics Data System (ADS)
Norris, Charlotte M.; Beeck, Benjamin; Unruh, Yvonne C.; Solanki, Sami K.; Krivova, Natalie A.; Yeo, Kok Leng
2017-09-01
Context. Stellar spectral variability on timescales of a day and longer, arising from magnetic surface features such as dark spots and bright faculae, is an important noise source when characterising extra-solar planets. Current 1D models of faculae do not capture the geometric properties and fail to reproduce observed solar facular contrasts. Magnetoconvection simulations provide facular contrasts accounting for geometry. Aims: We calculate facular contrast spectra from magnetoconvection models of the solar photosphere with a view to improve (a) future parameter determinations for planets with early G type host stars and (b) reconstructions of solar spectral variability. Methods: Regions of a solar twin (G2, log g = 4.44) atmosphere with a range of initial average vertical magnetic fields (100 to 500 G) were simulated using a 3D radiation-magnetohydrodynamics code, MURaM, and synthetic intensity spectra were calculated from the ultraviolet (149.5 nm) to the far infrared (160 000 nm) with the ATLAS9 radiative transfer code. Nine viewing angles were investigated to account for facular positions across most of the stellar disc. Results: Contrasts of the radiation from simulation boxes with different levels of magnetic flux relative to an atmosphere with no magnetic field are a complicated function of position, wavelength and magnetic field strength that is not reproduced by 1D facular models. Generally, contrasts increase towards the limb, but at UV wavelengths a saturation and decrease are observed close to the limb. Contrasts also increase strongly from the visible to the UV; there is a rich spectral dependence, with marked peaks in molecular bands and strong spectral lines. At disc centre, a complex relationship with magnetic field was found and areas of strong magnetic field can appear either dark or bright, depending on wavelength. Spectra calculated for a wide variety of magnetic fluxes will also serve to improve total and spectral solar irradiance reconstructions.
NASA Astrophysics Data System (ADS)
Aubert, Dominique; Teyssier, Romain
2010-11-01
We present a set of cosmological simulations with radiative transfer in order to model the reionization history of the universe from z = 18 down to z = 6. Galaxy formation and the associated star formation are followed self-consistently with gas and dark matter dynamics using the RAMSES code, while radiative transfer is performed as a post-processing step using a moment-based method with the M1 closure relation in the ATON code. The latter has been ported to a multiple Graphics Processing Unit (GPU) architecture using the CUDA language together with the MPI library, resulting in an overall acceleration that allows us to tackle radiative transfer problems at a significantly higher resolution than previously reported: 10243 + 2 levels of refinement for the hydrodynamic adaptive grid and 10243 for the radiative transfer Cartesian grid. We reach a typical acceleration factor close to 100× when compared to the CPU version, allowing us to perform 1/4 million time steps in less than 3000 GPU hr. We observe good convergence properties between our different resolution runs for various volume- and mass-averaged quantities such as neutral fraction, UV background, and Thomson optical depth, as long as the effects of finite resolution on the star formation history are properly taken into account. We also show that the neutral fraction depends on the total mass density, in a way close to the predictions of photoionization equilibrium, as long as the effect of self-shielding are included in the background radiation model. Although our simulation suite has reached unprecedented mass and spatial resolution, we still fail in reproducing the z ~ 6 constraints on the neutral fraction of hydrogen and the intensity of the UV background. In order to account for unresolved density fluctuations, we have modified our chemistry solver with a simple clumping factor model. Using our most spatially resolved simulation (12.5 Mpc h -1 with 10243 particles) to calibrate our subgrid model, we have resimulated our largest box (100 Mpc h -1 with 10243 particles) with the modified chemistry, successfully reproducing the observed level of neutral hydrogen in the spectra of high-redshift quasars. We however did not reproduce the average photoionization rate inferred from the same observations. We argue that this discrepancy could be partly explained by the fact that the average radiation intensity and the average neutral fraction depend on different regions of the gas density distribution, so that one quantity cannot be simply deduced from the other.
Pacini, Laura; Ceraolo, Maria Grazia; Venuti, Assunta; Melita, Giusi; Hasan, Uzma A; Accardi, Rosita; Tommasino, Massimo
2017-10-01
Several lines of evidence indicate that cutaneous human papillomavirus (HPV) types belonging to the beta genus of the HPV phylogenetic tree synergize with UV radiation in the development of skin cancer. Accordingly, the E6 and E7 oncoproteins from some beta HPV types are able to deregulate pathways related to immune response and cellular transformation. Toll-like receptor 9 (TLR9), in addition to playing a role in innate immunity, has been shown to be involved in the cellular stress response. Using primary human keratinocytes as experimental models, we have shown that UV irradiation (and other cellular stresses) activates TLR9 expression. This event is closely linked to p53 activation. Silencing the expression of p53 or deleting its encoding gene affected the activation of TLR9 expression after UV irradiation. Using various strategies, we have also shown that the transcription factors p53 and c-Jun are recruited onto a specific region of the TLR9 promoter after UV irradiation. Importantly, the E6 and E7 oncoproteins from beta HPV38, by inducing the accumulation of the p53 antagonist ΔNp73α, prevent the UV-mediated recruitment of these transcription factors onto the TLR9 promoter, with subsequent impairment of TLR9 gene expression. This study provides new insight into the mechanism that mediates TLR9 upregulation in response to cellular stresses. In addition, we show that HPV38 E6 and E7 are able to interfere with this mechanism, providing another explanation for the possible cooperation of beta HPV types with UV radiation in skin carcinogenesis. IMPORTANCE Beta HPV types have been suggested to act as cofactors in UV-induced skin carcinogenesis by altering several cellular mechanisms activated by UV radiation. We show that the expression of TLR9, a sensor of damage-associated molecular patterns produced during cellular stress, is activated by UV radiation in primary human keratinocytes (PHKs). Two transcription factors known to be activated by UV radiation, p53 and c-Jun, play key roles in UV-activated TLR9 expression. The E6 and E7 oncoproteins from beta HPV38 strongly inhibit UV-activated TLR9 expression by preventing the recruitment of p53 and c-Jun to the TLR9 promoter. Our findings provide additional support for the role that beta HPV types play in skin carcinogenesis by preventing activation of specific pathways upon exposure of PHKs to UV radiation. Copyright © 2017 American Society for Microbiology.
Degradation of microbial fluorescence biosignatures by solar ultraviolet radiation on Mars
NASA Astrophysics Data System (ADS)
Dartnell, Lewis R.; Patel, Manish R.
2014-04-01
Recent and proposed robotic missions to Mars are equipped with implements to expose or excavate fresh material from beneath the immediate surface. Once brought into the open, any organic molecules or potential biosignatures of present or past life will be exposed to the unfiltered solar ultraviolet (UV) radiation and face photolytic degradation over short time courses. The key question, then, is what is the window of opportunity for detection of recently exposed samples during robotic operations? Detection of autofluorescence has been proposed as a simple method for surveying or triaging samples for organic molecules. Using a Mars simulation chamber we conduct UV exposures on thin frozen layers of two model microorganisms, the radiation-resistant polyextremophile Deinococcus radiodurans and the cyanobacterium Synechocystis sp. PCC 6803. Excitation-emission matrices (EEMs) are generated of the full fluorescence response to quantify the change in signal of different cellular fluorophores over Martian equivalent time. Fluorescence of Deinococcus cells, protected by a high concentration of carotenoid pigments, was found to be relatively stable over 32 h of Martian UV irradiation, with around 90% of the initial signal remaining. By comparison, fluorescence from protein-bound tryptophan in Synechocystis is much more sensitive to UV photodegradation, declining to 50% after 64 h exposure. The signal most readily degraded by UV irradiation is fluorescence of the photosynthetic pigments - diminished to only 35% after 64 h. This sensitivity may be expected as the biological function of chlorophyll and phycocyanin is to optimize the harvesting of light energy and so they are readily photobleached. A significant increase in a ~450 nm emission feature is interpreted as accumulation of fluorescent cellular degradation products from photolysis. Accounting for diurnal variation in Martian sunlight, this study calculates that frozen cellular biosignatures would remain detectable by fluorescence for at least several sols; offering a sufficient window for robotic exploration operations.
