Unutkan, Tugçe; Bakirdere, Sezgin; Keyf, Seyfullah
2018-01-01
A highly sensitive analytical HPLC-UV method was developed for the determination of amoxicillin in drugs and wastewater samples at a single wavelength (230 nm). In order to substantially predict the in vivo behavior of amoxicillin, drug samples were subjected to simulated gastric conditions. The calibration plot of the method was linear from 0.050 to 500 mg L-1 with a correlation coefficient of 0.9999. The limit of detection and limit of quantitation were found to be 16 and 54 μg L-1, respectively. The percentage recovery of amoxicillin in wastewater was found to be 97.0 ± 1.6%. The method was successfully applied for the qualitative and quantitative determination of amoxicillin in drug samples including tablets and suspensions. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Okunola, Alabi A; Babatunde, Esan E; Chinwe, Duru; Pelumi, Oyedele; Ramatu, Salihu G
2016-06-01
Environmental management of industrial solid wastes and wastewater is an important economic and environmental health problem globally. This study evaluated the mutagenic potential of automobile workshop soil-simulated leachate and tobacco wastewater using the SOS chromotest on Escherichia coli PQ37 and the Ames Salmonella fluctuation test on Salmonella typhimurium strains TA98 and TA100 without metabolic activation. Physicochemical parameters of the samples were also analyzed. The result of the Ames test showed mutagenicity of the test samples. However, the TA100 was the more responsive strain for both the simulated leachate and tobacco wastewater in terms of mutagenic index in the absence of metabolic activation. The SOS chromotest results were in agreement with those of the Ames Salmonella fluctuation test. Nevertheless, the E. coli PQ37 system was slightly more sensitive than the Salmonella assay for detecting genotoxins in the tested samples. Iron, cadmium, manganese, copper, nickel, chromium, arsenic, zinc, and lead contents analyzed in the samples were believed to play significant role in the observed mutagenicity in the microbial assays. The results of this study showed that the simulated leachate and tobacco wastewater showed strong indication of a genotoxic risk. Further studies would be required in the analytical field in order to identify and quantify other compounds not analyzed for in this study, some of which could be responsible for the observed genotoxicity. This will be necessary in order to identify the sources of toxicants and thus to take preventive and/or curative measures to limit the toxicity of these types of wastes. © The Author(s) 2014.
Wesolowski, Edwin A.
1999-01-01
A streamflow and water-quality model was developed for reaches of Sand and Caddo Creeks in south-central Oklahoma to simulate the effects of wastewater discharge from a refinery and a municipal treatment plant.The purpose of the model was to simulate conditions during low streamflow when the conditions controlling dissolved-oxygen concentrations are most severe. Data collected to calibrate and verify the streamflow and water-quality model include continuously monitored streamflow and water-quality data at two gaging stations and three temporary monitoring stations; wastewater discharge from two wastewater plants; two sets each of five water-quality samples at nine sites during a 24-hour period; dye and propane samples; periphyton samples; and sediment oxygen demand measurements. The water-quality sampling, at a 6-hour frequency, was based on a Lagrangian reference frame in which the same volume of water was sampled at each site. To represent the unsteady streamflows and the dynamic water-quality conditions, a transport modeling system was used that included both a model to route streamflow and a model to transport dissolved conservative constituents with linkage to reaction kinetics similar to the U.S. Environmental Protection Agency QUAL2E model to simulate nonconservative constituents. These model codes are the Diffusion Analogy Streamflow Routing Model (DAFLOW) and the branched Lagrangian transport model (BLTM) and BLTM/QUAL2E that, collectively, as calibrated models, are referred to as the Ardmore Water-Quality Model.The Ardmore DAFLOW model was calibrated with three sets of streamflows that collectively ranged from 16 to 3,456 cubic feet per second. The model uses only one set of calibrated coefficients and exponents to simulate streamflow over this range. The Ardmore BLTM was calibrated for transport by simulating dye concentrations collected during a tracer study when streamflows ranged from 16 to 23 cubic feet per second. Therefore, the model is expected to be most useful for low streamflow simulations. The Ardmore BLTM/QUAL2E model was calibrated and verified with water-quality data from nine sites where two sets of five samples were collected. The streamflow during the water-quality sampling in Caddo Creek at site 7 ranged from 8.4 to 20 cubic feet per second, of which about 5.0 to 9.7 cubic feet per second was contributed by Sand Creek. The model simulates the fate and transport of 10 water-quality constituents. The model was verified by running it using data that were not used in calibration; only phytoplankton were not verified.Measured and simulated concentrations of dissolved oxygen exhibited a marked daily pattern that was attributable to waste loading and algal activity. Dissolved-oxygen measurements during this study and simulated dissolved-oxygen concentrations using the Ardmore Water-Quality Model, for the conditions of this study, illustrate that the dissolved-oxygen sag curve caused by the upstream wastewater discharges is confined to Sand Creek.
Barbaro, Jeffrey R.; Walter, Donald A.; LeBlanc, Denis R.
2013-01-01
Land disposal of treated wastewater from a treatment plant on the Massachusetts Military Reservation in operation from 1936 to 1995 has created a plume of contaminated groundwater that is migrating toward coastal discharge areas in the town of Falmouth, Massachusetts. To develop a better understanding of the potential impact of the treated-wastewater plume on coastal discharge areas, the U.S. Geological Survey, in cooperation with the Air Force Center for Engineering and the Environment, evaluated the fate of nitrogen (N) in the plume. Groundwater samples from two large sampling events in 1994 and 2007 were used to map the size and location of the plume, calculate the masses of nitrate-N and ammonium-N, evaluate changes in mass since cessation of disposal in 1995, and create a gridded dataset suitable for use in nitrogen-transport simulations. In 2007, the treated-wastewater plume was about 1,200 meters (m) wide, 30 m thick, and 7,700 m long and contained approximately 87,000 kilograms (kg) nitrate-N and 31,600 kg total ammonium-N. An analysis of previous studies and data from 1994 and 2007 sampling events suggests that most of biologically reactive nitrogen in the plume in 2007 will be transported to coastal discharge areas as either nitrate or ammonium with relatively little transformation to an environmentally nonreactive end product such as nitrogen gas. Nitrogen-transport simulations were conducted with a previously calibrated regional three-dimensional MODFLOW groundwater flow model. Mass-loaded particle tracking was used to simulate the advective transport of nitrogen to discharge areas (or receptors) along the coast. In the simulations, nonreactive transport (no mass loss in the aquifer) was assumed, providing an upper-end estimate of nitrogen loads to receptors. Simulations indicate that approximately 95 percent of the nitrate-N and 99 percent of the ammonium-N in the wastewater plume will eventually discharge to the Coonamessett River, Backus River, Green Pond, and Bournes River. Approximately 76 percent of the total nitrate-N mass in the plume will discharge to these receptors within 100 years of 2007; 90 and 94 percent will discharge within 200 and 500 years, respectively. Nitrate loads will peak within about 50 years at all of the major receptors. The highest peak loads will occur at the Coonamessett River (450 kg per year (kg/yr) nitrate-N) and the Backus River (350 kg/yr nitrate-N). Because of adsorption, travel times are longer for ammonium than for nitrate; approximately 5 percent of the total ammonium-N mass in the plume will discharge to receptors within 100 years; 46 and 81 percent will discharge within 200 and 500 years, respectively. The simulations indicate that the Coonamessett River will receive the largest cumulative nitrogen mass and the highest rate of discharge (load). Ongoing discharge to Ashumet Pond is relatively minor because most of the wastewater plume mass has already migrated downgradient from the pond. To evaluate the contribution of the nitrogen loads from the treated-wastewater plume to total nitrogen loads to the discharge areas, the simulated treated-wastewater plume loads were compared to steady-state nonpoint-source loads calculated by the Massachusetts Estuaries Project for 2005. Simulation results indicate that the total nitrogen loads from the treated-wastewater plume are much lower than corresponding steady-state nonpoint-source loads from the watersheds; peak plume loads are equal to 11 percent or less of the nonpoint-source loads.
Juckem, Paul F.; Fienen, Michael N.; Hunt, Randall J.
2014-01-01
The Lac du Flambeau Band of Lake Superior Chippewa and Indian Health Service are interested in improving the understanding of groundwater flow and groundwater/surface-water interaction on the Lac du Flambeau Reservation (Reservation) in southwest Vilas County and southeast Iron County, Wisconsin, with particular interest in an understanding of the potential for contamination of groundwater supply wells and the fate of wastewater that is infiltrated from treatment lagoons on the Reservation. This report describes the construction, calibration, and application of a regional groundwater flow model used to simulate the shallow groundwater flow system of the Reservation and water-quality results for groundwater and surface-water samples collected near a system of waste-water-treatment lagoons. Groundwater flows through a permeable glacial aquifer that ranges in thickness from 60 to more than 200 feet (ft). Seepage and drainage lakes are common in the area and influence groundwater flow patterns on the Reservation. A two-dimensional, steady-state analytic element groundwater flow model was constructed using the program GFLOW. The model was calibrated by matching target water levels and stream base flows through the use of the parameter-estimation program, PEST. Simulated results illustrate that groundwater flow within most of the Reservation is toward the Bear River and the chain of lakes that feed the Bear River. Results of analyses of groundwater and surface-water samples collected downgradient from the wastewater infiltration lagoons show elevated levels of ammonia and dissolved phosphorus. In addition, wastewater indicator chemicals detected in three downgradient wells and a small downgradient stream indicate that infiltrated wastewater is moving southwest of the lagoons toward Moss Lake. Potential effects of extended wet and dry periods (within historical ranges) were evaluated by adjusting precipitation and groundwater recharge in the model and comparing the resulting simulated lake stage and water budgets to stages and water budgets from the calibrated model. Simulated lake water budgets and water level changes illustrate the importance of understanding the position of a lake within the hydrologic system (headwater or downstream), the type of lake (surface-water drainage or seepage lake), and the role of groundwater in dampening the effects of large-scale changes in weather patterns on lake levels. Areas contributing recharge to drinking-water supply wells on the Reservation were delineated using forward particle tracking from the water table to the well. Monte Carlo uncertainty analyses were used to produce maps showing the probability of groundwater capture for areas around each well nest. At the Main Pumphouse site near the Village of Lac du Flambeau, most of the area contributing recharge to the wells occurs downgradient from a large wetland between the wells and the wastewater infiltration lagoons. Nonetheless, a small potential for the wells to capture infiltrated wastewater is apparent when considering uncertainty in the model parameter values. At the West Pumphouse wells south of Flambeau Lake, most of the area contributing recharge is between the wells and Tippecanoe Lake. The extent of infiltrated wastewater from two infiltration lagoons was tracked using the groundwater flow model and Monte Carlo uncertainty analyses. Wastewater infiltrated from the lagoons flows predominantly south toward Moss Lake as it integrates with the regional groundwater flow system. The wastewater-plume-extent simulations support the area-contributing-recharge simulations, indicating that there is a possibility, albeit at low probability, that some wastewater could be captured by water-supply wells. Comparison of simulated water-table contours indicate that the lagoons may mound the water table approximately 4 ft, with diminishing levels of mounding outward from the lagoons. Four scenarios, representing potential alternatives for wastewater management, were simulated (at current discharge rates) to evaluate the potential extent of wastewater in the aquifer and discharge to surface-water bodies associated with each management scenario. Wastewater simulated to infiltrate through a hypothetical diffuser below a wetland south of the current lagoons appears to discharge to the overlying wetland and would likely discharge to Moss Lake as overland flow. Wastewater simulated to discharge to a small lake (Mindy Lake) between Moss and Fence Lakes appears to spread radically over a large area between the lakes. Wastewater simulated to discharge to lagoons south and northeast of the current lagoons also appears to spread radially, but the areas of the aquifer with the highest probability of encountering waste-water contamination would likely be between the lagoons and the nearest lake, where the wastewater would eventually discharge. Probability results for the wastewater-plume-extent scenarios are sensitive to the number of mathematical water particles used to represent infiltrating wastewater and the level of detail in the synthetic grid used for the probability analysis. Thus, probability results from wastewater-plume-extent simulations are qualitative only; however, it is expected that illustrations of relatively high or low probability will be useful as a general guide for decision making. Management problems requiring quantitative estimates of probability are best re-cast into problems evaluating the area that contributes recharge to the location of interest, which is not dependent upon the number of simulated particles or the resolution of a synthetic grid.
Changes in the Optical Properties of Simulated Shuttle Waste Water Deposits: Urine Darkening
NASA Technical Reports Server (NTRS)
Albyn, Keith; Edwards, David; Alred, John
2003-01-01
Manned spacecraft have historically dumped the crew generated waste water overboard, into the environment in which the spacecraft operates, sometimes depositing the waste water on the external spacecraft surfaces. The change in optical properties of wastewater deposited on spacecraft external surfaces, from exposure to space environmental effects, is not well understood. This study used nonvolatile residue (NVR) from Human Urine to simulate wastewater deposits and documents the changes in the optical properties of the NVR deposits after exposure to ultra violet(UV)radiation. Twenty four NVR samples of, 0-angstromes/sq cm to 1000-angstromes/sq cm, and one sample contaminated with 1 to 2-mg/sq cm were exposed to UV radiation over the course of approximately 6151 equivalent sun hours (ESH). Random changes in sample mass, NVR, solar absorbance, and infrared emission were observed during the study. Significant changes in the UV transmittance were observed for one sample contaminated at the mg/sq cm level.
Changes in the Optical Properties of Simulated Shuttle Waste Water Deposits- Urine Darkening
NASA Technical Reports Server (NTRS)
Albyn, Keith; Edwards, David; Alred, John
2004-01-01
Manned spacecraft have historically dumped the crew generated waste waster overboard, into the environment in which the spacecraft operates, sometimes depositing the waste water on the external spacecraft surfaces. The change in optical properties of wastewater deposited on spacecraft external surfaces, from exposure to space environmental effects, is not well understood. This study used nonvolatile residue (NVR) from Human Urine to simulate wastewater deposits and documents the changes in the optical properties of the NVR deposits after exposure to ultra violet (UV) radiation. Twenty NVR samples of, 0-angstromes/sq cm to 1000-angstromes/sq cm, and one sample contaminated with 1 to 2-mg/sq cm were exposed to UV radiation over the course of approximately 6151 equivalent sun hours (ESH). Random changes in sample mass, NVR, solar absorbance, and infrared emission were observed during the study. Significant changes in the UV transmittance were observed for one sample contaminated at the mg/sq cm level.
Sibley, Cally A.; Hutson, John L.; Mitchell, James G.
2015-01-01
Drought events and the overexploitation of freshwater resources have led to the increased need to manage groundwater reserves. Aquifer storage and recovery (ASR), whereby artificial water is injected into aquifers for storage, is one of the proposed methods by which freshwater supplies can be increased. Microbial clogging following injection, however, is a major issue. Here, during laboratory simulations of ASR, we used flow cytometry and bar-coded pyrosequencing to investigate changes in microbial abundance and community dynamics. Bacterial abundance ranged from 5.0 × 104 to 1.4 × 107 cells ml-1 before the addition of synthetic wastewater. Following wastewater addition, a 25-fold decrease in abundance was observed, coinciding with a 12-fold increase in viral abundance. Taxa shifted from an overrepresentation of Sphingomonadales, Sphingobacteriales, Rhodospirillales, Caulobacterales, Legionellales, Bacillales, Fusobacteriales and Verrucomicrobiales prior to the addition of synthetic wastewater to Burkholderiales, Actinomycetales, Pseudomonadales, Xanthomonadales, Rhodobacterales, Thizobiales and Thiotrichales following the addition of synthetic wastewater. Furthermore, a significant difference in overall taxonomic composition between the groundwater samples before and after the addition of synthetic wastewater was observed, with water samples exhibiting more similarity to sediment samples after wastewater was added. Collectively, these results suggest that ASR may alter the taxonomic composition of endemic microbial communities and that complete profiles of groundwater properties, including microbial community abundance and composition need to be taken into consideration when selecting aquifers for ASR practices. PMID:26083532
Soil nitrogen balance under wastewater management: Field measurements and simulation results
Sophocleous, M.; Townsend, M.A.; Vocasek, F.; Ma, Liwang; KC, A.
2009-01-01
The use of treated wastewater for irrigation of crops could result in high nitrate-nitrogen (NO3-N) concentrations in the vadose zone and ground water. The goal of this 2-yr field-monitoring study in the deep silty clay loam soils south of Dodge City, Kansas, was to assess how and under what circumstances N from the secondary-treated, wastewater-irrigated corn reached the deep (20-45 m) water table of the underlying High Plains aquifer and what could be done to minimize this problem. We collected 15.2-m-deep soil cores for characterization of physical and chemical properties; installed neutron probe access tubes to measure soil-water content and suction lysimeters to sample soil water periodically; sampled monitoring, irrigation, and domestic wells in the area; and obtained climatic, crop, irrigation, and N application rate records for two wastewater-irrigated study sites. These data and additional information were used to run the Root Zone Water Quality Model to identify key parameters and processes that influence N losses in the study area. We demonstrated that NO3-N transport processes result in significant accumulations of N in the vadose zone and that NO3-N in the underlying ground water is increasing with time. Root Zone Water Quality Model simulations for two wastewater-irrigated study sites indicated that reducing levels of corn N fertilization by more than half to 170 kg ha-1 substantially increases N-use efficiency and achieves near-maximum crop yield. Combining such measures with a crop rotation that includes alfalfa should further reduce the accumulation and downward movement of NO3-N in the soil profile. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.
NASA Astrophysics Data System (ADS)
Stivanin de Almeida, Cibele M.; Ribeiro, Anderson S.; Saint'Pierre, Tatiana D.; Miekeley, Norbert
2009-06-01
Inductively coupled plasma optical emission spectrometry and mass spectrometry (ICPMS), the latter hyphenated to flow injection hydride generation, electrothermal vaporization or ion chromatography, have been applied to the chemical characterization of crude oil, aqueous process stream samples and wastewaters from a petroleum refinery, in order to get information on the behavior of selenium and its chemical species along effluent generation and treatment. Multielemental characterization of these effluents by ICPMS revealed a complex composition of most of them, with high salinity and potential spectral and non-spectral interferents present. For this reason, a critical re-assessment of the analytical techniques for the determination of total selenium and its species was performed. Methane was employed as gas in dynamic reaction cell ICPMS and cell parameters were optimized for a simulated brine matrix and for diluted aqueous solutions to match the expected process and treated wastewaters samples. The signal-to-background ratios for 78Se and 80Se were used as criteria in optimization, the first isotope resulting in better detection limits for the simulated brine matrix ( 78Se: 0.07 μg L - 1 , 80Se: 0.31 μg L - 1 ). A large variability in the concentration of selenium (from < 10 μg kg - 1 up to 960 μg kg - 1 ) was observed in 16 of the most frequently processed crude oil samples in the refinery here investigated, which may explain the pronounced concentrations changes of this element measured in aqueous process stream and wastewater samples. Highest concentrations of total selenium were analyzed in samples from the hydrotreater (up to about 1800 μg L - 1 ). The predominance of selenocyanate (SeCN -) was observed in most of the wastewaters so far investigated, but also other species were detected with retention times different from Se(IV), Se(VI) and SeCN -. Colloidal selenium (Se 0) was the only Se-species observed in samples from the atmospheric distillation unit, but was also identified in other samples, most probably formed by the decomposition of SeCN - or other unstable species.
Predicting the degradability of waste activated sludge.
Jones, Richard; Parker, Wayne; Zhu, Henry; Houweling, Dwight; Murthy, Sudhir
2009-08-01
The objective of this study was to identify methods for estimating anaerobic digestibility of waste activated sludge (WAS). The WAS streams were generated in three sequencing batch reactors (SBRs) treating municipal wastewater. The wastewater and WAS properties were initially determined through simulation of SBR operation with BioWin (EnviroSim Associates Ltd., Flamborough, Ontario, Canada). Samples of WAS from the SBRs were subsequently characterized through respirometry and batch anaerobic digestion. Respirometry was an effective tool for characterizing the active fraction of WAS and could be a suitable technique for determining sludge composition for input to anaerobic models. Anaerobic digestion of the WAS revealed decreasing methane production and lower chemical oxygen demand removals as the SRT of the sludge increased. BioWin was capable of accurately describing the digestion of the WAS samples for typical digester SRTs. For extended digestion times (i.e., greater than 30 days), some degradation of the endogenous decay products was assumed to achieve accurate simulations for all sludge SRTs.
Role of effluent organic matter in the photochemical degradation of compounds of wastewater origin.
Bodhipaksha, Laleen C; Sharpless, Charles M; Chin, Yu-Ping; MacKay, Allison A
2017-03-01
The photoreactivity of treated wastewater effluent organic matter differs from that of natural organic matter, and the indirect phototransformation rates of micropollutants originating in wastewater are expected to depend on the fractional contribution of wastewater to total stream flow. Photodegradation rates of four common compounds of wastewater origin (sulfamethoxazole, sulfadimethoxine, cimetidine and caffeine) were measured in river water, treated municipal wastewater effluent and mixtures of both to simulate various effluent-stream water mixing conditions that could occur in environmental systems. Compounds were chosen for their unique photodegradation pathways with the photochemically produced reactive intermediates, triplet-state excited organic matter ( 3 OM*), singlet oxygen ( 1 O 2 ), and hydroxyl radicals (OH). For all compounds, higher rates of photodegradation were observed in effluent relative to upstream river water. Sulfamethoxazole degraded primarily via direct photolysis, with some contribution from OH and possibly from carbonate radicals and other unidentified reactive intermediates in effluent-containing samples. Sulfadimethoxine also degraded mainly by direct photolysis, and natural organic matter appeared to inhibit this process to a greater extent than predicted by light screening. In the presence of effluent organic matter, sulfadimethoxine showed additional reactions with OH and 1 O 2 . In all water samples, cimetidine degraded by reaction with 1 O 2 (>95%) and caffeine by reaction with OH (>95%). In river water mixtures, photodegradation rate constants for all compounds increased with increasing fractions of effluent. A conservative mixing model was able to predict reaction rate constants in the case of hydroxyl radical reactions, but it overestimated rate constants in the case of 3 OM* and 1 O 2 pathways. Finally, compound degradation rate constants normalized to the rate of light absorption by water correlated with E 2 /E 3 ratios (sample absorbance at 254 nm divided by sample absorbance at 365 nm), suggesting that organic matter optical properties may hold promise to predict indirect compound photodegradation rates for various effluent mixing ratios. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wu, Xiaohui; Yang, Yang; Wu, Gaoming; Mao, Juan; Zhou, Tao
2016-01-01
Applications of activated sludge models (ASM) in simulating industrial biological wastewater treatment plants (WWTPs) are still difficult due to refractory and complex components in influents as well as diversity in activated sludges. In this study, an ASM3 modeling study was conducted to simulate and optimize a practical coking wastewater treatment plant (CWTP). First, respirometric characterizations of the coking wastewater and CWTP biomasses were conducted to determine the specific kinetic and stoichiometric model parameters for the consecutive aeration-anoxic-aeration (O-A/O) biological process. All ASM3 parameters have been further estimated and calibrated, through cross validation by the model dynamic simulation procedure. Consequently, an ASM3 model was successfully established to accurately simulate the CWTP performances in removing COD and NH4-N. An optimized CWTP operation condition could be proposed reducing the operation cost from 6.2 to 5.5 €/m(3) wastewater. This study is expected to provide a useful reference for mathematic simulations of practical industrial WWTPs. Copyright © 2015 Elsevier Ltd. All rights reserved.
Balapure, Kshama; Bhatt, Nikhil; Madamwar, Datta
2015-01-01
The present research emphasizes on degradation of azo dyes from simulated textile wastewater using down flow microaerophilic fixed film reactor. Degradation of simulated textile wastewater (COD 7200mg/L and dye concentration 300mg/L) was studied in a microaerophilic fixed film reactor using pumice stone as a support material under varying hydraulic retention time (HRT) and organic loading rate (OLR). The intense metabolic activity of the inoculated bacterial consortium in the reactor led to 97.5% COD reduction and 99.5% decolorization of simulated wastewater operated under OLR of 7.2kgCODm(3)/d and 24h of HRT. FTIR, (1)H NMR and GC-MS studies revealed the formation of lower molecular weight aliphatic compounds under 24h of HRT, leading to complete mineralization of simulated wastewater. The detection of oxido-reductive enzyme activities suggested the enzymatic reduction of azo bonds prior to mineralization. Toxicity studies indicated that microbial treatment favors detoxification of simulated wastewater. Copyright © 2014 Elsevier Ltd. All rights reserved.
Experimental and numerical study of wastewater pollution in Yuhui channel, Jiashan city
NASA Astrophysics Data System (ADS)
Fu, Lei; Peng, Zhenhua; You, Aiju
2018-02-01
Due to the development of economics and society in China, the huge amount of wastewater becomes a serious problem in most of the Chinese cities. Therefore, the construction of wastewater treatment plant draws much more attentions than before. The discharge from the wastewater treatment plant is then considered as a point source in most of the important rivers and channels in China. In this study, a typical wastewater treatment plant extension project is introduced as a case study, a filed monitoring experiment is designed and executed to observe required data, then, a two-dimensional model is estabilished to simulate the water quality downsteam of the wastewater treatment plant, CODCr is considered as a typical pollutant during the simulation. The simulation results indicate that different discharge conditions will lead to different CODCr concentration downstream of the wastewater treatment plant, and an emergency plan should be prepared to minimize the risk of the pollution in the channel under unusual and accident conditions.
Feasibility studies and pre-design simulation of Warsaw's new wastewater treatment plant.
Oleszkiewicz, J A; Kalinowska, E; Dold, P; Barnard, J L; Bieniowski, M; Ferenc, Z; Jones, R; Rypina, A; Sudol, J
2004-12-01
The proposed transfer of wastewater from the western part of Warsaw, across the Wisla (Vistula) River for joint treatment at the existing eastern side "Czajka" wastewater treatment plant (WWTP) will result in combined winter flows of approx. 580,000 m3 d(-1). One-year of pilot-scale studies defined the COD characteristics and kinetics of nitrogen removal and VFA production from primary sludge. BioWin simulation was used to size and price the optional processes and pointed to the Westbank process as the most cost-effective. The process consists of a sequence of a RAS pre-denitrification zone followed by an anaerobic, anoxic and aerobic zone. Some 100-150 t d(-1) of 10% methanol would be needed to remove 2-4 mg l(-1) of NO3-N above the recommended effluent level TN = 10 mg l(-1). Applying the principle of annual average 80% TN removal, and allowing for use of daily composite samples (rather than grab) could annually save the municipality over 1.5 million Euro on external carbon source.
Bartholomay, Roy C.; Twining, Brian V.
2010-01-01
From 2005 to 2008, the U.S. Geological Survey's Idaho National Laboratory (INL) Project office, in cooperation with the U.S. Department of Energy, collected water-quality samples from multiple water-bearing zones in the eastern Snake River Plain aquifer. Water samples were collected from six monitoring wells completed in about 350-700 feet of the upper part of the aquifer, and the samples were analyzed for major ions, selected trace elements, nutrients, selected radiochemical constituents, and selected stable isotopes. Each well was equipped with a multilevel monitoring system containing four to seven sampling ports that were each isolated by permanent packer systems. The sampling ports were installed in aquifer zones that were highly transmissive and that represented the water chemistry of the top four to five model layers of a steady-state and transient groundwater-flow model. The model's water chemistry and particle-tracking simulations are being used to better define movement of wastewater constituents in the aquifer. The results of the water chemistry analyses indicated that, in each of four separate wells, one zone of water differed markedly from the other zones in the well. In four wells, one zone to as many as five zones contained radiochemical constituents that originated from wastewater disposal at selected laboratory facilities. The multilevel sampling systems are defining the vertical distribution of wastewater constituents in the eastern Snake River Plain aquifer and the concentrations of wastewater constituents in deeper zones in wells Middle 2051, USGS 132, and USGS 103 support the concept of groundwater flow deepening in the southwestern part of the INL.
Simulation of the regional groundwater-flow system of the Menominee Indian Reservation, Wisconsin
Juckem, Paul F.; Dunning, Charles P.
2015-01-01
The likely extent of the Neopit wastewater plume was simulated by using the groundwater-flow model and Monte Carlo techniques to evaluate the sensitivity of predictive simulations to a range of model parameter values. Wastewater infiltrated from the currently operating lagoons flows predominantly south toward Tourtillotte Creek. Some of the infiltrated wastewater is simulated as having a low probability of flowing beneath Tourtillotte Creek to the nearby West Branch Wolf River. Results for the probable extent of the wastewater plume are considered to be qualitative because the method only considers advective flow and does not account for processes affecting contaminant transport in porous media. Therefore, results for the probable extent of the wastewater plume are sensitive to the number of particles used to represent flow from the lagoon and the resolution of a synthetic grid used for the analysis. Nonetheless, it is expected that the qualitative results may be of use for identifying potential downgradient areas of concern that can then be evaluated using the quantitative “area contributing recharge to wells” method or traditional contaminant-transport simulations.
Morgan, David S.; Hinkle, Stephen R.; Weick, Rodney J.
2007-01-01
This report presents the results of a study by the U.S. Geological Survey, done in cooperation with the Oregon Department of Environmental Quality and Deschutes County, to develop a better understanding of the effects of nitrogen from on-site wastewater disposal systems on the quality of ground water near La Pine in southern Deschutes County and northern Klamath County, Oregon. Simulation models were used to test the conceptual understanding of the system and were coupled with optimization methods to develop the Nitrate Loading Management Model, a decision-support tool that can be used to efficiently evaluate alternative approaches for managing nitrate loading from on-site wastewater systems. The conceptual model of the system is based on geologic, hydrologic, and geochemical data collected for this study, as well as previous hydrogeologic and water quality studies and field testing of on-site wastewater systems in the area by other agencies. On-site wastewater systems are the only significant source of anthropogenic nitrogen to shallow ground water in the study area. Between 1960 and 2005 estimated nitrate loading from on-site wastewater systems increased from 3,900 to 91,000 pounds of nitrogen per year. When all remaining lots are developed (in 2019 at current building rates), nitrate loading is projected to reach nearly 150,000 pounds of nitrogen per year. Low recharge rates (2-3 inches per year) and ground-water flow velocities generally have limited the extent of nitrate occurrence to discrete plumes within 20-30 feet of the water table; however, hydraulic-gradient and age data indicate that, given sufficient time and additional loading, nitrate will migrate to depths where many domestic wells currently obtain water. In 2000, nitrate concentrations greater than 4 milligrams nitrogen per liter (mg N/L) were detected in 10 percent of domestic wells sampled by Oregon Department of Environmental Quality. Numerical simulation models were constructed at transect (2.4 square miles) and study-area (247 square miles) scales to test the conceptual model and evaluate processes controlling nitrate concentrations in ground water and potential ground-water discharge of nitrate to streams. Simulation of water-quality conditions for a projected future build-out (base) scenario in which all existing lots are developed using conventional on-site wastewater systems indicates that, at equilibrium, average nitrate concentrations near the water table will exceed 10 mg N/L over areas totaling 9,400 acres. Other scenarios were simulated where future nitrate loading was reduced using advanced treatment on-site systems and a development transfer program. Seven other scenarios were simulated with total nitrate loading reductions ranging from 15 to 94 percent; simulated reductions in the area where average nitrate concentrations near the water table exceed 10 mg N/L range from 22 to 99 percent at equilibrium. Simulations also show that the ground-water system responds slowly to changes in nitrate loading due to low recharge rates and ground-water flow velocity. Consequently, reductions in nitrate loading will not immediately reduce average nitrate concentrations and the average concentration in the aquifer will continue to increase for 25-50 years depending on the level and timing of loading reduction. The capacity of the ground-water system to receive on-site wastewater system effluent, which is related to the density of homes, presence of upgradient residential development, ground-water recharge rate, ground-water flow velocity, and thickness of the oxic part of the aquifer, varies within the study area. Optimization capability was added to the study-area simulation model and the combined simulation-optimization model was used to evaluate alternative approaches to management of nitrate loading from on-site wastewater systems to the shallow alluvial aquifer. The Nitrate Loading Management Model (NLMM) was formulated to find the minimum red
Hinkle, Stephen J.; Weick, Rodney J.; Johnson, Jill M.; Cahill, Jeffery D.; Smith, Steven G.; Rich, Barbara J.
2005-01-01
The occurrence of organic wastewater compounds (components of 'personal care products' and other common household chemicals), pharmaceuticals (human prescription and nonprescription medical drugs), and coliphage (viruses that infect coliform bacteria, and found in high concentrations in municipal wastewater) in onsite wastewater (septic tank effluent) and in a shallow, unconfined, sandy aquifer that serves as the primary source of drinking water for most residents near La Pine, Oregon, was documented. Samples from two types of observation networks provided basic occurrence data for onsite wastewater and downgradient ground water. One observation network was a group of 28 traditional and innovative (advanced treatment) onsite wastewater treatment systems and associated downgradient drainfield monitoring wells, referred to as the 'innovative systems network'. The drainfield monitoring wells were located adjacent to or under onsite wastewater treatment system drainfield lines. Another observation network, termed the 'transect network', consisted of 31 wells distributed among three transects of temporary, stainless-steel-screened, direct-push monitoring wells installed along three plumes of onsite wastewater. The transect network, by virtue of its design, also provided a basis for increased understanding of the transport of analytes in natural systems. Coliphage were frequently detected in onsite wastewater. Coliphage concentrations in onsite wastewater were highly variable, ranging from less than 1 to 3,000,000 plaque forming units per 100 milliliters. Coliphage were occasionally detected (eight occurrences) at low concentrations in samples from wells located downgradient from onsite wastewater treatment system drainfield lines. However, coliphage concentrations were below method detection limits in replicate or repeat samples collected from the eight sites. The consistent absence of coliphage detections in the replicate or repeat samples is interpreted to indicate that the detections reported for ground-water samples represented low-level field or laboratory contamination, and it would appear that coliphage were effectively attenuated to less than 1 PFU/100 mL over distances of several feet of transport in the La Pine aquifer and (or) overlying unsaturated zone. Organic wastewater compounds were frequently detected in onsite wastewater. Of the 63 organic wastewater compounds in the analytical schedule, 45 were detected in the 21 samples of onsite wastewater. Concentrations of organic wastewater compounds reached a maximum of 1,300 ug/L (p-cresol). Caffeine was detected at concentrations as high as 320 ug/L. Fourteen of the 45 compounds were detected in more than 90 percent of onsite wastewater samples. Fewer (nine) organic wastewater compounds were detected in ground water, despite the presence of nitrate and chloride likely from onsite wastewater sources. The nine organic wastewater compounds that were detected in ground-water samples were acetyl-hexamethyl-tetrahydro-naphthalene (AHTN), caffeine, cholesterol, hexahydrohexamethyl-cyclopentabenzopyran, N,N-diethyl-meta-toluamide (DEET), tetrachloroethene, tris (2-chloroethyl) phosphate, tris (dichloroisopropyl) phosphate, and tributyl phosphate. Frequent detection of household-chemical type organic wastewater compounds in onsite wastewater provides evidence that some of these organic wastewater compounds may be useful indicators of human waste effluent dispersal in some hydrologic environments. The occurrence of organic wastewater compounds in ground water downgradient from onsite wastewater treatment systems demonstrates that a subgroup of organic wastewater compounds is transported in the La Pine aquifer. The consistently low concentrations (generally less than 1 ug/L) of organic wastewater compounds in water samples collected from wells located no more than 19 feet from drainfield lines indicates that the reactivity (sorption, degradation) of this suite of organic waste
Sediment diffusion method improves wastewater nitrogen removal in the receiving lake sediments.
Aalto, Sanni L; Saarenheimo, Jatta; Ropponen, Janne; Juntunen, Janne; Rissanen, Antti J; Tiirola, Marja
2018-07-01
Sediment microbes have a great potential to transform reactive N to harmless N 2 , thus decreasing wastewater nitrogen load into aquatic ecosystems. Here, we examined if spatial allocation of the wastewater discharge by a specially constructed sediment diffuser pipe system enhanced the microbial nitrate reduction processes. Full-scale experiments were set on two Finnish lake sites, Keuruu and Petäjävesi, and effects on the nitrate removal processes were studied using the stable isotope pairing technique. All nitrate reduction rates followed nitrate concentrations, being highest at the wastewater-influenced sampling points. Complete denitrification with N 2 as an end-product was the main nitrate reduction process, indicating that the high nitrate and organic matter concentrations of wastewater did not promote nitrous oxide (N 2 O) production (truncated denitrification) or ammonification (dissimilatory nitrate reduction to ammonium; DNRA). Using 3D simulation, we demonstrated that the sediment diffusion method enhanced the contact time and amount of wastewater near the sediment surface especially in spring and in autumn, altering organic matter concentration and oxygen levels, and increasing the denitrification capacity of the sediment. We estimated that natural denitrification potentially removed 3-10% of discharged wastewater nitrate in the 33 ha study area of Keuruu, and the sediment diffusion method increased this areal denitrification capacity on average 45%. Overall, our results indicate that sediment diffusion method can supplement wastewater treatment plant (WWTP) nitrate removal without enhancing alternative harmful processes. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
ERIC Educational Resources Information Center
Erdogan, Ibrahim
2006-01-01
In this extended biology, ecology, and earth science activity, students construct hands-on models of natural wastewater treatment and wastewater treatment facilities to achieve an understanding of wastewater treatment process in nature and wastewater treatment facilities. During this simulation activity, students have opportunities to learn…
Wan, Min Tao; Chou, Chin Cheng
2015-06-02
Class 1 integrons are mobile gene elements (MGEs) containing qacEΔ1 that are resistant to quaternary ammonium compound (QAC) disinfectants. This study compared the abundances of class 1 integrons and antiseptic resistance genes in municipal (M) and swine slaughterhouse (S) wastewater treatment plants (WWTPs) and investigated the presence of class 1 integrons and antiseptic resistance genes in methicillin-resistant Staphylococcus aureus (MRSA) isolated from wastewater samples. The abundances of intI1 and qacEΔ1 genes in 96 wastewater samples were quantified using real-time quantitative polymerase chain reaction (real-time qPCR), and 113 MRSA isolates recovered from the wastewater samples were detected class 1 integrons and linked antiseptic resistance genes (qacEΔ1), and minimum inhibitory concentrations (MICs) for QAC antiseptics. The intI1 and qacEΔ1 genes were detected in all the wastewater samples, and they were more abundant in S-WWTP samples than in M-WWTP samples. A higher percentage of MRSA isolates carried qacEΔ1 in MRSA from swine wastewater samples (62.8%) than in municipal MRSA (3.7%). All the MRSA isolates showed high MICs for antiseptic agents. This study provides important evidence regarding the abundances of intI1 and qacEΔ1 genes in municipal and swine slaughterhouse wastewater, and antiseptic-resistant MRSA strains were detected in swine slaughterhouse wastewater.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Stripped Resin and Process Wastewater 9 Table 9 to Subpart HHHHHHH of Part 63 Protection of Environment... Wastewater For demonstrating . . . For the following emission points and types of processes . . . Collect.... Each process wastewater stream 3. Initial compliance N/A 1 grab sample 1 grab sample. 4. Continuous...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Stripped Resin and Process Wastewater 9 Table 9 to Subpart HHHHHHH of Part 63 Protection of Environment... Wastewater For demonstrating . . . For the following emission points and types of processes . . . Collect.... Each process wastewater stream 3. Initial compliance N/A 1 grab sample 1 grab sample. 4. Continuous...
The drinking water distribution system simulator (DSS) from the U.S. EPA was operated with a direct cross-connection of 0.3% wastewater to system volume per day for 70 d. During the cross-connection, tap water, wastewater, and system discharge water were monitored to ensure that ...
Gyawali, P; Ahmed, W; Jagals, P; Sidhu, J P S; Toze, S
2015-12-01
Hookworm infection contributes around 700 million infections worldwide especially in developing nations due to increased use of wastewater for crop production. The effective recovery of hookworm ova from wastewater matrices is difficult due to their low concentrations and heterogeneous distribution. In this study, we compared the recovery rates of (i) four rapid hookworm ova concentration methods from municipal wastewater, and (ii) two concentration methods from sludge samples. Ancylostoma caninum ova were used as surrogate for human hookworm (Ancylostoma duodenale and Necator americanus). Known concentration of A. caninum hookworm ova were seeded into wastewater (treated and raw) and sludge samples collected from two wastewater treatment plants (WWTPs) in Brisbane and Perth, Australia. The A. caninum ova were concentrated from treated and raw wastewater samples using centrifugation (Method A), hollow fiber ultrafiltration (HFUF) (Method B), filtration (Method C) and flotation (Method D) methods. For sludge samples, flotation (Method E) and direct DNA extraction (Method F) methods were used. Among the four methods tested, filtration (Method C) method was able to recover higher concentrations of A. caninum ova consistently from treated wastewater (39-50%) and raw wastewater (7.1-12%) samples collected from both WWTPs. The remaining methods (Methods A, B and D) yielded variable recovery rate ranging from 0.2 to 40% for treated and raw wastewater samples. The recovery rates for sludge samples were poor (0.02-4.7), although, Method F (direct DNA extraction) provided 1-2 orders of magnitude higher recovery rate than Method E (flotation). Based on our results it can be concluded that the recovery rates of hookworm ova from wastewater matrices, especially sludge samples, can be poor and highly variable. Therefore, choice of concentration method is vital for the sensitive detection of hookworm ova in wastewater matrices. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.
Methicillin-Resistant Staphylococcus aureus (MRSA) Detected at Four U.S. Wastewater Treatment Plants
Goldstein, Rachel E. Rosenberg; Micallef, Shirley A.; Gibbs, Shawn G.; Davis, Johnnie A.; He, Xin; George, Ashish; Kleinfelter, Lara M.; Schreiber, Nicole A.; Mukherjee, Sampa; Joseph, Sam W.
2012-01-01
Background: The incidence of community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) infections is increasing in the United States, and it is possible that municipal wastewater could be a reservoir of this microorganism. To date, no U.S. studies have evaluated the occurrence of MRSA in wastewater. Objective: We examined the occurrence of MRSA and methicillin-susceptible S. aureus (MSSA) at U.S. wastewater treatment plants. Methods: We collected wastewater samples from two Mid-Atlantic and two Midwest wastewater treatment plants between October 2009 and October 2010. Samples were analyzed for MRSA and MSSA using membrane filtration. Isolates were confirmed using biochemical tests and PCR (polymerase chain reaction). Antimicrobial susceptibility testing was performed by Sensititre® microbroth dilution. Staphylococcal cassette chromosome mec (SCCmec) typing, Panton-Valentine leucocidin (PVL) screening, and pulsed field gel electrophoresis (PFGE) were performed to further characterize the strains. Data were analyzed by two-sample proportion tests and analysis of variance. Results: We detected MRSA (n = 240) and MSSA (n = 119) in 22 of 44 (50%) and 24 of 44 (55%) wastewater samples, respectively. The odds of samples being MRSA-positive decreased as treatment progressed: 10 of 12 (83%) influent samples were MRSA-positive, while only one of 12 (8%) effluent samples was MRSA-positive. Ninety-three percent and 29% of unique MRSA and MSSA isolates, respectively, were multidrug resistant. SCCmec types II and IV, the pvl gene, and USA types 100, 300, and 700 (PFGE strain types commonly found in the United States) were identified among the MRSA isolates. Conclusions: Our findings raise potential public health concerns for wastewater treatment plant workers and individuals exposed to reclaimed wastewater. Because of increasing use of reclaimed wastewater, further study is needed to evaluate the risk of exposure to antibiotic-resistant bacteria in treated wastewater. PMID:23124279
Wan, Min Tao; Chou, Chin Cheng
2015-01-01
Class 1 integrons are mobile gene elements (MGEs) containing qacEΔ1 that are resistant to quaternary ammonium compound (QAC) disinfectants. This study compared the abundances of class 1 integrons and antiseptic resistance genes in municipal (M) and swine slaughterhouse (S) wastewater treatment plants (WWTPs) and investigated the presence of class 1 integrons and antiseptic resistance genes in methicillin-resistant Staphylococcus aureus (MRSA) isolated from wastewater samples. The abundances of intI1 and qacEΔ1 genes in 96 wastewater samples were quantified using real-time quantitative polymerase chain reaction (real-time qPCR), and 113 MRSA isolates recovered from the wastewater samples were detected class 1 integrons and linked antiseptic resistance genes (qacEΔ1), and minimum inhibitory concentrations (MICs) for QAC antiseptics. The intI1 and qacEΔ1 genes were detected in all the wastewater samples, and they were more abundant in S-WWTP samples than in M-WWTP samples. A higher percentage of MRSA isolates carried qacEΔ1 in MRSA from swine wastewater samples (62.8%) than in municipal MRSA (3.7%). All the MRSA isolates showed high MICs for antiseptic agents. This study provides important evidence regarding the abundances of intI1 and qacEΔ1 genes in municipal and swine slaughterhouse wastewater, and antiseptic-resistant MRSA strains were detected in swine slaughterhouse wastewater. PMID:26042365
Prokaryotic community profiling of local algae wastewaters using advanced 16S rRNA gene sequencing.
Limayem, Alya; Micciche, Andrew; Nayak, Bina; Mohapatra, Shyam
2018-01-01
Algae biomass-fed wastewaters are a promising source of lipid and bioenergy manufacture, revealing substantial end-product investment returns. However, wastewaters would contain lytic pathogens carrying drug resistance detrimental to algae yield and environmental safety. This study was conducted to simultaneously decipher through high-throughput advanced Illumina 16S ribosomal RNA (rRNA) gene sequencing, the cultivable and uncultivable bacterial community profile found in a single sample that was directly recovered from the local wastewater systems. Samples were collected from two previously documented sources including anaerobically digested (AD) municipal wastewater and swine wastewater with algae namely Chlorella spp. in addition to control samples, swine wastewater, and municipal wastewater without algae. Results indicated the presence of a significant level of Bacteria in all samples with an average of approximately 95.49% followed by Archaea 2.34%, in local wastewaters designed for algae cultivation. Taxonomic genus identification indicated the presence of Calothrix, Pseudomonas, and Clostridium as the most prevalent strains in both local municipal and swine wastewater samples containing algae with an average of 17.37, 12.19, and 7.84%, respectively. Interestingly, swine wastewater without algae displayed the lowest level of Pseudomonas strains < 0.1%. The abundance of some Pseudomonas species in wastewaters containing algae indicates potential coexistence between these strains and algae microenvironment, suggesting further investigations. This finding was particularly relevant for the earlier documented adverse effects of some nosocomial Pseudomonas strains on algae growth and their multidrug resistance potential, requiring the development of targeted bioremediation with regard to the beneficial flora.
Ziajahromi, Shima; Neale, Peta A; Rintoul, Llew; Leusch, Frederic D L
2017-04-01
Wastewater effluent is expected to be a pathway for microplastics to enter the aquatic environment, with microbeads from cosmetic products and polymer fibres from clothes likely to enter wastewater treatment plants (WWTP). To date, few studies have quantified microplastics in wastewater. Moreover, the lack of a standardized and applicable method to identify microplastics in complex samples, such as wastewater, has limited the accurate assessment of microplastics and may lead to an incorrect estimation. This study aimed to develop a validated method to sample and process microplastics from wastewater effluent and to apply the developed method to quantify and characterise wastewater-based microplastics in effluent from three WWTPs that use primary, secondary and tertiary treatment processes. We applied a high-volume sampling device that fractionated microplastics in situ and an efficient sample processing procedure to improve the sampling of microplastics in wastewater and to minimize the false detection of non-plastic particles. The sampling device captured between 92% and 99% of polystyrene microplastics using 25 μm-500 μm mesh screens in laboratory tests. Microplastic type, size and suspected origin in all studied WWTPs, along with the removal efficiency during the secondary and tertiary treatment stages, was investigated. Suspected microplastics were characterised using Fourier Transform Infrared spectroscopy, with between 22 and 90% of the suspected microplastics found to be non-plastic particles. An average of 0.28, 0.48 and 1.54 microplastics per litre of final effluent was found in tertiary, secondary and primary treated effluent, respectively. This study suggests that although low concentrations of microplastics are detected in wastewater effluent, WWTPs still have the potential to act as a pathway to release microplastics given the large volumes of effluent discharged to the aquatic environment. This study focused on a single sampling campaign, with long-term monitoring recommended to further characterise microplastics in wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.
The effects of wastewater discharges on the functioning of a small temporarily open/closed estuary
NASA Astrophysics Data System (ADS)
Lawrie, Robynne A.; Stretch, Derek D.; Perissinotto, Renzo
2010-04-01
Wastewater discharges affect the functioning of small temporarily open/closed estuaries (TOCEs) through two main mechanisms: (1) they can significantly change the water balance by altering the quantity of water inflows, and (2) they can significantly change the nutrient balance and hence the water quality. This study investigated the bio-physical responses of a typical, small TOCE on the east coast of South Africa, the Mhlanga Estuary. This estuary receives significant inflows of treated effluent from upstream wastewater treatment works. Water and nutrient budgets were used together with biological sampling to investigate changes in the functioning of the system. The increase in inflows due to the effluent discharges has significantly increased the mouth breaching frequency. Furthermore, when the mouth closes, the accumulation of nutrients leads to eutrophication and algal blooms. A grey water index, namely the proportion of effluent in the estuary and an indicator of the additional nutrient inputs into the estuary, reached high values (≳50%) during low flow regimes and when the mouth was closed. In these hyper-eutrophic conditions (DIN and DIP concentrations up to 457 μM and 100 μM respectively), field measurements showed that algal blooms occurred within about 14 days following closure of the mouth (chlorophyll-a concentrations up to 375 mg chl-a m -3). Water and nutrient balance simulations for alternative scenarios suggest that further increases in wastewater discharges would result in more frequent breaching events and longer open mouth conditions, but the occurrence of hyper-eutrophic conditions would initially intensify despite more frequent openings. The study indicates how water and nutrient balance simulations can be used in the planning and impact assessment of wastewater treatment facilities.
Barber, Larry B.; Keefe, Steffanie H.; Kolpin, Dana W.; Schnoebelen, Douglas J.; Flynn, Jennifer L.; Brown, Gregory K.; Furlong, Edward T.; Glassmeyer, Susan T.; Gray, James L.; Meyer, Michael T.; Sandstrom, Mark W.; Taylor, Howard E.; Zaugg, Steven D.
2011-01-01
This report presents methods and data for a Lagrangian sampling investigation into chemical loading and in-stream attenuation of inorganic and organic contaminants in two wastewater treatment-plant effluent-dominated streams: Boulder Creek, Colorado, and Fourmile Creek, Iowa. Water-quality sampling was timed to coincide with low-flow conditions when dilution of the wastewater treatment-plant effluent by stream water was at a minimum. Sample-collection times corresponded to estimated travel times (based on tracer tests) to allow the same "parcel" of water to reach downstream sampling locations. The water-quality data are linked directly to stream discharge using flow- and depth-integrated composite sampling protocols. A range of chemical analyses was made for nutrients, carbon, major elements, trace elements, biological components, acidic and neutral organic wastewater compounds, antibiotic compounds, pharmaceutical compounds, steroid and steroidal-hormone compounds, and pesticide compounds. Physical measurements were made for field conditions, stream discharge, and time-of-travel studies. Two Lagrangian water samplings were conducted in each stream, one in the summer of 2003 and the other in the spring of 2005. Water samples were collected from five sites in Boulder Creek: upstream from the wastewater treatment plant, the treatment-plant effluent, and three downstream sites. Fourmile Creek had seven sampling sites: upstream from the wastewater treatment plant, the treatment-plant effluent, four downstream sites, and a tributary. At each site, stream discharge was measured, and equal width-integrated composite water samples were collected and split for subsequent chemical, physical, and biological analyses. During the summer of 2003 sampling, Boulder Creek downstream from the wastewater treatment plant consisted of 36 percent effluent, and Fourmile Creek downstream from the respective wastewater treatment plant was 81 percent effluent. During the spring of 2005 samplings, Boulder Creek downstream from the wastewater treatment plant was 40 percent effluent, and Fourmile Creek downstream from that wastewater treatment plant was 28 percent effluent. At each site, 300 individual constituents were determined to characterize the water. Most of the inorganic constituents were detected in all of the stream and treatment-plant effluent samples, whereas detection of synthetic organic compounds was more limited and contaminants typically occurred only in wastewater treatment-plant effluents and at downstream sites. Concentrations ranged from nanograms per liter to milligrams per liter.
Khouja, Layla Ben Ayed; Cama, Vitaliano; Xiao, Lihua
2010-06-01
The limited availability of water results in the reuse of wastewater or sludge. The Tunisian wastewater regulatory guidelines have specific limits for ova of helminths (<1 egg/l) but none for protozoan parasites. We assessed the presence and loads of parasites in 20 samples of raw, treated wastewater and sludge collected from six wastewater treatment plants. Samples were tested by microscopy using the modified Bailenger method (MBM), immunomagnetic separation (IMS) followed by immunofluorescent assay microscopy, and PCR and sequence analysis for the protozoa Cryptosporidium and Giardia. The seven samples of raw wastewater had a high diversity of helminth and protozoa contamination. Giardia spp., Entamoeba histolytica/dispar, Entamoeba coli, Ascaris spp., Enterobius vermicularis, and Taenia saginata were detected by MBM, and protozoan loads were greater than helminth loads. Cryptosporidium and Giardia were also detected by IMS microscopy and PCR. Six of the eight samples of treated wastewater had parasites: helminths (n = 1), Cryptosporidium (n = 1), Giardia (n = 4), and Entamoeba (n = 4). Four of five samples of sludge had microscopically detectable parasites, and all had both Cryptosporidium and Giardia. The genotypes and subtypes of Cryptosporidium and Giardia were of both human and animal origin. These findings suggest that it may be important to monitor the presence of protozoan parasites in treated wastewater and sludge in Tunisia.
Barbaro, Jeffrey R.
2007-01-01
Streamflow in many parts of the Blackstone River Basin in south-central Massachusetts and northern Rhode Island is altered by water-supply withdrawals, wastewater-return flows, and land-use change associated with a growing population. Simulations from a previously developed and calibrated Hydrological Simulation Program?FORTRAN (HSPF) precipitation-runoff model for the basin were used to evaluate the effects of water withdrawals, wastewater-return flows, and land-use change on streamflow. Most of the simulations were done for recent (1996?2001) conditions and potential buildout conditions in the future when all available land is developed to provide a long-range assessment of the effects of possible future human activities on water resources in the basin. The effects of land-use change were evaluated by comparing the results of long-term (1960?2004) simulations with (1) undeveloped land use, (2) 1995?1999 land use, and (3) potential buildout land use at selected sites across the basin. Flow-duration curves for these land-use scenarios were similar, indicating that land-use change, as represented in the HSPF model, had little effect on flow in the major tributary streams and rivers in the basin. However, land-use change?particularly increased effective impervious area?could potentially have greater effects on the hydrology, water quality, and aquatic habitat of the smaller streams in the basin. The effects of water withdrawals and wastewater-return flows were evaluated by comparing the results of long-term simulations with (1) no withdrawals and return flows, (2) actual (measured) 1996?2001 withdrawals and wastewater-return flows, and (3) potential withdrawals and wastewater-return flows at buildout. Overall, the results indicated that water use had a much larger effect on streamflow than did land use, and that the location and magnitude of wastewater-return flows were important for lessening the effects of withdrawals on streamflow in the Blackstone River Basin. Ratios of long-term (1960?2004) simulated flows with 1996?2001 water use (representing the net effect of withdrawals and wastewater-return flows) to long-term simulated flows with no water use indicated that, for many reaches, 1996?2001 water use did not deplete flows at the 90-percent flow duration substantially compared to flows unaffected by water use. Flows generally were more severely depleted in the reaches that include surface-water supplies for the larger cities in the basin (Kettle and Tatnuck Brooks, Worcester, Mass. water supply; Quinsigamond River, Shrewsbury, Mass. water supply; Crookfall Brook, Woonsocket, R.I. water supply; and Abbott Run, Pawtucket, R.I. water supply). These reaches did not have substantial wastewater-return flows that could offset the effects of the withdrawals. In contrast, wastewater-return flows from the Upper Blackstone Wastewater Treatment Facility in Millbury, Mass. increased flows at the 90-percent flow duration in the main stem of the Blackstone River compared to no-water-use conditions. Under the assumptions used to develop the buildout scenario, nearly all of the new water withdrawals were returned to the Blackstone River Basin at municipal wastewater-treatment plants or on-site septic systems. Consequently, buildout generally had small effects on simulated low flows in the Blackstone River and most of the major tributary streams compared to flows with 1996?2001 water use. To evaluate the effects of water use on flows in the rivers and major tributary streams in the Rhode Island part of the basin in greater detail, the magnitudes of water withdrawals and wastewater-return flows in relation to simulated streamflow were calculated as unique ratios for individual HSPF subbasins, total contributing areas to HSPF subbasins, and total contributing areas to the major tributary streams. For recent conditions (1996?2001 withdrawals and 1995?1999 land use), ratios of average summer (June through September) withdrawals to the l
Distribution of polycyclic aromatic hydrocarbons in coke plant wastewater.
Burmistrz, Piotr; Burmistrz, Michał
2013-01-01
The subject of examinations presented in this paper is the distribution of polycyclic aromatic hydrocarbons (PAHs) between solid and liquid phases in samples of raw wastewater and wastewater after treatment. The content of 16 PAHs according to the US EPA was determined in the samples of coke plant wastewater from the Zdzieszowice Coke Plant, Poland. The samples contained raw wastewater, wastewater after physico-chemical treatment as well as after biological treatment. The ΣPHA16 content varied between 255.050 μg L(-1) and 311.907 μg L(-1) in raw wastewater and between 0.940 and 4.465 μg L(-1) in wastewater after full treatment. Investigation of the distribution of PAHs showed that 71-84% of these compounds is adsorbed on the surface of suspended solids and 16-29% is dissolved in water. Distribution of individual PAHs and ΣPHA16 between solid phase and liquid phase was described with the use of statistically significant, linear equations. The calculated values of the partitioning coefficient Kp changed from 0.99 to 7.90 for naphthalene in samples containing mineral-organic suspension and acenaphthylene in samples with biological activated sludge, respectively.
Decomposition of persistent pharmaceuticals in wastewater by ionizing radiation
NASA Astrophysics Data System (ADS)
Kimura, Atsushi; Osawa, Misako; Taguchi, Mitsumasa
2012-09-01
Pharmaceuticals in wastewater were treated by the combined method of activated sludge and ionizing radiation in laboratory scale. Oseltamivir, aspirin, and ibuprofen at 5 μmol dm-3 in wastewater were decomposed by the activated sludge at reaction time for 4 h. Carbamazepine, ketoprofen, mefenamic acid, clofibric acid, and diclofenac were not biodegraded completely, but were eliminated by γ-ray irradiation at 2 kGy. The rate constants of the reactions of these pharmaceuticals with hydroxyl radicals were estimated by the competition reaction method to be 4.0-10×109 mol-1 dm3 s-1. Decompositions of the pharmaceuticals in wastewater by ionizing radiation were simulated by use of the rate constants and the amount of total organic carbon as parameters. Simulation curves of concentrations of these pharmaceuticals as a function of dose described the experimental data, and the required dose for the elimination of them in wastewater by ionizing radiation can be estimated by this simulation.
Dataset of producing and curing concrete using domestic treated wastewater
Asadollahfardi, Gholamreza; Delnavaz, Mohammad; Rashnoiee, Vahid; Fazeli, Alireza; Gonabadi, Navid
2015-01-01
We tested the setting time of cement, slump and compressive and tensile strength of 54 triplicate cubic samples and 9 cylindrical samples of concrete with and without a Super plasticizer admixture. We produced concrete samples made with drinking water and treated domestic wastewater containing 300, 400 kg/m3 of cement before chlorination and then cured concrete samples made with drinking water and treated wastewater. Second, concrete samples made with 350 kg/m3 of cement with a Superplasticizer admixture made with drinking water and treated wastewater and then cured with treated wastewater. The compressive strength of all the concrete samples made with treated wastewater had a high coefficient of determination with the control concrete samples. A 28-day tensile strength of all the samples was 96–100% of the tensile strength of the control samples and the setting time was reduced by 30 min which was consistent with a ASTMC191 standard. All samples produced and cured with treated waste water did not have a significant effect on water absorption, slump and surface electrical resistivity tests. However, compressive strength at 21 days of concrete samples using 300 kg/m3 of cement in rapid freezing and thawing conditions was about 11% lower than concrete samples made with drinking water. PMID:26862577
Dataset of producing and curing concrete using domestic treated wastewater.
Asadollahfardi, Gholamreza; Delnavaz, Mohammad; Rashnoiee, Vahid; Fazeli, Alireza; Gonabadi, Navid
2016-03-01
We tested the setting time of cement, slump and compressive and tensile strength of 54 triplicate cubic samples and 9 cylindrical samples of concrete with and without a Super plasticizer admixture. We produced concrete samples made with drinking water and treated domestic wastewater containing 300, 400 kg/m(3) of cement before chlorination and then cured concrete samples made with drinking water and treated wastewater. Second, concrete samples made with 350 kg/m(3) of cement with a Superplasticizer admixture made with drinking water and treated wastewater and then cured with treated wastewater. The compressive strength of all the concrete samples made with treated wastewater had a high coefficient of determination with the control concrete samples. A 28-day tensile strength of all the samples was 96-100% of the tensile strength of the control samples and the setting time was reduced by 30 min which was consistent with a ASTMC191 standard. All samples produced and cured with treated waste water did not have a significant effect on water absorption, slump and surface electrical resistivity tests. However, compressive strength at 21 days of concrete samples using 300 kg/m(3) of cement in rapid freezing and thawing conditions was about 11% lower than concrete samples made with drinking water.
Effects of winery wastewater on soil, grape nutrition, and wine quality
USDA-ARS?s Scientific Manuscript database
Many wineries are interested in recycling wastewater for irrigation. This project investigates the effects on winemaking when winery wastewater (WW) is recycledfor irrigation. Water samples and soils samples were collected from one Napa Valley and one Sonoma vineyard. Leaf and berry samples were col...
Senior, Lisa A.; Cinotto, Peter J.
2007-01-01
On-site wastewater disposal has the potential to introduce contaminants into ground water and subsequently, by ground-water discharge, to streams. A pilot study was conducted during 2005 by the U.S. Geological Survey in cooperation with the Chester County Health Department and the Chester County Water Resources Authority to determine if wastewater components, including inorganic constituents and selected organic wastewater compounds, such as detergents, considered to be emerging contaminants, were present in ground water and stream base flow in areas with on-site wastewater disposal. The study area was a small watershed (about 7.1 square miles) of mixed land use drained by Broad Run in central Chester County, Pa. The area is underlain by fractured metamorphic rocks that form aquifers recharged by precipitation. Surface- and ground-water sampling was done in areas with and without on-site wastewater disposal for comparison, including a relatively densely populated village with cesspools and septic systems, a residential area with septic systems, a residential area served by sewers, and agricultural land. Samples were collected in May-June and September 2005 from eight headwater stream sites under base-flow conditions and in June 2005 from eight wells and two springs. Samples were analyzed for major ions, nutrients, boron, bacteria, and a suite of organic wastewater compounds. Several emerging contaminant wastewater compounds, including detergent components, insect repellents, and flame retardants, were detected in base-flow and ground-water samples. Stream base-flow samples generally contained more compounds and higher concentrations of those compounds than did ground-water samples, and of the ground-water samples, samples from springs contained more compounds and higher concentrations than samples from wells. Concentrations of nitrate, chloride, and boron (inorganic constituents associated with wastewater) generally were all elevated in base-flow and ground-water samples in areas with relatively high densities of on-site wastewater disposal (septic systems or cesspools) compared to other areas sampled. Results of this pilot study should be considered preliminary because of limited data.
Unsaturated flow dynamics during irrigation with wastewater: field and modelling study
NASA Astrophysics Data System (ADS)
Martinez-Hernandez, V.; de Miguel, A.; Meffe, R.; Leal, M.; González-Naranjo, V.; de Bustamante, I.
2012-04-01
To deal with water scarcity combined with a growing water demand, the reuse of wastewater effluents of wastewater treatment plants (WWTP) for industrial and agricultural purposes is considered as a technically and economically feasible solution. In agriculture, irrigation with wastewater emerges as a sustainable practice that should be considered in such scenarios. Water infiltration, soil moisture storage and evapotranspiration occurring in the unsaturated zone are fundamental processes that play an important role in soil water balance. An accurate estimation of unsaturated flow dynamics (during and after irrigation) is essential to improve wastewater management (i.e. estimating groundwater recharge or maximizing irrigation efficiency) and to avoid possible soil and groundwater affections (i.e. predicting contaminant transport). The study site is located in the Experimental Plant of Carrión de los Céspedes (Seville, Spain). Here, treated wastewater is irrigated over the soil to enhance plants growth. To obtain physical characteristics of the soil (granulometry, bulk density and water retention curve), soil samples were collected at different depths. A drain gauge passive capillary lysimeter was installed to determine the volume of water draining from the vadose zone. Volumetric water content of the soil was monitored by measuring the dielectric constant using capacitance/frequency domain technology. Three soil moisture probes were located at different depths (20, 50 and 70 cm below the ground surface) to control the variation of the volumetric water content during infiltration. The main aim of this study is to understand water flow dynamics through the unsaturated zone during irrigation by using the finite element model Hydrus-1D. The experimental conditions were simulated by a 90 cm long, one dimensional solution domain. Specific climatic conditions, wastewater irrigation rates and physical properties of the soil were introduced in the model as input parameters. Data from the lysimeter and soil moisture probes were used to calibrate the model. The overall simulation time period included the dry (irrigation as main source of water) and the wet season (precipitation as main source of water). Future investigation concerning groundwater affections and contaminant transport at the field site will be based on the results obtained through the flow model developed in this study.
Quantification of hookworm ova from wastewater matrices using quantitative PCR.
Gyawali, Pradip; Ahmed, Warish; Sidhu, Jatinder P; Jagals, Paul; Toze, Simon
2017-07-01
A quantitative PCR (qPCR) assay was used to quantify Ancylostoma caninum ova in wastewater and sludge samples. We estimated the average gene copy numbers for a single ovum using a mixed population of ova. The average gene copy numbers derived from the mixed population were used to estimate numbers of hookworm ova in A. caninum seeded and unseeded wastewater and sludge samples. The newly developed qPCR assay estimated an average of 3.7×10 3 gene copies per ovum, which was then validated by seeding known numbers of hookworm ova into treated wastewater. The qPCR estimated an average of (1.1±0.1), (8.6±2.9) and (67.3±10.4) ova for treated wastewater that was seeded with (1±0), (10±2) and (100±21) ova, respectively. The further application of the qPCR assay for the quantification of A. caninum ova was determined by seeding a known numbers of ova into the wastewater matrices. The qPCR results indicated that 50%, 90% and 67% of treated wastewater (1L), raw wastewater (1L) and sludge (~4g) samples had variable numbers of A. caninum gene copies. After conversion of the qPCR estimated gene copy numbers to ova for treated wastewater, raw wastewater, and sludge samples, had an average of 0.02, 1.24 and 67 ova, respectively. The result of this study indicated that qPCR can be used for the quantification of hookworm ova from wastewater and sludge samples; however, caution is advised in interpreting qPCR generated data for health risk assessment. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Romaidi; Hasanudin, Muhammad; Kholifah, Khusnul; Maulidiyah, Alik; Putro, Sapto P.; Kikuchi, Akira; Sakaguchi, Toshifumi
2018-05-01
The use of microalgae to produce biodiesel or possibly remove nutrients from industrial wastewater has gained important attention during recent years due to their photosynthetic rate and its versatile nature to grow in various wastewater systems. In this study, a microalgae, Scenedesmus sp., was cultured to enhance the lipid production and nutrients removal from tapioca wastewater sample. To assess lipid production, Scenedesmus sp. was cultured in different concentration of tapioca wastewater sample (from 0 to 100 %), and nutrient removal including BOD, COD, NH4, NO2, NO3 level by Scenedesmus sp. was assessed in 100% of tapioca wastewater culture. After 8 days of culture, it was found out that 50% of tapioca wastewater sample resulted in highest concentration of lipid content than that of the other concentrations. The level of environment indicator as nutrient removal such as BOD, COD, NH4, NO2, NO3 were also decreased up to 74%, 72%, 95%, 91%, and 91%, respectively. The pH condition changed from initial condition acidic (pH: 4) to neutral or basic condition (pH: 7-8) as recommended in wastewater treatment system. This research provided a novel approach and achieved efficient simultaneous lipid production and nutrients removal from tapioca wastewater sample by Scenedesmus’s culture system.
Microbial Community Profiles in Wastewaters from Onsite Wastewater Treatment Systems Technology
Jałowiecki, Łukasz; Chojniak, Joanna Małgorzata; Dorgeloh, Elmar; Hegedusova, Berta; Ejhed, Helene; Magnér, Jörgen; Płaza, Grażyna Anna
2016-01-01
The aim of the study was to determine the potential of community-level physiological profiles (CLPPs) methodology as an assay for characterization of the metabolic diversity of wastewater samples and to link the metabolic diversity patterns to efficiency of select onsite biological wastewater facilities. Metabolic fingerprints obtained from the selected samples were used to understand functional diversity implied by the carbon substrate shifts. Three different biological facilities of onsite wastewater treatment were evaluated: fixed bed reactor (technology A), trickling filter/biofilter system (technology B), and aerated filter system (the fluidized bed reactor, technology C). High similarities of the microbial community functional structures were found among the samples from the three onsite wastewater treatment plants (WWTPs), as shown by the diversity indices. Principal components analysis (PCA) showed that the diversity and CLPPs of microbial communities depended on the working efficiency of the wastewater treatment technologies. This study provided an overall picture of microbial community functional structures of investigated samples in WWTPs and discerned the linkages between microbial communities and technologies of onsite WWTPs used. The results obtained confirmed that metabolic profiles could be used to monitor treatment processes as valuable biological indicators of onsite wastewater treatment technologies efficiency. This is the first step toward understanding relations of technology types with microbial community patterns in raw and treated wastewaters. PMID:26807728
[Helminth prevalence in a waste-water plant at El Rosal, Cundinamarca].
Ortiz, Carolina; López, Myriam C; Rivas, Favio A
2012-01-01
Assessing helminth egg prevalence in sludge and raw and treated wastewater from a wastewater treatment system located in the village of El Rosal, Cundinamarca. 30 wastewater and 10 sludge samples from the El Rosal plant were taken during a 10-week period. The sludge and water samples were processed according to the Bailinger and the official Mexican standard methodology, respectively. Egg viability was determined by the method described by Victórica & Galván and the Mexican official standard. Descriptive statistics were used for analysing data. 100 % of the untreated wastewater samples showed the presence of eggs and at least one viable helminth egg/litre was found in 90 % of them. 90 % of the treated wastewater samples were positive for the presence of eggs, finding that 70 % had at least one viable egg. All raw wastewater samples being dumped directly into the stream were positive for helminths; the same situation was found at the time of the viability test. All sludge samples were positive for helminths, finding that 100 % of these had at least one viable egg. Using this water for crop irrigation and using the sludge as fertiliser is a potential risk for public health. The sludge can only be used in forestry activities, as long as it does not come into contact with humans.
Quality of wastewater reuse in agricultural irrigation and its impact on public health.
Al-Hammad, Bushra Ahmed; Abd El-Salam, Magda Magdy; Ibrahim, Sahar Yassin
2014-11-01
This study is planned to perform a sanitary survey of the largest sewage treatment plant in Riyadh, KSA, fortnightly for 6 months to examine its effluent quality as an example for the growing dependence on reuse of treated municipal wastewater in agricultural irrigation purposes to cope with increasing water shortage. The biological and physico-chemical parameters of 12 wastewater samples from the plant were examined using standard methods. The physico-chemical analysis indicated that the surveyed municipal wastewater treatment plant contained some of the studied parameters, such as turbidity, total suspended solids, biochemical oxygen demand, chemical oxygen demand and residual chlorine above the maximum permissible wastewater limits set by the Saudi Standards. However, heavy metal concentrations in all samples were lower than the recommended standards. Total and faecal coliform counts were above the permissible limits indicating poor sanitation level. Fifty percent of all wastewater samples were contaminated with faecal coliforms but, surprisingly, Escherichia coli were only detected in 8.3 % of the samples. Regular monitoring and enhancement of microbial and physico-chemical parameters of the wastewater quality served by different wastewater treatment plants for reuse in agricultural irrigation is recommended to preserve the environment and public health.
Pharmaceuticals and illicit drugs in wastewater samples in north-eastern Tunisia.
Moslah, Bilel; Hapeshi, Evroula; Jrad, Amel; Fatta-Kassinos, Despo; Hedhili, Abderrazek
2017-04-07
Pharmaceutically active substances (PhACs) and drugs of abuse (DAs) are two classes of contaminants of emerging concern that have attracted great concern and interest by the scientific community during the last two decades. Numerous studies have revealed their presence in treated urban wastewaters. This is mainly due to the fact that some compounds are not efficiently removed during wastewater treatment processes, and are thus able to reach the aquatic environment through wastewater discharge and reuse practices. The application of an optimized multi-residue method for the simultaneous confirmation and quantification of licit and illicit drugs has been investigated in influent and effluent wastewater samples from seven wastewater treatment plants (WWTPs) located in north-eastern Tunisia. Analysis was performed through ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Out of 12 pharmaceutical compounds analyzed, 11 of them were detected mainly in effluent wastewaters. In both matrices, antibiotics and β-blockers were the most detected groups. This suggests that these compounds show noticeable resistance against biological treatment in WWTPs. The estimated concentrations of antibiotics in effluents ranged from ca. 35 ng/L to 1.2 μg/L. However, all five studied illicit drugs were detected, mainly in influent wastewaters. Forensic investigation performed on people suspected to be drug abusers covering all Tunisian cities was conducted by monitoring an epidemiological study of human urine samples surveying rate of consumption for illicit drugs. Hence, these preliminary results confirmed the presence of illicit drugs in the influent wastewater samples. For example, quantification ranges for cocaine were found to be 25-450 ng/L in influent wastewater samples. Significant differences for cocaine consumption across the two sampling methods were observed. Consequently, we conclude that the analyses in wastewater are more reflective of the real levels of illicit drug consumption. Moreover, the cost for chromatographic analysis is lower than the screening test methods for human biological specimen, particularly staffing, which are likely to be much lower.
Simulation of the wastewater temperature in sewers with TEMPEST.
Dürrenmatt, David J; Wanner, Oskar
2008-01-01
TEMPEST is a new interactive simulation program for the estimation of the wastewater temperature in sewers. Intuitive graphical user interfaces assist the user in managing data, performing calculations and plotting results. The program calculates the dynamics and longitudinal spatial profiles of the wastewater temperature in sewer lines. Interactions between wastewater, sewer air and surrounding soil are modeled in TEMPEST by mass balance equations, rate expressions found in the literature and a new empirical model of the airflow in the sewer. TEMPEST was developed as a tool which can be applied in practice, i.e., it requires as few input data as possible. These data include the upstream wastewater discharge and temperature, geometric and hydraulic parameters of the sewer, material properties of the sewer pipe and surrounding soil, ambient conditions, and estimates of the capacity of openings for air exchange between sewer and environment. Based on a case study it is shown how TEMPEST can be applied to estimate the decrease of the downstream wastewater temperature caused by heat recovery from the sewer. Because the efficiency of nitrification strongly depends on the wastewater temperature, this application is of practical relevance for situations in which the sewer ends at a nitrifying wastewater treatment plant.
Dienus, Olaf; Sokolova, Ekaterina; Nyström, Fredrik; Matussek, Andreas; Löfgren, Sture; Blom, Lena; Pettersson, Thomas J R; Lindgren, Per-Eric
2016-10-04
Norovirus (NoV) that enters drinking water sources with wastewater discharges is a common cause of waterborne outbreaks. The impact of wastewater treatment plants (WWTPs) on the river Göta älv (Sweden) was studied using monitoring and hydrodynamic modeling. The concentrations of NoV genogroups (GG) I and II in samples collected at WWTPs and drinking water intakes (source water) during one year were quantified using duplex real-time reverse-transcription polymerase chain reaction. The mean (standard deviation) NoV GGI and GGII genome concentrations were 6.2 (1.4) and 6.8 (1.8) in incoming wastewater and 5.3 (1.4) and 5.9 (1.4) log 10 genome equivalents (g.e.) L -1 in treated wastewater, respectively. The reduction at the WWTPs varied between 0.4 and 1.1 log 10 units. In source water, the concentration ranged from below the detection limit to 3.8 log 10 g.e. L -1 . NoV GGII was detected in both wastewater and source water more frequently during the cold than the warm period of the year. The spread of NoV in the river was simulated using a three-dimensional hydrodynamic model. The modeling results indicated that the NoV GGI and GGII genome concentrations in source water may occasionally be up to 2.8 and 1.9 log 10 units higher, respectively, than the concentrations measured during the monitoring project.
Meriç, Süreyya; De Nicola, Elena; Iaccarino, Mario; Gallo, Marialuisa; Di Gennaro, Annamaria; Morrone, Gaetano; Warnau, Michel; Belgiorno, Vincenzo; Pagano, Giovanni
2005-10-01
This study was designed to investigate the composition and the toxicity of leather tanning wastewater and conditioned sludge collected at the leather tanning wastewater treatment plant (CODISO) located in Solofra, Avellino (Southern Italy). Samples were analyzed for their conventional parameters (COD, TSS, chromium and ammonia) and for metal content. Effluent samples included raw wastewater, and samples collected following coagulation/flocculation process and biological treatment. A set of toxicity endpoints were tested using sea urchin and marine microalgal bioassays by evaluating acute embryotoxicity, developmental defects, changes in sperm fertilization success and transmissible damage from sperm to the offspring, and changes in algal growth rate. Dose-related toxicity to sea urchin embryogenesis and sperm fertilization success was exerted by effluent or sludge samples according to the following rank: conditioned sludge > coagulated effluent > or = raw influent > effluent from biological treatment. Offspring quality was not affected by sperm exposure to any wastewater or to sludge samples. Algal growth was inhibited by raw or coagulated effluent to a similar extent and, again, the effluent from the biological treatment resulted in a decreased toxicity. The results suggest that coagulated effluent and conditioned sludge result in higher toxicity than raw influent in sea urchin embryos and sperm, whereas the biological wastewater treatment of coagulated effluent, in both sea urchins and algae, cause a substantial improvement of wastewater quality. Hence a final biological wastewater treatment should be operated to minimize any environmental damage from tannery wastewater.
Luyten, J; Sniegowski, K; Van Eyck, K; Maertens, D; Timmermans, S; Liers, Sven; Braeken, L
2013-01-01
In this paper, the abatement of adsorbable halogenated organic compounds (AOX) from an industrial wastewater containing relatively high chloride concentrations by a combined chemical and biological oxidation is assessed. For chemical oxidation, the O(3)/UV, H(2)O(2)/UV and photo-Fenton processes are evaluated on pilot scale. Biological oxidation is simulated in a 4 h respirometry experiment with periodic aeration. The results show that a selective degradation of AOX with respect to the matrix compounds (expressed as chemical oxygen demand) could be achieved. For O(3)/UV, lowering the ratio of O(3) dosage to UV intensity leads to a better selectivity for AOX. During O(3)-based experiments, the AOX removal is generally less than during the H(2)O(2)-based experiments. However, after biological oxidation, the AOX levels are comparable. For H(2)O(2)/UV, optimal operating parameters for UV and H(2)O(2) dosage are next determined in a second run with another wastewater sample.
Luek, Jenna L; Schmitt-Kopplin, Philippe; Mouser, Paula J; Petty, William Tyler; Richardson, Susan D; Gonsior, Michael
2017-05-16
Large volumes of water return to the surface following hydraulic fracturing of deep shale formations to retrieve oil and natural gas. Current understanding of the specific organic constituents in these hydraulic fracturing wastewaters is limited to hydrocarbons and a fraction of known chemical additives. In this study, we analyzed hydraulic fracturing wastewater samples using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) as a nontargeted technique to assign unambiguous molecular formulas to singly charged molecular ions. Halogenated molecular formulas were identified and confirmed using isotopic simulation and MS-MS fragmentation spectra. The abundance of halogenated organic compounds in flowback fluids rather than older wastewaters suggested that the observed molecular ions might have been related to hydraulic fracturing additives and related subsurface reactions, such as through the reaction of shale-extracted chloride, bromide, and iodide with strong oxidant additives (e.g., hypochlorite, persulfate, hydrogen peroxide) and subsequently with diverse dissolved organic matter. Some molecular ions matched the exact masses of known disinfection byproducts including diiodoacetic acid, dibromobenzoic acid, and diiodobenzoic acid. The identified halogenated organic compounds, particularly iodinated organic molecules, are absent from inland natural systems and these compounds could therefore play an important role as environmental tracers.
Snip, L J P; Flores-Alsina, X; Aymerich, I; Rodríguez-Mozaz, S; Barceló, D; Plósz, B G; Corominas, Ll; Rodriguez-Roda, I; Jeppsson, U; Gernaey, K V
2016-11-01
The use of process models to simulate the fate of micropollutants in wastewater treatment plants is constantly growing. However, due to the high workload and cost of measuring campaigns, many simulation studies lack sufficiently long time series representing realistic wastewater influent dynamics. In this paper, the feasibility of the Benchmark Simulation Model No. 2 (BSM2) influent generator is tested to create realistic dynamic influent (micro)pollutant disturbance scenarios. The presented set of models is adjusted to describe the occurrence of three pharmaceutical compounds and one of each of its metabolites with samples taken every 2-4h: the anti-inflammatory drug ibuprofen (IBU), the antibiotic sulfamethoxazole (SMX) and the psychoactive carbamazepine (CMZ). Information about type of excretion and total consumption rates forms the basis for creating the data-defined profiles used to generate the dynamic time series. In addition, the traditional influent characteristics such as flow rate, ammonium, particulate chemical oxygen demand and temperature are also modelled using the same framework with high frequency data. The calibration is performed semi-automatically with two different methods depending on data availability. The 'traditional' variables are calibrated with the Bootstrap method while the pharmaceutical loads are estimated with a least squares approach. The simulation results demonstrate that the BSM2 influent generator can describe the dynamics of both traditional variables and pharmaceuticals. Lastly, the study is complemented with: 1) the generation of longer time series for IBU following the same catchment principles; 2) the study of the impact of in-sewer SMX biotransformation when estimating the average daily load; and, 3) a critical discussion of the results, and the future opportunities of the presented approach balancing model structure/calibration procedure complexity versus predictive capabilities. Copyright © 2016. Published by Elsevier B.V.
Characterization and Analysis of Liquid Waste from Marcellus Shale Gas Development.
Shih, Jhih-Shyang; Saiers, James E; Anisfeld, Shimon C; Chu, Ziyan; Muehlenbachs, Lucija A; Olmstead, Sheila M
2015-08-18
Hydraulic fracturing of shale for gas production in Pennsylvania generates large quantities of wastewater, the composition of which has been inadequately characterized. We compiled a unique data set from state-required wastewater generator reports filed in 2009-2011. The resulting data set, comprising 160 samples of flowback, produced water, and drilling wastes, analyzed for 84 different chemicals, is the most comprehensive available to date for Marcellus Shale wastewater. We analyzed the data set using the Kaplan-Meier method to deal with the high prevalence of nondetects for some analytes, and compared wastewater characteristics with permitted effluent limits and ambient monitoring limits and capacity. Major-ion concentrations suggested that most wastewater samples originated from dilution of brines, although some of our samples were more concentrated than any Marcellus brines previously reported. One problematic aspect of this wastewater was the very high concentrations of soluble constituents such as chloride, which are poorly removed by wastewater treatment plants; the vast majority of samples exceeded relevant water quality thresholds, generally by 2-3 orders of magnitude. We also examine the capacity of regional regulatory monitoring to assess and control these risks.
Iaconelli, M; Muscillo, M; Della Libera, S; Fratini, M; Meucci, L; De Ceglia, M; Giacosa, D; La Rosa, G
2017-03-01
Human enteric viruses are a major cause of waterborne diseases, and can be transmitted by contaminated water of all kinds, including drinking and recreational water. The objectives of the present study were to assess the occurrence of enteric viruses (enterovirus, norovirus, adenovirus, hepatitis A and E virus) in raw and treated wastewaters, in rivers receiving wastewater discharges, and in drinking waters. Wastewater treatment plants' (WWTP) pathogen removal efficiencies by adenovirus quantitative real-time PCR and the presence of infectious enterovirus, by cell culture assays, in treated wastewaters and in surface waters were also evaluated. A total of 90 water samples were collected: raw and treated wastewaters (treated effluents and ultrafiltered water reused for industrial purposes), water from two rivers receiving treated discharges, and drinking water. Nested PCR assays were used for the identification of viral DNA/RNA, followed by direct amplicon sequencing. All raw sewage samples (21/21), 61.9 % of treated wastewater samples (13/21), and 25 % of ultrafiltered water samples (3/12) were contaminated with at least one viral family. Multiple virus families and genera were frequently detected. Mean positive PCRs per sample decreased significantly from raw to treated sewage and to ultrafiltered waters. Moreover, quantitative adenovirus data showed a reduction in excess of 99 % in viral genome copies following wastewater treatment. In surface waters, 78.6 % (22/28) of samples tested positive for one or more viruses by molecular methods, but enterovirus-specific infectivity assays did not reveal infectious particles in these samples. All drinking water samples tested negative for all viruses, demonstrating the effectiveness of treatment in removing viral pathogens from drinking water. Integrated strategies to manage water from all sources are crucial to ensure water quality.
The impact of on-site wastewater from high density cluster developments on groundwater quality
NASA Astrophysics Data System (ADS)
Morrissey, P. J.; Johnston, P. M.; Gill, L. W.
2015-11-01
The net impact on groundwater quality from high density clusters of unsewered housing across a range of hydro(geo)logical settings has been assessed. Four separate cluster development sites were selected, each representative of different aquifer vulnerability categories. Groundwater samples were collected on a monthly basis over a two year period for chemical and microbiological analysis from nested multi-horizon sampling boreholes upstream and downstream of the study sites. The field results showed no statistically significant difference between upstream and downstream water quality at any of the study areas, although there were higher breakthroughs in contaminants in the High and Extreme vulnerability sites linked to high intensity rainfall events; these however, could not be directly attributed to on-site effluent. Linked numerical models were then built for each site using HYDRUS 2D to simulate the attenuation of contaminants through the unsaturated zone from which the resulting hydraulic and contaminant fluxes at the water table were used as inputs into MODFLOW MT3D models to simulate the groundwater flows. The results of the simulations confirmed the field observations at each site, indicating that the existing clustered on-site wastewater discharges would only cause limited and very localised impacts on groundwater quality, with contaminant loads being quickly dispersed and diluted downstream due to the relatively high groundwater flow rates. Further simulations were then carried out using the calibrated models to assess the impact of increasing cluster densities revealing little impact at any of the study locations up to a density of 6 units/ha with the exception of the Extreme vulnerability site.
