Huang, Wei; Shi, Jun; Yen, R T
2012-12-01
The objective of our study was to develop a computing program for computing the transit time frequency distributions of red blood cell in human pulmonary circulation, based on our anatomic and elasticity data of blood vessels in human lung. A stochastic simulation model was introduced to simulate blood flow in human pulmonary circulation. In the stochastic simulation model, the connectivity data of pulmonary blood vessels in human lung was converted into a probability matrix. Based on this model, the transit time of red blood cell in human pulmonary circulation and the output blood pressure were studied. Additionally, the stochastic simulation model can be used to predict the changes of blood flow in human pulmonary circulation with the advantage of the lower computing cost and the higher flexibility. In conclusion, a stochastic simulation approach was introduced to simulate the blood flow in the hierarchical structure of a pulmonary circulation system, and to calculate the transit time distributions and the blood pressure outputs.
Ogino, Takamichi; Ueda, Takayuki; Ogami, Koichiro; Koike, Takashi; Sakurai, Kaoru
2017-01-01
We examined how chewing rate and the extent of reactive hyperemia affect the blood flow in denture-supporting mucosa during chewing. The left palatal mucosa was loaded under conditions of simulated chewing or simulated clenching for 30s, and the blood flow during loading was recorded. We compared the relative blood flow during loading under conditions that recreated different chewing rates by combining duration of chewing cycle (DCC) and occlusal time (OT): fast chewing group, typical chewing group, slow chewing group and clenching group. The relationship between relative blood flow during simulated chewing and the extent of reactive hyperemia was also analyzed. When comparing the different chewing rate, the relative blood flow was highest in fast chewing rate, followed by typical chewing rate and slow chewing rate. Accordingly, we suggest that fast chewing increases the blood flow more than typical chewing or slow chewing. There was a significant correlation between the amount of blood flow during simulated chewing and the extent of reactive hyperemia. Within the limitations of this study, we concluded that slow chewing induced less blood flow than typical or fast chewing in denture-supporting mucosa and that people with less reactive hyperemia had less blood flow in denture-supporting mucosa during chewing. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Lattice Boltzmann method for simulating the viscous flow in large distensible blood vessels
NASA Astrophysics Data System (ADS)
Fang, Haiping; Wang, Zuowei; Lin, Zhifang; Liu, Muren
2002-05-01
A lattice Boltzmann method for simulating the viscous flow in large distensible blood vessels is presented by introducing a boundary condition for elastic and moving boundaries. The mass conservation for the boundary condition is tested in detail. The viscous flow in elastic vessels is simulated with a pressure-radius relationship similar to that of the pulmonary blood vessels. The numerical results for steady flow agree with the analytical prediction to very high accuracy, and the simulation results for pulsatile flow are comparable with those of the aortic flows observed experimentally. The model is expected to find many applications for studying blood flows in large distensible arteries, especially in those suffering from atherosclerosis, stenosis, aneurysm, etc.
A novel method to measure regional muscle blood flow continuously using NIRS kinetics information
Nioka, Shoko; Kime, Ryotaro; Sunar, Ulas; Im, Joohee; Izzetoglu, Meltem; Zhang, Jun; Alacam, Burak; Chance, Britton
2006-01-01
Background This article introduces a novel method to continuously monitor regional muscle blood flow by using Near Infrared Spectroscopy (NIRS). We demonstrate the feasibility of the new method in two ways: (1) by applying this new method of determining blood flow to experimental NIRS data during exercise and ischemia; and, (2) by simulating muscle oxygenation and blood flow values using these newly developed equations during recovery from exercise and ischemia. Methods Deoxy (Hb) and oxyhemoglobin (HbO2), located in the blood ofthe skeletal muscle, carry two internal relationships between blood flow and oxygen consumption. One is a mass transfer principle and the other describes a relationship between oxygen consumption and Hb kinetics in a two-compartment model. To monitor blood flow continuously, we transfer these two relationships into two equations and calculate the blood flow with the differential information of HbO2 and Hb. In addition, these equations are used to simulate the relationship between blood flow and reoxygenation kinetics after cuff ischemia and a light exercise. Nine healthy subjects volunteered for the cuff ischemia, light arm exercise and arm exercise with cuff ischemia for the experimental study. Results Analysis of experimental data of both cuff ischemia and light exercise using the new equations show greater blood flow (four to six times more than resting values) during recovery, agreeing with previous findings. Further, the simulation and experimental studies of cuff ischemia and light exercise agree with each other. Conclusion We demonstrate the accuracy of this new method by showing that the blood flow obtained from the method agrees with previous data as well as with simulated data. We conclude that this novel continuous blood flow monitoring method can provide blood flow information non-invasively with NIRS. PMID:16704736
Patient-specific coronary artery blood flow simulation using myocardial volume partitioning
NASA Astrophysics Data System (ADS)
Kim, Kyung Hwan; Kang, Dongwoo; Kang, Nahyup; Kim, Ji-Yeon; Lee, Hyong-Euk; Kim, James D. K.
2013-03-01
Using computational simulation, we can analyze cardiovascular disease in non-invasive and quantitative manners. More specifically, computational modeling and simulation technology has enabled us to analyze functional aspect such as blood flow, as well as anatomical aspect such as stenosis, from medical images without invasive measurements. Note that the simplest ways to perform blood flow simulation is to apply patient-specific coronary anatomy with other average-valued properties; in this case, however, such conditions cannot fully reflect accurate physiological properties of patients. To resolve this limitation, we present a new patient-specific coronary blood flow simulation method by myocardial volume partitioning considering artery/myocardium structural correspondence. We focus on that blood supply is closely related to the mass of each myocardial segment corresponding to the artery. Therefore, we applied this concept for setting-up simulation conditions in the way to consider many patient-specific features as possible from medical image: First, we segmented coronary arteries and myocardium separately from cardiac CT; then the myocardium is partitioned into multiple regions based on coronary vasculature. The myocardial mass and required blood mass for each artery are estimated by converting myocardial volume fraction. Finally, the required blood mass is used as boundary conditions for each artery outlet, with given average aortic blood flow rate and pressure. To show effectiveness of the proposed method, fractional flow reserve (FFR) by simulation using CT image has been compared with invasive FFR measurement of real patient data, and as a result, 77% of accuracy has been obtained.
Numerical Simulation of Sickle Cell Blood Flow in the Microcirculation
NASA Astrophysics Data System (ADS)
Berger, Stanley A.; Carlson, Brian E.
2001-11-01
A numerical simulation of normal and sickle cell blood flow through the transverse arteriole-capillary microcirculation is carried out to model the dominant mechanisms involved in the onset of vascular stasis in sickle cell disease. The transverse arteriole-capillary network is described by Strahler's network branching method, and the oxygen and blood transport in the capillaries is modeled by a Krogh cylinder analysis utilizing Lighthill's lubrication theory, as developed by Berger and King. Poiseuille's law is used to represent blood flow in the arterioles. Applying this flow and transport model and utilizing volumetric flow continuity at each network bifurcation, a nonlinear system of equations is obtained, which is solved iteratively using a steepest descent algorithm coupled with a Newton solver. Ten different networks are generated and flow results are calculated for normal blood and sickle cell blood without and with precapillary oxygen loss. We find that total volumetric blood flow through the network is greater in the two sickle cell blood simulations than for normal blood owing to the anemia associated with sickle cell disease. The percentage of capillary blockage in the network increases dramatically with decreasing pressure drop across the network in the sickle cell cases while there is no blockage when normal blood flows through simulated networks. It is concluded that, in sickle cell disease, without any vasomotor dilation response to decreasing oxygen concentrations in the blood, capillary blockage will occur in the microvasculature even at average pressure drops across the transverse arteriole-capillary networks.
Effect of diastolic flow patterns on the function of the left ventricle
NASA Astrophysics Data System (ADS)
Seo, Jung Hee; Mittal, Rajat
2013-11-01
Direct numerical simulations are used to study the effect of intraventricular flow patterns on the pumping efficiency and the blood mixing and transport characteristics of the left ventricle. The simulations employ a geometric model of the left ventricle which is derived from contrast computed tomography. A variety of diastolic flow conditions are generated for a fixed ejection fraction in order to delineate the effect of flow patterns on ventricular performance. The simulations indicate that the effect of intraventricular blood flow pattern on the pumping power is physiologically insignificant. However, diastolic flow patterns have a noticeable effect on the blood mixing as well as the residence time of blood cells in the ventricle. The implications of these findings on ventricular function are discussed.
Lykov, Kirill; Li, Xuejin; Lei, Huan; ...
2015-08-28
When blood flows through a bifurcation, red blood cells (RBCs) travel into side branches at different hematocrit levels, and it is even possible that all RBCs enter into one branch only, leading to a complete separation of plasma and R- BCs. To quantify this phenomenon via particle-based mesoscopic simulations, we developed a general framework for open boundary conditions in multiphase flows that is effective even for high hematocrit levels. The inflow at the inlet is duplicated from a fully developed flow generated in a pilot simulation with periodic boundary conditions. The outflow is controlled by adaptive forces to maintain themore » flow rate and velocity gradient at fixed values, while the particles leaving the arteriole at the outlet are removed from the system. Upon valida- tion of this approach, we performed systematic 3D simulations to study plasma skimming in arterioles of diameters 20 to 32 microns. For a flow rate ratio 6:1 at the branches, we observed the \\all-or-nothing" phenomenon with plasma only entering the low flow rate branch. We then simulated blood-plasma separation in arteriolar bifurcations with different bifurcation angles and same diameter of the daughter branches. Our simulations predict a significant increase in RBC flux through the main daughter branch as the bifurcation angle is increased. Lastly, we demonstrated the new methodology for simulating blood flow in ves- sels with multiple inlets and outlets, constructed using an angiogenesis model.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lykov, Kirill; Li, Xuejin; Lei, Huan
When blood flows through a bifurcation, red blood cells (RBCs) travel into side branches at different hematocrit levels, and it is even possible that all RBCs enter into one branch only, leading to a complete separation of plasma and R- BCs. To quantify this phenomenon via particle-based mesoscopic simulations, we developed a general framework for open boundary conditions in multiphase flows that is effective even for high hematocrit levels. The inflow at the inlet is duplicated from a fully developed flow generated in a pilot simulation with periodic boundary conditions. The outflow is controlled by adaptive forces to maintain themore » flow rate and velocity gradient at fixed values, while the particles leaving the arteriole at the outlet are removed from the system. Upon valida- tion of this approach, we performed systematic 3D simulations to study plasma skimming in arterioles of diameters 20 to 32 microns. For a flow rate ratio 6:1 at the branches, we observed the \\all-or-nothing" phenomenon with plasma only entering the low flow rate branch. We then simulated blood-plasma separation in arteriolar bifurcations with different bifurcation angles and same diameter of the daughter branches. Our simulations predict a significant increase in RBC flux through the main daughter branch as the bifurcation angle is increased. Lastly, we demonstrated the new methodology for simulating blood flow in ves- sels with multiple inlets and outlets, constructed using an angiogenesis model.« less
Lykov, Kirill; Li, Xuejin; Lei, Huan; Pivkin, Igor V; Karniadakis, George Em
2015-08-01
When blood flows through a bifurcation, red blood cells (RBCs) travel into side branches at different hematocrit levels, and it is even possible that all RBCs enter into one branch only, leading to a complete separation of plasma and RBCs. To quantify this phenomenon via particle-based mesoscopic simulations, we developed a general framework for open boundary conditions in multiphase flows that is effective even for high hematocrit levels. The inflow at the inlet is duplicated from a fully developed flow generated in a pilot simulation with periodic boundary conditions. The outflow is controlled by adaptive forces to maintain the flow rate and velocity gradient at fixed values, while the particles leaving the arteriole at the outlet are removed from the system. Upon validation of this approach, we performed systematic 3D simulations to study plasma skimming in arterioles of diameters 20 to 32 microns. For a flow rate ratio 6:1 at the branches, we observed the "all-or-nothing" phenomenon with plasma only entering the low flow rate branch. We then simulated blood-plasma separation in arteriolar bifurcations with different bifurcation angles and same diameter of the daughter branches. Our simulations predict a significant increase in RBC flux through the main daughter branch as the bifurcation angle is increased. Finally, we demonstrated the effectiveness of the new methodology in simulations of blood flow in vessels with multiple inlets and outlets, constructed using an angiogenesis model.
Analysis of artery blood flow before and after angioplasty
NASA Astrophysics Data System (ADS)
Tomaszewski, Michał; Baranowski, Paweł; Małachowski, Jerzy; Damaziak, Krzysztof; Bukała, Jakub
2018-01-01
The study presents a comparison of results obtained from numerical simulations of blood flow in two different arteries. One of them was considered to be narrowed in order to simulate an arteriosclerosis obstructing the blood flow in the vessel, whereas the second simulates the vessel after angioplasty treatment. During the treatment, a biodegradable stent is inserted into the artery, which prevents the vessel walls from collapsing. The treatment was simulated through the use of numerical simulation using the finite element method. The final mesh geometry obtained from the analysis was exported to the dedicated software in order to create geometry in which a flow domain inside the artery with the stent was created. The flow analysis was conducted in ANSYS Fluent software with non-deformable vessel walls.
Effect of Rolling Massage on the Vortex Flow in Blood Vessels with Lattice Boltzmann Simulation
NASA Astrophysics Data System (ADS)
Yi, Hou Hui
The rolling massage manipulation is a classic Chinese Medical Massage, which is a nature therapy in eliminating many diseases. Here, the effect of the rolling massage on the cavity flows in blood vessel under the rolling manipulation is studied by the lattice Boltzmann simulation. The simulation results show that the vortex flows are fully disturbed by the rolling massage. The flow behavior depends on the rolling velocity and the rolling depth. Rolling massage has a better effect on the flows in the cavity than that of the flows in a planar blood vessel. The result is helpful to understand the mechanism of the massage and develop the rolling techniques.
Blood Pump Development Using Rocket Engine Flow Simulation Technology
NASA Technical Reports Server (NTRS)
Kwak, Dochan; Kiris, Cetin
2001-01-01
This paper reports the progress made towards developing complete blood flow simulation capability in humans, especially in the presence of artificial devices such as valves and ventricular assist devices. Devices modeling poses unique challenges different from computing the blood flow in natural hearts and arteries. There are many elements needed to quantify the flow in these devices such as flow solvers, geometry modeling including flexible walls, moving boundary procedures and physiological characterization of blood. As a first step, computational technology developed for aerospace applications was extended to the analysis and development of a ventricular assist device (VAD), i.e., a blood pump. The blood flow in a VAD is practically incompressible and Newtonian, and thus an incompressible Navier-Stokes solution procedure can be applied. A primitive variable formulation is used in conjunction with the overset grid approach to handle complex moving geometry. The primary purpose of developing the incompressible flow analysis capability was to quantify the flow in advanced turbopump for space propulsion system. The same procedure has been extended to the development of NASA-DeBakey VAD that is based on an axial blood pump. Due to massive computing requirements, high-end computing is necessary for simulating three-dimensional flow in these pumps. Computational, experimental, and clinical results are presented.
Shear thinning effects on blood flow in straight and curved tubes
NASA Astrophysics Data System (ADS)
Cherry, Erica M.; Eaton, John K.
2013-07-01
Simulations were performed to determine the magnitude and types of errors one can expect when approximating blood in large arteries as a Newtonian fluid, particularly in the presence of secondary flows. This was accomplished by running steady simulations of blood flow in straight and curved tubes using both Newtonian and shear-thinning viscosity models. In the shear-thinning simulations, the viscosity was modeled as a shear rate-dependent function fit to experimental data. Simulations in straight tubes were modeled after physiologically relevant arterial flows, and flow parameters for the curved tube simulations were chosen to examine a variety of secondary flow strengths. The diameters ranged from 1 mm to 10 mm and the Reynolds numbers from 24 to 1500. Pressure and velocity data are reported for all simulations. In the straight tube simulations, the shear-thinning flows had flattened velocity profiles and higher pressure gradients compared to the Newtonian simulations. In the curved tube flows, the shear-thinning simulations tended to have blunted axial velocity profiles, decreased secondary flow strengths, and decreased axial vorticity compared to the Newtonian simulations. The cross-sectionally averaged pressure drops in the curved tubes were higher in the shear-thinning flows at low Reynolds number but lower at high Reynolds number. The maximum deviation in secondary flow magnitude averaged over the cross sectional area was 19% of the maximum secondary flow and the maximum deviation in axial vorticity was 25% of the maximum vorticity.
Eichhorn, Stefan; Spindler, Johannes; Polski, Marcin; Mendoza, Alejandro; Schreiber, Ulrich; Heller, Michael; Deutsch, Marcus Andre; Braun, Christian; Lange, Rüdiger; Krane, Markus
2017-05-01
Investigations of compressive frequency, duty cycle, or waveform during CPR are typically rooted in animal research or computer simulations. Our goal was to generate a mechanical model incorporating alternate stiffness settings and an integrated blood flow system, enabling defined, reproducible comparisons of CPR efficacy. Based on thoracic stiffness data measured in human cadavers, such a model was constructed using valve-controlled pneumatic pistons and an artificial heart. This model offers two realistic levels of chest elasticity, with a blood flow apparatus that reflects compressive depth and waveform changes. We conducted CPR at opposing levels of physiologic stiffness, using a LUCAS device, a motor-driven plunger, and a group of volunteers. In high-stiffness mode, blood flow generated by volunteers was significantly less after just 2min of CPR, whereas flow generated by LUCAS device was superior by comparison. Optimal blood flow was obtained via motor-driven plunger, with trapezoidal waveform. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
Laser Doppler pulp vitality measurements: simulation and measurement
NASA Astrophysics Data System (ADS)
Ertl, T.
2017-02-01
Frequently pulp vitality measurement is done in a dental practice by pressing a frozen cotton pellet on the tooth. This method is subjective, as the patient's response is required, sometimes painful and has moderate sensitivity and specificity. Other methods, based on optical or electrical measurement have been published, but didńt find wide spread application in the dental offices. Laser Doppler measurement of the blood flow in the pulp could be an objective method to measure pulp vitality, but the influence of the gingival blood flow on the measurements is a concern. Therefore experiments and simulations were done to learn more about the gingival blood flow in relation to the pulpal blood flow and how to minimize the influence. First patient measurements were done to show the feasibility clinically. Results: Monte Carlo simulations and bench experiments simulating the blood flow in and around a tooth show that both basic configurations, transmission and reflection measurements are possible. Most favorable is a multi-point measurement with different distances from the gingiva. Preliminary sensitivity / specificity are promising and might allow an objective and painless measurement of tooth vitality.
The effects of non-Newtonian blood flow on curved stenotic coronary artery
NASA Astrophysics Data System (ADS)
Li, Shuang; Chin, Cheng; Monty, Jason; Barlis, Peter; Ooi, Andrew
2017-11-01
Direct numerical simulations (DNS) are carried out using both Newtonian and non-Newtonian viscosity models under a pulsatile physiological flow condition to study the influences of the non-Newtonian blood property on the flow fields in the idealised curved stenotic artery model. Quemada model is adopted to simulate the non-Newtonian blood in the simulations. Both time-averaged and selected instantaneous velocity, vorticity and pressure data are examined and the differences between the Newtonian and non-Newtonian flows are examined. The non-Newtonian simulations tend to have blunted axial velocity profile compared to the Newtonian cases. In the proximal of post-stenotic region, smaller recirculation bubbles are observed because of the non-Newtonian effects. Decreased secondary flow strengths are observed upstream of stenosis while higher magnitudes of secondary flows are found out downstream of stenosis. The deviation of mean cross-sectionally axial vorticity is minimal except at the peak systole, where an additional vortice appears near the centre of the 90 degrees plane that is more pronounced in the Newtonian case. The influence of blood-analog viscosity increases the mean pressure drops. However, lower instantaneous pressure losses at peak systole are observed in contrast to the Newtonian blood analog fluid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Na; Zhang, Peng; Kang, Wei
Multiscale simulations of fluids such as blood represent a major computational challenge of coupling the disparate spatiotemporal scales between molecular and macroscopic transport phenomena characterizing such complex fluids. In this paper, a coarse-grained (CG) particle model is developed for simulating blood flow by modifying the Morse potential, traditionally used in Molecular Dynamics for modeling vibrating structures. The modified Morse potential is parameterized with effective mass scales for reproducing blood viscous flow properties, including density, pressure, viscosity, compressibility and characteristic flow dynamics of human blood plasma fluid. The parameterization follows a standard inverse-problem approach in which the optimal micro parameters aremore » systematically searched, by gradually decoupling loosely correlated parameter spaces, to match the macro physical quantities of viscous blood flow. The predictions of this particle based multiscale model compare favorably to classic viscous flow solutions such as Counter-Poiseuille and Couette flows. It demonstrates that such coarse grained particle model can be applied to replicate the dynamics of viscous blood flow, with the advantage of bridging the gap between macroscopic flow scales and the cellular scales characterizing blood flow that continuum based models fail to handle adequately.« less
Dynamic Effect of Rolling Massage on Blood Flow
NASA Astrophysics Data System (ADS)
Chen, Yan-Yan; Yi, Hou-Hui; Li, Hua-Bing; Fang, Hai-Ping
2009-02-01
The Chinese traditional medical massage has been used as a natural therapy to eliminate some diseases. Here, the effect of the rolling massage frequency to the blood flow in the blood vessels under the rolling massage manipulation is studied by the lattice Boltzmann simulation. The simulation results show that when the frequency is smaller than or comparable to the pulsatile frequency of the blood flow, the effect on the blood flux by the rolling massage is small. On the contrast, if the frequency is twice or more times of the pulsatile frequency of the blood flow, the blood flux is greatly enhanced and increases linearly with respect to the frequency. Similar behavior has also been observed on the shear stress on the blood vessel walls. The result is helpful for understanding that the rolling massage has the function of promoting the blood circulation and removing the blood stasis.
Kagadis, George C; Skouras, Eugene D; Bourantas, George C; Paraskeva, Christakis A; Katsanos, Konstantinos; Karnabatidis, Dimitris; Nikiforidis, George C
2008-06-01
The present study reports on computational fluid dynamics in the case of severe renal artery stenosis (RAS). An anatomically realistic model of a renal artery was reconstructed from CT scans, and used to conduct CFD simulations of blood flow across RAS. The recently developed shear stress transport (SST) turbulence model was pivotally applied in the simulation of blood flow in the region of interest. Blood flow was studied in vivo under the presence of RAS and subsequently in simulated cases before the development of RAS, and after endovascular stent implantation. The pressure gradients in the RAS case were many orders of magnitude larger than in the healthy case. The presence of RAS increased flow resistance, which led to considerably lower blood flow rates. A simulated stent in place of the RAS decreased the flow resistance at levels proportional to, and even lower than, the simulated healthy case without the RAS. The wall shear stresses, differential pressure profiles, and net forces exerted on the surface of the atherosclerotic plaque at peak pulse were shown to be of relevant high distinctiveness, so as to be considered potential indicators of hemodynamically significant RAS.
Jodko, Daniel; Obidowski, Damian; Reorowicz, Piotr; Jóźwik, Krzysztof
2016-01-01
The aim of this study was to investigate the blood flow in the end-to-side arteriovenous (a-v) fistula, taking into account its pulsating nature and the patient-specific geometry of blood vessels. Computational Fluid Dynamics (CFD) methods were used for this analysis. DICOM images of the fistula, obtained from the angio-computed tomography, were a source of the data applied to develop a 3D geometrical model of the fistula. The model was meshed, then the ANSYS CFX v. 15.0 code was used to perform simulations of the flow in the vessels under analysis. Mesh independence tests were conducted. The non-Newtonian rheological model of blood and the Shear Stress Transport model of turbulence were employed. Blood vessel walls were assumed to be rigid. Flow patterns, velocity fields, the volume flow rate, the wall shear stress (WSS) propagation on particular blood vessel walls were shown versus time. The maximal value of the blood velocity was identified in the anastomosis - the place where the artery is connected to the vein. The flow rate was calculated for all veins receiving blood. The blood flow in the geometrically complicated a-v fistula was simulated. The values and oscillations of the WSS are the largest in the anastomosis, much lower in the artery and the lowest in the cephalic vein. A strong influence of the mesh on the results concerning the maximal and area-averaged WSS was shown. The relation between simulations of the pulsating and stationary flow under time-averaged flow conditions was presented.
Parameterizing the Morse Potential for Coarse-Grained Modeling of Blood Plasma
Zhang, Na; Zhang, Peng; Kang, Wei; Bluestein, Danny; Deng, Yuefan
2014-01-01
Multiscale simulations of fluids such as blood represent a major computational challenge of coupling the disparate spatiotemporal scales between molecular and macroscopic transport phenomena characterizing such complex fluids. In this paper, a coarse-grained (CG) particle model is developed for simulating blood flow by modifying the Morse potential, traditionally used in Molecular Dynamics for modeling vibrating structures. The modified Morse potential is parameterized with effective mass scales for reproducing blood viscous flow properties, including density, pressure, viscosity, compressibility and characteristic flow dynamics of human blood plasma fluid. The parameterization follows a standard inverse-problem approach in which the optimal micro parameters are systematically searched, by gradually decoupling loosely correlated parameter spaces, to match the macro physical quantities of viscous blood flow. The predictions of this particle based multiscale model compare favorably to classic viscous flow solutions such as Counter-Poiseuille and Couette flows. It demonstrates that such coarse grained particle model can be applied to replicate the dynamics of viscous blood flow, with the advantage of bridging the gap between macroscopic flow scales and the cellular scales characterizing blood flow that continuum based models fail to handle adequately. PMID:24910470
[A capillary blood flow velocity detection system based on linear array charge-coupled devices].
Zhou, Houming; Wang, Ruofeng; Dang, Qi; Yang, Li; Wang, Xiang
2017-12-01
In order to detect the flow characteristics of blood samples in the capillary, this paper introduces a blood flow velocity measurement system based on field-programmable gate array (FPGA), linear charge-coupled devices (CCD) and personal computer (PC) software structure. Based on the analysis of the TCD1703C and AD9826 device data sheets, Verilog HDL hardware description language was used to design and simulate the driver. Image signal acquisition and the extraction of the real-time edge information of the blood sample were carried out synchronously in the FPGA. Then a series of discrete displacement were performed in a differential operation to scan each of the blood samples displacement, so that the sample flow rate could be obtained. Finally, the feasibility of the blood flow velocity detection system was verified by simulation and debugging. After drawing the flow velocity curve and analyzing the velocity characteristics, the significance of measuring blood flow velocity is analyzed. The results show that the measurement of the system is less time-consuming and less complex than other flow rate monitoring schemes.
NASA Astrophysics Data System (ADS)
Varghese, Joffin; Jayakumar, J. S.
2017-09-01
Quantifying, forecasting and analysing the displacement rates of suspended particles are essential while discussing about blood flow analysis. Because blood is one of the major organs in the body, which enables transport phenomena, comprising of numerous blood cells. In order to model the blood flow, a flow domain was created and numerically simulated. Flow field velocity in the stream is solved utilizing Finite Volume Method utilizing FVM unstructured solver. In pulsatile flow, the effect of parameters such as average Reynolds number, tube radius, particle size and Womersley number are taken into account. In this study spheroidal particle trajectory in axial direction is simulated at different values of pulsating frequency including 1.2 Hz, 3.33 Hz and 4.00 Hz and various densities including 1005 kg/m3 and 1025 kg/m3 for the flow domain. The analysis accomplishes the interaction study of blood constituents for different flow situations which have applications in diagnosis and treatment of cardio vascular related diseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Xing; Lin, Guang; Zou, Jianfeng
To model red blood cell (RBC) deformation in flow, the recently developed LBM-DLM/FD method ([Shi and Lim, 2007)29], derived from the lattice Boltzmann method and the distributed Lagrange multiplier/fictitious domain methodthe fictitious domain method, is extended to employ the mesoscopic network model for simulations of red blood cell deformation. The flow is simulated by the lattice Boltzmann method with an external force, while the network model is used for modeling red blood cell deformation and the fluid-RBC interaction is enforced by the Lagrange multiplier. To validate parameters of the RBC network model, sThe stretching numerical tests on both coarse andmore » fine meshes are performed and compared with the corresponding experimental data to validate the parameters of the RBC network model. In addition, RBC deformation in pipe flow and in shear flow is simulated, revealing the capacity of the current method for modeling RBC deformation in various flows.« less
Direct Numerical Simulation of Cellular-Scale Blood Flow in 3D Microvascular Networks.
Balogh, Peter; Bagchi, Prosenjit
2017-12-19
We present, to our knowledge, the first direct numerical simulation of 3D cellular-scale blood flow in physiologically realistic microvascular networks. The vascular networks are designed following in vivo images and data, and are comprised of bifurcating, merging, and winding vessels. Our model resolves the large deformation and dynamics of each individual red blood cell flowing through the networks with high fidelity, while simultaneously retaining the highly complex geometric details of the vascular architecture. To our knowledge, our simulations predict several novel and unexpected phenomena. We show that heterogeneity in hemodynamic quantities, which is a hallmark of microvascular blood flow, appears both in space and time, and that the temporal heterogeneity is more severe than its spatial counterpart. The cells are observed to frequently jam at vascular bifurcations resulting in reductions in hematocrit and flow rate in the daughter and mother vessels. We find that red blood cell jamming at vascular bifurcations results in several orders-of-magnitude increase in hemodynamic resistance, and thus provides an additional mechanism of increased in vivo blood viscosity as compared to that determined in vitro. A striking result from our simulations is negative pressure-flow correlations observed in several vessels, implying a significant deviation from Poiseuille's law. Furthermore, negative correlations between vascular resistance and hematocrit are observed in various vessels, also defying a major principle of particulate suspension flow. To our knowledge, these novel findings are absent in blood flow in straight tubes, and they underscore the importance of considering realistic physiological geometry and resolved cellular interactions in modeling microvascular hemodynamics. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Modelling Cerebral Blood Flow and Temperature Using a Vascular Porous Model
NASA Astrophysics Data System (ADS)
Blowers, Stephen; Thrippleton, Michael; Marshall, Ian; Harris, Bridget; Andrews, Peter; Valluri, Prashant
2016-11-01
Macro-modelling of cerebral blood flow can assist in determining the impact of temperature intervention to reduce permanent tissue damage during instances of brain trauma. Here we present a 3D two phase fluid-porous model for simulating blood flow through the capillary region linked to intersecting 1D arterial and venous vessel trees. This combined vasculature porous (VaPor) model simulates both flow and energy balances, including heat from metabolism, using a vasculature extracted from MRI data which are expanded upon using a tree generation algorithm. Validation of temperature balance has been achieved using rodent brain data. Direct flow validation is not as straight forward due to the method used in determining regional cerebral blood flow (rCBF). In-vivo measurements are achieved using a tracer, which disagree with direct measurements of simulated flow. However, by modelling a virtual tracer, rCBF values are obtained that agree with those found in literature. Temperature profiles generated with the VaPor model show a reduction in core brain temperature after cooling the scalp not seen previously in other models.
Direct numerical simulation of cellular-scale blood flow in microvascular networks
NASA Astrophysics Data System (ADS)
Balogh, Peter; Bagchi, Prosenjit
2017-11-01
A direct numerical simulation method is developed to study cellular-scale blood flow in physiologically realistic microvascular networks that are constructed in silico following published in vivo images and data, and are comprised of bifurcating, merging, and winding vessels. The model resolves large deformation of individual red blood cells (RBC) flowing in such complex networks. The vascular walls and deformable interfaces of the RBCs are modeled using the immersed-boundary methods. Time-averaged hemodynamic quantities obtained from the simulations agree quite well with published in vivo data. Our simulations reveal that in several vessels the flow rates and pressure drops could be negatively correlated. The flow resistance and hematocrit are also found to be negatively correlated in some vessels. These observations suggest a deviation from the classical Poiseuille's law in such vessels. The cells are observed to frequently jam at vascular bifurcations resulting in reductions in hematocrit and flow rate in the daughter and mother vessels. We find that RBC jamming results in several orders of magnitude increase in hemodynamic resistance, and thus provides an additional mechanism of increased in vivo blood viscosity as compared to that determined in vitro. Funded by NSF CBET 1604308.
Simulation of blood flow in a small-diameter vascular graft model with a swirl (spiral) flow guider.
Zhang, ZhiGuo; Fan, YuBo; Deng, XiaoYan; Wang, GuiXue; Zhang, He; Guidoin, Robert
2008-10-01
Small-diameter vascular grafts are in large demand for coronary and peripheral bypass procedures, but present products still fail in long-term clinical application. In the present communication, a new type of small-diameter graft with a swirl flow guider was proposed to improve graft patency rate. Flow pattern in the graft was simulated numerically and compared with that in a conventional graft. The numerical results revealed that the swirl flow guider could indeed make the blood flow rotate in the new graft. The swirling flow distal to the flow guider significantly altered the flow pattern in the new graft and the velocity profiles were re-distributed. Due to the swirling flow, the blood velocity near the vessel wall and wall shear rate were greatly enhanced. We believe that the increased blood velocity near the wall and the wall shear rate can impede the occurrence of acute thrombus formation and intimal hyperplasia, hence can improve the graft patency rate for long-term clinical use.
Computer Simulations of Valveless Pumping using the Immersed Boundary Method
NASA Astrophysics Data System (ADS)
Jung, Eunok; Peskin, Charles
2000-03-01
Pumping blood in one direction is the main function of the heart, and the heart is equipped with valves that ensure unidirectional flow. Is it possible, though, to pump blood without valves? This report is intended to show by numerical simulation the possibility of a net flow which is generated by a valveless mechanism in a circulatory system. Simulations of valveless pumping are motivated by biomedical applications: cardiopulmonary resuscitation (CPR); and the human foetus before the development of the heart valves. The numerical method used in this work is immersed boundary method, which is applicable to problems involving an elastic structure interacting with a viscous incompressible fluid. This method has already been applied to blood flow in the heart, platelet aggregation during blood clotting, aquatic animal locomotion, and flow in collapsible tubes. The direction of flow inside a loop of tubing which consists of (almost) rigid and flexible parts is investigated when the boundary of one end of the flexible segment is forced periodically in time. Despite the absence of valves, net flow around the loop may appear in these simulations. Furthermore, we present the new, unexpected results that the direction of this flow is determined not only by the position of the periodic compression, but also by the frequency and amplitude of the driving force.
Korporaal, Johannes G; Benz, Matthias R; Schindera, Sebastian T; Flohr, Thomas G; Schmidt, Bernhard
2016-01-01
The aim of this study was to introduce a new theoretical framework describing the relationship between the blood velocity, computed tomography (CT) acquisition velocity, and iodine contrast enhancement in CT images, and give a proof of principle of contrast gradient-based blood velocimetry with CT. The time-averaged blood velocity (v(blood)) inside an artery along the axis of rotation (z axis) is described as the mathematical division of a temporal (Hounsfield unit/second) and spatial (Hounsfield unit/centimeter) iodine contrast gradient. From this new theoretical framework, multiple strategies for calculating the time-averaged blood velocity from existing clinical CT scan protocols are derived, and contrast gradient-based blood velocimetry was introduced as a new method that can calculate v(blood) directly from contrast agent gradients and the changes therein. Exemplarily, the behavior of this new method was simulated for image acquisition with an adaptive 4-dimensional spiral mode consisting of repeated spiral acquisitions with alternating scan direction. In a dynamic flow phantom with flow velocities between 5.1 and 21.2 cm/s, the same acquisition mode was used to validate the simulations and give a proof of principle of contrast gradient-based blood velocimetry in a straight cylinder of 2.5 cm diameter, representing the aorta. In general, scanning with the direction of blood flow results in decreased and scanning against the flow in increased temporal contrast agent gradients. Velocity quantification becomes better for low blood and high acquisition speeds because the deviation of the measured contrast agent gradient from the temporal gradient will increase. In the dynamic flow phantom, a modulation of the enhancement curve, and thus alternation of the contrast agent gradients, can be observed for the adaptive 4-dimensional spiral mode and is in agreement with the simulations. The measured flow velocities in the downslopes of the enhancement curves were in good agreement with the expected values, although the accuracy and precision worsened with increasing flow velocities. The new theoretical framework increases the understanding of the relationship between the blood velocity, CT acquisition velocity, and iodine contrast enhancement in CT images, and it interconnects existing blood velocimetry methods with research on transluminary attenuation gradients. With these new insights, novel strategies for CT blood velocimetry, such as the contrast gradient-based method presented in this article, may be developed.
Computed Flow Through An Artificial Heart Valve
NASA Technical Reports Server (NTRS)
Rogers, Stewart E.; Kwak, Dochan; Kiris, Cetin; Chang, I-Dee
1994-01-01
Report discusses computations of blood flow through prosthetic tilting disk valve. Computational procedure developed in simulation used to design better artificial hearts and valves by reducing or eliminating following adverse flow characteristics: large pressure losses, which prevent hearts from working efficiently; separated and secondary flows, which causes clotting; and high turbulent shear stresses, which damages red blood cells. Report reiterates and expands upon part of NASA technical memorandum "Computed Flow Through an Artificial Heart and Valve" (ARC-12983). Also based partly on research described in "Numerical Simulation of Flow Through an Artificial Heart" (ARC-12478).
Sultanov, Renat A; Guster, Dennis
2009-01-01
We report computational results of blood flow through a model of the human aortic arch and a vessel of actual diameter and length. A realistic pulsatile flow is used in all simulations. Calculations for bifurcation type vessels are also carried out and presented. Different mathematical methods for numerical solution of the fluid dynamics equations have been considered. The non-Newtonian behaviour of the human blood is investigated together with turbulence effects. A detailed time-dependent mathematical convergence test has been carried out. The results of computer simulations of the blood flow in vessels of three different geometries are presented: for pressure, strain rate and velocity component distributions we found significant disagreements between our results obtained with realistic non-Newtonian treatment of human blood and the widely used method in the literature: a simple Newtonian approximation. A significant increase of the strain rate and, as a result, the wall shear stress distribution, is found in the region of the aortic arch. Turbulent effects are found to be important, particularly in the case of bifurcation vessels.
Multiscale Simulation of Blood Flow in Brain Arteries with an Aneurysm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leopold Grinberg; Vitali Morozov; Dmitry A. Fedosov
2013-04-24
Multi-scale modeling of arterial blood flow can shed light on the interaction between events happening at micro- and meso-scales (i.e., adhesion of red blood cells to the arterial wall, clot formation) and at macro-scales (i.e., change in flow patterns due to the clot). Coupled numerical simulations of such multi-scale flow require state-of-the-art computers and algorithms, along with techniques for multi-scale visualizations.This animation presents results of studies used in the development of a multi-scale visualization methodology. First we use streamlines to show the path the flow is taking as it moves through the system, including the aneurysm. Next we investigate themore » process of thrombus (blood clot) formation, which may be responsible for the rupture of aneurysms, by concentrating on the platelet blood cells, observing as they aggregate on the wall of the aneurysm.« less
Vankan, W J; Huyghe, J M; Slaaf, D W; van Donkelaar, C C; Drost, M R; Janssen, J D; Huson, A
1997-09-01
Mechanical interaction between tissue stress and blood perfusion in skeletal muscles plays an important role in blood flow impediment during sustained contraction. The exact mechanism of this interaction is not clear, and experimental investigation of this mechanism is difficult. We developed a finite-element model of the mechanical behavior of blood-perfused muscle tissue, which accounts for mechanical blood-tissue interaction in maximally vasodilated vasculature. Verification of the model was performed by comparing finite-element results of blood pressure and flow with experimental measurements in a muscle that is subject to well-controlled mechanical loading conditions. In addition, we performed simulations of blood perfusion during tetanic, isometric contraction and maximal vasodilation in a simplified, two-dimensional finite-element model of a rat calf muscle. A vascular waterfall in the venous compartment was identified as the main cause for blood flow impediment both in the experiment and in the finite-element simulations. The validated finite-element model offers possibilities for detailed analysis of blood perfusion in three-dimensional muscle models under complicated loading conditions.
Lattice Boltzmann Simulation of Blood Flow in Blood Vessels with the Rolling Massage
NASA Astrophysics Data System (ADS)
Yi, Hou-Hui; Xu, Shi-Xiong; Qian, Yue-Hong; Fang, Hai-Ping
2005-12-01
The rolling massage manipulation is a classic Chinese massage, which is expected to improve the circulation by pushing, pulling and kneading of the muscle. A model for the rolling massage manipulation is proposed and the lattice Boltzmann method is applied to study the blood flow in the blood vessels. The simulation results show that the blood flux is considerably modified by the rolling massage and the explicit value depends on the rolling frequency, the rolling depth, and the diameter of the vessel. The smaller the diameter of the blood vessel, the larger the enhancement of the blood flux by the rolling massage. The model, together with the simulation results, is expected to be helpful to understand the mechanism and further development of rolling massage techniques.
1-D blood flow modelling in a running human body.
Szabó, Viktor; Halász, Gábor
2017-07-01
In this paper an attempt was made to simulate blood flow in a mobile human arterial network, specifically, in a running human subject. In order to simulate the effect of motion, a previously published immobile 1-D model was modified by including an inertial force term into the momentum equation. To calculate inertial force, gait analysis was performed at different levels of speed. Our results show that motion has a significant effect on the amplitudes of the blood pressure and flow rate but the average values are not effected significantly.
Blood Pump Development Using Rocket Engine Flow Simulation Technology
NASA Technical Reports Server (NTRS)
Kiris, Cetin C.; Kwak, Dochan
2002-01-01
This viewgraph presentation provides information on the transfer of rocket engine flow simulation technology to work involving the development of blood pumps. Details are offered regarding the design and requirements of mechanical heart assist devices, or VADs (ventricular assist device). There are various computational fluid dynamics issues involved in the visualization of flow in such devices, and these are highlighted and compared to those of rocket turbopumps.
Lau, Kevin D.; Asrress, Kaleab N.; Redwood, Simon R.; Figueroa, C. Alberto
2016-01-01
This work presents a mathematical model of the metabolic feedback and adrenergic feedforward control of coronary blood flow that occur during variations in the cardiac workload. It is based on the physiological observations that coronary blood flow closely follows myocardial oxygen demand, that myocardial oxygen debts are repaid, and that control oscillations occur when the system is perturbed and so are phenomenological in nature. Using clinical data, we demonstrate that the model can provide patient-specific estimates of coronary blood flow changes between rest and exercise, requiring only the patient's heart rate and peak aortic pressure as input. The model can be used in zero-dimensional lumped parameter network studies or as a boundary condition for three-dimensional multidomain Navier-Stokes blood flow simulations. For the first time, this model provides feedback control of the coronary vascular resistance, which can be used to enhance the physiological accuracy of any hemodynamic simulation, which includes both a heart model and coronary arteries. This has particular relevance to patient-specific simulation for which heart rate and aortic pressure recordings are available. In addition to providing a simulation tool, under our assumptions, the derivation of our model shows that β-feedforward control of the coronary microvascular resistance is a mathematical necessity and that the metabolic feedback control must be dependent on two error signals: the historical myocardial oxygen debt, and the instantaneous myocardial oxygen deficit. PMID:26945076
Arthurs, Christopher J; Lau, Kevin D; Asrress, Kaleab N; Redwood, Simon R; Figueroa, C Alberto
2016-05-01
This work presents a mathematical model of the metabolic feedback and adrenergic feedforward control of coronary blood flow that occur during variations in the cardiac workload. It is based on the physiological observations that coronary blood flow closely follows myocardial oxygen demand, that myocardial oxygen debts are repaid, and that control oscillations occur when the system is perturbed and so are phenomenological in nature. Using clinical data, we demonstrate that the model can provide patient-specific estimates of coronary blood flow changes between rest and exercise, requiring only the patient's heart rate and peak aortic pressure as input. The model can be used in zero-dimensional lumped parameter network studies or as a boundary condition for three-dimensional multidomain Navier-Stokes blood flow simulations. For the first time, this model provides feedback control of the coronary vascular resistance, which can be used to enhance the physiological accuracy of any hemodynamic simulation, which includes both a heart model and coronary arteries. This has particular relevance to patient-specific simulation for which heart rate and aortic pressure recordings are available. In addition to providing a simulation tool, under our assumptions, the derivation of our model shows that β-feedforward control of the coronary microvascular resistance is a mathematical necessity and that the metabolic feedback control must be dependent on two error signals: the historical myocardial oxygen debt, and the instantaneous myocardial oxygen deficit. Copyright © 2016 the American Physiological Society.
NASA Astrophysics Data System (ADS)
Lv, Xiang; Xue, Yue; Wang, Haili; Shen, Shu Wei; Zhou, Ximing; Liu, Guangli; Dong, Erbao; Xu, Ronald X.
2017-03-01
Tissue-simulating phantoms with interior vascular network may facilitate traceable calibration and quantitative validation of many medical optical devices. However, a solid phantom that reliably simulates tissue oxygenation and blood perfusion is still not available. This paper presents a new method to fabricate hollow microtubes for blood vessel simulation in solid phantoms. The fabrication process combines ultraviolet (UV) rapid prototyping technique with fluid mechanics of a coaxial jet flow. Polydimethylsiloxane (PDMS) and a UV-curable polymer are mixed at the designated ratio and extruded through a coaxial needle device to produce a coaxial jet flow. The extruded jet flow is quickly photo-polymerized by ultraviolet (UV) light to form vessel-simulating solid structures at different sizes ranging from 700 μm to 1000 μm. Microtube structures with adequate mechanical properties can be fabricated by adjusting material compositions and illumination intensity. Curved, straight and stretched microtubes can be formed by adjusting the extrusion speed of the materials and the speed of the 3D printing platform. To simulate vascular structures in biologic tissue, we embed vessel-simulating microtubes in a gel wax phantom of 10 cm x10 cm x 5 cm at the depth from 1 to 2 mm. Bloods at different oxygenation and hemoglobin concentration levels are circulated through the microtubes at different flow rates in order to simulate different oxygenation and perfusion conditions. The simulated physiologic parameters are detected by a tissue oximeter and a laser speckle blood flow meter respectively and compared with the actual values. Our experiments demonstrate that the proposed 3D printing process is able to produce solid phantoms with simulated vascular networks for potential applications in medical device calibration and drug delivery studies.
Xiong, Guanglei; Figueroa, C. Alberto; Xiao, Nan; Taylor, Charles A.
2011-01-01
SUMMARY Simulation of blood flow using image-based models and computational fluid dynamics has found widespread application to quantifying hemodynamic factors relevant to the initiation and progression of cardiovascular diseases and for planning interventions. Methods for creating subject-specific geometric models from medical imaging data have improved substantially in the last decade but for many problems, still require significant user interaction. In addition, while fluid–structure interaction methods are being employed to model blood flow and vessel wall dynamics, tissue properties are often assumed to be uniform. In this paper, we propose a novel workflow for simulating blood flow using subject-specific geometry and spatially varying wall properties. The geometric model construction is based on 3D segmentation and geometric processing. Variable wall properties are assigned to the model based on combining centerline-based and surface-based methods. We finally demonstrate these new methods using an idealized cylindrical model and two subject-specific vascular models with thoracic and cerebral aneurysms. PMID:21765984
Numerical Simulation of Blood Flow in Human Artery Using (A, Q) and (A, u) Systems
NASA Astrophysics Data System (ADS)
Mungkasi, Sudi; Wijayanti Budiawan, Inge
2018-03-01
In this paper, we model blood flow in human artery in the form of (𝐴, 𝑄) and (𝐴, 𝑢) systems, then we use the Lax-Friedrichs finite volume method to find the numerical solution of each model. Here 𝐴 represents the cross sectional area of the artery, 𝑄 denotes the discharge of the blood flow, and 𝑢 is the velocity of the blood flow. We simulate the numerical scheme of each model and investigate how the blood pressure pulse propagates in human artery. Particularly, we use the residual of 𝐴 to determine which system is better numerically. We obtain that the (𝐴, 𝑄) system is better numerically than the (𝐴, 𝑢) system, because the absolute of the residual of 𝐴 using the (𝐴, 𝑄) system is smaller than the absolute of the residual of 𝐴 using the (𝐴, 𝑢) system.
Nowak, Andreas; Langebach, Robin; Klemm, Eckart; Heller, Winfried
2012-04-01
We describe an innovative computer-based method for the analysis of gas flow using a modified airway management technique to perform percutaneous dilatational tracheotomy (PDT) with a rigid tracheotomy endoscope (TED). A test lung was connected via an artificial trachea with the tracheotomy endoscope and ventilated using superimposed high-frequency jet ventilation. Red packed cells were instilled during the puncture phase of a simulated percutaneous tracheotomy in a trachea model and migration of the red packed cells during breathing was continuously measured. Simultaneously, the calculation of the gas-flow within the endoscope was numerically simulated. In the experimental study, no backflow of blood occurred during the use of superimposed high-frequency jet ventilation (SHFJV) from the trachea into the endoscope nor did any transportation of blood into the lower respiratory tract occur. In parallel, the numerical simulations of the openings of TED show almost positive volume flows. Under the conditions investigated there is no risk of blood aspiration during PDT using the TED and simultaneous ventilation with SHFJV. In addition, no risk of impairment of endoscopic visibility exists through a backflow of blood into the TED. The method of numerical simulation offers excellent insight into the fluid flow even under highly transient conditions like jet ventilation.
Modeling intracavitary heating of the uterus by means of a balloon catheter
NASA Astrophysics Data System (ADS)
Olsrud, Johan; Friberg, Britt; Rioseco, Juan; Ahlgren, Mats; Persson, Bertil R. R.
1999-01-01
Balloon thermal endometrial destruction (TED) is a recently developed method to treat heavy menstrual bleeding (menorrhagia). Numerical simulations of this treatment by use of the finite element method were performed. The mechanical deformation and the resulting stress distribution when a balloon catheter is expanded within the uterine cavity was estimated from structural analysis. Thermal analysis was then performed to estimate the depth of tissue coagulation (temperature > 55 degree(s)C) in the uterus during TED. The estimated depth of coagulation, after 30 min heating with an intracavity temperature of 75 degree(s)C, was approximately 9 mm when blood flow was disregarded. With uniform normal blood flow, the depth of coagulation decreased to 3 - 4 mm. Simulations with varying intracavity temperatures and blood flow rates showed that both parameters should be of major importance to the depth of coagulation. The influence of blood flow was less when the pressure due to the balloon was also considered (5 - 6 mm coagulation depth with normal blood flow).
Li, Xuejin; Popel, Aleksander S.; Karniadakis, George Em
2012-01-01
The motion of a suspension of red blood cells (RBCs) flowing in a Y-shaped bifurcating microfluidic channel is investigated using a validated low-dimensional RBC (LD-RBC) model based on dissipative particle dynamics (DPD). Specifically, the RBC is represented as a closed torus-like ring of ten colloidal particles, which leads to efficient simulations of blood flow in microcirculation over a wide range of hematocrits. Adaptive no-slip wall boundary conditions were implemented to model hydrodynamic flow within a specific wall structure of diverging 3D microfluidic channels, paying attention to controlling density fluctuations. Plasma skimming and the all-or-nothing phenomenon of RBCs in a bifurcating microfluidic channel have been investigated in our simulations for healthy and diseased blood, including the size of cell-free layer on the daughter branches. The feed hematocrit level in the parent channel has considerable influence on blood-plasma separation. Compared to the blood-plasma separation efficiencies of healthy RBCs, malaria-infected stiff RBCs (iRBCs) have a tendency to travel into the low flowrate daughter branch because of their different initial distribution in the parent channel. Our simulation results are consistent with previously published experimental results and theoretical predictions. PMID:22476709
NASA Astrophysics Data System (ADS)
Nakabayashi, Mikie; Ono, Yumie; Ichinose, Masashi
2018-02-01
Diffuse correlation spectroscopy (DCS) has a potential to noninvasively and quantitatively measure the blood flow in the exercising muscle that could contribute to the fields of sports physiology and medicine. However, the blood flow index (BFI) measured from skin surface by DCS reflects hemodynamic signals from both superficial tissue and muscle layer. Thus, an appropriate calibration technology is required to quantify the absolute blood flow in the muscle layer. We therefore fabricated a realistic two-layer phantom model consisted of a static silicon layer imitating superficial tissue and a dynamic flow layer imitating the muscle blood flow and investigated the relationship between the simulated blood flow rate in the muscle layer and the BFI measured from the surface of the phantom. The absorption coefficient and the reduced scattering coefficient of the forearm were measured from 25 healthy young adults using a time-resolved nearinfrared spectroscopy. The depths of the superficial and muscle layers of forearm were also determined by ultrasound tomography images from 25 healthy young adults. The phantoms were fabricated to satisfy these optical coefficients and anatomical constraints. The simulated blood flow rate were set from 0 mL/ min to 68.7 mL/ min in ten steps, which is considered to cover a physiological range of mean blood flow of the forearm between per 100g of muscle tissue at rest to heavy dynamic handgrip exercise. We found a proportional relationship between the flow rates and BFIs with significant correlation coefficient of R = 0.986. Our results suggest that the absolute exercising muscle blood flow could be estimated by DCS with optimal calibration using phantom models.
Processing of Cells' Trajectories Data for Blood Flow Simulation Model*
NASA Astrophysics Data System (ADS)
Slavík, Martin; Kovalčíková, Kristína; Bachratý, Hynek; Bachratá, Katarína; Smiešková, Monika
2018-06-01
Simulations of the red blood cells (RBCs) flow as a movement of elastic objects in a fluid, are developed to optimize microfluidic devices used for a blood sample analysis for diagnostic purposes in the medicine. Tracking cell behaviour during simulation helps to improve the model and adjust its parameters. For the optimization of the microfluidic devices, it is also necessary to analyse cell trajectories as well as likelihood and frequency of their occurrence in a particular device area, especially in the parts, where they can affect circulating tumour cells capture. In this article, we propose and verify several ways of processing and analysing the typology and trajectory stability in simulations with single or with a large number of red blood cells (RBCs) in devices with different topologies containing cylindrical obstacles.
Simulation of blood flow using extended Boltzmann kinetic approach
NASA Astrophysics Data System (ADS)
Chen, Caixia; Chen, Hudong; Freed, David; Shock, Richard; Staroselsky, Ilya; Zhang, Raoyang; Ümit Coşkun, A.; Stone, Peter H.; Feldman, Charles L.
2006-03-01
Lattice Boltzmann (LB) simulations are conducted to obtain the detailed hydrodynamics in a variety of blood vessel setups, including a prototype stented channel and four human coronary artery geometries based on the images obtained from real patients. For a model of stented flow involving an S-shape stent, a pulsatile flow rate is applied as the inlet boundary condition, and the time- and space-dependent flow field is computed. The LB simulation is found to reproduce the analytical solutions for the velocity profiles and wall shear stress distributions for the pulsatile channel flow. For the coronary arteries, the distributions of wall shear stress, which is important for clinical diagnostic purposes, are in good agreement with the conventional CFD predictions.
Simulations of blood flow through a stenosed carotid artery
NASA Astrophysics Data System (ADS)
Lundin, Staffan; Meder, Samuel; Metcalfe, Ralph
2000-11-01
The human carotid artery is often the site of the formation of atherosclerotic lesions that can lead to severe reduction of blood flow to the brain, frequently resulting in a stroke. There is strong evidence that hemodynamic variables such as the wall shear stress and its spatial and temporal derivatives play a role in fostering atherosclerosis. To investigate the potential of these effects, we have performed unsteady, three-dimensional numerical simulations of blood flow through the carotid bifurcation in the presence of stenoses of varying degrees and eccentricities. The simulations indicate that regions of low maximum and minimum shear stress correlate better with lesion prone sites than low average wall shear stress. As the degree of stenosis increases, it is found that the downstream flow changes drastically for stenoses greater than about 25Downstream eddies are generated during systole that create local shear stress peaks on the internal carotid artery wall, resulting in significant reduction in flow rates through the internal carotid artery. Large secondary flows develop, and there are also periods of flow reversal during the systolic/diastolic cycle.
Virtual Cerebral Aneurysm Clipping with Real-Time Haptic Force Feedback in Neurosurgical Education.
Gmeiner, Matthias; Dirnberger, Johannes; Fenz, Wolfgang; Gollwitzer, Maria; Wurm, Gabriele; Trenkler, Johannes; Gruber, Andreas
2018-04-01
Realistic, safe, and efficient modalities for simulation-based training are highly warranted to enhance the quality of surgical education, and they should be incorporated in resident training. The aim of this study was to develop a patient-specific virtual cerebral aneurysm-clipping simulator with haptic force feedback and real-time deformation of the aneurysm and vessels. A prototype simulator was developed from 2012 to 2016. Evaluation of virtual clipping by blood flow simulation was integrated in this software, and the prototype was evaluated by 18 neurosurgeons. In 4 patients with different medial cerebral artery aneurysms, virtual clipping was performed after real-life surgery, and surgical results were compared regarding clip application, surgical trajectory, and blood flow. After head positioning and craniotomy, bimanual virtual aneurysm clipping with an original forceps was performed. Blood flow simulation demonstrated residual aneurysm filling or branch stenosis. The simulator improved anatomic understanding for 89% of neurosurgeons. Simulation of head positioning and craniotomy was considered realistic by 89% and 94% of users, respectively. Most participants agreed that this simulator should be integrated into neurosurgical education (94%). Our illustrative cases demonstrated that virtual aneurysm surgery was possible using the same trajectory as in real-life cases. Both virtual clipping and blood flow simulation were realistic in broad-based but not calcified aneurysms. Virtual clipping of a calcified aneurysm could be performed using the same surgical trajectory, but not the same clip type. We have successfully developed a virtual aneurysm-clipping simulator. Next, we will prospectively evaluate this device for surgical procedure planning and education. Copyright © 2018 Elsevier Inc. All rights reserved.
A feasability study of color flow doppler vectorization for automated blood flow monitoring.
Schorer, R; Badoual, A; Bastide, B; Vandebrouck, A; Licker, M; Sage, D
2017-12-01
An ongoing issue in vascular medicine is the measure of the blood flow. Catheterization remains the gold standard measurement method, although non-invasive techniques are an area of intense research. We hereby present a computational method for real-time measurement of the blood flow from color flow Doppler data, with a focus on simplicity and monitoring instead of diagnostics. We then analyze the performance of a proof-of-principle software implementation. We imagined a geometrical model geared towards blood flow computation from a color flow Doppler signal, and we developed a software implementation requiring only a standard diagnostic ultrasound device. Detection performance was evaluated by computing flow and its determinants (flow speed, vessel area, and ultrasound beam angle of incidence) on purposely designed synthetic and phantom-based arterial flow simulations. Flow was appropriately detected in all cases. Errors on synthetic images ranged from nonexistent to substantial depending on experimental conditions. Mean errors on measurements from our phantom flow simulation ranged from 1.2 to 40.2% for angle estimation, and from 3.2 to 25.3% for real-time flow estimation. This study is a proof of concept showing that accurate measurement can be done from automated color flow Doppler signal extraction, providing the industry the opportunity for further optimization using raw ultrasound data.
Welter, Michael; Rieger, Heiko
2016-01-01
Tumor vasculature, the blood vessel network supplying a growing tumor with nutrients such as oxygen or glucose, is in many respects different from the hierarchically organized arterio-venous blood vessel network in normal tissues. Angiogenesis (the formation of new blood vessels), vessel cooption (the integration of existing blood vessels into the tumor vasculature), and vessel regression remodel the healthy vascular network into a tumor-specific vasculature. Integrative models, based on detailed experimental data and physical laws, implement, in silico, the complex interplay of molecular pathways, cell proliferation, migration, and death, tissue microenvironment, mechanical and hydrodynamic forces, and the fine structure of the host tissue vasculature. With the help of computer simulations high-precision information about blood flow patterns, interstitial fluid flow, drug distribution, oxygen and nutrient distribution can be obtained and a plethora of therapeutic protocols can be tested before clinical trials. This chapter provides an overview over the current status of computer simulations of vascular remodeling during tumor growth including interstitial fluid flow, drug delivery, and oxygen supply within the tumor. The model predictions are compared with experimental and clinical data and a number of longstanding physiological paradigms about tumor vasculature and intratumoral solute transport are critically scrutinized.
Optimal design and uncertainty quantification in blood flow simulations for congenital heart disease
NASA Astrophysics Data System (ADS)
Marsden, Alison
2009-11-01
Recent work has demonstrated substantial progress in capabilities for patient-specific cardiovascular flow simulations. Recent advances include increasingly complex geometries, physiological flow conditions, and fluid structure interaction. However inputs to these simulations, including medical image data, catheter-derived pressures and material properties, can have significant uncertainties associated with them. For simulations to predict clinically useful and reliable output information, it is necessary to quantify the effects of input uncertainties on outputs of interest. In addition, blood flow simulation tools can now be efficiently coupled to shape optimization algorithms for surgery design applications, and these tools should incorporate uncertainty information. We present a unified framework to systematically and efficient account for uncertainties in simulations using adaptive stochastic collocation. In addition, we present a framework for derivative-free optimization of cardiovascular geometries, and layer these tools to perform optimization under uncertainty. These methods are demonstrated using simulations and surgery optimization to improve hemodynamics in pediatric cardiology applications.
Bone Blood Flow During Simulated Microgravity: Physiological and Molecular Mechanisms
NASA Technical Reports Server (NTRS)
Bloomfield, Susan A.
1999-01-01
Blood flow to bone has been shown to affect bone mass and presumably bone strength. Preliminary data indicate that blood flow to the rat femur decreases after 14 days of simulated microgravity, using hindlimb suspension (HLS). If adult rats subjected to HLS are given dobutamine, a synthetic catecholamine which can cause peripheral vasodilation and increased blood flow, the loss of cortical bone area usually observed is prevented. Further, mechanisms exist at the molecular level to link changes in bone blood flow to changes in bone cell activity, particularly for vasoactive agents like nitric oxide (NO). The decreases in fluid shear stress created by fluid flow associated with the shifts of plasma volume during microgravity may result in alterations in expression of vasoactive agents such as NO, producing important functional effects on bone cells. The primary aim of this project is to characterize changes in 1) bone blood flow, 2) indices of bone mass, geometry, and strength, and 3) changes in gene expression for modulators of nitric oxide activity (e.g., nitric oxide synthase) and other candidate genes involved in signal transduction of mechanical loading after 3, 7, 14, 21, and 28 days of HLS in the adult rat. Using a rat of at least 5 months of age avoids inadvertently studying effects of simulated microgravity on growing, rather than adult, bone. Utilizing the results of these studies, we will then define how altered blood flow contributes to changes in bone with simulated microgravity by administering a vasodilatory agent (which increases blood flow to tissues) during hindlimb suspension. In all studies, responses in the unloaded hindlimb bones (tibial shaft, femoral neck) will be compared with those in the weightbearing humeral shaft and the non-weightbearing calvarium (skull) from the same animal. Bone volumetric mineral density and geometry will be quantified by peripheral quantitative CT; structural and material properties of the long bones will be determined by 3-point bending (tibia, humerus) or compression (femoral neck) testing to failure. A unique aspect of these studies will be defining the time course of changes in gene expression in bone cell populations with unloading, accomplished with Northern blots, in situ hybridization, and immunohistochemistry. These studies have high relevance for concurrent protocols being proposed by investigators on NSBRI Cardiovascular and Muscle teams, with blood flow data available on a number of tissues other than bone. Further, dobutamine and other Beta-agonists have been tested as countermeasures for altered muscle and cardiovascular function. Results of the intervention tested in our studies have potential relevance for a number of systemic changes seen with prolonged spaceflight.
Three-dimensional multi-scale model of deformable platelets adhesion to vessel wall in blood flow
Wu, Ziheng; Xu, Zhiliang; Kim, Oleg; Alber, Mark
2014-01-01
When a blood vessel ruptures or gets inflamed, the human body responds by rapidly forming a clot to restrict the loss of blood. Platelets aggregation at the injury site of the blood vessel occurring via platelet–platelet adhesion, tethering and rolling on the injured endothelium is a critical initial step in blood clot formation. A novel three-dimensional multi-scale model is introduced and used in this paper to simulate receptor-mediated adhesion of deformable platelets at the site of vascular injury under different shear rates of blood flow. The novelty of the model is based on a new approach of coupling submodels at three biological scales crucial for the early clot formation: novel hybrid cell membrane submodel to represent physiological elastic properties of a platelet, stochastic receptor–ligand binding submodel to describe cell adhesion kinetics and lattice Boltzmann submodel for simulating blood flow. The model implementation on the GPU cluster significantly improved simulation performance. Predictive model simulations revealed that platelet deformation, interactions between platelets in the vicinity of the vessel wall as well as the number of functional GPIbα platelet receptors played significant roles in platelet adhesion to the injury site. Variation of the number of functional GPIbα platelet receptors as well as changes of platelet stiffness can represent effects of specific drugs reducing or enhancing platelet activity. Therefore, predictive simulations can improve the search for new drug targets and help to make treatment of thrombosis patient-specific. PMID:24982253
Mesoscale Simulation of Blood Flow in Small Vessels
Bagchi, Prosenjit
2007-01-01
Computational modeling of blood flow in microvessels with internal diameter 20–500 μm is a major challenge. It is because blood in such vessels behaves as a multiphase suspension of deformable particles. A continuum model of blood is not adequate if the motion of individual red blood cells in the suspension is of interest. At the same time, multiple cells, often a few thousands in number, must also be considered to account for cell-cell hydrodynamic interaction. Moreover, the red blood cells (RBCs) are highly deformable. Deformation of the cells must also be considered in the model, as it is a major determinant of many physiologically significant phenomena, such as formation of a cell-free layer, and the Fahraeus-Lindqvist effect. In this article, we present two-dimensional computational simulation of blood flow in vessels of size 20–300 μm at discharge hematocrit of 10–60%, taking into consideration the particulate nature of blood and cell deformation. The numerical model is based on the immersed boundary method, and the red blood cells are modeled as liquid capsules. A large RBC population comprising of as many as 2500 cells are simulated. Migration of the cells normal to the wall of the vessel and the formation of the cell-free layer are studied. Results on the trajectory and velocity traces of the RBCs, and their fluctuations are presented. Also presented are the results on the plug-flow velocity profile of blood, the apparent viscosity, and the Fahraeus-Lindqvist effect. The numerical results also allow us to investigate the variation of apparent blood viscosity along the cross-section of a vessel. The computational results are compared with the experimental results. To the best of our knowledge, this article presents the first simulation to simultaneously consider a large ensemble of red blood cells and the cell deformation. PMID:17208982
The capillary bed offers the largest hemodynamic resistance to the cortical blood supply
Gould, Ian Gopal; Tsai, Philbert; Kleinfeld, David
2016-01-01
The cortical angioarchitecture is a key factor in controlling cerebral blood flow and oxygen metabolism. Difficulties in imaging the complex microanatomy of the cortex have so far restricted insight about blood flow distribution in the microcirculation. A new methodology combining advanced microscopy data with large scale hemodynamic simulations enabled us to quantify the effect of the angioarchitecture on the cerebral microcirculation. High-resolution images of the mouse primary somatosensory cortex were input into with a comprehensive computational model of cerebral perfusion and oxygen supply ranging from the pial vessels to individual brain cells. Simulations of blood flow, hematocrit and oxygen tension show that the wide variation of hemodynamic states in the tortuous, randomly organized capillary bed is responsible for relatively uniform cortical tissue perfusion and oxygenation. Computational analysis of microcirculatory blood flow and pressure drops further indicates that the capillary bed, including capillaries adjacent to feeding arterioles (d < 10 µm), are the largest contributors to hydraulic resistance. PMID:27780904
NASA Astrophysics Data System (ADS)
Jang, Jaeseong; Ahn, Chi Young; Jeon, Kiwan; Choi, Jung-il; Lee, Changhoon; Seo, Jin Keun
2015-03-01
A reconstruction method is proposed here to quantify the distribution of blood flow velocity fields inside the left ventricle from color Doppler echocardiography measurement. From 3D incompressible Navier- Stokes equation, a 2D incompressible Navier-Stokes equation with a mass source term is derived to utilize the measurable color flow ultrasound data in a plane along with the moving boundary condition. The proposed model reflects out-of-plane blood flows on the imaging plane through the mass source term. For demonstrating a feasibility of the proposed method, we have performed numerical simulations of the forward problem and numerical analysis of the reconstruction method. First, we construct a 3D moving LV region having a specific stroke volume. To obtain synthetic intra-ventricular flows, we performed a numerical simulation of the forward problem of Navier-Stokes equation inside the 3D moving LV, computed 3D intra-ventricular velocity fields as a solution of the forward problem, projected the 3D velocity fields on the imaging plane and took the inner product of the 2D velocity fields on the imaging plane and scanline directional velocity fields for synthetic scanline directional projected velocity at each position. The proposed method utilized the 2D synthetic projected velocity data for reconstructing LV blood flow. By computing the difference between synthetic flow and reconstructed flow fields, we obtained the averaged point-wise errors of 0.06 m/s and 0.02 m/s for u- and v-components, respectively.
Polwaththe-Gallage, Hasitha-Nayanajith; Saha, Suvash C; Sauret, Emilie; Flower, Robert; Senadeera, Wijitha; Gu, YuanTong
2016-12-28
Blood continuously flows through the blood vessels in the human body. When blood flows through the smallest blood vessels, red blood cells (RBCs) in the blood exhibit various types of motion and deformed shapes. Computational modelling techniques can be used to successfully predict the behaviour of the RBCs in capillaries. In this study, we report the application of a meshfree particle approach to model and predict the motion and deformation of three-dimensional RBCs in capillaries. An elastic spring network based on the discrete element method (DEM) is employed to model the three-dimensional RBC membrane. The haemoglobin in the RBC and the plasma in the blood are modelled as smoothed particle hydrodynamics (SPH) particles. For validation purposes, the behaviour of a single RBC in a simple shear flow is examined and compared against experimental results. Then simulations are carried out to predict the behaviour of RBCs in a capillary; (i) the motion of five identical RBCs in a uniform capillary, (ii) the motion of five identical RBCs with different bending stiffness (K b ) values in a stenosed capillary, (iii) the motion of three RBCs in a narrow capillary. Finally five identical RBCs are employed to determine the critical diameter of a stenosed capillary. Validation results showed a good agreement with less than 10% difference. From the above simulations, the following results are obtained; (i) RBCs exhibit different deformation behaviours due to the hydrodynamic interaction between them. (ii) Asymmetrical deformation behaviours of the RBCs are clearly observed when the bending stiffness (K b ) of the RBCs is changed. (iii) The model predicts the ability of the RBCs to squeeze through smaller blood vessels. Finally, from the simulations, the critical diameter of the stenosed section to stop the motion of blood flow is predicted. A three-dimensional spring network model based on DEM in combination with the SPH method is successfully used to model the motion and deformation of RBCs in capillaries. Simulation results reveal that the condition of blood flow stopping depends on the pressure gradient of the capillary and the severity of stenosis of the capillary. In addition, this model is capable of predicting the critical diameter which prevents motion of RBCs for different blood pressures.
Simulating nailfold capillaroscopy sequences to evaluate algorithms for blood flow estimation.
Tresadern, P A; Berks, M; Murray, A K; Dinsdale, G; Taylor, C J; Herrick, A L
2013-01-01
The effects of systemic sclerosis (SSc)--a disease of the connective tissue causing blood flow problems that can require amputation of the fingers--can be observed indirectly by imaging the capillaries at the nailfold, though taking quantitative measures such as blood flow to diagnose the disease and monitor its progression is not easy. Optical flow algorithms may be applied, though without ground truth (i.e. known blood flow) it is hard to evaluate their accuracy. We propose an image model that generates realistic capillaroscopy videos with known flow, and use this model to quantify the effect of flow rate, cell density and contrast (among others) on estimated flow. This resource will help researchers to design systems that are robust under real-world conditions.
Coupling molecular dynamics with lattice Boltzmann method based on the immersed boundary method
NASA Astrophysics Data System (ADS)
Tan, Jifu; Sinno, Talid; Diamond, Scott
2017-11-01
The study of viscous fluid flow coupled with rigid or deformable solids has many applications in biological and engineering problems, e.g., blood cell transport, drug delivery, and particulate flow. We developed a partitioned approach to solve this coupled Multiphysics problem. The fluid motion was solved by Palabos (Parallel Lattice Boltzmann Solver), while the solid displacement and deformation was simulated by LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator). The coupling was achieved through the immersed boundary method (IBM). The code modeled both rigid and deformable solids exposed to flow. The code was validated with the classic problem of rigid ellipsoid particle orbit in shear flow, blood cell stretching test and effective blood viscosity, and demonstrated essentially linear scaling over 16 cores. An example of the fluid-solid coupling was given for flexible filaments (drug carriers) transport in a flowing blood cell suspensions, highlighting the advantages and capabilities of the developed code. NIH 1U01HL131053-01A1.
Simulated Microgravity Increases Cutaneous Blood Flow in the Head and Leg of Humans
NASA Technical Reports Server (NTRS)
Stout, M. Shannon; Watenpaugh, Donald E.; Breit, Gregory A.; Hargens, Alan R.
1995-01-01
The cutaneous micro-circulation vasodilates during acute 6 deg. head-down tilt (HDT, simulated microgravity) relative to upright conditions, more in the lower body than in the upper body. We expected that relative magnitudes of and differences between upper and lower body cutaneous blood flow elevation would be sustained during initial acclimation to simulated microgravity. We measured cutaneous micro-vascular blood flow with laser-Doppler flowmetry at the leg (over the distal tibia) and cheek (over the zygomatic arch) of eight healthy men before, during, and after 24 h of HDT. Results were calculated as a percentage of baseline value (100% measured during pre-tilt upright sitting). Cutaneous blood flow in the cheek increased significantly to 165 +/- 37% (mean + SE, p less than 0.05) at 9-12 h HDT, then returned to near baseline values by 24 h HDT (114 +/- 29%, NSD), despite increased local arterial pressure. Microvascular flow in the leg remained significantly elevated above baseline throughout 24 h HDT (427 +/- 85% at 3 h HDT and 215 +/- 142% at 24 h HDT, p less than 0.05). During the 6-h upright sitting recovery period, cheek and leg blood flow levels returned to near pre-tilt baseline values. Because hydrostatic effects of HDT increase local arterial pressure at the carotid sinus, baroreflex-mediated withdrawal of sympathetic tone probably contributed to increased microvascular flows at the head and leg during HDT. In the leg, baroreflex effects combined with minimal stimulation of local veno-arteriolar and myogenic autoregulatory vasoconstriction to elicit relatively larger and more sustained increases in cutaneous flow during HDT. In the cheek, delayed myogenic vasoconstriction and/or humoral effects apparently compensated for flow elevation by 24 h of HDT. Therefore, localized vascular adaptations to gravity probably explain differences in acclimation of lower and upper body blood flow to HDT and actual microgravity.