Photochemical Haze Formation in the Atmospheres of Super-Earths and Mini-Neptunes
NASA Technical Reports Server (NTRS)
He, Chao; Hoerst, Sarah M.; Lewis, Nikole K.; Yu, Xinting; Moses, Julianne I.; Kempton, Eliza M.- R.; Marley, Mark S.; McGuiggan, Patricia; Morley, Caroline V.; Valenti, Jeff A.;
2018-01-01
UV (ultraviolet) radiation can induce photochemical processes in the atmospheres of exoplanet and produce haze particles. Recent transmission spectra of super-Earths and mini-Neptunes have demonstrated the possibility that exoplanets have haze/cloud layers at high altitudes in their atmospheres. Haze particles play an important role in planetary atmospheres because they affect the chemistry, dynamics, and radiation flux in planetary atmospheres, and may provide a source of organic material to the surface which may impact the origin or evolution of life. However, very little information is known about photochemical processes in cool, high-metallicity exoplanetary atmospheres. We present here photochemical haze formation in laboratory simulation experiments with UV radiation; we explored temperatures ranging from 300 to 600 degrees Kelvin and a range of atmospheric metallicities (100 times, 1000 times, and 10000 times solar metallicity). We find that photochemical hazes are generated in all simulated atmospheres, but the haze production rates appear to be temperature dependent: the particles produced in each metallicity group decrease as the temperature increases. The images taken with an atomic force microscope (AFM) show that the particle size (15 nanometers to 190 nanometers) varies with temperature and metallicity. Our results provide useful laboratory data on the photochemical haze formation and particle properties, which can serve as critical inputs for exoplanet atmosphere modeling, and guide future observations of exoplanets with the Transiting Exoplanet Survey Satellite (TESS), the James Webb Space Telescope (JWST), and the Wide-Field Infrared Survey Telescope (WFIRST).
Climate change modulates the effects of solar UV radiation on biogeochemical cycles in terrestrial and aquatic ecosystems, particularly for carbon cycling, resulting in UV-mediated positive or negative feedbacks on climate. Possible positive feedbacks discussed in this assessment...
INTERACTIONS OF SOLAR UV RADIATION AND DISSOLVED ORGANIC MATTER IN AQUATIC ENVIRONMENTS
Changes in the ozone layer over the past two decades have resulted in increases in solar ultraviolet (UV) radiation that reaches the surface of aquatic environments. Recent studies have demonstrated that these UV increases cause changes in photochemical reactions that affect the...
[Effect of ultraviolet radiation on ALDH1 expression in human lens epithelial cells].
Shi, Jingming; Jia, Songbai; Chen, Xuan; Tang, Luosheng
2012-06-01
To determine the apoptosis-inducing effect of ultraviolet light (UV) on human lens epithelial cell (HLEC) and to explore the involvement of changes in ALDH1 folowing UV radiation. HLEC was exposed to the same UV light source and was subsequently divided into 6 groups according to UV radiation time of 0 (control group), 5, 10, 15, and 30 min. Apoptosis was detected by AO/EB staining. Changes of ALDH1 in HLEC were detected by immunohistochemical staining and Western blot. The intensity of immunohistochemical staining and the rate of positive cells decreased with increase of UV time (P<0.05). The rate of positive ALDH1 cells was negatively correlated with the rate of apoptosis (r= -0.92, P<0.05). Western blot showed the integrated absorbance values significantly decreased with the increase of UV time (P<0.05). ALDH1 in HLEC decreases with an increase of UV exposure, which may be related to UV induced apoptosis of HLEC.
Pollen sensitivity to ultraviolet-B (UV-B) suggests floral structure evolution in alpine plants.
Zhang, Chan; Yang, Yong-Ping; Duan, Yuan-Wen
2014-03-31
Various biotic and abiotic factors are known to exert selection pressures on floral traits, but the influence of ultraviolet-B (UV-B) light on the evolution of flower structure remains relatively unexplored. We have examined the effectiveness of flower structure in blocking radiation and the effects of UV-B on pollen viability in 42 species of alpine plants in the Hengduan Mountains, China. Floral forms were categorized as either protecting or exposing pollen grains to UV-B. The floral materials of plants with exposed and protected pollen grains were able to block UV-B at similar levels. Exposure to UV-B radiation in vitro resulted in a significantly greater loss of viability in pollen from plant species with protective floral structures. The pronounced sensitivity of protected pollen to UV-B radiation was associated with the type of flower structure. These findings demonstrate that UV-B plays an important role in the evolution of protective floral forms in alpine plants.
UV-A radiation effects on higher plants: Exploring the known unknown.
Verdaguer, Dolors; Jansen, Marcel A K; Llorens, Laura; Morales, Luis O; Neugart, Susanne
2017-02-01
Ultraviolet-A radiation (UV-A: 315-400nm) is a component of solar radiation that exerts a wide range of physiological responses in plants. Currently, field attenuation experiments are the most reliable source of information on the effects of UV-A. Common plant responses to UV-A include both inhibitory and stimulatory effects on biomass accumulation and morphology. UV-A effects on biomass accumulation can differ from those on root: shoot ratio, and distinct responses are described for different leaf tissues. Inhibitory and enhancing effects of UV-A on photosynthesis are also analysed, as well as activation of photoprotective responses, including UV-absorbing pigments. UV-A-induced leaf flavonoids are highly compound-specific and species-dependent. Many of the effects on growth and development exerted by UV-A are distinct to those triggered by UV-B and vary considerably in terms of the direction the response takes. Such differences may reflect diverse UV-perception mechanisms with multiple photoreceptors operating in the UV-A range and/or variations in the experimental approaches used. This review highlights a role that various photoreceptors (UVR8, phototropins, phytochromes and cryptochromes) may play in plant responses to UV-A when dose, wavelength and other conditions are taken into account. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
UV-B exposure impairs resistance to infection by Trichinella spiralis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goettsch, W.; Garssen, J.; Deijns, A.
1994-03-01
To assess the possibility that increases in UV-B exposure on the earth's surface could lead to impaired resistance to several infectious diseases, we studied the effect of UV-B exposure on resistance against Trichinella spiralis. Wistar rats, orally infected with T. spiralis larvae, were exposed to suberythemal doses of UV-B radiation daily for 5 days at different time periods before or after infection. A significant increase in the number of Trichinella larvae was found in the carcasses of rats irradiated with UV-B between 6 and 10 days after infection. These data indicate that exposure to UV-B radiation suppresses the resistance tomore » a parasitic infection. We suggested that UV-B radiation especially suppresses cellular immune responses against these worms because specific IgM, IgG, and IgE titers were not significantly altered by UV-B exposure. These data indicate that UV-B irradiation plays a role in the course of infection with T. spiralis, which suggests that increases of UV-B exposure might also lead to problems with other infectious diseases and might affect vaccination because of the interaction of UV-B irradiation with memory T-cells. 38 refs., 3 figs., 1 tab.« less
Multiple Scattering Principal Component-based Radiative Transfer Model (PCRTM) from Far IR to UV-Vis
NASA Astrophysics Data System (ADS)
Liu, X.; Wu, W.; Yang, Q.
2017-12-01
Modern satellite hyperspectral satellite remote sensors such as AIRS, CrIS, IASI, CLARREO all require accurate and fast radiative transfer models that can deal with multiple scattering of clouds and aerosols to explore the information contents. However, performing full radiative transfer calculations using multiple stream methods such as discrete ordinate (DISORT), doubling and adding (AD), successive order of scattering order of scattering (SOS) are very time consuming. We have developed a principal component-based radiative transfer model (PCRTM) to reduce the computational burden by orders of magnitudes while maintain high accuracy. By exploring spectral correlations, the PCRTM reduce the number of radiative transfer calculations in frequency domain. It further uses a hybrid stream method to decrease the number of calls to the computational expensive multiple scattering calculations with high stream numbers. Other fast parameterizations have been used in the infrared spectral region reduce the computational time to milliseconds for an AIRS forward simulation (2378 spectral channels). The PCRTM has been development to cover spectral range from far IR to UV-Vis. The PCRTM model have been be used for satellite data inversions, proxy data generation, inter-satellite calibrations, spectral fingerprinting, and climate OSSE. We will show examples of applying the PCRTM to single field of view cloudy retrievals of atmospheric temperature, moisture, traces gases, clouds, and surface parameters. We will also show how the PCRTM are used for the NASA CLARREO project.