NASA Astrophysics Data System (ADS)
Kaboosi, Kami
2017-09-01
This study was conducted to investigate the characteristics of inflow and outflow wastewater of the Bandargaz wastewater treatment plant on the basis of the data collection of operation period and the samples taken during the study. Also the effects of mid-term use of the wastewater for irrigation (from 2005 to 2013) on soil physical and chemical characteristics were studied. For this purpose, 4 samples were taken from the inflow and outflow wastewater and 25 quality parameters were measured. Also, the four soil samples from a depth of 0-30 cm of two rice field irrigated with wastewater in the beginning and middle of the planting season and two samples from one adjacent rice field irrigated with fresh water were collected and their chemical and physical characteristics were determined. Average of electrical conductivity, total dissolved solids, sodium adsorption ratio, chemical oxygen demand and 5 days biochemical oxygen demand in treated wastewater were 1.35 dS/m, 707 ppm, 0.93, 80 ppm and 40 ppm, respectively. Results showed that although some restrictions exist about chlorine and bicarbonate, the treated wastewater is suitable for irrigation based on national and international standards and criteria. In comparison with fresh water, the mid-term use of wastewater caused a little increase of soil salinity. However, it did not lead to increase of soil salinity beyond rice salinity threshold. Also, there were no restrictions on soil in the aspect of salinity and sodium hazard on the basis of many irrigated soil classifications. In comparison with fresh water, the mid-term use of wastewater caused the increase of total N, absorbable P and absorbable K in soil due to high concentration of those elements in treated wastewater.
Occurrence and removal efficiency of parasitic protozoa in Swedish wastewater treatment plants.
Berglund, Björn; Dienus, Olaf; Sokolova, Ekaterina; Berglind, Emma; Matussek, Andreas; Pettersson, Thomas; Lindgren, Per-Eric
2017-11-15
Giardia intestinalis, Cryptosporidium spp., Entamoeba histolytica and Dientamoeba fragilis are parasitic protozoa and causative agents of gastroenteritis in humans. G. intestinalis and Cryptosporidium spp. in particular are the most common protozoa associated with waterborne outbreaks in high-income countries. Surveillance of protozoan prevalence in wastewater and evaluation of wastewater treatment removal efficiencies of protozoan pathogens is therefore imperative for assessment of human health risk. In this study, influent and effluent wastewater samples from three wastewater treatment plants in Sweden were collected over nearly one year and assessed for prevalence of parasitic protozoa. Quantitative real-time PCR using primers specific for the selected protozoa Cryptosporidium spp., G. intestinalis, E. histolytica, Entamoeba dispar and D. fragilis was used for protozoan DNA detection and assessment of wastewater treatment removal efficiencies. Occurrence of G. intestinalis, E. dispar and D. fragilis DNA was assessed in both influent (44, 30 and 39 out of 51 samples respectively) and effluent wastewater (14, 9 and 33 out of 51 samples respectively) in all three wastewater treatment plants. Mean removal efficiencies of G. intestinalis, E. dispar and D. fragilis DNA quantities, based on all three wastewater treatment plants studied varied between 67 and 87%, 37-75% and 20-34% respectively. Neither E. histolytica nor Cryptosporidium spp. were detected in any samples. Overall, higher quantities of protozoan DNA were observed from February to June 2012. The high prevalence of protozoa in influent wastewater indicates the need for continued monitoring of these pathogens in wastewater-associated aquatic environments to minimise the potential risk for human infection. Copyright © 2017 Elsevier B.V. All rights reserved.
Ludwig, T; Kern, P; Bongards, M; Wolf, C
2011-01-01
The optimization of relaxation and filtration times of submerged microfiltration flat modules in membrane bioreactors used for municipal wastewater treatment is essential for efficient plant operation. However, the optimization and control of such plants and their filtration processes is a challenging problem due to the underlying highly nonlinear and complex processes. This paper presents the use of genetic algorithms for this optimization problem in conjunction with a fully calibrated simulation model, as computational intelligence methods are perfectly suited to the nonconvex multi-objective nature of the optimization problems posed by these complex systems. The simulation model is developed and calibrated using membrane modules from the wastewater simulation software GPS-X based on the Activated Sludge Model No.1 (ASM1). Simulation results have been validated at a technical reference plant. They clearly show that filtration process costs for cleaning and energy can be reduced significantly by intelligent process optimization.
He, Ke; Soares, Ana Dulce; Adejumo, Hollie; McDiarmid, Melissa; Squibb, Katherine; Blaney, Lee
2015-03-15
As annual sales of antibiotics continue to rise, the mass of these specially-designed compounds entering municipal wastewater treatment systems has also increased. Of primary concern here is that antibiotics can inhibit growth of specific microorganisms in biological processes of wastewater treatment plants (WWTPs) or in downstream ecosystems. Growth inhibition studies with Escherichia coli demonstrated that solutions containing 1-10 μg/L of fluoroquinolones can inhibit microbial growth. Wastewater samples were collected on a monthly basis from various treatment stages of a 30 million gallon per day WWTP in Maryland, USA. Samples were analyzed for the presence of 11 fluoroquinolone antibiotics. At least one fluoroquinolone was detected in every sample. Ofloxacin and ciprofloxacin exhibited detection frequencies of 100% and 98%, respectively, across all sampling sites. Concentrations of fluoroquinolones in raw wastewater were as high as 1900 ng/L for ciprofloxacin and 600 ng/L for ofloxacin. Difloxacin, enrofloxacin, fleroxacin, moxifloxacin, norfloxacin, and orbifloxacin were also detected at appreciable concentrations of 9-170 ng/L. The total mass concentration of fluoroquinolones in raw wastewater was in the range that inhibited E. coli growth, suggesting that concerns over antibiotic presence in wastewater and wastewater-impacted surface water are valid. The average removal efficiency of fluoroquinolones during wastewater treatment was approximately 65%; furthermore, the removal efficiency for fluoroquinolones was found to be negatively correlated to biochemical oxygen demand removal and positively correlated to phosphorus removal. Copyright © 2014 Elsevier B.V. All rights reserved.
Chapter A5. Section 6.1.F. Wastewater, Pharmaceutical, and Antibiotic Compounds
Lewis, Michael Edward; Zaugg, Steven D.
2003-01-01
The USGS differentiates between samples collected for analysis of wastewater compounds and those collected for analysis of pharmaceutical and antibiotic compounds, based on the analytical schedule for the laboratory method. Currently, only the wastewater laboratory method for field-filtered samples (SH1433) is an approved, routine (production) method. (The unfiltered wastewater method LC 8033 also is available but requires a proposal for custom analysis.) At this time, analysis of samples for pharmaceutical and antibiotic compounds is confined to research studies and is available only on a custom basis.
Water quality simulation of sewage impacts on the west coast of Mumbai, India.
Vijay, R; Khobragade, P J; Sohony, R A
2010-01-01
Most coastal cities use the ocean as a site of waste disposal where pollutant loading degrades the quality of coastal waters. Presently, the west coast of Mumbai receives partially treated effluent from wastewater treatment facilities through ocean outfalls and discharges into creeks as well as wastewater/sewage from various open drains and nallahs which affect the water quality of creek and coastal water. Therefore, the objective of this paper is to simulate and assess the hydrodynamic behaviour and water quality due to impact of sewage and wastewater discharges from the west coast of Mumbai. Hydrodynamics and water quality were simulated based on present conditions and validated by using measured tide, current data and observed DO, BOD and FC. Observed and simulated results indicated non compliance to standards in Malad, Mahim creeks and the impact zones of ocean outfalls. The developed model could be used for generating various conditions of hydrodynamics and water quality considering the improvement in wastewater collection systems, treatment levels and proper disposal for proper planning and management of creeks and coastal environment.
Gourlay-Francé, C; Bressy, A; Uher, E; Lorgeoux, C
2011-01-01
The occurrence and the partitioning of polycyclic aromatic hydrocarbons (PAHs) and seven metals (Al, Cd, Cr, Cu, Ni, Pb and Zn) were investigated in activated sludge wastewater treatment plants by means of passive and active sampling. Concentrations total dissolved and particulate contaminants were determined in wastewater at several points across the treatment system by means of grab sampling. Truly dissolved PAHs were sampled by means of semipermeable membrane devices. Labile (inorganic and weakly complexed) dissolved metals were also sampled using the diffusive gradient in thin film technique. This study confirms the robustness and the validity of these two passive sampling techniques in wastewater. All contaminant concentrations decreased in wastewater along the treatment, although dissolved and labile concentrations sometimes increased for substances with less affinity with organic matter. Solid-liquid and dissolved organic matter/water partitioning constants were estimated. The high variability of both partitioning constants for a simple substance and the poor relation between K(D) and K(OW) shows that the binding capacities of particles and organic matter are not uniform within the treatment and that other process than equilibrium sorption affect contaminant repartition and fate in wastewater.
Aymerich, I; Acuña, V; Ort, C; Rodríguez-Roda, I; Corominas, Ll
2017-11-15
The growing awareness of the relevance of organic microcontaminants on the environment has led to a growing number of studies on attenuation of these compounds in wastewater treatment plants (WWTP) and rivers. However, the effects of the sampling strategies (frequency and duration of composite samples) on the attenuation estimates are largely unknown. Our goal was to assess how frequency and duration of composite samples influence uncertainty of the attenuation estimates in WWTPs and rivers. Furthermore, we also assessed how compound consumption rate and degradability influence uncertainty. The assessment was conducted through simulating the integrated wastewater system of Puigcerdà (NE Iberian Peninsula) using a sewer pattern generator and a coupled model of WWTP and river. Results showed that the sampling strategy is especially critical at the influent of WWTP, particularly when the number of toilet flushes containing the compound of interest is small (≤100 toilet flushes with compound day -1 ), and less critical at the effluent of the WWTP and in the river due to the mixing effects of the WWTP. For example, at the WWTP, when evaluating a compound that is present in 50 pulses·d -1 using a sampling frequency of 15-min to collect a 24-h composite sample, the attenuation uncertainty can range from 94% (0% degradability) to 9% (90% degradability). The estimation of attenuation in rivers is less critical than in WWTPs, as the attenuation uncertainty was lower than 10% for all evaluated scenarios. Interestingly, the errors in the estimates of attenuation are usually lower than those of loads for most sampling strategies and compound characteristics (e.g. consumption and degradability), although the opposite occurs for compounds with low consumption and inappropriate sampling strategies at the WWTP. Hence, when designing a sampling campaign, one should consider the influence of compounds' consumption and degradability as well as the desired level of accuracy in attenuation estimations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Impact on enzyme activity as a new quality index of wastewater.
Balestri, Francesco; Moschini, Roberta; Cappiello, Mario; Del-Corso, Antonella; Mura, Umberto
2013-03-15
The aim of this study was to define a new indicator for the quality of wastewaters that are released into the environment. A quality index is proposed for wastewater samples in terms of the inertness of wastewater samples toward enzyme activity. This involves taking advantage of the sensitivity of enzymes to pollutants that may be present in the waste samples. The effect of wastewater samples on the rate of a number of different enzyme-catalyzed reactions was measured, and the results for all the selected enzymes were analyzed in an integrated fashion (multi-enzymatic sensor). This approach enabled us to define an overall quality index, the "Impact on Enzyme Function" (IEF-index), which is composed of three indicators: i) the Synoptic parameter, related to the average effect of the waste sample on each component of the enzymatic sensor; ii) the Peak parameter, related to the maximum effect observed among all the effects exerted by the sample on the sensor components; and, iii) the Interference parameter, related to the number of sensor components that are affected less than a fixed threshold value. A number of water based samples including public potable tap water, fluids from urban sewage systems, wastewater disposal from leather, paper and dye industries were analyzed and the IEF-index was then determined. Although the IEF-index cannot discriminate between different types of wastewater samples, it could be a useful parameter in monitoring the improvement of the quality of a specific sample. However, by analyzing an adequate number of waste samples of the same type, even from different local contexts, the profile of the impact of each component of the multi-enzymatic sensor could be typical for specific types of waste. The IEF-index is proposed as a supplementary qualification score for wastewaters, in addition to the certification of the waste's conformity to legal requirements. Copyright © 2013 Elsevier Ltd. All rights reserved.
HATAM-NAHAVANDI, Kareem; MOHEBALI, Mehdi; MAHVI, Amir-Hossein; KESHAVARZ, Hossein; NAJAFIAN, Hamid-Reza; MIRJALALI, Hamed; REZAEI, Sasan; REZAEIAN, Mostafa
2016-01-01
Background: As a waterborne pathogen, Cryptosporidium is one of the most common causes of gastroenteritis in human and hoofed livestock animals. This study aimed to investigate the distribution of Cryptosporidium spp. in human and livestock wastewaters in Iran, by the 18S rRNA sequence analysis. Methods: A total of 54 raw wastewater samples collected from three urban treatment plants and two slaughterhouses during 2014–2015 in Tehran, Iran. The presence of the Cryptosporidium oocysts was assessed by immunofluorescence with monoclonal antibodies. To characterize the oocysts at the molecular level, the 18S rRNA gene of Cryptosporidium was PCR amplified and sequenced. Results: Of the 54 wastewater samples examined, 34 (62.9%) were positive for Cryptosporidium oocysts using the IFA. Of these, 70.5% (24/34) were positive by PCR, that 91.6% (22/24) were successfully sequenced. The species of C. andersoni (95.4%) and C. xiaoi (4.6%) were detected in livestock wastewater samples. Conclusion: C. andersoni was the major Cryptosporidium sp. found in the aquatic environmental wastewater samples. The high rate of detection of C. andersoni in domestic wastewater was probably the result of the predominancy of this species in cattle herds in Iran. The current study is the first report of C. xiaoi in Iran. PMID:28127361
ELISA for sulfonamides and its application for screening in water contamination.
Shelver, Weilin L; Shappell, Nancy W; Franek, Milan; Rubio, Fernando R
2008-08-13
Two enzyme-linked immunosorbent assays (ELISAs) were tested for their suitability for detecting sulfonamides in wastewater from various stages in wastewater treatment plants (WWTPs), the river into which the wastewater is discharged, and two swine-rearing facilities. The sulfamethoxazole ELISA cross-reacts with several compounds, achieving detection limits of <0.04 microg/L for sulfamethoxazole (SMX), sulfamethoxypyridine, sulfachloropyridine, and sulfamethoxine, whereas the sulfamethazine (SMZ) ELISA is more compound specific, with a detection limit of <0.03 microg/L. Samples from various stages of wastewater purifications gave 0.6-3.1 microg/L by SMX-ELISA, whereas river samples were approximately 10-fold lower, ranging from below detection to 0.09 microg/L. Swine wastewater samples analyzed by the SMX-ELISA were either at or near detectable limits from one facility, whereas the other facility had concentrations of approximately 0.5 microg/L, although LC-MS/MS did not confirm the presence of SMX. Sulfamethazine ELISA detected no SMZ in either WWTP or river samples. In contrast, wastewater samples from swine facilities analyzed by SMZ-ELISA were found to contain approximately 30 microg/L [piglet (50-100 lb) wastewater] and approximately 7 microg/L (market-weight hog wastewater). Sulfamethazine ELISA analyses of wastewater from another swine facility found concentrations to be near or below detection limits. A solid phase extraction method was used to isolate and concentrate sulfonamides from water samples prior to LC-MS/MS multiresidue confirmatory analysis. The recoveries at 1 microg/L fortification ranged from 42 +/- 4% for SMZ to 88 +/- 4% for SMX ( n = 6). The ELISA results in the WWTPs were confirmed by LC-MS/MS, as sulfonamide multiresidue confirmatory analysis identified SMX, sulfapyridine, and sulfasalazine to be present in the wastewater. Sulfamethazine presence at one swine-rearing facility was also confirmed by LC-MS/MS, demonstrating the usefulness of the ELISA technique as a rapid and high-throughput screening method.
Santiago, Paula; Jiménez-Belenguer, Ana; García-Hernández, Jorge; Estellés, Rosa Montes; Hernández Pérez, Manuel; Castillo López, M Angeles; Ferrús, María Antonia; Moreno, Yolanda
2018-01-01
Salmonella spp. is one of the most important causal agents of food-borne illness in developed countries and its presence in irrigation water poses a risk to public health. Its detection in environmental samples is not easy when culture methods are used, and molecular techniques such as PCR or ribosomal rRNA probe hybridization (Fluorescent in situ Hybridization, FISH) are outstanding alternatives. The aim of this work was to determine the environmental risk due to the presence of Salmonella spp. in wastewater by culture, PCR and FISH. A new specific rDNA probe for Salmonella was designed and its efficiency was compared with the rest of methods Serotype and antibiotic resistance of isolated strains were determined. Forty-five wastewater samples (collected from two secondary wastewater treatment plants) were analysed. Salmonella strains were isolated in 24 wastewater samples (53%), two of them after disinfection treatment. Twenty-three Salmonella strains exhibited resistance to one or more antimicrobial agent. Analysis of wastewater samples yielded PCR positive results for Salmonella in 28 out of the 45 wastewater samples (62%). FISH analysis allowed for the detection of Salmonella in 27 (60%) samples. By using molecular methods, Salmonella was detected in four samples after disinfection treatment. These results show the prevalence of Salmonella in reclaimed wastewater even after U.V. disinfection, what is a matter of public health concern, the high rates of resistance to antibiotics and the adequacy of molecular methods for its rapid detection. FISH method, with SA23 probe developed and assayed in this work provides a tool for detecting Salmonella in water within few hours, with a high rate of effectiveness. Copyright © 2017 Elsevier GmbH. All rights reserved.
Moreno-Mesonero, Laura; Moreno, Yolanda; Alonso, José Luis; Ferrús, M Antonia
2017-10-01
Helicobacter pylori is one of the most concerning emerging waterborne pathogens. It has been suggested that it could survive in water inside free-living amoebae (FLA), but nobody has studied this relationship in the environment yet. Thus, we aimed to detect viable H. pylori cells from inside FLA in water samples. Sixty-nine wastewater and 31 drinking water samples were collected. FLA were purified and identified by PCR and sequencing. For exclusively detecting H. pylori inside FLA, samples were exposed to sodium hypochlorite and assayed by specific PMA-qPCR, DVC-FISH and culture. FLA were detected in 38.7% of drinking water and 79.7% of wastewater samples, even after disinfection. In wastewater, Acanthamoeba spp. and members of the family Vahlkampfiidae were identified. In drinking water, Acanthamoeba spp. and Echinamoeba and/or Vermamoeba were present. In 39 (58.2%) FLA-positive samples, H. pylori was detected by PMA-qPCR. After DVC-FISH, 21 (31.3%) samples harboured viable H. pylori internalized cells. H. pylori was cultured from 10 wastewater samples. To our knowledge, this is the first report that demonstrates that H. pylori can survive inside FLA in drinking water and wastewater, strongly supporting the hypothesis that FLA could play an important role in the transmission of H. pylori to humans. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
Jiang, Hongyou; Zhang, Dandan; Xiao, Shichang; Geng, Chunnv; Zhang, Xian
2013-12-01
In this study, the occurrence and sources of five cataloged antibiotics and metabolites were studied in Jiulongjiang River basin, south China. Nineteen antibiotics and 13 metabolites were detected in water samples from 16 river sampling sites, wastewater from 5 swine-raising facilities, and effluent from 5 wastewater treatment plants (WWTPs). The results showed that 12 antibiotics and 6 metabolites were detected in river water samples. Sulfonamides (SAs) and their metabolites were detected at high concentrations (8.59-158.94 ng/L). Tetracyclines (TCs) and their metabolites were frequently detected in swine wastewater, and the maximum concentration was up to the level in milligram per liter. Macrolides (MLs) and β-lactams (β-Ls) were found in all WWTP effluent samples and some river samples, while they were never found in any of the swine wastewater samples. SAs and quinolones (QNs) were detected in all samples. Hierarchical cluster analysis of 16 surface water samples was applied to achieve the spatial distribution characteristics of antibiotics in the Jiulongjiang River. As a result, two categories were obviously obtained. Principal component analysis and redundancy analysis showed that TCs and SAs as well as their metabolites were the major antibiotics in Jiulongjiang River, and they mainly originated from swine wastewater, while the QNs, MLs, and β-Ls in the Jiulongjiang River came from WWTP effluent.
Crebelli, R; Conti, L; Monarca, S; Feretti, D; Zerbini, I; Zani, C; Veschetti, E; Cutilli, D; Ottaviani, M
2005-03-01
Wastewater disinfection is routinely carried out to prevent the spread of human pathogens present in wastewater effluents. To this aim, chemical and physical treatments are applied to the effluents before their emission in water bodies. In this study, the influence of two widely used disinfectants, peracetic acid (PAA) and sodium hypochlorite (NaClO), on the formation of mutagenic by-products was investigated. Wastewater samples were collected before and after disinfection, in winter and in summer, at a pilot plant installed in a municipal wastewater-treatment plant. Samples were adsorbed using silica C18 cartridges and the concentrates were tested for mutagenicity in the Salmonella typhimurium reversion test with strains TA98 and TA100. Non-concentrated water samples were tested with two plant genotoxicity assays (the Allium cepa root anaphase aberration test and the Tradescantia/micronucleus test). Mutagenicity assays in bacteria and in Tradescantia showed borderline mutagenicity in some of the wastewater samples, independent of the disinfection procedure applied. Negative results were obtained in the A. cepa anaphase aberration test. These results indicate that, in the conditions applied, wastewater disinfection with PAA and NaClO does not lead to the formation of significant amounts of genotoxic by-products.
Sun, Jingyi; Khan, Eakalak; Simsek, Senay; Ohm, Jae-Bom; Simsek, Halis
2017-11-01
Dissolved organic nitrogen (DON) from animal wastes can contribute to pollution of surface waters. Bioavailable DON (ABDON) is a portion of DON utilized by algae with or without bacteria. This study determined DON and ABDON levels in animal wastewater collected from two different sources: an animal feedlot wastewater storage tank and a sheep wastewater storage lagoon. Inocula for the ABDON bioassays were comprised of individual species and several combinations involving two algae (Chlamydomonas reinhardtii and Chlorella vulgaris) and a mixed liquor suspended solids (MLSS) bacterial culture. The ratio of initial DON to initial total dissolved nitrogen was 18% in the feedlot wastewater samples and 70% in the lagoon wastewater samples. The results showed that between 1.6 and 4.5 mg-NL-1 DON (45-79% of initial DON) in the feedlot samples and between 3.4 and 7.5 mg-NL-1 DON (36%-79% of initial DON) in the lagoon samples were bioavailable with the inocula tested. These results suggest that when considering eutrophication potential of livestock wastewater, organic nitrogen should be included in addition to the obvious culprits, ammonia and nitrate. Copyright © 2017 Elsevier Ltd. All rights reserved.
Klamerth, N; Rizzo, L; Malato, S; Maldonado, Manuel I; Agüera, A; Fernández-Alba, A R
2010-01-01
The degradation of 15 emerging contaminants (ECs) at low concentrations in simulated and real effluent of municipal wastewater treatment plant with photo-Fenton at unchanged pH and Fe=5 mg L(-1) in a pilot-scale solar CPC reactor was studied. The degradation of those 15 compounds (Acetaminophen, Antipyrine, Atrazine, Caffeine, Carbamazepine, Diclofenac, Flumequine, Hydroxybiphenyl, Ibuprofen, Isoproturon, Ketorolac, Ofloxacin, Progesterone, Sulfamethoxazole and Triclosan), each with an initial concentration of 100 microg L(-1), was found to depend on the presence of CO(3)(2-) and HCO(3)(-) (hydroxyl radicals scavengers) and on the type of water (simulated water, simulated effluent wastewater and real effluent wastewater), but is relatively independent of pH, the type of acid used for release of hydroxyl radicals scavengers and the initial H(2)O(2) concentration used. Toxicity tests with Vibrio fisheri showed that degradation of the compounds in real effluent wastewater led to toxicity increase. (c) 2009 Elsevier Ltd. All rights reserved.
Effect of activated sludge acclimation aeration time on bayberry wastewater
NASA Astrophysics Data System (ADS)
Shi, Liang; He, Lingfeng; Zhang, Yongli
2018-03-01
Taking the myrica rubra pickle wastewater of Chaozhou Kang Hui group as the water sample, biochemical method was used to treat the wastewater, after domestication, the biochemical treatment was carried out. The influence of time on COD index was investigated. The results showed that: tap water: sewage: sludge = 1:1:1, 900 mL each. Under the action of 30 min time, the supernatant was taken at 100 mL, and the wastewater was added to 900 mL,. Under the action of activated sludge, the degradation of myrica rubra wastewater samples, after domestication 84 h, the effect is better. Under this condition, the standard of SBR process for wastewater treatment is reached.
Modeling effluent distribution and nitrate transport through an on-site wastewater system.
Hassan, G; Reneau, R B; Hagedorn, C; Jantrania, A R
2008-01-01
Properly functioning on-site wastewater systems (OWS) are an integral component of the wastewater system infrastructure necessary to renovate wastewater before it reaches surface or ground waters. There are a large number of factors, including soil hydraulic properties, effluent quality and dispersal, and system design, that affect OWS function. The ability to evaluate these factors using a simulation model would improve the capability to determine the impact of wastewater application on the subsurface soil environment. An existing subsurface drip irrigation system (SDIS) dosed with sequential batch reactor effluent (SBRE) was used in this study. This system has the potential to solve soil and site problems that limit OWS and to reduce the potential for environmental degradation. Soil water potentials (Psi(s)) and nitrate (NO(3)) migration were simulated at 55- and 120-cm depths within and downslope of the SDIS using a two-dimensional code in HYDRUS-3D. Results show that the average measured Psi(s) were -121 and -319 cm, whereas simulated values were -121 and -322 cm at 55- and 120-cm depths, respectively, indicating unsaturated conditions. Average measured NO(3) concentrations were 0.248 and 0.176 mmol N L(-1), whereas simulated values were 0.237 and 0.152 mmol N L(-1) at 55- and 120-cm depths, respectively. Observed unsaturated conditions decreased the potential for NO(3) to migrate in more concentrated plumes away from the SDIS. The agreement (high R(2) values approximately 0.97) between the measured and simulated Psi(s) and NO(3) concentrations indicate that HYDRUS-3D adequately simulated SBRE flow and NO(3) transport through the soil domain under a range of environmental and effluent application conditions.
Solar photochemical treatment of winery wastewater in a CPC reactor.
Lucas, Marco S; Mosteo, Rosa; Maldonado, Manuel I; Malato, Sixto; Peres, José A
2009-12-09
Degradation of simulated winery wastewater was studied in a pilot-scale compound parabolic collector (CPC) solar reactor. Total organic carbon (TOC) reduction by heterogeneous photocatalysis (TiO(2)) and homogeneous photocatalysis with photo-Fenton was observed. The influence of TiO(2) concentration (200 or 500 mg/L) and also of combining TiO(2) with H(2)O(2) or Na(2)S(2)O(8) on heterogeneous photocatalysis was evaluated. Heterogeneous photocatalysis with TiO(2), TiO(2)/H(2)O(2) and TiO(2)/S(2)O(8)(2-) is revealed to be inefficient in removing TOC, originating TOC degradation of 10%, 11% and 25%, respectively, at best. However, photo-Fenton experiments led to 46% TOC degradation in simulated wastewater prepared with diluted wine (WV) and 93% in wastewater prepared with diluted grape juice (WG), and if ethanol is previously eliminated from mixed wine and grape juice wastewater (WW) by air stripping, it removes 96% of TOC. Furthermore, toxicity decreases during the photo-Fenton reaction very significantly from 48% to 28%. At the same time, total polyphenols decrease 92%, improving wastewater biodegradability.
Pathogenic parasites and enteroviruses in wastewater: support for a regulation on water reuse.
Hachich, Elayse M; Galvani, Ana T; Padula, Jose A; Stoppe, Nancy C; Garcia, Suzi C; Bonanno, Vilma M S; Barbosa, Mikaela R F; Sato, Maria Inês Z
2013-01-01
Brazilian regulations for nonpotable reuse are being established using World Health Organization guidelines, however, they should be developed based on local monitoring studies. This study intended to analyze enteroviruses, protozoa and viable Ascaris sp. eggs in raw (24) and treated (24) effluents from four Wastewater Treatment Plants of São Paulo State, Brazil. The protozoa were detected with the US Environmental Protection Agency (USEPA) Method 1623 in the treated effluents and by centrifugation/Immunomagnetic Separation in the raw influent samples. Viable Ascaris sp. eggs were analyzed according to a modified USEPA method. Enteroviruses were quantified by using human rhabdomyosarcoma cells after adequate concentration procedures. All wastewater influents were positive for Giardia sp. whereas Cryptosporidium sp. was detected in 58.3% of the samples. Giardia sp. and Cryptosporidium sp. were present in 79.2 and 25.0% respectively, of the treated wastewater samples. Viable Ascaris sp. eggs were detected in 50.0 and 12.5% of influent and treated wastewater samples. Enteroviruses were isolated in the 24 raw influent samples and in 46% of the treated samples. Taking into account the densities of Giardia sp. in some treated wastewaters intended to be used as reclaimed water, Quantitative Microbial Risk Assessment studies should be conducted to establish pathogen quantitative criteria for a future Brazilian regulation for water reuse.
Yilmaz, Vedat; Ince-Yilmaz, Ebru; Yilmazel, Yasemin Dilsad; Duran, Metin
2014-06-01
In this study, biomass samples were obtained from six municipal and nine industrial full-scale anaerobic processes to investigate whether the aceticlastic methanogen population composition is related to acetate utilization capacity and the nature of the wastewater treated, i.e. municipal sludge or industrial wastewater. Batch serum bottle tests were used to determine the specific acetate utilization rate (AUR), and a quantitative real-time polymerase chain reaction protocol was used to enumerate the acetate-utilizing Methanosaeta and Methanosarcina populations in the biomass samples. Methanosaeta was the dominant aceticlastic methanogen in all samples, except for one industrial wastewater-treating anaerobic process. However, Methanosarcina density in industrial biomass samples was higher than the Methanosarcina density in the municipal samples. The average AUR values of municipal and industrial wastewater treatment plant biomass samples were 10.49 and 10.65 mg CH3COO(-)/log(aceticlastic methanogen gene copy).d, respectively. One-way ANOVA test and principle component analysis showed that the acetate utilization capacities and aceticlastic methanogen community composition did not show statistically significant correlation among the municipal digesters and industrial wastewater-treating processes investigated.
Galloway, Joel M.; Haggard, Brian E.; Meyers, Michael T.; Green, W. Reed
2005-01-01
The U.S. Geological Survey, in cooperation with the University of Arkansas and the U.S. Department of Agriculture, Agricultural Research Service, collected data in 2004 to determine the occurrence of pharmaceuticals and other organic wastewater constituents, including many constituents of emerging environmental concern, in selected streams in northern Arkansas. Samples were collected in March and April 2004 from 17 sites located upstream and downstream from wastewater- treatment plant effluent discharges on 7 streams in northwestern Arkansas and at 1 stream site in a relatively undeveloped basin in north-central Arkansas. Additional samples were collected at three of the sites in August 2004. The targeted organic wastewater constituents and sample sites were selected because wastewater-treatment plant effluent discharge provides a potential point source of these constituents and analytical techniques have improved to accurately measure small amounts of these constituents in environmental samples. At least 1 of the 108 pharmaceutical or other organic wastewater constituents was detected at all sites in 2004, except at Spavinaw Creek near Maysville, Arkansas. The number of detections generally was greater at sites downstream from municipal wastewater-treatment plant effluent discharges (mean = 14) compared to sites not influenced by wastewatertreatment plants (mean = 3). Overall, 42 of the 108 constituents targeted in the collected water-quality samples were detected. The most frequently detected constituents included caffeine, phenol, para-cresol, and acetyl hexamethyl tetrahydro naphthalene.
Oh, Sang Eun; Logan, Bruce E
2005-11-01
Hydrogen can be produced from fermentation of sugars in wastewaters, but much of the organic matter remains in solution. We demonstrate here that hydrogen production from a food processing wastewater high in sugar can be linked to electricity generation using a microbial fuel cell (MFC) to achieve more effective wastewater treatment. Grab samples were taken from: plant effluent at two different times during the day (Effluents 1 and 2; 735+/-15 and 3250+/-90 mg-COD/L), an equalization tank (Lagoon; 1670+/-50mg-COD/L), and waste stream containing a high concentration of organic matter (Cereal; 8920+/-150 mg-COD/L). Hydrogen production from the Lagoon and effluent samples was low, with 64+/-16 mL of hydrogen per liter of wastewater (mL/L) for Effluent 1, 21+/-18 mL/L for Effluent 2, and 16+/-2 mL/L for the Lagoon sample. There was substantially greater hydrogen production using the Cereal wastewater (210+/-56 mL/L). Assuming a theoretical maximum yield of 4 mol of hydrogen per mol of glucose, hydrogen yields were 0.61-0.79 mol/mol for the Cereal wastewater, and ranged from 1 to 2.52 mol/mol for the other samples. This suggests a strategy for hydrogen recovery from wastewater based on targeting high-COD and high-sugar wastewaters, recognizing that sugar content alone is an insufficient predictor of hydrogen yields. Preliminary tests with the Cereal wastewater (diluted to 595 mg-COD/L) in a two-chambered MFC demonstrated a maximum of 81+/-7 mW/m(2) (normalized to the anode surface area), or 25+/-2 mA per liter of wastewater, and a final COD of <30 mg/L (95% removal). Using a one-chambered MFC and pre-fermented wastewater, the maximum power density was 371+/-10 mW/m(2) (53.5+/-1.4 mA per liter of wastewater). These results suggest that it is feasible to link biological hydrogen production and electricity producing using MFCs in order to achieve both wastewater treatment and bioenergy production.
Babić, Sanja; Barišić, Josip; Višić, Hrvoje; Sauerborn Klobučar, Roberta; Topić Popović, Natalija; Strunjak-Perović, Ivančica; Čož-Rakovac, Rozelindra; Klobučar, Göran
2017-05-15
Wastewater treatment plant (WWTP) effluents are often complex mixtures of various organic and inorganic substances. Quality control of wastewaters and sludges has been regulated with measuring several physico-chemical parameters and sometimes using biological methods with non-specific responses, while synergistic action mechanisms of contaminants in such complex mixtures is still unknown. Toxic effects of wastewaters within and downstream of the WWTP in City of Virovitica, Croatia, were tested on zebrafish Danio rerio using a set of biomarkers that enabled an insight in wastewaters toxic potential on embryos at the cellular, tissue and the whole organism level during an early ontogenesis (24 and 48 hpf). Exposure of embryos to the wastewater samples from WWTP Virovitica increased mortality and abnormality rate. Heart rate, spontaneous movements and pigmentation formation were also markedly affected. Biochemical markers confirmed the presence of MXR inhibitors in all tested wastewater samples, indicating the increase of pollutant accumulation in the cell/organism. Also, a tendency of DNA damage decrease measured with Comet assay was evident in wastewater samples downstream from WWTP although control levels were not reached in any environmental sample. Histopathological analysis showed that exposure to tested samples resulted in impaired muscle organization, notochord malformation and retardation in eye and brain development at embryos 48 hpf. Furthermore, semi-quantitative histopathology assessment indicated increased percentage of embryo defects in river water sampled several kilometers downstream from the WWTP, confirming toxic potential of WWTP effluents. Extension of the zebrafish embryotoxicity test (ZET) with biochemical and histopathological biomarkers could serve as a guiding principle in biomonitoring of wastewater contamination. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lee, Kathy E.; Langer, Susan K.; Barber, Larry B.; Writer, Jeff H.; Ferrey, Mark L.; Schoenfuss, Heiko L.; Furlong, Edward T.; Foreman, William T.; Gray, James L.; ReVello, Rhiannon C.; Martinovic, Dalma; Woodruff, Olivia R.; Keefe, Steffanie H.; Brown, Greg K.; Taylor, Howard E.; Ferrer, Imma; Thurman, E. Michael
2011-01-01
This report presents the study design, environmental data, and quality-assurance data for an integrated chemical and biological study of selected streams or lakes that receive wastewater-treatment plant effluent in Minnesota. This study was a cooperative effort of the U.S. Geological Survey, the Minnesota Pollution Control Agency, St. Cloud State University, the University of St. Thomas, and the University of Colorado. The objective of the study was to identify distribution patterns of endocrine active chemicals, pharmaceuticals, and other organic and inorganic chemicals of concern indicative of wastewater effluent, and to identify biological characteristics of estrogenicity and fish responses in the same streams. The U.S. Geological Survey collected and analyzed water, bed-sediment, and quality-assurance samples, and measured or recorded streamflow once at each sampling location from September through November 2009. Sampling locations included surface water and wastewater-treatment plant effluent. Twenty-five wastewater-treatment plants were selected to include continuous flow and periodic release facilities with differing processing steps (activated sludge or trickling filters) and plant design flows ranging from 0.002 to 10.9 cubic meters per second (0.04 to 251 million gallons per day) throughout Minnesota in varying land-use settings. Water samples were collected from the treated effluent of the 25 wastewater-treatment plants and at one point upstream from and one point downstream from wastewater-treatment plant effluent discharges. Bed-sediment samples also were collected at each of the stream or lake locations. Water samples were analyzed for major ions, nutrients, trace elements, pharmaceuticals, phytoestrogens and pharmaceuticals, alkylphenols and other neutral organic chemicals, carboxylic acids, and steroidal hormones. A subset (25 samples) of the bed-sediment samples were analyzed for carbon, wastewater-indicator chemicals, and steroidal hormones; the remaining samples were archived. Biological characteristics were determined by using an in-vitro bioassay to determine total estrogenicity in water samples and a caged fish study to determine characteristics of fish from experiments that exposed fish to wastewater effluent in 2009. St. Cloud State University deployed and processed caged fathead minnows at 13 stream sites during September 2009 for the caged fish study. Measured fish data included length, weight, body condition factor, and vitellogenin concentrations.
NASA Astrophysics Data System (ADS)
Mannina, Giorgio; Cosenza, Alida; Viviani, Gaspare
In the last few years, the use of mathematical models in WasteWater Treatment Plant (WWTP) processes has become a common way to predict WWTP behaviour. However, mathematical models generally demand advanced input for their implementation that must be evaluated by an extensive data-gathering campaign, which cannot always be carried out. This fact, together with the intrinsic complexity of the model structure, leads to model results that may be very uncertain. Quantification of the uncertainty is imperative. However, despite the importance of uncertainty quantification, only few studies have been carried out in the wastewater treatment field, and those studies only included a few of the sources of model uncertainty. Seeking the development of the area, the paper presents the uncertainty assessment of a mathematical model simulating biological nitrogen and phosphorus removal. The uncertainty assessment was conducted according to the Generalised Likelihood Uncertainty Estimation (GLUE) methodology that has been scarcely applied in wastewater field. The model was based on activated-sludge models 1 (ASM) and 2 (ASM2). Different approaches can be used for uncertainty analysis. The GLUE methodology requires a large number of Monte Carlo simulations in which a random sampling of individual parameters drawn from probability distributions is used to determine a set of parameter values. Using this approach, model reliability was evaluated based on its capacity to globally limit the uncertainty. The method was applied to a large full-scale WWTP for which quantity and quality data was gathered. The analysis enabled to gain useful insights for WWTP modelling identifying the crucial aspects where higher uncertainty rely and where therefore, more efforts should be provided in terms of both data gathering and modelling practises.
USDA-ARS?s Scientific Manuscript database
The ability to use winery wastewater (WW) for irrigation purposes could be a beneficial to the wine industry. A major difficulty in studying WW use is its inconsistent availability and composition. As such, we applied four simulated WWs composed of salts from two main industrial cleaning agents, and...
Giorgino, M.J.; Rasmussen, R.B.; Pfeifle, C.M .
2007-01-01
Selected organic wastewater compounds, such as household, industrial, and agricultural-use compounds, sterols, pharmaceuticals, and antibiotics, were measured at eight sites classified as drinking-water supplies in the Triangle Area of North Carolina. From October 2002 through July 2005, seven of the sites were sampled twice, and one site was sampled 28 times, for a total of 42 sets of environmental samples. Samples were analyzed for as many as 126 compounds using three laboratory analytical methods. These methods were developed by the U.S. Geological Survey to detect low levels (generally less than or equal to 1.0 microgram per liter) of the target compounds in filtered water. Because analyses were conducted on filtered samples, the results presented in this report may not reflect the total concentration of organic wastewater compounds in the waters that were sampled. Various quality-control samples were used to quality assure the results in terms of method performance and possible laboratory or field contamination. Of the 108 organic wastewater compounds that met method performance criteria, 24 were detected in at least one sample during the study. These 24 compounds included 3 pharmaceutical compounds, 6 fire retardants and plasticizers, 3 antibiotics, 3 pesticides, 6 fragrances and flavorants, 1 disinfectant, and 2 miscellaneous-use compounds, all of which likely originated from a variety of domestic, industrial, and agricultural sources. The 10 most frequently detected compounds included acetyl-hexamethyl tetrahydronaphthalene and hexahydro-hexamethyl cyclopentabenzopyran (synthetic musks that are widely used in personal-care products and are known endocrine disruptors); tri(2-chloroethyl) phosphate, tri(dichloroisopropyl) phosphate, and tributyl phosphate (fire retardants); metolachlor (herbicide); caffeine (nonprescription stimulant); cotinine (metabolite of nicotine); acetaminophen (nonprescription analgesic); and sulfamethoxazole (prescription antibiotic). The occurrence and distribution of organic wastewater compounds varied considerably among sampling sites, but at least one compound was detected at every location. The most organic wastewater compounds (19) were detected at the Neuse River above U.S. 70 at Smithfield, where two-thirds of the total number of samples were collected. The fewest organic wastewater compounds (1) were detected at the Eno River at Hillsborough. The detection of multiple organic wastewater compounds was common, with a median of 3.5 and as many as 12 compounds observed in individual samples. Some compounds, including acetaminophen, cotinine, tri(2-chloroethyl) phosphate, and metolachlor, were detected at numerous sites and in numerous samples, indicating that they are widely distributed in the environment. Other organic wastewater compounds, including acetyl-hexamethyl tetrahydronaphthalene and hexahydro-hexamethyl cyclopentabenzopyran, were detected in numerous samples but at only one location, indicating that sources of these compounds are more site specific. Results indicate that municipal wastewater may be a source of antibiotics and synthetic musks; however, the three sites in this study that are located downstream from wastewater discharges also receive runoff from agricultural, urban, and rural residential lands. Source identification was not an objective of this study. Concentrations of individual compounds generally were less than 0.5 microgram per liter. No concentrations exceeded Federal drinking-water standards or health advisories, nor water-quality criteria established by the State of North Carolina; however, such criteria are available for only a few of the compounds that were studied. Compared with other surface waters that have been sampled across the United States, the Triangle Area water-supply sites had fewer detections of organic wastewater compounds; however, differences in study design and analytical methods used among studies must be considered when mak
Assessment of the Unintentional Reuse of Municipal Wastewater
NASA Astrophysics Data System (ADS)
Okasaki, S.; Fono, L.; Sedlak, D. L.; Dracup, J. A.
2002-12-01
Many surface waters that receive wastewater effluent also serve as source waters for drinking water treatment plants. Recent research has shown that a number of previously undiscovered wastewater-derived contaminants are present in these surface waters, including pharmaceuticals and human hormones, several of which are suspected carcinogens or endocrine disrupters and are, as of yet, unregulated through drinking water standards. This research has been designed to determine the extent of contamination of specific wastewater-derived contaminants in surface water bodies that both receive wastewater effluent and serve as a source of drinking water to a sizeable population. We are testing the hypothesis that surface water supplies during low flow are potentially of worse quality than carefully monitored reclaimed water. The first phase of our research involves: (1) the selection of sites for study; (2) a hydrologic analysis of the selected sites to determine average flow of the source water during median- and low-flow conditions; and (3) the development and testing of chemical analyses, including both conservative and reactive tracers that have been studied in microcosms and wetlands for attenuation rates. The second phase involves the development and use of the hydrologic model QUAL2E to simulate each of the selected watersheds in order to estimate potential stream water quality impairments at the drinking water intake at each site. The results of the model are verified with field sampling at designated locations at each site. We expect to identify several critical river basins where surface water at the drinking water intake contains sufficient wastewater-derived contaminants to warrant concern. If wastewater-derived contaminants are detected, we will estimate the average annual exposure of consumers of this water. We will compare these expected and actual concentrations with typical constituent concentrations found in wastewater that has undergone advanced treatment for reclamation. We may demonstrate that the surface water supplies during low flow are actually of worse quality than carefully monitored reclaimed water.
Wastewater Sampling Methodologies and Flow Measurement Techniques.
ERIC Educational Resources Information Center
Harris, Daniel J.; Keffer, William J.
This document provides a ready source of information about water/wastewater sampling activities using various commercial sampling and flow measurement devices. The report consolidates the findings and summarizes the activities, experiences, sampling methods, and field measurement techniques conducted by the Environmental Protection Agency (EPA),…
García-Galán, María Jesús; Frömel, Tobias; Müller, Jutta; Peschka, Manuela; Knepper, Thomas; Díaz-Cruz, Silvia; Barceló, Damiá
2012-03-01
This work evaluates the biodegradation of N(4)-acetylsulfapyridine (AcSPY) and N(4)-acetylsulfamethazine (AcSMZ), metabolites of two of the most commonly used sulfonamides (SAs) in human and veterinary medicine, respectively. Aerobic transformation in effluent wastewater was simulated using aerated fixed-bed bioreactors. No visible changes in concentration were observed in the AcSMZ reactor after 90 days, whereas AcSPY was fully degraded after 32 days of experiment. It was also demonstrated that AcSPY transformed back to its parent compound sulfapyridine (SPY). The environmental presence of these two metabolites in wastewater effluent had been previously investigated and confirmed, together with three more SA acetylated metabolites and their corresponding parent compounds, in 18 different wastewater treatment plants in Hesse (Germany). Sulfamethoxazole (SMX) and SPY were the two SAs detected most frequently (90% and 89% of the samples, respectively) and in the highest concentrations (682 ng L(-1) for SMX and 532 ng L(-1) for SPY). To conclude, hazard quotients were calculated whenever toxicity data were available. None of the SAs studied posed an environmental risk.
Genetically distinct genogroup IV norovirus strains identified in wastewater.
Kitajima, Masaaki; Rachmadi, Andri T; Iker, Brandon C; Haramoto, Eiji; Gerba, Charles P
2016-12-01
We investigated the prevalence and genetic diversity of genogroup IV norovirus (GIV NoV) strains in wastewater in Arizona, United States, over a 13-month period. Among 50 wastewater samples tested, GIV NoVs were identified in 13 (26 %) of the samples. A total of 47 different GIV NoV strains were identified, which were classified into two genetically distinct clusters: the GIV.1 human cluster and a unique genetic cluster closely related to strains previously identified in Japanese wastewater. The results provide additional evidence of the considerable genetic diversity among GIV NoV strains through the analysis of wastewater containing virus strains shed from all populations.
Tran, Ngoc Han; Hu, Jiangyong; Li, Jinhua; Ong, Say Leong
2014-01-01
There is no quantitative data on the occurrence of artificial sweeteners in the aquatic environment in Southeast Asian countries, particularly no information on their suitability as indicators of raw wastewater contamination on surface water and groundwater. This study provided the first quantitative information on the occurrence of artificial sweeteners in raw wastewater, surface water and groundwater in the urban catchment area in Singapore. Acesulfame, cyclamate, saccharin, and sucralose were ubiquitous in raw wastewater samples at concentrations in the range of ng/L-μg/L, while other sweeteners were not found or found only in a few of the raw wastewater samples. Residential and commercial effluents were demonstrated to be the two main sources of artificial sweeteners entering the municipal sewer systems. Relatively higher concentrations of the detected sweeteners were frequently found in surface waters at the sampling sites located in the residential/commercial areas. No significant difference in the concentrations of the detected sweeteners in surface water or groundwater was noted between wet and dry weather conditions (unpaired T-test, p> 0.05). Relatively higher concentrations and detection frequencies of acesulfame, cyclamate and saccharin in surface water samples were observed at the potentially impacted sampling sites, while these sweeteners were absent in most of the background surface water samples. Similarly, acesulfame, cyclamate, and saccharin were found in most groundwater samples at the monitoring well (GW6), which is located close to known leaking sewer segment; whereas these were absent in the background monitoring well, which is located in the catchment with no known wastewater sources. Taken together, the results suggest that acesulfame, cyclamate, and saccharin can be used as potential indicators of raw wastewater contamination in surface water and groundwater. Copyright © 2013 Elsevier Ltd. All rights reserved.
Brown, Kathryn D; Kulis, Jerzy; Thomson, Bruce; Chapman, Timothy H; Mawhinney, Douglas B
2006-08-01
This study had three objectives: 1) determine occurrence of antibiotics in effluent from hospitals, residential facilities, and dairies, and in municipal wastewater 2) determine antibiotic removal at a large wastewater treatment plant (WWTP) in Albuquerque, NM, and 3) determine concentrations of antibiotics in the Rio Grande, which receives wastewater from the Albuquerque WWTP. Twenty-three samples of wastewater and 3 samples of Rio Grande water were analyzed for the presence of 11 antibiotics. Fifty-eight percent of samples had at least one antibiotic present while 25% had three or more. Hospital effluent had detections of sulfamethoxazole, trimethoprim, ciprofloxacin, ofloxacin, lincomycin, and penicillin G, with 4 of 5 hospital samples having at least one antibiotic detected and 3 having four or more. At the residential sampling sites, ofloxacin was found in effluent from assisted living and retirement facilities, while the student dormitory had no detects. Only lincomycin was detected in dairy effluent (in 2 of 8 samples, at 700 and 6600 ng/L). Municipal wastewater had detections of sulfamethoxazole, trimethoprim, ciprofloxacin, and ofloxacin, with 4 of 6 samples having at least one antibiotic present and 3 having 3 or more. The relatively high concentrations (up to 35,500 ng/L) of ofloxacin found in hospital and residential effluent may be of concern due to potential genotoxic effects and development of antibiotic resistance. At the Albuquerque WWTP, both raw wastewater and treated effluent had detections of sulfamethoxazole, trimethoprim, and ofloxacin, at concentrations ranging from 110 to 470 ng/L. However, concentrations in treated effluent were reduced by 20% to 77%. No antibiotics were detected in the Rio Grande upstream of the Albuquerque WWTP discharge, and only one antibiotic, sulfamethoxazole, was detected in the Rio Grande (300 ng/L) below the WWTP.
Boisvert, Michel; Fayad, Paul B; Sauvé, Sébastien
2012-11-19
A new solid phase extraction (SPE) method coupled to a high throughput sample analysis technique was developed for the simultaneous determination of nine selected emerging contaminants in wastewater (atrazine, desethylatrazine, 17β-estradiol, ethynylestradiol, norethindrone, caffeine, carbamazepine, diclofenac and sulfamethoxazole). We specifically included pharmaceutical compounds from multiple therapeutic classes, as well as pesticides. Sample pre-concentration and clean-up was performed using a mixed-mode SPE cartridge (Strata ABW) having both cation and anion exchange properties, followed by analysis by laser diode thermal desorption atmospheric pressure chemical ionization coupled to tandem mass spectrometry (LDTD-APCI-MS/MS). The LDTD interface is a new high-throughput sample introduction method, which reduces total analysis time to less than 15s per sample as compared to minutes with traditional liquid-chromatography coupled to tandem mass spectrometry (LC-MS/MS). Several SPE parameters were evaluated in order to optimize recovery efficiencies when extracting analytes from wastewater, such as the nature of the stationary phase, the loading flow rate, the extraction pH, the volume and composition of the washing solution and the initial sample volume. The method was successfully applied to real wastewater samples from the primary sedimentation tank of a municipal wastewater treatment plant. Recoveries of target compounds from wastewater ranged from 78% to 106%, the limit of detection ranged from 30 to 122ng L(-1) while the limit of quantification ranged from 90 to 370ng L(-1). Calibration curves in the wastewater matrix showed good linearity (R(2)≥0.991) for all target analytes and the intraday and interday coefficient of variation was below 15%, reflecting a good precision. Copyright © 2012 Elsevier B.V. All rights reserved.
Liu, Mingxue; Dong, Faqin; Kang, Wu; Sun, Shiyong; Wei, Hongfu; Zhang, Wei; Nie, Xiaoqin; Guo, Yuting; Huang, Ting; Liu, Yuanyuan
2014-01-01
Algae biosorption is an ideal wastewater treatment method when coupled with algae growth and biosorption. The adsorption and bioaccumulation of strontium from simulated nuclear wastewater by Scenedesmus spinosus were investigated in this research. One hundred mL of cultured S. spinosus cells with a dry weight of 1.0 mg in simulated nuclear wastewater were used to analyze the effects on S. spinosus cell growth as well as the adsorption and bioaccumulation characters under conditions of 25 ± 1 °C with approximately 3,000 lux illumination. The results showed that S. spinosus had a highly selective biosorption capacity for strontium, with a maximum bioremoval ratio of 76%. The adsorbed strontium ion on cell walls was approximately 90% of the total adsorbed amount; the bioaccumulation in the cytoplasm varied by approximately10%. The adsorption quantity could be described with an equilibrium isotherm. The pseudo-second-order kinetic model suggested that adsorption was the rate-limiting step of the biosorption process. A new bioaccumulation model with three parameters was proposed and could give a good fit with the experiment data. The results suggested that S. spinosus may be a potential biosorbent for the treatment of nuclear wastewater in culture conditions. PMID:24919131
NASA Astrophysics Data System (ADS)
van Ginneken, Meike; Oron, Gideon
2000-09-01
This study assesses health risks to consumers due to the use of agricultural products irrigated with reclaimed wastewater. The analysis is based on a definition of an exposure model which takes into account several parameters: (1) the quality of the applied wastewater, (2) the irrigation method, (3) the elapsed times between irrigation, harvest, and product consumption, and (4) the consumers' habits. The exposure model is used for numerical simulation of human consumers' risks using the Monte Carlo simulation method. The results of the numerical simulation show large deviations, probably caused by uncertainty (impreciseness in quality of input data) and variability due to diversity among populations. There is a 10-orders of magnitude difference in the risk of infection between the different exposure scenarios with the same water quality. This variation indicates the need for setting risk-based criteria for wastewater reclamation rather than single water quality guidelines. Extra data are required to decrease uncertainty in the risk assessment. Future research needs to include definition of acceptable risk criteria, more accurate dose-response modeling, information regarding pathogen survival in treated wastewater, additional data related to the passage of pathogens into and in the plants during irrigation, and information regarding the behavior patterns of the community of human consumers.
Treatment of Dyeing Wastewater by Using Positive Pulsed Corona Discharge to Water Surface
NASA Astrophysics Data System (ADS)
Young, Sun Mok; Hyun, Tae Ahn; Joeng, Tai Kim
2007-02-01
This study investigated the treatment of textile-dyeing wastewater by using an electrical discharge technique (positive pulsed corona discharge). The high-voltage electrode was placed above the surface of the wastewater while the ground electrode was submerged in the wastewater. The electrical discharge starting at the tip of the high voltage electrode propagated toward the surface of the wastewater, producing various oxidative radicals and ozone. Oxygen was used as the working gas instead of air to prevent nitrogen oxides from forming. The simulated wastewater was made up with amaranth, which is a kind of azo dye. The results obtained showed that the chromaticity of the wastewater was almost completely removed within an hour. The ultraviolet/visible spectra of the wastewater treated by the electrical discharge revealed that the total hydrocarbon level also decreased significantly.
Determination of methyl mercury in dental-unit wastewater.
Stone, Mark E; Cohen, Mark E; Liang, Lian; Pang, Patrick
2003-11-01
The objective of this investigation was to establish whether monomethyl mercury (MMHg) is present in dental-unit wastewater and if present, to determine the concentration relative to total mercury. Wastewater samples were collected over an 18-month period from three locations: at the dental chair; at a 30-chair clinic, and at a 107-chair clinic. Total mercury determinations were completed using United States Environmental Protection Agency's (USEPA) method 1631. MMHg was measured utilizing modified USEPA method 1630. The total mercury levels were found to be: 45182.11 microg/l (n=13, SD=68562.42) for the chair-side samples, 5350.74 microg/l (n=12, SD=2672.94) for samples at the 30-chair clinic, and 13439.13 microg/l (n=13, SD=9898.91) for samples at the107-chair clinic. Monomethyl Hg levels averaged 0.90 microg/l (n=13, SD=0.87) for chair side samples, 8.26 (n=12, SD=7.74) for the 30-chair facility, and 26.77 microg/l (n=13, SD=34.50) for 107-chair facility. By way of comparison, the MMHg levels for the open ocean, lakes and rain are orders of magnitude lower than methyl mercury levels seen in dental wastewater (part per billion levels for dental wastewater samples compared to part per trillion levels for samples from the environment). Environmentally important levels of MMHg were found to be present in dental-unit wastewater at concentrations orders of magnitude higher than seen in natural settings.
Lai, Foon Yin; Gartner, Coral; Hall, Wayne; Carter, Steve; O'Brien, Jake; Tscharke, Benjamin J; Been, Frederic; Gerber, Cobus; White, Jason; Thai, Phong; Bruno, Raimondo; Prichard, Jeremy; Kirkbride, K Paul; Mueller, Jochen F
2018-06-01
Tobacco and alcohol consumption remain priority public health issues world-wide. As participation in population-based surveys has fallen, it is increasingly challenging to estimate accurately the prevalence of alcohol and tobacco use. Wastewater-based epidemiology (WBE) is an alternative approach for estimating substance use at the population level that does not rely upon survey participation. This study examined spatio-temporal patterns in nicotine (a proxy for tobacco) and alcohol consumption in the Australian population via WBE. Daily wastewater samples (n = 164) were collected at 18 selected wastewater treatment plants across Australia, covering approximately 45% of the total population. Nicotine and alcohol metabolites in the samples were measured using liquid chromatography-tandem mass spectrometry. Daily consumption of nicotine and alcohol and its associated uncertainty were computed using Monte Carlo simulations. Nation-wide daily average and weekly consumption of these two substances were extrapolated using ordinary least squares and mixed-effect models. Nicotine and alcohol consumption was observed in all communities. Consumption of these substances in rural towns was three to four times higher than in urban communities. The spatial consumption pattern of these substances was consistent across the monitoring periods in 2014-15. Nicotine metabolites significantly reduced by 14-25% (P = 0.001-0.008) (2014-15) in some catchments. Alcohol consumption remained constant over the studied periods. Strong weekly consumption patterns were observed for alcohol but not nicotine. Nation-wide, the daily average consumption per person (aged 15-79 years) was estimated at approximately 2.5 cigarettes and 1.3-2.0 standard drinks (weekday-weekend) of alcohol. These estimates were close to the sale figure and apparent consumption, respectively. Wastewater-based epidemiology is a feasible method for objectively evaluating the geographic, temporal and weekly profiles of nicotine and alcohol consumption in different communities nationally. © 2018 Society for the Study of Addiction.
Impact assessment of treated wastewater on water quality of the receiver using the Wilcoxon test
NASA Astrophysics Data System (ADS)
Ofman, Piotr; Puchlik, Monika; Simson, Grzegorz; Krasowska, Małgorzata; Struk-Sokołowska, Joanna
2017-11-01
Wastewater treatment is a process which aims to reduce the concentration of pollutants in wastewater to the level allowed by current regulations. This is to protect the receivers which typically are rivers, streams, lakes. Examination of the quality of treated wastewater allows for quick elimination of possible negative effects, and the study of water receiver prevents from excessive contamination. The paper presents the results of selected physical and chemical parameters of treated wastewater from the largest on the region in north-eastern Poland city of Bialystok municipal wastewater treatment and Biała River, the receiver. The samples for research were taken 3-4 a month in 2015 from two points: before and after discharge. The impact of the wastewater treatment plant on the quality of the receiver waters was studied by using non-parametric Wilcoxon test. This test determined whether the analyzed indicators varied significantly depending on different sampling points of the river, above and below place of discharge of treated wastewater. These results prove that the treated wastewater does not affect the water quality in the Biała River.
Toxicity potential of disinfection agent in tannery wastewater.
Tisler, Tatjana; Zagorc-Koncan, Jana; Cotman, Magda; Drolc, Andreja
2004-09-01
Wastewater from a tannery was investigated using chemical-specific analyses and assessment of the acute toxicity of the whole effluent over a 2-year period. The wastewater samples were overloaded with organic and inorganic compounds, and measured concentrations of the chemical parameters as well as dilution factors estimating acute toxicity, frequently exceeded the permissible limits for the discharge of wastewater from a tannery into the receiving stream. In the later part of the monitoring programme, the toxicity of the samples was significantly increased in comparison to the previous samples. The agent for hide disinfection was assumed to be the reason for the increased toxicity of the wastewater samples, and the extremely high acute and chronic toxicity of the agent to bacteria, algae, daphnids, and fish confirmed this suspicion. The most sensitive species was Daphnia magna; the 48 h EC50 was 0.70 x 10(-5)v/v% and the 21d IC25 was 0.40 x 10(-6)v/v% of the agent. After withdrawal of this highly toxic agent for hide disinfection from the technological process in the tannery, the toxicity of the wastewater declined to the previous level.
Dominguez, S; Huebra, M; Han, C; Campo, P; Nadagouda, M N; Rivero, M J; Ortiz, I; Dionysiou, D D
2017-05-01
A novel magnetically recoverable, visible light active TiO 2 -WO 3 composite (Fe 3 O 4 @SiO 2 @TiO 2 -WO 3 ) was prepared to enable the photocatalyst recovery after the degradation of bisphenol A (BPA) under simulated solar light. For comparison, the photocatalytic activity of other materials such as non-magnetic TiO 2 -WO 3 , Fe 3 O 4 @SiO 2 @TiO 2 , TiO 2 , and the commercial TiO 2 P25 was also evaluated under the studied experimental conditions. The structure and morphology of the synthesized materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), and electron dispersion spectroscopy (EDS). Moreover, Brunauer-Emmett-Teller (BET) surface area and magnetic properties of the samples were determined. The Fe 3 O 4 @SiO 2 @TiO 2 -WO 3 and TiO 2 -WO 3 led to a BPA degradation of 17.50 and 27.92 %, respectively, after 2 h of the simulated solar light irradiation. Even though their activity was lower than that of P25, which degraded completely BPA after 1 h, our catalysts were magnetically separable for their further reuse in the treatment. Furthermore, the influence of the water matrix in the photocatalytic activity of the samples was studied in municipal wastewater. Finally, the identification of reaction intermediates was performed and a possible BPA degradation pathway was proposed to provide a better understanding of the degradation process. Graphical abstract ᅟ.
TOXIC ORGANIC VOLATILIZATION FROM LAND TREATMENT SYSTEMS
Methodology was evaluated for estimating volatilization of toxic organic chemicals from unsaturated soils. Projections were compared with laboratory data for simulated rapid infiltration wastewater treatment systems receiving primary municipal wastewater spiked with a suite of 18...
Al-Saleh, Iman; Elkhatib, Rola; Al-Rajoudi, Tahreer; Al-Qudaihi, Ghofran
2017-02-01
Plasticizers such as phthalate esters (PAEs) and bisphenol A (BPA) are highly persistent organic pollutants that tend to bio-accumulate in humans through the soil-plant-animal food chain. Some studies have reported the potential carcinogenic and teratogenic effects in addition to their estrogenic activities. Water resources are scarce in Saudi Arabia, and several wastewater treatment plants (WTPs) have been constructed for agricultural and industrial use. This study was designed to: (1) measure the concentrations of BPA and six PAEs, dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP), butyl benzyl phthalate (BBP), bis (2-ethylhexyl) phthalate (DEHP) and dioctyl phthalate (DOP), in secondary- and tertiary-treated wastewater collected from five WTPs in three Saudi cities for four to five weeks and (2) test their potential genotoxicity. Three genotoxicological parameters were used: % tail DNA (%T), tail moment (TM) and percentage micronuclei (%MN). Both DBP and DEHP were detected in all treated wastewater samples. DMP, DEP, BBP, DOP, and BPA were found in 83.3, 84.2, 79, 73.7 and 97.4% of the samples, respectively. The levels of DMP (p<0.001), DOP (p<0.001) and BPA (p=0.001) were higher in tertiary- treated wastewater than secondary-treated wastewater, perhaps due to the influence of the molecular weight and polarity of the chemicals. Both weekly sampling frequency and WTP locations significantly affected the variability in our data. Treated wastewater from Wadi Al-Araj was able to induce DNA damage (%T and TM) in human lymphoblastoid TK6 cells that was statistically higher than wastewater from all other WTPs and in untreated TK6 cells (negative control). %MN in samples from both Wadi Al-Araj and Manfouah did not differ statistically but was significantly higher than in the untreated TK6 cells. This study also showed that the samples of tertiary-treated wastewater had a higher genotoxicological potential to induce DNA damage than the samples of secondary-treated wastewater. BPA and some PAEs in the treated wastewater might have the potential to induce genetic damage, despite their low levels. Genotoxicity, however, may also have been due to the presence of other contaminants. Our preliminary findings should be of concern to Saudi agriculture because long-term irrigation with treated wastewater could lead to the accumulation of PAEs and BPA in the soil and ultimately reach the human and animal food chain. WTPs need to remove pollutants more efficiently. Until then, a cautious use of treated wastewater for irrigation is recommended to avoid serious health impacts on local populations. Copyright © 2016 Elsevier B.V. All rights reserved.
Combined sewer overflows: an environmental source of hormones and wastewater micropollutants
Phillips, P.J.; Chalmers, A.T.; Gray, J.L.; Kolpin, D.W.; Foreman, W.T.; Wall, G.R.
2012-01-01
Data were collected at a wastewater treatment plant (WWTP) in Burlington, Vermont, USA, (serving 30,000 people) to assess the relative contribution of CSO (combined sewer overflow) bypass flows and treated wastewater effluent to the load of steroid hormones and other wastewater micropollutants (WMPs) from a WWTP to a lake. Flow-weighted composite samples were collected over a 13 month period at this WWTP from CSO bypass flows or plant influent flows (n = 28) and treated effluent discharges (n = 22). Although CSO discharges represent 10% of the total annual water discharge (CSO plus treated plant effluent discharges) from the WWTP, CSO discharges contribute 40–90% of the annual load for hormones and WMPs with high (>90%) wastewater treatment removal efficiency. By contrast, compounds with low removal efficiencies (<90%) have less than 10% of annual load contributed by CSO discharges. Concentrations of estrogens, androgens, and WMPs generally are 10 times higher in CSO discharges compared to treated wastewater discharges. Compound concentrations in samples of CSO discharges generally decrease with increasing flow because of wastewater dilution by rainfall runoff. By contrast, concentrations of hormones and many WMPs in samples from treated discharges can increase with increasing flow due to decreasing removal efficiency.
Combined Sewer Overflows: An Environmental Source of Hormones and Wastewater Micropollutants
2012-01-01
Data were collected at a wastewater treatment plant (WWTP) in Burlington, Vermont, USA, (serving 30,000 people) to assess the relative contribution of CSO (combined sewer overflow) bypass flows and treated wastewater effluent to the load of steroid hormones and other wastewater micropollutants (WMPs) from a WWTP to a lake. Flow-weighted composite samples were collected over a 13 month period at this WWTP from CSO bypass flows or plant influent flows (n = 28) and treated effluent discharges (n = 22). Although CSO discharges represent 10% of the total annual water discharge (CSO plus treated plant effluent discharges) from the WWTP, CSO discharges contribute 40–90% of the annual load for hormones and WMPs with high (>90%) wastewater treatment removal efficiency. By contrast, compounds with low removal efficiencies (<90%) have less than 10% of annual load contributed by CSO discharges. Concentrations of estrogens, androgens, and WMPs generally are 10 times higher in CSO discharges compared to treated wastewater discharges. Compound concentrations in samples of CSO discharges generally decrease with increasing flow because of wastewater dilution by rainfall runoff. By contrast, concentrations of hormones and many WMPs in samples from treated discharges can increase with increasing flow due to decreasing removal efficiency. PMID:22540536
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mike Lewis
2014-02-01
This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2012, through October 31, 2013. The report contains, as applicable, the following information: • Site description • Facility and system description • Permit required monitoring data and loading rates • Status of compliance conditions and activities • Discussion of the facility’s environmental impacts. During the 2013 permit year, no wastewater was land-applied to the irrigation area of the Central Facilities Area Sewage Treatment Plantmore » and therefore, no effluent flow volumes or samples were collected from wastewater sampling point WW-014102. However, soil samples were collected in October from soil monitoring unit SU-014101.« less
Antibiotic, Pharmaceutical, and Wastewater-Compound Data for Michigan, 1998-2005
Haack, Sheridan Kidd
2010-01-01
Beginning in the late 1990's, the U.S. Geological Survey began to develop analytical methods to detect, at concentrations less than 1 microgram per liter (ug/L), emerging water contaminants such as pharmaceuticals, personal-care chemicals, and a variety of other chemicals associated with various human and animal sources. During 1998-2005, the U.S. Geological Survey analyzed the following Michigan water samples: 41 samples for antibiotic compounds, 28 samples for pharmaceutical compounds, 46 unfiltered samples for wastewater compounds (dissolved and suspended compounds), and 113 filtered samples for wastewater compounds (dissolved constituents only). The purpose of this report is to summarize the status of emerging contaminants in Michigan waters based on data from several different project-specific sample-collection efforts in Michigan during an 8-year period. During the course of the 8-year sampling effort, antibiotics were determined at 20 surface-water sites and 2 groundwater sites, pharmaceuticals were determined at 11 surface-water sites, wastewater compounds in unfiltered water were determined at 31 surface-water sites, and wastewater compounds in filtered water were determined at 40 surface-water and 4 groundwater sites. Some sites were visited only once, but others were visited multiple times. A variety of quality-assurance samples also were collected. This report describes the analytical methods used, describes the variations in analytical methods and reporting levels during the 8-year period, and summarizes all data using current (2009) reporting criteria. Very few chemicals were detected at concentrations greater than current laboratory reporting levels, which currently vary from a low of 0.005 ug/L for some antibiotics to 5 ug/L for some wastewater compounds. Nevertheless, 10 of 51 chemicals in the antibiotics analysis, 9 of 14 chemicals in the pharmaceuticals analysis, 34 of 67 chemicals in the unfiltered-wastewater analysis, and 56 of 62 chemicals in the filtered-wastewater analysis were detected. Antibiotics were detected at 7 of 20 tested surface-water sites, but none were detected in 2 groundwater samples. Pharmaceuticals were detected at 7 of 11 surface-water sites. Wastewater compounds were detected at 25 of 31 sites for which unfiltered water samples were analyzed and at least once at all 40 surface-water sites and all 4 groundwater sites for which filtered water samples were analyzed. Overall, the chemicals detected most frequently in Michigan waters were similar to those reported frequently in other studies nationwide. Patterns of chemical detections were site specific and appear to be related to local sources, overall land use, and hydrologic conditions at the time of sampling. Field-blank results provide important information for the design of future sampling programs in Michigan and demonstrate the need for careful field-study design. Field-replicate results indicated substantial confidence regarding the presence or absence of the many chemicals tested. Overall, data reported herein indicate that a wide array of antibiotic, pharmaceutical, and organic wastewater compounds occur in Michigan waters. Patterns of occurrence, with respect to hydrologic, land use, and source variables, generally appear to be similar for Michigan as for other sampled waters across the United States. The data reported herein can serve as a basis for future studies in Michigan.
NASA Astrophysics Data System (ADS)
Wang, Qingyu; He, Lingfeng; Shi, Liang; Chen, Xiaogang; Chen, Xin; Xu, Zizhen; Zhang, Yongli
2018-03-01
Using high temperature activated sodium flying ash and carboxymethyl chitosan as raw material to prepare carboxymethylchitosan wrapping fly-ash adsorbent (CWF), combined with iron-carbon micro-electrolysis treatment of simulated and actual printing and dyeing wastewater. The conditions for obtaining are from the literature: the best condition for CWF to treat simulated printing and dyeing wastewater pretreated with iron-carbon micro-electrolysis is that the mixing time is 10min, the resting time is 30 min, pH=6, and the adsorbent dosage is 0.75 g/L. The results showed that COD removal efficiency and decoloration rate were above 97 %, and turbidity removal rate was over 90 %. The optimum dyeing conditions were used to treat the dyeing wastewater. The decolorization rate was 97.30 %, the removal efficiency of COD was 92.44 %, and the turbidity removal rate was 90.37 %.
NASA Astrophysics Data System (ADS)
Bondareva, L.; Zakharov, Yu; Goudov, A.
2017-04-01
The paper is dedicated to the mathematical model of slurry wastewater treatment and disposal in a flooded mine working. The goal of the research is to develop and analyze the mathematical model of suspended impurities flow and distribution. Impurity sedimentation model is under consideration. Due to the sediment compaction problem solution domain can be modified. The model allows making a forecast whether volley emission is possible. Numerical simulation results for “Kolchuginskaya” coal mine presented. Impurity concentration diagrams in outflow corresponding to the real full-scale data obtained. Safely operation time mine workings like a wastewater treatment facility are estimated. The carried out calculations demonstrate that the method of industrial wastewater treatment in flooded waste mine workings can be put into practice but it is very important to observe all the processes going on to avoid volley emission of accumulated impurities.
Comparison of complex effluent treatability in different bench scale microbial electrolysis cells.
Ullery, Mark L; Logan, Bruce E
2014-10-01
A range of wastewaters and substrates were examined using mini microbial electrolysis cells (mini MECs) to see if they could be used to predict the performance of larger-scale cube MECs. COD removals and coulombic efficiencies corresponded well between the two reactor designs for individual samples, with 66-92% of COD removed for all samples. Current generation was consistent between the reactor types for acetate (AC) and fermentation effluent (FE) samples, but less consistent with industrial (IW) and domestic wastewaters (DW). Hydrogen was recovered from all samples in cube MECs, but gas composition and volume varied significantly between samples. Evidence for direct conversion of substrate to methane was observed with two of the industrial wastewater samples (IW-1 and IW-3). Overall, mini MECs provided organic treatment data that corresponded well with larger scale reactor results, and therefore it was concluded that they can be a useful platform for screening wastewater sources. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wijaya, I. M. W.; Soedjono, E. S.
2018-03-01
Municipal wastewater is the main contributor to diverse water pollution problems. In order to prevent the pollution risks, wastewater have to be treated before discharged to the main water. Selection of appropriated treatment process need the characteristic information of wastewater as design consideration. This study aims to analyse the physicochemical characteristic of municipal wastewater from inlet and outlet of ABR unit around Surabaya City. Medokan Semampir and Genteng Candi Rejo has been selected as wastewater sampling point. The samples were analysed in laboratory with parameters, such as pH, TSS, COD, BOD, NH4 +, NO3 -, NO2 -, P, and detergent. The results showed that all parameters in both locations are under the national standard of discharged water quality. In other words, the treated water is securely discharged to the river
Pepper Mild Mottle Virus as an Indicator of Fecal Pollution ▿
Rosario, Karyna; Symonds, Erin M.; Sinigalliano, Christopher; Stewart, Jill; Breitbart, Mya
2009-01-01
Accurate indicators of fecal pollution are needed in order to minimize public health risks associated with wastewater contamination in recreational waters. However, the bacterial indicators currently used for monitoring water quality do not correlate with the presence of pathogens. Here we demonstrate that the plant pathogen Pepper mild mottle virus (PMMoV) is widespread and abundant in wastewater from the United States, suggesting the utility of this virus as an indicator of human fecal pollution. Quantitative PCR was used to determine the abundance of PMMoV in raw sewage, treated wastewater, seawater exposed to wastewater, and fecal samples and/or intestinal homogenates from a wide variety of animals. PMMoV was present in all wastewater samples at concentrations greater than 1 million copies per milliliter of raw sewage. Despite the ubiquity of PMMoV in human feces, this virus was not detected in the majority of animal fecal samples tested, with the exception of chicken and seagull samples. PMMoV was detected in four out of six seawater samples collected near point sources of secondary treated wastewater off southeastern Florida, where it co-occurred with several other pathogens and indicators of fecal pollution. Since PMMoV was not found in nonpolluted seawater samples and could be detected in surface seawater for approximately 1 week after its initial introduction, the presence of PMMoV in the marine environment reflects a recent contamination event. Together, these data demonstrate that PMMoV is a promising new indicator of fecal pollution in coastal environments. PMID:19767474
Frans, Lonna; Paulson, Anthony; Richerson, Phil; Striz, Elise; Black, Curt
2009-01-01
Water samples from wells were collected beneath and downgradient of two food-processing wastewater-application sites near Umatilla, Oregon. These samples were analyzed for nitrate stable isotopes, nutrients, major ions, and age-dating constituents to determine if nitrate-stable isotopes can be used to differentiate food-processing waste from other potential sources of nitrate. Major-ion data from each site were used to determine which samples were associated with the recharge of the food-processing wastewater. End-member mixing analysis was used to determine the relative amounts of each identified end member within the samples collected from the Terrace Farm site. The delta nitrogen-15 (delta 15N) of nitrate generally ranged between +2 and +9 parts per thousand and the delta oxygen-18 (delta 18O) of nitrate generally ranged between -2 and -7 parts per thousand. None of the samples that were determined to be associated with the wastewater were different from the samples that were not affected by the wastewater. The nitrate isotope values measured in this study are also characteristic of ammonium fertilizer, animal and human waste, and soil nitrate; therefore, it was not possible to differentiate between food-processing wastewater and the other nitrate sources. Values of delta 15N and delta 18O of nitrate provided no more information about the sources of nitrate in the Umatilla River basin than did a hydrologic and geochemical understanding of the ground-water system derived from interpreting water-level and major-ion chemistry data.
Measuring selected PPCPs in wastewater to estimate the population in different cities in China.
Gao, Jianfa; O'Brien, Jake; Du, Peng; Li, Xiqing; Ort, Christoph; Mueller, Jochen F; Thai, Phong K
2016-10-15
Sampling and analysis of wastewater from municipal wastewater treatment plants (WWTPs) has become a useful tool for understanding exposure to chemicals. Both wastewater based studies and management and planning of the catchment require information on catchment population in the time of monitoring. Recently, a model has been developed and calibrated using selected pharmaceutical and personal care products (PPCPs) measured in influent wastewater for estimating population in different catchments in Australia. The present study aimed at evaluating the feasibility of utilizing this population estimation approach in China. Twenty-four hour composite influent samples were collected from 31 WWTPs in 17 cities with catchment sizes from 200,000-3,450,000 people representing all seven regions of China. The samples were analyzed for 19 PPCPs using liquid chromatography coupled to tandem mass spectrometry in direct injection mode. Eight chemicals were detected in more than 50% of the samples. Significant positive correlations were found between individual PPCP mass loads and population estimates provided by WWTP operators. Using the PPCP mass load modeling approach calibrated with WWTP operator data, we estimated the population size of each catchment with good agreement with WWTP operator values (between 50-200% for all sites and 75-125% for 23 of the 31 sites). Overall, despite much lower detection and relatively high heterogeneity in PPCP consumption across China the model provided a good estimate of the population contributing to a given wastewater sample. Wastewater analysis could also provide objective PPCP consumption status in China. Copyright © 2016 Elsevier B.V. All rights reserved.
Diwan, Vishal; Stålsby Lundborg, Cecilia; Tamhankar, Ashok J
2013-01-01
The presence of antibiotics in the environment and their subsequent impact on resistance development has raised concerns globally. Hospitals are a major source of antibiotics released into the environment. To reduce these residues, research to improve knowledge of the dynamics of antibiotic release from hospitals is essential. Therefore, we undertook a study to estimate seasonal and temporal variation in antibiotic release from two hospitals in India over a period of two years. For this, 6 sampling sessions of 24 hours each were conducted in the three prominent seasons of India, at all wastewater outlets of the two hospitals, using continuous and grab sampling methods. An in-house wastewater sampler was designed for continuous sampling. Eight antibiotics from four major antibiotic groups were selected for the study. To understand the temporal pattern of antibiotic release, each of the 24-hour sessions were divided in three sub-sampling sessions of 8 hours each. Solid phase extraction followed by liquid chromatography/tandem mass spectrometry (LC-MS/MS) was used to determine the antibiotic residues. Six of the eight antibiotics studied were detected in the wastewater samples. Both continuous and grab sampling methods indicated that the highest quantities of fluoroquinolones were released in winter followed by the rainy season and the summer. No temporal pattern in antibiotic release was detected. In general, in a common timeframe, continuous sampling showed less concentration of antibiotics in wastewater as compared to grab sampling. It is suggested that continuous sampling should be the method of choice as grab sampling gives erroneous results, it being indicative of the quantities of antibiotics present in wastewater only at the time of sampling. Based on our studies, calculations indicate that from hospitals in India, an estimated 89, 1 and 25 ng/L/day of fluroquinolones, metronidazole and sulfamethoxazole respectively, might be getting released into the environment per 100 hospital beds.
Biological treatment and toxicity of low concentrations of oily wastewater (bilgewater).
Stamper, David M; Montgomery, Michael T
2008-08-01
The biodegradability and toxicity of low concentrations of oily wastewater (bilgewater) were tested under simulated sanitary wastewater treatment conditions. This was done to establish the feasibility of a combined shipboard oily and nonoily wastewater treatment system. The biodegradability of oily wastewater was determined by proxy; 14C-labeled dodecane, toluene, and phenanthrene (representing alkane, aromatic, and polyaromatic compounds, respectively) were mineralized in petroleum fuels and lubricants. We found that low concentrations of oily wastewater components were mineralized, even in the presence of more abundant substrates (such as synthetic graywater, containing vegetable oil, detergent, gelatin, and starch). The toxic effects of diesel fuel and several other components of oily wastewater (such as surfactants and a synthetic lubricant) on a naïve wastewater assemblage was also tested. In concentrations much higher than would be expected under normal shipboard conditions, we found no evidence of toxic effects of the bilgewater compounds tested. Thus, a combined shipboard bilgewater and sanitary wastewater system might be feasible.
Yuan, Jiajia; Dong, Wenyi; Sun, Feiyun; Li, Pu; Zhao, Ke
2016-05-01
An environment-friendly decentralized wastewater treatment process that is comprised of activated sludge process (ASP) and wetland vegetation, named as vegetation-activated sludge process (V-ASP), was developed for decentralized wastewater treatment. The long-term experimental results evidenced that the vegetation sequencing batch reactor (V-SBR) process had consistently stable higher removal efficiencies of organic substances and nutrients from domestic wastewater compared with traditional sequencing batch reactor (SBR). The vegetation allocated into V-SBR system could not only remove nutrients through its vegetation transpiration ratio but also provide great surface area for microorganism activity enhancement. This high vegetation transpiration ratio enhanced nutrients removal effectiveness from wastewater mainly by flux enhancement, oxygen and substrate transportation acceleration, and vegetation respiration stimulation. A mathematical model based on ASM2d was successfully established by involving the specific function of vegetation to simulate system performance. The simulation results on the influence of operational parameters on V-ASP treatment effectiveness demonstrated that V-SBR had a high resistance to seasonal temperature fluctuations and influent loading shocking.
Zheng, He-Shan; Guo, Wan-Qian; Wu, Qu-Li; Ren, Nan-Qi; Chang, Jo-Shu
2018-06-01
Hospital wastewater is one of the possible sources responsible for antibiotic resistant bacteria spread into the environment. This study proposed a promising strategy, electro-peroxone (E-peroxone) pretreatment followed by a sequencing batch reactor (SBR) for simulated hospital wastewater treatment, aiming to enhance the wastewater treatment performance and to reduce antibiotic resistance genes production simultaneously. The highest chemical oxygen demand (COD) and total organic carbon (TOC) removal efficiency of 94.3% and 92.8% were obtained using the E-peroxone-SBR process. The microbial community analysis through high-throughput sequencing showed that E-peroxone pretreatment could guarantee microbial richness and diversity in SBR, as well as reduce the microbial inhibitions caused by antibiotic and raise the amount of nitrification and denitrification genera. Specially, quantitative real-time PCRs revealed that E-peroxone pretreatment could largely reduce the numbers and contents of antibiotic resistance genes (ARGs) production in the following biological treatment unit. It was indicated that E-peroxone-SBR process may provide an effective way for hospital wastewater treatment and possible ARGs reduction. Copyright © 2018 Elsevier Ltd. All rights reserved.
Functionalized dithiocarbamate chelating resin for the removal of Co2+ from simulated wastewater
NASA Astrophysics Data System (ADS)
Shi, Xuewei; Fu, Linwei; Wu, Yanyang; Zhao, Huiling; Zhao, Shuangliang; Xu, Shouhong
2017-12-01
Industrial wastewater that contains trace amounts of heavy metal ions is often seen in petrochemical industry. While this wastewater can not be directly discharged, it is difficult to treat due to the low concentration of metal ions. Introducing chelating reagents into this wastewater for selective ion adsorption, followed by a mechanical separation process, provides an appealing solution. Toward the success of this technology, the development of effective chelating resins is of key importance. In the present work, a chelating resin containing amino and dithiocarbamate groups was reported for the removal of Co(II) metal ions in trace concentrations from simulated wastewater. By investigating the adsorption performance of the chelating resin at different solution pH values, adsorbent dosages, contact time, initial ion concentrations, and adsorption temperatures, the maximum adsorption capacity of the resin for Co(II) was identified to be 24.89 mg g-1 for a 2 g L-1 adsorbent dosage and a pH value of 5. After four adsorption-desorption cycles, 97% of the adsorption capacity of the resin was maintained. The adsorption kinetics and thermodynamics were analyzed and discussed as well.
Wilkison, Donald H.; Armstrong, Daniel J.; Blevins, Dale W.
2002-01-01
Samples were collected from 16 base-flow events and a minimum of 10 stormflow events between July 1998 and October 2000 to characterize the effects of wastewater and combined sewer overflows on water quality in the Blue River Basin, Kansas City, Missouri and Kansas. Waterquality effects were determined by analysis of nutrients, chloride, chemical and biochemical oxygen demand, and suspended sediment samples from three streams (Blue River, Brush Creek, and Indian Creek) in the basin as well as the determination of a suite of compounds known to be indicative of wastewater including antioxidants, caffeine, detergent metabolites, antimicrobials, and selected over-the-counter and prescription pharmaceuticals. Constituent loads were determined for both hydrologic regimes and a measure of the relative water-quality impact of selected stream reaches on the Blue River and Brush Creek was developed. Genetic fingerprint patterns of Escherichia coli bacteria from selected stream samples were compared to a data base of knownsource patterns to determine possible sources of bacteria. Water quality in the basin was affected by wastewater during both base flows and stormflows; however, there were two distinct sources that contributed to these effects. In the Blue River and Indian Creek, the nearly continuous discharge of treated wastewater effluent was the primary source of nutrients, wastewater indicator compounds, and pharmaceutical compounds detected in stream samples. Wastewater inputs into Brush Creek were largely the result of intermittent stormflow events that triggered the overflow of combined storm and sanitary sewers, and the subsequent discharge of untreated wastewater into the creek. A portion of the sediment, organic matter, and associated constituents from these events were trapped by a series of impoundments constructed along Brush Creek where they likely continued to affect water quality during base flow. Concentrations and loads of most wastewater constituents in the Blue River and Indian Creek were significantly greater than in Brush Creek, especially during base flow. However, wastewater indicator compound concentrations were sometimes greater in some Brush Creek stormflow samples. Selected stream reaches along the mid-portion of Brush Creek showed higher effects relative to other sites, primarily because these sites were in impounded reaches with the greatest density of wastewater inputs, or had relatively small drainage areas.
Phillips, P.; Chalmers, A.