Micro-scale dynamic simulation of erythrocyte-platelet interaction in blood flow.
AlMomani, T; Udaykumar, H S; Marshall, J S; Chandran, K B
2008-06-01
Platelet activation, adhesion, and aggregation on the blood vessel and implants result in the formation of mural thrombi. Platelet dynamics in blood flow is influenced by the far more numerous erythrocytes (RBCs). This is particularly the case in the smaller blood vessels (arterioles) and in constricted regions of blood flow (such as in valve leakage and hinge regions) where the dimensions of formed elements of blood become comparable with that of the flow geometry. In such regions, models to predict platelet motion, activation, aggregation and adhesion must account for platelet-RBC interactions. This paper studies platelet-RBC interactions in shear flows by performing simulations of micro-scale dynamics using a computational fluid dynamics (CFD) model. A level-set sharp-interface immersed boundary method is employed in the computations in which RBC and platelet boundaries are tracked on a two-dimensional Cartesian grid. The RBCs are assumed to have an elliptical shape and to deform elastically under fluid forces while the platelets are assumed to behave as rigid particles of circular shape. Forces and torques between colliding blood cells are modeled using an extension of the soft-sphere model for elliptical particles. RBCs and platelets are transported under the forces and torques induced by fluid flow and cell-cell and cell-platelet collisions. The simulations show that platelet migration toward the wall is enhanced with increasing hematocrit, in agreement with past experimental observations. This margination is seen to occur due to hydrodynamic forces rather than collisional forces or volumetric exclusion effects. The effect of fluid shear forces on the platelets increases exponentially as a function of hematocrit for the range of parameters covered in this study. The micro-scale analysis can be potentially employed to obtain a deterministic relationship between fluid forces and platelet activation and aggregation in blood flow past cardiovascular implants.
Otani, Tomohiro; Ii, Satoshi; Shigematsu, Tomoyoshi; Fujinaka, Toshiyuki; Hirata, Masayuki; Ozaki, Tomohiko; Wada, Shigeo
2017-05-01
Coil embolization of cerebral aneurysms with inhomogeneous coil distribution leads to an incomplete occlusion of the aneurysm. However, the effects of this factor on the blood flow characteristics are still not fully understood. This study investigates the effects of coil configuration on the blood flow characteristics in a coil-embolized aneurysm using computational fluid dynamics (CFD) simulation. The blood flow analysis in the aneurysm with coil embolization was performed using a coil deployment (CD) model, in which the coil configuration was constructed using a physics-based simulation of the CD. In the CFD results, total flow momentum and kinetic energy in the aneurysm gradually decayed with increasing coil packing density (PD), regardless of the coil configuration attributed to deployment conditions. However, the total shear rate in the aneurysm was relatively high and the strength of the local shear flow varied based on the differences in coil configuration, even at adequate PDs used in clinical practice (20-25 %). Because the sufficient shear rate reduction is a well-known factor in the blood clot formation occluding the aneurysm inside, the present study gives useful insight into the effects of coil configuration on the treatment efficiency of coil embolization.
Varma, Hari M.; Valdes, Claudia P.; Kristoffersen, Anna K.; Culver, Joseph P.; Durduran, Turgut
2014-01-01
A novel tomographic method based on the laser speckle contrast, speckle contrast optical tomography (SCOT) is introduced that allows us to reconstruct three dimensional distribution of blood flow in deep tissues. This method is analogous to the diffuse optical tomography (DOT) but for deep tissue blood flow. We develop a reconstruction algorithm based on first Born approximation to generate three dimensional distribution of flow using the experimental data obtained from tissue simulating phantoms. PMID:24761306
Non-Newtonian effects of blood flow on hemodynamics in distal vascular graft anastomoses.
Chen, Jie; Lu, Xi-Yun; Wang, Wen
2006-01-01
Non-Newtonian fluid flow in a stenosed coronary bypass is investigated numerically using the Carreau-Yasuda model for the shear thinning behavior of the blood. End-to-side coronary bypass anastomosis is considered in a simplified model geometry where the host coronary artery has a 75% severity stenosis. Different locations of the bypass graft to the stenosis and different flow rates in the graft and in the host artery are studied. Particular attention is given to the non-Newtonian effect of the blood on the primary and secondary flow patterns in the host coronary artery and the wall shear stress (WSS) distribution there. Interaction between the jet flow from the stenosed artery and the flow from the graft is simulated by solving the three-dimensional Navier-Stokes equation coupled with the non-Newtonian constitutive model. Results for the non-Newtonian flow, the Newtonian flow and the rescaled Newtonian flow are presented. Significant differences in axial velocity profiles, secondary flow streamlines and WSS between the non-Newtonian and Newtonian fluid flows are revealed. However, reasonable agreement between the non-Newtonian and the rescaled Newtonian flows is found. Results from this study support the view that the residual flow in a partially occluded coronary artery interacts with flow in the bypass graft and may have significant hemodynamic effects in the host vessel downstream of the graft. Non-Newtonian property of the blood alters the flow pattern and WSS distribution and is an important factor to be considered in simulating hemodynamic effects of blood flow in arterial bypass grafts.
Computational modeling of magnetic particle margination within blood flow through LAMMPS
NASA Astrophysics Data System (ADS)
Ye, Huilin; Shen, Zhiqiang; Li, Ying
2017-11-01
We develop a multiscale and multiphysics computational method to investigate the transport of magnetic particles as drug carriers in blood flow under influence of hydrodynamic interaction and external magnetic field. A hybrid coupling method is proposed to handle red blood cell (RBC)-fluid interface (CFI) and magnetic particle-fluid interface (PFI), respectively. Immersed boundary method (IBM)-based velocity coupling is used to account for CFI, which is validated by tank-treading and tumbling behaviors of a single RBC in simple shear flow. While PFI is captured by IBM-based force coupling, which is verified through movement of a single magnetic particle under non-uniform external magnetic field and breakup of a magnetic chain in rotating magnetic field. These two components are seamlessly integrated within the LAMMPS framework, which is a highly parallelized molecular dynamics solver. In addition, we also implement a parallelized lattice Boltzmann simulator within LAMMPS to handle the fluid flow simulation. Based on the proposed method, we explore the margination behaviors of magnetic particles and magnetic chains within blood flow. We find that the external magnetic field can be used to guide the motion of these magnetic materials and promote their margination to the vascular wall region. Moreover, the scaling performance and speedup test further confirm the high efficiency and robustness of proposed computational method. Therefore, it provides an efficient way to simulate the transport of nanoparticle-based drug carriers within blood flow in a large scale. The simulation results can be applied in the design of efficient drug delivery vehicles that optimally accumulate within diseased tissue, thus providing better imaging sensitivity, therapeutic efficacy and lower toxicity.
Numerical Simulation Of Flow Through An Artificial Heart
NASA Technical Reports Server (NTRS)
Rogers, Stuart; Kutler, Paul; Kwak, Dochan; Kiris, Centin
1991-01-01
Research in both artificial hearts and fluid dynamics benefits from computational studies. Algorithm that implements Navier-Stokes equations of flow extended to simulate flow of viscous, incompressible blood through articifial heart. Ability to compute details of such flow important for two reasons: internal flows with moving boundaries of academic interest in their own right, and many of deficiencies of artificial hearts attributable to dynamics of flow.
Blood Flow: Multi-scale Modeling and Visualization (July 2011)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2011-01-01
Multi-scale modeling of arterial blood flow can shed light on the interaction between events happening at micro- and meso-scales (i.e., adhesion of red blood cells to the arterial wall, clot formation) and at macro-scales (i.e., change in flow patterns due to the clot). Coupled numerical simulations of such multi-scale flow require state-of-the-art computers and algorithms, along with techniques for multi-scale visualizations. This animation presents early results of two studies used in the development of a multi-scale visualization methodology. The fisrt illustrates a flow of healthy (red) and diseased (blue) blood cells with a Dissipative Particle Dynamics (DPD) method. Each bloodmore » cell is represented by a mesh, small spheres show a sub-set of particles representing the blood plasma, while instantaneous streamlines and slices represent the ensemble average velocity. In the second we investigate the process of thrombus (blood clot) formation, which may be responsible for the rupture of aneurysms, by concentrating on the platelet blood cells, observing as they aggregate on the wall of an aneruysm. Simulation was performed on Kraken at the National Institute for Computational Sciences. Visualization was produced using resources of the Argonne Leadership Computing Facility at Argonne National Laboratory.« less
Experiments On Flow In A Coronary Artery
NASA Technical Reports Server (NTRS)
Back, Lloyd H.; Kwack, Eug-Yon; Liem, Timothy K.; Crawford, Donald W.
1993-01-01
Report describes experiments on simulated flow of blood in atherosclerotic human coronary artery. Experiments performed on polyurethane cast made from S-shaped coronary artery of cadaver. Sucrose solution with viscosity of blood pumped through cast at physiologically realistic rates, and flow made pulsatile by mechanism alternately compressing and releasing elastic tube just upstream of cast.
Lucas, Thabata Coaglio; Tessarolo, Francesco; Jakitsch, Victor; Caola, Iole; Brunori, Giuliano; Nollo, Giandomenico; Huebner, Rudolf
2014-07-01
Although catheters with side holes allow high flow rate during hemodialysis, they also induce flow disturbances and create a critical hemodynamic environment that can favor fibrin deposition and thrombus formation. This study compared the blood flow and analyzed the influence of shear stress and shear rate in fibrin deposition and thrombus formation in nontunneled hemodialysis catheters with unobstructed side holes (unobstructed device) or with some side holes obstructed by blood thrombi (obstructed device). Computational fluid dynamics (CFD) was performed to simulate realistic blood flow under laminar and turbulent conditions. The results from the numerical simulations were compared with the fibrin distribution and thrombus architecture data obtained from scanning electron microscopy (SEM) and two photons laser scanning microscopy (TPLSM) on human thrombus formed in catheters removed from patients. CFD showed that regions of flow eddies and separation were mainly found in the venous holes region. TPLSM characterization of thrombi and fibrin structure in patient samples showed fibrin formations in accordance with simulated flux dynamics. Under laminar flow conditions, the wall shear stress close to border holes increased from 87.3±0.2 Pa in the unobstructed device to 176.2±0.5 Pa in the obstructed one. Under turbulent flow conditions, the shear stress increased by 47% when comparing the obstructed to the unobstructed catheter. The shear rates were generally higher than 5000/s and therefore sufficient to induce fibrin deposition. This findings were supported by SEM data documenting a preferential fibrin arrangement on side hole walls. Copyright © 2013 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
1983-02-01
with an isovolumic left ven- tricular balloon. Coronary flow was held constant to simulate the physiolog of coronary atherosclerosis and other...erythrocyte DPG content can potentially benefit patients with coronary atherosclerosis , or other states with a limited coronary vasodilator reserve, who...Coronary flow was held constant to simulate the physiology of coronary atherosclerosis and other conditions of limited coronary vasodilator reserve
Kim, Dohyun; Park, Sung-Ho
2016-11-01
Recently, Doppler ultrasound has been used for the measurement of pulpal blood flow in human teeth. However, the reliability of this method has not been verified. In this study, we developed a model to simulate arteriole blood flow within the dental pulp by using microfluidics. This arteriole simulator, or flow phantom, was used to determine the reliability of measurements obtained by using a Doppler ultrasound device. A microfluidic chip was fabricated by using the soft lithography technique, and blood-mimicking fluid was pumped through the channel by a microfluidic system. A Doppler ultrasound device was used for the measurement of flow velocity. The peak, mean, and minimal flow velocities obtained from the phantom and the Doppler ultrasound device were compared by using linear regression analysis and Pearson correlation coefficient. Bland-Altman analyses were performed to evaluate the velocity differences between the flow generated by the phantom and the flow measurements made with the Doppler ultrasound device. The microfluidic system was able to generate the flow profiles as intended, and the fluid flow could be monitored and controlled by the software program. There were excellent linear correlations between the peak, mean, and minimal flow velocities of the phantom and those of the Doppler ultrasound device (r = 0.94-0.996, P < .001). However, the velocities were overestimated by the Doppler ultrasound device. This phantom provides opportunities for research and education involving the Doppler ultrasound technique in dentistry. Although Doppler ultrasound can be an effective tool for the measurement of pulpal blood flow velocity, it is essential to validate and calibrate the device before clinical use. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zeidan, Adel; Yeheskely-Hayon, Daniella; Minai, Limor; Yelin, Dvir
2016-03-01
The properties of red blood cells are a remarkable indicator of the body's physiological condition; their density could indicate anemia or polycythemia, their absorption spectrum correlates with blood oxygenation, and their morphology is highly sensitive to various pathologic states including iron deficiency, ovalocytosis, and sickle cell disease. Therefore, measuring the morphology of red blood cells is important for clinical diagnosis, providing valuable indications on a patient's health. In this work, we simulated the appearance of normal red blood cells under a reflectance confocal microscope and discovered unique relations between the cells' morphological parameters and the resulting characteristic interference patterns. The simulation results showed good agreement with in vitro reflectance confocal images of red blood cells, acquired using spectrally encoded flow cytometry (SEFC) that imaged the cells during linear flow and without artificial staining. By matching the simulated patterns to the SEFC images of the cells, the cells' three-dimensional shapes were evaluated and their volumes were calculated. Potential applications include measurement of the mean corpuscular volume, cell morphological abnormalities, cell stiffness under mechanical stimuli, and the detection of various hematological diseases.
Simulating Nailfold Capillaroscopy Sequences to Evaluate Algorithms for Blood Flow Estimation
Tresadern, P. A.; Berks, M.; Murray, A. K.; Dinsdale, G.; Taylor, C. J.; Herrick, A. L.
2016-01-01
The effects of systemic sclerosis (SSc) – a disease of the connective tissue causing blood flow problems that can require amputation of the fingers – can be observed indirectly by imaging the capillaries at the nailfold, though taking quantitative measures such as blood flow to diagnose the disease and monitor its progression is not easy. Optical flow algorithms may be applied, though without ground truth (i.e. known blood flow) it is hard to evaluate their accuracy. We propose an image model that generates realistic capillaroscopy videos with known flow, and use this model to quantify the effect of flow rate, cell density and contrast (among others) on estimated flow. This resource will help researchers to design systems that are robust under real-world conditions. PMID:24110268
Torner, Benjamin; Konnigk, Lucas; Hallier, Sebastian; Kumar, Jitendra; Witte, Matthias; Wurm, Frank-Hendrik
2018-06-01
Numerical flow analysis (computational fluid dynamics) in combination with the prediction of blood damage is an important procedure to investigate the hemocompatibility of a blood pump, since blood trauma due to shear stresses remains a problem in these devices. Today, the numerical damage prediction is conducted using unsteady Reynolds-averaged Navier-Stokes simulations. Investigations with large eddy simulations are rarely being performed for blood pumps. Hence, the aim of the study is to examine the viscous shear stresses of a large eddy simulation in a blood pump and compare the results with an unsteady Reynolds-averaged Navier-Stokes simulation. The simulations were carried out at two operation points of a blood pump. The flow was simulated on a 100M element mesh for the large eddy simulation and a 20M element mesh for the unsteady Reynolds-averaged Navier-Stokes simulation. As a first step, the large eddy simulation was verified by analyzing internal dissipative losses within the pump. Then, the pump characteristics and mean and turbulent viscous shear stresses were compared between the two simulation methods. The verification showed that the large eddy simulation is able to reproduce the significant portion of dissipative losses, which is a global indication that the equivalent viscous shear stresses are adequately resolved. The comparison with the unsteady Reynolds-averaged Navier-Stokes simulation revealed that the hydraulic parameters were in agreement, but differences for the shear stresses were found. The results show the potential of the large eddy simulation as a high-quality comparative case to check the suitability of a chosen Reynolds-averaged Navier-Stokes setup and turbulence model. Furthermore, the results lead to suggest that large eddy simulations are superior to unsteady Reynolds-averaged Navier-Stokes simulations when instantaneous stresses are applied for the blood damage prediction.
NASA Astrophysics Data System (ADS)
Larsson, David; Spühler, Jeannette H.; Günyeli, Elif; Weinkauf, Tino; Hoffman, Johan; Colarieti-Tosti, Massimiliano; Winter, Reidar; Larsson, Matilda
2017-03-01
Echocardiography is the most commonly used image modality in cardiology, assessing several aspects of cardiac viability. The importance of cardiac hemodynamics and 4D blood flow motion has recently been highlighted, however such assessment is still difficult using routine echo-imaging. Instead, combining imaging with computational fluid dynamics (CFD)-simulations has proven valuable, but only a few models have been applied clinically. In the following, patient-specific CFD-simulations from transthoracic dobutamin stress echocardiography have been used to analyze the left ventricular 4D blood flow in three subjects: two with normal and one with reduced left ventricular function. At each stress level, 4D-images were acquired using a GE Vivid E9 (4VD, 1.7MHz/3.3MHz) and velocity fields simulated using a presented pathway involving endocardial segmentation, valve position identification, and solution of the incompressible Navier-Stokes equation. Flow components defined as direct flow, delayed ejection flow, retained inflow, and residual volume were calculated by particle tracing using 4th-order Runge-Kutta integration. Additionally, systolic and diastolic average velocity fields were generated. Results indicated no major changes in average velocity fields for any of the subjects. For the two subjects with normal left ventricular function, increased direct flow, decreased delayed ejection flow, constant retained inflow, and a considerable drop in residual volume was seen at increasing stress. Contrary, for the subject with reduced left ventricular function, the delayed ejection flow increased whilst the retained inflow decreased at increasing stress levels. This feasibility study represents one of the first clinical applications of an echo-based patient-specific CFD-model at elevated stress levels, and highlights the potential of using echo-based models to capture highly transient flow events, as well as the ability of using simulation tools to study clinically complex phenomena. With larger patient studies planned for the future, and with the possibility of adding more anatomical features into the model framework, the current work demonstrates the potential of patient-specific CFD-models as a tool for quantifying 4D blood flow in the heart.
Patient-specific blood flow simulation to improve intracranial aneurysm diagnosis
NASA Astrophysics Data System (ADS)
Fenz, Wolfgang; Dirnberger, Johannes
2011-03-01
We present a novel simulation system of blood flow through intracranial aneurysms including the interaction between blood lumen and vessel tissue. It provides the means to estimate rupture risks by calculating the distribution of pressure and shear stresses in the aneurysm, in order to support the planning of clinical interventions. So far, this has only been possible with commercial simulation packages originally targeted at industrial applications, whereas our implementation focuses on the intuitive integration into clinical workflow. Due to the time-critical nature of the application, we exploit most efficient state-of-the-art numerical methods and technologies together with high performance computing infrastructures (Austrian Grid). Our system builds a three-dimensional virtual replica of the patient's cerebrovascular system from X-ray angiography, CT or MR images. The physician can then select a region of interest which is automatically transformed into a tetrahedral mesh. The differential equations for the blood flow and the wall elasticity are discretized via the finite element method (FEM), and the resulting linear equation systems are handled by an algebraic multigrid (AMG) solver. The wall displacement caused by the blood pressure is calculated using an iterative fluid-structure interaction (FSI) algorithm, and the fluid mesh is deformed accordingly. First simulation results on measured patient geometries show good medical relevance for diagnostic decision support.
Vessel Segmentation and Blood Flow Simulation Using Level-Sets and Embedded Boundary Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deschamps, T; Schwartz, P; Trebotich, D
In this article we address the problem of blood flow simulation in realistic vascular objects. The anatomical surfaces are extracted by means of Level-Sets methods that accurately model the complex and varying surfaces of pathological objects such as aneurysms and stenoses. The surfaces obtained are defined at the sub-pixel level where they intersect the Cartesian grid of the image domain. It is therefore straightforward to construct embedded boundary representations of these objects on the same grid, for which recent work has enabled discretization of the Navier-Stokes equations for incompressible fluids. While most classical techniques require construction of a structured meshmore » that approximates the surface in order to extrapolate a 3D finite-element gridding of the whole volume, our method directly simulates the blood-flow inside the extracted surface without losing any complicated details and without building additional grids.« less
Fluid Dynamics of Magnetic Nanoparticles in Simulated Blood Vessels
NASA Astrophysics Data System (ADS)
Blue, Lauren; Sewell, Mary Kathryn; Brazel, Christopher S.
2008-11-01
Magnetic nanoparticles (MNPs) can be used to locally target therapies and offer the benefit of using an AC magnetic field to combine hyperthermia treatment with the triggered release of therapeutic agents. Here, we investigate localization of MNPs in a simulated environment to understand the relationship between magnetic field intensity and bulk fluid dynamics to determine MNP retention in a simulated blood vessel. As MNPs travel through blood vessels, they can be slowed or trapped in a specific area by applying a magnetic field. Magnetic cobalt ferrite nanoparticles were synthesized and labeled with a fluorescent rhodamine tag to visualize patterns in a flow cell, as monitored by a fluorescence microscope. Particle retention was determined as a function of flow rate, concentration, and magnetic field strength. Understanding the relationship between magnetic field intensity, flow behavior and nanoparticle characteristics will aid in the development of therapeutic systems specifically targeted to diseased tissue.
Influence of Gravity on Blood Volume and Flow Distribution
NASA Technical Reports Server (NTRS)
Pendergast, D.; Olszowka, A.; Bednarczyk, E.; Shykoff, B.; Farhi, L.
1999-01-01
In our previous experiments during NASA Shuttle flights SLS 1 and 2 (9-15 days) and EUROMIR flights (30-90 days) we observed that pulmonary blood flow (cardiac output) was elevated initially, and surprisingly remained elevated for the duration of the flights. Stroke volume increased initially and then decreased, but was still above 1 Gz values. As venous return was constant, the changes in SV were secondary to modulation of heart rate. Mean blood pressure was at or slightly below 1 Gz levels in space, indicating a decrease in total peripheral resistance. It has been suggested that plasma volume is reduced in space, however cardiac output/venous return do not return to 1 Gz levels over the duration of flight. In spite of the increased cardiac output, central venous pressure was not elevated in space. These data suggest that there is a change in the basic relationship between cardiac output and central venous pressure, a persistent "hyperperfusion" and a re-distribution of blood flow and volume during space flight. Increased pulmonary blood flow has been reported to increase diffusing capacity in space, presumably due to the improved homogeneity of ventilation and perfusion. Other studies have suggested that ventilation may be independent of gravity, and perfusion may not be gravity- dependent. No data for the distribution of pulmonary blood volume were available for flight or simulated microgravity. Recent studies have suggested that the pulmonary vascular tree is influenced by sympathetic tone in a manner similar to that of the systemic system. This implies that the pulmonary circulation is dilated during microgravity and that the distribution of blood flow and volume may be influenced more by vascular control than by gravity. The cerebral circulation is influenced by sympathetic tone similarly to that of the systemic and pulmonary circulations; however its effects are modulated by cerebral autoregulation. Thus it is difficult to predict if cerebral perfusion is increased and if there is edema in space. Anecdotal evidence suggests there may be cerebral edema early in flight. Cerebral artery velocity has been shown to be elevated in simulated microgravity. The elevated cerebral artery velocity during simulated microgravity may reflect vasoconstriction of the arteries and not increased cerebral blood flow. The purpose of our investigations was to evaluate the effects of alterations in simulated gravity (+/-), resulting in changes in cardiac output (+/-), and on the blood flow and volume distribution in the lung and brain of human subjects. The first hypothesis of these studies was that blood flow and volume would be affected by gravity, but their distribution in the lung would be independent of gravity and due to vasoactivity changing vascular resistance in lung vessels. The vasodilitation of the lung vasculature (lower resistance) along with increased "compliance" of the heart could account for the absence of increased central venous pressure in microgravity. Secondly, we postulate that cerebral blood velocity is increased in microgravity due to large artery vasoconstriction, but that cerebral blood flow would be reduced due to autoregulation.
CFD simulation of blood flow inside the corkscrew collaterals of the Buerger's disease.
Sharifi, Alireza; Charjouei Moghadam, Mohammad
2016-01-01
Buerger's disease is an occlusive arterial disease that occurs mainly in medium and small vessels. This disease is associated with Tobacco usage. The existence of corkscrew collateral is one of the established characteristics of the Buerger's disease. In this study, the computational fluid dynamics (CFD) simulation of blood flow within the corkscrew artery of the Buerger's disease is conducted. The geometry of the artery is constructed based on the actual corkscrew artery of a patient diagnosed with the Buerger's disease. The blood properties are the same as the actual blood properties of the patient. The blood flow rate is taken from the available experimental data in the literature. The local velocity patterns, pressure and kinematic viscosity distributions in different segments of the corkscrew collateral artery was demonstrated and discussed for the first time for this kind of artery. The effects of non-Newtonian consideration for the blood viscosity behavior were investigated in different segments of the artery. Moreover, the variations of the blood flow patterns along the artery were investigated in details for each segment. It was found that the flow patterns were affected by the complex geometry of this artery in such a way that it could lead to the presence of sites that were prone to the accumulation of the flowing particles in blood like nicotine. Furthermore, due to the existence of many successive bends in this artery, the variations of kinematic viscosity along this artery were significant, therefore the non-Newtonian behavior of the blood viscosity must be considered.
CFD simulation of blood flow inside the corkscrew collaterals of the Buerger’s disease
Sharifi, Alireza; Charjouei Moghadam, Mohammad
2016-01-01
Introduction: Buerger’s disease is an occlusive arterial disease that occurs mainly in medium and small vessels. This disease is associated with Tobacco usage. The existence of corkscrew collateral is one of the established characteristics of the Buerger’s disease. Methods: In this study, the computational fluid dynamics (CFD) simulation of blood flow within the corkscrew artery of the Buerger’s disease is conducted. The geometry of the artery is constructed based on the actual corkscrew artery of a patient diagnosed with the Buerger’s disease. The blood properties are the same as the actual blood properties of the patient. The blood flow rate is taken from the available experimental data in the literature. Results: The local velocity patterns, pressure and kinematic viscosity distributions in different segments of the corkscrew collateral artery was demonstrated and discussed for the first time for this kind of artery. The effects of non-Newtonian consideration for the blood viscosity behavior were investigated in different segments of the artery. Moreover, the variations of the blood flow patterns along the artery were investigated in details for each segment. Conclusion: It was found that the flow patterns were affected by the complex geometry of this artery in such a way that it could lead to the presence of sites that were prone to the accumulation of the flowing particles in blood like nicotine. Furthermore, due to the existence of many successive bends in this artery, the variations of kinematic viscosity along this artery were significant, therefore the non-Newtonian behavior of the blood viscosity must be considered. PMID:27340623
Spatio-temporal Model of Xenobiotic Distribution and Metabolism in an in Silico Mouse Liver Lobule
NASA Astrophysics Data System (ADS)
Fu, Xiao; Sluka, James; Clendenon, Sherry; Glazier, James; Ryan, Jennifer; Dunn, Kenneth; Wang, Zemin; Klaunig, James
Our study aims to construct a structurally plausible in silico model of a mouse liver lobule to simulate the transport of xenobiotics and the production of their metabolites. We use a physiologically-based model to calculate blood-flow rates in a network of mouse liver sinusoids and simulate transport, uptake and biotransformation of xenobiotics within the in silico lobule. Using our base model, we then explore the effects of variations of compound-specific (diffusion, transport and metabolism) and compound-independent (temporal alteration of blood flow pattern) parameters, and examine their influence on the distribution of xenobiotics and metabolites. Our simulations show that the transport mechanism (diffusive and transporter-mediated) of xenobiotics and blood flow both impact the regional distribution of xenobiotics in a mouse hepatic lobule. Furthermore, differential expression of metabolic enzymes along each sinusoid's portal to central axis, together with differential cellular availability of xenobiotics, induce non-uniform production of metabolites. Thus, the heterogeneity of the biochemical and biophysical properties of xenobiotics, along with the complexity of blood flow, result in different exposures to xenobiotics for hepatocytes at different lobular locations. We acknowledge support from National Institute of Health GM 077138 and GM 111243.
Blood Flow in the Stenotic Carotid Bifurcation
NASA Astrophysics Data System (ADS)
Rayz, Vitaliy
2005-11-01
The carotid artery is prone to atherosclerotic disease and the growth of plaque in the vessel, leading often to severe occlusion or plaque rupture, resulting in emboli and thrombus, and, possibly, stroke. Modeling the flow in stenotic blood vessels can elucidate the influence of the flow on plaque growth and stability. Numerical simulations are carried out to model the complex flows in anatomically realistic, patient-specific geometries constructed from magnetic resonance images. The 3-D unsteady Navier-Stokes equations are solved in a finite-volume formulation, using an iterative pressure-correction algorithm. The flow field computed is highly three-dimensional, with high-speed jets and strong recirculating secondary flows. Sharp spatial and temporal variations of the velocities and shear stresses are observed. The results are in a good agreement with the available experimental and clinical data. The influence of non-Newtonian blood behavior and arterial wall compliance are considered. Transitional and turbulent regimes have been looked at using LES. This work supports the conjecture that numerical simulations can provide a diagnostic tool for assessing plaque stability.
Renal hemodynamics: the influence of the renal artery ostium flow diverter
NASA Astrophysics Data System (ADS)
Rossmann, Jenn Stroud; Albert, Scott; Balaban, Robert
2013-11-01
The recently identified renal artery ostium flow diverter may preferentially direct blood flow to the renal arteries, and may also influence flow patterns and recirculation known to be involved in atherogenesis. Three-dimensional computational fluid dynamics (CFD) simulations of steady and pulsatile blood flow are performed to investigate the influence of diverter size and position, and vascular geometry, on the flow patterns and fluid mechanical forces in the neighborhood of the diverter. CFD results show that the flow diverter does affect the blood distribution: depending on the diverter's position, the flow to the renal arteries may be increased or reduced. The results of simulations also show the diverter's effect on the Wall Shear Stress (WSS) distribution, and suggest that the diverter contributes to an atherogenic environment in the abdominal aorta, while being atheroprotective in the renal arteries themselves. These results support previous clinical findings, and suggest directions for further clinical study. The results of this work have direct implications in understanding the physiological significance of the diverter, and its potential role in the pathophysiological development of atherosclerosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnold, R.N.
1986-01-01
Deuterium oxide (D/sub 2/O) dilution was evaluated for use in estimating body composition of ruminants. Empty body composition of cattle could not be accurately estimated by two- or three-compartment models when solved on the basis of clearance of D/sub 2/O from blood. A 29-compartment blood-flow model was developed from measured blood flow rates and water volumes of tissues of sheep. The rates of equilibration of water in tissues that were simulated by the blood-flow model were much faster than actual rates measured in sheep and cattle. The incorporation of diffusion hindrances for movement of water into tissues enabled the bloodmore » flow model to simulate the measured equilibration rates in tissues, but the values of the diffusion coefficients were different for each tissue. The D/sub 2/O-disappearance curve for blood simulated by the blood-flow model with diffusion limitations was comprised for four exponential components. The tissues and gastrointestinal tract contents were placed into five groups based upon the rate of equilibration. Water in the organs of the body equilibrated with water in blood within 3 min. Water in visceral fat, head, and some of the gastrointestinal tract tissues equilibrated within 8 to 16 min. Water in skeletal muscle, fat, and bone and the contents of some segments of the gastrointestinal tract equilibrated within 30 to 36 min. Water in the tissues and contents of the cecum and upper-large intestine equilibrated within 160 to 200 min. Water in ruminal tissue and contents equilibrated within 480 min.« less
Hemodynamics of physiological blood flow in the aorta with nonlinear anisotropic heart valve
NASA Astrophysics Data System (ADS)
Sotiropoulos, Fotis; Gilmanov, Anvar; Stolarski, Henryk
2016-11-01
The hemodynamic blood flow in cardiovascular system is one of the most important factor, which causing several vascular diseases. We developed a new Curvilinear Immersed Boundary - Finite Element - Fluid Structure Interaction (CURVIB-FE-FSI) method to analyze hemodynamic of pulsatile blood flow in a real aorta with nonlinear anisotropic aortic valve at physiological conditions. Hyperelastic material model, which is more realistic for describing heart valve have been incorporated in the CURVIB-FE-FSI code to simulate interaction of aortic heart valve with pulsatile blood flow. Comparative studies of hemodynamics for linear and nonlinear models of heart valve show drastic differences in blood flow patterns and hence differences of stresses causing impact at leaflets and aortic wall. This work is supported by the Lillehei Heart Institute at the University of Minnesota.
Sakota, Daisuke; Takatani, Setsuo
2012-05-01
Optical properties of flowing blood were analyzed using a photon-cell interactive Monte Carlo (pciMC) model with the physical properties of the flowing red blood cells (RBCs) such as cell size, shape, refractive index, distribution, and orientation as the parameters. The scattering of light by flowing blood at the He-Ne laser wavelength of 632.8 nm was significantly affected by the shear rate. The light was scattered more in the direction of flow as the flow rate increased. Therefore, the light intensity transmitted forward in the direction perpendicular to flow axis decreased. The pciMC model can duplicate the changes in the photon propagation due to moving RBCs with various orientations. The resulting RBC's orientation that best simulated the experimental results was with their long axis perpendicular to the direction of blood flow. Moreover, the scattering probability was dependent on the orientation of the RBCs. Finally, the pciMC code was used to predict the hematocrit of flowing blood with accuracy of approximately 1.0 HCT%. The photon-cell interactive Monte Carlo (pciMC) model can provide optical properties of flowing blood and will facilitate the development of the non-invasive monitoring of blood in extra corporeal circulatory systems.
Liu, Guangmao; Zhou, Jianye; Sun, Hansong; Zhang, Yan; Chen, Haibo; Hu, Shengshou
2017-04-05
BACKGROUND Cannula shape and connection style influence the risk of thrombus formation in the blood pump by varying the blood flow characteristics inside the pump. Inlet cannulas should be designed based on the need for anatomical fit and reducing the risk of thrombus generation in the blood pump. The effects on thrombus formation of the cone-shaped bend inlet cannulas of axial blood pumps should be studied. MATERIAL AND METHODS The cannulas were designed as cone-shaped, with 1 bent section connecting 2 straight sections. Both the silicone tube and novel cone-shaped cannula were simulated for comparison. The flow fields of a blood pump with inlet cannula were simulated by computational fluid dynamics (CFD) at flows of 2.0, 2.5, and 3.0 liters per minute (lpm), with pump rotational speeds of 7500, 8000, and 8500 rpm, respectively. Then, 6 two-dimensional (2D) particle image velocimetry (PIV) tests were conducted and the velocity distributions were analyzed. RESULTS A low-velocity region was located inside the pump entrance when a soft silicone tube was used. At 8500 rpm and 3.0 lpm working condition, the minimum velocity inside the pump with cone-shaped cannulas was 2.5×10^-1 m/s. The cone-shaped cannulas eliminated the low-velocity region inside the pump. Both CFD and PIV results showed that the low-velocity region did not spread to the entrance of the blood pump within the flow range from 2.0 lpm to 7.0 lpm. CONCLUSIONS The designed cone-shaped bent cannulas can eliminate the low-velocity region inside the blood pump and reduce the risk of thrombus formation in the blood pump.
Guidoboni, Giovanna; Harris, Alon; Cassani, Simone; Arciero, Julia; Siesky, Brent; Amireskandari, Annahita; Tobe, Leslie; Egan, Patrick; Januleviciene, Ingrida; Park, Joshua
2014-01-01
Purpose. This study investigates the relationship between intraocular pressure (IOP) and retinal hemodynamics and predicts how arterial blood pressure (BP) and blood flow autoregulation (AR) influence this relationship. Methods. A mathematical model is developed to simulate blood flow in the central retinal vessels and retinal microvasculature as current flowing through a network of resistances and capacitances. Variable resistances describe active and passive diameter changes due to AR and IOP. The model is validated by using clinically measured values of retinal blood flow and velocity. The model simulations for six theoretical patients with high, normal, and low BP (HBP-, NBP-, LBP-) and functional or absent AR (-wAR, -woAR) are compared with clinical data. Results. The model predicts that NBPwAR and HBPwAR patients can regulate retinal blood flow (RBF) as IOP varies between 15 and 23 mm Hg and between 23 and 29 mm Hg, respectively, whereas LBPwAR patients do not adequately regulate blood flow if IOP is 15 mm Hg or higher. Hemodynamic alterations would be noticeable only if IOP changes occur outside of the regulating range, which, most importantly, depend on BP. The model predictions are consistent with clinical data for IOP reduction via surgery and medications and for cases of induced IOP elevation. Conclusions. The theoretical model results suggest that the ability of IOP to induce noticeable changes in retinal hemodynamics depends on the levels of BP and AR of the individual. These predictions might help to explain the inconsistencies found in the clinical literature concerning the relationship between IOP and retinal hemodynamics. PMID:24876284
Guidoboni, Giovanna; Harris, Alon; Cassani, Simone; Arciero, Julia; Siesky, Brent; Amireskandari, Annahita; Tobe, Leslie; Egan, Patrick; Januleviciene, Ingrida; Park, Joshua
2014-05-29
This study investigates the relationship between intraocular pressure (IOP) and retinal hemodynamics and predicts how arterial blood pressure (BP) and blood flow autoregulation (AR) influence this relationship. A mathematical model is developed to simulate blood flow in the central retinal vessels and retinal microvasculature as current flowing through a network of resistances and capacitances. Variable resistances describe active and passive diameter changes due to AR and IOP. The model is validated by using clinically measured values of retinal blood flow and velocity. The model simulations for six theoretical patients with high, normal, and low BP (HBP-, NBP-, LBP-) and functional or absent AR (-wAR, -woAR) are compared with clinical data. The model predicts that NBPwAR and HBPwAR patients can regulate retinal blood flow (RBF) as IOP varies between 15 and 23 mm Hg and between 23 and 29 mm Hg, respectively, whereas LBPwAR patients do not adequately regulate blood flow if IOP is 15 mm Hg or higher. Hemodynamic alterations would be noticeable only if IOP changes occur outside of the regulating range, which, most importantly, depend on BP. The model predictions are consistent with clinical data for IOP reduction via surgery and medications and for cases of induced IOP elevation. The theoretical model results suggest that the ability of IOP to induce noticeable changes in retinal hemodynamics depends on the levels of BP and AR of the individual. These predictions might help to explain the inconsistencies found in the clinical literature concerning the relationship between IOP and retinal hemodynamics. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.
Lai, Chang Quan; Lim, Guat Ling; Jamil, Muhammad; Mattar, Citra Nurfarah Zaini; Biswas, Arijit; Yap, Choon Hwai
2016-10-01
The mechanics of intracardiac blood flow and the epigenetic influence it exerts over the heart function have been the subjects of intense research lately. Fetal intracardiac flows are especially useful for gaining insights into the development of congenital heart diseases, but have not received due attention thus far, most likely because of technical difficulties in collecting sufficient intracardiac flow data in a safe manner. Here, we circumvent such obstacles by employing 4D STIC ultrasound scans to quantify the fetal heart motion in three normal 20-week fetuses, subsequently performing 3D computational fluid dynamics simulations on the left ventricles based on these patient-specific heart movements. Analysis of the simulation results shows that there are significant differences between fetal and adult ventricular blood flows which arise because of dissimilar heart morphology, E/A ratio, diastolic-systolic duration ratio, and heart rate. The formations of ventricular vortex rings were observed for both E- and A-wave in the flow simulations. These vortices had sufficient momentum to last until the end of diastole and were responsible for generating significant wall shear stresses on the myocardial endothelium, as well as helicity in systolic outflow. Based on findings from previous studies, we hypothesized that these vortex-induced flow properties play an important role in sustaining the efficiency of diastolic filling, systolic pumping, and cardiovascular flow in normal fetal hearts.
A stock-and-flow simulation model of the US blood supply.
Simonetti, Arianna; Forshee, Richard A; Anderson, Steven A; Walderhaug, Mark
2014-03-01
Lack of reporting requirements for the amount of blood stored in blood banks and hospitals poses challenges to effectively monitor the US blood supply. Effective strategies to minimize collection and donation disruptions in the supply require an understanding of the daily amount of blood available in the system. A stock-and-flow simulation model of the US blood supply was developed to obtain estimates of the daily on-hand availability of blood, with uncertainty and by ABO/Rh type. The model simulated potential impact on supply of using different blood management practices for transfusion: first in-first out (FIFO), using the oldest stored red blood cell units first; non-FIFO likely oldest, preferentially selecting older blood; and non-FIFO likely newest, preferentially selecting younger blood. Simulation results showed higher estimates of the steady-state of the blood supply level for FIFO (1,630,000 units, 95% prediction interval [PI] 1,610,000-1,650,000) than non-FIFO scenarios (likely oldest, 1,530,000 units, 95% PI 1,500,000-1,550,000; and likely newest, 1,190,000 units, 95% PI 1,160,000-1,220,000), either for overall blood or by blood types. To our knowledge, this model represents a first attempt to evaluate the impact of different blood management practices on daily availability and distribution of blood in the US blood supply. The average storage time before blood is being issued was influenced by blood management practices, for preferences of blood that is younger and also that use specific blood types. The model also suggests which practice could best approximate the current blood management system and may serve as useful tool for blood management. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.
DIRECT NUMERICAL SIMULATION OF TRANSITIONAL FLOW IN A STENOSED CAROTID BIFURCATION
Lee, Seung E.; Lee, Sang-Wook; Fischer, Paul F.; Bassiouny, Hisham S.; Loth, Francis
2008-01-01
The blood flow dynamics of a stenosed, subject-specific, carotid bifurcation were numerically simulated using the spectral element method. Pulsatile inlet conditions were based on in vivo color Doppler ultrasound measurements of blood velocity. The results demonstrated the transitional or weakly turbulent state of the blood flow, which featured rapid velocity and pressure fluctuations in the post-stenotic region of the internal carotid artery during systole and laminar flow during diastole. High-frequency vortex shedding was greatest downstream of the stenosis during the deceleration phase of systole. Velocity fluctuations had a frequency within the audible range of 100–300 Hz. Instantaneous wall shear stress within the stenosis was relatively high during systole (~25-45 Pa) compared to that in a healthy carotid. In addition, high spatial gradients of wall shear stress were present due to flow separation on the inner wall. Oscillatory flow reversal and low pressure were observed distal to the stenosis in the internal carotid artery. This study predicts the complex flow field, the turbulence levels and the distribution of the biomechanical stresses present in vivo within a stenosed carotid artery. PMID:18656199
Karvounis, E C; Tsakanikas, V D; Fotiou, E; Fotiadis, D I
2010-01-01
The paper proposes a novel Extensible Markup Language (XML) based format called ART-ML that aims at supporting the interoperability and the reuse of models of blood flow, mass transport and plaque formation, exported by ARTool. ARTool is a platform for the automatic processing of various image modalities of coronary and carotid arteries. The images and their content are fused to develop morphological models of the arteries in easy to handle 3D representations. The platform incorporates efficient algorithms which are able to perform blood flow simulation. In addition atherosclerotic plaque development is estimated taking into account morphological, flow and genetic factors. ART-ML provides a XML format that enables the representation and management of embedded models within the ARTool platform and the storage and interchange of well-defined information. This approach influences in the model creation, model exchange, model reuse and result evaluation.
Mikhal, Julia; Geurts, Bernard J
2013-12-01
A volume-penalizing immersed boundary method is presented for the simulation of laminar incompressible flow inside geometrically complex blood vessels in the human brain. We concentrate on cerebral aneurysms and compute flow in curved brain vessels with and without spherical aneurysm cavities attached. We approximate blood as an incompressible Newtonian fluid and simulate the flow with the use of a skew-symmetric finite-volume discretization and explicit time-stepping. A key element of the immersed boundary method is the so-called masking function. This is a binary function with which we identify at any location in the domain whether it is 'solid' or 'fluid', allowing to represent objects immersed in a Cartesian grid. We compare three definitions of the masking function for geometries that are non-aligned with the grid. In each case a 'staircase' representation is used in which a grid cell is either 'solid' or 'fluid'. Reliable findings are obtained with our immersed boundary method, even at fairly coarse meshes with about 16 grid cells across a velocity profile. The validation of the immersed boundary method is provided on the basis of classical Poiseuille flow in a cylindrical pipe. We obtain first order convergence for the velocity and the shear stress, reflecting the fact that in our approach the solid-fluid interface is localized with an accuracy on the order of a grid cell. Simulations for curved vessels and aneurysms are done for different flow regimes, characterized by different values of the Reynolds number (Re). The validation is performed for laminar flow at Re = 250, while the flow in more complex geometries is studied at Re = 100 and Re = 250, as suggested by physiological conditions pertaining to flow of blood in the circle of Willis.
NASA Astrophysics Data System (ADS)
Algabri, Y. A.; Rookkapan, S.; Chatpun, S.
2017-09-01
An abdominal aortic aneurysm (AAA) is considered a deadly cardiovascular disease that defined as a focal dilation of blood artery. The healthy aorta size is between 15 and 24 mm based on gender, bodyweight, and age. When the diameter increased to 30 mm or more, the rupture can occur if it is kept growing or untreated. Moreover, the proximal angular neck of aneurysm is categorized as a significant morphological feature with prime harmful effects on endovascular aneurysm repair (EVAR). Flow pattern in pathological vessel can influence the vascular intervention. The aim of this study is to investigate the blood flow behaviours in angular neck abdominal aortic aneurysm with simulated geometry based on patient’s information using computational fluid dynamics (CFD). The 3D angular neck AAA models have been designed by using SolidWorks Software. Consequently, CFD tools are used for simulating these 3D models of angular neck AAA in ANSYS FLUENT Software. Eventually, based on the results, we summarized that the CFD techniques have shown high performance in explaining and investigating the flow patterns for angular neck abdominal aortic aneurysm.
Local scattering property scales flow speed estimation in laser speckle contrast imaging
NASA Astrophysics Data System (ADS)
Miao, Peng; Chao, Zhen; Feng, Shihan; Yu, Hang; Ji, Yuanyuan; Li, Nan; Thakor, Nitish V.
2015-07-01
Laser speckle contrast imaging (LSCI) has been widely used in in vivo blood flow imaging. However, the effect of local scattering property (scattering coefficient µ s ) on blood flow speed estimation has not been well investigated. In this study, such an effect was quantified and involved in relation between speckle autocorrelation time τ c and flow speed v based on simulation flow experiments. For in vivo blood flow imaging, an improved estimation strategy was developed to eliminate the estimation bias due to the inhomogeneous distribution of the scattering property. Compared to traditional LSCI, a new estimation method significantly suppressed the imaging noise and improves the imaging contrast of vasculatures. Furthermore, the new method successfully captured the blood flow changes and vascular constriction patterns in rats’ cerebral cortex from normothermia to mild and moderate hypothermia.
Endovascular blood flow measurement system
NASA Astrophysics Data System (ADS)
Khe, A. K.; Cherevko, A. A.; Chupakhin, A. P.; Krivoshapkin, A. L.; Orlov, K. Yu
2016-06-01
In this paper an endovascular measurement system used for intraoperative cerebral blood flow monitoring is described. The system is based on a Volcano ComboMap Pressure and Flow System extended with analogue-to-digital converter and PC laptop. A series of measurements performed in patients with cerebrovascular pathologies allows us to introduce “velocity-pressure” and “flow rate-energy flow rate” diagrams as important characteristics of the blood flow. The measurement system presented here can be used as an additional instrument in neurosurgery for assessment and monitoring of the operation procedure. Clinical data obtained with the system are used for construction of mathematical models and patient-specific simulations. The monitoring of the blood flow parameters during endovascular interventions was approved by the Ethics Committee at the Meshalkin Novosibirsk Research Institute of Circulation Pathology and included in certain surgical protocols for pre-, intra- and postoperative examinations.
Prediction of blood pressure and blood flow in stenosed renal arteries using CFD
NASA Astrophysics Data System (ADS)
Jhunjhunwala, Pooja; Padole, P. M.; Thombre, S. B.; Sane, Atul
2018-04-01
In the present work an attempt is made to develop a diagnostive tool for renal artery stenosis (RAS) which is inexpensive and in-vitro. To analyse the effects of increase in the degree of severity of stenosis on hypertension and blood flow, haemodynamic parameters are studied by performing numerical simulations. A total of 16 stenosed models with varying degree of stenosis severity from 0-97.11% are assessed numerically. Blood is modelled as a shear-thinning, non-Newtonian fluid using the Carreau model. Computational Fluid Dynamics (CFD) analysis is carried out to compute the values of flow parameters like maximum velocity and maximum pressure attained by blood due to stenosis under pulsatile flow. These values are further used to compute the increase in blood pressure and decrease in available blood flow to kidney. The computed available blood flow and secondary hypertension for varying extent of stenosis are mapped by curve fitting technique using MATLAB and a mathematical model is developed. Based on these mathematical models, a quantification tool is developed for tentative prediction of probable availability of blood flow to the kidney and severity of stenosis if secondary hypertension is known.
Determination of fractional flow reserve (FFR) based on scaling laws: a simulation study
NASA Astrophysics Data System (ADS)
Wong, Jerry T.; Molloi, Sabee
2008-07-01
Fractional flow reserve (FFR) provides an objective physiological evaluation of stenosis severity. A technique that can measure FFR using only angiographic images would be a valuable tool in the cardiac catheterization laboratory. To perform this, the diseased blood flow can be measured with a first pass distribution analysis and the theoretical normal blood flow can be estimated from the total coronary arterial volume based on scaling laws. A computer simulation of the coronary arterial network was used to gain a better understanding of how hemodynamic conditions and coronary artery disease can affect blood flow, arterial volume and FFR estimation. Changes in coronary arterial flow and volume due to coronary stenosis, aortic pressure and venous pressure were examined to evaluate the potential use of flow and volume for FFR determination. This study showed that FFR can be estimated using arterial volume and a scaling coefficient corrected for aortic pressure. However, variations in venous pressure were found to introduce some error in FFR estimation. A relative form of FFR was introduced and was found to cancel out the influence of pressure on coronary flow, arterial volume and FFR estimation. The use of coronary flow and arterial volume for FFR determination appears promising.
Predicting bifurcation angle effect on blood flow in the microvasculature.
Yang, Jiho; Pak, Y Eugene; Lee, Tae-Rin
2016-11-01
Since blood viscosity is a basic parameter for understanding hemodynamics in human physiology, great amount of research has been done in order to accurately predict this highly non-Newtonian flow property. However, previous works lacked in consideration of hemodynamic changes induced by heterogeneous vessel networks. In this paper, the effect of bifurcation on hemodynamics in a microvasculature is quantitatively predicted. The flow resistance in a single bifurcation microvessel was calculated by combining a new simple mathematical model with 3-dimensional flow simulation for varying bifurcation angles under physiological flow conditions. Interestingly, the results indicate that flow resistance induced by vessel bifurcation holds a constant value of approximately 0.44 over the whole single bifurcation model below diameter of 60μm regardless of geometric parameters including bifurcation angle. Flow solutions computed from this new model showed substantial decrement in flow velocity relative to other mathematical models, which do not include vessel bifurcation effects, while pressure remained the same. Furthermore, when applying the bifurcation angle effect to the entire microvascular network, the simulation results gave better agreements with recent in vivo experimental measurements. This finding suggests a new paradigm in microvascular blood flow properties, that vessel bifurcation itself, regardless of its angle, holds considerable influence on blood viscosity, and this phenomenon will help to develop new predictive tools in microvascular research. Copyright © 2016 Elsevier Inc. All rights reserved.
Modeling laser speckle imaging of perfusion in the skin (Conference Presentation)
NASA Astrophysics Data System (ADS)
Regan, Caitlin; Hayakawa, Carole K.; Choi, Bernard
2016-02-01
Laser speckle imaging (LSI) enables visualization of relative blood flow and perfusion in the skin. It is frequently applied to monitor treatment of vascular malformations such as port wine stain birthmarks, and measure changes in perfusion due to peripheral vascular disease. We developed a computational Monte Carlo simulation of laser speckle contrast imaging to quantify how tissue optical properties, blood vessel depths and speeds, and tissue perfusion affect speckle contrast values originating from coherent excitation. The simulated tissue geometry consisted of multiple layers to simulate the skin, or incorporated an inclusion such as a vessel or tumor at different depths. Our simulation used a 30x30mm uniform flat light source to optically excite the region of interest in our sample to better mimic wide-field imaging. We used our model to simulate how dynamically scattered photons from a buried blood vessel affect speckle contrast at different lateral distances (0-1mm) away from the vessel, and how these speckle contrast changes vary with depth (0-1mm) and flow speed (0-10mm/s). We applied the model to simulate perfusion in the skin, and observed how different optical properties, such as epidermal melanin concentration (1%-50%) affected speckle contrast. We simulated perfusion during a systolic forearm occlusion and found that contrast decreased by 35% (exposure time = 10ms). Monte Carlo simulations of laser speckle contrast give us a tool to quantify what regions of the skin are probed with laser speckle imaging, and measure how the tissue optical properties and blood flow affect the resulting images.
Design of a microfluidic system for red blood cell aggregation investigation.
Mehri, R; Mavriplis, C; Fenech, M
2014-06-01
The purpose of this paper is to design a microfluidic apparatus capable of providing controlled flow conditions suitable for red blood cell (RBC) aggregation analysis. The linear velocity engendered from the controlled flow provides constant shear rates used to qualitatively analyze RBC aggregates. The design of the apparatus is based on numerical and experimental work. The numerical work consists of 3D numerical simulations performed using a research computational fluid dynamics (CFD) solver, Nek5000, while the experiments are conducted using a microparticle image velocimetry system. A Newtonian model is tested numerically and experimentally, then blood is tested experimentally under several conditions (hematocrit, shear rate, and fluid suspension) to be compared to the simulation results. We find that using a velocity ratio of 4 between the two Newtonian fluids, the layer corresponding to blood expands to fill 35% of the channel thickness where the constant shear rate is achieved. For blood experiments, the velocity profile in the blood layer is approximately linear, resulting in the desired controlled conditions for the study of RBC aggregation under several flow scenarios.
Effects of Aortic Irregularities on the Blood Flow
NASA Astrophysics Data System (ADS)
Gutmark-Little, Iris; Prahl-Wittberg, Lisa; van Wyk, Stevin; Mihaescu, Mihai; Fuchs, Laszlo; Backeljauw, Philippe; Gutmark, Ephraim
2013-11-01
Cardiovascular defects characterized by geometrical anomalies of the aorta and its effect on the blood flow are investigated. The flow characteristics change with the aorta geometry and the rheological properties of the blood. Flow characteristics such as wall shear stress often play an important role in the development of vascular disease. In the present study, blood is considered to be non-Newtonian and is modeled using the Quemada model, an empirical model that is valid for different red blood cell loading. Three patient-specific aortic geometries are studied using Large Eddy Simulations (LES). The three geometries represent malformations that are typical in patients populations having a genetic disorder called Turner syndrome. The results show a highly complex flow with regions of recirculation that are enhanced in two of the three aortas. Moreover, blood flow is diverted, due to the malformations, from the descending aorta to the three side branches of the arch. The geometry having an elongated transverse aorta has larger areas of strong oscillatory wall shear stress.
Investigation of spiral blood flow in a model of arterial stenosis.
Paul, Manosh C; Larman, Arkaitz
2009-11-01
The spiral component of blood flow has both beneficial and detrimental effects in human circulatory system [Stonebridge PA, Brophy CM. Spiral laminar flow in arteries? Lancet 1991; 338: 1360-1]. We investigate the effects of the spiral blood flow in a model of three-dimensional arterial stenosis with a 75% cross-sectional area reduction at the centre by means of computational fluid dynamics (CFD) techniques. The standard k-omega model is employed for simulation of the blood flow for the Reynolds number of 500 and 1000. We find that for Re=500 the spiral component of the blood flow increases both the total pressure and velocity of the blood, and some significant differences are found between the wall shear stresses of the spiral and non-spiral induced flow downstream of the stenosis. The turbulent kinetic energy is reduced by the spiral flow as it induces the rotational stabilities in the forward flow. For Re=1000 the tangential component of the blood velocity is most influenced by the spiral speed, but the effect of the spiral flow on the centreline turbulent kinetic energy and shear stress is mild. The results of the effects of the spiral flow are discussed in the paper along with the relevant pathological issues.
NASA Astrophysics Data System (ADS)
Bagchi, Prosenjit
2016-11-01
In this talk, two problems in multiphase biological flows will be discussed. The first is the direct numerical simulation of whole blood and drug particulates in microvascular networks. Blood in microcirculation behaves as a dense suspension of heterogeneous cells. The erythrocytes are extremely deformable, while inactivated platelets and leukocytes are nearly rigid. A significant progress has been made in recent years in modeling blood as a dense cellular suspension. However, many of these studies considered the blood flow in simple geometry, e.g., straight tubes of uniform cross-section. In contrast, the architecture of a microvascular network is very complex with bifurcating, merging and winding vessels, posing a further challenge to numerical modeling. We have developed an immersed-boundary-based method that can consider blood cell flow in physiologically realistic and complex microvascular network. In addition to addressing many physiological issues related to network hemodynamics, this tool can be used to optimize the transport properties of drug particulates for effective organ-specific delivery. Our second problem is pseudopod-driven motility as often observed in metastatic cancer cells and other amoeboid cells. We have developed a multiscale hydrodynamic model to simulate such motility. We study the effect of cell stiffness on motility as the former has been considered as a biomarker for metastatic potential. Funded by the National Science Foundation.
Bai, Long; Cui, Yuhong; Zhang, Yixia; Zhao, Na
2014-01-01
The mechanical behavior of blood cells in the vessels has a close relationship with the physical characteristics of the blood and the cells. In this paper, a numerical simulation method was proposed to understand a single-blood cell's behavior in the vessels based on fluid-solid interaction method, which was conducted under adaptive time step and fixed time step, respectively. The main programme was C++ codes, which called FLUENT and ANSYS software, and UDF and APDL acted as a messenger to connect FLUENT and ANSYS for exchanging data. The computing results show: (1) the blood cell moved towards the bottom of the flow chamber in the beginning due to the influence of gravity, then it began to jump up when reached a certain height rather than touching the bottom. It could move downwards again after jump up, the blood cell could keep this way of moving like dancing continuously in the vessels; (2) the blood cell was rolling and deforming all the time; the rotation had oscillatory changes and the deformation became conspicuously when the blood cell was dancing. This new simulation method and results can be widely used in the researches of cytology, blood, cells, etc.
Noncontact diffuse correlation tomography of human breast tumor
He, Lian; Lin, Yu; Huang, Chong; Irwin, Daniel; Szabunio, Margaret M.; Yu, Guoqiang
2015-01-01
Abstract. Our first step to adapt our recently developed noncontact diffuse correlation tomography (ncDCT) system for three-dimensional (3-D) imaging of blood flow distribution in human breast tumors is reported. A commercial 3-D camera was used to obtain breast surface geometry, which was then converted to a solid volume mesh. An ncDCT probe scanned over a region of interest on the mesh surface and the measured boundary data were combined with a finite element framework for 3-D image reconstruction of blood flow distribution. This technique was tested in computer simulations and in vivo human breasts with low-grade carcinoma. Results from computer simulations suggest that relatively high accuracy can be achieved when the entire tumor is within the sensitive region of diffuse light. Image reconstruction with a priori knowledge of the tumor volume and location can significantly improve the accuracy in recovery of tumor blood flow contrasts. In vivo imaging results from two breast carcinomas show higher average blood flow contrasts (5.9- and 10.9-fold) in the tumor regions compared to the surrounding tissues, which are comparable with previous findings using diffuse correlation spectroscopy. The ncDCT system has the potential to image blood flow distributions in soft and vulnerable tissues without distorting tissue hemodynamics. PMID:26259706
NASA Astrophysics Data System (ADS)
Hoque, Sazid Zamal; Anand, D. Vijay; Patnaik, B. S. V.
2017-11-01
The state of the red blood cell (either healthy or infected RBC) will influence its deformation dynamics. Since the pathological condition related to RBC, primarily originates from a single cell infection, therefore, it is important to relate the deformation dynamics to the mechanical properties (such as, bending rigidity and membrane elasticity). In the present study, numerical simulation of a healthy and malaria infected RBC in a constricted channel is analyzed. The flow simulations are carried out using finite sized dissipative particle dynamics (FDPD) method in conjunction with a discrete model that represents the membrane of the RBC. The numerical equivalent of optical tweezers test is validated against the experimental studies. Two different types of constrictions, viz., a converging-diverging type tapered channel and a stenosed microchannel are considered for the simulation. The effect of degree of constriction and the flow rate effect on the RBC is investigated. It was observed that, as the flow rate decreases, the infected RBC completely blocks the micro vessel. The transit time for infected cell drastically increases compared to healthy RBC. Our simulations indicate that, there is a critical flow rate below which infected RBC cannot pass through the micro capillary.
Su, Boyang; Chua, Leok P; Lim, Tau M; Zhou, Tongming
2010-09-01
Generally, there are two types of impeller design used in the axial flow blood pumps. For the first type, which can be found in most of the axial flow blood pumps, the magnet is embedded inside the impeller hub or blades. For the second type, the magnet is embedded inside the cylindrical impeller shroud, and this design has not only increased the rotating stability of the impeller but has also avoided the flow interaction between the impeller blade tip and the pump casing. Although the axial flow blood pumps with either impeller design have been studied individually, the comparisons between these two designs have not been conducted in the literature. Therefore, in this study, two axial flow blood pumps with and without impeller shrouds were numerically simulated with computational fluid dynamics and compared with each other in terms of hydraulic and hematologic performances. For the ease of comparison, these two models have the same inner components, which include a three-blade straightener, a two-blade impeller, and a three-blade diffuser. The simulation results showed that the model with impeller shroud had a lower static pressure head with a lower hydraulic efficiency than its counterpart. It was also found that the blood had a high possibility to deposit on the impeller shroud inner surface, which greatly enhanced the possibility of thrombus formation. The blood damage indices in both models were around 1%, which was much lower than the 13.1% of the axial flow blood pump of Yano et al. with the corresponding experimental hemolysis of 0.033 g/100 L. © 2010, Copyright the Authors. Artificial Organs © 2010, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
A modeling study on the influence of blood flow regulation on skin temperature pulsations
NASA Astrophysics Data System (ADS)
Tang, Yanliang; Mizeva, Irina; He, Ying
2017-04-01
Nowadays together with known optic techniques of microcirculation blood flow monitoring, skin temperature measurements are developed as well. In this paper, a simple one-dimensional bioheat transfer model was developed to analyse the heat wave transport in biological tissue, where an arteriole vessel with pulsatile blood is located. The simulated results show that the skin temperature oscillation amplitudes attenuate with the increase of blood flow oscillation frequency which gives the same tendency as that in the experiments. The parameter analyses further show that the amplitude of oscillation is also influenced by oscillation amplitude of blood and effective thermal conductivity. When oscillation amplitude of blood flow and effective thermal conductivity increase, the amplitude of skin temperature oscillation increases nonlinearly. Variation of effective thermal convective influence to the time delay of the thermal wave on the skin surface and distort it. Combination of two measurement techniques: one for estimation blood flow oscillations in the microvessels and other to the skin temperature measurement can produce additional information about the skin properties.
NASA Astrophysics Data System (ADS)
Lee, Seung Yup; Pakela, Julia M.; Helton, Michael C.; Vishwanath, Karthik; Chung, Yooree G.; Kolodziejski, Noah J.; Stapels, Christopher J.; McAdams, Daniel R.; Fernandez, Daniel E.; Christian, James F.; O'Reilly, Jameson; Farkas, Dana; Ward, Brent B.; Feinberg, Stephen E.; Mycek, Mary-Ann
2017-12-01
In reconstructive surgery, the ability to detect blood flow interruptions to grafted tissue represents a critical step in preventing postsurgical complications. We have developed and pilot tested a compact, fiber-based device that combines two complimentary modalities-diffuse correlation spectroscopy (DCS) and diffuse reflectance spectroscopy-to quantitatively monitor blood perfusion. We present a proof-of-concept study on an in vivo porcine model (n=8). With a controllable arterial blood flow supply, occlusion studies (n=4) were performed on surgically isolated free flaps while the device simultaneously monitored blood flow through the supplying artery as well as flap perfusion from three orientations: the distal side of the flap and two transdermal channels. Further studies featuring long-term monitoring, arterial failure simulations, and venous failure simulations were performed on flaps that had undergone an anastomosis procedure (n=4). Additionally, benchtop verification of the DCS system was performed on liquid flow phantoms. Data revealed relationships between diffuse optical measures and state of occlusion as well as the ability to detect arterial and venous compromise. The compact construction of the device, along with its noninvasive and quantitative nature, would make this technology suitable for clinical translation.
Computed Flow Through An Artificial Heart And Valve
NASA Technical Reports Server (NTRS)
Rogers, Stuart E.; Kwak, Dochan; Kiris, Cetin; Chang, I-Dee
1994-01-01
NASA technical memorandum discusses computations of flow of blood through artificial heart and through tilting-disk artificial heart valve. Represents further progress in research described in "Numerical Simulation of Flow Through an Artificial Heart" (ARC-12478). One purpose of research to exploit advanced techniques of computational fluid dynamics and capabilities of supercomputers to gain understanding of complicated internal flows of viscous, essentially incompressible fluids like blood. Another to use understanding to design better artificial hearts and valves.
NASA Astrophysics Data System (ADS)
Abbas, Z.; Shabbir, M. S.; Ali, N.
2018-06-01
In the present theoretical investigation, we have numerically simulated the problem of blood flow through an overlapping stenosed arterial blood vessel under the action of externally applied body acceleration and the periodic pressure gradient. The rheology of blood is characterized by the Sutterby fluid model. The blood is considered as an electrically conducting fluid. A steady uniform magnetic field is applied in the radial direction of the blood vessel. The governing nonlinear partial differential equations of the present flow together with prescribed boundary conditions are solved by employing explicit finite difference scheme. Results concerning the temporal distribution of velocity, flow rate, shear stress and resistance to the flow are displayed through graphs. The effects of various emerging parameters on the flow variables are analyzed and discussed in detail. The analysis reveals that the applied magnetic field and periodic body acceleration have considerable effects on the flow field.
Correction for partial volume effect in PET blood flow images
NASA Astrophysics Data System (ADS)
Gage, Howard D.; Fahey, Fredrick H.; Santago, Peter, II; Harkness, Beth A.; Keyes, J. W.
1996-04-01
Current positron emission tomography techniques for the measurement of cerebral blood flow assume that voxels represent pure material regions. In this work, a method is presented which utilizes anatomical information from a high resolution modality such as MRI in conjunction with a multicompartment extension of the Kety model to obtain intravoxel, tissue specific blood flow values. In order to evaluate the proposed method, noisy time activity curves (TACs) were simulated representing different combinations of gray matter, white matter and CSF, and ratios of gray to white matter blood flow. In all experiments it was assumed that registered MR data supplied the number of materials and the fraction of each present. For each TAC, three experiments were run. In the first it was assumed that the fraction of each material determined by MRI was correct, and, in the second two, that the value was either too high or too low. Using the tree annealing method, material flows were determined which gave the best fit of the model to the simulated TAC data. The results indicate that the accuracy of the method is approximately linearly related to the error in material fraction estimated for a voxel.
Power consumption of rotary blood pumps: pulsatile versus constant-speed mode.
Pirbodaghi, Tohid; Cotter, Chris; Bourque, Kevin
2014-12-01
We investigated the power consumption of a HeartMate III rotary blood pump based on in vitro experiments performed in a cardiovascular simulator. To create artificial-pulse mode, we modulated the pump speed by decreasing the mean speed by 2000 rpm for 200 ms and then increasing speed by 4000 rpm (mean speeds plus 2000 rpm) for another 200 ms, creating a square waveform shape. The HeartMate III was connected to a cardiovascular simulator consisting of a hydraulic pump system to simulate left ventricle pumping action, arterial and venous compliance chambers, and an adjustable valve for peripheral resistance to facilitate the desired aortic pressure. The simulator operated based on Suga's elastance model to mimic the Starling response of the heart, thereby reproducing physiological blood flow and pressure conditions. We measured the instantaneous total electrical current and voltage of the pump to evaluate its power consumption. The aim was to answer these fundamental questions: (i) How does pump speed modulation affect pump power consumption? (ii) How does the power consumption vary in relation to external pulsatile flow? The results indicate that speed modulation and external pulsatile flow both moderately increase the power consumption. Increasing the pump speed reduces the impact of external pulsatile flow. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
IB-LBM simulation of the haemocyte dynamics in a stenotic capillary.
Yuan-Qing, Xu; Xiao-Ying, Tang; Fang-Bao, Tian; Yu-Hua, Peng; Yong, Xu; Yan-Jun, Zeng
2014-01-01
To study the behaviour of a haemocyte when crossing a stenotic capillary, the immersed boundary-lattice Boltzmann method was used to establish a quantitative analysis model. The haemocyte was assumed to be spherical and to have an elastic cell membrane, which can be driven by blood flow to adopt a highly deformable character. In the stenotic capillary, the spherical blood cell was stressed both by the flow and the wall dimension, and the cell shape was forced to be stretched to cross the stenosis. Our simulation investigated the haemocyte crossing process in detail. The velocity and pressure were anatomised to obtain information on how blood flows through a capillary and to estimate the degree of cell damage caused by excessive pressure. Quantitative velocity analysis results demonstrated that a large haemocyte crossing a small stenosis would have a noticeable effect on blood flow, while quantitative pressure distribution analysis results indicated that the crossing process would produce a special pressure distribution in the cell interior and to some extent a sudden change between the cell interior and the surrounding plasma.
Numerical simulation of heat transfer in power law fluid flow through a stenosed artery
NASA Astrophysics Data System (ADS)
Talib, Amira Husni; Abdullah, Ilyani
2017-11-01
A numerical study of heat transfer in a power law fluid is investigated in this paper. The blood flow is treated as power law fluid with a presence of cosine shaped stenosis. This study reveals the effect of stenosis on the heat transfer and velocity of blood flowing in the constricted artery. The governing and energy equations are formulated in a cylindrical coordinate system. Hence, the set of equations and boundary conditions are solved numerically by Marker and Cell (MAC) method. The graphical result shows the profile of blood temperature is increased while the blood velocity is decreased at the critical height of stenosis.
The effects of tapering and artery wall stiffness on treatments for Coarctation of the Aorta.
Pathirana, Dilan; Johnston, Barbara; Johnston, Peter
2017-11-01
Coarctation of the Aorta is a congenital narrowing of the aorta. Two commonly used treatments are resection and end-to-end anastomosis, and stent placements. We simulate blood flow through one-dimensional models of aortas. Different artery stiffnesses, due to treatments, are included in our model, and used to compare blood flow properties in the treated aortas. We expand our previously published model to include the natural tapering of aortas. We look at change in aorta wall radius, blood pressure and blood flow velocity, and find that, of the two treatments, the resection and end-to-end anastomosis treatment more closely matches healthy aortas.
Simulation of Local Blood Flow in Human Brain under Altered Gravity
NASA Technical Reports Server (NTRS)
Kim, Chang Sung; Kiris, Cetin; Kwak, Dochan
2003-01-01
In addition to the altered gravitational forces, specific shapes and connections of arteries in the brain vary in the human population (Cebral et al., 2000; Ferrandez et al., 2002). Considering the geometric variations, pulsatile unsteadiness, and moving walls, computational approach in analyzing altered blood circulation will offer an economical alternative to experiments. This paper presents a computational approach for modeling the local blood flow through the human brain under altered gravity. This computational approach has been verified through steady and unsteady experimental measurements and then applied to the unsteady blood flows through a carotid bifurcation model and an idealized Circle of Willis (COW) configuration under altered gravity conditions.
NASA Astrophysics Data System (ADS)
Melka, Bartlomiej; Gracka, Maria; Adamczyk, Wojciech; Rojczyk, Marek; Golda, Adam; Nowak, Andrzej J.; Białecki, Ryszard A.; Ostrowski, Ziemowit
2017-08-01
In the research, a numerical Computational Fluid Dynamics (CFD) model of the pulsatile blood flow was created and analysed. A real geometry of aorta and its thoracic branches of an 8-year old patient diagnosed with a congenital heart defect - coarctation of the aorta was used. The inlet boundary condition was implemented as the User Define Function according to measured values of volumetric blood flow. The blood flow was treated as multiphase using Euler-Euler approach. Plasma was set as the primary and dominant fluid phase, with the volume fraction of 0.585. The morphological elements (RBC and WBC) were set as dispersed phases being the remaining volume fraction.
NASA Astrophysics Data System (ADS)
Jansen, Sanne M.; de Bruin, Daniel M.; Faber, Dirk J.; Dobbe, Iwan J. G. G.; Heeg, Erik; Milstein, Dan M. J.; Strackee, Simon D.; van Leeuwen, Ton G.
2017-08-01
Patient morbidity and mortality due to hemodynamic complications are a major problem in surgery. Optical techniques can image blood flow in real-time and high-resolution, thereby enabling perfusion monitoring intraoperatively. We tested the feasibility and validity of laser speckle contrast imaging (LSCI), optical coherence tomography (OCT), and sidestream dark-field microscopy (SDF) for perfusion diagnostics in a phantom model using whole blood. Microvessels with diameters of 50, 100, and 400 μm were constructed in a scattering phantom. Perfusion was simulated by pumping heparinized human whole blood at five velocities (0 to 20 mm/s). Vessel diameter and blood flow velocity were assessed with LSCI, OCT, and SDF. Quantification of vessel diameter was feasible with OCT and SDF. LSCI could only visualize the 400-μm vessel, perfusion units scaled nonlinearly with blood velocity. OCT could assess blood flow velocity in terms of inverse OCT speckle decorrelation time. SDF was not feasible to measure blood flow; however, for diluted blood the measurements were linear with the input velocity up to 1 mm/s. LSCI, OCT, and SDF were feasible to visualize blood flow. Validated blood flow velocity measurements intraoperatively in the desired parameter (mL·g-1) remain challenging.
Simulated Microgravity Increases Cutaneous Blood Flow in the Head and Leg of Humans
NASA Technical Reports Server (NTRS)
Stout, M. Shannon; Watenpaugh, Donald E.; Breit, Gregory A.; Hargens, Alan R.