Optical and X-ray luminosities of expanding nebulae around ultraluminous X-ray sources
NASA Astrophysics Data System (ADS)
Siwek, Magdalena; Sądowski, Aleksander; Narayan, Ramesh; Roberts, Timothy P.; Soria, Roberto
2017-09-01
We have performed a set of simulations of expanding, spherically symmetric nebulae inflated by winds from accreting black holes in ultraluminous X-ray sources (ULXs). We implemented a realistic cooling function to account for free-free and bound-free cooling. For all model parameters we considered, the forward shock in the interstellar medium becomes radiative at a radius ˜100 pc. The emission is primarily in optical and UV, and the radiative luminosity is about 50 per cent of the total kinetic luminosity of the wind. In contrast, the reverse shock in the wind is adiabatic so long as the terminal outflow velocity of the wind vw ≳ 0.003c. The shocked wind in these models radiates in X-rays, but with a luminosity of only ˜1035 erg s-1. For wind velocities vw ≲ 0.001c, the shocked wind becomes radiative, but it is no longer hot enough to produce X-rays. Instead it emits in optical and UV, and the radiative luminosity is comparable to 100 per cent of the wind kinetic luminosity. We suggest that measuring the optical luminosities and putting limits on the X-ray and radio emission from shock-ionized ULX bubbles may help in estimating the mass outflow rate of the central accretion disc and the velocity of the outflow.
NASA Astrophysics Data System (ADS)
Bernhard, Germar; Booth, Charles R.; Ehramjian, James C.; Stone, Robert; Dutton, Ellsworth G.
2007-05-01
Spectral ultraviolet (UV) and visible irradiance has been measured near Barrow, Alaska (71°N, 157°W), between 1991 and 2005 with a SUV-100 spectroradiometer. The instrument is part of the U.S. National Science Foundation's UV Monitoring Network. Here we present results based on the recently produced "version 2" data release, which supersedes published "version 0" data. Cosine error and wavelength-shift corrections applied to the new version increased biologically effective UV dose rates by 0-10%. Corrected clear-sky measurements of different years are typically consistent to within ±3%. Measurements were complemented with radiative transfer model calculations to retrieve total ozone and surface albedo from measured spectra and for the separation of the different factors influencing UV and visible radiation. A climatology of UV and visible radiation was established, focusing on annual cycles, trends, and the effect of clouds. During several episodes in spring of abnormally low total ozone, the daily UV dose at 305 nm exceeded the climatological mean by up to a factor of 2.6. Typical noontime UV Indices during summer vary between 2 and 4; the highest UV Index measured was 5.0 and occurred when surface albedo was unusually high. Radiation levels in the UV-A and visible exhibit a strong spring-autumn asymmetry. Irradiance at 345 nm peaks on approximately 20 May, 1 month before the solstice. This asymmetry is caused by increased cloudiness in autumn and high albedo in spring, when the snow covered surface enhances downwelling UV irradiance by up to 57%. Clouds reduce UV radiation at 345 nm on average by 4% in March and by more than 40% in August. Aerosols reduce UV by typically 5%, but larger reductions were observed during Arctic haze events. Stratospheric aerosols from the Pinatubo eruption in 1991 enhanced spectral irradiance at 305 nm for large solar zenith angles. The year-to-year variations of spectral irradiance at 305 nm and of the UV Index are mostly caused by variations in total ozone and cloudiness. Changes in surface albedo that may occur in the future can have a marked impact on UV levels between May and July. No statistically significant trends in monthly mean noontime irradiance were found.
Study of long term effect of Solar UV and X-ray radiation on the VLF signals
NASA Astrophysics Data System (ADS)
Ray, Suman; Chakrabarti, Sandip Kumar; Sanki, Dipak
2016-07-01
Very Low Frequency (VLF) is one of the bands of Radio waves having frequencies lying between 3-30 KHz, with wavelengths 100-10 Km. It propagates through the Earth-ionosphere wave-guide which is formed by lower part of the ionosphere and upper part of Earth's surface. Ionosphere is the ionized component of upper atmosphere. In the present work, we have studied the long term effect of the high energy solar UV and X-ray radiation on the VLF signals. We have analyzed the VLF signal transmitted at 24 KHz from NAA (Cutler, Maine) and received at Moore Observatory in Brownsboro, Kentucky. Also we have collected X-ray and UV data to study the long term effect of UV and X-ray radiation on the VLF signal. We have analyzed the VLF signal for 2007 to 2015. We calculate the average diurnal peak amplitude of the VLF signal for each day and compare it with the UV and X-ray solar radiation. We found that the correlation coefficient of diurnal peak VLF signal amplitude with both solar X-ray and UV radiation is 0.7 indicating a strong correlation between these two phenomena.
Replicated mesocosm study on the role of natural ultraviolet radiation in high CDOM, shallow lakes.
Pérez, A Patricia; Diaz, Mónica M; Ferraro, Marcela A; Cusminsky, Gabriela C; Zagarese, Horacio E
2003-02-01
The role of ultraviolet radiation on shallow, high CDOM (colored dissolved organic matter) lakes was investigated during two consecutive summers (1999 and 2000) in replicated mesocosms (rectangular fiberglass tanks). Each tank (volume: 300 L; depth: 40 cm) was covered with a layer (approximately 3 cm) of sediment from lake El Toro (40 degrees 14' S; 70 degrees 22' W) and filled with filtered water. The experimental design consisted of two treatments: full natural radiation (UV-exposed) and natural radiation without ultraviolet radiation (UV-shielded). UV-exposed and UV-shielded treatments differed in most studied variables as revealed by repeated measures ANOVA. UV-exposed tanks displayed lower CDOM levels (dissolved absorbance) of lower average molecular size (absorbance ratio between 250 and 365 nm), higher bacterial biomass, and lower chlorophyll a concentration. The effect on consumers (rotifers and crustaceans) was less noticeable. The results are consistent with UV stimulation of bacteria production mediated by higher rates of CDOM photobleaching, and the photoinhibition of planktonic algae. Thus, a major effect of UVR in shallow, high CDOM ecosystems appears to be the stimulation of heterotrophic pathways and a simultaneous inhibition of photoautotrophs.
Repair of Ultraviolet Radiation Damage in Sensitive Mutants of Micrococcus radiodurans
Moseley, B. E. B.
1969-01-01
Various aspects of the repair of ultraviolet (UV) radiation-induced damage were compared in wild-type Micrococcus radiodurans and two UV-sensitive mutants. Unlike the wild type, the mutants are more sensitive to radiation at 265 nm than at 280 nm. The delay in deoxyribonucleic acid (DNA) synthesis following exposure to UV is about seven times as long in the mutants as in the wild type. All three strains excise UV-induced pyrimidine dimers from their DNA, although the rate at which cytosine-thymine dimers are excised is slower in the mutants. The three strains also mend the single-strand breaks that appear in the irradiated DNA as a result of dimer excision, although the process is less efficient in the mutants. It is suggested that the increased sensitivity of the mutants to UV radiation may be caused by a partial defect in the second step of dimer excision. PMID:5773016
GOME-2 Tropospheric Ozone Profile Retrievals from Joint UV/Visible Measurement
NASA Astrophysics Data System (ADS)
Liu, X.; Zoogman, P.; Chance, K.; Cai, Z.; Nowlan, C. R.; Huang, G.; Gonzalez Abad, G.