2009-01-01
Some sources of organic wastewater compounds (OWCs) to streams, lakes, and estuaries, including wastewater-treatment-plant effluent, have been well documented, but other sources, particularly wet-weather discharges from combined-sewer-overflow (CSO) and urban runoff, may also be major sources of OWCs. Samples of wastewater-treatment-plant (WWTP) effluent, CSO effluent, urban streams, large rivers, a reference (undeveloped) stream, and Lake Champlain were collected from March to August 2006. The highest concentrations of many OWCs associated with wastewater were in WWTP-effluent samples, but high concentrations of some OWCs in samples of CSO effluent and storm runoff from urban streams subject to leaky sewer pipes or CSOs were also detected. Total concentrations and numbers of compounds detected differed substantially among sampling sites. The highest total OWC concentrations (10-100 ??g/l) were in samples of WWTP and CSO effluent. Total OWC concentrations in samples from urban streams ranged from 0.1 to 10 ??g/l, and urban stream-stormflow samples had higher concentrations than baseflow samples because of contributions of OWCs from CSOs and leaking sewer pipes. The relations between OWC concentrations in WWTP-effluent and those in CSO effluent and urban streams varied with the degree to which the compound is removed through normal wastewater treatment. Concentrations of compounds that are highly removed during normal wastewater treatment [including caffeine, Tris(2-butoxyethyl)phosphate, and cholesterol] were generally similar to or higher in CSO effluent than in WWTP effluent (and ranged from around 1 to over 10 ??g/l) because CSO effluent is untreated, and were higher in urban-stream stormflow samples than in baseflow samples as a result of CSO discharge and leakage from near-surface sources during storms. Concentrations of compounds that are poorly removed during treatment, by contrast, are higher in WWTP effluent than in CSO, due to dilution. Results indicate that CSO effluent and urban stormwaters can be a significant major source of OWCs entering large water bodies such as Burlington Bay. ?? 2008 American Water Resources Association.
Persistence of pathogenic prion protein during simulated wastewater treatment processes
Hinckley, G.T.; Johnson, C.J.; Jacobson, K.H.; Bartholomay, C.; Mcmahon, K.D.; McKenzie, D.; Aiken, Judd M.; Pedersen, J.A.
2008-01-01
Transmissible spongiform encephalopathies (TSEs, prion diseases) are a class of fatal neurodegenerative diseases affecting a variety of mammalian species including humans. A misfolded form of the prion protein (PrP TSE) is the major, if not sole, component of the infectious agent. Prions are highly resistant to degradation and to many disinfection procedures suggesting that, if prions enter wastewater treatment systems through sewers and/or septic systems (e.g., from slaughterhouses, necropsy laboratories, rural meat processors, private game dressing) or through leachate from landfills that have received TSE-contaminated material, prions could survive conventional wastewater treatment Here, we report the results of experiments examining the partitioning and persistence of PrPTSE during simulated wastewater treatment processes including activated and mesophilic anaerobic sludge digestion. Incubation with activated sludge did not result in significant PrPTSE degradation. PrPTSE and prion infectivity partitioned strongly to activated sludge solids and are expected to enter biosolids treatment processes. A large fraction of PrPTSE survived simulated mesophilic anaerobic sludge digestion. The small reduction in recoverable PrPTSE after 20-d anaerobic sludge digestion appeared attributable to a combination of declining extractability with time and microbial degradation. Our results suggest that if prions were to enter municipal wastewater treatment systems, most would partition to activated sludge solids, survive mesophilic anaerobic digestion, and be present in treated biosolids. ?? 2008 American Chemical Society.
The fate of wastewater-derived NDMA precursors in the aquatic environment.
Pehlivanoglu-Mantas, Elif; Sedlak, David L
2006-03-01
To assess the stability of precursors of the chloramine disinfection byproduct N-nitrosodimethylamine (NDMA) under conditions expected in effluent-dominated surface waters, effluent samples from four municipal wastewater treatment plants were subjected to chlorination and chloramination followed by incubation in the presence of inocula derived from activated sludge. Samples subjected to free chlorine disinfection showed lower initial concentrations of NDMA precursors than those that were not chlorinated or were disinfected with pre-formed chloramines. For chloraminated and control (unchlorinated) treatments, the concentration of NDMA precursors decreased by an average of 24% over the 30-day incubation in samples from three of the four facilities. At the fourth facility, where samples were collected on three different days, NDMA precursor concentrations decreased by approximately 80% in one sample and decreased by less than 20% in the other two samples. In contrast to the low reactivity of the NDMA precursors, NDMA disappeared within 30 days under the conditions employed in these experiments. These results and measurements made in an effluent-dominated river suggest that although NDMA may be removed after wastewater effluent is discharged, wastewater-derived NDMA precursors could persist long enough to form significant concentrations of NDMA in drinking water treatment plants that use water originating from sources that are subjected to wastewater effluent discharges.
Detection of genogroup IV norovirus in wastewater and river water in Japan.
Kitajima, M; Haramoto, E; Phanuwan, C; Katayama, H; Ohgaki, S
2009-11-01
To test wastewater and river water in Japan for genogroup IV norovirus (GIV NoV). Influent and effluent samples from a wastewater treatment plant and the Tamagawa River water samples were collected monthly for a year. The water samples were concentrated by the adsorption-elution method, using an HA electronegative filter with acid rinse procedure, followed by quantitative detection of GIV NoV using TaqMan-based real-time RT-PCR. Both wastewater and river water samples showed a high positive ratio of GIV NoV during winter and spring. The highest concentration in wastewater and river water was 6.9 x 10(4) and 1.5 x 10(4) copies l(-1), respectively. Presence of GIV NoV in the environments demonstrates that not only GI and GII NoVs but also GIV strains are circulating and that routine monitoring of GIV NoV in water environments is recommended to understand its epidemics, environmental distribution and potential health risks. This is the first study providing quantitative data on the occurrence of GIV NoV in environmental water over a 1-year period.
Ertit Taştan, Burcu; Dönmez, Gönül
2015-02-01
Triclosan is known as an antimicrobial agent, a powerful bacteriostat and an important pesticide. In this paper biodegradation of triclosan by Aspergillus versicolor was investigated. Effects of simulated wastewater and semi-synthetic media on fungal triclosan degradation process were detected. HPLC analysis showed that fungal triclosan biodegradation yield was 71.91% at about 7.5 mg/L concentration in semi-synthetic medium and was 37.47% in simulated wastewater. Fungus could be able to tolerate the highest triclosan concentration (15.69 mg/L). The biodegradation yield was 29.81% and qm was 2.22 mg/g at this concentration. Some of the parameters, such as pH, culture media, increasing triclosan and biomass concentrations were optimized in order to achieve the effective triclosan biodegradation process. The highest triclosan biodegradation yields of all microorganisms were achieved by A. versicolor. Copyright © 2014 Elsevier Inc. All rights reserved.
DeSimone, Leslie A.
2004-01-01
Water-supply withdrawals and wastewater disposal in the Assabet River Basin in eastern Massachusetts alter the flow and water quality in the basin. Wastewater discharges and stream-flow depletion from ground-water withdrawals adversely affect water quality in the Assabet River, especially during low-flow months (late summer) and in headwater areas. Streamflow depletion also contributes to loss of aquatic habitat in tributaries to the river. In 19972001, water-supply withdrawals averaged 9.9 million gallons per day (Mgal/d). Wastewater discharges to the Assabet River averaged 11 Mgal/d and included about 5.4 Mgal/d that originated from sources outside of the basin. The effects of current (2004) and future withdrawals and discharges on water resources in the basin were investigated in this study. Steady-state and transient ground-water-flow models were developed, by using MODFLOW-2000, to simulate flow in the surficial glacial deposits and underlying crystalline bedrock in the basin. The transient model simulated the average annual cycle at dynamic equilibrium in monthly intervals. The models were calibrated to 19972001 conditions of water withdrawals, wastewater discharges, water levels, and nonstorm streamflow (base flow plus wastewater discharges). Total flow through the simulated hydrologic system averaged 195 Mgal/d annually. Recharge from precipitation and ground-water discharge to streams were the dominant inflow and outflow, respectively. Evapotranspiration of ground water from wetlands and non-wetland areas also were important losses from the hydrologic system. Water-supply withdrawals and infiltration to sewers averaged 5 and 1.3 percent, respectively, of total annual out-flows and were larger components (12 percent in September) of the hydrologic system during low-flow months. Water budgets for individual tributary and main stem subbasins identified areas, such as the Fort Meadow Brook and the Assabet Main Stem Upper subbasins, where flows resulting from anthropo-genic activities were relatively large percentages, compared to other subbasins, (more than 20 percent in September) of total out-flows. Wastewater flows in the Assabet River accounted for 55, 32, and 20 percent of total nonstorm streamflow (base flow plus wastewater discharge) out of the Assabet Main Stem Upper, Middle, and Lower subbasins, respectively, in an average September. The ground-water-flow models were used to evaluate water-management alternatives by simulating hypothetical scenarios of altered withdrawals and discharges. A scenario that included no water management quantified nonstorm stream-flows that would result without withdrawals, discharges, septic-system return flow, or consumptive use. Tributary flows in this scenario increased in most subbasins by 2 to 44 percent relative to 19972001 conditions. The increases resulted mostly from variable combinations of decreased withdrawals and decreased infiltration to sewers. Average annual nonstorm streamflow in the Assabet River decreased slightly in this scenario, by 2 to 3 percent annually, because gains in ground-water discharge were offset by the elimination of wastewater discharges. A second scenario quantified the effects of increasing withdrawals and discharges to currently permitted levels. In this simulation, average annual tributary flows decreased in most subbasins, by less than 1 to 10 percent relative to 19972001 conditions. In the Assabet River, flows increased slightly, 1 to 5 percent annually, and the percentage of wastewater in the river increased to 69, 42, and 27 percent of total nonstorm streamflow out of the Assabet Main Stem Upper, Middle, and Lower subbasins, respectively, in an average September. A third set of scenarios quantified the effects of ground-water discharge of wastewater at four hypothetical sites, while maintaining 19972000 wastewater discharges to the Assabet River. Wastewater, discharged at a constant rate that varied among sites from 0.3 to 1
Grøndahl-Rosado, Ricardo C; Yarovitsyna, Ekaterina; Trettenes, Elin; Myrmel, Mette; Robertson, Lucy J
2014-12-01
Enteric viruses transmitted via the faecal-oral route occur in high concentrations in wastewater and may contaminate drinking water sources and cause disease. In order to quantify enteric adenovirus and norovirus genotypes I and II (GI and GII) impacting a drinking source in Norway, samples of surface water (52), wastewater inlet (64) and outlet (59) were collected between January 2011 and April 2012. Samples were concentrated in two steps, using an electropositive disc filter and polyethylene glycol precipitation, followed by nucleic acid extraction and analysis by quantitative polymerase chain reaction. Virus was detected in 47/52 (90.4%) of surface water, 59/64 (92%) of wastewater inlet and 55/59 (93%) of wastewater outlet samples. Norovirus GI occurred in the highest concentrations in surface water (2.51e + 04) and adenovirus in wastewater (2.15e + 07). While adenovirus was the most frequently detected in all matrices, norovirus GI was more frequently detected in surface water and norovirus GII in wastewater. This study is the first in Norway to monitor both sewage and a drinking water source in parallel, and confirms the year-round presence of norovirus and adenovirus in a Norwegian drinking water source.
Gündoğdu, Aycan; Jennison, Amy V; Smith, Helen V; Stratton, Helen; Katouli, Mohammad
2013-11-01
We investigated the prevalence of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli in untreated hospital wastewaters and 2 sewage treatment plants (STPs). A collection of 252 ESBL-producing E. coli isolates from hospital wastewater and STPs were typed and tested for resistance to 17 antimicrobial agents and for the presence of integron-associated integrases (intI gene) and ESBL genes. Eighty-nine percent (n = 176) of the ESBL-producing E. coli strains from hospital wastewater were found in more than 1 sample (common types), with 1 common type accounting for 35% of isolates, found in all samples. These strains were also resistant to up to 9 non-β-lactam antibiotics and showed the same pattern of resistance in all samples. More than 73% of the hospital wastewater isolates possessed SHV-type ESBL as opposed to isolates from STPs that carried only CTX-M-type ESBL genes. The prevalence of the intI gene did not differ between the sources of the isolates. Certain ESBL-producing E. coli were dominant in hospital wastewaters. These strains possessed β-lactamase genes that were different from isolates found in STPs. From a public health point of view, the presence of such a high level of ESBL-producing E. coli strains in hospital wastewaters is of great importance.
Ruano, M V; Ribes, J; Seco, A; Ferrer, J
2011-01-01
This paper presents a computer tool called DSC (Simulation based Controllers Design) that enables an easy design of control systems and strategies applied to wastewater treatment plants. Although the control systems are developed and evaluated by simulation, this tool aims to facilitate the direct implementation of the designed control system to the PC of the full-scale WWTP (wastewater treatment plants). The designed control system can be programmed in a dedicated control application and can be connected to either the simulation software or the SCADA of the plant. To this end, the developed DSC incorporates an OPC server (OLE for process control) which facilitates an open-standard communication protocol for different industrial process applications. The potential capabilities of the DSC tool are illustrated through the example of a full-scale application. An aeration control system applied to a nutrient removing WWTP was designed, tuned and evaluated with the DSC tool before its implementation in the full scale plant. The control parameters obtained by simulation were suitable for the full scale plant with only few modifications to improve the control performance. With the DSC tool, the control systems performance can be easily evaluated by simulation. Once developed and tuned by simulation, the control systems can be directly applied to the full-scale WWTP.
Treated wastewater and Nitrate transport beneath irrigated fields near Dodge city, Kansas
Sophocleous, M.; Townsend, M.A.; Vocasek, F.; Ma, Liwang; Ashok, K.C.
2010-01-01
Use of secondary-treated municipal wastewater for crop irrigation south of Dodge City, Kansas, where the soils are mainly of silty clay loam texture, has raised a concern that it has resulted in high nitratenitrogen concentrations (10-50 mg/kg) in the soil and deeper vadose zone, and also in the underlying deep (20-45 m) ground water. The goal of this field-monitoring project was to assess how and under what circumstances nitrogen (N) nutrients under cultivated corn that is irrigated with this treated wastewater can reach the deep ground water of the underlying High Plains aquifer, and what can realistically be done to minimize this problem. We collected 15.2-m-deep cores for physical and chemical properties characterization; installed neutron moisture-probe access tubes and suction lysimeters for periodic measurements; sampled area monitoring, irrigation, and domestic wells; performed dye-tracer experiments to examine soil preferential-flow processes through macropores; and obtained climatic, crop, irrigation, and N-application rate records. These data and additional information were used in the comprehensive Root Zone Water Quality Model (RZWQM2) to identify key parameters and processes that influence N losses in the study area. We demonstrated that nitrate-N transport processes result in significant accumulations of N in the thick vadose zone. We also showed that nitrate-N in the underlying ground water is increasing with time and that the source of the nitrate is from the wastewater applications. RZWQM2 simulations indicated that macropore flow is generated particularly during heavy rainfall events, but during our 2005-06 simulations the total macropore flow was only about 3% of precipitation for one of two investigated sites, whereas it was more than 13% for the other site. Our calibrated model for the two wastewater-irrigated study sites indicated that reducing current levels of corn N fertilization by half or more to the level of 170 kg/ha substantially increases N-use efficiency and achieves near-maximum crop yield. Combining such measures with a crop rotation that includes alfalfa should further reduce the amounts of residual N in the soil, as indicated in one of the study sites that had alfalfa in past crop rotations.
Reducing soluble phosphorus in dairy effluents through application of mine drainage residuals
Sibrell, Philip L.; Penn, Chad J.; Hedin, Robert S.
2015-01-01
Three different dairy manure wastewater effluent samples were amended with mine drainage residuals (MDR) to evaluate the suitability of MDR for sequestration of phosphorus (P). Geochemical modeling of the manure wastewater compositions indicated that partially soluble P-bearing minerals including hydroxyapatite, octacalcium phosphate, and vivianite were all oversaturated in each of the manure wastewater samples. Initial MDR amendment test results indicated that these partially soluble P minerals suspended in the wastewater replenished P in the water phase as it was sorbed by the MDR samples. Further investigations revealed that the MDR samples were effective in decreasing soluble P when the amended manure was tested using the water-extractable P procedure. Under these conditions, up to 90 percent of the soluble P in the manure was converted to a sorbed, water-insoluble state. Water contamination and large-scale validation tests of the process were also conducted.
Wesolowski, Edwin A.
1996-01-01
Pursuant to Section 303(d) of the Clean Water Act, both North Dakota and Minnesota identified part of the Red River of the North (Red River) as water-quality limited. The states are required to determine the total maximum daily load (TMDL) that can be discharged to a water-quality limited reach from various pollution sources without contravening water-quality standards (U.S. Environmental Protection Agency, 1991). A work group consisting of local, State, and Federal agency representatives that was organized in June 1994 decided that a TMDL should be developed in phases for a subreach of the Red River at Fargo, N. Dak., and Moorhead, Minn. (fig. 1). In the first phase, which is the basis for this report, the focus is on attainment of the instream dissolved-oxygen (DO) standard during low streamflows, and only Fargo and Moorhead wastewater-treatment-plant discharges and Sheyenne River inflow are considered. The study reach begins about 0.1 mile (mi) downstream (north) of the 12th Avenue North bridge in Fargo and extends 30.8 mi downstream to a site 0.8 mi upstream of the confluence of the Buffalo and Red Rivers (fig. 1). Nitrification of total ammonia (ammonia) from Fargo and Moorhead wastewater consumes most of the DO in the study reach (Wesolowski, 1994). Because the new (1995) Fargo plant already is nitrifying its wastewater, the work group needed to determine the maximum ammonia concentration for wastewater from the nonnitrifying Moorhead plant. To accomplish this task, the Red River at Fargo Water-Quality (RRatFGO QW) model (Wesolowski, 1994, 1996b) was used to simulate the effects of various wastewater-management alternatives during low streamflow. This report presents the results of those simulations to determine the usefulness of the model for management decisions. The simulations and report were completed in cooperation with the North Dakota Department of Health.
Durability of visitable concrete sewer gallery under the effect of domestic wastewater
NASA Astrophysics Data System (ADS)
Salhi, Aimed; Kriker, Abdelouahed; Tioua, Tahar; Abimiloud, Youcef; Barluenga, Gonzalo
2016-07-01
The durability of concrete structures for the disposal of wastewater depends on their behavior when faced to different aggressions such as mechanics, chemical and biological, causing a deterioration often cementing matrix. The deterioration of recent evacuations wastewater infrastructure, made of reinforced concrete less than 15 years ago, has become an important concern. The aim of this study was to investigate the degradation and the factors responsible for the deterioration of the concrete visitable gallery of sewage from the town of Touggourt (south-east of Algeria). Thus, samples from different parts of the gallery were extracted and unaltered samples were selected as a reference. A degraded sample exposed to H2S gas and another sample of the gallery submerged into wastewater were analyzed to characterize the internal and external damage to the gallery as well as the chemical and mineralogical changes. These tests were complemented by a physical and mechanical characterization of the samples. The experimental results showed the strong anisotropy of both internal and external damage.
Zhu, Xian-Dong; Zhang, Kun; Wang, Yu; Long, Wei-Wei; Sa, Rong-Jian; Liu, Tian-Fu; Lü, Jian
2018-02-05
A Zn(II)-based fluorescent metal-organic framework (MOF) was synthesized and applied as a highly sensitive and quickly responsive chemical sensor for antibiotic detection in simulated wastewater. The fluorescent chemical sensor, denoted FCS-1, exhibited enhanced fluorescence derived from its highly ordered, 3D MOF structure as well as excellent water stability in the practical pH range of simulated antibiotic wastewater (pH = 3.0-9.0). Remarkably, FCS-1 was able to effectively detect a series of sulfonamide antibiotics via photoinduced electron transfer that caused detectable fluorescence quenching, with fairly low detection limits. Two influences impacting measurements related to wastewater treatment and water quality monitoring, the presence of heavy-metal ions and the pH of solutions, were studied in terms of fluorescence quenching, which was nearly unaffected in sulfonamide-antibiotic detection. Additionally, the effective detection of sulfonamide antibiotics was rationalized by the theoretical computation of the energy bands of sulfonamide antibiotics, which revealed a good match between the energy bands of FCS-1 and sulfonamide antibiotics, in connection with fluorescence quenching in this system.
Yang, Yuan-Yuan; Liu, Wang-Rong; Liu, You-Sheng; Zhao, Jian-Liang; Zhang, Qian-Qian; Zhang, Min; Zhang, Jin-Na; Jiang, Yu-Xia; Zhang, Li-Juan; Ying, Guang-Guo
2017-07-15
Wastewater indicator is a useful tool for evaluating the wastewater impact on natural water, but there is little information about the suitability of wastewater indicators for different regions. This study aimed to select suitable wastewater indicators in the Pearl River Delta region, south China by screening a range of wastewater related organic compounds. The screening campaign was carried out by investigating the occurrence and removal efficiencies of 93 pharmaceuticals and personal care products (PPCPs) and 5 artificial sweeteners (ASs) in nine wastewater treatment plants (WWTPs) located in the region, and the occurrence of these target compounds in the contaminated and clean surface water of the Pearl River. An ideal wastewater indicator should be hydrophilic, source-specific for domestic wastewater, ubiquitous in contaminated surface water with detection frequency (DF) >80% and absent in background water samples. For liable indicators, high removal rates (>90%) should be observed in WWTPs and they should be detected in all the influent samples at concentrations fifty times higher than their limits of quantification. For conservative indicators, low removal rates (<50%) should be observed in WWTPs and they should be detected in all the effluent samples at concentrations fifty times higher than their limits of quantification. Based on the above criteria, sucralose and fluconazole were selected as conservative indicators in the region, while cyclamate, saccharin, methyl paraben, ethyl paraben, propyl paraben, paracetamol, salicylic acid and caffeine were selected as liable indicators. Copyright © 2017 Elsevier B.V. All rights reserved.
Photocatalytic treatment of RDX wastewater with nano-sized titanium dioxide.
Liu, Zongkuan; He, Yanling; Li, Feng; Liu, Yonghong
2006-09-01
The polynitramines, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), are important military explosives and regulated toxic hazardous compounds. Production, testing and use of the compounds has resulted in numerous acres of contaminated soils and groundwater near many munitions facilities. Economical and efficient methods for treatment of wastewater and cleanup of soils or groundwater containing RDX and HMX are needed. This study focuses on the photocatalytic treatment of RDX wastewater with nano-sized titanium dioxide (nano-TiO2) under simulated sunlight, whose intensity and wavelength are similar to that of the real sunlight in Xi'an at noon. The objective is to determine the potential for RDX destruction with nano-TiO2 in aqueous solution. An activated carbon fiber (ACF) cloth-loaded with nano-TiO2 was put into the RDX containing solution, and the concentration of RDX was measured (by HPLC-UV) at regular time intervals under simulated sunlight. The RDX degradation percentage of the photocatalytic process is higher than that of Fenton oxidation before 80 min, equivalent after 80 min, and it reaches 95% or above after 120 min. The nano-TiO2 catalyst can be used repeatedly. The photocatalytic degradation kinetics of RDX under simulated sunlight can be described by a first-order reaction kinetics equation. The possible degradation mechanism of RDX was presented and the degradation performance was compared with that of biological method. It was demonstrated that the degradation of RDX wastewater is very effective with nano-TiO2 as the photocatalytic catalyst under simulated sunlight. The efficiency of the nano-TiO2 catalyst for RDX degradation under simulated sunlight is nearly identical to that of Fenton oxidation. To date, a number of catalysts show poor absorption and utilization of sunlight, and still need ultraviolet light irradiation during wastewater degradation. The nano-TiO2 used in the described experiments features very good degradation of RDX under simulated sunlight, and the manufacturing costs are rather low (around 10 Euro/m2). Moreover, the degradation efficiency is higher compared to that of the biological method. This method exhibits great potential for practical applications owing to its easiness and low cost. If it can be applied extensively, the efficiency of wastewater treatment will be enhanced greatly.
NASA Astrophysics Data System (ADS)
Mok, Young Sun; Jo, Jin-Oh; Lee, Heon-Ju
2008-02-01
The physicochemical processes of dielectric barrier discharge (DBD) such as in-situ formation of chemically active species and emission of ultraviolet (UV)/visible light were utilized for the treatment of a simulated wastewater formed with Acid Red 4 as the model organic contaminant. The chemically active species (mostly ozone) produced in the DBD reactor were well distributed in the wastewater using a porous gas diffuser, thereby increasing the gas-liquid contact area. For the purpose of making the best use of the light emission, a titanium oxide-based photocatalyst was incorporated in the wastewater treating system. The experimental parameters chosen were the voltage applied to the DBD reactor, the initial pH of the wastewater, and the concentration of hydrogen peroxide added to the wastewater. The results have clearly shown that the present system capable of degrading organic contaminants in two ways (photocatalysis and ozonation) may be a promising wastewater treatment technology.
Occurrence of Legionella in wastewater treatment plants linked to wastewater characteristics.
Caicedo, C; Beutel, S; Scheper, T; Rosenwinkel, K H; Nogueira, R
2016-08-01
In recent years, the occurrence of Legionella in wastewater treatment plants (WWTP) has often been reported. However, until now there is limited knowledge about the factors that promote Legionella's growth in such systems. The aim of this study was to investigate the chemical wastewater parameters that might be correlated to the concentration of Legionella spp. in WWTP receiving industrial effluents. For this purpose, samples were collected at different processes in three WWTP. In 100 % of the samples taken from the activated sludge tanks Legionella spp. were detected at varying concentrations (4.8 to 5.6 log GU/mL) by the quantitative real-time polymerase chain reaction method, but not by the culture method. Statistical analysis with various parameters yielded positive correlations of Legionella spp. concentration with particulate chemical oxygen demand, Kjeldahl nitrogen and protein concentration. Amino acids were quantified in wastewater and activated sludge samples at concentrations that may not support the growth of Legionella, suggesting that in activated sludge tanks this bacterium multiplied in protozoan hosts.
Abiotic Transformations Of 17α-Estradiol In Simulated Wastewater Influent
Scientists from various disciplines have been studying the fate, impact and transport of estrogens in natural and engineered systems. Emphasis is mostly focused on natural and synthetic estrogens affiliated with humans and animals. It is widely accepted that Wastewater Treatmen...
An, Ye; de Ridder, David Johannes; Zhao, Chun; Schoutteten, Klaas; Bussche, Julie Vanden; Zheng, Huaili; Chen, Gang; Vanhaecke, Lynn
2016-01-01
To evaluate the performance of zeolite-supported carbon-doped TiO(2) composite catalysts toward target pollutants under solar light irradiation, the adsorption and photocatalytic degradation of 18 pharmaceuticals and pesticides with distinguishing features (molecular size and volume, and photolysis) were investigated using mordenite zeolites with SiO(2)/Al(2)O(3) ratios of 18 and 240. Different quantities of carbon-doped TiO(2) were coated on the zeolites, and then the finished composite catalysts were tested in demineralized, surface, and hospital wastewater samples, respectively. The composite photocatalysts were characterized by X-ray diffraction, field emission scanning electron microscopy, and surface area and porosity analyses. Results showed that a dispersed layer of carbon-doped TiO(2) is formed on the zeolite surface; this layer blocks the micropores of zeolites and reduces their surface area. However, these reductions did not significantly affect adsorption onto the zeolites. Our results demonstrated that zeolite-supported carbon-doped TiO(2) systems can effectively degrade 18 pharmaceuticals and pesticides in demineralized water under natural and simulated solar light irradiation. In surface and hospital wastewaters, zeolite-supported carbon-doped TiO(2) systems present excellent anti-interference capability against radical scavengers and competitive organics for pollutants removal, and higher pollutants adsorption on zeolites evidently enhances the removal rate of target pollutants in surface and hospital wastewater samples with a complicated matrix.
NASA Astrophysics Data System (ADS)
Breach, Patrick A.; Simonovic, Slobodan P.
2018-04-01
Approximately 20% of wastewaters globally do not receive treatment, whereas wastewater discharges are projected to increase, thereby leading to excessive water quality degradation of surface waters on a global scale. Increased treatment could help alleviate water quality issues by constructing more treatment plants; however, in many areas there exist economic constraints. Energy recovery methods including the utilization of biogas and incineration of biosolids generated during the treatment process may help to alleviate treatment costs. This study explores the potential for investments in energy recovery from wastewater to increase treatment levels and thus improve surface water quality. This was done by examining the relationships between nutrient over-enrichment, wastewater treatment, and energy recovery at a global scale using system dynamics simulation as part of the ANEMI integrated assessment model. The results show that a significant amount of energy can be recovered from wastewater, which helps to alleviate some of the costs of treatment. It was found that wastewater treatment levels could be increased by 34%, helping to offset the higher nutrient loading from a growing population with access to improved sanitation. The production of renewable natural gas from biogas was found to have the potential to prolong the depletion of natural gas resources used to produce electricity and heat. It is recommended that agricultural nutrient discharges be better managed to help reduce nutrient over-enrichment on global scale. To increase the utility of the simulation, a finer spatial scale should be used to consider regional treatment, economic, and water quality characteristics.
Breach, Patrick A; Simonovic, Slobodan P
2018-04-01
Approximately 20% of wastewaters globally do not receive treatment, whereas wastewater discharges are projected to increase, thereby leading to excessive water quality degradation of surface waters on a global scale. Increased treatment could help alleviate water quality issues by constructing more treatment plants; however, in many areas there exist economic constraints. Energy recovery methods including the utilization of biogas and incineration of biosolids generated during the treatment process may help to alleviate treatment costs. This study explores the potential for investments in energy recovery from wastewater to increase treatment levels and thus improve surface water quality. This was done by examining the relationships between nutrient over-enrichment, wastewater treatment, and energy recovery at a global scale using system dynamics simulation as part of the ANEMI integrated assessment model. The results show that a significant amount of energy can be recovered from wastewater, which helps to alleviate some of the costs of treatment. It was found that wastewater treatment levels could be increased by 34%, helping to offset the higher nutrient loading from a growing population with access to improved sanitation. The production of renewable natural gas from biogas was found to have the potential to prolong the depletion of natural gas resources used to produce electricity and heat. It is recommended that agricultural nutrient discharges be better managed to help reduce nutrient over-enrichment on global scale. To increase the utility of the simulation, a finer spatial scale should be used to consider regional treatment, economic, and water quality characteristics.
Influence of a non-hospital medical care facility on antimicrobial resistance in wastewater.
Bäumlisberger, Mathias; Youssar, Loubna; Schilhabel, Markus B; Jonas, Daniel
2015-01-01
The global widespread use of antimicrobials and accompanying increase in resistant bacterial strains is of major public health concern. Wastewater systems and wastewater treatment plants are considered a niche for antibiotic resistance genes (ARGs), with diverse microbial communities facilitating ARG transfer via mobile genetic element (MGE). In contrast to hospital sewage, wastewater from other health care facilities is still poorly investigated. At the instance of a nursing home located in south-west Germany, in the present study, shotgun metagenomics was used to investigate the impact on wastewater of samples collected up- and down-stream in different seasons. Microbial composition, ARGs and MGEs were analyzed using different annotation approaches with various databases, including Antibiotic Resistance Ontologies (ARO), integrons and plasmids. Our analysis identified seasonal differences in microbial communities and abundance of ARG and MGE between samples from different seasons. However, no obvious differences were detected between up- and downstream samples. The results suggest that, in contrast to hospitals, sewage from the nursing home does not have a major impact on ARG or MGE in wastewater, presumably due to much less intense antimicrobial usage. Possible limitations of metagenomic studies using high-throughput sequencing for detection of genes that seemingly confer antibiotic resistance are discussed.
Güneş, Elçin; Çifçi, Deniz İzlen; Çelik, Suna Özden
2018-04-01
The present study aims to explore the characterization of industrial container and drum cleaning (ICDC) industry wastewater and treatment alternatives of this wastewater using Fenton and adsorption processes. Wastewater derived from ICDC industry is usually treated by chemical coagulation and biological treatment in Turkey and then discharged in a centralized wastewater treatment facility. It is required that the wastewater COD is below 1500 mg/L to treat in a centralized wastewater treatment facility. The wastewater samples were characterized for parameters of pH, conductivity, COD, BOD 5 , TSS, NH 3 -N, TN, TOC, TP, Cd, Cr, Cu, Fe, Ni, Pb, Zn, and Hg. Initial COD values were in the range of 11,300-14,200 mg/L. The optimum conditions for Fenton treatment were 35-40 g/L for H 2 O 2 , 2-5 g/L for Fe 2+ , and 13-36 for H 2 O 2 /Fe 2+ molar ratio. The optimum conditions of PAC doses and contact times in adsorption studies were 20-30 g/L and 5-12 h, respectively. Removal efficiencies of characterized parameters for the three samples were compared for both Fenton and adsorption processes under optimum conditions. The results suggest that these wastewaters are suitable for discharge to a centralized wastewater treatment plant.
MERCURY(II) ADSORPTION FROM WASTEWATERS USING A THIOL FUNCTIONAL ADSORBENT
The removal of mercury(II) from wastewaters (coal-fired utility plant scrubber solutions) using a thiol functional organoceramic composite (SOL-AD-IV) is investigated. A simulant is employed as a surrogate to demonstrate the removal of mercury from real waste solutions. Equilibri...
Turbidimetric Analysis of Water and Wastewater Samples Using a Spectrofluorimeter
NASA Astrophysics Data System (ADS)
Evans, Jason J.
2000-12-01
As student interest in environmental science grows, many colleges and universities are developing new courses in environmental chemistry. Environmental analysis in the "real world" has become increasingly instrumental, and it is important to introduce students to the instruments and procedures that are commonly used in environmental laboratories. Turbidimetric analysis of water and wastewater is ordinarily performed in environmental laboratories using a nephelometer. This experiment illustrates that a spectrofluorimeter can be successfully employed for these types of analysis. Samples from various stages of the water and wastewater treatment processes were collected from the Carlisle Water and Wastewater Treatment Plants. The students in our Environmental Chemistry laboratory used the spectrofluorimeter to measure the scattering intensity from the samples and from a series of formazine standards. The standard curve produced from their data gave a correlation coefficient of .999, and the detection limit was 0.03 Standard Turbidity Units, which is sufficient to obtain meaningful data on most water samples. This experiment was an excellent supplement to lecture material covering water and wastewater treatment because the students were able to monitor the level of suspended particulates in the water as it makes its way through the treatment plants.
Pathogens Assessment in Reclaimed Effluent Used for Industrial Crops Irrigation
Al-Sa’ed, R.
2007-01-01
Reuse of treated effluent is a highly valued water source in Palestine, however with limited success due to public health concerns. This paper assesses the potential pathogens in raw, treated and reclaimed wastewater at Albireh urban wastewater treatment facility, and provides scientific knowledge to update the Palestinian reuse guidelines. Laboratory analyses of collected samples over a period of 4 months have indicated that the raw wastewater from Albireh city contained high numbers of fecal coliforms and worm eggs while 31% of the samples were Salmonella positive. Treated effluent suitable for restricted irrigation demonstrated that the plant was efficient in removing indicator bacteria, where fecal coliforms and fecal streptococci removal averaged 99.64% and 93.44%, respectively. Although not disinfected, treated effluent was free of Salmonella and parasites, hence safe for restricted agricultural purposes. All samples of the reclaimed effluent and three samples of irrigated grass were devoid of microbial pathogens indicating a safe use in unrestricted agricultural utilization. Adequate operation of wastewater treatment facilities, scientific updating of reuse guidelines and launching public awareness campaigns are core factors for successful and sustainable large-scale wastewater reuse schemes in Palestine. PMID:17431318
Ferrell, G.M.
2009-01-01
Samples of treated effluent and treated and untreated water were collected at 20 municipal wastewater and drinkingwater treatment facilities in the Tar and Cape Fear River basins of North Carolina during 2003 and 2005. The samples were analyzed for a variety of prescription and nonprescription pharmaceutical compounds and a suite of organic compounds considered indicative of wastewater. Concentrations of these compounds generally were less than or near the detection limits of the analytical methods used during this investigation. None of these compounds were detected at concentrations that exceeded drinking-water standards established by the U.S. Environmental Protection Agency. Bromoform, a disinfection byproduct, was the only compound detected at a concentration that exceeded regulatory guidelines. The concentration of bromoform in one finished drinking-water sample, 26 micrograms per liter, exceeded North Carolina water-quality criteria. Drinking-water treatment practices were effective at removing many of the compounds detected in untreated water. Disinfection processes used in wastewater treatment - chlorination or irradiation with ultraviolet light - did not seem to substantially degrade the organic compounds evaluated during this study.
Santín, I; Barbu, M; Pedret, C; Vilanova, R
2018-06-01
The application of control strategies is increasingly used in wastewater treatment plants with the aim of improving effluent quality and reducing operating costs. Due to concerns about the progressive growth of greenhouse gas emissions (GHG), these are also currently being evaluated in wastewater treatment plants. The present article proposes a fuzzy controller for plant-wide control of the biological wastewater treatment process. Its design is based on 14 inputs and 6 outputs in order to reduce GHG emissions, nutrient concentration in the effluent and operational costs. The article explains and shows the effect of each one of the inputs and outputs of the fuzzy controller, as well as the relationship between them. Benchmark Simulation Model no 2 Gas is used for testing the proposed control strategy. The results of simulation results show that the fuzzy controller is able to reduce GHG emissions while improving, at the same time, the common criteria of effluent quality and operational costs. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Franca, R D G; Ortigueira, J; Pinheiro, H M; Lourenço, N D
2017-09-01
Treatment of the highly polluting and variable textile industry wastewater using aerobic granular sludge (AGS) sequencing batch reactors (SBRs) has been recently suggested. Aiming to develop this technology application, two feeding strategies were compared regarding the capacity of anaerobic-aerobic SBRs to deal with disturbances in the composition of the simulated textile wastewater feed. Both a statically fed, anaerobic-aerobic SBR and an anaerobic plug-flow fed, anaerobic-aerobic SBR could cope with shocks of high azo dye concentration and organic load, the overall chemical oxygen demand and color removal yields being rapidly restored to 80%. Yet, subsequent azo dye metabolite bioconversion was not observed, along the 315-day run. Moreover, switching from a starch-based substrate to acetate in the feed composition deteriorated AGS stability. Overall, the plug-flow fed SBR recovered more rapidly from the imposed disturbances. Further research is needed towards guaranteeing long-term AGS stability during the treatment of textile wastewater.
BENCH-SCALE EVALUATION OF AMMONIA REMOVAL FROM WASTEWATER BY STEAM STRIPPING
The purpose of the study was to generate laboratory data to support the development of wastewater discharge standards for ammonia in nonferrous metal winning processes. The objective was accomplished by studying ammonia removal from synthetically compounded 'wastewater' samples u...
NASA Astrophysics Data System (ADS)
Thebo, A.
2016-12-01
Urban wastewater provides a reliable, nutrient rich source of irrigation water for downstream agricultural producers. However, globally, less than ten percent of collected wastewater receives any form of treatment, resulting in the widespread indirect reuse of untreated, diluted wastewater from surface water sources. This research explores these links between water scarcity, anthropogenic drivers of water quality, and adaptation strategies farmer's employ through a case study in Dharwad, a mid-sized South Indian city. This study took an interdisciplinary approach, incorporating survey based research with geospatial analysis, and molecular methods (for waterborne pathogen detection) to develop a systems level understanding of the drivers, health risks, and adaptation strategies associated with the indirect reuse of wastewater in irrigated agriculture. In Dharwad, farmers with better access to wastewater reported growing more water-intensive, but higher value vegetable crops. While farmers further downstream tended to grow more staple crops. This study evaluated levels of culturable E. coli and diarrheagenic E. coli pathotype gene targets to assess contamination in irrigation water, soil, and on produce from farms. Irrigation water source was a major factor affecting the concentrations of culturable E. coli detected in soil samples and on greens. However, even when irrigation water was not contaminated (all borewell water samples) some culturable E. coli were present at low concentrations in soil and on produce samples, suggesting additional sources of contamination on farms. Maximum temperatures within the previous week showed a significant positive association with concentrations of E. coli on wastewater irrigated produce. This presentation will focus on discussing the ways in which urban wastewater management, climate, irrigation practices and cultivation patterns all come together to define the risks and benefits posed via the indirect reuse of wastewater.
Dynamics of Nutrients Transport in Onsite Wastewater Treatment Systems
NASA Astrophysics Data System (ADS)
Toor, G.; De, M.
2013-05-01
Domestic wastewater is abundant in nutrients¬ that originate from various activities in the households. In developed countries, wastewater is largely managed by (1) centralized treatment where wastewater from large population is collected, treated, and discharged and (2) onsite treatment where wastewater is collected from an individual house, treated, and dispersed onsite; this system is commonly known as septic system or onsite wastewater treatment system (OWTS) and consist of a septic tank (collects wastewater) and drain-field (disperses wastewater in soil). In areas with porous sandy soils, the transport of nutrients from drain-field to shallow groundwater is accelerated. To overcome this limitation, elevated disposal fields (commonly called mounds) on top of the natural soil are constructed to provide unsaturated conditions for wastewater treatment. Our objective was to study the dynamics of nitrogen (N) and phosphorus (P) transport in the vadose zone and groundwater in traditional and advanced OWTS. Soil water samples were collected from the vadose zone by using suction cup lysimeters and groundwater samples were collected by using piezometers. Collected samples (wastewater, soil-water, groundwater) were analyzed for various water quality parameters. The pH (4.39-4.78) and EC (0.28-0.34 dS/m) of groundwater was much lower than both wastewater and soil-water. In contrast to >50 mg/L of ammonium-N in wastewater, concentrations in all lysimeters (0.02-0.81 mg/L) and piezometers (0.01-0.82 mg/L) were <1 mg/L; suggesting that >99% disappeared (primarily nitrified) in the vadose zone (<1.05-m soil profile depth). In the vadose zone of advanced system, heterotrophic and autrotrophic denitrification reduced nitrate-N concentrations to <0.12 mg/L, compared with >20 mg/L in the vadose zones of traditional systems (drip dispersal and gravel trench). Concentrations of chloride showed a distinct pattern of nitrate-N breakthrough in vadose zone and groundwater; the groundwater nitrate-N was elevated upto 19.2 mg/L after wastewater delivery in tradional systems. Total P in the wastewater was ~10 mg/L, but low in all lysimeters (0.046-1.72 mg/L) and piezometers (0.01-0.78 mg/L) indicating enhanced P attenuation in the vadose zone of all systems.
Tagg, Alexander S; Sapp, Melanie; Harrison, Jesse P; Ojeda, Jesús J
2015-06-16
Microplastics (<5 mm) have been documented in environmental samples on a global scale. While these pollutants may enter aquatic environments via wastewater treatment facilities, the abundance of microplastics in these matrices has not been investigated. Although efficient methods for the analysis of microplastics in sediment samples and marine organisms have been published, no methods have been developed for detecting these pollutants within organic-rich wastewater samples. In addition, there is no standardized method for analyzing microplastics isolated from environmental samples. In many cases, part of the identification protocol relies on visual selection before analysis, which is open to bias. In order to address this, a new method for the analysis of microplastics in wastewater was developed. A pretreatment step using 30% hydrogen peroxide (H2O2) was employed to remove biogenic material, and focal plane array (FPA)-based reflectance micro-Fourier-transform (FT-IR) imaging was shown to successfully image and identify different microplastic types (polyethylene, polypropylene, nylon-6, polyvinyl chloride, polystyrene). Microplastic-spiked wastewater samples were used to validate the methodology, resulting in a robust protocol which was nonselective and reproducible (the overall success identification rate was 98.33%). The use of FPA-based micro-FT-IR spectroscopy also provides a considerable reduction in analysis time compared with previous methods, since samples that could take several days to be mapped using a single-element detector can now be imaged in less than 9 h (circular filter with a diameter of 47 mm). This method for identifying and quantifying microplastics in wastewater is likely to provide an essential tool for further research into the pathways by which microplastics enter the environment.
Walter, Donald A.
2008-01-01
The unconsolidated glacial sediments underlying Cape Cod, Massachusetts compose a regional aquifer system that is used both as a source of drinking water and as a disposal site for wastewater; in addition, the discharge of clean ground water from the aquifer system is needed for the maintenance of freshwater and marine ecosystems throughout the region. Because these uses of the aquifer conflict with one another in many areas of the Cape, local and regional planners have begun to develop sustainable wastewater plans that will facilitate the disposal of wastewater while protecting water supplies and improving the health of aquatic ecosystems. To assist local and regional planners in these efforts, the U.S. Geological Survey conducted a 2-year investigation to (1) assist local and regional planners in the evaluation of potential wastewater scenarios, (2) use results and interpretation from these analyses to develop hydrologic concepts transferable throughout the region, and (3) establish and test methods that would be of use in future evaluations. Wastewater-disposal scenarios need to be evaluated in the context of the regional ground-water-flow system. For a given rate of disposal, wastewater from sites at or near a regional ground-water divide is transported in a wider arc of flow directions, flows deeper in the system, and contaminates a larger part of the aquifer than does wastewater discharged from sites farther from the divide. Also, traveltimes of wastewater from sites near a ground-water divide to receptors are longer (as much as several hundred years) than traveltimes from sites farther from the divide. Thus, wastewater disposal at or near a divide will affect a larger part of the aquifer and likely contribute wastewater to more receptors than wastewater disposal farther from a divide; however, longer traveltimes could allow for more attenuation of wastewater-derived nitrate from those sites. Ground-water-flow models and particle tracking can be used to identify advective-transport patterns downgradient from wastewater-disposal sites and estimate traveltimes; however, these tools cannot predict the distribution of mass or concentrations of wastewater constituents, such as nitrate, in the aquifer. Flow-based particle-tracking analyses can be used to estimate mass-loading rates and time-varying concentrations at wells and ecological receptors by the accounting of mass-weighted particles discharging into the receptor of interest. This method requires no additional development beyond the flow model; however, post-modeling analyses are required. In addition, the method is based on the assumption that no mass is lost during transport, an assumption that likely is not valid in many systems. Solute-transport models simulate the subsurface transport of nitrate through the aquifer and predict the distribution of the mass of a solute in the aquifer at different transport times. This method does require additional model development beyond the flow model, but can predict timevarying concentrations at receptors. Estimates of mass-loading rates require minimal post-modeling analyses. Time-varying concentrations and mass-loading rates calculated for wells in eastern Barnstable by the two methods generally were in reasonable agreement. Inherent in the flow-based particle-tracking method is the assumption that mass is conserved along a given flow line and that there is no spreading of mass in the aquifer. Although the solute-transport models also incorporate a system-wide conservation of mass, these models allow for a spreading of mass in the aquifer, and mass is not conserved along a given flow line. As a result, estimates of concentrations and mass loading rates generally were higher in particle-tracking analyses than in solute-transport simulations. Results from the two types of simulations agreed best for wells that receive large amounts of wastewater with short traveltimes (less than 10 years) because insufficient transport
Zhi, Shuai; Banting, Graham; Li, Qiaozhi; Edge, Thomas A.; Topp, Edward; Sokurenko, Mykola; Scott, Candis; Braithwaite, Shannon; Ruecker, Norma J.; Yasui, Yutaka; McAllister, Tim; Chui, Linda
2016-01-01
ABSTRACT Escherichia coli has been proposed to have two habitats—the intestines of mammals/birds and the nonhost environment. Our goal was to assess whether certain strains of E. coli have evolved toward adaptation and survival in wastewater. Raw sewage samples from different treatment plants were subjected to chlorine stress, and ∼59% of the surviving E. coli strains were found to contain a genetic insertion element (IS30) located within the uspC-flhDC intergenic region. The positional location of the IS30 element was not observed across a library of 845 E. coli isolates collected from various animal hosts or within GenBank or whole-genome reference databases for human and animal E. coli isolates (n = 1,177). Phylogenetics clustered the IS30 element-containing wastewater E. coli isolates into a distinct clade, and biomarker analysis revealed that these wastewater isolates contained a single nucleotide polymorphism (SNP) biomarker pattern that was specific for wastewater. These isolates belonged to phylogroup A, possessed generalized stress response (RpoS) activity, and carried the locus of heat resistance, features likely relevant to nonhost environmental survival. Isolates were screened for 28 virulence genes but carried only the fimH marker. Our data suggest that wastewater contains a naturalized resident population of E. coli. We developed an endpoint PCR targeting the IS30 element within the uspC-flhDC intergenic region, and all raw sewage samples (n = 21) were positive for this marker. Conversely, the prevalence of this marker in E. coli-positive surface and groundwater samples was low (≤5%). This simple PCR assay may represent a convenient microbial source-tracking tool for identification of water samples affected by municipal wastewater. IMPORTANCE The results of this study demonstrate that some strains of E. coli appear to have evolved to become naturalized populations in the wastewater environment and possess a number of stress-related genetic elements likely important for survival in this nonhost environment. The presence of non-host-adapted strains in wastewater challenges our understanding of using E. coli as a microbial indicator of wastewater treatment performance, suggesting that the E. coli strains present in human and animal feces may be very different from those found in treated wastewater. PMID:27371583
Blaak, Hetty; Lynch, Gretta; Italiaander, Ronald; Hamidjaja, Raditijo A.; Schets, Franciska M.; de Roda Husman, Ana Maria
2015-01-01
Objective The goal of the current study was to gain insight into the prevalence and concentrations of antimicrobial resistant (AMR) Escherichia coli in Dutch surface water, and to explore the role of wastewater as AMR contamination source. Methods The prevalence of AMR E. coli was determined in 113 surface water samples obtained from 30 different water bodies, and in 33 wastewater samples obtained at five health care institutions (HCIs), seven municipal wastewater treatment plants (mWWTPs), and an airport WWTP. Overall, 846 surface water and 313 wastewater E. coli isolates were analysed with respect to susceptibility to eight antimicrobials (representing seven different classes): ampicillin, cefotaxime, tetracycline, ciprofloxacin, streptomycin, sulfamethoxazole, trimethoprim, and chloramphenicol. Results Among surface water isolates, 26% were resistant to at least one class of antimicrobials, and 11% were multidrug-resistant (MDR). In wastewater, the proportions of AMR/MDR E. coli were 76%/62% at HCIs, 69%/19% at the airport WWTP, and 37%/27% and 31%/20% in mWWTP influents and effluents, respectively. Median concentrations of MDR E. coli were 2.2×102, 4.0×104, 1.8×107, and 4.1×107 cfu/l in surface water, WWTP effluents, WWTP influents and HCI wastewater, respectively. The different resistance types occurred with similar frequencies among E. coli from surface water and E. coli from municipal wastewater. By contrast, among E. coli from HCI wastewater, resistance to cefotaxime and resistance to ciprofloxacin were significantly overrepresented compared to E. coli from municipal wastewater and surface water. Most cefotaxime-resistant E. coliisolates produced ESBL. In two of the mWWTP, ESBL-producing variants were detected that were identical with respect to phylogenetic group, sequence type, AMR-profile, and ESBL-genotype to variants from HCI wastewater discharged onto the same sewer and sampled on the same day (A1/ST23/CTX-M-1, B23/ST131/CTX-M-15, D2/ST405/CTX-M-15). Conclusion In conclusion, our data show that MDR E. coli are omnipresent in Dutch surface water, and indicate that municipal wastewater significantly contributes to this occurrence. PMID:26030904
Effects of simulated rare earth recycling wastewaters on biological nitrification
Fujita, Yoshiko; Barnes, Joni; Eslamimanesh, Ali; ...
2015-07-16
Current efforts to increase domestic availability of rare-earth element (REE) supplies by recycling and expanded ore processing efforts will result in increased generation of associated wastewaters. In some cases disposal to a sewage treatment plant may be favored but plant performance must be maintained. To assess the potential effects of such wastewaters on biological wastewater treatment, model nitrifying organisms Nitrosomonas europaea and Nitrobacter winogradskyi were exposed to simulated wastewaters containing varying levels of yttrium or europium (10, 50 and 100 ppm), and the REE extractant tributyl phosphate (TBP, at 0.1 g/L). Y and Eu additions above 10 ppm inhibited N.more » europaea activity, even when initially virtually all of the REE was insoluble. The provision of TBP together with Eu increased inhibition of nitrite production by the N. europaea, although TBP alone did not substantially alter nitrifying activity N. winogradskyi was more sensitive to the stimulated wastewaters, with even 10 ppm Eu or Y inducing significant inhibition, and a complete shutdown of nitrifying activity occurred in the presence of the TBP. To analyze the availability of REEs in aqueous solutions, REE solubility has been calculated using the previously developed MSE (Mixed-Solvent Electrolyte) thermodynamic model. The model calculations reveal a strong pH dependence of solubility, which is typically controlled by the precipitation of REE hydroxides but may also be influenced by the formation of a phosphate phase.« less
Effects of simulated rare earth recycling wastewaters on biological nitrification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujita, Yoshiko; Barnes, Joni; Eslamimanesh, Ali
Current efforts to increase domestic availability of rare-earth element (REE) supplies by recycling and expanded ore processing efforts will result in increased generation of associated wastewaters. In some cases disposal to a sewage treatment plant may be favored but plant performance must be maintained. To assess the potential effects of such wastewaters on biological wastewater treatment, model nitrifying organisms Nitrosomonas europaea and Nitrobacter winogradskyi were exposed to simulated wastewaters containing varying levels of yttrium or europium (10, 50 and 100 ppm), and the REE extractant tributyl phosphate (TBP, at 0.1 g/L). Y and Eu additions above 10 ppm inhibited N.more » europaea activity, even when initially virtually all of the REE was insoluble. The provision of TBP together with Eu increased inhibition of nitrite production by the N. europaea, although TBP alone did not substantially alter nitrifying activity N. winogradskyi was more sensitive to the stimulated wastewaters, with even 10 ppm Eu or Y inducing significant inhibition, and a complete shutdown of nitrifying activity occurred in the presence of the TBP. To analyze the availability of REEs in aqueous solutions, REE solubility has been calculated using the previously developed MSE (Mixed-Solvent Electrolyte) thermodynamic model. The model calculations reveal a strong pH dependence of solubility, which is typically controlled by the precipitation of REE hydroxides but may also be influenced by the formation of a phosphate phase.« less
Alex, J; Kolisch, G; Krause, K
2002-01-01
The objective of this presented project is to use the results of an CFD simulation to automatically, systematically and reliably generate an appropriate model structure for simulation of the biological processes using CSTR activated sludge compartments. Models and dynamic simulation have become important tools for research but also increasingly for the design and optimisation of wastewater treatment plants. Besides the biological models several cases are reported about the application of computational fluid dynamics ICFD) to wastewater treatment plants. One aim of the presented method to derive model structures from CFD results is to exclude the influence of empirical structure selection to the result of dynamic simulations studies of WWTPs. The second application of the approach developed is the analysis of badly performing treatment plants where the suspicion arises that bad flow behaviour such as short cut flows is part of the problem. The method suggested requires as the first step the calculation of fluid dynamics of the biological treatment step at different loading situations by use of 3-dimensional CFD simulation. The result of this information is used to generate a suitable model structure for conventional dynamic simulation of the treatment plant by use of a number of CSTR modules with a pattern of exchange flows between the tanks automatically. The method is explained in detail and the application to the WWTP Wuppertal Buchenhofen is presented.
Khan, Muhammad Usman; Malik, Riffat Naseem; Muhammad, Said
2013-11-01
The current study was designed to investigate the potential human health risks associated with consumption of food crops contaminated with toxic heavy metals. Cadmium (Cd) concentration in surface soils; Cd, lead (Pb) and chromium (Cr) in the irrigation water and food crops were above permissible limits. The accumulation factor (AF) was >1 for manganese (Mn) and Pb in different food crops. The Health Risk Index (HRI) was >1 for Pb in all food crops irrigated with wastewater and tube well water. HRI >1 was also recorded for Cd in all selected vegetables; and for Mn in Spinacia oleracea irrigated with wastewater. All wastewater irrigated samples (soil and food crops) exhibited high relative contamination level as compared to samples irrigated with tube well water. Our results emphasized the need for pretreatment of wastewater and routine monitoring in order to avoid contamination of food crops from the wastewater irrigation system. Copyright © 2013 Elsevier Ltd. All rights reserved.
Phillips, Patrick J.; Gibson, Cathy A; Fisher, Shawn C.; Fisher, Irene; Reilly, Timothy J.; Smalling, Kelly L.; Romanok, Kristin M.; Foreman, William T.; ReVello, Rhiannon C.; Focazio, Michael J.; Jones, Daniel K.
2016-01-01
Bed sediment samples from 79 coastal New York and New Jersey, USA sites were analyzed for 75 compounds including wastewater associated contaminants, PAHs, and other organic compounds to assess the post-Hurricane Sandy distribution of organic contaminants among six regions. These results provide the first assessment of wastewater compounds, hormones, and PAHs in bed sediment for this region. Concentrations of most wastewater contaminants and PAHs were highest in the most developed region (Upper Harbor/Newark Bay, UHNB) and reflected the wastewater inputs to this area. Although the lack of pre-Hurricane Sandy data for most of these compounds make it impossible to assess the effect of the storm on wastewater contaminant concentrations, PAH concentrations in the UHNB region reflect pre-Hurricane Sandy conditions in this region. Lower hormone concentrations than predicted by the total organic carbon relation occurred in UHNB samples, suggesting that hormones are being degraded in the UHNB region.
Tran, Ngoc Han; Ngo, Huu Hao; Urase, Taro; Gin, Karina Yew-Hoong
2015-10-01
The presence of organic matter (OM) in raw wastewater, treated wastewater effluents, and natural water samples has been known to cause many problems in wastewater treatment and water reclamation processes, such as treatability, membrane fouling, and the formation of potentially toxic by-products during wastewater treatment. This paper summarizes the current knowledge on the methods for characterization and quantification of OM in water samples in relation to wastewater and water treatment processes including: (i) characterization based on the biodegradability; (ii) characterization based on particle size distribution; (iii) fractionation based on the hydrophilic/hydrophobic properties; (iv) characterization based on the molecular weight (MW) size distribution; and (v) characterization based on fluorescence excitation emission matrix. In addition, the advantages, disadvantages and applications of these methods are discussed in detail. The establishment of correlations among biodegradability, hydrophobic/hydrophilic fractions, MW size distribution of OM, membrane fouling and formation of toxic by-products potential is highly recommended for further studies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Phillips, Patrick J; Gibson, Catherine A; Fisher, Shawn C; Fisher, Irene J; Reilly, Timothy J; Smalling, Kelly L; Romanok, Kristin M; Foreman, William T; ReVello, Rhiannon C; Focazio, Michael J; Jones, Daniel K
2016-06-30
Bed sediment samples from 79 coastal New York and New Jersey, USA sites were analyzed for 75 compounds including wastewater associated contaminants, PAHs, and other organic compounds to assess the post-Hurricane Sandy distribution of organic contaminants among six regions. These results provide the first assessment of wastewater compounds, hormones, and PAHs in bed sediment for this region. Concentrations of most wastewater contaminants and PAHs were highest in the most developed region (Upper Harbor/Newark Bay, UHNB) and reflected the wastewater inputs to this area. Although the lack of pre-Hurricane Sandy data for most of these compounds make it impossible to assess the effect of the storm on wastewater contaminant concentrations, PAH concentrations in the UHNB region reflect pre-Hurricane Sandy conditions in this region. Lower hormone concentrations than predicted by the total organic carbon relation occurred in UHNB samples, suggesting that hormones are being degraded in the UHNB region. Published by Elsevier Ltd.
DETERMINATION OF DITHIOCARBAMATE PESTICIDES IN WASTEWATERS
A method was modified and validated for the determination of dithiocarbamate pesticides in wastewaters. The developed method consists of sample pH adjustment to pH 12.2; removal of indigenous CS2 by purging in a vortex evaporator; acidification of the sample to hydrolyze dithioca...
Zaugg, Steven D.; Phillips, Patrick J.; Smith, Steven G.
2014-01-01
Research on the effects of exposure of stream biota to complex mixtures of pharmaceuticals and other organic compounds associated with wastewater requires the development of additional analytical capabilities for these compounds in water samples. Two gas chromatography/mass spectrometry (GC/MS) analytical methods used at the U.S. Geological Survey National Water Quality Laboratory (NWQL) to analyze organic compounds associated with wastewater were adapted to include additional pharmaceutical and other organic compounds beginning in 2009. This report includes a description of method performance for 42 additional compounds for the filtered-water method (hereafter referred to as the filtered method) and 46 additional compounds for the unfiltered-water method (hereafter referred to as the unfiltered method). The method performance for the filtered method described in this report has been published for seven of these compounds; however, the addition of several other compounds to the filtered method and the addition of the compounds to the unfiltered method resulted in the need to document method performance for both of the modified methods. Most of these added compounds are pharmaceuticals or pharmaceutical degradates, although two nonpharmaceutical compounds are included in each method. The main pharmaceutical compound classes added to the two modified methods include muscle relaxants, opiates, analgesics, and sedatives. These types of compounds were added to the original filtered and unfiltered methods largely in response to the tentative identification of a wide range of pharmaceutical and other organic compounds in samples collected from wastewater-treatment plants. Filtered water samples are extracted by vacuum through disposable solid-phase cartridges that contain modified polystyrene-divinylbenzene resin. Unfiltered samples are extracted by using continuous liquid-liquid extraction with dichloromethane. The compounds of interest for filtered and unfiltered sample types were determined by use of the capillary-column gas chromatography/mass spectrometry. The performance of each method was assessed by using data on recoveries of compounds in fortified surface-water, wastewater, and reagent-water samples. These experiments (referred to as spike experiments) consist of fortifying (or spiking) samples with known amounts of target analytes. Surface-water-spike experiments were performed by using samples obtained from a stream in Colorado (unfiltered method) and a stream in New York (filtered method). Wastewater spike experiments for both the filtered and unfiltered methods were performed by using a treated wastewater obtained from a single wastewater treatment plant in New York. Surface water and wastewater spike experiments were fortified at both low and high concentrations and termed low- and high-level spikes, respectively. Reagent water spikes were assessed in three ways: (1) set spikes, (2) a low-concentration fortification experiment, and (3) a high-concentration fortification experiment. Set spike samples have been determined since 2009, and consist of analysis of fortified reagent water for target compounds included for each group of 10 to18 environmental samples analyzed at the NWQL. The low-concentration and high-concentration reagent spike experiments, by contrast, represent a one-time assessment of method performance. For each spike experiment, mean recoveries ranging from 60 to 130 percent indicate low bias, and relative standard deviations (RSDs) less than ( Of the compounds included in the filtered method, 21 had mean recoveries ranging from 63 to 129 percent for the low-level and high-level surface-water spikes, and had low ()132 percent]. For wastewater spikes, 24 of the compounds included in the filtered method had recoveries ranging from 61 to 130 percent for the low-level and high-level spikes. RSDs were 130 percent) or variable recoveries (RSDs >30 percent) for low-level wastewater spikes, or low recoveries ( Of the compounds included in the unfiltered method, 17 had mean spike recoveries ranging from 74 to 129 percent and RSDs ranging from 5 to 25 percent for low-level and high-level surface water spikes. The remaining compounds had poor mean recoveries (130 percent), or high RSDs (>29 percent) for these spikes. For wastewater, 14 of the compounds included in the unfiltered method had mean recoveries ranging from 62 to 127 percent and RSDs 130 percent), or low mean recoveries (33 percent) for the low-level wastewater spikes. Of the compounds found in wastewater, 24 had mean set spike recoveries ranging from 64 to 104 percent and RSDs Separate method detection limits (MDLs) were computed for surface water and wastewater for both the filtered and unfiltered methods. Filtered method MDLs ranged from 0.007 to 0.14 microgram per liter (μg/L) for the surface water matrix and from 0.004 to 0.62 μg/L for the wastewater matrix. Unfiltered method MDLs ranged from 0.014 to 0.33 μg/L for the surface water matrix and from 0.008 to 0.36 μg/L for the wastewater matrix.
Alvarez, D.A.; Stackelberg, P.E.; Petty, J.D.; Huckins, J.N.; Furlong, E.T.; Zaugg, S.D.; Meyer, M.T.
2005-01-01
Four water samples collected using standard depth and width water-column sampling methodology were compared to an innovative passive, in situ, sampler (the polar organic chemical integrative sampler or POCIS) for the detection of 96 organic wastewater-related contaminants (OWCs) in a stream that receives agricultural, municipal, and industrial wastewaters. Thirty-two OWCs were identified in POCIS extracts whereas 9-24 were identified in individual water-column samples demonstrating the utility of POCIS for identifying contaminants whose occurrence are transient or whose concentrations are below routine analytical detection limits. Overall, 10 OWCs were identified exclusively in the POCIS extracts and only six solely identified in the water-column samples, however, repetitive water samples taken using the standard method during the POCIS deployment period required multiple trips to the sampling site and an increased number of samples to store, process, and analyze. Due to the greater number of OWCs detected in the POCIS extracts as compared to individual water-column samples, the ease of performing a single deployment as compared to collecting and processing multiple water samples, the greater mass of chemical residues sequestered, and the ability to detect chemicals which dissipate quickly, the passive sampling technique offers an efficient and effective alternative for detecting OWCs in our waterways for wastewater contaminants.
Mirzaee, Seyyed Abbas; Nikaeen, Mahnaz; Hajizadeh, Yaghob; Nabavi, BiBi Fatemeh; Hassanzadeh, Akbar
2015-01-01
Background: Wastewater contains a variety of pathogens and bio -aerosols generated during the wastewater treatment process, which could be a potential health risk for exposed individuals. This study was carried out to detect Legionella spp. in the bio -aerosols generated from different processes of a wastewater treatment plant (WWTP) in Isfahan, Iran, and the downwind distances. Materials and Methods: A total of 54 air samples were collected and analyzed for the presence of Legionella spp. by a nested- polymerase chain reaction (PCR) assay. A liquid impingement biosampler was used to capture bio -aerosols. The weather conditions were also recorded. Results: Legionella were detected in 6% of the samples, including air samples above the aeration tank (1/9), belt filter press (1/9), and 250 m downwind (1/9). Conclusion: The result of this study revealed the presence of Legionella spp. in air samples of a WWTP and downwind distance, which consequently represent a potential health risk to the exposed individuals. PMID:25802817
Gartiser, Stefan; Hafner, Christoph; Hercher, Christoph; Kronenberger-Schäfer, Kerstin; Paschke, Albrecht
2010-06-01
Toxicity testing has become a suitable tool for wastewater evaluation included in several reference documents on best available techniques of the Integrated Pollution Prevention and Control (IPPC) Directive. The IPPC Directive requires that for direct dischargers as well as for indirect dischargers, the same best available techniques should be applied. Within the study, the whole effluent assessment approach of OSPAR has been applied for determining persistent toxicity of indirectly discharged wastewater from the metal surface treatment industry. Twenty wastewater samples from the printed circuit board and electroplating industries which indirectly discharged their wastewater to municipal wastewater treatment plants (WWTP) have been considered in the study. In all factories, the wastewater partial flows were separated in collecting tanks and physicochemically treated in-house. For assessing the behaviour of the wastewater samples in WWTPs, all samples were biologically pretreated for 7 days in the Zahn-Wellens test before ecotoxicity testing. Thus, persistent toxicity could be discriminated from non-persistent toxicity caused, e.g. by ammonium or readily biodegradable compounds. The fish egg test with Danio rerio, the Daphnia magna acute toxicity test, the algae test with Desmodesmus subspicatus, the Vibrio fischeri assay and the plant growth test with Lemna minor have been applied. All tests have been carried out according to well-established DIN or ISO standards and the lowest ineffective dilution (LID) concept. Additionally, genotoxicity was tested in the umu assay. The potential bioaccumulating substances (PBS) were determined by solid-phase micro-extraction and referred to the reference compound 2,3-dimethylnaphthalene. The chemical oxygen demand (COD) and total organic carbon (TOC) values of the effluents were in the range of 30-2,850 mg L(-1) (COD) and 2-614 mg L(-1) (TOC). With respect to the metal concentrations, all samples were not heavily polluted. The maximum conductivity of the samples was 43,700 microS cm(-1) and indicates that salts might contribute to the overall toxicity. Half of the wastewater samples proved to be biologically well treatable in the Zahn-Wellens test with COD elimination above 80%, whilst the others were insufficiently biodegraded (COD elimination 28-74%). After the pretreatment in the Zahn-Wellens test, wastewater samples from four (out of ten) companies were extremely ecotoxic especially to algae (maximum LID(A) = 16,384). Three wastewater samples were genotoxic in the umu test. Applying the rules for salt correction of test results as allowed in the German Wastewater Ordinance, only a small part of toxicity could be attributed to salts. Considering the PBS, wastewater from the metal surface treatment industry exhibited very low levels of PBS. In one factory, the origin of ecotoxicity has been attributed to the organosulphide dimethyldithiocarbamate (DMDTC) used as a water treatment chemical for metal precipitation. The assumption based on rough calculation of input of the organosulphide into the wastewater was confirmed in practice by testing its ecotoxicity at the corresponding dilution ratio after pretreatment in the Zahn-Wellens test. Whilst the COD elimination of DMDTC was only 32% in 7 days, the pretreated sample exhibited a high ecotoxicity to algae (LID(A) = 1,536) and luminescent bacteria (LID(lb) = 256). Comparative data from wastewater surveillance by authorities (data from 1993 to 2007) confirmed the range of ecotoxicity observed in the study. Whilst wastewater from the metal surface treatment industry usually did not exhibit ecotoxicity (median LID 1-2), the maximum LID values reported for the algae, daphnia and luminescent bacteria tests were very high (LID(A) up to 3,072, LID(D) up to 512 and LID(lb) up to 2,048). DMDTC was found to be one important source of ecotoxicity in galvanic wastewater. DMDTC is added in surplus, and according to the supplier, the amount in excess should be detoxified with ferric chloride or iron sulphate. The operator of one electroplating company had not envisaged a separate treatment of the organosulphide wastewater but was assuming that excess organosulphide would be bound by other heavy metals in the sewer. DMDTC degrades via hydrolysis to carbon disulfide (which is also toxic to animals and aquatic organisms), carbonyl sulphide, hydrogen sulphide and dimethylamine, but forms complexes with metals which stabilise the compound with respect to transformation. Although no impact on the WWTP is expected, the question arises whether the organosulphide is completely degraded during the passage of the WWTP. The results show that the organic load of wastewater from the electroplating industry has been underestimated by focussing on inorganic parameters such heavy metals, sulphide, cyanide, etc. Bioassays are a suitable tool for assessing the ecotoxicological relevance of these complex organic mixtures. The proof of biodegradability of the organic load (and its toxicity) can be provided by the Zahn-Wellens test. The environmental safety of water treatment chemicals should be better considered. The combination of the Zahn-Wellens test followed by the performance of ecotoxicity tests turned out to be a cost-efficient suitable instrument for the evaluation of indirect dischargers and considers the requirements of the IPPC Directive.
Mahler, Barbara J.; Musgrove, MaryLynn; Herrington, Chris; Sample, Thomas L.
2011-01-01
During 2008–10, the U.S. Geological Survey, in cooperation with the City of Austin, the City of Dripping Springs, the Barton Springs/Edwards Aquifer Conservation District, the Lower Colorado River Authority, Hays County, and Travis County, collected and analyzed water samples from five streams (Barton, Williamson, Slaughter, Bear, and Onion Creeks), two groundwater wells (Marbridge well [YD–58–50–704] and Buda well [LR–58–58–403]), and the main orifice of Barton Springs in Austin, Texas, with the objective of characterizing concentrations and isotopic compositions of nitrate and concentrations of wastewater compounds in the Barton Springs zone. The Barton Springs zone is in south-central Texas, an area undergoing rapid growth in population and in land area affected by development, with associated increases in wastewater generation. Over a period of 17 months, during which the hydrologic conditions transitioned from dry to wet, samples were collected routinely from the streams, wells, and spring and, in response to storms, from the streams and spring; some or all samples were analyzed for nitrate, nitrogen and oxygen isotopes of nitrate, and wastewater compounds. The median nitrate concentrations in routine samples from all sites were higher in samples collected during the wet period than in samples collected during the dry period, with the greatest difference for stream samples (0.05 milligram per liter during the dry period to 0.96 milligram per liter for the wet period). Nitrate concentrations in recent (2008–10) samples were elevated relative to concentrations in historical (1990–2008) samples from streams and from Barton Springs under medium- and high-flow conditions. Recent nitrate concentrations were higher than historical concentrations at the Marbridge well but the reverse was true at the Buda well. The elevated concentrations likely are related to the cessation of dry conditions coupled with increased nitrogen loading in the contributing watersheds. An isotopic composition of nitrate (delta nitrogen–15) greater than 8 per mil in many of the samples indicated there was a contribution of nitrate with a biogenic (human and or animal waste, or both) origin. Wastewater compounds measured in routine samples were detected infrequently (3 percent of cases), and concentrations were very low (less than the method reporting level in most cases). There was no correlation between nitrate concentrations and the frequency of detection of wastewater compounds, indicating that wastewater compounds might be undergoing removal during such processes as infiltration through soil. Three potential sources of biogenic nitrate to the contributing zone were considered: septic systems, land application of treated wastewater, and domesticated dogs and cats. During 2001–10, the estimated densities of septic systems and domesticated dogs and cats (number per acre) increased in the watersheds of all five creeks, and the rate of land application of treated wastewater (gallons per day per acre) increased in the watersheds of Barton, Bear, and Onion Creeks. Considering the timing and location of the increases in the three sources, septic systems were considered a likely source of increased nitrate to Bear Creek; land application of treated wastewater a likely source to Barton, Bear, and Onion Creeks; and domestic dogs and cats a potential source principally to Williamson Creek. The results of this investigation indicate that baseline water quality, in terms of nitrate, has shifted upward between 2001 and 2010, even without any direct discharges of treated wastewater to the creeks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hudson, B; Beller, H; Bartel, C M
This project was designed to investigate the important but virtually unstudied topic of the subsurface transport and fate of Endocrine Disrupting Compounds (EDCs) when treated wastewater is used for landscape irrigation (non-potable water reuse). Although potable water reuse was outside the scope of this project, the investigation clearly has relevance to such water recycling practices. The target compounds, which are discussed in the following section and include EDCs such as 4-nonylphenol (NP) and 17{beta}-estradiol, were studied not only because of their potential estrogenic effects on receptors but also because they can be useful as tracers of wastewater residue in groundwater.more » Since the compounds were expected to occur at very low (part per trillion) concentrations in groundwater, highly selective and sensitive analytical techniques had to be developed for their analysis. This project assessed the distributions of these compounds in wastewater effluents and groundwater, and examined their fate in laboratory soil columns simulating the infiltration of treated wastewater into an aquifer (e.g., as could occur during irrigation of a golf course or park with nonpotable treated water). Bioassays were used to determine the estrogenic activity present in effluents and groundwater, and the results were correlated with those from chemical analysis. In vitro assays for estrogenic activity were employed to provide an integrated measure of estrogenic potency of environmental samples without requiring knowledge or measurement of all bioactive compounds in the samples. For this project, the Las Positas Golf Course (LPGC) in the City of Livermore provided an ideal setting. Since 1978, irrigation of this area with treated wastewater has dominated the overall water budget. For a variety of reasons, a group of 10 monitoring wells were installed to evaluate wastewater impacts on the local groundwater. Additionally, these wells were regularly monitored for tritium ({sup 3}H). Overall volumes of irrigation water have been recorded along with total flows through the Livermore Water Reclamation Plant (LWRP). The Environmental Protection Department at LLNL has carefully monitored {sup 3}H effluent leaving the laboratory for many years. For two years preceding the initiation of this project, Grayson and Hudson, working with LWRP staff, had demonstrated that these data could be used to accurately calculate the {sup 3}H concentration in the applied irrigation water as a function of time. This was accomplished by performing two carefully monitored tritium releases from LLNL and following the {sup 3}H through the LWRP. Combining these data with our ability to age-date groundwater using the {sup 3}H-{sup 3}He age-dating technique, it was possible determine both the age and the degree of dilution from other water sources. This information was critical in the evaluation of observed concentrations of trace organic compounds from wastewater. The project included the following tasks: (1) Develop a conceptual model for Las Positas Golf Course (LPGC) irrigation that integrates existing meteorological, hydrologic, and environmental monitoring data. (2) Develop analytical methods (involving solid-phase extraction and isotope dilution LC/MS/MS) for the specific and sensitive measurement of target EDCs. (3) Develop a bioassay for estrogenic activity for application to effluent and groundwater samples. (4) Perform detailed hydrological evaluation of groundwater taken from LPGC. (5) Characterize the source term for target EDCs in wastewater. (6) Evaluate the utility of EDCs as source tracers for groundwater contamination.« less
Study of Physico-Chemical Characteristics of Wastewater in an Urban Agglomeration in Romania
Popa, Paula; Timofti, Mihaela; Voiculescu, Mirela; Dragan, Silvia; Trif, Catalin; Georgescu, Lucian P.
2012-01-01
This study investigates the level of wastewater pollution by analyzing its chemical characteristics at five wastewater collectors. Samples are collected before they discharge into the Danube during a monitoring campaign of two weeks. Organic and inorganic compounds, heavy metals, and biogenic compounds have been analyzed using potentiometric and spectrophotometric methods. Experimental results show that the quality of wastewater varies from site to site and it greatly depends on the origin of the wastewater. Correlation analysis was used in order to identify possible relationships between concentrations of various analyzed parameters, which could be used in selecting the appropriate method for wastewater treatment to be implemented at wastewater plants. PMID:22919336
Gyawali, P; Ahmed, W; Sidhu, J P S; Nery, S V; Clements, A C; Traub, R; McCarthy, J S; Llewellyn, S; Jagals, P; Toze, S
2016-09-01
In this study, we have evaluated the efficacy of propidium monoazide quantitative polymerase chain reaction (PMA-qPCR) to differentiate between viable and non-viable Ancylostoma caninum ova. The newly developed method was validated using raw wastewater seeded with known numbers of A. caninum ova. Results of this study confirmed that PMA-qPCR has resulted in average of 88 % reduction (P < 0.05) in gene copy numbers for 50 % viable +50 % non-viable when compared with 100 % viable ova. A reduction of 100 % in gene copies was observed for 100 % non-viable ova when compared with 100 % viable ova. Similar reductions (79-80 %) in gene copies were observed for A. caninum ova-seeded raw wastewater samples (n = 18) collected from wastewater treatment plants (WWTPs) A and B. The newly developed PMA-qPCR method was applied to determine the viable ova of different helminths (A. caninum, A. duodenale, Necator americanus and Ascaris lumbricoides) in raw wastewater, human fecal and soil samples. None of the unseeded wastewater samples were positive for the above-mentioned helminths. N. americanus and A. lumbricoides ova were found in unseeded human fecal and soil samples. For the unseeded human fecal samples (1 g), an average gene copy concentration obtained from qPCR and PMA-qPCR was found to be similar (6.8 × 10(5) ± 6.4 × 10(5) and 6.3 × 10(5) ± 4.7 × 10(5)) indicating the presence of viable N. americanus ova. Among the 24 unseeded soil samples tested, only one was positive for A. lumbricoides. The mean gene copy concentration in the positively identified soil sample was 1.0 × 10(5) ± 1.5 × 10(4) (determined by qPCR) compared to 4.9 × 10(4) ± 3.7 × 10(3) (determined by PMA-qPCR). The newly developed PMA-qPCR methods were able to detect viable helminth ova from wastewater and soil samples and could be adapted for health risk assessment.
Formation of halogenated organics during waste-water disinfection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singer, P.C.; Brown, R.A.; Wiseman, J.F.
The research examined the formation of trihalomethanes (THMs) and total organic halides (TOX) during wastewater chlorination at three wastewater treatment plants in the central Piedmont of North Carolina. Secondary effluent samples were collected before and after the addition of chlorine at each of the three treatment facilities; chlorinated samples were taken from various locations within the chlorine contact chambers and at the plant discharge. Water samples were also collected upstream and downstream from two of the plant outfalls to determine the increase and persistence of THMs and TOX below each plant. TOX and THM formation was evaluated in terms ofmore » effluent wastewater quality (e.g., residual chemical oxygen demand, total organic carbon and ammonia concentration), chlorine dose, chlorine contacting system, methods of chlorine addition, and chlorine-to-ammonia ratio. The results showed that TOX was present in the unchlorinated wastewater and that additional TOX was formed immediately after chlorine addition. Small to insignificant amounts of THMS were detected. TOX formation did not increase with increasing contact time, due to the rapid depletion of free chlorine and the formation of combined chlorine in the chlorine contact chamber.« less
Treatment of kitchen wastewater using Eichhornia crassipes
NASA Astrophysics Data System (ADS)
Parwin, Rijwana; Karar Paul, Kakoli
2018-03-01
The efficiency of Eichhornia crassipes for treatment of raw kitchen wastewater was studied in the present research work. An artificial wetland of 30 liter capacity was created for phytoremediation of kitchen wastewater using Eichhornia crassipes. Kitchen wastewater samples were collected from hostel of an educational institute in India. Samples were characterized based on physical and chemical parameters such as pH, turbidity, total hardness, nitrate-nitrogen, ammonium-nitrogen, sulphate, dissolved oxygen, total organic carbon and total dissolved solid. The physico-chemical parameter of kitchen wastewater samples were analysed for durations of 0 (initial day), 4 and 8 days. After 8 days of retention period, it was observed that pH value increases from 6.25 to 6.63. However, percentage reduction for turbidity, total hardness, nitrate-nitrogen, ammonium-nitrogen, sulphate, dissolved oxygen, total organic carbon and total dissolved solid were found to be 74.71%, 50%, 78.75%, 60.28%, 25.31%, 33.33%, 15.38% and 69.97%, respectively. Hence water hyacinth (Eichhornia crassipes) is found efficient and easy to handle and it can be used for low cost phytoremediation technique.
Wastewater testing compared to random urinalyses for the surveillance of illicit drug use in prisons
Brewer, Alex J.; Banta-Green, Caleb J.; Ort, Christoph; Robel, Alix E.
2015-01-01
Introduction and Aims Illicit drug use is known to occur among inmate populations of correctional (prison) facilities. Conventional approaches to monitor illicit drug use in prisons include random urinalyses (RUAs). Conventional approaches are expected to be prone to bias because prisoners may be aware of which days of the week RUAs are conducted. Therefore, we wanted to compare wastewater loads for methamphetamine and cocaine during days with RUA testing and without. Design and Methods We collected daily 24-hour composite samples of wastewater by continuous sampling, computed daily loads for one month and compared the frequency of illicit drug detection to the number of positive RUAs. Diurnal data also were collected for three days in order to determine within-day patterns of illicit drugs excretion. Results Methamphetamine was observed in each sample of prison wastewater with no significant difference in daily mass loads between RUA testing and non-testing days. Cocaine and its major metabolite, benzoylecgonine, were observed only at levels below quantification in prison wastewater. Six RUAs were positive for methamphetamine during the month while none were positive for cocaine out of the 243 RUAs conducted. Discussion and Conclusions Wastewater analyses offer data regarding the frequency of illicit drug excretion inside the prison that RUAs alone could not detect. PMID:25100044
McMahen, Rebecca L; Strynar, Mark J; McMillan, Larry; DeRose, Eugene; Lindstrom, Andrew B
2016-11-01
Fipronil is a phenylpyrazole insecticide that is widely used in residential and agricultural settings to control ants, roaches, termites, and other pests. Fipronil and its transformation products have been found in a variety of environmental matrices, but the source[s] which makes the greatest contribution to fipronil in surface water has yet to be determined. A sampling effort designed to prioritize known fipronil inputs (golf courses, residential areas, biosolids application sites and wastewater facilities) was conducted in North Carolina to learn more about the origins of fipronil in surface water. High resolution mass spectrometry (HRMS) analysis indicated that fipronil and its known derivatives were routinely present in all samples, but concentrations were substantially elevated near wastewater treatment plant outfalls (range 10-500ng/L combined), suggesting that they predominate as environmental sources. Corresponding recycled wastewater samples, which were treated with NaOCl for disinfection, showed disappearance of fipronil and all known degradates. HRMS and nuclear magnetic resonance (NMR) analysis techniques were used to determine that all fipronil-related compounds are oxidized to a previously unidentified fipronil sulfone chloramine species in recycled wastewater. The implications of the presence of a new fipronil-related compound in recycled wastewater need to be considered. Published by Elsevier B.V.
Hunt, R.J.; Borchardt, M. A.; Richards, K.D.; Spencer, S. K.
2010-01-01
This study investigated the source, transport, and occurrence of human enteric viruses in municipal well water, focusing on sanitary sewer sources. A total of 33 wells from 14 communities were sampled once for wastewater tracers and viruses. Wastewater tracers were detected in four of these wells, and five wells were virus- positive by qRT-PCR. These results, along with exclusion of wells with surface water sources, were used to select three wells for additional investigation. Viruses and wastewater tracers were found in the groundwater at all sites. Some wastewater tracers, such as ionic detergents, flame retardants, and cholesterol, were considered unambiguous evidence of wastewater. Sampling at any given time may not show concurrent virus and tracer presence; however, given sufficient sampling over time, a relation between wastewater tracers and virus occurrence was identified. Presence of infectious viruses at the wellhead demonstrates that high-capacity pumping induced sufficiently short travel times for the transport of infectious viruses. Therefore, drinking-water wells are vulnerable to contaminants that travel along fast groundwater flowpaths even if they contribute a small amount of virus-laden water to the well. These results suggest that vulnerability assessments require characterization of "low yield-fast transport" in addition to traditional "high yield-slow transport", pathways. ?? 2010 American Chemical Society.
Influence of a Non-Hospital Medical Care Facility on Antimicrobial Resistance in Wastewater
Bäumlisberger, Mathias; Youssar, Loubna; Schilhabel, Markus B.; Jonas, Daniel
2015-01-01
The global widespread use of antimicrobials and accompanying increase in resistant bacterial strains is of major public health concern. Wastewater systems and wastewater treatment plants are considered a niche for antibiotic resistance genes (ARGs), with diverse microbial communities facilitating ARG transfer via mobile genetic element (MGE). In contrast to hospital sewage, wastewater from other health care facilities is still poorly investigated. At the instance of a nursing home located in south-west Germany, in the present study, shotgun metagenomics was used to investigate the impact on wastewater of samples collected up- and down-stream in different seasons. Microbial composition, ARGs and MGEs were analyzed using different annotation approaches with various databases, including Antibiotic Resistance Ontologies (ARO), integrons and plasmids. Our analysis identified seasonal differences in microbial communities and abundance of ARG and MGE between samples from different seasons. However, no obvious differences were detected between up- and downstream samples. The results suggest that, in contrast to hospitals, sewage from the nursing home does not have a major impact on ARG or MGE in wastewater, presumably due to much less intense antimicrobial usage. Possible limitations of metagenomic studies using high-throughput sequencing for detection of genes that seemingly confer antibiotic resistance are discussed. PMID:25821977
Farré, Marinella; Asperger, Daniela; Kantiani, Lina; González, Susana; Petrovic, Mira; Barceló, Damià
2008-04-01
In this work, the contributions of triclosan and its metabolite methyl triclosan to the overall acute toxicity of wastewater were studied using Vibrio fischeri. The protocol used in this paper involved various steps. First, the aquatic toxicities of triclosan and methyl triclosan were determined for standard substances, and the 50% effective concentrations (EC(50)) were determined for these compounds. Second, the toxic responses to different mixtures of triclosan, methyl triclosan, and surfactants were studied in different water matrices, i.e., Milli-Q water, groundwater and wastewater, in order to evaluate (i) the antagonistic or synergistic effects, and (ii) the influence of the water matrices. Finally, chemical analysis was used in conjunction with the toxicity results in order to assess the aquatic toxicities of triclosan and its derivative in wastewaters. In this study, the toxicities of 45 real samples corresponding to the influents and effluents from eight wastewater treatment works (WWTW) were analyzed. Thirty-one samples were from a wastewater treatment plant (WWTP) equipped with two pilot-scale membrane bioreactors (MBR), and the influent and the effluent samples after various treatments were characterized via different chromatographic approaches, including solid-phase extraction (SPE), liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), and SPE coupled to gas chromatography-mass spectrometry (GC-MS). The toxicity was determined by measuring the bioluminescence inhibition of Vibrio fischeri. In order to complete the study and to extrapolate the results to different WWTPs, the toxicity to V. fischeri of samples from seven more plants was analyzed, as were their triclosan and methyl triclosan concentrations. Good agreement was established between the overall toxicity values and concentrations of the biocides, indicating that triclosan is one of the major toxic organic pollutants currently found in domestic wastewaters.