1995-01-01
The cutaneous microcirculation vasodilates during acute 6 degree head-down tilt (HDT, simulated microgravity) relative to upright conditions, more in the lower body than in the upper body. Cutaneous microvascular blood flow was measured with laser-Doppler flowmetry at the leg (over the distal tibia) and cheek (over the zygomatic arch) of eight healthy men before, during, and after 24 h of HDT. Results were calculated as a percentage of baseline value (100% measured during pre-tilt upright sitting). Cutaneous blood flow in the cheek increased significantly to 165 +/- 37% (mean +/- SE, p less than 0.05) at 9-12 h HDT, then returned to near baseline values by 24 h HDT (114 +/- 29%, NSD), despite increased local arterial pressure. Microvascular flow in the leg remained significantly elevated above baseline througout 24 h HDT (427 +/- 85% at 3 h HDT and 215 +/- 142% at 24 h HDT, p less than 0.05). During the 6-h upright sitting recovery period, cheek and leg blood flow levels returned to near pre-tilt baseline values. Because hydrostatic effects of HDT increase local arterial pressure at the carotid sinus, baroreflex-mediated withdrawal of sympathetic tone probably contributed to increased microvascular flows at the head and leg during HDT. In the leg baroreflex effects combined with minimal stimulation of local veno-arteriolar and myogenic autoregulatory vasoconstriction to elicit relatively larger and more sustained increases in cutaneous flow during HDT. In the cheek, delayed myogenic vasoconstriction and/or hurmonal effects apparently compensated for flow elevation by 24 h of HDT. Therefore, localized vascular adaptations to gravity probably explain differences in acclimation of lower and upper body blood flow to HDT and actual microgravity.
Hossain, Shaolie S.; Zhang, Yongjie; Fu, Xiaoyi; Brunner, Gerd; Singh, Jaykrishna; Hughes, Thomas J. R.; Shah, Dipan; Decuzzi, Paolo
2015-01-01
Peripheral arterial disease (PAD) is generally attributed to the progressive vascular accumulation of lipoproteins and circulating monocytes in the vessel walls leading to the formation of atherosclerotic plaques. This is known to be regulated by the local vascular geometry, haemodynamics and biophysical conditions. Here, an isogeometric analysis framework is proposed to analyse the blood flow and vascular deposition of circulating nanoparticles (NPs) into the superficial femoral artery (SFA) of a PAD patient. The local geometry of the blood vessel and the haemodynamic conditions are derived from magnetic resonance imaging (MRI), performed at baseline and at 24 months post intervention. A dramatic improvement in blood flow dynamics is observed post intervention. A 500% increase in peak flow rate is measured in vivo as a consequence of luminal enlargement. Furthermore, blood flow simulations reveal a 32% drop in the mean oscillatory shear index, indicating reduced disturbed flow post intervention. The same patient information (vascular geometry and blood flow) is used to predict in silico in a simulation of the vascular deposition of systemically injected nanomedicines. NPs, targeted to inflammatory vascular molecules including VCAM-1, E-selectin and ICAM-1, are predicted to preferentially accumulate near the stenosis in the baseline configuration, with VCAM-1 providing the highest accumulation (approx. 1.33 and 1.50 times higher concentration than that of ICAM-1 and E-selectin, respectively). Such selective deposition of NPs within the stenosis could be effectively used for the detection and treatment of plaques forming in the SFA. The presented MRI-based computational protocol can be used to analyse data from clinical trials to explore possible correlations between haemodynamics and disease progression in PAD patients, and potentially predict disease occurrence as well as the outcome of an intervention. PMID:25878124
Deformation and dynamics of red blood cells in flow through cylindrical microchannels.
Fedosov, Dmitry A; Peltomäki, Matti; Gompper, Gerhard
2014-06-28
The motion of red blood cells (RBCs) in microcirculation plays an important role in blood flow resistance and in the cell partitioning within a microvascular network. Different shapes and dynamics of RBCs in microvessels have been previously observed experimentally including the parachute and slipper shapes. We employ mesoscale hydrodynamic simulations to predict the phase diagram of shapes and dynamics of RBCs in cylindrical microchannels, which serve as idealized microvessels, for a wide range of channel confinements and flow rates. A rich dynamical behavior is found, with snaking and tumbling discocytes, slippers performing a swinging motion, and stationary parachutes. We discuss the effects of different RBC states on the flow resistance, and the influence of RBC properties, characterized by the Föppl-von Kármán number, on the shape diagram. The simulations are performed using the same viscosity for both external and internal fluids surrounding a RBC; however, we discuss how the viscosity contrast would affect the shape diagram.
Funamoto, Kenichi; Hayase, Toshiyuki; Saijo, Yoshifumi; Yambe, Tomoyuki
2008-08-01
Integration of ultrasonic measurement and numerical simulation is a possible way to break through limitations of existing methods for obtaining complete information on hemodynamics. We herein propose Ultrasonic-Measurement-Integrated (UMI) simulation, in which feedback signals based on the optimal estimation of errors in the velocity vector determined by measured and computed Doppler velocities at feedback points are added to the governing equations. With an eye towards practical implementation of UMI simulation with real measurement data, its efficiency for three-dimensional unsteady blood flow analysis and a method for treating low time resolution of ultrasonic measurement were investigated by a numerical experiment dealing with complicated blood flow in an aneurysm. Even when simplified boundary conditions were applied, the UMI simulation reduced the errors of velocity and pressure to 31% and 53% in the feedback domain which covered the aneurysm, respectively. Local maximum wall shear stress was estimated, showing both the proper position and the value with 1% deviance. A properly designed intermittent feedback applied only at the time when measurement data were obtained had the same computational accuracy as feedback applied at every computational time step. Hence, this feedback method is a possible solution to overcome the insufficient time resolution of ultrasonic measurement.
Simulation-based validation and arrival-time correction for Patlak analyses of Perfusion-CT scans
NASA Astrophysics Data System (ADS)
Bredno, Jörg; Hom, Jason; Schneider, Thomas; Wintermark, Max
2009-02-01
Blood-brain-barrier (BBB) breakdown is a hypothesized mechanism for hemorrhagic transformation in acute stroke. The Patlak analysis of a Perfusion Computed Tomography (PCT) scan measures the BBB permeability, but the method yields higher estimates when applied to the first pass of the contrast bolus compared to a delayed phase. We present a numerical phantom that simulates vascular and parenchymal time-attenuation curves to determine the validity of permeability measurements obtained with different acquisition protocols. A network of tubes represents the major cerebral arteries ipsi- and contralateral to an ischemic event. These tubes branch off into smaller segments that represent capillary beds. Blood flow in the phantom is freely defined and simulated as non-Newtonian tubular flow. Diffusion of contrast in the vessels and permeation through vessel walls is part of the simulation. The phantom allows us to compare the results of a permeability measurement to the simulated vessel wall status. A Patlak analysis reliably detects areas with BBB breakdown for acquisitions of 240s duration, whereas results obtained from the first pass are biased in areas of reduced blood flow. Compensating for differences in contrast arrival times reduces this bias and gives good estimates of BBB permeability for PCT acquisitions of 90-150s duration.
Ohhara, Yoshihito; Oshima, Marie; Iwai, Toshinori; Kitajima, Hiroaki; Yajima, Yasuharu; Mitsudo, Kenji; Krdy, Absy; Tohnai, Iwai
2016-02-04
Patient-specific modelling in clinical studies requires a realistic simulation to be performed within a reasonable computational time. The aim of this study was to develop simple but realistic outflow boundary conditions for patient-specific blood flow simulation which can be used to clarify the distribution of the anticancer agent in intra-arterial chemotherapy for oral cancer. In this study, the boundary conditions are expressed as a zero dimension (0D) resistance model of the peripheral vessel network based on the fractal characteristics of branching arteries combined with knowledge of the circulatory system and the energy minimization principle. This resistance model was applied to four patient-specific blood flow simulations at the region where the common carotid artery bifurcates into the internal and external carotid arteries. Results of these simulations with the proposed boundary conditions were compared with the results of ultrasound measurements for the same patients. The pressure was found to be within the physiological range. The difference in velocity in the superficial temporal artery results in an error of 5.21 ± 0.78 % between the numerical results and the measurement data. The proposed outflow boundary conditions, therefore, constitute a simple resistance-based model and can be used for performing accurate simulations with commercial fluid dynamics software.
Computational Hemodynamic Simulation of Human Circulatory System under Altered Gravity
NASA Technical Reports Server (NTRS)
Kim. Chang Sung; Kiris, Cetin; Kwak, Dochan
2003-01-01
A computational hemodynamics approach is presented to simulate the blood flow through the human circulatory system under altered gravity conditions. Numerical techniques relevant to hemodynamics issues are introduced to non-Newtonian modeling for flow characteristics governed by red blood cells, distensible wall motion due to the heart pulse, and capillary bed modeling for outflow boundary conditions. Gravitational body force terms are added to the Navier-Stokes equations to study the effects of gravity on internal flows. Six-type gravity benchmark problems are originally presented to provide the fundamental understanding of gravitational effects on the human circulatory system. For code validation, computed results are compared with steady and unsteady experimental data for non-Newtonian flows in a carotid bifurcation model and a curved circular tube, respectively. This computational approach is then applied to the blood circulation in the human brain as a target problem. A three-dimensional, idealized Circle of Willis configuration is developed with minor arteries truncated based on anatomical data. Demonstrated is not only the mechanism of the collateral circulation but also the effects of gravity on the distensible wall motion and resultant flow patterns.
Investigating the impact of oxygen concentration and blood flow variation on photodynamic therapy
NASA Astrophysics Data System (ADS)
Penjweini, Rozhin; Kim, Michele M.; Finlay, Jarod C.; Zhu, Timothy C.
2016-03-01
Type II photodynamic therapy (PDT) is used for cancer treatment based on the combined action of a photosensitizer, a special wavelength of light, oxygen (3O2) and generation of singlet oxygen (1O2). Intra-patient and inter-patient variability of oxygen concentration ([3O2]) before and after the treatment as well as photosensitizer concentration and hemodynamic parameters such as blood flow during PDT has been reported. Simulation of these variations is valuable, as it would be a means for the rapid assessment of treatment effect. A mathematical model has been previously developed to incorporate the diffusion equation for light transport in tissue and the macroscopic kinetic equations for simulation of [3O2], photosensitizers in ground and triplet states and concentration of the reacted singlet oxygen ([1O₂]rx) during PDT. In this study, the finite-element based calculation of the macroscopic kinetic equations is done for 2-(1- Hexyloxyethyl)-2-devinyl pyropheophorbide (HPPH)-mediated PDT by incorporating the information of the photosensitizer photochemical parameters as well as the tissue optical properties, photosensitizer concentration, initial oxygen concentration ([3O2]0), blood flow changes and Φ that have been measured in mice bearing radiation-induced fibrosarcoma (RIF) tumors. Then, [1O2]rx calculated by using the measured [3O2] during the PDT is compared with [1O2]rx calculated based on the simulated [3O₂]; both calculations showed a reasonably good agreement. Moreover, the impacts of the blood flow changes and [3O2]0 on [1O2]rx have been investigated, which showed no pronounced effect of the blood flow changes on the long-term 1O2 generation. When [3O2]0 becomes limiting, small changes in [3O₂] have large effects on [1O2]rx.
NASA Astrophysics Data System (ADS)
Ha, Hojin; Lantz, Jonas; Haraldsson, Henrik; Casas, Belen; Ziegler, Magnus; Karlsson, Matts; Saloner, David; Dyverfeldt, Petter; Ebbers, Tino
2016-12-01
Flow-induced blood damage plays an important role in determining the hemodynamic impact of abnormal blood flow, but quantifying of these effects, which are dominated by shear stresses in highly fluctuating turbulent flow, has not been feasible. This study evaluated the novel application of turbulence tensor measurements using simulated 4D Flow MRI data with six-directional velocity encoding for assessing hemodynamic stresses and corresponding blood damage index (BDI) in stenotic turbulent blood flow. The results showed that 4D Flow MRI underestimates the maximum principal shear stress of laminar viscous stress (PLVS), and overestimates the maximum principal shear stress of Reynolds stress (PRSS) with increasing voxel size. PLVS and PRSS were also overestimated by about 1.2 and 4.6 times at medium signal to noise ratio (SNR) = 20. In contrast, the square sum of the turbulent viscous shear stress (TVSS), which is used for blood damage index (BDI) estimation, was not severely affected by SNR and voxel size. The square sum of TVSS and the BDI at SNR >20 were underestimated by less than 1% and 10%, respectively. In conclusion, this study demonstrated the feasibility of 4D Flow MRI based quantification of TVSS and BDI which are closely linked to blood damage.
Effects of hypothyroidism on the skeletal muscle blood flow response to contractions.
Bausch, L; McAllister, R M
2003-04-01
Hypothyroidism is associated with impaired blood flow to skeletal muscle under whole body exercise conditions. It is unclear whether poor cardiac and/or vascular function account for blunted muscle blood flow. Our experiment isolated a small group of hindlimb muscles and simulated exercise via tetanic contractions. We hypothesized that muscle blood flow would be attenuated in hypothyroid rats (HYPO) compared with euthyroid rats (EUT). Rats were made hypothyroid by mixing propylthiouracil in their drinking water (2.35 x 10-3 mol/l). Treatment efficacy was evidenced by lower serum T3 concentrations and resting heart rates in HYPO (both P<0.05). In the experimental preparation, isometric contractions of the lower right hindlimb muscles at a rate of 30 tetani/min were induced via sciatic nerve stimulation. Regional blood flows were determined by the radiolabelled microsphere method at three time points: rest, 2 min of contractions and 10 min of contractions. Muscle blood flow generally increased from rest ( approximately 5-10 ml/min per 100 g) through contractions for both groups. Further, blood flow during contractions did not differ between groups for any muscle (eg. red section of gastrocnemius muscle; EUT, 59.9 +/- 14.1; HYPO, 61.1 +/- 15.0; NS between groups). These findings indicate that hypothyroidism does not significantly impair skeletal muscle blood flow when only a small muscle mass is contracting. Our findings suggest that impaired blood flow under whole body exercise is accounted for by inadequate cardiac function rather than abnormal vascular function.
Studies of turbulence models in a computational fluid dynamics model of a blood pump.
Song, Xinwei; Wood, Houston G; Day, Steven W; Olsen, Don B
2003-10-01
Computational fluid dynamics (CFD) is used widely in design of rotary blood pumps. The choice of turbulence model is not obvious and plays an important role on the accuracy of CFD predictions. TASCflow (ANSYS Inc., Canonsburg, PA, U.S.A.) has been used to perform CFD simulations of blood flow in a centrifugal left ventricular assist device; a k-epsilon model with near-wall functions was used in the initial numerical calculation. To improve the simulation, local grids with special distribution to ensure the k-omega model were used. Iterations have been performed to optimize the grid distribution and turbulence modeling and to predict flow performance more accurately comparing to experimental data. A comparison of k-omega model and experimental measurements of the flow field obtained by particle image velocimetry shows better agreement than k-epsilon model does, especially in the near-wall regions.
The Accuracy and Precision of Flow Measurements Using Phase Contrast Techniques
NASA Astrophysics Data System (ADS)
Tang, Chao
Quantitative volume flow rate measurements using the magnetic resonance imaging technique are studied in this dissertation because the volume flow rates have a special interest in the blood supply of the human body. The method of quantitative volume flow rate measurements is based on the phase contrast technique, which assumes a linear relationship between the phase and flow velocity of spins. By measuring the phase shift of nuclear spins and integrating velocity across the lumen of the vessel, we can determine the volume flow rate. The accuracy and precision of volume flow rate measurements obtained using the phase contrast technique are studied by computer simulations and experiments. The various factors studied include (1) the partial volume effect due to voxel dimensions and slice thickness relative to the vessel dimensions; (2) vessel angulation relative to the imaging plane; (3) intravoxel phase dispersion; (4) flow velocity relative to the magnitude of the flow encoding gradient. The partial volume effect is demonstrated to be the major obstacle to obtaining accurate flow measurements for both laminar and plug flow. Laminar flow can be measured more accurately than plug flow in the same condition. Both the experiment and simulation results for laminar flow show that, to obtain the accuracy of volume flow rate measurements to within 10%, at least 16 voxels are needed to cover the vessel lumen. The accuracy of flow measurements depends strongly on the relative intensity of signal from stationary tissues. A correction method is proposed to compensate for the partial volume effect. The correction method is based on a small phase shift approximation. After the correction, the errors due to the partial volume effect are compensated, allowing more accurate results to be obtained. An automatic program based on the correction method is developed and implemented on a Sun workstation. The correction method is applied to the simulation and experiment results. The results show that the correction significantly reduces the errors due to the partial volume effect. We apply the correction method to the data of in vivo studies. Because the blood flow is not known, the results of correction are tested according to the common knowledge (such as cardiac output) and conservation of flow. For example, the volume of blood flowing to the brain should be equal to the volume of blood flowing from the brain. Our measurement results are very convincing.
50 years of computer simulation of the human thermoregulatory system.
Hensley, Daniel W; Mark, Andrew E; Abella, Jayvee R; Netscher, George M; Wissler, Eugene H; Diller, Kenneth R
2013-02-01
This paper presents an updated and augmented version of the Wissler human thermoregulation model that has been developed continuously over the past 50 years. The existing Fortran code is translated into C with extensive embedded commentary. A graphical user interface (GUI) has been developed in Python to facilitate convenient user designation of input and output variables and formatting of data presentation. Use of the code with the GUI is described and demonstrated. New physiological elements were added to the model to represent the hands and feet, including the unique vascular structures adapted for heat transfer associated with glabrous skin. The heat transfer function and efficacy of glabrous skin is unique within the entire body based on the capacity for a very high rate of blood perfusion and the novel capability for dynamic regulation of blood flow. The model was applied to quantify the absolute and relative contributions of glabrous skin flow to thermoregulation for varying levels of blood perfusion. The model also was used to demonstrate how the unique features of glabrous skin blood flow may be recruited to implement thermal therapeutic procedures. We have developed proprietary methods to manipulate the control of glabrous skin blood flow in conjunction with therapeutic devices and simulated the effect of these methods with the model.
A numerical study of blood flow using mixture theory
Wu, Wei-Tao; Aubry, Nadine; Massoudi, Mehrdad; Kim, Jeongho; Antaki, James F.
2014-01-01
In this paper, we consider the two dimensional flow of blood in a rectangular microfluidic channel. We use Mixture Theory to treat this problem as a two-component system: One component is the red blood cells (RBCs) modeled as a generalized Reiner–Rivlin type fluid, which considers the effects of volume fraction (hematocrit) and influence of shear rate upon viscosity. The other component, plasma, is assumed to behave as a linear viscous fluid. A CFD solver based on OpenFOAM® was developed and employed to simulate a specific problem, namely blood flow in a two dimensional micro-channel, is studied. Finally to better understand this two-component flow system and the effects of the different parameters, the equations are made dimensionless and a parametric study is performed. PMID:24791016
A numerical study of blood flow using mixture theory.
Wu, Wei-Tao; Aubry, Nadine; Massoudi, Mehrdad; Kim, Jeongho; Antaki, James F
2014-03-01
In this paper, we consider the two dimensional flow of blood in a rectangular microfluidic channel. We use Mixture Theory to treat this problem as a two-component system: One component is the red blood cells (RBCs) modeled as a generalized Reiner-Rivlin type fluid, which considers the effects of volume fraction (hematocrit) and influence of shear rate upon viscosity. The other component, plasma, is assumed to behave as a linear viscous fluid. A CFD solver based on OpenFOAM ® was developed and employed to simulate a specific problem, namely blood flow in a two dimensional micro-channel, is studied. Finally to better understand this two-component flow system and the effects of the different parameters, the equations are made dimensionless and a parametric study is performed.
[Finite Element Analysis of Intravascular Stent Based on ANSYS Software].
Shi, Gengqiang; Song, Xiaobing
2015-10-01
This paper adopted UG8.0 to bulid the stent and blood vessel models. The models were then imported into the finite element analysis software ANSYS. The simulation results of ANSYS software showed that after endothelial stent implantation, the velocity of the blood was slow and the fluctuation of velocity was small, which meant the flow was relatively stable. When blood flowed through the endothelial stent, the pressure gradually became smaller, and the range of the pressure was not wide. The endothelial shear stress basically unchanged. In general, it can be concluded that the endothelial stents have little impact on the flow of blood and can fully realize its function.
A novel approach for connecting temporal-ontologies with blood flow simulations.
Weichert, F; Mertens, C; Walczak, L; Kern-Isberner, G; Wagner, M
2013-06-01
In this paper an approach for developing a temporal domain ontology for biomedical simulations is introduced. The ideas are presented in the context of simulations of blood flow in aneurysms using the Lattice Boltzmann Method. The advantages in using ontologies are manyfold: On the one hand, ontologies having been proven to be able to provide medical special knowledge e.g., key parameters for simulations. On the other hand, based on a set of rules and the usage of a reasoner, a system for checking the plausibility as well as tracking the outcome of medical simulations can be constructed. Likewise, results of simulations including data derived from them can be stored and communicated in a way that can be understood by computers. Later on, this set of results can be analyzed. At the same time, the ontologies provide a way to exchange knowledge between researchers. Lastly, this approach can be seen as a black-box abstraction of the internals of the simulation for the biomedical researcher as well. This approach is able to provide the complete parameter sets for simulations, part of the corresponding results and part of their analysis as well as e.g., geometry and boundary conditions. These inputs can be transferred to different simulation methods for comparison. Variations on the provided parameters can be automatically used to drive these simulations. Using a rule base, unphysical inputs or outputs of the simulation can be detected and communicated to the physician in a suitable and familiar way. An example for an instantiation of the blood flow simulation ontology and exemplary rules for plausibility checking are given. Copyright © 2013 Elsevier Inc. All rights reserved.
A Computer Simulation Model of Fluid Flow Through a Channel with Constriction
2013-06-01
separation in blood flow rather than mechanical pressure. While it is very unlikely that there is a net electric charge generated by blood flow, there...gate 8 valve as measured by a mechanical flowmeter. The height of the fluid in the upper reservoir was maintained at a constant level by means of an...Gamani Karunasiri Scott Denardo THIS PAGE INTENTIONALLY LEFT BLANK i REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting
Influence of cerebral blood vessel movements on the position of perivascular synapses.
Urrecha, Miguel; Romero, Ignacio; DeFelipe, Javier; Merchán-Pérez, Angel
2017-01-01
Synaptic activity is regulated and limited by blood flow, which is controlled by blood vessel dilation and contraction. Traditionally, the study of neurovascular coupling has mainly focused on energy consumption and oxygen delivery. However, the mechanical changes that blood vessel movements induce in the surrounding tissue have not been considered. We have modeled the mechanical changes that movements of blood vessels cause in neighboring synapses. Our simulations indicate that synaptic densities increase or decrease during vascular dilation and contraction, respectively, near the blood vessel walls. This phenomenon may alter the concentration of neurotransmitters and vasoactive substances in the immediate vicinity of the vessel wall and thus may have an influence on local blood flow.
Procedural wound geometry and blood flow generation for medical training simulators
NASA Astrophysics Data System (ADS)
Aras, Rifat; Shen, Yuzhong; Li, Jiang
2012-02-01
Efficient application of wound treatment procedures is vital in both emergency room and battle zone scenes. In order to train first responders for such situations, physical casualty simulation kits, which are composed of tens of individual items, are commonly used. Similar to any other training scenarios, computer simulations can be effective means for wound treatment training purposes. For immersive and high fidelity virtual reality applications, realistic 3D models are key components. However, creation of such models is a labor intensive process. In this paper, we propose a procedural wound geometry generation technique that parameterizes key simulation inputs to establish the variability of the training scenarios without the need of labor intensive remodeling of the 3D geometry. The procedural techniques described in this work are entirely handled by the graphics processing unit (GPU) to enable interactive real-time operation of the simulation and to relieve the CPU for other computational tasks. The visible human dataset is processed and used as a volumetric texture for the internal visualization of the wound geometry. To further enhance the fidelity of the simulation, we also employ a surface flow model for blood visualization. This model is realized as a dynamic texture that is composed of a height field and a normal map and animated at each simulation step on the GPU. The procedural wound geometry and the blood flow model are applied to a thigh model and the efficiency of the technique is demonstrated in a virtual surgery scene.
Cerebral blood velocity and other cardiovascular responses to 2 days of head-down tilt
NASA Technical Reports Server (NTRS)
Frey, Mary A. B.; Mader, Thomas H.; Bagian, James P.; Charles, John B.; Meehan, Richard T.
1993-01-01
Spaceflight induces a cephalad redistribution of fluid volume and blood flow within the human body, and space motion sickness, which is a problem during the first few days of space flight, could be related to these changes in fluid status and in blood flow of the cerebrum and vestibular system. To evaluate possible changes in cerebral blood flow during simulated weightlessness, we measured blood velocity in the middle cerebral artery (MCA) along with retinal vascular diameters, intraocular pressure, impedance cardiography, and sphygmomanometry on nine men (26.2 +/- 6.6 yr) morning and evening for 2 days during continuous 10 deg head-down tilt (HDT). When subjects went from seated to head-down bed rest, their heart rate and retinal diameters decreased, and intraocular pressures increased. After 48 h of HDT, blood flow velocity in the MCA was decreased and thoracic impedance was increased, indicating less fluid in the thorax. Percent changes in blood flow velocities in the MCA after 48 h of HDT were inversely correlated with percent changes in retinal vascular diameters. Blood flow velocities in the MCA were inversely correlated (intersubject) with arterial pressures and retinal vascular diameters. Heart rate, stroke volume, cardiac output, systolic arterial pressure, and at times pulse pressure and blood flow velocities in the MCA were greater in the evening. Total peripheral resistance was higher in the morning. Although cerebral blood velocity is reduced after subjects are head down for 2 days, the inverse relationship with retinal vessel diameters, which have control analogous to that of cerebral vessels, indicates cerebral blood flow is not reduced.
Establishing the diffuse correlation spectroscopy signal relationship with blood flow.
Boas, David A; Sakadžić, Sava; Selb, Juliette; Farzam, Parisa; Franceschini, Maria Angela; Carp, Stefan A
2016-07-01
Diffuse correlation spectroscopy (DCS) measurements of blood flow rely on the sensitivity of the temporal autocorrelation function of diffusively scattered light to red blood cell (RBC) mean square displacement (MSD). For RBCs flowing with convective velocity [Formula: see text], the autocorrelation is expected to decay exponentially with [Formula: see text], where [Formula: see text] is the delay time. RBCs also experience shear-induced diffusion with a diffusion coefficient [Formula: see text] and an MSD of [Formula: see text]. Surprisingly, experimental data primarily reflect diffusive behavior. To provide quantitative estimates of the relative contributions of convective and diffusive movements, we performed Monte Carlo simulations of light scattering through tissue of varying vessel densities. We assumed laminar vessel flow profiles and accounted for shear-induced diffusion effects. In agreement with experimental data, we found that diffusive motion dominates the correlation decay for typical DCS measurement parameters. Furthermore, our model offers a quantitative relationship between the RBC diffusion coefficient and absolute tissue blood flow. We thus offer, for the first time, theoretical support for the empirically accepted ability of the DCS blood flow index ([Formula: see text]) to quantify tissue perfusion. We find [Formula: see text] to be linearly proportional to blood flow, but with a proportionality modulated by the hemoglobin concentration and the average blood vessel diameter.
An in vitro test bench reproducing coronary blood flow signals.
Chodzyński, Kamil Jerzy; Boudjeltia, Karim Zouaoui; Lalmand, Jacques; Aminian, Adel; Vanhamme, Luc; de Sousa, Daniel Ribeiro; Gremmo, Simone; Bricteux, Laurent; Renotte, Christine; Courbebaisse, Guy; Coussement, Grégory
2015-08-07
It is a known fact that blood flow pattern and more specifically the pulsatile time variation of shear stress on the vascular wall play a key role in atherogenesis. The paper presents the conception, the building and the control of a new in vitro test bench that mimics the pulsatile flows behavior based on in vivo measurements. An in vitro cardiovascular simulator is alimented with in vivo constraints upstream and provided with further post-processing analysis downstream in order to mimic the pulsatile in vivo blood flow quantities. This real-time controlled system is designed to perform real pulsatile in vivo blood flow signals to study endothelial cells' behavior under near physiological environment. The system is based on an internal model controller and a proportional-integral controller that controls a linear motor with customized piston pump, two proportional-integral controllers that control the mean flow rate and temperature of the medium. This configuration enables to mimic any resulting blood flow rate patterns between 40 and 700 ml/min. In order to feed the system with reliable periodic flow quantities in vivo measurements were performed. Data from five patients (1 female, 4 males; ages 44-63) were filtered and post-processed using the Newtonian Womersley's solution. These resulting flow signals were compared with 2D axisymmetric, numerical simulation using a Carreau non-Newtonian model to validate the approximation of a Newtonian behavior. This in vitro test bench reproduces the measured flow rate time evolution and the complexity of in vivo hemodynamic signals within the accuracy of the relative error below 5%. This post-processing method is compatible with any real complex in vivo signal and demonstrates the heterogeneity of pulsatile patterns in coronary arteries among of different patients. The comparison between analytical and numerical solution demonstrate the fair quality of the Newtonian Womersley's approximation. Therefore, Womersley's solution was used to calculate input flow rate for the in vitro test bench.
Sarifuddin; Chakravarty, S; Mandal, P K; Layek, G C
2008-01-01
An updated numerical simulation of unsteady generalized Newtonian blood flow through differently shaped distensible arterial stenoses is developed. A shear-thinning fluid modelling the deformation dependent viscosity of blood is considered for the characterization of generalized Newtonian behaviour of blood. The arterial model is treated as two-dimensional and axisymmetric with an outline of the stenosis obtained from a three-dimensional casting of a mildly stenosed artery. The full Navier-Stokes equations governing blood flow are written in the dimensionless form and the solution is accomplished by finite time-step advancement through their finite difference staggered grid representations. The marker and cell (MAC) method comprising the use of a set of marker particles moving with the fluid is used for the purpose. Results are obtained for three differently shaped stenoses - irregular, smooth and cosine curve representations. The present results do agree well with those of existing investigations in the steady state, but contrary to their conclusions the present findings demonstrate that the excess pressure drop across the cosine and the smooth stenoses is caused by neither their smoothness nor their higher degree of symmetry relative to the irregular stenosis, but is rather an effect of area cover with respect to the irregular stenosis. This effect clearly prevails throughout the entire physiological range of Reynolds numbers. Further the in-depth study in flow patterns reveals the development of flow separation zones in the diverging part of the stenosis towards the arterial wall, and they are influenced by non-Newtonian blood rheology, distensibility of the wall and flow unsteadiness in order to validate the applicability of the present model.
Shu, Fangjun; Vandenberghe, Stijn; Brackett, Jaclyn; Antaki, James F
2015-09-01
Rotodynamic blood pumps (also known as rotary or continuous flow blood pumps) are commonly evaluated in vitro under steady flow conditions. However, when these devices are used clinically as ventricular assist devices (VADs), the flow is pulsatile due to the contribution of the native heart. This study investigated the influence of this unsteady flow upon the internal hemodynamics of a centrifugal blood pump. The flow field within the median axial plane of the flow path was visualized with particle image velocimetry (PIV) using a transparent replica of the Levacor VAD. The replica was inserted in a dynamic cardiovascular simulator that synchronized the image acquisition to the cardiac cycle. As compared to steady flow, pulsatile conditions produced periodic, transient recirculation regions within the impeller and separation in the outlet diffuser. Dimensional analysis revealed that the flow characteristics could be uniquely described by the non-dimensional flow coefficient (Φ) and its time derivative ([Formula: see text]), thereby eliminating impeller speed from the experimental matrix. Four regimes within the Φ-[Formula: see text] plane were found to classify the flow patterns, well-attached or disturbed. These results and methods can be generalized to provide insights for both design and operation of rotodynamic blood pumps for safety and efficacy.
Modeling contrast agent flow in cerebral aneurysms: comparison of CFD with medical imaging
NASA Astrophysics Data System (ADS)
Rayz, Vitaliy; Vali, Alireza; Sigovan, Monica; Lawton, Michael; Saloner, David; Boussel, Loic
2016-11-01
PURPOSE: The flow in cerebral aneurysms is routinely assessed with X-ray angiography, an imaging technique based on a contrast agent injection. In addition to requiring a patient's catheterization and radiation exposure, the X-ray angiography may inaccurately estimate the flow residence time, as the injection alters the native blood flow patterns. Numerical modeling of the contrast transport based on MRI imaging, provides a non-invasive alternative for the flow diagnostics. METHODS: The flow in 3 cerebral aneurysms was measured in vivo with 4D PC-MRI, which provides time-resolved, 3D velocity field. The measured velocities were used to simulate a contrast agent transport by solving the advection-diffusion equation. In addition, the flow in the same patient-specific geometries was simulated with CFD and the velocities obtained from the Navier-Stokes solution were used to model the transport of a virtual contrast. RESULTS: Contrast filling and washout patterns obtained in simulations based on MRI-measured velocities were in agreement with those obtained using the Navier-Stokes solution. Some discrepancies were observed in comparison to the X-ray angiography data, as numerical modeling of the contrast transport is based on the native blood flow unaffected by the contrast injection. NIH HL115267.
Sarrami-Foroushani, Ali; Lassila, Toni; Gooya, Ali; Geers, Arjan J; Frangi, Alejandro F
2016-12-08
Adverse wall shear stress (WSS) patterns are known to play a key role in the localisation, formation, and progression of intracranial aneurysms (IAs). Complex region-specific and time-varying aneurysmal WSS patterns depend both on vascular morphology as well as on variable systemic flow conditions. Computational fluid dynamics (CFD) has been proposed for characterising WSS patterns in IAs; however, CFD simulations often rely on deterministic boundary conditions that are not representative of the actual variations in blood flow. We develop a data-driven statistical model of internal carotid artery (ICA) flow, which is used to generate a virtual population of waveforms used as inlet boundary conditions in CFD simulations. This allows the statistics of the resulting aneurysmal WSS distributions to be computed. It is observed that ICA waveform variations have limited influence on the time-averaged WSS (TAWSS) on the IA surface. In contrast, in regions where the flow is locally highly multidirectional, WSS directionality and harmonic content are strongly affected by the ICA flow waveform. As a consequence, we argue that the effect of blood flow variability should be explicitly considered in CFD-based IA rupture assessment to prevent confounding the conclusions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Song, Xinwei; Wood, Houston G; Olsen, Don
2004-04-01
The continuous flow ventricular assist device (VAD) is a miniature centrifugal pump, fully suspended by magnetic bearings, which is being developed for implantation in humans. The CF4 model is the first actual prototype of the final design product. The overall performances of blood flow in CF4 have been simulated using computational fluid dynamics (CFD) software: CFX, which is commercially available from ANSYS Inc. The flow regions modeled in CF4 include the inlet elbow, the five-blade impeller, the clearance gap below the impeller, and the exit volute. According to different needs from patients, a wide range of flow rates and revolutions per minute (RPM) have been studied. The flow rate-pressure curves are given. The streamlines in the flow field are drawn to detect stagnation points and vortices that could lead to thrombosis. The stress is calculated in the fluid field to estimate potential hemolysis. The stress is elevated to the decreased size of the blood flow paths through the smaller pump, but is still within the safe range. The thermal study on the pump, the blood and the surrounding tissue shows the temperature rise due to magnetoelectric heat sources and thermal dissipation is insignificant. CFD simulation proved valuable to demonstrate and to improve the performance of fluid flow in the design of a small size pump.
DOE Office of Scientific and Technical Information (OSTI.GOV)
N, Gwilliam M; J, Collins D; O, Leach M
Purpose: To assess the feasibility of accurately quantifying the concentration of MRI contrast agent (CA) in pulsatile flowing blood by measuring its T{sub 1}, as is common for the purposes of obtaining a patientspecific arterial input function (AIF). Dynamic contrast enhanced (DCE) - MRI and pharmacokinetic (PK) modelling is widely used to produce measures of vascular function but accurate measurement of the AIF undermines their accuracy. A proposed solution is to measure the T{sub 1} of blood in a large vessel using the Fram double flip angle method during the passage of a bolus of CA. This work expands onmore » previous work by assessing pulsatile flow and the changes in T{sub 1} seen with a CA bolus. Methods: A phantom was developed which used a physiological pump to pass fluid of a known T{sub 1} (812ms) through the centre of a head coil of a clinical 1.5T MRI scanner. Measurements were made using high temporal resolution sequences suitable for DCE-MRI and were used to validate a virtual phantom that simulated the expected errors due to pulsatile flow and bolus of CA concentration changes typically found in patients. Results: : Measured and virtual results showed similar trends, although there were differences that may be attributed to the virtual phantom not accurately simulating the spin history of the fluid before entering the imaging volume. The relationship between T{sub 1} measurement and flow speed was non-linear. T{sub 1} measurement is compromised by new spins flowing into the imaging volume, not being subject to enough excitations to have reached steady-state. The virtual phantom demonstrated a range of recorded T{sub 1} for various simulated T{sub 1} / flow rates. Conclusion: T{sub 1} measurement of flowing blood using standard DCE-MRI sequences is very challenging. Measurement error is non-linear with relation to instantaneous flow speed. Optimising sequence parameters and lowering baseline T{sub 1} of blood should be considered.« less
NASA Astrophysics Data System (ADS)
Roth, Christian J.; Haeussner, Eva; Ruebelmann, Tanja; Koch, Franz V.; Schmitz, Christoph; Frank, Hans-Georg; Wall, Wolfgang A.
2017-01-01
Ischemic placental disease is a concept that links intrauterine growth retardation (IUGR) and preeclampsia (PE) back to insufficient remodeling of uterine spiral arteries. The rheological consequences of insufficient remodeling of uterine spiral arteries were hypothesized to mediate the considerably later manifestation of obstetric disease. However, the micro-rheology in the intervillous space (IVS) cannot be examined clinically and rheological animal models of the human IVS do not exist. Thus, an in silico approach was implemented to provide in vivo inaccessible data. The morphology of a spiral artery and the inflow region of the IVS were three-dimensionally reconstructed to provide a morphological stage for the simulations. Advanced high-end supercomputing resources were used to provide blood flow simulations at high spatial resolution. Our simulations revealed turbulent blood flow (high-velocity jets and vortices) combined with elevated blood pressure in the IVS and increased wall shear stress at the villous surface in conjunction with insufficient spiral artery remodeling only. Post-hoc histological analysis of uterine veins showed evidence of increased trophoblast shedding in an IUGR placenta. Our data support that rheological alteration in the IVS is a relevant mechanism linking ischemic placental disease to altered structural integrity and function of the placenta.
A microprocessor-controlled tracheal insufflation-assisted total liquid ventilation system.
Parker, James Courtney; Sakla, Adel; Donovan, Francis M; Beam, David; Chekuri, Annu; Al-Khatib, Mohammad; Hamm, Charles R; Eyal, Fabien G
2009-09-01
A prototype time cycled, constant volume, closed circuit perfluorocarbon (PFC) total liquid ventilator system is described. The system utilizes microcontroller-driven display and master control boards, gear motor pumps, and three-way solenoid valves to direct flow. A constant tidal volume and functional residual capacity (FRC) are maintained with feedback control using end-expiratory and end-inspiratory stop-flow pressures. The system can also provide a unique continuous perfusion (bias flow, tracheal insufflation) through one lumen of a double-lumen endotracheal catheter to increase washout of dead space liquid. FRC and arterial blood gases were maintained during ventilation with Rimar 101 PFC over 2-3 h in normal piglets and piglets with simulated pulmonary edema induced by instillation of albumin solution. Addition of tracheal insufflation flow significantly improved the blood gases and enhanced clearance of instilled albumin solution during simulated edema.
Coupling LAMMPS with Lattice Boltzmann fluid solver: theory, implementation, and applications
NASA Astrophysics Data System (ADS)
Tan, Jifu; Sinno, Talid; Diamond, Scott
2016-11-01
Studying of fluid flow coupled with solid has many applications in biological and engineering problems, e.g., blood cell transport, particulate flow, drug delivery. We present a partitioned approach to solve the coupled Multiphysics problem. The fluid motion is solved by the Lattice Boltzmann method, while the solid displacement and deformation is simulated by Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS). The coupling is achieved through the immersed boundary method so that the expensive remeshing step is eliminated. The code can model both rigid and deformable solids. The code also shows very good scaling results. It was validated with classic problems such as migration of rigid particles, ellipsoid particle's orbit in shear flow. Examples of the applications in blood flow, drug delivery, platelet adhesion and rupture are also given in the paper. NIH.
Time-dependent particle migration and margination in the pressure-driven channel flow of blood
NASA Astrophysics Data System (ADS)
Qi, Qin M.; Shaqfeh, Eric S. G.
2018-03-01
We present a theory to describe the time evolution of the red blood cell (RBC) and platelet concentration distributions in pressure-driven flow through a straight channel. This model is based on our previous theory for the steady-state distributions [Qi and Shaqfeh, Phys. Rev. Fluids 2, 093102 (2017), 10.1103/PhysRevFluids.2.093102] and captures the flow-induced nonuniformity of the concentrations of RBCs and platelets in the cross-flow direction. Starting with a uniform concentration, RBCs migrate away from the channel walls due to a shear-induced lift force and eventually reach steady state due to shear-induced diffusion, i.e., hydrodynamic "collisions" with other RBCs. On the other hand, platelets exit the cell-laden region due to RBC-platelet interactions and enter the cell-free layer, resulting in margination. To validate the theory, we also perform boundary integral simulations of blood flow in microchannels and directly compare various measureables between theory and simulation. The timescales associated with RBC migration and platelet margination are discussed in the context of the simulation and theory, and their importance in the function of microfluidic devices as well as the vascular network are elucidated. Due to the varying shear rate in pressure-driven flow and the wall-induced RBC lift, we report a separation of timescales for the transport in the near-wall region and in the bulk region. We also relate the transient problem to the axial variation of migration and margination, and we demonstrate how the relevant timescales can be used to predict corresponding entrance lengths. Our theory can serve as a fast and convenient alternative to large-scale simulations of these phenomena.
A Simulation Tool for Dynamic Contrast Enhanced MRI
Mauconduit, Franck; Christen, Thomas; Barbier, Emmanuel Luc
2013-01-01
The quantification of bolus-tracking MRI techniques remains challenging. The acquisition usually relies on one contrast and the analysis on a simplified model of the various phenomena that arise within a voxel, leading to inaccurate perfusion estimates. To evaluate how simplifications in the interstitial model impact perfusion estimates, we propose a numerical tool to simulate the MR signal provided by a dynamic contrast enhanced (DCE) MRI experiment. Our model encompasses the intrinsic and relaxations, the magnetic field perturbations induced by susceptibility interfaces (vessels and cells), the diffusion of the water protons, the blood flow, the permeability of the vessel wall to the the contrast agent (CA) and the constrained diffusion of the CA within the voxel. The blood compartment is modeled as a uniform compartment. The different blocks of the simulation are validated and compared to classical models. The impact of the CA diffusivity on the permeability and blood volume estimates is evaluated. Simulations demonstrate that the CA diffusivity slightly impacts the permeability estimates ( for classical blood flow and CA diffusion). The effect of long echo times is investigated. Simulations show that DCE-MRI performed with an echo time may already lead to significant underestimation of the blood volume (up to 30% lower for brain tumor permeability values). The potential and the versatility of the proposed implementation are evaluated by running the simulation with realistic vascular geometry obtained from two photons microscopy and with impermeable cells in the extravascular environment. In conclusion, the proposed simulation tool describes DCE-MRI experiments and may be used to evaluate and optimize acquisition and processing strategies. PMID:23516414
Localization of Short-Chain Polyphosphate Enhances its Ability to Clot Flowing Blood Plasma
NASA Astrophysics Data System (ADS)
Yeon, Ju Hun; Mazinani, Nima; Schlappi, Travis S.; Chan, Karen Y. T.; Baylis, James R.; Smith, Stephanie A.; Donovan, Alexander J.; Kudela, Damien; Stucky, Galen D.; Liu, Ying; Morrissey, James H.; Kastrup, Christian J.
2017-02-01
Short-chain polyphosphate (polyP) is released from platelets upon platelet activation, but it is not clear if it contributes to thrombosis. PolyP has increased propensity to clot blood with increased polymer length and when localized onto particles, but it is unknown whether spatial localization of short-chain polyP can accelerate clotting of flowing blood. Here, numerical simulations predicted the effect of localization of polyP on clotting under flow, and this was tested in vitro using microfluidics. Synthetic polyP was more effective at triggering clotting of flowing blood plasma when localized on a surface than when solubilized in solution or when localized as nanoparticles, accelerating clotting at 10-200 fold lower concentrations, particularly at low to sub-physiological shear rates typical of where thrombosis occurs in large veins or valves. Thus, sub-micromolar concentrations of short-chain polyP can accelerate clotting of flowing blood plasma under flow at low to sub-physiological shear rates. However, a physiological mechanism for the localization of polyP to platelet or vascular surfaces remains unknown.
Are Non-Newtonian Effects Important in Hemodynamic Simulations of Patients With Autogenous Fistula?
Javid Mahmoudzadeh Akherat, S. M.; Cassel, Kevin; Boghosian, Michael; Dhar, Promila; Hammes, Mary
2017-01-01
Given the current emphasis on accurate computational fluid dynamics (CFD) modeling of cardiovascular flows, which incorporates realistic blood vessel geometries and cardiac waveforms, it is necessary to revisit the conventional wisdom regarding the influences of non-Newtonian effects. In this study, patient-specific reconstructed 3D geometries, whole blood viscosity data, and venous pulses postdialysis access surgery are used as the basis for the hemodynamic simulations of renal failure patients with native fistula access. Rheological analysis of the viscometry data initially suggested that the correct choice of constitutive relations to capture the non-Newtonian behavior of blood is important because the end-stage renal disease (ESRD) patient cohort under observation experience drastic variations in hematocrit (Hct) levels and whole blood viscosity throughout the hemodialysis treatment. For this purpose, various constitutive relations have been tested and implemented in CFD practice, namely Quemada and Casson. Because of the specific interest in neointimal hyperplasia and the onset of stenosis in this study, particular attention is placed on differences in nonhomeostatic wall shear stress (WSS) as that drives the venous adaptation process that leads to venous geometric evolution over time in ESRD patients. Surprisingly, the CFD results exhibit no major differences in the flow field and general flow characteristics of a non-Newtonian simulation and a corresponding identical Newtonian counterpart. It is found that the vein's geometric features and the dialysis-induced flow rate have far greater influence on the WSS distribution within the numerical domain. PMID:28249082
Are Non-Newtonian Effects Important in Hemodynamic Simulations of Patients With Autogenous Fistula?
Javid Mahmoudzadeh Akherat, S M; Cassel, Kevin; Boghosian, Michael; Dhar, Promila; Hammes, Mary
2017-04-01
Given the current emphasis on accurate computational fluid dynamics (CFD) modeling of cardiovascular flows, which incorporates realistic blood vessel geometries and cardiac waveforms, it is necessary to revisit the conventional wisdom regarding the influences of non-Newtonian effects. In this study, patient-specific reconstructed 3D geometries, whole blood viscosity data, and venous pulses postdialysis access surgery are used as the basis for the hemodynamic simulations of renal failure patients with native fistula access. Rheological analysis of the viscometry data initially suggested that the correct choice of constitutive relations to capture the non-Newtonian behavior of blood is important because the end-stage renal disease (ESRD) patient cohort under observation experience drastic variations in hematocrit (Hct) levels and whole blood viscosity throughout the hemodialysis treatment. For this purpose, various constitutive relations have been tested and implemented in CFD practice, namely Quemada and Casson. Because of the specific interest in neointimal hyperplasia and the onset of stenosis in this study, particular attention is placed on differences in nonhomeostatic wall shear stress (WSS) as that drives the venous adaptation process that leads to venous geometric evolution over time in ESRD patients. Surprisingly, the CFD results exhibit no major differences in the flow field and general flow characteristics of a non-Newtonian simulation and a corresponding identical Newtonian counterpart. It is found that the vein's geometric features and the dialysis-induced flow rate have far greater influence on the WSS distribution within the numerical domain.
Immersive volume rendering of blood vessels
NASA Astrophysics Data System (ADS)
Long, Gregory; Kim, Han Suk; Marsden, Alison; Bazilevs, Yuri; Schulze, Jürgen P.
2012-03-01
In this paper, we present a novel method of visualizing flow in blood vessels. Our approach reads unstructured tetrahedral data, resamples it, and uses slice based 3D texture volume rendering. Due to the sparse structure of blood vessels, we utilize an octree to efficiently store the resampled data by discarding empty regions of the volume. We use animation to convey time series data, wireframe surface to give structure, and utilize the StarCAVE, a 3D virtual reality environment, to add a fully immersive element to the visualization. Our tool has great value in interdisciplinary work, helping scientists collaborate with clinicians, by improving the understanding of blood flow simulations. Full immersion in the flow field allows for a more intuitive understanding of the flow phenomena, and can be a great help to medical experts for treatment planning.
Effect of antiorthostatic bed rest on hepatic blood flow in man.
Putcha, L; Cintron, N M; Vanderploeg, J M; Chen, Y; Habis, J; Adler, J
1988-04-01
Physiological changes that occur during exposure to weightlessness may induce alterations in blood flow to the liver. Estimation of hepatic blood flow (HBF) using ground-based weightlessness simulation models may provide insight into functional changes of the liver in crewmembers during flight. In the present study HBF, indirectly estimated by indocyanine green (ICG) clearance, is compared in 10 subjects during the normal ambulatory condition and antiorthostatic (-6 degrees) bed rest. Plasma clearance of ICG was determined following intravenous administration of a 0.5-mg.kg-1 dose of ICG to each subject on two separate occasions, once after being seated for 1 h and once after 24 h of head-down bed rest. After 24 h of head-down bed rest, hepatic blood flow did not change significantly from the respective control value.
Mounts, W M; Liebman, M N
1997-07-01
We have developed a method for representing biological pathways and simulating their behavior based on the use of stochastic activity networks (SANs). SANs, an extension of the original Petri net, have been used traditionally to model flow systems including data-communications networks and manufacturing processes. We apply the methodology to the blood coagulation cascade, a biological flow system, and present the representation method as well as results of simulation studies based on published experimental data. In addition to describing the dynamic model, we also present the results of its utilization to perform simulations of clinical states including hemophilia's A and B as well as sensitivity analysis of individual factors and their impact on thrombin production.
Enhancing 4D PC-MRI in an aortic phantom considering numerical simulations
NASA Astrophysics Data System (ADS)
Kratzke, Jonas; Schoch, Nicolai; Weis, Christian; Müller-Eschner, Matthias; Speidel, Stefanie; Farag, Mina; Beller, Carsten J.; Heuveline, Vincent
2015-03-01
To date, cardiovascular surgery enables the treatment of a wide range of aortic pathologies. One of the current challenges in this field is given by the detection of high-risk patients for adverse aortic events, who should be treated electively. Reliable diagnostic parameters, which indicate the urge of treatment, have to be determined. Functional imaging by means of 4D phase contrast-magnetic resonance imaging (PC-MRI) enables the time-resolved measurement of blood flow velocity in 3D. Applied to aortic phantoms, three dimensional blood flow properties and their relation to adverse dynamics can be investigated in vitro. Emerging "in silico" methods of numerical simulation can supplement these measurements in computing additional information on crucial parameters. We propose a framework that complements 4D PC-MRI imaging by means of numerical simulation based on the Finite Element Method (FEM). The framework is developed on the basis of a prototypic aortic phantom and validated by 4D PC-MRI measurements of the phantom. Based on physical principles of biomechanics, the derived simulation depicts aortic blood flow properties and characteristics. The framework might help identifying factors that induce aortic pathologies such as aortic dilatation or aortic dissection. Alarming thresholds of parameters such as wall shear stress distribution can be evaluated. The combined techniques of 4D PC-MRI and numerical simulation can be used as complementary tools for risk-stratification of aortic pathology.
Computer Simulations of Coronary Blood Flow Through a Constriction
2014-03-01
interventional procedures (e.g., stent deployment). Building off previous models that have been partially validated with experimental data, this thesis... stent deployment). Building off previous models that have been partially validated with experimental data, this thesis continues to develop the...the artery and increase blood flow. Generally a stent , or a mesh wire tube, is permanently inserted in order to scaffold open the artery wall
Ghata, Narugopal; Aldredge, Ralph C.; Bec, Julien; Marcu, Laura
2015-01-01
SUMMARY Optical techniques including fluorescence lifetime spectroscopy have demonstrated potential as a tool for study and diagnosis of arterial vessel pathologies. However, their application in the intravascular diagnostic procedures has been hampered by the presence of blood hemoglobin that affects the light delivery to and the collection from the vessel wall. We report a computational fluid dynamics model that allows for the optimization of blood flushing parameters in a manner that minimizes the amount of saline needed to clear the optical field of view and reduces any adverse effects caused by the external saline jet. A 3D turbulence (k−ω) model was employed for Eulerian–Eulerian two-phase flow to simulate the flow inside and around a side-viewing fiber-optic catheter. Current analysis demonstrates the effects of various parameters including infusion and blood flow rates, vessel diameters, and pulsatile nature of blood flow on the flow structure around the catheter tip. The results from this study can be utilized in determining the optimal flushing rate for given vessel diameter, blood flow rate, and maximum wall shear stress that the vessel wall can sustain and subsequently in optimizing the design parameters of optical-based intravascular catheters. PMID:24953876
Soltani, M.; Chen, P.
2013-01-01
Modeling of interstitial fluid flow involves processes such as fluid diffusion, convective transport in extracellular matrix, and extravasation from blood vessels. To date, majority of microvascular flow modeling has been done at different levels and scales mostly on simple tumor shapes with their capillaries. However, with our proposed numerical model, more complex and realistic tumor shapes and capillary networks can be studied. Both blood flow through a capillary network, which is induced by a solid tumor, and fluid flow in tumor’s surrounding tissue are formulated. First, governing equations of angiogenesis are implemented to specify the different domains for the network and interstitium. Then, governing equations for flow modeling are introduced for different domains. The conservation laws for mass and momentum (including continuity equation, Darcy’s law for tissue, and simplified Navier–Stokes equation for blood flow through capillaries) are used for simulating interstitial and intravascular flows and Starling’s law is used for closing this system of equations and coupling the intravascular and extravascular flows. This is the first study of flow modeling in solid tumors to naturalistically couple intravascular and extravascular flow through a network. This network is generated by sprouting angiogenesis and consisting of one parent vessel connected to the network while taking into account the non-continuous behavior of blood, adaptability of capillary diameter to hemodynamics and metabolic stimuli, non-Newtonian blood flow, and phase separation of blood flow in capillary bifurcation. The incorporation of the outlined components beyond the previous models provides a more realistic prediction of interstitial fluid flow pattern in solid tumors and surrounding tissues. Results predict higher interstitial pressure, almost two times, for realistic model compared to the simplified model. PMID:23840579
Pulsatile Flow and Gas Transport of Blood over an Array of Cylinders
NASA Astrophysics Data System (ADS)
Chan, Kit Yan
2005-11-01
In the artificial lung, blood passes through an array of micro-fibers and the gas transfer is strongly dependent on the flow field. The blood flow is unsteady and pulsatile. We have numerically simulated pulsatile flow and gas transfer of blood (modeled as a Casson fluid) over arrays of cylindrical micro-fibers. Oxygen and carbon dioxide are assumed to be in local equilibrium with hemoglobin in blood; and the carbon dioxide facilitated oxygen transport is incorporated into the model by allowing the coupling of carbon dioxide partial pressure and oxygen saturation. The pulsatile flow inputs considered are the sinusoidal and the cardiac waveforms. The squared and staggered arrays of arrangement of the cylinders are considered in this study. Gas transport can be enhanced by: increasing the oscillation frequency; increasing the Reynolds number; increasing the oscillation amplitude; decreasing the void fraction; the use of the cardiac pulsatile input. The overall gas transport is greatly enhanced by the presence of hemoglobin in blood even though the non-Newtonian effect of blood tends to decrease the size and strength of vortices. The pressure drop is also presented as it is an important design parameter confronting the heart.
Yulong Guan; Xiaowei Su; McCoach, Robert; Kunselman, Allen; El-Banayosy, Aly; Undar, Akif
2010-03-01
Centrifugal blood pumps have been widely adopted in conventional adult cardiopulmonary bypass and circulatory assist procedures. Different brands of centrifugal blood pumps incorporate distinct designs which affect pump performance. In this adult extracorporeal life support (ECLS) model, the performances of two brands of centrifugal blood pump (RotaFlow blood pump and CentriMag blood pump) were compared. The simulated adult ECLS circuit used in this study included a centrifugal blood pump, Quadrox D membrane oxygenator and Sorin adult ECLS tubing package. A Sorin Cardiovascular(R) VVR(R) 4000i venous reservoir (Sorin S.p.A., Milan, Italy) with a Hoffman clamp served as a pseudo-patient. The circuit was primed with 900ml heparinized human packed red blood cells and 300ml lactated Ringer's solution (total volume 1200 ml, corrected hematocrit 40%). Trials were conducted at normothermia (36 degrees C). Performance, including circuit pressure and flow rate, was measured for every setting analyzed. The shut-off pressure of the RotaFlow was higher than the CentriMag at all measurement points given the same rotation speed (p < 0.0001). The shut-off pressure differential between the two centrifugal blood pumps was significant and increased given higher rotation speeds (p < 0.0001). The RotaFlow blood pump has higher maximal flow rate (9.08 +/- 0.01L/min) compared with the CentriMag blood pump (8.37 +/- 0.02L/min) (p < 0.0001). The blood flow rate differential between the two pumps when measured at the same revolutions per minute (RPM) ranged from 1.64L/min to 1.73L/min. The results obtained in this experiment demonstrate that the RotaFlow has a higher shut-off pressure (less retrograde flow) and maximal blood flow rate than the CentriMag blood pump. Findings support the conclusion that the RotaFlow disposable pump head has a better mechanical performance than the CentriMag. In addition, the RotaFlow disposable pump is 20-30 times less expensive than the CentriMag.
Influence of cerebral blood vessel movements on the position of perivascular synapses
DeFelipe, Javier
2017-01-01
Synaptic activity is regulated and limited by blood flow, which is controlled by blood vessel dilation and contraction. Traditionally, the study of neurovascular coupling has mainly focused on energy consumption and oxygen delivery. However, the mechanical changes that blood vessel movements induce in the surrounding tissue have not been considered. We have modeled the mechanical changes that movements of blood vessels cause in neighboring synapses. Our simulations indicate that synaptic densities increase or decrease during vascular dilation and contraction, respectively, near the blood vessel walls. This phenomenon may alter the concentration of neurotransmitters and vasoactive substances in the immediate vicinity of the vessel wall and thus may have an influence on local blood flow. PMID:28199396
Numerical simulation of particle transport and deposition in the pulmonary vasculature.
Sohrabi, Salman; Zheng, Junda; Finol, Ender A; Liu, Yaling
2014-12-01
To quantify the transport and adhesion of drug particles in a complex vascular environment, computational fluid particle dynamics (CFPD) simulations of blood flow and drug particulate were conducted in three different geometries representing the human lung vasculature for steady and pulsatile flow conditions. A fully developed flow profile was assumed as the inlet velocity, and a lumped mathematical model was used for the calculation of the outlet pressure boundary condition. A receptor-ligand model was used to simulate the particle binding probability. The results indicate that bigger particles have lower deposition fraction due to less chance of successful binding. Realistic unsteady flow significantly accelerates the binding activity over a wide range of particle sizes and also improves the particle deposition fraction in bifurcation regions when comparing with steady flow condition. Furthermore, surface imperfections and geometrical complexity coupled with the pulsatility effect can enhance fluid mixing and accordingly particle binding efficiency. The particle binding density at bifurcation regions increases with generation order and drug carriers are washed away faster in steady flow. Thus, when studying drug delivery mechanism in vitro and in vivo, it is important to take into account blood flow pulsatility in realistic geometry. Moreover, tissues close to bifurcations are more susceptible to deterioration due to higher uptake.
Computational modeling of the structure-function relationship in human placental terminal villi.
Plitman Mayo, R; Olsthoorn, J; Charnock-Jones, D S; Burton, G J; Oyen, M L
2016-12-08
Placental oxygen transport takes place at the final branches of the villous tree and is dictated by the relative arrangement of the maternal and fetal circulations. Modeling techniques have failed to accurately assess the structure-function relationship in the terminal villi due to the geometrical complexity. Three-dimensional blood flow and oxygen transport was modeled in four terminal villi reconstructed from confocal image stacks. The blood flow was analyzed along the center lines of capillary segments and the effect of the variability in capillary diameter, tortuosity and branching was investigated. Additionally, a validation study was performed to corroborate the simulation results. The results show how capillary variations impact motion of the fetal blood, and how their bends and dilatations can decelerate the flow by up to 80%. Vortical flow is also demonstrated not to develop in the fetal capillaries. The different geometries are shown to dictate the transport of gases with differences of over 100% in the oxygen flux between samples. Capillary variations are key for efficient oxygen uptake by the fetus; they allow the blood to decelerate where the villous membrane is thinnest allowing for a better oxygenation, but also by reducing the vessel diameter they carry the oxygenated blood away fast. The methodology employed herein could become a platform to simulate complicated in-vivo and in-vitro scenarios of pregnancy complications. Copyright © 2016 Elsevier Ltd. All rights reserved.
Espino, Daniel M; Shepherd, Duncan E T; Hukins, David W L
2014-01-01
A transient multi-physics model of the mitral heart valve has been developed, which allows simultaneous calculation of fluid flow and structural deformation. A recently developed contact method has been applied to enable simulation of systole (the stage when blood pressure is elevated within the heart to pump blood to the body). The geometry was simplified to represent the mitral valve within the heart walls in two dimensions. Only the mitral valve undergoes deformation. A moving arbitrary Lagrange-Euler mesh is used to allow true fluid-structure interaction (FSI). The FSI model requires blood flow to induce valve closure by inducing strains in the region of 10-20%. Model predictions were found to be consistent with existing literature and will undergo further development.
Passino, Claudio; Cencetti, Simone; Spadacini, Giammario; Quintana, Robert; Parker, Daryl; Robergs, Robert; Appenzeller, Otto; Bernardi, Luciano
2007-09-01
To assess the effects of acute exposure to simulated high altitude on baroreflex control of mean cerebral blood flow velocity (MCFV). We compared beat-to-beat changes in RR interval, arterial blood pressure, mean MCFV (by transcranial Doppler velocimetry in the middle cerebral artery), end-tidal CO2, oxygen saturation and respiration in 19 healthy subjects at baseline (Albuquerque, 1779 m), after acute exposure to simulated high altitude in a hypobaric chamber (barometric pressure as at 5000 m) and during oxygen administration (to achieve 100% oxygen saturation) at the same barometric pressure (HOX). Baroreflex control on each signal was assessed by univariate and bivariate power spectral analysis performed on time series obtained during controlled (15 breaths/min) breathing, before and during baroreflex modulation induced by 0.1-Hz sinusoidal neck suction. At baseline, neck suction was able to induce a clear increase in low-frequency power in MCFV (P<0.001) as well as in RR and blood pressure. At high altitude, MCFV, as well as RR and blood pressure, was still able to respond to neck suction (all P<0.001), compared to controlled breathing alone, despite marked decreases in end-tidal CO2 and oxygen saturation at high altitude. A similar response was obtained at HOX. Phase delay analysis excluded a passive transmission of low-frequency oscillations from arterial pressure to cerebral circulation. During acute exposure to high altitude, cerebral blood flow is still modulated by the autonomic nervous system through the baroreflex, whose sensitivity is not affected by changes in CO2 and oxygen saturation levels.
NASA Astrophysics Data System (ADS)
Cheema, Taqi Ahmad; Park, Cheol Woo
2013-08-01
Stenosis is the drastic reduction of blood vessel diameter because of cholesterol accumulation in the vessel wall. In addition to the changes in blood flow characteristics, significant changes occur in the mechanical behavior of a stenotic blood vessel. We conducted a 3-D study of such behavior in micro-scale blood vessels by considering the fluid structure interaction between blood flow and vessel wall structure. The simulation consisted of one-way coupled analysis of blood flow and the resulting structural deformation without a moving mesh. A commercial code based on a finite element method with a hyperelastic material model (Neo-Hookean) of the wall was used to calculate wall deformation. Three different cases of stenosis severity and aspect ratios with and without muscles around the blood vessel were considered. The results showed that the wall deformation in a stenotic channel is directly related to stenosis severity and aspect ratio. The presence of muscles reduces the degree of deformation even in very severe stenosis.
Spilker, Ryan L; Feinstein, Jeffrey A; Parker, David W; Reddy, V Mohan; Taylor, Charles A
2007-04-01
Patient-specific computational models could aid in planning interventions to relieve pulmonary arterial stenoses common in many forms of congenital heart disease. We describe a new approach to simulate blood flow in subject-specific models of the pulmonary arteries that consists of a numerical model of the proximal pulmonary arteries created from three-dimensional medical imaging data with terminal impedance boundary conditions derived from linear wave propagation theory applied to morphometric models of distal vessels. A tuning method, employing numerical solution methods for nonlinear systems of equations, was developed to modify the distal vasculature to match measured pressure and flow distribution data. One-dimensional blood flow equations were solved with a finite element method in image-based pulmonary arterial models using prescribed inlet flow and morphometry-based impedance at the outlets. Application of these methods in a pilot study of the effect of removal of unilateral pulmonary arterial stenosis induced in a pig showed good agreement with experimental measurements for flow redistribution and main pulmonary arterial pressure. Next, these methods were applied to a patient with repaired tetralogy of Fallot and predicted insignificant hemodynamic improvement with relief of the stenosis. This method of coupling image-based and morphometry-based models could enable increased fidelity in pulmonary hemodynamic simulation.
Resolving Low-Density Lipoprotein (LDL) on the Human Aortic Surface Using Large Eddy Simulation
NASA Astrophysics Data System (ADS)
Lantz, Jonas; Karlsson, Matts
2011-11-01
The prediction and understanding of the genesis of vascular diseases is one of the grand challenges in biofluid engineering. The progression of atherosclerosis is correlated to the build- up of LDL on the arterial surface, which is affected by the blood flow. A multi-physics simulation of LDL mass transport in the blood and through the arterial wall of a subject specific human aorta was performed, employing a LES turbulence model to resolve the turbulent flow. Geometry and velocity measurements from magnetic resonance imaging (MRI) were incorporated to assure physiological relevance of the simulation. Due to the turbulent nature of the flow, consecutive cardiac cycles are not identical, neither in vivo nor in the simulations. A phase average based on a large number of cardiac cycles is therefore computed, which is the proper way to get reliable statistical results from a LES simulation. In total, 50 cardiac cycles were simulated, yielding over 2.5 Billion data points to be post-processed. An inverse relation between LDL and WSS was found; LDL accumulated on locations where WSS was low and vice-versa. Large temporal differences were present, with the concentration level decreasing during systolic acceleration and increasing during the deceleration phase. This method makes it possible to resolve the localization of LDL accumulation in the normal human aorta with its complex transitional flow.
Plourde, Brian D; Vallez, Lauren J; Sun, Biyuan; Nelson-Cheeseman, Brittany B; Abraham, John P; Staniloae, Cezar S
2016-09-01
Simulations were made of the pressure and velocity fields throughout an artery before and after removal of plaque using orbital atherectomy plus adjunctive balloon angioplasty or stenting. The calculations were carried out with an unsteady computational fluid dynamic solver that allows the fluid to naturally transition to turbulence. The results of the atherectomy procedure leads to an increased flow through the stenotic zone with a coincident decrease in pressure drop across the stenosis. The measured effect of atherectomy and adjunctive treatment showed decrease the systolic pressure drop by a factor of 2.3. Waveforms obtained from a measurements were input into a numerical simulation of blood flow through geometry obtained from medical imaging. From the numerical simulations, a detailed investigation of the sources of pressure loss was obtained. It is found that the major sources of pressure drop are related to the acceleration of blood through heavily occluded cross sections and the imperfect flow recovery downstream. This finding suggests that targeting only the most occluded parts of a stenosis would benefit the hemodynamics. The calculated change in systolic pressure drop through the lesion was a factor of 2.4, in excellent agreement with the measured improvement. The systolic and cardiac-cycle-average pressure results were compared with measurements made in a multi-patient study treated with orbital atherectomy and adjunctive treatment. The agreements between the measured and calculated systolic pressure drop before and after the treatment were within 3%. This excellent agreement adds further confidence to the results. This research demonstrates the use of orbital atherectomy to facilitate balloon expansion to restore blood flow and how pressure measurements can be utilized to optimize revascularization of occluded peripheral vessels.
Numerical investigation of the effects of channel geometry on platelet activation and blood damage.
Wu, Jingshu; Yun, B Min; Fallon, Anna M; Hanson, Stephen R; Aidun, Cyrus K; Yoganathan, Ajit P
2011-02-01
Thromboembolic complications in Bileaflet mechanical heart valves (BMHVs) are believed to be due to the combination of high shear stresses and large recirculation regions. Relating blood damage to design geometry is therefore essential to ultimately optimize the design of BMHVs. The aim of this research is to quantitatively study the effect of 3D channel geometry on shear-induced platelet activation and aggregation, and to choose an appropriate blood damage index (BDI) model for future numerical simulations. The simulations in this study use a recently developed lattice-Boltzmann with external boundary force (LBM-EBF) method [Wu, J., and C. K. Aidun. Int. J. Numer. Method Fluids 62(7):765-783, 2010; Wu, J., and C. K. Aidun. Int. J. Multiphase flow 36:202-209, 2010]. The channel geometries and flow conditions are re-constructed from recent experiments by Fallon [The Development of a Novel in vitro Flow System to Evaluate Platelet Activation and Procoagulant Potential Induced by Bileaflet Mechanical Heart Valve Leakage Jets in School of Chemical and Biomolecular Engineering. Atlanta: Georgia Institute of Technology] and Fallon et al. [Ann. Biomed. Eng. 36(1):1]. The fluid flow is computed on a fixed regular 'lattice' using the LBM, and each platelet is mapped onto a Lagrangian frame moving continuously throughout the fluid domain. The two-way fluid-solid interactions are determined by the EBF method by enforcing a no-slip condition on the platelet surface. The motion and orientation of the platelet are obtained from Newtonian dynamics equations. The numerical results show that sharp corners or sudden shape transitions will increase blood damage. Fallon's experimental results were used as a basis for choosing the appropriate BDI model for use in future computational simulations of flow through BMHVs.
Numerical Investigation of the Influence of Blade Radial Gap Flow on Axial Blood Pump Performance.
Liu, Guang-Mao; Jin, Dong-Hai; Zhou, Jian-Ye; Zhang, Yan; Chen, Hai-Bo; Sun, Han-Song; Hu, Sheng-Shou; Gui, Xing-Min
2018-01-05
The gaps between the blades and the shroud (or hub) of an axial blood pump affect the hydraulics, efficiency, and hemolytic performance. These gaps are critical parameters when a blood pump is manufactured. To evaluate the influence of blade gaps on axial blood pump performance, the flow characteristics inside an axial blood pump with different radial blade gaps were numerically simulated and analyzed with special attention paid to the hydraulic characteristics, gap flow, hydraulic efficiency, and hemolysis index (HI). In vitro hydraulic testing and particle image velocimetry testing were conducted to verify the numerical results. The simulation results showed that the efficiency and pressure rise decreased when the gap increased. The efficiency of the axial blood pump at design point decreased from 37.1% to 27.1% and the pressure rise decreased from 127.4 to 71.2 mm Hg when the gap increased from 0.1 to 0.3 mm. Return and vortex flows were present in the outlet guide vane channels when the gap was larger than 0.2 mm. The HI of the blood pump with a 0.1 mm gap was 1.5-fold greater than that with a 0.3 mm gap. The results illustrated poor hydraulic characteristics when the gap was larger than 0.15 mm and rapidly deteriorated hemolysis when the gap was larger than 0.1 mm. The numerical and experimental results demonstrated that the pressure rise, pump efficiency, and scalar shear stress decreased when the gap increased. The HI did not strictly decrease with gap increases. The preliminary results encourage the improvement of axial blood pump designs.
NASA Astrophysics Data System (ADS)
Li, Xuejin; Du, E.; Li, Zhen; Tang, Yu-Hang; Lu, Lu; Dao, Ming; Karniadakis, George
2015-11-01
Sickle cell anemia is an inherited blood disorder exhibiting heterogeneous morphology and abnormal dynamics under hypoxic conditions. We developed a time-dependent cell model that is able to simulate the dynamic processes of repeated sickling and unsickling of red blood cells (RBCs) under physiological conditions. By using the kinetic cell model with parameters derived from patient-specific data, we present a mesoscopic computational study of the dynamic behavior of individual sickle RBCs flowing in a microfluidic channel with multiple microgates. We investigate how individual sickle RBCs behave differently from healthy ones in channel flow, and analyze the alteration of cellular behavior and response to single-cell capillary obstruction induced by cell rheologic rigidification and morphological change due to cell sickling under hypoxic conditions. We also simulate the flow dynamics of sickle RBCs treated with hydroxyurea (HU) and quantify the relative enhancement of hemodynamic performance of HU. This work was supported by the National Institutes of Health (NIH) Grant U01HL114476.
CFD modeling of catheter-based Chemofilter device for filtering chemotherapy drugs from venous flow
NASA Astrophysics Data System (ADS)
Maani, Nazanin; Yee, Daryl; Nosonovsky, Michael; Greer, Julia; Hetts, Steven; Rayz, Vitaliy
2017-11-01
Purpose: Intra-arterial chemotherapy, a procedure where drugs are injected into arteries supplying a tumor, may cause systemic toxicity. The Chemofilter device, deployed in a vein downstream of the tumor, can chemically filter the excessive drugs from the circulation. In our study, CFD modeling of blood flow through the Chemofilter is used to optimize its hemodynamic performance. Methods:The Chemofilter consists of a porous membrane attached to a stent-like frame of the RX Accunet distal protection filters used for capturing blood clots. The membrane is formed by a lattice of symmetric micro-cells. This design provides a large surface area for the drug binding, and allows blood cells to pass through the lattice. A two-scale modeling approach is used, where the flow through individual micro-cells is simulated to determine the lattice permeability and then the entire device is modeled as a porous membrane. Results: The simulations detected regions of flow stagnation and recirculation caused by the membrane and its supporting frame. The effect of the membrane's leading angle on the velocity and pressure fields was determined. The device optimization will help the efficacy of drug absorption, while the risk of blood clotting reduces. NIH NCI R01CA194533.