2016-12-01
It has been shown from sensitivity studies that adding visible measurements in the Chappuis ozone band to UV measurements in the Hartley/Huggins ozone bands can significantly enhance retrieval sensitivity to lower tropospheric ozone from backscattered solar radiances due to deeper photon penetration in the visible to the surface than in the ultraviolet. The first NASA EVI (Earth Venture Instrument) TEMPO (Tropospheric Emissions: Monitoring of Pollution) instrument is being developed to measure backscattered solar radiation in two channels ( 290-490 and 540-740 nm) and make atmospheric pollution measurements over North America from the Geostationary orbit. However, this retrieval enhancement has yet to be demonstrated from existing measurements due to the weak ozone absorption in the visible and strong interferences from surface reflectance and aerosols and the requirement of accurate radiometric calibration across different spectral channels. We present GOME-2 retrievals from joint UV/visible measurements using the SAO ozone profile retrieval algorithm, to directly explore the retrieval improvement in lower tropospheric ozone from additional visible measurements. To reduce the retrieval interference from surface reflectance, we add characterization of surface spectral reflectance in the visible based on combining EOFs (Empirical Orthogonal Functions) derived from ASTER and other surface reflectance spectra with MODIS BRDF climatology into the ozone profile algorithm. The impacts of various types of aerosols and surface BRDF on the retrievals will be investigated. In addition, we will also perform empirical radiometric calibration of the GOME-2 data based on radiative transfer simulations. We will evaluate the retrieval improvement of joint UV/visible retrieval over the UV retrieval based on fitting quality and validation against ozonesonde observations.
DEMONSTRATION BULLETIN - ULTROX INTERNATIONAL, INC. ULTRAVIOLET RADIATION AND OXIDATION
The ultraviolet (UV) radiation/oxidation treatment technology developed by Ultrox International uses a combination of UV radiation, ozone, and hydrogen peroxide to oxidize organic compounds in water. Various operating parameters can be adjusted in the Ultrox® system to enhan...
Study program for encapsulation materials interface for low cost silicon solar array
NASA Technical Reports Server (NTRS)
Kaelble, D. H.; Mansfeld, F. B.; Lunsden, J. B., III; Leung, C.
1980-01-01
An atmospheric corrosion model was developed and verified by five months of corrosion rate and climatology data acquired at the Mead, Nebraska LSA test site. Atmospheric corrosion rate monitors (ACM) show that moisture condensation probability and ionic conduction at the corroding surface or interface are controlling factors in corrosion rate. Protection of the corroding surface by encapsulant was shown by the ACM recordings to be maintained, independent of climatology, over the five months outdoor exposure period. The macroscopic corrosion processes which occur at Mead are shown to be reproduced in the climatology simulator. Controlled experiments with identical moisture and temperature aging cycles show that UV radiation causes corrosion while UV shielding inhibits LSA corrosion.
Steinhoff, F S; Wiencke, C; Müller, R; Bischof, K
2008-05-01
The interactive effects of an 8 h exposure to UV radiation and altered temperatures on the ultrastructure and germination of zoospores of the sublittoral brown alga Laminaria hyperborea (Gunn.) Foslie were investigated for the first time. Spores were exposed to four temperatures (2, 7, 12 and 17 degrees C) and three light regimes (PAR, PAR + UV-A, PAR + UV-A+UV-B). Freshly-released spores of L. hyperborea lack a cell wall and contain a nucleus with fine granular nucleoplasm and a nucleolus, one chloroplast, several mitochondria, dictyosomes and an endoplasmatic reticulum. Further, several kinds of so-called adhesive vesicles, lipid globuli and physodes containing UV-absorbing phlorotannins are embedded in the cytoplasm. No eye-spot is present. Physodes were found but they were rare and small. After an 8 h exposure to UV-B, the nucleoplasm had a mottled structure, chloroplasts contained plastoglobuli, the structure of the mitochondria changed from crista- to sacculus-type and germination was strongly inhibited at all temperatures. UV-A only had an impact on the ultrastructure at the highest temperature tested. The strongest effects were found at 17 degrees C, where germination was reduced to 35%, 32% and 9% after exposure to PAR, PAR+UV-A and PAR + UV-A + UV-B, respectively. This study indicates that UV-B radiation has strong damaging effects on the physiology and ultrastructure of zoospores of L. hyperborea. The results are important for developing scenarios for the effect of enhanced UV radiation and increasing temperatures caused by global climate changes.
Development of high power UV irradiance meter calibration device
NASA Astrophysics Data System (ADS)
Xia, Ming; Gao, Jianqiang; Yin, Dejin; Li, Tiecheng
2016-09-01
With the rapid development of China's economy, many industries have more requirements for UV light applications, such as machinery manufacturing, aircraft manufacturing using high power UV light for detection, IT industry using high power UV light for curing component assembly, building materials, ink, paint and other industries using high power UV light for material aging test etc. In these industries, there are many measuring instruments for high power UV irradiance which are need to traceability. But these instruments are mostly imported instruments, these imported UV radiation meter are large range, wide wavelength range and high accuracy. They have exceeded our existing calibration capability. Expand the measuring range and improve the measurement accuracy of UV irradiance calibration device is a pressing matter of the moment. The newly developed high power UV irradiance calibration device is mainly composed of high power UV light, UV filter, condenser, UV light guide, optical alignment system, standard cavity absolute radiometer. The calibration device is using optical alignment system to form uniform light radiation field. The standard is standard cavity absolute radiometer, which can through the electrical substitution method, by means of adjusting and measuring the applied DC electric power at the receiver on a heating wire, which is equivalent to the thermo-electromotive force generated by the light radiation power, to achieve absolute optical radiation measurement. This method is the commonly used effective method for accurate measurement of light irradiation. The measuring range of calibration device is (0.2 200) mW/cm2, and the uncertainty of measurement results can reached 2.5% (k=2).
Simulated Space Environmental Testing on Thin Films
NASA Technical Reports Server (NTRS)
Russell, Dennis A.; Fogdall, Larry B.; Bohnhoff-Hlavacek, Gail; Connell, John W. (Technical Monitor)
2000-01-01
An exploratory program has been conducted, to irradiate some mature commercial and some experimental polymer films with radiation simulating certain Earth orbits, and to obtain data about the response of each test film's reflective and tensile properties. Protocols to conduct optimized tests were considered and developed to a "prototype" level during this program. Fifteen polymer film specimens were arranged on a specially designed test fixture. The fixture featured controlled exposure areas, and protected the ends of the samples for later gripping in tensile tests. The fixture featured controlled exposure areas, and protected the ends of the samples for later gripping in tensile tests. The fixture containing the films was installed in a clean vacuum chamber where protons, electrons and solar ultraviolet (UV) radiation could simultaneously irradiate the specimens. Near realtime UV rates were used, whereas proton and electron rates were accelerated appreciably to simulate 5 years in orbit during a two month test. Periodically, the spectral reflectance of each film was measured in situ. After the end of the irradiation, final reflectance measurements were made in situ, and solar absorptance values were derived for each specimen. These samples were then measured in air for thermal emittance and for tensile strength. Most specimens withstood the irradiation intact, but with reduced reflectance (increased solar absorptance). Thermal emittance changed slightly in several materials, as did their tensile strength and elongation at break. Conclusions are drawn about the performance of the films. Simulated testing to an expected 5 year dose of electrons and protons consistent with those expected at L2 and 0.98 AU orbits and 100 equivalent solar hours exposure.
UV Radiation Damage and Bacterial DNA Repair Systems
ERIC Educational Resources Information Center
Zion, Michal; Guy, Daniel; Yarom, Ruth; Slesak, Michaela
2006-01-01
This paper reports on a simple hands-on laboratory procedure for high school students in studying both radiation damage and DNA repair systems in bacteria. The sensitivity to ultra-violet (UV) radiation of both "Escherichia coli" and "Serratia marcescens" is tested by radiating them for varying time periods. Two growth temperatures are used in…
USDA-ARS?s Scientific Manuscript database
Sunburn or solar injury (SI) in apple is associated with high temperature, high visible light and ultraviolet radiation (UV). Fruit surface temperature (FST) thresholds for SI related disorders have been developed but there are no thresholds established for solar radiation. The objectives of the s...