Caballo, C; Sicilia, M D; Rubio, S
2015-03-01
This manuscript describes, for the first time, the simultaneous enantioselective determination of ibuprofen, naproxen and ketoprofen in wastewater based on liquid chromatography tandem mass spectrometry (LC-MS/MS). The method uses a single-step sample treatment based on microextraction with a supramolecular solvent made up of hexagonal inverted aggregates of decanoic acid, formed in situ in the wastewater sample through a spontaneous self-assembly process. Microextraction of profens was optimized and the analytical method validated. Isotopically labeled internal standards were used to compensate for both matrix interferences and recoveries. Apparent recoveries for the six enantiomers in influent and effluent wastewater samples were in the interval 97-103%. Low method detection limits (MDLs) were obtained (0.5-1.2 ng L(-1)) as a result of the high concentration factors achieved in the microextraction process (i.e. actual concentration factors 469-736). No analyte derivatization or evaporation of extracts, as it is required with GC-MS, was necessary. Relative standard deviations for enantiomers in wastewater were always below 8%. The method was applied to the determination of the concentrations and enantiomeric fractions of the targeted analytes in influents and effluents from three wastewater treatment plants. All the values found for profen enantiomers were consistent with those previously reported and confirmed again the suitability of using the enantiomeric fraction of ibuprofen as an indicator of the discharge of untreated or poorly treated wastewaters. Both the analytical and operational features of this method make it applicable to the assessment of the enantiomeric fate of profens in the environment. Copyright © 2014 Elsevier B.V. All rights reserved.
Durso, Lisa M; Miller, Daniel N; Henry, Christopher G
2018-06-21
Wastewater is an important vector of antibiotic resistant bacteria and antibiotic resistance genes (ARB/G). While there is broad agreement that ARB/G from agricultural (ag) wastewaters can be transported through the environment and may contribute to untreatable infectious disease in humans and animals, there remain large knowledge gaps surrounding applied details on the types and amounts of ARB/G associated with different agricultural wastewater treatment options and different ag production systems. This study evaluates a vegetative treatment system (VTS) built to treat the wastewater from a beef cattle feedlot. Samples were collected for three years, and plated on multiple media types to enumerate tetracycline and cefotaxime-resistant bacteria. Enterobacteriaceae isolates ( n = 822) were characterized for carriage of tetracycline resistance genes, and E. coli isolates ( n = 673) were phenotyped to determine multi-drug resistance (MDR) profiles. Tetracycline resistance in feedlot runoff wastewater was 2-to-3 orders of magnitude higher compared to rainfall runoff from the VTS fields, indicating efficacy of the VTA for reducing ARB over time following wastewater application. Clear differences in MDR profiles were observed based on the specific media on which a sample was plated. This result highlights the importance of method, especially in the context of isolate-based surveillance and monitoring of ARB in agricultural wastewaters.
Santos, J L; Aparicio, I; Alonso, E
2007-05-01
The occurrence of four anti-inflammatory drugs (diclofenac, ibuprofen, ketoprofen and naproxen), an antiepileptic drug (carbamazepine) and a nervous stimulant (caffeine) in influent and effluent samples from four wastewater treatment plants (WWTPs) in Seville was evaluated. Removal rates in the WWTPs and risk assessment of the pharmaceutically active compounds have been studied. Analytical determination was carried out by high performance liquid chromatography (HPLC) with diode array (DAD) and fluorescence (Fl) detectors after sample clean up and concentration by solid phase extraction. All pharmaceutically active compounds, except diclofenac, were detected not only in wastewater influents but also in wastewater effluents. Mean concentrations of caffeine, carbamazepine, ketoprofen and naproxen ranged between 0.28-11.44 microg l(-1) and 0.21-2.62 microg l(-1) in influent and effluent wastewater, respectively. Ibuprofen was present in the highest concentrations in the range 12.13-373.11 microg l(-1) and 0.78-48.24 microg l(-1) in influent and effluent wastewater, respectively. Removal rates of the pharmaceuticals ranged between 6 and 98%. Risk quotients, expressed as ratios between the measured environmental concentration (MEC) and the predicted no effect concentrations (PNEC) were higher than 1 for ibuprofen and naproxen in influent wastewater and for ibuprofen in effluent wastewater.
Makkaew, P; Miller, M; Cromar, N J; Fallowfield, H J
2017-04-01
This study investigated the volume of wastewater retained on the surface of three different varieties of lettuce, Iceberg, Cos, and Oak leaf, following submersion in wastewater of different microbial qualities (10, 10 2 , 10 3 , and 10 4 E. coli MPN/100 mL) as a surrogate method for estimation of contamination of spray-irrigated lettuce. Uniquely, Escherichia coli was enumerated, after submersion, on both the outer and inner leaves and in a composite sample of lettuce. E. coli were enumerated using two techniques. Firstly, from samples of leaves - the direct method. Secondly, using an indirect method, where the E. coli concentrations were estimated from the volume of wastewater retained by the lettuce and the E. coli concentration of the wastewater. The results showed that different varieties of lettuce retained significantly different volumes of wastewater (p < 0.01). No statistical differences (p > 0.01) were detected between E. coli counts obtained from different parts of lettuce, nor between the direct and indirect enumeration methods. Statistically significant linear relationships were derived relating the E. coli concentration of the wastewater in which the lettuces were submerged to the subsequent E. coli count on each variety the lettuce.
Strittmatter, Nicole; Düring, Rolf-Alexander; Takáts, Zoltán
2012-09-07
An analysis method for aqueous samples by the direct combination of C18/SCX mixed mode thin-film microextraction (TFME) and desorption electrospray ionization mass spectrometry (DESI-MS) was developed. Both techniques make analytical workflow simpler and faster, hence the combination of the two techniques enables considerably shorter analysis time compared to the traditional liquid chromatography mass spectrometry (LC-MS) approach. The method was characterized using carbamazepine and triclosan as typical examples for pharmaceuticals and personal care product (PPCP) components which draw increasing attention as wastewater-derived environmental contaminants. Both model compounds were successfully detected in real wastewater samples and their concentrations determined using external calibration with isotope labeled standards. Effects of temperature, agitation, sample volume, and exposure time were investigated in the case of spiked aqueous samples. Results were compared to those of parallel HPLC-MS determinations and good agreement was found through a three orders of magnitude wide concentration range. Serious matrix effects were observed in treated wastewater, but lower limits of detection were still found to be in the low ng L(-1) range. Using an Orbitrap mass spectrometer, the technique was found to be ideal for screening purposes and led to the detection of various different PPCP components in wastewater treatment plant effluents, including beta-blockers, nonsteroidal anti-inflammatory drugs, and UV filters.
Potential toxic effects of aircraft de-icers and wastewater samples containing these compounds.
Mohiley, A; Franzaring, J; Calvo, O C; Fangmeier, A
2015-09-01
One of the major problems of airport operation is the impact of pollution caused by runoff waters. Runoff waters at an airport may contain high concentrations of different contaminants resulting from various activities of its operation. High quantities of aircraft de-icing/anti-icing fluids are used annually at airports worldwide. Aircraft de-icers and anti-icers may have negative environmental impacts, but their effects on aquatic organisms are virtually unknown. In order to address this issue, aircraft de-icers, pavement de-icers and wastewater samples were obtained from a regional airport. To evaluate the toxicity of wastewater samples and aircraft de-icing/anti-icing fluids (ADAFs), two bio-tests were performed: the Lemna growth inhibition test according to OECD guideline 221 and the luminescent bacteria test according to ISO guideline 11348-2. In the Lemna growth inhibition test, phytotoxicity was assessed using the endpoints frond number and frond area. The luminescent bacteria test involved the marine bacterium Vibrio fischeri. The estimates of effective concentrations (EC50) values were determined using the free software R and the "drc" library. Aquatic plants and marine bacteria showed a higher sensitivity towards ADAFs than to wastewater samples. Experiments showed that aircraft de-icing/anti-icing fluids and wastewater samples were relatively more toxic towards Lemna gibba L. in comparison to V. fischeri.
Luc, Milan; Kruk, Pavol; Masár, Marián
2011-07-01
Analytical potentialities of a chip-based CE in determination of ammonium in wastewaters were investigated. CZE with the electric field and/or ITP sample stacking was performed on a column-coupling (CC) chip with integrated conductivity detectors. Acetate background electrolytes (pH ∼3) including 18-crown-6-ether (18-crown-6) and tartaric acid were developed to reach rapid (in 7-8 min) CZE and ITP-CZE resolutions of ammonium from other cations (sodium, potassium, calcium and magnesium) present in wastewater samples. Under preferred working conditions (suppressed hydrodynamic flow (HDF) and EOF on the column-coupling chip), both the employed methods did provide very good repeatabilities of the migration (RSD of 0.2-0.8% for the migration time) and quantitative (RSD of 0.3-4.9% for the peak area) parameters in the model and wastewater samples. Using a 900-nL sample injection volume, LOD for ammonium were obtained at 20 and 40 μg/L concentrations in CZE and ITP-CZE separations, respectively. Very good agreements of the CZE and ITP-CZE determinations of ammonium in six untreated wastewater samples (only filtration and dilution) with the results obtained by a reference spectrometric method indicate a very good accuracy of both the CE methods presented. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Moreno, Yolanda; Ballesteros, Lorena; García-Hernández, Jorge; Santiago, Paula; González, Ana; Ferrús, M Antonia
2011-10-01
Listeria monocytogenes detection in wastewater can be difficult because of the large amount of background microbiota and the presence of viable but non-culturable forms in this environment. The aim of this study was to evaluate a Fluorescent In Situ Hybridization (FISH) assay combined with Direct Viable Count (DVC) method for detecting viable L. monocytogenes in wastewater samples, as an alternative to conventional culture methods. 16S rRNA sequence data were used to design a specific oligonucleotide probe. In order to assess the suitability of the method, the assays were performed on naturally (n=87) and artificially (n=14) contaminated samples and results were compared to those obtained with the isolation of cells on selective media and with a PCR method. The detection limit of FISH and PCR assays was 10(4) cells/mL without enrichment and 10 cells/mL after enrichment. A total of 47 samples, including 3 samples from effluent sites, yielded FISH positive results for L. monocytogenes. Using DVC-FISH technique, the presence of viable L. monocytogenes cells was detected in 23 out of these 47 FISH positive wastewater samples. PCR and culture methods yielded 27 and 23 positive results, respectively. According to these results, FISH technique has the potential to be used as a sensitive method for the detection and enumeration of L. monocytogenes in environmental wastewater samples. Copyright © 2011 Elsevier Ltd. All rights reserved.
Ansari, Mohd Ikram; Malik, Abdul
2010-08-01
Wastewater and soil samples were collected from the industrial area of Ghaziabad City, India from January 2005 to December 2007 and were analyzed for the presence of heavy metals by atomic absorption spectrophotometry. Test samples revealed high levels of Fe, Cr, Cu, Ni, Zn, and Cd as 967.03, 34.63, 27.97, 19.7, 16.70, and 3.20 mg/L of wastewater, respectively. The concentrations of inorganic minerals were higher in the soil samples irrigated with wastewater. Total coliforms were found to be maximum (1,133x10(4) most probable number per 100 mL) during spring and summer followed by winter and postmonsoon in the wastewater samples. The microbial count in soil as well as in wastewater decreases as the metal concentration increases. The concentration 200 microg/mL of nickel and cadmium inhibits majority of the population, while, at some points, it inhibits 100% of the population. The exponential decay model for microbial count at the increasing metal concentrations indicate that asymbiotic N2 fixers were best fitted to the model. In all the seasons, the order of decline in terms of exponential decay of the population of different microbial groups in soil was asymbiotic N2 fixers>actinomycetes>fungi>aerobic heterotrophic bacteria. The different microbial groups that have different values of slope in different seasons indicate that the resistant population of microorganisms was variable with seasons.
USDA-ARS?s Scientific Manuscript database
Membrane bioreactors (MBR), used for wastewater treatment in Ohio and elsewhere in the United States, have pore sizes large enough to theoretically reduce concentrations of protozoa and bacteria, but not viruses. Sampling for viruses in wastewater is seldom done and not required. Instead, the bac...
NASA Astrophysics Data System (ADS)
Grace Pavithra, K.; Senthil Kumar, P.; Carolin Christopher, Femina; Saravanan, A.
2017-11-01
In this research, the wastewater samples were collected from leather tanning industry at different time intervals. The parameters like pH, electrical conductivity, temperature, turbidity, chromium and chemical oxygen demand (COD) of the samples were analyzed. A three-phase three-dimensional fluidized type electrode reactor (FTER) was newly designed for the effective removal of toxic pollutants from wastewater. The influencing parameters were optimized for the maximum removal of toxic pollutants from wastewater. The optimum condition for the present system was calculated as: contact time of 30 min, applied voltage of 3 V and the particle electrodes of 15 g. The particle electrode was characterized by using FT-IR analysis. Langmuir-Hinshelwood and pseudo-second order kinetic models were fits well with the experimental data. The results showed that the FTER can be successfully employed for the treatment of industrial wastewater.
Egg wash wastewater: estrogenic risk or environmental asset?
Shappell, Nancy W
2013-07-01
Commercial production of eggs and egg products requires the washing of eggs to remove urinary-fecal material and broken egg residue. In the case of one Ohio farming facility, 1.6 million birds produce 1.4 million eggs per day, using approximately 50 mL of wash water/egg or approximately 70,000 L per day. The aqueous waste stream was evaluated for estrogenicity to determine if potential for endocrine disruption would result from agricultural application of such wastewater. Samples collected the Fall (October) of 2010 included: water from 2 egg washers operating in series, inlet pipe to the treatment lagoon, a lagoon composite, and products used within the facility in the cleaning of equipment and treatment of the waste. In February 2011, the treatment lagoon was fitted with an extensive aeration system and subsequent sample sets were collected on 3 consecutive days in May and November. Samples were extracted by solid phase extraction and assayed for estrogenic activity using the in vitro E-Screen assay. Raw untreated wastewater from the egg washers contained 17β-estradiol equivalents (E2 Eqs) ranging from 9 to 18 ng/L, pipe grab samples entering into the treatment lagoon ranged from <0.14 to 4.4 ng/L (variability related to time of emptying of egg wash tanks), whereas treatment lagoon water contained 0.3 to 4.0 ng/L E2 Eq. Addition of an aeration system to the treatment lagoon eliminated surface "frothing," reduced noxious odor emission, and E2 Eqs were lower than the pre-aeration concentrations (4 ng/L [n = 1, no statistical comparison possible] vs 0.3 to 1.4 ng/L in 2011). Because of matrix effects, estrogens were not quantifiable by LC-MS2 in even egg washwater extracts, at concentrations in which internal deuterated estrogen standards were quantifiable. Estrone and E2 parent ions were detected in egg washwater samples only, and confirmatory ion fragments were detected in only one of these samples. Estrogenicity of the wastewater from the treatment lagoon was already at the proposed aquatic no effect concentration for 17β-E2 and would be expected to decrease further as wastewater passes through 2 consecutive storage ponds before application on field crops for irrigation. The original project plan was to follow the wastewater as it was applied by aerial irrigation and concomitant surface runoff, but based on the consistent and extremely low concentration of estrogenic activity of the wastewater from the treatment lagoon, it was concluded that activity would be below limits of quantitation by E-Screen in water used for irrigation from the storage ponds. Use of egg wash wastewater--or gray water--to irrigate crops removes the cost and burden of wastewater treatment by the local wastewater plant, poses little to no potential threat of estrogenic endocrine disruption, and supports the conservation of water resources through the use of wastewater irrigation. Copyright © 2013 SETAC.
Organic contaminants in onsite wastewater treatment systems
Conn, K.E.; Siegrist, R.L.; Barber, L.B.; Brown, G.K.
2007-01-01
Wastewater from thirty onsite wastewater treatment systems was sampled during a reconnaissance field study to quantify bulk parameters and the occurrence of organic wastewater contaminants including endocrine disrupting compounds in treatment systems representing a variety of wastewater sources and treatment processes and their receiving environments. Bulk parameters ranged in concentrations representative of the wide variety of wastewater sources (residential vs. non-residential). Organic contaminants such as sterols, surfactant metabolites, antimicrobial agents, stimulants, metal-chelating agents, and other consumer product chemicals, measured by gas chromatography/mass spectrometry were detected frequently in onsite system wastewater. Wastewater composition was unique between source type likely due to differences in source water and chemical usage. Removal efficiencies varied by engineered treatment type and physicochemical properties of the contaminant, resulting in discharge to the soil treatment unit at ecotoxicologically-relevant concentrations. Organic wastewater contaminants were detected less frequently and at lower concentrations in onsite system receiving environments. Understanding the occurrence and fate of organic wastewater contaminants in onsite wastewater treatment systems will aid in minimizing risk to ecological and human health.
Iqbal, Mohammad Asif; Kim, Ki-Hyun; Szulejko, Jan E; Cho, Jinwoo
2014-01-01
The gas-liquid partitioning behavior of major odorants (acetic acid, propionic acid, isobutyric acid, n-butyric acid, i-valeric acid, n-valeric acid, hexanoic acid, phenol, p-cresol, indole, skatole, and toluene (as a reference)) commonly found in microbially digested wastewaters was investigated by two experimental approaches. Firstly, a simple vaporization method was applied to measure the target odorants dissolved in liquid samples with the aid of sorbent tube/thermal desorption/gas chromatography/mass spectrometry. As an alternative method, an impinger-based dynamic headspace sampling method was also explored to measure the partitioning of target odorants between the gas and liquid phases with the same detection system. The relative extraction efficiency (in percent) of the odorants by dynamic headspace sampling was estimated against the calibration results derived by the vaporization method. Finally, the concentrations of the major odorants in real digested wastewater samples were also analyzed using both analytical approaches. Through a parallel application of the two experimental methods, we intended to develop an experimental approach to be able to assess the liquid-to-gas phase partitioning behavior of major odorants in a complex wastewater system. The relative sensitivity of the two methods expressed in terms of response factor ratios (RFvap/RFimp) of liquid standard calibration between vaporization and impinger-based calibrations varied widely from 981 (skatole) to 6,022 (acetic acid). Comparison of this relative sensitivity thus highlights the rather low extraction efficiency of the highly soluble and more acidic odorants from wastewater samples in dynamic headspace sampling.
Treatment of cotton textile wastewater using lime and ferrous sulfate.
Georgiou, D; Aivazidis, A; Hatiras, J; Gimouhopoulos, K
2003-05-01
This technical note summarizes the results of a textile wastewater treatment process aiming at the destruction of the wastewater's color by means of coagulation/flocculation techniques using ferrous sulfate and/or lime. All the experiments were run in a pilot plant that simulated an actual industrial wastewater treatment plant. Treatment with lime alone proved to be very effective in removing the color (70-90%) and part of the COD (50-60%) from the textile wastewater. Moreover, the treatment with ferrous sulfate regulating the pH in the range 9.0+/-0.5 using lime was equally effective. Finally, the treatment with lime in the presence of increasing doses of ferrous sulfate was tested successfully, however; it proved to be very costly mainly due to the massive production of solids that precipitated.
Savoie, Jennifer G.; LeBlanc, Denis R.; Fairchild, Gillian M.; Smith, Richard L.; Kent, Douglas B.; Barber, Larry B.; Repert, Deborah A.; Hart, Charles P.; Keefe, Steffanie H.; Parsons, Luke A.
2012-01-01
A plume of contaminated groundwater extends from former disposal beds at the Massachusetts Military Reservation's wastewater-treatment plant toward Ashumet Pond, coastal ponds, and Vineyard Sound, Cape Cod, Massachusetts. Treated sewage-derived wastewater was discharged to the rapid-infiltration beds for nearly 60 years before the disposal site was moved to a different location in December 1995. Water-quality samples were collected from monitoring wells, multilevel samplers, and profile borings to characterize the nature and extent of the contaminated groundwater and to observe the water-quality changes after the wastewater disposal ceased. Data are presented here for water samples collected in 2007 from 394 wells (at 121 well-cluster locations) and 780 multilevel-sampler ports (at 42 locations) and in 2006-08 at 306 depth intervals in profile borings (at 20 locations) in and near the treated-wastewater plume. Analyses of these water samples for field parameters (specific conductance, pH, dissolved oxygen and phosphate concentrations, and alkalinity); absorbance of ultraviolet/visible light; and concentrations of nitrous oxide, dissolved organic carbon, methylene blue active substances, selected anions and nutrients, including nitrate and ammonium, and selected inorganic solutes, including cations, anions, and minor elements, are presented in tabular format. The natural restoration of the sand and gravel aquifer after removal of the treated-wastewater source, along with interpretations of the water quality in the treated-wastewater plume, have been documented in several published reports that are listed in the references.
Søraas, Arne V.; Arnesen, Lotte S.; Leegaard, Truls M.; Sundsfjord, Arnfinn; Jenum, Pål A.
2017-01-01
Extended spectrum β-lactamase producing Escherichia coli (ESBL-EC) are excreted via effluents and sewage into the environment where they can re-contaminate humans and animals. The aim of this observational study was to detect and quantify ESBL-EC in recreational water and wastewater, and perform a genetic and phenotypic comparative analysis of the environmental strains with geographically associated human urinary ESBL-EC. Recreational fresh- and saltwater samples from four different beaches and wastewater samples from a nearby sewage plant were filtered and cultured on differential and ESBL-selective media. After antimicrobial susceptibility testing and multi-locus variable number of tandem repeats assay (MLVA), selected ESBL-EC strains from recreational water were characterized by whole genome sequencing (WGS) and compared to wastewater and human urine isolates from people living in the same area. We detected ESBL-EC in recreational water samples on 8/20 occasions (40%), representing all sites. The ratio of ESBL-EC to total number of E. coli colony forming units varied from 0 to 3.8%. ESBL-EC were present in all wastewater samples in ratios of 0.56–0.75%. ST131 was most prevalent in urine and wastewater samples, while ST10 dominated in water samples. Eight STs and identical ESBL-EC MLVA-types were detected in all compartments. Clinical ESBL-EC isolates were more likely to be multidrug-resistant (p<0.001). This study confirms that ESBL-EC, including those that are capable of causing human infection, are present in recreational waters where there is a potential for human exposure and subsequent gut colonisation and infection in bathers. Multidrug-resistant E. coli strains are present in urban aquatic environments even in countries where antibiotic consumption in both humans and animals is highly restricted. PMID:29040337
Lizasoain, A; Tort, L F L; García, M; Gillman, L; Alberti, A; Leite, J P G; Miagostovich, M P; Pou, S A; Cagiao, A; Razsap, A; Huertas, J; Berois, M; Victoria, M; Colina, R
2018-03-01
This study assess the quality of wastewater through the detection and quantification of important viruses causing gastroenteritis at different stages of the wastewater treatment process in an activated-sludge wastewater treatment plant with ultraviolet disinfection. Ten sampling events were carried out in a campaign along a period of 18 months collecting wastewater samples from the influent, after the activated-sludge treatment, and after the final disinfection with UV radiation. Samples were concentrated through ultracentrifugation and analysed using retro-transcription, PCR and real time quantitative PCR protocols, for detection and quantification of Group A Rotavirus (RVA), Human Astrovirus (HAstV), Norovirus Genogroup II (NoV GII) and Human Adenovirus (HAdV). HAdV (100%), NoV GII (90%), RVA (70%) and HAstV (60%) were detected in influent samples with concentration from 1·4 (NoV GII) to 8·0 (RVA) log 10 gc l -1 . Activated-sludge treatment reached well quality effluents with low organic material concentration, although nonstatistical significant differences were registered among influent and postactivated sludge treatment samples, regarding the presence and concentration for most viruses. All post-UV samples were negative for NoV GII and HAstV, although RVA and HAdV were detected in 38% and 63% of those samples respectively, with concentration ranging from 2·2 to 5·5 and 3·1 to 3·4 log 10 gc l -1 . This study demonstrates that an activated-sludge wastewater treatment plant with UV disinfection reduces to levels below the detection limit those single-stranded RNA viruses as noroviruses and astroviruses and reach significant lower levels of rotaviruses and adenoviruses after the complete treatment process. © 2017 The Society for Applied Microbiology.
USDA-ARS?s Scientific Manuscript database
The impact of the recently implemented Cambi Thermal Hydrolysis Process™-Anaerobic Digestion (TH-AD) solids treatment method on concentrations of 4 phthalate plasticisers in wastewater sludge samples was explored in this study. Samples were analysed for diisononyl phthalate (DiNP), diisodecyl phthal...
Wastewater treatment by local microalgae strains for CO2 sequestration and biofuel production
NASA Astrophysics Data System (ADS)
Ansari, Abeera A.; Khoja, Asif Hussain; Nawar, Azra; Qayyum, Muneeb; Ali, Ehsan
2017-11-01
Currently, the scientific community is keenly working on environmental-friendly processes for the production of clean energy and sustainable development. The study was conducted to cultivate microalgae in raw institutional wastewater for water treatment, enriched production of biomass and CO2 sequestration. The strains which were used in this study are Scenedesmus sp. and Chlorella sp. which were isolated from Kallar Kahar Lake, Pakistan. Both strains were cultivated in synthetic growth medium (Bold's Basal Medium) to enhance biomass production. Afterward, microalgae cultures were inoculated in wastewater sample in mixotrophic mode under ambient conditions. The impurities in wastewater were successfully removed from the original sample by the 7th day of operation. COD 95%, nitrate 99.7% and phosphate 80.5% were removed by applying Scenedesmus sp. Meanwhile, Chlorella sp. reduced 84.86% COD, 98.2% nitrate and 70% phosphate, respectively. Interestingly, sulfates were removed from wastewater completely by both strains. Besides being useful in wastewater remediation, these microalgae strains were subsequently harvested for lipid extraction and potential biofuel production was determined. Therefore, the applied method is an environmentally safe, cost-effective and alternative technology for wastewater treatment. Furthermore, the achieved biomass through this process can be used for the production of biofuels.
Tracking antibiotic resistome during wastewater treatment using high throughput quantitative PCR.
An, Xin-Li; Su, Jian-Qiang; Li, Bing; Ouyang, Wei-Ying; Zhao, Yi; Chen, Qing-Lin; Cui, Li; Chen, Hong; Gillings, Michael R; Zhang, Tong; Zhu, Yong-Guan
2018-05-08
Wastewater treatment plants (WWTPs) contain diverse antibiotic resistance genes (ARGs), and thus are considered as a major pathway for the dissemination of these genes into the environments. However, comprehensive evaluations of ARGs dynamic during wastewater treatment process lack extensive investigations on a broad spectrum of ARGs. Here, we investigated the dynamics of ARGs and bacterial community structures in 114 samples from eleven Chinese WWTPs using high-throughput quantitative PCR and 16S rRNA-based Illumina sequencing analysis. Significant shift of ARGs profiles was observed and wastewater treatment process could significantly reduce the abundance and diversity of ARGs, with the removal of ARGs concentration by 1-2 orders of magnitude. Whereas, a considerable number of ARGs were detected and enriched in effluents compared with influents. In particular, seven ARGs mainly conferring resistance to beta-lactams and aminoglycosides and three mobile genetic elements persisted in all WWTPs samples after wastewater treatment. ARGs profiles varied with wastewater treatment processes, seasons and regions. This study tracked the footprint of ARGs during wastewater treatment process, which would support the assessment on the spread of ARGs from WWTPs and provide data for identifying management options to improve ARG mitigation in WWTPs. Copyright © 2018 Elsevier Ltd. All rights reserved.
Crawford, Charles G.; Wangsness, David J.
1992-01-01
The City of Indianapolis, Indiana, USA, completed construction of advanced-wastewater-treatment systems to enlarge and upgrade existing secondary-treatment processes at the City’s two municipal wastewater-treatment plants in 1983. These plants discharge their effluent to the White River. A study was begun in 1981 to evaluate the effects of municipal wastewater on the quality of the White River near Indianapolis. As part of this study, benthic-invertebrate samples were collected from one riffle upstream and two riffles downstream from the treatment plants annually from 1981 through 1987 (2 times before and 5 times after the plant improvements became operational). Samples were collected during periods of late-summer or early-fall low streamflow with a Surber sampler. Upstream from the wastewater-treatment plants, mayflies and caddisflies were the predominant organisms in the benthic-invertebrate community (from 32 to 93 percent of all organisms; median value is 67 percent) with other insects and mollusks also present. Before implementation of advanced wastewater-treatment, the benthic-invertebrate community downstream from the wastewater treatment plants was predominantly chironomids and oligochaetes (more than 98 percent of all organisms)-organisms that generally are tolerant of organic wastes. Few intolerant species, such as mayflies or caddisflies were found. Following implementation of advanced wastewater treatment, mayflies and caddisflies became numerically dominant in samples collected downstream from the plants. By 1986, these organisms accounted for more than 90 percent of all organisms found at the two downstream sites. The diversity of benthic invertebrates found in these samples resembled that at the upstream site. The improvement in the quality of municipal wastewater effluent resulted in significant improvements in the water quality of the White River downstream from Indianapolis. These changes in river quality, in turn, have resulted in a shift from mostly pollution-tolerant to mostly pollution-intolerant organisms in the benthic-invertebrate community of the White River downstream from Indianapolis. The recovery was not immediate, however, with one of the downstream sites requiring 3 years before pollution-intolerant organisms became numerically dominant.
Pennino, Francesca; Nardone, Antonio; Montuori, Paolo; Aurino, Sara; Torre, Ida; Battistone, Andrea; Delogu, Roberto; Buttinelli, Gabriele; Fiore, Stefano; Amato, Concetta; Triassi, Maria
2018-06-01
Human enteroviruses (HEVs) occur in high concentrations in wastewater and can contaminate receiving environmental waters, constituting a major cause of acute waterborne disease worldwide. In this study, we investigated the relative abundance, occurrence, and seasonal distribution of polio and other enteroviruses at three wastewater treatment plants (WWTPs) in Naples, Southern Italy, from January 2010 to December 2014. Influent and effluent samples from the three WWTPs were collected monthly. One hundred and sixty-one of the 731 wastewater samples collected (22.0%) before and after water treatment were CPE positive on RD cells; while no samples were positive on L20B cells from any WWTPs. Among the 140 non-polio enterovirus isolated from inlet sewage, 69.3% were Coxsackieviruses type B and 30.7% were Echoviruses. Among these, CVB3 and CVB5 were most prevalent, followed by CVB4 and Echo6. The twenty-one samples tested after treatment contained 6 CVB4, 5 CVB3, 3 Echo11, and 2 Echo6; while other serotypes were isolated less frequently. Data on viral detection in treated effluents of WWTPs confirmed the potential environmental contamination by HEVs and could be useful to establish standards for policies on wastewater management.
Leusch, Frederic D L; Neale, Peta A; Arnal, Charlotte; Aneck-Hahn, Natalie H; Balaguer, Patrick; Bruchet, Auguste; Escher, Beate I; Esperanza, Mar; Grimaldi, Marina; Leroy, Gaela; Scheurer, Marco; Schlichting, Rita; Schriks, Merijn; Hebert, Armelle
2018-08-01
The aquatic environment can contain numerous micropollutants and there are concerns about endocrine activity in environmental waters and the potential impacts on human and ecosystem health. In this study a complementary chemical analysis and in vitro bioassay approach was applied to evaluate endocrine activity in treated wastewater, surface water and drinking water samples from six countries (Germany, Australia, France, South Africa, the Netherlands and Spain). The bioassay test battery included assays indicative of seven endocrine pathways, while 58 different chemicals, including pesticides, pharmaceuticals and industrial compounds, were analysed by targeted chemical analysis. Endocrine activity was below the limit of quantification for most water samples, with only two of six treated wastewater samples and two of six surface water samples exhibiting estrogenic, glucocorticoid, progestagenic and/or anti-mineralocorticoid activity above the limit of quantification. Based on available effect-based trigger values (EBT) for estrogenic and glucocorticoid activity, some of the wastewater and surface water samples were found to exceed the EBT, suggesting these environmental waters may pose a potential risk to ecosystem health. In contrast, the lack of bioassay activity and low detected chemical concentrations in the drinking water samples do not suggest a risk to human endocrine health, with all samples below the relevant EBTs. Copyright © 2018 Elsevier Ltd. All rights reserved.
Balasubramani, Aparna; Rifai, Hanadi S
2015-10-01
Sewage sludge samples collected from 43 different domestic and industrial wastewater treatment plants and petrochemical industries that discharge to the Houston Ship Channel (HSC) were analyzed for polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs), which are highly toxic and carcinogenic towards humans and animals. The measured total PCDD/F toxic equivalency (TEQ) ranged between 0.73 and 7348.40 pg/g dry weight. The mean TEQ of PCDD/Fs in industrial sludge was approximately 40 times higher than that in sewage sludge. The PCDD homolog concentrations in the industrial samples were higher than those observed at the wastewater treatment plants by a factor of 10, with total heptachlorodibenzodioxin (HpCDD) exhibiting the maximum concentration in most of the samples. Among the PCDF homologs, total heptadichlorodibenzofuran (HpCDF) dominated the total homolog concentration in sludge from the wastewater treatment plants, whereas total tetradichlorodibenzofuran (TeCDF) dominated the industrial sludge samples. Overall, the total PCDD/F TEQ in sludge samples was much higher than that in effluent samples from the same facility. A linear correlation (R (2) = 0.62, p value < 0.068) was found indicating that sludge sampling can be used as a surrogate for effluent concentrations in wastewater treatment plants but not for industrial discharges.
Reif, Andrew G.; Crawford, J. Kent; Loper, Connie A.; Proctor, Arianne; Manning, Rhonda; Titler, Robert
2012-01-01
Concern over the presence of contaminants of emerging concern, such as pharmaceutical compounds, hormones, and organic wastewater compounds (OWCs), in waters of the United States and elsewhere is growing. Laboratory techniques developed within the last decade or new techniques currently under development within the U.S. Geological Survey now allow these compounds to be measured at concentrations in nanograms per liter. These new laboratory techniques were used in a reconnaissance study conducted by the U.S. Geological Survey, in cooperation with the Pennsylvania Department of Environmental Protection, to determine the occurrence of contaminants of emerging concern in streams, streambed sediment, and groundwater of Pennsylvania. Compounds analyzed for in the study are pharmaceuticals (human and veterinary drugs), hormones (natural and synthetic), and OWCs (detergents, fragrances, pesticides, industrial compounds, disinfectants, polycyclic aromatic hydrocarbons, fire retardants and plasticizers). Reconnaissance sampling was conducted from 2006 to 2009 to identify contaminants of emerging concern in (1) groundwater from wells used to supply livestock, (2) streamwater upstream and downstream from animal feeding operations, (3) streamwater upstream from and streamwater and streambed sediment downstream from municipal wastewater effluent discharges, (4) streamwater from sites within 5 miles of drinking-water intakes, and (5) streamwater and streambed sediment where fish health assessments were conducted. Of the 44 pharmaceutical compounds analyzed in groundwater samples collected in 2006 from six wells used to supply livestock, only cotinine (a nicotine metabolite) and the antibiotics tylosin and sulfamethoxazole were detected. The maximum concentration of any contaminant of emerging concern was 24 nanograms per liter (ng/L) for cotinine, and was detected in a groundwater sample from a Lebanon County, Pa., well. Seven pharmaceutical compounds including acetaminophen, caffeine, carbamazepine, and the four antibiotics tylosin, sulfadimethoxine, sulfamethoxazole, and oxytetracycline were detected in streamwater samples collected in 2006 from six paired stream sampling sites located upstream and downstream from animal-feeding operations. The highest reported concentration of these seven compounds was for the antibiotic sulfamethoxazole (157 ng/L), in a sample from the downstream site on Snitz Creek in Lancaster County, Pa. Twenty-one pharmaceutical compounds were detected in streamwater samples collected in 2006 from five paired stream sampling sites located upstream or downstream from a municipal wastewater-effluent-discharge site. The most commonly detected compounds and maximum concentrations were the anticonvulsant carbamazepine, 276 ng/L; the antihistamine diphenhydramine, 135 ng/L; and the antibiotics ofloxacin, 329 ng/L; sulfamethoxazole, 1,340 ng/L; and trimethoprim, 256 ng/L. A total of 51 different contaminants of emerging concern were detected in streamwater samples collected from 2007 through 2009 at 13 stream sampling sites located downstream from a wastewater-effluent-discharge site. The concentrations and numbers of compounds detected were higher in stream sites downstream from a wastewater-effluent-discharge site than in stream sites upstream from a wastewater-effluent-discharge site. This finding indicates that wastewater-effluent discharges are a source of contaminants of emerging concern; these contaminants were present more frequently in the streambed-sediment samples than in streamwater samples. Antibiotic compounds were often present in both the streamwater and streambed-sediment samples, but many OWCs were present exclusively in the streambed-sediment samples. Compounds with endocrine disrupting potential including detergent metabolites, pesticides, and flame retardants, were present in the streamwater and streambed-sediment samples. Killinger Creek, a stream where wastewater-effluent discharges contribute a large percentage of the total flow, stands out as a stream with particularly high numbers of compounds detected and detected at the highest concentrations measured in the reconnaissance sampling. Nineteen contaminants of emerging concern were detected in streamwater samples collected quarterly from 2007 through 2009 at 27 stream sites within 5 miles of a drinking-water intake. The number of contaminants and the concentrations detected at the stream sites within 5 miles of drinking-water intakes were generally very low (concentrations less than 50 ng/L), much lower than those at sites downstream from a wastewater-effluent discharge. The most commonly detected compounds and maximum concentrations were caffeine, 517 ng/L; carbamazepine, 95 ng/L; sulfamethoxazole, 146 ng/L; and estrone, 3.15 ng/L. The concentrations and frequencies of detection of some of the contaminants of emerging concern appear to vary by season, which could be explained by compound use, flow regime, or differences in degradation rates. Concentrations of some contaminants were associated with lower flows as a result of decreased in-stream dilution of wastewater effluents or other contamination sources. Twenty-two contaminants of emerging concern were detected once each in streamwater samples collected in 2007 and 2008 from 16 fish-health stream sites located statewide. The highest concentrations were for the OWCs, including flame retardants tri(2-butoxyethyl)phosphate (604 ng/L) and tri(2-chloroethyl)phosphate (272 ng/L) and the fragrance isoquinoline (330 ng/L). Far fewer numbers of contaminants of emerging concern were detected at the fish-health sites than at the wastewater-effluent-discharge sites. Most of the fish-health sites were not located directly downstream from a wastewater-effluent discharge, but there were multiple wastewater-effluent discharges in the drainage basins upstream from the sampling sites. No distinct pattern of contaminant occurrence could be discerned for the fish-health stream sites
Harden, Stephen L.
2009-01-01
Water-quality and hydrologic data were collected during 2008 to examine the occurrence of organic wastewater compounds at a concentrated swine feeding operation located in the North Carolina Coastal Plain. Continuous groundwater level and stream-stage data were collected at one monitoring well and one stream site, respectively, throughout 2008. One round of environmental and quality-control samples was collected in September 2008 following a period of below-normal precipitation and when swine waste was not being applied to the spray fields. Samples were collected at one lagoon site, seven shallow groundwater sites, and one surface-water site for analysis of 111 organic wastewater compounds, including household, industrial, and agricultural-use compounds, sterols, pharmaceutical compounds, hormones, and antibiotics. Analytical data for environmental samples collected during the study provide preliminary information on the occurrence of organic wastewater compounds in the lagoon-waste source material, groundwater beneath fields that receive spray applications of the lagoon wastes, and surface water in the tributary adjacent to the site. Overall, 28 organic wastewater compounds were detected in the collected samples, including 11 household, industrial, and agricultural-use compounds; 3 sterols; 2 pharmaceutical compounds; 5 hormones; and 7 antibiotics. The lagoon sample had the greatest number (20) and highest concentrations of compounds compared to groundwater and surface-water samples. The antibiotic lincomycin had the maximum detected concentration (393 micrograms per liter) in the lagoon sample. Of the 11 compounds identified in the groundwater and surface-water samples, all with reported concentrations less than 1 microgram per liter, only lincomycin identified in groundwater at 1 well and 3-methyl-1H-indole and indole identified in surface water at 1 site also were identified in the lagoon waste material.
Woods-Chabane, Gwen C; Glover, Caitlin M; Marti, Erica J; Dickenson, Eric R V
2017-07-01
This study examined the potential of using a novel bulk amine assay as an approximation for the tertiary and quaternary amine load in wastewaters and surface water samples, and this approximation was compared to N-nitrosodimethylamine (NDMA) formation potential using chloramines. An existing colorimetric method was examined and optimized for the detection of amines in environmental water samples. The method consists of liquid-liquid extraction followed by a catalyzed reaction to form a yet-undefined product that is known to be both a strong chromophore and fluorophore. Previous work verified that this reaction was effectively catalyzed by a number of compounds containing tertiary and quaternary amine moieties. Many tertiary and quaternary compounds are also efficient producers of NDMA under chloramination conditions, and a linear correlation was consequently derived from the bulk amine signals vs. NDMA formation potential in various wastewater samples (R 2 = 0.74; n = 24; p-value < 0.05). The results provide evidence that approximately 2% of the tertiary and quaternary amines measured can form NDMA and an estimated 0.01-1.3% of nitrogen in dissolved organic nitrogen originates from these bulk amines. The normalization of NDMA concentration by the amine measurement revealed that ozone effectively destroyed those tertiary and quaternary amine structures more likely to form NDMA in treated wastewater samples. This bulk amine assay illustrates that proxy measurements of tertiary and quaternary amines can be linked to the NDMA formation potential of a given sample, and this approach may prove useful as a characterizing tool for NDMA precursors in wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.
Li, Yinghui; Huang, Shuaijin; Qu, Xuexin
2017-10-27
The Three Gorges Project was implemented in 1994 to promote sustainable water resource use and development of the water environment in the Three Gorges Reservoir Area (hereafter "Reservoir Area"). However, massive discharge of wastewater along the river threatens these goals; therefore, this study employs a grey prediction model (GM) to predict the annual emissions of primary pollution sources, including industrial wastewater, domestic wastewater, and oily and domestic wastewater from ships, that influence the Three Gorges Reservoir Area water environment. First, we optimize the initial values of a traditional GM (1,1) model, and build a new GM (1,1) model that minimizes the sum of squares of the relative simulation errors. Second, we use the new GM (1,1) model to simulate historical annual emissions data for the four pollution sources and thereby test the effectiveness of the model. Third, we predict the annual emissions of the four pollution sources in the Three Gorges Reservoir Area for a future period. The prediction results reveal the annual emission trends for the major wastewater types, and indicate the primary sources of water pollution in the Three Gorges Reservoir Area. Based on our predictions, we suggest several countermeasures against water pollution and towards the sustainable development of the water environment in the Three Gorges Reservoir Area.
Zhang, Chao; Chen, Yin-Guang
2013-07-01
As a high-quality carbon source, fermentation broth could promote the phosphorus removal efficiency in enhanced biological phosphorus removal (EBPR). The transformation of substrates in EBPR fed with fermentation broth was well simulated using the modified activated sludge model No. 2 (ASM2) based on the carbon source metabolism. When fermentation broth was used as the sole carbon source, it was found that heterotrophic bacteria acted as a promoter rather than a competitor to the phosphorus accumulating organisms (PAO). When fermentation broth was used as a supplementary carbon source of real municipal wastewater, the wastewater composition was optimized for PAO growth; and the PAO concentration, which was increased by 3.3 times compared to that in EBPR fed with solely real municipal wastewater, accounting for about 40% of the total biomass in the reactor.
Lien, La Thi Quynh; Hoa, Nguyen Quynh; Chuc, Nguyen Thi Kim; Thoa, Nguyen Thi Minh; Phuc, Ho Dang; Diwan, Vishal; Dat, Nguyen Thanh; Tamhankar, Ashok J.; Lundborg, Cecilia Stålsby
2016-01-01
Hospital effluents represent an important source for the release of antibiotics and antibiotic resistant bacteria into the environment. This study aims to determine concentrations of various antibiotics in wastewater before and after wastewater treatment in a rural hospital (60 km from the center of Hanoi) and in an urban hospital (in the center of Hanoi) in Vietnam, and it aims to explore the relationship between antibiotic concentrations in wastewater before wastewater treatment and quantities of antibiotics used in the rural hospital, over a period of one year in 2013. Water samples were collected using continuous sampling for 24 h in the last week of every month. The data on quantities of antibiotics delivered to all inpatient wards were collected from the Pharmacy department in the rural hospital. Solid-phase extraction and high performance liquid chromatography-tandem mass spectrometry were used for chemical analysis. Significant concentrations of antibiotics were present in the wastewater both before and after wastewater treatment of both the rural and the urban hospital. Ciprofloxacin was detected at the highest concentrations in the rural hospital’s wastewater (before treatment: mean = 42.8 µg/L; after treatment: mean = 21.5 µg/L). Metronidazole was detected at the highest concentrations in the urban hospital’s wastewater (before treatment: mean = 36.5 µg/L; after treatment: mean = 14.8 µg/L). A significant correlation between antibiotic concentrations in wastewater before treatment and quantities of antibiotics used in the rural hospital was found for ciprofloxacin (r = 0.78; p = 0.01) and metronidazole (r = 0.99; p < 0.001). PMID:27314366
Lien, La Thi Quynh; Hoa, Nguyen Quynh; Chuc, Nguyen Thi Kim; Thoa, Nguyen Thi Minh; Phuc, Ho Dang; Diwan, Vishal; Dat, Nguyen Thanh; Tamhankar, Ashok J; Lundborg, Cecilia Stålsby
2016-06-14
Hospital effluents represent an important source for the release of antibiotics and antibiotic resistant bacteria into the environment. This study aims to determine concentrations of various antibiotics in wastewater before and after wastewater treatment in a rural hospital (60 km from the center of Hanoi) and in an urban hospital (in the center of Hanoi) in Vietnam, and it aims to explore the relationship between antibiotic concentrations in wastewater before wastewater treatment and quantities of antibiotics used in the rural hospital, over a period of one year in 2013. Water samples were collected using continuous sampling for 24 h in the last week of every month. The data on quantities of antibiotics delivered to all inpatient wards were collected from the Pharmacy department in the rural hospital. Solid-phase extraction and high performance liquid chromatography-tandem mass spectrometry were used for chemical analysis. Significant concentrations of antibiotics were present in the wastewater both before and after wastewater treatment of both the rural and the urban hospital. Ciprofloxacin was detected at the highest concentrations in the rural hospital's wastewater (before treatment: mean = 42.8 µg/L; after treatment: mean = 21.5 µg/L). Metronidazole was detected at the highest concentrations in the urban hospital's wastewater (before treatment: mean = 36.5 µg/L; after treatment: mean = 14.8 µg/L). A significant correlation between antibiotic concentrations in wastewater before treatment and quantities of antibiotics used in the rural hospital was found for ciprofloxacin (r = 0.78; p = 0.01) and metronidazole (r = 0.99; p < 0.001).
Textile wastewater reuse after additional treatment by Fenton's reagent.
Ribeiro, Marília Cleto Meirelles; Starling, Maria Clara V M; Leão, Mônica Maria Diniz; de Amorim, Camila Costa
2017-03-01
This study verifies textile wastewater reuse treated by the conventional activated sludge process and subjected to further treatment by advanced oxidation processes. Three alternative processes are discussed: Fenton, photo-Fenton, and UV/H 2 O 2 . Evaluation of treatments effects was based on factorial experiment design in which the response variables were the maximum removal of COD and the minimum concentration of residual H 2 O 2 in treated wastewater. Results indicated Fenton's reagent, COD/[H 2 O 2 ]/[Fe 2+ ] mass ratio of 1:2:2, as the best alternative. The selected technique was applied to real wastewater collected from a conventional treatment plant of a textile mill. The quality of the wastewater before and after the additional treatment was monitored in terms of 16 physicochemical parameters defined as suitable for the characterization of waters subjected to industrial textile use. The degradation of the wastewater was also evaluated by determining the distribution of its molecular weight along with the organic matter fractionation by ultrafiltration, measured in terms of COD. Finally, a sample of the wastewater after additional treatment was tested for reuse at pilot scale in order to evaluate the impact on the quality of dyed fabrics. Results show partial compliance of treated wastewater with the physicochemical quality guidelines for reuse. Removal and conversion of high and medium molecular weight substances into low molecular weight substances was observed, as well as the degradation of most of the organic matter originally present in the wastewater. Reuse tests indicated positive results, confirming the applicability of wastewater reuse after the suggested additional treatment. Graphical abstract Textile wastewater samples after additional treatment by Fenton's reagent, photo-Fenton and H 2 O 2 /UV tested in different conditions.
Wesolowski, Edwin A.
2000-01-01
This report presents a proposal for conducting a water-quality modeling study at drought streamflow, a detailed comprehensive plan for collecting the data, and an annual drought-formation monitoring plan. A 30.8 mile reach of the Red River of the North receives treated wastewater from plants at Fargo, North Dakota, and Moorhead, Minnesota, and streamflow from the Sheyenne River. The water-quality modeling study will evaluate the effects of continuous treated-wastewater discharges to the study reach at drought streamflow. The study will define hydraulic characteristics and reaeration and selected reaction coefficients and will calibrate and verity a model.The study includes collecting synoptic water-quality samples for various types of analyses at a number of sites in the study reach. Dye and gas samples will be collected for traveltime and reaeration measurements. Using the Lagrangian reference frame, synoptic water-quality samples will be collected for analysis of nutrients, chlorophyll a, alkalinity, and carbonaceous biochemical oxygen demand. Field measurements will be made of specific conductance, pH, air and water temperature, dissolved oxygen, and sediment oxygen demand. Two sets of water-quality data will be collected. One data set will be used to calibrate the model, and the other data set will be used to verity the model.The DAFLOW/BLTM models will be used to evaluate the effects of the treated wastewater on the water quality of the river. The model will simulate specific conductance, temperature, dissolved oxygen, carbonaceous biochemical oxygen demand, total nitrogen (organic, ammonia, nitrite, nitrate), total orthophosphorus, total phosphorus, and phytoplankton as chlorophyll a.The work plan identifies and discusses the work elements needed for accomplishing the data collection for the study. The work elements specify who will provide personnel, vehicles, instruments, and supplies needed during data collection. The work plan contains instructions for data collection; inventory lists of needed personnel, vehicles, instruments, and supplies; and examples of computations for determining quantities of tracer to be injected into the stream. The work plan also contains an annual drought-formation monitoring plan that includes a 9-month time line that specifies when essential planning actions must occur before actual project start up. Drought streamflows are rare. The annual drought-formation monitoring plan is presented to assist project planning by providing early warning that conditions are favorable to produce drought streamflow. The plan to monitor drought-forming conditions discusses the drought indices to be monitored. To establish a baseline, historic values for some of the drought indices for selected years were reviewed. An annual review of the drought indices is recommended.
Phelan, Daniel J.; Miller, Cherie V.
2010-01-01
The U.S. Geological Survey, and the National Park Service Police Aviation Group, conducted a high-resolution, low-altitude aerial thermal infrared survey of the Washington, D.C. section of Rock Creek Basin within the Park boundaries to identify specific locations where warm water was discharging from seeps or pipes to the creek. Twenty-three stream sites in Rock Creek Park were selected based on the thermal infrared images. Sites were sampled during the summers of 2007 and 2008 for the analysis of organic wastewater compounds to verify potential sources of sewage and other anthropogenic wastewater. Two sets of stormwater samples were collected, on June 27-28 and September 6, 2008, at the Rock Creek at Joyce Road water-quality station using an automated sampler that began sampling when a specified stage threshold value was exceeded. Passive-sampler devices that accumulate organic chemicals over the duration of deployment were placed in July 2008 at the five locations that had the greatest number of detections of organic wastewater compounds from the June 2007 base-flow sampling. During the 2007 base-flow synoptic sampling, there were ubiquitous low-level detections of dissolved organic wastewater indicator compounds such as DEET, caffeine, HHCB, and organophosphate flame retardants at more than half of the 23 sites sampled in Rock Creek Park. Concentrations of DEET and caffeine in the tributaries to Rock Creek were variable, but in the main stem of Rock Creek, the concentrations were constant throughout the length of the creek, which likely reflects a distributed source. Organophosphate flame retardants in the main stem of Rock Creek were detected at estimated concentrations of 0.2 micrograms per liter or less, and generally did not increase with distance downstream. Overall, concentrations of most wastewater indicators in whole-water samples in the Park were similar to the concentrations found at the upstream sampling station at the Maryland/District of Columbia boundary. Polycyclic aromatic hydrocarbons were the dominant organic compounds found in the stormwater samples at the Joyce Road station. Polycyclic aromatic hydrocarbons were consistently found in higher concentrations either in sediment or in whole-water samples than in the dissolved samples collected during base-flow conditions at the 23 synoptic sites, or in the Joyce Road station stormwater samples.
NASA Astrophysics Data System (ADS)
Chen, Xin; Ye, Tingjin; Xu, Zizhen; Chen, Xiaogang; Shi, Liang; He, Lingfeng; Zhang, Yongli
2018-03-01
The carboxymethylchitosan cladding coal ash (CWF) was oxidized by the high temperature using coal ash and sodium carboxymethyl chitosan as raw and processed material for treatment of simulated and actual printing and dyeing wastewater over iron-carbon micro-electrolysis. The results on pH and CWF dosage for effluent dispose were evaluated by the decolorization rate, COD removal efficiency and turbidity removal rate. The experimental results indicated that the decolorization rate was first augmented and then declined with the increase of pH, and attained a peak value when pH was at 5-6. The COD removal efficiency augmented with the augmented of pH, and attained a peak value when pH was 6-7. The turbidity removal rate was first increases and afterwards decreases with the augment of pH, and attained a peak value when pH was at 5-6. Furthermore, the optimum pH for the treatment of simulated dyeing wastewater was 6 over iron-carbon micro-electrolysis, which indicated that the appropriate pH can promote the degradation of wastewater.
Caffeine has been identified by previous research as a potential tracer of sanitary wastewater. To further assess the utility of caffeine as a tracer of wastewater sources, samples from 25 sites throughout Boston Harbor were collected and analyzed for caffeine by LC-MS/MS. Caff...
Svobodová, Kateřina; Semerád, Jaroslav; Petráčková, Denisa; Novotný, Čeněk
2018-05-30
Quantitative changes in antibiotic resistance genes (ARGs) were investigated in six urban wastewater treatment plants (WWTPs) treating municipal and industrial wastewaters. In a selected WWTP, the fate of ARGs was studied in a 1-year time interval and in two phases of wastewater treatment process. Nine ARGs (tetW, tetO, tetA, tetB, tetM, bla TEM , ermB, sul1, and intl1) were quantified in total and their relative abundance assessed by ARG copies/16SrRNA copies. From the tetracycline resistance genes, tetW was the only one detected in all sampled WWTPs. Its relative abundance in the nitrification tank of WWTP5 was found stable during the 1-year period, but was lowered by secondary sedimentation processes in the wastewater treatment down to 24% compared to the nitrification tank. Bacterial isolates showing high tetracycline resistance (minimal inhibition concentrations >100 μg/mL) were identified as members of Acinetobacter, Klebsiella, Citrobacter, Bacillus, and Enterobacter genera. Dynamic shifts in the relative abundance of ermB and sul1 were also demonstrated in wastewater samples from WWTP5.
Fluorochemical Mass Flows in a Municipal Wastewater Treatment Facility
Schultz, Melissa M.; Higgins, Christopher P.; Huset, Carin A.; Luthy, Richard G.; Barofsky, Douglas F.; Field, Jennifer A.
2008-01-01
Fluorochemicals have widespread applications and are released into municipal wastewater treatment plants via domestic wastewater. A field study was conducted at a full-scale municipal wastewater treatment plant to determine the mass flows of selected fluorochemicals. Flow-proportional, 24-h samples of raw influent, primary effluent, trickling filter effluent, secondary effluent, and final effluent and grab samples of primary, thickened, activated, and anaerobically-digested sludge were collected over ten days and analyzed by liquid chromatography electrospray-ionization tandem mass spectrometry. Significant decreases in the mass flows of perfluorohexane sulfonate and perfluorodecanoate occurred during trickling filtration and primary clarification, while activated sludge treatment decreased the mass flow of perfluorohexanoate. Mass flows of the 6:2 fluorotelomer sulfonate and perfluorooctanoate were unchanged as a result of wastewater treatment, which indicates that conventional wastewater treatment is not effective for removal of these compounds. A net increase in the mass flows for perfluorooctane and perfluorodecane sulfonates occurred from trickling filtration and activated sludge treatment. Mass flows for perfluoroalkylsulfonamides and perfluorononanoate also increased during activated sludge treatment and are attributed to degradation of precursor molecules. PMID:17180988
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, S.P.; Curtis, D.L.; Dabney, S.A.
1990-08-01
At the request of USAF Hospital Luke/SGPB, personnel from AFOEHL conducted a wastewater characterization survey at Luke AFB. The scope of the survey was to characterize the wastewater, analyze industrial effluent, effluent from oil/water separators, and storm water. The survey showed Luke AFB needed to take some follow-up action to reduce levels of ammonia, cyanide, boron, sulfide, and surfactants. Recommendations include: (1) Examine the soaps and cleaners being used to determine if phenol is present. Substitute non-phenolic soaps to reduce the concentration of phenols being discharged into the sanitary and storm drainage systems. (2) The contamination found was mostly ammonia,more » cyanide, boron, sulfides and surfactants; usually found in detergents and cleaners contain these chemicals and replace them. (3) Clean and maintain the grease traps at the dining facilities. If there are none, then install some. (4) Perform routine maintenance on the oil/water separators and do periodic inspections to determine their effectiveness. (5) Determine the electronic components causing the high barium level at the flight simulator and prevent it being disposed of down the sanitary sewer. (6) Take two additional samples for mercury at Burger King and the Hush House.« less
Vogel, J.R.; Verstraeten, Ingrid M.; Coplen, T.B.; Furlong, E.T.; Meyer, M.T.; Barber, L.B.
2005-01-01
Although studied extensively in recent years in Europe, the occurrence of endocrine disrupters and other organic wastewater compounds in the environment in the United States is not well documented. To better understand the efficiency of riverbank filtration with respect to endocrine disrupting compounds and to evaluate the use of riverbank filtration as an effective means of drinking-water treatment, a study was conducted during 2001-2003 by the U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency and the City of Lincoln, at an established riverbank-filtration well field with horizontal collector wells and vertical wells. This study provides information that will be useful for (1) increased understanding of the processes and factors important in controlling the transport of endocrine disrupters, such as pesticides and pharmaceuticals during riverbank filtration, (2) better understanding of the physical and chemical processes that affect riverbank-filtration efficiency, and (3) managing the water resources of the eastern Platte River Basin. This report presents analytical methods and data collected during the study. Data are presented as generalized statistics and in figures showing temporal variations. Sites from which water-quality samples were collected for this study included wastewater sites (a cattle feedlot lagoon, a hog confinement lagoon, and wastewater-treatment plant effluent), surface-water sites (Platte River, Salt Creek, and Loup Power Canal), ground-water sites (one collector well and three vertical wells), and drinking-water sites (raw and finished). Field water-quality properties were measured in samples from these sites. Pharmaceutical compounds were detected often in the wastewater-treatment plant effluent. Surface and ground water showed low-level concentrations of pharmaceuticals. Finished drinking-water samples did not contain detectable concentrations of pharmaceuticals except for low levels of cotinine and caffeine. Antibiotics were found in some of the wastewater samples and twice in Salt Creek. Antibiotics were not detected in any samples from the Platte River or the well field. Surface-water samples were analyzed for total organic carbon and ground-water samples were analyzed for dissolved organic carbon. Samples from all sites were analyzed for major ions. Herbicides commonly detected in surface, ground, and drinking water included acetachlor, alachlor, atrazine, and metolachlor as well as degradates of these compounds. Most of the samples from wastewater sites were found to contain predominantly acetamide degradates. High concentrations of several organic wastewater indicator compounds were detected at the wastewater sites and in Salt Creek. Several organic wastewater indicator compounds were detected multiple times in samples from the Platte River. Bromoform, a by-product of disinfection in the treatment plant, was found in samples from the finished drinking water. Stable hydrogen isotope ratios show a range in seasonal variation of -73.6 per mill to -38.1 per mill relative to Vienna Standard Mean Ocean Water (VSMOW) reference water and -69.2 per mill to -46.5 per mill for surface water and ground water, respectively. Oxygen isotope ratios for surface-water samples varied between -9.86 per mill and -5.05 per mill. Stable oxygen isotope ratios of ground waters varied between -9.62 per mill and -5.81 per mill.
Effect of White Charcoal on COD Reduction in Wastewater Treatment
NASA Astrophysics Data System (ADS)
Pijarn, Nuchanaporn; Butsee, Manipa; Buakul, Kanokwan; Seng, Hasan; Sribuarai, Tinnphat; Phonprasert, Pongtep; Taneeto, Kla; Atthameth, Prasertsil
2017-06-01
The objective of this study is to compare the COD reduction in wastewater between using coconut shell and coconut spathe white charcoal from Khlong Wat NongPra-Ong, Krathumbaen, SamutSakhon province, Thailand. The waste water samples were collected using composite sampling method. The experimental section can be divided into 2 parts. The first part was study the optimum of COD adsorption time using both white charcoals. The second part was study the optimum amount of white charcoal for chemical oxygen demand (COD) reduction. The pre-treatment of wastewater was examined in parameters include temperature, alkalinity (pH), conductivity, turbidity, suspended solid (SS), total dissolved solid (TDS), and COD. The results show that both white charcoals can reduce COD of wastewater. The pH of pre-treatment wastewater had pH 9 but post-treatment wastewaters using both white charcoals have pH 8. The COD of pre-treatment wastewater had COD as 258 mg/L but post-treatment wastewater using coconut shell white charcoal had COD steady at 40 mg/L in 30 min and the amount of white charcoals 4 g. The COD of post-treatment wastewater using coconut spathe white charcoal had COD steady at 71 mg/L in 30 min and the amount of white charcoals 4 g. Therefore comparison of COD reduction between coconut shell white charcoal versus coconut spathe white charcoal found that the coconut shell white charcoal had efficiency for COD reduction better than coconut spathe white charcoal.
EPA scientists analyzed 24-hr composite samples from 50 large U.S. municipal wastewater plants (WWTPs) between January 2010 and April 2011. One hundred and twenty analytes were measured in each effluent sample, 63 high-priority active pharmaceutical ingredients and metabolites, ...
Specific detection of cultivable Helicobacter pylori cells from wastewater treatment plants.
Moreno, Yolanda; Ferrús, M Antonía
2012-10-01
Helicobacter pylori is present in surface water and wastewater, and biofilms in drinking water systems have been reported as possible reservoirs of H. pylori. However, its ability to survive in an infectious state in the environment is hindered because it rapidly loses its cultivability. The aim of this study was to determine the presence of cultivable and therefore viable H. pylori in wastewater treatment plants to understand the role of wastewater in the pathogen's transmission. A modified filter technique was used to obtain a positive H. pylori culture, and specific detection of this pathogen was achieved with FISH and PCR techniques. A total of six positive H. pylori cultures were obtained from the water samples, and molecular techniques positively identified H. pylori in 21 culture-negative samples. The combination of a culturing procedure after sample filtration followed by the application of a molecular method, such as PCR or FISH, provides a specific tool for the detection, identification, and direct visualization of cultivable and therefore viable H. pylori cells from complex mixed communities such as water samples. © 2012 Blackwell Publishing Ltd.
[Screening and ammoxidation characteristics of an ammonium oxidizing bacteria group].
Yang, Xiaolong; Liu, Lihua; Wu, Bingqi; Liu, Shujie; Chen, Fuming
2015-12-04
This study aimed to screen high-performance ammonia oxidizing bacteria ( AOB) resistant to a high concentration of ammonia-nitrogen and low C/N ratio, for the development of novel AOB agents. Multi-point sampling, compulsory domestication, gradient dilution of domestication liquid were conducted to screen AOB with efficient and stable ammonia-nitrogen removing ability, and effects of different factors on its ammoxidation ability including C/N ratio, shaking speed and ammonia-nitrogen concentration were studied. Dominant strains were screened and identified by morphological observation, physiological and biochemical properties test and 16S rRNA sequence analysis. Three efficient AOB were obtained, among them a micro-flora named JQ8 showed the highest activity. The ammonia-nitrogen removal rate reached 95. 07% in a simulated wastewater with 17. 86 mmol/L of initial ammonia-nitrogen at C/N 4 treated by JQ8 for 6 days. Moreover, its ammonia nitrogen removal rate kept above 95% and net nitrogen removing rate nearly 80% in the solution with a C/N ratio above 4 and an NH₄⁺-N concentration below 28.57 mmol/L. The circuit board industry wastewater was treated using the laboratory-simulated aerobic active sludge disposal system. The removal rate of NH₄⁺-N and total nitrogen reached 87.8% and 67.6% respectively after 7 days' treatment using JQ8. Defluvibacter sp., Paracoccus sp. and Aquamicrobium sp. were identified as the dominant strains after the composition analysis of JQ8. An ammonia oxidizing bacteria consortium JQ8 screened from the landfill leachate showed a strong ammonium-nitrogen removal and endurance ability under low C/N ratio and high ammonia-nitrogen concentration, thus is probably applicable to intensify the ammonia-nitrogen removal treatment of industrial wastewater with sewage disposal system.
Jones, Hayley E; Hickman, Matthew; Kasprzyk-Hordern, Barbara; Welton, Nicky J; Baker, David R; Ades, A E
2014-07-15
Concentrations of metabolites of illicit drugs in sewage water can be measured with great accuracy and precision, thanks to the development of sensitive and robust analytical methods. Based on assumptions about factors including the excretion profile of the parent drug, routes of administration and the number of individuals using the wastewater system, the level of consumption of a drug can be estimated from such measured concentrations. When presenting results from these 'back-calculations', the multiple sources of uncertainty are often discussed, but are not usually explicitly taken into account in the estimation process. In this paper we demonstrate how these calculations can be placed in a more formal statistical framework by assuming a distribution for each parameter involved, based on a review of the evidence underpinning it. Using a Monte Carlo simulations approach, it is then straightforward to propagate uncertainty in each parameter through the back-calculations, producing a distribution for instead of a single estimate of daily or average consumption. This can be summarised for example by a median and credible interval. To demonstrate this approach, we estimate cocaine consumption in a large urban UK population, using measured concentrations of two of its metabolites, benzoylecgonine and norbenzoylecgonine. We also demonstrate a more sophisticated analysis, implemented within a Bayesian statistical framework using Markov chain Monte Carlo simulation. Our model allows the two metabolites to simultaneously inform estimates of daily cocaine consumption and explicitly allows for variability between days. After accounting for this variability, the resulting credible interval for average daily consumption is appropriately wider, representing additional uncertainty. We discuss possibilities for extensions to the model, and whether analysis of wastewater samples has potential to contribute to a prevalence model for illicit drug use. Copyright © 2014. Published by Elsevier B.V.
Jones, Hayley E.; Hickman, Matthew; Kasprzyk-Hordern, Barbara; Welton, Nicky J.; Baker, David R.; Ades, A.E.
2014-01-01
Concentrations of metabolites of illicit drugs in sewage water can be measured with great accuracy and precision, thanks to the development of sensitive and robust analytical methods. Based on assumptions about factors including the excretion profile of the parent drug, routes of administration and the number of individuals using the wastewater system, the level of consumption of a drug can be estimated from such measured concentrations. When presenting results from these ‘back-calculations’, the multiple sources of uncertainty are often discussed, but are not usually explicitly taken into account in the estimation process. In this paper we demonstrate how these calculations can be placed in a more formal statistical framework by assuming a distribution for each parameter involved, based on a review of the evidence underpinning it. Using a Monte Carlo simulations approach, it is then straightforward to propagate uncertainty in each parameter through the back-calculations, producing a distribution for instead of a single estimate of daily or average consumption. This can be summarised for example by a median and credible interval. To demonstrate this approach, we estimate cocaine consumption in a large urban UK population, using measured concentrations of two of its metabolites, benzoylecgonine and norbenzoylecgonine. We also demonstrate a more sophisticated analysis, implemented within a Bayesian statistical framework using Markov chain Monte Carlo simulation. Our model allows the two metabolites to simultaneously inform estimates of daily cocaine consumption and explicitly allows for variability between days. After accounting for this variability, the resulting credible interval for average daily consumption is appropriately wider, representing additional uncertainty. We discuss possibilities for extensions to the model, and whether analysis of wastewater samples has potential to contribute to a prevalence model for illicit drug use. PMID:24636801
Fate of the fecal indicator Escherichia coli in irrigation with partially treated wastewater.
Vergine, P; Saliba, R; Salerno, C; Laera, G; Berardi, G; Pollice, A
2015-11-15
Treated wastewater reuse is increasing in semi-arid regions as a response to the effects of climate change and increased competition for natural water resources. Investigating the fate of bacterial indicators is relevant to assess their persistence in the environment and possible transfer to groundwater or to the food chain. A long-term field-scale experimental campaign and a soil column test were carried out to evaluate the fate of the fecal indicator Escherichia coli (E. coli) in a cultivated soil when contaminated water resources are used for irrigation. For field experiments, fecal contamination was simulated by dosing the indicator to the effluent of a membrane bioreactor, thus simulating a filtration system's failure, and irrigating a test field where grass was grown. The presence of E. coli on grass and topsoil samples was monitored under different scenarios. For evaluating the fate of the same indicator in the subsoil, a set of soil columns was installed next to the field, operated, and monitored for E. coli concentration over time and along depth. Real municipal wastewater was used in this case as source of fecal contamination. Results showed that short- and medium-term effects on topsoil were strongly dependent on the concentration of E. coli in the irrigation water. Limited persistence and no relevant accumulation of the indicator on the grass and in the topsoil were observed. Watering events performed after fecal contamination did not influence significantly the decay in the topsoil, which followed a log-linear model. The trend of the E. coli concentrations in the leaching of the soil columns followed a log-linear model as well, suggesting bacterial decay as the dominant mechanism affecting the underground indicator's concentration. Copyright © 2015 Elsevier Ltd. All rights reserved.
Towards a consensus-based biokinetic model for green microalgae - The ASM-A.
Wágner, Dorottya S; Valverde-Pérez, Borja; Sæbø, Mariann; Bregua de la Sotilla, Marta; Van Wagenen, Jonathan; Smets, Barth F; Plósz, Benedek Gy
2016-10-15
Cultivation of microalgae in open ponds and closed photobioreactors (PBRs) using wastewater resources offers an opportunity for biochemical nutrient recovery. Effective reactor system design and process control of PBRs requires process models. Several models with different complexities have been developed to predict microalgal growth. However, none of these models can effectively describe all the relevant processes when microalgal growth is coupled with nutrient removal and recovery from wastewaters. Here, we present a mathematical model developed to simulate green microalgal growth (ASM-A) using the systematic approach of the activated sludge modelling (ASM) framework. The process model - identified based on a literature review and using new experimental data - accounts for factors influencing photoautotrophic and heterotrophic microalgal growth, nutrient uptake and storage (i.e. Droop model) and decay of microalgae. Model parameters were estimated using laboratory-scale batch and sequenced batch experiments using the novel Latin Hypercube Sampling based Simplex (LHSS) method. The model was evaluated using independent data obtained in a 24-L PBR operated in sequenced batch mode. Identifiability of the model was assessed. The model can effectively describe microalgal biomass growth, ammonia and phosphate concentrations as well as the phosphorus storage using a set of average parameter values estimated with the experimental data. A statistical analysis of simulation and measured data suggests that culture history and substrate availability can introduce significant variability on parameter values for predicting the reaction rates for bulk nitrate and the intracellularly stored nitrogen state-variables, thereby requiring scenario specific model calibration. ASM-A was identified using standard cultivation medium and it can provide a platform for extensions accounting for factors influencing algal growth and nutrient storage using wastewater resources. Copyright © 2016 Elsevier Ltd. All rights reserved.
Carvallo, M J; Vargas, I; Vega, A; Pizarro, G; Pizarr, G; Pastén, P
2007-01-01
Rapid methods for the in-situ evaluation of the organic load have recently been developed and successfully implemented in municipal wastewater treatment systems. Their direct application to winery wastewater treatment is questionable due to substantial differences between municipal and winery wastewater. We critically evaluate the use of UV-VIS spectrometry, buffer capacity testing (BCT), and respirometry as rapid methods to determine organic load and biodegradation rates of winery wastewater. We tested three types of samples: actual and treated winery wastewater, synthetic winery wastewater, and samples from a biological batch reactor. Not surprisingly, respirometry gave a good estimation of biodegradation rates for substrate of different complexities, whereas UV-VIS and BCT did not provide a quantitative measure of the easily degradable sugars and ethanol, typically the main components of the COD in the influent. However, our results strongly suggest that UV-VIS and BCT can be used to identify and estimate the concentration of complex substrates in the influent and soluble microbial products (SMP) in biological reactors and their effluent. Furthermore, the integration of UV-VIS spectrometry, BCT, and mathematical modeling was able to differentiate between the two components of SMPs: substrate utilization associated products (UAP) and biomass associated products (BAP). Since the effluent COD in biologically treated wastewaters is composed primarily by SMPs, the quantitative information given by these techniques may be used for plant control and optimization.
Asimakopoulos, Alexandros G; Kannan, Pranav; Higgins, Sean; Kannan, Kurunthachalam
2017-10-01
A liquid chromatography-triple quadrupole-tandem mass spectrometry (LC-qQq-MS/MS) method was developed for simultaneous determination of 89 legal neuropsychiatric pharmaceuticals and illicit drugs (both parent compounds and metabolites) and other micropollutants in unfiltered wastewater and freshwater. The target chemicals fall under the classes of amphetamine-type stimulants, cocaine compounds, opiates and opioids, benzodiazepines, lysergic compounds, antipsychotics, anesthetics, antiepileptics, antidepressants, sympathomimetics, cannabinoids, blood thinners, antihistamines, β-blockers, caffeine derivatives, nicotine derivatives, z-drugs, new designer drugs, and Alzheimer medications. The sample preparation procedure was designed for unfiltered wastewater and freshwater without the need to separate the particulate matter (if any) from the aqueous phase prior to extraction. Samples were pre-concentrated by rotary evaporation in the presence of a solvent. Method precision (absolute values; N = 6 replicate analyses at the fortification level of 50 ng, k = 6 days) for 87 out of 89 target analytes ranged from 2.8 to 34% (RSD %). The limits of detection ranged from 0.11 to 202 ng L -1 , and the matrix effects ranged from +16 to -84%. A total of 10 samples, 8 wastewater, 1 drinking water, and 1 lake water, were collected from New York State, USA, and were analyzed for the target compounds to demonstrate the applicability of the developed method. This is the first study to report the analysis of multiple classes of pharmaceuticals, illicit drugs, and other micropollutants in unfiltered wastewater. Graphical abstract Analysis of 89 micropollutants in unfiltered wastewater by LC-MS/MS.
Estrogenic and anti-estrogenic activity of 23 commercial textile dyes.
Bazin, Ingrid; Ibn Hadj Hassine, Aziza; Haj Hamouda, Yosra; Mnif, Wissem; Bartegi, Ahgleb; Lopez-Ferber, Miguel; De Waard, Michel; Gonzalez, Catherine
2012-11-01
The presence of dyes in wastewater effluent of textile industry is well documented. In contrast, the endocrine disrupting effects of these dyes and wastewater effluent have been poorly investigated. Herein, we studied twenty-three commercial dyes, usually used in the textile industry, and extracts of blue jean textile wastewater samples were evaluated for their agonistic and antagonistic estrogen activity. Total estrogenic and anti-estrogenic activities were measured using the Yeast Estrogen Screen bioassay (YES) that evaluates estrogen receptor binding-dependent transcriptional and translational activities. The estrogenic potencies of the dyes and wastewater samples were evaluated by dose-response curves and compared to the dose-response curve of 17β-estradiol (E2), the reference compound. The dose-dependent anti-estrogenic activities of the dyes and wastewater samples were normalized to the known antagonistic effect of 4-hydroxytamoxifen (4-OHT) on the induction of the lac Z reporter gene by E2. About half azo textile dyes have anti-estrogenic activity with the most active being Blue HFRL. Most azo dyes however have no or weak estrogenic activity. E2/dye or E2/waste water ER competitive binding assays show activity of Blue HFRL, benzopurpurine 4B, Everzol Navy Blue FBN, direct red 89 BNL 200% and waste water samples indicating a mechanism of action common to E2. Our results indicate that several textile dyes are potential endocrine disrupting agents. The presence of some of these dyes in textile industry wastewater may thus impact the aquatic ecosystem. Copyright © 2012 Elsevier Inc. All rights reserved.
Yuan, Xiangjuan; Qiang, Zhimin; Ben, Weiwei; Zhu, Bing; Liu, Junxin
2014-09-01
This work described the development, optimization and validation of an analytical method for rapid detection of multiple-class pharmaceuticals in both municipal wastewater and sludge samples based on ultrasonic solvent extraction, solid-phase extraction, and ultra high performance liquid chromatography-tandem mass spectrometry quantification. The results indicated that the developed method could effectively extract all the target pharmaceuticals (25) in a single process and analyze them within 24min. The recoveries of the target pharmaceuticals were in the range of 69%-131% for wastewater and 54%-130% for sludge at different spiked concentration levels. The method quantification limits in wastewater and sludge ranged from 0.02 to 0.73ng/L and from 0.02 to 1.00μg/kg, respectively. Subsequently, this method was validated and applied for residual pharmaceutical analysis in a wastewater treatment plant located in Beijing, China. All the target pharmaceuticals were detected in the influent samples with concentrations varying from 0.09ng/L (tiamulin) to 15.24μg/L (caffeine); meanwhile, up to 23 pharmaceuticals were detected in sludge samples with concentrations varying from 60ng/kg (sulfamethizole) to 8.55mg/kg (ofloxacin). The developed method demonstrated its selectivity, sensitivity, and reliability for detecting multiple-class pharmaceuticals in complex matrices such as municipal wastewater and sludge. Copyright © 2014. Published by Elsevier B.V.
Tahrani, Leyla; Van Loco, Joris; Ben Mansour, Hedi; Reyns, Tim
2016-04-01
Antibiotics are among the most commonly used group of pharmaceuticals in human medicine. They can therefore reach surface and groundwater bodies through different routes, such as wastewater treatment plant effluents, surface runoff, or infiltration of water used for agricultural purposes. It is well known that antibiotics pose a significant risk to environmental and human health, even at low concentrations. The aim of the present study was to evaluate the presence of aminoglycosides and phenicol antibiotics in municipal wastewaters, sea water and pharmaceutical effluents in Tunisia. All analysed water samples contained detectable levels of aminoglycoside and phenicol antibiotics. The highest concentrations in wastewater influents were observed for neomycin and kanamycin B (16.4 ng mL(-1) and 7.5 ng mL(-1), respectively). Chloramphenicol was found in wastewater influents up to 3 ng mL(-1). It was observed that the waste water treatment plants were not efficient in completely removing these antibiotics. Chloramphenicol and florfenicol were found in sea water samples near aquaculture sites at levels up to, respectively, 15.6 ng mL(-1) and 18.4 ng mL(-1). Also aminoglycoside antibiotics were found near aquaculture sites with the highest concentration of 3.4 ng mL(-1) for streptomycin. In pharmaceutical effluents, only gentamycin was found at concentrations up to 19 ng mL(-1) over a sampling period of four months.
NASA Astrophysics Data System (ADS)
Bartelt-Hunt, Shannon; Snow, Daniel D.; Damon-Powell, Teyona; Miesbach, David
2011-04-01
Wastewater impoundments at concentrated animal feeding operations (CAFOs) represent a potential source of veterinary pharmaceuticals and steroid hormone contamination to shallow groundwater. This study investigates the occurrence of seventeen veterinary pharmaceuticals and thirteen steroid hormones and hormone metabolites in lagoons and adjacent groundwater at operating swine and beef cattle facilities. These sites were chosen because subsurface geology and previous monitoring of nitrate, ammonia and chloride levels in shallow ground water strongly indicated direct infiltration, and as such represent worst cases for ground water contamination by waste water. Pharmaceutical compounds detected in samples obtained from cattle facilities include sulfamerazine; sulfamethazine; erythromycin; monensin; tiamulin; and sulfathiazole. Lincomycin; ractopamine; sulfamethazine; sulfathiazole; erythromycin; tiamulin and sulfadimethoxine were detected in wastewater samples obtained from swine facilities. Steroid hormones were detected less frequently than veterinary pharmaceuticals in this study. Estrone, testosterone, 4-androstenedione, and androsterone were detected in wastewater impoundments at concentrations ranging from 30 to 3600 ng/L, while only estrone and testosterone were detected in groundwater samples at concentrations up to 390 ng/L. The co-occurrence of veterinary pharmaceutical and steroid hormone contamination in groundwater at these locations and the correlation between pharmaceutical occurrence in lagoon wastewater and hydraulically downgradient groundwater indicates that groundwater underlying some livestock wastewater impoundments is susceptible to contamination by veterinary pharmaceuticals and steroid hormones originating in wastewater lagoons.
Ferrar, Imma; Barber, Larry B.; Thurman, E. Michael
2009-01-01
An analytical method for the identification of eight plant phytoestrogens (biochanin A, coumestrol, daidzein, equol, formononetin, glycitein, genistein and prunetin) in soy products and wastewater samples was developed using gas chromatography coupled with ion trap mass spectrometry (GC/MS–MS). The phytoestrogens were derivatized as their trimethylsilyl ethers with trimethylchlorosilane (TMCS) and N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA). The phytoestrogens were isolated from all samples with liquid–liquid extraction using ethyl acetate. Daidzein-d4 and genistein-d4 labeled standards were used as internal standards before extraction and derivatization. The fragmentation patterns of the phytoestrogens were investigated by isolating and fragmenting the precursor ions in the ion-trap and a typical fragmentation involved the loss of a methyl and a carbonyl group. Two characteristic fragment ions for each analyte were chosen for identification and confirmation. The developed methodology was applied to the identification and confirmation of phytoestrogens in soy milk, in wastewater effluent from a soy-milk processing plant, and in wastewater (influent and effluent) from a treatment plant. Detected concentrations of genistein ranged from 50,000 μg/L and 2000 μg/L in soy milk and in wastewater from a soy-plant, respectively, to 20 μg/L and <1 μg/L for influent and effluent from a wastewater treatment plant, respectively.
Zaugg, Steven D.; Smith, Steven G.; Schroeder, Michael P.
2006-01-01
A method for the determination of 69 compounds typically found in domestic and industrial wastewater is described. The method was developed in response to increasing concern over the impact of endocrine-disrupting chemicals on aquatic organisms in wastewater. This method also is useful for evaluating the effects of combined sanitary and storm-sewer overflow on the water quality of urban streams. The method focuses on the determination of compounds that are indicators of wastewater or have endocrine-disrupting potential. These compounds include the alkylphenol ethoxylate nonionic surfactants, food additives, fragrances, antioxidants, flame retardants, plasticizers, industrial solvents, disinfectants, fecal sterols, polycyclic aromatic hydrocarbons, and high-use domestic pesticides. Wastewater compounds in whole-water samples were extracted using continuous liquid-liquid extractors and methylene chloride solvent, and then determined by capillary-column gas chromatography/mass spectrometry. Recoveries in reagent-water samples fortified at 0.5 microgram per liter averaged 72 percent ? 8 percent relative standard deviation. The concentration of 21 compounds is always reported as estimated because method recovery was less than 60 percent, variability was greater than 25 percent relative standard deviation, or standard reference compounds were prepared from technical mixtures. Initial method detection limits averaged 0.18 microgram per liter. Samples were preserved by adding 60 grams of sodium chloride and stored at 4 degrees Celsius. The laboratory established a sample holding-time limit prior to sample extraction of 14 days from the date of collection.
Mathematical modeling of wastewater-derived biodegradable dissolved organic nitrogen.
Simsek, Halis
2016-11-01
Wastewater-derived dissolved organic nitrogen (DON) typically constitutes the majority of total dissolved nitrogen (TDN) discharged to surface waters from advanced wastewater treatment plants (WWTPs). When considering the stringent regulations on nitrogen discharge limits in sensitive receiving waters, DON becomes problematic and needs to be reduced. Biodegradable DON (BDON) is a portion of DON that is biologically degradable by bacteria when the optimum environmental conditions are met. BDON in a two-stage trickling filter WWTP was estimated using artificial intelligence techniques, such as adaptive neuro-fuzzy inference systems, multilayer perceptron, radial basis neural networks (RBNN), and generalized regression neural networks. Nitrite, nitrate, ammonium, TDN, and DON data were used as input neurons. Wastewater samples were collected from four different locations in the plant. Model performances were evaluated using root mean square error, mean absolute error, mean bias error, and coefficient of determination statistics. Modeling results showed that the R(2) values were higher than 0.85 in all four models for all wastewater samples, except only R(2) in the final effluent sample for RBNN modeling was low (0.52). Overall, it was found that all four computing techniques could be employed successfully to predict BDON.
1977-03-01
267 Input Layout for Each Card Type ...................... 269 Input Sequence .......................... 271 SAMPLE PROBLEM...13 3 Sample Data rormn Used for Documenting MSD Effectiveness Attribute Data ........................... 15 -1 Sample Form Used for Documenting WMS...from commodes, urinals and garbage grinder) and gray (galley and turbid, i.e., output from sinks, showers, laundry, deck, drains, etc.) wastewaters
Houtz, Erika F; Sutton, Rebecca; Park, June-Soo; Sedlak, Margaret
2016-05-15
In late 2014, wastewater effluent samples were collected from eight treatment plants that discharge to San Francisco (SF) Bay in order to assess poly- and perfluoroalkyl substances (PFASs) currently released from municipal and industrial sources. In addition to direct measurement of twenty specific PFAS analytes, the total concentration of perfluoroalkyl acid (PFAA) precursors was also indirectly measured by adapting a previously developed oxidation assay. Effluent from six municipal treatment plants contained similar amounts of total PFASs, with highest median concentrations of PFHxA (24 ng/L), followed by PFOA (23 ng/L), PFBA (19 ng/L), and PFOS (15 ng/L). Compared to SF Bay municipal wastewater samples collected in 2009, the short chain perfluorinated carboxylates PFBA and PFHxA rose significantly in concentration. Effluent samples from two treatment plants contained much higher levels of PFASs: over two samplings, wastewater from one municipal plant contained an average of 420 ng/L PFOS and wastewater from an airport industrial treatment plant contained 560 ng/L PFOS, 390 ng/L 6:2 FtS, 570 ng/L PFPeA, and 500 ng/L PFHxA. The elevated levels observed in effluent samples from these two plants are likely related to aqueous film forming foam (AFFF) sources impacting their influent; PFASs attributable to both current use and discontinued AFFF formulations were observed. Indirectly measured PFAA precursor compounds accounted for 33%-63% of the total molar concentration of PFASs across all effluent samples and the PFAA precursors indicated by the oxidation assay were predominately short-chained. PFAS levels in SF Bay effluent samples reflect the manufacturing shifts towards shorter chained PFASs while also demonstrating significant impacts from localized usage of AFFF. Copyright © 2016 Elsevier Ltd. All rights reserved.