Lattice Boltzmann Model of 3D Multiphase Flow in Artery Bifurcation Aneurysm Problem
Abas, Aizat; Mokhtar, N. Hafizah; Ishak, M. H. H.; Abdullah, M. Z.; Ho Tian, Ang
2016-01-01
This paper simulates and predicts the laminar flow inside the 3D aneurysm geometry, since the hemodynamic situation in the blood vessels is difficult to determine and visualize using standard imaging techniques, for example, magnetic resonance imaging (MRI). Three different types of Lattice Boltzmann (LB) models are computed, namely, single relaxation time (SRT), multiple relaxation time (MRT), and regularized BGK models. The results obtained using these different versions of the LB-based code will then be validated with ANSYS FLUENT, a commercially available finite volume- (FV-) based CFD solver. The simulated flow profiles that include velocity, pressure, and wall shear stress (WSS) are then compared between the two solvers. The predicted outcomes show that all the LB models are comparable and in good agreement with the FVM solver for complex blood flow simulation. The findings also show minor differences in their WSS profiles. The performance of the parallel implementation for each solver is also included and discussed in this paper. In terms of parallelization, it was shown that LBM-based code performed better in terms of the computation time required. PMID:27239221
On the linear stability of blood flow through model capillary networks.
Davis, Jeffrey M
2014-12-01
Under the approximation that blood behaves as a continuum, a numerical implementation is presented to analyze the linear stability of capillary blood flow through model tree and honeycomb networks that are based on the microvascular structures of biological tissues. The tree network is comprised of a cascade of diverging bifurcations, in which a parent vessel bifurcates into two descendent vessels, while the honeycomb network also contains converging bifurcations, in which two parent vessels merge into one descendent vessel. At diverging bifurcations, a cell partitioning law is required to account for the nonuniform distribution of red blood cells as a function of the flow rate of blood into each descendent vessel. A linearization of the governing equations produces a system of delay differential equations involving the discharge hematocrit entering each network vessel and leads to a nonlinear eigenvalue problem. All eigenvalues in a specified region of the complex plane are captured using a transformation based on contour integrals to construct a linear eigenvalue problem with identical eigenvalues, which are then determined using a standard QR algorithm. The predicted value of the dimensionless exponent in the cell partitioning law at the instability threshold corresponds to a supercritical Hopf bifurcation in numerical simulations of the equations governing unsteady blood flow. Excellent agreement is found between the predictions of the linear stability analysis and nonlinear simulations. The relaxation of the assumption of plug flow made in previous stability analyses typically has a small, quantitative effect on the stability results that depends on the specific network structure. This implementation of the stability analysis can be applied to large networks with arbitrary structure provided only that the connectivity among the network segments is known.
An efective fractal-tree closure model for simulating blood flow in large arterial networks
Perdikaris, Paris; Grinberg, Leopold; Karniadakis, George Em.
2014-01-01
The aim of the present work is to address the closure problem for hemodynamic simulations by developing a exible and effective model that accurately distributes flow in the downstream vasculature and can stably provide a physiological pressure out flow boundary condition. To achieve this goal, we model blood flow in the sub-pixel vasculature by using a non-linear 1D model in self-similar networks of compliant arteries that mimic the structure and hierarchy of vessels in the meso-vascular regime (radii 500 μm – 10 μm). We introduce a variable vessel length-to-radius ratio for small arteries and arterioles, while also addressing non-Newtonian blood rheology and arterial wall viscoelasticity effects in small arteries and arterioles. This methodology aims to overcome substantial cut-off radius sensitivities, typically arising in structured tree and linearized impedance models. The proposed model is not sensitive to out flow boundary conditions applied at the end points of the fractal network, and thus does not require calibration of resistance/capacitance parameters typically required for out flow conditions. The proposed model convergences to a periodic state in two cardiac cycles even when started from zero-flow initial conditions. The resulting fractal-trees typically consist of thousands to millions of arteries, posing the need for efficient parallel algorithms. To this end, we have scaled up a Discontinuous Galerkin solver that utilizes the MPI/OpenMP hybrid programming paradigm to thousands of computer cores, and can simulate blood flow in networks of millions of arterial segments at the rate of one cycle per 5 minutes. The proposed model has been extensively tested on a large and complex cranial network with 50 parent, patient-specific arteries and 21 outlets to which fractal trees where attached, resulting to a network of up to 4,392,484 vessels in total, and a detailed network of the arm with 276 parent arteries and 103 outlets (a total of 702,188 vessels after attaching the fractal trees), returning physiological flow and pressure wave predictions without requiring any parameter estimation or calibration procedures. We present a novel methodology to overcome substantial cut-off radius sensitivities PMID:25510364
Marom, Gil; Chiu, Wei-Che; Crosby, Jessica R.; DeCook, Katrina J.; Prabhakar, Saurabh; Horner, Marc; Slepian, Marvin J.; Bluestein, Danny
2014-01-01
The SynCardia total artificial heart (TAH) is the only FDA approved device for replacing hearts in patients with congestive heart failure. It pumps blood via pneumatically driven diaphragms and controls the flow with mechanical valves. While it has been successfully implanted in more than 1,300 patients, its size precludes implantation in smaller patients. This study’s aim was to evaluate the viability of scaled-down TAHs by quantifying thrombogenic potentials from flow patterns. Simulations of systole were first conducted with stationary valves, followed by an advanced full-cardiac-cycle model with moving valves. All the models included deforming diaphragms and platelet suspension in the blood flow. Flow stress-accumulations were computed for the platelet trajectories and thrombogenic potentials were assessed. The simulations successfully captured complex flow patterns during various phases of the cardiac-cycle. Increased stress-accumulations, but within the safety margin of acceptable thrombogenicity, were found in smaller TAHs, indicating that they are clinically viable. PMID:25354999
Computational Hemodynamics Involving Artificial Devices
NASA Technical Reports Server (NTRS)
Kwak, Dochan; Kiris, Cetin; Feiereisen, William (Technical Monitor)
2001-01-01
This paper reports the progress being made towards developing complete blood flow simulation capability in human, especially, in the presence of artificial devices such as valves and ventricular assist devices. Devices modeling poses unique challenges different from computing the blood flow in natural hearts and arteries. There are many elements needed such as flow solvers, geometry modeling including flexible walls, moving boundary procedures and physiological characterization of blood. As a first step, computational technology developed for aerospace applications was extended in the recent past to the analysis and development of mechanical devices. The blood flow in these devices is practically incompressible and Newtonian, and thus various incompressible Navier-Stokes solution procedures can be selected depending on the choice of formulations, variables and numerical schemes. Two primitive variable formulations used are discussed as well as the overset grid approach to handle complex moving geometry. This procedure has been applied to several artificial devices. Among these, recent progress made in developing DeBakey axial flow blood pump will be presented from computational point of view. Computational and clinical issues will be discussed in detail as well as additional work needed.
Mathematical Modelling of CSF Pulsatile Flow in Aqueduct Cerebri.
Czosnyka, Zofia; Kim, Dong-Joo; Balédent, Olivier; Schmidt, Eric A; Smielewski, Peter; Czosnyka, Marek
2018-01-01
The phase-contrast MRI technique permits the non-invasive assessment of CSF movements in cerebrospinal fluid cavities of the central nervous system. Of particular interest is pulsatile cerebrospinal fluid (CSF) flow through the aqueduct cerebri. It is allegedly increased in hydrocephalus, having potential diagnostic value, although not all scientific reports contain unequivocally positive conclusions. For the mathematical simulation of CSF flow, we used a computational model of cerebrospinal blood/fluid circulation designed by a former student as his PhD project. With this model, cerebral blood flow and CSF may be simulated in various vessels using a system of non-linear differential equations as time-varying signals. The amplitude of CSF flow seems to be positively related to the amplitude of pulse waveforms of intracranial pressure (ICP) in situations where mean ICP increases, such as during simulated infusion tests and following step increases of resistance to CSF outflow. An additional positive association between the pulse amplitude of ICP and CSF flow can be seen during simulated increases in the amplitude of arterial pulses (without changes in mean arterial pressure, MAP). The opposite effect can be observed during step increases in the resistance of the aqueduct cerebri and with decreasing elasticity of the system, where the CSF flow amplitude and the ICP pulse amplitude are related inversely. Vasodilatation caused by both gradual decreases in MAP and by increases in PaCO2 provokes an elevation in the observed amplitude of pulsatile CSF flow. Preliminary results indicate that the pulsations of CSF flow may carry information about both CSF-circulatory and cerebral vasogenic components. In most cases, the pulsations of CSF flow are positively related to the pulse amplitudes of both arterial pressure and ICP and to a degree of cerebrovascular dilatation.
Pulsatile blood flow in elastic artery with model aneurysm
NASA Astrophysics Data System (ADS)
Nikolov, N.; Radev, St.; Tabakova, S.
2017-11-01
The mathematical modeling and numerical simulations are expected to play an important role to predict the genesis of different cardiovascular diseases, such as the formation and rupture of aneurysms. In the present work, the numerical solutions of the oscillatory blood flow are constructed for an elastic artery with a model aneurysm by use of the software ANSYS. It is observed that the artery elastic strain behaves in a different way: stably or unstably depending on the different combinations between the flow parameter (outlet pressure) and the elastic modulus of the artery wall.
Saeid Khalafvand, Seyed; Han, Hai-Chao
2015-06-01
It has been shown that arteries may buckle into tortuous shapes under lumen pressure, which in turn could alter blood flow. However, the mechanisms of artery instability under pulsatile flow have not been fully understood. The objective of this study was to simulate the buckling and post-buckling behaviors of the carotid artery under pulsatile flow using a fully coupled fluid-structure interaction (FSI) method. The artery wall was modeled as a nonlinear material with a two-fiber strain-energy function. FSI simulations were performed under steady-state flow and pulsatile flow conditions with a prescribed flow velocity profile at the inlet and different pressures at the outlet to determine the critical buckling pressure. Simulations were performed for normal (160 ml/min) and high (350 ml/min) flow rates and normal (1.5) and reduced (1.3) axial stretch ratios to determine the effects of flow rate and axial tension on stability. The results showed that an artery buckled when the lumen pressure exceeded a critical value. The critical mean buckling pressure at pulsatile flow was 17-23% smaller than at steady-state flow. For both steady-state and pulsatile flow, the high flow rate had very little effect (<5%) on the critical buckling pressure. The fluid and wall stresses were drastically altered at the location with maximum deflection. The maximum lumen shear stress occurred at the inner side of the bend and maximum tensile wall stresses occurred at the outer side. These findings improve our understanding of artery instability in vivo.
Saeid Khalafvand, Seyed; Han, Hai-Chao
2015-01-01
It has been shown that arteries may buckle into tortuous shapes under lumen pressure, which in turn could alter blood flow. However, the mechanisms of artery instability under pulsatile flow have not been fully understood. The objective of this study was to simulate the buckling and post-buckling behaviors of the carotid artery under pulsatile flow using a fully coupled fluid–structure interaction (FSI) method. The artery wall was modeled as a nonlinear material with a two-fiber strain-energy function. FSI simulations were performed under steady-state flow and pulsatile flow conditions with a prescribed flow velocity profile at the inlet and different pressures at the outlet to determine the critical buckling pressure. Simulations were performed for normal (160 ml/min) and high (350 ml/min) flow rates and normal (1.5) and reduced (1.3) axial stretch ratios to determine the effects of flow rate and axial tension on stability. The results showed that an artery buckled when the lumen pressure exceeded a critical value. The critical mean buckling pressure at pulsatile flow was 17–23% smaller than at steady-state flow. For both steady-state and pulsatile flow, the high flow rate had very little effect (<5%) on the critical buckling pressure. The fluid and wall stresses were drastically altered at the location with maximum deflection. The maximum lumen shear stress occurred at the inner side of the bend and maximum tensile wall stresses occurred at the outer side. These findings improve our understanding of artery instability in vivo. PMID:25761257
Effect of flow velocity on the photoacoustic detection for glucose aqueous solutions
NASA Astrophysics Data System (ADS)
Ren, Zhong; Liu, Guodong; Ding, Yu; Yao, Qingkai
2018-01-01
The blood glucose non-invasive detection has become the research hot-spot. The photoacoustic spectroscopy is a well-promising, high-efficient and noninvasive detection method because it combines the advantages of the pure optic and pure ultrasonic. In practice, the photoacoustic detection of blood glucose is impacted by many factors because the human body is a complicated bio-system. To study the effect of flow velocity in the blood vessel on the photoacoustic detection of blood glucose, a photoacoustic detection system based on optical parameter oscillator (OPO) pulsed laser induced ultrasonic was established. In this system, a 532nm pumped Nd: YAG OPO pulsed laser was used as the excitation source, and the photoacoustic signals of glucose were captured by ultrasonic transducer. Moreover, a set of blood circulation system was built to simulate the real blood flow situation in the human body. The experiments of the photoacoustic detection of glucose aqueous solutions with different concentrations at different flow velocities were experimentally investigated. Experimental results show that the photoacoustic peak-to-peak value linearly increases with the glucose concentration, but it decreases with the increase of the flow velocity although the profiles of photoacoustic signals don't change.
Decreased femoral arterial flow during simulated microgravity in the rat
NASA Technical Reports Server (NTRS)
Roer, Robert D.; Dillaman, Richard M.
1994-01-01
To determine whether the blood supply to the hindlimbs of rats is altered by the tail-suspension model of weightlessness, rats were chronically instrumented for the measurement of femoral artery flow. Ultrasonic transit-time flow probes were implanted into 8-wk-old Wistar-Furth rats under ketamine-xylazine anesthesia, and, after 24 h of recovery, flow was measured in the normal ambulatory posture. Next, rats were suspended and flow was measured immediately and then daily over the next 4-7 days. Rats were subsequently returned to normal posture, and flow was monitored daily for 1-3 days. Mean arterial flow decreased immediately on the rats being suspensed and continued to decrease until a new steady state of approximately 60% of control values was attained at 5 days. On the rats returning to normal posture, flow increased to levels observed before suspension. Quantile-quantile plots of blood flow data revealed a decrease in flow during both systole and diastole. The observed decrease in hindlimb blood flow during suspension suggests a possible role in the etiology of muscular atrophy and bone loss in microgravity.
Microstructured Thin Film Nitinol for a Neurovascular Flow-Diverter
Chen, Yanfei; Howe, Connor; Lee, Yongkuk; Cheon, Seongsik; Yeo, Woon-Hong; Chun, Youngjae
2016-01-01
A cerebral aneurysm occurs as a result of a weakened blood vessel, which allows blood to flow into a sac or a ballooned section. Recent advancement shows that a new device, ‘flow-diverter’, can divert blood flow away from the aneurysm sac. People found that a flow-diverter based on thin film nitinol (TFN), works very effectively, however there are no studies proving the mechanical safety in irregular, curved blood vessels. Here, we study the mechanical behaviors and structural safety of a novel microstructured TFN membrane through the computational and experimental studies, which establish the fundamental aspects of stretching and bending mechanics of the structure. The result shows a hyper-elastic behavior of the TFN with a negligible strain change up to 180° in bending and over 500% in radial stretching, which is ideal in the use in neurovascular curved arteries. The simulation determines the optimal joint locations between the TFN and stent frame. In vitro experimental test qualitatively demonstrates the mechanical flexibility of the flow-diverter with multi-modal bending. In vivo micro X-ray and histopathology study demonstrate that the TFN can be conformally deployed in the curved blood vessel of a swine model without any significant complications or abnormalities. PMID:27009500
Microstructured Thin Film Nitinol for a Neurovascular Flow-Diverter
NASA Astrophysics Data System (ADS)
Chen, Yanfei; Howe, Connor; Lee, Yongkuk; Cheon, Seongsik; Yeo, Woon-Hong; Chun, Youngjae
2016-03-01
A cerebral aneurysm occurs as a result of a weakened blood vessel, which allows blood to flow into a sac or a ballooned section. Recent advancement shows that a new device, ‘flow-diverter’, can divert blood flow away from the aneurysm sac. People found that a flow-diverter based on thin film nitinol (TFN), works very effectively, however there are no studies proving the mechanical safety in irregular, curved blood vessels. Here, we study the mechanical behaviors and structural safety of a novel microstructured TFN membrane through the computational and experimental studies, which establish the fundamental aspects of stretching and bending mechanics of the structure. The result shows a hyper-elastic behavior of the TFN with a negligible strain change up to 180° in bending and over 500% in radial stretching, which is ideal in the use in neurovascular curved arteries. The simulation determines the optimal joint locations between the TFN and stent frame. In vitro experimental test qualitatively demonstrates the mechanical flexibility of the flow-diverter with multi-modal bending. In vivo micro X-ray and histopathology study demonstrate that the TFN can be conformally deployed in the curved blood vessel of a swine model without any significant complications or abnormalities.
Blood flow characteristics in the aortic arch
NASA Astrophysics Data System (ADS)
Prahl Wittberg, Lisa; van Wyk, Stevin; Mihaiescu, Mihai; Fuchs, Laszlo; Gutmark, Ephraim; Backeljauw, Philippe; Gutmark-Little, Iris
2012-11-01
The purpose with this study is to investigate the flow characteristics of blood in the aortic arch. Cardiovascular diseases are associated with specific locations in the arterial tree. Considering atherogenesis, it is claimed that the Wall Shear Stress (WSS) along with its temporal and spatial gradients play an important role in the development of the disease. The WSS is determined by the local flow characteristics, that in turn depends on the geometry as well as the rheological properties of blood. In this numerical work, the time dependent fluid flow during the entire cardiac cycle is fully resolved. The Quemada model is applied to account for the non-Newtonian properties of blood, an empirical model valid for different Red Blood Cell loading. Data obtained through Cardiac Magnetic Resonance Imaging have been used in order to reconstruct geometries of the the aortic arch. Here, three different geometries are studied out of which two display malformations that can be found in patients having the genetic disorder Turner's syndrome. The simulations show a highly complex flow with regions of secondary flow that is enhanced for the diseased aortas. The financial support from the Swedish Research Council (VR) and the Sweden-America Foundation is gratefully acknowledged.
3D Fluid-Structure Interaction Simulation of Aortic Valves Using a Unified Continuum ALE FEM Model.
Spühler, Jeannette H; Jansson, Johan; Jansson, Niclas; Hoffman, Johan
2018-01-01
Due to advances in medical imaging, computational fluid dynamics algorithms and high performance computing, computer simulation is developing into an important tool for understanding the relationship between cardiovascular diseases and intraventricular blood flow. The field of cardiac flow simulation is challenging and highly interdisciplinary. We apply a computational framework for automated solutions of partial differential equations using Finite Element Methods where any mathematical description directly can be translated to code. This allows us to develop a cardiac model where specific properties of the heart such as fluid-structure interaction of the aortic valve can be added in a modular way without extensive efforts. In previous work, we simulated the blood flow in the left ventricle of the heart. In this paper, we extend this model by placing prototypes of both a native and a mechanical aortic valve in the outflow region of the left ventricle. Numerical simulation of the blood flow in the vicinity of the valve offers the possibility to improve the treatment of aortic valve diseases as aortic stenosis (narrowing of the valve opening) or regurgitation (leaking) and to optimize the design of prosthetic heart valves in a controlled and specific way. The fluid-structure interaction and contact problem are formulated in a unified continuum model using the conservation laws for mass and momentum and a phase function. The discretization is based on an Arbitrary Lagrangian-Eulerian space-time finite element method with streamline diffusion stabilization, and it is implemented in the open source software Unicorn which shows near optimal scaling up to thousands of cores. Computational results are presented to demonstrate the capability of our framework.
3D Fluid-Structure Interaction Simulation of Aortic Valves Using a Unified Continuum ALE FEM Model
Spühler, Jeannette H.; Jansson, Johan; Jansson, Niclas; Hoffman, Johan
2018-01-01
Due to advances in medical imaging, computational fluid dynamics algorithms and high performance computing, computer simulation is developing into an important tool for understanding the relationship between cardiovascular diseases and intraventricular blood flow. The field of cardiac flow simulation is challenging and highly interdisciplinary. We apply a computational framework for automated solutions of partial differential equations using Finite Element Methods where any mathematical description directly can be translated to code. This allows us to develop a cardiac model where specific properties of the heart such as fluid-structure interaction of the aortic valve can be added in a modular way without extensive efforts. In previous work, we simulated the blood flow in the left ventricle of the heart. In this paper, we extend this model by placing prototypes of both a native and a mechanical aortic valve in the outflow region of the left ventricle. Numerical simulation of the blood flow in the vicinity of the valve offers the possibility to improve the treatment of aortic valve diseases as aortic stenosis (narrowing of the valve opening) or regurgitation (leaking) and to optimize the design of prosthetic heart valves in a controlled and specific way. The fluid-structure interaction and contact problem are formulated in a unified continuum model using the conservation laws for mass and momentum and a phase function. The discretization is based on an Arbitrary Lagrangian-Eulerian space-time finite element method with streamline diffusion stabilization, and it is implemented in the open source software Unicorn which shows near optimal scaling up to thousands of cores. Computational results are presented to demonstrate the capability of our framework. PMID:29713288
Inter-Slice Blood Flow and Magnetization Transfer Effects as A New Simultaneous Imaging Strategy.
Han, Paul Kyu; Barker, Jeffrey W; Kim, Ki Hwan; Choi, Seung Hong; Bae, Kyongtae Ty; Park, Sung-Hong
2015-01-01
The recent blood flow and magnetization transfer (MT) technique termed alternate ascending/descending directional navigation (ALADDIN) achieves the contrast using interslice blood flow and MT effects with no separate preparation RF pulse, thereby potentially overcoming limitations of conventional methods. In this study, we examined the signal characteristics of ALADDIN as a simultaneous blood flow and MT imaging strategy, by comparing it with pseudo-continuous ASL (pCASL) and conventional MT asymmetry (MTA) methods, all of which had the same bSSFP readout. Bloch-equation simulations and experiments showed ALADDIN perfusion signals increased with flip angle, whereas MTA signals peaked at flip angle around 45°-60°. ALADDIN provided signals comparable to those of pCASL and conventional MTA methods emulating the first, second, and third prior slices of ALADDIN under the same scan conditions, suggesting ALADDIN signals to be superposition of signals from multiple labeling planes. The quantitative cerebral blood flow signals from a modified continuous ASL model overestimated the perfusion signals compared to those measured with a pulsed ASL method. Simultaneous mapping of blood flow, MTA, and MT ratio in the whole brain is feasible with ALADDIN within a clinically reasonable time, which can potentially help diagnosis of various diseases.
Ren, Qinlong
2018-02-10
Efficient pumping of blood flow in a microfluidic device is essential for rapid detection of bacterial bloodstream infections (BSI) using alternating current (AC) electrokinetics. Compared with AC electro-osmosis (ACEO) phenomenon, the advantage of AC electrothermal (ACET) mechanism is its capability of pumping biofluids with high electrical conductivities at a relatively high AC voltage frequency. In the current work, the microfluidic pumping of non-Newtonian blood flow using ACET forces is investigated in detail by modeling its multi-physics process with hybrid boundary element method (BEM) and immersed boundary-lattice Boltzmann method (IB-LBM). The Carreau-Yasuda model is used to simulate the realistic rheological behavior of blood flow. The ACET pumping efficiency of blood flow is studied in terms of different AC voltage magnitudes and frequencies, thermal boundary conditions of electrodes, electrode configurations, channel height, and the channel length per electrode pair. Besides, the effect of rheological behavior on the blood flow velocity is theoretically analyzed by comparing with the Newtonian fluid flow using scaling law analysis under the same physical conditions. The results indicate that the rheological behavior of blood flow and its frequency-dependent dielectric property make the pumping phenomenon of blood flow different from that of the common Newtonian aqueous solutions. It is also demonstrated that using a thermally insulated electrode could enhance the pumping efficiency dramatically. Besides, the results conclude that increasing the AC voltage magnitude is a more economical pumping approach than adding the number of electrodes with the same energy consumption when the Joule heating effect is acceptable. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Swirling flow in bileaflet mechanical heart valve
NASA Astrophysics Data System (ADS)
Gataulin, Yakov A.; Khorobrov, Svyatoslav V.; Yukhnev, Andrey D.
2018-05-01
Bileaflet mechanical valves are most commonly used for heart valve replacement. Nowadays swirling blood flow is registered in different parts of the cardiovascular system: left ventricle, aorta, arteries and veins. In present contribution for the first time the physiological swirling flow inlet conditions are used for numerical simulation of aortic bileaflet mechanical heart valve hemodynamics. Steady 3-dimensional continuity and RANS equations are employed to describe blood motion. The Menter SST model is used to simulate turbulence effects. Boundary conditions are corresponded to systolic peak flow. The domain was discretized into hybrid tetrahedral and hexahedral mesh with an emphasis on wall boundary layer. A system of equations was solved in Ansys Fluent finite-volume package. Noticeable changes in the flow structure caused by inlet swirl are shown. The swirling flow interaction with the valve leaflets is analyzed. A central orifice jet changes its cross-section shape, which leads to redistribution of wall shear stress on the leaflets. Transvalvular pressure gradient and area-averaged leaflet wall shear stress increase. Physiological swirl intensity noticeably reduces downstream of the valve.
Jain, Kartik; Jiang, Jingfeng; Strother, Charles; Mardal, Kent-André
2016-11-01
Blood flow in intracranial aneurysms has, until recently, been considered to be disturbed but still laminar. Recent high resolution computational studies have demonstrated, in some situations, however, that the flow may exhibit high frequency fluctuations that resemble weakly turbulent or transitional flow. Due to numerous assumptions required for simplification in computational fluid dynamics (CFD) studies, the occurrence of these events, in vivo, remains unsettled. The detection of these fluctuations in aneurysmal blood flow, i.e., hemodynamics by CFD, poses additional challenges as such phenomena cannot be captured in clinical data acquisition with magnetic resonance (MR) due to inadequate temporal and spatial resolutions. The authors' purpose was to address this issue by comparing results from highly resolved simulations, conventional resolution laminar simulations, and MR measurements, identify the differences, and identify their causes. Two aneurysms in the basilar artery, one with disturbed yet laminar flow and the other with transitional flow, were chosen. One set of highly resolved direct numerical simulations using the lattice Boltzmann method (LBM) and another with adequate resolutions under laminar flow assumption were conducted using a commercially available ANSYS Fluent solver. The velocity fields obtained from simulation results were qualitatively and statistically compared against each other and with MR acquisition. Results from LBM, ANSYS Fluent, and MR agree well qualitatively and quantitatively for one of the aneurysms with laminar flow in which fluctuations were <80 Hz. The comparisons for the second aneurysm with high fluctuations of > ∼ 600 Hz showed vivid differences between LBM, ANSYS Fluent, and magnetic resonance imaging. After ensemble averaging and down-sampling to coarser space and time scales, these differences became minimal. A combination of MR derived data and CFD can be helpful in estimating the hemodynamic environment of intracranial aneurysms. Adequately resolved CFD would suffice gross assessment of hemodynamics, potentially in a clinical setting, and highly resolved CFD could be helpful in a detailed and retrospective understanding of the physiological mechanisms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Ting; Phan-Thien, Nhan, E-mail: Nhan@nus.edu.sg; Khoo, Boo Cheong
In this paper, we report simulation results assessing the deformation and aggregation of mixed healthy and malaria-infected red blood cells (RBCs) in a tube flow. A three dimensional particle model based on Dissipative Particle Dynamics (DPD) is developed to predict the tube flow containing interacting cells. The cells are also modelled by DPD, with a Morse potential to characterize the cell-cell interaction. As validation tests, a single RBC in a tube flow and two RBCs in a static flow are simulated to examine the cell deformation and intercellular interaction, respectively. The study of two cells, one healthy and the othermore » malaria-infected RBCs in a tube flow demonstrates that the malaria-infected RBC (in the leading position along flow direction) has different effects on the healthy RBC (in the trailing position) at the different stage of parasite development or at the different capillary number. With parasitic development, the malaria-infected RBC gradually loses its deformability, and in turn the corresponding trailing healthy RBC also deforms less due to the intercellular interaction. With increasing capillary number, both the healthy and malaria-infected RBCs are likely to undergo an axisymmetric motion. The minimum intercellular distance becomes small enough so that rouleaux is easily formed, i.e., the healthy and malaria-infected RBCs are difficultly disaggregated.« less
Prakash, J; Ramesh, K; Tripathi, D; Kumar, R
2018-07-01
A numerical simulation is presented to study the heat and flow characteristics of blood flow altered by electroosmosis through the tapered micro-vessels. Blood is assumed as non-Newtonian (micropolar) nanofluids. The flow regime is considered as asymmetric diverging (tapered) microchannel for more realistic micro-vessels which is produced by choosing the peristaltic wave train on the walls to have different amplitudes and phase. The Rosseland approximation is employed to model the radiation heat transfer and temperatures of the walls are presumed constants. The mathematical formulation of the present problem is simplified under the long-wavelength, low-Reynolds number and Debye-Hückel linearization approximations. The influence of various dominant physical parameters are discussed for axial velocity, microrotation distribution, thermal temperature distribution and nanoparticle volume fraction field. However, our foremost emphasis is to determine the effects of thermal radiation and coupling number on the axial velocity and microrotation distribution beneath electroosmotic environment. This analysis places a significant observation on the thermal radiation and coupling number which plays an influential role in hearten fluid velocity. This study is encouraged by exploring the nanofluid-dynamics in peristaltic transport as symbolized by heat transport in biological flows and also in novel pharmacodynamics pumps and gastro-intestinal motility enhancement. Copyright © 2018 Elsevier Inc. All rights reserved.
Quantitative fluorescence angiography for neurosurgical interventions.
Weichelt, Claudia; Duscha, Philipp; Steinmeier, Ralf; Meyer, Tobias; Kuß, Julia; Cimalla, Peter; Kirsch, Matthias; Sobottka, Stephan B; Koch, Edmund; Schackert, Gabriele; Morgenstern, Ute
2013-06-01
Present methods for quantitative measurement of cerebral perfusion during neurosurgical operations require additional technology for measurement, data acquisition, and processing. This study used conventional fluorescence video angiography--as an established method to visualize blood flow in brain vessels--enhanced by a quantifying perfusion software tool. For these purposes, the fluorescence dye indocyanine green is given intravenously, and after activation by a near-infrared light source the fluorescence signal is recorded. Video data are analyzed by software algorithms to allow quantification of the blood flow. Additionally, perfusion is measured intraoperatively by a reference system. Furthermore, comparing reference measurements using a flow phantom were performed to verify the quantitative blood flow results of the software and to validate the software algorithm. Analysis of intraoperative video data provides characteristic biological parameters. These parameters were implemented in the special flow phantom for experimental validation of the developed software algorithms. Furthermore, various factors that influence the determination of perfusion parameters were analyzed by means of mathematical simulation. Comparing patient measurement, phantom experiment, and computer simulation under certain conditions (variable frame rate, vessel diameter, etc.), the results of the software algorithms are within the range of parameter accuracy of the reference methods. Therefore, the software algorithm for calculating cortical perfusion parameters from video data presents a helpful intraoperative tool without complex additional measurement technology.
Preoperative computer simulation for planning of vascular access surgery in hemodialysis patients.
Zonnebeld, Niek; Huberts, Wouter; van Loon, Magda M; Delhaas, Tammo; Tordoir, Jan H M
2017-03-06
The arteriovenous fistula (AVF) is the preferred vascular access for hemodialysis patients. Unfortunately, 20-40% of all constructed AVFs fail to mature (FTM), and are therefore not usable for hemodialysis. AVF maturation importantly depends on postoperative blood volume flow. Predicting patient-specific immediate postoperative flow could therefore support surgical planning. A computational model predicting blood volume flow is available, but the effect of blood flow predictions on the clinical endpoint of maturation (at least 500 mL/min blood volume flow, diameter of the venous cannulation segment ≥4 mm) remains undetermined. A multicenter randomized clinical trial will be conducted in which 372 patients will be randomized (1:1 allocation ratio) between conventional healthcare and computational model-aided decision making. All patients are extensively examined using duplex ultrasonography (DUS) during preoperative assessment (12 venous and 11 arterial diameter measurements; 3 arterial volume flow measurements). The computational model will predict patient-specific immediate postoperative blood volume flows based on this DUS examination. Using these predictions, the preferred AVF configuration is recommended for the individual patient (radiocephalic, brachiocephalic, or brachiobasilic). The primary endpoint is FTM rate at six weeks in both groups, secondary endpoints include AVF functionality and patency rates at 6 and 12 months postoperatively. ClinicalTrials.gov (NCT02453412), and ToetsingOnline.nl (NL51610.068.14).
Mathematical Modeling of Radiofrequency Ablation for Varicose Veins
Choi, Sun Young; Kwak, Byung Kook
2014-01-01
We present a three-dimensional mathematical model for the study of radiofrequency ablation (RFA) with blood flow for varicose vein. The model designed to analyze temperature distribution heated by radiofrequency energy and cooled by blood flow includes a cylindrically symmetric blood vessel with a homogeneous vein wall. The simulated blood velocity conditions are U = 0, 1, 2.5, 5, 10, 20, and 40 mm/s. The lower the blood velocity, the higher the temperature in the vein wall and the greater the tissue damage. The region that is influenced by temperature in the case of the stagnant flow occupies approximately 28.5% of the whole geometry, while the region that is influenced by temperature in the case of continuously moving electrode against the flow direction is about 50%. The generated RF energy induces a temperature rise of the blood in the lumen and leads to an occlusion of the blood vessel. The result of the study demonstrated that higher blood velocity led to smaller thermal region and lower ablation efficiency. Since the peak temperature along the venous wall depends on the blood velocity and pullback velocity, the temperature distribution in the model influences ablation efficiency. The vein wall absorbs more energy in the low pullback velocity than in the high one. PMID:25587351
A comparative CFD study of four inferior vena cava filters.
López, Josep M; Fortuny, Gerard; Puigjaner, Dolors; Herrero, Joan; Marimon, Francesc
2018-03-30
Computational fluid dynamics was used to simulate the flow of blood within an inferior vena cava (IVC) geometry model that was reconstructed from computed tomography images obtained from a real patient. The main novelty of the present work is that we simulated the implantation of 4 different filter models in this realistic IVC geometry. We considered different blood flow rates in the range between V in =20 and V in =80 cm 3 /s, and all simulations were performed with both the Newtonian and a non-Newtonian model for the blood viscosity. We compared the hemodynamics performance of the different filter models, and we paid a special attention to the total drag force, F d , exerted by the blood flow on the filter surface. This force is the sum of 2 contributions: the viscous skin friction force, which was found to be roughly proportional to the filter surface area, and the pressure force, which depended on the particular filter geometry design. The F d force is relevant because it must be balanced by the total force exerted by the filter hooks/struts on the IVC wall at the attachment locations. For the highest V in value investigated, the variation in F d among filters was from 116 to 308 dyne. We also showed how the present results can be extrapolated to obtain good estimates of the drag forces if the blood viscosity levels change, ie, if the patient with a filter implanted is treated with anticoagulant therapy. Copyright © 2018 John Wiley & Sons, Ltd.
Simulations of heart mechanics over the cardiac cycle
NASA Astrophysics Data System (ADS)
Tavoularis, Stavros; Doyle, Matthew; Bourgault, Yves
2009-11-01
This study is concerned with the numerical simulation of blood flow and myocardium motion with fluid-structure interaction of the left ventricle (LV) of a canine heart over the entire cardiac cycle. The LV geometry is modeled as a series of nested prolate ellipsoids and is capped with cylindrical tubes representing the inflow and outflow tracts. The myocardium is modeled as a multi-layered, slightly compressible, transversely isotropic, hyperelastic material, with each layer having different principal directions to approximate the fibrous structure. Blood is modeled as a slightly compressible Newtonian fluid. Blood flow into and out of the LV is driven by left atrial and aortic pressures applied at the distal ends of the inflow and outflow tracts, respectively, along with changes in the stresses in the myocardium caused by time-dependent changes in its material properties, which simulate the cyclic contraction and relaxation of the muscle fibers. Numerical solutions are obtained with the use of a finite element code. The computed temporal and spatial variations of pressure and velocity in the blood and stresses and strains in the myocardium will be discussed and compared to physiological data. The variation of the LV cavity volume over the cardiac cycle will also be discussed.
NASA Astrophysics Data System (ADS)
De Vita, F.; de Tullio, M. D.; Verzicco, R.
2016-04-01
This work focuses on the comparison between Newtonian and non-Newtonian blood flows through a bileaflet mechanical heart valve in the aortic root. The blood, in fact, is a concentrated suspension of cells, mainly red blood cells, in a Newtonian matrix, the plasma, and consequently its overall behavior is that of a non-Newtonian fluid owing to the action of the cells' membrane on the fluid part. The common practice, however, assumes the blood in large vessels as a Newtonian fluid since the shear rate is generally high and the effective viscosity becomes independent of the former. In this paper, we show that this is not always the case even in the aorta, the largest artery of the systemic circulation, owing to the pulsatile and transitional nature of the flow. Unexpectedly, for most of the pulsating cycle and in a large part of the fluid volume, the shear rate is smaller than the threshold level for the blood to display a constant effective viscosity and its shear thinning character might affect the system dynamics. A direct inspection of the various flow features has shown that the valve dynamics, the transvalvular pressure drop and the large-scale features of the flow are very similar for the Newtonian and non-Newtonian fluid models. On the other hand, the mechanical damage of the red blood cells (hemolysis), induced by the altered stress values in the flow, is larger for the non-Newtonian fluid model than for the Newtonian one.
Korakianitis, Theodosios; Shi, Yubing
2006-09-01
Numerical modeling of the human cardiovascular system has always been an active research direction since the 19th century. In the past, various simulation models of different complexities were proposed for different research purposes. In this paper, an improved numerical model to study the dynamic function of the human circulation system is proposed. In the development of the mathematical model, the heart chambers are described with a variable elastance model. The systemic and pulmonary loops are described based on the resistance-compliance-inertia concept by considering local effects of flow friction, elasticity of blood vessels and inertia of blood in different segments of the blood vessels. As an advancement from previous models, heart valve dynamics and atrioventricular interaction, including atrial contraction and motion of the annulus fibrosus, are specifically modeled. With these improvements the developed model can predict several important features that were missing in previous numerical models, including regurgitant flow on heart valve closure, the value of E/A velocity ratio in mitral flow, the motion of the annulus fibrosus (called the KG diaphragm pumping action), etc. These features have important clinical meaning and their changes are often related to cardiovascular diseases. Successful simulation of these features enhances the accuracy of simulations of cardiovascular dynamics, and helps in clinical studies of cardiac function.
NASA Astrophysics Data System (ADS)
Lantz, Jonas; Gupta, Vikas; Henriksson, Lilian; Karlsson, Matts; Persson, Ander; Carhall, Carljohan; Ebbers, Tino
2017-11-01
In this study, cardiac blood flow was simulated using Computational Fluid Dynamics and compared to in vivo flow measurements by 4D Flow MRI. In total, nine patients with various heart diseases were studied. Geometry and heart wall motion for the simulations were obtained from clinical CT measurements, with 0.3x0.3x0.3 mm spatial resolution and 20 time frames covering one heartbeat. The CFD simulations included pulmonary veins, left atrium and ventricle, mitral and aortic valve, and ascending aorta. Mesh sizes were on the order of 6-16 million cells, depending on the size of the heart, in order to resolve both papillary muscles and trabeculae. The computed flow field agreed visually very well with 4D Flow MRI, with characteristic vortices and flow structures seen in both techniques. Regression analysis showed that peak flow rate as well as stroke volume had an excellent agreement for the two techniques. We demonstrated the feasibility, and more importantly, fidelity of cardiac flow simulations by comparing CFD results to in vivo measurements. Both qualitative and quantitative results agreed well with the 4D Flow MRI measurements. Also, the developed simulation methodology enables ``what if'' scenarios, such as optimization of valve replacement and other surgical procedures. Funded by the Wallenberg Foundation.
2015-01-01
Purpose: The aim of this study was to validate a computational fluid dynamics (CFD) simulation of flow-diverter treatment through Doppler ultrasonography measurements in patient-specific models of intracranial bifurcation and side-wall aneurysms. Methods: Computational and physical models of patient-specific bifurcation and sidewall aneurysms were constructed from computed tomography angiography with use of stereolithography, a three-dimensional printing technology. Flow dynamics parameters before and after flow-diverter treatment were measured with pulse-wave and color Doppler ultrasonography, and then compared with CFD simulations. Results: CFD simulations showed drastic flow reduction after flow-diverter treatment in both aneurysms. The mean volume flow rate decreased by 90% and 85% for the bifurcation aneurysm and the side-wall aneurysm, respectively. Velocity contour plots from computer simulations before and after flow diversion closely resembled the patterns obtained by color Doppler ultrasonography. Conclusion: The CFD estimation of flow reduction in aneurysms treated with a flow-diverting stent was verified by Doppler ultrasonography in patient-specific phantom models of bifurcation and side-wall aneurysms. The combination of CFD and ultrasonography may constitute a feasible and reliable technique in studying the treatment of intracranial aneurysms with flow-diverting stents. PMID:25754367
Patient-Specific Simulation of Cardiac Blood Flow From High-Resolution Computed Tomography.
Lantz, Jonas; Henriksson, Lilian; Persson, Anders; Karlsson, Matts; Ebbers, Tino
2016-12-01
Cardiac hemodynamics can be computed from medical imaging data, and results could potentially aid in cardiac diagnosis and treatment optimization. However, simulations are often based on simplified geometries, ignoring features such as papillary muscles and trabeculae due to their complex shape, limitations in image acquisitions, and challenges in computational modeling. This severely hampers the use of computational fluid dynamics in clinical practice. The overall aim of this study was to develop a novel numerical framework that incorporated these geometrical features. The model included the left atrium, ventricle, ascending aorta, and heart valves. The framework used image registration to obtain patient-specific wall motion, automatic remeshing to handle topological changes due to the complex trabeculae motion, and a fast interpolation routine to obtain intermediate meshes during the simulations. Velocity fields and residence time were evaluated, and they indicated that papillary muscles and trabeculae strongly interacted with the blood, which could not be observed in a simplified model. The framework resulted in a model with outstanding geometrical detail, demonstrating the feasibility as well as the importance of a framework that is capable of simulating blood flow in physiologically realistic hearts.
Disease severity index derived from hemolysis evaluation
NASA Astrophysics Data System (ADS)
Piskin, Senol; Finol, Ender A.; Pekkan, Kerem; Vascular Biomechanics; Biofluids Laboratory (VBBL) Team; Pediatric Cardiovascular Fluid Mechanics Laboratory Team
2017-11-01
Several cardiovascular diseases (CVDs) are characterized by stenosis of the vessel, leaflet malfunction, disturbance of blood flow (vorticity) due to geometric deformation or abnormal growth, and development of jet flow due to ventricle overload. All of these abnormalities are followed by degeneration of inner wall of the heart and the arteries and red blood cell damage (hemolysis). In this study, identification and classification of CVDs are being performed based on hemolysis evaluation (HE). Two commonly used hemolysis models are implemented to our computational fluid dynamics simulations of CV system. The capability of HE on disease diagnosis is investigated. The analysis will be carried out on our CVD templates such as artery stenosis or pulmonary artery hypertension. HEs depend mainly on the strain rate and for some computational hemolysis models there is a threshold of strain of which the hemolysis will not take place. In the current study, we investigate the effect of thresholding besides using pseudo exposure time for steady state simulations on the blood damage evaluations. Details of our methodology for HE by post processing simulation results without necessity of re-running the simulations will be presented. American Heart Association, National Institute of Health, European Research Council, TUBITAK.
ERIC Educational Resources Information Center
Madrazo, Gerry M., Jr.; Wood, Carol A.
1980-01-01
Discusses the use of games to facilitate learning scientific concepts and principles. Describes the Cell Game, which simulates plant and animal cells; the Energy Quest, which requires players to buy property that generates largest amounts of electricity; the Blood Flow Game, which illustrates circulation of blood through the human body. (CS)
Luria, Oded; Bar, Jacob; Kovo, Michal; Malinger, Gustavo; Golan, Abraham; Barnea, Ofer
2012-04-01
Fetal growth restriction (FGR) elicits hemodynamic compensatory mechanisms in the fetal circulation. These mechanisms are complex and their effect on the cerebral oxygen availability is not fully understood. To quantify the contribution of each compensatory mechanism to the fetal cerebral oxygen availability, a mathematical model of the fetal circulation was developed. The model was based on cardiac-output distribution in the fetal circulation. The compensatory mechanisms of FGR were simulated and their effects on cerebral oxygen availability were analyzed. The mathematical analysis included the effects of cerebral vasodilation, placental resistance to blood flow, degree of blood shunting by the ductus venosus and the effect of maternal-originated placental insufficiency. The model indicated a unimodal dependency between placental blood flow and cerebral oxygen availability. Optimal cerebral oxygen availability was achieved when the placental blood flow was mildly reduced compared to the normal flow. This optimal ratio was found to increase as the hypoxic state of FGR worsens. The model indicated that cerebral oxygen availability is increasingly dependent on the cardiac output distribution as the fetus gains weight. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.
Modelling Ischemic Stroke and Temperature Intervention Using Vascular Porous Method
NASA Astrophysics Data System (ADS)
Blowers, Stephen; Valluri, Prashant; Marshall, Ian; Andrews, Peter; Harris, Bridget; Thrippleton, Michael
2017-11-01
In the event of cerebral infarction, a region of tissue is supplied with insufficient blood flow to support normal metabolism. This can lead to an ischemic reaction which incurs cell death. Through a reduction of temperature, the metabolic demand can be reduced, which then offsets the onset of necrosis. This allows extra time for the patient to receive medical attention and could help prevent permanent brain damage from occurring. Here, we present a vascular-porous (VaPor) blood flow model that can simulate such an event. Cerebral blood flow is simulated using a combination of 1-Dimensional vessels embedded in 3-Dimensional porous media. This allows for simple manipulation of the structure and determining the effect of an obstructed vessel. Results show regional temperature increase of 1-1.5°C comparable with results from literature (in contrast to previous simpler models). Additionally, the application of scalp cooling in such an event dramatically reduces the temperature in the affected region to near hypothermic temperatures, which points to a potential rapid form of first intervention.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Xing; Lin, Guang
To model the sedimentation of the red blood cell (RBC) in a square duct and a circular pipe, the recently developed technique derived from the lattice Boltzmann method and the distributed Lagrange multiplier/fictitious domain method (LBM-DLM/FD) is extended to employ the mesoscopic network model for simulations of the sedimentation of the RBC in flow. The flow is simulated by the lattice Boltzmann method with a strong magnetic body force, while the network model is used for modeling RBC deformation. The fluid-RBC interactions are enforced by the Lagrange multiplier. The sedimentation of the RBC in a square duct and a circularmore » pipe is simulated, revealing the capacity of the current method for modeling the sedimentation of RBC in various flows. Numerical results illustrate that that the terminal setting velocity increases with the increment of the exerted body force. The deformation of the RBC has significant effect on the terminal setting velocity due to the change of the frontal area. The larger the exerted force is, the smaller the frontal area and the larger deformation of the RBC are.« less
Mechanical Dissociation of Platelet Aggregates in Blood Stream
NASA Astrophysics Data System (ADS)
Hoore, Masoud; Fedosov, Dmitry A.; Gompper, Gerhard; Complex; Biological Fluids Group Team
2017-11-01
von Willebrand factor (VWF) and platelet aggregation is a key phenomenon in blood clotting. These aggregates form critically in high shear rates and dissolve reversibly in low shear rates. The emergence of a critical shear rate, beyond which aggregates form and below which they dissolve, has an interesting impact on aggregation in blood flow. As red blood cells (RBCs) migrate to the center of the vessel in blood flow, a RBC free layer (RBC-FL) is left close to the walls into which the platelets and VWFs are pushed back from the bulk flow. This margination process provides maximal VWF-platelet aggregation probability in the RBC-FL. Using mesoscale hydrodynamic simulations of aggregate dynamics in blood flow, it is shown that the aggregates form and grow in RBC-FL wherein shear rate is high for VWF stretching. By growing, the aggregates penetrate to the bulk flow and get under order of magnitude lower shear rates. Consequently, they dissolve and get back into the RBC-FL. This mechanical limitation for aggregates prohibits undesired thrombosis and vessel blockage by aggregates, while letting the VWFs and platelets to aggregate close to the walls where they are actually needed. The support by the DFG Research Unit FOR 1543 SHENC and CPU time Grant by the Julich Supercomputing Center are acknowledged.
Human cerebral autoregulation before, during and after spaceflight.
Iwasaki, Ken-ichi; Levine, Benjamin D; Zhang, Rong; Zuckerman, Julie H; Pawelczyk, James A; Diedrich, André; Ertl, Andrew C; Cox, James F; Cooke, William H; Giller, Cole A; Ray, Chester A; Lane, Lynda D; Buckey, Jay C; Baisch, Friedhelm J; Eckberg, Dwain L; Robertson, David; Biaggioni, Italo; Blomqvist, C Gunnar
2007-03-15
Exposure to microgravity alters the distribution of body fluids and the degree of distension of cranial blood vessels, and these changes in turn may provoke structural remodelling and altered cerebral autoregulation. Impaired cerebral autoregulation has been documented following weightlessness simulated by head-down bed rest in humans, and is proposed as a mechanism responsible for postspaceflight orthostatic intolerance. In this study, we tested the hypothesis that spaceflight impairs cerebral autoregulation. We studied six astronauts approximately 72 and 23 days before, after 1 and 2 weeks in space (n = 4), on landing day, and 1 day after the 16 day Neurolab space shuttle mission. Beat-by-beat changes of photoplethysmographic mean arterial pressure and transcranial Doppler middle cerebral artery blood flow velocity were measured during 5 min of spontaneous breathing, 30 mmHg lower body suction to simulate standing in space, and 10 min of 60 deg passive upright tilt on Earth. Dynamic cerebral autoregulation was quantified by analysis of the transfer function between spontaneous changes of mean arterial pressure and cerebral artery blood flow velocity, in the very low- (0.02-0.07 Hz), low- (0.07-0.20 Hz) and high-frequency (0.20-0.35 Hz) ranges. Resting middle cerebral artery blood flow velocity did not change significantly from preflight values during or after spaceflight. Reductions of cerebral blood flow velocity during lower body suction were significant before spaceflight (P < 0.05, repeated measures ANOVA), but not during or after spaceflight. Absolute and percentage reductions of mean (+/- s.e.m.) cerebral blood flow velocity after 10 min upright tilt were smaller after than before spaceflight (absolute, -4 +/- 3 cm s(-1) after versus -14 +/- 3 cm s(-1) before, P = 0.001; and percentage, -8.0 +/- 4.8% after versus -24.8 +/- 4.4% before, P < 0.05), consistent with improved rather than impaired cerebral blood flow regulation. Low-frequency gain decreased significantly (P < 0.05) by 26, 23 and 27% after 1 and 2 weeks in space and on landing day, respectively, compared with preflight values, which is also consistent with improved autoregulation. We conclude that human cerebral autoregulation is preserved, and possibly even improved, by short-duration spaceflight.
Novel silicon microchannels device for use in red blood cell deformability studies
NASA Astrophysics Data System (ADS)
Zheng, Xiao-Lin; Liao, Yan-Jian; Zhang, Wen-Xian
2001-10-01
Currently, a number of techniques are used to access cell deformability. We study a novel silicon microchannels device for use in red blood cell deformability. The channels are produced in silicon substrate using microengineering technology. The microgrooves formed in the surface of a single-crystal silicon substrate. They were converted to channels by tightly covering them with an optical flat glass plate. An array of flow channels (number 950 in parallel) have typical dimensions of 5 micrometers width X 5.5 Xm depth, and 30 micrometers length. There the RBC's are forced to pass through channels. Thus, the microchannels are used to simulate human blood capillaries. It provides a specific measurement of individual cell in terms of both flow velocity profile and an index of cell volume while the cell flow through the channels. It dominates the complex cellular flow behavior, such as, the viscosity of whole blood is a nonlinear function of shear rate, index of filtration, etc.
Mathematical modelling of flow distribution in the human cardiovascular system
NASA Technical Reports Server (NTRS)
Sud, V. K.; Srinivasan, R. S.; Charles, J. B.; Bungo, M. W.
1992-01-01
The paper presents a detailed model of the entire human cardiovascular system which aims to study the changes in flow distribution caused by external stimuli, changes in internal parameters, or other factors. The arterial-venous network is represented by 325 interconnected elastic segments. The mathematical description of each segment is based on equations of hydrodynamics and those of stress/strain relationships in elastic materials. Appropriate input functions provide for the pumping of blood by the heart through the system. The analysis employs the finite-element technique which can accommodate any prescribed boundary conditions. Values of model parameters are from available data on physical and rheological properties of blood and blood vessels. As a representative example, simulation results on changes in flow distribution with changes in the elastic properties of blood vessels are discussed. They indicate that the errors in the calculated overall flow rates are not significant even in the extreme case of arteries and veins behaving as rigid tubes.
Pulsatile spiral blood flow through arterial stenosis.
Linge, Fabian; Hye, Md Abdul; Paul, Manosh C
2014-11-01
Pulsatile spiral blood flow in a modelled three-dimensional arterial stenosis, with a 75% cross-sectional area reduction, is investigated by using numerical fluid dynamics. Two-equation k-ω model is used for the simulation of the transitional flow with Reynolds numbers 500 and 1000. It is found that the spiral component increases the static pressure in the vessel during the deceleration phase of the flow pulse. In addition, the spiral component reduces the turbulence intensity and wall shear stress found in the post-stenosis region of the vessel in the early stages of the flow pulse. Hence, the findings agree with the results of Stonebridge et al. (2004). In addition, the results of the effects of a spiral component on time-varying flow are presented and discussed along with the relevant pathological issues.
Wang, Lutao; Xiao, Jun; Chai, Hua
2015-08-01
The successful suppression of clutter arising from stationary or slowly moving tissue is one of the key issues in medical ultrasound color blood imaging. Remaining clutter may cause bias in the mean blood frequency estimation and results in a potentially misleading description of blood-flow. In this paper, based on the principle of general wall-filter, the design process of three classes of filters, infinitely impulse response with projection initialization (Prj-IIR), polynomials regression (Pol-Reg), and eigen-based filters are previewed and analyzed. The performance of the filters was assessed by calculating the bias and variance of a mean blood velocity using a standard autocorrelation estimator. Simulation results show that the performance of Pol-Reg filter is similar to Prj-IIR filters. Both of them can offer accurate estimation of mean blood flow speed under steady clutter conditions, and the clutter rejection ability can be enhanced by increasing the ensemble size of Doppler vector. Eigen-based filters can effectively remove the non-stationary clutter component, and further improve the estimation accuracy for low speed blood flow signals. There is also no significant increase in computation complexity for eigen-based filters when the ensemble size is less than 10.
Fluid dynamics in flexible tubes: An application to the study of the pulmonary circulation
NASA Technical Reports Server (NTRS)
Kuchar, N. R.
1971-01-01
Based on an analysis of unsteady, viscous flow through distensible tubes, a lumped-parameter model for the dynamics of blood flow through the pulmonary vascular bed was developed. The model is nonlinear, incorporating the variation of flow resistance with transmural pressure. Solved using a hybrid computer, the model yields information concerning the time-dependent behavior of blood pressures, flow rates, and volumes in each important class of vessels in each lobe of each lung in terms of the important physical and environmental parameters. Simulations of twenty abnormal or pathological situations of interest in environmental physiology and clinical medicine were performed. The model predictions agree well with physiological data.
NASA Astrophysics Data System (ADS)
Zhou, Chao; Yu, Guoqiang; Furuya, Daisuke; Greenberg, Joel; Yodh, Arjun; Durduran, Turgut
2006-02-01
Diffuse optical correlation methods were adapted for three-dimensional (3D) tomography of cerebral blood flow (CBF) in small animal models. The image reconstruction was optimized using a noise model for diffuse correlation tomography which enabled better data selection and regularization. The tomographic approach was demonstrated with simulated data and during in-vivo cortical spreading depression (CSD) in rat brain. Three-dimensional images of CBF were obtained through intact skull in tissues(~4mm) deep below the cortex.
Simulation of blood flow through an artificial heart
NASA Technical Reports Server (NTRS)
Kiris, Cetin; Chang, I-Dee; Rogers, Stuart E.; Kwak, Dochan
1991-01-01
A numerical simulation of the incompressible viscous flow through a prosthetic tilting disk heart valve is presented in order to demonstrate the current capability to model unsteady flows with moving boundaries. Both steady state and unsteady flow calculations are done by solving the incompressible Navier-Stokes equations in 3-D generalized curvilinear coordinates. In order to handle the moving boundary problems, the chimera grid embedding scheme which decomposes a complex computational domain into several simple subdomains is used. An algebraic turbulence model for internal flows is incorporated to reach the physiological values of Reynolds number. Good agreement is obtained between the numerical results and experimental measurements. It is found that the tilting disk valve causes large regions of separated flow, and regions of high shear.
Hemodynamics model of fluid–solid interaction in internal carotid artery aneurysms
Fu-Yu, Wang; Lei, Liu; Xiao-Jun, Zhang; Hai-Yue, Ju
2010-01-01
The objective of this study is to present a relatively simple method to reconstruct cerebral aneurysms as 3D numerical grids. The method accurately duplicates the geometry to provide computer simulations of the blood flow. Initial images were obtained by using CT angiography and 3D digital subtraction angiography in DICOM format. The image was processed by using MIMICS software, and the 3D fluid model (blood flow) and 3D solid model (wall) were generated. The subsequent output was exported to the ANSYS workbench software to generate the volumetric mesh for further hemodynamic study. The fluid model was defined and simulated in CFX software while the solid model was calculated in ANSYS software. The force data calculated firstly in the CFX software were transferred to the ANSYS software, and after receiving the force data, total mesh displacement data were calculated in the ANSYS software. Then, the mesh displacement data were transferred back to the CFX software. The data exchange was processed in workbench software. The results of simulation could be visualized in CFX-post. Two examples of grid reconstruction and blood flow simulation for patients with internal carotid artery aneurysms were presented. The wall shear stress, wall total pressure, and von Mises stress could be visualized. This method seems to be relatively simple and suitable for direct use by neurosurgeons or neuroradiologists, and maybe a practical tool for planning treatment and follow-up of patients after neurosurgical or endovascular interventions with 3D angiography. PMID:20812022
Hemodynamics model of fluid-solid interaction in internal carotid artery aneurysms.
Bai-Nan, Xu; Fu-Yu, Wang; Lei, Liu; Xiao-Jun, Zhang; Hai-Yue, Ju
2011-01-01
The objective of this study is to present a relatively simple method to reconstruct cerebral aneurysms as 3D numerical grids. The method accurately duplicates the geometry to provide computer simulations of the blood flow. Initial images were obtained by using CT angiography and 3D digital subtraction angiography in DICOM format. The image was processed by using MIMICS software, and the 3D fluid model (blood flow) and 3D solid model (wall) were generated. The subsequent output was exported to the ANSYS workbench software to generate the volumetric mesh for further hemodynamic study. The fluid model was defined and simulated in CFX software while the solid model was calculated in ANSYS software. The force data calculated firstly in the CFX software were transferred to the ANSYS software, and after receiving the force data, total mesh displacement data were calculated in the ANSYS software. Then, the mesh displacement data were transferred back to the CFX software. The data exchange was processed in workbench software. The results of simulation could be visualized in CFX-post. Two examples of grid reconstruction and blood flow simulation for patients with internal carotid artery aneurysms were presented. The wall shear stress, wall total pressure, and von Mises stress could be visualized. This method seems to be relatively simple and suitable for direct use by neurosurgeons or neuroradiologists, and maybe a practical tool for planning treatment and follow-up of patients after neurosurgical or endovascular interventions with 3D angiography.
Viscoelastic Transient of Confined Red Blood Cells
Prado, Gaël; Farutin, Alexander; Misbah, Chaouqi; Bureau, Lionel
2015-01-01
The unique ability of a red blood cell to flow through extremely small microcapillaries depends on the viscoelastic properties of its membrane. Here, we study in vitro the response time upon flow startup exhibited by red blood cells confined into microchannels. We show that the characteristic transient time depends on the imposed flow strength, and that such a dependence gives access to both the effective viscosity and the elastic modulus controlling the temporal response of red cells. A simple theoretical analysis of our experimental data, validated by numerical simulations, further allows us to compute an estimate for the two-dimensional membrane viscosity of red blood cells, ηmem2D ∼ 10−7 N⋅s⋅m−1. By comparing our results with those from previous studies, we discuss and clarify the origin of the discrepancies found in the literature regarding the determination of ηmem2D, and reconcile seemingly conflicting conclusions from previous works. PMID:25954871
Long-range ordered vorticity patterns in living tissue induced by cell division
NASA Astrophysics Data System (ADS)
Rossen, Ninna S.; Tarp, Jens M.; Mathiesen, Joachim; Jensen, Mogens H.; Oddershede, Lene B.
2014-12-01
In healthy blood vessels with a laminar blood flow, the endothelial cell division rate is low, only sufficient to replace apoptotic cells. The division rate significantly increases during embryonic development and under halted or turbulent flow. Cells in barrier tissue are connected and their motility is highly correlated. Here we investigate the long-range dynamics induced by cell division in an endothelial monolayer under non-flow conditions, mimicking the conditions during vessel formation or around blood clots. Cell divisions induce long-range, well-ordered vortex patterns extending several cell diameters away from the division site, in spite of the system’s low Reynolds number. Our experimental results are reproduced by a hydrodynamic continuum model simulating division as a local pressure increase corresponding to a local tension decrease. Such long-range physical communication may be crucial for embryonic development and for healing tissue, for instance around blood clots.
A 2D nonlinear multiring model for blood flow in large elastic arteries
NASA Astrophysics Data System (ADS)
Ghigo, Arthur R.; Fullana, Jose-Maria; Lagrée, Pierre-Yves
2017-12-01
In this paper, we propose a two-dimensional nonlinear ;multiring; model to compute blood flow in axisymmetric elastic arteries. This model is designed to overcome the numerical difficulties of three-dimensional fluid-structure interaction simulations of blood flow without using the over-simplifications necessary to obtain one-dimensional blood flow models. This multiring model is derived by integrating over concentric rings of fluid the simplified long-wave Navier-Stokes equations coupled to an elastic model of the arterial wall. The resulting system of balance laws provides a unified framework in which both the motion of the fluid and the displacement of the wall are dealt with simultaneously. The mathematical structure of the multiring model allows us to use a finite volume method that guarantees the conservation of mass and the positivity of the numerical solution and can deal with nonlinear flows and large deformations of the arterial wall. We show that the finite volume numerical solution of the multiring model provides at a reasonable computational cost an asymptotically valid description of blood flow velocity profiles and other averaged quantities (wall shear stress, flow rate, ...) in large elastic and quasi-rigid arteries. In particular, we validate the multiring model against well-known solutions such as the Womersley or the Poiseuille solutions as well as against steady boundary layer solutions in quasi-rigid constricted and expanded tubes.
Vertebral osteoporosis: perfused animal cadaver model for testing new vertebroplastic agents.
Hoell, Thomas; Huschak, Gerald; Beier, Andre; Holzhausen, Hans-Juergen; Meisel, Hans-Joerg; Emmrich, Frank
2010-12-01
Experimental study. It was aimed to establish a cadaver model to imitate osteoporotic perfused vertebral bone and to allow for transpedicular transfer of bone cement and various new materials into vertebrae. The model was perfused to simulate vertebroplasty in the presence of transvertebral blood flow. The injection of bone cement into vertebrae bears the risk of irreversible discharge of material into the venous system of the spinal canal. The bovine cadaver model studied allows visual studies of material distribution in a vertebral bone, the potential spill-out of material, and quantification of washout and disintegration phenomena. Thoracic and lumbar vertebrae from 1-year-old calves were cut transversally into 5 mm slices, macerated, and decalcified. The softened bone slices were compressed between 2 transparent plastic discs. A standard vertebroplasty cannula (outer diameter 3.5 mm, inner diameter 2.5 mm) was inserted into the vertebral body via the pedicle to transfer the different vertebroplasty materials. Arterial blood flow was simulated by means of liquid irrigation via 2 needles in the ventral part of the vertebral body slice. Metal powder was mixed with the solution to indicate the blood flow in the bone. The model was evaluated with the vertebroplasty cement polymethylmethacrylate. The model permitted visualization of the insertion and distribution of vertebroplasty materials. Liquid bone cement was effused into the spinal canal as in the clinical situation. Higher modulus cement acted in the same way as in clinical vertebroplasty. Rigid vertebroplasty agents led to trabecular fractures and stable mechanical interactions with the bone and eventually moved dorsal bone fragments into the spinal canal. Sedimentation of the metal powder indicated regions of perfusion. The model simulated the clinical behavior of liquid and higher modulus vertebroplasty agents in the presence of blood flow. It enabled safe ex vivo testing of the mechanical and physical properties of alternative vertebroplasty materials under flow conditions.
Numerical Models of Human Circulatory System under Altered Gravity: Brain Circulation
NASA Technical Reports Server (NTRS)
Kim, Chang Sung; Kiris, Cetin; Kwak, Dochan; David, Tim
2003-01-01
A computational fluid dynamics (CFD) approach is presented to model the blood flow through the human circulatory system under altered gravity conditions. Models required for CFD simulation relevant to major hemodynamic issues are introduced such as non-Newtonian flow models governed by red blood cells, a model for arterial wall motion due to fluid-wall interactions, a vascular bed model for outflow boundary conditions, and a model for auto-regulation mechanism. The three-dimensional unsteady incompressible Navier-Stokes equations coupled with these models are solved iteratively using the pseudocompressibility method and dual time stepping. Moving wall boundary conditions from the first-order fluid-wall interaction model are used to study the influence of arterial wall distensibility on flow patterns and wall shear stresses during the heart pulse. A vascular bed modeling utilizing the analogy with electric circuits is coupled with an auto-regulation algorithm for multiple outflow boundaries. For the treatment of complex geometry, a chimera overset grid technique is adopted to obtain connectivity between arterial branches. For code validation, computed results are compared with experimental data for steady and unsteady non-Newtonian flows. Good agreement is obtained for both cases. In sin-type Gravity Benchmark Problems, gravity source terms are added to the Navier-Stokes equations to study the effect of gravitational variation on the human circulatory system. This computational approach is then applied to localized blood flows through a realistic carotid bifurcation and two Circle of Willis models, one using an idealized geometry and the other model using an anatomical data set. A three- dimensional anatomical Circle of Willis configuration is reconstructed from human-specific magnetic resonance images using an image segmentation method. The blood flow through these Circle of Willis models is simulated to provide means for studying gravitational effects on the brain circulation under auto-regulation.
Zhang, Chi; Li, Shuyu; Pu, Fang; Fan, Yubo; Li, Deyu
2014-01-01
The anatomic variation of Circle of Willis (CoW) has great impact on its compensatory capacity during stroke and cerebral ischemia. In the present study, a series of lumped parameter models were developed and used to simulate the effect of postural changes on the cerebral blood flow in ICA stenosis patients with different anatomic variants of the CoW. The results showed that the asymmetric distribution of cerebral blood flow caused by stenosis was attenuated in standing position in complete and half-complete CoW. However, in incomplete CoW, the decrease in blood flow in the ipsilateral cerebral arteries caused by unilateral ICA stenosis was dramatic in both supine and standing positions, a likely result of inadequate collateral circulation within the CoW. In conclusion, the anatomic variation of CoW plays a significant role in maintaining the balance of cerebral blood supply in patients with ICA stenosis, especially during postural change.
Endo, Hidenori; Niizuma, Kuniyasu; Endo, Toshiki; Funamoto, Kenichi; Ohta, Makoto; Tominaga, Teiji
2016-01-01
This was a proof-of-concept computational fluid dynamics (CFD) study designed to identify atherosclerotic changes in intracranial aneurysms. We selected 3 patients with multiple unruptured aneurysms including at least one with atherosclerotic changes and investigated whether an image-based CFD study could provide useful information for discriminating the atherosclerotic aneurysms. Patient-specific geometries were constructed from three-dimensional data obtained using rotational angiography. Transient simulations were conducted under patient-specific inlet flow rates measured by phase-contrast magnetic resonance velocimetry. In the postanalyses, we calculated time-averaged wall shear stress (WSS), oscillatory shear index, and relative residence time (RRT). The volume of blood flow entering aneurysms through the neck and the mean velocity of blood flow inside aneurysms were examined. We applied the age-of-fluid method to quantitatively assess the residence of blood inside aneurysms. Atherosclerotic changes coincided with regions exposed to disturbed blood flow, as indicated by low WSS and long RRT. Blood entered aneurysms in phase with inlet flow rates. The mean velocities of blood inside atherosclerotic aneurysms were lower than those inside nonatherosclerotic aneurysms. Blood in atherosclerotic aneurysms was older than that in nonatherosclerotic aneurysms, especially near the wall. This proof-of-concept study demonstrated that CFD analysis provided detailed information on the exchange and residence of blood that is useful for the diagnosis of atherosclerotic changes in intracranial aneurysms. PMID:27703491
Laser Speckle Imaging of Blood Flow Beneath Static Scattering Media
NASA Astrophysics Data System (ADS)
Regan, Caitlin Anderson
Laser speckle imaging (LSI) is a wide-field optical imaging technique that provides information about the movement of scattering particles in biological samples. LSI is used to create maps of relative blood flow and perfusion in samples such as the skin, brain, teeth, gingiva, and other biological tissues. The presence of static, or non-moving, optical scatterers affects the ability of LSI to provide true quantitative and spatially resolved measurements of blood flow. With in vitro experiments using tissue-simulating phantoms, we determined that temporal analysis of raw speckle image sequences improved the quantitative accuracy of LSI to measure flow beneath a static scattering layer. We then applied the temporal algorithm to assess the potential of LSI to monitor oral health. We designed and tested two generations of miniature LSI devices to measure flow in the pulpal chamber of teeth and in the gingiva. Our preliminary clinical pilot data indicated that speckle contrast may correlate with gingival health. To improve visualization of subsurface blood vessels, we developed a technique called photothermal LSI. We applied a short pulse of laser energy to selectively perturb the motion of red blood cells, increasing the signal from vasculature relative to the surroundings. To study the spectral and depth dependence of laser speckle contrast, we developed a Monte Carlo model of light and momentum transport to simulate speckle contrast. With an increase in the thickness of the overlying static-scattering layer, we observed a quadratic decrease in the quantity of dynamically scattered light collected by the detector. We next applied the model to study multi-exposure speckle imaging (MESI), a method that purportedly improves quantitative accuracy of subsurface blood flow measurements. We unexpectedly determined that MESI faced similar depth limitations as conventional LSI, findings that were supported by in vitro experimental data. Finally, we used the model to study the effects of epidermal melanin absorption on LSI, and demonstrated that speckle contrast is less sensitive to varying melanin content than reflectance. We then proposed a two-wavelength measurement protocol that may enable melanin-independent LSI measurements of blood flow in patients with varying skin types. In conclusion, through in vitro and in silico experiments, we were able to further the understanding of the depth dependent origins of laser speckle contrast as well as the inherent limitations of this technology.
A review of state-of-the-art numerical methods for simulating flow through mechanical heart valves.
Sotiropoulos, Fotis; Borazjani, Iman
2009-03-01
In nearly half of the heart valve replacement surgeries performed annually, surgeons prefer to implant bileaflet mechanical heart valves (BMHV) because of their durability and long life span. All current BMHV designs, however, are prone to thromboembolic complications and implant recipients need to be on a life-long anticoagulant medication regiment. Non-physiologic flow patterns and turbulence generated by the valve leaflets are believed to be the major culprit for the increased risk of thromboembolism in BMHV implant recipients. In this paper, we review recent advances in developing predictive fluid-structure interaction (FSI) algorithms that can simulate BMHV flows at physiologic conditions and at resolution sufficiently fine to start probing the links between hemodynamics and blood-cell damage. Numerical simulations have provided the first glimpse into the complex hemodynamic environment experienced by blood cells downstream of the valve leaflets and successfully resolved for the first time the experimentally observed explosive transition to a turbulent-like state at the start of the decelerating flow phase. The simulations have also resolved a number of subtle features of experimentally observed valve kinematics, such as the asymmetric opening and closing of the leaflets and the leaflet rebound during closing. The paper also discusses a future research agenda toward developing a powerful patient-specific computational framework for optimizing valve design and implantation in a virtual surgery environment.
A review of state-of-the-art numerical methods for simulating flow through mechanical heart valves
Borazjani, Iman
2009-01-01
In nearly half of the heart valve replacement surgeries performed annually, surgeons prefer to implant bileaflet mechanical heart valves (BMHV) because of their durability and long life span. All current BMHV designs, however, are prone to thromboembolic complications and implant recipients need to be on a life-long anticoagulant medication regiment. Non-physiologic flow patterns and turbulence generated by the valve leaflets are believed to be the major culprit for the increased risk of thromboembolism in BMHV implant recipients. In this paper, we review recent advances in developing predictive fluid–structure interaction (FSI) algorithms that can simulate BMHV flows at physiologic conditions and at resolution sufficiently fine to start probing the links between hemodynamics and blood-cell damage. Numerical simulations have provided the first glimpse into the complex hemodynamic environment experienced by blood cells downstream of the valve leaflets and successfully resolved for the first time the experimentally observed explosive transition to a turbulent-like state at the start of the decelerating flow phase. The simulations have also resolved a number of subtle features of experimentally observed valve kinematics, such as the asymmetric opening and closing of the leaflets and the leaflet rebound during closing. The paper also discusses a future research agenda toward developing a powerful patient-specific computational framework for optimizing valve design and implantation in a virtual surgery environment. PMID:19194734
Theory to predict particle migration and margination in the pressure-driven channel flow of blood
NASA Astrophysics Data System (ADS)
Qi, Qin M.; Shaqfeh, Eric S. G.
2017-09-01
The inhomogeneous concentration distribution of erythrocytes and platelets in microchannel flows particularly in directions normal to the mean flow plays a significant role in hemostasis, drug delivery, and microfluidic applications. In this paper, we develop a coarse-grained theory to predict these distributions in pressure-driven channel flow at zero Reynolds number and compare them to experiments and simulations. We demonstrate that the balance between the deformability-induced lift force and the shear-induced diffusion created by hydrodynamic interactions in the suspension results in both a peak concentration of red blood cells at the channel center and a cell-free or Fahraeus-Lindqvist layer near the walls. On the other hand, the absence of a lift force and the strong red blood cell-platelet interactions result in an excess concentration of platelets in the cell-free layer. We demonstrate a strong role of hematocrit (i.e., erythrocyte volume fraction) in determining the cell-free layer thickness and the degree of platelet margination. We also demonstrate that the capillary number of the erythrocytes, based on the membrane shear modulus, plays a relatively insignificant role in the regimes that we have studied. Our theory serves as a good and simple alternative to large-scale computer simulations of the cross-stream transport processes in these mixtures.