Walkowicz, Lucianne M.; Meadows, Victoria; Kasting, James; Hawley, Suzanne
2010-01-01
Abstract Main sequence M stars pose an interesting problem for astrobiology: their abundance in our galaxy makes them likely targets in the hunt for habitable planets, but their strong chromospheric activity produces high-energy radiation and charged particles that may be detrimental to life. We studied the impact of the 1985 April 12 flare from the M dwarf AD Leonis (AD Leo), simulating the effects from both UV radiation and protons on the atmospheric chemistry of a hypothetical, Earth-like planet located within its habitable zone. Based on observations of solar proton events and the Neupert effect, we estimated a proton flux associated with the flare of 5.9 × 108 protons cm−2 sr−1 s−1 for particles with energies >10 MeV. Then we calculated the abundance of nitrogen oxides produced by the flare by scaling the production of these compounds during a large solar proton event called the Carrington event. The simulations were performed with a 1-D photochemical model coupled to a 1-D radiative/convective model. Our results indicate that the UV radiation emitted during the flare does not produce a significant change in the ozone column depth of the planet. When the action of protons is included, the ozone depletion reaches a maximum of 94% two years after the flare for a planet with no magnetic field. At the peak of the flare, the calculated UV fluxes that reach the surface, in the wavelength ranges that are damaging for life, exceed those received on Earth during less than 100 s. Therefore, flares may not present a direct hazard for life on the surface of an orbiting habitable planet. Given that AD Leo is one of the most magnetically active M dwarfs known, this conclusion should apply to planets around other M dwarfs with lower levels of chromospheric activity. Key Words: M dwarf—Flare—Habitable zone—Planetary atmospheres. Astrobiology 10, 751–771. PMID:20879863
Byrne, Scott N; Hammond, Kirsten J L; Chan, Carling Y-Y; Rogers, Linda J; Beaugie, Clare; Rana, Sabita; Marsh-Wakefield, Felix; Thurman, Joshua M; Halliday, Gary M
2015-04-01
Ultraviolet (UV) wavelengths in sunlight are the prime cause of skin cancer in humans with both the UVA and UVB wavebands making a contribution to photocarcinogenesis. UV has many different biological effects on the skin that contribute to carcinogenesis, including suppression of adaptive immunity, sunburn and altering the migration of mast cells into and away from irradiated skin. Many molecular mechanisms have been identified as contributing to skin responses to UV. Recently, using gene set enrichment analysis of microarray data, we identified the alternative complement pathway with a central role for factor B (fB) in UVA-induced immunosuppression. In the current study we used mice genetically deficient in fB (fB-/- mice) to study the functional role of the alternative complement pathway in skin responses to UV. We found that fB is required for not only UVA but also UVB-induced immunosuppression and solar-simulated UV induction of the oedemal component of sunburn. Factor B-/- mice had a larger number of resident skin mast cells than control mice, but unlike the controls did not respond to UV by increasing mast cell infiltration into the skin. This study provides evidence for a function role for fB in skin responses to UV radiation. Factor B regulates UVA and UVB induced immunosuppression, UV induced oedema and mast cell infiltration into the skin. The alternative complement pathway is therefore an important regulator of skin responses to UV.
INTERACTIVE EFFECTS OF SOLAR UV RADIATION AND CLIMATE CHANGE ON BIOGEOCHEMICAL CYCLING
This paper assesses research on the interactions of UV radiation (280-400 nm) and global climate change with global biogeochemical cycles at the Earth's surface. The effects of UV-B (280-315 nm), which are dependent on the stratospheric ozone layer, on biogeochemical cycles are o...
Some Thoughts on Teaching about Ultraviolet Radiation
ERIC Educational Resources Information Center
Thumm, Walter
1975-01-01
Describes the major obstacles in the study of ultraviolet radiation (UV). Presents the beneficial aspects of UV such as vitamin O production, sterilization, clinical treatment of diseases and wounds, and the marking of patients for radiotherapy. Warns of the dangers of UV exposure such as skin cancer and early aging. (GS)
UV ATTENUATION NEAR CORAL REEFS IN THE FLORIDA KEYS: LIGHT ABSORPTION BY CDOM AND PARTICLES
We have investigated the roles of chromophoric dissolved organic matter (CDOM) and suspended particles in the attenuation of UV radiation in the middle and lower regions of the Florida Keys. Extended exposure to UV radiation, along with elevated sea surface temperatures, impairs...
NASA Technical Reports Server (NTRS)
Materese, Christopher K.; Cruikshank, Dale P.; Sanford, Scott A.; Imanaka, Hiroshi
2014-01-01
Much of Pluto's surface consists of N2 ice with smaller amounts of CH4 and CO ices. Despite the low temperature (approximately 45K), chemistry can be driven in the surface ices by radiation processing such as cosmic ray bombardment. When cosmic rays strike the surface, much of their energy is dispersed in the form of secondary electrons, which in turn drive much of the resulting chemical reactions. Laboratory experiments designed to simulate the conditions on these icy bodies may provide insight into this chemistry. Significant progress has been made in the laboratory toward understanding the smaller, simple compounds produced in the solid phase by radiation processing of (N2, CH4, CO) ices (Bohn et al. 1994; Moore & Hudson 2003; Hodyss et al. 2011; Kim and Kaiser 2012). Recently Materese et al. (2014) used a variety of techniques to better characterize the refractory materials produced from the UV photo-irradiation of N2:CH4:CO ices. However, because Pluto's atmosphere is optically thick to Lyman-alpha UV radiation it is important to re-examine the results using an alternate radiation source. Our latest work has consisted of the analysis of refractory materials produced from the electron bombardment of low temperature N2(-), CH4(-), and CO(-)containing ices (100:1:1). The ice mixture was chosen to be analogous to the known surface ices on Pluto and the radiation source was chosen to mimic the secondary electrons produced by cosmic rays bombardment. The residues were studied using multiple chemical techniques including, infrared (IR) spectroscopy, X-ray absorption near-edge structure (XANES) spectroscopy, and gas chromatography coupled with mass spectrometry (GC-MS). The organic residues produced in these experiments can be seen as an analog for the refractory component of the surface of Pluto, and are compared with the residues previously obtained from UV photo-irradiation. UV and near- IR spectroscopy of the surfaces of Pluto and Charon during the encounter with NASA's New Horizons spacecraft in 2015, will give the first close-up measurements of ices and their photoproducts. Laboratory measurements and experiments will provide a better context for the data returned by the spacecraft.
Corneal epithelium and UV-protection of the eye.
Ringvold, A
1998-04-01
To study UV-absorption and UV-induced fluorescence in the bovine corneal epithelium. Spectrophotometry and spectrofluorimetry. The corneal epithelium absorbs UV-B radiation mainly owing to its content of protein, RNA, and ascorbate. Some of the absorbed energy is transformed to the less biotoxic UV-A radiation by fluorescence. RNA and ascorbate reduce tissue fluorescence. The corneal epithelium acts as a UV-filter, protecting internal eye structures through three different mechanisms: (1) Absorption of UV-B roughly below 310 nm wavelength. (2) Fluorescence-mediated ray transformation to longer wavelengths. (3) Fluorescence reduction. The extremely high ascorbate concentration in the corneal epithelium has a key role in two of these processes.
Oromi, Neus; Marquis, Olivier; Miaud, Claude; Sanuy, Delfi
2008-01-01
Several experiments have shown that ambient ultraviolet-B radiation (UV-B) has negative effects on the development of amphibians' embryos. We studied the effects of UV-B radiation on development, survival and frequency of deformity during egg development in the Natterjack toad (Bufo calamita) from a semiarid region of Lleida (Catalonia, Spain). Eggs exposed to ambient levels of UV-B and those protected from UV-B with a filter exhibited similar developmental rate, mortality rate and frequency of developmental anomalies. These experiments show that eggs of Bufo calamita of the studied population are able to develop normally during embryonic period when exposed to current high levels of UV-B observed in Catalonia. These results will be used as reference for future studies on geographic variation in UV-B tolerance in this species.
The Diffuse Radiation Field at High Galactic Latitudes
NASA Astrophysics Data System (ADS)
Akshaya, M. S.; Murthy, Jayant; Ravichandran, S.; Henry, R. C.; Overduin, James
2018-05-01
We have used GALEX observations of the north and south Galactic poles to study the diffuse ultraviolet background at locations where the Galactic light is expected to be at a minimum. We find offsets of 230–290 photon units in the far-UV (1531 Å) and 480–580 photon units in the near-UV (2361 Å). Of this, approximately 120 photon units can be ascribed to dust-scattered light and another 110 photon units (190 in the near-UV) to extragalactic radiation. The remaining radiation is, as yet, unidentified and amounts to 120–180 photon units in the far-UV and 300–400 photon units in the near-UV. We find that molecular hydrogen fluorescence contributes to the far-UV when the 100 μm surface brightness is greater than 1.08 MJy sr‑1.