Modeling sustainable reuse of nitrogen-laden wastewater by poplar.
Wang, Yusong; Licht, Louis; Just, Craig
2016-01-01
Numerical modeling was used to simulate the leaching of nitrogen (N) to groundwater as a consequence of irrigating food processing wastewater onto grass and poplar under various management scenarios. Under current management practices for a large food processor, a simulated annual N loading of 540 kg ha(-1) yielded 93 kg ha(-1) of N leaching for grass and no N leaching for poplar during the growing season. Increasing the annual growing season N loading to approximately 1,550 kg ha(-1) for poplar only, using "weekly", "daily" and "calculated" irrigation scenarios, yielded N leaching of 17 kg ha(-1), 6 kg ha(-1), and 4 kg ha(-1), respectively. Constraining the simulated irrigation schedule by the current onsite wastewater storage capacity of approximately 757 megaliters (Ml) yielded N leaching of 146 kg ha(-1) yr(-1) while storage capacity scenarios of 3,024 and 4,536 Ml yielded N leaching of 65 and 13 kg ha(-1) yr(-1), respectively, for a loading of 1,550 kg ha(-1) yr(-1). Further constraining the model by the current wastewater storage volume and the available land area (approximately 1,000 hectares) required a "diverse" irrigation schedule that was predicted to leach a weighted average of 13 kg-N ha(-1) yr(-1) when dosed with 1,063 kg-N ha(-1) yr(-1).
Genotoxicity of wastewaters used for irrigation of food crops.
Ansari, Mohd Ikram; Malik, Abdul
2009-04-01
In most towns of India, wastewater coming from both industrial and domestic sources and without any treatment is used to irrigate the agricultural crops. This practice has been polluting the soil, and pollutants could possibly reach the food chain. For the above reasons, the wastewaters of Ghaziabad City (India), which is used for irrigation, were sampled (at two different sites) and monitored for the presence of genotoxic agents from January 2005 to June 2007. Gas chromatographic analysis showed the presence of certain OC (DDE, DDT, Dieldrin, Aldrin, and Endosulfan) and OP (Dimethoate, Malathion, Methlyparathion, and Chlorpyrifos) pesticides in both the sampling sites. Wastewater samples were concentrated using XAD resins (XAD-4 and XAD-8) and liquid-liquid extraction procedures, and the extracts were assayed for genotoxic potential by Ames Salmonella/microsome test, DNA repair defective mutants, and bacteriophage lambda systems. The test samples exhibited significant mutagenicity with TA98, TA97a, and TA100 strains with the probable role of contaminating pesticides in the wastewater. However, XAD-concentrated samples were more mutagenic in both sites as compared to liquid-liquid-extracted samples. The damage in the DNA repair defective mutants in the presence of XAD-concentrated water samples were also found to be higher to that of liquid-liquid-extracted water samples at the dose level of 20 muL/mL culture. All the mutants invariably exhibited significant decline in their colony-forming units as compared to their isogenic wild-type counterparts. The survival was decreased by 81.7 and 75.5% in polA(-) strain in site I, and 76.0 and 73.5% in site II in polA(-) under the same experimental conditions after 6 h of treatment with XAD-concentrated and liquid-liquid-extracted samples, respectively. A significant decrease in the survival of bacteriophage lambda was also observed when treated with the test samples. Copyright 2008 Wiley Periodicals, Inc.
Fu, Jie; Xu, Zhen; Li, Qing-Shan; Chen, Song; An, Shu-Qing; Zeng, Qing-Fu; Zhu, Hai-Liang
2010-01-01
A comparative study of treatment of simulated wastewater containing Reactive Red 195 using zero-valent iron/activated carbon (ZVI/AC), microwave discharge electrodeless lamp/sodium hypochlorite (MDEL/NaClO) and the combination of ZVI/AC-MDEL/NaClO was conducted. The preliminary results showed the two steps method of ZVI/AC-MDEL/NaClO had much higher degradation efficiency than both single steps. The final color removal percentage was nearly up to 100% and the chemical oxygen demand reduction percentage was up to approximately 82%. The effects of operational parameters, including initial pH value of simulated wastewater, ZVI/AC ratio and particle size of ZVI were also investigated. In addition, from the discussion of synergistic effect between ZVI/AC and MEDL/NaClO, we found that in the ZVI/AC-MEDL/NaClO process, ZVI/AC could break the azo bond firstly and then MEDL/NaClO degraded the aromatic amine products effectively. Reversing the order would reduce the degradation efficiency.
Guruge, Keerthi S.; Yamanaka, Noriko; Sonobe, Miyuki; Fujizono, Wataru; Yoshioka, Miyako; Akiba, Masato; Yamamoto, Takehisa; Joshua, Derrick I.; Balakrishna, Keshava; Yamashita, Nobuyoshi; Kannan, Kurunthachalam; Tsutsui, Toshiyuki
2015-01-01
Extracts of wastewater collected from 4 sewage treatment plants (STPs) receiving effluents from different sources in South India were investigated for their levels of transcription factor-mediated gene induction in primary cultured rat hepatocytes. In addition, the relation between gene induction levels and the prevalence of antimicrobial-resistant Escherichia coli (E. coli) in wastewater was examined. STP-3, which treats only hospital wastewater, exhibited significantly greater induction potency of all 6 drug metabolizing cytochrome P450 (CYP) genes examined, CYP1A1, 1A2, 1B1, 2B15, 3A1, and 3A2, whereas the wastewater at STP-1, which exclusively receives domestic sewage, showed significantly diminished levels of induction of 3 CYP genes when compared to the levels of CYP induction at STP-2, which receives mixed wastewater. Samples collected during the monsoon season showed a significantly altered gene induction capacity compared to that of samples from the pre-monsoon period. The data suggest that the toxicity of wastewater in STPs was not significantly diminished during the treatment process. The chemical-gene interaction data predicted that a vast number of chemicals present in the wastewater would stimulate the genes studied in the rat hepatocytes. The multivariable logistic regression analysis demonstrated that the prevalence of isolates resistant to cefotaxime, imipenem and streptomycin was significantly correlated with the levels of induction of at least three CYP-isozymes in STP wastewater. In addition, the resistance of isolates in treatment plants was not altered by the treatment steps, whereas the sampling season did have an impact on the resistance to specific antimicrobials. The identification of receptor-mediated gene regulation capacities offers important data not limited to the (synergistic) physiological role of chemicals in biological systems but may provide new insight into the link between the effects of known/unknown drugs and prevalence of antimicrobial-resistant bacteria in wastewater. PMID:26381891
Zhang, Wanhui; Wei, Chaohai; An, Guanfeng
2015-05-01
In this study, we report the performance of a full-scale conventional activated sludge (A-O1-O2) treatment in eliminating polycyclic aromatic hydrocarbons (PAHs). Both aqueous and solid phases along with the coking wastewater treatment processes were analyzed for the presence of 18 PAHs. It was found that the target compounds occurred widely in raw coking wastewater, treated effluent and sludge samples. In the coking wastewater treatment system, 4-5 ring PAHs were the dominant compounds, while 4 rings PAHs predominated in the sludge samples. Over 98% of the PAH removal was achieved in the coking wastewater treatment plant (WWTP), with the total concentration of PAHs being 21.3 ± 1.9 μg L(-1) in the final effluent. During the coking wastewater treatment processes, the association of the lower molecular weight PAH with suspended solids was generally less than 60%, while the association of higher molecular weight PAHs was greater than 90%. High distribution efficiencies (Kdp and Kds) were found, suggesting that adsorption was the potential removal pathway of PAHs. Finally, the mass balances of PAHs in various stages of the coking WWTP were obtained, and the results indicated that adsorption to sludge was the main removal pathway for PAHs in the coking wastewater treatment processes.
Makkaew, P; Miller, M; Fallowfield, H J; Cromar, N J
This study assessed the contamination of Escherichia coli, in lettuce grown with treated domestic wastewater in four different irrigation configurations: open spray, spray under plastic sheet cover, open drip and drip under plastic sheet cover. Samples of lettuce from each irrigation configuration and irrigating wastewater were collected during the growing season. No E. coli was detected in lettuce from drip irrigated beds. All lettuce samples from spray beds were positive for E. coli, however, no statistical difference (p > 0.05) was detected between lettuces grown in open spray or covered spray beds. The results from the field experiment were also compared to a laboratory experiment which used submersion of lettuce in wastewater of known E. coli concentration as a surrogate method to assess contamination following irrigation. The microbial quality of spray bed lettuces was not significantly different from submersed lettuce when irrigated with wastewater containing 1,299.7 E. coli MPN/100 mL (p > 0.05). This study is significant since it is the first to validate that the microbial contamination of lettuce irrigated with wastewater in the field is comparable with a laboratory technique frequently applied in the quantitative microbial risk assessment of the consumption of wastewater irrigated salad crops.
Boles, Tammy H; Wells, Martha J M
2016-12-01
Amphetamine and methamphetamine are emerging contaminants-those for which no regulations currently require monitoring or public reporting of their presence in our water supply. In this research, a protocol for weak cation-exchange (WCX) SPE coupled with LC-MS/MS was developed for determination of emerging contaminants amphetamine and methamphetamine in a complex wastewater matrix. Gradient LC parameters were adjusted to yield baseline separation of methamphetamine from other contaminants. Methamphetamine-D5 was used as the internal standard (IS) to compensate for sample loss during SPE and for signal loss during MS (matrix effects). Recoveries were 102.1 ± 7.9% and 99.4 ± 4.0% for amphetamine and methamphetamine, respectively, using WCX sorbent. Notably, methamphetamine was determined to be present in wastewater influent at each sampling date tested. Amphetamine was present in wastewater influent on two of four sampling dates. Amphetamine concentrations ranged from undetectable to 86.4 ng/L in influent, but it was undetectable in wastewater effluent. Methamphetamine was detected in influent at concentrations ranging from 27.0-60.3 ng/L. Methamphetamine concentration was reduced but incompletely removed at this facility. Although absent in one post-UV effluent sample, concentrations of methamphetamine ranged from 10.8-14.8 ng/L. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chávez, Alma; Maya, Catalina; Gibson, Richard; Jiménez, Blanca
2011-05-01
The Tula Valley receives untreated wastewater from Mexico City for agricultural irrigation, half of which infiltrates to aquifers from where drinking water is extracted. Samples of wastewater and infiltrated water from three areas of the valley were analyzed for microorganisms, organic micropollutants, and some basic parameters. Concentrations of microorganisms in the infiltrated water were generally very low but the incidence of fecal coliforms (present in 68% of samples), somatic bacteriophages (36%), Giardia spp. (14%), and helminth eggs (8%) suggested a health risk. Organic micropollutants, often present at high concentrations in the wastewater, were generally absent from the infiltrated water except carbamazepine which was in 55% of samples (up to 193 ng/L). There was no correlation between carbamazepine concentrations and the presence of microorganisms but highest concentrations of carbamazepine and boron coincided. A treatment such as nanofiltration would be necessary for the infiltrated water to be a safe potable supply. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCoy, R.P.
1992-08-01
A wastewater characterization survey was conducted at Edwards Air Force Base from 17-28 February 1992 by personnel from the Water Quality Function of Armstrong Laboratory. Extensive sampling of the treatment plant influent wastewater and sludge beds was performed as well as sampling at nine other sites in the base cantonment area. Some sampling of an Imhoff tank on North Base, five evaporation ponds and the lakebed was also conducted. Low levels of organic contamination were found in the influent and industrial sites downstream of Site 7. Site 7 is a manhole located in an identified Installation Restoration Program (IRP) site.more » Corrective actions were recommended to prevent organic soil contaminants from intruding into this site prior to the operation of a planned tertiary treatment plant. Organic and inorganic contaminants discharged at other industrial sites were found to be in low concentrations and indicated that good shop practices were followed in minimizing contamination of the wastewater with industrial chemicals.« less
Tracking antibiotic resistance genes in soil irrigated with dairy wastewater.
Dungan, Robert S; McKinney, Chad W; Leytem, April B
2018-09-01
The application of dairy wastewater to agricultural soils is a widely used practice to irrigate crops and recycle nutrients. In this study, small-scale field plots were irrigated monthly (6 times) with dairy wastewater (100%), wastewater diluted to 50% with irrigation (canal) water, and diluted wastewater spiked with copper sulfate (50 mg Cu L -1 ), while control plots were irrigated with canal water. In addition, half of all plots were either planted with wheat or were left as bare soil. Biweekly soil samples were collected during this period and processed to determine the occurrence and abundance of antibiotic resistance genes [bla CTX-M-1 , erm(B), sul1, tet(B), tet(M), and tet(X)] and a class 1 integron-integrase gene (intI1) via quantitative real-time PCR (qPCR). Only sul1 and tet(X) were detected in soil (3 out of 32 samples) before the wastewater treatments were applied. However, the occurrence and relative abundance (normalized to 16S rRNA gene copies) of most genes [erm(B), intI1, sul1, and tet(M)] increased dramatically after wastewater irrigation and levels were maintained during the entire study period. bla CTX-M-1 was the only gene not detected in wastewater-treated soils, which is likely related to its absence in the dairy wastewater. Relative gene levels in soil were found to be statistically similar among the treatments in most cases, regardless of the wastewater percentage applied and presence or absence of plants. The key result from this study is that dairy wastewater irrigation significantly enlarges the reservoir of ARGs and intI1 in soils, while detection of these genes rarely occurred in soil irrigated only with canal water. In addition, elevated levels of Cu in the wastewater and treated soil did not produce a concomitant increase of the ARG levels. Published by Elsevier B.V.
Heavy metals removals from wet market wastewater by phycoremediation technology
NASA Astrophysics Data System (ADS)
Jais, N. M.; Mohamed, R. M. S. R.; Apandi, N.; Al-Gheethi, A. A.
2018-04-01
The wet market provided fresh foodstuff. Unfortunately, the sullage commonly discharged directly to the drainage without any treatment. Hence, this research was focused on culturing the Scenedesmus sp. and implemented the phycoremediation process to wet market wastewater and to measure the heavy metal removals by Scenedesmus sp. There are two different time collected samples: (1) Sample at 7 a.m. and (2) Sample at 9 a.m.. The five samples were collected for each time sampling from of the Parit Raja Public Market, Batu Pahat wastewater (with additional of five different concentrations of Scenedesmus sp. which are 1.235x106, 1.224x106, 1.220x106, 1.213x106 and 1.203x106 cell/ml). This experiment was conducted within eight days for culturing Scenedesmus sp. and phycoremediation within another eight days. The analysis was done with changes of DO and pH and heavy metals removal during phycoremediation. Based on the result, the optimum efficiency removals for each heavy metal had achieved (36.62-100%) and the optimum concentration for Sample 7 a.m. and Sample 9 a.m. is Concentration 1 (1.235x106 cell/ml) obtained 81.18-100% of heavy metal removals. Concentration of microalgae is statistically correlated well with Fe (p<0.05) while not correlated significantly for Zn and Cu (p>0.05) in influencing high nutrient removal in the wastewater.
Application of the high throughput Attagene Factorial TM ...
Bioassays can be employed to evaluate the integrated effects of complex mixtures of both known and unidentified contaminants present in environmental samples. However, such methods have typically focused on one or a few pathways despite the fact that the chemicals in a mixture may exhibit a wide range of activities. High throughput toxicology approaches that can rapidly screen samples for a broad diversity of biological activities offer a means to provide a more comprehensive characterization of complex mixtures. To test this concept, twenty-four ambient water samples were collected, extracted, and screened for their ability to interact with or modulate over 80 different transcription factors using the Attagene FactorialTM platform utilized by the US EPA’s ToxCast Program. Samples evaluated included 10 water samples collected in varying proximity to a wastewater discharge into the St. Louis River, MN; water collected at five sites along a gradient centered on a wastewater discharge into the Maumee River, Ohio, USA; and eight samples collected in association with a nation-wide USGS surface streams study. For samples collected along the St. Louis River, the greatest number of biological activities were observed at locations closest to wastewater discharge with up to 13 endpoints responding. The Maumee River showed a gradient response in the number of observed activities, ranging from three positive responses observed far upstream of a wastewater discharge to 10
Removal efficiency of nickel and lead from industrial wastewater using microbial desalination cell
NASA Astrophysics Data System (ADS)
Mirzaienia, Fariba; Asadipour, Ali; Jafari, Ahmad Jonidi; Malakootian, Mohammad
2017-11-01
Microbial desalination cell (MDC) is a new method of desalination. Its energy is supplied through microbial metabolism of organic materials. In this study, synthetic samples were provided with concentration of 25, 50, 75, 100 mg/L Ni and Pb. Removal efficiency of each metal was analyzed after 60, 90, 120 min, psychrophilic, mesophilic, thermophilic and 3-4, 4-5, 5-6 mg/L dissolved oxygen. Optimum conditions for removing Ni and Pb were achieved in 100, 4.5 and 4.6 mg/L dissolved oxygen, respectively, 26 °C and 120 min. Nickel and led were removed from wastewaters of Isfahan electroplating industry and steel company. The maximum removal efficiencies of Ni and Pb in real samples were 68.81 and 70.04%. MDC can be considered as a good choice for removing Ni and Pb from industrial wastewater. Due to microorganisms for decomposing organic material in municipal wastewater, metals from industrial wastewater can be removed simultaneously.
Comparison of techniques for the detection of helminth ova in drinking water and wastewater.
Maya, C; Jimenez, B; Schwartzbrod, J
2006-02-01
Many countries use wastewater for irrigation. The World Health Organization established, as reuse guidelines, a maximum value of 1 helminth ovum/L for irrigation. Various techniques for enumerating helminth ova in water have been published. To determine the most adequate method for Mexico, four techniques were compared: the U.S. Environmental Protection Agency (U.S. EPA), membrane-filter, Leeds I, and Faust. Two types of water were used: drinking water and municipal wastewater effluent. Sensitivity, discrimination coefficients, precision, recovery efficiency, and cost were determined. In addition, several unseeded wastewater samples were analyzed. For drinking water, U.S. EPA and the membrane-filter techniques demonstrated comparable results; however, when wastewater was used, the membrane technique showed some deficiencies. Because the U.S. EPA technique may be used for samples with both high and low solids content, allows for the recovery of helminth ova with different specific gravities, and has the lowest total cost, it was selected as the best technique.
Schultz, M.M.; Furlong, E.T.
2008-01-01
Treated wastewater effluent is a potential environmental point source for antidepressant pharmaceuticals. A quantitative method was developed for the determination of trace levels of antidepressants in environmental aquatic matrixes using solid-phase extraction coupled with liquid chromatography- electrospray ionization tandem mass spectrometry. Recoveries of parent antidepressants from matrix spiking experiments for the individual antidepressants ranged from 72 to 118% at low concentrations (0.5 ng/L) and 70 to 118% at high concentrations (100 ng/L) for the solid-phase extraction method. Method detection limits for the individual antidepressant compounds ranged from 0.19 to 0.45 ng/L. The method was applied to wastewater effluent and samples collected from a wastewater-dominated stream. Venlafaxine was the predominant antidepressant observed in wastewater and river water samples. Individual antidepressant concentrations found in the wastewater effluent ranged from 3 (duloxetine) to 2190 ng/L (venlafaxine), whereas individual concentrations in the waste-dominated stream ranged from 0.72 (norfluoxetine) to 1310 ng/L (venlafaxine). ?? 2008 American Chemical Society.
Microbiological Skills for Water and Wastewater Analysis. Report No. M16.
ERIC Educational Resources Information Center
Clark, Douglas W.
This six-chapter handbook is concerned with the proper care and maintenance of microorganisms recovered from water and wastewater samples. These microorganisms must be cultured and identified to determine not only what kinds of cells were present in the original sample, but also what concentrations they appeared in. The skills covered are basic to…
Gyawali, P; Sidhu, J P S; Ahmed, W; Jagals, P; Toze, S
2015-12-01
The risk of human hookworm infections from land application of wastewater matrices could be high in regions with high hookworm prevalence. A rapid, sensitive and specific hookworm detection method from wastewater matrices is required in order to assess human health risks. Currently available methods used to identify hookworm ova to the species level are time consuming and lack accuracy. In this study, a real-time PCR method was developed for the rapid, sensitive and specific detection of canine hookworm (Ancylostoma caninum) ova from wastewater matrices. A. caninum was chosen because of its morphological similarity to the human hookworm (Ancylostoma duodenale and Necator americanus). The newly developed PCR method has high detection sensitivity with the ability to detect less than one A. caninum ova from 1 L of secondary treated wastewater at the mean threshold cycle (CT) values ranging from 30.1 to 34.3. The method is also able to detect four A. caninum ova from 1 L of raw wastewater and from ∼4 g of treated sludge with mean CT values ranging from 35.6 to 39.8 and 39.8 to 39.9, respectively. The better detection sensitivity obtained for secondary treated wastewater compared to raw wastewater and sludge samples could be attributed to sample turbidity. The proposed method appears to be rapid, sensitive and specific compared to traditional methods and has potential to aid in the public health risk assessment associated with land application of wastewater matrices. Furthermore, the method can be adapted to detect other helminth ova of interest from wastewater matrices. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.
Simulation of sulfide buildup in wastewater and atmosphere of sewer networks.
Nielsen, A H; Yongsiri, C; Hvitved-Jacobsen, T; Vollertsen, J
2005-01-01
A model concept for prediction of sulfide buildup in sewer networks is presented. The model concept is an extension to--and a further development of--the WATS model (Wastewater Aerobic-anaerobic Transformations in Sewers), which has been developed by Hvitved-Jacobsen and co-workers at Aalborg University. In addition to the sulfur cycle, the WATS model simulates changes in dissolved oxygen and carbon fractions of different biodegradability. The sulfur cycle was introduced via six processes: 1. sulfide production taking place in the biofilm covering the permanently wetted sewer walls; 2. biological sulfide oxidation in the permanently wetted biofilm; 3. chemical and biological sulfide oxidation in the water phase; 4. sulfide precipitation with metals present in the wastewater; 5. emission of hydrogen sulfide to the sewer atmosphere and 6. adsorption and oxidation of hydrogen sulfide on the moist sewer walls where concrete corrosion may take place.
Pal, P; Kumar, R; Srivastava, N; Chaudhuri, J
2014-02-01
A Visual Basic simulation software (WATTPPA) has been developed to analyse the performance of an advanced wastewater treatment plant. This user-friendly and menu-driven software is based on the dynamic mathematical model for an industrial wastewater treatment scheme that integrates chemical, biological and membrane-based unit operations. The software-predicted results corroborate very well with the experimental findings as indicated in the overall correlation coefficient of the order of 0.99. The software permits pre-analysis and manipulation of input data, helps in optimization and exhibits performance of an integrated plant visually on a graphical platform. It allows quick performance analysis of the whole system as well as the individual units. The software first of its kind in its domain and in the well-known Microsoft Excel environment is likely to be very useful in successful design, optimization and operation of an advanced hybrid treatment plant for hazardous wastewater.
40 CFR 63.453 - Monitoring requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... process wastewater feed rate; (2) The steam feed rate; and (3) The process wastewater column feed...: (A) Composite daily sample of outlet soluble BOD5 concentration to monitor for maximum daily and...
40 CFR 63.453 - Monitoring requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... process wastewater feed rate; (2) The steam feed rate; and (3) The process wastewater column feed...: (A) Composite daily sample of outlet soluble BOD5 concentration to monitor for maximum daily and...
40 CFR 63.453 - Monitoring requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... process wastewater feed rate; (2) The steam feed rate; and (3) The process wastewater column feed...: (A) Composite daily sample of outlet soluble BOD5 concentration to monitor for maximum daily and...
Effect of activated sludge culture conditions on Waxberry wastewater
NASA Astrophysics Data System (ADS)
Shi, Liang; He, Lingfeng; Zhang, Yongli
2018-03-01
Treated activated sludge is suitable for the treatment of wastewater. Biochemical method is used to treat the wastewater, and the influence of time on the COD index is investigated. The results showed that time had a significant effect on COD, and then affected the performance of activated sludge. Under different time, according to the order of time from short to long, COD decreases in turn. Under the action of activated sludge, the degradation of myrica rubra wastewater samples, after 25 h aeration for 96 h, the effect is better. Under this condition, the COD value was reduced at 72 mg/L, and the COD removal efficiency of myrica rubra wastewater was up to 93.39 %, and reached the two level discharge standard of municipal wastewater treatment.
Huang, Shuaijin; Qu, Xuexin
2017-01-01
The Three Gorges Project was implemented in 1994 to promote sustainable water resource use and development of the water environment in the Three Gorges Reservoir Area (hereafter “Reservoir Area”). However, massive discharge of wastewater along the river threatens these goals; therefore, this study employs a grey prediction model (GM) to predict the annual emissions of primary pollution sources, including industrial wastewater, domestic wastewater, and oily and domestic wastewater from ships, that influence the Three Gorges Reservoir Area water environment. First, we optimize the initial values of a traditional GM (1,1) model, and build a new GM (1,1) model that minimizes the sum of squares of the relative simulation errors. Second, we use the new GM (1,1) model to simulate historical annual emissions data for the four pollution sources and thereby test the effectiveness of the model. Third, we predict the annual emissions of the four pollution sources in the Three Gorges Reservoir Area for a future period. The prediction results reveal the annual emission trends for the major wastewater types, and indicate the primary sources of water pollution in the Three Gorges Reservoir Area. Based on our predictions, we suggest several countermeasures against water pollution and towards the sustainable development of the water environment in the Three Gorges Reservoir Area. PMID:29077006
A novel method for the sequential removal and separation of multiple heavy metals from wastewater.
Fang, Li; Li, Liang; Qu, Zan; Xu, Haomiao; Xu, Jianfang; Yan, Naiqiang
2018-01-15
A novel method was developed and applied for the treatment of simulated wastewater containing multiple heavy metals. A sorbent of ZnS nanocrystals (NCs) was synthesized and showed extraordinary performance for the removal of Hg 2+ , Cu 2+ , Pb 2+ and Cd 2+ . The removal efficiencies of Hg 2+ , Cu 2+ , Pb 2+ and Cd 2+ were 99.9%, 99.9%, 90.8% and 66.3%, respectively. Meanwhile, it was determined that solubility product (K sp ) of heavy metal sulfides was closely related to adsorption selectivity of various heavy metals on the sorbent. The removal efficiency of Hg 2+ was higher than that of Cd 2+ , while the K sp of HgS was lower than that of CdS. It indicated that preferential adsorption of heavy metals occurred when the K sp of the heavy metal sulfide was lower. In addition, the differences in the K sp of heavy metal sulfides allowed for the exchange of heavy metals, indicating the potential application for the sequential removal and separation of heavy metals from wastewater. According to the cumulative adsorption experimental results, multiple heavy metals were sequentially adsorbed and separated from the simulated wastewater in the order of the K sp of their sulfides. This method holds the promise of sequentially removing and separating multiple heavy metals from wastewater. Copyright © 2017 Elsevier B.V. All rights reserved.
Effect of time on dyeing wastewater treatment
NASA Astrophysics Data System (ADS)
Ye, Tingjin; Chen, Xin; Xu, Zizhen; Chen, Xiaogang; Shi, Liang; He, Lingfeng; Zhang, Yongli
2018-03-01
The preparation of carboxymethylchitosan wrapping fly-ash adsorbent using high temperature activated fly ash and sodium carboxymethyl chitosan (CWF), as with the iron-carbon micro-electrolysis process simulation and actual printing and dyeing wastewater. The effects of mixing time and static time on decolorization ratio, COD removing rate and turbidness removing rate were investigated. The experimental results show that the wastewater stirring times on the decolorization rate and COD removal rate and turbidity removal rate influence, with increasing of the stirring time, three showed a downward trend, and reached the peak at 10 min time; wastewater time on the decolorization ratio and COD removing efficiency and turbidness removing rate influence, along with standing time increase, three who declined and reached the maximum in 30min time.
NASA Technical Reports Server (NTRS)
Li, Ku-Yen; Hunt, Madelyn D.
1995-01-01
The results of work accomplished under two different areas: (1) Resource Recovery of an Anaerobic Wastewater Treatment process, and (2) Epidemiological Study of an Anaerobic Wastewater Treatment Process are documented. The first part of the work was to set up and test three anaerobic digesters and then run these three digesters with a NASA-simulated wastewater. The second part of the work was to use a multi-drug resistant strain of Salmonella choleraesuis as the indicator bacteria for the epidemiological study. Details of these two parts can be found in two master's theses and are described in Sections 3 and 4 of this report. Several important results condensed from these two parts are summarized in Section 2.
Prediction of wastewater treatment plants performance based on artificial fish school neural network
NASA Astrophysics Data System (ADS)
Zhang, Ruicheng; Li, Chong
2011-10-01
A reliable model for wastewater treatment plant is essential in providing a tool for predicting its performance and to form a basis for controlling the operation of the process. This would minimize the operation costs and assess the stability of environmental balance. For the multi-variable, uncertainty, non-linear characteristics of the wastewater treatment system, an artificial fish school neural network prediction model is established standing on actual operation data in the wastewater treatment system. The model overcomes several disadvantages of the conventional BP neural network. The results of model calculation show that the predicted value can better match measured value, played an effect on simulating and predicting and be able to optimize the operation status. The establishment of the predicting model provides a simple and practical way for the operation and management in wastewater treatment plant, and has good research and engineering practical value.
Pal, Parimal; Bhakta, Pamela; Kumar, Ramesh
2014-08-01
A modeling and simulation study, along with an economic analysis, was carried out for the separation of cyanide from industrial wastewater using a flat sheet cross-flow nanofiltration membrane module. With the addition of a pre-microfiltration step, nanofiltration was carried out using real coke wastewater under different operating conditions. Under the optimum operating pressure of 13 bars and a pH of 10.0, a rate of more than 95% separation of cyanide was achieved. That model predictions agreed very well with the experimental findings, as is evident in the Willmott d-index value (> 0.95) and relative error (< 0.1). Studies were carried out with industrial wastewater instead of a synthetic solution, and an economic analysis was also done, considering the capacity of a running coking plant. The findings are likely to be very useful in the scale-up and design of industrial plants for the treatment of cyanide-bearing wastewater.
Chen, Jun; Liu, You-Sheng; Zhang, Jin-Na; Yang, Yong-Qiang; Hu, Li-Xin; Yang, Yuan-Yuan; Zhao, Jian-Liang; Chen, Fan-Rong; Ying, Guang-Guo
2017-08-01
This study aimed to investigate the removal efficiency and mechanism for antibiotics in swine wastewater by a biological aerated filter system (BAF system) in combination with laboratory aerobic and anaerobic incubation experiments. Nine antibiotics including sulfamonomethoxine, sulfachloropyridazine, sulfamethazine, trimethoprim, norfloxacin, ofloxacin, lincomycin, leucomycin and oxytetracycline were detected in the wastewater with concentrations up to 192,000ng/L. The results from this pilot study showed efficient removals (>82%) of the conventional wastewater pollutants (BOD 5 , COD, TN and NH 3 -N) and the detected nine antibiotics by the BAF system. Laboratory simulation experiment showed first-order dissipation kinetics for the nine antibiotics in the wastewater under aerobic and anaerobic conditions. The biodegradation kinetic parameters successfully predicted the fate of the nine antibiotics in the BAF system. This suggests that biodegradation was the dominant process for antibiotic removal in the BAF system. Copyright © 2017 Elsevier Ltd. All rights reserved.
Supercritical fluid regeneration of adsorbents
NASA Astrophysics Data System (ADS)
Defilippi, R. P.; Robey, R. J.
1983-05-01
The results of a program to perform studies supercritical (fluid) carbon dioxide (SCF CO2) regeneration of adsorbents, using samples of industrial wastewaters from manufacturing pesticides and synthetic solution, and to estimate the economics of the specific wastewater treatment regenerations, based on test data are given. Processing costs for regenerating granular activated carbon GAC) for treating industrial wastewaters depend on stream properties and regeneration throughput.
Chemical Attributes of Soil Fertilized with Cassava Mill Wastewater and Cultivated with Sunflower
Dantas, Mara Suyane Marques; Monteiro Rolim, Mário; Duarte, Anamaria de Sousa; de Silva, Ênio Farias de França; Maria Regis Pedrosa, Elvira; Dantas, Daniel da Costa
2014-01-01
The use of waste arising from agroindustrial activities, such as cassava wastewater, has been steadily implemented in order to reduce environmental pollution and nutrient utilization. The aim of this study is that the changes in chemical properties of dystrophic red-yellow latosol (oxisol) were evaluated at different sampling times after reuse of cassava wastewater as an alternative to mineral fertilizer in the cultivation of sunflower, hybrid Helio 250. The experiment was conducted at the Experimental Station of the Agricultural Research Company of Pernambuco (IPA), located in Vitória de Santo Antão. The experimental design was randomized blocks with 6 × 5 subplots; six doses of cassava wastewater (0; 8.5; 17.0; 34.0; 68.0; and 136 m3 ha−1); and five sampling times (21, 42, 63, 84, and 105 days after applying the cassava wastewater), with four replications. Concentrations of available phosphorus and exchangeable potassium, calcium, magnesium and sodium, pH, and electrical conductivity of the soil saturation extract were evaluated. Results indicate that cassava wastewater is an efficient provider of nutrients to the soil and thus to the plants, making it an alternative to mineral fertilizers. PMID:25610900
Mechanism of nitrogen removal in wastewater lagoon: a case study.
Vendramelli, Richard A; Vijay, Saloni; Yuan, Qiuyan
2017-06-01
Ammonia being a nutrient facilitates the growth of algae in wastewater and causes eutrophication. Nitrate poses health risk if it is present in drinking water. Hence, nitrogen removal from wastewater is required. Lagoon wastewater treatment systems have become common in Canada these days. The study was conducted to understand the nitrogen removal mechanisms from the existing wastewater treatment lagoon system in the town of Lorette, Manitoba. The lagoon system consists of two primary aerated cells and two secondary unaerated cells. Surface samples were collected periodically from lagoon cells and analysed from 5 May 2015 to 9 November 2015. The windward and leeward sides of the ponds were sampled and the results were averaged. It was found that the free ammonia volatilization to the atmosphere is responsible for most of the ammonia removal. Ammonia and nitrate assimilation into biomass and biological growth in the cells appears to be the other mechanisms of nitrogen removal over the monitoring period. Factors affecting the nitrogen removal efficiency were found to be pH, temperature and hydraulic residence time. Also, the ammonia concentration in the effluent from the wastewater treatment lagoon was compared with the regulatory standard.
Tracking acidic pharmaceuticals, caffeine, and triclosan through the wastewater treatment process.
Thomas, Paul M; Foster, Gregory D
2005-01-01
Pharmaceuticals are a class of emerging contaminants whose fate in the wastewater treatment process has received increasing attention in past years. Acidic pharmaceuticals (ibuprofen, naproxen, mefenamic acid, ketoprofen, and diclofenac), caffeine, and the antibacterial triclosan were quantified at four different steps of wastewater treatment from three urban wastewater treatment plants. The compounds were extracted from wastewater samples on Waters Oasis hydrophilic-lipophilic balance solid-phase extraction columns, silylated, and analyzed by gas chromatography-mass spectrometry. For the chemicals studied, it was found that the majority of the influent load was removed during secondary treatment (51-99%), yielding expected surface water concentrations of 13 to 56 ng/L.
Eslami, Akbar; Amini, Mostafa M; Yazdanbakhsh, Ahmad Reza; Rastkari, Noushin; Mohseni-Bandpei, Anoushiravan; Nasseri, Simin; Piroti, Ehsan; Asadi, Anvar
2015-12-01
Pharmaceuticals are becoming widely distributed in waters and wastewaters and pose a serious threat to public health. The present study aimed to analyze non-steroidal anti-inflammatory drugs (NSAIDs) in surface waters, drinking water, and wastewater in Tehran, Iran. Thirty-six samples were collected from surface waters, tap water, and influent and effluent of municipal and hospital wastewater treatment plants (WWTP). A solid-phase extraction (SPE) followed by liquid chromatography-tandem mass spectrometry method was used for the determination of pharmaceuticals, namely ibuprofen (IBP), naproxen (NPX), diclofenac (DIC), and indomethacin (IDM). IBP was found in most of the samples and had the highest concentration. The highest concentrations of NSAIDs were found in the municipal WWTP influents and hospital WWTP effluents. In the municipal WWTP influent samples, the concentrations of IBP, NPX, DIC, and IDM were 1.05, 0.43, 0.23, and 0.11 μg/L, respectively. DIC was found only in one river sample. All NSAIDs were detected in tap water samples. However, their concentration was very low and the maximum values for IBP, NPX, DIC, and IDM were 47, 39, 24, and 37 ng/L, respectively, in tap water samples. Results showed that the measured pharmaceuticals were detected in all rivers with low concentrations in nanograms per liter range, except DIC which was found only in one river. Furthermore, this study showed that the aforementioned pharmaceuticals are not completely removed during their passage through WWTPs. A potential environmental risk of selected NSAIDs for the urban wastewater has been discussed. However, given their low measured concentrations, no ecotoxicological effect is suspected to occur.
Kiepper, B H; Merka, W C; Fletcher, D L
2008-08-01
An experiment was conducted to compare the proximate composition of particulate matter recovered from poultry processing wastewater (PPW) generated by broiler slaughter plants. Poultry processing wastewater is the cumulative wastewater stream generated during the processing of poultry following primary and secondary physical screening (typically to 500 mum) that removes gross offal. Composite samples of PPW from 3 broiler slaughter plants (southeast United States) were collected over 8 consecutive weeks. All 3 broiler slaughter plants process young chickens with an average live weight of 2.0 kg. At each plant, a single 72-L composite sample was collected using an automatic sampler programmed to collect 1 L of wastewater every 20 min for 24 h during one normal processing day each week. Each composite sample was thoroughly mixed, and 60 L was passed through a series of sieves (2.0 mm, 1.0 mm, 500 mum, and 53 mum). The amount of particulate solids collected on the 2.0 mm, 1.0 mm, and 500 mum sieves was insignificant. The solids recovered from the 53-mum sieve were subjected to proximate analysis to determine percent moisture, fat, protein, ash, and fiber. The average percentages of fat, protein, ash, and fiber for all samples on a dry-weight basis were 55.3, 27.1, 6.1, and 4.1, respectively. Fat made up over half of the dry-weight matter recovered, representing PPW particulate matter between 500 and 53 mum. Despite the variation in number of birds processed daily, further processing operations, and number and type of wastewater screens utilized, there were no significance differences in percentage of fat and fiber between the slaughter plants. There were significant differences in percent protein and ash between the slaughter plants.
Gyawali, P
2018-02-01
Raw and partially treated wastewater has been widely used to maintain the global water demand. Presence of viable helminth ova and larvae in the wastewater raised significant public health concern especially when used for agriculture and aquaculture. Depending on the prevalence of helminth infections in communities, up to 1.0 × 10 3 ova/larvae can be presented per litre of wastewater and 4 gm (dry weight) of sludge. Multi-barrier approaches including pathogen reduction, risk assessment, and exposure reduction have been suggested by health regulators to minimise the potential health risk. However, with a lack of a sensitive and specific method for the quantitative detection of viable helminth ova from wastewater, an accurate health risk assessment is difficult to achieve. As a result, helminth infections are difficult to control from the communities despite two decades of global effort (mass drug administration). Molecular methods can be more sensitive and specific than currently adapted culture-based and vital stain methods. The molecular methods, however, required more and thorough investigation for its ability with accurate quantification of viable helminth ova/larvae from wastewater and sludge samples. Understanding different cell stages and corresponding gene copy numbers is pivotal for accurate quantification of helminth ova/larvae in wastewater samples. Identifying specific genetic markers including protein, lipid, and metabolites using multiomics approach could be utilized for cheap, rapid, sensitive, specific and point of care detection tools for helminth ova and larva in the wastewater.
Eramo, Alessia; Medina, William Morales; Fahrenfeld, Nicole L
2017-01-01
Combined sewer overflows (CSOs) degrade water quality and end-of-pipe treatment is one potential solution for retrofitting this outdated infrastructure. The goal of this research was to evaluate peracetic acid (PAA) as a disinfectant for CSOs using viability based molecular methods for antibiotic resistance genes (ARGs), indicator organism marker gene BacHum, and 16S rRNA genes. Simulated CSO effluent was prepared using 23-40% wastewater, representing the higher end of the range of wastewater concentrations reported in CSO effluent. PAA residual following disinfection was greatest for samples with the lowest initial COD. Treatment of simulated CSO effluent (23% wastewater) with 100 mg∙min/L PAA (5 mg/L PAA, 20 min) was needed to reduce viable cell sul 1, tet (G), and BacHum (1.0±0.63-3.2±0.25-log) while 25 to 50 mg•min/L PAA (5 mg/L PAA, 5-10 min) was needed to reduce viable cell loads (0.62±0.56-1.6±0.08-log) in 40% wastewater from a different municipal treatment plant. Increasing contact time after the initial decrease in viable cell gene copies did not significantly improve treatment. A much greater applied Ct of 1200 mg∙min/L PAA (20 mg/L PAA, 60 min) was required for significant log reduction of 16S rRNA genes (3.29±0.13-log). No significant losses of mex B were observed during the study. Data were fitted to a Chick-Watson model and resulting inactivation constants for sul 1 and tet (G) > BacHum > 16S rRNA. Amplicon sequencing of the 16S rRNA gene indicated the initial viable and total microbial communities were distinct and that treatment with PAA resulted in marked increases of the relative abundance of select phyla, particularly Clostridia which increased by 1-1.5 orders of magnitude. Results confirm that membrane disruption is a mechanism for PAA disinfection and further treatment is needed to reduce total ARGs in CSO effluent.
Occurrence of organic wastewater compounds in effluent-dominated streams in Northeastern Kansas
Lee, C.J.; Rasmussen, T.J.
2006-01-01
Fifty-nine stream-water samples and 14 municipal wastewater treatment facility (WWTF) discharge samples in Johnson County, northeastern Kansas, were analyzed for 55 compounds collectively described as organic wastewater compounds (OWCs). Stream-water samples were collected upstream, in, and downstream from WWTF discharges in urban and rural areas during base-flow conditions. The effect of secondary treatment processes on OWC occurrence was evaluated by collecting eight samples from WWTF discharges using activated sludge and six from WWTFs samples using trickling filter treatment processes. Samples collected directly from WWTF discharges contained the largest concentrations of most OWCs in this study. Samples from trickling filter discharges had significantly larger concentrations of many OWCs (p-value < 0.05) compared to samples collected from activated sludge discharges. OWC concentrations decreased significantly in samples from WWTF discharges compared to stream-water samples collected from sites greater than 2000??m downstream. Upstream from WWTF discharges, base-flow samples collected in streams draining predominantly urban watersheds had significantly larger concentrations of cumulative OWCs (p-value = 0.03), caffeine (p-value = 0.01), and tris(2-butoxyethyl) phosphate (p-value < 0.01) than those collected downstream from more rural watersheds.
Ullah, Md Ahsan; Kim, Ki-Hyun; Szulejko, Jan E; Cho, Jinwoo
2014-04-11
The production of short-chained volatile fatty acids (VFAs) by the anaerobic bacterial digestion of sewage (wastewater) affords an excellent opportunity to alternative greener viable bio-energy fuels (i.e., microbial fuel cell). VFAs in wastewater (sewage) samples are commonly quantified through direct injection (DI) into a gas chromatograph with a flame ionization detector (GC-FID). In this study, the reliability of VFA analysis by the DI-GC method has been examined against a thermal desorption (TD-GC) method. The results indicate that the VFA concentrations determined from an aliquot from each wastewater sample by the DI-GC method were generally underestimated, e.g., reductions of 7% (acetic acid) to 93.4% (hexanoic acid) relative to the TD-GC method. The observed differences between the two methods suggest the possibly important role of the matrix effect to give rise to the negative biases in DI-GC analysis. To further explore this possibility, an ancillary experiment was performed to examine bias patterns of three DI-GC approaches. For instance, the results of the standard addition (SA) method confirm the definite role of matrix effect when analyzing wastewater samples by DI-GC. More importantly, their biases tend to increase systematically with increasing molecular weight and decreasing VFA concentrations. As such, the use of DI-GC method, if applied for the analysis of samples with a complicated matrix, needs a thorough validation to improve the reliability in data acquisition. Copyright © 2014 Elsevier B.V. All rights reserved.
Bade, Richard; Bijlsma, Lubertus; Sancho, Juan V; Baz-Lomba, Jose A; Castiglioni, Sara; Castrignanò, Erika; Causanilles, Ana; Gracia-Lor, Emma; Kasprzyk-Hordern, Barbara; Kinyua, Juliet; McCall, Ann-Kathrin; van Nuijs, Alexander L N; Ort, Christoph; Plósz, Benedek G; Ramin, Pedram; Rousis, Nikolaos I; Ryu, Yeonsuk; Thomas, Kevin V; de Voogt, Pim; Zuccato, Ettore; Hernández, Félix
2017-02-01
The popularity of new psychoactive substances (NPS) has grown in recent years, with certain NPS commonly and preferentially consumed even following the introduction of preventative legislation. With the objective to improve the knowledge on the use of NPS, a rapid and very sensitive method was developed for the determination of ten priority NPS (N-ethylcathinone, methylenedioxypyrovalerone (MDPV), methylone, butylone, methedrone, mephedrone, naphyrone, 25-C-NBOMe, 25-I-NBOMe and 25-B-NBOMe) in influent wastewater. Sample clean-up and pre-concentration was made by off-line solid phase extraction (SPE) with Oasis MCX cartridges. Isotopically labelled internal standards were used to correct for matrix effects and potential SPE losses. Following chromatographic separation on a C 18 column within 6 min, the compounds were measured by tandem mass spectrometry in positive ionization mode. The method was optimised and validated for all compounds. Limits of quantification were evaluated by spiking influent wastewater samples at 1 or 5 ng/L. An investigation into the stability of these compounds in influent wastewater was also performed, showing that, following acidification at pH 2, all compounds were relatively stable for up to 7 days. The method was then applied to influent wastewater samples from eight European countries, in which mephedrone, methylone and MDPV were detected. This work reveals that although NPS use is not as extensive as for classic illicit drugs, the application of a highly sensitive analytical procedure makes their detection in wastewater possible. The developed analytical methodology forms the basis of a subsequent model-based back-calculation of abuse rate in urban areas (i.e. wastewater-based epidemiology). Copyright © 2016 Elsevier Ltd. All rights reserved.
Gracia-Lor, Emma; Sancho, Juan V; Serrano, Roque; Hernández, Félix
2012-04-01
A survey on the presence of pharmaceuticals in urban wastewater of a Spanish Mediterranean area (Castellon province) was carried out. The scope of the study included a wide variety of pharmaceuticals belonging to different therapeutical classes. For this purpose, 112 samples, including influent and effluent wastewater, from different conventional wastewater treatment plants were collected. Two monitoring programmes were carried out along several seasons. The first was in June 2008 and January 2009, and the second in April and October 2009. During the first monitoring, the occurrence of 20 analytes in 84 urban wastewater samples (influent and effluent) was studied. The selection of these pharmaceuticals was mainly based on consumption. From these, 17 compounds were detected in the samples, with analgesics and anti-inflammatories, cholesterol lowering statin drugs and lipid regulators being the most frequently detected groups. 4-Aminoantipyrine, bezafibrate, diclofenac, gemfibrozil, ketoprofen, naproxen and venlafaxine were the compounds most frequently found. In the highlight of these results, the number of analytes was increased up to around 50. A lot of antibiotic compounds were added to the target list as they were considered "priority pharmaceuticals" due to their more potential hazardous effects in the aquatic environment. Data obtained during the second monitoring programme (spring and autumn) corroborated the results from the first one (summer and winter). Analgesics and anti-inflammatories, lipid regulators together with quinolone and macrolide antibiotics were the most abundant pharmaceuticals. Similar median concentrations were found over the year and seasonal variation was not clearly observed. The removal efficiency of pharmaceuticals in the wastewater treatment plants was roughly evaluated. Our results indicated that elimination of most of the selected compounds occurred during the treatment process of influent wastewater, although it was incomplete. Copyright © 2011 Elsevier Ltd. All rights reserved.
Noyes, Noelle R; Yang, Xiang; Linke, Lyndsey M; Magnuson, Roberta J; Cook, Shaun R; Zaheer, Rahat; Yang, Hua; Woerner, Dale R; Geornaras, Ifigenia; McArt, Jessica A; Gow, Sheryl P; Ruiz, Jaime; Jones, Kenneth L; Boucher, Christina A; McAllister, Tim A; Belk, Keith E; Morley, Paul S
2016-04-20
It has been proposed that livestock production effluents such as wastewater, airborne dust and manure increase the density of antimicrobial resistant bacteria and genes in the environment. The public health risk posed by this proposed outcome has been difficult to quantify using traditional microbiological approaches. We utilized shotgun metagenomics to provide a first description of the resistome of North American dairy and beef production effluents, and identify factors that significantly impact this resistome. We identified 34 mechanisms of antimicrobial drug resistance within 34 soil, manure and wastewater samples from feedlot, ranch and dairy operations. The majority of resistance-associated sequences found in all samples belonged to tetracycline resistance mechanisms. We found that the ranch samples contained significantly fewer resistance mechanisms than dairy and feedlot samples, and that the resistome of dairy operations differed significantly from that of feedlots. The resistome in soil, manure and wastewater differed, suggesting that management of these effluents should be tailored appropriately. By providing a baseline of the cattle production waste resistome, this study represents a solid foundation for future efforts to characterize and quantify the public health risk posed by livestock effluents.
Noyes, Noelle R.; Yang, Xiang; Linke, Lyndsey M.; Magnuson, Roberta J.; Cook, Shaun R.; Zaheer, Rahat; Yang, Hua; Woerner, Dale R.; Geornaras, Ifigenia; McArt, Jessica A.; Gow, Sheryl P.; Ruiz, Jaime; Jones, Kenneth L.; Boucher, Christina A.; McAllister, Tim A.; Belk, Keith E.; Morley, Paul S.
2016-01-01
It has been proposed that livestock production effluents such as wastewater, airborne dust and manure increase the density of antimicrobial resistant bacteria and genes in the environment. The public health risk posed by this proposed outcome has been difficult to quantify using traditional microbiological approaches. We utilized shotgun metagenomics to provide a first description of the resistome of North American dairy and beef production effluents, and identify factors that significantly impact this resistome. We identified 34 mechanisms of antimicrobial drug resistance within 34 soil, manure and wastewater samples from feedlot, ranch and dairy operations. The majority of resistance-associated sequences found in all samples belonged to tetracycline resistance mechanisms. We found that the ranch samples contained significantly fewer resistance mechanisms than dairy and feedlot samples, and that the resistome of dairy operations differed significantly from that of feedlots. The resistome in soil, manure and wastewater differed, suggesting that management of these effluents should be tailored appropriately. By providing a baseline of the cattle production waste resistome, this study represents a solid foundation for future efforts to characterize and quantify the public health risk posed by livestock effluents. PMID:27095377
Egler, Amanda L.; Risch, Martin R.; Alvarez, David A.; Bradley, Paul M.
2013-01-01
A cooperative investigation between the U.S. Geological Survey and the National Park Service was completed from 2009 through 2011 to understand the occurrence, distribution, and environmental processes affecting concentrations of organic wastewater compounds in water and sediment in and near Great Marsh at the Indiana Dunes National Lakeshore in Beverly Shores, Indiana. Sampling sites were selected to represent hydrologic inputs to the restored wetlands from adjacent upstream residential and less developed areas and to represent discharge points of cascading cells within the restored wetland. A multiphase approach was used for the investigation. Discrete water samples and time-integrated passive samples were analyzed for 69 organic wastewater compounds. Continuous water-level information and periodic streamflow measurements characterized flow conditions at discharge points from restored wetland cells. Wetland sediments were collected and analyzed for sorptive losses of organic wastewater compounds and to evaluate of the potential for wetland sediments to biotransform organic wastewater compounds. A total of 52 organic wastewater compounds were detected in discrete water samples at 1 or more sites. Detections of organic wastewater compounds were widespread, but concentrations were generally low and 95 percent were less than 2.1 micrograms per liter. Six compounds were detected at concentrations greater than 2.1 micrograms per liter—four fecal sterols (beta-sitosterol, cholesterol, beta-stigmastanol, and 2-beta coprostanol), one plasticizer (bis-2-ethylhex ylphthalate), and a non-ionic detergent (4-nonylphenol diethoxylate). Two 1-month deployments of time-integrative passive samplers, called polar organic chemical integrative samplers, detected organic wastewater compounds at lower concentrations than were possible with discrete water samples. Isopropyl benzene (solvent), caffeine (plant alkaloid, stimulant), and hexahydrohexamethyl cyclopentabenzopyran (fragrance) were detected in more than half of the extracts from passive samplers, but they were not detected in any discrete water sample. The Yeast Estrogen Screen assay identified measurable estrogenicity in one passive sampler extract from the most downstream wetland site in both the April and November–December 2011 deployments and in passive sampler extracts from one residential and one upstream site in the November–December 2011 deployment only. Surface-water levels in the restored wetland cells were monitored continuously using submersible pressure transducers in hand-driven well points screened in the surface water. Surface-water levels in the wetland cells responded quickly to precipitation and substantially receded within 2 days following the largest rainfall events. Seasonal patterns in water levels generally showed higher and more variable surface-water levels in the wetland cells during spring and early summer. Water levels in the wetland cells fell below the elevation of the control structures and ceased to flow over the spillways during extended dry periods (primarily late summer and early fall). Daily loads of seven organic wastewater compounds, as indicators of septic system effluent, were estimated for samples collected at wetland outlet spillways when flow measurements could be made. Median daily loads of the indicator organic wastewater compounds increased in downstream order, and the largest median loads were measured at the most downstream site. Median daily loads were higher for samples collected in spring and summer than those collected in fall, as the higher seasonal water levels increased streamflow at the wetland outlet spillways. Wetland sediment samples were analyzed for 84 organic wastewater compounds, polycyclic aromatic hydrocarbons, and semivolatile organic compounds to investigate the fate of contaminants in Great Marsh. The top five detected compounds by total mass in wetland sediment samples were beta-sitosterol, beta-stigmastanol, cholesterol, bis(2-ethylhexyl) phthalate, and phenol. Polycyclic aromatic hydrocarbons also were frequently detected in wetland sediment samples. Source apportionment of polycyclic aromatic hydrocarbon detections indicated atmospheric sources of pyrogenic compounds, rather than residential sources. Comparisons of polycyclic aromatic hydrocarbon concentrations in wetland sediment samples to sediment quality target guidelines indicated the potential for harmful effects on sediment-dwelling organisms at several sites. Biodegradation of select endocrine-disrupting compounds (17α-ethinylestradiol, 4-nonylphenol, triclocarban, and bisphenol A) in shallow wetland sediments was evaluated in laboratory experiments by using carbon-14 radiolabeled model contaminants. Substantial biodegradation of certain organic wastewater compounds were demonstrated, primarily in oxic (oxygen containing) environments. One of four modeled compounds, bisphenol A, was biodegraded in anoxic (oxygen free) environments. Only sediments collected nearest residential areas exhibited degradation of the synthetic birth control pharmaceutical, 17α-ethinylestradiol, possibly owing to adaptation and acclimation of the indigenous microbial community to septic discharge and the resultant selection of a microbial capability for biodegradation of 17α-ethinylestradiol.
Pal, Parimal; Thakura, Ritwik; Chakrabortty, Sankha
2016-05-01
A user-friendly, menu-driven simulation software tool has been developed for the first time to optimize and analyze the system performance of an advanced continuous membrane-integrated pharmaceutical wastewater treatment plant. The software allows pre-analysis and manipulation of input data which helps in optimization and shows the software performance visually on a graphical platform. Moreover, the software helps the user to "visualize" the effects of the operating parameters through its model-predicted output profiles. The software is based on a dynamic mathematical model, developed for a systematically integrated forward osmosis-nanofiltration process for removal of toxic organic compounds from pharmaceutical wastewater. The model-predicted values have been observed to corroborate well with the extensive experimental investigations which were found to be consistent under varying operating conditions like operating pressure, operating flow rate, and draw solute concentration. Low values of the relative error (RE = 0.09) and high values of Willmott-d-index (d will = 0.981) reflected a high degree of accuracy and reliability of the software. This software is likely to be a very efficient tool for system design or simulation of an advanced membrane-integrated treatment plant for hazardous wastewater.
Effects of Simulated Rare Earth Recycling Wastewaters on Biological Nitrification.
Fujita, Yoshiko; Barnes, Joni; Eslamimanesh, Ali; Lencka, Malgorzata M; Anderko, Andrzej; Riman, Richard E; Navrotsky, Alexandra
2015-08-18
Increasing rare earth element (REE) supplies by recycling and expanded ore processing will result in generation of new wastewaters. In some cases, disposal to a sewage treatment plant may be favored, but plant performance must be maintained. To assess the potential effects of such wastewaters on biological treatment, model nitrifying organisms Nitrosomonas europaea and Nitrobacter winogradskyi were exposed to simulated wastewaters containing varying levels of yttrium or europium (10, 50, and 100 ppm), and the extractant tributyl phosphate (TBP, at 0.1 g/L). Y and Eu additions at 50 and 100 ppm inhibited N. europaea, even when virtually all of the REE was insoluble. Provision of TBP with Eu increased N. europaea inhibition, although TBP alone did not substantially alter activity. For N. winogradskyi cultures, Eu or Y additions at all tested levels induced significant inhibition, and nitrification shut down completely with TBP addition. REE solubility was calculated using the previously developed MSE (Mixed-Solvent Electrolyte) thermodynamic model. The model calculations reveal a strong pH dependence of solubility, typically controlled by the precipitation of REE hydroxides but also likely affected by the formation of unknown phosphate phases, which determined aqueous concentrations experienced by the microorganisms.
Haramoto, E; Otagiri, M; Morita, H; Kitajima, M
2012-04-01
To determine the genogroup distribution of F-specific coliphages in aquatic environments using the plaque isolation procedure combined with genogroup-specific real-time PCR. Thirty water samples were collected from a wastewater treatment plant and a river in the Kofu basin in Japan on fine weather days. F-specific coliphages were detected in all tested samples, 187 (82%) of 227 phage plaques isolated were classified into one of the 4 F-specific RNA (F-RNA) coliphage genogroups and 24 (11%) plaques were F-specific DNA coliphages. Human genogroups II and III F-RNA coliphages were more abundant in raw sewage than animal genogroups I and IV, excluding one sample that was suspected to be heavily contaminated with sporadic heavy animal faeces. The secondary-treated sewage samples were highly contaminated with genogroup I F-RNA coliphages, probably because of different behaviours among the coliphage genogroups during wastewater treatment. The river water samples were expected to be mainly contaminated with human faeces, independent of rainfall effects. A wide range of F-specific coliphage genogroups were successfully identified in wastewater and river water samples. Our results clearly show the usefulness of the genogroup-specific real-time PCR for determining the genogroups of F-specific coliphages present in aquatic environments. © 2012 The Authors. Letters in Applied Microbiology © 2012 The Society for Applied Microbiology.
Chakinala, Anand G; Gogate, Parag R; Burgess, Arthur E; Bremner, David H
2008-01-01
For the first time, hydrodynamic cavitation induced by a liquid whistle reactor (LWR) has been used in conjunction with the advanced Fenton process (AFP) for the treatment of real industrial wastewater. Semi-batch experiments in the LWR were designed to investigate the performance of the process for two different industrial wastewater samples. The effect of various operating parameters such as pressure, H2O2 concentration and the initial concentration of industrial wastewater samples on the extent of mineralization as measured by total organic carbon (TOC) content have been studied with the aim of maximizing the extent of degradation. It has been observed that higher pressures, sequential addition of hydrogen peroxide at higher loadings and lower concentration of the effluent are more favourable for a rapid TOC mineralization. In general, the novel combination of hydrodynamic cavitation with AFP results in about 60-80% removal of TOC under optimized conditions depending on the type of industrial effluent samples. The combination described herein is most useful for treatment of bio-refractory materials where the diminution in toxicity can be achieved up to a certain level and then conventional biological oxidation can be employed for final treatment. The present work is the first to report the use of a hydrodynamic cavitation technique for real industrial wastewater treatment.
Comparison of fipronil sources in North Carolina surface water ...
Fipronil is a phenylpyrazole insecticide that is widely used in residential and agricultural settings to control ants, roaches, termites, and other pests. Fipronil and its transformation products have been found in a variety of environmental matrices, but the source[s] which makes the greatest contribution to fipronil in surface water has yet to be determined. A sampling effort designed to prioritize known fipronil inputs (golf courses, residential areas, biosolids application sites and wastewater facilities) was conducted in North Carolina to learn more about the origins of fipronil in surface water. High resolution mass spectrometry (HRMS) analysis indicated that fipronil and its known derivatives were routinely present in all samples, but concentrations were substantially elevated near wastewater treatment plant outfalls (range 10–500 ng/L combined), suggesting that they predominate as environmental sources. Corresponding recycled wastewater samples, which were treated with NaOCl for disinfection, showed disappearance of fipronil and all known degradates. HRMS and nuclear magnetic resonance (NMR) analysis techniques were used to determine that all fipronil-related compounds are oxidized to a previously unidentified fipronil sulfone chloramine species in recycled wastewater. The implications of the presence of a new fipronil-related compound in recycled wastewater need to be considered. Journal Article Highlights • The most important sources of fipronil in
Performance of a commercial industrial-scale UF-based process for treatment of oily wastewaters.
Karhu, M; Kuokkanen, T; Rämö, J; Mikola, M; Tanskanen, J
2013-10-15
An evaluation was made of the performance of a commercial industrial-scale ultrafiltration (UF)-based process for treatment of highly concentrated oily wastewaters. Wastewater samples were gathered from two plants treating industrial wastewaters in 2008, and in 2011 (only from one of the plants), from three points of a UF-based treatment train. The wastewater samples were analyzed by measuring the BOD7, COD, TOC and total surface charge (TSC). The inorganic content and zeta potentials of the samples were analyzed and GC-FID/MS analyses were performed. The removal performances of BOD7, COD, TOC and TSC in 2008 and 2011 for both plants were very high. Initial concentrations of contaminants in 2011 were lower than in 2008, therefore the COD and TSC reductions were also lower in 2011 than three years before. Regardless of the high performance of UF-based processes in both plants, at times the residual concentrations were considerable. This could be explained by the high initial concentrations and also by the presence of the dissolved compounds that were characterized. Linear correlation was observed between COD and TOC, and between COD and TSC. The correlation between COD and TSC could be utilized for process control purposes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Soil-transmitted helminth eggs assessment in wastewater in an urban area in India.
Grego, Sonia; Barani, Viswa; Hegarty-Craver, Meghan; Raj, Antony; Perumal, Prasanna; Berg, Adrian B; Archer, Colleen
2018-02-01
Water quality and sanitation are inextricably linked to prevalence and control of soil-transmitted helminth infections, a public health concern in resource-limited settings. India bears a large burden of disease associated with poor sanitation. Transformative onsite sanitation technologies are being developed that feature elimination of pathogens including helminth eggs in wastewater treatment. We are conducting third-party testing of multiple sanitation technology systems in Coimbatore (Tamil Nadu) India. To ensure stringent testing of the pathogen removal ability of sanitation technologies, the presence of helminth eggs in wastewater across the town of Coimbatore was assessed. Wastewater samples from existing test sites as well as desludging trucks servicing residential and non-residential septic tanks, were collected. The AmBic methodology (based on washing, sieving, sedimenting and floating) was used for helminth egg isolation. We tested 29 different source samples and found a 52% prevalence of potentially infective helminth eggs. Identification and enumeration of helminth species is reported against the septage source (private residential vs. shared toilet facility) and total solids content. Trichuris egg counts were higher than those of hookworm and Ascaris from desludging trucks, whereas hookworm egg counts were higher in fresh wastewater samples. Surprisingly, no correlation between soil transmitted helminth eggs and total solids was observed.
Evaluation of wastewater contaminant transport in surface waters using verified Lagrangian sampling
Antweiler, Ronald C.; Writer, Jeffrey H.; Murphy, Sheila F.
2014-01-01
Contaminants released from wastewater treatment plants can persist in surface waters for substantial distances. Much research has gone into evaluating the fate and transport of these contaminants, but this work has often assumed constant flow from wastewater treatment plants. However, effluent discharge commonly varies widely over a 24-hour period, and this variation controls contaminant loading and can profoundly influence interpretations of environmental data. We show that methodologies relying on the normalization of downstream data to conservative elements can give spurious results, and should not be used unless it can be verified that the same parcel of water was sampled. Lagrangian sampling, which in theory samples the same water parcel as it moves downstream (the Lagrangian parcel), links hydrologic and chemical transformation processes so that the in-stream fate of wastewater contaminants can be quantitatively evaluated. However, precise Lagrangian sampling is difficult, and small deviations – such as missing the Lagrangian parcel by less than 1 h – can cause large differences in measured concentrations of all dissolved compounds at downstream sites, leading to erroneous conclusions regarding in-stream processes controlling the fate and transport of wastewater contaminants. Therefore, we have developed a method termed “verified Lagrangian” sampling, which can be used to determine if the Lagrangian parcel was actually sampled, and if it was not, a means for correcting the data to reflect the concentrations which would have been obtained had the Lagrangian parcel been sampled. To apply the method, it is necessary to have concentration data for a number of conservative constituents from the upstream, effluent, and downstream sites, along with upstream and effluent concentrations that are constant over the short-term (typically 2–4 h). These corrections can subsequently be applied to all data, including non-conservative constituents. Finally, we show how data from other studies can be corrected.
Evaluation of wastewater contaminant transport in surface waters using verified Lagrangian sampling.
Antweiler, Ronald C; Writer, Jeffrey H; Murphy, Sheila F
2014-02-01
Contaminants released from wastewater treatment plants can persist in surface waters for substantial distances. Much research has gone into evaluating the fate and transport of these contaminants, but this work has often assumed constant flow from wastewater treatment plants. However, effluent discharge commonly varies widely over a 24-hour period, and this variation controls contaminant loading and can profoundly influence interpretations of environmental data. We show that methodologies relying on the normalization of downstream data to conservative elements can give spurious results, and should not be used unless it can be verified that the same parcel of water was sampled. Lagrangian sampling, which in theory samples the same water parcel as it moves downstream (the Lagrangian parcel), links hydrologic and chemical transformation processes so that the in-stream fate of wastewater contaminants can be quantitatively evaluated. However, precise Lagrangian sampling is difficult, and small deviations - such as missing the Lagrangian parcel by less than 1h - can cause large differences in measured concentrations of all dissolved compounds at downstream sites, leading to erroneous conclusions regarding in-stream processes controlling the fate and transport of wastewater contaminants. Therefore, we have developed a method termed "verified Lagrangian" sampling, which can be used to determine if the Lagrangian parcel was actually sampled, and if it was not, a means for correcting the data to reflect the concentrations which would have been obtained had the Lagrangian parcel been sampled. To apply the method, it is necessary to have concentration data for a number of conservative constituents from the upstream, effluent, and downstream sites, along with upstream and effluent concentrations that are constant over the short-term (typically 2-4h). These corrections can subsequently be applied to all data, including non-conservative constituents. Finally, we show how data from other studies can be corrected. © 2013.
Process simulation and dynamic control for marine oily wastewater treatment using UV irradiation.
Jing, Liang; Chen, Bing; Zhang, Baiyu; Li, Pu
2015-09-15
UV irradiation and advanced oxidation processes have been recently regarded as promising solutions in removing polycyclic aromatic hydrocarbons (PAHs) from marine oily wastewater. However, such treatment methods are generally not sufficiently understood in terms of reaction mechanisms, process simulation and process control. These deficiencies can drastically hinder their application in shipping and offshore petroleum industries which produce bilge/ballast water and produced water as the main streams of marine oily wastewater. In this study, the factorial design of experiment was carried out to investigate the degradation mechanism of a typical PAH, namely naphthalene, under UV irradiation in seawater. Based on the experimental results, a three-layer feed-forward artificial neural network simulation model was developed to simulate the treatment process and to forecast the removal performance. A simulation-based dynamic mixed integer nonlinear programming (SDMINP) approach was then proposed to intelligently control the treatment process by integrating the developed simulation model, genetic algorithm and multi-stage programming. The applicability and effectiveness of the developed approach were further tested though a case study. The experimental results showed that the influences of fluence rate and temperature on the removal of naphthalene were greater than those of salinity and initial concentration. The developed simulation model could well predict the UV-induced removal process under varying conditions. The case study suggested that the SDMINP approach, with the aid of the multi-stage control strategy, was able to significantly reduce treatment cost when comparing to the traditional single-stage process optimization. The developed approach and its concept/framework have high potential of applicability in other environmental fields where a treatment process is involved and experimentation and modeling are used for process simulation and control. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Battaglin, W. A.; Bradley, P. M.; Paschke, S.; Plumlee, G. S.; Kimbrough, R.
2016-12-01
In September 2013, heavy rainfall caused severe flooding in Rocky Mountain National Park (ROMO) and environs extending downstream into the main stem of the South Platte River. In ROMO, flooding damaged infrastructure and local roads. In the tributary canyons, flooding damaged homes, septic systems, and roads. On the plains, flooding damaged several wastewater treatment plants. The occurrence and fate of pharmaceuticals and other contaminants of emerging concern (CECs) in streams during flood conditions is poorly understood. We assessed the occurrence and fate of CECs in this flood by collecting water samples (post-peak flow) from 4 headwaters sites in ROMO, 7 sites on tributaries to the South Platte River, and 6 sites on the main stem of the South Platte; and by collecting flood sediment samples (post-flood depositional) from 14 sites on tributaries and 10 sites on the main stem. Water samples were analysed for 110 pharmaceuticals and 69 wastewater indicators. Sediment samples were analysed for 57 wastewater indicators. Concentrations and numbers of CECs detected in water increased markedly as floodwaters moved downstream and some were not diluted despite the large flow increases in downstream reaches of the affected rivers. For example, in the Cache la Poudre River in ROMO, no pharmaceuticals and 1 wastewater indicator compound (camphor) were detected. At Greeley, the Cache la Poudre was transporting 19 pharmaceuticals [total concentration of 0.69 parts-per-billion (ppb)] and 22 wastewater indicators (total concentration of 2.81 ppb). In the South Platte downstream from Greeley, 24 pharmaceuticals (total concentration of 1.47 ppb) and 24 wastewater indicators (total concentration of 2.35 ppb) were detected. Some CECs such as the combustion products pyrene, fluoranthene, and benzo(a)pyrene were detected only at sub-ppb concentrations in water, but were detected at concentrations in the hundreds of ppb in flood sediment samples.
Giebner, Sabrina; Ostermann, Sina; Straskraba, Susanne; Oetken, Matthias; Oehlmann, Jörg; Wagner, Martin
2018-02-01
Conventional wastewater treatment plants (WWTPs) have a limited capacity to eliminate micropollutants. One option to improve this is tertiary treatment. Accordingly, the WWTP Eriskirch at the German river Schussen has been upgraded with different combinations of ozonation, sand, and granulated activated carbon filtration. In this study, the removal of endocrine and genotoxic effects in vitro and reproductive toxicity in vivo was assessed in a 2-year long-term monitoring. All experiments were performed with aqueous and solid-phase extracted water samples. Untreated wastewater affected several endocrine endpoints in reporter gene assays. The conventional treatment removed the estrogenic and androgenic activity by 77 and 95 %, respectively. Nevertheless, high anti-estrogenic activities and reproductive toxicity persisted. All advanced treatment technologies further reduced the estrogenic activities by additional 69-86 % compared to conventional treatment, resulting in a complete removal of up to 97 %. In the Ames assay, we detected an ozone-induced mutagenicity, which was removed by subsequent filtration. This demonstrates that a post treatment to ozonation is needed to minimize toxic oxidative transformation products. In the reproduction test with the mudsnail Potamopyrgus antipodarum, a decreased number of embryos was observed for all wastewater samples. This indicates that reproductive toxicants were eliminated by neither the conventional nor the advanced treatment. Furthermore, aqueous samples showed higher anti-estrogenic and reproductive toxicity than extracted samples, indicating that the causative compounds are not extractable or were lost during extraction. This underlines the importance of the adequate handling of wastewater samples. Taken together, this study demonstrates that combinations of multiple advanced technologies reduce endocrine effects in vitro. However, they did not remove in vitro anti-estrogenicity and in vivo reproductive toxicity. This implies that a further optimization of advanced wastewater treatment is needed that goes beyond combining available technologies.
Naeemullah; Kazi, Tasneem G; Shah, Faheem; Afridi, Hassan I; Baig, Jameel Ahmed; Soomro, Abdul Sattar
2013-01-01
A simple method for the preconcentration of cadmium (Cd) and nickel (Ni) in drinking and wastewater samples was developed. Cloud point extraction has been used for the preconcentration of both metals, after formation of complexes with 8-hydroxyquinoline (8-HQ) and extraction with the surfactant octylphenoxypolyethoxyethanol (Triton X-114). Dilution of the surfactant-rich phase with acidified ethanol was performed after phase separation, and the Cd and Ni contents were measured by flame atomic absorption spectrometry. The experimental variables, such as pH, amounts of reagents (8-HQ and Triton X-114), temperature, incubation time, and sample volume, were optimized. After optimization of the complexation and extraction conditions, enhancement factors of 80 and 61, with LOD values of 0.22 and 0.52 microg/L, were obtained for Cd and Ni, respectively. The proposed method was applied satisfactorily for the determination of both elements in drinking and wastewater samples.
Biopower generation from kitchen wastewater using a bioreactor.
Khan, Abdul M; Naz, Shamsa
2014-01-01
This research provides a comparative study of the power output from mediator-less and mediator microbial fuel cells (MFCs) under aerobic and partially anaerobic conditions using kitchen wastewater (KWW) as a renewable energy source. The wastewater sample was subjected to different physical, chemical, biochemical, and microbial analysis. The chemical oxygen demand (COD), biochemical oxygen demand (BOD), and power output values were greater for the fermented samples than the non-fermented samples. The power output of samples was compared through the development of MFCs by using sand-salt bridge and agar-salt bridge. The H2 that was produced was converted to atomic hydrogen by using the nickel-coated zinc electrode. In addition, the power output was further enhanced by introducing air into the cathodic chamber, where oxygen reacts with the protons to form pure H2O. The study showed that the power output was increased with the increase in COD and BOD values.
Spectrophotometric analyses of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in water.
Shi, Cong; Xu, Zhonghou; Smolinski, Benjamin L; Arienti, Per M; O'Connor, Gregory; Meng, Xiaoguang
2015-07-01
A simple and accurate spectrophotometric method for on-site analysis of royal demolition explosive (RDX) in water samples was developed based on the Berthelot reaction. The sensitivity and accuracy of an existing spectrophotometric method was improved by: replacing toxic chemicals with more stable and safer reagents; optimizing the reagent dose and reaction time; improving color stability; and eliminating the interference from inorganic nitrogen compounds in water samples. Cation and anion exchange resin cartridges were developed and used for sample pretreatment to eliminate the effect of ammonia and nitrate on RDX analyses. The detection limit of the method was determined to be 100 μg/L. The method was used successfully for analysis of RDX in untreated industrial wastewater samples. It can be used for on-site monitoring of RDX in wastewater for early detection of chemical spills and failure of wastewater treatment systems. Copyright © 2015. Published by Elsevier B.V.
Simulation of Constructed Wetland in treating Wastewater using Fuzzy Logic Technique
NASA Astrophysics Data System (ADS)
Sudarsan, J. S.; Subramani, Sheekha; Rajan, Rajitha J.; Shah, Isha; Nithiyanantham, S.
2018-04-01
Constructed wetlands act as a natural alternative to conventional methods of wastewater treatment. CW are found effective in wastewater containing inorganic matter, organic matter, toxic compounds, metals, nitrogen, phosphorous, heavy metals, organic chemicals, and pathogens. The treatment efficiency by the adaptation of CWs in treatment process is achieved by a complex interaction between plants, microorganisms, soil matrix and substances in the wastewater. Constructed wetland treatment systems are engineered systems designed in such a manner that it could take advantages of those processes occurring in natural wetlands in treating the wastewater concerned, but in a more controlled environment. Petrochemical wastewater was the type of wastewater taken for the study. Characteristics of petrochemical wastewater mainly oil, Biological Oxygen Demand (BOD) and Chemical oxygen demand (COD) were selected for treatment in constructed wetland as they are predominant in petrochemical wastewater. The conventional methods followed in the treatment are chemical and biological treatment. In this study, a fuzzy model for water quality assessment has been developed and water quality index value was obtained. The experiment conducted and further analysis using fuzzy logic indicated that interpretation of certain imprecise data can be improved within fuzzy inference system (FIS). Based on the analysis, we could observe that Typha sp contained wetland cell showed greater efficiency in removal of parameters such as COD and BOD than Phragmites sp. wetland cell.
Niu, Kunyu; Wu, Jian; Yu, Fang; Guo, Jingli
2016-11-15
This paper aims to develop a construction and operation cost model of wastewater treatment for the paper industry in China and explores the main factors that determine these costs. Previous models mainly involved factors relating to the treatment scale and efficiency of treatment facilities for deriving the cost function. We considered the factors more comprehensively by adding a regional variable to represent the economic development level, a corporate ownership factor to represent the plant characteristics, a subsector variable to capture pollutant characteristics, and a detailed-classification technology variable. We applied a unique data set from a national pollution source census for the model simulation. The major findings include the following: (1) Wastewater treatment costs in the paper industry are determined by scale, technology, degree of treatment, ownership, and regional factors; (2) Wastewater treatment costs show a large decreasing scale effect; (3) The current level of pollutant discharge fees is far lower than the marginal treatment costs for meeting the wastewater discharge standard. Key implications are as follows: (1) Cost characteristics and impact factors should be fully recognized when planning or making policies relating to wastewater treatment projects or technology development; (2) There is potential to reduce treatment costs by centralizing wastewater treatment via industrial parks; (3) Wastewater discharge fee rates should be increased; (4) Energy efficient technology should become the future focus of wastewater treatment.
Evaluation of constructed wetland treatment performance for winery wastewater.
Grismer, Mark E; Carr, Melanie A; Shepherd, Heather L
2003-01-01
Rapid expansion of wineries in rural California during the past three decades has created contamination problems related to winery wastewater treatment and disposal; however, little information is available about performance of on-site treatment systems. Here, the project objective was to determine full-scale, subsurface-flow constructed wetland retention times and treatment performance through assessment of water quality by daily sampling of total dissolved solids, pH, total suspended solids, chemical oxygen demand (COD), tannins, nitrate, ammonium, total Kjeldahl nitrogen, phosphate, sulfate, and sulfide across operating systems for winery wastewater treatment. Measurements were conducted during both the fall crush season of heavy loading and the spring following bottling and racking operations at the winery. Simple decay model coefficients for these constituents as well as COD and tannin removal efficiencies from winery wastewater in bench-scale reactors are also determined. The bench-scale study used upward-flow, inoculated attached-growth (pea-gravel substrate) reactors fed synthetic winery wastewater. Inlet and outlet tracer studies for determination of actual retention times were essential to analyses of treatment performance from an operational subsurface-flow constructed wetland that had been overloaded due to failure to install a pretreatment system for suspended solids removal. Less intensive sampling conducted at a smaller operational winery wastewater constructed wetland that had used pretreatment suspended solids removal and aeration indicated that the constructed wetlands were capable of complete organic load removal from the winery wastewater.
Savoie, Jennifer G.; Smith, Richard L.; Kent, Douglas B.; Hess, Kathryn M.; LeBlanc, Denis R.; Barber, Larry B.
2006-01-01
A plume of contaminated ground water extends from former disposal beds at the Massachusetts Military Reservation wastewater-treatment plant toward Ashumet Pond, and farther southward toward coastal ponds and Vineyard Sound, Cape Cod, Massachusetts. Treated sewage-derived wastewater was discharged to the rapid-infiltration beds for nearly 60 years before the disposal site was moved to a different location in December 1995. Water-quality samples were collected periodically from monitoring wells and multilevel samplers during and after the disposal period to characterize the nature and extent of the contaminated ground water and to observe the water-quality changes after the wastewater disposal ceased. Data are presented here for water samples collected from 1994 through 2004 from 16 wells (at 2 locations) and 14 multilevel samplers (at 9 locations) along a longitudinal transect that extends through one of the disposal beds. Data collected from the treated-wastewater plume are presented in tabular format. These data include field parameters; concentrations of cations, anions, nitrate, ammonium, and organic and inorganic carbon species; and ultraviolet/visible absorbance. The natural restoration of the sand and gravel aquifer after removal of the nearly 60-year-long treated-wastewater source, along with interpretations of the water quality in the treated-wastewater plume on Cape Cod, have been documented in several published reports that are listed in the references.
Variability estimation of urban wastewater biodegradable fractions by respirometry.
Lagarde, Fabienne; Tusseau-Vuillemin, Marie-Hélène; Lessard, Paul; Héduit, Alain; Dutrop, François; Mouchel, Jean-Marie
2005-11-01
This paper presents a methodology for assessing the variability of biodegradable chemical oxygen demand (COD) fractions in urban wastewaters. Thirteen raw wastewater samples from combined and separate sewers feeding the same plant were characterised, and two optimisation procedures were applied in order to evaluate the variability in biodegradable fractions and related kinetic parameters. Through an overall optimisation on all the samples, a unique kinetic parameter set was obtained with a three-substrate model including an adsorption stage. This method required powerful numerical treatment, but improved the identifiability problem compared to the usual sample-to-sample optimisation. The results showed that the fractionation of samples collected in the combined sewer was much more variable (standard deviation of 70% of the mean values) than the fractionation of the separate sewer samples, and the slowly biodegradable COD fraction was the most significant fraction (45% of the total COD on average). Because these samples were collected under various rain conditions, the standard deviations obtained here on the combined sewer biodegradable fractions could be used as a first estimation of the variability of this type of sewer system.
Damschen, William C.; Hansel, John A.; Nustad, Rochelle A.
2008-01-01
From January through October 2006, six sets of water-quality samples were collected at 28 sites, which included inflow and outflow from seven major municipal water-treatment plants (14 sites) and influent and effluent samples from seven major municipal wastewater treatment plants (14 sites) along the Red River of the North in North Dakota and Minnesota. Samples were collected in cooperation with the Bureau of Reclamation for use in the development of return-flow boundary conditions in a 2006 water-quality model for the Red River of the North. All samples were analyzed for nutrients and major ions. For one set of effluent samples from each of the wastewater-treatment plants, water was analyzed for Eschirichia coli, fecal coliform, 20-day biochemical oxygen demand, 20-day nitrogenous biochemical oxygen demand, total organic carbon, and dissolved organic carbon. In general, results from the field equipment blank and replicate samples indicate that the overall process of sample collection, processing, and analysis did not introduce substantial contamination and that consistent results were obtained.
Keeping Pace With Water and Wastewater Rates
Stratton, Hannah; Fuchs, Heidi; Chen, Yuting; ...
2017-10-01
We present that water and wastewater treatment and delivery are the most capital-intensive of all utility services. The literature indicates that historically underpriced water and wastewater rates have exhibited steadily high growth in the past 15 years, while the consumer price index (CPI) of water and sewage maintenance has outpaced the general CPI by an increasingly wide margin. This article employs a chained analysis method to examine water and wastewater rates for a group of utilities across US Census regions between 2000 and 2014. Results demonstrate that water and wastewater prices for this sample group have consistently increased and havemore » surpassed CPI growth since 2006. Finally, current and upcoming challenges facing water and wastewater utilities suggest that rate increases are likely to continue in the foreseeable future.« less
Keeping Pace With Water and Wastewater Rates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stratton, Hannah; Fuchs, Heidi; Chen, Yuting
We present that water and wastewater treatment and delivery are the most capital-intensive of all utility services. The literature indicates that historically underpriced water and wastewater rates have exhibited steadily high growth in the past 15 years, while the consumer price index (CPI) of water and sewage maintenance has outpaced the general CPI by an increasingly wide margin. This article employs a chained analysis method to examine water and wastewater rates for a group of utilities across US Census regions between 2000 and 2014. Results demonstrate that water and wastewater prices for this sample group have consistently increased and havemore » surpassed CPI growth since 2006. Finally, current and upcoming challenges facing water and wastewater utilities suggest that rate increases are likely to continue in the foreseeable future.« less
Zhang, Wanhui; Wei, Chaohai; Yan, Bo; Feng, Chunhua; Zhao, Guobao; Lin, Chong; Yuan, Mengyang; Wu, Chaofei; Ren, Yuan; Hu, Yun
2013-09-01
Identification and removal of polycyclic aromatic hydrocarbons (PAHs) were investigated at two coke plants located in Shaoguan, Guangdong Province of China. Samples of raw coking wastewaters and wastewaters from subunits of a coke production plant were analyzed using gas chromatography-mass spectrometry (GC/MS) to provide a detailed chemical characterization of PAHs. The identification and characterization of PAH isomers was based on a positive match of mass spectral data of sample peaks with those for PAH isomers in mass spectra databases with electron impact ionization mass spectra and retention times of internal reference compounds. In total, 270 PAH compounds including numerous nitrogen, oxygen, and sulfur heteroatomic derivatives were positively identified for the first time. Quantitative analysis of target PAHs revealed that total PAH concentrations in coking wastewaters were in the range of 98.5 ± 8.9 to 216 ± 20.2 μg/L, with 3-4-ring PAHs as dominant compounds. Calculation of daily PAH output from four plant subunits indicated that PAHs in the coking wastewater came mainly from ammonia stripping wastewater. Coking wastewater treatment processes played an important role in removing PAHs in coking wastewater, successfully removing 92 % of the target compounds. However, 69 weakly polar compounds, including PAH isomers, were still discharged in the final effluent, producing 8.8 ± 2.7 to 31.9 ± 6.8 g/day of PAHs with potential toxicity to environmental waters. The study of coking wastewater herein proposed can be used to better predict improvement of coke production facilities and treatment conditions according to the identification and removal of PAHs in the coke plant as well as to assess risks associated with continuous discharge of these contaminants to receiving waters.