A method for the computational modeling of the physics of heart murmurs
NASA Astrophysics Data System (ADS)
Seo, Jung Hee; Bakhshaee, Hani; Garreau, Guillaume; Zhu, Chi; Andreou, Andreas; Thompson, William R.; Mittal, Rajat
2017-05-01
A computational method for direct simulation of the generation and propagation of blood flow induced sounds is proposed. This computational hemoacoustic method is based on the immersed boundary approach and employs high-order finite difference methods to resolve wave propagation and scattering accurately. The current method employs a two-step, one-way coupled approach for the sound generation and its propagation through the tissue. The blood flow is simulated by solving the incompressible Navier-Stokes equations using the sharp-interface immersed boundary method, and the equations corresponding to the generation and propagation of the three-dimensional elastic wave corresponding to the murmur are resolved with a high-order, immersed boundary based, finite-difference methods in the time-domain. The proposed method is applied to a model problem of aortic stenosis murmur and the simulation results are verified and validated by comparing with known solutions as well as experimental measurements. The murmur propagation in a realistic model of a human thorax is also simulated by using the computational method. The roles of hemodynamics and elastic wave propagation on the murmur are discussed based on the simulation results.
Extensional flow of blood analog solutions in microfluidic devices
Sousa, P. C.; Pinho, F. T.; Oliveira, M. S. N.; Alves, M. A.
2011-01-01
In this study, we show the importance of extensional rheology, in addition to the shear rheology, in the choice of blood analog solutions intended to be used in vitro for mimicking the microcirculatory system. For this purpose, we compare the flow of a Newtonian fluid and two well-established viscoelastic blood analog polymer solutions through microfluidic channels containing both hyperbolic and abrupt contractions∕expansions. The hyperbolic shape was selected in order to impose a nearly constant strain rate at the centerline of the microchannels and achieve a quasihomogeneous and strong extensional flow often found in features of the human microcirculatory system such as stenoses. The two blood analog fluids used are aqueous solutions of a polyacrylamide (125 ppm w∕w) and of a xanthan gum (500 ppm w∕w), which were characterized rheologically in steady-shear flow using a rotational rheometer and in extension using a capillary breakup extensional rheometer (CaBER). Both blood analogs exhibit a shear-thinning behavior similar to that of whole human blood, but their relaxation times, obtained from CaBER experiments, are substantially different (by one order of magnitude). Visualizations of the flow patterns using streak photography, measurements of the velocity field using microparticle image velocimetry, and pressure-drop measurements were carried out experimentally for a wide range of flow rates. The experimental results were also compared with the numerical simulations of the flow of a Newtonian fluid and a generalized Newtonian fluid with shear-thinning behavior. Our results show that the flow patterns of the two blood analog solutions are considerably different, despite their similar shear rheology. Furthermore, we demonstrate that the elastic properties of the fluid have a major impact on the flow characteristics, with the polyacrylamide solution exhibiting a much stronger elastic character. As such, these properties must be taken into account in the choice or development of analog fluids that are adequate to replicate blood behavior at the microscale. PMID:21483662
Deng, Mingge; Li, Xuejin; Liang, Haojun; Caswell, Bruce; Karniadakis, George Em
2013-01-01
Fabrication of functionalized surfaces using polymer brushes is a relatively simple process and parallels the presence of glycocalyx filaments coating the luminal surface of our vasculature. In this paper, we perform atomistic-like simulations based on dissipative particle dynamics (DPD) to study both polymer brushes and glycocalyx filaments subject to shear flow, and we apply mean-field theory to extract useful scaling arguments on their response. For polymer brushes, a weak shear flow has no effect on the brush density profile or its height, while the slip length is independent of the shear rate and is of the order of the brush mesh size as a result of screening by hydrodynamic interactions. However, for strong shear flow, the polymer brush is penetrated deeper and is deformed, with a corresponding decrease of the brush height and an increase of the slip length. The transition from the weak to the strong shear regime can be described by a simple ‘blob’ argument, leading to the scaling γ̇0 ∝ σ3/2, where γ̇0 is the critical transition shear rate and σ is the grafting density. Furthermore, in the strong shear regime, we observe a cyclic dynamic motion of individual polymers, causing a reversal in the direction of surface flow. To study the glycocalyx layer, we first assume a homogeneous flow that ignores the discrete effects of blood cells, and we simulate microchannel flows at different flow rates. Surprisingly, we find that, at low Reynolds number, the slip length decreases with the mean flow velocity, unlike the behaviour of polymer brushes, for which the slip length remains constant under similar conditions. (The slip length and brush height are measured with respect to polymer mesh size and polymer contour length, respectively.) We also performed additional DPD simulations of blood flow in a tube with walls having a glycocalyx layer and with the deformable red blood cells modelled accurately at the spectrin level. In this case, a plasma cell-free layer is formed, with thickness more than three times the glycocalyx layer. We then find our scaling arguments based on the homogeneous flow assumption to be valid for this physiologically correct case as well. Taken together, our findings point to the opposing roles of conformational entropy and bending rigidity – dominant effects for the brush and glycocalyx, respectively – which, in turn, lead to different flow characteristics, despite the apparent similarity of the two systems. PMID:24353347
Li, Ting; Lin, Yu; Shang, Yu; He, Lian; Huang, Chong; Szabunio, Margaret; Yu, Guoqiang
2013-01-01
We report a novel noncontact diffuse correlation spectroscopy flow-oximeter for simultaneous quantification of relative changes in tissue blood flow (rBF) and oxygenation (Δ[oxygenation]). The noncontact probe was compared against a contact probe in tissue-like phantoms and forearm muscles (n = 10), and the dynamic trends in both rBF and Δ[oxygenation] were found to be highly correlated. However, the magnitudes of Δ[oxygenation] measured by the two probes were significantly different. Monte Carlo simulations and phantom experiments revealed that the arm curvature resulted in a significant underestimation (~−20%) for the noncontact measurements in Δ[oxygenation], but not in rBF. Other factors that may cause the residual discrepancies between the contact and noncontact measurements were discussed, and further comparisons with other established technologies are needed to identify/quantify these factors. Our research paves the way for noncontact and simultaneous monitoring of blood flow and oxygenation in soft and vulnerable tissues without distorting tissue hemodynamics. PMID:23446991
Multiscale modeling and simulation of blood flow in coronary artery bypass graft surgeries
NASA Astrophysics Data System (ADS)
Sankaran, Sethuraman; Esmaily Moghadam, Mahdi; Kahn, Andy; Marsden, Alison
2011-11-01
We present a computational framework for modeling and simulation of blood flow in patients who undergo coronary artery bypass graft (CABG) surgeries. We evaluate the influence of shape on the homeostatic state, cardiac output, and other quantities of interest. We present a case study on a patient with multiple CABG. We build a patient-specific model of the blood vessels comprised of the aorta, vessels branching from the top of the aorta (brachiocephalic artery and carotids) and the coronary arteries, in addition to bypass grafts. The rest of the circulatory system is modeled using lumped parameter 0D models comprised of resistances, compliances, inertances and elastance. An algorithm is presented that computes these parameters automatically given constraints on the flow. A Finite element framework is used to compute blood flow and pressure in the 3D model to which the 0D code is coupled at the model inlets and outlets. An adaptive closed loop BC is used to capture the coupling of the various outlets of the model with inlets, and is compared with a model with fixed inlet BC. We compare and contrast the pressure, flowrate, coronary perfusion, and PV curves obtained in the different cases. Further, we compare and contrast quantities of interest such as wall shear stress, wall shear stress gradients and oscillatory shear index for different surgical geometries and discuss implications of patient-specific optimization. I would like to acknowlege AHA for funding this work.
Abdollahzadeh Jamalabadi, Mohammad Yaghoub; Daqiqshirazi, Mohammadreza; Nasiri, Hossein; Safaei, Mohammad Reza; Nguyen, Truong Khang
2018-01-01
We present a numerical investigation of tapered arteries that addresses the transient simulation of non-Newtonian bio-magnetic fluid dynamics (BFD) of blood through a stenosis artery in the presence of a transverse magnetic field. The current model is consistent with ferro-hydrodynamic (FHD) and magneto-hydrodynamic (MHD) principles. In the present work, blood in small arteries is analyzed using the Carreau-Yasuda model. The arterial wall is assumed to be fixed with cosine geometry for the stenosis. A parametric study was conducted to reveal the effects of the stenosis intensity and the Hartman number on a wide range of flow parameters, such as the flow velocity, temperature, and wall shear stress. Current findings are in a good agreement with recent findings in previous research studies. The results show that wall temperature control can keep the blood in its ideal blood temperature range (below 40°C) and that a severe pressure drop occurs for blockages of more than 60 percent. Additionally, with an increase in the Ha number, a velocity drop in the blood vessel is experienced.
NASA Astrophysics Data System (ADS)
Bureau, Lionel; Coupier, Gwennou; Dubois, Frank; Duperray, Alain; Farutin, Alexander; Minetti, Christophe; Misbah, Chaouqi; Podgorski, Thomas; Tsvirkun, Daria; Vysokikh, Mikhail
2017-01-01
The absence of gravity during space flight can alter cardio-vascular functions partially due to reduced physical activity. This affects the overall hemodynamics, and in particular the level of shear stresses to which blood vessels are submitted. Long-term exposure to space environment is thus susceptible to induce vascular remodeling through a mechanotransduction cascade that couples vessel shape and function with the mechanical cues exerted by the circulating cells on the vessel walls. Central to such processes, the glycocalyx - i.e. the micron-thick layer of biomacromolecules that lines the lumen of blood vessels and is directly exposed to blood flow - is a major actor in the regulation of biochemical and mechanical interactions. We discuss in this article several experiments performed under microgravity, such as the determination of lift force and collective motion in blood flow, and some preliminary results obtained in artificial microfluidic circuits functionalized with endothelium that offer interesting perspectives for the study of the interactions between blood and endothelium in healthy condition as well as by mimicking the degradation of glycocalyx caused by long space missions. A direct comparison between experiments and simulations is discussed. xml:lang="fr"
Effects of Thermal Status on Markers of Blood Coagulation During Simulated Hemorrhage
2015-04-01
handgrip exercise. J Appl Physiol 66: 1586 –1592, 1989. 50. Wade OL, Bishop JM. Cardiac Output and Regional Blood Flow. Oxford: Blackwell Scientific...CM (1989) Cuta neous vascular responses to isometric handgrip exercise. J Appl Physiol 66: 1586 1592 28. Wilson TE, Cui J, Zhang R, Crandall CG (2006
An effective fractal-tree closure model for simulating blood flow in large arterial networks.
Perdikaris, Paris; Grinberg, Leopold; Karniadakis, George Em
2015-06-01
The aim of the present work is to address the closure problem for hemodynamic simulations by developing a flexible and effective model that accurately distributes flow in the downstream vasculature and can stably provide a physiological pressure outflow boundary condition. To achieve this goal, we model blood flow in the sub-pixel vasculature by using a non-linear 1D model in self-similar networks of compliant arteries that mimic the structure and hierarchy of vessels in the meso-vascular regime (radii [Formula: see text]). We introduce a variable vessel length-to-radius ratio for small arteries and arterioles, while also addressing non-Newtonian blood rheology and arterial wall viscoelasticity effects in small arteries and arterioles. This methodology aims to overcome substantial cut-off radius sensitivities, typically arising in structured tree and linearized impedance models. The proposed model is not sensitive to outflow boundary conditions applied at the end points of the fractal network, and thus does not require calibration of resistance/capacitance parameters typically required for outflow conditions. The proposed model convergences to a periodic state in two cardiac cycles even when started from zero-flow initial conditions. The resulting fractal-trees typically consist of thousands to millions of arteries, posing the need for efficient parallel algorithms. To this end, we have scaled up a Discontinuous Galerkin solver that utilizes the MPI/OpenMP hybrid programming paradigm to thousands of computer cores, and can simulate blood flow in networks of millions of arterial segments at the rate of one cycle per 5 min. The proposed model has been extensively tested on a large and complex cranial network with 50 parent, patient-specific arteries and 21 outlets to which fractal trees where attached, resulting to a network of up to 4,392,484 vessels in total, and a detailed network of the arm with 276 parent arteries and 103 outlets (a total of 702,188 vessels after attaching the fractal trees), returning physiological flow and pressure wave predictions without requiring any parameter estimation or calibration procedures. We present a novel methodology to overcome substantial cut-off radius sensitivities.
Xu, Shixin; Xu, Zhiliang; Kim, Oleg V; Litvinov, Rustem I; Weisel, John W; Alber, Mark
2017-11-01
Thromboembolism, one of the leading causes of morbidity and mortality worldwide, is characterized by formation of obstructive intravascular clots (thrombi) and their mechanical breakage (embolization). A novel two-dimensional multi-phase computational model is introduced that describes active interactions between the main components of the clot, including platelets and fibrin, to study the impact of various physiologically relevant blood shear flow conditions on deformation and embolization of a partially obstructive clot with variable permeability. Simulations provide new insights into mechanisms underlying clot stability and embolization that cannot be studied experimentally at this time. In particular, model simulations, calibrated using experimental intravital imaging of an established arteriolar clot, show that flow-induced changes in size, shape and internal structure of the clot are largely determined by two shear-dependent mechanisms: reversible attachment of platelets to the exterior of the clot and removal of large clot pieces. Model simulations predict that blood clots with higher permeability are more prone to embolization with enhanced disintegration under increasing shear rate. In contrast, less permeable clots are more resistant to rupture due to shear rate-dependent clot stiffening originating from enhanced platelet adhesion and aggregation. These results can be used in future to predict risk of thromboembolism based on the data about composition, permeability and deformability of a clot under specific local haemodynamic conditions. © 2017 The Author(s).
Ghaffari, Mahsa; Tangen, Kevin; Alaraj, Ali; Du, Xinjian; Charbel, Fady T; Linninger, Andreas A
2017-12-01
In this paper, we present a novel technique for automatic parametric mesh generation of subject-specific cerebral arterial trees. This technique generates high-quality and anatomically accurate computational meshes for fast blood flow simulations extending the scope of 3D vascular modeling to a large portion of cerebral arterial trees. For this purpose, a parametric meshing procedure was developed to automatically decompose the vascular skeleton, extract geometric features and generate hexahedral meshes using a body-fitted coordinate system that optimally follows the vascular network topology. To validate the anatomical accuracy of the reconstructed vasculature, we performed statistical analysis to quantify the alignment between parametric meshes and raw vascular images using receiver operating characteristic curve. Geometric accuracy evaluation showed an agreement with area under the curves value of 0.87 between the constructed mesh and raw MRA data sets. Parametric meshing yielded on-average, 36.6% and 21.7% orthogonal and equiangular skew quality improvement over the unstructured tetrahedral meshes. The parametric meshing and processing pipeline constitutes an automated technique to reconstruct and simulate blood flow throughout a large portion of the cerebral arterial tree down to the level of pial vessels. This study is the first step towards fast large-scale subject-specific hemodynamic analysis for clinical applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Speckle variance optical coherence tomography of blood flow in the beating mouse embryonic heart.
Grishina, Olga A; Wang, Shang; Larina, Irina V
2017-05-01
Efficient separation of blood and cardiac wall in the beating embryonic heart is essential and critical for experiment-based computational modelling and analysis of early-stage cardiac biomechanics. Although speckle variance optical coherence tomography (SV-OCT) relying on calculation of intensity variance over consecutively acquired frames is a powerful approach for segmentation of fluid flow from static tissue, application of this method in the beating embryonic heart remains challenging because moving structures generate SV signal indistinguishable from the blood. Here, we demonstrate a modified four-dimensional SV-OCT approach that effectively separates the blood flow from the dynamic heart wall in the beating mouse embryonic heart. The method takes advantage of the periodic motion of the cardiac wall and is based on calculation of the SV signal over the frames corresponding to the same phase of the heartbeat cycle. Through comparison with Doppler OCT imaging, we validate this speckle-based approach and show advantages in its insensitiveness to the flow direction and velocity as well as reduced influence from the heart wall movement. This approach has a potential in variety of applications relying on visualization and segmentation of blood flow in periodically moving structures, such as mechanical simulation studies and finite element modelling. Picture: Four-dimensional speckle variance OCT imaging shows the blood flow inside the beating heart of an E8.5 mouse embryo. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Tang, Yundong; Flesch, Rodolfo C. C.; Jin, Tao
2017-06-01
Magnetic hyperthermia ablates tumor cells by absorbing the thermal energy from magnetic nanoparticles (MNPs) under an external alternating magnetic field. The blood vessels (BVs) within tumor region can generally reduce treatment effectiveness due to the cooling effect of blood flow. This paper aims to investigate the cooling effect of BVs on the temperature field of malignant tumor regions using a complex geometric model and numerical simulation. For deriving the model, the Navier-Stokes equation for blood flow is combined with Pennes bio-heat transfer equation for human tissue. The effects on treatment temperature caused by two different BV distributions inside a mammary tumor are analyzed through numerical simulation under different conditions of flow rate considering a Fe-Cr-Nb-B alloy, which has low Curie temperature ranging from 42 °C to 45 °C. Numerical results show that the multi-vessel system has more obvious cooling effects than the single vessel one on the temperature field distribution for hyperthermia. Besides, simulation results show that the temperature field within tumor area can also be influenced by the velocity and diameter of BVs. To minimize the cooling effect, this article proposes a treatment method based on the increase of the thermal energy provided to MNPs associated with the adoption of low Curie temperature particles recently reported in literature. Results demonstrate that this approach noticeably improves the uniformity of the temperature field, and shortens the treatment time in a Fe-Cr-Nb-B system, thus reducing the side effects to the patient.
Laser doppler blood flow imaging using a CMOS imaging sensor with on-chip signal processing.
He, Diwei; Nguyen, Hoang C; Hayes-Gill, Barrie R; Zhu, Yiqun; Crowe, John A; Gill, Cally; Clough, Geraldine F; Morgan, Stephen P
2013-09-18
The first fully integrated 2D CMOS imaging sensor with on-chip signal processing for applications in laser Doppler blood flow (LDBF) imaging has been designed and tested. To obtain a space efficient design over 64 × 64 pixels means that standard processing electronics used off-chip cannot be implemented. Therefore the analog signal processing at each pixel is a tailored design for LDBF signals with balanced optimization for signal-to-noise ratio and silicon area. This custom made sensor offers key advantages over conventional sensors, viz. the analog signal processing at the pixel level carries out signal normalization; the AC amplification in combination with an anti-aliasing filter allows analog-to-digital conversion with a low number of bits; low resource implementation of the digital processor enables on-chip processing and the data bottleneck that exists between the detector and processing electronics has been overcome. The sensor demonstrates good agreement with simulation at each design stage. The measured optical performance of the sensor is demonstrated using modulated light signals and in vivo blood flow experiments. Images showing blood flow changes with arterial occlusion and an inflammatory response to a histamine skin-prick demonstrate that the sensor array is capable of detecting blood flow signals from tissue.
Computational modeling of HHH therapy and impact of blood pressure and hematocrit.
Robinson, Joe Sam; Walid, M Sami; Hyun, Sinjae; O'Connell, Robert; Menard, Chris; Bohleber, Brandi
2010-01-01
After an aneurysmal subarachnoid hemorrhage, cerebral microcirculatory changes occur as a result cerebral vasospasm. The objective of this study is to investigate, with a computational model, how various degrees of vasospasm are influenced by increasing the mean blood pressure and decreasing the blood viscosity. Using ANSYS CFX software, a computational model was constructed to simulate steady-state fully developed laminar blood flow through a rigid wall system consisting of the internal carotid artery (ICA), anterior cerebral artery, posterior cerebral artery, and middle cerebral artery (MCA). The MCA was selected for the site of a single acute vasospasm. Five severities of vasospasm were studied: 3 mm (normal), 2.5, 2, 1.5, and 1 mm. The ICA was assumed to have a constant inlet flow rate of 315 mL/min. The anterior cerebral artery and posterior cerebral artery were assumed to have constant outlet flow rates of 105 mL/min and 30 mL/min, respectively. The MCA was assumed to have a constant outlet pressure of 92 mL/min. Two different hematocrits, 45% and 32%, were simulated using the models. For a hematocrit of 45, the mean ICA inlet pressure required to pump blood through the system was 104 mm Hg for the 3-mm diameter MCA and 105, 108, 116, and 158 mm Hg for vasospasm diameters of 2.5, 2, 1.5, and 1 mm, respectively. For a hematocrit of 32, the mean ICA inlet pressure required was 102, 103, 105, 113, and 152 mm Hg, respectively. The MCA required a large increase in mean ICA inlet pressure for vasospasm diameters less than 1.5 mm, which suggests that for vasospasms more than 50% diameter reduction, the blood pressure must be increased dramatically. Decreasing the hematocrit had minimal impact on blood flow in a constricted vessel. Copyright © 2010 Elsevier Inc. All rights reserved.
Flow pumping system for physiological waveforms.
Tsai, William; Savaş, Omer
2010-02-01
A pulsatile flow pumping system is developed to replicate flow waveforms with reasonable accuracy for experiments simulating physiological blood flows at numerous points in the body. The system divides the task of flow waveform generation between two pumps: a gear pump generates the mean component and a piston pump generates the oscillatory component. The system is driven by two programmable servo controllers. The frequency response of the system is used to characterize its operation. The system has been successfully tested in vascular flow experiments where sinusoidal, carotid, and coronary flow waveforms are replicated.
NASA Astrophysics Data System (ADS)
Calderer, Antoni; Neal, Douglas; Prevost, Richard; Mayrhofer, Arno; Lawrenz, Alan; Foss, John; Sotiropoulos, Fotis
2015-11-01
Secondary flows in a rotating flow in a cylinder, resulting in the so called ``tea leaf paradox'', are fundamental for understanding atmospheric pressure systems, developing techniques for separating red blood cells from the plasma, and even separating coagulated trub in the beer brewing process. We seek to gain deeper insights in this phenomenon by integrating numerical simulations and experiments. We employ the Curvilinear Immersed boundary method (CURVIB) of Calderer et al. (J. Comp. Physics 2014), which is a two-phase flow solver based on the level set method, to simulate rotating free-surface flow in a cylinder partially filled with water as in the tea leave paradox flow. We first demonstrate the validity of the numerical model by simulating a cylinder with a rotating base filled with a single fluid, obtaining results in excellent agreement with available experimental data. Then, we present results for the cylinder case with free surface, investigate the complex formation of secondary flow patterns, and show comparisons with new experimental data for this flow obtained by Lavision. Computational resources were provided by the Minnesota Supercomputing Institute.
Simulation-optimization model for production planning in the blood supply chain.
Osorio, Andres F; Brailsford, Sally C; Smith, Honora K; Forero-Matiz, Sonia P; Camacho-Rodríguez, Bernardo A
2017-12-01
Production planning in the blood supply chain is a challenging task. Many complex factors such as uncertain supply and demand, blood group proportions, shelf life constraints and different collection and production methods have to be taken into account, and thus advanced methodologies are required for decision making. This paper presents an integrated simulation-optimization model to support both strategic and operational decisions in production planning. Discrete-event simulation is used to represent the flows through the supply chain, incorporating collection, production, storing and distribution. On the other hand, an integer linear optimization model running over a rolling planning horizon is used to support daily decisions, such as the required number of donors, collection methods and production planning. This approach is evaluated using real data from a blood center in Colombia. The results show that, using the proposed model, key indicators such as shortages, outdated units, donors required and cost are improved.
Delorme, Yann T.; Rodefeld, Mark D.; Frankel, Steven H.
2016-01-01
Children born with only one functional ventricle must typically undergo a series of three surgeries to obtain the so-called Fontan circulation in which the blood coming from the body passively flows from the Vena Cavae (VCs) to the Pulmonary Arteries (PAs) through the Total Cavopulmonary Connection (TCPC). The circulation is inherently inefficient due to the lack of a subpulmonary ventricle. Survivors face the risk of circulatory sequelae and eventual failure for the duration of their lives. Current efforts are focused on improving the outcomes of Fontan palliation, either passively by optimizing the TCPC, or actively by using mechanical support. We are working on a chronic implant that would be placed at the junction of the TCPC, and would provide the necessary pressure augmentation to re-establish a circulation that recapitulates a normal two-ventricle circulation. This implant is based on the Von Karman viscous pump and consists of a vaned impeller that rotates inside the TCPC. To evaluate the performance of such a device, and to study the flow features induced by the presence of the pump, Computational Fluid Dynamics (CFD) is used. CFD has become an important tool to understand hemodynamics owing to the possibility of simulating quickly a large number of designs and flow conditions without any harm for patients. The transitional and unsteady nature of the flow can make accurate simulations challenging. We developed and in-house high order Large Eddy Simulation (LES) solver coupled to a recent Immersed Boundary Method (IBM) to handle complex geometries. Multiblock capability is added to the solver to allow for efficient simulations of complex patient specific geometries. Blood simulations are performed in a complex patient specific TCPC geometry. In this study, simulations without mechanical assist are performed, as well as after virtual implantation of the temporary and chronic implants being developed. Instantaneous flow structures, hepatic factor distribution, and statistical data are presented for all three cases. PMID:28649147
The effect of flow recirculation on abdominal aortic aneurysm
NASA Astrophysics Data System (ADS)
Taib, Ishkrizat; Amirnordin, Shahrin Hisham; Madon, Rais Hanizam; Mustafa, Norrizal; Osman, Kahar
2012-06-01
The presences of flow recirculation at the abdominal aortic aneurysm (AAA) region yield the unpredictable failure of aneurismal wall. The failure of the aneurismal wall is closely related to the hemodynamic factor. Hemodynamic factor such as pressure and velocity distribution play a significance role of aneurysm growth and rupture. By using the computational approach, the influence of hemodynamic factor is investigated using computational fluid dynamic (CFD) method on the virtual AAA model. The virtual 3D AAAs model was reconstructed from Spiral Computed Tomography scan (CT-scan). The blood flow is assumed as being transient, laminar and Newtonian within a rigid section of the vessel. The blood flow also driven by an imposed of pressure gradient in the form of physiological waveform. The pulsating blood flow is also considered in this simulation. The results on pressure distribution and velocity profile are analyzed to interpret the behaviour of flow recirculation. The results show the forming of vortices is seen at the aneurysm bulge. This vortices is form at the aneurysm region then destroyed rapidly by flow recirculation. Flow recirculation is point out much higher at distal end of aneurysm closed to iliac bifurcation. This phenomenon is managed to increase the possibility of aneurysm growth and rupture.
Effect of exercise on patient specific abdominal aortic aneurysm flow topology and mixing
Arzani, Amirhossein; Les, Andrea S.; Dalman, Ronald L.; Shadden, Shawn C.
2014-01-01
SUMMARY Computational fluid dynamics modeling was used to investigate changes in blood transport topology between rest and exercise conditions in five patient-specific abdominal aortic aneurysm models. Magnetic resonance imaging was used to provide the vascular anatomy and necessary boundary conditions for simulating blood velocity and pressure fields inside each model. Finite-time Lyapunov exponent fields, and associated Lagrangian coherent structures, were computed from blood velocity data, and used to compare features of the transport topology between rest and exercise both mechanistically and qualitatively. A mix-norm and mix-variance measure based on fresh blood distribution throughout the aneurysm over time were implemented to quantitatively compare mixing between rest and exercise. Exercise conditions resulted in higher and more uniform mixing, and reduced the overall residence time in all aneurysms. Separated regions of recirculating flow were commonly observed in rest, and these regions were either reduced or removed by attached and unidirectional flow during exercise, or replaced with regional chaotic and transiently turbulent mixing, or persisted and even extended during exercise. The main factor that dictated the change in flow topology from rest to exercise was the behavior of the jet of blood penetrating into the aneurysm during systole. PMID:24493404
Self-organizing magnetic beads for biomedical applications
NASA Astrophysics Data System (ADS)
Gusenbauer, Markus; Kovacs, Alexander; Reichel, Franz; Exl, Lukas; Bance, Simon; Özelt, Harald; Schrefl, Thomas
2012-03-01
In the field of biomedicine magnetic beads are used for drug delivery and to treat hyperthermia. Here we propose to use self-organized bead structures to isolate circulating tumor cells using lab-on-chip technologies. Typically blood flows past microposts functionalized with antibodies for circulating tumor cells. Creating these microposts with interacting magnetic beads makes it possible to tune the geometry in size, position and shape. We developed a simulation tool that combines micromagnetics and discrete particle dynamics, in order to design micropost arrays made of interacting beads. The simulation takes into account the viscous drag of the blood flow, magnetostatic interactions between the magnetic beads and gradient forces from external aligned magnets. We developed a particle-particle particle-mesh method for effective computation of the magnetic force and torque acting on the particles.
Simulation of Blood flow in Artificial Heart Valve Design through Left heart
NASA Astrophysics Data System (ADS)
Hafizah Mokhtar, N.; Abas, Aizat
2018-05-01
In this work, an artificial heart valve is designed for use in real heart with further consideration on the effect of thrombosis, vorticity, and stress. The design of artificial heart valve model is constructed by Computer-aided design (CAD) modelling and simulated using Computational fluid dynamic (CFD) software. The effect of blood flow pattern, velocity and vorticity of the artificial heart valve design has been analysed in this research work. Based on the results, the artificial heart valve design shows that it has a Doppler velocity index that is less than the allowable standards for the left heart with values of more than 0.30 and less than 2.2. These values are safe to be used as replacement of the human heart valve.
Virtual Treatment of Basilar Aneurysms Using Shape Memory Polymer Foam
Ortega, J.M.; Hartman, J.; Rodriguez, J.N.; Maitland, D.J.
2013-01-01
Numerical simulations are performed on patient-specific basilar aneurysms that are treated with shape memory polymer (SMP) foam. In order to assess the post-treatment hemodynamics, two modeling approaches are employed. In the first, the foam geometry is obtained from a micro-CT scan and the pulsatile blood flow within the foam is simulated for both Newtonian and non-Newtonian viscosity models. In the second, the foam is represented as a porous media continuum, which has permeability properties that are determined by computing the pressure gradient through the foam geometry over a range of flow speeds comparable to those of in vivo conditions. Virtual angiography and additional post-processing demonstrate that the SMP foam significantly reduces the blood flow speed within the treated aneurysms, while eliminating the high-frequency velocity fluctuations that are present within the pre-treatment aneurysms. An estimation of the initial locations of thrombus formation throughout the SMP foam is obtained by means of a low fidelity thrombosis model that is based upon the residence time and shear rate of blood. The Newtonian viscosity model and the porous media model capture similar qualitative trends, though both yield a smaller volume of thrombus within the SMP foam. PMID:23329002
Time evolution of shear-induced particle margination and migration in a cellular suspension
NASA Astrophysics Data System (ADS)
Qi, Qin M.; Shaqfeh, Eric S. G.
2016-11-01
The inhomogeneous center-of-mass distributions of red blood cells and platelets normal to the flow direction in small vessels play a significant role in hemostasis and drug delivery. Under pressure-driven flow in channels, the migration of deformable red blood cells at steady state is characterized by a cell-free or Fahraeus-Lindqvist layer near the vessel wall. Rigid particles such as platelets, however, "marginate" and thus develop a near-wall excess concentration. In order to evaluate the role of branching and design suitable microfluidic devices, it is important to investigate the time evolution of particle margination and migration from a non-equilibrium state and determine the corresponding entrance lengths. From a mechanistic point of view, deformability-induced hydrodynamic lift and shear-induced diffusion are essential mechanisms for the cross-flow migration and margination. In this talk, we determine the concentration distribution of red blood cells and platelets by solving coupled Boltzmann advection-diffusion equations for both species and explore their time evolution. We verify our model by comparing with large-scale, multi-cell simulations and experiments. Our Boltzmann collision theory serves as a fast alternative to large-scale simulations.
Virtual Treatment of Basilar Aneurysms Using Shape Memory Polymer Foam
NASA Astrophysics Data System (ADS)
Ortega, J. M.; Hartman, J.; Rodriguez, J. N.; Maitland, D. J.
2012-11-01
Numerical simulations are performed on patient-specific basilar aneurysms that are treated with shape memory polymer (SMP) foam. In order to assess the post-treatment hemodynamics, two modeling approaches are employed. In the first, the foam geometry is obtained from a micro-CT scan and the pulsatile blood flow within the foam is simulated for both Newtonian and non-Newtonian viscosity models. In the second, the foam is represented as a porous media continuum, which has permeability properties that are determined by computing the pressure gradient through the foam geometry over a range of flow speeds comparable to those of in vivo conditions. Virtual angiography and additional post-processing demonstrate that the SMP foam significantly reduces the blood flow speed within the treated aneurysms, while eliminating the high-frequency velocity fluctuations that are present prior to treatment. A prediction of the initial locations of thrombus formation throughout the SMP foam is obtained by means of a low fidelity thrombosis model that is based upon the residence time and shear rate of blood. The two modeling approaches capture similar qualitative trends for the initial locations of thrombus within the SMP foam.
Dynamical clustering of red blood cells in capillary vessels.
Boryczko, Krzysztof; Dzwinel, Witold; Yuen, David A
2003-02-01
We have modeled the dynamics of a 3-D system consisting of red blood cells (RBCs), plasma and capillary walls using a discrete-particle approach. The blood cells and capillary walls are composed of a mesh of particles interacting with harmonic forces between nearest neighbors. We employ classical mechanics to mimic the elastic properties of RBCs with a biconcave disk composed of a mesh of spring-like particles. The fluid particle method allows for modeling the plasma as a particle ensemble, where each particle represents a collective unit of fluid, which is defined by its mass, moment of inertia, translational and angular momenta. Realistic behavior of blood cells is modeled by considering RBCs and plasma flowing through capillaries of various shapes. Three types of vessels are employed: a pipe with a choking point, a curved vessel and bifurcating capillaries. There is a strong tendency to produce RBC clusters in capillaries. The choking points and other irregularities in geometry influence both the flow and RBC shapes, considerably increasing the clotting effect. We also discuss other clotting factors coming from the physical properties of blood, such as the viscosity of the plasma and the elasticity of the RBCs. Modeling has been carried out with adequate resolution by using 1 to 10 million particles. Discrete particle simulations open a new pathway for modeling the dynamics of complex, viscoelastic fluids at the microscale, where both liquid and solid phases are treated with discrete particles. Figure A snapshot from fluid particle simulation of RBCs flowing along a curved capillary. The red color corresponds to the highest velocity. We can observe aggregation of RBCs at places with the most stagnant plasma flow.
Computational Analysis of Human Blood Flow
NASA Astrophysics Data System (ADS)
Panta, Yogendra; Marie, Hazel; Harvey, Mark
2009-11-01
Fluid flow modeling with commercially available computational fluid dynamics (CFD) software is widely used to visualize and predict physical phenomena related to various biological systems. In this presentation, a typical human aorta model was analyzed assuming the blood flow as laminar with complaint cardiac muscle wall boundaries. FLUENT, a commercially available finite volume software, coupled with Solidworks, a modeling software, was employed for the preprocessing, simulation and postprocessing of all the models.The analysis mainly consists of a fluid-dynamics analysis including a calculation of the velocity field and pressure distribution in the blood and a mechanical analysis of the deformation of the tissue and artery in terms of wall shear stress. A number of other models e.g. T branches, angle shaped were previously analyzed and compared their results for consistency for similar boundary conditions. The velocities, pressures and wall shear stress distributions achieved in all models were as expected given the similar boundary conditions. The three dimensional time dependent analysis of blood flow accounting the effect of body forces with a complaint boundary was also performed.
Fluid-structure interaction analysis of the flow through a stenotic aortic valve
NASA Astrophysics Data System (ADS)
Maleki, Hoda; Labrosse, Michel R.; Durand, Louis-Gilles; Kadem, Lyes
2009-11-01
In Europe and North America, aortic stenosis (AS) is the most frequent valvular heart disease and cardiovascular disease after systemic hypertension and coronary artery disease. Understanding blood flow through an aortic stenosis and developing new accurate non-invasive diagnostic parameters is, therefore, of primarily importance. However, simulating such flows is highly challenging. In this study, we considered the interaction between blood flow and the valve leaflets and compared the results obtained in healthy valves with stenotic ones. One effective method to model the interaction between the fluid and the structure is to use Arbitrary Lagrangian-Eulerian (ALE) approach. Our two-dimensional model includes appropriate nonlinear and anisotropic materials. It is loaded during the systolic phase by applying pressure curves to the fluid domain at the inflow. For modeling the calcified stenotic valve, calcium will be added on the aortic side of valve leaflets. Such simulations allow us to determine the effective orifice area of the valve, one of the main parameters used clinically to evaluate the severity of an AS, and to correlate it with changes in the structure of the leaflets.
Experimental validation of numerical simulations on a cerebral aneurysm phantom model
Seshadhri, Santhosh; Janiga, Gábor; Skalej, Martin; Thévenin, Dominique
2012-01-01
The treatment of cerebral aneurysms, found in roughly 5% of the population and associated in case of rupture to a high mortality rate, is a major challenge for neurosurgery and neuroradiology due to the complexity of the intervention and to the resulting, high hazard ratio. Improvements are possible but require a better understanding of the associated, unsteady blood flow patterns in complex 3D geometries. It would be very useful to carry out such studies using suitable numerical models, if it is proven that they reproduce accurately enough the real conditions. This validation step is classically based on comparisons with measured data. Since in vivo measurements are extremely difficult and therefore of limited accuracy, complementary model-based investigations considering realistic configurations are essential. In the present study, simulations based on computational fluid dynamics (CFD) have been compared with in situ, laser-Doppler velocimetry (LDV) measurements in the phantom model of a cerebral aneurysm. The employed 1:1 model is made from transparent silicone. A liquid mixture composed of water, glycerin, xanthan gum and sodium chloride has been specifically adapted for the present investigation. It shows physical flow properties similar to real blood and leads to a refraction index perfectly matched to that of the silicone model, allowing accurate optical measurements of the flow velocity. For both experiments and simulations, complex pulsatile flow waveforms and flow rates were accounted for. This finally allows a direct, quantitative comparison between measurements and simulations. In this manner, the accuracy of the employed computational model can be checked. PMID:24265876
Effect of non-Newtonian and pulsatile blood flow on mass transport in the human aorta.
Liu, Xiao; Fan, Yubo; Deng, Xiaoyan; Zhan, Fan
2011-04-07
To investigate the effects of both non-Newtonian behavior and the pulsation of blood flow on the distributions of luminal surface LDL concentration and oxygen flux along the wall of the human aorta, we numerically compared a non-Newtonian model with the Newtonian one under both steady flow and in vivo pulsatile flow conditions using a human aorta model constructed from MRI images. The results showed that under steady flow conditions, although the shear thinning non-Newtonian nature of blood could elevate wall shear stress (WSS) in most regions of the aorta, especially areas with low WSS, it had little effect on luminal surface LDL concentration (c(w)) in most regions of the aorta. Nevertheless, it could significantly enhance c(w) in areas with high luminal surface LDL concentration through the shear dependent diffusivity of LDLs. For oxygen transport, the shear thinning non-Newtonian nature of blood could slightly reduce oxygen flux in most regions of the aorta, but this effect became much more apparent in areas with already low oxygen flux. The pulsation of blood flow could significantly reduce c(w) and enhance oxygen flux in these disturbed places. In most other regions of the aorta, the oxygen flux was also significantly higher than that for the steady flow simulation. In conclusion, the shear shining non-Newtonian nature of blood has little effect on LDL and oxygen transport in most regions of the aorta, but in the atherogenic-prone areas where luminal surface LDL concentration is high and oxygen flux is low, its effect is apparent. Similar is for the effect of pulsatile flow on the transport of LDLs. But, the pulsation of blood flow can apparently affect oxygen flux in the aorta, especially in areas with low oxygen flux. Copyright © 2011 Elsevier Ltd. All rights reserved.
A mesoscopic simulation on distributions of red blood cells in a bifurcating channel
NASA Astrophysics Data System (ADS)
Inoue, Yasuhiro; Takagi, Shu; Matsumoto, Yoichiro
2004-11-01
Transports of red blood cells (RBCs) or particles in bifurcated channels have been attracting renewed interest since the advent of concepts of MEMS for sorting, analyzing, and removing cells or particles from sample medium. In this talk, we present a result on a transport of red blood cells (RBCs) in a bifurcating channel studied by using a mesoscale simulation technique of immiscible droplets, where RBCs have been modeled as immiscible droplets. The distribution of RBCs is represented by the fractional RBC flux into two daughters as a function of volumetric flow ratio between the daughters. The data obtained in our simulations are examined with a theoretical prediction, in which, we assume an exponential distribution for positions of RBCs in the mother channel. The theoretical predictions show a good agreement with simulation results. A non-uniform distribution of RBCs in the mother channel affects disproportional separation of RBC flux at a bifurcation.
Fluid-structure Interaction Modeling of Aneurysmal Conditions with High and Normal Blood Pressures
NASA Astrophysics Data System (ADS)
Torii, Ryo; Oshima, Marie; Kobayashi, Toshio; Takagi, Kiyoshi; Tezduyar, Tayfun E.
2006-09-01
Hemodynamic factors like the wall shear stress play an important role in cardiovascular diseases. To investigate the influence of hemodynamic factors in blood vessels, the authors have developed a numerical fluid-structure interaction (FSI) analysis technique. The objective is to use numerical simulation as an effective tool to predict phenomena in a living human body. We applied the technique to a patient-specific arterial model, and with that we showed the effect of wall deformation on the WSS distribution. In this paper, we compute the interaction between the blood flow and the arterial wall for a patient-specific cerebral aneurysm with various hemodynamic conditions, such as hypertension. We particularly focus on the effects of hypertensive blood pressure on the interaction and the WSS, because hypertension is reported to be a risk factor in rupture of aneurysms. We also aim to show the possibility of FSI computations with hemodynamic conditions representing those risk factors in cardiovascular disease. The simulations show that the transient behavior of the interaction under hypertensive blood pressure is significantly different from the interaction under normal blood pressure. The transient behavior of the blood-flow velocity, and the resulting WSS and the mechanical stress in the aneurysmal wall, are significantly affected by hypertension. The results imply that hypertension affects the growth of an aneurysm and the damage in arterial tissues.
Blood Flow in Stenotic Carotid Bifurcation
NASA Astrophysics Data System (ADS)
Rayz, Vitaliy L.; Williamson, Shobha Devi; Berger, Stanley A.; Saloner, David
2004-11-01
Mechanical forces induced by blood flow on an arterial wall play an important role in the development and growth of atherosclerotic plaque. To assess vulnerability of a plaque it is important to model the flow in a realistic, patient-specific geometry. Three-dimensional models of stenotic carotid bifurcations were obtained from MR images and grids were generated for the flow domains. The unsteady, incompressible Navier-Stokes equations were solved numerically using physiological boundary conditions. The results obtained by computations were compared with in-vivo ultrasound measurements and flow visualization experiments carried out for the same geometry. The simulations show a high velocity jet forming at the stenotic throat and a strong recirculation zone downstream of the stenosis. The jet grows rapidly during the systolic part of the pulse. During diastole the flow is more stagnant. The flow is highly three-dimensional and unsteady which is clearly demonstrated by the flow streamlines. These unsteady flows cause rapid temporal and spatial changes of the forces acting on the atherosclerotic plaque, which has important effects on its growth and stability.
NASA Astrophysics Data System (ADS)
Le Floch, Francois; Harris, Wesley L.
2009-11-01
A novel methodology has been developed to address sickle cell disease, based on highly descriptive mathematical models for blood flow in the capillaries. Our investigations focus on the coupling between oxygen delivery and red blood cell dynamics, which is crucial to understanding sickle cell crises and is unique to this blood disease. The main part of our work is an extensive study of blood dynamics through simulations of red cells deforming within the capillary vessels, and relies on the use of a large mathematical system of equations describing oxygen transfer, blood plasma dynamics and red cell membrane mechanics. This model is expected to lead to the development of new research strategies for sickle cell disease. Our simulation model could be used not only to assess current researched remedies, but also to spur innovative research initiatives, based on our study of the physical properties coupled in sickle cell disease.
Operation and performance of the Ciba-Corning 512 coagulation monitor during parabolic flight
NASA Technical Reports Server (NTRS)
Gocke, Robyn; Lloyd, Charles W.; Greenthaner, Nancy K.
1991-01-01
The goal was to assess the functionality and evaluate the procedures and operations required to operate the Ciba-Corning 512 Coagulation Monitor during parabolic flight. This monitor determines the clotting characteristics of blood. The analyzer operates by laser detection of the cessation of blood flow in a capillary channel within a test cartridge. Test simulator results were excellent for both pre-and post-flight. In-flight results were not obtained due to the warm-up time required for the simulator. Since this is an electronic function only, the expected results on the simulator would be the same in zero-g.
FDA Benchmark Medical Device Flow Models for CFD Validation.
Malinauskas, Richard A; Hariharan, Prasanna; Day, Steven W; Herbertson, Luke H; Buesen, Martin; Steinseifer, Ulrich; Aycock, Kenneth I; Good, Bryan C; Deutsch, Steven; Manning, Keefe B; Craven, Brent A
Computational fluid dynamics (CFD) is increasingly being used to develop blood-contacting medical devices. However, the lack of standardized methods for validating CFD simulations and blood damage predictions limits its use in the safety evaluation of devices. Through a U.S. Food and Drug Administration (FDA) initiative, two benchmark models of typical device flow geometries (nozzle and centrifugal blood pump) were tested in multiple laboratories to provide experimental velocities, pressures, and hemolysis data to support CFD validation. In addition, computational simulations were performed by more than 20 independent groups to assess current CFD techniques. The primary goal of this article is to summarize the FDA initiative and to report recent findings from the benchmark blood pump model study. Discrepancies between CFD predicted velocities and those measured using particle image velocimetry most often occurred in regions of flow separation (e.g., downstream of the nozzle throat, and in the pump exit diffuser). For the six pump test conditions, 57% of the CFD predictions of pressure head were within one standard deviation of the mean measured values. Notably, only 37% of all CFD submissions contained hemolysis predictions. This project aided in the development of an FDA Guidance Document on factors to consider when reporting computational studies in medical device regulatory submissions. There is an accompanying podcast available for this article. Please visit the journal's Web site (www.asaiojournal.com) to listen.
NASA Astrophysics Data System (ADS)
Akbar, Noreen Sher; Tripathi, Dharmendra; Bég, O. Anwar
2017-07-01
This paper presents a mathematical model for simulating viscous, incompressible, steady-state blood flow containing copper nanoparticles and coupled heat transfer through a composite stenosed artery with permeable walls. Wall slip hydrodynamic and also thermal buoyancy effects are included. The artery is simulated as an isotropic elastic tube, following Joshi et al. (2009), and a variable viscosity formulation is employed for the flowing blood. The equations governing the transport phenomena are non-dimensionalized and the resulting boundary value problem is solved analytically in the steady state subject to physically appropriate boundary conditions. Numerical computations are conducted to quantify the effects of relevant hemodynamic, thermophysical and nanoscale parameters emerging in the model on velocity and temperature profiles, wall shear stress, impedance resistance and also streamline distributions. The model may be applicable to drug fate transport modeling with nanoparticle agents and also to the optimized design of nanoscale medical devices for diagnosing stenotic diseases in circulatory systems.
Simulation of Blood flow in Different Configurations Design of Bi-leaflet Mechanical Heart Valve
NASA Astrophysics Data System (ADS)
Hafizah Mokhtar, N.; Abas, Aizat
2018-05-01
In this work, two different designs of artificial heart valve were devised and then compared by considering the thrombosis, wear and valve orifice to anatomical orifice ratio of each mechanical heart valve. These different design configurations of bi-leaflet mechanical heart valves model are created through the use of Computer-aided design (CAD) modelling and simulated using Computational fluid dynamic (CFD) software. Design 1 is based on existing conventional bi-leaflet valve and design 2 based on modified bi-leaflet respectively. The flow pattern, velocity, vorticity and stress analysis have been done to justify the best design. Based on results, both of the designs show a Doppler velocity index of less than the allowable standard of 2.2 which is safe to be used as replacement of the human heart valve. However, design 2 shows that it has a lower possibility of cavitation issue which will lead to lower thrombosis and provide good central flow area of blood as compared to design 1.
Computational Fluid Dynamics of Developing Avian Outflow Tract Heart Valves
Bharadwaj, Koonal N.; Spitz, Cassie; Shekhar, Akshay; Yalcin, Huseyin C.; Butcher, Jonathan T.
2012-01-01
Hemodynamic forces play an important role in sculpting the embryonic heart and its valves. Alteration of blood flow patterns through the hearts of embryonic animal models lead to malformations that resemble some clinical congenital heart defects, but the precise mechanisms are poorly understood. Quantitative understanding of the local fluid forces acting in the heart has been elusive because of the extremely small and rapidly changing anatomy. In this study, we combine multiple imaging modalities with computational simulation to rigorously quantify the hemodynamic environment within the developing outflow tract (OFT) and its eventual aortic and pulmonary valves. In vivo Doppler ultrasound generated velocity profiles were applied to Micro-Computed Tomography generated 3D OFT lumen geometries from Hamburger-Hamilton (HH) stage 16 to 30 chick embryos. Computational fluid dynamics simulation initial conditions were iterated until local flow profiles converged with in vivo Doppler flow measurements. Results suggested that flow in the early tubular OFT (HH16 and HH23) was best approximated by Poiseuille flow, while later embryonic OFT septation (HH27, HH30) was mimicked by plug flow conditions. Peak wall shear stress (WSS) values increased from 18.16 dynes/cm2 at HH16 to 671.24 dynes/cm2 at HH30. Spatiotemporally averaged WSS values also showed a monotonic increase from 3.03 dynes/cm2 at HH16 to 136.50 dynes/cm2 at HH30. Simulated velocity streamlines in the early heart suggest a lack of mixing, which differed from classical ink injections. Changes in local flow patterns preceded and correlated with key morphogenetic events such as OFT septation and valve formation. This novel method to quantify local dynamic hemodynamics parameters affords insight into sculpting role of blood flow in the embryonic heart and provides a quantitative baseline dataset for future research. PMID:22535311
2-D Model for Normal and Sickle Cell Blood Microcirculation
NASA Astrophysics Data System (ADS)
Tekleab, Yonatan; Harris, Wesley
2011-11-01
Sickle cell disease (SCD) is a genetic disorder that alters the red blood cell (RBC) structure and function such that hemoglobin (Hb) cannot effectively bind and release oxygen. Previous computational models have been designed to study the microcirculation for insight into blood disorders such as SCD. Our novel 2-D computational model represents a fast, time efficient method developed to analyze flow dynamics, O2 diffusion, and cell deformation in the microcirculation. The model uses a finite difference, Crank-Nicholson scheme to compute the flow and O2 concentration, and the level set computational method to advect the RBC membrane on a staggered grid. Several sets of initial and boundary conditions were tested. Simulation data indicate a few parameters to be significant in the perturbation of the blood flow and O2 concentration profiles. Specifically, the Hill coefficient, arterial O2 partial pressure, O2 partial pressure at 50% Hb saturation, and cell membrane stiffness are significant factors. Results were found to be consistent with those of Le Floch [2010] and Secomb [2006].
Numerical Simulations of Blood Flows in the Left Atrium
NASA Astrophysics Data System (ADS)
Zhang, Lucy
2008-11-01
A novel numerical technique of solving complex fluid-structure interactions for biomedical applications is introduced. The method is validated through rigorous convergence and accuracy tests. In this study, the technique is specifically used to study blood flows in the left atrium, one of the four chambers in the heart. Stable solutions are obtained at physiologic Reynolds numbers by applying pulmonary venous inflow, mitral valve outflow and appropriate constitutive equations to closely mimic the behaviors of biomaterials. Atrial contraction is also implemented as a time-dependent boundary condition to realistically describe the atrial wall muscle movements, thus producing accurate interactions with the surrounding blood. From our study, the transmitral velocity, filling/emptying velocity ratio, durations and strengths of vortices are captured numerically for sinus rhythms (healthy heart beat) and they compare quite well with reported clinical studies. The solution technique can be further used to study heart diseases such as the atrial fibrillation, thrombus formation in the chamber and their corresponding effects in blood flows.
NASA Astrophysics Data System (ADS)
Hajirayat, K.; Gholampour, S.; Sharifi, I.; Bizari, D.
2017-11-01
In this study, one normal subject and two patients suffering from a cerebral aneurysm with circular and elliptical necks are analyzed by using the fluid-structure interaction (FSI) method. Although the blood hemodynamics parameters increase after the occurrence of the disease, the largest increase is in the wall shear stress (by a factor of 4.1-6.5) as compared to the normal subject. The increase in these parameters for patients with a circular neck is more pronounced than that with an elliptical neck. The blood flow becomes slightly more turbulent after the occurrence of the cerebral aneurysm, though it still remains in the range of the laminar flow and the pulsatility of the blood flow in patients is 28-45% greater than that of the normal subject. Finally, the results show that the risk of vessel rupture in the cerebral aneurysm with a circular neck is 40.8% higher than that in the case of the cerebral aneurysm with an elliptical neck.
The Neural Correlates of Driving Performance Identified Using Positron Emission Tomography
ERIC Educational Resources Information Center
Horikawa, E.; Okamura, N.; Tashiro, M.; Sakurada, Y.; Maruyama, M.; Arai, H.; Yamaguchi, K.; Sasaki, H.; Yanai, K.; Itoh, M.
2005-01-01
Driving is a complex behavior involving multiple cognitive domains. To identify neural correlates of driving performance, [^1^5O]H"2O positron emission tomography was performed using a simulated driving task. Compared with the resting condition, simulated driving increased regional cerebral blood flow (rCBF) in the cerebellum, occipital, and…
NASA Astrophysics Data System (ADS)
Alizadeh, As'ad; Dadvand, Abdolrahman
2018-02-01
In this paper, the motion of high deformable (healthy) and low deformable (sick) red blood cells in a microvessel with and without stenosis is simulated using a combined lattice Boltzmann-immersed boundary method. The RBC is considered as neo-Hookean elastic membrane with bending resistance. The motion and deformation of the RBC under different values of the Reynolds number are evaluated. In addition, the variations of blood flow resistance and time-averaged pressure due to the motion and deformation of the RBC are assessed. It was found that a healthy RBC moves faster than a sick one. The apparent viscosity and blood flow resistance are greater for the case involving the sick RBC. Blood pressure at the presence of stenosis and low deformable RBC increases, which is thought of as the reason of many serious diseases including cardiovascular diseases. As the Re number increases, the RBC deforms further and moves easier and faster through the stenosis. The results of this study were compared to the available experimental and numerical results, and good agreements were observed.
Numerical modeling of the fetal blood flow in the placental circulatory system
NASA Astrophysics Data System (ADS)
Shannon, Alexander; Gallucci, Sergio; Mirbod, Parisa
2015-11-01
The placenta is a unique organ of exchange between the growing fetus and the mother. It incorporates almost all functions of the adult body, acting as the fetal lung, digestive and immune systems, to mention a few. The exchange of oxygen and nutrients takes place at the surface of the villous tree. Using an idealized geometry of the fetal villous trees in the mouse placenta, in this study we performed 3D computational analysis of the unsteady fetal blood flow, gas, and nutrient transport over the chorionic plate. The fetal blood was treated as an incompressible Newtonian fluid, and the oxygen and nutrient were treated as a passive scalar dissolved in blood plasma. The flow was laminar, and a commercial CFD code (COMSOL Multiphysics) has been used for the simulation. COMSOL has been selected because it is multi-physics FEM software that allows for the seamless coupling of different physics represented by partial differential equations. The results clearly illustrate that the specific branching pattern and the in-plane curvature of the fetal villous trees affect the delivery of blood, gas and nutrient transport to the whole placenta.
NASA Astrophysics Data System (ADS)
Freund, Jonathan; Vermot, Julien
2013-11-01
There is evidence in early embryonic development, even well before advective oxygen transport is important, that the presence of red bloods cells per se trigger essential steps of normal vascular development. For example, showed that sequestration of blood cells early in the development of a mouse, such that the hematocrit is reduced, suppresses normal vascular network development. Vascular development also provides a model for remodeling and angiogenesis. We consider the transient stresses associated with blood cells flowing in model microvessels of comparable diameter to those at early stages of development (6 μm to 12 μm). A detailed simulation tool is used to show that passing blood cells present a significant fluctuating traction signature on the vessel wall, well above the mean stresses. This is particularly pronounced for slow flows (<= 50 μm/s) or small diameters (<= 7 μm), for which root-mean-square wall traction fluctuations can exceed their mean. These events potentially present mechanotranduction triggers that direct development or remodeling. Attenuation of such fluctuating tractions by a viscoelastic endothelial glycocalyx layer is also considered. NSF supported.
Choi, Young Joon; Constantino, Jason; Vedula, Vijay; Trayanova, Natalia; Mittal, Rajat
2015-01-01
A methodology for the simulation of heart function that combines an MRI-based model of cardiac electromechanics (CE) with a Navier–Stokes-based hemodynamics model is presented. The CE model consists of two coupled components that simulate the electrical and the mechanical functions of the heart. Accurate representations of ventricular geometry and fiber orientations are constructed from the structural magnetic resonance and the diffusion tensor MR images, respectively. The deformation of the ventricle obtained from the electromechanical model serves as input to the hemodynamics model in this one-way coupled approach via imposed kinematic wall velocity boundary conditions and at the same time, governs the blood flow into and out of the ventricular volume. The time-dependent endocardial surfaces are registered using a diffeomorphic mapping algorithm, while the intraventricular blood flow patterns are simulated using a sharp-interface immersed boundary method-based flow solver. The utility of the combined heart-function model is demonstrated by comparing the hemodynamic characteristics of a normal canine heart beating in sinus rhythm against that of the dyssynchronously beating failing heart. We also discuss the potential of coupled CE and hemodynamics models for various clinical applications. PMID:26442254
Effect of physical variables on capture of magnetic nanoparticles in simulated blood vessels
NASA Astrophysics Data System (ADS)
Zhang, Minghui; Brazel, Christopher
2011-11-01
This study investigated how the percent capture of magnetic nanoparticles in a simulated vessel varies with physical variables. Magnetic nanoparticles (MNPs) can used as part of therapeutic or diagnostic materials for cancer patients. By capturing these devices with a magnetic field, the particles can be concentrated in an area of diseased tissue. In this study, flow of nanoparticles in simulated blood vessels was used to determine the affect of applying an external magnetic field. This study used maghemite nanoparticles as the MNPs and either water or Fetal Bovine Serum as the carrier fluid. A UV-Vis collected capture data. The percent capture of MNPs was positively influenced by five physical variables: larger vessel diameters, lower linear flow velocity, higher magnetic field strength, better dispersion, lower MNP concentration, and lower protein content in fluid. Free MNPs were also compared to micelles, with the free particles having more successful magnetic capture. Four factors contributed to these trends: the strength of the magnetic field's influence on the MNPs, the MNPs' interactions with other particles and the fluid, the momentum of the nanoparticles, and magnetic mass to total mass ratio of the flowing particles. Funded by NSF REU Site #1062611.
Kennedy McConnell, Flora; Payne, Stephen
2017-08-01
Ischaemic stroke is a leading cause of death and disability. Autoregulation and collateral blood flow through the circle of Willis both play a role in preventing tissue infarction. To investigate the interaction of these mechanisms a one-dimensional steady-state model of the cerebral arterial network was created. Structural variants of the circle of Willis that present particular risk of stroke were recreated by using a network model coupled with: 1) a steady-state physiological model of cerebral autoregulation; and 2) one wherein the cerebral vascular bed was modeled as a passive resistance. Simulations were performed in various conditions of internal carotid and vertebral artery occlusion. Collateral flow alone is unable to ensure adequate blood flow ([Formula: see text] normal flow) to the cerebral arteries in several common variants during internal carotid artery occlusion. However, compared to a passive model, cerebral autoregulation is better able to exploit available collateral flow and maintain flows within [Formula: see text] of baseline. This is true for nearly all configurations. Hence, autoregulation is a crucial facilitator of collateral flow through the circle of Willis. Impairment of this response during ischemia will severely impact cerebral blood flows and tissue survival, and hence, autoregulation should be monitored in this situation.
Numerical Simulation of the Flow in Vascular Grafts for Surgical Applications
NASA Astrophysics Data System (ADS)
McGah, Patrick; Aliseda, Alberto
2009-11-01
Numerical simulation of the human blood vessels, is becoming an important tool in surgical planning and research. Accurate vascular simulations might grant physicians the predictive capability to perform pre-surgical planning. We focus our attention on the implantation of vascular grafts. The high rate of failure of this common vascular interaction is intimately related to the fluid mechanics in the affected region and the subsequent wall tissue remodeling. Here, we will present our current work in developing a methodology for the numerical simulation of vascular grafts which incorporates physiologically realistic geometries and flow boundary conditions. In particular, we seek to correlate the wall shear stress and its spatial (WSSG) and temporal (OSI) variability to wall remodeling as observed in patient specific longitudinal studies. The pulsatility (Remean= 800 , Repeak= 2000, Wo = 2) of the flow gives rise to additional fluid dynamics phenomena such as instability, flow separation, transition, and unsteadiness. Our goal is to describe and evaluate their effect on the wall physiology.
NASA Astrophysics Data System (ADS)
Boyd, Joshua; Buick, James M.; Green, Simon
2007-09-01
The lattice Boltzmann method is modified to allow the simulation of non-Newtonian shear-dependent viscosity models. Casson and Carreau-Yasuda non-Newtonian blood viscosity models are implemented and are used to compare two-dimensional Newtonian and non-Newtonian flows in the context of simple steady flow and oscillatory flow in straight and curved pipe geometries. It is found that compared to analogous Newtonian flows, both the Casson and Carreau-Yasuda flows exhibit significant differences in the steady flow situation. In the straight pipe oscillatory flows, both models exhibit differences in velocity and shear, with the largest differences occurring at low Reynolds and Womersley numbers. Larger differences occur for the Casson model. In the curved pipe Carreau-Yasuda model, moderate differences are observed in the velocities in the central regions of the geometries, and the largest shear rate differences are observed near the geometry walls. These differences may be important for the study of atherosclerotic progression.
Impact of Tissue Factor Localization on Blood Clot Structure and Resistance under Venous Shear.
Govindarajan, Vijay; Zhu, Shu; Li, Ruizhi; Lu, Yichen; Diamond, Scott L; Reifman, Jaques; Mitrophanov, Alexander Y
2018-02-27
The structure and growth of a blood clot depend on the localization of tissue factor (TF), which can trigger clotting during the hemostatic process or promote thrombosis when exposed to blood under pathological conditions. We sought to understand how the growth, structure, and mechanical properties of clots under flow are shaped by the simultaneously varying TF surface density and its exposure area. We used an eight-channel microfluidic device equipped with a 20- or 100-μm-long collagen surface patterned with lipidated TF of surface densities ∼0.1 and ∼2 molecules/μm 2 . Human whole blood was perfused at venous shear, and clot growth was continually measured. Using our recently developed computational model of clot formation, we performed simulations to gain insights into the clot's structure and its resistance to blood flow. An increase in TF exposure area resulted not only in accelerated bulk platelet, thrombin, and fibrin accumulation, but also in increased height of the platelet mass and increased clot resistance to flow. Moreover, increasing the TF surface density or exposure area enhanced platelet deposition by approximately twofold, and thrombin and fibrin generation by greater than threefold, thereby increasing both clot size and its viscous resistance. Finally, TF effects on blood flow occlusion were more pronounced for the longer thrombogenic surface than for the shorter one. Our results suggest that TF surface density and its exposure area can independently enhance both the clot's occlusivity and its resistance to blood flow. These findings provide, to our knowledge, new insights into how TF affects thrombus growth in time and space under flow. Copyright © 2018 Biophysical Society. All rights reserved.
Zhang, Yingyun; Zhang, Yufeng; Gao, Lian; Deng, Li; Hu, Xiao; Zhang, Kexin; Li, Haiyan
2017-11-01
This study assessed the variation in the frequency locations in the Doppler ultrasound spectra for the maximum blood flow velocities of in vessels with different degrees of bilaterally axisymmetric stenosis. This was done by comparing the relationship between the velocity distributions and corresponding Doppler power spectra. First, a geometric vessel model with axisymmetric stenosis was established. This made it possible to obtain the blood flow velocity distributions for different degrees of stenosis from the solutions of the Navier-Stokes equations. Then, the Doppler spectra were calculated for the entire segment of the vessel that was covered by the sound field. Finally, the maximum frequency locations for the spectra were determined based on the intersections of the maximum values chosen from the calculated blood flow velocity distributions and their corresponding spectra. The computational analysis showed that the maximum frequencies, which corresponded to the maximum blood flow velocities for different degrees of stenosis, were located at different positions along the spectral falling edges. The location for a normal (stenosis free) vessel was in the middle of the falling edge. For vessels with increasing degrees of stenosis, this location shifted approximately linearly downward along the falling edge. For 40% stenosis, the location reached a position at the falling edge of 0.32. Results obtained using the Field II simulation tool demonstrated the validity of the theoretical analysis and calculations, and may help to improve the maximum velocity estimation accuracy for Doppler blood flow spectra in stenosed vessels. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wan, Renzhi; Zu, Yunxiao; Shao, Lin
2018-04-01
The blood echo signal maintained through Medical ultrasound Doppler devices would always include vascular wall pulsation signal .The traditional method to de-noise wall signal is using high-pass filter, which will also remove the lowfrequency part of the blood flow signal. Some scholars put forward a method based on region selective reduction, which at first estimates of the wall pulsation signals and then removes the wall signal from the mixed signal. Apparently, this method uses the correlation between wavelet coefficients to distinguish blood signal from wall signal, but in fact it is a kind of wavelet threshold de-noising method, whose effect is not so much ideal. In order to maintain a better effect, this paper proposes an improved method based on wavelet coefficient correlation to separate blood signal and wall signal, and simulates the algorithm by computer to verify its validity.
Kenney, W. Larry; Stanhewicz, Anna E.; Bruning, Rebecca S.; Alexander, Lacy M.
2013-01-01
When prolonged intense exercise is performed at high ambient temperatures, cardiac output must meet dual demands for increased blood flow to contracting muscle and to the skin. The literature has commonly painted this scenario as a fierce competition, wherein one circulation preserves perfusion at the expense of the other, with the regulated maintenance of blood pressure as the ultimate goal. This review redefines this scenario as commensalism, an integrated balance of regulatory control where one circulation benefits with little functional effect on the other. In young, healthy subjects, arterial pressure rarely falls to any great extent during either extreme passive heating or prolonged dynamic exercise in the heat. Nor does body temperature rise disproportionately due to a compromised skin blood flow. Rather, it often takes the superimposition of additional stressors – e.g., dehydration or simulated hemorrhage – upon heat stress to substantially impact blood pressure regulation. PMID:23636697
Kenney, W Larry; Stanhewicz, Anna E; Bruning, Rebecca S; Alexander, Lacy M
2014-03-01
When prolonged intense exercise is performed at high ambient temperatures, cardiac output must meet dual demands for increased blood flow to contracting muscle and to the skin. The literature has commonly painted this scenario as a fierce competition, wherein one circulation preserves perfusion at the expense of the other, with the regulated maintenance of blood pressure as the ultimate goal. This review redefines this scenario as commensalism, an integrated balance of regulatory control where one circulation benefits with little functional effect on the other. In young, healthy subjects, arterial pressure rarely falls to any great extent during either extreme passive heating or prolonged dynamic exercise in the heat, nor does body temperature rise disproportionately due to a compromised skin blood flow. Rather, it often takes the superimposition of additional stressors--e.g., dehydration or simulated hemorrhage--upon heat stress to substantially impact blood pressure regulation.
CFD simulation of flow through heart: a perspective review.
Khalafvand, S S; Ng, E Y K; Zhong, L
2011-01-01
The heart is an organ which pumps blood around the body by contraction of muscular wall. There is a coupled system in the heart containing the motion of wall and the motion of blood fluid; both motions must be computed simultaneously, which make biological computational fluid dynamics (CFD) difficult. The wall of the heart is not rigid and hence proper boundary conditions are essential for CFD modelling. Fluid-wall interaction is very important for real CFD modelling. There are many assumptions for CFD simulation of the heart that make it far from a real model. A realistic fluid-structure interaction modelling the structure by the finite element method and the fluid flow by CFD use more realistic coupling algorithms. This type of method is very powerful to solve the complex properties of the cardiac structure and the sensitive interaction of fluid and structure. The final goal of heart modelling is to simulate the total heart function by integrating cardiac anatomy, electrical activation, mechanics, metabolism and fluid mechanics together, as in the computational framework.
Modeling and simulation of multi-physics multi-scale transport phenomenain bio-medical applications
NASA Astrophysics Data System (ADS)
Kenjereš, Saša
2014-08-01
We present a short overview of some of our most recent work that combines the mathematical modeling, advanced computer simulations and state-of-the-art experimental techniques of physical transport phenomena in various bio-medical applications. In the first example, we tackle predictions of complex blood flow patterns in the patient-specific vascular system (carotid artery bifurcation) and transfer of the so-called "bad" cholesterol (low-density lipoprotein, LDL) within the multi-layered artery wall. This two-way coupling between the blood flow and corresponding mass transfer of LDL within the artery wall is essential for predictions of regions where atherosclerosis can develop. It is demonstrated that a recently developed mathematical model, which takes into account the complex multi-layer arterial-wall structure, produced LDL profiles within the artery wall in good agreement with in-vivo experiments in rabbits, and it can be used for predictions of locations where the initial stage of development of atherosclerosis may take place. The second example includes a combination of pulsating blood flow and medical drug delivery and deposition controlled by external magnetic field gradients in the patient specific carotid artery bifurcation. The results of numerical simulations are compared with own PIV (Particle Image Velocimetry) and MRI (Magnetic Resonance Imaging) in the PDMS (silicon-based organic polymer) phantom. A very good agreement between simulations and experiments is obtained for different stages of the pulsating cycle. Application of the magnetic drug targeting resulted in an increase of up to ten fold in the efficiency of local deposition of the medical drug at desired locations. Finally, the LES (Large Eddy Simulation) of the aerosol distribution within the human respiratory system that includes up to eight bronchial generations is performed. A very good agreement between simulations and MRV (Magnetic Resonance Velocimetry) measurements is obtained. Magnetic steering of aerosols towards the left or right part of lungs proved to be possible, which can open new strategies for medical treatment of respiratory diseases.
Unsteady 3D flow simulations in cranial arterial tree
NASA Astrophysics Data System (ADS)
Grinberg, Leopold; Anor, Tomer; Madsen, Joseph; Karniadakis, George
2008-11-01
High resolution unsteady 3D flow simulations in major cranial arteries have been performed. Two cases were considered: 1) a healthy volunteer with a complete Circle of Willis (CoW); and 2) a patient with hydrocephalus and an incomplete CoW. Computation was performed on 3344 processors of the new half petaflop supercomputer in TACC. Two new numerical approaches were developed and implemented: 1) a new two-level domain decomposition method, which couples continuous and discontinuous Galerkin discretization of the computational domain; and 2) a new type of outflow boundary conditions, which imposes, in an accurate and computationally efficient manner, clinically measured flow rates. In the first simulation, a geometric model of 65 cranial arteries was reconstructed. Our simulation reveals a high degree of asymmetry in the flow at the left and right parts of the CoW and the presence of swirling flow in most of the CoW arteries. In the second simulation, one of the main findings was a high pressure drop at the right anterior communicating artery (PCA). Due to the incompleteness of the CoW and the pressure drop at the PCA, the right internal carotid artery supplies blood to most regions of the brain.
NASA Astrophysics Data System (ADS)
Kviatkovsky, Inna; Zeidan, Adel; Yeheskely-Hayon, Daniella; Dann, Eldad J.; Yelin, Dvir
2017-02-01
During a sickle cell crisis in sickle cell anemia patients, deoxygenated red blood cells may change their mechanical properties and block small blood vessels, causing pain, local tissue damage and even organ failure. Measuring these cellular structural and morphological changes is important for understanding the factors contributing to vessel blockage and developing an effective treatment. In this work, we use spectrally encoded flow cytometry for confocal, high-resolution imaging of flowing blood cells from sickle cell anemia patients. A wide variety of cell morphologies were observed by analyzing the interference patterns resulting from reflections from the front and back faces of the cells' membrane. Using numerical simulation for calculating the two-dimensional reflection pattern from the cells, we propose an analytical expression for the three-dimensional shape of a characteristic sickle cell and compare it to a previous from the literature. In vitro spectrally encoded flow cytometry offers new means for analyzing the morphology of sickle cells in stress-free environment, and could provide an effective tool for studying the unique physiological properties of these cells.
Vascular wall flow-induced forces in a progressively enlarged aneurysm model.
Neofytou, Panagiotis; Tsangaris, Sokrates; Kyriakidis, Michalis
2008-12-01
The current study is focused on the numerical investigation of the flow field induced by the unsteady flow in the vicinity of an abdominal aortic aneurysm model. The computational fluid dynamics code used is based on the finite volume method, and it has already been used in various bioflow studies. For modelling the rheological behaviour of blood, the Quemada non-Newtonian model is employed, which is suitable for simulating the two-phase character of blood namely a suspension of blood cells in plasma. For examining its non-Newtonian effects a comparison with a corresponding Newtonian flow is carried out. Furthermore, the investigation is focused on the distribution of the flow-induced forces on the interior wall of the aneurysm and in order to study the development of the distribution with the gradual enlargement of the aneurysm, three different degrees of aneurysm-growth have been assumed. Finally and for examining the effect of the distribution on the aneurysm growth, a comparison is made between the pressure and wall shear-stress distributions at the wall for each growth-degree.