Formation of structures around HII regions: ionization feedback from massive stars
NASA Astrophysics Data System (ADS)
Tremblin, P.; Audit, E.; Minier, V.; Schmidt, W.; Schneider, N.
2015-03-01
We present a new model for the formation of dense clumps and pillars around HII regions based on shocks curvature at the interface between a HII region and a molecular cloud. UV radiation leads to the formation of an ionization front and of a shock ahead. The gas is compressed between them forming a dense shell at the interface. This shell may be curved due to initial interface or density modulation caused by the turbulence of the molecular cloud. Low curvature leads to instabilities in the shell that form dense clumps while sufficiently curved shells collapse on itself to form pillars. When turbulence is high compared to the ionized-gas pressure, bubbles of cold gas have sufficient kinetic energy to penetrate into the HII region and detach themselves from the parent cloud, forming cometary globules. Using computational simulations, we show that these new models are extremely efficient to form dense clumps and stable and growing elongated structures, pillars, in which star formation might occur (see Tremblin et al. 2012a). The inclusion of turbulence in the model shows its importance in the formation of cometary globules (see Tremblin et al. 2012b). Globally, the density enhancement in the simulations is of one or two orders of magnitude higher than the density enhancement of the classical ``collect and collapse`` scenario. The code used for the simulation is the HERACLES code, that comprises hydrodynamics with various equation of state, radiative transfer, gravity, cooling and heating. Our recent observations with Herschel (see Schneider et al. 2012a) and SOFIA (see Schneider et al. 2012b) and additional Spitzer data archives revealed many more of these structures in regions where OB stars have already formed such as the Rosette Nebula, Cygnus X, M16 and Vela, suggesting that the UV radiation from massive stars plays an important role in their formation. We present a first comparison between the simulations described above and recent observations of these regions.
Schouten, P; Parisi, A V
2011-02-07
Several broadband ultraviolet (UV) radiation angular distribution investigations have been previously presented. As the biologically damaging effectiveness of UV radiation is known to be wavelength dependent, it is necessary to expand this research into the distribution of the spectral UV. UV radiation is also susceptible to Rayleigh and Mie scattering processes, both of which are completely wavelength dependent. Additionally, the majority of previous measurements detailing the biologically damaging effect of spectral UV radiation have been oriented with respect to the horizontal plane or in a plane directed towards the sun (sun-normal), with the irradiance weighted against action spectra formulated specifically for human skin and tissue. However, the human body consists of very few horizontal or sun-normal surfaces. Extending the previous research by measuring the distribution of the spectral irradiance across the sky for the complete terrestrial solar UV waveband and weighting it against erythemal, photoconjunctivital and photokeratital action spectra allowed for the analysis of the differences between the biologically effective irradiance (UV(BE)) values intercepted at different orientations and the effect of scattering processes upon the homogeneity of these UV(BE) distributions. It was established that under the local atmospheric environment, the distribution profile of the UV(BE) for each biological response was anisotropic, with the highest intensities generally intercepted at inclination angles situated between the horizontal and vertical planes along orientations closely coinciding with the sun-normal. A finding from this was that the angular distributions of the erythemal UV(BE) and the photoconjunctivital UV(BE) were different, due to the differential scattering between the shorter and longer UV wavelengths within the atmosphere. Copyright © 2010 Elsevier B.V. All rights reserved.
INTERNAL FILTERS: PROSPECTS FOR UV-ACCLIMATION IN HIGHER PLANTS
Wavelength-selective absorption of solar radiation within plant leaves allows penetration of visible radiation (400-700nm) to the chloroplasts, while removing much of the damaging ultraviolet-B (UV-B, 280-320 nm) radiation. Flavonoids are important in this wavelength-selective ab...
Simulation experiments of the effect of space environment on bacteriophage and DNA thin films
NASA Technical Reports Server (NTRS)
Fekete, A.; Ronto, Gy; Hegedus, M.; Modos, K.; Berces, A.; Kovacs, G.; Lammer, H.; Panitz, C.
2004-01-01
The main goal of PUR experiment (phage and uracil response) is to examine and quantify the effect of specific space conditions on nucleic acid models. To achieve this an improved method was elaborated for the preparation of DNA and bacteriophage thin films. The homogeneity of the films was controlled by UV spectroscopy and microscopy. To provide experimental evidence for the hypothesis that interplanetary transfer of the genetic material is possible, phage T7 and isolated T7 DNA thin films have been exposed to selected space conditions: intense UVC radiation (lambda=254 nm) and high vacuum (10(-4) Pa). The effects of DNA hydration, conformation and packing on UV radiation damage were examined. Characteristic changes in the absorption spectrum, in the electrophoretic pattern of DNA and the decrease of the amount of PCR products have been detected indicating the photodamage of isolated and intraphage DNA. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
Perchlorates on Mars enhance the bacteriocidal effects of UV light.
Wadsworth, Jennifer; Cockell, Charles S
2017-07-06
Perchlorates have been identified on the surface of Mars. This has prompted speculation of what their influence would be on habitability. We show that when irradiated with a simulated Martian UV flux, perchlorates become bacteriocidal. At concentrations associated with Martian surface regolith, vegetative cells of Bacillus subtilis in Martian analogue environments lost viability within minutes. Two other components of the Martian surface, iron oxides and hydrogen peroxide, act in synergy with irradiated perchlorates to cause a 10.8-fold increase in cell death when compared to cells exposed to UV radiation after 60 seconds of exposure. These data show that the combined effects of at least three components of the Martian surface, activated by surface photochemistry, render the present-day surface more uninhabitable than previously thought, and demonstrate the low probability of survival of biological contaminants released from robotic and human exploration missions.
Role of ultraviolet (UV) disinfection in infection control and environmental cleaning.
Qureshi, Zubair; Yassin, Mohamed H
2013-06-01
Ultraviolet (UV) radiation is capable of disinfecting surfaces, water and air. The UV technology was used for many years. However, safer and more effective delivery systems of UV radiation, make it a very useful option for disinfection. Effective disinfection of environmental surfaces is a key step in the prevention of spread of infectious agents. The traditional manual cleaning is essential in assuring adequate elimination of contamination. However, terminal cleaning is frequently suboptimal or unpredictable in many circumstances. UV-C radiation is an adjunctive disinfectant new technology that could kill a wide array of microorganisms including both vegetative and spore forming pathogens. The technology is getting more affordable and has produced consistent reproducible significant reduction of bacterial contamination.
Tarbuk, Anita; Grancarić, Ana Marija; Situm, Mirna; Martinis, Mladen
2010-04-01
Skin cancer incidence in Croatia is steadily increasing in spite of public and governmental permanently measurements. It is clear that will soon become a major public health problem. The primary cause of skin cancer is believed to be a long exposure to solar ultraviolet (UV) radiation. The future designers of UV protective materials should be able to block totally the ultraviolet radiation. The aim of this paper is to present results of measurements concerning UV protecting ability of garments and sun-screening textiles using transmission spectrophotometer Cary 50 Solarscreen (Varian) according to AS/NZS 4399:1996; to show that standard clothing materials are not always adequate to prevent effect of UV radiation to the human skin; and to suggest the possibilities for its improvement for this purpose.
Lister, Kathryn Naomi; Lamare, Miles D; Burritt, David J
2010-01-01
To assess the effects of UV radiation (280-400nm) on development, oxidative damage and antioxidant defence in larvae of the tropical sea urchin Tripneustes gratilla, a field experiment was conducted at two depths in Aitutaki, Cook Islands (18.85°S, 159.75°E) in May 2008. Compared with field controls (larvae shielded from UV-R but exposed to VIS-radiation), UV-B exposure resulted in developmental abnormality and increases in oxidative damage to proteins (but not lipids) in embryos of T. gratilla held at 1m depth. Results also indicated that larvae had the capacity to increase the activities of protective antioxidant enzymes when exposed to UV-B. The same trends in oxidative damage and antioxidant defence were observed for embryos held at 4m, although the differences were smaller and more variable. In contrast to UV-B exposure, larvae exposed to UV-A only showed no significant increases in abnormality or oxidative damage to lipids and proteins compared with field controls. This was true at both experimental depths. Furthermore, exposure to UV-A did not cause a significant increase in the activities of antioxidants. This study indicates that oxidative stress is an important response of tropical sea urchin larvae to exposure to UV radiation. © 2010 The Authors. Journal Compilation. The American Society of Photobiology.