Ulloa-Stanojlović, Francisco Miroslav; Aguiar, Bruna; Jara, Luis M; Sato, Maria Inês Zanoli; Guerrero, Juana Arzola; Hachich, Elayse; Matté, Glavur Rogério; Dropa, Milena; Matté, Maria Helena; de Araújo, Ronalda Silva
2016-11-01
The objectives of the study were to detect and genotype Cryptosporidium spp. and Giardia intestinalis in wastewater samples obtained from five cities with high transit of people in the State of São Paulo, Brazil, and at the entrance of a Wastewater Treatment Plant (WWTP) in Lima, Peru. Samples were collected and concentrated by centrifugation. The genomic DNA was extracted for molecular characterization by nested PCR for Cryptosporidium and double nested PCR for Giardia, followed by sequencing and phylogenetic analysis. G. intestinalis was found in 63.6 % of the samples, and the human assemblages A and B were identified. Cryptosporidium sp. was found in 36.4 % of the samples, and the species were corresponding to Cryptosporidium hominis, Cryptosporidium cuniculus, and Cryptosporidium muris. Results revealed the presence of human pathogenic Cryptosporidium species and G. intestinalis human pathogenic assemblages. Molecular tools highlight the importance to map the genetic diversity of these parasites, as well as to detect their epidemiological circulation pathway in the environment.
Hughes, B; Beale, D J; Dennis, P G; Cook, S; Ahmed, W
2017-04-15
Detection of human wastewater contamination in recreational waters is of critical importance to regulators due to the risks posed to public health. To identify such risks, human wastewater-associated microbial source tracking (MST) markers have been developed. At present, however, a greater understanding of the suitability of these markers for the detection of diluted human wastewater in environmental waters is necessary to predict risk. Here, we compared the process limit of detection (PLOD) and process limit of quantification (PLOQ) of six human wastewater-associated MST markers ( Bacteroides HF183 [HF183], Escherichia coli H8 [EC H8], Methanobrevibacter smithii nifH , human adenovirus [HAdV], human polyomavirus [HPyV], and pepper mild mottle virus [PMMoV]) in relation to a fecal indicator bacterium (FIB), Enterococcus sp. 23S rRNA (ENT 23S), and three enteric viruses (human adenovirus serotypes 40/41 [HAdV 40/41], human norovirus [HNoV], and human enterovirus [EV]) in beach water samples seeded with raw and secondary-treated wastewater. Among the six MST markers tested, HF183 was the most sensitive measure of human fecal pollution and was quantifiable up to dilutions of 10 -6 and 10 -4 for beach water samples seeded with raw and secondary-treated wastewater, respectively. Other markers and enteric viruses were detected at various dilutions (10 -1 to 10 -5 ). These MST markers, FIB, and enteric viruses were then quantified in beach water ( n = 12) and sand samples ( n = 12) from South East Queensland (SEQ), Australia, to estimate the levels of human fecal pollution. Of the 12 sites examined, beach water and sand samples from several sites had quantifiable concentrations of HF183 and PMMoV markers. Overall, our results indicate that while HF183 is the most sensitive measure of human fecal pollution, it should be used in conjunction with a conferring viral marker to avoid overestimating the risk of gastrointestinal illness. IMPORTANCE MST is an effective tool to help utilities and regulators improve recreational water quality around the globe. Human fecal pollution poses significant public health risks compared to animal fecal pollution. Several human wastewater-associated markers have been developed and used for MST field studies. However, a head-to-head comparison in terms of their performance to detect diluted human fecal pollution in recreational water is lacking. In this study, we cross-compared the performance of six human wastewater-associated markers in relation to FIB and enteric viruses in beach water samples seeded with raw and secondary-treated wastewater. The results of this study will provide guidance to regulators and utilities on the appropriate application of MST markers for tracking the sources of human fecal pollution in environmental waters and confer human health risks. Copyright © 2017 American Society for Microbiology.
Hughes, B.; Beale, D. J.; Dennis, P. G.; Cook, S.
2017-01-01
ABSTRACT Detection of human wastewater contamination in recreational waters is of critical importance to regulators due to the risks posed to public health. To identify such risks, human wastewater-associated microbial source tracking (MST) markers have been developed. At present, however, a greater understanding of the suitability of these markers for the detection of diluted human wastewater in environmental waters is necessary to predict risk. Here, we compared the process limit of detection (PLOD) and process limit of quantification (PLOQ) of six human wastewater-associated MST markers (Bacteroides HF183 [HF183], Escherichia coli H8 [EC H8], Methanobrevibacter smithii nifH, human adenovirus [HAdV], human polyomavirus [HPyV], and pepper mild mottle virus [PMMoV]) in relation to a fecal indicator bacterium (FIB), Enterococcus sp. 23S rRNA (ENT 23S), and three enteric viruses (human adenovirus serotypes 40/41 [HAdV 40/41], human norovirus [HNoV], and human enterovirus [EV]) in beach water samples seeded with raw and secondary-treated wastewater. Among the six MST markers tested, HF183 was the most sensitive measure of human fecal pollution and was quantifiable up to dilutions of 10−6 and 10−4 for beach water samples seeded with raw and secondary-treated wastewater, respectively. Other markers and enteric viruses were detected at various dilutions (10−1 to 10−5). These MST markers, FIB, and enteric viruses were then quantified in beach water (n = 12) and sand samples (n = 12) from South East Queensland (SEQ), Australia, to estimate the levels of human fecal pollution. Of the 12 sites examined, beach water and sand samples from several sites had quantifiable concentrations of HF183 and PMMoV markers. Overall, our results indicate that while HF183 is the most sensitive measure of human fecal pollution, it should be used in conjunction with a conferring viral marker to avoid overestimating the risk of gastrointestinal illness. IMPORTANCE MST is an effective tool to help utilities and regulators improve recreational water quality around the globe. Human fecal pollution poses significant public health risks compared to animal fecal pollution. Several human wastewater-associated markers have been developed and used for MST field studies. However, a head-to-head comparison in terms of their performance to detect diluted human fecal pollution in recreational water is lacking. In this study, we cross-compared the performance of six human wastewater-associated markers in relation to FIB and enteric viruses in beach water samples seeded with raw and secondary-treated wastewater. The results of this study will provide guidance to regulators and utilities on the appropriate application of MST markers for tracking the sources of human fecal pollution in environmental waters and confer human health risks. PMID:28159789
Angosto, J M; Fernández-López, J A; Godínez, C
2015-01-01
This work aims at the comparison of the electrical and chemical performance of microbial fuel cells (MFCs) fed with several types of brewery and manure industrial wastewaters. Experiments were conducted in a single-cell MFC with the cathode exposed to air operated in batch and fed-batch modes. In fed-batch mode, after 4 days of operation, a standard MFC was refilled with crude wastewater to regenerate the biofilm and recreate initial feeding conditions. Brewery wastewater (CV1) mixed with pig-farm liquid manure (PU sample) gave the highest voltage (199.8 mV) and power density (340 mW/m3) outputs than non-mixed brewery waste water. Also, coulombic efficiency is much larger in the mixture (11%) than in the others (2-3%). However, in terms of chemical oxygen demand removal, the performance showed to be poorer (53%) for the mixed sample than in the pure brewery sample (93%). Fed-batch operation showed to be a good alternate for quasi-continuous operation, with equivalent electrical and chemical yields as compared with normal batchwise operation.
Blanco-Rodríguez, Andy; Camara, Vicente Francisco; Campo, Fernando; Becherán, Liliam; Durán, Alejandro; Vieira, Vitor Debatin; de Melo, Henrique; Garcia-Ramirez, Alejandro Rafael
2018-05-01
Wastewater treatment plants have widely been described as a significant source of odour nuisance, which has led to an increase of neighbourhood complaints. Therefore, to mitigate the negative impact of odours, the detection and analysis of these emissions are required. This paper presents a measurement system based on an electronic nose for quantitative and qualitative odour analysis of samples collected from six different stages on a wastewater plant. Hence, two features vectors were performed in order to represent quantitative trends of the gaseous mixture sampled on the facility. In addition, odour fingerprints and a PCA were computed to discriminate odours from its sources and to detect relationships among the samples. This approach also comprises a dynamic dilution olfactometer. A PLS regression model was performed to predict the odour concentration by the electronic nose in term of odour units per cubic meter. The results show that the developed electronic nose is a promising and feasible instrument to characterize odours from wastewater plants. Copyright © 2018 Elsevier Ltd. All rights reserved.
Lundgren, Robert F.; Nustad, Rochelle A.
2008-01-01
A time-of-travel and reaeration-rate study was conducted by the U.S. Geological Survey, in cooperation with the North Dakota Department of Health, the Minnesota Pollution Control Agency, and the cities of Fargo, North Dakota, and Moorhead, Minnesota, to provide information to calibrate a water-quality model for streamflows of less than 150 cubic feet per second. Data collected from September 24 through 27, 2003, were used to develop and calibrate the U.S. Environmental Protection Agency Water Quality Analysis Simulation Program model (hereinafter referred to as the Fargo WASP water-quality model) for a 19.2-mile reach of the Red River of the North. The Fargo WASP water-quality model was calibrated for the transport of dye by fitting simulated time-concentration dye curves to measured time-concentration dye curves. Simulated peak concentrations were within 10 percent of measured concentrations. Simulated traveltimes of the dye cloud centroid were within 7 percent of measured traveltimes. The variances of the simulated dye concentrations were similar to the variances of the measured dye concentrations, indicating dispersion was reproduced reasonably well. Average simulated dissolved-oxygen concentrations were within 6 percent of average measured concentrations. Average simulated ammonia concentrations were within the range of measured concentrations. Simulated dissolved-oxygen and ammonia concentrations were affected by the specification of a single nitrification rate in the Fargo WASP water-quality model. Data sets from August 1989 and August 1990 were used to test traveltime and simulation of dissolved oxygen and ammonia. For streamflows that ranged from 60 to 407 cubic feet per second, simulated traveltimes were within 7 percent of measured traveltimes. Measured dissolved-oxygen concentrations were underpredicted by less than 15 percent for both data sets. Results for ammonia were poor; measured ammonia concentrations were underpredicted by as much as 70 percent for both data sets. Overall, application of the Fargo WASP water-quality model to the 1989 and 1990 data sets resulted in poor agreement between measured and simulated concentrations. This likely is a result of changes in the waste-load composition for the Fargo and Moorhead wastewater-treatment plants as a result of improvements to the wastewater-treatment plants since 1990. The change in waste-load composition probably resulted in a change in decay rates and in dissolved oxygen no longer being substantially depressed downstream from the Moorhead and Fargo wastewater-treatment plants. The Fargo WASP water-quality model is valid for the current (2008) treatment processes at the wastewater-treatment plants.
Trace Element and Cu Isotopic Tracers of Subsurface Flow and Transport in Wastewater Irrigated Soils
NASA Astrophysics Data System (ADS)
Carte, J.; Fantle, M. S.
2017-12-01
An understanding of subsurface flow paths is critical for quantifying the fate of contaminants in wastewater irrigation systems. This study investigates the subsurface flow of wastewater by quantifying the distribution of trace contaminants in wastewater irrigated soils. Soil samples were collected from the upper 1m of two wetlands at Penn State University's wastewater irrigation site, at which all effluent from the University's wastewater treatment plant has been sprayed since 1983. Major and trace element and Cu isotopic composition were determined for these samples, in addition to wastewater effluent and bedrock samples. The upper 20 cm of each wetland shows an enrichment of Bi, Cd, Cr, Cu, Mo, Ni, Pb, and Zn concentrations relative to deep (>1m) soils at the site by a factor of 1.7-3.5. Each wetland also has a subsurface clay rich horizon with Bi, Cu, Li, Ni, Pb, and Zn concentrations enriched by a factor of 1.4 to 5 relative to deep soils. These subsurface horizons directly underlie intervals that could facilitate preferential effluent flow: a gravel layer in one wetland, and a silty loam with visible mottling, an indication of dynamic water saturation, in the other. Trace metal concentrations in other horizons from both wetlands fall in the range of the deep soils. Significant variability in Cu isotopic composition is present in soils from both wetlands, with δ65Cu values ranging from 0.74‰ to 5.09‰. Soil δ65Cu correlates well with Cu concentrations, with lighter δ65Cu associated with higher concentrations. The Cu isotopic composition of the zones of metal enrichment are comparable to the ostensible average wastewater effluent δ65Cu value (0.61‰), while other horizons have considerably heavier δ65Cu values. We hypothesize that wastewater is the source of the metal enrichments, as each of the enriched elements are present as contaminants in wastewater, and the enrichments are located in clay-rich horizons conducive to trace metal immobilization due to adsorption. This hypothesis will be further tested by modeling with the reactive transport code CrunchTope. This study provides evidence that trace element and isotopic composition of soils can be useful tracers of subsurface hydrologic pathways and elemental fate and transport.
Photo-oxidation of PAHs with calcium peroxide as a source of the hydroxyl radicals
NASA Astrophysics Data System (ADS)
Kozak, Jolanta; Włodarczyk-Makuła, Maria
2018-02-01
The efficiency of the removal of selected PAHs from the pretreated coking wastewater with usage of CaO2, Fenton reagent (FeSO4) and UV rays are presented in this article. The investigations were carried out using coking wastewater originating from biological, industrial wastewater treatment plant. At the beginning of the experiment, the calcium peroxide (CaO2) powder as a source of hydroxyl radicals (OH•) and Fenton reagent were added to the samples of wastewater. Then, the samples were exposed to UV rays for 360 s. The process was carried out at pH 3.5-3.8. After photo-oxidation process a decrease in the PAHs concentration was observed. The removal efficiency of selected hydrocarbons was in the ranged of 89-98%. The effectiveness of PAHs degradation was directly proportional to the calcium peroxide dose.
Plant-wide (BSM2) evaluation of reject water treatment with a SHARON-Anammox process.
Volcke, E I P; Gernaey, K V; Vrecko, D; Jeppsson, U; van Loosdrecht, M C M; Vanrolleghem, P A
2006-01-01
In wastewater treatment plants (WWTPs) equipped with sludge digestion and dewatering systems, the reject water originating from these facilities contributes significantly to the nitrogen load of the activated sludge tanks, to which it is typically recycled. In this paper, the impact of reject water streams on the performance of a WWTP is assessed in a simulation study, using the Benchmark Simulation Model no. 2 (BSM2), that includes the processes describing sludge treatment and in this way allows for plant-wide evaluation. Comparison of performance of a WWTP without reject water with a WWTP where reject water is recycled to the primary clarifier, i.e. the BSM2 plant, shows that the ammonium load of the influent to the primary clarifier is 28% higher in the case of reject water recycling. This results in violation of the effluent total nitrogen limit. In order to relieve the main wastewater treatment plant, reject water treatment with a combined SHARON-Anammox process seems a promising option. The simulation results indicate that significant improvements of the effluent quality of the main wastewater treatment plant can be realized. An economic evaluation of the different scenarios is performed using an Operating Cost Index (OCI).
Wang, De-Gao; Du, Juan; Pei, Wei; Liu, Yongjun; Guo, Mingxing
2015-04-15
The fate of cyclic and linear volatile methylsiloxanes (VMSs) was evaluated in a wastewater treatment plant (WWTP) using constant water level sequencing batch reactors from Dalian, China. Influent, effluent, and sewage sludge samples were collected for seven consecutive days. The mean concentrations of cyclic VMSs (cVMSs) in influent and effluent samples are 1.05 μg L(-1) and 0.343 μg L(-1); the total removal efficiency of VMSs is >60%. Linear VMS (lVMS) concentration is under the quantification limitation in aquatic samples but is found in sludge samples with a value of 90 μg kg(-1). High solid-water partition coefficients result in high VMS concentrations in sludge with the mean value of 5030 μg kg(-1). No significant differences of the daily mass flows are found when comparing the concentration during the weekend and during working days. The estimated mass load of total cVMSs is 194 mg d(-1)1000 inhabitants(-1) derived for the population. A mass balance model of the WWTP was developed and derived to simulate the fate of cVMSs. The removal by sorption on sludge increases, and the volatilization decreases with increasing hydrophobicity and decreasing volatility for cVMSs. Sensitivity analysis shows that the total suspended solid concentration in the effluent, mixed liquor suspended solid concentration, the sewage sludge flow rate, and the influent flow rate are the most influential parameters on the mass distribution of cVMSs in this WWTP. Copyright © 2015 Elsevier B.V. All rights reserved.
Simulation of the effect of an oil refining project on the water environment using the MIKE 21 model
NASA Astrophysics Data System (ADS)
Jia, Peng; Wang, Qinggai; Lu, Xuchuan; Zhang, Beibei; Li, Chen; Li, Sa; Li, Shibei; Wang, Yaping
2018-02-01
A case study of the Caofeidian oil refining project is conducted. A two-dimensional convective dispersion mathematical model is established to simulate the increase in the concentration of pollutants resulting from the wastewater discharge from the Caofeidian oil refining project and to analyze the characteristics of the dispersion of pollutants after wastewater is discharged and the effect of the wastewater discharge on the surrounding sea areas. The results demonstrate the following: (1) The Caofeidian sea area has strong tidal currents, which are significantly affected by the terrain. There are significant differences in the tidal current velocity and the direction between the deep-water areas and the shoals. The direction of the tidal currents in the deep-water areas is essentially parallel to the contour lines of the sea areas. Onshore currents and rip currents submerging the shoals are the dominant currents in the shoals. (2) The pollutant concentration field in the offshore areas changes periodically with the movement of the tidal current. The dilution and dispersion of pollutants are affected by the ocean currents in different tidal periods. The turbulent dispersion of pollutants is the most intense when a neap tide ebbs, followed by when a neap tide rises, when a spring tide ebbs and when a spring tide rises. (3) There are relatively good hydrodynamic conditions near the project's wastewater discharge outlet. Wastewater is well diluted after being discharged. Areas with high concentrations of pollutants are concentrated near the wastewater discharge outlet and the offshore areas. These pollutants migrate southwestward with the flood tidal current and northeastward with the ebb tidal current and have no significant impact on the protection targets in the open sea areas and nearby sea areas.
Taheriyoun, Masoud; Moradinejad, Saber
2015-01-01
The reliability of a wastewater treatment plant is a critical issue when the effluent is reused or discharged to water resources. Main factors affecting the performance of the wastewater treatment plant are the variation of the influent, inherent variability in the treatment processes, deficiencies in design, mechanical equipment, and operational failures. Thus, meeting the established reuse/discharge criteria requires assessment of plant reliability. Among many techniques developed in system reliability analysis, fault tree analysis (FTA) is one of the popular and efficient methods. FTA is a top down, deductive failure analysis in which an undesired state of a system is analyzed. In this study, the problem of reliability was studied on Tehran West Town wastewater treatment plant. This plant is a conventional activated sludge process, and the effluent is reused in landscape irrigation. The fault tree diagram was established with the violation of allowable effluent BOD as the top event in the diagram, and the deficiencies of the system were identified based on the developed model. Some basic events are operator's mistake, physical damage, and design problems. The analytical method is minimal cut sets (based on numerical probability) and Monte Carlo simulation. Basic event probabilities were calculated according to available data and experts' opinions. The results showed that human factors, especially human error had a great effect on top event occurrence. The mechanical, climate, and sewer system factors were in subsequent tier. Literature shows applying FTA has been seldom used in the past wastewater treatment plant (WWTP) risk analysis studies. Thus, the developed FTA model in this study considerably improves the insight into causal failure analysis of a WWTP. It provides an efficient tool for WWTP operators and decision makers to achieve the standard limits in wastewater reuse and discharge to the environment.
Ockerman, Darwin J.; McNamara, Kenna C.
2003-01-01
The U.S. Geological Survey developed watershed models (Hydrological Simulation Program—FORTRAN) to simulate streamflow and estimate streamflow constituent loads from five basins that compose the San Antonio River watershed in Bexar County, Texas. Rainfall and streamflow data collected during 1997–2001 were used to calibrate and test the model. The model was configured so that runoff from various land uses and discharges from other sources (such as wastewater recycling facilities) could be accounted for to indicate sources of streamflow. Simulated streamflow volumes were used with land-use-specific, water-quality data to compute streamflow loads of selected constituents from the various streamflow sources.Model simulations for 1997–2001 indicate that inflow from the upper Medina River (originating outside Bexar County) represents about 22 percent of total streamflow. Recycled wastewater discharges account for about 20 percent and base flow (ground-water inflow to streams) about 18 percent. Storm runoff from various land uses represents about 33 percent. Estimates of sources of streamflow constituent loads indicate recycled wastewater as the largest source of dissolved solids and nitrate plus nitrite nitrogen (about 38 and 66 percent, respectively, of the total loads) during 1997–2001. Stormwater runoff from urban land produced about 49 percent of the 1997–2001 total suspended solids load. Stormwater runoff from residential and commercial land (about 23 percent of the land area) produced about 70 percent of the total lead streamflow load during 1997–2001.
Gao, Baoyu; Jia, Yuyan; Zhang, Yongqiang; Li, Qian; Yue, Qinyan
2011-01-01
Produced water from polymer flooding is difficult to treat due to its high polymer concentration, high viscosity, and emulsified characteristics. The dithiocarbamate flocculant, DTC (T403), was prepared by the amine-terminated polyoxypropane-ether compound known as Jeffamine-T403. The product was characterized by IR spectra and elemental analysis. The DTC agent chelating with Fe2+ produced a network polymer matrix, which captured and removed oil droplets efficiently. Oil removal by the flocculent on simulated produced water with 0, 200, 500, 900 mg/L of partially hydrolyzed polyacrylamide (HPAM) was investigated for aspects of effectiveness of DTC (T403) dosage and concentrations of HPAM and Fe2+ ions in the wastewater. Results showed that HPAM had a negative influence on oil removal efficiency when DTC (T403) dosage was lower than 20 mg/L. However, residual oil concentrations in tested samples with different concentrations of HPAM all decreased below 10 mg/L when DTC (T403) dosage reached 30 mg/L. The concentration of Fe2+ in the initial wastewater had a slight effect on oil removal at the range of 2-12 mg/L. Results showed that Fe3+ could not be used in place of Fe2+ as Fe3+ could not react with DTC under flocculated conditions. The effects of mineral salts ions were also investigated.
NASA Astrophysics Data System (ADS)
Zhi, Xiaohua; Yang, Haijun; Berthold, Sascha; Doetsch, Christian; Shen, Jianquan
Treatment of highly concentrated organic wastewater is characterized as cost-consuming. The conventional technology uses the anaerobic-anoxic-oxic process (A 2/O), which does not produce hydrogen. There is potential for energy saving using hydrogen utilization associated with wastewater treatment because hydrogen can be produced from organic wastewater using anaerobic fermentation. A 50 m 3 pilot bio-reactor for hydrogen production was constructed in Shandong Province, China in 2006 but to date the hydrogen produced has not been utilized. In this work, a technical-economic model based on hydrogen utilization is presented and analyzed to estimate the potential improvement to a citric wastewater plant. The model assesses the size, capital cost, annual cost, system efficiency and electricity cost under different configurations. In a stand-alone situation, the power production from hydrogen is not sufficient for the required load, thus a photovoltaic array (PV) is employed as the power supply. The simulated results show that the combination of solar and bio-hydrogen has a much higher cost compared with the A 2/O process. When the grid is connected, the system cost achieved is 0.238 US t -1 wastewater, which is lower than 0.257 US t -1 by the A 2/O process. The results reveal that a simulated improvement by using bio-hydrogen and a FC system is effective and feasible for the citric wastewater plant, even when compared to the current cost of the A 2/O process. In addition, lead acid and vanadium flow batteries were compared for energy storage service. The results show that a vanadium battery has lower cost and higher efficiency due to its long lifespan and energy efficiency. Additionally, the cost distribution of components shows that the PV dominates the cost in the stand-alone situation, while the bio-reactor is the main cost component in the parallel grid.
Fernández-Ramos, C; Ballesteros, O; Blanc, R; Zafra-Gómez, A; Jiménez-Díaz, I; Navalón, A; Vílchez, J L
2012-08-30
In the present paper, we developed an accurate method for the analysis of alcohol sulfates (AS) in wastewater samples from wastewater treatment plant (WWTP) influents and effluents. Although many methodologies have been published in the literature concerning the study of anionic surfactants in environmental samples, at present, the number of analytical methodologies that focus in the determination of AS by gas chromatography in the different environmental compartments is limited. The reason for this is that gas chromatography-mass spectrometry (GC-MS) technique requires a previous hydrolysis reaction followed by derivatization reactions. In the present work, we proposed a new procedure in which the hydrolysis and derivatization reactions take place in one single step and AS are directly converted to trimethylsilyl derivatives. The main factors affecting solid-phase extraction (SPE), hydrolysis/derivatization and GC-MS procedures were accurately optimised. Quantification of the target compounds was performed by using GC-MS in selected ion monitoring (SIM) mode. The limits of detection (LOD) obtained ranged from 0.2 to 0.3 μg L(-1), and limits of quantification (LOQ) from 0.5 to 1.0 μg L(-1), while inter- and intra-day variability was under 5%. A recovery assay was also carried out. Recovery rates for homologues in spiked samples ranged from 96 to 103%. The proposed method was successfully applied for the determination of anionic surfactants in wastewater samples from one WWTP located in Granada (Spain). Concentration levels for the homologues up to 39.4 μg L(-1) in influent and up to 8.1 μg L(-1) in effluent wastewater samples. Copyright © 2012 Elsevier B.V. All rights reserved.
Microbiological Impact of the Use of Reclaimed Wastewater in Recreational Parks
Palacios, Oskar A.; Zavala-Díaz de la Serna, Francisco J.; Ballinas-Casarrubias, María de Lourdes; Espino-Valdés, María S.
2017-01-01
Reclaimed wastewater for irrigation is an opportunity for recovery of this natural resource. In this study, microbial risk from the use of treated wastewater for irrigation of recreational parks in the city of Chihuahua, evaluating the effect of distribution distance, season, and presence of storage tanks, was analyzed. Escherichia coli, Salmonella, and multidrug-resistant bacteria were recovered from samples of reclaimed water and soils at recreational parks in Chihuahua by the membrane filtration method, using selected agars for microbial growth. Samples were taken at three different seasons. No correlation in the presence of microbial indicators and multidrug-resistant bacteria (p > 0.05) was found between the distance from the wastewater treatment plant to the point of use. Presence of storage tanks in parks showed a significant effect (p < 0.05) with a higher level of E. coli. The highest count in wastewater occurred in summer. We isolated 392 multidrug-resistant bacteria from water and soil; cluster analysis showed that the microorganisms at each location were of different origins. Irrigation with reclaimed wastewater did not have a negative effect on the presence of microbial indicators of the quality of soils in the parks. However, the prevalence of multidrug-resistant bacteria still represents a potential risk factor for human health. PMID:28869549
Effects of industrial wastewater on growth and biomass production in commonly grown vegetables.
Uzma, Syeda; Azizullah, Azizullah; Bibi, Roqaia; Nabeela, Farhat; Muhammad, Uzair; Ali, Imran; Rehman, Zia Ur; Häder, Donat-Peter
2016-06-01
In developing countries like Pakistan, irrigation of crops with industrial and municipal wastewater is a common practice. However, the impact of wastewater irrigation on vegetables growth has rarely been studied. Therefore, the present study was conducted to determine the effect of industrial wastewater on the germination and seedling growth of some commonly grown vegetables in Pakistan. Wastewater samples were collected from two different industries (marble industry and match alam factory) at Hayatabad Industrial Estate (HIE) in Peshawar, Pakistan, and their effect on different growth parameters of four vegetables including Hibiscus esculentus, Lactuca sativa, Cucumis sativus, and Cucumis melo was investigated. The obtained results revealed that wastewater from marble industry did not affect seed germination except a minor inhibition in H. esculentus. Effluents from match alam factory stimulated seed germination in C. melo and C. sativus but had no effect on seed germination in the other two vegetables. Wastewater increased root and shoot length in H. esculentus, L. sativa and C. melo, but decreased it in C. sativus. Similarly, differential effects of wastewater were observed on fresh and dry biomass of seedlings in all vegetables. It can be concluded that wastewater may have different effects on different crops, depending upon the nature of wastewater and sensitivity of a plant species to wastewater.
Convergent development of anodic bacterial communities in microbial fuel cells.
Yates, Matthew D; Kiely, Patrick D; Call, Douglas F; Rismani-Yazdi, Hamid; Bibby, Kyle; Peccia, Jordan; Regan, John M; Logan, Bruce E
2012-11-01
Microbial fuel cells (MFCs) are often inoculated from a single wastewater source. The extent that the inoculum affects community development or power production is unknown. The stable anodic microbial communities in MFCs were examined using three inocula: a wastewater treatment plant sample known to produce consistent power densities, a second wastewater treatment plant sample, and an anaerobic bog sediment. The bog-inoculated MFCs initially produced higher power densities than the wastewater-inoculated MFCs, but after 20 cycles all MFCs on average converged to similar voltages (470±20 mV) and maximum power densities (590±170 mW m(-2)). The power output from replicate bog-inoculated MFCs was not significantly different, but one wastewater-inoculated MFC (UAJA3 (UAJA, University Area Joint Authority Wastewater Treatment Plant)) produced substantially less power. Denaturing gradient gel electrophoresis profiling showed a stable exoelectrogenic biofilm community in all samples after 11 cycles. After 16 cycles the predominance of Geobacter spp. in anode communities was identified using 16S rRNA gene clone libraries (58±10%), fluorescent in-situ hybridization (FISH) (63±6%) and pyrosequencing (81±4%). While the clone library analysis for the underperforming UAJA3 had a significantly lower percentage of Geobacter spp. sequences (36%), suggesting that a predominance of this microbe was needed for convergent power densities, the lower percentage of this species was not verified by FISH or pyrosequencing analyses. These results show that the predominance of Geobacter spp. in acetate-fed systems was consistent with good MFC performance and independent of the inoculum source.
Vatovec, Christine; Phillips, Patrick J.; Van Wagoner, Emily; Scott, Tia-Marie; Furlong, Edward T.
2016-01-01
Pharmaceutical pollution in surface waters poses risks to human and ecosystem health. Wastewater treatment facilities are primary sources of pharmaceutical pollutants, but little is known about the factors that affect drugs entering the wastewater stream. This paper investigates the effects of student pharmaceutical use and disposal behaviors and an annual demographic shift on pharmaceutical pollution in a university town. We sampled wastewater effluent during a ten-day annual spring student move-out period at the University of Vermont. We then interpreted these data in light of survey results that investigated pharmaceutical purchasing, use, and disposal practices among the university student population. Surveys indicated that the majority of student respondents purchased pharmaceuticals in the previous year. Many students reported having leftover drugs, though only a small portion disposed of them, mainly in the trash.We detected 51 pharmaceuticals in 80% or more of the wastewater effluent samples collected over the ten-day sampling period. Several increased in concentration after students left the area. Concentrations of caffeine and nicotine decreased weakly. Drug disposal among this university student population does not appear to be a major source of pharmaceuticals in wastewater. Increases in pharmaceutical concentration after the students left campus can be tied to an increase in the seasonal use of allergy medications directly related to pollen, as well as a demographic shift to a year-round older population, which supports national data that older people use larger volumes and different types of pharmaceuticals than the younger student population.
NASA Astrophysics Data System (ADS)
Gu, Hui-Wen; Zhang, Shan-Hui; Wu, Bai-Chun; Chen, Wu; Wang, Jing-Bo; Liu, Yang
2018-07-01
Oil-field wastewaters contain high level of polycyclic aromatic hydrocarbons (PAHs), which have to be analyzed to assess the environmental effects before discharge. In this work, a green fluorimetric detection method that combines excitation-emission matrix (EEM) fluorescence with parallel factor analysis (PARAFAC) algorithm was firstly developed to achieve the direct and simultaneous determination of six U.S. EPA PAHs in two different kinds of complex oil-field wastewaters. Due to the distinctive "second-order advantage", neither time-consuming sample pretreatments nor toxic organic reagents were involved in the determination. By using the environment-friendly "mathematical separation" of PARAFAC, satisfactory quantitative results and reasonable spectral profiles for six PAHs were successfully extracted from the total EEM signals of oil-field wastewaters without need of chromatographic separation. The limits of detection of six PAHs were in the range of 0.09-0.72 ng mL-1, and the average spiked recoveries were between (89.4 ± 4.8)% and (109.1 ± 5.8)%, with average relative predictive errors <2.93%. In order to further confirm the accuracy of the proposed method, the same batch oil-field wastewater samples were analyzed by the recognized GC-MS method. t-test demonstrated that no significant differences exist between the quantitative results of the two methods. Given the advantages of green, fast, low-cost and high-sensitivity, the proposed method is expected to be broadened as an appealing alternative method for multi-residue analysis of overlapped PAHs in complex wastewater samples.
Fonseca-Salazar, María Alejandra; Díaz-Ávalos, Carlos; Castañón-Martínez, María Teresa; Tapia-Palacios, Marco Antonio; Mazari-Hiriart, Marisa
2016-12-01
In Latin America and the Caribbean, with a population of approximately 580 million inhabitants, less than 20 % of wastewater is treated. Megacities in this region face common challenges and problems related with water quality and sanitation, which require urgent actions, such as changes in the sustainable use of water resources. The Mexico City Metropolitan Area is one of the most populous urban agglomerations in the world, with over 20 million inhabitants, and is no exception to the challenges of sustainable water management. For more than 100 years, wastewater from Mexico City has been transported north to the Mezquital Valley, which is ranked as the largest wastewater-irrigated area in the world. In this study, bacteria and pathogenic protozoa were analyzed to determine the association between the presence of such microorganisms and water types (WTs) across sampling sites and seasons in Mexico City and the Mezquital Valley. Our results show a difference in microbiological water quality between sampling sites and WTs. There is no significant interaction between sampling sites and seasons in terms of bacterial concentration, demonstrating that water quality remains constant at each site regardless of whether it is the dry or the rainy season. The results illustrate the quantity of these microorganisms in wastewater, provide a current diagnosis of water quality across the area which could affect the health of residents in both Mexico City and the Mezquital Valley, and demonstrate the need to transition in the short term to treat wastewater from a local to a regional scale.
Wang, Xu; Li, Meiyan; Liu, Junxin; Qu, Jiuhui
2016-07-01
Millions of tons of waste activated sludge (WAS) produced from biological wastewater treatment processes cause severe adverse environmental consequences. A better understanding of WAS composition is thus very critical for sustainable sludge management. In this work, the occurrence and distribution of several fundamental sludge constituents were explored in WAS samples from nine full-scale wastewater treatment plants (WWTPs) of Beijing, China. Among all the components investigated, active heterotrophic biomass was dominant in the samples (up to 9478mg/L), followed by endogenous residues (6736mg/L), extracellular polymeric substances (2088mg/L), and intracellular storage products (464mg/L) among others. Moreover, significant differences (p<0.05) were observed in composition profiles of sludge samples among the studied WWTPs. To identify the potential parameters affecting the variable fractions of sludge components, wastewater source as well as design and operational parameters of WWTPs were studied using statistical methods. The findings indicated that the component fraction of sewage sludge depends more on wastewater treatment alternatives than on wastewater characteristics among other parameters. A principal component analysis was conducted, which further indicated that there was a greater proportion of residual inert biomass in the sludge produced by the combined system of the conventional anaerobic/anoxic/oxic process and a membrane bioreactor. Additionally, a much longer solids retention time was also found to influence the sludge composition and induce an increase in both endogenous inert residues and extracellular polymeric substances in the sludge. Copyright © 2016. Published by Elsevier B.V.
Yu, Huibin; Song, Yonghui; Liu, Ruixia; Pan, Hongwei; Xiang, Liancheng; Qian, Feng
2014-10-01
The stabilization of latent tracers of dissolved organic matter (DOM) of wastewater was analyzed by three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy coupled with self-organizing map and classification and regression tree analysis (CART) in wastewater treatment performance. DOM of water samples collected from primary sedimentation, anaerobic, anoxic, oxic and secondary sedimentation tanks in a large-scale wastewater treatment plant contained four fluorescence components: tryptophan-like (C1), tyrosine-like (C2), microbial humic-like (C3) and fulvic-like (C4) materials extracted by self-organizing map. These components showed good positive linear correlations with dissolved organic carbon of DOM. C1 and C2 were representative components in the wastewater, and they were removed to a higher extent than those of C3 and C4 in the treatment process. C2 was a latent parameter determined by CART to differentiate water samples of oxic and secondary sedimentation tanks from the successive treatment units, indirectly proving that most of tyrosine-like material was degraded by anaerobic microorganisms. C1 was an accurate parameter to comprehensively separate the samples of the five treatment units from each other, indirectly indicating that tryptophan-like material was decomposed by anaerobic and aerobic bacteria. EEM fluorescence spectroscopy in combination with self-organizing map and CART analysis can be a nondestructive effective method for characterizing structural component of DOM fractions and monitoring organic matter removal in wastewater treatment process. Copyright © 2014 Elsevier Ltd. All rights reserved.
Baker, David R; Kasprzyk-Hordern, Barbara
2011-11-04
Presented is the first comprehensive study of drugs of abuse on suspended particulate matter (SPM) in wastewater. Analysis of SPM is crucial to prevent the under-reporting of the levels of analyte that may be present in wastewater. Analytical methods to date analyse the aqueous part of wastewater samples only, removing SPM through the use of filtration or centrifugation. The development of an analytical method to determine 60 compounds on SPM using a combination of pressurised liquid extraction, solid phase extraction and liquid chromatography coupled with tandem mass spectrometry (PLE-SPE-LC-MS/MS) is reported. The range of compounds monitored included stimulants, opioid and morphine derivatives, benzodiazepines, antidepressants, dissociative anaesthetics, drug precursors, and their metabolites. The method was successfully validated (parameters studied: linearity and range, recovery, accuracy, reproducibility, repeatability, matrix effects, and limits of detection and quantification). The developed methodology was applied to SPM samples collected at three wastewater treatment plants in the UK. The average proportion of analyte on SPM as opposed to in the aqueous phase was <5% for several compounds including cocaine, benzoylecgonine, MDMA, and ketamine; whereas the proportion was >10% with regard to methadone, EDDP, EMDP, BZP, fentanyl, nortramadol, norpropoxyphene, sildenafil and all antidepressants (dosulepin, amitriptyline, nortriptyline, fluoxetine and norfluoxetine). Consequently, the lack of SPM analysis in wastewater sampling protocol could lead to the under-reporting of the measured concentration of some compounds. Copyright © 2011 Elsevier B.V. All rights reserved.
Kwon, Hye-Ok; Kim, Hee-Young; Park, Yu-Mi; Seok, Kwang-Seol; Oh, Jeong-Eun; Choi, Sung-Deuk
2017-01-01
A nationwide emission estimate of perfluoroalkyl substances (PFASs) from wastewater treatment plants (WWTPs) is required to understand the source-receptor relationship of PFASs and to manage major types of WWTPs. In this study, the concentrations of 13 PFASs (8 perfluorocarboxylic acids, 3 perfluoroalkane sulfonates, and 2 intermediates) in wastewater and sludge from 81 WWTPs in South Korea were collected. The emission pathways of PFASs were redefined, and then the national emission of PFASs from WWTPs was rigorously updated. In addition to the direct calculations, Monte Carlo simulations were also used to calculate the likely range of PFAS emissions. The total (Σ 13 PFAS) emission (wastewater + sludge) calculated from the direct calculation with mean concentrations was 4.03 ton/y. The emissions of perfluorooctanoic acid (PFOA, 1.19 ton/y) and perfluorooctane sulfonate (PFOS, 1.01 ton/y) were dominant. The Monte Carlo simulations suggested that the realistic national emission of Σ 13 PFASs is between 2 ton/y and 20 ton/y. Combined WWTPs treating municipal wastewater from residential and commercial areas were identified as a major emission source, contributing 65% to the total PFAS emissions. The Han and Nakdong Rivers were the primary contaminated rivers, receiving 89% of the total PFAS discharge from WWTPs. The results and methodologies in this study can be useful to establish a management policy for PFASs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hao, Zisu; Malyala, Divya; Dean, Lisa; Ducoste, Joel
2017-04-01
Long Chain Free Fatty Acids (LCFFAs) from the hydrolysis of fat, oil and grease (FOG) are major components in the formation of insoluble saponified solids known as FOG deposits that accumulate in sewer pipes and lead to sanitary sewer overflows (SSOs). A Double Wavenumber Extrapolative Technique (DWET) was developed to simultaneously measure LCFFAs and FOG concentrations in oily wastewater suspensions. This method is based on the analysis of the Attenuated Total Reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) spectrum, in which the absorbance of carboxyl bond (1710cm -1 ) and triglyceride bond (1745cm -1 ) were selected as the characteristic wavenumbers for total LCFFAs and FOG, respectively. A series of experiments using pure organic samples (Oleic acid/Palmitic acid in Canola oil) were performed that showed a linear relationship between the absorption at these two wavenumbers and the total LCFFA. In addition, the DWET method was validated using GC analyses, which displayed a high degree of agreement between the two methods for simulated oily wastewater suspensions (1-35% Oleic acid in Canola oil/Peanut oil). The average determination error of the DWET approach was ~5% when the LCFFA fraction was above 10wt%, indicating that the DWET could be applied as an experimental method for the determination of both LCFFAs and FOG concentrations in oily wastewater suspensions. Potential applications of this DWET approach includes: (1) monitoring the LCFFAs and FOG concentrations in grease interceptor (GI) effluents for regulatory compliance; (2) evaluating alternative LCFFAs/FOG removal technologies; and (3) quantifying potential FOG deposit high accumulation zones in the sewer collection system. Published by Elsevier B.V.
Modeling marine oily wastewater treatment by a probabilistic agent-based approach.
Jing, Liang; Chen, Bing; Zhang, Baiyu; Ye, Xudong
2018-02-01
This study developed a novel probabilistic agent-based approach for modeling of marine oily wastewater treatment processes. It begins first by constructing a probability-based agent simulation model, followed by a global sensitivity analysis and a genetic algorithm-based calibration. The proposed modeling approach was tested through a case study of the removal of naphthalene from marine oily wastewater using UV irradiation. The removal of naphthalene was described by an agent-based simulation model using 8 types of agents and 11 reactions. Each reaction was governed by a probability parameter to determine its occurrence. The modeling results showed that the root mean square errors between modeled and observed removal rates were 8.73 and 11.03% for calibration and validation runs, respectively. Reaction competition was analyzed by comparing agent-based reaction probabilities, while agents' heterogeneity was visualized by plotting their real-time spatial distribution, showing a strong potential for reactor design and process optimization. Copyright © 2017 Elsevier Ltd. All rights reserved.
Optimal Wastewater Loading under Conflicting Goals and Technology Limitations in a Riverine System.
Rafiee, Mojtaba; Lyon, Steve W; Zahraie, Banafsheh; Destouni, Georgia; Jaafarzadeh, Nemat
2017-03-01
This paper investigates a novel simulation-optimization (S-O) framework for identifying optimal treatment levels and treatment processes for multiple wastewater dischargers to rivers. A commonly used water quality simulation model, Qual2K, was linked to a Genetic Algorithm optimization model for exploration of relevant fuzzy objective-function formulations for addressing imprecision and conflicting goals of pollution control agencies and various dischargers. Results showed a dynamic flow dependence of optimal wastewater loading with good convergence to near global optimum. Explicit considerations of real-world technological limitations, which were developed here in a new S-O framework, led to better compromise solutions between conflicting goals than those identified within traditional S-O frameworks. The newly developed framework, in addition to being more technologically realistic, is also less complicated and converges on solutions more rapidly than traditional frameworks. This technique marks a significant step forward for development of holistic, riverscape-based approaches that balance the conflicting needs of the stakeholders.
Anderson, James E; Lofton, Tiffany V; Kim, Byung R; Mueller, Sherry A
2009-04-01
Membrane bioreactors (MBRs) have been installed at automotive plants to treat metalworking fluid (MWF) wastewaters, which are known to contain toxic and/or recalcitrant organic compounds. A laboratory study was conducted to evaluate treatment of a simulated wastewater prepared from a semisynthetic MWF, which contains two such compounds, dicyclohexylamine (DCHA) and ethylenediaminetetraacetic acid (EDTA). Primary findings were as follows: During stable operating periods, almost all chemical oxygen demand (COD), total Kjeldahl nitrogen (TKN), and EDTA were removed (by > 96%). During somewhat unstable periods, COD removal was still extremely robust, but removal of EDTA and TKN were sensitive to prolonged episodes of low dissolved oxygen. Nitrogen mass balance suggested 30 to 40% TKN removal by assimilation and 60 to 70% by nitrification (including up to 34% TKN removal via subsequent denitrification). Dicyclohexylamine appeared to be readily biodegraded. Maximum DCHA and EDTA degradation rates between pH 7 and 8 were found. An Arthrobacter sp. capable of growth on DCHA as the sole source of carbon and energy was isolated.
High-throughput determination of biochemical oxygen demand (BOD) by a microplate-based biosensor.
Pang, Hei-Leung; Kwok, Nga-Yan; Chan, Pak-Ho; Yeung, Chi-Hung; Lo, Waihung; Wong, Kwok-Yin
2007-06-01
The use of the conventional 5-day biochemical oxygen demand (BOD5) method in BOD determination is greatly hampered by its time-consuming sampling procedure and its technical difficulty in the handling of a large pool of wastewater samples. Thus, it is highly desirable to develop a fast and high-throughput biosensor for BOD measurements. This paper describes the construction of a microplate-based biosensor consisting of an organically modified silica (ORMOSIL) oxygen sensing film for high-throughput determination of BOD in wastewater. The ORMOSIL oxygen sensing film was prepared by reacting tetramethoxysilane with dimethyldimethoxysilane in the presence of the oxygen-sensitive dye tris(4,7-diphenyl-1,10-phenanthroline)ruthenium-(II) chloride. The silica composite formed a homogeneous, crack-free oxygen sensing film on polystyrene microtiter plates with high stability, and the embedded ruthenium dye interacted with the dissolved oxygen in wastewater according to the Stern-Volmer relation. The bacterium Stenotrophomonas maltophilia was loaded into the ORMOSIL/ PVA composite (deposited on the top of the oxygen sensing film) and used to metabolize the organic compounds in wastewater. This BOD biosensor was found to be able to determine the BOD values of wastewater samples within 20 min by monitoring the dissolved oxygen concentrations. Moreover, the BOD values determined by the BOD biosensor were in good agreement with those obtained by the conventional BOD5 method.
Municipal wastewater spiramycin removal by conventional treatments and heterogeneous photocatalysis.
Lofrano, G; Libralato, G; Casaburi, A; Siciliano, A; Iannece, P; Guida, M; Pucci, L; Dentice, E F; Carotenuto, M
2018-05-15
This study assessed the effects and removal options of the macrolide spiramycin, currently used for both in human and veterinary medicine- with a special focus on advanced oxidation processes based on heterogeneous TiO 2 _ assisted photocatalysis. Spiramycin real concentrations were investigated on a seasonal basis in a municipal wastewater treatment plant (up to 35μgL -1 ), while its removal kinetics were studied considering both aqueous solutions and real wastewater samples, including by-products toxicity assessment. High variability of spiramycin removal by activated sludge treatments (from 9% (wintertime) to >99.9% (summertime)) was observed on a seasonal basis. Preliminary results showed that a total spiramycin removal (>99.9%) is achieved with 0.1gL -1 of TiO 2 in aqueous solution after 80min. Integrated toxicity showed residual slight acute effects in the photocatalytic treated solutions, independently from the amount of TiO 2 used, and could be linked to the presence of intermediate compounds. Photolysis of wastewater samples collected after activated sludge treatment during summer season (SPY 5μgL -1 ) allowed a full SPY removal after 80min. When photocatalysis with 0.1gL -1 of TiO 2 was carried out in wastewater samples collected in winter season (SPY 30μgL -1 ) after AS treatment, SPY removal was up to 91% after 80min. Copyright © 2017 Elsevier B.V. All rights reserved.
Ferguson, Donna M.; Griffith, John F.; McGee, Charles D.; Weisberg, Stephen B.; Hagedorn, Charles
2013-01-01
EPA Method 1600 and Enterolert are used interchangeably to measure Enterococcus for fecal contamination of public beaches, but the methods occasionally produce different results. Here we assess whether these differences are attributable to the selectivity for certain species within the Enterococcus group. Both methods were used to obtain 1279 isolates from 17 environmental samples, including influent and effluent of four wastewater treatment plants, ambient marine water from seven different beaches, and freshwater urban runoff from two stream systems. The isolates were identified to species level. Detection of non-Enterococcus species was slightly higher using Enterolert (8.4%) than for EPA Method 1600 (5.1%). E. faecalis and E. faecium, commonly associated with human fecal waste, were predominant in wastewater; however, Enterolert had greater selectivity for E. faecalis, which was also shown using a laboratory-created sample. The same species selectivity was not observed for most beach water and urban runoff samples. These samples had relatively higher proportions of plant associated species, E. casseliflavus (18.5%) and E. mundtii (5.7%), compared to wastewater, suggesting environmental inputs to beaches and runoff. The potential for species selectivity among water testing methods should be considered when assessing the sanitary quality of beaches so that public health warnings are based on indicators representative of fecal sources. PMID:23840233
Lares, Mirka; Ncibi, Mohamed Chaker; Sillanpää, Markus; Sillanpää, Mika
2018-04-15
Wastewater treatment plants (WWTPs) are acting as routes of microplastics (MPs) to the environment, hence the urgent need to examine MPs in wastewaters and different types of sludge through sampling campaigns covering extended periods of time. In this study, the efficiency of a municipal WWTP to remove MPs from wastewater was studied by collecting wastewater and sludge samples once in every two weeks during a 3-month sampling campaign. The WWTP was operated based on the conventional activated sludge (CAS) process and a pilot-scale membrane bioreactor (MBR). The microplastic particles and fibers from both water and sludge samples were identified by using an optical microscope, Fourier Transform Infrared (FTIR) microscope and Raman microscope. Overall, the retention capacity of microplastics in the studied WWTP was found to be 98.3%. Most of the MP fraction was removed before the activated sludge process. The efficiency of an advanced membrane bioreactor (MBR) technology was also examined. The main related finding is that MBR permeate contained 0.4 MP/L in comparison with the final effluent of the CAS process (1.0 MP/L). According to this study, both microplastic fibers and particles are discharged from the WWTP to the aquatic environment. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mogolodi Dimpe, K.; Mpupa, Anele; Nomngongo, Philiswa N.
2018-01-01
This work was chiefly encouraged by the continuous consumption of antibiotics which eventually pose harmful effects on animals and human beings when present in water systems. In this study, the activated carbon (AC) was used as a solid phase material for the removal of sulfamethoxazole (SMX) in wastewater samples. The microwave assisted solid phase extraction (MASPE) as a sample extraction method was employed to better extract SMX in water samples and finally the analysis of SMX was done by the UV-Vis spectrophotometer. The microwave assisted solid phase extraction method was optimized using a two-level fractional factorial design by evaluating parameters such as pH, mass of adsorbent (MA), extraction time (ET), eluent ratio (ER) and microwave power (MP). Under optimized conditions, the limit of detection (LOD) and limit of quantification (LOQ) were 0.5 μg L- 1 and 1.7 μg L- 1, respectively, and intraday and interday precision expressed in terms of relative standard deviation were > 6%.The maximum adsorption capacity was 138 mg g- 1 for SMX and the adsorbent could be reused eight times. Lastly, the MASPE method was applied for the removal of SMX in wastewater samples collected from a domestic wastewater treatment plant (WWTP) and river water.
Contaminants of emerging concern in the lower Stillaguamish River Basin, Washington, 2008-11
Wagner, Richard J.; Moran, Patrick W.; Zaugg, Steven D.; Sevigny, Jennifer M.; Pope, Judy M.
2014-01-01
A series of discrete water-quality samples were collected in the lower Stillaguamish River Basin near the city of Arlington, Washington, through a partnership with the Stillaguamish Tribe of Indians. These samples included surface waters of the Stillaguamish River, adjacent tributary streams, and paired inflow and outflow sampling at three wastewater treatment plants in the lower river basin. Chemical analysis of these samples focused on chemicals of emerging concern, including wastewater compounds, human-health pharmaceuticals, steroidal hormones, and halogenated organic compounds on solids and sediment. This report presents the methods used and data results from the chemical analysis of these samples
Kocak, Emel
2015-01-01
The potential genotoxic activity associated with high strength real paracetamol (PCT) wastewater (COD = 40,000 mg/L, TOC = 12,000 mg/L, BOD5 = 19,320 mg/L) from a large-scale drug-producing plant in the Marmara Region, was investigated in pre- and post- treated wastewater by the Fenton process (COD = 2,920 mg/L, TOC = 880 mg/L; BOD5 = 870 mg/L). The SOS Chromotest, which is based on Escherichia coli PQ37 activities, was used for the assessment of genotoxicity. The corrected induction factors (CIF) values used as quantitative measurements of the genotoxic activity were obtained from a total of four different dilutions (100, 50, 6.25, and 0.078 % v/v.) for two samples, in triplicate, to detect potentially genotoxic activities with the SOS Chromotest. The results of the SOS Chromotest demonstrated CIFmax value of 1.24, indicating that the PCT effluent (non-treated) is genotoxic. The results of the SOS Chromotest showed an CIFmax value of 1.72, indicating that the wastewater treated by Fenton process is genotoxic. The findings of this study clearly reveal that the PCT wastewater (non-treated) samples have a potentially hazardous impact on the aquatic environment before treatment, and in the wastewater that was treated by the Fenton process, genotoxicity generally increased.
Assessing the convergence of LHS Monte Carlo simulations of wastewater treatment models.
Benedetti, Lorenzo; Claeys, Filip; Nopens, Ingmar; Vanrolleghem, Peter A
2011-01-01
Monte Carlo (MC) simulation appears to be the only currently adopted tool to estimate global sensitivities and uncertainties in wastewater treatment modelling. Such models are highly complex, dynamic and non-linear, requiring long computation times, especially in the scope of MC simulation, due to the large number of simulations usually required. However, no stopping rule to decide on the number of simulations required to achieve a given confidence in the MC simulation results has been adopted so far in the field. In this work, a pragmatic method is proposed to minimize the computation time by using a combination of several criteria. It makes no use of prior knowledge about the model, is very simple, intuitive and can be automated: all convenient features in engineering applications. A case study is used to show an application of the method, and the results indicate that the required number of simulations strongly depends on the model output(s) selected, and on the type and desired accuracy of the analysis conducted. Hence, no prior indication is available regarding the necessary number of MC simulations, but the proposed method is capable of dealing with these variations and stopping the calculations after convergence is reached.
Simulation for Supporting Scale-Up of a Fluidized Bed Reactor for Advanced Water Oxidation
Abdul Raman, Abdul Aziz; Daud, Wan Mohd Ashri Wan
2014-01-01
Simulation of fluidized bed reactor (FBR) was accomplished for treating wastewater using Fenton reaction, which is an advanced oxidation process (AOP). The simulation was performed to determine characteristics of FBR performance, concentration profile of the contaminants, and various prominent hydrodynamic properties (e.g., Reynolds number, velocity, and pressure) in the reactor. Simulation was implemented for 2.8 L working volume using hydrodynamic correlations, continuous equation, and simplified kinetic information for phenols degradation as a model. The simulation shows that, by using Fe3+ and Fe2+ mixtures as catalyst, TOC degradation up to 45% was achieved for contaminant range of 40–90 mg/L within 60 min. The concentration profiles and hydrodynamic characteristics were also generated. A subsequent scale-up study was also conducted using similitude method. The analysis shows that up to 10 L working volume, the models developed are applicable. The study proves that, using appropriate modeling and simulation, data can be predicted for designing and operating FBR for wastewater treatment. PMID:25309949
Phytotoxicity testing of winery wastewater for constructed wetland treatment.
Arienzo, Michele; Christen, Evan W; Quayle, Wendy C
2009-09-30
Rapid and inexpensive phytotoxicity bioassays for winery wastewater (WW) are important when designing winery wastewater treatment systems involving constructed wetlands. Three macrophyte wetland species (Phragmites australis, Schoenoplectus validus and Juncus ingens) were tested using a pot experiment simulating a wetland microcosm. The winery wastewater concentration was varied (0.5%, 5%, 10%, 25%, 50%, 75% and 100%) and pH was corrected for some concentrations using lime as an amendment. The tolerance of the three aquatic macrophytes species to winery wastewater was studied through biomass production, total chlorophyll and nitrogen, phosphorous and potassium tissue concentrations. The results showed that at greater than 25% wastewater concentration all the macrophytes died and that Phragmites was the least hardy species. At less than 25% wastewater concentration the wetland microcosms were effective in reducing chemical oxygen demand, phenols and total soluble solids. We also evaluated the performance of two laboratory phytotoxicity assays; (1) Garden Cress (Lepidium sativum), and (2) Onion (Allium coepa). The results of these tests revealed that the effluent was highly toxic with effective concentration, EC(50), inhibition values, as low as 0.25%. Liming the WW increased the EC(50) by 10 fold. Comparing the cress and onion bioassays with the wetland microcosm results indicated that the thresholds for toxicity were of the same order of magnitude. As such we suggest that the onion and cress bioassays could be effectively used in the wine industry for rapid wastewater toxicity assessment.
Banta-Green, Caleb J; Field, Jennifer A; Chiaia, Aurea C; Sudakin, Daniel L; Power, Laura; de Montigny, Luc
2009-11-01
To determine the utility of community-wide drug testing with wastewater samples as a population measure of community drug use and to test the hypothesis that the association with urbanicity would vary for three different stimulant drugs of abuse. Single-day samples were obtained from a convenience sample of 96 municipalities representing 65% of the population of the State of Oregon. Chemical analysis of 24-hour composite influent samples for benzoylecgonine (BZE, a cocaine metabolite), methamphetamine and 3,4-methylenedioxymethamphetamine (MDMA). The distribution of community index drug loads accounting for total wastewater flow (i.e. dilution) and population are reported. The distribution of wastewater-derived drug index loads was found to correspond with expected epidemiological drug patterns. Index loads of BZE were significantly higher in urban areas and below detection in many rural areas. Conversely, methamphetamine was present in all municipalities, with no significant differences in index loads by urbanicity. MDMA was at quantifiable levels in fewer than half the communities, with a significant trend towards higher index loads in more urban areas. CONCLUSION; This demonstration provides the first evidence of the utility of wastewater-derived community drug loads for spatial analyses. Such data have the potential to improve dramatically the measurement of the true level and distribution of a range of drugs. Drug index load data provide information for all people in a community and are potentially applicable to a much larger proportion of the total population than existing measures.
Modelling the effect of severe storms in coastal pollution
NASA Astrophysics Data System (ADS)
Grau, A.; Bolea, Y.; Guerra, E.
2009-09-01
Modelling and simulation of real events can be very useful to prevent environmental disasters, but these disasters can affect the health and life of human beings; then such tools become definitively necessary for governmental authorities to avoid population risk. In this wok we present a mathematical model that combines the effect of Mediterranean storms together with the effect of wastewater emissary dissolutions at the sea. The emissary model corresponds to a Catalan wastewater plant, the Besos plant in Barcelona. This plant throws the wastewater to the Mediterranean Sea with a 3-km pipe emissary, after a bacteriologically polluted secondary treatment. This polluted water is dissoluted in the salty water, provoking the death of all bacteria agents before they reach the coast. But in difficult conditions under violent storms, with strong East winds, the bacteriological polluted dissolution reaches the shore before the bacteria die and, therefore, a severe coastal pollution is produced. Its consequence can incur in a public health problem and the different governmental agencies activate great alarms to avoid population hazard. Storms modelling permits to evaluate the risk of coastal pollution predicting the wastewater dissolution path and velocity. Several simulations are presented under different storm conditions, making this tool very useful for the environmental protection agencies in the Catalan government.
Interactions and Survival of Enteric Viruses in Soil Materials
Sobsey, Mark D.; Dean, Cheryl H.; Knuckles, Maurice E.; Wagner, Ray A.
1980-01-01
There were marked differences in the abilities of eight different soil materials to remove and retain viruses from settled sewage, but for each soil material the behavior of two different viruses, poliovirus type 1 and reovirus type 3, was often similar. Virus adsorption to soil materials was rapid, the majority occurring within 15 min. Clayey materials efficiently adsorbed both viruses from wastewater over a range of pH and total dissolved solids levels. Sands and organic soil materials were comparatively poor adsorbents, but in some cases their ability to adsorb viruses increased at low pH and with the addition of total dissolved solids or divalent cations. Viruses in suspensions of soil material in settled sewage survived for considerable time periods, despite microbial activity. In some cases virus survival was prolonged in suspensions of soil materials compared to soil-free controls. Although sandy and organic soil materials were poor virus adsorbents when suspended in wastewater, they gave ≥95% virus removal from intermittently applied wastewater as unsaturated, 10-cm-deep columns. However, considerable quantities of the retained viruses were washed from the columns by simulated rainfall. Under the same conditions, clayey soil material removed ≥99.9995% of the viruses from applied wastewater, and none were washed from the columns by simulated rainfall. PMID:6250478
A consistent modelling methodology for secondary settling tanks in wastewater treatment.
Bürger, Raimund; Diehl, Stefan; Nopens, Ingmar
2011-03-01
The aim of this contribution is partly to build consensus on a consistent modelling methodology (CMM) of complex real processes in wastewater treatment by combining classical concepts with results from applied mathematics, and partly to apply it to the clarification-thickening process in the secondary settling tank. In the CMM, the real process should be approximated by a mathematical model (process model; ordinary or partial differential equation (ODE or PDE)), which in turn is approximated by a simulation model (numerical method) implemented on a computer. These steps have often not been carried out in a correct way. The secondary settling tank was chosen as a case since this is one of the most complex processes in a wastewater treatment plant and simulation models developed decades ago have no guarantee of satisfying fundamental mathematical and physical properties. Nevertheless, such methods are still used in commercial tools to date. This particularly becomes of interest as the state-of-the-art practice is moving towards plant-wide modelling. Then all submodels interact and errors propagate through the model and severely hamper any calibration effort and, hence, the predictive purpose of the model. The CMM is described by applying it first to a simple conversion process in the biological reactor yielding an ODE solver, and then to the solid-liquid separation in the secondary settling tank, yielding a PDE solver. Time has come to incorporate established mathematical techniques into environmental engineering, and wastewater treatment modelling in particular, and to use proven reliable and consistent simulation models. Copyright © 2011 Elsevier Ltd. All rights reserved.
Lorah, Michelle M.; Soeder, Daniel J.; Teunis, Jessica A.
2010-01-01
The U.S. Geological Survey, in cooperation with the government of Charles County, Maryland, and the Port Tobacco River Conservancy, Inc., conducted a water-quality reconnaissance and sampling investigation of the Port Tobacco River and Nanjemoy Creek watersheds in Charles County during October 2007 and June-August 2008. Samples were collected and analyzed for major ions, nutrients, organic wastewater compounds, and other selected constituents from 17 surface-water sites and 11 well sites (5 of which were screened in streambed sediments to obtain porewater samples). Most of the surface-water sites were relatively widely spaced throughout the Port Tobacco River and Nanjemoy Creek watersheds, although the well sites and some associated surface-water sites were concentrated in one residential community along the Port Tobacco River that has domestic septic systems. Sampling for enterococci bacteria was conducted by the Port Tobacco River Conservancy, Inc., at each site to coordinate with the sampling for chemical constituents. The purpose of the coordinated sampling was to determine correlations between historically high, in-stream bacteria counts and human wastewater inputs. Chemical data for the groundwater, porewater, and surface-water samples are presented in this report.
Liu, Guoliang; Zhang, Fusheng; Qu, Yuanzhi; Liu, He; Zhao, Lun; Cui, Mingyue; Ou, Yangjian; Geng, Dongshi
2017-09-01
The suspended solids in wastewater from Rekabak oilfield, Kazakhstan, were characterized and treated with flocculants to enhance settling. The wastewater contained a high concentration of total dissolved solids and calcium ion. Scanning electron microscopy and energy dispersive X-ray analyses showed that suspended solids were mainly composed of corrosion products (iron oxides) and silicon dioxide particles. Also, much salt deposition from wastewater caused a large increase in the suspended solids value. The settling of solid particles in wastewater was investigated by turbidity decrease within 60 min. The particle settling was enhanced by adding polyaluminum chloride (PAC) as coagulant and hydrolyzed polyacryamide (HPAM) or cationic polyacrylamide (CPAM) as flocculant. At optimal dose, the particle settling ability with PAC and CPAM was better than that with PAC and HPAM. Particle size analysis showed that HPAM or CPAM with high molecular weight played an important role for enlarging the particle size. The experiments with simulated wastewater showed that particle settling by using HPAM deteriorated significantly compared to that by CPAM at high calcium ion. This study provides further understanding about the effect of high salinity and Ca 2+ on solids formation, flocculant performance and particle settling. Meanwhile, the results are also helpful to develop novel flocculants used for high salinity wastewater.
Huang, Xiaojia; Lin, Jianbin; Yuan, Dongxing; Hu, Rongzong
2009-04-17
In this study, a simple and rapid method was developed for the determination of seven steroid hormones in wastewater. Sample preparation and analysis were performed by stir bar sorptive extraction (SBSE) based on poly(vinylpyridine-ethylene dimethacrylate) monolithic material (SBSEM) combined with high-performance liquid chromatography with diode array detection. To achieve the optimum extraction performance, several main parameters, including extraction and desorption time, pH value and contents of inorganic salt in the sample matrix, were investigated. Under the optimized experimental conditions, the method showed good linearity and repeatability, as well as advantages such as sensitivity, simplicity, low cost and high feasibility. The extraction performance of SBSEM to the target compounds also compared with commercial SBSE which used polydimethylsiloxane as coating. Finally, the proposed method was successfully applied to the determination of the target compounds in wastewater samples. The recoveries of spiked target compounds in real samples ranged from 48.2% to 110%.
Food-service establishment wastewater characterization.
Lesikar, B J; Garza, O A; Persyn, R A; Kenimer, A L; Anderson, M T
2006-08-01
Food-service establishments that use on-site wastewater treatment systems are experiencing pretreatment system and/or drain field hydraulic and/or organic overloading. This study included characterization of four wastewater parameters (five-day biochemical oxygen demand [BOD5]; total suspended solids [TSS]; food, oil, and grease [FOG]; and flow) from 28 restaurants located in Texas during June, July, and August 2002. The field sampling methodology included taking a grab sample from each restaurant for 6 consecutive days at approximately the same time each day, followed by a 2-week break, and then sampling again for another 6 consecutive days, for a total of 12 samples per restaurant and 336 total observations. The analysis indicates higher organic (BOD5) and hydraulic values for restaurants than those typically found in the literature. The design values for this study for BOD5, TSS, FOG, and flow were 1523, 664, and 197 mg/L, and 96 L/day-seat respectively, which captured over 80% of the data collected.
Hunt, Charles D.
2007-01-01
Water sampling and numerical modeling were used to estimate ground-water nutrient fluxes in the Kihei area of Maui, where growth of macroalgae (seaweed) on coral reefs raises ecologic concerns and accumulation on beaches has caused odor and removal problems. Fluxes and model results are highly approximate, first-order estimates because very few wells were sampled and there are few field data to constrain model calibration. Ground-water recharge was estimated to be 22.6 Mgal/d (million gallons per day) within a 73-square-mile area having a coastline length of 8 miles or 13 km (kilometers). Nearly all of the recharge discharges at the coast because ground-water withdrawals are small. Another 3.0 Mgal/d of tertiary-treated wastewater effluent is injected into the regional aquifer at a County treatment plant midway along the coast and about a mile from shore. The injection plume is 0.93 miles wide (1.5 km) at the shore, as estimated from a three-dimensional numerical ground-water model. Wastewater injected beneath the brackish ground-water lens rises buoyantly and spreads out at the top of the lens, diverting and mixing with ambient ground water. Ground water discharging from the core of the injection plume is less than 5 years old and is about 60 percent effluent at the shore, according to the model. Dissolved nitrogen and phosphorus concentrations in treated effluent were 7.33 and 1.72 milligrams per liter, roughly 6 and 26 times background concentrations at an upgradient well. Background nitrogen and phosphorus fluxes carried by ground water are 7.7 and 0.44 kg/d-km (kilograms per day per kilometer of coast). Injected wastewater fluxes distributed across the plume width are 55 and 13 kg/d-km nitrogen and phosphorus, roughly 7 and 30 times background flux. However, not all of the injected load reaches coastal waters because nutrients are naturally attenuated in the oxygen-depleted effluent plume. Water from a downgradient well reflects this attenuation and provides a more conservative estimate of injection flux approaching the shore: 27 and 1.5 kg/d-km nitrogen and phosphorus, roughly one-half and one-ninth the injection-source estimates, and 3.5 and 3.4 times background flux. Effluent has 8 O and 2 H stable-isotope signatures that are distinct from local ground water, as well as 15 N and 11 B signatures diagnostic of domestic waste and laundry detergents, respectively. Pharmaceuticals and organic wastewater compounds also were present in effluent and the downgradient well. These isotopes and chemicals served as wastewater tracers in Kihei ground water and may be useful tracers in nearshore marine waters and aquifers elsewhere in Hawaii.
NASA Astrophysics Data System (ADS)
Miller, Shelly L.; Anderson, Melissa J.; Daly, Eileen P.; Milford, Jana B.
Four receptor-oriented source apportionment models were evaluated by applying them to simulated personal exposure data for select volatile organic compounds (VOCs) that were generated by Monte Carlo sampling from known source contributions and profiles. The exposure sources modeled are environmental tobacco smoke, paint emissions, cleaning and/or pesticide products, gasoline vapors, automobile exhaust, and wastewater treatment plant emissions. The receptor models analyzed are chemical mass balance, principal component analysis/absolute principal component scores, positive matrix factorization (PMF), and graphical ratio analysis for composition estimates/source apportionment by factors with explicit restriction, incorporated in the UNMIX model. All models identified only the major contributors to total exposure concentrations. PMF extracted factor profiles that most closely represented the major sources used to generate the simulated data. None of the models were able to distinguish between sources with similar chemical profiles. Sources that contributed <5% to the average total VOC exposure were not identified.
Cozzarelli, I M; Skalak, K J; Kent, D B; Engle, M A; Benthem, A; Mumford, A C; Haase, K; Farag, A; Harper, D; Nagel, S C; Iwanowicz, L R; Orem, W H; Akob, D M; Jaeschke, J B; Galloway, J; Kohler, M; Stoliker, D L; Jolly, G D
2017-02-01
Wastewaters from oil and gas development pose largely unknown risks to environmental resources. In January 2015, 11.4ML (million liters) of wastewater (300g/L TDS) from oil production in the Williston Basin was reported to have leaked from a pipeline, spilling into Blacktail Creek, North Dakota. Geochemical and biological samples were collected in February and June 2015 to identify geochemical signatures of spilled wastewaters as well as biological responses along a 44-km river reach. February water samples had elevated chloride (1030mg/L) and bromide (7.8mg/L) downstream from the spill, compared to upstream levels (11mg/L and <0.4mg/L, respectively). Lithium (0.25mg/L), boron (1.75mg/L) and strontium (7.1mg/L) were present downstream at 5-10 times upstream concentrations. Light hydrocarbon measurements indicated a persistent thermogenic source of methane in the stream. Semi-volatile hydrocarbons indicative of oil were not detected in filtered samples but low levels, including tetramethylbenzenes and di-methylnaphthalenes, were detected in unfiltered water samples downstream from the spill. Labile sediment-bound barium and strontium concentrations (June 2015) were higher downstream from the Spill Site. Radium activities in sediment downstream from the Spill Site were up to 15 times the upstream activities and, combined with Sr isotope ratios, suggest contributions from the pipeline fluid and support the conclusion that elevated concentrations in Blacktail Creek water are from the leaking pipeline. Results from June 2015 demonstrate the persistence of wastewater effects in Blacktail Creek several months after remediation efforts started. Aquatic health effects were observed in June 2015; fish bioassays showed only 2.5% survival at 7.1km downstream from the spill compared to 89% at the upstream reference site. Additional potential biological impacts were indicated by estrogenic inhibition in downstream waters. Our findings demonstrate that environmental signatures from wastewater spills are persistent and create the potential for long-term environmental health effects. Published by Elsevier B.V.
Petrie, Bruce; Proctor, Kathryn; Youdan, Jane; Barden, Ruth; Kasprzyk-Hordern, Barbara
2017-02-01
It is essential to monitor the release of organic micropollutants from wastewater treatment plants (WWTPs) for developing environmental risk assessment and assessing compliance with legislative regulation. In this study the impact of sampling strategy on the quantitative determination of micropollutants in effluent wastewater was investigated. An extended list of 90 chiral and achiral micropollutants representing a broad range of biological and physico-chemical properties were studied simultaneously for the first time. During composite sample collection micropollutants can degrade resulting in the under-estimation of concentration. Cooling collected sub-samples to 4°C stabilised ≥81 of 90 micropollutants to acceptable levels (±20% of the initial concentration) in the studied effluents. However, achieving stability for all micropollutants will require an integrated approach to sample collection (i.e., multi-bottle sampling with more than one stabilisation method applied). Full-scale monitoring of effluent revealed time-paced composites attained similar information to volume-paced composites (influent wastewater requires a sampling mode responsive to flow variation). The option of monitoring effluent using time-paced composite samplers is advantageous as not all WWTPs have flow controlled samplers or suitable sites for deploying portable flow meters. There has been little research to date on the impact of monitoring strategy on the determination of chiral micropollutants at the enantiomeric level. Variability in wastewater flow results in a dynamic hydraulic retention time within the WWTP (and upstream sewerage system). Despite chiral micropollutants being susceptible to stereo-selective degradation, no diurnal variability in their enantiomeric distribution was observed. However, unused medication can be directly disposed into the sewer network creating short-term (e.g., daily) changes to their enantiomeric distribution. As enantio-specific toxicity is observed in the environment, similar resolution of enantio-selective analysis to more routinely applied achiral methods is needed throughout the monitoring period for accurate risk assessment. Copyright © 2016 British Geological Survey, NERC. Published by Elsevier B.V. All rights reserved.
Fuhrimann, Samuel; Winkler, Mirko S; Schneeberger, Pierre H H; Niwagaba, Charles B; Buwule, Joseph; Babu, Mohammed; Medlicott, Kate; Utzinger, Jürg; Cissé, Guéladio
2014-11-01
Reuse of wastewater in agriculture is a common feature in the developing world. While this strategy might contribute to the livelihood of farming communities, there are health risks associated with the management and reuse of wastewater and faecal sludge. We visualise here an assessment of health risks along the major wastewater channel in Kampala, Uganda. The visualization brings to bear the context of wastewater reuse activities in the Nakivubo wetlands and emphasises interconnections to disease transmission pathways. The contextual features are complemented with findings from environmental sampling and a cross-sectional epidemiological survey in selected exposure groups. Our documentation can serve as a case study for a step-by-step implementation of risk assessment and management as described in the World Health Organization's 2006 guidelines for the safe use of wastewater, greywater and excreta in light of the forthcoming sanitation safety planning approach.
NASA Astrophysics Data System (ADS)
Dors, Gisanara; Mendes, Adriano A.; Pereira, Ernandes B.; de Castro, Heizir F.; Furigo, Agenor
2013-03-01
Simultaneous enzymatic hydrolysis and anaerobic biodegradation of lipid-rich wastewater from poultry industry with porcine pancreatic lipase at different concentrations (from 1.0 to 3.0 g L-1) were performed. The efficiency of the enzymatic pretreatment was measured by the Chemical Oxygen Demand (COD) removal and formation of methane. All samples pretreated with lipase showed a positive effect on the COD removal and formation of methane. After 30 days of anaerobic biodegradation the methane production varied from 569 ± 95 to 1,101 ± 10 mL for crude wastewater and pretreated at 3.0 g L-1 enzyme, respectively. COD removal of wastewater supplemented at different enzyme concentrations was found to be threefold higher than crude wastewater. The use of lipases seems to be a promising alternative for treating lipid-rich wastewaters such as those from the poultry industry.
Mayer, R. E.; Vierheilig, J.; Egle, L.; Reischer, G. H.; Saracevic, E.; Mach, R. L.; Kirschner, A. K. T.; Zessner, M.; Farnleitner, A. H.
2015-01-01
Because of high diurnal water quality fluctuations in raw municipal wastewater, the use of proportional autosampling over a period of 24 h at municipal wastewater treatment plants (WWTPs) to evaluate carbon, nitrogen, and phosphorus removal has become a standard in many countries. Microbial removal or load estimation at municipal WWTPs, however, is still based on manually recovered grab samples. The goal of this study was to establish basic knowledge regarding the persistence of standard bacterial fecal indicators and Bacteroidetes genetic microbial source tracking markers in municipal wastewater in order to evaluate their suitability for automated sampling, as the potential lack of persistence is the main argument against such procedures. Raw and secondary treated wastewater of municipal origin from representative and well-characterized biological WWTPs without disinfection (organic carbon and nutrient removal) was investigated in microcosm experiments at 5 and 21°C with a total storage time of 32 h (including a 24-h autosampling component and an 8-h postsampling phase). Vegetative Escherichia coli and enterococci, as well as Clostridium perfringens spores, were selected as indicators for cultivation-based standard enumeration. Molecular analysis focused on total (AllBac) and human-associated genetic Bacteroidetes (BacHum-UCD, HF183 TaqMan) markers by using quantitative PCR, as well as 16S rRNA gene-based next-generation sequencing. The microbial parameters showed high persistence in both raw and treated wastewater at 5°C under the storage conditions used. Surprisingly, and in contrast to results obtained with treated wastewater, persistence of the microbial markers in raw wastewater was also high at 21°C. On the basis of our results, 24-h autosampling procedures with 5°C storage conditions can be recommended for the investigation of fecal indicators or Bacteroidetes genetic markers at municipal WWTPs. Such autosampling procedures will contribute to better understanding and monitoring of municipal WWTPs as sources of fecal pollution in water resources. PMID:26002900
Kosma, Christina I; Lambropoulou, Dimitra A; Albanis, Triantafyllos A
2014-01-01
In the present work, an extensive study on the presence of eighteen pharmaceuticals and personal care products (PPCPs) in eight wastewater treatment plants (WWTPs) of Greece has been conducted. The study covered four sampling periods over 1-year, where samples (influents; effluents) from eight WWTPs of various cities in Greece were taken. All WWTPs investigated are equipped with conventional activated sludge treatment. A common pre-concentration step based on SPE was applied, followed by LC-UV/Vis-ESI-MS. Further confirmation of positive findings was accomplished by using LC coupled to a high resolution Orbitrap mass spectrometer. The results showed the occurrence of all target compounds in the wastewater samples with concentrations up to 96.65 μg/L. Paracetamol, caffeine, trimethoprim, sulfamethoxazole, carbamazepine, diclofenac and salicylic acid were the dominant compounds, while tolfenamic acid, fenofibrate and simvastatin were the less frequently detected compounds with concentrations in effluents below the LOQ. The removal efficiencies showed that many WWTPs were unable to effectively remove most of the PPCPs investigated. Finally, the study provides an assessment of the environmental risk posed by their presence in wastewaters by means of the risk quotient (RQ). RQs were more than unity for various compounds in the effluents expressing possible threat for the aquatic environment. Triclosan was found to be the most critical compound in terms of contribution and environmental risk, concluding that it should be seriously considered as a candidate for regulatory monitoring and prioritization on a European scale on the basis of realistic PNECs. The results of the extensive monitoring study contributed to a better insight on PPCPs in Greece and their presence in influent and effluent wastewaters. Furthermore, the unequivocal identification of two transformation products of trimethoprim in real wastewaters by using the advantages of the LTQ Orbitrap capabilities provides information that should be taken into consideration in future PPCP monitoring studies in wastewaters. © 2013.
Liu, Shan; Ying, Guang-Guo; Zhao, Jian-Liang; Chen, Feng; Yang, Bin; Zhou, Li-Jun; Lai, Hua-Jie
2011-03-11
A sensitive rapid resolution liquid chromatography-tandem mass spectrometry (RRLC-MS/MS) method, combined with solid-phase extraction, ultrasonic extraction and silica gel cartridge cleanup, was developed for 28 steroids including 4 estrogens (estrone (E1), 17β-estradiol (E2), 17α-ethynyl estradiol (EE2), diethylstilbestrol (DES)), 14 androgens (androsta-1,4-diene-3,17-dione (ADD), 17α-trenbolone, 17β-trenbolone, 4-androstene-3,17-dione, 19-nortestoserone, 17β-boldenone, 17α-boldenone, testosterone (T), epi-androsterone (EADR), methyltestosterone (MT), 4-hydroxy-androst-4-ene-17-dione (4-OHA), 5α-dihydrotestosterone (5α-DHT), androsterone (ADR), stanozolol (S)), 5 progestagens (progesterone (P), ethynyl testosterone (ET), 19-norethindrone, norgestrel, medroxyprogesterone (MP)), and 5 glucocorticoids (cortisol, cortisone, prednisone, prednisolone, dexamethasone) in surface water, wastewater and sludge samples. The recoveries of surface water, influents, effluents and sludge samples were 90.6-119.0% (except 5α-DHT was 143%), 44.0-200%, 60.7-123% and 62.6-138%, respectively. The method detection limits for the 28 analytes in surface water, influents, effluents and freeze-dried sludge samples were 0.01-0.24 ng/L, 0.02-1.44 ng/L, 0.01-0.49 ng/L and 0.08-2.06 ng/g, respectively. This method was applied in the determination of the residual steroidal hormones in two surface water of Danshui River, 12 wastewater and 8 sludge samples from two wastewater treatment plants (Meihu and Huiyang WWTPs) in Guangdong (China). Ten analytes were detected in surface water samples with concentrations ranging between 0.4 ng/L (17β-boldenone) and 55.3 ng/L (5α-DHT); twenty analytes in the wastewater samples with concentrations ranging between 0.3 ng/L (P) and 621 ng/L (5α-DHT); and 12 analytes in the sludge samples with concentrations ranging between 1.6 ng/g (E1) and 372 ng/g (EADR). Copyright © 2011 Elsevier B.V. All rights reserved.
CYTOTOXICITY AND MUTAGENESIS METHODS FOR EVALUATING TOXICITY REMOVAL FROM WASTEWATERS
This project was a feasibility study of the effectiveness of a mammalian cell cytotoxicity assay and a mammalian cell mutagenesis assay for monitoring the toxicity and mutagenicity of influent and effluent wastewater at treatment plants. In the cytotoxicity assay, ambient samples...
MULTISPECTRAL IDENTIFICATION AND CONFIRMATION OF ORGANIC COMPOUNDS IN WASTEWATER EXTRACTS
Application of multispectral identification techniques to samples from industrial and POTW wastewaters revealed identities of 63 compounds that had not been identified by empirical matching of mass spectra with spectral libraries. wenty-five of the compounds had not been found in...
WASTE TREATABILITY TESTS OF SPENT SOLVENT AND OTHER ORGANIC WASTEWATERS
Some commercial and industrial facilities treat RCRA spent solvent wastewaters by steam stripping, carbon adsorption, and/or biological processes. Thirteen facilities were visited by EPA's Office of Research and Development (ORD) from June 1985 to September 1986, to conduct sampl...
Le, Chencheng; Stuckey, David C
2016-05-01
Four laboratory preparations and three commercially available assay kits were tested on the same carbohydrate samples with the addition of 14 different interfering solutes typically found in wastewater treatment plants. This work shows that a wide variety of solutes can interfere with these assays. In addition, a comparative study on the use of these assays with different carbohydrate samples was also carried out, and the metachromatic response was clearly influenced by variation in sample composition. The carbohydrate content in the supernatant of a submerged anaerobic membrane bioreactor (SAMBR) was also measured using these assays, and the amount in the different supernatant samples, with and without a standard addition of glucose to the samples, showed substantial differences. We concluded that the carbohydrates present in wastewater measured using these colorimetric methods could be seriously under- or over-estimated. A new analytical method needs to be developed in order to better understand the biological transformations occurring in anaerobic digestion that leads to the production of soluble microbial products (SMPs) and extracellular polymeric substance (EPS). Copyright © 2016 Elsevier Ltd. All rights reserved.
Chen, Hua-xing; Tang, Hong-ming; Duan, Ming; Liu, Yi-gang; Liu, Min; Zhao, Feng
2015-01-01
In this study, the effects of gravitational settling time, temperature, speed and time of centrifugation, flocculant type and dosage, bubble size and gas amount were investigated. The results show that the simple increase in settling time and temperature is of no use for oil-water separation of the three wastewater samples. As far as oil-water separation efficiency is concerned, increasing centrifugal speed and centrifugal time is highly effective for L sample, and has a certain effect on J sample, but is not valid for S sample. The flocculants are highly effective for S and L samples, and the oil-water separation efficiency increases with an increase in the concentration of inorganic cationic flocculants. There exist critical reagent concentrations for the organic cationic and the nonionic flocculants, wherein a higher or lower concentration of flocculant would cause a decrease in the treatment efficiency. Flotation is an effective approach for oil-water separation of polymer-contained wastewater from the three oilfields. The oil-water separation efficiency can be enhanced by increasing floatation agent concentration, flotation time and gas amount, and by decreasing bubble size.
NASA Astrophysics Data System (ADS)
Parsapour, Melika
Hydrothermal carbonization (HTC) is a chemical approach that can be defined as a combined dehydration and decarboxylation process in a wet state. Briefly, this process is performed by applying elevated temperature (between 180-250°C) and pressure (around 2MPa) to convert biomass from aqueous suspension (e.g. sludge, wastewater, natural products, among other) into three different phases and materials products, including biocoal. Further, during the wet conversion process the high residue content is transformed into nanoparticles that could present well-defined or heterogeneous nanostructure. Although HTC was known for years, it has been focused only recently due to exclusive products properties and cost-effective production. In fact, HTC has been used for sludge and wastewater treatment plants in some developed countries such as Germany. Nowadays, many scientific groups still investigate solid products (e.g. biocoal) from HTC. These studies are related to physico-chemical and biological characterization of HTC's generated materials, as well as their potential uses. However, aqueous products from HTC, which are rich in hydrocarbons derivatives and nanoparticles (NPs), are rarely studied. Thereby, our objective is to study the wastewater generated from HTC applied to samples of either glycerin or sugar. Furthermore, we propose a novel treatment strategy to remove the NPs from the wastewater. In this regard, we have used Superparamagnetic Iron Oxide (SPIONs) due to their unique physico-chemical properties (magnetic properties, adsorption capacity, biocompatibility and eco-friendly degradation) for decontamination of water and wastewater. In this regard, we synthesized two different nanocomposites based on SPIONs to carry out the magnetic removal of existent NPs in the wastewater. For the first case, we synthesized polyethylene-glycol (PEG) coated SPIONS (SPIONs PEG). The second one was a new nanocomposite (SPIONs/GO) obtained from in situ growth of SPIONS over purified graphene oxide (GO), which was afterwards coated with PEG (20000Da), resulting in SPIONs/GO PEG. As GO has various functional groups that have a high valence for absorption of contaminants due to their oxygen content, we assume that SPIONs/GO PEG improves the efficiency of the decontamination process compared to SPIONs PEG alone. Initially, we have characterized the synthetized SPIONs. Fourier Transform Infrared spectroscopy (FT-IR) was used to identify the present functional groups in the SPIONs samples. Atomic Force Microscopy (AFM) and Transmission Electronic Microscopy (TEM) were used to determine the topography and diameter size via high resolution images with fine details of the nanocomposites. Finally Dynamic Light Scattering (DLS) was used to evaluate the size distribution of the SPIONs in distilled water. Also, all wastewater samples were characterized before and after treatment. FT-IR was used to determine the functional groups in initial samples. Ultraviolet-visible spectroscopy (UV-vis) was used to observe the UV absorption of the chemicals. DLS was used for size distribution and density measurement, and morphology investigation was done by AFM technique. The SPIONs which involved the GO due to the presence of oxidizes groups showed a better ordered crystalline structure and a narrower diameter distribution. The glycerin samples treated by SPIONs PEG and SPIONs/GO PEG demonstrated 43% and 38% reduction in contaminant respectively. As for the sugar samples, the reductions were of 33% and 60% respectively. Thus, the obtained results confirm the capability of the nanocomposites to remove the nano contaminant from wastewater samples reasonably. However, the decontamination power of the nanocomposites differs accordingly to the chemical structure of the initial biomass.