Abdollahzadeh Jamalabadi, Mohammad Yaghoub; Daqiqshirazi, Mohammadreza; Nasiri, Hossein; Nguyen, Truong Khang
2018-01-01
We present a numerical investigation of tapered arteries that addresses the transient simulation of non-Newtonian bio-magnetic fluid dynamics (BFD) of blood through a stenosis artery in the presence of a transverse magnetic field. The current model is consistent with ferro-hydrodynamic (FHD) and magneto-hydrodynamic (MHD) principles. In the present work, blood in small arteries is analyzed using the Carreau-Yasuda model. The arterial wall is assumed to be fixed with cosine geometry for the stenosis. A parametric study was conducted to reveal the effects of the stenosis intensity and the Hartman number on a wide range of flow parameters, such as the flow velocity, temperature, and wall shear stress. Current findings are in a good agreement with recent findings in previous research studies. The results show that wall temperature control can keep the blood in its ideal blood temperature range (below 40°C) and that a severe pressure drop occurs for blockages of more than 60 percent. Additionally, with an increase in the Ha number, a velocity drop in the blood vessel is experienced. PMID:29489852
Integrative models of vascular remodeling during tumor growth
Rieger, Heiko; Welter, Michael
2015-01-01
Malignant solid tumors recruit the blood vessel network of the host tissue for nutrient supply, continuous growth, and gain of metastatic potential. Angiogenesis (the formation of new blood vessels), vessel cooption (the integration of existing blood vessels into the tumor vasculature), and vessel regression remodel the healthy vascular network into a tumor-specific vasculature that is in many respects different from the hierarchically organized arterio-venous blood vessel network of the host tissues. Integrative models based on detailed experimental data and physical laws implement in silico the complex interplay of molecular pathways, cell proliferation, migration, and death, tissue microenvironment, mechanical and hydrodynamic forces, and the fine structure of the host tissue vasculature. With the help of computer simulations high-precision information about blood flow patterns, interstitial fluid flow, drug distribution, oxygen and nutrient distribution can be obtained and a plethora of therapeutic protocols can be tested before clinical trials. In this review, we give an overview over the current status of integrative models describing tumor growth, vascular remodeling, blood and interstitial fluid flow, drug delivery, and concomitant transformations of the microenvironment. © 2015 The Authors. WIREs Systems Biology and Medicine published by Wiley Periodicals, Inc. PMID:25808551
4D blood flow mapping using SPIM-microPIV in the developing zebrafish heart
NASA Astrophysics Data System (ADS)
Zickus, Vytautas; Taylor, Jonathan M.
2018-02-01
Fluid-structure interaction in the developing heart is an active area of research in developmental biology. However, investigation of heart dynamics is mostly limited to computational uid dynamics simulations using heart wall structure information only, or single plane blood ow information - so there is a need for 3D + time resolved data to fully understand cardiac function. We present an imaging platform combining selective plane illumination microscopy (SPIM) with micro particle image velocimetry (μPIV) to enable 3D-resolved flow mapping in a microscopic environment, free from many of the sources of error and bias present in traditional epi uorescence-based μPIV systems. By using our new system in conjunction with optical heart beat synchronization, we demonstrate the ability obtain non-invasive 3D + time resolved blood flow measurements in the heart of a living zebrafish embryo.
Characterizing pulmonary blood flow distribution measured using arterial spin labeling.
Henderson, A Cortney; Prisk, G Kim; Levin, David L; Hopkins, Susan R; Buxton, Richard B
2009-12-01
The arterial spin labeling (ASL) method provides images in which, ideally, the signal intensity of each image voxel is proportional to the local perfusion. For studies of pulmonary perfusion, the relative dispersion (RD, standard deviation/mean) of the ASL signal across a lung section is used as a reliable measure of flow heterogeneity. However, the RD of the ASL signals within the lung may systematically differ from the true RD of perfusion because the ASL image also includes signals from larger vessels, which can reflect the blood volume rather than blood flow if the vessels are filled with tagged blood during the imaging time. Theoretical studies suggest that the pulmonary vasculature exhibits a lognormal distribution for blood flow and thus an appropriate measure of heterogeneity is the geometric standard deviation (GSD). To test whether the ASL signal exhibits a lognormal distribution for pulmonary blood flow, determine whether larger vessels play an important role in the distribution, and extract physiologically relevant measures of heterogeneity from the ASL signal, we quantified the ASL signal before and after an intervention (head-down tilt) in six subjects. The distribution of ASL signal was better characterized by a lognormal distribution than a normal distribution, reducing the mean squared error by 72% (p < 0.005). Head-down tilt significantly reduced the lognormal scale parameter (p = 0.01) but not the shape parameter or GSD. The RD increased post-tilt and remained significantly elevated (by 17%, p < 0.05). Test case results and mathematical simulations suggest that RD is more sensitive than the GSD to ASL signal from tagged blood in larger vessels, a probable explanation of the change in RD without a statistically significant change in GSD. This suggests that the GSD is a useful measure of pulmonary blood flow heterogeneity with the advantage of being less affected by the ASL signal from tagged blood in larger vessels.
Computational Biorheology of Human Blood Flow in Health and Disease
Fedosov, Dmitry A.; Dao, Ming; Karniadakis, George Em; Suresh, Subra
2014-01-01
Hematologic disorders arising from infectious diseases, hereditary factors and environmental influences can lead to, and can be influenced by, significant changes in the shape, mechanical and physical properties of red blood cells (RBCs), and the biorheology of blood flow. Hence, modeling of hematologic disorders should take into account the multiphase nature of blood flow, especially in arterioles and capillaries. We present here an overview of a general computational framework based on dissipative particle dynamics (DPD) which has broad applicability in cell biophysics with implications for diagnostics, therapeutics and drug efficacy assessments for a wide variety of human diseases. This computational approach, validated by independent experimental results, is capable of modeling the biorheology of whole blood and its individual components during blood flow so as to investigate cell mechanistic processes in health and disease. DPD is a Lagrangian method that can be derived from systematic coarse-graining of molecular dynamics but can scale efficiently up to arterioles and can also be used to model RBCs down to the spectrin level. We start from experimental measurements of a single RBC to extract the relevant biophysical parameters, using single-cell measurements involving such methods as optical tweezers, atomic force microscopy and micropipette aspiration, and cell-population experiments involving microfluidic devices. We then use these validated RBC models to predict the biorheological behavior of whole blood in healthy or pathological states, and compare the simulations with experimental results involving apparent viscosity and other relevant parameters. While the approach discussed here is sufficiently general to address a broad spectrum of hematologic disorders including certain types of cancer, this paper specifically deals with results obtained using this computational framework for blood flow in malaria and sickle cell anemia. PMID:24419829
Effect of exercise on patient specific abdominal aortic aneurysm flow topology and mixing.
Arzani, Amirhossein; Les, Andrea S; Dalman, Ronald L; Shadden, Shawn C
2014-02-01
Computational fluid dynamics modeling was used to investigate changes in blood transport topology between rest and exercise conditions in five patient-specific abdominal aortic aneurysm models. MRI was used to provide the vascular anatomy and necessary boundary conditions for simulating blood velocity and pressure fields inside each model. Finite-time Lyapunov exponent fields and associated Lagrangian coherent structures were computed from blood velocity data and were used to compare features of the transport topology between rest and exercise both mechanistically and qualitatively. A mix-norm and mix-variance measure based on fresh blood distribution throughout the aneurysm over time were implemented to quantitatively compare mixing between rest and exercise. Exercise conditions resulted in higher and more uniform mixing and reduced the overall residence time in all aneurysms. Separated regions of recirculating flow were commonly observed in rest, and these regions were either reduced or removed by attached and unidirectional flow during exercise, or replaced with regional chaotic and transiently turbulent mixing, or persisted and even extended during exercise. The main factor that dictated the change in flow topology from rest to exercise was the behavior of the jet of blood penetrating into the aneurysm during systole. Copyright © 2013 John Wiley & Sons, Ltd.
Simulation of oxygen saturation measurement in a single blood vein.
Duadi, Hamootal; Nitzan, Meir; Fixler, Dror
2016-09-15
The value of oxygen saturation in venous blood, SvO2, has important clinical significance since it is related to the tissue oxygen utilization, which is related to the blood flow to the tissue and to its metabolism rate. However, existing pulse oximetry techniques are not suitable for blood in veins. In the current study we examine the feasibility of difference oximetry to assess SvO2 by using two near-infrared wavelengths and collecting the backscattered light from two photodetectors located at different distances from the light source.
Immersed smoothed finite element method for fluid-structure interaction simulation of aortic valves
NASA Astrophysics Data System (ADS)
Yao, Jianyao; Liu, G. R.; Narmoneva, Daria A.; Hinton, Robert B.; Zhang, Zhi-Qian
2012-12-01
This paper presents a novel numerical method for simulating the fluid-structure interaction (FSI) problems when blood flows over aortic valves. The method uses the immersed boundary/element method and the smoothed finite element method and hence it is termed as IS-FEM. The IS-FEM is a partitioned approach and does not need a body-fitted mesh for FSI simulations. It consists of three main modules: the fluid solver, the solid solver and the FSI force solver. In this work, the blood is modeled as incompressible viscous flow and solved using the characteristic-based-split scheme with FEM for spacial discretization. The leaflets of the aortic valve are modeled as Mooney-Rivlin hyperelastic materials and solved using smoothed finite element method (or S-FEM). The FSI force is calculated on the Lagrangian fictitious fluid mesh that is identical to the moving solid mesh. The octree search and neighbor-to-neighbor schemes are used to detect efficiently the FSI pairs of fluid and solid cells. As an example, a 3D idealized model of aortic valve is modeled, and the opening process of the valve is simulated using the proposed IS-FEM. Numerical results indicate that the IS-FEM can serve as an efficient tool in the study of aortic valve dynamics to reveal the details of stresses in the aortic valves, the flow velocities in the blood, and the shear forces on the interfaces. This tool can also be applied to animal models studying disease processes and may ultimately translate to a new adaptive methods working with magnetic resonance images, leading to improvements on diagnostic and prognostic paradigms, as well as surgical planning, in the care of patients.
Investigation of transverse oscillation method.
Udesen, Jesper; Jensen, Jørgen Arendt
2006-05-01
Conventional ultrasound scanners can display only the axial component of the blood velocity vector, which is a significant limitation when vessels nearly parallel to the skin surface are scanned. The transverse oscillation (TO) method overcomes this limitation by introducing a TO and an axial oscillation in the pulse echo field. The theory behind the creation of the double oscillation pulse echo field is explained as well as the theory behind the estimation of the vector velocity. A parameter study of the method is performed, using the ultrasound simulation program Field II. A virtual linear-array transducer with center frequency 7 MHz and 128 active elements is created, and a virtual blood vessel of radius 6.4 mm is simulated. The performance of the TO method is found around an initial point in the parameter space. The parameters varied are: flow angle, transmit focus depth, receive apodization, pulse length, transverse wave length, number of emissions, signal-to-noise ratio (SNR), and type of echo-canceling filter used. Using an experimental scanner, the performance of the TO method is evaluated. An experimental flowrig is used to create laminar parabolic flow in a blood mimicking fluid, and the fluid is scanned under different flow-to-beam angles. The relative standard deviation on the transverse velocity estimate is found to be less than 10% for all angles between 50 degrees and 90 degrees. Furthermore, the TO method is evaluated in the flowrig using pulsatile flow, which resembles the flow in the femoral artery. The estimated volume flow as a function of time is compared to the volume flow derived from a conventional axial method at a flow-to-beam angle of 60 degrees. It is found that the method is highly sensitive to the angle between the flow and the beam direction. Also, the choice of echo canceling filter affects the performance significantly.
Ghalichi, Farzan; Deng, Xiaoyan
2003-01-01
The pulsatile blood flow in a partially blocked artery is significantly altered as the flow regime changes through the cardiac cycle. This paper reports on the application of a low-Reynolds turbulence model for computation of physiological pulsatile flow in a healthy and stenosed carotid artery bifurcation. The human carotid artery was chosen since it has received much attention because atherosclerotic lesions are frequently observed. The Wilcox low-Re k-omega turbulence model was used for the simulation since it has proven to be more accurate in describing transition from laminar to turbulent flow. Using the FIDAP finite element code a validation showed very good agreement between experimental and numerical results for a steady laminar to turbulent flow transition as reported in a previous publication by the same authors. Since no experimental or numerical results were available in the literature for a pulsatile and turbulent flow regime, a comparison between laminar and low-Re turbulent calculations was made to further validate the turbulence model. The results of this study showed a very good agreement for velocity profiles and wall shear stress values for this imposed pulsatile laminar flow regime. To explore further the medical aspect, the calculations showed that even in a healthy or non-stenosed artery, small instabilities could be found at least for a portion of the pulse cycle and in different sections. The 40% and 55% diameter reduction stenoses did not significantly change the turbulence characteristics. Further results showed that the presence of 75% stenoses changed the flow properties from laminar to turbulent flow for a good portion of the cardiac pulse. A full 3D simulation with this low-Re-turbulence model, coupled with Doppler ultrasound, can play a significant role in assessing the degree of stenosis for cardiac patients with mild conditions.
Cross-stream distribution of red blood cells in sickle-cell disease
NASA Astrophysics Data System (ADS)
Zhang, Xiao; Lam, Wilbur; Graham, Michael
2017-11-01
Experiments revealed that in blood flow, red blood cells (RBCs) tend to migrate away from the vessel walls, leaving a cell-free layer near the walls, while leukocytes and platelets tend to marginate towards the vessel walls. This segregation behavior of different cellular components in blood flow can be driven by their differences in stiffness and shape. An alteration of this segregation behavior may explain endothelial dysfunction and pain crisis associated with sickle-cell disease (SCD). It is hypothesized that the sickle RBCs, which are considerably stiffer than the healthy RBCs, may marginate towards the vessel walls and exert repeated damage to the endothelial cells. Direct simulations are performed to study the flowing suspensions of deformable biconcave discoids and stiff sickles representing healthy and sickle cells, respectively. It is observed that the sickles exhibit a strong margination towards the walls. The biconcave discoids in flowing suspensions undergo a so-called tank-treading motion, while the sickles behave as rigid bodies and undergo a tumbling motion. The margination behavior and tumbling motion of the sickles may help substantiate the aforementioned hypothesis of the mechanism for the SCD complications and shed some light on the design of novel therapies.
Changes in blood flow due to stented parent artery expansion in an intracranial aneurysm.
Mori, Futoshi; Ohta, Makoto; Matsuzawa, Teruo
2015-01-01
Stent placement is thought to obstruct the inflow of blood to an aneurysm. However, we introduced parent artery expansion and demonstrated that this may reduce the blood flow by the stent. In our previous study using idealized shapes, the results showed that flow reduction was greater than 22.2%, even if the expansion rate was only 6%. Furthermore, the parent artery expansion is predominantly caused by the effect of flow reduction as compared to that of flow reduction due to the obstruction of flow under stent placement. However, a realistic shape is complex and the blood flow also becomes complex flow. It is not understood whether the results of flow in the idealized shape are reflective of flow from a realistic 3D model. Therefore, we examined the effect of parent artery expansion using a realistic model. The aim is to clarify the effects of parent artery expansion on inflow rate, wall shear stress, and oscillatory shear index. We used a patient-specific geometry of a human internal carotid artery with an aneurysm. The geometry of parent artery expansion due to oversized stent constructed based on the voronoi diagram. We performed calculations in the unsteady-state situations using constructed models. The complexity of the flow in the aneurysm decreases in case of expanded parent artery. The inflow rate decreases by 33.6% immediately after parent artery expansion alone without a stent. The effect of the parent artery expansion on flow reduction is larger than that of the obstruction flow by stent placement. In addition, wall shear stress and oscillatory shear index on the aneurysm wall decrease by change in blood flow due to the parent artery expansion. The effects of the parent artery expansion in a realistic aneurysm model with different stent lengths were evaluated on the basis of a numerical simulation. Although the flow was complex, the parent artery expansion with stent reduces the inflow to the aneurysm and wall shear stress and oscillatory shear index on the aneurysm. Therefore, we suggest that changes in the blood flow because of the parent artery expansion may be identified and, sometimes, is more effective than the obstruction flow due to the stent placement.
Potential applications of computational fluid dynamics to biofluid analysis
NASA Technical Reports Server (NTRS)
Kwak, D.; Chang, J. L. C.; Rogers, S. E.; Rosenfeld, M.; Kwak, D.
1988-01-01
Computational fluid dynamics was developed to the stage where it has become an indispensable part of aerospace research and design. In view of advances made in aerospace applications, the computational approach can be used for biofluid mechanics research. Several flow simulation methods developed for aerospace problems are briefly discussed for potential applications to biofluids, especially to blood flow analysis.
A multiscale SPH particle model of the near-wall dynamics of leukocytes in flow.
Gholami, Babak; Comerford, Andrew; Ellero, Marco
2014-01-01
A novel multiscale Lagrangian particle solver based on SPH is developed with the intended application of leukocyte transport in large arteries. In such arteries, the transport of leukocytes and red blood cells can be divided into two distinct regions: the bulk flow and the near-wall region. In the bulk flow, the transport can be modeled on a continuum basis as the transport of passive scalar concentrations. Whereas in the near-wall region, specific particle tracking of the leukocytes is required and lubrication forces need to be separately taken into account. Because of large separation of spatio-temporal scales involved in the problem, simulations of red blood cells and leukocytes are handled separately. In order to take the exchange of leukocytes between the bulk fluid and the near-wall region into account, solutions are communicated through coupling of conserved quantities at the interface between these regions. Because the particle tracking is limited to those leukocytes lying in the near-wall region only, our approach brings considerable speedup to the simulation of leukocyte circulation in a test geometry of a backward-facing step, which encompasses many flow features observed in vivo. Copyright © 2013 John Wiley & Sons, Ltd.
Influence of pulsatile flow on LDL transport in the arterial wall.
Sun, Nanfeng; Wood, Nigel B; Hughes, Alun D; Thom, Simon A M; Xu, X Yun
2007-10-01
The accumulation of low-density lipoprotein (LDL) is one of the important factors in atherogenesis. Two different time scales may influence LDL transport in vivo: (1) LDL transport is coupled to blood flow with a pulse cycle of around 1 s in humans; (2) LDL transport within the arterial wall is mediated by transmural flow in the order of 10(-8) m/s. Most existing models have assumed steady flow conditions and overlooked the interactions between physical phenomena with different time scales. The objective of this study was to investigate the influence of pulsatile flow on LDL transport and examine the validity of steady flow assumption. The effect of pulsatile flow on transmural transport was incorporated by using a lumen-free cyclic (LFC) and a lumen-free time-averaged (LFTA) procedures. It is found that the steady flow simulation predicted a focal distribution in the post-stenotic region, differing from the diffuse distribution pattern produced by the pulsatile flow simulation. The LFTA procedure, in which time-averaged shear-dependent transport properties calculated from instantaneous wall shear stress (WSS) were used, predicted a similar distribution pattern to the LFC simulations. We conclude that the steady flow assumption is inadequate and instantaneous hemodynamic conditions have important influence on LDL transmural transport in arterial geometries with disturbed and complicated flow patterns.
Computational prediction of hemolysis in a centrifugal ventricular assist device.
Pinotti, M; Rosa, E S
1995-03-01
This paper describes the use of computational fluid dynamics (CFD) to predict numerically the hemolysis in centrifugal pumps. A numerical hydrodynamical model, based on the full Navier-Stokes equation, was used to obtain the flow in a vaneless centrifugal pump (of corotating disks type). After proper postprocessing, critical zones in the channel were identified by means of two-dimensional color-coded maps of %Hb release. Simulation of different conditions revealed that flow behavior at the entrance region of the channel is the main cause of blood trauma in such devices. A useful feature resulting from the CFD simulation is the visualization of critical flow zones that are impossible to determine experimentally with in vitro hemolysis tests.
Blood flow quantification using 1D CFD parameter identification
NASA Astrophysics Data System (ADS)
Brosig, Richard; Kowarschik, Markus; Maday, Peter; Katouzian, Amin; Demirci, Stefanie; Navab, Nassir
2014-03-01
Patient-specific measurements of cerebral blood flow provide valuable diagnostic information concerning cerebrovascular diseases rather than visually driven qualitative evaluation. In this paper, we present a quantitative method to estimate blood flow parameters with high temporal resolution from digital subtraction angiography (DSA) image sequences. Using a 3D DSA dataset and a 2D+t DSA sequence, the proposed algorithm employs a 1D Computational Fluid Dynamics (CFD) model for estimation of time-dependent flow values along a cerebral vessel, combined with an additional Advection Diffusion Equation (ADE) for contrast agent propagation. The CFD system, followed by the ADE, is solved with a finite volume approximation, which ensures the conservation of mass. Instead of defining a new imaging protocol to obtain relevant data, our cost function optimizes the bolus arrival time (BAT) of the contrast agent in 2D+t DSA sequences. The visual determination of BAT is common clinical practice and can be easily derived from and be compared to values, generated by a 1D-CFD simulation. Using this strategy, we ensure that our proposed method fits best to clinical practice and does not require any changes to the medical work flow. Synthetic experiments show that the recovered flow estimates match the ground truth values with less than 12% error in the mean flow rates.
Tan, Germaine Xin Yi; Jamil, Muhammad; Tee, Nicole Gui Zhen; Zhong, Liang; Yap, Choon Hwai
2015-11-01
Recent animal studies have provided evidence that prenatal blood flow fluid mechanics may play a role in the pathogenesis of congenital cardiovascular malformations. To further these researches, it is important to have an imaging technique for small animal embryos with sufficient resolution to support computational fluid dynamics studies, and that is also non-invasive and non-destructive to allow for subject-specific, longitudinal studies. In the current study, we developed such a technique, based on ultrasound biomicroscopy scans on chick embryos. Our technique included a motion cancelation algorithm to negate embryonic body motion, a temporal averaging algorithm to differentiate blood spaces from tissue spaces, and 3D reconstruction of blood volumes in the embryo. The accuracy of the reconstructed models was validated with direct stereoscopic measurements. A computational fluid dynamics simulation was performed to model fluid flow in the generated construct of a Hamburger-Hamilton (HH) stage 27 embryo. Simulation results showed that there were divergent streamlines and a low shear region at the carotid duct, which may be linked to the carotid duct's eventual regression and disappearance by HH stage 34. We show that our technique has sufficient resolution to produce accurate geometries for computational fluid dynamics simulations to quantify embryonic cardiovascular fluid mechanics.
Shang, Yu; Yu, Guoqiang
2014-09-29
Conventional semi-infinite analytical solutions of correlation diffusion equation may lead to errors when calculating blood flow index (BFI) from diffuse correlation spectroscopy (DCS) measurements in tissues with irregular geometries. Very recently, we created an algorithm integrating a N th-order linear model of autocorrelation function with the Monte Carlo simulation of photon migrations in homogenous tissues with arbitrary geometries for extraction of BFI (i.e., αD B ). The purpose of this study is to extend the capability of the N th-order linear algorithm for extracting BFI in heterogeneous tissues with arbitrary geometries. The previous linear algorithm was modified to extract BFIs in different types of tissues simultaneously through utilizing DCS data at multiple source-detector separations. We compared the proposed linear algorithm with the semi-infinite homogenous solution in a computer model of adult head with heterogeneous tissue layers of scalp, skull, cerebrospinal fluid, and brain. To test the capability of the linear algorithm for extracting relative changes of cerebral blood flow (rCBF) in deep brain, we assigned ten levels of αD B in the brain layer with a step decrement of 10% while maintaining αD B values constant in other layers. Simulation results demonstrate the accuracy (errors < 3%) of high-order ( N ≥ 5) linear algorithm in extracting BFIs in different tissue layers and rCBF in deep brain. By contrast, the semi-infinite homogenous solution resulted in substantial errors in rCBF (34.5% ≤ errors ≤ 60.2%) and BFIs in different layers. The N th-order linear model simplifies data analysis, thus allowing for online data processing and displaying. Future study will test this linear algorithm in heterogeneous tissues with different levels of blood flow variations and noises.
Theoretical analysis of evaporative cooling of classic heat stroke patients
NASA Astrophysics Data System (ADS)
Alzeer, Abdulaziz H.; Wissler, E. H.
2018-05-01
Heat stroke is a serious health concern globally, which is associated with high mortality. Newer treatments must be designed to improve outcomes. The aim of this study is to evaluate the effect of variations in ambient temperature and wind speed on the rate of cooling in a simulated heat stroke subject using the dynamic model of Wissler. We assume that a 60-year-old 70-kg female suffers classic heat stroke after walking fully exposed to the sun for 4 h while the ambient temperature is 40 °C, relative humidity is 20%, and wind speed is 2.5 m/s-1. Her esophageal and skin temperatures are 41.9 and 40.7 °C at the time of collapse. Cooling is accomplished by misting with lukewarm water while exposed to forced airflow at a temperature of 20 to 40 °C and a velocity of 0.5 or 1 m/s-1. Skin blood flow is assumed to be either normal, one-half of normal, or twice normal. At wind speed of 0.5 m/s-1 and normal skin blood flow, the air temperature decreased from 40 to 20 °C, increased cooling, and reduced time required to reach to a desired temperature of 38 °C. This relationship was also maintained in reduced blood flow states. Increasing wind speed to 1 m/s-1 increased cooling and reduced the time to reach optimal temperature both in normal and reduced skin blood flow states. In conclusion, evaporative cooling methods provide an effective method for cooling classic heat stroke patients. The maximum heat dissipation from the simulated model of Wissler was recorded when the entire body was misted with lukewarm water and applied forced air at 1 m/s at temperature of 20 °C.
Vogiatzis, Ioannis; Andrianopoulos, Vasileios; Louvaris, Zafeiris; Cherouveim, Evgenia; Spetsioti, Stavroula; Vasilopoulou, Maroula; Athanasopoulos, Dimitrios
2011-07-01
In this study, we wished to determine whether the observed reduction in quadriceps muscle oxygen availability, reported during repetitive bouts of isometric exercise in simulated sailing efforts (i.e. hiking), is because of restricted muscle blood flow. Six national-squad Laser sailors initially performed three successive 3-min hiking bouts followed by three successive 3-min cycling tests sustained at constant intensities reproducing the cardiac output recorded during each of the three hiking bouts. The blood flow index (BFI) was determined from assessment of the vastus lateralis using near-infrared spectroscopy in association with the light-absorbing tracer indocyanine green dye, while cardiac output was determined from impedance cardiography. At equivalent cardiac outputs (ranging from 10.3±0.5 to 14.8±0.86 L · min(-1)), the increase from baseline in vastus lateralis BFI across the three hiking bouts (from 1.1±0.2 to 3.1±0.6 nM · s(-1)) was lower (P = 0.036) than that seen during the three cycling bouts (from 1.1±0.2 to 7.2±1.4 nM · s(-1)) (Cohen's d: 3.80 nM · s(-1)), whereas the increase from baseline in deoxygenated haemoglobin (by ∼17.0±2.9 μM) (an index of tissue oxygen extraction) was greater (P = 0.006) during hiking than cycling (by ∼5.3±2.7 μM) (Cohen's d: 4.17 μM). The results suggest that reduced vastus lateralis muscle oxygen availability during hiking arises from restricted muscle blood flow in the isometrically acting quadriceps muscles.
Characteristic point algorithm in laser ektacytometry of red blood cells
NASA Astrophysics Data System (ADS)
Nikitin, S. Yu.; Ustinov, V. D.
2018-01-01
We consider the problem of measuring red blood cell deformability by laser diffractometry in shear flow (ektacytometry). A new equation is derived that relates the parameters of the diffraction pattern to the width of the erythrocyte deformability distribution. The numerical simulation method shows that this equation provides a higher accuracy of measurements in comparison with the analogous equation obtained by us earlier.
The numerical simulation study of hemodynamics of the new dense-mesh stent
NASA Astrophysics Data System (ADS)
Ma, Jiali; Yuan, Zhishan; Yu, Xuebao; Feng, Zhaowei; Miao, Weidong; Xu, Xueli; Li, Juntao
2017-09-01
The treatment of aortic aneurysm in new dense mesh stent is based on the principle of hemodynamic changes. But the mechanism is not yet very clear. This paper analyzed and calculated the hemodynamic situation before and after the new dense mesh stent implanting by the method of numerical simulation. The results show the dense mesh stent changed and impacted the blood flow in the aortic aneurysm. The changes include significant decrement of blood velocity, pressure and shear forces, while ensuring blood can supply branches, which means the new dense mesh stent's hemodynamic mechanism in the treatment of aortic aneurysm is clearer. It has very important significance in developing new dense mesh stent in order to cure aortic aneurysm.
Multiscale simulation of red blood cell aggregation
NASA Astrophysics Data System (ADS)
Bagchi, P.; Popel, A. S.
2004-11-01
In humans and other mammals, aggregation of red blood cells (RBC) is a major determinant to blood viscosity in microcirculation under physiological and pathological conditions. Elevated levels of aggregation are often related to cardiovascular diseases, bacterial infection, diabetes, and obesity. Aggregation is a multiscale phenomenon that is governed by the molecular bond formation between adjacent cells, morphological and rheological properties of the cells, and the motion of the extra-cellular fluid in which the cells circulate. We have developed a simulation technique using front tracking methods for multiple fluids that includes the multiscale characteristics of aggregation. We will report the first-ever direct computer simulation of aggregation of deformable cells in shear flows. We will present results on the effect of shear rate, strength of the cross-bridging bonds, and the cell rheological properties on the rolling motion, deformation and subsequent breakage of an aggregate.
Rapid multi-wavelength optical assessment of circulating blood volume without a priori data
NASA Astrophysics Data System (ADS)
Loginova, Ekaterina V.; Zhidkova, Tatyana V.; Proskurnin, Mikhail A.; Zharov, Vladimir P.
2016-03-01
The measurement of circulating blood volume (CBV) is crucial in various medical conditions including surgery, iatrogenic problems, rapid fluid administration, transfusion of red blood cells, or trauma with extensive blood loss including battlefield injuries and other emergencies. Currently, available commercial techniques are invasive and time-consuming for trauma situations. Recently, we have proposed high-speed multi-wavelength photoacoustic/photothermal (PA/PT) flow cytometry for in vivo CBV assessment with multiple dyes as PA contrast agents (labels). As the first step, we have characterized the capability of this technique to monitor the clearance of three dyes (indocyanine green, methylene blue, and trypan blue) in an animal model. However, there are strong demands on improvements in PA/PT flow cytometry. As additional verification of our proof-of-concept of this technique, we performed optical photometric CBV measurements in vitro. Three label dyes—methylene blue, crystal violet and, partially, brilliant green—were selected for simultaneous photometric determination of the components of their two-dye mixtures in the circulating blood in vitro without any extra data (like hemoglobin absorption) known a priori. The tests of single dyes and their mixtures in a flow system simulating a blood transfusion system showed a negligible difference between the sensitivities of the determination of these dyes under batch and flow conditions. For individual dyes, the limits of detection of 3×10-6 M‒3×10-6 M in blood were achieved, which provided their continuous determination at a level of 10-5 M for the CBV assessment without a priori data on the matrix. The CBV assessment with errors no higher than 4% were obtained, and the possibility to apply the developed procedure for optical photometric (flow cytometry) with laser sources was shown.
Buerk, Donald G; Barbee, Kenneth A; Jaron, Dov
2011-01-01
Recent evidence in the literature suggests that tissues play a greater role than blood in reducing nitrite to NO under ischemic or hypoxic conditions. Our previous mathematical model for coupled NO and O(2) transport around an arteriole, modified to include superoxide generation from dysfunctional endothelium, was developed further to include nitrite reductase activity in blood and tissue. Steady-state radial and axial NO and pO(2) profiles in the arteriole and surrounding tissue were simulated for different blood flow rates and arterial blood pO(2) values. The resulting computer simulations demonstrate that nitrite reductase activity in blood is not a very effective mechanism for conserving NO due to the strong scavenging of NO by hemoglobin. In contrast, nitrite reductase activity in tissue is much more effective in increasing NO bioavailability in the vascular wall and contributes progressively more NO as tissue hypoxia becomes more severe.
Heart Pump Design for Cleveland Clinic Foundation
NASA Technical Reports Server (NTRS)
2005-01-01
Through a Lewis CommTech Program project with the Cleveland Clinic Foundation, the NASA Lewis Research Center is playing a key role in the design and development of a permanently implantable, artificial heart pump assist device. Known as the Innovative Ventricular Assist System (IVAS), this device will take on the pumping role of the damaged left ventricle of the heart. The key part of the IVAS is a nonpulsatile (continuous flow) artificial heart pump with centrifugal impeller blades, driven by an electric motor. Lewis is part of an industry and academia team, led by the Ohio Aerospace Institute (OAI), that is working with the Cleveland Clinic Foundation to make IVAS a reality. This device has the potential to save tens of thousands of lives each year, since 80 percent of heart attack victims suffer irreversible damage to the left ventricle, the part of the heart that does most of the pumping. Impeller blade design codes and flow-modeling analytical codes will be used in the project. These codes were developed at Lewis for the aerospace industry but will be applicable to the IVAS design project. The analytical codes, which currently simulate the flow through the compressor and pump systems, will be used to simulate the flow within the blood pump in the artificial heart assist device. The Interdisciplinary Technology Office heads up Lewis' efforts in the IVAS project. With the aid of numerical modeling, the blood pump will address many design issues, including some fluid-dynamic design considerations that are unique to the properties of blood. Some of the issues that will be addressed in the design process include hemolysis, deposition, recirculation, pump efficiency, rotor thrust balance, and bearing lubrication. Optimum pumping system performance will be achieved by modeling all the interactions between the pump components. The interactions can be multidisciplinary and, therefore, are influenced not only by the fluid dynamics of adjacent components but also by thermal and structural effects. Lewis-developed flow-modeling codes to be used in the pump simulations will include a one-dimensional code and an incompressible three-dimensional Navier-Stokes flow code. These codes will analyze the prototype pump designed by the Cleveland Clinic Foundation. With an improved understanding of the flow phenomena within the prototype pump, design changes to improve the performance of the pump system can be verified by computer prior to fabrication in order to reduce risks. The use of Lewis flow modeling codes during the design and development process will improve pump system performance and reduce the number of prototypes built in the development phase. The first phase of the IVAS project is to fully develop the prototype in a laboratory environment that uses a water/glycerin mixture as the surrogate fluid to simulate blood. A later phase of the project will include testing in animals for final validation. Lewis will be involved in the IVAS project for 3 to 5 years.
A computational analysis of different endograft designs for Zone 0 aortic arch repair.
van Bakel, Theodorus M; Arthurs, Christopher J; van Herwaarden, Joost A; Moll, Frans L; Eagle, Kim A; Patel, Himanshu J; Trimarchi, Santi; Figueroa, C Alberto
2018-03-15
Aortic arch repair remains a major surgical challenge. Multiple manufacturers are developing branched endografts for Zone 0 endovascular repair, extending the armamentarium for minimally invasive treatment of aortic arch pathologies. We hypothesize that the design of the Zone 0 endograft has a significant impact on the postoperative haemodynamic performance, particularly in the cervical arteries. The goal of our study was to compare the postoperative haemodynamic performance of different Zone 0 endograft designs. Patient-specific, clinically validated, computational fluid dynamics simulations were performed in a 71-year-old woman with a 6.5-cm saccular aortic arch aneurysm. Additionally, 4 endovascular repair scenarios using different endograft designs were created. Haemodynamic performance was evaluated by calculation of postoperative changes in blood flow and platelet activation potential (PLAP) in the cervical arteries. Preoperative cervical blood flow and mean PLAP were 1080 ml/min and 151.75, respectively. Cervical blood flow decreased and PLAP increased following endovascular repair in all scenarios. Endografts with 2 antegrade inner branches performed better compared to single-branch endografts. Scenario 3 performed the worst with a decrease in the total cervical blood flow of 4.8%, a decrease in the left hemisphere flow of 6.7% and an increase in the mean PLAP of 74.3%. Endograft design has a significant impact on haemodynamic performance following Zone 0 endovascular repair, potentially affecting cerebral blood flow during follow-up. Our results demonstrate the use of computational modelling for virtual testing of therapeutic interventions and underline the need to monitor the long-term outcomes in this cohort of patients.
NASA Astrophysics Data System (ADS)
Sakota, Daisuke; Takatani, Setsuo
2011-07-01
We have sought for non-invasive diagnosis of blood during the extracorporeal circulation support. To achieve the goal, we have newly developed a photon-cell interactive Monte Carlo (pciMC) model for optical propagation through blood. The pciMC actually describes the interaction of photons with 3-dimentional biconcave RBCs. The scattering is described by micro-scopical RBC boundary condition based on geometric optics. By using pciMC, we modeled the RBCs inside the extracorporeal circuit will be oriented by the blood flow. The RBCs' orientation was defined as their long axis being directed to the center of the circulation tube. Simultaneously the RBCs were allowed to randomly rotate about the long axis direction. As a result, as flow rate increased, the orientation rate increased and converged to approximately 22% at 0.5 L/min flow rate and above. And finally, by using this model, the pciMC non-invasively and absolutely predicted Hct and hemoglobin with the accuracies of 0.84+/-0.82 [HCT%] and 0.42+/-0.28 [g/dL] respectively against measurements by a blood gas analyzer.
Systems analysis of thrombus formation
Diamond, Scott L.
2016-01-01
The systems analysis of thrombosis seeks to quantitatively predict blood function in a given vascular wall and hemodynamic context. Relevant to both venous and arterial thrombosis, a Blood Systems Biology approach should provide metrics for rate and molecular mechanisms of clot growth, thrombotic risk, pharmacological response, and utility of new therapeutic targets. As a rapidly created multicellular aggregate with a polymerized fibrin matrix, blood clots result from hundreds of unique reactions within and around platelets propagating in space and time under hemodynamic conditions. Coronary artery thrombosis is dominated by atherosclerotic plaque rupture, complex pulsatile flows through stenotic regions producing high wall shear stresses, and plaque-derived tissue factor driving thrombin production. In contrast, venous thrombosis is dominated by stasis or depressed flows, endothelial inflammation, white blood cell-derived tissue factor, and ample red blood cell incorporation. By imaging vessels, patient-specific assessment using computational fluid dynamics provides an estimate of local hemodynamics and fractional flow reserve. High dimensional ex vivo phenotyping of platelet and coagulation can now power multiscale computer simulations at the subcellular to cellular to whole vessel scale of heart attacks or strokes. Additionally, an integrated systems biology approach can rank safety and efficacy metrics of various pharmacological interventions or clinical trial designs. PMID:27126646
Virtual reality in radiology: virtual intervention
NASA Astrophysics Data System (ADS)
Harreld, Michael R.; Valentino, Daniel J.; Duckwiler, Gary R.; Lufkin, Robert B.; Karplus, Walter J.
1995-04-01
Intracranial aneurysms are the primary cause of non-traumatic subarachnoid hemorrhage. Morbidity and mortality remain high even with current endovascular intervention techniques. It is presently impossible to identify which aneurysms will grow and rupture, however hemodynamics are thought to play an important role in aneurysm development. With this in mind, we have simulated blood flow in laboratory animals using three dimensional computational fluid dynamics software. The data output from these simulations is three dimensional, complex and transient. Visualization of 3D flow structures with standard 2D display is cumbersome, and may be better performed using a virtual reality system. We are developing a VR-based system for visualization of the computed blood flow and stress fields. This paper presents the progress to date and future plans for our clinical VR-based intervention simulator. The ultimate goal is to develop a software system that will be able to accurately model an aneurysm detected on clinical angiography, visualize this model in virtual reality, predict its future behavior, and give insight into the type of treatment necessary. An associated database will give historical and outcome information on prior aneurysms (including dynamic, structural, and categorical data) that will be matched to any current case, and assist in treatment planning (e.g., natural history vs. treatment risk, surgical vs. endovascular treatment risks, cure prediction, complication rates).
Kandail, Harkamaljot Singh; Hamady, Mohamad; Xu, Xiao Yun
2016-01-01
The aim of this study was to assess the hemodynamic performance of a patient-specific fenestrated stent graft (FSG) under different physiological conditions, including normal resting, hypertension, and hypertension with moderate lower limb exercise. A patient-specific FSG model was constructed from computed tomography images and was discretized into a fine unstructured mesh comprising tetrahedral and prism elements. Blood flow was simulated using Navier–Stokes equations, and physiologically realistic boundary conditions were utilized to yield clinically relevant results. For a given cycle-averaged inflow of 2.08 L/min at normal resting and hypertension conditions, approximately 25% of flow was channeled into each renal artery. When hypertension was combined with exercise, the cycle-averaged inflow increased to 6.39 L/min but only 6.29% of this was channeled into each renal artery, which led to a 438.46% increase in the iliac flow. For all the simulated scenarios and throughout the cardiac cycle, the instantaneous flow streamlines in the FSG were well organized without any notable flow recirculation. This well-organized flow led to low values of endothelial cell activation potential, which is a hemodynamic metric used to identify regions at risk of thrombosis. The displacement forces acting on the FSG varied with the physiological conditions, and the cycle-averaged displacement force at normal rest, hypertension, and hypertension with exercise was 6.46, 8.77, and 8.99 N, respectively. The numerical results from this study suggest that the analyzed FSG can maintain sufficient blood perfusion to the end organs at all the simulated conditions. Even though the FSG was found to have a low risk of thrombosis at rest and hypertension, this risk can be reduced even further with moderate lower limb exercise. PMID:27379242
Measurement of viscous flow velocity and flow visualization using two magnetic resonance imagers
NASA Astrophysics Data System (ADS)
Boiko, A. V.; Akulov, A. E.; Chupakhin, A. P.; Cherevko, A. A.; Denisenko, N. S.; Savelov, A. A.; Stankevich, Yu. A.; Khe, A. K.; Yanchenko, A. A.; Tulupov, A. A.
2017-03-01
The accuracies of measuring the velocity field using clinical and research magnetic resonance imagers are compared. The flow velocity of a fluid simulating blood in a carotid artery model connected to a programmable pump was measured. Using phase-contrast magnetic resonance tomography, the velocity distributions in the carotid artery model were obtained and compared with the analytical solution for viscous liquid flow in a cylindrical tube (Poiseuille flow). It is found that the accuracy of the velocity measurement does not depend on the field induction and spatial resolution of the imagers.
Tamaki, S; Kawazoe, K; Yagihara, T; Abe, T
1992-02-01
The effect of pulsatile pulmonary flow after the modified Fontan procedure was examined in a model that simulated the right heart. An inlet overflow tank (preload), axial pulsatile pump, Wind-Kessel model (afterload), and an outlet overflow tank were connected in series. The standard conditions were flow 2.00 l/min with 12 mm Hg preload pressure, 3.0 Wood units resistance, and an outlet overflow tank pressure at 6 mm Hg. The pump rate was set at 80 beats/min. The simulated pulmonary arterial pressure and pulmonary flow waves produced by this model closely resembled those obtained from patients who had undergone the modified Fontan procedure. All variables except the preload were fixed and changes in pulmonary flow were examined at preload pressures of 8, 12, 15, and 17 mm Hg. As the peak pulmonary arterial pressure increased so did pulmonary flow, until it was greater than during the non-pulsatile state. Because the afterload of this model was fixed, this result suggests that there was a concomitant decrease in resistance. This model indicates that pulsatile pulmonary blood flow is likely to have a beneficial effect on the pulmonary circulation after the modified Fontan procedure.
NASA Astrophysics Data System (ADS)
Chan, Iatneng
2012-02-01
In general the exchange of gases or other material in capillary system is conceptualized by the diffusion effect. But in this model, we investigate a micro-flow pattern by simulation and computation on a micro-exchange model in which the blood cell is a considered factor, especially on its shape. It shows that the cell benefits the circulation while it is moving in the capillary. In the study, the flow detail near the cell surface is mathematically analyzed, such that the Navier-Stokes equations are applied and the viscous factor is also briefly considered. For having a driven force to the motion of micro-circulation, a breathing mode is suggested to approximately compute on the flow rate in the blood capillary during the transfer of cell. The rate is also used to estimate the enhancement to the circulation in additional to the outcome of diffusion. Moreover in the research, the shape change of capillary wall under pressure influence is another element in the beginning calculation for the effect in the assistance to cell motion.
Flow studies in canine artery bifurcations using a numerical simulation method.
Xu, X Y; Collins, M W; Jones, C J
1992-11-01
Three-dimensional flows through canine femoral bifurcation models were predicted under physiological flow conditions by solving numerically the time-dependent three-dimensional Navier-stokes equations. In the calculations, two models were assumed for the blood, those of (a) a Newtonian fluid, and (b) a non-Newtonian fluid obeying the power law. The blood vessel wall was assumed to be rigid this being the only approximation to the prediction model. The numerical procedure utilized a finite volume approach on a finite element mesh to discretize the equations, and the code used (ASTEC) incorporated the SIMPLE velocity-pressure algorithm in performing the calculations. The predicted velocity profiles were in good qualitative agreement with the in vivo measurements recently obtained by Jones et al. The non-Newtonian effects on the bifurcation flow field were also investigated, and no great differences in velocity profiles were observed. This indicated that the non-Newtonian characteristics of the blood might not be an important factor in determining the general flow patterns for these bifurcations, but could have local significance. Current work involves modeling wall distensibility in an empirically valid manner. Predictions accommodating these will permit a true quantitative comparison with experiment.
The Impact of Blood Rheology on Drug Transport in Stented Arteries: Steady Simulations
Vijayaratnam, Pujith R. S.; O’Brien, Caroline C.; Reizes, John A.; Barber, Tracie J.; Edelman, Elazer R.
2015-01-01
Background and Methods It is important to ensure that blood flow is modelled accurately in numerical studies of arteries featuring drug-eluting stents due to the significant proportion of drug transport from the stent into the arterial wall which is flow-mediated. Modelling blood is complicated, however, by variations in blood rheological behaviour between individuals, blood’s complex near-wall behaviour, and the large number of rheological models which have been proposed. In this study, a series of steady-state computational fluid dynamics analyses were performed in which the traditional Newtonian model was compared against a range of non-Newtonian models. The impact of these rheological models was elucidated through comparisons of haemodynamic flow details and drug transport behaviour at various blood flow rates. Results Recirculation lengths were found to reduce by as much as 24% with the inclusion of a non-Newtonian rheological model. Another model possessing the viscosity and density of blood plasma was also implemented to account for near-wall red blood cell losses and yielded recirculation length increases of up to 59%. However, the deviation from the average drug concentration in the tissue obtained with the Newtonian model was observed to be less than 5% in all cases except one. Despite the small sensitivity to the effects of viscosity variations, the spatial distribution of drug matter in the tissue was found to be significantly affected by rheological model selection. Conclusions/Significance These results may be used to guide blood rheological model selection in future numerical studies. The clinical significance of these results is that they convey that the magnitude of drug uptake in stent-based drug delivery is relatively insensitive to individual variations in blood rheology. Furthermore, the finding that flow separation regions formed downstream of the stent struts diminish drug uptake may be of interest to device designers. PMID:26066041
Influence of the renal artery ostium flow diverter on hemodynamics and atherogenesis
Albert, Scott; Balaban, Robert S.; Neufeld, Edward B.; Rossmann, Jenn Stroud
2014-01-01
The structure and function of the renal artery ostium flow diverter on the caudal side of the renal branch point were previously reported; in this study, we further evaluate the diverter’s possible functions. The protrusion of this structure into the abdominal aorta suggests that the diverter may preferentially direct blood flow to the renal arteries, and that it may also influence flow patterns and recirculation known to be involved in atherogenesis. Three-dimensional computational fluid dynamics (CFD) simulations of steady and pulsatile blood flow are performed to investigate the influence of diverter size and position, and vascular geometry, on the flow patterns and fluid mechanical forces in the neighborhood of the diverter. CFD results show that the flow diverter does affect the blood distribution: depending on the diverter’s position, the flow to the renal arteries may be increased or reduced. Calculated results also demonstrate the diverter’s effect on the Wall Shear Stress (WSS) distribution, and suggest that the diverter contributes to an atherogenic environment in the abdominal aorta, while being atheroprotective in the renal arteries themselves. These results support previous clinical findings, and suggest directions for further clinical study. The results of this work have direct implications in understanding the physiological significance of the diverter, and its potential role in the pathophysiological development of atherosclerosis. PMID:24703300
Influence of the renal artery ostium flow diverter on hemodynamics and atherogenesis.
Albert, Scott; Balaban, Robert S; Neufeld, Edward B; Rossmann, Jenn Stroud
2014-05-07
The structure and function of the renal artery ostium flow diverter on the caudal side of the renal branch point were previously reported; in this study, we further evaluate the diverter׳s possible functions. The protrusion of this structure into the abdominal aorta suggests that the diverter may preferentially direct blood flow to the renal arteries, and that it may also influence flow patterns and recirculation known to be involved in atherogenesis. Three-dimensional computational fluid dynamics (CFD) simulations of steady and pulsatile blood flow are performed to investigate the influence of diverter size and position, and vascular geometry, on the flow patterns and fluid mechanical forces in the neighborhood of the diverter. CFD results show that the flow diverter does affect the blood distribution; depending on the diverter׳s position, the flow to the renal arteries may be increased or reduced. Calculated results also demonstrate the diverter׳s effect on the wall shear stress (WSS) distribution, and suggest that the diverter contributes to an atherogenic environment in the abdominal aorta, while being atheroprotective in the renal arteries themselves. These results support previous clinical findings, and suggest directions for further clinical study. The results of this work have direct implications in understanding the physiological significance of the diverter, and its potential role in the pathophysiological development of atherosclerosis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Naftalin, Richard J.
2016-01-01
A computer model designed to simulate integrated glucose-dependent changes in splanchnic blood flow with small intestinal glucose absorption, hormonal and incretin circulation and hepatic and systemic metabolism in health and metabolic diseases e.g. non-alcoholic fatty liver disease, (NAFLD), non-alcoholic steatohepatitis, (NASH) and type 2 diabetes mellitus, (T2DM) demonstrates how when glucagon-like peptide-1, (GLP-1) is synchronously released into the splanchnic blood during intestinal glucose absorption, it stimulates superior mesenteric arterial (SMA) blood flow and by increasing passive intestinal glucose absorption, harmonizes absorption with its distribution and metabolism. GLP-1 also synergises insulin-dependent net hepatic glucose uptake (NHGU). When GLP-1 secretion is deficient post-prandial SMA blood flow is not increased and as NHGU is also reduced, hyperglycaemia follows. Portal venous glucose concentration is also raised, thereby retarding the passive component of intestinal glucose absorption. Increased pre-hepatic sinusoidal resistance combined with portal hypertension leading to opening of intrahepatic portosystemic collateral vessels are NASH-related mechanical defects that alter the balance between splanchnic and systemic distributions of glucose, hormones and incretins.The model reveals the latent contribution of portosystemic shunting in development of metabolic disease. This diverts splanchnic blood content away from the hepatic sinuses to the systemic circulation, particularly during the glucose absorptive phase of digestion, resulting in inappropriate increases in insulin-dependent systemic glucose metabolism. This hastens onset of hypoglycaemia and thence hyperglucagonaemia. The model reveals that low rates of GLP-1 secretion, frequently associated with T2DM and NASH, may be also be caused by splanchnic hypoglycaemia, rather than to intrinsic loss of incretin secretory capacity. These findings may have therapeutic implications on GLP-1 agonist or glucagon antagonist usage. PMID:27347379
NASA Technical Reports Server (NTRS)
Tipton, Charles M.
1991-01-01
The primary purpose of this research is to study the physiological mechanisms associated with the exercise performance of rats subjected to conditions of simulated weightlessness. A secondary purpose is to study related physiological changes associated with other systems. To facilitate these goals, a rodent suspension model was developed (Overton-Tipton) and a VO2 max testing procedure was perfected. Three methodological developments occurred during this past year deserving of mention. The first was the refinement of the tail suspension model so that (1) the heat dissipation functions of the caudal artery can be better utilized, and (2) the blood flow distribution to the tail would have less external constriction. The second was the development on a one-leg weight bearing model for use in simulated weightlessness studies concerned with change in muscle mass, muscle enzyme activity, and hind limb blood flow. The chemical body composition of 30 rats was determined and used to develop a prediction equation for percent fat using underwater weighing procedures to measure carcass specific gravity and to calculate body density, body fat, and fat free mass.
FDA’s Nozzle Numerical Simulation Challenge: Non-Newtonian Fluid Effects and Blood Damage
Trias, Miquel; Arbona, Antonio; Massó, Joan; Miñano, Borja; Bona, Carles
2014-01-01
Data from FDA’s nozzle challenge–a study to assess the suitability of simulating fluid flow in an idealized medical device–is used to validate the simulations obtained from a numerical, finite-differences code. Various physiological indicators are computed and compared with experimental data from three different laboratories, getting a very good agreement. Special care is taken with the derivation of blood damage (hemolysis). The paper is focused on the laminar regime, in order to investigate non-Newtonian effects (non-constant fluid viscosity). The code can deal with these effects with just a small extra computational cost, improving Newtonian estimations up to a ten percent. The relevance of non-Newtonian effects for hemolysis parameters is discussed. PMID:24667931
A new contrast-assisted method in microcirculation volumetric flow assessment
NASA Astrophysics Data System (ADS)
Lu, Sheng-Yi; Chen, Yung-Sheng; Yeh, Chih-Kuang
2007-03-01
Microcirculation volumetric flow rate is a significant index in diseases diagnosis and treatment such as diabetes and cancer. In this study, we propose an integrated algorithm to assess microcirculation volumetric flow rate including estimation of blood perfused area and corresponding flow velocity maps based on high frequency destruction/contrast replenishment imaging technique. The perfused area indicates the blood flow regions including capillaries, arterioles and venules. Due to the echo variance changes between ultrasonic contrast agents (UCAs) pre- and post-destruction two images, the perfused area can be estimated by the correlation-based approach. The flow velocity distribution within the perfused area can be estimated by refilling time-intensity curves (TICs) after UCAs destruction. Most studies introduced the rising exponential model proposed by Wei (1998) to fit the TICs. Nevertheless, we found the TICs profile has a great resemblance to sigmoid function in simulations and in vitro experiments results. Good fitting correlation reveals that sigmoid model was more close to actual fact in describing destruction/contrast replenishment phenomenon. We derived that the saddle point of sigmoid model is proportional to blood flow velocity. A strong linear relationship (R = 0.97) between the actual flow velocities (0.4-2.1 mm/s) and the estimated saddle constants was found in M-mode and B-mode flow phantom experiments. Potential applications of this technique include high-resolution volumetric flow rate assessment in small animal tumor and the evaluation of superficial vasculature in clinical studies.
Breaking symmetry in non-planar bifurcations: distribution of flow and wall shear stress.
Lu, Yiling; Lu, Xiyun; Zhuang, Lixian; Wang, Wen
2002-01-01
Non-planarity in blood vessels is known to influence arterial flows and wall shear stress. To gain insight, computational fluid dynamics (CFD) has been used to investigate effects of curvature and out-of-plane geometry on the distribution of fluid flows and wall shear stresses in a hypothetical non-planar bifurcation. Three-dimensional Navier-Stokes equations for a steady state Newtonian fluid were solved numerically using a finite element method. Non-planarity in one of the two daughter vessels is found to deflect flow from the inner wall of the vessel to the outer wall and to cause changes in the distribution of wall shear stresses. Results from this study agree to experimental observations and CFD simulations in the literature, and support the view that non-planarity in blood vessels is a factor with important haemodynamic significance and may play a key role in vascular biology and pathophysiology.
Fluid friction and wall viscosity of the 1D blood flow model.
Wang, Xiao-Fei; Nishi, Shohei; Matsukawa, Mami; Ghigo, Arthur; Lagrée, Pierre-Yves; Fullana, Jose-Maria
2016-02-29
We study the behavior of the pulse waves of water into a flexible tube for application to blood flow simulations. In pulse waves both fluid friction and wall viscosity are damping factors, and difficult to evaluate separately. In this paper, the coefficients of fluid friction and wall viscosity are estimated by fitting a nonlinear 1D flow model to experimental data. In the experimental setup, a distensible tube is connected to a piston pump at one end and closed at another end. The pressure and wall displacements are measured simultaneously. A good agreement between model predictions and experiments was achieved. For amplitude decrease, the effect of wall viscosity on the pulse wave has been shown as important as that of fluid viscosity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Rugonyi, Sandra
2008-04-01
Transport of bioactive agents through the blood is essential for cardiovascular regulatory processes and drug delivery. Bioactive agents and other solutes infused into the blood through the wall of a blood vessel or released into the blood from an area in the vessel wall spread downstream of the infusion/release region and form a thin boundary layer in which solute concentration is higher than in the rest of the blood. Bioactive agents distributed along the vessel wall affect endothelial cells and regulate biological processes, such as thrombus formation, atherogenesis, and vascular remodeling. To calculate the concentration of solutes in the boundary layer, researchers have generally used numerical simulations. However, to investigate the effect of blood flow, infusion rate, and vessel geometry on the concentration of different solutes, many simulations are needed, leading to a time-consuming effort. In this paper, a relatively simple formula to quantify concentrations in a tube downstream of an infusion/release region is presented. Given known blood-flow rates, tube radius, solute diffusivity, and the length of the infusion region, this formula can be used to quickly estimate solute concentrations when infusion rates are known or to estimate infusion rates when solute concentrations at a point downstream of the infusion region are known. The developed formula is based on boundary layer theory and physical principles. The formula is an approximate solution of the advection-diffusion equations in the boundary layer region when solute concentration is small (dilute solution), infusion rate is modeled as a mass flux, and there is no transport of solute through the wall or chemical reactions downstream of the infusion region. Wall concentrations calculated using the formula developed in this paper were compared to the results from finite element models. Agreement between the results was within 10%. The developed formula could be used in experimental procedures to evaluate drug efficacy, in the design of drug-eluting stents, and to calculate rates of release of bioactive substances at active surfaces using downstream concentration measurements. In addition to being simple and fast to use, the formula gives accurate quantifications of concentrations and infusion rates under steady-state and oscillatory flow conditions, and therefore can be used to estimate boundary layer concentrations under physiological conditions.
Depth discrimination in acousto-optic cerebral blood flow measurement simulation
NASA Astrophysics Data System (ADS)
Tsalach, A.; Schiffer, Z.; Ratner, E.; Breskin, I.; Zeitak, R.; Shechter, R.; Balberg, M.
2016-03-01
Monitoring cerebral blood flow (CBF) is crucial, as inadequate perfusion, even for relatively short periods of time, may lead to brain damage or even death. Thus, significant research efforts are directed at developing reliable monitoring tools that will enable continuous, bed side, simple and cost-effective monitoring of CBF. All existing non invasive bed side monitoring methods, which are mostly NIRS based, such as Laser Doppler or DCS, tend to underestimate CBF in adults, due to the indefinite effect of extra-cerebral tissues on the obtained signal. If those are to find place in day to day clinical practice, the contribution of extra-cerebral tissues must be eliminated and data from the depth (brain) should be extracted and discriminated. Recently, a novel technique, based on ultrasound modulation of light was developed for non-invasive, continuous CBF monitoring (termed ultrasound-tagged light (UTL or UT-NIRS)), and shown to correlate with readings of 133Xe SPECT and laser Doppler. We have assembled a comprehensive computerized simulation, modeling this acousto-optic technique in a highly scattering media. Using the combination of light and ultrasound, we show how depth information may be extracted, thus distinguishing between flow patterns taking place at different depths. Our algorithm, based on the analysis of light modulated by ultrasound, is presented and examined in a computerized simulation. Distinct depth discrimination ability is presented, suggesting that using such method one can effectively nullify the extra-cerebral tissues influence on the obtained signals, and specifically extract cerebral flow data.
Inertia-dependent dynamics of three-dimensional vesicles and red blood cells in shear flow.
Luo, Zheng Yuan; Wang, Shu Qi; He, Long; Xu, Feng; Bai, Bo Feng
2013-10-28
A three-dimensional (3D) simulation study of the effect of inertia on the dynamics of vesicles and red blood cells (RBCs) has not been reported. Here, we developed a 3D model based on the front tracking method to investigate how inertia affects the dynamics of spherical/non-spherical vesicles and biconcave-shaped RBCs with the Reynolds number ranging from 0.1 to 10. The results showed that inertia induced non-spherical vesicles transitioned from tumbling to swinging, which was not observed in previous 2D models. The critical viscosity ratio of inner/outer fluids for the tumbling–swinging transition remarkably increased with an increasing Reynolds number. The deformation of vesicles was greatly enhanced by inertia, and the frequency of tumbling and tank-treading was significantly decreased by inertia. We also found that RBCs can transit from tumbling to steady tank-treading through the swinging regime when the Reynolds number increased from 0.1 to 10. These results indicate that inertia needs to be considered at moderate Reynolds number (Re ~ 1) in the study of blood flow in the human body and the flow of deformable particle suspension in inertial microfluidic devices. The developed 3D model provided new insights into the dynamics of RBCs under shear flow, thus holding great potential to better understand blood flow behaviors under normal/disease conditions.
IB-LBM simulation on blood cell sorting with a micro-fence structure.
Wei, Qiang; Xu, Yuan-Qing; Tian, Fang-bao; Gao, Tian-xin; Tang, Xiao-ying; Zu, Wen-Hong
2014-01-01
A size-based blood cell sorting model with a micro-fence structure is proposed in the frame of immersed boundary and lattice Boltzmann method (IB-LBM). The fluid dynamics is obtained by solving the discrete lattice Boltzmann equation, and the cells motion and deformation are handled by the immersed boundary method. A micro-fence consists of two parallel slope post rows which are adopted to separate red blood cells (RBCs) from white blood cells (WBCs), in which the cells to be separated are transported one after another by the flow into the passageway between the two post rows. Effected by the cross flow, RBCs are schemed to get through the pores of the nether post row since they are smaller and more deformable compared with WBCs. WBCs are required to move along the nether post row till they get out the micro-fence. Simulation results indicate that for a fix width of pores, the slope angle of the post row plays an important role in cell sorting. The cells mixture can not be separated properly in a small slope angle, while obvious blockages by WBCs will take place to disturb the continuous cell sorting in a big slope angle. As an optimal result, an adaptive slope angle is found to sort RBCs form WBCs correctly and continuously.
Blood pressure long term regulation: A neural network model of the set point development
2011-01-01
Background The notion of the nucleus tractus solitarius (NTS) as a comparator evaluating the error signal between its rostral neural structures (RNS) and the cardiovascular receptor afferents into it has been recently presented. From this perspective, stress can cause hypertension via set point changes, so offering an answer to an old question. Even though the local blood flow to tissues is influenced by circulating vasoactive hormones and also by local factors, there is yet significant sympathetic control. It is well established that the state of maturation of sympathetic innervation of blood vessels at birth varies across animal species and it takes place mostly during the postnatal period. During ontogeny, chemoreceptors are functional; they discharge when the partial pressures of oxygen and carbon dioxide in the arterial blood are not normal. Methods The model is a simple biological plausible adaptative neural network to simulate the development of the sympathetic nervous control. It is hypothesized that during ontogeny, from the RNS afferents to the NTS, the optimal level of each sympathetic efferent discharge is learned through the chemoreceptors' feedback. Its mean discharge leads to normal oxygen and carbon dioxide levels in each tissue. Thus, the sympathetic efferent discharge sets at the optimal level if, despite maximal drift, the local blood flow is compensated for by autoregulation. Such optimal level produces minimum chemoreceptor output, which must be maintained by the nervous system. Since blood flow is controlled by arterial blood pressure, the long-term mean level is stabilized to regulate oxygen and carbon dioxide levels. After development, the cardiopulmonary reflexes play an important role in controlling efferent sympathetic nerve activity to the kidneys and modulating sodium and water excretion. Results Starting from fixed RNS afferents to the NTS and random synaptic weight values, the sympathetic efferents converged to the optimal values. When learning was completed, the output from the chemoreceptors became zero because the sympathetic efferents led to normal partial pressures of oxygen and carbon dioxide. Conclusions We introduce here a simple simulating computational theory to study, from a neurophysiologic point of view, the sympathetic development of cardiovascular regulation due to feedback signals sent off by cardiovascular receptors. The model simulates, too, how the NTS, as emergent property, acts as a comparator and how its rostral afferents behave as set point. PMID:21693057
Yamaguchi, Takami; Ishikawa, Takuji; Imai, Y.; Matsuki, N.; Xenos, Mikhail; Deng, Yuefan; Bluestein, Danny
2010-01-01
A major computational challenge for a multiscale modeling is the coupling of disparate length and timescales between molecular mechanics and macroscopic transport, spanning the spatial and temporal scales characterizing the complex processes taking place in flow-induced blood clotting. Flow and pressure effects on a cell-like platelet can be well represented by a continuum mechanics model down to the order of the micrometer level. However, the molecular effects of adhesion/aggregation bonds are on the order of nanometer. A successful multiscale model of platelet response to flow stresses in devices and the ensuing clotting responses should be able to characterize the clotting reactions and their interactions with the flow. This paper attempts to describe a few of the computational methods that were developed in recent years and became available to researchers in the field. They differ from traditional approaches that dominate the field by expanding on prevailing continuum-based approaches, or by completely departing from them, yielding an expanding toolkit that may facilitate further elucidation of the underlying mechanisms of blood flow and the cellular response to it. We offer a paradigm shift by adopting a multidisciplinary approach with fluid dynamics simulations coupled to biophysical and biochemical transport. PMID:20336827
Shear Stress induced Stretching of Red Blood Cells by Oscillating Bubbles within a Narrow Gap
NASA Astrophysics Data System (ADS)
Li, Fenfang; Mohammadzadeh, Milad; Ohl, Claus-Dieter; Claus-Dieter Ohl Team
2013-11-01
The flow pattern, especially the boundary layer caused by the expanding/contracting bubble in a narrow gap (15 μm) and the resultant stretching of red blood cells is investigated in this work. High speed recordings show that a red blood cell (biconcave shape, thickness of 1-2 μm) can be elongated to five times its original length by a laser-induced cavitation bubble within the narrow gap. However, flexible cancer cells in suspension (RKO, spherical shape, diameter of 10-15 μm) are hardly elongated under the same experimental condition. We hypothesize that the shear stress at the boundary layer is crucial for this elongation to occur. Therefore, in order to resolve the related fluid dynamics, we conducted numerical simulations using the finite element method (Fluent). The rapidly expanding/contracting vapor bubble is successfully modeled by employing viscosity and surface tension. The transient pressure inside the bubble and the velocity profile of the flow is obtained. We observe strong shear near the upper and lower boundary during the bubble oscillation. The flow fields are compared with analytical solutions to transient and pulsating flows in 2D. In the experiment the red blood cells sit within the lower boundary layer, thus are probably elongated by this strong shear flow. In contrast, the spherical cancer cells are of comparable size to the gap height so that they are lesser affected by this boundary layer flow.
High-order numerical simulations of pulsatile flow in a curved artery model
NASA Astrophysics Data System (ADS)
Cox, Christopher; Liang, Chunlei; Plesniak, Michael W.
2016-11-01
Cardiovascular flows are pulsatile, incompressible and occur in complex geometries with compliant walls. Together, these factors can produce an environment that can affect the progression of cardiovascular disease by altering wall shear stresses. Unstructured high-order CFD methods are well suited for capturing unsteady vortex-dominated viscous flows, and these methods provide high accuracy for similar cost as low-order methods. We use an in-house three-dimensional flux reconstruction Navier-Stokes solver to simulate secondary flows and vortical structures within a rigid 180-degree curved artery model under pulsatile flow of a Newtonian blood-analog fluid. Our simulations use a physiological flowrate waveform taken from the carotid artery. We are particularly interested in the dynamics during the deceleration phase of the waveform, where we observe the deformed-Dean, Dean, Lyne and Wall vortices. Our numerical results reveal the complex nature of these vortices both in space and time and their effect on overall wall shear stress. Numerical results agree with and complement experimental results obtained in our laboratory using particle image velocimetry. Supported by the GW Center for Biomimetics and Bioinspired Engineering.
Analysis of flow patterns in a patient-specific aortic dissection model.
Cheng, Z; Tan, F P P; Riga, C V; Bicknell, C D; Hamady, M S; Gibbs, R G J; Wood, N B; Xu, X Y
2010-05-01
Aortic dissection is the most common acute catastrophic event affecting the thoracic aorta. The majority of patients presenting with an uncomplicated type B dissection are treated medically, but 25% of these patients develop subsequent aneurysmal dilatation of the thoracic aorta. This study aimed at gaining more detailed knowledge of the flow phenomena associated with this condition. Morphological features and flow patterns in a dissected aortic segment of a presurgery type B dissection patient were analyzed based on computed tomography images acquired from the patient. Computational simulations of blood flow in the patient-specific model were performed by employing a correlation-based transitional version of Menter's hybrid k-epsilon/k-omega shear stress transport turbulence model implemented in ANSYS CFX 11. Our results show that the dissected aorta is dominated by locally highly disturbed, and possibly turbulent, flow with strong recirculation. A significant proportion (about 80%) of the aortic flow enters the false lumen, which may further increase the dilatation of the aorta. High values of wall shear stress have been found around the tear on the true lumen wall, perhaps increasing the likelihood of expanding the tear. Turbulence intensity in the tear region reaches a maximum of 70% at midsystolic deceleration phase. Incorporating the non-Newtonian behavior of blood into the same transitional flow model has yielded a slightly lower peak wall shear stress and higher maximum turbulence intensity without causing discernible changes to the distribution patterns. Comparisons between the laminar and turbulent flow simulations show a qualitatively similar distribution of wall shear stress but a significantly higher magnitude with the transitional turbulence model.
Multiscale modeling and simulation of brain blood flow
NASA Astrophysics Data System (ADS)
Perdikaris, Paris; Grinberg, Leopold; Karniadakis, George Em
2016-02-01
The aim of this work is to present an overview of recent advances in multi-scale modeling of brain blood flow. In particular, we present some approaches that enable the in silico study of multi-scale and multi-physics phenomena in the cerebral vasculature. We discuss the formulation of continuum and atomistic modeling approaches, present a consistent framework for their concurrent coupling, and list some of the challenges that one needs to overcome in achieving a seamless and scalable integration of heterogeneous numerical solvers. The effectiveness of the proposed framework is demonstrated in a realistic case involving modeling the thrombus formation process taking place on the wall of a patient-specific cerebral aneurysm. This highlights the ability of multi-scale algorithms to resolve important biophysical processes that span several spatial and temporal scales, potentially yielding new insight into the key aspects of brain blood flow in health and disease. Finally, we discuss open questions in multi-scale modeling and emerging topics of future research.
García-Isla, Guadalupe; Olivares, Andy Luis; Silva, Etelvino; Nuñez-Garcia, Marta; Butakoff, Constantine; Sanchez-Quintana, Damian; G Morales, Hernán; Freixa, Xavier; Noailly, Jérôme; De Potter, Tom; Camara, Oscar
2018-05-08
The left atrial appendage (LAA) is a complex and heterogeneous protruding structure of the left atrium (LA). In atrial fibrillation patients, it is the location where 90% of the thrombi are formed. However, the role of the LAA in thrombus formation is not fully known yet. The main goal of this work is to perform a sensitivity analysis to identify the most relevant LA and LAA morphological parameters in atrial blood flow dynamics. Simulations were run on synthetic ellipsoidal left atria models where different parameters were individually studied: pulmonary veins and mitral valve dimensions; LAA shape; and LA volume. Our computational analysis confirmed the relation between large LAA ostia, low blood flow velocities and thrombus formation. Additionally, we found that pulmonary vein configuration exerted a critical influence on LAA blood flow patterns. These findings contribute to a better understanding of the LAA and to support clinical decisions for atrial fibrillation patients. Copyright © 2018 John Wiley & Sons, Ltd.
Zhu, Shidong; Luo, Lin; Yang, Bibo; Li, Xinghui; Wang, Xiaohao
2017-12-01
Ventricular assist devices (LVADs) are increasingly recognized for supporting blood circulation in heart failure patients who are non-transplant eligible. Because of its volume, the traditional pulsatile device is not easy to implant intracorporeally. Continuous flow LVADs (CF-LVADs) reduce arterial pulsatility and only offer continuous flow, which is different from physiological flow, and may cause long-term complications in the cardiovascular system. The aim of this study was to design a new pulsatile assist device that overcomes this disadvantage, and to test this device in the cardiovascular system. Firstly, the input and output characteristics of the new device were tested in a simple cardiovascular mock system. A detailed mathematical model was established by fitting the experimental data. Secondly, the model was tested in four pathological cases, and was simulated and coupled with a fifth-order cardiovascular system and a new device model using Matlab software. Using assistance of the new device, we demonstrated that the left ventricle pressure, aortic pressure, and aortic flow of heart failure patients improved to the levels of a healthy individual. Especially, in state IV level heart failure patients, the systolic blood pressure increased from 81.34 mmHg to 132.1 mmHg, whereas the diastolic blood pressure increased from 54.28 mmHg to 78.7 mmHg. Cardiac output increased from 3.21 L/min to 5.16 L/min. The newly-developed assist device not only provided a physiological flow that was similar to healthy individuals, but also effectively improved the ability of the pathological ventricular volume. Finally, the effects of the new device on other hemodynamic parameters are discussed.
Numerical Simulation of Unsteady Blood Flow through Capillary Networks.
Davis, J M; Pozrikidis, C
2011-08-01
A numerical method is implemented for computing unsteady blood flow through a branching capillary network. The evolution of the discharge hematocrit along each capillary segment is computed by integrating in time a one-dimensional convection equation using a finite-difference method. The convection velocity is determined by the local and instantaneous effective capillary blood viscosity, while the tube to discharge hematocrit ratio is deduced from available correlations. Boundary conditions for the discharge hematocrit at divergent bifurcations arise from the partitioning law proposed by Klitzman and Johnson involving a dimensionless exponent, q≥1. When q=1, the cells are partitioned in proportion to the flow rate; as q tends to infinity, the cells are channeled into the branch with the highest flow rate. Simulations are performed for a tree-like, perfectly symmetric or randomly perturbed capillary network with m generations. When the tree involves more than a few generations, a supercritical Hopf bifurcation occurs at a critical value of q, yielding spontaneous self-sustained oscillations in the absence of external forcing. A phase diagram in the m-q plane is presented to establish conditions for unsteady flow, and the effect of various geometrical and physical parameters is examined. For a given network tree order, m, oscillations can be induced for a sufficiently high value of q by increasing the apparent intrinsic viscosity, decreasing the ratio of the vessel diameter from one generation to the next, or by decreasing the diameter of the terminal vessels. With other parameters fixed, oscillations are inhibited by increasing m. The results of the continuum model are in excellent agreement with the predictions of a discrete model where the motion of individual cells is followed from inlet to outlet.