Foreman, Michael G G; Guo, Ming; Garver, Kyle A; Stucchi, Dario; Chandler, Peter; Wan, Di; Morrison, John; Tuele, Darren
2015-01-01
Finite volume ocean circulation and particle tracking models are used to simulate water-borne transmission of infectious hematopoietic necrosis virus (IHNV) among Atlantic salmon (Salmo salar) farms in the Discovery Islands region of British Columbia, Canada. Historical simulations for April and July 2010 are carried out to demonstrate the seasonal impact of river discharge, wind, ultra-violet (UV) radiation, and heat flux conditions on near-surface currents, viral dispersion and survival. Numerical particles released from infected farm fish in accordance with IHNV shedding rates estimated through laboratory experiments are dispersed by model oceanic flows. Viral particles are inactivated by ambient UV radiation levels and by the natural microbial community at rates derived through laboratory studies. Viral concentration maps showing temporal and spatial changes are produced and combined with lab-determined minimum infectious dosages to estimate the infective connectivity among farms. Results demonstrate that neighbouring naïve farms can become exposed to IHNV via water-borne transport from an IHNV diseased farm, with a higher risk in April than July, and that many events in the sequence of farm outbreaks in 2001-2002 are consistent with higher risks in our farm connectivity matrix. Applications to other diseases, transfers between farmed and wild fish, and the effect of vaccinations are also discussed.
NASA Astrophysics Data System (ADS)
Hossain, U. H.; Ensinger, W.
2015-12-01
Devices operating in space, e.g. in satellites, are being hit by cosmic rays. These include so-called HZE-ions, with High mass (Z) and energy (E). These highly energetic heavy ions penetrate deeply into the materials and deposit a large amount of energy, typically several keV per nm range. Serious damage is created. In space vehicles, polymers are used which are degraded under ion bombardment. HZE ion irradiation can experimentally be simulated in large scale accelerators. In the present study, the radiation damage of aliphatic vinyl- and fluoro-polymers by heavy ions with energies in the GeV range is described. The ions cause bond scission and create volatile small molecular species, leading to considerable mass loss of the polymers. Since hydrogen, oxygen and fluorine-containing molecules are created and these elements are depleted, the remaining material is carbon-richer than the original polymers and contains conjugated CC double bonds. This process is investigated by measuring the optical band gap with UV-Vis absorption spectrometry as a function of ion fluence. The results show how the optical band gaps shift from the UV into the Vis region upon ion irradiation for the different polymers.
Foreman, Michael G. G.; Guo, Ming; Garver, Kyle A.; Stucchi, Dario; Chandler, Peter; Wan, Di; Morrison, John; Tuele, Darren
2015-01-01
Finite volume ocean circulation and particle tracking models are used to simulate water-borne transmission of infectious hematopoietic necrosis virus (IHNV) among Atlantic salmon (Salmo salar) farms in the Discovery Islands region of British Columbia, Canada. Historical simulations for April and July 2010 are carried out to demonstrate the seasonal impact of river discharge, wind, ultra-violet (UV) radiation, and heat flux conditions on near-surface currents, viral dispersion and survival. Numerical particles released from infected farm fish in accordance with IHNV shedding rates estimated through laboratory experiments are dispersed by model oceanic flows. Viral particles are inactivated by ambient UV radiation levels and by the natural microbial community at rates derived through laboratory studies. Viral concentration maps showing temporal and spatial changes are produced and combined with lab-determined minimum infectious dosages to estimate the infective connectivity among farms. Results demonstrate that neighbouring naïve farms can become exposed to IHNV via water-borne transport from an IHNV diseased farm, with a higher risk in April than July, and that many events in the sequence of farm outbreaks in 2001-2002 are consistent with higher risks in our farm connectivity matrix. Applications to other diseases, transfers between farmed and wild fish, and the effect of vaccinations are also discussed. PMID:26114643
Huang, Guang Rong; Wang, Li Hong; Zhou, Qing
2014-03-01
Rare earth element accumulation in the soil and elevated ultraviolet (UV)-B radiation (280-315 nm) are important environmental issues worldwide. To date, there have been no reports concerning the combined effects of lanthanum (La)(III) and elevated UV-B radiation on plant roots in regions where the two issues occur simultaneously. Here, the combined effects of La(III) and elevated UV-B radiation on the growth, biomass, ion absorption, activities, and membrane permeability of roots in soybean (Glycine max L.) seedlings were investigated. A 0.08 mmol L(-1) La(III) treatment improved the root growth and biomass of soybean seedlings, while ion absorption, activities, and membrane permeability were obviously unchanged; a combined treatment with 0.08 mmol L(-1) La(III) and elevated UV-B radiation (2.63/6.17 kJ m(-2) day(-1)) exerted deleterious effects on the investigated indices. The deleterious effects were aggravated in the other combined treatments and were stronger than those of treatments with La(III) or elevated UV-B radiation alone. The combined treatment with 0.24/1.20 mmol L(-1) La(III) and elevated UV-B radiation exerted synergistically deleterious effects on the growth, biomass, ion absorption, activities, and membrane permeability of roots in soybean seedlings. In addition, the deleterious effects of the combined treatment on the root growth were due to the inhibition of ion absorption induced by the changes in the root activity and membrane permeability.
Rongies, Witold; Wultańska, Dorota; Kot, Katarzyna; Bogusz, Aleksandra; Rongies, Magdalena; Świercz, Paweł; Swierszcz, Paweł; Lewandowska, Monika; Cholewińska, Grazyna; Meisel-Mikołajczyk, Felicja
2011-01-01
Infections in human body caused by various microbes are a significant problem in modern medicine. Special attention is put to infections of wounds, which are a significant threat to the life of patients. Attempts to treat these wounds base mainly on the application of various chemical preparations (locally) and systematic antibiotic treatment. UV radiation, because of its anti-bacterial activity, appear a complementary issue in therapy. AIM OF THE SURVEY: The aim of this study was an examination of the sensitivity of bacteria strains isolated from patients hospitalised in the Warsaw Medical University clinics, and prove that antibiotics and operation of UV B and C radiation with Endolamp 474 may become a complementary or alternative method of treatment. The study used 65 strains grown aerobically (15 strains of Escherichia coli, 20 strains of Pseudomonas aeruginosa, 15 strains of Staphylococcus aureus, 15 strains of Streptococcus and Enterococcus sp). The same strains were planted on different excipients and were subjected to UV radiation using Endolamp 474. Correctly prepared strains were radiated from a 25 cm distance in various durations (from 5 seconds to 105 seconds). As a result of UV irradiation of microorganisms studied B and C using 474 Endolampy received varied, but the great sensitivity to the effects of this radiation, in all tested bacterial strains. UV radiation on microorganisms requires further study, also in vivo.