A probabilistic QMRA of Salmonella in direct agricultural reuse of treated municipal wastewater.
Amha, Yamrot M; Kumaraswamy, Rajkumari; Ahmad, Farrukh
2015-01-01
Developing reliable quantitative microbial risk assessment (QMRA) procedures aids in setting recommendations on reuse applications of treated wastewater. In this study, a probabilistic QMRA to determine the risk of Salmonella infections resulting from the consumption of edible crops irrigated with treated wastewater was conducted. Quantitative polymerase chain reaction (qPCR) was used to enumerate Salmonella spp. in post-disinfected samples, where they showed concentrations ranging from 90 to 1,600 cells/100 mL. The results were used to construct probabilistic exposure models for the raw consumption of three vegetables (lettuce, cabbage, and cucumber) irrigated with treated wastewater, and to estimate the disease burden using Monte Carlo analysis. The results showed elevated median disease burden, when compared with acceptable disease burden set by the World Health Organization, which is 10⁻⁶ disability-adjusted life years per person per year. Of the three vegetables considered, lettuce showed the highest risk of infection in all scenarios considered, while cucumber showed the lowest risk. The results of the Salmonella concentration obtained with qPCR were compared with the results of Escherichia coli concentration for samples taken on the same sampling dates.
Cosmetic wastewater treatment by coagulation and advanced oxidation processes.
Naumczyk, Jeremi; Bogacki, Jan; Marcinowski, Piotr; Kowalik, Paweł
2014-01-01
In this study, the treatment process of three cosmetic wastewater types has been investigated. Coagulation allowed to achieve chemical oxygen demand (COD) removal of 74.6%, 37.7% and 74.0% for samples A (Al2(SO4)3), B (Brentafloc F3) and C (PAX 16), respectively. The Fenton process proved to be effective as well - COD removal was equal to 75.1%, 44.7% and 68.1%, respectively. Coagulation with FeCl3 and the subsequent photo-Fenton process resulted in the best values of final COD removal equal to 92.4%, 62.8% and 90.2%. In case of the Fenton process, after coagulation these values were equal to 74.9%, 50.1% and 84.8%, while in case of the H2O2/UV process, the obtained COD removal was 83.8%, 36.2% and 80.9%. High value of COD removal in the Fenton process carried out for A and C wastewater samples was caused by a significant contribution of the final neutralization/coagulation. Very small effect of the oxidation reaction in the Fenton process in case of sample A resulting from the presence of antioxidants, 'OH radical scavengers' in the wastewater.
Ecotoxicological and Genotoxic Evaluation of Buenos Aires City (Argentina) Hospital Wastewater
Juárez, Ángela Beatriz; Dragani, Valeria; Saenz, Magalí Elizabeth; Moretton, Juan
2014-01-01
Hospital wastewater (HWW) constitutes a potential risk to the ecosystems and human health due to the presence of toxic and genotoxic chemical compounds. In the present work we investigated toxicity and genotoxicity of wastewaters from the public hospital of Buenos Aires (Argentina). The effluent from the sewage treatment plant (STP) serving around 10 million inhabitants was also evaluated. The study was carried out between April and September 2012. Toxicity and genotoxicity assessment was performed using the green algae Pseudokirchneriella subcapitata and the Allium cepa test, respectively. Toxicity assay showed that 55% of the samples were toxic to the algae (%I of growth between 23.9 and 54.8). The A. cepa test showed that 40% of the samples were genotoxic. The analysis of chromosome aberrations (CA) and micronucleus (MN) showed no significant differences between days and significant differences between months. The sample from the STP was not genotoxic to A. cepa but toxic to the algae (%I = 41%), showing that sewage treatment was not totally effective. This study highlights the need for environmental control programs and the establishment of advanced and effective effluent treatment plants in the hospitals, which are merely dumping the wastewaters in the municipal sewerage system. PMID:25214834
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fields, M.K.; Davis, R.P.
1992-08-01
A wastewater characterization survey was conducted by members of the Armstrong Laboratory Occupational and Environmental Health directorate Water Quality Function from 28 Oct 91 - 7 Nov 91 at Whiteman AFB, MO. The purpose of the survey was to identify and characterize the wastewater, determine the appropriateness of present disposal methods, determine the need for routine sampling or monitoring and recommend parameters for wastewater analysis. Results of the sampling showed metals and volatile organic discharge in varying concentrations throughout the base. Recommendations are: (1) evaluation of industrial operations and chemical disposal procedures at designated sites; (2) routine monitoring of themore » discharge from the Hospital and Audiovisual for silver; (3) excavation and sediment disposal at the Transportation Washrack and WWTP Effluent discharge point; (4) collection and analyses of sludge at oil water separators, to include the oil and water side; (5) evaluation of the sanitary sewer system for corrosion and sediment buildup by a mobile Reveal and Seal Unit; (6) background soil sample collection and analyses; and (7) pretreatment of Aqueous Film Forming Foam discharge and notification of the Base Bioenvironmental Engineer, Environmental Coordinator, and WWTP personnel when discharge occurs.« less
Vatovec, Christine; Phillips, Patrick; Van Wagoner, Emily; Scott, Tia-Marie; Furlong, Edward
2016-12-01
Pharmaceutical pollution in surface waters poses risks to human and ecosystem health. Wastewater treatment facilities are primary sources of pharmaceutical pollutants, but little is known about the factors that affect drugs entering the wastewater stream. This paper investigates the effects of student pharmaceutical use and disposal behaviors and an annual demographic shift on pharmaceutical pollution in a university town. We sampled wastewater effluent during a ten-day annual spring student move-out period at the University of Vermont. We then interpreted these data in light of survey results that investigated pharmaceutical purchasing, use, and disposal practices among the university student population. Surveys indicated that the majority of student respondents purchased pharmaceuticals in the previous year. Many students reported having leftover drugs, though only a small portion disposed of them, mainly in the trash. We detected 51 pharmaceuticals in 80% or more of the wastewater effluent samples collected over the ten-day sampling period. Several increased in concentration after students left the area. Concentrations of caffeine and nicotine decreased weakly. Drug disposal among this university student population does not appear to be a major source of pharmaceuticals in wastewater. Increases in pharmaceutical concentration after the students left campus can be tied to an increase in the seasonal use of allergy medications directly related to pollen, as well as a demographic shift to a year-round older population, which supports national data that older people use larger volumes and different types of pharmaceuticals than the younger student population. Copyright © 2016 Elsevier B.V. All rights reserved.
Spatial patterns of pharmaceuticals and wastewater tracers in the Hudson River Estuary.
Cantwell, Mark G; Katz, David R; Sullivan, Julia C; Shapley, Daniel; Lipscomb, John; Epstein, Jennifer; Juhl, Andrew R; Knudson, Carol; O'Mullan, Gregory D
2018-06-15
The widespread use of pharmaceuticals by human populations results in their sustained discharge to surface waters via wastewater treatment plants (WWTPs). In this study, 16 highly prescribed pharmaceuticals were quantified along a 250 km transect of the Hudson River Estuary and New York Harbor to describe their sources and spatial patterns. Sampling was conducted over two dry weather periods in May and July 2016, at 72 sites which included mid-channel and nearshore sites, as well as locations influenced by tributaries and WWTP outfalls. The detection frequency of the study pharmaceuticals was almost identical between the May and July sampling periods at 55% and 52%, respectively. Six pharmaceuticals were measurable at 92% or more of the sites during both sampling periods, illustrating their ubiquitous presence throughout the study area. Individual pharmaceutical concentrations were highly variable spatially, ranging from non-detect to 3810 ng/L during the study. Major factors controlling concentrations were proximity and magnitude of WWTP discharges, inputs from tributaries and tidal mixing. Two compounds, sucralose and caffeine, were evaluated as tracers to identify wastewater sources and assess pharmaceutical behavior. Sucralose was useful in identifying wastewater inputs to the river and concentrations showed excellent correlations with numerous pharmaceuticals in the study. Caffeine-sucralose ratios showed potential in identifying discharges of untreated wastewater occurring during a combined sewage overflow event. Many of the study pharmaceuticals were present throughout the Hudson River Estuary as a consequence of sustained wastewater discharge. Whereas some concentrations were above published effects levels, a more complete risk assessment is needed to understand the potential for ecological impacts due to pharmaceuticals in the Hudson River Estuary. Published by Elsevier Ltd.
Wang, Mingyu; Shen, Weitao; Yan, Lei; Wang, Xin-Hua; Xu, Hai
2017-12-01
Bacteria, antibiotics, and antibiotic resistance determinants are key biological pollutants in aquatic systems, which may lead to bacterial infections or prevent the cure of bacterial infections. In this study, we investigated how the wastewater treatment processes in wastewater treatment plants (WWTPs) affect these pollutants. We found that the addition of oxygen, polyaluminum chloride (PAC), and polyacrylamide (PAM), as well as ultraviolet (UV) disinfection could significantly alter the bacterial communities in the water samples. An overall shift from Gram-negative bacteria to Gram-positive bacteria was observed throughout the wastewater treatment steps, but the overall bacterial biomass was not reduced in the WWTP samples. The antibiotic contents were reduced by the WWTP, but the size of the reduction and the step when antibiotic degradation occurred differed among antibiotics. Ciprofloxacin, sulfamethoxazole and erythromycin could be removed completely by the WWTP, whereas cephalexin could not. The removal of ciprofloxacin, cephalexin, and erythromycin occurred in the anaerobic digester, whereas the removal of sulfamethoxazole occurred after the addition of PAC and PAM, and UV disinfection. Antimicrobial resistance determinants were highly prevalent in all of the samples analyzed, except for those targeting vancomycin and colistin. However, wastewater treatment was ineffective at removing antimicrobial resistance determinants from wastewater. There were strong correlations between intI1, floR, sul1, and ermB, thereby suggesting the importance of integrons for the spread of these antimicrobial resistance genes. In general, this study comprised a stepwise analysis of the impact of WWTPs on three biological pollutants: bacteria, antibiotics, and antimicrobial resistance determinants, where our results suggest that the design of WWTPs needs to be improved to address the threats due to these pollutants. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhao, Xue; Zhang, Zi-Feng; Xu, Lei; Liu, Li-Yan; Song, Wei-Wei; Zhu, Fu-Jie; Li, Yi-Fan; Ma, Wan-Li
2017-08-01
Benzotriazoles (BTs) UV filters are widely used as ultraviolet absorbents for our daily products, which received increasing attention in the past decades. Residential wastewater treatment plant (WWTP) is both an important sink for wastewater and a key pollution source for receiving water for these chemicals. In this study, pretreatment and gas chromatography-tandem mass spectrometry analysis method were developed to determine the occurrence and fate of 9 BTs UV filters in wastewater and sludge from the WWTP with anaerobic-oxic treatment process (A/O) and biological aerated filter treatment process (BAF). Totally, 81 wastewater samples and 11 sludge samples were collected in four seasons. In wastewater, UV-326 and UV-329 were frequently detected, while the highest mean concentrations were detected for UV-234 and UV-329. The concentrations were in the range of
Zimmerman, Marc J.
2005-01-01
In June 2004, the U.S. Geological Survey, in cooperation with the Barnstable County Department of Health and Environment, sampled water from 14 wastewater sources and drinking-water supplies on Cape Cod, Massachusetts, for the presence of organic wastewater contaminants, pharmaceuticals, and personal care products. The geographic distribution of sampling locations does not represent the distribution of drinking-water supplies on Cape Cod. The environmental presence of the analyte compounds is mostly unregulated; many of the compounds are suspected of having adverse ecological and human health effects. Of the 85 different organic analyte compounds, 43 were detected, with 13 detected in low concentrations (less than 1 microgram per liter) from drinking-water supplies thought to be affected by wastewater because of previously detected high nitrate concentrations. (Phenol and d-limonene, detected in equipment blanks at unacceptably high concentrations, are not included in counts of detections in this report.) Compounds detected in the drinking-water supplies included the solvent, tetrachloroethylene; the analgesic, acetaminophen; the antibiotic, sulfamethoxazole; and the antidepressant, carbamazapine. Nitrate nitrogen, an indicator of wastewater, was detected in water supplies in concentrations ranging from 0.2 to 8.8 milligrams per liter.
Weiss, Stefan; Reemtsma, Thorsten
2005-11-15
The first method for the determination of commonly used corrosion inhibitors in environmental water samples by liquid chromatography-electrospray ionization-tandem mass spectrometry is presented. Benzotriazole (BTri) and the two isomers of tolyltriazole (5- and 4-TTri) are separated in an isocratic run. By gradient elution, BTri, 4-TTri, 5-TTri, and xylyltriazole can be determined simultaneously with three benzothiazoles, but here TTri isomers coelute. The instrumental detection limit of 2 pg allows the determination of the three most important benzotriazoles from municipal wastewater and most surface waters by direct injection into the HPLC system without previous enrichment. When solid-phase extraction is employed with mean recovery rates of 95-113%, the limit of quantification for benzotriazoles range from 10 ng/L in groundwater to 25 ng/L in untreated wastewater. BTri and TTri were determined in municipal wastewater in microgram per liter concentrations. Elimination in wastewater treatment appears to be poor, and BTri and TTri can be followed through a water cycle from treated municipal wastewater through surface water to bank filtrate used for drinking water production. The TTri isomers show markedly different biodegradation behavior with 4-TTri being more stable.
Renewable energy for the aeration of wastewater ponds.
Hobus, I; Hegemann, W
2003-01-01
The application of a decentralised renewable energy supply for the aeration of wastewater ponds, and the influence of an unsteady oxygen supply on the specific conversion rate and biocoenose was investigated. With the discontinuous aeration the specific conversion rate is increased as compared to facultative ponds. The estimation of the microorganisms consortia was done with in situ hybridisation techniques. A significant shift in the bacteria population with the chosen specific probes for anaerobic, sulphate reducing and nitrifying bacteria could not be detected. Wastewater ponds have sufficient buffer volume to compensate for the fluctuating energy supply. But the efficiency of the energy supply of a photovoltaic plant decreases in shallow lakes (d < 1.5 m) corresponding to a high oxygen production of algae. For the layout of the individual components: photovoltaic and wind power plant, energy management, aeration system and wastewater pond, a simulation model was developed and tested. The application of renewable energy for the aeration of wastewater ponds is a useful alternative for the redevelopment of overloaded ponds as well as the construction of new wastewater ponds, especially in areas with an inadequate central electricity grid and a high availability of wind and solar energy.
Silverman, Andrea I; Nelson, Kara L
2016-11-15
Models that predict sunlight inactivation rates of bacteria are valuable tools for predicting the fate of pathogens in recreational waters and designing natural wastewater treatment systems to meet disinfection goals. We developed biological weighting function (BWF)-based numerical models to estimate the endogenous sunlight inactivation rates of E. coli and enterococci. BWF-based models allow the prediction of inactivation rates under a range of environmental conditions that shift the magnitude or spectral distribution of sunlight irradiance (e.g., different times, latitudes, water absorbances, depth). Separate models were developed for laboratory strain bacteria cultured in the laboratory and indigenous organisms concentrated directly from wastewater. Wastewater bacteria were found to be 5-7 times less susceptible to full-spectrum simulated sunlight than the laboratory bacteria, highlighting the importance of conducting experiments with bacteria sourced directly from wastewater. The inactivation rate models fit experimental data well and were successful in predicting the inactivation rates of wastewater E. coli and enterococci measured in clear marine water by researchers from a different laboratory. Additional research is recommended to develop strategies to account for the effects of elevated water pH on predicted inactivation rates.
Occurrence and fate of organic contaminants during onsite wastewater treatment
Conn, K.E.; Barber, L.B.; Brown, G.K.; Siegrist, R.L.
2006-01-01
Onsite wastewater treatment systems serve approximately 25% of the U.S. population. However, little is known regarding the occurrence and fate of organic wastewater contaminants (OWCs), including endocrine disrupting compounds, during onsite treatment. A range of OWCs including surfactant metabolites, steroids, stimulants, metal-chelating agents, disinfectants, antimicrobial agents, and pharmaceutical compounds was quantified in wastewater from 30 onsite treatment systems in Summit and Jefferson Counties, CO. The onsite systems represent a range of residential and nonresidential sources. Eighty eight percent of the 24 target compounds were detected in one or more samples, and several compounds were detected in every wastewater sampled. The wastewater matrices were complex and showed unique differences between source types due to differences in water and consumer product use. Nonresidential sources generally had more OWCs at higher concentrations than residential sources. Additional aerobic biofilter-based treatment beyond the traditional anaerobic tank-based treatment enhanced removal for many OWCs. Removal mechanisms included volatilization, biotransformation, and sorption with efficiencies from 99% depending on treatment type and physicochemical properties of the compound. Even with high removal rates during confined unit onsite treatment, OWCs are discharged to soil dispersal units at loadings up to 20 mg/m2/d, emphasizing the importance of understanding removal mechanisms and efficiencies in onsite treatment systems that discharge to the soil and water environments. ?? 2006 American Chemical Society.
Leenheer, J.A.; Hsu, J.; Barber, L.B.
2001-01-01
In January 1999, wastewater influent and effluent from the pretreatment plant at the Stringfellow hazardous waste disposal site were sampled along with groundwater at six locations along the groundwater contaminant plume. The objectives of this sampling and study were to identify at the compound class level the unidentified 40-60% of wastewater organic contaminants, and to determine what organic compound classes were being removed by the wastewater pretreatment plant, and what organic compound classes persisted during subsurface waste migration. The unidentified organic wastes are primarily chlorinated aromatic sulfonic acids derived from wastes from DDT manufacture. Trace amounts of EDTA and NTA organic complexing agents were discovered along with carboxylate metabolites of the common alkylphenolpolyethoxylate plasticizers and nonionic surfactants. The wastewater pretreatment plant removed most of the aromatic chlorinated sulfonic acids that have hydrophobic neutral properties, but the p-chlorobenzenesulfonic acid which is the primary waste constituent passed through the pretreatment plant and was discharged in the treated wastewaters transported to an industrial sewer. During migration in groundwater, p-chlorobenzenesulfonic acid is removed by natural remediation processes. Wastewater organic contaminants have decreased 3- to 45-fold in the groundwater from 1985 to 1999 as a result of site remediation and natural remediation processes. The chlorinated aromatic sulfonic acids with hydrophobic neutral properties persist and have migrated into groundwater that underlies the adjacent residential community. Copyright ?? 2001 .
Screening new psychoactive substances in urban wastewater using high resolution mass spectrometry.
González-Mariño, Iria; Gracia-Lor, Emma; Bagnati, Renzo; Martins, Claudia P B; Zuccato, Ettore; Castiglioni, Sara
2016-06-01
Analysis of drug residues in urban wastewater could complement epidemiological studies in detecting the use of new psychoactive substances (NPS), a continuously changing group of drugs hard to monitor by classical methods. We initially selected 52 NPS potentially used in Italy based on seizure data and consumption alerts provided by the Antidrug Police Department and the National Early Warning System. Using a linear ion trap-Orbitrap high resolution mass spectrometer, we designed a suspect screening and a target method approach and compared them for the analysis of 24 h wastewater samples collected at the treatment plant influents of four Italian cities. This highlighted the main limitations of these two approaches, so we could propose requirements for future research. A library of MS/MS spectra of 16 synthetic cathinones and 19 synthetic cannabinoids, for which analytical standards were acquired, was built at different collision energies and is available on request. The stability of synthetic cannabinoids was studied in analytical standards and wastewater, identifying the best analytical conditions for future studies. To the best of our knowledge, these are the first stability data on NPS. Few suspects were identified in Italian wastewater samples, in accordance with recent epidemiological data reporting a very low prevalence of use of NPS in Italy. This study outlines an analytical approach for NPS identification and measurement in urban wastewater and for estimating their use in the population.
Field observations and management strategy for hot spring wastewater in Wulai area, Taiwan.
Lin, J Y; Chen, C F; Lei, F R; Hsieh, C D
2010-01-01
Hot springs are important centers for recreation and tourism. However, the pollution that may potentially be caused by hot spring wastewater has rarely been discussed. More than half of Taiwan's hot springs are located in areas where the water quality of water bodies is to be protected, and untreated wastewater could pollute the receiving water bodies. In this study, we investigate hot spring wastewater in the Wulai area, one of Taiwan's famous hot spring resorts. Used water from five hot spring hotels was sampled and ten sampling events were carried out to evaluate the changes in the quality of used water in different seasons, at different periods of the week, and from different types of hotels. The concentrations of different pollutants in hot spring wastewater were found to exhibit wide variations, as follows: COD, 10-250 mg/L; SS, N.D.-93 mg/L; NH(3)-N, 0.01-1.93 mg/L; TP, 0.01-0.45 mg/L; and E. coli, 10-27,500 CFU/100 mL. The quality of hot spring wastewater depends on the operation of public pools, because this affects the frequency of supplementary fresh water and the outflow volume. Two management strategies, namely, onsite treatment systems and individually packaged treatment equipment, are considered, and a multi-objective optimization model is used to determine the optimal strategy.
Printing ink and paper recycling sources of TMDD in wastewater and rivers.
Guedez, Arlen A; Püttmann, Wilhelm
2014-01-15
2,4,7,9-Tetramethyl-5-decyne-4,7-diol (TMDD) is a non-ionic surfactant which is preferentially used as defoamer in paints and printing ink and for the treatment of surfaces. Effluents of wastewater treatment plants (WWTPs) have been identified as the domination point sources for TMDD in rivers since the removal rate of the compound in the WWTPs is in general less than 70%. However, the dominating entry pathways of TMDD into the sewage were unknown so far. In this study effluents from both, municipal WWTPs with and without treatment of indirect industrial dischargers and from industrial WWTPs with direct discharge of wastewater into receiving rivers were analyzed for the first time to identify the proportions of TMDD coming from domestic wastewater and from various industrial sources. Moreover, rivers were samples before and after the influent of sewage water from WWTPs. The TMDD concentrations in the water samples were measured using solid phase extraction (SPE) followed by gas chromatography/mass spectrometry (GC/MS). High TMDD concentrations were found in rivers (up to 63.5 μg/L), and in effluents of WWTPs (up to 310 μg/L) affected by wastewater from paper recycling industry and factories producing paint and printing ink. Concentrations of TMDD revealed to be far higher in wastewater from factories processing recycled paper (up to 113 μg/L) compared to wastewater from factories not processing recycled paper (0.066 μg/L). The results indicate that the use of recycling paper in the paper production process is the dominating reason for increased TMDD concentrations in wastewaters and receiving rivers due to the wash out of TMDD from the paper impregnated with printing ink. Very high TMDD concentrations (up to 3300 μg/L) were also detected in wastewater from a printing ink factory and a paint factory. © 2013 Elsevier B.V. All rights reserved.
Mayer, R.E.; Bofill-Mas, S.; Egle, L.; Reischer, G.H.; Schade, M.; Fernandez-Cassi, X.; Fuchs, W.; Mach, R.L.; Lindner, G.; Kirschner, A.; Gaisbauer, M.; Piringer, H.; Blaschke, A.P.; Girones, R.; Zessner, M.; Sommer, R.; Farnleitner, A.H.
2016-01-01
This was a detailed investigation of the seasonal occurrence, dynamics, removal and resistance of human-associated genetic Bacteroidetes faecal markers (GeBaM) compared with ISO-based standard faecal indicator bacteria (SFIB), human-specific viral faecal markers and one human-associated Bacteroidetes phage in raw and treated wastewater of municipal and domestic origin. Characteristics of the selected activated sludge wastewater treatment plants (WWTPs) from Austria and Germany were studied in detail (WWTPs, n = 13, connected populations from 3 to 49000 individuals), supported by volume-proportional automated 24-h sampling and chemical water quality analysis. GeBaM were consistently detected in high concentrations in raw (median log10 8.6 marker equivalents (ME) 100 ml−1) and biologically treated wastewater samples (median log10 6.2–6.5 ME 100 ml−1), irrespective of plant size, type and time of the season (n = 53–65). GeBaM, Escherichia coli, and enterococci concentrations revealed the same range of statistical variability for raw (multiplicative standard deviations s* = 2.3–3.0) and treated wastewater (s* = 3.7–4.5), with increased variability after treatment. Clostridium perfringens spores revealed the lowest variability for raw wastewater (s* = 1.5). In raw wastewater correlations among microbiological parameters were only detectable between GeBaM, C. perfringens and JC polyomaviruses. Statistical associations amongst microbial parameters increased during wastewater treatment. Two plants with advanced treatment were also investigated, revealing a minimum log10 5.0 (10th percentile) reduction of GeBaM in the activated sludge membrane bioreactor, but no reduction of the genetic markers during UV irradiation (254 nm). This study highlights the potential of human-associated GeBaM to complement wastewater impact monitoring based on the determination of SFIB. In addition, human-specific JC polyomaviruses and adenoviruses seem to be a valuable support if highly specific markers are needed. PMID:26745175
Sidhu, J. P. S.; Smith, K.; Beale, D. J.; Gyawali, P.; Toze, S.
2015-01-01
Recreational and potable water supplies polluted with human wastewater can pose a direct health risk to humans. Therefore, sensitive detection of human fecal pollution in environmental waters is very important to water quality authorities around the globe. Microbial source tracking (MST) utilizes human fecal markers (HFMs) to detect human wastewater pollution in environmental waters. The concentrations of these markers in raw wastewater are considered important because it is likely that a marker whose concentration is high in wastewater will be more frequently detected in polluted waters. In this study, quantitative PCR (qPCR) assays were used to determine the concentrations of fecal indicator bacteria (FIB) Escherichia coli and Enterococcus spp., HFMs Bacteroides HF183, human adenoviruses (HAdVs), and polyomaviruses (HPyVs) in raw municipal wastewater influent from various climatic zones in Australia. E. coli mean concentrations in pooled human wastewater data sets (from various climatic zones) were the highest (3.2 × 106 gene copies per ml), followed by those of HF183 (8.0 × 105 gene copies per ml) and Enterococcus spp. (3.6 × 105 gene copies per ml). HAdV and HPyV concentrations were 2 to 3 orders of magnitude lower than those of FIB and HF183. Strong positive and negative correlations were observed between the FIB and HFM concentrations within and across wastewater treatment plants (WWTPs). To identify the most sensitive marker of human fecal pollution, environmental water samples were seeded with raw human wastewater. The results from the seeding experiments indicated that Bacteroides HF183 was more sensitive for detecting human fecal pollution than HAdVs and HPyVs. Since the HF183 marker can occasionally be present in nontarget animal fecal samples, it is recommended that HF183 along with a viral marker (HAdVs or HPyVs) be used for tracking human fecal pollution in Australian environmental waters. PMID:26682850
Golovko, Oksana; Kumar, Vimal; Fedorova, Ganna; Randak, Tomas; Grabic, Roman
2014-09-01
Seasonal changes in the concentration of 21 pharmaceuticals in a wastewater treatment plant (WWTP) in České Budějovice were investigated over 12months. The target compounds were 10 antibiotics, 4 antidepressants, 3 psychiatric drugs, 2 antihistamines and 2 lipid regulators. 272 Wastewater samples (136 influents and 136 effluents) were collected from March 2011 to February 2012 and analyzed using two-dimensional liquid chromatography coupled with tandem mass spectrometry. All studied pharmaceuticals were frequently detected in both the influent and the effluent wastewater samples, except for meclozine, which was only found in the influent. The mean concentration of pharmaceuticals varied from 0.006μgL(-1) to 1.48μgL(-1) in the influent and from 0.003μgL(-1) to 0.93μgL(-1) in the effluent. The concentration of most pharmaceuticals was higher during winter. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sandstrom, M.W.; Kolpin, D.W.; Thurman, E.M.; Zaugg, S.D.
2005-01-01
One of the most frequently detected organic chemicals in a nationwide study concerning the effects of wastewater on stream water quality conducted in the year 2000 was the widely used insect repellant N,N-diethyl-m-toluamide (DEET). It was detected at levels of 0.02 μg/L or greater in 73% of the stream sites sampled, with the selection of sampling sites being biased toward streams thought to be subject to wastewater contamination (i.e., downstream from intense urbanization and livestock production). Although DEET frequently was detected at all sites, the median concentration was low (0.05 μg/L). The highest concentrations of DEET were found in streams from the urban areas (maximum concentration, 1.1 μg/L). The results of the present study suggest that the movement of DEET to streams through wastewater-treatment systems is an important mechanism that might lead to the exposure of aquatic organisms to this chemical.
Trojanowicz, K; Plaza, E; Trela, J
2017-11-09
In the paper, the extension of mathematical model of partial nitritation-anammox process in a moving bed biofilm reactor (MBBR) is presented. The model was calibrated with a set of kinetic, stoichiometric and biofilm parameters, whose values were taken from the literature and batch tests. The model was validated with data obtained from: laboratory batch experiments, pilot-scale MBBR for a reject water deammonification operated at Himmerfjärden wastewater treatment and pilot-scale MBBR for mainstream wastewater deammonification at Hammarby Sjöstadsverk research facility, Sweden. Simulations were conducted in AQUASIM software. The proposed, extended model proved to be useful for simulating of partial nitritation/anammox process in biofilm reactor both for reject water and mainstream wastewater at variable substrate concentrations (influent total ammonium-nitrogen concentration of 530 ± 68; 45 ± 2.6 and 38 ± 3 gN/m 3 - for reject water - and two cases of mainstream wastewater treatment, respectively), temperature (24 ± 2.8; 15 ± 1.1 and 18 ± 0.5°C), pH (7.8 ± 0.2; 7.3 ± 0.1 and 7.4 ± 0.1) and aeration patterns (continuous aeration and intermittent aeration with variable dissolved oxygen concentrations and length of aerated and anoxic phases). The model can be utilized for optimizing and testing different operational strategies of deammonification process in biofilm systems.
Detection and Molecular Characterization of Gemycircularvirus from Environmental Samples in Brazil.
da Silva Assis, Matheus Ribeiro; Vieira, Carmen Baur; Fioretti, Julia Monassa; Rocha, Mônica Simões; de Almeida, Pedro Ivo Neves; Miagostovich, Marize Pereira; Fumian, Tulio Machado
2016-12-01
Gemycircularvirus (GemyCV) is a group of viruses which has been recently proposed as a new viral genus detected in fecal and environmental samples around the world. GemyCVs have been detected in human blood, brain tissue, cerebrospinal fluid, and stool sample. In the present study, we demonstrate for the first time, through molecular detection and characterization, the presence of GemyCVs in environmental samples from Brazil. Our results show a percentage of positivity ranging from 69 (25/36) to 97 % (35/36) in river water samples collected in Manaus, Amazon region, and wastewater from a wastewater treatment plant located in Rio de Janeiro, respectively, revealing GemyCVs as an important environmental contaminant.
Rapid method for the determination of 226Ra in hydraulic fracturing wastewater samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maxwell, Sherrod L.; Culligan, Brian K.; Warren, Richard A.
A new method that rapidly preconcentrates and measures 226Ra from hydraulic fracturing wastewater samples was developed in the Savannah River Environmental Laboratory. The method improves the quality of 226Ra measurements using gamma spectrometry by providing up to 100x preconcentration of 226Ra from this difficult sample matrix, which contains very high levels of calcium, barium, strontium, magnesium and sodium. The high chemical yield, typically 80-90%, facilitates a low detection limit, important for lower level samples, and indicates method ruggedness. Ba-133 tracer is used to determine chemical yield and correct for geometry-related counting issues. The 226Ra sample preparation takes < 2 hours.
Rapid method for the determination of 226Ra in hydraulic fracturing wastewater samples
Maxwell, Sherrod L.; Culligan, Brian K.; Warren, Richard A.; ...
2016-03-24
A new method that rapidly preconcentrates and measures 226Ra from hydraulic fracturing wastewater samples was developed in the Savannah River Environmental Laboratory. The method improves the quality of 226Ra measurements using gamma spectrometry by providing up to 100x preconcentration of 226Ra from this difficult sample matrix, which contains very high levels of calcium, barium, strontium, magnesium and sodium. The high chemical yield, typically 80-90%, facilitates a low detection limit, important for lower level samples, and indicates method ruggedness. Ba-133 tracer is used to determine chemical yield and correct for geometry-related counting issues. The 226Ra sample preparation takes < 2 hours.
Comparison of chlorine and chloramine in the release of mercury from dental amalgam.
Stone, Mark E; Scott, John W; Schultz, Stephen T; Berry, Denise L; Wilcoxon, Monte; Piwoni, Marv; Panno, Brent; Bordson, Gary
2009-01-01
The purpose of this project was to compare the ability of chlorine (HOCl/OCl(-)) and monochloramine (NH(2)Cl) to mobilize mercury from dental amalgam. Two types of amalgam were used in this investigation: laboratory-prepared amalgam and samples obtained from dental-unit wastewater. For disinfectant exposure simulations, 0.5 g of either the laboratory-generated or clinically obtained amalgam waste was added to 250 mL amber bottles. The amalgam samples were agitated by end-over-end rotation at 30 rpm in the presence of 1 mg/L chlorine, 10 mg/L chlorine, 1 mg/L monochloramine, 10 mg/L monochloramine, or deionized water for intervals of 0 h, 2 h, 4 h, 8 h, and 24 h for the clinically obtained amalgam waste samples and 4 h and 24 h for the laboratory-prepared samples. Chlorine and monochloramine concentrations were measured with a spectrophotometer. Samples were filtered through a 0.45 microm membrane filter and analyzed for mercury with USEPA standard method 245.7. When the two sample types were combined, the mean mercury level in the 1 mg/L chlorine group was 0.020 mg/L (n=25, SD=0.008). The 10 mg/L chlorine group had a mean mercury concentration of 0.59 mg/L (n=25, SD=1.06). The 1 mg/L chloramine group had a mean mercury level of 0.023 mg/L (n=25, SD=0.010). The 10 mg/L chloramine group had a mean mercury level of 0.024 mg/L (n=25, SD=0.011). Independent samples t-tests showed that there was a significant difference between the natural log mercury measurements of 10 mg/L chlorine compared to those of 1 mg/L and 10 mg/L chloramine. Changing from chlorine to chloramine disinfection at water treatment plants would not be expected to produce substantial increases in dissolved mercury levels in dental-unit wastewater.
Jebri, Sihem; Jofre, Juan; Barkallah, Insaf; Saidi, Mouldi; Hmaied, Fatma
2012-07-01
The role of water in the transmission of infectious diseases is well defined; it may act as a reservoir of different types of pathogens. Enteric viruses can survive and persist for a long time in water, maintaining infectivity in many instances. This suggests the need to include virus detection in the evaluation of the microbiological quality of waters. In this study, enteric viruses (enteroviruses and hepatitis A virus (HAV)) were investigated by RT-PCR and coliphages (known as indicators of viral contamination) were enumerated with the double-layer technique agar in effluents and sewage sludge from three Tunisian wastewater treatment plants. The molecular detection of enteric viruses revealed 7.7% of positive activated sludge samples for enteroviruses. None of the samples was positive for HAV. Molecular virus detection threshold was estimated to be 10(3) PFU/100 ml. All samples contained high concentrations of coliphages except those of dry sludge. Reductions in the concentrations of bacteriophages attained by the wastewater treatment plants are of the order of magnitude as reductions described elsewhere. Peak concentrations in raw wastewater were associated with winter rains and suspended materials rate in analysed samples. Our data which is the first in North Africa showed that similar trends of coliphages distribution to other studies in other countries. No clear correlation between studied enteric viruses and coliphages concentration was proved. Coliphages abundance in collected samples should raise concerns about human enteric viruses transmission as these residues are reused in agricultural fields.
Lopes, Rodrigo J G; Almeida, Teresa S A; Quinta-Ferreira, Rosa M
2011-05-15
Centralized environmental regulations require the use of efficient detoxification technologies for the secure disposal of hazardous wastewaters. Guided by federal directives, existing plants need reengineering activities and careful analysis to improve their overall effectiveness and to become environmentally friendly. Here, we illustrate the application of an integrated methodology which encompasses the experimental investigation of catalytic wet air oxidation and CFD simulation of trickle-bed reactors. As long as trickle-bed reactors are determined by the flow environment coupled with chemical kinetics, first, on the optimization of prominent numerical solution parameters, the CFD model was validated with experimental data taken from a trickle bed pilot plant specifically designed for the catalytic wet oxidation of phenolic wastewaters. Second, several experimental and computational runs were carried out under unsteady-state operation to evaluate the dynamic performance addressing the TOC concentration and temperature profiles. CFD computations of total organic carbon conversion were found to agree better with experimental data at lower temperatures. Finally, the comparison of test data with simulation results demonstrated that this integrated framework was able to describe the mineralization of organic matter in trickle beds and the validated consequence model can be exploited to promote cleaner remediation technologies of contaminated waters. Copyright © 2011 Elsevier B.V. All rights reserved.
Continuity-based model interfacing for plant-wide simulation: a general approach.
Volcke, Eveline I P; van Loosdrecht, Mark C M; Vanrolleghem, Peter A
2006-08-01
In plant-wide simulation studies of wastewater treatment facilities, often existing models from different origin need to be coupled. However, as these submodels are likely to contain different state variables, their coupling is not straightforward. The continuity-based interfacing method (CBIM) provides a general framework to construct model interfaces for models of wastewater systems, taking into account conservation principles. In this contribution, the CBIM approach is applied to study the effect of sludge digestion reject water treatment with a SHARON-Anammox process on a plant-wide scale. Separate models were available for the SHARON process and for the Anammox process. The Benchmark simulation model no. 2 (BSM2) is used to simulate the behaviour of the complete WWTP including sludge digestion. The CBIM approach is followed to develop three different model interfaces. At the same time, the generally applicable CBIM approach was further refined and particular issues when coupling models in which pH is considered as a state variable, are pointed out.
Senta, Ivan; Krizman-Matasic, Ivona; Terzic, Senka; Ahel, Marijan
2017-08-04
Macrolide antibiotics are a prominent group of emerging contaminants frequently found in wastewater effluents and wastewater-impacted aquatic environments. In this work, a novel analytical method for simultaneous determination of parent macrolide antibiotics (azithromycin, erythromycin, clarithromycin and roxithromycin), along with their synthesis intermediates, byproducts, metabolites and transformation products in wastewater and surface water was developed and validated. Samples were enriched using solid-phase extraction on Oasis HLB cartridges and analyzed by reversed-phase liquid chromatography coupled to electrospray ionization tandem mass spectrometry. The target macrolide compounds were separated on an ACE C18 PFP column and detected using multiple reaction monitoring in positive ionization polarity. The optimized method, which included an additional extract clean-up on strong anion-exchange cartridges (SAX), resulted in high recoveries and accuracies, low matrix effects and improved chromatographic separation of the target compounds, even in highly complex matrices, such as raw wastewater. The developed method was applied to the analysis of macrolide compounds in wastewater and river water samples from Croatia. In addition to parent antibiotics, several previously unreported macrolide transformation products and/or synthesis intermediates were detected in municipal wastewater, some of them reaching μg/L levels. Moreover, extremely high concentrations of macrolides up to mg/L level were found in pharmaceutical industry effluents, indicating possible importance of this source to the total loads into ambient waters. The results revealed a significant contribution of synthesis intermediates and transformation products to the overall mass balance of macrolides in the aquatic environment. Copyright © 2017. Published by Elsevier B.V.
Causanilles, Ana; Rojas Cantillano, Daniela; Emke, Erik; Bade, Richard; Baz-Lomba, Jose Antonio; Castiglioni, Sara; Castrignanò, Erika; Gracia-Lor, Emma; Hernández, Félix; Kasprzyk-Hordern, Barbara; Kinyua, Juliet; McCall, Ann-Kathrin; van Nuijs, Alexander L N; Plósz, Benedek G; Ramin, Pedram; Rousis, Nikolaos I; Ryu, Yeonsuk; Thomas, Kevin V; de Voogt, Pim
2018-04-02
In this work a step forward in investigating the use of prescription drugs, namely erectile dysfunction products, at European level was taken by applying the wastewater-based epidemiology approach. 24-h composite samples of untreated wastewater were collected at the entrance of eight wastewater treatment plants serving the catchment within the cities of Bristol, Brussels, Castellón, Copenhagen, Milan, Oslo, Utrecht and Zurich. A validated analytical procedure with direct injection of filtered aliquots by liquid chromatography-tandem mass spectrometry was applied. The target list included the three active pharmaceutical ingredients (sildenafil, tadalafil and vardenafil) together with (bio)transformation products and other analogues. Only sildenafil and its two human urinary metabolites desmethyl- and desethylsildenafil were detected in the samples with concentrations reaching 60 ng L -1 . The concentrations were transformed into normalized measured loads and the estimated actual consumption of sildenafil was back-calculated from these loads. In addition, national prescription data from five countries was gathered in the form of the number of prescribed daily doses and transformed into predicted loads for comparison. This comparison resulted in the evidence of a different spatial trend across Europe. In Utrecht and Brussels, prescription data could only partly explain the total amount found in wastewater; whereas in Bristol, the comparison was in agreement; and in Milan and Oslo a lower amount was found in wastewater than expected from the prescription data. This study illustrates the potential of wastewater-based epidemiology to investigate the use of counterfeit medication and rogue online pharmacy sales. Copyright © 2018. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hedgecock, N.S.
1990-01-01
At the request of 67 Combat Support Group/DEEV the Air Force Occupational and Environmental Health Laboratory conducted a waste-water characterization and hazardous-waste technical assistance survey at Bergstrom AFB (BAFB) from 6-15 Mar 89. The scope of the waste-water survey was to characterize the effluent exiting the base and the effluent from 23 industrial facilities and 10 food-serving facilities. The scope of the hazardous-waste survey was to address hazardous-waste-management practices and explore opportunities for hazardous waste minimization. Specific recommendations from the survey include: (1) Accompany City of Austin personnel during waste-water sampling procedures; (2) Sample at the manhole exiting the mainmore » lift station rather than at the lift station wet well; (3) Split waste-water samples with the City of Austin for comparison of results; (4) Ensure that oil/water separators and grease traps are functioning properly and are cleaned out regularly; (5) Limit the quantity of soaps and solvents discharged down the drain to the sanitary sewer; (6) Establish a waste disposal contract for the removal of wastes in the Petroleum Oils and Lubricants underground storage tanks. (7) Remove, analyze, and properly dispose of oil contaminated soil from accumulation sites. (8) Move indoors or secure, cover, and berm the aluminum sign reconditioning tank at 67 Civil Engineering Squadron Protective Coating. (9) Connect 67 Combat Repair Squadron Test Cell floor drains to the sanitary sewer.« less
Le-Minh, Nhat; Stuetz, Richard M; Khan, Stuart J
2012-01-30
A highly sensitive method for the analysis of six sulfonamide antibiotics (sulfadiazine, sulfathiazole, sulfapyridine, sulfamerazine, sulfamethazine and sulfamethoxazole), two sulfonamide metabolites (N(4)-acetyl sulfamethazine and N(4)-acetyl sulfamethoxazole) and the commonly co-applied antibiotic trimethoprim was developed for the analysis of complex wastewater samples. The method involves solid phase extraction of filtered wastewater samples followed by liquid chromatography-tandem mass spectral detection. Method detection limits were shown to be matrix-dependent but ranged between 0.2 and 0.4 ng/mL for ultrapure water, 0.4 and 0.7 ng/mL for tap water, 1.4 and 5.9 ng/mL for a laboratory-scale membrane bioreactor (MBR) mixed liquor, 0.7 and 1.7 ng/mL for biologically treated effluent and 0.5 and 1.5 ng/g dry weight for MBR activated sludge. An investigation of analytical matrix effects was undertaken, demonstrating the significant and largely unpredictable nature of signal suppression observed for variably complex matrices compared to an ultrapure water matrix. The results demonstrate the importance of accounting for such matrix effects for accurate quantitation, as done in the presented method by isotope dilution. Comprehensive validation of calibration linearity, reproducibility, extraction recovery, limits of detection and quantification are also presented. Finally, wastewater samples from a variety of treatment stages in a full-scale wastewater treatment plant were analysed to illustrate the effectiveness of the method. Copyright © 2011 Elsevier B.V. All rights reserved.
Genotoxicity Evaluation of Irrigative Wastewater from Shijiazhuang City in China
Yang, Lixue; Zhang, Xiaolin; Wang, Liqin; Yu, Fengxue; Liu, Yi; Chen, Qing; Liu, Dianwu
2015-01-01
In the present study, the wastewater sample collected from the Dongming discharging river in Shijiazhuang city was analysed using both chemical analysis and biological assays including the Salmonella mutagenicity test, micronucleus test and single-cell gel electrophoresis. Chemical analysis of the sample was performed using gas chromatography mass spectrometry and inductively coupled plasma mass spectrometry. The Salmonella mutagenicity test was performed on Salmonella typhimurium TA97, TA98, TA100 and TA102 strains with and without S9 mixture. The mice received the wastewater in natura through drinking water at concentrations of 25%, 50%, and 100%. One group of mice was exposed for 2 consecutive days, and the other group of mice was exposed for 15 consecutive days. To establish the levels of primary DNA damage, single-cell gel electrophoresis was performed on treated mouse liver cell. The concentrations of chromium and lead in the sample exceeded the national standard (GB20922-2007) by 0.78 and 0.43-fold, respectively. More than 30 organic compounds were detected, and some of the detected compounds were mutagens, carcinogens and environmental endocrine disrupters. A positive response for Salmonella typhimurium TA98 strain was observed. Mouse exposure via drinking water containing 50% and 100% of wastewater for 15 consecutive days caused a significant increase of MN frequencies in a dose-response manner. Mouse exposure via drinking water containing 50% and 100% of wastewater for 15 consecutive days caused a significant increase of the Olive tail moments in a dose-response manner. All the results indicated that the sample from the Dongming discharging river in Shijiazhuang city exhibited genotoxicity and might pose harmful effects on the local residents. PMID:26658348
Hounmanou, Yaovi M G; Mdegela, Robinson H; Dougnon, Tamègnon V; Mhongole, Ofred J; Mayila, Edward S; Malakalinga, Joseph; Makingi, George; Dalsgaard, Anders
2016-10-18
Cholera, one of the world's deadliest infectious diseases, remains rampant and frequent in Tanzania and thus hinders existing control measures. The present study was undertaken to evaluate the occurrence of toxigenic Vibrio cholerae O1 in wastewater, fish and vegetables during a non-outbreak period in Morogoro, Tanzania. From October 2014 to February 2015, 60 wastewater samples, 60 fish samples from sewage stabilization ponds and 60 wastewater irrigated vegetable samples were collected. Samples were cultured for identification of V. cholerae using conventional bacteriological methods. Isolates were confirmed as V. cholerae by detection of the outer membrane protein gene (ompW) using polymerase chain reaction (PCR). Isolates were further tested for antibiotic susceptibility and presence of virulence genes including, cholera enterotoxin gene (ctx), the toxin co-regulated pilus gene (tcpA) and the haemolysin gene (hlyA). The prevalence of V. cholerae in wastewater, vegetables and fish was 36.7, 21.7 and 23.3 %, respectively. Two isolates from fish gills were V. cholerae O1 and tested positive for ctx and tcpA. One of these contained in addition the hlyA gene while five isolates from fish intestines tested positive for tcpA. All V. cholerae isolates were resistant to ampicillin, amoxicillin and some to tetracycline, but sensitive to gentamicin, chloramphenicol, and ciprofloxacin. Our results show that toxigenic and drug-resistant V. cholerae O1 species are present and persist in aquatic environments during a non-cholera outbreak period. This is of public health importance and shows that such environments may be important as reservoirs and in the transmission of V. cholerae O1.
NASA Astrophysics Data System (ADS)
Bartholomeus, Ruud; van den Eertwegh, Gé; Worm, Bas; Cirkel, Gijsbert; van Loon, Arnaut; Raat, Klaasjan
2017-04-01
Agricultural crop yields depend largely on soil moisture conditions in the root zone. Climate change leads to more prolonged drought periods that alternate with more intensive rainfall events. With unaltered water management practices, reduced crop yield due to drought stress will increase. Therefore, both farmers and water management authorities search for opportunities to manage risks of decreasing crop yields. Available groundwater sources for irrigation purposes are increasingly under pressure due to the regional coexistence of land use functions that are critical to groundwater levels or compete for available water. At the same time, treated wastewater from industries and domestic wastewater treatment plants are quickly discharged via surface waters towards sea. Exploitation of these freshwater sources may be an effective strategy to balance regional water supply and agricultural water demand. We present results of two pilot studies in drought sensitive regions in the Netherlands, concerning agricultural water supply through reuse of industrial and domestic treated wastewater. In these pilots, excess wastewater is delivered to the plant root zone through sub-irrigation by drainage systems. Sub-irrigation is a subsurface irrigation method that can be more efficient than classical, aboveground irrigation methods using sprinkler installations. Domestic wastewater treatment plants in the Netherlands produce annually 40-50mm freshwater. A pilot project has been setup in the eastern part of the Netherlands, in which treated wastewater is applied to a corn field by sub-irrigation during the growing seasons of 2015 and 2016, using a climate adaptive drainage system. The chemical composition of treated domestic wastewater is different from infiltrating excess rainfall water and natural groundwater. In the pilot project, the bromide-chloride ratio and traces of pharmaceuticals in the treated wastewater are used as a tracer to describe water and solute transport in the soil system. Focus of this pilot study is on quantifying potential contamination of both the root zone and the deeper groundwater with pharmaceutical residues. We have installed a field monitoring network at several locations in the vadose zone and the local groundwater system, which enables us to measure vertical solute profiles in the soil water by taking samples. Based on field data obtained during the experiments, combined with SWAP (1D) and Hydrus (2D) model simulations, flow and transport of the sub-irrigated treated wastewater are quantified. In the south of The Netherlands, the Bavaria Beer Brewery abstracts a large volume of groundwater and discharges treated wastewater to local surface water which transports the water rapidly out of the region. At the same time, neighboring farmers invest in sprinkler irrigation systems to maintain their crop production during drought periods. In this region, increasing pressure is put on the regional groundwater and surface water availability. Within a pilot study, a sub-irrigation system has been installed, by using subsurface drains, interconnected through a collector drain, and connected to an inlet control basin for the treated wastewater to enter the drainage system. We combine both process-based modeling of the soil-plant-atmosphere system and field experiments to i) investigate the amount of water that needs to be and that can be sub-irrigated, and ii) quantify the effect on soil moisture availability and herewith reduced needs for aboveground irrigation.
Colman, John A.
2005-01-01
Surface-water resources in Massachusetts often are affected by eutrophication, excessive plant growth, which has resulted in impaired use for a majority of the freshwater ponds and lakes and a substantial number of river-miles in the State. Because supply of phosphorus usually is limiting to plant growth in freshwater systems, control of phosphorus input to surface waters is critical to solving the impairment problem. Wastewater is a substantial source of phosphorus for surface water, and removal of phosphorus before disposal may be necessary. Wastewater disposed onland by infiltration loses phosphorus from the dissolved phase during transport through the subsurface and may be an effective disposal method; quantification of the phosphorus loss can be simulated to determine disposal feasibility. In 2003, the U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, initiated a project to simulate distance of phosphorus transport in the subsurface for plausible conditions of onland wastewater disposal and subsurface properties. A coupled one-dimensional unsaturated-zone and three-dimensional saturated-zone reactive-solute-transport model (PHAST) was used to simulate lengths of phosphorus plumes. Knowledge of phosphorus plume length could facilitate estimates of setback distances for wastewater-infiltration sites from surface water that would be sufficient to protect the surface water from eutrophication caused by phosphorus transport through the subsurface and ultimate discharge to surface water. The reactive-solute-transport model PHAST was used to simulate ground-water flow, solute transport, equilibrium chemistry for dissolved and sorbed species, and kinetic regulation of organic carbon decomposition and phosphate mineral formation. The phosphorus plume length was defined for the simulations as the maximum extent of the contour for the 0.015 milligram-per-liter concentration of dissolved phosphorus downgradient from the infiltration bed after disposal cessation. Duration of disposal before cessation was assumed to be 50 years into an infiltration bed of 20,000 square feet at the rate of 3 gallons per square foot per day. Time for the maximum extent of the phosphorus plume to develop is on the order of 100 years after disposal cessation. Simulations indicated that phosphorus transport beyond the extent of the 0.015 milligram-per-liter concentration contour was never more than 0.18 kilogram per year, an amount that would likely not alter the ecology of most surface water. Simulations of phosphorus plume lengths were summarized in a series of response curves. Simulated plume lengths ranged from 200 feet for low phosphorus-concentration effluents (0.25 milligram per liter) and thick (50 feet) unsaturated zones to 3,400 feet for high phosphorus-concentration effluents (14 milligrams per liter) discharged directly into the aquifer (unsaturated-zone thickness of 0 feet). Plume length was nearly independent of unsaturated-zone thickness at phosphorus concentrations in the wastewater that were less than 2 milligrams per liter because little or no phosphorus mineral formed at low phosphorus concentrations. For effluents of high phosphorus concentration, plume length varied from 3,400 feet for unsaturated-zone thickness of 0 to 2,550 feet for unsaturated-zone thickness of 50 feet. Model treatments of flow and equilibrium-controlled chemistry likely were more accurate than rates of kinetically controlled reactions, notably precipitation of iron-phosphate minerals; the kinetics of such reactions are less well known and thus less well defined in the model. Sensitivity analysis indicated that many chemical and physical aquifer properties, such as hydraulic gradient and model width, did not affect the simulated plume length appreciably, but duration of discharge, size of infiltration bed, amount of dispersion, and number of sorption sites on the aquifer sediments did affect plume length ap
Kazadi Mbamba, Christian; Flores-Alsina, Xavier; John Batstone, Damien; Tait, Stephan
2016-09-01
The focus of modelling in wastewater treatment is shifting from single unit to plant-wide scale. Plant-wide modelling approaches provide opportunities to study the dynamics and interactions of different transformations in water and sludge streams. Towards developing more general and robust simulation tools applicable to a broad range of wastewater engineering problems, this paper evaluates a plant-wide model built with sub-models from the Benchmark Simulation Model No. 2-P (BSM2-P) with an improved/expanded physico-chemical framework (PCF). The PCF includes a simple and validated equilibrium approach describing ion speciation and ion pairing with kinetic multiple minerals precipitation. Model performance is evaluated against data sets from a full-scale wastewater treatment plant, assessing capability to describe water and sludge lines across the treatment process under steady-state operation. With default rate kinetic and stoichiometric parameters, a good general agreement is observed between the full-scale datasets and the simulated results under steady-state conditions. Simulation results show differences between measured and modelled phosphorus as little as 4-15% (relative) throughout the entire plant. Dynamic influent profiles were generated using a calibrated influent generator and were used to study the effect of long-term influent dynamics on plant performance. Model-based analysis shows that minerals precipitation strongly influences composition in the anaerobic digesters, but also impacts on nutrient loading across the entire plant. A forecasted implementation of nutrient recovery by struvite crystallization (model scenario only), reduced the phosphorus content in the treatment plant influent (via centrate recycling) considerably and thus decreased phosphorus in the treated outflow by up to 43%. Overall, the evaluated plant-wide model is able to jointly describe the physico-chemical and biological processes, and is advocated for future use as a tool for design, performance evaluation and optimization of whole wastewater treatment plants. Copyright © 2016 Elsevier Ltd. All rights reserved.
Menzies, Jennifer Z; McDonough, Kathleen; McAvoy, Drew; Federle, Thomas W
2017-02-01
The ultimate disposition of chemicals discarded down the drain can be substantially impacted by their fate in the sewer, but to date limited data have been published on the biodegradability of chemicals in sewer systems. The recently established OECD 314 guideline (Simulation tests to assess the biodegradability of chemicals discharged in wastewater, 2008) contains a simulation method (314A) for evaluating the biodegradation of chemicals in sewage under simulated sewer conditions. This research used the OECD 314A method to evaluate the rates and pathways of primary and ultimate biodegradation of a suite of 14 C-labeled homologues representing four classes of high volume surfactants including nonionic alkyl ethoxylates (AE), and anionic alkyl ethoxysulfates (AES), alkyl sulfate (AS) and linear alkyl benzene sulfonate (LAS). All the tested homologues exhibited >97 % loss of parent, formation of metabolites, and some level (16-94 %) of CO 2 production after being incubated 96-100 h in raw domestic wastewater. Comparison of C 12 E 3 , C 14 E 3 , and C 16 E 3 showed that the first order biodegradation rate was affected by alkyl chain length with rates ranging from 6.8 h -1 for C 12 E 3 to 0.49 h -1 for C 16 E 3 . Conversely, comparison of C 14 E 1 , C 14 E 3 , and C 14 E 9 showed that the number of ethoxy units did not impact the biodegradation rate. AES and AS degraded quickly with first order kinetic rates of 1.9-3.7 and 41 h -1 respectively. LAS did not exhibit first order decay kinetics and primary degradation was slow. Biodegradation pathways were also determined. This work shows that biodegradation in the sewer has a substantial impact on levels of surfactants and surfactant metabolites that ultimately reach wastewater treatment plants.
Zaugg, Steven D.; Smith, Steven G.; Schroeder, Michael P.; Barber, Larry B.; Burkhardt, Mark R.
2002-01-01
A method for the determination of 67 compounds typically found in domestic and industrial wastewater is described. The method was developed in response to increasing concern over the impact of endocrine-disrupting chemicals in wastewater on aquatic organisms. This method also may be useful for evaluating the impact of combined sanitary and storm-sewer overflow on the water quality of urban streams. The method focuses on the determination of compounds that are an indicator of wastewater or that have been chosen on the basis of their endocrine-disrupting potential or toxicity. These compounds include the alkylphenol ethoxylate nonionic surfactants and their degradates, food additives, fragrances, antioxidants, flame retardants, plasticizers, industrial solvents, disinfectants, fecal sterols, polycyclicaromatic hydrocarbons, and high-use domestic pesticides. Water samples are filtered to remove suspended particulate matter and then are extracted by vacuum through disposable solid-phase cartridges that contain polystyrene-divinylbenzene resin. Cartridges are dried with nitrogen gas, and then sorbed compounds are eluted with dichloromethane-diethyl ether (4:1) and determined by capillary-column gas chromatography/mass spectrometry. Recoveries in reagent-water samples fortified at 4 micrograms per liter averaged 74 percent ? 7 percent relative standard deviation for all method compounds. Initial method detection limits for single-component compounds (excluding hormones and sterols) averaged 0.15 microgram per liter. Samples are preserved by filtration, the addition of 60 grams NaCl, and storage at 4 degrees Celsius. The laboratory has established a sample-holding time (prior to sample extraction) of 14 days from the date of sample collection until a statistically accepted method can be used to determine the effectiveness of these sample-preservation procedures.
Mogolodi Dimpe, K; Mpupa, Anele; Nomngongo, Philiswa N
2018-01-05
This work was chiefly encouraged by the continuous consumption of antibiotics which eventually pose harmful effects on animals and human beings when present in water systems. In this study, the activated carbon (AC) was used as a solid phase material for the removal of sulfamethoxazole (SMX) in wastewater samples. The microwave assisted solid phase extraction (MASPE) as a sample extraction method was employed to better extract SMX in water samples and finally the analysis of SMX was done by the UV-Vis spectrophotometer. The microwave assisted solid phase extraction method was optimized using a two-level fractional factorial design by evaluating parameters such as pH, mass of adsorbent (MA), extraction time (ET), eluent ratio (ER) and microwave power (MP). Under optimized conditions, the limit of detection (LOD) and limit of quantification (LOQ) were 0.5μgL -1 and 1.7μgL -1 , respectively, and intraday and interday precision expressed in terms of relative standard deviation were >6%.The maximum adsorption capacity was 138mgg -1 for SMX and the adsorbent could be reused eight times. Lastly, the MASPE method was applied for the removal of SMX in wastewater samples collected from a domestic wastewater treatment plant (WWTP) and river water. Copyright © 2017 Elsevier B.V. All rights reserved.
Chen, Hong; Wang, Xiaomeng; Zhang, Can; Sun, Ruijun; Han, Jianbo; Han, Gengchen; Yang, Wenchao; He, Xin
2017-02-01
Concentrations of 19 PFASs in riverwater, coastal wastewater and effluents from WWTPs which were directly discharged into the Bohai Sea of China were measured and their inputs to this sea area were calculated accordingly. For riverwater samples, the total PFAS concentrations ranged from 13.1 to 69 238 ng/L. PFAS levels in riverwater collected from Liaoning Province were comparable to those from Shandong Province, while they were two orders of magnitude greater than those from Hebei Province and the city of Tianjin. The dominant PFAS patterns were spatially different. PFBS and PFOA were the predominant PFASs in riverwater samples at sites where fluorochemical industry parks are located in Liaoning Province and Shandong Province, respectively. For other sites, PFOA and PFOS were the most abundant PFASs. In contrast, the total PFAS concentrations in coastal wastewater and effluent samples ranged from 16.7 to 7 522 ng/L and from 13.1 to 319 ng/L, respectively. PFOA was dominant in these samples. Inputs of PFASs to the Bohai Sea via riverine flow, discharge of coastal wastewater and effluents were estimated to be 87.3 tons per year. As compared with coastal wastewater and effluent discharge, riverine input was a major source for the PFAS pollution in the Bohai Sea except for PFBS. Copyright © 2016 Elsevier Ltd. All rights reserved.
Symonds, E M; Sinigalliano, C; Gidley, M; Ahmed, W; McQuaig-Ulrich, S M; Breitbart, M
2016-11-01
To identify faecal pollution along the southeastern Florida coast and determine the performance of a reverse transcription-quantitative polymerase chain reaction (RT-qPCR) method for pepper mild mottle virus (PMMoV). In 2014, bimonthly surface water samples were collected from inlets, exposed to runoff and septic seepage, and coastal sites, exposed to ocean outfalls. Analysis of culturable enterococci and a suite of microbial source tracking (MST) markers (BacHum, CowM2, DogBact, HF183, HPyV, PMMoV) revealed faecal pollution, primarily of human origin, at all sites. Since PMMoV was detected more frequently than other MST markers, the process limits of quantification (undiluted to 10 -2 dilution) and detection (10 -2 dilution) for the RT-qPCR method were determined by seeding untreated wastewater into the coastal waters. Simulated quantitative microbial risk assessment, employing human norovirus as a reference pathogen, calculated a 0·286 median risk of gastrointestinal illness associated with the PMMoV limit of detection. All sites met the U.S. EPA recreational water criteria, despite detection of domestic wastewater-associated MST markers. PMMoV correlated only with human-associated MST markers. This study demonstrated that PMMoV is an important domestic wastewater-associated marker that should be included in the MST toolbox; therefore, future studies should thoroughly investigate the health risks associated with its detection and quantification in environmental waters. © 2016 The Society for Applied Microbiology.
Speciation and isotope dilution analysis of gadolinium-based contrast agents in wastewater.
Telgmann, Lena; Wehe, Christoph A; Birka, Marvin; Künnemeyer, Jens; Nowak, Sascha; Sperling, Michael; Karst, Uwe
2012-11-06
The fate of Gadolinium (Gd)-based contrast agents for magnetic resonance imaging (MRI) during sewage treatment was investigated. The total concentration of Gd in influent and effluent 2 and 24 h composite samples was determined by means of isotope dilution analysis. The balancing of Gd input and output of a sewage plant over seven days indicated that approximately 10% of the Gd is removed during treatment. Batch experiments simulating the aeration tank of a sewage treatment plant confirmed the Gd complex removal during activated sludge treatment. For speciation analysis of the Gd complexes in wastewater samples, high performance liquid chromatography (HPLC) was hyphenated to inductively coupled plasma sector field mass spectrometry (ICP-SFMS). Separation of the five predominantly used contrast agents was carried out on a new hydrophilic interaction liquid chromatography stationary phase in less than 15 min. A limit of detection (LOD) of 0.13 μg/L and a limit of quantification of 0.43 μg/L could be achieved for the Gd chelates without having to apply enrichment techniques. Speciation analysis of the 24 h composite samples revealed that 80% of the Gd complexes are present as Gd-BT-DO3A in the sampled treatment plant. The day-of-week dependent variation of the complex load followed the variation of the total Gd load, indicating a similar behavior. The analysis of sewage sludge did not prove the presence of anthropogenic Gd. However, in the effluent of the chamber filter press, which was used for sludge dewatering, two of the contrast agents and three other unknown Gd species were observed. This indicates that species transformation took place during anaerobic sludge treatment.
Imamovic, Lejla; Ballesté, Elisenda; Jofre, Juan; Muniesa, Maite
2010-01-01
Shiga toxin-converting bacteriophages (Stx phages) are involved in the pathogenicity of some enteric bacteria, such as Escherichia coli O157:H7. Stx phages are released from their bacterial hosts after lytic induction and remain free in the environment. Samples were analyzed for the presence of free Stx phages by an experimental approach based on the use of real-time quantitative PCR (qPCR), which enables stx to be detected in the DNA from the viral fraction of each sample. A total of 150 samples, including urban raw sewage samples, wastewater samples with fecal contamination from cattle, pigs, and poultry, and fecal samples from humans and diverse animals, were used in this study. Stx phages were detected in 70.0% of urban sewage samples (10 to 103 gene copies [GC] per ml) and in 94.0% of animal wastewater samples of several origins (10 to 1010 GC per ml). Eighty-nine percent of cattle fecal samples were positive for Stx phages (10 to 105 GC per g of sample), as were 31.8% of other fecal samples of various origins (10 to 104 GC per g of sample). The stx2 genes and stx2 variants were detected in the viral fraction of some of the samples after sequencing of stx2 fragments amplified by conventional PCR. The occurrence and abundance of Stx phages in the extraintestinal environment confirm the role of Stx phages as a reservoir of stx in the environment. PMID:20622134
Staley, Christopher; Kaiser, Thomas; Gidley, Maribeth L.; Enochs, Ian C.; Jones, Paul R.; Goodwin, Kelly D.; Sinigalliano, Christopher D.
2017-01-01
ABSTRACT Coral reefs are dynamic ecosystems known for decades to be endangered due, in large part, to anthropogenic impacts from land-based sources of pollution (LBSP). In this study, we utilized an Illumina-based next-generation sequencing approach to characterize prokaryotic and fungal communities from samples collected off the southeast coast of Florida. Water samples from coastal inlet discharges, oceanic outfalls of municipal wastewater treatment plants, treated wastewater effluent before discharge, open ocean samples, and coral tissue samples (mucus and polyps) were characterized to determine the relationships between microbial communities in these matrices and those in reef water and coral tissues. Significant differences in microbial communities were noted among all sample types but varied between sampling areas. Contamination from outfalls was found to be the greatest potential source of LBSP influencing native microbial community structure among all reef samples, although pollution from inlets was also noted. Notably, reef water and coral tissue communities were found to be more greatly impacted by LBSP at southern reefs, which also experienced the most degradation during the course of the study. The results of this study provide new insights into how microbial communities from LBSP can impact coral reefs in southeast Florida and suggest that wastewater outfalls may have a greater influence on the microbial diversity and structure of these reef communities than do contaminants carried in runoff, although the influences of runoff and coastal inlet discharge on coral reefs are still substantial. IMPORTANCE Coral reefs are known to be endangered due to sewage discharge and to runoff of nutrients, pesticides, and other substances associated with anthropogenic activity. Here, we used next-generation sequencing to characterize the microbial communities of potential contaminant sources in order to determine how environmental discharges of microbiota and their genetic material may influence the microbiomes of coral reef communities and coastal receiving waters. Runoff delivered through inlet discharges impacted coral microbial communities, but impacts from oceanic outfalls carrying treated wastewater were greater. Geographic differences in the degree of impact suggest that coral microbiomes may be influenced by the microbiological quality of treated wastewater. PMID:28341673
Staley, Christopher; Kaiser, Thomas; Gidley, Maribeth L; Enochs, Ian C; Jones, Paul R; Goodwin, Kelly D; Sinigalliano, Christopher D; Sadowsky, Michael J; Chun, Chan Lan
2017-05-15
Coral reefs are dynamic ecosystems known for decades to be endangered due, in large part, to anthropogenic impacts from land-based sources of pollution (LBSP). In this study, we utilized an Illumina-based next-generation sequencing approach to characterize prokaryotic and fungal communities from samples collected off the southeast coast of Florida. Water samples from coastal inlet discharges, oceanic outfalls of municipal wastewater treatment plants, treated wastewater effluent before discharge, open ocean samples, and coral tissue samples (mucus and polyps) were characterized to determine the relationships between microbial communities in these matrices and those in reef water and coral tissues. Significant differences in microbial communities were noted among all sample types but varied between sampling areas. Contamination from outfalls was found to be the greatest potential source of LBSP influencing native microbial community structure among all reef samples, although pollution from inlets was also noted. Notably, reef water and coral tissue communities were found to be more greatly impacted by LBSP at southern reefs, which also experienced the most degradation during the course of the study. The results of this study provide new insights into how microbial communities from LBSP can impact coral reefs in southeast Florida and suggest that wastewater outfalls may have a greater influence on the microbial diversity and structure of these reef communities than do contaminants carried in runoff, although the influences of runoff and coastal inlet discharge on coral reefs are still substantial. IMPORTANCE Coral reefs are known to be endangered due to sewage discharge and to runoff of nutrients, pesticides, and other substances associated with anthropogenic activity. Here, we used next-generation sequencing to characterize the microbial communities of potential contaminant sources in order to determine how environmental discharges of microbiota and their genetic material may influence the microbiomes of coral reef communities and coastal receiving waters. Runoff delivered through inlet discharges impacted coral microbial communities, but impacts from oceanic outfalls carrying treated wastewater were greater. Geographic differences in the degree of impact suggest that coral microbiomes may be influenced by the microbiological quality of treated wastewater. Copyright © 2017 Staley et al.
NATIONAL SCREENING SURVEY OF EDCS IN MUNICIPAL WASTEWATER TREATMENT FACILITIES
In 2002 and 2003 the USEPA's Office of Research and Development asked Regional EPA inspectors, state EPA inspectors and municipal plant operators to collect four gallons effluent, either as a grab or composite sample, from up to 50 wastewater treatment plants (WWTP), and ship the...
Presence of parasitic protozoa and helminth in sewage and efficiency of sewage treatment in Tunisia.
Ben Ayed, L; Schijven, J; Alouini, Z; Jemli, M; Sabbahi, S
2009-08-01
Helminth eggs and protozoan cysts were enumerated in raw and treated wastewater in Tunisia in order to determine their removal by wastewater treatment and to provide quantitative data for developing regulations for wastewater quality that are currently lacking. Raw and treated wastewater samples were collected from 17 plants in Tunisia during 2006-2007 and analyzed for parasites using the modified Bailenger method. Two groups of parasites, namely, Ascaris sp., Entamoeba coli, Enterobius vermicularis, and Taenia sp. (group 1) and Entamoeba histolytica/dispar, Giardia sp., and Taenia sp. (group 2) could statistically be distinguished according to their removal by wastewater treatment. Group 1 parasites were removed by 1.1 log(10) (92.4%) and group 2 parasites by 0.61 log(10) (76%). The ubiquitous presence of parasitic protozoa in Tunisian wastewater and ineffective wastewater treatment lead to their proliferation in surface waters with a high probability of exposure of human and animals to these parasites and consequent adverse health effects, as is apparent from epidemiologic data as well. This study provides a quantitative basis for risk assessment studies and development of mitigation strategies, such as improving wastewater treatment efficiency.
Effect of Phosphate levels on vegetables irrigated with wastewater
NASA Astrophysics Data System (ADS)
Oladeji, S. O.; Saeed, M. D.
2018-04-01
This study examined accumulation of phosphate ions in wastewater and vegetables through man-made activities. Phosphate level was determined in wastewater and vegetables collected on seasonal basis along Kubanni stream in Zaria using UV/Visible and Smart Spectro Spectrophotometers for their analyses. Results obtained show that phosphate concentrations ranged from 3.85 – 42.33 mg/L in the first year and 15.60 – 72.80 mg/L in the second year for wastewater whereas the vegetable had levels of 3.80 – 23.65 mg/kg in the year I and 7.48 – 27.15 mg/kg in the year II. Further statistical tests indicated no significant difference in phosphate levels across the locations and seasons for wastewater and vegetables evaluated. Correlation results for these two years indicated negative (r = -0.062) relationship for wastewater while low (r = 0.339) relationship noticed for vegetables planted in year I to that of year II. Phosphate concentrations obtained in this study was higher than Maximum Contaminant Levels set by Standard Organization such as WHO and FAO for wastewater whereas vegetables of the sampling sites were not contaminated with phosphate ions. Irrigating farmland with untreated wastewater has negative consequence on the crops grown with it.
NASA Astrophysics Data System (ADS)
Abdalla, Fathy; Khalil, Ramadan
2018-05-01
The potential effects of anthropogenic activities, in particular, unsafe sewage disposal practices, on shallow groundwater in an unconfined aquifer and on surface water were evaluated within an urban area by the use of hydrogeological, hydrochemical, and bacteriological analyses. Physicochemical and bacteriological data was obtained from forty-five sampling points based on33 groundwater samples from variable depths and 12 surface water samples. The pollution sources are related to raw sewage and wastewater discharges, agricultural runoff, and wastewater from the nearby Paper Factory. Out of the 33 groundwater samples studied, 17 had significant concentrations of NO3-, Cl- and SO42-, and high bacteria counts. Most of the water samples from the wells contained high Fe, Mn, Pb, Zn, Cd, and Cr. The majority of surface water samples presented high NO3- concentrations and high bacteria counts. A scatter plot of HCO3- versus Ca indicates that 58% of the surface water samples fall within the extreme contamination zone, while the others are within the mixing zone; whereas 94% of groundwater samples showed evidence of mixing between groundwater and wastewater. The bacteriological assessment showed that all measured surface and groundwater samples contained Escherichia coli and total coliform bacteria. A risk map delineated four classes of contamination, namely, those sampling points with high (39.3%), moderate (36.3%), low (13.3%), and very low (11.1%) levels of contamination. Most of the highest pollution points were in the middle part of the urban area, which suffers from unmanaged sewage and industrial effluents. Overall, the results demonstrate that surface and groundwater in Qus City are at high risk of contamination by wastewater since the water table is shallow and there is a lack of a formal sanitation network infrastructure. The product risk map is a useful tool for prioritizing zones that require immediate mitigation and monitoring.
Treatment of Wastewater From Car Washes Using Natural Coagulation and Filtration System
NASA Astrophysics Data System (ADS)
Al-Gheethi, A. A.; Mohamed, R. M. S. R.; Rahman, M. A. A.; Johari, M. R.; Kassim, A. H. M.
2016-07-01
Wastewater generated from carwash is one of the main wastewater resources, which contribute effectively in the increasing of environmental contamination due to the chemical characteristics of the car wastes. The present work aimed to develop an integrated treatment system for carwash wastewater based on coagulation and flocculation using Moringa oleifera and Ferrous Sulphate (FeSO4.7H2O) as well as natural filtration system. The carwash wastewater samples were collected from carwash station located at Parit Raja, Johor, Malaysia. The treatment system of car wash wastewater was designed in the lab scale in four stages included, aeration, coagulation and flocculation, sedimentation and filtration. The coagulation and flocculation unit was carried out using different dosage (35, 70, 105 and 140 mg L-1) of M. oleifera and FeSO4.7H2O, respectively. The efficiency of the integrated treatment system to treat carwash wastewater and to meet Environmental Quality Act (EQA 1974) was evaluated based on the analysis of pH, dissolved oxygen (DO), chemical oxygen demand (COD) and turbidity (NTU). The integrated treatment system was efficient for treatment of raw carwash wastewater. The treated carwash wastewaters meet EQA 1974 regulation 2009 (Standards A) in the term of pH and DO while, turbidity and COD reduced in the wastewater to meet Standards B. The integrated treatment system designed here with natural coagulant (M. oleifera) and filtration unit were effective for primary treatment of carwash wastewater before the final disposal or to be reused again for carwash process.
Wastewater-Enhanced Microbial Corrosion of Concrete Sewers.
Jiang, Guangming; Zhou, Mi; Chiu, Tsz Ho; Sun, Xiaoyan; Keller, Jurg; Bond, Philip L
2016-08-02
Microbial corrosion of concrete in sewers is known to be caused by hydrogen sulfide, although the role of wastewater in regulating the corrosion processes is poorly understood. Flooding and splashing of wastewater in sewers periodically inoculates the concrete surface in sewer pipes. No study has systematically investigated the impacts of wastewater inoculation on the corrosion of concrete in sewers. This study investigated the development of the microbial community, sulfide uptake activity, and the change of the concrete properties for coupons subjected to periodic wastewater inoculation. The concrete coupons were exposed to different levels of hydrogen sulfide under well-controlled conditions in laboratory-scale corrosion chambers simulating real sewers. It was evident that the periodic inoculation induced higher corrosion losses of the concrete in comparison to noninoculated coupons. Instantaneous measurements such as surface pH did not reflect the cumulative corrosion losses caused by long-term microbial activity. Analysis of the long-term profiles of the sulfide uptake rate using a Gompertz model supported the enhanced corrosion activity and greater corrosion loss. The enhanced corrosion rate was due to the higher sulfide uptake rates induced by wastewater inoculation, although the increasing trend of sulfide uptake rates was slower with wastewater. Increased diversity in the corrosion-layer microbial communities was detected when the corrosion rates were higher. This coincided with the environmental conditions of increased levels of gaseous H2S and the concrete type.
Hunt, Charles D.; Rosa, Sarah N.
2009-01-01
Municipal wastewater plumes discharging from aquifer to ocean were detected by nearshore wading surveys at Kihei and Lahaina, on the island of Maui in Hawaii. Developed in cooperation with the Hawaii State Department of Health, the survey methodology included instrument trolling to detect submarine groundwater discharge, followed by analysis of water and macroalgae for a suite of chemical and isotopic constituents that constitute a 'multitracer' approach. Surveys were conducted May 6-28, 2008, during fair-weather conditions and included: (1) wading and kayak trolling with a multiparameter water-quality sonde, (2) marine water-column sampling, and (3) collection of benthic algae samples. Instrument trolling helped guide the water sampling strategy by providing dense, continuous transects of water properties on which groundwater discharge zones could be identified. Water and algae samples for costly chemical and isotopic laboratory analyses were last to be collected but were highly diagnostic of wastewater presence and nutrient origin because of low detection levels and confirmation across multiple tracers. Laboratory results confirmed the presence of wastewater constituents in marine water-column samples at both locales and showed evidence of modifying processes such as denitrification and mixing of effluent with surrounding groundwater and seawater. Carbamazepine was the most diagnostic pharmaceutical, detected in several marine water-column samples and effluent at both Kihei and Lahaina. Heavy nitrogen-isotope compositions in water and algae were highly diagnostic of effluent, particularly where enriched to even heavier values than effluent source compositions by denitrification. Algae provided an added advantage of time-integrating their nitrogen source during growth. The measured Kihei plume coincided almost exactly with prior model predictions, but the Lahaina plume was detected well south of the expected direct path from injection wells to shore and may be guided by a buried valley fill from an ancestral course of Honokowai Stream. Nutrient concentrations in upland wells at Lahaina were comparable to concentrations in wastewater but originate instead from agricultural fertilizers. A key factor in detecting and mapping the wastewater plumes was sampling very close to shore (mostly within 20 m or so) and in very shallow water (mostly 0.5 to 2 m depth). Effluent probably discharges somewhat offshore as well, although prior attempts to detect an injected fluorescent tracer at Lahaina in the 1990s were inconclusive, having focused farther offshore in water mostly 10-30 m deep. Sampling of benthic porewater and algae would offer the best chances for further effluent detection and mapping offshore, and sampling of onland monitor wells could provide additional understanding of geochemical processes that take place in the effluent plumes and bring about some degree of natural attenuation of nutrients.
Zhang, Bo; Yu, Quanwei; Yan, Guoqi; Zhu, Hubo; Xu, Xiang Yang; Zhu, Liang
2018-03-15
To understand the seasonal variation of the activated sludge (AS) bacterial community and identify core microbes in different wastewater processing systems, seasonal AS samples were taken from every biological treatment unit within 4 full-scale wastewater treatment plants. These plants adopted A2/O, A/O and oxidation ditch processes and were active in the treatment of different types and sources of wastewater, some domestic and others industrial. The bacterial community composition was analyzed using high-throughput sequencing technology. The correlations among microbial community structure, dominant microbes and process performance were investigated. Seasonal variation had a stronger impact on the AS bacterial community than any variation within different wastewater treatment system. Facing seasonal variation, the bacterial community within the oxidation ditch process remained more stable those in either the A2/O or A/O processes. The core genera in domestic wastewater treatment systems were Nitrospira, Caldilineaceae, Pseudomonas and Lactococcus. The core genera in the textile dyeing and fine chemical industrial wastewater treatment systems were Nitrospira, Thauera and Thiobacillus.
Kuroda, Kyohei; Hatamoto, Masashi; Nakahara, Nozomi; Abe, Kenichi; Takahashi, Masanobu; Araki, Nobuo; Yamaguchi, Takashi
2015-04-01
Microbial systems are widely used to treat different types of wastewater from domestic, agricultural, and industrial sources. Community composition is an important factor in determining the successful performance of microbial treatment systems; however, a variety of uncultured and unknown lineages exist in sludge that requires identification and characterization. The present study examined the archaeal community composition in methanogenic, denitrifying, and nitrogen-/phosphate-removing wastewater treatment sludge by Archaea-specific 16S rRNA gene sequencing analysis using Illumina sequencing technology. Phylotypes belonging to Euryarchaeota, including methanogens, were most abundant in all samples except for nitrogen-/phosphate-removing wastewater treatment sludge. High levels of Deep Sea Hydrothermal Vent Group 6 (DHVEG-6), WSA2, Terrestrial Miscellaneous Euryarchaeotal Group, and Miscellaneous Crenarchaeotic Group were also detected. Interestingly, DHVEG-6 was dominant in nitrogen-/phosphate-removing wastewater treatment sludge, indicating that unclear lineages of Archaea still exist in the anaerobic wastewater treatment sludges. These results reveal a previously unknown diversity of Archaea in sludge that can potentially be exploited for the development of more efficient wastewater treatment strategies.
An experimental investigation of wastewater treatment using electron beam irradiation
NASA Astrophysics Data System (ADS)
Emami-Meibodi, M.; Parsaeian, M. R.; Amraei, R.; Banaei, M.; Anvari, F.; Tahami, S. M. R.; Vakhshoor, B.; Mehdizadeh, A.; Fallah Nejad, N.; Shirmardi, S. P.; Mostafavi, S. J.; Mousavi, S. M. J.
2016-08-01
Electron beam (EB) is used for disinfection and treatment of different types of sewage and industrial wastewater. However, high capital investment required and the abundant energy consumed by this process raise doubts about its cost-effectiveness. In this paper, different wastewaters, including two textile sewages and one municipal wastewater are experimentally studied under different irradiation strategies (i.e. batch, 60 l/min and 1000 m3/day) in order to establish the reliability and the optimum conditions for the treatment process. According to the results, EB improves the efficiency of traditional wastewater treatment methods, but, for textile samples, coagulation before EB irradiation is recommended. The cost estimation of EB treatment compared to conventional methods shows that EB has been more expensive than chlorination and less expensive than activated sludge. Therefore, EB irradiation is advisable if and only if conventional methods of textile wastewater treatment are insufficient or chlorination of municipal wastewater is not allowed for health reasons. Nevertheless, among the advanced oxidation processes (AOP), EB irradiation process may be the most suitable one in industrial scale operations.
Huang, Chao; Guo, Hai-Jun; Xiong, Lian; Wang, Bo; Shi, Si-Lan; Chen, Xue-Fang; Lin, Xiao-Qing; Wang, Can; Luo, Jun; Chen, Xin-De
2016-01-20
In this study, lipid fermentation wastewater (fermentation broth after separation with yeast biomass) with high Chemical Oxygen Demand (COD) value of 25,591 mg/L was used as substrate for bacterial cellulose (BC) production by Gluconacetobacter xylinus for the first time. After 5 days of fermentation, the highest BC yield (0.659 g/L) was obtained. Both monosaccharide and polysaccharides present in lipid fermentation wastewater could be utilized by G. xylinus simultaneously during fermentation. By this bioconversion, 30.0% of COD could be removed after 10 days of fermentation and the remaining wastewater could be used for further BC fermentation. The crystallinity of BC samples in lipid fermentation wastewater increased gradually during fermentation but overall the environment of lipid fermentation wastewater showed small influence on BC structure by comparison with that in traditional HS medium by using FE-SEM, FTIR, and XRD. By this work, the possibility of using lipid fermentation wastewater containing low value carbohydrate polymer (extracellular polysaccharides) for high value carbohydrate polymer (BC) production was proven. Copyright © 2015 Elsevier Ltd. All rights reserved.
Berberidou, Chrysanthi; Kitsiou, Vasiliki; Lambropoulou, Dimitra A; Antoniadis, Αpostolos; Ntonou, Eleftheria; Zalidis, George C; Poulios, Ioannis
2017-06-15
The present study proposes an integrated system based on the synergetic action of solar photocatalytic oxidation with surface flow constructed wetlands for the purification of wastewater contaminated with pesticides. Experiments were conducted at pilot scale using simulated wastewater containing the herbicide clopyralid. Three photocatalytic methods under solar light were investigated: the photo-Fenton and the ferrioxalate reagent as well as the combination of photo-Fenton with TiO 2 P25, which all led to similar mineralization rates. The subsequent treatment in constructed wetlands resulted in further decrease of DOC and inorganic ions concentrations, especially of NO 3 - . Clopyralid was absent in the outlet of the wetlands, while the concentration of the detected intermediates was remarkably low. These findings are in good agreement with the results of phytotoxicity of the wastewater, after treatment with the ferrioxalate/wetlands process, which was significantly reduced. Thus, this integrated system based on solar photocatalysis and constructed wetlands has the potential to effectively detoxify wastewater containing pesticides, producing a purified effluent which could be exploited for reuse applications. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yu, Keer
2018-01-01
Paper mill wastewater (PMW) is the outlet water generated during pulp and papermaking process in the paper industry. Fermentation by wastewater can lower the cost of production as well as alleviate the pressure of wastewater treatment. Rhamnolipids find broad placations as natural surfactants. This paper studied the rhamnolipids fermentation by employing Pseudomonas aeruginosa isolated by the laboratory, and determined to use wastewater which filtered by medium speed filter paper and strain Z2, the culture conditions were optimized, based on the flask shaking fermentation. On the basis of 5L tank fermentation, batch fermentation was carried out, the yield of fermentation reached 7.067g/L and the fermentation kinetics model of cell growth, product formation and substrate consumption was established by using origin software, and the fermentation process could be simulated well. And studied on the extraction process of rhamnolipids, through fermentation dynamic equation analysis can predict the in fill material yield can be further improved. Research on the extraction process of rhamnolipid simplifies the operation of extraction, and lays the foundation for the industrial extraction.