NASA Astrophysics Data System (ADS)
Menon, Prahlad; Sotiropoulos, Fotis; Undar, Akif; Pekkan, Kerem
2011-11-01
Hemodynamically efficient aortic outflow cannulae can provide high blood volume flow rates at low exit force during extracorporeal circulation in pediatric or neonatal cardiopulmonary bypass repairs. Furthermore, optimal hemolytic aortic insertion configurations can significantly reduce risk of post-surgical neurological complications and developmental defects in the young patient. The methodology and results presented in this study serve as a baseline for design of superior aortic outflow cannulae based on a novel paradigm of characterizing jet-flows at different flow regimes. In-silico evaluations of multiple cannula tips were used to delineate baseline hemodynamic performance of the popular pediatric cannula tips in an experimental cuboidal test-rig, using PIV. High resolution CFD jet-flow simulations performed for various cannula tips in the cuboidal test-rig as well as in-vivo insertion configurations have suggested the existence of optimal surgically relevant characteristics such as cannula outflow angle and insertion depth for improved hemodynamic performance during surgery. Improved cannula tips were designed with internal flow-control features for decreased blood damage and increased permissible flow rates.
Misiulis, Edgaras; Džiugys, Algis; Navakas, Robertas; Striūgas, Nerijus
2017-05-01
Accurate and clinically safe measurements of intracranial pressure (ICP) are crucial for secondary brain damage prevention. There are two methods of ICP measurement: invasive and noninvasive. Invasive methods are clinically unsafe; therefore, safer noninvasive methods are being developed. One of the noninvasive ICP measurement methods implements the balance principle, which assumes that if the velocity of blood flow in both ophthalmic artery segments - the intracranial (IOA) and extracranial (EOA) - is equal, then the acting ICP on the IOA and the external pressure (Pe) on the EOA are also equal. To investigate the assumption of the balance principle, a generalized computational model incorporating a fluid-structure interaction (FSI) module was created and used to simulate noninvasive ICP measurement by accounting for the time-dependent behavior of the elastic internal carotid (ICA) and ophthalmic (OA) arteries and their interaction with pulsatile blood flow. It was found that the extra balance pressure term, which incorporates the hydrodynamic pressure drop between measurement points, must be added into the balance equation, and the corrections on a difference between the velocity of blood flow in the IOA and EOA must be made, due to a difference in the blood flow rate. Copyright © 2017 Elsevier Ltd. All rights reserved.
Enhancing cell-free layer thickness by bypass channels in a wall.
Saadatmand, M; Shimogonya, Y; Yamaguchi, T; Ishikawa, T
2016-07-26
When blood flows near a wall, red blood cells (RBCs) drift away from the wall and a cell-free layer (CFL) is formed adjacent to the wall. Controlling the CFL thickness is important for preventing adhesion of cells in the design of biomedical devices. In this study, a novel wall configuration with stenoses and bypass channels is proposed to increase the CFL thickness. We found that the presence of bypass channels modified the spatial distribution of cells and substantially increased the CFL downstream of the stenosis. A single-bypass geometry with 5% hematocrit (Hct) blood flow showed a 1.7μm increase in CFL thickness compared to without the bypass. In the case of three bypass channels, a 3μm increase in CFL thickness was observed. The CFL enhancement was observed up to 10% Hct, but no significant enhancement of CFL was indicated for 20% Hct blood flow. The mechanism of the CFL enhancement was investigated using a numerical simulation of the flow field. The results showed that the distance between each streamline and the corner of the stenosis compared with size of RBC was important parameter in regulating CFL thickness. These results show the potential of the proposed mechanism to prevent adhesion of cells to biomedical devices. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ultrasound SIV measurement of helical valvular flow behind the great saphenous vein
NASA Astrophysics Data System (ADS)
Park, Jun Hong; Kim, Jeong Ju; Lee, Sang Joon; Yeom, Eunseop; Experimental Fluid Mechanics Laboratory Team; LaboratoryMicrothermal; Microfluidic Measurements Collaboration
2017-11-01
Dysfunction of venous valve and induced secondary abnormal flow are closely associated with venous diseases. Thus, detailed analysis of venous valvular flow is invaluable from biological and medical perspectives. However, most previous studies on venous perivalvular flows were based on qualitative analyses. On the contrary, quantitative analysis on the perivalvular flows has not been fully understood yet. In this study, 3D valvular flows under in vitro and in vivo conditions were experimentally investigated using ultrasound speckle image velocimetry (SIV) for analyzing their flow characteristics. The results for in vitro model obtained by the SIV technique were compared with those derived by numerical simulation and color Doppler method to validate its measurement accuracy. Then blood flow in the human great saphenous vein was measured using the SIV with respect to the dimensionless index, helical intensity. The results obtained by the SIV method are well matched well with those obtained by the numerical simulation and color Doppler method. The hemodynamic characteristics of 3D valvular flows measured by the validated SIV method would be helpful in diagnosis of valve-related venous diseases. None.
Vorticity dynamics in an intracranial aneurysm
NASA Astrophysics Data System (ADS)
Le, Trung; Borazjani, Iman; Sotiropoulos, Fotis
2008-11-01
Direct Numerical Simulation is carried out to investigate the vortex dynamics of physiologic pulsatile flow in an intracranial aneurysm. The numerical solver is based on the CURVIB (curvilinear grid/immersed boundary method) approach developed by Ge and Sotiropoulos, J. Comp. Physics, 225 (2007) and is applied to simulate the blood flow in a grid with 8 million grid nodes. The aneurysm geometry is extracted from MRI images from common carotid artery (CCA) of a rabbit (courtesy Dr.Kallmes, Mayo Clinic). The simulation reveals the formation of a strong vortex ring at the proximal end during accelerated flow phase. The vortical structure advances toward the aneurysm dome forming a distinct inclined circular ring that connects with the proximal wall via two long streamwise vortical structures. During the reverse flow phase, the back flow results to the formation of another ring at the distal end that advances in the opposite direction toward the proximal end and interacts with the vortical structures that were created during the accelerated phase. The basic vortex formation mechanism is similar to that observed by Webster and Longmire (1998) for pulsed flow through inclined nozzles. The similarities between the two flows will be discussed and the vorticity dynamics of an aneurysm and inclined nozzle flows will be analyzed.This work was supported in part by the University of Minnesota Supercomputing Institute.
Mork, Randi; Falkenberg, Helle K; Fostervold, Knut Inge; Thorud, Hanne Mari S
2018-05-30
Among computer workers, visual complaints, and neck pain are highly prevalent. This study explores how occupational simulated stressors during computer work, like glare and psychosocial stress, affect physiological responses in young females with normal vision. The study was a within-subject laboratory experiment with a counterbalanced, repeated design. Forty-three females performed four 10-min computer-work sessions with different stress exposures: (1) minimal stress; (2) visual stress (direct glare); (3) psychological stress; and (4) combined visual and psychological stress. Muscle activity and muscle blood flow in trapezius, muscle blood flow in orbicularis oculi, heart rate, blood pressure, blink rate and postural angles were continuously recorded. Immediately after each computer-work session, fixation disparity was measured and a questionnaire regarding perceived workstation lighting and stress was completed. Exposure to direct glare resulted in increased trapezius muscle blood flow, increased blink rate, and forward bending of the head. Psychological stress induced a transient increase in trapezius muscle activity and a more forward-bent posture. Bending forward towards the computer screen was correlated with higher productivity (reading speed), indicating a concentration or stress response. Forward bent posture was also associated with changes in fixation disparity. Furthermore, during computer work per se, trapezius muscle activity and blood flow, orbicularis oculi muscle blood flow, and heart rate were increased compared to rest. Exposure to glare and psychological stress during computer work were shown to influence the trapezius muscle, posture, and blink rate in young, healthy females with normal binocular vision, but in different ways. Accordingly, both visual and psychological factors must be taken into account when optimizing computer workstations to reduce physiological responses that may cause excessive eyestrain and musculoskeletal load.
Large Eddy Simulation of "turbulent-like" flow in intracranial aneurysms
NASA Astrophysics Data System (ADS)
Khan, Muhammad Owais; Chnafa, Christophe; Steinman, David A.; Mendez, Simon; Nicoud, Franck
2016-11-01
Hemodynamic forces are thought to contribute to pathogenesis and rupture of intracranial aneurysms (IA). Recent high-resolution patient-specific computational fluid dynamics (CFD) simulations have highlighted the presence of "turbulent-like" flow features, characterized by transient high-frequency flow instabilities. In-vitro studies have shown that such "turbulent-like" flows can lead to lack of endothelial cell orientation and cell depletion, and thus, may also have relevance to IA rupture risk assessment. From a modelling perspective, previous studies have relied on DNS to resolve the small-scale structures in these flows. While accurate, DNS is clinically infeasible due to high computational cost and long simulation times. In this study, we present the applicability of LES for IAs using a LES/blood flow dedicated solver (YALES2BIO) and compare against respective DNS. As a qualitative analysis, we compute time-averaged WSS and OSI maps, as well as, novel frequency-based WSS indices. As a quantitative analysis, we show the differences in POD eigenspectra for LES vs. DNS and wavelet analysis of intra-saccular velocity traces. Differences in two SGS models (i.e. Dynamic Smagorinsky vs. Sigma) are also compared against DNS, and computational gains of LES are discussed.
Optical coherence tomography angiography-based capillary velocimetry
NASA Astrophysics Data System (ADS)
Wang, Ruikang K.; Zhang, Qinqin; Li, Yuandong; Song, Shaozhen
2017-06-01
Challenge persists in the field of optical coherence tomography (OCT) when it is required to quantify capillary blood flow within tissue beds in vivo. We propose a useful approach to statistically estimate the mean capillary flow velocity using a model-based statistical method of eigendecomposition (ED) analysis of the complex OCT signals obtained with the OCT angiography (OCTA) scanning protocol. ED-based analysis is achieved by the covariance matrix of the ensemble complex OCT signals, upon which the eigenvalues and eigenvectors that represent the subsets of the signal makeup are calculated. From this analysis, the signals due to moving particles can be isolated by employing an adaptive regression filter to remove the eigencomponents that represent static tissue signals. The mean frequency (MF) of moving particles can be estimated by the first lag-one autocorrelation of the corresponding eigenvectors. Three important parameters are introduced, including the blood flow signal power representing the presence of blood flow (i.e., OCTA signals), the MF indicating the mean velocity of blood flow, and the frequency bandwidth describing the temporal flow heterogeneity within a scanned tissue volume. The proposed approach is tested using scattering phantoms, in which microfluidic channels are used to simulate the functional capillary vessels that are perfused with the scattering intralipid solution. The results indicate a linear relationship between the MF and mean flow velocity. In vivo animal experiments are also conducted by imaging mouse brain with distal middle cerebral artery ligation to test the capability of the method to image the changes in capillary flows in response to an ischemic insult, demonstrating the practical usefulness of the proposed method for providing important quantifiable information about capillary tissue beds in the investigations of neurological conditions in vivo.
Joyce, William; Axelsson, Michael; Altimiras, Jordi; Wang, Tobias
2016-07-15
The ventricles of non-crocodilian reptiles are incompletely divided and provide an opportunity for mixing of oxygen-poor blood and oxygen-rich blood (intracardiac shunting). However, both cardiac morphology and in vivo shunting patterns exhibit considerable interspecific variation within reptiles. In the present study, we develop an in situ double-perfused heart approach to characterise the propensity and capacity for shunting in five reptile species: the turtle Trachemys scripta, the rock python Python sebae, the yellow anaconda Eunectes notaeus, the varanid lizard Varanus exanthematicus and the bearded dragon Pogona vitticeps To simulate changes in vascular bed resistance, pulmonary and systemic afterloads were independently manipulated and changes in blood flow distribution amongst the central outflow tracts were monitored. As previously demonstrated in Burmese pythons, rock pythons and varanid lizards exhibited pronounced intraventricular flow separation. As pulmonary or systemic afterload was raised, flow in the respective circulation decreased. However, flow in the other circulation, where afterload was constant, remained stable. This correlates with the convergent evolution of intraventricular pressure separation and the large intraventricular muscular ridge, which compartmentalises the ventricle, in these species. Conversely, in the three other species, the pulmonary and systemic flows were strongly mutually dependent, such that the decrease in pulmonary flow in response to elevated pulmonary afterload resulted in redistribution of perfusate to the systemic circuit (and vice versa). Thus, in these species, the muscular ridge appeared labile and blood could readily transverse the intraventricular cava. We conclude that relatively minor structural differences between non-crocodilian reptiles result in the fundamental changes in cardiac function. Further, our study emphasises that functionally similar intracardiac flow separation evolved independently in lizards (varanids) and snakes (pythons) from an ancestor endowed with the capacity for large intracardiac shunts. © 2016. Published by The Company of Biologists Ltd.
Mathematical Modeling of Rotary Blood Pumps in a Pulsatile In Vitro Flow Environment.
Pirbodaghi, Tohid
2017-08-01
Nowadays, sacrificing animals to develop medical devices and receive regulatory approval has become more common, which increases ethical concerns. Although in vivo tests are necessary for development and evaluation of new devices, nonetheless, with appropriate in vitro setups and mathematical models, a part of the validation process can be performed using these models to reduce the number of sacrificed animals. The main aim of this study is to present a mathematical model simulating the hydrodynamic function of a rotary blood pump (RBP) in a pulsatile in vitro flow environment. This model relates the pressure head of the RBP to the flow rate, rotational speed, and time derivatives of flow rate and rotational speed. To identify the model parameters, an in vitro setup was constructed consisting of a piston pump, a compliance chamber, a throttle, a buffer reservoir, and the CentriMag RBP. A 40% glycerin-water mixture as a blood analog fluid and deionized water were used in the hydraulic circuit to investigate the effect of viscosity and density of the working fluid on the model parameters. First, model variables were physically measured and digitally acquired. Second, an identification algorithm based on regression analysis was used to derive the model parameters. Third, the completed model was validated with a totally different set of in vitro data. The model is usable for both mathematical simulations of the interaction between the pump and heart and indirect pressure measurement in a clinical context. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Mroczek, Tomasz; Małota, Zbigniew; Wójcik, Elżbieta; Nawrat, Zbigniew; Skalski, Janusz
2011-12-01
The introduction of right ventricle to pulmonary artery (RV-PA) conduit in the Norwood procedure for hypoplastic left heart syndrome resulted in a higher survival rate in many centers. A higher diastolic aortic pressure and a higher mean coronary perfusion pressure were suggested as the hemodynamic advantage of this source of pulmonary blood flow. The main objective of this study was the comparison of two models of Norwood physiology with different types of pulmonary blood flow sources and their hemodynamics. Based on anatomic details obtained from echocardiographic assessment and angiographic studies, two three-dimensional computer models of post-Norwood physiology were developed. The finite-element method was applied for computational hemodynamic simulations. Norwood physiology with RV-PA 5-mm conduit and Blalock-Taussig shunt (BTS) 3.5-mm shunt were compared. Right ventricle work, wall stress, flow velocity, shear rate stress, energy loss and turbulence eddy dissipation were analyzed in both models. The total work of the right ventricle after Norwood procedure with the 5-mm RV-PA conduit was lower in comparison to the 3.5-mm BTS while establishing an identical systemic blood flow. The Qp/Qs ratio was higher in the BTS group. Hemodynamic performance after Norwood with the RV-PA conduit is more effective than after Norwood with BTS. Computer simulations of complicated hemodynamics after the Norwood procedure could be helpful in establishing optimal post-Norwood physiology. Copyright © 2011 European Association for Cardio-Thoracic Surgery. Published by Elsevier B.V. All rights reserved.
Effect of non-linearity in predicting doppler waveforms through a novel model
Gayasen, Aman; Dua, Sunil Kumar; Sengupta, Amit; Nagchoudhuri, D
2003-01-01
Background In pregnancy, the uteroplacental vascular system develops de novo locally in utero and a systemic haemodynamic & bio-rheological alteration accompany it. Any abnormality in the non-linear vascular system is believed to trigger the onset of serious morbid conditions like pre-eclampsia and/or intrauterine growth restriction (IUGR). Exact Aetiopathogenesis is unknown. Advancement in the field of non-invasive doppler image analysis and simulation incorporating non-linearities may unfold the complexities associated with the inaccessible uteroplacental vessels. Earlier modeling approaches approximate it as a linear system. Method We proposed a novel electrical model for the uteroplacental system that uses MOSFETs as non-linear elements in place of traditional linear transmission line (TL) model. The model to simulate doppler FVW's was designed by including the inputs from our non-linear mathematical model. While using the MOSFETs as voltage-controlled switches, a fair degree of controlled-non-linearity has been introduced in the model. Comparative analysis was done between the simulated data and the actual doppler FVW's waveforms. Results & Discussion Normal pregnancy has been successfully modeled and the doppler output waveforms are simulated for different gestation time using the model. It is observed that the dicrotic notch disappears and the S/D ratio decreases as the pregnancy matures. Both these results are established clinical facts. Effects of blood density, viscosity and the arterial wall elasticity on the blood flow velocity profile were also studied. Spectral analysis on the output of the model (blood flow velocity) indicated that the Total Harmonic Distortion (THD) falls during the mid-gestation. Conclusion Total harmonic distortion (THD) is found to be informative in determining the Feto-maternal health. Effects of the blood density, the viscosity and the elasticity changes on the blood FVW are simulated. Future works are expected to concentrate mainly on improving the load with respect to varying non-linear parameters in the model. Heart rate variability, which accounts for the vascular tone, should also be included. We also expect the model to initiate extensive clinical or experimental studies in the near future. PMID:14561227
Measurement with microscopic MRI and simulation of flow in different aneurysm models.
Edelhoff, Daniel; Walczak, Lars; Frank, Frauke; Heil, Marvin; Schmitz, Inge; Weichert, Frank; Suter, Dieter
2015-10-01
The impact and the development of aneurysms depend to a significant degree on the exchange of liquid between the regular vessel and the pathological extension. A better understanding of this process will lead to improved prediction capabilities. The aim of the current study was to investigate fluid-exchange in aneurysm models of different complexities by combining microscopic magnetic resonance measurements with numerical simulations. In order to evaluate the accuracy and applicability of these methods, the fluid-exchange process between the unaltered vessel lumen and the aneurysm phantoms was analyzed quantitatively using high spatial resolution. Magnetic resonance flow imaging was used to visualize fluid-exchange in two different models produced with a 3D printer. One model of an aneurysm was based on histological findings. The flow distribution in the different models was measured on a microscopic scale using time of flight magnetic resonance imaging. The whole experiment was simulated using fast graphics processing unit-based numerical simulations. The obtained simulation results were compared qualitatively and quantitatively with the magnetic resonance imaging measurements, taking into account flow and spin-lattice relaxation. The results of both presented methods compared well for the used aneurysm models and the chosen flow distributions. The results from the fluid-exchange analysis showed comparable characteristics concerning measurement and simulation. Similar symmetry behavior was observed. Based on these results, the amount of fluid-exchange was calculated. Depending on the geometry of the models, 7% to 45% of the liquid was exchanged per second. The result of the numerical simulations coincides well with the experimentally determined velocity field. The rate of fluid-exchange between vessel and aneurysm was well-predicted. Hence, the results obtained by simulation could be validated by the experiment. The observed deviations can be caused by the noise in the measurement and by the limited resolution of the simulation. The resulting differences are small enough to allow reliable predictions of the flow distribution in vessels with stents and for pulsed blood flow.
Kandail, Harkamaljot; Hamady, Mohamad; Xu, Xiao Yun
2016-10-01
To quantify the hemodynamic impact of a flared renal stent on the performance of fenestrated stent-grafts (FSGs) by analyzing flow patterns and wall shear stress-derived parameters in flared and nonflared FSGs in different physiologic scenarios. Hypothetical models of FSGs were created with and without flaring of the proximal portion of the renal stent. Flared FSGs with different dilation angles and protrusion lengths were examined, as well as a nonplanar flared FSG to account for lumbar curvature. Laminar and pulsatile blood flow was simulated by numerically solving Navier-Stokes equations. A physiologically realistic flow rate waveform was prescribed at the inlet, while downstream vasculature was modeled using a lumped parameter 3-element windkessel model. No slip boundary conditions were imposed at the FSG walls, which were assumed to be rigid. While resting simulations were performed on all the FSGs, exercise simulations were also performed on a flared FSG to quantify the effect of flaring in different physiologic scenarios. For cycle-averaged inflow of 2.94 L/min (rest) and 4.63 L/min (exercise), 27% of blood flow was channeled into each renal branch at rest and 21% under exercise for all the flared FSGs examined. Although the renal flow waveform was not affected by flaring, flow within the flared FSGs was disturbed. This flow disturbance led to high endothelial cell activation potential (ECAP) values at the renal ostia for all the flared geometries. Reducing the dilation angle or protrusion length and exercise lowered the ECAP values for flared FSGs. Flaring of renal stents has a negligible effect on the time dependence of renal flow rate waveforms and can maintain sufficient renal perfusion at rest and exercise. Local flow patterns are, however, strongly dependent on renal flaring, which creates a local flow disturbance and may increase the thrombogenicity at the renal ostia. Smaller dilation angles, shorter protrusion lengths, and moderate lower limb exercise are likely to reduce the risk of thrombosis in flared geometries. © The Author(s) 2016.
Chivukula, V; Mousel, J; Lu, J; Vigmostad, S
2014-12-01
The current research presents a novel method in which blood particulates - biconcave red blood cells (RBCs) and spherical cells are modeled using isogeometric analysis, specifically Non-Uniform Rational B-Splines (NURBS) in 3-D. The use of NURBS ensures that even with a coarse representation, the geometry of the blood particulates maintains an accurate description when subjected to large deformations. The fundamental advantage of this method is the coupling of the geometrical description and the stress analysis of the cell membrane into a single, unified framework. Details on the modeling approach, implementation of boundary conditions and the membrane mechanics analysis using isogeometric modeling are presented, along with validation cases for spherical and biconcave cells. Using NURBS - based isogeometric analysis, the behavior of individual cells in fluid flow is presented and analyzed in different flow regimes using as few as 176 elements for a spherical cell and 220 elements for a biconcave RBC. This work provides a framework for modeling a large number of 3-D deformable biological cells, each with its own geometric description and membrane properties. To the best knowledge of the authors, this is the first application of the NURBS - based isogeometric analysis to model and simulate blood particulates in flow in 3D. Copyright © 2014 John Wiley & Sons, Ltd.
Simplified particulate model for coarse-grained hemodynamics simulations
NASA Astrophysics Data System (ADS)
Janoschek, F.; Toschi, F.; Harting, J.
2010-11-01
Human blood flow is a multiscale problem: in first approximation, blood is a dense suspension of plasma and deformable red cells. Physiological vessel diameters range from about one to thousands of cell radii. Current computational models either involve a homogeneous fluid and cannot track particulate effects or describe a relatively small number of cells with high resolution but are incapable to reach relevant time and length scales. Our approach is to simplify much further than existing particulate models. We combine well-established methods from other areas of physics in order to find the essential ingredients for a minimalist description that still recovers hemorheology. These ingredients are a lattice Boltzmann method describing rigid particle suspensions to account for hydrodynamic long-range interactions and—in order to describe the more complex short-range behavior of cells—anisotropic model potentials known from molecular-dynamics simulations. Paying detailedness, we achieve an efficient and scalable implementation which is crucial for our ultimate goal: establishing a link between the collective behavior of millions of cells and the macroscopic properties of blood in realistic flow situations. In this paper we present our model and demonstrate its applicability to conditions typical for the microvasculature.
Sacco, Federica; Paun, Bruno; Lehmkuhl, Oriol; Iles, Tinen L.; Iaizzo, Paul A.; Houzeaux, Guillaume; Vázquez, Mariano; Butakoff, Constantine; Aguado-Sierra, Jazmin
2018-01-01
The aim of the present study is to characterize the hemodynamics of left ventricular (LV) geometries to examine the impact of trabeculae and papillary muscles (PMs) on blood flow using high performance computing (HPC). Five pairs of detailed and smoothed LV endocardium models were reconstructed from high-resolution magnetic resonance images (MRI) of ex-vivo human hearts. The detailed model of one LV pair is characterized only by the PMs and few big trabeculae, to represent state of art level of endocardial detail. The other four detailed models obtained include instead endocardial structures measuring ≥1 mm2 in cross-sectional area. The geometrical characterizations were done using computational fluid dynamics (CFD) simulations with rigid walls and both constant and transient flow inputs on the detailed and smoothed models for comparison. These simulations do not represent a clinical or physiological scenario, but a characterization of the interaction of endocardial structures with blood flow. Steady flow simulations were employed to quantify the pressure drop between the inlet and the outlet of the LVs and the wall shear stress (WSS). Coherent structures were analyzed using the Q-criterion for both constant and transient flow inputs. Our results show that trabeculae and PMs increase the intra-ventricular pressure drop, reduce the WSS and disrupt the dominant single vortex, usually present in the smoothed-endocardium models, generating secondary small vortices. Given that obtaining high resolution anatomical detail is challenging in-vivo, we propose that the effect of trabeculations can be incorporated into smoothed ventricular geometries by adding a porous layer along the LV endocardial wall. Results show that a porous layer of a thickness of 1.2·10−2 m with a porosity of 20 kg/m2 on the smoothed-endocardium ventricle models approximates the pressure drops, vorticities and WSS observed in the detailed models. PMID:29760665
In vitro strain measurements in cerebral aneurysm models for cyber-physical diagnosis.
Shi, Chaoyang; Kojima, Masahiro; Anzai, Hitomi; Tercero, Carlos; Ikeda, Seiichi; Ohta, Makoto; Fukuda, Toshio; Arai, Fumihito; Najdovski, Zoran; Negoro, Makoto; Irie, Keiko
2013-06-01
The development of new diagnostic technologies for cerebrovascular diseases requires an understanding of the mechanism behind the growth and rupture of cerebral aneurysms. To provide a comprehensive diagnosis and prognosis of this disease, it is desirable to evaluate wall shear stress, pressure, deformation and strain in the aneurysm region, based on information provided by medical imaging technologies. In this research, we propose a new cyber-physical system composed of in vitro dynamic strain experimental measurements and computational fluid dynamics (CFD) simulation for the diagnosis of cerebral aneurysms. A CFD simulation and a scaled-up membranous silicone model of a cerebral aneurysm were completed, based on patient-specific data recorded in August 2008. In vitro blood flow simulation was realized with the use of a specialized pump. A vision system was also developed to measure the strain at different regions on the model by way of pulsating blood flow circulating inside the model. Experimental results show that distance and area strain maxima were larger near the aneurysm neck (0.042 and 0.052), followed by the aneurysm dome (0.023 and 0.04) and finally the main blood vessel section (0.01 and 0.014). These results were complemented by a CFD simulation for the addition of wall shear stress, oscillatory shear index and aneurysm formation index. Diagnosis results using imaging obtained in August 2008 are consistent with the monitored aneurysm growth in 2011. The presented study demonstrates a new experimental platform for measuring dynamic strain within cerebral aneurysms. This platform is also complemented by a CFD simulation for advanced diagnosis and prediction of the growth tendency of an aneurysm in endovascular surgery. Copyright © 2013 John Wiley & Sons, Ltd.
Numerical simulations of a reduced model for blood coagulation
NASA Astrophysics Data System (ADS)
Pavlova, Jevgenija; Fasano, Antonio; Sequeira, Adélia
2016-04-01
In this work, the three-dimensional numerical resolution of a complex mathematical model for the blood coagulation process is presented. The model was illustrated in Fasano et al. (Clin Hemorheol Microcirc 51:1-14, 2012), Pavlova et al. (Theor Biol 380:367-379, 2015). It incorporates the action of the biochemical and cellular components of blood as well as the effects of the flow. The model is characterized by a reduction in the biochemical network and considers the impact of the blood slip at the vessel wall. Numerical results showing the capacity of the model to predict different perturbations in the hemostatic system are discussed.
NASA Astrophysics Data System (ADS)
Tang, Yik Sau; Chiu, Tin Lok; Tsang, Anderson Chun On; Leung, Gilberto Ka Kit; Chow, Kwok Wing
2016-11-01
Intracranial aneurysm, abnormal swelling of the cerebral artery, can cause massive internal bleeding in the subarachnoid space upon aneurysm rupture, leading to a high mortality rate. Deployment of a flow diverting stent through endovascular technique can obstruct the blood flow into the aneurysm, thus reducing the risk of rupture. Patient-specific models with both bifurcation and sidewall aneurysms have been investigated. Computational fluid dynamics analysis with physiological boundary conditions has been performed. Several hemodynamic parameters including volume flow rate into the aneurysm and the energy (sum of the fluid kinetic and potential energy) loss between the inlet and outlets were analyzed and compared with the surgical outcome. Based on the simulation results, we conjecture that a clinically successful case might imply less blood flow into the aneurysm after stenting, and thus a smaller amount of energy loss in driving the fluid flow in that portion of artery. This study might provide physicians with quantitative information for surgical decision making. (Partial financial support by the Innovation and Technology Support Program (ITS/011/13 & ITS/150/15) of the Hong Kong Special Administrative Region Government)
Shu, Fangjun; Parks, Robert; Maholtz, John; Ash, Steven; Antaki, James F
2009-04-01
Renal Solutions Allient Sorbent Hemodialysis System utilizes a two-chambered pneumatic pump (Pulsar Blood Pump, Renal Solutions, Inc., Warrendale, PA, USA) to avoid limitations associated with peristaltic pumping systems. Single-needle access is enabled by counter-pulsing the two pump chambers, thereby obviating compliance chambers or blood reservoirs. Each chamber propels 20 cc per pulse of 3 s (dual access) or 6 s (single access) duration, corresponding to a peak Reynolds number of approximately 8000 (based on inlet velocity and chamber diameter). A multimodal series of flow visualization studies (tracer particle, dye washout, and dye erosion) was conducted on a sequence of pump designs with varying port locations and diaphragms to improve the geometry with respect to risk of thrombogenesis. Experiments were conducted in a simplified flow loop using occluders to simulate flow resistance induced by tubing and dialyzer. Tracer visualization revealed flow patterns and qualitatively indicated turbulence intensity. Dye washout identified dwell volume and areas of flow stagnation for each design. Dye erosion results indicated the effectiveness and homogeneity of surface washing. Compared to a centered inlet which resulted in a fluid jet that produced two counter-rotating vortices, a tangential inlet introduced a single vortex, and kept the flow laminar. It also provided better surface washing on the pump inner surface. However, a tangential outlet did not present as much benefit as expected. On the contrary, it created a sharp defection to the flow when transiting from filling to ejection.
NASA Astrophysics Data System (ADS)
Tsamopoulos, John; Varchanis, Stylianos; Dimakopoulos, Yiannis
2017-11-01
Blood plasma is a dilute aquatic solution that contains proteins and hormones such as fibrinogen, cholesterol, etc. Many studies have assumed that it behaves rheologically like a Newtonian fluid. However, more recent experimental observations (Brust et al., 2013) suggest that it exhibits significant viscoelastic effects. Understanding plasma's rheology is of crucial importance as it is well-known that deviations of plasma's shear viscosity from physiological values can indicate serious diseases. In addition, the viscoelastic character of the blood solvent should be taken into consideration as it can have a great impact on hemodynamics, especially in very narrow or stenotic microvessels. We investigate the capability of e-PTT model, which is a widely used constitutive model for macromolecular solutions, to predict inhomogeneous flows of plasma in 1) a capillary breakup extensional rheometer (CABER), using a 2D axisymmetric model and 2) a microfluidic contraction-expansion device, solving the full 3D transient governing equations. Although we use a single-mode approximation, the results are in very good agreement with the experiments, because they predict important features of blood plasma's flow, such as the bead-on-a-string formation in CABER and elongational thinning in the 3D flow. LIMMAT Foundation.
Flow in cerebral aneurysms: 4D Flow MRI measurements and CFD models
NASA Astrophysics Data System (ADS)
Rayz, Vitaliy; Schnell, Susanne
2017-11-01
4D Flow MRI is capable of measuring blood flow in vivo, providing time-resolved velocity fields in 3D. The dynamic range of the 4D Flow MRI is determined by a velocity sensitivity parameter (venc), set above the expected maximum velocity, which can result in noisy data for slow flow regions. A dual-venc 4D flow MRI technique, where both low- and high-venc data are acquired, can improve velocity-to-noise ratio and, therefore, quantification of clinically-relevant hemodynamic metrics. In this study, patient-specific CFD simulations were used to evaluate the advantages of the dual-venc approach for assessment of the flow in cerebral aneurysms. The flow in 2 cerebral aneurysms was measured in vivo with dual-venc 4D Flow MRI and simulated with CFD, using the MRI data to prescribe flow boundary conditions. The flow fields obtained with computations were compared to those measured with a single- and dual-venc 4D Flow MRI. The numerical models resolved small flow structures near the aneurysmal wall, that were not detected with a single-venc acquisition. Comparison of the numerical and imaging results shows that the dual-venc approach can improve the accuracy of the 4D Flow MRI measurements in regions characterized by high-velocity jets and slow recirculating flows.
Hemodynamics in a Pediatric Ascending Aorta Using a Viscoelastic Pediatric Blood Model
Good, Bryan C.; Deutsch, Steven; Manning, Keefe B.
2015-01-01
Congenital heart disease is the leading cause of infant death in the United States with over 36,000 newborns affected each year. Despite this growing problem there are few mechanical circulatory support devices designed specifically for pediatric and neonate patients. Previous research has been done investigating pediatric ventricular assist devices (PVADs) assuming blood to be a Newtonian fluid in computational fluid dynamics (CFD) simulations, ignoring its viscoelastic and shear-thinning properties. In contrast to adult VADs, PVADs may be more susceptible to hemolysis and thrombosis due to altered flow into the aorta, and therefore, a more accurate blood model should be used. A CFD solver that incorporates a modified Oldroyd-B model designed specifically for pediatric blood is used to investigate important hemodynamic parameters in a pediatric aortic model under pulsatile flow conditions. These results are compared to Newtonian blood simulations at three physiological pediatric hematocrits. Minor differences are seen in both velocity and WSS during early stages of the cardiac systole between the Newtonian and viscoelastic models. During diastole, significant differences are seen in the velocities in the descending aorta (up to 12%) and in the aortic branches (up to 30%) between the two models. Additionally, peak wall shear stress (WSS) differences are seen between the models throughout the cardiac cycle. At the onset of diastole, peak WSS differences of 43% are seen between the Newtonian and viscoelastic model and between the 20 and 60% hematocrit viscoelastic models at peak systole of 41%. PMID:26159560
Wu, Wei-Tao; Yang, Fang; Wu, Jingchun; Aubry, Nadine; Massoudi, Mehrdad; Antaki, James F.
2016-01-01
Continuous flow ventricular assist devices (cfVADs) provide a life-saving therapy for severe heart failure. However, in recent years, the incidence of device-related thrombosis (resulting in stroke, device-exchange surgery or premature death) has been increasing dramatically, which has alarmed both the medical community and the FDA. The objective of this study was to gain improved understanding of the initiation and progression of thrombosis in one of the most commonly used cfVADs, the Thoratec HeartMate II. A computational fluid dynamics simulation (CFD) was performed using our recently updated mathematical model of thrombosis. The patterns of deposition predicted by simulation agreed well with clinical observations. Furthermore, thrombus accumulation was found to increase with decreased flow rate, and can be completely suppressed by the application of anticoagulants and/or improvement of surface chemistry. To our knowledge, this is the first simulation to explicitly model the processes of platelet deposition and thrombus growth in a continuous flow blood pump and thereby replicate patterns of deposition observed clinically. The use of this simulation tool over a range of hemodynamic, hematological, and anticoagulation conditions could assist physicians to personalize clinical management to mitigate the risk of thrombosis. It may also contribute to the design of future VADs that are less thrombogenic. PMID:27905492
Visualizing ultrasound through computational modeling
NASA Technical Reports Server (NTRS)
Guo, Theresa W.
2004-01-01
The Doppler Ultrasound Hematocrit Project (DHP) hopes to find non-invasive methods of determining a person s blood characteristics. Because of the limits of microgravity and the space travel environment, it is important to find non-invasive methods of evaluating the health of persons in space. Presently, there is no well developed method of determining blood composition non-invasively. This projects hopes to use ultrasound and Doppler signals to evaluate the characteristic of hematocrit, the percentage by volume of red blood cells within whole blood. These non-invasive techniques may also be developed to be used on earth for trauma patients where invasive measure might be detrimental. Computational modeling is a useful tool for collecting preliminary information and predictions for the laboratory research. We hope to find and develop a computer program that will be able to simulate the ultrasound signals the project will work with. Simulated models of test conditions will more easily show what might be expected from laboratory results thus help the research group make informed decisions before and during experimentation. There are several existing Matlab based computer programs available, designed to interpret and simulate ultrasound signals. These programs will be evaluated to find which is best suited for the project needs. The criteria of evaluation that will be used are 1) the program must be able to specify transducer properties and specify transmitting and receiving signals, 2) the program must be able to simulate ultrasound signals through different attenuating mediums, 3) the program must be able to process moving targets in order to simulate the Doppler effects that are associated with blood flow, 4) the program should be user friendly and adaptable to various models. After a computer program is chosen, two simulation models will be constructed. These models will simulate and interpret an RF data signal and a Doppler signal.
Numerical-experimental observation of shape bistability of red blood cells flowing in a microchannel
NASA Astrophysics Data System (ADS)
Guckenberger, Achim; Kihm, Alexander; John, Thomas; Wagner, Christian; Gekle, Stephan
Red blood cells flowing through capillaries assume a wide variety of different shapes owing to their high deformability. Predicting the realized shapes is a complex field as they are determined by the intricate interplay between the flow conditions and the membrane mechanics. In this work we construct the shape phase diagram of a single red blood cell with a physiological viscosity ratio flowing in a microchannel. We use both experimental in-vitro measurements as well as 3D numerical simulations to complement the respective other one. Numerically, we have easy control over the initial starting configuration and natural access to the full 3D shape. With this information we obtain the phase diagram as a function of initial position, starting shape and cell velocity. Experimentally, we measure the occurrence frequency of the different shapes as a function of the cell velocity to construct the experimental diagram which is in good agreement with the numerical observations. Two different major shapes are found, namely croissants and slippers. Notably, both shapes show coexistence at low (<1 mm/s) and high velocities (>3 mm/s) while in-between only croissants are stable. This pronounced bistability indicates that RBC shapes are not only determined by system parameters such as flow velocity or channel size, but also strongly depend on the initial conditions.
Dynamic mode decomposition of Fontan hemodynamics in an idealized total cavopulmonary connection
NASA Astrophysics Data System (ADS)
Delorme, Yann T.; Kerlo, Anna-Elodie M.; Anupindi, Kameswararao; Rodefeld, Mark D.; Frankel, Steven H.
2014-08-01
Univentricular heart disease is the leading cause of death from any birth defect in the first year of life. Typically, patients have to undergo three open heart surgical procedures within the first few years of their lives to eventually directly connect the superior and inferior vena cavae to the left and right pulmonary arteries forming the total cavopulmonary connection (TCPC). The end result is a weak circulation where the single working ventricle pumps oxygenated blood to the body and de-oxygenated blood flows passively through the TCPC into the lungs. The fluid dynamics of the TCPC junction involve confined impinging jets resulting in a highly unstable flow, significant mechanical energy dissipation and undesirable pressure loss. Understanding and predicting such flows is important for improving the surgical procedure and for the design of mechanical cavopulmonary assist devices. In this study, dynamic mode decomposition (DMD) is used to analyze previously obtained stereoscopic particle imaging velocimetry (SPIV) data and large eddy simulation (LES) results for an idealized TCPC. Analysis of the DMD modes from the SPIV and LES serves to both highlight the unsteady vortical dynamics and the qualitative agreement between measurements and simulations.
A semi-automatic method for extracting thin line structures in images as rooted tree network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brazzini, Jacopo; Dillard, Scott; Soille, Pierre
2010-01-01
This paper addresses the problem of semi-automatic extraction of line networks in digital images - e.g., road or hydrographic networks in satellite images, blood vessels in medical images, robust. For that purpose, we improve a generic method derived from morphological and hydrological concepts and consisting in minimum cost path estimation and flow simulation. While this approach fully exploits the local contrast and shape of the network, as well as its arborescent nature, we further incorporate local directional information about the structures in the image. Namely, an appropriate anisotropic metric is designed by using both the characteristic features of the targetmore » network and the eigen-decomposition of the gradient structure tensor of the image. Following, the geodesic propagation from a given seed with this metric is combined with hydrological operators for overland flow simulation to extract the line network. The algorithm is demonstrated for the extraction of blood vessels in a retina image and of a river network in a satellite image.« less
Theoretical models for coronary vascular biomechanics: Progress & challenges
Waters, Sarah L.; Alastruey, Jordi; Beard, Daniel A.; Bovendeerd, Peter H.M.; Davies, Peter F.; Jayaraman, Girija; Jensen, Oliver E.; Lee, Jack; Parker, Kim H.; Popel, Aleksander S.; Secomb, Timothy W.; Siebes, Maria; Sherwin, Spencer J.; Shipley, Rebecca J.; Smith, Nicolas P.; van de Vosse, Frans N.
2013-01-01
A key aim of the cardiac Physiome Project is to develop theoretical models to simulate the functional behaviour of the heart under physiological and pathophysiological conditions. Heart function is critically dependent on the delivery of an adequate blood supply to the myocardium via the coronary vasculature. Key to this critical function of the coronary vasculature is system dynamics that emerge via the interactions of the numerous constituent components at a range of spatial and temporal scales. Here, we focus on several components for which theoretical approaches can be applied, including vascular structure and mechanics, blood flow and mass transport, flow regulation, angiogenesis and vascular remodelling, and vascular cellular mechanics. For each component, we summarise the current state of the art in model development, and discuss areas requiring further research. We highlight the major challenges associated with integrating the component models to develop a computational tool that can ultimately be used to simulate the responses of the coronary vascular system to changing demands and to diseases and therapies. PMID:21040741
Fluid Dynamics in Rotary Piston Blood Pumps.
Wappenschmidt, Johannes; Sonntag, Simon J; Buesen, Martin; Gross-Hardt, Sascha; Kaufmann, Tim; Schmitz-Rode, Thomas; Autschbach, Ruediger; Goetzenich, Andreas
2017-03-01
Mechanical circulatory support can maintain a sufficient blood circulation if the native heart is failing. The first implantable devices were displacement pumps with membranes. They were able to provide a sufficient blood flow, yet, were limited because of size and low durability. Rotary pumps have resolved these technical drawbacks, enabled a growing number of mechanical circulatory support therapy and a safer application. However, clinical complications like gastrointestinal bleeding, aortic insufficiency, thromboembolic complications, and impaired renal function are observed with their application. This is traced back to their working principle with attenuated or non-pulsatile flow and high shear stress. Rotary piston pumps potentially merge the benefits of available pump types and seem to avoid their complications. However, a profound assessment and their development requires the knowledge of the flow characteristics. This study aimed at their investigation. A functional model was manufactured and investigated with particle image velocimetry. Furthermore, a fluid-structure interaction computational simulation was established to extend the laboratory capabilities. The numerical results precisely converged with the laboratory measurements. Thus, the in silico model enabled the investigation of relevant areas like gap flows that were hardly feasible with laboratory means. Moreover, an economic method for the investigation of design variations was established.
Sigüenza, Julien; Pott, Desiree; Mendez, Simon; Sonntag, Simon J; Kaufmann, Tim A S; Steinseifer, Ulrich; Nicoud, Franck
2018-04-01
The complex fluid-structure interaction problem associated with the flow of blood through a heart valve with flexible leaflets is investigated both experimentally and numerically. In the experimental test rig, a pulse duplicator generates a pulsatile flow through a biomimetic rigid aortic root where a model of aortic valve with polymer flexible leaflets is implanted. High-speed recordings of the leaflets motion and particle image velocimetry measurements were performed together to investigate the valve kinematics and the dynamics of the flow. Large eddy simulations of the same configuration, based on a variant of the immersed boundary method, are also presented. A massively parallel unstructured finite-volume flow solver is coupled with a finite-element solid mechanics solver to predict the fluid-structure interaction between the unsteady flow and the valve. Detailed analysis of the dynamics of opening and closure of the valve are conducted, showing a good quantitative agreement between the experiment and the simulation regarding the global behavior, in spite of some differences regarding the individual dynamics of the valve leaflets. A multicycle analysis (over more than 20 cycles) enables to characterize the generation of turbulence downstream of the valve, showing similar flow features between the experiment and the simulation. The flow transitions to turbulence after peak systole, when the flow starts to decelerate. Fluctuations are observed in the wake of the valve, with maximum amplitude observed at the commissure side of the aorta. Overall, a very promising experiment-vs-simulation comparison is shown, demonstrating the potential of the numerical method. Copyright © 2017 John Wiley & Sons, Ltd.
Zhang, Chi; Wang, Ling; Li, Xiaoyun; Li, Shuyu; Pu, Fang; Fan, Yubo; Li, Deyu
2014-01-01
Circle of Willis (CoW) plays a significant role in maintaining the blood supply for the brain. Specifically, when the stenosis occurs in the internal carotid artery (ICA), abnormal structures of CoW would decrease the compensatory capacity, leading to the local insufficiency of cerebral blood supply. The present paper built a series of lumped parameter models for CoW, and simulated the blood redistribution caused by the unilateral ICA stenosis with different severities in cerebral arteries in the normal and abnormal CoW respectively. The results showed that when unilateral ICA stenosis occurred, the collateral circulation was built through the anterior communicating artery and the ipsilateral posterior communicating artery, maintaining the flow in cerebral arteries. The absence of the two communicating arteries would cause an obvious decrease of flow in local cerebral arteries in the anterior circulation. In conclusion, the two arteries play a significant role in maintaining the balance of cerebral blood supply in the development of ICA stenosis.
Vali, Alireza; Abla, Adib A; Lawton, Michael T; Saloner, David; Rayz, Vitaliy L
2017-01-04
In vivo measurement of blood velocity fields and flow descriptors remains challenging due to image artifacts and limited resolution of current imaging methods; however, in vivo imaging data can be used to inform and validate patient-specific computational fluid dynamics (CFD) models. Image-based CFD can be particularly useful for planning surgical interventions in complicated cases such as fusiform aneurysms of the basilar artery, where it is crucial to alter pathological hemodynamics while preserving flow to the distal vasculature. In this study, patient-specific CFD modeling was conducted for two basilar aneurysm patients considered for surgical treatment. In addition to velocity fields, transport of contrast agent was simulated for the preoperative and postoperative conditions using two approaches. The transport of a virtual contrast passively following the flow streamlines was simulated to predict post-surgical flow regions prone to thrombus deposition. In addition, the transport of a mixture of blood with an iodine-based contrast agent was modeled to compare and verify the CFD results with X-ray angiograms. The CFD-predicted patterns of contrast flow were qualitatively compared to in vivo X-ray angiograms acquired before and after the intervention. The results suggest that the mixture modeling approach, accounting for the flow rates and properties of the contrast injection, is in better agreement with the X-ray angiography data. The virtual contrast modeling assessed the residence time based on flow patterns unaffected by the injection procedure, which makes the virtual contrast modeling approach better suited for prediction of thrombus deposition, which is not limited to the peri-procedural state. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kitamura, Shingo; Shirota, Minori; Fukuda, Wakako; Inamura, Takao; Fukuda, Ikuo
2016-12-01
Computational numerical analysis was performed to elucidate the flow dynamics of femoral artery perfusion. Numerical simulation of blood flow was performed from the right femoral artery in an aortic model. An incompressible Navier-Stokes equation and continuity equation were solved using computed flow dynamics software. Three different perfusion models were analyzed: a 4.0-mm cannula (outer diameter 15 French size), a 5.2-mm cannula (18 French size) and an 8-mm prosthetic graft. The cannula was inserted parallel to the femoral artery, while the graft was anastomosed perpendicular to the femoral artery. Shear stress was highest with the 4-mm cannula (172 Pa) followed by the graft (127 Pa) and the 5.2-mm cannula (99 Pa). The cannula exit velocity was high, even when the 5.2-mm cannula was used. Although side-armed perfusion with an 8-mm graft generated a high shear stress area near the point of anastomosis, flow velocity at the external iliac artery was decreased. The jet speed decreased due to the Coanda effect caused by the recirculation behind sudden expansion of diameter, and the flow velocity maintains a constant speed after the reattachment length of the flow. This study showed that iliac artery shear stress was lower with the 5.2-mm cannula than with the 4-mm cannula when used for femoral perfusion. Side-armed graft perfusion generates a high shear stress area around the anastomotic site, but flow velocity in the iliac artery is slower in the graft model than in the 5.2-mm cannula model.
NASA Astrophysics Data System (ADS)
Seo, Jongmin; Schiavazzi, Daniele; Marsden, Alison
2017-11-01
Cardiovascular simulations are increasingly used in clinical decision making, surgical planning, and disease diagnostics. Patient-specific modeling and simulation typically proceeds through a pipeline from anatomic model construction using medical image data to blood flow simulation and analysis. To provide confidence intervals on simulation predictions, we use an uncertainty quantification (UQ) framework to analyze the effects of numerous uncertainties that stem from clinical data acquisition, modeling, material properties, and boundary condition selection. However, UQ poses a computational challenge requiring multiple evaluations of the Navier-Stokes equations in complex 3-D models. To achieve efficiency in UQ problems with many function evaluations, we implement and compare a range of iterative linear solver and preconditioning techniques in our flow solver. We then discuss applications to patient-specific cardiovascular simulation and how the problem/boundary condition formulation in the solver affects the selection of the most efficient linear solver. Finally, we discuss performance improvements in the context of uncertainty propagation. Support from National Institute of Health (R01 EB018302) is greatly appreciated.
Sander, Christin Y; Mandeville, Joseph B; Wey, Hsiao-Ying; Catana, Ciprian; Hooker, Jacob M; Rosen, Bruce R
2017-01-01
The potential effects of changes in blood flow on the delivery and washout of radiotracers has been an ongoing question in PET bolus injection studies. This study provides practical insight into this topic by experimentally measuring cerebral blood flow (CBF) and neuroreceptor binding using simultaneous PET/MRI. Hypercapnic challenges (7% CO 2 ) were administered to non-human primates in order to induce controlled increases in CBF, measured with pseudo-continuous arterial spin labeling. Simultaneously, dopamine D 2 /D 3 receptor binding of [ 11 C]raclopride or [ 18 F]fallypride was monitored with dynamic PET. Experiments showed that neither time activity curves nor quantification of binding through binding potentials ( BP ND ) were measurably affected by CBF increases, which were larger than two-fold. Simulations of experimental procedures showed that even large changes in CBF should have little effect on the time activity curves of radiotracers, given a set of realistic assumptions. The proposed method can be applied to experimentally assess the flow sensitivity of other radiotracers. Results demonstrate that CBF changes, which often occur due to behavioral tasks or pharmacological challenges, do not affect PET [ 11 C]raclopride or [ 18 F]fallypride binding studies and their quantification. The results from this study suggest flow effects may have limited impact on many PET neuroreceptor tracers with similar properties.
Yamaguchi, Takami; Ishikawa, Takuji; Imai, Y; Matsuki, N; Xenos, Mikhail; Deng, Yuefan; Bluestein, Danny
2010-03-01
A major computational challenge for a multiscale modeling is the coupling of disparate length and timescales between molecular mechanics and macroscopic transport, spanning the spatial and temporal scales characterizing the complex processes taking place in flow-induced blood clotting. Flow and pressure effects on a cell-like platelet can be well represented by a continuum mechanics model down to the order of the micrometer level. However, the molecular effects of adhesion/aggregation bonds are on the order of nanometer. A successful multiscale model of platelet response to flow stresses in devices and the ensuing clotting responses should be able to characterize the clotting reactions and their interactions with the flow. This paper attempts to describe a few of the computational methods that were developed in recent years and became available to researchers in the field. They differ from traditional approaches that dominate the field by expanding on prevailing continuum-based approaches, or by completely departing from them, yielding an expanding toolkit that may facilitate further elucidation of the underlying mechanisms of blood flow and the cellular response to it. We offer a paradigm shift by adopting a multidisciplinary approach with fluid dynamics simulations coupled to biophysical and biochemical transport.
Secomb, Timothy W.
2016-01-01
A novel theoretical method is presented for simulating the spatially resolved convective and diffusive transport of reacting solutes between microvascular networks and the surrounding tissues. The method allows for efficient computational solution of problems involving convection and non-linear binding of solutes in blood flowing through microvascular networks with realistic 3D geometries, coupled with transvascular exchange and diffusion and reaction in the surrounding tissue space. The method is based on a Green's function approach, in which the solute concentration distribution in the tissue is expressed as a sum of fields generated by time-varying distributions of discrete sources and sinks. As an example of the application of the method, the washout of an inert diffusible tracer substance from a tissue region perfused by a network of microvessels is simulated, showing its dependence on the solute's transvascular permeability and tissue diffusivity. Exponential decay of the washout concentration is predicted, with rate constants that are about 10–30% lower than the rate constants for a tissue cylinder model with the same vessel length, vessel surface area and blood flow rate per tissue volume. PMID:26443811
Influence of simulated microgravity on the sympathetic response to exercise
NASA Technical Reports Server (NTRS)
Woodman, C. R.; Kregel, K. C.; Tipton, C. M.
1997-01-01
Rats exposed to simulated conditions of microgravity exhibit reductions in aerobic exercise capacity that may be due to an impaired ability of the sympathetic nervous system (SNS) to mediate an increase in cardiac output and to redistribute blood flow. The purpose of this study was to quantify the sympathetic response to exercise in rats after exposure to 14 days of simulated microgravity or control conditions. To achieve this aim, rats were exposed to 14 days of head-down suspension (HDS) or cage control (CC) conditions. On day 14, norepinephrine (NE) synthesis was blocked with alpha-methyl-p-tyrosine, and the rate of NE depletion after synthesis blockade was used to estimate SNS activity in the left ventricle, spleen, and soleus muscle during treadmill exercise at 75% of maximal oxygen uptake. When compared with CC rats, the sympathetic response to exercise in HDS rats was characterized by a lower rate of NE depletion in the left ventricle (-82%) and spleen (-42%). The rate of NE depletion in the soleus muscle was 47% higher. These differences could contribute to the decrement in aerobic capacity of HDS rats by impairing their ability to augment cardiac output and to redirect blood flow to actively contracting skeletal muscle during exercise.
Computational studies of steering nanoparticles with magnetic gradients
NASA Astrophysics Data System (ADS)
Aylak, Sultan Suleyman
Magnetic Resonance Imaging (MRI) guided nanorobotic systems that could perform diagnostic, curative, and reconstructive treatments in the human body at the cellular and subcellular level in a controllable manner have recently been proposed. The concept of a MRI-guided nanorobotic system is based on the use of a MRI scanner to induce the required external driving forces to guide magnetic nanocapsules to a specific target. However, the maximum magnetic gradient specifications of existing clinical MRI systems are not capable of driving magnetic nanocapsules against the blood flow. This thesis presents the visualization of nanoparticles inside blood vessel, Graphical User Interface (GUI) for updating file including initial parameters and demonstrating the simulation of particles and C++ code for computing magnetic forces and fluidic forces. The visualization and GUI were designed using Virtual Reality Modeling Language (VRML), MATLAB and C#. The addition of software for MRI-guided nanorobotic system provides simulation results. Preliminary simulation results demonstrate that external magnetic field causes aggregation of nanoparticles while they flow in the vessel. This is a promising result --in accordance with similar experimental results- and encourages further investigation on the nanoparticle-based self-assembly structures for use in nanorobotic drug delivery.
Steeden, Jennifer A; Muthurangu, Vivek
2015-04-01
1) To validate an R-R interval averaged golden angle spiral phase contrast magnetic resonance (RAGS PCMR) sequence against conventional cine PCMR for assessment of renal blood flow (RBF) in normal volunteers; and 2) To investigate the effects of motion and heart rate on the accuracy of flow measurements using an in silico simulation. In 20 healthy volunteers RAGS (∼6 sec breath-hold) and respiratory-navigated cine (∼5 min) PCMR were performed in both renal arteries to assess RBF. A simulation of RAGS PCMR was used to assess the effect of heart rate (30-105 bpm), vessel expandability (0-150%) and translational motion (x1.0-4.0) on the accuracy of RBF measurements. There was good agreement between RAGS and cine PCMR in the volunteer study (bias: 0.01 L/min, limits of agreement: -0.04 to +0.06 L/min, P = 0.0001). The simulation demonstrated a positive linear relationship between heart rate and error (r = 0.9894, P < 0.0001), a negative linear relationship between vessel expansion and error (r = -0.9484, P < 0.0001), and a nonlinear, heart rate-dependent relationship between vessel translation and error. We have demonstrated that RAGS PCMR accurately measures RBF in vivo. However, the simulation reveals limitations in this technique at extreme heart rates (<40 bpm, >100 bpm), or when there is significant motion (vessel expandability: >80%, vessel translation: >x2.2). © 2014 Wiley Periodicals, Inc.
Theoretical analysis of evaporative cooling of classic heat stroke patients.
Alzeer, Abdulaziz H; Wissler, E H
2018-05-18
Heat stroke is a serious health concern globally, which is associated with high mortality. Newer treatments must be designed to improve outcomes. The aim of this study is to evaluate the effect of variations in ambient temperature and wind speed on the rate of cooling in a simulated heat stroke subject using the dynamic model of Wissler. We assume that a 60-year-old 70-kg female suffers classic heat stroke after walking fully exposed to the sun for 4 h while the ambient temperature is 40 °C, relative humidity is 20%, and wind speed is 2.5 m/s -1 . Her esophageal and skin temperatures are 41.9 and 40.7 °C at the time of collapse. Cooling is accomplished by misting with lukewarm water while exposed to forced airflow at a temperature of 20 to 40 °C and a velocity of 0.5 or 1 m/s -1 . Skin blood flow is assumed to be either normal, one-half of normal, or twice normal. At wind speed of 0.5 m/s -1 and normal skin blood flow, the air temperature decreased from 40 to 20 °C, increased cooling, and reduced time required to reach to a desired temperature of 38 °C. This relationship was also maintained in reduced blood flow states. Increasing wind speed to 1 m/s -1 increased cooling and reduced the time to reach optimal temperature both in normal and reduced skin blood flow states. In conclusion, evaporative cooling methods provide an effective method for cooling classic heat stroke patients. The maximum heat dissipation from the simulated model of Wissler was recorded when the entire body was misted with lukewarm water and applied forced air at 1 m/s at temperature of 20 °C.
Kim, Tyson N.; Goodwill, Patrick W.; Chen, Yeni; Conolly, Steven M.; Schaffer, Chris B.; Liepmann, Dorian; Wang, Rong A.
2012-01-01
Background The ability to measure blood velocities is critical for studying vascular development, physiology, and pathology. A key challenge is to quantify a wide range of blood velocities in vessels deep within living specimens with concurrent diffraction-limited resolution imaging of vascular cells. Two-photon laser scanning microscopy (TPLSM) has shown tremendous promise in analyzing blood velocities hundreds of micrometers deep in animals with cellular resolution. However, current analysis of TPLSM-based data is limited to the lower range of blood velocities and is not adequate to study faster velocities in many normal or disease conditions. Methodology/Principal Findings We developed line-scanning particle image velocimetry (LS-PIV), which used TPLSM data to quantify peak blood velocities up to 84 mm/s in live mice harboring brain arteriovenous malformation, a disease characterized by high flow. With this method, we were able to accurately detect the elevated blood velocities and exaggerated pulsatility along the abnormal vascular network in these animals. LS-PIV robustly analyzed noisy data from vessels as deep as 850 µm below the brain surface. In addition to analyzing in vivo data, we validated the accuracy of LS-PIV up to 800 mm/s using simulations with known velocity and noise parameters. Conclusions/Significance To our knowledge, these blood velocity measurements are the fastest recorded with TPLSM. Partnered with transgenic mice carrying cell-specific fluorescent reporters, LS-PIV will also enable the direct in vivo correlation of cellular, biochemical, and hemodynamic parameters in high flow vascular development and diseases such as atherogenesis, arteriogenesis, and vascular anomalies. PMID:22761686
A numerical performance assessment of a commercial cardiopulmonary by-pass blood heat exchanger.
Consolo, Filippo; Fiore, Gianfranco B; Pelosi, Alessandra; Reggiani, Stefano; Redaelli, Alberto
2015-06-01
We developed a numerical model, based on multi-physics computational fluid dynamics (CFD) simulations, to assist the design process of a plastic hollow-fiber bundle blood heat exchanger (BHE) integrated within the INSPIRE(TM), a blood oxygenator (OXY) for cardiopulmonary by-pass procedures, recently released by Sorin Group Italia. In a comparative study, we analyzed five different geometrical design solutions of the BHE module. Quantitative geometrical-dependent parameters providing a comprehensive evaluation of both the hemo- and thermo-dynamics performance of the device were extracted to identify the best-performing prototypical solution. A convenient design configuration was identified, characterized by (i) a uniform blood flow pattern within the fiber bundle, preventing blood flow shunting and the onset of stagnation/recirculation areas and/or high velocity pathways, (ii) an enhanced blood heating efficiency, and (iii) a reduced blood pressure drop. The selected design configuration was then prototyped and tested to experimentally characterize the device performance. Experimental results confirmed numerical predictions, proving the effectiveness of CFD modeling as a reliable tool for in silico identification of suitable working conditions of blood handling medical devices. Notably, the numerical approach limited the need for extensive prototyping, thus reducing the corresponding machinery costs and time-to-market. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
Solovyev, Alexey; Mi, Qi; Tzen, Yi-Ting; Brienza, David; Vodovotz, Yoram
2013-01-01
Pressure ulcers are costly and life-threatening complications for people with spinal cord injury (SCI). People with SCI also exhibit differential blood flow properties in non-ulcerated skin. We hypothesized that a computer simulation of the pressure ulcer formation process, informed by data regarding skin blood flow and reactive hyperemia in response to pressure, could provide insights into the pathogenesis and effective treatment of post-SCI pressure ulcers. Agent-Based Models (ABM) are useful in settings such as pressure ulcers, in which spatial realism is important. Ordinary Differential Equation-based (ODE) models are useful when modeling physiological phenomena such as reactive hyperemia. Accordingly, we constructed a hybrid model that combines ODEs related to blood flow along with an ABM of skin injury, inflammation, and ulcer formation. The relationship between pressure and the course of ulcer formation, as well as several other important characteristic patterns of pressure ulcer formation, was demonstrated in this model. The ODE portion of this model was calibrated to data related to blood flow following experimental pressure responses in non-injured human subjects or to data from people with SCI. This model predicted a higher propensity to form ulcers in response to pressure in people with SCI vs. non-injured control subjects, and thus may serve as novel diagnostic platform for post-SCI ulcer formation. PMID:23696726
Multiscale modeling of a Chemofilter device for filtering chemotherapy toxins from blood
NASA Astrophysics Data System (ADS)
Maani, Nazanin; Beyhaghi, Saman; Yee, Daryl; Nosonovsky, Micheal; Greer, Julia; Hetts, Steven; Rayz, Vitaliy
2016-11-01
Purpose: Chemotherapy drugs injected intra-arterially to treat cancer can cause systemic toxic effects. A catheter-based Chemofilter device, temporarily deployed in a vein during the procedure can filter excessive drug from the blood thus reducing chemotherapy side-effects. CFD modeling is used to design the membrane of the Chemofilter in order to optimize its hemodynamic performance. Methods: Multiscale approach is used to model blood flow through the Chemofilter. The toxins bind to the Chemofilter's membrane formed by a lattice of numerous micro cells deployed in a blood vessel of much larger size. A detailed model of the flow through a 2x2 microcell matrix with periodic boundary conditions is used to determine the permeability of the membrane. The results are used to simulate the flow through the whole device modeled as a uniform porous membrane. The finite-volume solver Fluent is used to obtain the numerical solution. Results: The micro cell matrix has a porosity of 0.92. The pressure drop across the resolved microcells was found to be 630 Pa, resulting in the permeability of 6.21 x10-11 m2 in the normal direction. These values were used to optimize the device geometry in order to increase the contact area of the membrane, while minimizing its obstruction to the flow. NIH NCI R01CA194533.
In vitro optical detection of simulated blood pulse in a human tooth pulp model.
Niklas, A; Hiller, K-A; Jaeger, A; Brandt, M; Putzger, J; Ermer, C; Schulz, I; Monkman, G; Giglberger, S; Hirmer, M; Danilov, S; Ganichev, S; Schmalz, G
2014-01-01
Noninvasive optical methods such as photoplethysmography, established for blood pulse detection in organs, have been proposed for vitality testing of human dental pulp. However, no information is available on the mechanism of action in a closed pulp chamber and on the impairing influence of other than pulpal blood flow sources. Therefore, the aim of the present in vitro study was to develop a device for the optical detection of pulpal blood pulse and to investigate the influence of different parameters (including gingival blood flow [GBF] simulation) on the derived signals. Air, Millipore water, human erythrocyte suspensions (HES), non-particulate hemoglobin suspension (NPHS), and lysed hemoglobin suspension (LHES) were pulsed through a flexible (silicone) or a rigid (glass) tube placed within an extracted human molar in a tooth-gingiva model. HES was additionally pulsed through a rigid tube around the tooth, simulating GBF alone or combined with the flow through the tooth by two separate peristaltic pumps. Light from high-power light-emitting diodes (625 nm (red) and 940 nm (infrared [IR]); Golden Dragon, Osram, Germany) was introduced to the coronal/buccal part of the tooth, and the signal amplitude [∆U, in volts] of transmitted light was detected by a sensor at the opposite side of the tooth. Signal processing was carried out by means of a newly developed blood pulse detector. Finally, experiments were repeated with the application of rubber dam (blue, purple, pink, and black), aluminum foil, and black antistatic plastic foil. Nonparametric statistical analysis was applied (n = 5; α = 0.05). Signals were obtained for HES and LHES, but not with air, Millipore water, or NPHS. Using a flexible tube, signals for HES were higher for IR compared to red light, whereas for the rigid tube, the signals were significantly higher for red light than for IR. In general, significantly less signal amplitude was recorded for HES with the rigid glass tube than with the flexible tube, but it was still enough to be detected. ∆U from gingiva compared to tooth was significantly lower for red light and higher for IR. Shielding the gingiva was effective for 940 nm light and negligible for 625 nm light. Pulpal blood pulse can be optically detected in a rigid environment such as a pulp chamber, but GBF may interfere with the signal and the shielding effect of the rubber dam depends on the light wavelength used. The optically based recording of blood pulse may be a suitable method for pulp vitality testing, if improvements in the differentiation between different sources of blood pulse are possible.
Blood Vessel Adaptation with Fluctuations in Capillary Flow Distribution
Hu, Dan; Cai, David; Rangan, Aaditya V.
2012-01-01
Throughout the life of animals and human beings, blood vessel systems are continuously adapting their structures – the diameter of vessel lumina, the thickness of vessel walls, and the number of micro-vessels – to meet the changing metabolic demand of the tissue. The competition between an ever decreasing tendency of luminal diameters and an increasing stimulus from the wall shear stress plays a key role in the adaptation of luminal diameters. However, it has been shown in previous studies that the adaptation dynamics based only on these two effects is unstable. In this work, we propose a minimal adaptation model of vessel luminal diameters, in which we take into account the effects of metabolic flow regulation in addition to wall shear stresses and the decreasing tendency of luminal diameters. In particular, we study the role, in the adaptation process, of fluctuations in capillary flow distribution which is an important means of metabolic flow regulation. The fluctuation in the flow of a capillary group is idealized as a switch between two states, i.e., an open-state and a close-state. Using this model, we show that the adaptation of blood vessel system driven by wall shear stress can be efficiently stabilized when the open time ratio responds sensitively to capillary flows. As micro-vessel rarefaction is observed in our simulations with a uniformly decreased open time ratio of capillary flows, our results point to a possible origin of micro-vessel rarefaction, which is believed to induce hypertension. PMID:23029014
Acoustic microstreaming due to an ultrasound contrast microbubble near a wall
NASA Astrophysics Data System (ADS)
Mobadersany, Nima; Sarkar, Kausik
2017-11-01
In an ultrasound field, in addition to the sinusoidal motion of fluid particles, particles experience a steady streaming velocity due to nonlinear second order effects. Here, we have simulated the microstreaming flow near a plane rigid wall caused by the pulsations of contrast microbubbles. Although these microbubbles were initially developed as a contrast enhancing agents for ultrasound imaging, they generate additional therapeutic effects that can be harnessed for targeted drug delivery or blood brain barrier (BBB) opening. The microbubbles have a gas core coated with a stabilizing layer of lipids or proteins. We use analytical models as well as boundary element (BEM) simulation to simulate the flow around these bubbles implementing interfacial rheology models for the coating. The microstreaming flow is characterized by two wall bounded vortices. The size of the vortices decreases with the decrease of the separation from the wall. The vortex-induced shear stress is simulated and analyzed as a function of excitation parameters and geometry. These microstreaming shear stress plays a critical role in increasing the membrane permeability facilitating drug delivery or rupturing biological tissues.
Applegate, Richard L; Ramsingh, Davinder S; Dorotta, Ihab; Sanghvi, Chirag; Blood, Arlin B
2013-06-01
Early and aggressive treatment of circulatory failure is associated with increased survival, highlighting the need for monitoring methods capable of early detection. Vasoconstriction and decreased oxygenation of the splanchnic circulation are a sentinel response of the cardiovasculature during circulatory distress. Thus, we measured esophageal oxygenation as an index of decreased tissue oxygen delivery caused by three types of ischemic insult, occlusive decreases in mesenteric blood flow, and hemodynamic adaptations to systemic hypoxia and simulated hemorrhagic stress. Five anesthetized lambs were instrumented for monitoring of mean arterial pressure, mesenteric artery blood flow, central venous hemoglobin oxygen saturation, and esophageal and buccal microvascular hemoglobin oxygen saturation (StO2). The sensitivities of oximetry monitoring to detect cardiovascular insult were assessed by observing responses to graded occlusion of the descending aorta, systemic hypoxia due to decreased FIO2, and acute hemorrhage. Decreases in mesenteric artery flow during aortic occlusions were correlated with decreased esophageal StO2 (R = 0.41). During hypoxia, esophageal StO2 decreased significantly within 1 min of initiation, whereas buccal StO2 decreased within 3 min, and central venous saturation did not change significantly. All modes of oximetry monitoring and arterial blood pressure were correlated with mesenteric artery flow during acute hemorrhage. Esophageal StO2 demonstrated a greater decrease from baseline levels as well as a more rapid return to baseline levels during reinfusion of the withdrawn blood. These experiments suggest that monitoring esophageal StO2 may be useful in the detection of decreased mesenteric oxygen delivery as may occur in conditions associated with hypoperfusion or hypoxia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGuire, S; Ponto, L; Menda, Y
Purpose: To compare proliferation and blood flow in pelvic and thoracic bone marrow 1 year after pelvic chemoradiation. Methods: Sixteen pelvic cancer patients were enrolled in an IRB-approved protocol to acquire FLT PET images during radiation therapy simulation (baseline) and 1 year after chemoradiation therapy. Three subjects also had optional O-15 water PET images acquired 1 year after chemoradiation therapy. Baseline FLT PET images were used to create IMRT plans to spare pelvic bone marrow identified as regions with FLT SUV ≥ 2 without compromising PTV coverage or OAR sparing. Marrow VOIs were defined using a 50% maximum pixel valuemore » threshold on baseline FLT PET images (VIEW, PMOD version 3.5) in the sacrum and thoracic spine representing irradiated and non-irradiated regions, respectively. FLT PET and O-15 water PET images acquired 1 year after therapy were co-registered to baseline images (FUSION PMOD) and the same VOIs were used to measure proliferation (FLT SUV) and blood flow (O-15 water uptake). Separate image-based input functions were used for blood flow quantitation in each VOI. Results: Mean 1 year FLT SUV in sacral and thoracic VOIs for were 1.1 ± 0.4 and 6.5 ± 1.7, respectively for N = 16 subjects and were 1.2 ± 0.2 and 5.6 ± 1.6, respectively for N = 3 subjects who also underwent O-15 water imaging. Blood flow measures in equivalent sacral and thoracic marrow regions (N = 3) were 21.3 ± 8.7 and 18.3 ± 4.9 mL/min/100mL respectively. Conclusion: Decreased bone marrow proliferation measured by FLT SUV does not appear to correspond to decreased blood flow as measured by O-15 water PET imaging. Based on this small sample at a single time point, reduced blood supply does not explain reductions in bone marrow proliferative activity 1 year after chemoradiation therapy.« less
Computational Study of the Blood Flow in Three Types of 3D Hollow Fiber Membrane Bundles
Zhang, Jiafeng; Chen, Xiaobing; Ding, Jun; Fraser, Katharine H.; Ertan Taskin, M.; Griffith, Bartley P.; Wu, Zhongjun J.
2013-01-01
The goal of this study is to develop a computational fluid dynamics (CFD) modeling approach to better estimate the blood flow dynamics in the bundles of the hollow fiber membrane based medical devices (i.e., blood oxygenators, artificial lungs, and hemodialyzers). Three representative types of arrays, square, diagonal, and random with the porosity value of 0.55, were studied. In addition, a 3D array with the same porosity was studied. The flow fields between the individual fibers in these arrays at selected Reynolds numbers (Re) were simulated with CFD modeling. Hemolysis is not significant in the fiber bundles but the platelet activation may be essential. For each type of array, the average wall shear stress is linearly proportional to the Re. For the same Re but different arrays, the average wall shear stress also exhibits a linear dependency on the pressure difference across arrays, while Darcy′s law prescribes a power-law relationship, therefore, underestimating the shear stress level. For the same Re, the average wall shear stress of the diagonal array is approximately 3.1, 1.8, and 2.0 times larger than that of the square, random, and 3D arrays, respectively. A coefficient C is suggested to correlate the CFD predicted data with the analytical solution, and C is 1.16, 1.51, and 2.05 for the square, random, and diagonal arrays in this paper, respectively. It is worth noting that C is strongly dependent on the array geometrical properties, whereas it is weakly dependent on the flow field. Additionally, the 3D fiber bundle simulation results show that the three-dimensional effect is not negligible. Specifically, velocity and shear stress distribution can vary significantly along the fiber axial direction. PMID:24141394
Towards a multi-physics modelling framework for thrombolysis under the influence of blood flow.