Response of Two Plant Species to Two Ultraviolet-B Radiation Regimes
NASA Technical Reports Server (NTRS)
Levy, Daniel L.; Skiles, J. W.; Peterson, David (Technical Monitor)
1996-01-01
The depleted stratospheric ozone layer has been directly linked to increased levels of ultraviolet radiation at the earth's surface. It is important to understand what effect this will have on plants. We tested the hypothesis that in response to increased UV-B radiation (280-320 man), soybean (Glycine max Merrill) and alfalfa (Mercado Saliva L.) would produce higher concentrations of flavonoids than plants screened from UV-B. Soybean and alfalfa plants were grown successively in a growth chamber that provided UV-B radiation intensities 45% above summer field levels. A wooden frame was used to suspend mylar-D film over one group of plants and mono-acetate film over another group. Mylar is opaque in the 280-316 nm range, and acetate absorbs most radiation from 280-290 nm and then reduces intensities in the 290-320 nm range by roughly 15%. Leaf chlorophyll concentration was determined with a Minolta SPAD-502 chlorophyll meter; the BRAD meter was calibrated with N,N- extractions. Flavonoids were extracted with an acidified methanol/water solution. Soybean grown under the acetate treatment showed 26% smaller internodal lengths and higher concentrations of flavonoids compared to plants grown under mylar. Significant results for alfalfa included 22% greater leaf flavonoid concentration under acetate, 14% greater leaf chlorophyll concentration under mylar, and 32% greater above-ground biomass under mylar. We found that increased UV-B radiation leads to increased production of UV-B absorbing compounds (i.e. flavonoids) in soybean and alfalfa leaves. This suggests that a protective mechanism in these plants is triggered by UV-B. In response, flavonoids are produced that absorb UV-B, and consequently decrease potentially damaging effects to the plants. In addition, we hypothesize that this flavonoid protection mechanism saturates at certain UV-B intensities.
Caffeine Eye Drops Protect Against UV-B Cataract
Kronschläger, Martin; Löfgren, Stefan; Yu, Zhaohua; Talebizadeh, Nooshin; Varma, Shambhu D.; Söderberg, Per
2013-01-01
The purpose of this study was to investigate if topically applied caffeine protects against in vivo ultraviolet radiation cataract and if so, to estimate the protection factor. Three experiments were carried out. First, two groups of Sprague-Dawley rats were pre-treated with a single application of either placebo or caffeine eye drops in both eyes. All animals were then unilaterally exposed in vivo to 8 kJ/m2 UV-B radiation for 15 min. One week later, the lens GSH levels were measured and the degree of cataract was quantified by measurement of in vitro lens light scattering. In the second experiment, placebo and caffeine pre-treated rats were divided in five UV-B radiation dose groups, receiving 0.0, 2.6, 3.7, 4.5 or 5.2 kJ/m2 UV-B radiation in one eye. Lens light scattering was determined after one week. In the third experiment, placebo and caffeine pre-treated rats were UV-B-exposed and the presence of activated caspase-3 was visualized by immunohistochemistry. There was significantly less UV-B radiation cataract in the caffeine group than in the placebo group (95% confidence interval for mean difference in lens light scattering between the groups = 0.10 ± 0.05 tEDC), and the protection factor for caffeine was 1.23. There was no difference in GSH levels between the placebo- and the caffeine group. There was more caspase-3 staining in UV-B-exposed lenses from the placebo group than in UV-B-exposed lenses from the caffeine group. Topically applied caffeine protects against ultraviolet radiation cataract, reducing lens sensitivity 1.23 times. PMID:23644096
The natural and radiatively perturbed troposphere. CIAP monograph 4. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1975-09-01
The Climatic Impact Assessment Program (CIAP) of the U.S. Department of Transportation is charged with the 'assessment' of the impact of future aircraft fleets and other vehicles operating in, or transiting through, the stratosphere. Monograph 4 considers the perturbations of the UV radiation and the climate at the earth's surface, which could be caused by the emissions of engine effluents from a potential, large-scale operation of aircraft in the lower stratosphere. Perturbation of the UV radiation depends primarily on the magnitude of the NOx emission index (i.e., g of NO/sub 2//kg of fuel), since the NOx effluents would produce anmore » ozone column decrease and, therefore, a UV radiation increase at the earth's surface. Monograph 4 treats the problem of the UV radiation increase from solutions of the radiative transfer equation for clear sky conditions. These solutions yield the maximum increase in the direct and diffuse components of UV radiation as a function of wavelength, solar zenith angle, and ozone decrease. Perturbations of the earth's climate would depend on the magnitude of the NOx, SO2, and H2O engine effluents. In contrast to predicting UV radiation changes, it is impossible to conclusively predict the climate perturbations at the present time: the current understanding of the processes controlling the variability of the earth's climate, i.e., the general circulations of air in the atmosphere and sea water in the oceans, is limited. Considerations of climate perturbations are restricted to partial descriptions of geophysical phenomena, involving the use of mechanistic models to describe the temperature radiation couplings in time scales of decades, which seems to be appropriate for CIAP. (GRA)« less
NASA Astrophysics Data System (ADS)
Hegedüs, M.; Fekete, A.; Módos, K.; Kovács, G.; Rontó, Gy.; Lammer, H.; Panitz, C.
2007-02-01
The experiment "Phage and uracil response" (PUR) will be accommodated in the EXPOSE facility of the ISS. Bacteriophage T7/isolated T7 DNA will be exposed to different subsets of extreme environmental parameters in space, in order to study the Responses of Organisms to the Space Environment (ROSE). Launch into orbit is preceded by EXPOSE Experiment Verification Tests (EVT) to optimize the methods and the evaluation. Bacteriophage T7/isolated T7 DNA thin layers were exposed to vacuum ( 10-6Pa), to monochromatic (254 nm) and polychromatic (200-400 nm) UV radiation in air as well as in simulated space vacuum. Using neutral density (ND) filters dose-effect curves were performed in order to define the maximum doses tolerated. The effect of temperature fluctuation in vacuum was also studied. The structural/chemical effects on bacteriophage T7/isolated T7 DNA were analyzed by spectroscopic and microscopical methods. Characteristic changes in the absorption spectrum and in the electrophoretic pattern of phage/DNA have been detected indicating the damage of isolated and intraphage DNA. DNA damage was also determined by quantitative PCR (QPCR) using 555 and 3826 bp fragments of T7 DNA. We obtained substantial evidence that DNA lesions (e.g. strand breaks, DNA-protein cross-links, cyclobutane pirimidine dimers (CPDs) etc.) accumulate throughout exposure. Preliminary results suggest a synergistic action of space vacuum and UV radiation with DNA being the critical target.
Neugart, Susanne; Fiol, Michaela; Schreiner, Monika; Rohn, Sascha; Zrenner, Rita; Kroh, Lothar W; Krumbein, Angelika
2014-05-07
Kale has a high number of structurally different flavonol glycosides and hydroxycinnamic acid derivatives. In this study we investigated the interaction of moderate UV-B radiation and temperature on these compounds. Kale plants were grown at daily mean temperatures of 5 or 15 °C and were exposed to five subsequent daily doses (each 0.25 kJ m(-2) d(-1)) of moderate UV-B radiation at 1 d intervals. Of 20 phenolic compounds, 11 were influenced by an interaction of UV-B radiation and temperature, e.g., monoacylated quercetin glycosides. Concomitantly, enhanced mRNA expression of flavonol 3'- hydroxylase showed an interaction of UV-B and temperature, highest at 0.75 kJ m(-2) and 15 °C. Kaempferol glycosides responded diversely and dependent on, e.g., the hydroxycinnamic acid residue. Compounds containing a catechol structure seem to be favored in the response to UV-B. Taken together, subsequent exposure to moderate UV-B radiation is a successful tool for enhancing the flavonoid profile of plants, and temperature should be considered.
Further comparison of MODTRAN 5 to measured data in the UV band
NASA Astrophysics Data System (ADS)
Smith, Leon; Richardson, Mark; Ayling, Richard; Barlow, Nick
2014-10-01
The ability to accurately model background radiation from the sun is important in understanding the operation of missile systems with ultraviolet (UV) guard channels. In theory a missile system's UV channel detects a target's silhouette, caused by its `negative contrast' with respect to background UV radiation. The variation in background levels of UV will therefore have an effect on the operability of a missile system that utilises a UV channel. In this paper an update on the measurement and comparison of background UV-A radiation to data produced by Moderate Resolution Atmospheric Transmission 5 (MODTRAN®5) is given. In the past surface flux and radiance data calculated using MODTRAN®5 has been compared to data from the World Ozone and Ultraviolet Data Centre (WOUDC) archive, and measurements taken by the author at the Defence Academy of the UK. With the aid of spectral measurement equipment, new measurements have been made and compared with the radiance profiles produced by MODTRAN®5, including measurements made throughout both winter and summer months. Also discussed are the effects of scattering and absorption by different cloud types on the amount of radiation observed at the Earth's surface.