Rusiñol, Marta; Fernandez-Cassi, Xavier; Timoneda, Natàlia; Carratalà, Anna; Abril, Josep Francesc; Silvera, Carolina; Figueras, Maria José; Gelati, Emiliano; Rodó, Xavier; Kay, David; Wyn-Jones, Peter; Bofill-Mas, Sílvia; Girones, Rosina
2015-08-15
Conventional wastewater treatment does not completely remove and/or inactive viruses; consequently, viruses excreted by the population can be detected in the environment. This study was undertaken to investigate the distribution and seasonality of human viruses and faecal indicator bacteria (FIB) in a river catchment located in a typical Mediterranean climate region and to discuss future trends in relation to climate change. Sample matrices included river water, untreated and treated wastewater from a wastewater treatment plant within the catchment area, and seawater from potentially impacted bathing water. Five viruses were analysed in the study. Human adenovirus (HAdV) and JC polyomavirus (JCPyV) were analysed as indicators of human faecal contamination of human pathogens; both were reported in urban wastewater (mean values of 10(6) and 10(5) GC/L, respectively), river water (10(3) and 10(2) GC/L) and seawater (10(2) and 10(1) GC/L). Human Merkel Cell polyomavirus (MCPyV), which is associated with Merkel Cell carcinoma, was detected in 75% of the raw wastewater samples (31/37) and quantified by a newly developed quantitative polymerase chain reaction (qPCR) assay with mean concentrations of 10(4) GC/L. This virus is related to skin cancer in susceptible individuals and was found in 29% and 18% of river water and seawater samples, respectively. Seasonality was only observed for norovirus genogroup II (NoV GGII), which was more abundant in cold months with levels up to 10(4) GC/L in river water. Human hepatitis E virus (HEV) was detected in 13.5% of the wastewater samples when analysed by nested PCR (nPCR). Secondary biological treatment (i.e., activated sludge) and tertiary sewage disinfection including chlorination, flocculation and UV radiation removed between 2.22 and 4.52 log10 of the viral concentrations. Climate projections for the Mediterranean climate areas and the selected river catchment estimate general warming and changes in precipitation distribution. Persistent decreases in precipitation during summer can lead to a higher presence of human viruses because river and sea water present the highest viral concentrations during warmer months. In a global context, wastewater management will be the key to preventing environmental dispersion of human faecal pathogens in future climate change scenarios. Copyright © 2015 Elsevier Ltd. All rights reserved.
EPA has conducted testing of agricultural sites in Alabama where sewage sludge was applied from a local wastewater treatment plant that receives wastewater from numerous industrial sources, including facilities that manufacture and use perfluorooctanoic acid (PFOA) and other perf...
Fathead minnows (Pimephales promelas) were caged for four days at multiple locations upstream and downstream of a wastewater treatment plant (WWTP) discharge into the Maumee River (USA, OH). Grab water samples collected at the same location were extracted using several different ...
Chlorine Analysis - Wastewater. Training Module 5.125.2.77.
ERIC Educational Resources Information Center
Kirkwood Community Coll., Cedar Rapids, IA.
This document is an instructional module package prepared in objective form for use by an instructor familiar with the laboratory procedures for determining the combined chlorine residual of a wastewater sample. Included are objectives, instructor guides, student handouts, and transparency masters. This module considers the amperometric, DPD,…
The effect of CN- (CN-) on nitrification was examined with samples from nitrifying wastewater enrichments using two different approaches: by measuring substrate (ammonia) specific oxygen uptake rates (SOUR), and by using RT-qPCR to quantify the transcripts of functional genes inv...
Handbook for Monitoring Industrial Wastewater.
ERIC Educational Resources Information Center
Associated Water & Air Resources Engineers, Inc., Nashville, TN.
This manual for industrial wastewater monitoring covers the philosophy of monitoring needs, planning, sampling, measuring, and analysis. Sufficient detail is given for those who wish to explore more deeply some of the practical and theoretical aspects of any of the phases of a monitoring program. A logical procedure is suggested and direction…
We measured the concentrations of 56 active pharmaceutical ingredients (APIs) and seven metabolites, including 50 prioritized APIs, in 24-hour composite effluent samples collected from 50 very large municipal wastewater treatment plants across the US. Hydrochlorothiazide was foun...
Physics for Water and Wastewater Operators.
ERIC Educational Resources Information Center
Koundakjian, Philip
This physics course covers the following main subject areas: (1) liquids; (2) pressure; (3) liquid flow; (4) temperature and heat; and (5) electric currents. The prerequisites for understanding this material are basic algebra and geometry. The lessons are composed mostly of sample problems and calculations that water and wastewater operators have…
1997-10-01
This report discusses the results of a bench scale study conducted to evaluate the potential inhibitory effects of untreated AFFF wastewater to the...untreated AFFF wastewater to the nitrification process of the Virginia Initiative Plant biological nutrient removal system. Under this testing, bench...scale reactors simulating the nitrification process were loaded at various AFFF concentrations and the influence on the process performance was
Chen, Zhiqiang; Wang, Hongcheng; Chen, Zhaobo; Ren, Nanqi; Wang, Aijie; Shi, Yue; Li, Xiaoming
2011-01-30
A full-scale test was conducted with an up-flow anaerobic sludge blanket (UASB) pre-treating pharmaceutical wastewater containing 6-aminopenicillanic acid (6-APA) and amoxicillin. The aim of the study is to investigate the performance of UASB in the condition of a high chemical oxygen demand (COD) loading rate from 12.57 to 21.02 kgm(-3)d(-1) and a wide pH from 5.57 to 8.26, in order to provide a reference for treating the similar chemical synthetic pharmaceutical wastewater containing 6-APA and amoxicillin. The results demonstrated that the UASB average percentage reduction in COD, 6-APA and amoxicillin were 52.2%, 26.3% and 21.6%, respectively. In addition, three models, built on the back propagation neural network (BPNN) theory and linear regression techniques were developed for the simulation of the UASB system performance in the biodegradation of pharmaceutical wastewater containing 6-APA and amoxicillin. The average error of COD, 6-APA and amoxicillin were -0.63%, 2.19% and 5.40%, respectively. The results indicated that these models built on the BPNN theory were well-fitted to the detected data, and were able to simulate and predict the removal of COD, 6-APA and amoxicillin by UASB. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.
Removal of cadmium (II) from simulated wastewater by ion flotation technique
2013-01-01
A separation technique which has recently received a sharp increase in research activities is “ion flotation”. This technique has four important advantages for treating wastewaters: low energy consumption, small space requirements, small volume of sludge and acting selectively. The present study aims to optimize parameters of ion flotation for cadmium removal in simulated wastewater at laboratory scale. It was obtained on the reaction between Cd2+ and sodium dodecylesulfate (SDS) collector followed by flotation with ethanol as frother. Test solution was prepared by combining the required amount of cadmium ion, SDS and necessary frother or sodium sulfate solution. All experiments were carried out in a flotation column at laboratory temperature (27°C), adjusted pH = 4 and 120 minutes. The different parameters (namely: flow rate, cadmium, SDS and frother concentrations and ionic strength) influencing the flotation process were examined. The best removal efficiency obtained at a collector-metal ratio of 3:1 in 60 min with flow rate of 150 mL/min was 84%. The maximum cadmium removal was 92.1% where ethanol was introduced at a concentration 0.4% to flotation column with above conditions. The obtained results were promising, as both cadmium and collector were effectively removed from wastewater. Hence, the application of ion flotation for metal ions removal from effluents seems to be efficient. PMID:23388386
Feedforward-feedback control of dissolved oxygen concentration in a predenitrification system.
Yong, Ma; Yongzhen, Peng; Shuying, Wang
2005-07-01
As the largest single energy-consuming component in most biological wastewater treatment systems, aeration control is of great interest from the point of view of saving energy and improving wastewater treatment plant efficiency. In this paper, three different strategies, including conventional constant dissolved oxygen (DO) set-point control, cascade DO set-point control, and feedforward-feedback DO set-point control were evaluated using the denitrification layout of the IWA simulation benchmark. Simulation studies showed that the feedforward-feedback DO set-point control strategy was better than the other control strategies at meeting the effluent standards and reducing operational costs. The control strategy works primarily by feedforward control based on an ammonium sensor located at the head of the aerobic process. It has an important advantage over effluent measurements in that there is no (or only a very short) time delay for information; feedforward control was combined with slow feedback control to compensate for model approximations. The feedforward-feedback DO control was implemented in a lab-scale wastewater treatment plant for a period of 60 days. Compared to operation with constant DO concentration, the required airflow could be reduced by up to 8-15% by employing the feedforward-feedback DO-control strategy, and the effluent ammonia concentration could be reduced by up to 15-25%. This control strategy can be expected to be accepted by the operating personnel in wastewater treatment plants.
Nationwide reconnaissance of contaminants of emerging ...
Mobile and persistent chemicals that are present in urban wastewater, such as pharmaceuticals, may survive on-site or municipal wastewater treatment and post-discharge environmental processes. These pharmaceuticals have the potential to reach surface and groundwaters, essential drinking-water sources. A joint, two-phase U.S. Geological Survey-U.S. Environmental Protection Agency study examined source and treated waters from 25 drinking-water treatment plants from across the United States. Treatment plants that had probable wastewater inputs to their source waters were selected to assess the prevalence of pharmaceuticals in such source waters, and to identify which pharmaceuticals persist through drinking-water treatment. All samples were analyzed for 24 pharmaceuticals in Phase I and for 118 in Phase II. In Phase I, 11 pharmaceuticals were detected in all source-water samples, with a maximum of nine pharmaceuticals detected in any one sample. The median number of pharmaceuticals for all 25 samples was five. Quantifiable pharmaceutical detections were fewer, with a maximum of five pharmaceuticals in any one sample and a median for all samples of two. In Phase II, 47 different pharmaceuticals were detected in all source-water samples, with a maximum of 41 pharmaceuticals detected in any one sample. The median number of pharmaceuticals for all 25 samples was eight. For 37 quantifiable pharmaceuticals in Phase II, median concentrations in source water were below 11
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mike lewis
2013-02-01
This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond WRU-I-0160-01, Modification 1 (formerly LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mike Lewis
2014-02-01
This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond WRU-I-0160-01, Modification 1 (formerly LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.
Bukhari, Mahwish; Awan, M. Ali; Qazi, Ishtiaq A.; Baig, M. Anwar
2012-01-01
This paper illustrates systematic development of a convenient analytical method for the determination of chromium and cadmium in tannery wastewater using laser-induced breakdown spectroscopy (LIBS). A new approach was developed by which liquid was converted into solid phase sample surface using absorption paper for subsequent LIBS analysis. The optimized values of LIBS parameters were 146.7 mJ for chromium and 89.5 mJ for cadmium (laser pulse energy), 4.5 μs (delay time), 70 mm (lens to sample surface distance), and 7 mm (light collection system to sample surface distance). Optimized values of LIBS parameters demonstrated strong spectrum lines for each metal keeping the background noise at minimum level. The new method of preparing metal standards on absorption papers exhibited calibration curves with good linearity with correlation coefficients, R2 in the range of 0.992 to 0.998. The developed method was tested on real tannery wastewater samples for determination of chromium and cadmium. PMID:22567570
Razban, Behrooz; Nelson, Kristina Y; McMartin, Dena W; Cullimore, D Roy; Wall, Michelle; Wang, Dunling
2012-01-01
An analytical method to produce profiles of bacterial biomass fatty acid methyl esters (FAME) was developed employing rapid agitation followed by static incubation (RASI) using selective media of wastewater microbial communities. The results were compiled to produce a unique library for comparison and performance analysis at a Wastewater Treatment Plant (WWTP). A total of 146 samples from the aerated WWTP, comprising 73 samples of each secondary and tertiary effluent, were included analyzed. For comparison purposes, all samples were evaluated via a similarity index (SI) with secondary effluents producing an SI of 0.88 with 2.7% variation and tertiary samples producing an SI 0.86 with 5.0% variation. The results also highlighted significant differences between the fatty acid profiles of the tertiary and secondary effluents indicating considerable shifts in the bacterial community profile between these treatment phases. The WWTP performance results using this method were highly replicable and reproducible indicating that the protocol has potential as a performance-monitoring tool for aerated WWTPs. The results quickly and accurately reflect shifts in dominant bacterial communities that result when processes operations and performance change.
Maruthamuthu, Murali Kannan; Nadarajan, Saravanan Prabhu; Ganesh, Irisappan; Ravikumar, Sambandam; Yun, Hyungdon; Yoo, Ik-Keun; Hong, Soon Ho
2015-11-01
For the construction of an efficient copper waste treatment system, a cell surface display strategy was employed. The copper adsorption ability of recombinant bacterial strains displaying three different copper binding peptides were evaluated in LB Luria-Bertani medium (LB), artificial wastewater, and copper phthalocyanine containing textile dye industry wastewater samples. Structural characteristics of the three peptides were also analyzed by similarity-based structure modeling. The best binding peptide was chosen for the construction of a dimeric peptide display and the adsorption ability of the monomeric and dimeric peptide displayed strains were compared. The dimeric peptide displayed strain showed superior copper adsorption in all three tested conditions (LB, artificial wastewater, and textile dye industry wastewater). When the strains were exposed to copper phthalocyanine dye polluted wastewater, the dimeric peptide display [543.27 µmol/g DCW dry cell weight (DCW)] showed higher adsorption of copper when compared with the monomeric strains (243.53 µmol/g DCW).
Tomperi, Jani; Leiviskä, Kauko
2018-06-01
Traditionally the modelling in an activated sludge process has been based on solely the process measurements, but as the interest to optically monitor wastewater samples to characterize the floc morphology has increased, in the recent years the results of image analyses have been more frequently utilized to predict the characteristics of wastewater. This study shows that the traditional process measurements or the automated optical monitoring variables by themselves are not capable of developing the best predictive models for the treated wastewater quality in a full-scale wastewater treatment plant, but utilizing these variables together the optimal models, which show the level and changes in the treated wastewater quality, are achieved. By this early warning, process operation can be optimized to avoid environmental damages and economic losses. The study also shows that specific optical monitoring variables are important in modelling a certain quality parameter, regardless of the other input variables available.
Abbasi, Umara; Jin, Wang; Pervez, Arshid; Bhatti, Zulfiqar Ahmad; Tariq, Madiha; Shaheen, Shahida; Iqbal, Akhtar; Mahmood, Qaisar
2016-01-01
Microbial fuel cell (MFC) is a new technology that not only generates energy but treats wastewater as well. A dual chamber MFC was operated under laboratory conditions. Wastewater samples from vegetable oil industries, metal works, glass and marble industries, chemical industries and combined industrial effluents were collected and each was treated for 98h in MFC. The treatment efficiency for COD in MFC was in range of 85-90% at hydraulic retention time (HRT) of 96h and had significant impact on wastewater treatment as well. The maximum voltage of 890mV was generated when vegetable oil industries discharge was treated with columbic efficiency of 5184.7C. The minimum voltage was produced by Glass House wastewater which was 520mV. There was positive significant co-relation between COD concentration and generated voltage. Further research should be focused on the organic contents of wastewater and various ionic species affecting voltage generation in MFC. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nataraja, M; Qin, Y; Seagren, E A
2006-07-01
The relationship between ultraviolet absorbance at 280 nm (UV280) and the 5-day Biochemical Oxygen Demand (BOD5) test was evaluated using wastewater samples collected during March - December 1998 from the Fort Meade wastewater treatment plant (Maryland, U.S.A.). Three types of samples were collected: raw influent wastewater, primary effluent, and the effluent from the nitrification settling basin. A regression of BOD5 on UV280 was obtained using half of the data, with the other half of the data used to test application of the equation. The presence of NO3 and NO2, did not interfere with the BOD5/UV relationship. However, the relative fraction of organic compounds that absorb at UV280 and are biodegradable did appear to decrease across the treatment plant, thereby reducing the strength of the association between BOD5 and UV280 further along the treatment train. Interestingly, the exclusion of solids > 1 microm from the BOD5 test did not strengthen the association between BOD5 and UV280. These results suggest that simple UV absorbance measurements may be a useful analytical tool for wastewater treatment personnel, allowing them to quickly monitor for changes in the BOD5 during the treatment process and to quickly estimate the BOD5 when determining what dilutions to use in the standard BOD5 test. However, such relationships are likely to be wastewater and treatment plant specific and variable with time and treatment.
Electrochemical and/or microbiological treatment of pyrolysis wastewater.
Silva, José R O; Santos, Dara S; Santos, Ubiratan R; Eguiluz, Katlin I B; Salazar-Banda, Giancarlo R; Schneider, Jaderson K; Krause, Laiza C; López, Jorge A; Hernández-Macedo, Maria L
2017-10-01
Electrochemical oxidation may be used as treatment to decompose partially or completely organic pollutants (wastewater) from industrial processes such as pyrolysis. Pyrolysis is a thermochemical process used to obtain bio-oil from biomasses, generating a liquid waste rich in organic compounds including aldehydes and phenols, which can be submitted to biological and electrochemical treatments in order to minimize its environmental impact. Thus, electrochemical systems employing dimensionally stable anodes (DSAs) have been proposed to enable biodegradation processes in subsurface environments. In order to investigate the organic compound degradation from residual coconut pyrolysis wastewater, ternary DSAs containing ruthenium, iridium and cerium synthetized by the 'ionic liquid method' at different calcination temperatures (500, 550, 600 and 700 °C) for the pretreatment of these compounds, were developed in order to allow posterior degradation by Pseudomonas sp., Bacillus sp. or Acinetobacter sp. bacteria. The electrode synthesized applying 500 °C displayed the highest voltammetric charge and was used in the pretreatment of pyrolysis effluent prior to microbial treatment. Regarding biological treatment, the Pseudomonas sp. exhibited high furfural degradation in wastewater samples electrochemically pretreated at 2.0 V. On the other hand, the use of Acinetobacter efficiently degraded phenolic compounds such as phenol, 4-methylphenol, 2,5-methylphenol, 4-ethylphenol and 3,5-methylphenol in both wastewater samples, with and without electrochemical pretreatment. Overall, the results indicate that the combination of both processes used in this study is relevant for the treatment of pyrolysis wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.
Balsiger, Heather A.; de la Torre, Roberto; Lee, Wen-Yee; Cox, Marc B.
2010-01-01
The assay described here represents an improved yeast bioassay that provides a rapid yet sensitive screening method for EDCs with very little hands-on time and without the need for sample preparation. Traditional receptor-mediated reporter assays in yeast were performed twelve to twenty four hours after ligand addition, used colorimetric substrates, and, in many cases, required high, non-physiological concentrations of ligand. With the advent of new chemiluminescent substrates a ligand-induced signal can be detected within thirty minutes using high picomolar to low nanomolar concentrations of estrogen. As a result of the sensitivity (EC50 for estradiol is ~ 0.7 nM) and the very short assay time (2-4 hours) environmental water samples can typically be assayed directly without sterilization, extraction, and concentration. Thus, these assays represent rapid and sensitive approaches for determining the presence of contaminants in environmental samples. As proof of principle, we directly assayed wastewater influent and effluent taken from a wastewater treatment plant in the El Paso, TX area for the presence of estrogenic activity. The data obtained in the four-hour yeast bioassay directly correlated with GC-mass spectrometry analysis of these same water samples. PMID:20074779
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Mike
This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2013, through October 31, 2014. The report contains, as applicable, the following information; Site description; Facility and system description; Permit required monitoring data and loading rates; Status of compliance conditions and activities; and Discussion of the facility’s environmental impacts. The current permit expires on March 16, 2015. A permit renewal application was submitted to Idaho Department of Environmental Quality on September 15, 2014. Duringmore » the 2014 permit year, no wastewater was land-applied to the irrigation area of the Central Facilities Area Sewage Treatment Plant and therefore, no effluent flow volumes or samples were collected from wastewater sampling point WW-014102. Seepage testing of the three lagoons was performed between August 26, 2014 and September 22, 2014. Seepage rates from Lagoons 1 and 2 were below the 0.25 inches/day requirement; however, Lagoon 3 was above the 0.25 inches/day. Lagoon 3 has been isolated and is being evaluated for future use or permanent removal from service.« less
Beneduce, Luciano; Gatta, Giuseppe; Bevilacqua, Antonio; Libutti, Angela; Tarantino, Emanuele; Bellucci, Micol; Troiano, Eleonora; Spano, Giuseppe
2017-11-02
In order to evaluate if the reuse of food industry treated wastewater is compatible for irrigation of food crops, without increased health risk, in the present study a cropping system, in which ground water and treated wastewater were used for irrigation of tomato and broccoli, during consecutive crop seasons was monitored. Water, crop environment and final products were monitored for microbial indicators and pathogenic bacteria, by conventional and molecular methods. The microbial quality of the irrigation waters influenced sporadically the presence of microbial indicators in soil. No water sample was found positive for pathogenic bacteria, independently from the source. Salmonella spp. and Listeria monocytogenes were detected in soil samples, independently from the irrigation water source. No pathogen was found to contaminate tomato plants, while Listeria monocytogenes and E. coli O157:H7 were detected on broccoli plant, but when final produce were harvested, no pathogen was detected on edible part. The level of microbial indicators and detection of pathogenic bacteria in field and plant was not dependent upon wastewater used. Our results, suggest that reuse of food industry wastewater for irrigation of agricultural crop can be applied without significant increase of potential health risk related to microbial quality. Copyright © 2017 Elsevier B.V. All rights reserved.
Extracellular enzyme activity in a willow sewage treatment system.
Brzezinska, Maria Swiontek; Lalke-Porczyk, Elżbieta; Kalwasińska, Agnieszka
2012-12-01
This paper presents the results of studies on the activity of extra-cellular enzymes in soil-willow vegetation filter soil which is used in the post-treatment of household sewage in an onsite wastewater treatment system located in central Poland. Wastewater is discharged from the detached house by gravity into the onsite wastewater treatment system. It flows through a connecting pipe into a single-chamber septic tank and is directed by the connecting pipe to a control well to be further channelled in the soil-willow filter by means of a subsurface leaching system. Soil samples for the studies were collected from two depths of 5 cm and 1 m from three plots: close to the wastewater inflow, at mid-length of the plot and close to its terminal part. Soil samples were collected from May to October 2009. The activity of the extra-cellular enzymes was assayed by the fluorometric method using 4-methylumbelliferyl and 7-amido-4-methylcoumarin substrate. The ranking of potential activity of the assayed enzymes was the same at 5 cm and 1 m soil depths, i.e. esterase > phosphmomoesterase > leucine-aminopeptidase > β-glucosidase > α-glucosidase. The highest values of enzymatic activity were recorded in the surface layer of the soil at the wastewater inflow and decreased with increasing distance from that point.
Reduction of Cryptosporidium, Giardia, and Fecal Indicators by Bardenpho Wastewater Treatment.
Schmitz, Bradley W; Moriyama, Hitoha; Haramoto, Eiji; Kitajima, Masaaki; Sherchan, Samendra; Gerba, Charles P; Pepper, Ian L
2018-06-19
Increased demand for water reuse and reclamation accentuates the importance for optimal wastewater treatment to limit protozoa in effluents. Two wastewater treatment plants utilizing advanced Bardenpho were investigated over a 12-month period to determine the incidence and reduction of Cryptosporidium, Giardia, Cyclospora, and fecal indicators. Results were compared to facilities that previously operated in the same geographical area. Protozoa (oo)cysts were concentrated using an electronegative filter and subsequently detected by fluorescent microscopy and/or PCR methods. Cryptosporidium and Giardia were frequently detected in raw sewage, but Cyclospora was not detected in any wastewater samples. Facilities with Bardenpho treatment exhibited higher removals of (oo)cysts than facilities utilizing activated sludge or trickling filters. This was likely due to Bardenpho systems having increased solid wasting rates; however, this mechanism cannot be confirmed as sludge samples were not analyzed. Use of dissolved-air-flotation instead of sedimentation tanks did not result in more efficient removal of (oo)cysts. Concentrations of protozoa were compared with each other, Escherichia coli, somatic coliphage, and viruses (pepper mild mottle virus, Aichi virus 1, adenovirus, and polyomaviruses JC and BK). Although significant correlations were rare, somatic coliphage showed the highest potential as an indicator for the abundance of protozoa in wastewaters.
Cultivation of Chlorella on brewery wastewater and nano-particle biosynthesis by its biomass.
Subramaniyam, Vidhyasri; Subashchandrabose, Suresh Ramraj; Ganeshkumar, Vimalkumar; Thavamani, Palanisami; Chen, Zuliang; Naidu, Ravi; Megharaj, Mallavarapu
2016-07-01
This study investigated an integrated and sustainable approach for iron nanoparticles synthesis using Chlorella sp. MM3 biomass produced from the remediation of brewery wastewater. The algal growth characteristics, biomass production, nutrient removal, and nanoparticle synthesis including its characterisation were studied to prove the above approach. The growth curve of Chlorella depicted lag and exponential phase characteristics during the first 4days in a brewery wastewater collected from a single batch of brewing process (single water sample) indicating the growth of algae in brewery wastewater. The pollutants such as total nitrogen, total phosphorus and total organic carbon in single water sample were completely utilised by Chlorella for its growth. The X-ray photoelectron spectroscopy spectra showed peaks at 706.56eV, 727.02eV, 289.84eV and 535.73eV which corresponded to the zero-valent iron, iron oxides, carbon and oxygen respectively, confirming the formation of iron nanoparticle capped with algal biomolecules. Scanning electron microscopy and particle size analysis confirmed the presence of spherical shaped iron nanoparticles of size ranging from 5 to 50nm. To our knowledge, this is the first report on nanoparticle synthesis using the biomass generated from phycoremediation of brewery wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.
Santos, Priscila Ribeiro Dos; Daniel, Luiz Antonio
2017-05-01
Sewage and sewage sludge have been recognized as potential sources of two important waterborne pathogenic protozoa: Giardia spp. and Cryptosporidium spp. Due to the lack of studies about the occurrence of these pathogens in sewage and sludge in Brazil, an investigation was conducted at various stages of a municipal wastewater treatment plant (WWTP) aiming to assess the occurrence of Giardia spp. cysts and Cryptosporidium spp. oocysts, their removal by the treatment processes, which are upflow anaerobic sludge blanket (UASB) reactor and dissolved air flotation process, and also the correlations between protozoa and indicator microorganisms. Significant quantities of cysts were detected in 100% of the analyzed wastewater samples, while oocysts were detected only in 39.0% of all wastewater samples. The overall removal of Giardia spp. cysts from the WWTP was on average 2.03 log, and the UASB reactor was more efficient than flotation. The sludge samples presented high quantities of (oo)cysts, implying the risks of contamination in the case of sludge reuse or inadequate disposal. Giardiasis prevalence was estimated between 2.21% and 6.7% for the population served by the WWTP, while cryptosporidiosis prevalence was much lower. Significant positive correlation was obtained only between cysts and Clostridium spores in anaerobic effluent.
Guedes-Alonso, Rayco; Afonso-Olivares, Cristina; Montesdeoca-Esponda, Sarah; Sosa-Ferrera, Zoraida; Santana-Rodríguez, José Juan
2013-12-01
An assessment of the concentrations of thirteen different therapeutic pharmaceutical compounds was conducted on water samples obtained from different wastewater treatment plants (WWTPs) using solid phase extraction and high- and ultra-high-performance liquid chromatography with mass spectrometry detection (HPLC-MS/MS and UHPLC-MS/MS), was carried out. The target compounds included ketoprofen and naproxen (anti-inflammatories), bezafibrate (lipid-regulating), carbamazepine (anticonvulsant), metamizole (analgesic), atenolol (β-blocker), paraxanthine (stimulant), fluoxetine (antidepressant), and levofloxacin, norfloxacin, ciprofloxacin, enrofloxacin and sarafloxacin (fluoroquinolone antibiotics). The relative standard deviations obtained in method were below 11%, while the detection and quantification limits were in the range of 0.3 - 97.4 ng·L(-1) and 1.1 - 324.7 ng·L(-1), respectively. The water samples were collected from two different WWTPs located on the island of Gran Canaria in Spain over a period of one year. The first WWTP (denoted as WWTP1) used conventional activated sludge for the treatment of wastewater, while the other plant (WWTP2) employed a membrane bioreactor system for wastewater treatment. Most of the pharmaceutical compounds detected in this study during the sampling periods were found to have concentrations ranging between 0.02 and 34.81 μg·L(-1).
Beale, D J; Tjandraatmadja, G; Toifl, M; Goodman, N
2014-01-01
There is currently a need for a simple, accurate and reproducible method that quantifies the amount of dissolved methane in wastewater in order to realize the potential methane that can be recovered and account for any emissions. This paper presents such a method, using gas chromatography with flame ionization detection fitted with a GS-Gas PRO column coupled with a headspace auto sampler. A practical limit of detection for methane of 0.9 mg L(-1), with a retention time of 1.24 min, was obtained. It was found that the reproducibility and accuracy of the method increased significantly when samples were collected using an in-house constructed bailer sampling device and with the addition of 100 μL hydrochloric acid (HCl) and 25% sodium chloride (NaCl) and sonication for 30 min prior to analysis. Analysis of wastewater samples and wastewater sludge collected from a treatment facility were observed to range from 12.51 to 15.79 mg L(-1) (relative standard deviation (RSD) 8.1%) and 17.56 to 18.67 mg L(-1) (RSD 3.4%) respectively. The performance of this method was validated by repeatedly measuring a mid-level standard (n=8; 10 mg L(-1)), with an observed RSD of 4.6%.
Lee, Casey J.; Mau, D.P.; Rasmussen, T.J.
2005-01-01
Water and sediment samples were collected by the U.S. Geological Survey in 12 watersheds in Johnson County, northeastern Kansas, to determine the effects of nonpoint and selected point contaminant sources on stream-water quality and their relation to varying land use. The streams studied were located in urban areas of the county (Brush, Dykes Branch, Indian, Tomahawk, and Turkey Creeks), developing areas of the county (Blue River and Mill Creek), and in more rural areas of the county (Big Bull, Captain, Cedar, Kill, and Little Bull Creeks). Two base-flow synoptic surveys (73 total samples) were conducted in 11 watersheds, a minimum of three stormflow samples were collected in each of six watersheds, and 15 streambed-sediment sites were sampled in nine watersheds from October 2002 through June 2004. Discharge from seven wastewater treatment facilities (WWTFs) were sampled during base-flow synoptic surveys. Discharge from these facilities comprised greater than 50 percent of streamflow at the farthest downstream sampling site in six of the seven watersheds during base-flow conditions. Nutrients, organic wastewater-indicator compounds, and prescription and nonprescription pharmaceutical compounds generally were found in the largest concentrations during base-flow conditions at sites at, or immediately downstream from, point-source discharges from WWTFs. Downstream from WWTF discharges streamflow conditions were generally stable, whereas nutrient and wastewater-indicator compound concentrations decreased in samples from sites farther downstream. During base-flow conditions, sites upstream from WWTF discharges had significantly larger fecal coliform and Escherichia coli densities than downstream sites. Stormflow samples had the largest suspended-sediment concentrations and indicator bacteria densities. Other than in samples from sites in proximity to WWTF discharges, stormflow samples generally had the largest nutrient concentrations in Johnson County streams. Discharge from WWTFs with trickling-filter secondary treatment processes had the largest concentrations of many potential contaminants during base-flow conditions. Samples from two of three trickling-filter WWTFs exceeded Kansas Department of Health and Environment pH- and temperature-dependent chronic aquatic-life criteria for ammonia when early-life stages of fish are present. Discharge from trickling-filter facilities generally had the most detections and largest concentrations of many organic wastewater-indicator compounds in Johnson County stream-water samples. Caffeine (stimulant), nonylphenol-diethoxylate (detergent surfactant), and tris(2-butoxyethyl) phosphate (floor polish, flame retardant, and plasticizer) were found at concentrations larger than maximum concentrations in comparable studies. Land use and seasonality affected the occurrence and magnitude of many potential water-quality contaminants originating from nonpoint sources. Base-flow samples from urban sites located upstream from WWTF discharges had larger indicator bacteria densities and wastewater-indicator compound concentrations than did base-flow samples from sites in nonurban areas. Dissolved-solids concentrations were the largest in winter stormflow samples from urban sites and likely were due to runoff from road-salt application. One sample from an urban watershed had a chloride concentration of 1,000 milligrams per liter, which exceeded the Kansas Department of Health and Environment's acute aquatic-life use criterion (860 milligrams per liter) likely due to effects from road-salt application. Pesticide concentrations were the largest in spring stormflow samples collected in nonurban watersheds. Although most wastewater-indicator compounds were found at the largest concentrations in samples from WWTF discharges, the compounds 9-10, anthraquinone (bird repellent), caffeine (stimulant), carbazole (component of coal tar, petroleum products), nonylphenol-diethoxylate (detergent surfactant),
Differential BPA levels in sewage wastewater effluents from metro Detroit communities.
Santos, Julia M; Putt, David A; Jurban, Michael; Joiakim, Aby; Friedrich, Klaus; Kim, Hyesook
2016-10-01
The endocrine disruptor Bisphenol A (BPA) is ubiquitous in both aquatic and surface sediment environments because it is continuously released into sewage wastewater effluent. The measurement of BPA at wastewater treatment plants is rarely performed even though the United States Environmental Protection Agency (EPA) states that current levels of environmental BPA could be a threat to aquatic organisms. Therefore, the aims of this study were to measure BPA levels in sewage wastewater at different collection points over a 1-year period and to compare the levels of BPA to 8-isoprostane, a human derived fatty acid, found in sewage wastewater. We analyzed pre-treated sewage samples collected from three source points located in different communities in the metropolitan Detroit area provided by the Detroit Water and Sewerage Department. Human urine samples were also used in the study. BPA and 8-isoprostane were measured using ELISA kits from Detroit R&D, Inc. BPA levels from the same collection point oscillated more than 10-fold over 1 year. Also, BPA levels fluctuated differentially at each collection point. Highly fluctuating BPA values were confirmed by LC/MS/MS. The concentration of BPA in sewage wastewater was ~100-fold higher than the concentration of 8-isoprostane, while urinary concentration was ~20-fold higher. Thus, BPA levels discharged into the sewage network vary among communities, and differences are also observed within communities over time. The difference in BPA and 8-isoprostane levels suggest that most of the BPA discharged to sewage wastewater might be derived from industries rather than from human urine. Therefore, the continuous monitoring of BPA could account for a better regulation of BPA release into a sewage network.
Microplastic pollution is widely detected in US municipal wastewater treatment plant effluent.
Mason, Sherri A; Garneau, Danielle; Sutton, Rebecca; Chu, Yvonne; Ehmann, Karyn; Barnes, Jason; Fink, Parker; Papazissimos, Daniel; Rogers, Darrin L
2016-11-01
Municipal wastewater effluent has been proposed as one pathway for microplastics to enter the aquatic environment. Here we present a broad study of municipal wastewater treatment plant effluent as a pathway for microplastic pollution to enter receiving waters. A total of 90 samples were analyzed from 17 different facilities across the United States. Averaging all facilities and sampling dates, 0.05 ± 0.024 microparticles were found per liter of effluent. Though a small value on a per liter basis, even minor municipal wastewater treatment facilities process millions of liters of wastewater each day, yielding daily discharges that ranged from ∼50,000 up to nearly 15 million particles. Averaging across the 17 facilities tested, our results indicate that wastewater treatment facilities are releasing over 4 million microparticles per facility per day. Fibers and fragments were found to be the most common type of particle within the effluent; however, some fibers may be derived from non-plastic sources. Considerable inter- and intra-facility variation in discharge concentrations, as well as the relative proportions of particle types, was observed. Statistical analysis suggested facilities serving larger populations discharged more particles. Results did not suggest tertiary filtration treatments were an effective means of reducing discharge. Assuming that fragments and pellets found in the effluent arise from the 'microbeads' found in many cosmetics and personal care products, it is estimated that between 3 and 23 billion (with an average of 13 billion) of these microplastic particles are being released into US waterways every day via municipal wastewater. This estimate can be used to evaluate the contribution of microbeads to microplastic pollution relative to other sources (e.g., plastic litter and debris) and pathways (e.g., stormwater) of discharge. Published by Elsevier Ltd.
Karra, Styliani; Katsivela, Eleftheria
2007-03-01
Measurements were conducted at a Mediterranean site (latitude 35 degrees 31' north and longitude 24 degrees 03' east) during summer, to study the concentration of microorganisms emitted from a wastewater treatment plant under intensive solar radiation (520-840 W/m2) and at elevated air temperatures (25-31 degrees C). Air samples were taken with the Air Sampler MAS 100 (Merck) at each stage of an activated-sludge wastewater treatment (pretreatment, primary settling tanks, aeration tanks, secondary settling tanks, chlorination, and sludge processors). Cultivation methods based on the viable counts of mesophilic heterotrophic bacteria, as well as of indicator microorganisms of faecal contamination (total and faecal coliforms and enterococci), and fungi were performed. During air sampling, temperature, solar radiation, relative humidity and wind speed were measured. The highest concentrations of airborne microorganisms were observed at the aerated grit removal of wastewater at the pretreatment stage. A gradual decrease of bioaerosol emissions was observed during the advanced wastewater treatment from the pretreatment to the primary, secondary and tertiary treatment (97.4% decrease of mesophilic heterotrophic bacteria, and 100% decrease of total coliforms, faecal coliforms and enterococci), 95.8% decrease of fungi. The concentration of the airborne microorganisms at the secondary and tertiary treatment of the wastewater was lower than in the outdoor control. At the same time, the reduction of the microbial load at the waste sludge processors was 19.7% for the mesophilic heterotrophic bacteria, 99.4% for the total coliforms, and 100% for the faecal coliforms and the enterococci, 84.2% for the fungi. The current study concludes that the intensive solar radiation, together with high ambient temperatures, as well as optimal wastewater treatment are the most important factors for low numbers of microbes in the air.
Munro, Kelly; Miller, Thomas H; Martins, Claudia P B; Edge, Anthony M; Cowan, David A; Barron, Leon P
2015-05-29
The modelling and prediction of reversed-phase chromatographic retention time (tR) under gradient elution conditions for 166 pharmaceuticals in wastewater extracts is presented using artificial neural networks for the first time. Radial basis function, multilayer perceptron and generalised regression neural networks were investigated and a comparison of their predictive ability for model solutions discussed. For real world application, the effect of matrix complexity on tR measurements is presented. Measured tR for some compounds in influent wastewater varied by >1min in comparison to tR in model solutions. Similarly, matrix impact on artificial neural network predictive ability was addressed towards developing a more robust approach for routine screening applications. Overall, the best neural network had a predictive accuracy of <1.3min at the 75th percentile of all measured tR data in wastewater samples (<10% of the total runtime). Coefficients of determination for 30 blind test compounds in wastewater matrices lay at or above R(2)=0.92. Finally, the model was evaluated for application to the semi-targeted identification of pharmaceutical residues during a weeklong wastewater sampling campaign. The model successfully identified native compounds at a rate of 83±4% and 73±5% in influent and effluent extracts, respectively. The use of an HRMS database and the optimised ANN model was also applied to shortlisting of 37 additional compounds in wastewater. Ultimately, this research will potentially enable faster identification of emerging contaminants in the environment through more efficient post-acquisition data mining. Copyright © 2015 Elsevier B.V. All rights reserved.
Wan, Min Tao; Chou, Chin Cheng
2014-11-01
Methicillin-resistant Staphylococcus aureus (MRSA) is a potential zoonotic agent. Municipal wastewater treatment plants (WWTPs) can be reservoirs for MRSA dissemination. It is unclear, however, whether MRSA and its β-lactam resistance gene (mecA) can be spread from WWTPs that treat the wastewater of swine auction markets. The aims of the study were to compare (1) the abundance of the mecA gene in one municipal (M-) and one swine (S-) WWTP and (2) the genotypic and phenotypic characteristics of MRSA isolates from these two types of WWTPs. The concentrations of mecA gene from 96 wastewater samples were quantified using real-time quantitative polymerase chain reaction (real-time qPCR). One hundred and thirteen MRSA isolates were recovered and were characterized by antimicrobial susceptibility testing, minimum inhibitory concentrations (MICs), and staphylococcal cassette chromosome mec (SCCmec) typing. The mecA gene could be detected in all the wastewater samples. A high abundance of recovered mecA gene (2.6 × 10(1) to 1.9 × 10(4) gene copies μg(-1) of total DNA) in swine slaughterhouse wastewater implied a correspondingly high transferring/receiving potential. All MRSA isolates were multidrug resistant (MDR) and showed high MICs to different antimicrobials. The M-WWTP MRSA isolates harbored SCCmec II-IV and VII, whereas those from the S-WWTP harbored SCCmec V and IX. In conclusion, wastewater from swine slaughterhouses can make these slaughterhouses potential hotspots for the dissemination of mecA gene and MRSA, and the high MICs of MRSA from both WWTP origins may pose a health risk not only to workers but also to the general public. Copyright © 2014 Elsevier Ltd. All rights reserved.
Groundwater Molybdenum from Emerging Industries in Taiwan.
Tsai, Kuo-Sheng; Chang, Yu-Min; Kao, Jimmy C M; Lin, Kae-Long
2016-01-01
This study determined the influence of emerging industries development on molybdenum (Mo) groundwater contamination. A total of 537 groundwater samples were collected for Mo determination, including 295 samples from potentially contaminated areas of 3 industrial parks in Taiwan and 242 samples from non-potentially contaminated areas during 2008-2014. Most of the high Mo samples are located downstream from a thin film transistor-liquid crystal display (TFT-LCD) panel factory. Mean groundwater Mo concentrations from potentially contaminated areas (0.0058 mg/L) were significantly higher (p < 0.05) than those from non-potentially contaminated areas (0.0022 mg/L). The highest Mo wastewater concentrations in the effluent from the optoelectronics industry and following wastewater batch treatment were 0.788 and 0.0326 mg/L, respectively. This indicates that wastewater containing Mo is a possible source of both groundwater and surface water contamination. Nine samples of groundwater exceed the World Health Organization's suggested drinking water guideline of 0.07 mg/L. A non-carcinogenic risk assessment for Mo in adults and children using the Mo concentration of 0.07 mg/L yielded risks of 0.546 and 0.215, respectively. These results indicate the importance of the development of a national drinking water quality standard for Mo in Taiwan to ensure safe groundwater for use. According to the human health risk calculation, the groundwater Mo standard is suggested as 0.07 mg/L. Reduction the discharge of Mo-contaminated wastewater from factories in the industrial parks is also the important task in the future.
NASA Astrophysics Data System (ADS)
Zhao, Yanxiao; Wang, Xinhua; Wang, Zhiwei; Li, Xiufen; Ren, Yueping
2016-05-01
The increasing and wide application of silver nanoparticles (Ag NPs) has resulted in their appearance in wastewater. In consideration of their potential toxicity and environmental impacts, it is necessary to find effective technology for their removal from wastewater. Here, forward osmosis (FO) membrane was applied for Ag NPs removal from wastewater, and single and combined fouling of nanoparticles and organic macromolecules were further investigated during the FO process. The findings demonstrated that FO membrane can effectively remove Ag NPs from wastewater due to its high rejection performance. Fouling tests indicated that water flux declined appreciably even at the beginning of the single Ag NPs fouling test, and more remarkable flux decline and larger amounts of deposited Ag NPs were observed with an increase of Ag NPs concentration. However, the addition of bovine serum albumin (BSA) could effectively alleviate the FO membrane fouling induced by Ag NPs. The interaction between Ag NPs and BSA was responsible for this phenomenon. BSA can easily form a nanoparticle-protein corona surrounded nanoparticles, which prevented nanoparticles from aggregation due to the steric stabilization mechanism. Furthermore, the interaction between BSA and Ag NPs occurred not only in wastewater but also on FO membrane surface.
A new nanocomposite forward osmosis membrane custom-designed for treating shale gas wastewater
Qin, Detao; Liu, Zhaoyang; Delai Sun, Darren; Song, Xiaoxiao; Bai, Hongwei
2015-01-01
Managing the wastewater discharged from oil and shale gas fields is a big challenge, because this kind of wastewater is normally polluted by high contents of both oils and salts. Conventional pressure-driven membranes experience little success for treating this wastewater because of either severe membrane fouling or incapability of desalination. In this study, we designed a new nanocomposite forward osmosis (FO) membrane for accomplishing simultaneous oil/water separation and desalination. This nanocomposite FO membrane is composed of an oil-repelling and salt-rejecting hydrogel selective layer on top of a graphene oxide (GO) nanosheets infused polymeric support layer. The hydrogel selective layer demonstrates strong underwater oleophobicity that leads to superior anti-fouling capability under various oil/water emulsions, and the infused GO in support layer can significantly mitigate internal concentration polarization (ICP) through reducing FO membrane structural parameter by as much as 20%. Compared with commercial FO membrane, this new FO membrane demonstrates more than three times higher water flux, higher removals for oil and salts (>99.9% for oil and >99.7% for multivalent ions) and significantly lower fouling tendency when investigated with simulated shale gas wastewater. These combined merits will endorse this new FO membrane with wide applications in treating highly saline and oily wastewaters. PMID:26416014
Wanner, Oskar; Panagiotidis, Vassileios; Clavadetscher, Peter; Siegrist, Hansruedi
2005-11-01
By recovery of heat from the raw wastewater in the sewer system, the influent temperature of a wastewater treatment plant (WWTP) is reduced. This can have a negative effect on nitrification in the WWTP, since this process strongly depends on temperature. The analysis of the temperature regime in the WWTP of Zurich, Switzerland, revealed that in the cold season, the effluent temperature is about 0.7 degrees C higher than the influent temperature and that nitrification is not affected by a decrease of the influent wastewater temperature lasting for a couple of hours only, but is significantly affected by a longer lasting temperature decrease. Three diagrams were developed with a steady-state model, from which the consequences of a permanent temperature decrease on the nitrification safety factor, aerobic sludge retention time and total nitrogen removal can be evaluated. Using simulations with a dynamic model, calibrated for the Zurich WWTP, a quantitative relationship between the wastewater temperature and the ammonium effluent concentration was established. This relationship can, in combination with measured effluent concentrations of an existing WWTP, be used to predict the increase of the ammonium effluent concentration in this plant resulting from a permanent decrease of the wastewater influent temperature.
Surface discharge of raw wastewater among unsewered homes in central Alabama
NASA Astrophysics Data System (ADS)
Elliott, M.; Das, P.; Blackwell, A.; Aytekin, E.; Hu, Y.; White, K.; Jones, R.; Lu, Y.
2017-12-01
Discussions of future water and wastewater challenges in the US typically focus on crumbling infrastructure. However, another major challenge has been almost entirely neglected. A growing body of evidence indicates that household discharge of untreated wastewater to the surface (through so-called "straight pipes") is widespread in poor rural communities of Appalachia and the southeastern US. The US Census included water and wastewater questions until 1990. However, the census questions do not appear to differentiate clearly between legal onsite treatment and discharge of raw wastewater to the ground (EPA, 1999; US Census, 2015). Although straight pipes are illegal, many reports from the southern US and Appalachia indicate that the practice is still common in poor rural areas (e.g., EPA Region 4, 2002; du Albuquerque, 2011). A representative, county-scale report on straight pipes in Madison County, NC (Baldwin, 2000) found that 5.6% of unsewered rural households directly discharged raw wastewater and a 2005 study of Bibb County, AL, reported 15% straight pipe among households not connected to sewer (White and Jones, 2006). We focused on two Alabama counties (Hale and Wilcox) with high rates of rural poverty (26.6% and 39.2% of households in poverty, respectively) and soils unsuited for conventional septic systems. We used two main methods (1) site-by-site inspections of a random sample of unsewered rural homes and (2) water sample collection and analysis from impacted streams. We found high rates of straight pipe use and substantial impacts on water quality in local streams. For example, in Wilcox Co., 60% of unsewered households had a visible straight pipe; conservatively, these homes discharge 500,000 gallons of raw sewage to the ground in Wilcox Co. each day. Water sampling upstream and downstream of an unsewered town with many straight pipes indicated major impacts on surface water quality. Additionally, the literature reveals possible health impacts from onsite wastewater; the most recent survey of soil-transmitted helminths (worms) in Alabama was in Wilcox Co. and showed that 33% of children were positive for one or more helminths (Badham, 1993). We will also address possible solutions to onsite wastewater failures in rural Alabama and current evidence for how widespread these issues may be in the US.
Assessment of nitrogen losses through nitrous oxide from abattoir wastewater-irrigated soils.
Matheyarasu, Raghupathi; Seshadri, Balaji; Bolan, Nanthi S; Naidu, Ravi
2016-11-01
The land disposal of waste and wastewater is a major source of N 2 O emission. This is due to the presence of high concentrations of nitrogen (N) and carbon in the waste. Abattoir wastewater contains 186 mg/L of N and 30.4 mg/L of P. The equivalent of 3 kg of abattoir wastewater-irrigated soil was sieved and taken in a 4-L plastic container. Abattoir wastewater was used for irrigating the plants at the rates of 50 and 100 % field capacity (FC). Four crop species were used with no crop serving as a control. Nitrous oxide emission was monitored using a closed chamber technique. The chamber was placed inside the plastic container, and N 2 O emission was measured for 7 days after the planting. A syringe and pre-evacuated vial were used for collecting the gas samples; a fresh and clean syringe was used each time to avoid cross-contamination. The collected gas samples were injected into a gas chromatography device immediately after each sampling to analyse the concentration of N 2 O from different treatments. The overall N 2 O emission was compared for all the crops under two different abattoir wastewater treatment rates (50 and 100 % FC). Under 100 % FC (wastewater irrigation), among the four species grown in the abattoir wastewater-irrigated soil, Medicago sativa (23 mg/pot), Sinapis alba (21 mg/pot), Zea mays (20 mg/pot) and Helianthus annuus (20 mg/pot) showed higher N 2 O emission compared to the 50 % treatments-M. sativa (17 mg/pot), S. alba (17 mg/pot), Z. mays (18 mg/pot) and H. annuus (18 mg/pot). Similarly, pots with plants have shown 15 % less emission than the pots without plants. Similar trends of N 2 O emission flux were observed between the irrigation period (4-week period) for 50 % FC and 100 % FC. Under the 100 % FC loading rate treatments, the highest N 2 O emission was in the following order: week 1 > week 4 > week 3 > week 2. On the other hand, under the 50 % FC loading rate treatments, the highest N 2 O emission was recorded in the first few weeks and in the following order: week 1 > week 2 > week 3 > week > 4. Since N 2 O is a greenhouse gas with high global warming potential, its emission from wastewater irrigation is likely to impact global climate change. Therefore, it is important to examine the effects of abattoir wastewater irrigation on soil for N 2 O emission potential.
Barnes, Kimberlee K.; Kolpin, Dana W.; Focazio, Michael J.; Furlong, Edward T.; Meyer, Michael T.; Zaugg, Steven D.; Haack, Sheridan K.; Barber, Larry B.; Thurman, E. Michael
2008-01-01
The five most frequently detected compounds in samples collected from ambient ground-water sites are N,N-diethyltoluamide (35 percent, insect repellant), bisphenol A (30 percent, plasticizer), tri(2-chloroethy) phosphate (30 percent, fire retardant), sulfamethoxazole (23 percent, veterinary and human antibiotic), and 4-octylphenol monoethoxylate (19 percent, detergent metabolite). The five most frequently detected organic wastewater contaminants in samples of untreated drinking water from surface-water sources are cholesterol (59 percent, natural sterol), metolachlor (53 percent, herbicide), cotinine (51 percent, nicotine metabolite), β-sitosterol (37 percent, natural plant sterol), and 1,7-dimethylxanthine (27 percent, caffeine metabolite). The five most frequently detected organic wastewater contaminants in samples of untreated drinking water from ground-water sources are tetrachloroethylene (24 percent, solvent), carbamazepine (20 percent, pharmaceutical), bisphenol A (20 percent, plasticizer), 1,7-dimethylxanthine (16 percent, caffeine metabolite), and tri(2-chloroethyl) phosphate (12 percent, fire retardant).
Thai, Phong K; O'Brien, Jake; Jiang, Guangming; Gernjak, Wolfgang; Yuan, Zhiguo; Eaglesham, Geoff; Mueller, Jochen F
2014-05-15
Creatinine was proposed to be used as a population normalising factor in sewage epidemiology but its stability in the sewer system has not been assessed. This study thus aimed to evaluate the fate of creatinine under different sewer conditions using laboratory sewer reactors. The results showed that while creatinine was stable in wastewater only, it degraded quickly in reactors with the presence of sewer biofilms. The degradation followed first order kinetics with significantly higher rate in rising main condition than in gravity sewer condition. Additionally, daily loads of creatinine were determined in wastewater samples collected on Census day from 10 wastewater treatment plants around Australia. The measured loads of creatinine from those samples were much lower than expected and did not correlate with the populations across the sampled treatment plants. The results suggested that creatinine may not be a suitable biomarker for population normalisation purpose in sewage epidemiology, especially in sewer catchment with high percentage of rising mains. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ben Said, Leila; Klibi, Naouel; Lozano, Carmen; Dziri, Raoudha; Ben Slama, Karim; Boudabous, Abdellatif; Torres, Carmen
2015-10-15
One hundred-fourteen samples of wastewater (n=64) and surface-water (n=50) were inoculated in Slanetz-Bartley agar plates supplemented or not with gentamicin (SB-Gen and SB plates, respectively) for enterococci recovery. Enterococci were obtained from 75% of tested samples in SB media (72% in wastewater; 78% in surface-water), and 85 enterococcal isolates (one/positive-sample) were obtained. Enterococcus faecium was the most prevalent species (63.5%), followed by Enterococcus faecalis (20%), Enterococcus hirae (9.4%), Enterococcus casseliflavus (4.7%), and Enterococcus gallinarum/Enterococcus durans (2.4%). Antibiotic resistance detected among these enterococci was as follows [percentage/detected gene (number isolates)]: kanamycin [29%/aph(3')-IIIa (n=22)], streptomycin [8%/ant(6)-Ia (n=4)], erythromycin [44%/erm(B) (n=34)], tetracycline [18%/tet(M) (n=6)/tet(M)-tet(L) (n=9)], chloramphenicol [2%/cat(A) (n=1)], ciprofloxacin [7%] and trimethoprim-sulfamethoxazole [94%]. High-level-gentamicin resistant (HLR-G) enterococci were recovered from 15 samples in SB-Gen or SB plates [12/64 samples of wastewater (19%) and 3/50 samples of surface-water (6%)]; HLR-G isolates were identified as E. faecium (n=7), E. faecalis (n=6), and E. casseliflavus (n=2). These HLR-G enterococci carried the aac(6')-Ie-aph(2")-Ia and erm(B) genes, in addition to aph(3')-IIIa (n=10), ant(6)-Ia (n=9), tet(M) (n=13), tet(L) (n=8) and cat(A) genes (n=2). Three HLR-G enterococci carried the esp virulence gene. Sequence-types detected among HLR-G enterococci were as follows: E. faecalis (ST480, ST314, ST202, ST55, and the new ones ST531 and ST532) and E. faecium (ST327, ST12, ST296, and the new ones ST985 and ST986). Thirty-two different PFGE patterns were detected among 36 high-level-aminoglycoside-resistant enterococci recovered in water samples. Diverse genetic lineages of HLR-G enterococci were detected in wastewater and surface-water in Tunisia. Water can represent an important source for the dissemination of these antibiotic resistant microorganisms to other environments. Copyright © 2015 Elsevier B.V. All rights reserved.
Cozzarelli, Isabelle M.; Skalak, Katherine; Kent, D.B.; Engle, Mark A.; Benthem, Adam J.; Mumford, Adam; Haase, Karl B.; Farag, Aïda M.; Harper, David; Nagel, S. C.; Iwanowicz, Luke R.; Orem, William H.; Akob, Denise M.; Jaeschke, Jeanne B.; Galloway, Joel M.; Kohler, Matthias; Stoliker, Deborah L.; Jolly, Glenn D.
2017-01-01
Wastewaters from oil and gas development pose largely unknown risks to environmental resources. In January 2015, 11.4 M L (million liters) of wastewater (300 g/L TDS) from oil production in the Williston Basin was reported to have leaked from a pipeline, spilling into Blacktail Creek, North Dakota. Geochemical and biological samples were collected in February and June 2015 to identify geochemical signatures of spilled wastewaters as well as biological responses along a 44-km river reach. February water samples had elevated chloride (1030 mg/L) and bromide (7.8 mg/L) downstream from the spill, compared to upstream levels (11 mg/L and < 0.4 mg/L, respectively). Lithium (0.25 mg/L), boron (1.75 mg/L) and strontium (7.1 mg/L) were present downstream at 5–10 times upstream concentrations. Light hydrocarbon measurements indicated a persistent thermogenic source of methane in the stream. Semi-volatile hydrocarbons indicative of oil were not detected in filtered samples but low levels, including tetramethylbenzenes and di-methylnaphthalenes, were detected in unfiltered water samples downstream from the spill. Labile sediment-bound barium and strontium concentrations (June 2015) were higher downstream from the Spill Site. Radium activities in sediment downstream from the Spill Site were up to 15 times the upstream activities and, combined with Sr isotope ratios, suggest contributions from the pipeline fluid and support the conclusion that elevated concentrations in Blacktail Creek water are from the leaking pipeline. Results from June 2015 demonstrate the persistence of wastewater effects in Blacktail Creek several months after remediation efforts started. Aquatic health effects were observed in June 2015; fish bioassays showed only 2.5% survival at 7.1 km downstream from the spill compared to 89% at the upstream reference site. Additional potential biological impacts were indicated by estrogenic inhibition in downstream waters. Our findings demonstrate that environmental signatures from wastewater spills are persistent and create the potential for long-term environmental health effects.
Baker, David R; Kasprzyk-Hordern, Barbara
2011-11-04
The main aim of this manuscript is to provide a comprehensive and critical verification of methodology commonly used for sample collection, storage and preparation in studies concerning the analysis of pharmaceuticals and illicit drugs in aqueous environmental samples with the usage of SPE-LC/MS techniques. This manuscript reports the results of investigations into several sample preparation parameters that to the authors' knowledge have not been reported or have received very little attention. This includes: (i) effect of evaporation temperature and (ii) solvent with regards to solid phase extraction (SPE) extracts; (iii) effect of silanising glassware; (iv) recovery of analytes during vacuum filtration through glass fibre filters and (v) pre LC-MS filter membranes. All of these parameters are vital to develop efficient and reliable extraction techniques; an essential factor given that target drug residues are often present in the aqueous environment at ng L(-1) levels. Presented is also the first comprehensive review of the stability of illicit drugs and pharmaceuticals in wastewater. Among the parameters studied are: time of storage, temperature and pH. Over 60 analytes were targeted including stimulants, opioid and morphine derivatives, benzodiazepines, antidepressants, dissociative anaesthetics, drug precursors, human urine indicators and their metabolites. The lack of stability of analytes in raw wastewater was found to be significant for many compounds. For instance, 34% of compounds studied reported a stability change >15% after only 12 h in raw wastewater stored at 2 °C; a very important finding given that wastewater is typically collected with the use of 24 h composite samplers. The stability of these compounds is also critical given the recent development of so-called 'sewage forensics' or 'sewage epidemiology' in which concentrations of target drug residues in wastewater are used to back-calculate drug consumption. Without an understanding of stability, under (or over) reporting of consumption estimations may take place. Copyright © 2011 Elsevier B.V. All rights reserved.
Lan, Nguyen Thi Phong; Dalsgaard, Anders; Cam, Phung Dac; Mara, Duncan
2007-06-01
Mean water quality in two wastewater-fed ponds and one non-wastewater-fed pond in Hanoi, Vietnam was approximately 10(6) and approximately 10(4) presumptive thermotolerant coliforms (pThC) per 100 ml, respectively. Fish (common carp, silver carp and Nile tilapia) grown in these ponds were sampled at harvest and in local retail markets. Bacteriological examination of the fish sampled at harvest from both types of pond showed that they were of very good quality (2 - 3 pThC g(-1) fresh muscle weight), despite the skin and gut contents being very contaminated (10(2) - 10(3) pThC g(-1) fresh weight and 10(4) - 10(6) pThC g(-1) fresh weight, respectively). These results indicate that the WHO guideline quality of < or = 1000 faecal coliforms per 100 ml of pond water in wastewater-fed aquaculture is quite restrictive and represents a safety factor of approximately 3 orders of magnitude. However, when the fish from both types of pond were sampled at the point of retail sale, quality deteriorated to 10(2) - 10(5) pThC g(-1) of chopped fresh fish (mainly flesh and skin contaminated with gut contents); this was due to the practice of the local fishmongers in descaling and chopping up the fish from both types of pond with the same knife and on the same chopping block. Fishmonger education is required to improve their hygienic practices; this should be followed by regular hygiene inspections.
Krahnstöver, Therese; Plattner, Julia; Wintgens, Thomas
2016-09-15
For the elimination of potentially harmful micropollutants, powdered activated carbon (PAC) adsorption is applied in many wastewater treatment plants (WWTP). This holds the risk of PAC leakage into the WWTP effluent and desorption of contaminants into natural water bodies. In order to assess a potential PAC leakage, PAC concentrations below several mg/L have to be detected in the WWTP effluent. None of the methods that are used for water analysis today are able to differentiate between activated carbon and solid background matrix. Thus, a selective, quantitative and easily applicable method is still needed for the detection of PAC residues in wastewater. In the present study, a method was developed to quantitatively measure the PAC content in wastewater by using filtration and thermogravimetric analysis (TGA), which is a well-established technique for the distinction between different solid materials. For the sample filtration, quartz filters with a temperature stability up to 950 °C were used. This allowed for sensitive and well reproducible measurements, as the TGA was not affected by the presence of the filter. The sample's mass fractions were calculated by integrating the mass decrease rate obtained by TGA in specific, clearly identifiable peak areas. A two-step TGA heating method consisting of N2 and O2 atmospheres led to a good differentiation between PAC and biological background matrix, thanks to the reduction of peak overlapping. A linear correlation was found between a sample's PAC content and the corresponding peak areas under N2 and O2, the sample volume and the solid mass separated by filtration. Based on these findings, various wastewater samples from different WWTPs were then analyzed by TGA with regard to their PAC content. It was found that, compared to alternative techniques such as measurement of turbidity or total suspended solids, the newly developed TGA method allows for a quantitative and selective detection of PAC concentrations down to 0.1 mg/L. The method showed a linearity coefficient of 0.98 and relative standard deviations of 10%, using small water sample volumes between 0.3 and 0.6 L. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ibarbalz, Federico M.; Orellana, Esteban; Figuerola, Eva L. M.
2016-01-01
ABSTRACT This study was conducted to investigate whether functions encoded in the metagenome could improve our ability to understand the link between microbial community structures and functions in activated sludge. By analyzing data sets from six industrial and six municipal wastewater treatment plants (WWTPs), covering different configurations, operational conditions, and geographic regions, we found that wastewater influent composition was an overriding factor shaping the metagenomic composition of the activated sludge samples. Community GC content profiles were conserved within treatment plants on a time scale of years and between treatment plants with similar influent wastewater types. Interestingly, GC contents of the represented phyla covaried with the average GC contents of the corresponding WWTP metagenome. This suggests that the factors influencing nucleotide composition act similarly across taxa and thus the variation in nucleotide contents is driven by environmental differences between WWTPs. While taxonomic richness and functional richness were correlated, shotgun metagenomics complemented taxon-based analyses in the task of classifying microbial communities involved in wastewater treatment systems. The observed taxonomic dissimilarity between full-scale WWTPs receiving influent types with varied compositions, as well as the inferred taxonomic and functional assignment of recovered genomes from each metagenome, were consistent with underlying differences in the abundance of distinctive sets of functional categories. These conclusions were robust with respect to plant configuration, operational and environmental conditions, and even differences in laboratory protocols. IMPORTANCE This work contributes to the elucidation of drivers of microbial community assembly in wastewater treatment systems. Our results are significant because they provide clear evidence that bacterial communities in WWTPs assemble mainly according to influent wastewater characteristics. Differences in bacterial community structures between WWTPs were consistent with differences in the abundance of distinctive sets of functional categories, which were related to the metabolic potential that would be expected according to the source of the wastewater. PMID:27316957
Nödler, Karsten; Tsakiri, Maria; Aloupi, Maria; Gatidou, Georgia; Stasinakis, Athanasios S; Licha, Tobias
2016-04-01
Results from coastal water pollution monitoring (Lesvos Island, Greece) are presented. In total, 53 samples were analyzed for 58 polar organic micropollutants such as selected herbicides, biocides, corrosion inhibitors, stimulants, artificial sweeteners, and pharmaceuticals. Main focus is the application of a proposed wastewater indicator quartet (acesulfame, caffeine, valsartan, and valsartan acid) to detect point sources and contamination hot-spots with untreated and treated wastewater. The derived conclusions are compared with the state of knowledge regarding local land use and infrastructure. The artificial sweetener acesulfame and the stimulant caffeine were used as indicators for treated and untreated wastewater, respectively. In case of a contamination with untreated wastewater the concentration ratio of the antihypertensive valsartan and its transformation product valsartan acid was used to further refine the estimation of the residence time of the contamination. The median/maximum concentrations of acesulfame and caffeine were 5.3/178 ng L(-1) and 6.1/522 ng L(-1), respectively. Their detection frequency was 100%. Highest concentrations were detected within the urban area of the capital of the island (Mytilene). The indicator quartet in the gulfs of Gera and Kalloni (two semi-enclosed embayments on the island) demonstrated different concentration patterns. A comparatively higher proportion of untreated wastewater was detected in the gulf of Gera, which is in agreement with data on the wastewater infrastructure. The indicator quality of the micropollutants to detect wastewater was compared with electrical conductivity (EC) data. Due to their anthropogenic nature and low detection limits, the micropollutants are superior to EC regarding both sensitivity and selectivity. The concentrations of atrazine, diuron, and isoproturon did not exceed the annual average of their environmental quality standards (EQS) defined by the European Commission. At two sampling locations irgarol 1051 exceeded its annual average EQS value but not the maximum allowable concentration of 16 ng L(-1). Copyright © 2016 Elsevier Ltd. All rights reserved.
Fuhrimann, Samuel; Pham-Duc, Phuc; Cissé, Guéladio; Tram, Nguyen Thuy; Thu Ha, Hoang; Dung, Do Trung; Ngoc, Pham; Nguyen-Viet, Hung; Anh Vuong, Tuan; Utzinger, Jürg; Schindler, Christian; Winkler, Mirko S
2016-10-01
The use of wastewater in agriculture and aquaculture has a long tradition throughout Asia. For example, in Hanoi, it creates important livelihood opportunities for >500,000 farmers in peri-urban communities. Discharge of domestic effluents pollute the water streams with potential pathogenic organisms posing a public health threat to farmers and consumers of wastewater-fed foodstuff. We determined the effectiveness of Hanoi's wastewater conveyance system, placing particular emphasis on the quality of wastewater used in agriculture and aquaculture. Between April and June 2014, a total of 216 water samples were obtained from 24 sampling points and the concentrations of total coliforms (TC), Escherichia coli, Salmonella spp. and helminth eggs determined. Despite applied wastewater treatment, agricultural field irrigation water was heavily contaminated with TC (1.3×10(7)colony forming unit (CFU)/100mL), E. coli (1.1×10(6)CFU/100mL) and Salmonella spp. (108 most probable number (MPN)/100mL). These values are 110-fold above Vietnamese discharge limits for restricted agriculture and 260-fold above the World Health Organization (WHO)'s tolerable safety limits for unrestricted agriculture. Mean helminth egg concentrations were below WHO tolerable levels in all study systems (<1egg/L). Hence, elevated levels of bacterial contamination, but not helminth infections, pose a major health risk for farmers and consumers of wastewater fed-products. We propose a set of control measures that might protect the health of exposed population groups without compromising current urban farming activities. This study presents an important example for sanitation safety planning in a rapidly expanding Asian city and can guide public and private entities working towards Sustainable Development Goal target 6.3, that is to improve water quality by reducing pollution, halving the proportion of untreated wastewater and increasing recycling and safe reuse globally. Copyright © 2016. Published by Elsevier B.V.
Crawford, Charles G.; Wangsness, David J.
1993-01-01
The City of Indianapolis has constructed state-of-the-art advanced municipal wastewater-treatment systems to enlarge and upgrade the existing secondary-treatment processes at its Belmont and Southport treatment plants. These new advanced-wastewater-treatment plants became operational in 1983. A nonparametric statistical procedure--a modified form of the Wilcoxon-Mann-Whitney rank-sum test--was used to test for trends in time-series water-quality data from four sites on the White River and from the Belmont and Southport wastewater-treatment plants. Time-series data representative of pre-advanced- (1978-1980) and post-advanced- (1983--86) wastewater-treatment conditions were tested for trends, and the results indicate substantial changes in water quality of treated effluent and of the White River downstream from Indianapolis after implementation of advanced wastewater treatment. Water quality from 1981 through 1982 was highly variable due to plant construction. Therefore, this time period was excluded from the analysis. Water quality at sample sites located upstream from the wastewater-treatment plants was relatively constant during the period of study (1978-86). Analysis of data from the two plants and downstream from the plants indicates statistically significant decreasing trends in effluent concentrations of total ammonia, 5-day biochemical-oxygen demand, fecal-coliform bacteria, total phosphate, and total solids at all sites where sufficient data were available for testing. Because of in-plant nitrification, increases in nitrate concentration were statistically significant in the two plants and in the White River. The decrease in ammonia concentrations and 5-day biochemical-oxygen demand in the White River resulted in a statistically significant increasing trend in dissolved-oxygen concentration in the river because of reduced oxygen demand for nitrification and biochemical oxidation processes. Following implementation of advanced wastewater treatment, the number of river-quality samples that failed to meet the water-quality standards for ammonia and dissolved oxygen that apply to the White River decreased substantially.
Opsahl, Stephen P.; Lambert, Rebecca B.
2013-01-01
The distributional patterns of detections and concentrations of individual compounds and compound classes show the influence of wastewater-treatment plant (WWTP) outfalls on the quality of water in the San Antonio River Basin. In the Medina River Subbasin, the minimal influence of wastewater is evident as far downstream as the Macdona site. Downstream from the Macdona site, the Medina River receives treated municipal wastewater from both the Medio Creek Water Recycling Center site from an unnamed tributary at the plant and the Leon Creek Water Recycling Center site from Comanche Creek at the plant, and corresponding increases in both the number of detections and the total concentrations of all measured compounds at all downstream sampling sites were evident. Similarly, the San Antonio River receives treated municipal wastewater as far upstream as the SAR Witte site (San Antonio River at Witte Museum, San Antonio, Tex.) and additional WWTP outfalls along the Medina River upstream from the confluence of the Medina and San Antonio Rivers. Consequently, all samples collected along the main stem of the San Antonio River had higher concentrations of CECs in comparison to sites without upstream WWTPs. Sites in urbanized areas without upstream WWTPs include the Leon 35 site (Leon Creek at Interstate Highway 35, San Antonio, Tex.), the Alazan site (Alazan Creek at Tampico Street, San Antonio, Tex.), and the San Pedro site (San Pedro Creek at Probandt Street, at San Antonio, Tex.). The large number of detections at sites with no upstream wastewater source demonstrated that CECs can be detected in streams flowing through urbanized areas without a large upstream source of treated municipal wastewater. A general lack of detection of pharmaceuticals in streams without upstream outfalls of treated wastewater appears to be typical for streams throughout the San Antonio River Basin and may be a useful indicator of point-source versus nonpoint-source contributions of these compounds in urban streams. Observations of lower concentrations of compounds at the furthest downstream sampling sites in the basin indicate some natural attenuation of these compounds during transport; however, a more focused assessment is needed to make this determination.
Collison, R S; Grismer, M E
2013-09-01
Comparisons of the performance of constructed-wetland systems (CWs) for treating domestic wastewater in the laboratory and field may use pathogen-free synthetic wastewater to avoid regulatory health concerns. However, little to no data are available describing the relative treatment efficiencies of CWs to both actual and synthetic domestic wastewaters so as to enable such comparison. To fill this gap, treatment performances with respect to organics (chemical organic demand; COD) and nitrogen (ammonium and nitrate) removal from domestic (septic tank) and a similar-strength synthetic wastewater under planted and non-planted subsurface-flow CWs are determined. One pair of CWs was planted with cattails in May 2008, whereas the adjacent system was non-planted. Collected septic tank or synthesized wastewater was allowed to gravity feed each CWs, and effluent samples were collected and tested for COD and nitrogen species regularly during four different periods over six months. Overall, statistically significant greater removal of COD (-12%) and nitrogen (-5%) occurred from the synthetic as compared with the domestic wastewater from the planted and non-planted CWs. Effluent BOD5/COD ratios from the synthetic wastewater CWs averaged nearly twice that from the domestic wastewater CWs (0.17 vs 0.10), reflecting greater concentrations of readily degraded compounds. That removal fractions were consistent across the mid-range loading rates to the CWs suggests that the synthetic wastewater can be used in testing laboratory CWs with reasonable success in application of their results to the field.
Thermochemical Wastewater Valorization via Enhanced Microbial Toxicity Tolerance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beckham, Gregg T; Thelhawadigedara, Lahiru Niroshan Jayakody; Johnson, Christopher W
Thermochemical (TC) biomass conversion processes such as pyrolysis and liquefaction generate considerable amounts of wastewater, which often contains highly toxic compounds that are incredibly challenging to convert via standard wastewater treatment approaches such as anaerobic digestion. These streams represent a cost for TC biorefineries, and a potential valorization opportunity, if effective conversion methods are developed. The primary challenge hindering microbial conversion of TC wastewater is toxicity. In this study, we employ a robust bacterium, Pseudomonas putida, with TC wastewater streams to demonstrate that aldehydes are the most inhibitory compounds in these streams. Proteomics, transcriptomics, and fluorescence-based immunoassays of P. putidamore » grown in a representative wastewater stream indicate that stress results from protein damage, which we hypothesize is a primary toxicity mechanism. Constitutive overexpression of the chaperone genes, groEL, groES, and clpB, in a genome-reduced P. putida strain improves the tolerance towards multiple TC wastewater samples up to 200-fold. Moreover, the concentration ranges of TC wastewater are industrially relevant for further bioprocess development for all wastewater streams examined here, representing different TC process configurations. Furthermore, we demonstrate proof-of-concept polyhydroxyalkanoate production from the usable carbon in an exemplary TC wastewater stream. Overall, this study demonstrates that protein quality control machinery and repair mechanisms can enable substantial gains in microbial tolerance to highly toxic substrates, including heterogeneous waste streams. When coupled to other metabolic engineering advances such as expanded substrate utilization and enhanced product accumulation, this study generally enables new strategies for biological conversion of highly-toxic, organic-rich wastewater via engineered aerobic monocultures or designer consortia.« less
Application of solar photo-Fenton toward toxicity removal and textile wastewater reuse.
Starling, Maria Clara V M; Dos Santos, Paulo Henrique Rodrigues; de Souza, Felipe Antônio Ribeiro; Oliveira, Sílvia Corrêa; Leão, Mônica M D; Amorim, Camila C
2017-05-01
Solar photo-Fenton represents an innovative and low-cost option for the treatment of recalcitrant industrial wastewater, such as the textile wastewater. Textile wastewater usually shows high acute toxic and variability and may be composed of many different chemical compounds. This study aimed at optimizing and validating solar photo-Fenton treatment of textile wastewater in a semi-pilot compound parabolic collector (CPC) for toxicity removal and wastewater reclamation. In addition, treated wastewater reuse feasibility was investigated through pilot tests. Experimental design performed in this study indicated optimum condition for solar photo-Fenton reaction (20 mg L -1 of Fe 2+ and 500 mg L -1 of H 2 O 2 ; pH 2.8), which achieved 96 % removal of dissolved organic carbon (DOC) and 99 % absorbance removal. A toxicity peak was detected during treatment, suggesting that highly toxic transformation products were formed during reaction. Toxic intermediates were properly removed during solar photo-Fenton (SPF) treatment along with the generation of oxalic acid as an ultimate product of degradation and COS increase. Different samples of real textile wastewater were treated in order to validate optimized treatment condition with regard to wastewater variability. Results showed median organic carbon removal near 90 %. Finally, reuse of treated textile wastewater in both dyeing and washing stages of production was successful. These results confirm that solar photo-Fenton, as a single treatment, enables wastewater reclamation in the textile industry. Graphical abstract Solar photo-Fenton as a revolutionary treatment technology for "closing-the-loop" in the textile industry.
Cryptosporidium source tracking in the Potomac River watershed.
Yang, Wenli; Chen, Plato; Villegas, Eric N; Landy, Ronald B; Kanetsky, Charles; Cama, Vitaliano; Dearen, Theresa; Schultz, Cherie L; Orndorff, Kenneth G; Prelewicz, Gregory J; Brown, Miranda H; Young, Kim Roy; Xiao, Lihua
2008-11-01
To better characterize Cryptosporidium in the Potomac River watershed, a PCR-based genotyping tool was used to analyze 64 base flow and 28 storm flow samples from five sites in the watershed. These sites included two water treatment plant intakes, as well as three upstream sites, each associated with a different type of land use. The uses, including urban wastewater, agricultural (cattle) wastewater, and wildlife, posed different risks in terms of the potential contribution of Cryptosporidium oocysts to the source water. Cryptosporidium was detected in 27 base flow water samples and 23 storm flow water samples. The most frequently detected species was C. andersoni (detected in 41 samples), while 14 other species or genotypes, almost all wildlife associated, were occasionally detected. The two common human-pathogenic species, C. hominis and C. parvum, were not detected. Although C. andersoni was common at all four sites influenced by agriculture, it was largely absent at the urban wastewater site. There were very few positive samples as determined by Environmental Protection Agency method 1623 at any site; only 8 of 90 samples analyzed (9%) were positive for Cryptosporidium as determined by microscopy. The genotyping results suggest that many of the Cryptosporidium oocysts in the water treatment plant source waters were from old calves and adult cattle and might not pose a significant risk to human health.
Prevalence of Cryptosporidium oocysts and Giardia cysts in raw and treated sewage sludges.
Amorós, Inmaculada; Moreno, Yolanda; Reyes, Mariela; Moreno-Mesonero, Laura; Alonso, Jose L
2016-11-01
Treated sludge from wastewater treatment plants (WWTPs) is commonly used in agriculture as fertilizers and to amend soils. The most significant health hazard for sewage sludge relates to the wide range of pathogenic microorganisms such as protozoa parasites.The objective of this study was to collect quantitative data on Cryptosporidium oocysts and Giardia cysts in the treated sludge in wastewater treatment facilities in Spain. Sludge from five WWTPs with different stabilization processes has been analysed for the presence of Cryptosporidium and Giardia in the raw sludge and after the sludge treatment. A composting plant (CP) has also been assessed. After a sedimentation step, sludge samples were processed and (oo)cysts were isolated by immunomagnetic separation (IMS) and detected by immunofluorescence assay (IFA). Results obtained in this study showed that Cryptosporidium oocysts and Giardia cysts were present in 26 of the 30 samples (86.6%) of raw sludge samples. In treated sludge samples, (oo)cysts have been observed in all WWTP's analysed (25 samples) with different stabilization treatment (83.3%). Only in samples from the CP no (oo)cysts were detected. This study provides evidence that (oo)cysts are present in sewage sludge-end products from wastewater treatment processes with the negative consequences for public health.
Evaluation of the IWS Model 6000 SBR began in April 2004 when one SBR was taken off line and cleaned. The verification testing started July 1, 2004 and proceeded without interruption through June 30, 2005. All sixteen four-day sampling events were completed as scheduled, yielding...
Damien, Devault A; Thomas, Néfau; Hélène, Pascaline; Sara, Karolak; Yves, Levi
2014-08-15
Drugs of abuse are increasingly consumed worldwide. Such consumption could be back-calculated based on wastewater content. The West Indies, with its coca production and its thriving illicit drug market, is both a hub of world cocaine trafficking and a place where its consumption is prevalent particularly in the form of crack. The present study will firstly investigate Caribbean consumption by a daily 5 to 7 day sampling campaign of composite wastewater samples from the four wastewater treatment plants of the Martinique capital, including working and non-working periods. The local consumption of cocaine is ten to thirty times higher than OECD standards because of the prevalence of crack. The excretion coefficient for crack consumption and the impact of temperature on drug stability need further investigation. However, the low diversity of illicit drugs consumed and the crack prevalence suggest practices driven by the transiting of drugs for international trafficking. Copyright © 2014 Elsevier B.V. All rights reserved.
Remediation of coal mining wastewaters using chitosan microspheres.
Geremias, R; Pedrosa, R C; Benassi, J C; Fávere, V T; Stolberg, J; Menezes, C T B; Laranjeira, M C M
2003-12-01
This study aimed to evaluate the potential use of chitosan and chitosan/poly(vinylalcohol) microspheres incorporating with tetrasulphonated copper (II) phthalocyanine (CTS/PVA/TCP) in the remediation of coal mining wastewaters. The process was monitored by toxicity tests both before and after adsorption treatments with chitosan and microspheres. Physicochemical parameters, including pH and trace-metal concentration, as well as bioindicators of water pollution were used to that end. Wastewater samples colleted from drainage of underground coal mines, decantation pools, and contaminated rivers were scrutinized. Acute toxicity tests were performed using the Brine Shrimp Test (BST) in order to evaluate the remediation efficiency of different treatments. The results showed that the pH of treated wastewater samples were improved to values close to neutrality. Chitosan treatments were also effective in removing trace-metals. Pre-treatment with chitosan followed by microsphere treatment (CTS/PVA/TCP) was more effective in decreasing toxicity than the treatment using only chitosan. This was probably due to the elimination of pollutants other than trace-metals. Thus, the use of chitosan and microspheres is an adequate alternative towards remediation of water pollution from coal mining.
Bushon, R.N.; Likirdopulos, C.A.; Brady, A.M.G.
2009-01-01
Untreated wastewater samples from California, North Carolina, and Ohio were analyzed by the immunomagnetic separation/adenosine triphosphate (IMS/ATP) method and the traditional culture-based method for E. coli and enterococci concentrations. The IMS/ATP method concentrates target bacteria by immunomagnetic separation and then quantifies captured bacteria by measuring bioluminescence induced by release of ATP from the bacterial cells. Results from this method are available within 1 h from the start of sample processing. Significant linear correlations were found between the IMS/ATP results and results from traditional culture-based methods for E. coli and enterococci enumeration for one location in California, two locations in North Carolina, and one location in Ohio (r??values ranged from 0.87 to 0.97). No significant linear relation was found for a second location in California that treats a complex mixture of residential and industrial wastewater. With the exception of one location, IMS/ATP showed promise as a rapid method for the quantification of faecal-indicator organisms in wastewater.
Applications of fluorescence spectroscopy for predicting percent wastewater in an urban stream
Goldman, Jami H.; Rounds, Stewart A.; Needoba, Joseph A.
2012-01-01
Dissolved organic carbon (DOC) is a significant organic carbon reservoir in many ecosystems, and its characteristics and sources determine many aspects of ecosystem health and water quality. Fluorescence spectroscopy methods can quantify and characterize the subset of the DOC pool that can absorb and re-emit electromagnetic energy as fluorescence and thus provide a rapid technique for environmental monitoring of DOC in lakes and rivers. Using high resolution fluorescence techniques, we characterized DOC in the Tualatin River watershed near Portland, Oregon, and identified fluorescence parameters associated with effluent from two wastewater treatment plants and samples from sites within and outside the urban region. Using a variety of statistical approaches, we developed and validated a multivariate linear regression model to predict the amount of wastewater in the river as a function of the relative abundance of specific fluorescence excitation/emission pairs. The model was tested with independent data and predicts the percentage of wastewater in a sample within 80% confidence. Model results can be used to develop in situ instrumentation, inform monitoring programs, and develop additional water quality indicators for aquatic systems.
Urban wastewater treatment by using Ag/ZnO and Pt/TiO2 photocatalysts.
Murcia Mesa, Julie J; Arias Bolivar, Lizeth G; Sarmiento, Hugo Alfonso Rojas; Martínez, Elsa Giovanna Ávila; Páez, César Jaramillo; Lara, Mayra Anabel; Santos, José Antonio Navío; Del Carmen Hidalgo López, María
2018-03-02
In this study, the treatment of wastewater coming from a river highly polluted with domestic and industrial effluents was evaluated. For this purpose, series of photocatalysts obtained by ZnO and TiO 2 modification were evaluated. The effect of metal addition and Ti precursor (in the case of the titania series) over the physicochemical and photocatalytic properties of the materials obtained was also analyzed. The evaluation of the photocatalytic activity showed that semiconductor modification and precursor used in the materials synthesis are important factors influencing the physicochemical and therefore the photocatalytic properties of the materials obtained. The water samples analyzed in the present work were taken from a highly polluted river, and it was found that the effectiveness of the photocatalytic treatment increases when the reaction time increases and for both, wastewater samples and isolated Escherichia coli strain follow the next order Pt/TiO 2 < ZnO. It was also observed that biochemical and chemical demand oxygen and turbidity significantly decrease after treatment, thus indicating that photocatalysis is a non-selective technology, which can lead to recover wastewater containing different pollutants.
Tagiri-Endo, Misako; Suzuki, Shigeru; Nakamura, Tomoyuki; Hatakeyama, Takashi; Kawamukai, Kazuo
2009-02-01
A simple and quick online solid-phase extraction (SPE) coupled to liquid chromatography (LC)/tandem mass spectrometry (MS/MS) for the determination of the five antibiotics (florfenicol, FF; lincomycin, LCM; oxytetracyclin, OTC; tylosin, TS; valnemulin, VLM) in swine wastewater has been developed. After filtration, aliquots (100 microl) of wastewater samples were directly injected to a column-switching LC system. Some matrix interference was removed by washing up SPE column with 0.2% formic acid solution and acetonitrile. Antibiotics eluted from SPE column were separated on analytical column by converting switching valve and were detected by MS/MS. Calibration curves using the method of standard addition had very good correlation coefficients (r > 0.99) in the range of 0.1 to 2 ng/ml. The intra-day precision of the method was less than 12% and the inter-day precision was between 6 to 17%. The detection limits were 0.01-0.1 ng/ml. When this method was applied to wastewater samples in swine facilities, four compounds (LCM, OTC, TS, and VLM) were detected.
Ji, Zheng; Wang, Xiaochang C; Xu, Limei; Zhang, Chongmiao; Funamizu, Naoyuki; Okabe, Satoshi; Sano, Daisuke
2014-06-01
A polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) method was employed to estimate the contamination sources of human enteroviruses and understand how their dominant strains vary in a wastewater treatment and reclamation system consisting of sewage collection, wastewater treatment with membrane bioreactor and open lakes for reclaimed water storage and reuse. After PCR-DGGE using a selected primer set targeting enteroviruses, phylogenetic analysis of acquired enterovirus gene sequences was performed. Enteroviruses identified from the septic tank were much more diverse than those from grey water and kitchen wastewater. Several unique types of enterovirus different from those in wastewater samples were dominant in a biological wastewater treatment unit. Membrane filtration followed by chlorination was proved effective for physically eliminating enteroviruses; however, secondary contamination likely occurred as the reclaimed water was stored in artificial lakes. Enterovirus 71 (EV71), a hand-foot-and-mouth disease (HFMD) viral pathogen, was detected mainly from the artificial lakes, implying that wastewater effluent was not the contamination source of EV71 and that there were unidentified non-point sources of the contamination with the HFMD viral pathogen in the reclaimed water stored in the artificial lakes. The PCR-DGGE targeting enteroviruses provided robust evidence about viral contamination sources in the wastewater treatment and reclamation system.