Piebalgs, Andris; Xu, X Yun
2015-12-06
Thrombolytic therapy is an effective means of treating thromboembolic diseases but can also give rise to life-threatening side effects. The infusion of a high drug concentration can provoke internal bleeding while an insufficient dose can lead to artery reocclusion. It is hoped that mathematical modelling of the process of clot lysis can lead to a better understanding and improvement of thrombolytic therapy. To this end, a multi-physics continuum model has been developed to simulate the dissolution of clot over time upon the addition of tissue plasminogen activator (tPA). The transport of tPA and other lytic proteins is modelled by a set of reaction-diffusion-convection equations, while blood flow is described by volume-averaged continuity and momentum equations. The clot is modelled as a fibrous porous medium with its properties being determined as a function of the fibrin fibre radius and voidage of the clot. A unique feature of the model is that it is capable of simulating the entire lytic process from the initial phase of lysis of an occlusive thrombus (diffusion-limited transport), the process of recanalization, to post-canalization thrombolysis under the influence of convective blood flow. The model has been used to examine the dissolution of a fully occluding clot in a simplified artery at different pressure drops. Our predicted lytic front velocities during the initial stage of lysis agree well with experimental and computational results reported by others. Following canalization, clot lysis patterns are strongly influenced by local flow patterns, which are symmetric at low pressure drops, but asymmetric at higher pressure drops, which give rise to larger recirculation regions and extended areas of intense drug accumulation. © 2015 The Authors.
Effect of mild atherosclerosis on flow resistance in a coronary artery casting of man
NASA Technical Reports Server (NTRS)
Back, L. H.; Cho, Y. I.; Crawford, D. W.; Cuffel, R. F.
1984-01-01
An in-vitro flow study was conducted in a mildly atherosclerotic main coronary artery casting of man using sugar-water solutions simulating blood viscosity. Steady flow results indicated substantial increases in pressure drop, and thus flow resistance at the same Reynolds number, above those for Poiseuille flow by 30 to 100 percent in the physiological Reynolds number range from about 100 to 400. Time-averaged pulsatile flow data showed additional 5 percent increases in flow resistance above the steady flow results. Both pulsatile and steady flow data from the casting were found to be nearly equal to those from a straight, axisymmetric model of the casting up to a Reynolds number of about 200, above which the flow resistance of the casting became gradually larger than the corresponding values from the axisymmetric model.
Experimental study of hemodynamics in the Circle of Willis.
Zhu, Guangyu; Yuan, Qi; Yang, Jian; Yeo, Joon
2015-01-01
The Circle of Willis (CoW) is an important collateral pathway of the cerebral blood flow. An experimental study of the cerebral blood flow (CBF) distribution in different anatomical variations may help to a better understanding of the collateral mechanism of the CoW. An in-vitro test rig was developed to simulate the physiological cerebral blood flow in the CoW. Ten anatomical variations were considered in this study, include a set of different degrees of stenosis in L-ICA and L-ICA occlusion coexist with common anatomical variations. Volume flow rates of efferent arteries and pressure signals at the end of communicating arteries of each case were recorded. Physiological pressure waveforms were applied as inlet boundary condition. In the development of L-ICA stenosis, the total CBF decreases with the increase of stenosis degree. The blood supply of ipsilateral middle cerebral artery (MCA) was affected most by the stenosis of L-ICA. Anterior communicating artery (ACoA) and ipsilateral posterior communicating artery (PCoA) function as important collateral pathways of cerebral collateral circulation when unilateral stenosis occurred. The blood supply of anterior cerebral circulation was compensated by the posterior cerebral circulation through ipsilateral PCoA when L-ICA stenosis degree is greater than 40% and the affected side was compensated immediately by the unaffected side through ACoA. Blood flow of the anterior circulation and the total CBF reached the minimum among all cases studied when L-ICA occlusion coexist with the absence of PCoA. The results demonstrated the flow distribution patterns of the CoW under anatomical variations and clarified the collateral mechanism of the CoW. The flow ACoA is the most sensitive indexes to the morphology change of ipsilateral ICA. The relative independence of the circulation in anterior and posterior sections of the CoW is not broken and the function of ipsilateral PCoA is not activated until a severe stenosis of unilateral ICA occurs. PCoA is the most important collateral pathway of the collateral circulation and the missing of PCoA has the highest risk of stroke when the ipsilateral ICA has severe stenosis. These findings may provide the basis for future therapeutic and diagnosis applications.
Safaei, Soroush; Blanco, Pablo J; Müller, Lucas O; Hellevik, Leif R; Hunter, Peter J
2018-01-01
We propose a detailed CellML model of the human cerebral circulation that runs faster than real time on a desktop computer and is designed for use in clinical settings when the speed of response is important. A lumped parameter mathematical model, which is based on a one-dimensional formulation of the flow of an incompressible fluid in distensible vessels, is constructed using a bond graph formulation to ensure mass conservation and energy conservation. The model includes arterial vessels with geometric and anatomical data based on the ADAN circulation model. The peripheral beds are represented by lumped parameter compartments. We compare the hemodynamics predicted by the bond graph formulation of the cerebral circulation with that given by a classical one-dimensional Navier-Stokes model working on top of the whole-body ADAN model. Outputs from the bond graph model, including the pressure and flow signatures and blood volumes, are compared with physiological data.
Correlation of Wissler Human Thermal Model Blood Flow and Shiver Algorithms
NASA Technical Reports Server (NTRS)
Bue, Grant; Makinen, Janice; Cognata, Thomas
2010-01-01
The Wissler Human Thermal Model (WHTM) is a thermal math model of the human body that has been widely used to predict the human thermoregulatory response to a variety of cold and hot environments. The model has been shown to predict core temperature and skin temperatures higher and lower, respectively, than in tests of subjects in crew escape suit working in a controlled hot environments. Conversely the model predicts core temperature and skin temperatures lower and higher, respectively, than in tests of lightly clad subjects immersed in cold water conditions. The blood flow algorithms of the model has been investigated to allow for more and less flow, respectively, for the cold and hot case. These changes in the model have yielded better correlation of skin and core temperatures in the cold and hot cases. The algorithm for onset of shiver did not need to be modified to achieve good agreement in cold immersion simulations
NASA Astrophysics Data System (ADS)
Eslami, Parastou; Seo, Jung-Hee; Rahsepar, Amirali; George, Richard; Lardo, Albert; Mittal, Rajat
2014-11-01
Coronary computed tomography angiography (CTA) is a promising tool for assessment of coronary stenosis and plaque burden. Recent studies have shown the presence of axial contrast concentration gradients in obstructed arteries, but the mechanism responsible for this phenomenon is not well understood. We use computational fluid dynamics to study intracoronary contrast dispersion and the correlation of concentration gradients with intracoronary blood flow and stenotic severity. Data from our CFD patient-specific simulations reveals that contrast dispersions are generated by intracoronary advection effects, and therefore, encode the coronary flow velocity. This novel method- Transluminal Attenuation Flow Encoding (TAFE) - is used to estimate the flowrate in phantom studies as well as preclinical experiments. Our results indicate a strong correlation between the values estimated from TAFE and the values measured in these experiments. The flow physics of contrast dispersion associated with TAFE will be discussed. This work is funded by grants from Coulter Foundation and Maryland Innovation Initiative. The authors have pending patents in this technology and RM and ACL have other financial interests associated with TAFE.
Physiological system integrations with emphasis on the respiratory-cardiovascular system
NASA Technical Reports Server (NTRS)
Gallagher, R. R.
1975-01-01
The integration of two types of physiological system simulations is presented. The long term model is a circulatory system model which simulates long term blood flow variations and compartmental fluid shifts. The short term models simulate transient phenomena of the respiratory, thermoregulatory, and pulsatile cardiovascular systems as they respond to stimuli such as LBNP, exercise, and environmental gaseous variations. An overview of the interfacing approach is described. Descriptions of the variable interface for long term to short term and between the three short term models are given.
NASA Astrophysics Data System (ADS)
Grinevich, Andrey A.; Tankanag, Arina V.; Chemeris, Nikolay K.
2017-04-01
In the framework of our previous hypothesis about the participation of structural and hydrodynamic properties of the vascular bed in the formation of the 0.1-Hz component of blood flow oscillations in the human cardiovascular system and on the basis of the reduced hydrodynamic model, the role of additive stochastic perturbations of the operation of the single-chamber pump that simulates the heart was investigated. It was shown that aperiodic noise modulation of the rigidity of the walls of the pump or its valves generates low-frequency oscillations of pressure of arterial vascular bed with the spectral components at a frequency close to 0.1 Hz.
Computational fluid dynamics (CFD) study on the fetal aortic coarctation
NASA Astrophysics Data System (ADS)
Zhou, Yue; Zhang, Yutao; Wang, Jingying
2018-03-01
Blood flows in normal and coarctate fetal aortas are simulated by the CFD technique using T-rex grids. The three-dimensional (3-D) digital model of the fetal arota is reconstructed by the computer-aided design (CAD) software based on two-dimensional (2-D) ultrasono tomographic images. Simulation results displays the development and enhancement of the secondary flow structure in the coarctate fetal arota. As the diameter narrow ratio rises greater than 45%, the pressure and wall shear stress (WSS) of the aorta arch increase exponentially, which is consistent with the conventional clinical concept. The present study also demonstrates that CFD is a very promising assistant technique to investigate human cardiovascular diseases.
Zierler, R Eugene; Leotta, Daniel F; Sansom, Kurt; Aliseda, Alberto; Anderson, Mark D; Sheehan, Florence H
2016-07-01
Duplex ultrasound scanning with B-mode imaging and both color Doppler and Doppler spectral waveforms is relied upon for diagnosis of vascular pathology and selection of patients for further evaluation and treatment. In most duplex ultrasound applications, classification of disease severity is based primarily on alterations in blood flow velocities, particularly the peak systolic velocity (PSV) obtained from Doppler spectral waveforms. We developed a duplex ultrasound simulator for training and assessment of scanning skills. Duplex ultrasound cases were prepared from 2-dimensional (2D) images of normal and stenotic carotid arteries by reconstructing the common carotid, internal carotid, and external carotid arteries in 3 dimensions and computationally simulating blood flow velocity fields within the lumen. The simulator displays a 2D B-mode image corresponding to transducer position on a mannequin, overlaid by color coding of velocity data. A spectral waveform is generated according to examiner-defined settings (depth and size of the Doppler sample volume, beam steering, Doppler beam angle, and pulse repetition frequency or scale). The accuracy of the simulator was assessed by comparing the PSV measured from the spectral waveforms with the true PSV which was derived from the computational flow model based on the size and location of the sample volume within the artery. Three expert examiners made a total of 36 carotid artery PSV measurements based on the simulated cases. The PSV measured by the examiners deviated from true PSV by 8% ± 5% (N = 36). The deviation in PSV did not differ significantly between artery segments, normal and stenotic arteries, or examiners. To our knowledge, this is the first simulation of duplex ultrasound that can create and display real-time color Doppler images and Doppler spectral waveforms. The results demonstrate that an examiner can measure PSV from the spectral waveforms using the settings on the simulator with a mean absolute error in the velocity measurement of less than 10%. With the addition of cases with a range of pathologies, this duplex ultrasound simulator will be a useful tool for training health-care providers in vascular ultrasound applications and for assessing their skills in an objective and quantitative manner. © The Author(s) 2016.
Red Blood Cell Hematocrit Influences Platelet Adhesion Rate in a Microchannel
NASA Astrophysics Data System (ADS)
Spann, Andrew; Campbell, James; Fitzgibbon, Sean; Rodriguez, Armando; Shaqfeh, Eric
2014-11-01
The creation of a blood clot to stop bleeding involves platelets forming a plug at the site of injury. Red blood cells indirectly play a role in ensuring that the distribution of platelets across the height of the channel is not uniform - the contrast in deformability and size between platelets and red blood cells allows the platelets to preferentially marginate close to the walls. We perform 3D boundary integral simulations of a suspension of platelets and red blood cells in a periodic channel with a model that allows for platelet binding at the walls. The relative rate of platelet activity with varying hematocrit (volume fraction of red blood cells) is compared to experiments in which red blood cells and platelets flow through a channel coated with von Willebrand factor. In the simulations as well as the experiments, a decrease in hematocrit of red blood cells is found to reduce the rate at which platelets adhere to the channel wall in a manner that is both qualitatively and quantitatively similar. We conclude with a discussion of the tumbling and wobbling motions of platelets in 3D leading up to the time at which the platelets bind to the wall. Funded by Stanford Army High Performance Computing Research Center, experiments by US Army Institute of Surgical Research.
Effect of the mitral valve on diastolic flow patterns
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seo, Jung Hee; Vedula, Vijay; Mittal, Rajat, E-mail: mittal@jhu.edu
2014-12-15
The leaflets of the mitral valve interact with the mitral jet and significantly impact diastolic flow patterns, but the effect of mitral valve morphology and kinematics on diastolic flow and its implications for left ventricular function have not been clearly delineated. In the present study, we employ computational hemodynamic simulations to understand the effect of mitral valve leaflets on diastolic flow. A computational model of the left ventricle is constructed based on a high-resolution contrast computed-tomography scan, and a physiological inspired model of the mitral valve leaflets is synthesized from morphological and echocardiographic data. Simulations are performed with a diodemore » type valve model as well as the physiological mitral valve model in order to delineate the effect of mitral-valve leaflets on the intraventricular flow. The study suggests that a normal physiological mitral valve promotes the formation of a circulatory (or “looped”) flow pattern in the ventricle. The mitral valve leaflets also increase the strength of the apical flow, thereby enhancing apical washout and mixing of ventricular blood. The implications of these findings on ventricular function as well as ventricular flow models are discussed.« less
Tabe, Reza; Ghalichi, Farzan; Hossainpour, Siamak; Ghasemzadeh, Kamran
2016-08-12
Laminar, turbulent, transitional, or combine areas of all three types of viscous flow can occur downstream of a stenosis depending upon the Reynolds number and constriction shape parameter. Neither laminar flow solver nor turbulent models for instance the k-ω (k-omega), k-ε (k-epsilon), RANS or LES are opportune for this type of flow. In the present study attention has been focused vigorously on the effect of the constriction in the flow field with a unique way. It means that the laminar solver was employed from entry up to the beginning of the turbulent shear flow. The turbulent model (k-ω SST Transitional Flows) was utilized from starting of turbulence to relaminarization zone while the laminar model was applied again with onset of the relaminarization district. Stenotic flows, with 50 and 75% cross-sectional area, were simulated at Reynolds numbers range from 500 to 2000 employing FLUENT (v6.3.17). The flow was considered to be steady, axisymmetric, and incompressible. Achieving results were reported as axial velocity, disturbance velocity, wall shear stress and the outcomes were compared with previously experimental and CFD computations. The analogy of axial velocity profiles shows that they are in acceptable compliance with the empirical data. As well as disturbance velocity and wall shear stresses anticipated by this new approach, part by part simulation, are reasonably valid with the acceptable experimental studies.
Arjunon, Sivakkumar; Ardana, Pablo Hidalgo; Saikrishnan, Neelakantan; Madhani, Shalv; Foster, Brent; Glezer, Ari; Yoganathan, Ajit P
2015-04-01
Due to expensive nature of clinical trials, implantable cardiac devices should first be extensively characterized in vitro. Prosthetic heart valves (PHVs), an important class of these devices, have been shown to be associated with thromboembolic complications. Although various in vitro systems have been designed to quantify blood-cell damage and platelet activation caused by nonphysiological hemodynamic shear stresses in these PHVs, very few systems attempt to characterize both blood damage and fluid dynamics aspects of PHVs in the same test system. Various numerical modeling methodologies are also evolving to simulate the structural mechanics, fluid mechanics, and blood damage aspects of these devices. This article presents a completely hemocompatible small-volume test-platform that can be used for thrombogenicity studies and experimental fluid mechanics characterization. Using a programmable piston pump to drive freshly drawn human blood inside a cylindrical column, the presented system can simulate various physiological and pathophysiological conditions in testing PHVs. The system includes a modular device-mounting chamber, and in this presented case, a 23 mm St. Jude Medical (SJM) Regents® mechanical heart valve (MHV) in aortic position was used as the test device. The system was validated for its capability to quantify blood damage by measuring blood damage induced by the tester itself (using freshly drawn whole human blood). Blood damage levels were ascertained through clinically relevant assays on human blood while fluid dynamics were characterized using time-resolved particle image velocimetry (PIV) using a blood-mimicking fluid. Blood damage induced by the tester itself, assessed through Thrombin-anti-Thrombin (TAT), Prothrombin factor 1.2 (PF1.2), and hemolysis (Drabkins assay), was within clinically accepted levels. The hydrodynamic performance of the tester showed consistent, repeatable physiological pressure and flow conditions. In addition, the system contains proximity sensors to accurately capture leaflet motion during the entire cardiac cycle. The PIV results showed skewing of the leakage jet, caused by the asymmetric closing of the two leaflets. All these results are critical to characterizing the blood damage and fluid dynamics characteristics of the SJM Regents® MHV, proving the utility of this tester as a precise system for assessing the hemodynamics and thrombogenicity for various PHVs.
NASA Astrophysics Data System (ADS)
Krautkramer, C.; Rend, R. R.
2014-12-01
Menstrual flow, which is a result of shedding of uterus endometrium, occurs periodically in sync with a women's hormonal cycle. Management of this flow while allowing women to pursue their normal daily lives is the purpose of many commercial products. Some of these products, e.g. feminine hygiene pads and tampons, utilize porous materials in achieving their goal. In this paper we will demonstrate different phenomena that have been observed in flow of menstrual fluid through these porous materials, share some of the advances made in experimental and analytical study of these phenomena, and also present some of the unsolved challenges and difficulties encountered while studying this kind of flow. Menstrual fluid is generally composed of four main components: blood plasma, blood cells, cervical mucus, and tissue debris. This non-homogeneous, multiphase fluid displays very complex rheological behavior, e. g., yield stress, thixotropy, and visco-elasticity, that varies throughout and between menstrual cycles and among women due to various factors. Flow rates are also highly variable during menstruation and across the population and the rheological properties of the fluid change during the flow into and through the product. In addition to these phenomena, changes to the structure of the porous medium within the product can also be seen due to fouling and/or swelling of the material. This paper will, also, share how the fluid components impact the flow and the consequences for computer simulation, the creation of a simulant fluid and testing methods, and for designing products that best meet consumer needs. We hope to bring to light the challenges of managing this complex flow to meet a basic need of women all over the world. An opportunity exists to apply learnings from research in other disciplines to improve the scientific knowledge related to the flow of this complex fluid through the porous medium that is a sanitary product.
Dynamic motion of red blood cells in simple shear flow
NASA Astrophysics Data System (ADS)
Sui, Y.; Chew, Y. T.; Roy, P.; Cheng, Y. P.; Low, H. T.
2008-11-01
A three-dimensional numerical model is proposed to simulate the dynamic motion of red blood cells (RBCs) in simple shear flow. The RBCs are approximated by ghost cells consisting of Newtonian liquid drops enclosed by Skalak membranes which take into account the membrane shear elasticity and the membrane area incompressibility. The RBCs have an initially biconcave discoid resting shape, and the internal liquid is assumed to have the same physical properties as the matrix fluid. The simulation is based on a hybrid method, in which the immersed boundary concept is introduced into the framework of the lattice Boltzmann method, and a finite element model is incorporated to obtain the forces acting on the nodes of the cell membrane which is discretized into flat triangular elements. The dynamic motion of RBCs is investigated in simple shear flow under a broad range of shear rates. At large shear rates, the cells are found to carry out a swinging motion, in which periodic inclination oscillation and shape deformation superimpose on the membrane tank treading motion. With the shear rate decreasing, the swinging amplitude of the cell increases, and finally triggers a transition to tumbling motion. This is the first direct numerical simulation that predicts both the swinging motion of the RBCs and the shear rate induced transition, which have been observed in a recent experiment. It is also found that as the mode changes from swinging to tumbling, the apparent viscosity of the suspension increases monotonically.
Investigation of the blood behaviour and vascular diseases by using mathematical physic principles
NASA Astrophysics Data System (ADS)
Yardimci, Ahmet; Simsek, Buket
2017-07-01
In this paper we prepare a short survey for using of mathematical physic principles in blood flow and vascular diseases researches. The study of the behavior of blood flow in the blood vessels provides understanding on connection between flow and the development of dieseases such as atherosclerosis, thrombosis, aneurysms etc. and how the flow dynamics is changed under these conditions. Blood flow phenomena are often too complex that it would be possible to describe them entirely analytically, although simple models, such as Poiseuille model, can still provide some insight into blood flow. Blood is not an "ideal fluid" and energy is lost as flowing blood overcomes resistance. Resistance to blood flow is a function of viscosity, vessel radius, and vessel length. So, mathematical Physic principles are useful tools for blood flow research studies. Blood flow is a function of pressure gradient and resistance and resistance to flow can be estimates using Poiseuille's law. Reynold's number can be used to determine whether flow is laminar or turbulent.
Measurement with microscopic MRI and simulation of flow in different aneurysm models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edelhoff, Daniel, E-mail: daniel.edelhoff@tu-dortmund.de; Frank, Frauke; Heil, Marvin
2015-10-15
Purpose: The impact and the development of aneurysms depend to a significant degree on the exchange of liquid between the regular vessel and the pathological extension. A better understanding of this process will lead to improved prediction capabilities. The aim of the current study was to investigate fluid-exchange in aneurysm models of different complexities by combining microscopic magnetic resonance measurements with numerical simulations. In order to evaluate the accuracy and applicability of these methods, the fluid-exchange process between the unaltered vessel lumen and the aneurysm phantoms was analyzed quantitatively using high spatial resolution. Methods: Magnetic resonance flow imaging was usedmore » to visualize fluid-exchange in two different models produced with a 3D printer. One model of an aneurysm was based on histological findings. The flow distribution in the different models was measured on a microscopic scale using time of flight magnetic resonance imaging. The whole experiment was simulated using fast graphics processing unit-based numerical simulations. The obtained simulation results were compared qualitatively and quantitatively with the magnetic resonance imaging measurements, taking into account flow and spin–lattice relaxation. Results: The results of both presented methods compared well for the used aneurysm models and the chosen flow distributions. The results from the fluid-exchange analysis showed comparable characteristics concerning measurement and simulation. Similar symmetry behavior was observed. Based on these results, the amount of fluid-exchange was calculated. Depending on the geometry of the models, 7% to 45% of the liquid was exchanged per second. Conclusions: The result of the numerical simulations coincides well with the experimentally determined velocity field. The rate of fluid-exchange between vessel and aneurysm was well-predicted. Hence, the results obtained by simulation could be validated by the experiment. The observed deviations can be caused by the noise in the measurement and by the limited resolution of the simulation. The resulting differences are small enough to allow reliable predictions of the flow distribution in vessels with stents and for pulsed blood flow.« less
Scalability Test of Multiscale Fluid-Platelet Model for Three Top Supercomputers
Zhang, Peng; Zhang, Na; Gao, Chao; Zhang, Li; Gao, Yuxiang; Deng, Yuefan; Bluestein, Danny
2016-01-01
We have tested the scalability of three supercomputers: the Tianhe-2, Stampede and CS-Storm with multiscale fluid-platelet simulations, in which a highly-resolved and efficient numerical model for nanoscale biophysics of platelets in microscale viscous biofluids is considered. Three experiments involving varying problem sizes were performed: Exp-S: 680,718-particle single-platelet; Exp-M: 2,722,872-particle 4-platelet; and Exp-L: 10,891,488-particle 16-platelet. Our implementations of multiple time-stepping (MTS) algorithm improved the performance of single time-stepping (STS) in all experiments. Using MTS, our model achieved the following simulation rates: 12.5, 25.0, 35.5 μs/day for Exp-S and 9.09, 6.25, 14.29 μs/day for Exp-M on Tianhe-2, CS-Storm 16-K80 and Stampede K20. The best rate for Exp-L was 6.25 μs/day for Stampede. Utilizing current advanced HPC resources, the simulation rates achieved by our algorithms bring within reach performing complex multiscale simulations for solving vexing problems at the interface of biology and engineering, such as thrombosis in blood flow which combines millisecond-scale hematology with microscale blood flow at resolutions of micro-to-nanoscale cellular components of platelets. This study of testing the performance characteristics of supercomputers with advanced computational algorithms that offer optimal trade-off to achieve enhanced computational performance serves to demonstrate that such simulations are feasible with currently available HPC resources. PMID:27570250
Hybrid model of arm for analysis of regional blood oxygenation in non-invasive optical diagnostics
NASA Astrophysics Data System (ADS)
Nowocień, Sylwester; Mroczka, Janusz
2017-06-01
The paper presents a new comprehensive approach to modeling and analysis of processes occurring during the blood flow in the arm's small vessels as well as non-invasive measurement method of mixed venous oxygen saturation. During the work, a meta-analysis of available physiological data was performed and based on its result a hybrid model of forearm vascular tree was proposed. The model, in its structure, takes into account a classical nonlinear hydro-electric analogy in conjunction with light-tissue interaction. Several geometries of arm vascular tree obtained from magnetic resonance angiography (MRA) image were analyzed which allowed to proposed the structure of electrical analog network. Proposed model allows to simulate the behavior of forearm blood flow from the vascular tree mechanics point of view, as well as effects of the impact of cuff and vessel wall mechanics on the recorded photoplethysmographic signals. In particular, it allows to analyze the reaction and anatomical effects in small vessels and microcirculation caused by occlusive maneuver in selected techniques, what was of particular interest to authors and motivation to undertake research in this area. Preliminary studies using proposed model showed that inappropriate selection of occlusion maneuver parameters (e.g. occlusion time, cuff pressure etc.), cause dangerous turbulence of blood flow in the venous section of the vascular tree.
Ultrasonic technique for imaging tissue vibrations: preliminary results.
Sikdar, Siddhartha; Beach, Kirk W; Vaezy, Shahram; Kim, Yongmin
2005-02-01
We propose an ultrasound (US)-based technique for imaging vibrations in the blood vessel walls and surrounding tissue caused by eddies produced during flow through narrowed or punctured arteries. Our approach is to utilize the clutter signal, normally suppressed in conventional color flow imaging, to detect and characterize local tissue vibrations. We demonstrate the feasibility of visualizing the origin and extent of vibrations relative to the underlying anatomy and blood flow in real-time and their quantitative assessment, including measurements of the amplitude, frequency and spatial distribution. We present two signal-processing algorithms, one based on phase decomposition and the other based on spectral estimation using eigen decomposition for isolating vibrations from clutter, blood flow and noise using an ensemble of US echoes. In simulation studies, the computationally efficient phase-decomposition method achieved 96% sensitivity and 98% specificity for vibration detection and was robust to broadband vibrations. Somewhat higher sensitivity (98%) and specificity (99%) could be achieved using the more computationally intensive eigen decomposition-based algorithm. Vibration amplitudes as low as 1 mum were measured accurately in phantom experiments. Real-time tissue vibration imaging at typical color-flow frame rates was implemented on a software-programmable US system. Vibrations were studied in vivo in a stenosed femoral bypass vein graft in a human subject and in a punctured femoral artery and incised spleen in an animal model.
Köppl, Tobias; Santin, Gabriele; Haasdonk, Bernard; Helmig, Rainer
2018-05-06
In this work, we consider two kinds of model reduction techniques to simulate blood flow through the largest systemic arteries, where a stenosis is located in a peripheral artery i.e. in an artery that is located far away from the heart. For our simulations we place the stenosis in one of the tibial arteries belonging to the right lower leg (right post tibial artery). The model reduction techniques that are used are on the one hand dimensionally reduced models (1-D and 0-D models, the so-called mixed-dimension model) and on the other hand surrogate models produced by kernel methods. Both methods are combined in such a way that the mixed-dimension models yield training data for the surrogate model, where the surrogate model is parametrised by the degree of narrowing of the peripheral stenosis. By means of a well-trained surrogate model, we show that simulation data can be reproduced with a satisfactory accuracy and that parameter optimisation or state estimation problems can be solved in a very efficient way. Furthermore it is demonstrated that a surrogate model enables us to present after a very short simulation time the impact of a varying degree of stenosis on blood flow, obtaining a speedup of several orders over the full model. This article is protected by copyright. All rights reserved.
Tse, Kwong Ming; Chiu, Peixuan; Lee, Heow Pueh; Ho, Pei
2011-03-15
Aortic dissecting aneurysm is one of the most catastrophic cardiovascular emergencies that carries high mortality. It was pointed out from clinical observations that the aneurysm development is likely to be related to the hemodynamics condition of the dissected aorta. In order to gain more insight on the formation and progression of dissecting aneurysm, hemodynamic parameters including flow pattern, velocity distribution, aortic wall pressure and shear stress, which are difficult to measure in vivo, are evaluated using numerical simulations. Pulsatile blood flow in patient-specific dissecting aneurismal aortas before and after the formation of lumenal aneurysm (pre-aneurysm and post-aneurysm) is investigated by computational fluid dynamics (CFD) simulations. Realistic time-dependent boundary conditions are prescribed at various arteries of the complete aorta models. This study suggests the helical development of false lumen around true lumen may be related to the helical nature of hemodynamic flow in aorta. Narrowing of the aorta is responsible for the massive recirculation in the poststenosis region in the lumenal aneurysm development. High pressure difference of 0.21 kPa between true and false lumens in the pre-aneurismal aorta infers the possible lumenal aneurysm site in the descending aorta. It is also found that relatively high time-averaged wall shear stress (in the range of 4-8 kPa) may be associated with tear initiation and propagation. CFD modeling assists in medical planning by providing blood flow patterns, wall pressure and wall shear stress. This helps to understand various phenomena in the development of dissecting aneurysm. Copyright © 2011 Elsevier Ltd. All rights reserved.
Sutton, N; Tracey, M C; Johnston, I D; Greenaway, R S; Rampling, M W
1997-05-01
A novel instrument has been developed to study the microrheology of erythrocytes as they flow through channels of dimensions similar to human blood capillaries. The channels are produced in silicon substrates using microengineering technology. Accurately defined, physiological driving pressures and temperatures are employed whilst precise, real-time image processing allows individual cells to be monitored continuously during their transit. The instrument characterises each cell in a sample of ca. 1000 in terms of its volume and flow velocity profile during its transit through a channel. The unique representation of the data in volume/velocity space provides new insight into the microrheological behaviour of blood. The image processing and subsequent data analysis enable the system to reject anomalous events such as multiple cell transits, thereby ensuring integrity of the resulting data. By employing an array of microfluidic flow channels we can integrate a number of different but precise and highly reproducible channel sizes and geometries within one array, thereby allowing multiple, concurrent isobaric measurements on one sample. As an illustration of the performance of the system, volume/velocity data sets recorded in a microfluidic device incorporating multiple channels of 100 microns length and individual widths ranging between 3.0 and 4.0 microns are presented.
García Carrascal, P; García García, J; Sierra Pallares, J; Castro Ruiz, F; Manuel Martín, F J
2017-05-01
Stent implantation is a common procedure followed in arteries affected by atherosclerosis. This procedure can lead to other stenting-related problems. One of these is the deposition and accumulation of blood clots over stent struts. This process can have further consequences, in so far as it can introduce modifications to the flow pattern. This problem is especially critical in stented bifurcations, where resulting stent geometry is more complex. In this regard, a numerical study is presented of the effect on the flow pattern and platelet activation of blood clot depositions on the stent struts of a stented coronary bifurcation. The numerical model is first validated with experimental measurements performed for this purpose. Experiments considered a flow with suspended artificial thrombi, which naturally deposited on stent struts. The location and shape observed were used to create numerical thrombi. Following this, numerical simulations were performed to analyze the influence of the presence of thrombi depositions on parameters such as Time Averaged Wall Shear Stress, Oscillatory Shear Index or Relative Residence Time. Finally, a study was also carried out of the effect of different geometrical configurations, from a straight tube to a stented bifurcation model with thrombus depositions, on platelet activation.
Progression of Diabetic Capillary Occlusion: A Model
Gens, John Scott; Glazier, James A.; Burns, Stephen A.; Gast, Thomas J.
2016-01-01
An explanatory computational model is developed of the contiguous areas of retinal capillary loss which play a large role in diabetic maculapathy and diabetic retinal neovascularization. Strictly random leukocyte mediated capillary occlusion cannot explain the occurrence of large contiguous areas of retinal ischemia. Therefore occlusion of an individual capillary must increase the probability of occlusion of surrounding capillaries. A retinal perifoveal vascular sector as well as a peripheral retinal capillary network and a deleted hexagonal capillary network are modelled using Compucell3D. The perifoveal modelling produces a pattern of spreading capillary loss with associated macular edema. In the peripheral network, spreading ischemia results from the progressive loss of the ladder capillaries which connect peripheral arterioles and venules. System blood flow was elevated in the macular model before a later reduction in flow in cases with progression of capillary occlusions. Simulations differing only in initial vascular network structures but with identical dynamics for oxygen, growth factors and vascular occlusions, replicate key clinical observations of ischemia and macular edema in the posterior pole and ischemia in the retinal periphery. The simulation results also seem consistent with quantitative data on macular blood flow and qualitative data on venous oxygenation. One computational model applied to distinct capillary networks in different retinal regions yielded results comparable to clinical observations in those regions. PMID:27300722
Sacco, Federica; Paun, Bruno; Lehmkuhl, Oriol; Iles, Tinen L; Iaizzo, Paul A; Houzeaux, Guillaume; Vázquez, Mariano; Butakoff, Constantine; Aguado-Sierra, Jazmin
2018-06-11
Computational modelling plays an important role in right ventricular (RV) haemodynamic analysis. However, current approaches employ smoothed ventricular anatomies. The aim of this study is to characterise RV haemodynamics including detailed endocardial structures like trabeculae, moderator band and papillary muscles (PMs). Four paired detailed and smoothed RV endocardium models (two male and two female) were reconstructed from ex-vivo human hearts high-resolution magnetic resonance images (MRI). Detailed models include structures with ≥1 mm 2 cross-sectional area. Haemodynamic characterisation was done by computational fluid dynamics (CFD) simulations with steady and transient inflows, using high performance computing (HPC). The differences between the flows in smoothed and detailed models were assessed using Q-criterion for vorticity quantification, the pressure drop between inlet and outlet, and the wall shear stress (WSS). Results demonstrated that detailed endocardial structures increase the degree of intra-ventricular pressure drop, decrease the WSS and disrupt the dominant vortex creating secondary small vortices. Increasingly turbulent blood flow was observed in the detailed RVs. Female RVs were less trabeculated and presented lower pressure drops than the males. In conclusion, neglecting endocardial structures in RV haemodynamic models may lead to inaccurate conclusions about the pressures, stresses, and blood flow behaviour in the cavity. This article is protected by copyright. All rights reserved.
Zhang, Yang; Wang, Yuan; He, Wenbo; Yang, Bin
2014-01-01
A novel Particle Tracking Velocimetry (PTV) algorithm based on Voronoi Diagram (VD) is proposed and briefed as VD-PTV. The robustness of VD-PTV for pulsatile flow is verified through a test that includes a widely used artificial flow and a classic reference algorithm. The proposed algorithm is then applied to visualize the flow in an artificial abdominal aortic aneurysm included in a pulsatile circulation system that simulates the aortic blood flow in human body. Results show that, large particles tend to gather at the upstream boundary because of the backflow eddies that follow the pulsation. This qualitative description, together with VD-PTV, has laid a foundation for future works that demand high-level quantification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Jordan N.; Hinderliter, Paul M.; Timchalk, Charles
Sensitivity to chemicals in animals and humans are known to vary with age. Age-related changes in sensitivity to chlorpyrifos have been reported in animal models. A life-stage physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model was developed to computationally predict disposition of CPF and its metabolites, chlorpyrifos-oxon (the ultimate toxicant) and 3,5,6-trichloro-2-pyridinol (TCPy), as well as B-esterase inhibition by chlorpyrifos-oxon in humans. In this model, age-dependent body weight was calculated from a generalized Gompertz function, and compartments (liver, brain, fat, blood, diaphragm, rapid, and slow) were scaled based on body weight from polynomial functions on a fractional body weight basis. Bloodmore » flows among compartments were calculated as a constant flow per compartment volume. The life-stage PBPK/PD model was calibrated and tested against controlled adult human exposure studies. Model simulations suggest age-dependent pharmacokinetics and response may exist. At oral doses ≥ 0.55 mg/kg of chlorpyrifos (significantly higher than environmental exposure levels), 6 mo old children are predicted to have higher levels of chlorpyrifos-oxon in blood and higher levels of red blood cell cholinesterase inhibition compared to adults from equivalent oral doses of chlorpyrifos. At lower doses that are more relevant to environmental exposures, the model predicts that adults will have slightly higher levels of chlorpyrifos-oxon in blood and greater cholinesterase inhibition. This model provides a computational framework for age-comparative simulations that can be utilized to predict CPF disposition and biological response over various postnatal life-stages.« less
Patient-specific analysis of blood stasis in the left atrium
NASA Astrophysics Data System (ADS)
Flores, Oscar; Gonzalo, Alejandro; Garcia-Villalba, Manuel; Rossini, Lorenzo; Hsiao, Albert; McVeigh, Elliot; Kahn, Andrew M.; Del Alamo, Juan C.
2016-11-01
Atrial fibrillation (AF) is a common arrhythmia in which the left atrium (LA) beats rapidly and irregularly. Patients with AF are at increased risk of thromboembolic events (TE), particularly stroke. Anticoagulant therapy can reduce the risk of TE in AF, but it can also increase the risks of adverse events such as internal bleeding. The current lack of tools to predict each patient's risk of LA thrombogenesis makes it difficult to decide whether to anticoagulate patients with AF. The aim of this work is to evaluate blood stasis in patient-specific models of the LA, because stasis is a known thrombogenesis risk factor. To achieve our aim, we performed direct numerical simulations of left atrial flow using an immersed boundary solver developed at the UC3M, coupled to a 0D model for the pulmonary circulation. The LA geometry is obtained from time-resolved CT scans and the parameters of the 0D model are found by fitting pulmonary vein flow data obtained by 4D phase contrast MRI. Blood stasis is evaluated from the flow data by computing blood residence time together with other kinematic indices of the velocity field (e.g. strain and kinetic energy). We focus on the flow in the left atrial appendage, including a sensitivity analysis of the effect of the parameters of the 0D model. Funded by the Spanish MECD, the Clinical and Translational Research Institute at UCSD and the American Heart Association.
Renal Medullary and Urinary Oxygen Tension during Cardiopulmonary Bypass in the Rat
Sgouralis, Ioannis; Evans, Roger G.; Layton, Anita T.
2017-01-01
Renal hypoxia could result from a mismatch in renal oxygen supply and demand, particularly in the renal medulla. Medullary hypoxic damage is believed to give rise to acute kidney injury, which is a prevalent complication of cardiac surgery performed on cardiopulmonary bypass (CPB). To determine the mechanisms that could lead to medullary hypoxia during CPB in the rat kidney, we developed a mathematical model which incorporates (i) autoregulation of renal blood flow and glomerular filtration rate, (ii) detailed oxygen transport and utilization in the renal medulla, and (iii) oxygen transport along the ureter. Within the outer medulla, the lowest interstitial tissue PO2, which is an indicator of renal hypoxia, is predicted near the thick ascending limbs. Interstitial tissue PO2 exhibits a general decrease along the inner medullary axis, but urine PO2 increases significantly along the ureter. Thus, bladder urinary PO2 is predicted to be substantially higher than medullary PO2. The model is used to identify the phase of cardiac surgery performed on CPB that is associated with the highest risk for hypoxic kidney injury. Simulation results indicate that the outer medulla’s vulnerability to hypoxic injury depends, in part, on the extent to which medullary blood flow is autoregulated. With imperfect medullary blood flow autoregulation, the model predicts that the rewarming phase of CPB, in which medullary blood flow is low but medullary oxygen consumption remains high, is the phase in which the kidney is most likely to suffer hypoxic injury. PMID:27281792
Peel, Sarah A; Hussain, Tarique; Cecelja, Marina; Abbas, Abeera; Greil, Gerald F; Chowienczyk, Philip; Spector, Tim; Smith, Alberto; Waltham, Matthew; Botnar, Rene M
2011-11-01
To accelerate and optimize black blood properties of the quadruple inversion recovery (QIR) technique for imaging the abdominal aortic wall. QIR inversion delays were optimized for different heart rates in simulations and phantom studies by minimizing the steady state magnetization of blood for T(1) = 100-1400 ms. To accelerate and improve black blood properties of aortic vessel wall imaging, the QIR prepulse was combined with zoom imaging and (a) "traditional" and (b) "trailing" electrocardiogram (ECG) triggering. Ten volunteers were imaged pre- and post-contrast administration using a conventional ECG-triggered double inversion recovery (DIR) and the two QIR implementations in combination with a zoom-TSE readout. The QIR implemented with "trailing" ECG-triggering resulted in consistently good blood suppression as the second inversion delay was timed during maximum systolic flow in the aorta. The blood signal-to-noise ratio and vessel wall to blood contrast-to-noise ratio, vessel wall sharpness, and image quality scores showed a statistically significant improvement compared with the traditional QIR implementation with and without ECG-triggering. We demonstrate that aortic vessel wall imaging can be accelerated with zoom imaging and that "trailing" ECG-triggering improves black blood properties of the aorta which is subject to motion and variable blood flow during the cardiac cycle. Copyright © 2011 Wiley Periodicals, Inc.
Tsui, Po-Hsiang; Yeh, Chih-Kuang; Chang, Chien-Cheng
2009-05-01
The microbubbles destruction/replenishment technique has been previously applied to estimating blood flow in the microcirculation. The rate of increase of the time-intensity curve (TIC) due to microbubbles flowing into the region of interest (ROI), as measured from B-mode images, closely reflects the flow velocity. In previous studies, we proposed a new approach called the time-Nakagami-parameter curve (TNC) obtained from Nakagami images to monitor microbubble replenishment for quantifying the microvascular flow velocity. This study aimed to further explore some effects that may affect the TNC to estimate the microflow, including microbubble concentration, ultrasound transmitting energy, attenuation, intrinsic noise, and tissue clutter. In order to well control each effect production, we applied a typical simulation method to investigate the TIC and TNC. The rates of increase of the TIC and TNC were expressed by the rate constants beta(I) and beta(N), respectively, of a monoexponential model. The results show that beta(N) quantifies the microvascular flow velocity similarly to the conventional beta(I) . Moreover, the measures of beta(I) and beta(N) are not influenced by microbubble concentration, transducer excitation energy, and attenuation effect. Although the effect of intrinsic signals contributed by noise and blood would influence the TNC behavior, the TNC method has a better tolerance of tissue clutter than the TIC does, allowing the presence of some clutter components in the ROI. The results suggest that the TNC method can be used as a complementary tool for the conventional TIC to reduce the wall filter requirements for blood flow measurement in the microcirculation.
Quaini, A; Canic, S; Glowinski, R; Igo, S; Hartley, C J; Zoghbi, W; Little, S
2012-01-10
This work presents a validation of a fluid-structure interaction computational model simulating the flow conditions in an in vitro mock heart chamber modeling mitral valve regurgitation during the ejection phase during which the trans-valvular pressure drop and valve displacement are not as large. The mock heart chamber was developed to study the use of 2D and 3D color Doppler techniques in imaging the clinically relevant complex intra-cardiac flow events associated with mitral regurgitation. Computational models are expected to play an important role in supporting, refining, and reinforcing the emerging 3D echocardiographic applications. We have developed a 3D computational fluid-structure interaction algorithm based on a semi-implicit, monolithic method, combined with an arbitrary Lagrangian-Eulerian approach to capture the fluid domain motion. The mock regurgitant mitral valve corresponding to an elastic plate with a geometric orifice, was modeled using 3D elasticity, while the blood flow was modeled using the 3D Navier-Stokes equations for an incompressible, viscous fluid. The two are coupled via the kinematic and dynamic conditions describing the two-way coupling. The pressure, the flow rate, and orifice plate displacement were measured and compared with numerical simulation results. In-line flow meter was used to measure the flow, pressure transducers were used to measure the pressure, and a Doppler method developed by one of the authors was used to measure the axial displacement of the orifice plate. The maximum recorded difference between experiment and numerical simulation for the flow rate was 4%, the pressure 3.6%, and for the orifice displacement 15%, showing excellent agreement between the two. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yu, Huidan (Whitney); Chen, Xi; Chen, Rou; Wang, Zhiqiang; Lin, Chen; Kralik, Stephen; Zhao, Ye
2015-11-01
In this work, we demonstrate the validity of 4-D patient-specific computational hemodynamics (PSCH) based on 3-D time-of-flight (TOF) MR angiography (MRA) and 2-D electrocardiogram (ECG) gated phase contrast (PC) images. The mesoscale lattice Boltzmann method (LBM) is employed to segment morphological arterial geometry from TOF MRA, to extract velocity profiles from ECG PC images, and to simulate fluid dynamics on a unified GPU accelerated computational platform. Two healthy volunteers are recruited to participate in the study. For each volunteer, a 3-D high resolution TOF MRA image and 10 2-D ECG gated PC images are acquired to provide the morphological geometry and the time-varying flow velocity profiles for necessary inputs of the PSCH. Validation results will be presented through comparisons of LBM vs. 4D Flow Software for flow rates and LBM simulation vs. MRA measurement for blood flow velocity maps. Indiana University Health (IUH) Values Fund.
21 CFR 870.2120 - Extravascular blood flow probe.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Extravascular blood flow probe. 870.2120 Section... blood flow probe. (a) Identification. An extravascular blood flow probe is an extravascular ultrasonic or electromagnetic probe used in conjunction with a blood flowmeter to measure blood flow in a...
21 CFR 870.2120 - Extravascular blood flow probe.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Extravascular blood flow probe. 870.2120 Section... blood flow probe. (a) Identification. An extravascular blood flow probe is an extravascular ultrasonic or electromagnetic probe used in conjunction with a blood flowmeter to measure blood flow in a...
21 CFR 870.2120 - Extravascular blood flow probe.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Extravascular blood flow probe. 870.2120 Section... blood flow probe. (a) Identification. An extravascular blood flow probe is an extravascular ultrasonic or electromagnetic probe used in conjunction with a blood flowmeter to measure blood flow in a...
21 CFR 870.2120 - Extravascular blood flow probe.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Extravascular blood flow probe. 870.2120 Section... blood flow probe. (a) Identification. An extravascular blood flow probe is an extravascular ultrasonic or electromagnetic probe used in conjunction with a blood flowmeter to measure blood flow in a...
Jones, Cameron C; McDonough, James M; Capasso, Patrizio; Wang, Dongfang; Rosenstein, Kyle S; Zwischenberger, Joseph B
2013-10-01
Computational fluid dynamics (CFD) is a useful tool in characterizing artificial lung designs by providing predictions of device performance through analyses of pressure distribution, perfusion dynamics, and gas transport properties. Validation of numerical results in membrane oxygenators has been predominantly based on experimental pressure measurements with little emphasis placed on confirmation of the velocity fields due to opacity of the fiber membrane and limitations of optical velocimetric methods. Biplane X-ray digital subtraction angiography was used to visualize flow of a blood analogue through a commercial membrane oxygenator at 1-4.5 L/min. Permeability and inertial coefficients of the Ergun equation were experimentally determined to be 180 and 2.4, respectively. Numerical simulations treating the fiber bundle as a single momentum sink according to the Ergun equation accurately predicted pressure losses across the fiber membrane, but significantly underestimated velocity magnitudes in the fiber bundle. A scaling constant was incorporated into the numerical porosity and reduced the average difference between experimental and numerical values in the porous media regions from 44 ± 4% to 6 ± 5%.
Zimmerman, Robert; Tsai, Amy G; Salazar Vázquez, Beatriz Y; Cabrales, Pedro; Hofmann, Axel; Meier, Jens; Shander, Aryeh; Spahn, Donat R; Friedman, Joel M; Tartakovsky, Daniel M; Intaglietta, Marcos
2017-05-01
Blood transfusion is used to treat acute anemia with the goal of increasing blood oxygen-carrying capacity as determined by hematocrit (Hct) and oxygen delivery (DO2). However, increasing Hct also increases blood viscosity, which may thus lower DO2 if the arterial circulation is a rigid hydraulic system as the resistance to blood flow will increase. The net effect of transfusion on DO2 in this system can be analyzed by using the relationship between Hct and systemic blood viscosity of circulating blood at the posttransfusion Hct to calculate DO2 and comparing this value with pretransfusion DO2. We hypothesized that increasing Hct would increase DO2 and tested our hypothesis by mathematically modeling DO2 in the circulation. Calculations were made assuming a normal cardiac output (5 L/min) with degrees of anemia ranging from 5% to 80% Hct deficit. We analyzed the effects of transfusing 0.5 or more units of 300 cc of packed red blood cells (PRBCs) at an Hct of 65% and calculated microcirculatory DO2 after accounting for increased blood viscosity and assuming no change in blood pressure. Our model accounts for O2 diffusion out of the circulation before blood arriving to the nutritional circulation and for changes in blood flow velocity. The immediate posttransfusion DO2 was also compared with DO2 after the transient increase in volume due to transfusion has subsided. Blood transfusion of up to 3 units of PRBCs increased DO2 when Hct (or hemoglobin) was 60% lower than normal, but did not increase DO2 when administered before this threshold. After accounting for the effect of increasing blood viscosity on blood flow owing to increasing Hct, we found in a mathematical simulation of DO2 that transfusion of up to 3 units of PRBCs does not increase DO2, unless anemia is the result of an Hct deficit greater than 60%. Observations that transfusions occasionally result in clinical improvement suggest that other mechanisms possibly related to increased blood viscosity may compensate for the absence of increase in DO2.
Setup of a Biomedical Facility to Study Physiologically Relevant Flow-Structure Interactions
NASA Astrophysics Data System (ADS)
Mehdi, Faraz; Sheng, Jian
2013-11-01
The design and implementation of a closed loop biomedical facility to study arterial flows is presented. The facility has a test section of 25 inches, and is capable of generating both steady and pulsatile flows via a centrifugal and a dual piston pump respectively. The Reynolds and Womersley numbers occurring in major blood vessels can be matched. The working fluid is a solution of NaI that allows refractive index matching with both rigid glass and compliant polymer models to facilitate tomographic PIV and holographic PIV. The combination of these two techniques allows us to study both large scale flow features as well as flows very close to the wall. The polymer models can be made with different modulus of elasticity and can be pre-stressed using a 5-axis stage. Radially asymmetric patches can also be pre-fabricated and incorporated in the tube during the manufacturing process to simulate plaque formation in arteries. These tubes are doped with tracer particles allowing for the measurement of wall deformation. Preliminary flow data over rigid and compliant walls is presented. One of the aims of this study is to characterize the changes in flow as the compliancy of blood vessels change due to age or disease, and explore the fluid interactions with an evolving surface boundary.
NASA Astrophysics Data System (ADS)
Lee, Sang Hoon; Choi, Hyoung Gwon; Yoo, Jung Yul
2012-11-01
The effect of artery wall hypertrophy and stiffness on the flow field is investigated using three-dimensional finite element method for simulating the blood flow. To avoid the complexity due to the necessity of additional mechanical constraints, we use the combined formulation which includes both the fluid and structural equations of motion into single coupled variational equation. A P2P1 Galerkin finite element method is used to solve the Navier-Stokes equations for fluid flow and arbitrary Lagrangian-Eulerian formulation is used to achieve mesh movement. The Newmark method is employed for solving the dynamic equilibrium equations for linear elastic solid mechanics. The pulsatile, incompressible flows of Newtonian fluids constrained in the flexible wall are analyzed with Womersley velocity profile at the inlet and constant pressure at the outlet. The study shows that the stiffness of carotid artery wall affects significantly the flow phenomena during the pulse cycle. Similarly, it is found that the flow field is also strongly influenced by wall hypertrophy. This work was supported by Mid-career Researcher Program and Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0079936 & 2011-0029613).
Wang, Fuyu; Xu, Bainan; Sun, Zhenghui; Liu, Lei; Wu, Chen; Zhang, Xiaojun
2012-10-01
To establish an individualized fluid-solid coupled model of intracranial aneurysms based on computed tomography angiography (CTA) image data. The original Dicom format image data from a patient with an intracranial aneurysm were imported into Mimics software to construct the 3D model. The fluid-solid coupled model was simulated with ANSYS and CFX software, and the sensitivity of the model was analyzed. The difference between the rigid model and fluid-solid coupled model was also compared. The fluid-solid coupled model of intracranial aneurysm was established successfully, which allowed direct simulation of the blood flow of the intracranial aneurysm and the deformation of the solid wall. The pressure field, stress field, and distribution of Von Mises stress and deformation of the aneurysm could be exported from the model. A small Young's modulus led to an obvious deformation of the vascular wall, and the walls with greater thicknesses had smaller deformations. The rigid model and the fluid-solid coupled model showed more differences in the wall shear stress and blood flow velocity than in pressure. The fluid-solid coupled model more accurately represents the actual condition of the intracranial aneurysm than the rigid model. The results of numerical simulation with the model are reliable to study the origin, growth and rupture of the aneurysms.
Secomb, Timothy W
2016-12-01
A novel theoretical method is presented for simulating the spatially resolved convective and diffusive transport of reacting solutes between microvascular networks and the surrounding tissues. The method allows for efficient computational solution of problems involving convection and non-linear binding of solutes in blood flowing through microvascular networks with realistic 3D geometries, coupled with transvascular exchange and diffusion and reaction in the surrounding tissue space. The method is based on a Green's function approach, in which the solute concentration distribution in the tissue is expressed as a sum of fields generated by time-varying distributions of discrete sources and sinks. As an example of the application of the method, the washout of an inert diffusible tracer substance from a tissue region perfused by a network of microvessels is simulated, showing its dependence on the solute's transvascular permeability and tissue diffusivity. Exponential decay of the washout concentration is predicted, with rate constants that are about 10-30% lower than the rate constants for a tissue cylinder model with the same vessel length, vessel surface area and blood flow rate per tissue volume. © The authors 2015. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
MRI-based three-dimensional thermal physiological characterization of thyroid gland of human body.
Jin, Chao; He, Zhi Zhu; Yang, Yang; Liu, Jing
2014-01-01
This article is dedicated to present a MRI (magnetic resonance imaging) based three-dimensional finite element modeling on the thermal manifestations relating to the pathophysiology of thyroid gland. An efficient approach for identifying the metabolic dysfunctions of thyroid has also been demonstrated through tracking the localized non-uniform thermal distribution or enhanced dynamic imaging. The temperature features over the skin surface and thyroid domain have been characterized using the numerical simulation and experimental measurement which will help better interpret the thermal physiological mechanisms of the thyroid under steady-state or water-cooling condition. Further, parametric simulations on the hypermetabolism symptoms of hyperthyroidism and thermal effects within thyroid domain caused by varying breathing airflow in the trachea and blood-flow in artery and vein were performed. It was disclosed that among all the parameters, the airflow volume has the largest effect on the total heat flux of thyroid surface. However, thermal contributions caused by varying the breathing frequency and blood-flow velocity are negligibly small. The present study suggests a generalized way for simulating the close to reality physiological behavior or process of human thyroid, which is of significance for disease diagnosis and treatment planning. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.
Yurkin, Maxim A; Semyanov, Konstantin A; Tarasov, Peter A; Chernyshev, Andrei V; Hoekstra, Alfons G; Maltsev, Valeri P
2005-09-01
Elastic light scattering by mature red blood cells (RBCs) was theoretically and experimentally analyzed by use of the discrete dipole approximation (DDA) and scanning flow cytometry (SFC), respectively. SFC permits measurement of the angular dependence of the light-scattering intensity (indicatrix) of single particles. A mature RBC is modeled as a biconcave disk in DDA simulations of light scattering. We have studied the effect of RBC orientation related to the direction of the light incident upon the indicatrix. Numerical calculations of indicatrices for several axis ratios and volumes of RBC have been carried out. Comparison of the simulated indicatrices and indicatrices measured by SFC showed good agreement, validating the biconcave disk model for a mature RBC. We simulated the light-scattering output signals from the SFC with the DDA for RBCs modeled as a disk-sphere and as an oblate spheroid. The biconcave disk, the disk-sphere, and the oblate spheroid models have been compared for two orientations, i.e., face-on and rim-on incidence, relative to the direction of the incident beam. Only the oblate spheroid model for rim-on incidence gives results similar to those of the rigorous biconcave disk model.
Wei, Zhenglun Alan; Trusty, Phillip M; Tree, Mike; Haggerty, Christopher M; Tang, Elaine; Fogel, Mark; Yoganathan, Ajit P
2017-01-04
Cardiovascular simulations have great potential as a clinical tool for planning and evaluating patient-specific treatment strategies for those suffering from congenital heart diseases, specifically Fontan patients. However, several bottlenecks have delayed wider deployment of the simulations for clinical use; the main obstacle is simulation cost. Currently, time-averaged clinical flow measurements are utilized as numerical boundary conditions (BCs) in order to reduce the computational power and time needed to offer surgical planning within a clinical time frame. Nevertheless, pulsatile blood flow is observed in vivo, and its significant impact on numerical simulations has been demonstrated. Therefore, it is imperative to carry out a comprehensive study analyzing the sensitivity of using time-averaged BCs. In this study, sensitivity is evaluated based on the discrepancies between hemodynamic metrics calculated using time-averaged and pulsatile BCs; smaller discrepancies indicate less sensitivity. The current study incorporates a comparison between 3D patient-specific CFD simulations using both the time-averaged and pulsatile BCs for 101 Fontan patients. The sensitivity analysis involves two clinically important hemodynamic metrics: hepatic flow distribution (HFD) and indexed power loss (iPL). Paired demographic group comparisons revealed that HFD sensitivity is significantly different between single and bilateral superior vena cava cohorts but no other demographic discrepancies were observed for HFD or iPL. Multivariate regression analyses show that the best predictors for sensitivity involve flow pulsatilities, time-averaged flow rates, and geometric characteristics of the Fontan connection. These predictors provide patient-specific guidelines to determine the effectiveness of analyzing patient-specific surgical options with time-averaged BCs within a clinical time frame. Copyright © 2016 Elsevier Ltd. All rights reserved.
Implementation of visual data mining for unsteady blood flow field in an aortic aneurysm.
Morizawa, Seiichiro; Shimoyama, Koji; Obayashi, Shigeru; Funamoto, Kenichi; Hayase, Toshiyuki
2011-12-01
This study was performed to determine the relations between the features of wall shear stress and aneurysm rupture. For this purpose, visual data mining was performed in unsteady blood flow simulation data for an aortic aneurysm. The time-series data of wall shear stress given at each grid point were converted to spatial and temporal indices, and the grid points were sorted using a self-organizing map based on the similarity of these indices. Next, the results of cluster analysis were mapped onto the real space of the aortic aneurysm to specify the regions that may lead to aneurysm rupture. With reference to previous reports regarding aneurysm rupture, the visual data mining suggested specific hemodynamic features that cause aneurysm rupture. GRAPHICAL ABSTRACT:
Liu, Jialin; Zhang, Hongchao; Lu, Jian; Ni, Xiaowu; Shen, Zhonghua
2017-01-01
Recent advancements in diffuse speckle contrast analysis (DSCA) have opened the path for noninvasive acquisition of deep tissue microvasculature blood flow. In fact, in addition to blood flow index αDB, the variations of tissue optical absorption μa, reduced scattering coefficients μs′, as well as coherence factor β can modulate temporal fluctuations of speckle patterns. In this study, we use multi-distance and multi-exposure DSCA (MDME-DSCA) to simultaneously extract multiple parameters such as μa, μs′, αDB, and β. The validity of MDME-DSCA has been validated by the simulated data and phantoms experiments. Moreover, as a comparison, the results also show that it is impractical to simultaneously obtain multiple parameters by multi-exposure DSCA (ME-DSCA). PMID:29082083
2014-01-01
Background The intracranial aneurysm (IA) size has been proved to have impacts on the hemodynamics and can be applied for the prediction of IA rupture risk. Although the relationship between aspect ratio and hemodynamic parameters was investigated using real patients and virtual models, few studies focused on longitudinal experiments of IAs based on patient-specific aneurysm models. We attempted to do longitudinal simulation experiments of IAs by developing a series of scaled models. Methods In this work, a novel scaling approach was proposed to create IA models with different aneurysm size ratios (ASRs) defined as IA height divided by average neck diameter from a patient-specific aneurysm model and the relationship between the ASR and hemodynamics was explored based on a simulated longitudinal experiment. Wall shear stress, flow patterns and vessel wall displacement were computed from these models. Pearson correlation analysis was performed to elucidate the relationship between the ASR and wall shear stress. The correlation of the ASR and flow velocity was also computed and analyzed. Results The experiment results showed that there was a significant increase in IA area exposed to low WSS once the ASR > 0.7, and the flow became slower and the blood was more difficult to flow into the aneurysm as the ASR increased. Meanwhile, the results also indicated that average blood flow velocity and WSS had strongly negative correlations with the ASR (r = −0.938 and −0.925, respectively). A narrower impingement region and a more concentrated inflow jet appeared as the ASR increased, and the large local deformation at aneurysm apex could be found as the ASR >1.7 or 0.7 < the ASR <1.0. Conclusion Hemodynamic characteristics varied with the ASR. Besides, it is helpful to further explore the relationship between morphologies and hemodynamics based on a longitudinal simulation by building a series of patient-specific aneurysm scaled models applying our proposed IA scaling algorithm. PMID:24528952
Noxious heat and scratching decrease histamine-induced itch and skin blood flow.
Yosipovitch, Gil; Fast, Katharine; Bernhard, Jeffrey D
2005-12-01
The aim of this study was to assess the effect of thermal stimuli or distal scratching on skin blood flow and histamine-induced itch in healthy volunteers. Twenty-one healthy volunteers participated in the study. Baseline measurements of skin blood flow were obtained on the flexor aspect of the forearm. These measurements were compared with skin blood flow after various stimuli: heating the skin, cooling the skin, noxious cold 2 degrees C, noxious heat 49 degrees C, and scratching via a brush with controlled pressure. Afterwards histamine iontophoresis was performed and skin blood flow and itch intensity were measured immediately after the above-mentioned stimuli. Scratching reduced mean histamine-induced skin blood flow and itch intensity. Noxious heat pain increased basal skin blood flow but reduced histamine-induced maximal skin blood flow and itch intensity. Cold pain and cooling reduced itch intensity, but neither affected histamine-induced skin blood flow. Sub-noxious warming the skin did not affect the skin blood flow or itch intensity. These findings suggest that heat pain and scratching may inhibit itch through a neurogenic mechanism that also affects skin blood flow.
Park, M; Costa, E L V; Maciel, A T; Barbosa, E V S; Hirota, A S; Schettino, G de P; Azevedo, L C P
2014-11-01
Transmembrane pressure drop reflects the resistance of an artificial lung system to blood transit. Decreased resistance (low transmembrane pressure drop) enhances blood flow through the oxygenator, thereby, enhancing gas exchange efficiency. This study is part of a previous one where we observed the behaviour and the modulation of blood pressure drop during the passage of blood through artificial lung membranes. Before and after the induction of multi-organ dysfunction, the animals were instrumented and analysed for venous-venous extracorporeal membrane oxygenation, using a pre-defined sequence of blood flows. Blood flow and revolutions per minute (RPM) of the centrifugal pump varied in a linear fashion. At a blood flow of 5.5 L/min, pre- and post-pump blood pressures reached -120 and 450 mmHg, respectively. Transmembrane pressures showed a significant spread, particularly at blood flows above 2 L/min; over the entire range of blood flow rates, there was a positive association of pressure drop with blood flow (0.005 mmHg/mL/minute of blood flow) and a negative association of pressure drop with temperature (-4.828 mmHg/(°Celsius). These associations were similar when blood flows of below and above 2000 mL/minute were examined. During its passage through the extracorporeal system, blood is exposed to pressure variations from -120 to 450 mmHg. At high blood flows (above 2 L/min), the drop in transmembrane pressure becomes unpredictable and highly variable. Over the entire range of blood flows investigated (0-5500 mL/min), the drop in transmembrane pressure was positively associated with blood flow and negatively associated with body temperature. © The Author(s) 2014.
Numerical Simulation of Thrombotic Occlusion in Tortuous Arterioles
Feng, Zhi-Gang; Cortina, Miguel; Chesnutt, Jennifer KW; Han, Hai-Chao
2017-01-01
Tortuous microvessels alter blood flow and stimulate thrombosis but the physical mechanisms are poorly understood. Both tortuous microvessels and abnormally large platelets are seen in diabetic patients. Thus, the objective of this study was to determine the physical effects of arteriole tortuosity and platelet size on the microscale processes of thrombotic occlusion in microvessels. A new lattice-Boltzmann method-based discrete element model was developed to simulate the fluid flow field with fluid-platelet coupling, platelet interactions, thrombus formation, and thrombotic occlusion in tortuous arterioles. Our results show that vessel tortuosity creates high shear stress zones that activate platelets and stimulate thrombus formation. The growth rate depends on the level of tortuosity and the pressure and flow boundary conditions. Once thrombi began to form, platelet collisions with thrombi and subsequent activations were more important than tortuosity level. Thrombus growth narrowed the channel and reduced the flow rate. Larger platelet size leads to quicker decrease of flow rate due to larger thrombi that occluded the arteriole. This study elucidated the important roles that tortuosity and platelet size play in thrombus formation and occlusion in arterioles. PMID:29327739
Anthropomorphic cardiac ultrasound phantom.
Smith, S W; Rinaldi, J E
1989-10-01
A new phantom is described which simulates the human cardiac anatomy for applications in ultrasound imaging, ultrasound Doppler, and color-flow Doppler imaging. The phantom consists of a polymer left ventricle which includes a prosthetic mitral and aortic valve and is connected to a mock circulatory loop. Aerated tap water serves as a blood simulating fluid and ultrasound contrast medium within the circulatory loop. The left ventricle is housed in a Lexan ultrasound visualization chamber which includes ultrasound viewing ports and acoustic absorbers. A piston pump connected to the visualization chamber by a single port pumps degassed water within the chamber which in turn pumps the left ventricle. Real-time ultrasound images and Doppler studies measure flow patterns through the valves and within the left ventricle.
Morales, Maria-Aurora; Neglia, Danilo; L'Abbate, Antonio
2008-08-01
Myocardial blood flow during pharmacological vasodilatation is depressed in patients with idiopathic dilated cardiomyopathy even the in absence of overt heart failure; the extent of myocardial blood flow abnormalities is not predictable by left ventricular ejection fraction (LVEF) and diastolic dimensions. To assess whether myocardial blood flow impairment in idiopathic dilated cardiomyopathy without overt heart failure can be related to Doppler-derived dP/dt and to echocardiographically determined left ventricular end systolic stress - which is linked to myocardial blood flow reserve in advanced disease. Twenty-six patients, New York Heart Association Class I-II, (LVEF 37.4 +/- 1.4%, left ventricular diastolic dimensions 62.6 +/- 0.9 mm) underwent resting/dipyridamole [13N]NH3 flow positron emission tomography and an ultrasonic study. Regional myocardial blood flow values (ml/min per g) were computed from positron emission tomography data in 13 left ventricular (LV) myocardial regions and averaged to provide mean myocardial blood flow and myocardial blood flow reserve, defined as dipyridamole/resting mean myocardial blood flow ratio. Resting myocardial blood flow was 0.686 +/- 0.045, dipyridamole myocardial blood flow 1.39 +/- 0.15 and myocardial blood flow reserve 2.12 +/- 0.2, lower than in controls (P < 0.01). The ratio dP/dt was directly related to dipyridamole myocardial blood flow and myocardial blood flow reserve (r = 0.552 and 0.703, P < 0.005 and P < 0.0001); no relation was found between myocardial blood flow and LVEF left ventricular diastolic dimensions, and left ventricular end systolic stress. In idiopathic dilated cardiomyopathy patients without overt heart failure, the extent of myocardial blood flow reserve impairment is related to dP/dt but not to more classical indices of left ventricular function.
Internet-based system for simulation-based medical planning for cardiovascular disease.
Steele, Brooke N; Draney, Mary T; Ku, Joy P; Taylor, Charles A
2003-06-01
Current practice in vascular surgery utilizes only diagnostic and empirical data to plan treatments, which does not enable quantitative a priori prediction of the outcomes of interventions. We have previously described simulation-based medical planning methods to model blood flow in arteries and plan medical treatments based on physiologic models. An important consideration for the design of these patient-specific modeling systems is the accessibility to physicians with modest computational resources. We describe a simulation-based medical planning environment developed for the World Wide Web (WWW) using the Virtual Reality Modeling Language (VRML) and the Java programming language.
Accelerated lattice Boltzmann model for colloidal suspensions rheology and interface morphology
NASA Astrophysics Data System (ADS)
Farhat, Hassan
Colloids are ubiquitous in the food, medical, cosmetic, polymer, water purification and pharmaceutical industries. Colloids thermal, mechanical and storage properties are highly dependent on their interface morphology and their rheological behavior. Numerical methods provide a cheap and reliable virtual laboratory for the study of colloids. However efficiency is a major concern to address when using numerical methods for practical applications. This work introduces the main building-blocks for an improved lattice Boltzmann-based numerical tool designed for the study of colloidal rheology and interface morphology. The efficiency of the proposed model is enhanced by using the recently developed and validated migrating multi-block algorithms for the lattice Boltzmann method (LBM). The migrating multi-block was used to simulate single component, multi-component, multiphase and single component multiphase flows. Results were validated by experimental, numerical and analytical solutions. The contamination of the fluid-fluid interface influences the colloids morphology. This issue was addressed by the introduction of the hybrid LBM for surfactant-covered droplets. The module was used for the simulation of surfactant-covered droplet deformation under shear and uniaxial extensional flows respectively and under buoyancy. Validation with experimental and theoretical results was provided. Colloids are non-Newtonian fluids which exhibit rich rheological behavior. The suppression of coalescence module is the part of the proposed model which facilitates the study of colloids rheology. The model results for the relative viscosity were in agreement with some theoretical results. Biological suspensions such as blood are macro-colloids by nature. The study of the blood flow in the microvasculature was heuristically approached by assuming the red blood cells as surfactant covered droplets. The effects of interfacial tension on the flow velocity and the droplet exclusion from the walls in parabolic flows were in qualitative agreement with some experimental and numerical results. The Fahraeus and the Fahraeus-Lindqvist effects were reproduced. The proposed LBM model provides a flexible numerical platform consisting of various modules which could be used separately or in combination for the study of a variety of colloids and biological suspensions flow deformation problems.
Vessel-wall imaging and quantification of flow-mediated dilation using water-selective 3D SSFP-echo.
Langham, Michael C; Li, Cheng; Englund, Erin K; Chirico, Erica N; Mohler, Emile R; Floyd, Thomas F; Wehrli, Felix W
2013-10-30
To introduce a new, efficient method for vessel-wall imaging of carotid and peripheral arteries by means of a flow-sensitive 3D water-selective SSFP-echo pulse sequence. Periodic applications of RF pulses will generate two transverse steady states, immediately after and before an RF pulse; the latter being referred to as the SSFP-echo. The SSFP-echo signal for water protons in blood is spoiled as a result of moving spins losing phase coherence in the presence of a gradient pulse along the flow direction. Bloch equation simulations were performed over a wide range of velocities to evaluate the flow sensitivity of the SSFP-echo signal. Vessel walls of carotid and femoral and popliteal arteries were imaged at 3 T. In two patients with peripheral artery disease the femoral arteries were imaged bilaterally to demonstrate method's potential to visualize atherosclerotic plaques. The method was also evaluated as a means to measure femoral artery flow-mediated dilation (FMD) in response to cuff-induced ischemia in four subjects. The SSFP-echo pulse sequence, which does not have a dedicated blood signal suppression preparation, achieved low blood signal permitting discrimination of the carotid and peripheral arterial walls with in-plane spatial resolution ranging from 0.5 to 0.69 mm and slice thickness of 2 to 3 mm, i.e. comparable to conventional 2D vessel-wall imaging techniques. The results of the simulations were in good agreement with analytical solution and observations for both vascular territories examined. Scan time ranged from 2.5 to 5 s per slice yielding a contrast-to-noise ratio between the vessel wall and lumen from 3.5 to 17. Mean femoral FMD in the four subjects was 9%, in good qualitative agreement with literature values. Water-selective 3D SSFP-echo pulse sequence is a potential alternative to 2D vessel-wall imaging. The proposed method is fast, robust, applicable to a wide range of flow velocities, and straightforward to implement.
NASA Astrophysics Data System (ADS)
Randles, Amanda Elizabeth
Accurate and reliable modeling of cardiovascular hemodynamics has the potential to improve understanding of the localization and progression of heart diseases, which are currently the most common cause of death in Western countries. However, building a detailed, realistic model of human blood flow is a formidable mathematical and computational challenge. The simulation must combine the motion of the fluid, the intricate geometry of the blood vessels, continual changes in flow and pressure driven by the heartbeat, and the behavior of suspended bodies such as red blood cells. Such simulations can provide insight into factors like endothelial shear stress that act as triggers for the complex biomechanical events that can lead to atherosclerotic pathologies. Currently, it is not possible to measure endothelial shear stress in vivo, making these simulations a crucial component to understanding and potentially predicting the progression of cardiovascular disease. In this thesis, an approach for efficiently modeling the fluid movement coupled to the cell dynamics in real-patient geometries while accounting for the additional force from the expansion and contraction of the heart will be presented and examined. First, a novel method to couple a mesoscopic lattice Boltzmann fluid model to the microscopic molecular dynamics model of cell movement is elucidated. A treatment of red blood cells as extended structures, a method to handle highly irregular geometries through topology driven graph partitioning, and an efficient molecular dynamics load balancing scheme are introduced. These result in a large-scale simulation of the cardiovascular system, with a realistic description of the complex human arterial geometry, from centimeters down to the spatial resolution of red-blood cells. The computational methods developed to enable scaling of the application to 294,912 processors are discussed, thus empowering the simulation of a full heartbeat. Second, further extensions to enable the modeling of fluids in vessels with smaller diameters and a method for introducing the deformational forces exerted on the arterial flows from the movement of the heart by borrowing concepts from cosmodynamics are presented. These additional forces have a great impact on the endothelial shear stress. Third, the fluid model is extended to not only recover Navier-Stokes hydrodynamics, but also a wider range of Knudsen numbers, which is especially important in micro- and nano-scale flows. The tradeoffs of many optimizations methods such as the use of deep halo level ghost cells that, alongside hybrid programming models, reduce the impact of such higher-order models and enable efficient modeling of extreme regimes of computational fluid dynamics are discussed. Fourth, the extension of these models to other research questions like clogging in microfluidic devices and determining the severity of co-arctation of the aorta is presented. Through this work, a validation of these methods by taking real patient data and the measured pressure value before the narrowing of the aorta and predicting the pressure drop across the co-arctation is shown. Comparison with the measured pressure drop in vivo highlights the accuracy and potential impact of such patient specific simulations. Finally, a method to enable the simulation of longer trajectories in time by discretizing both spatially and temporally is presented. In this method, a serial coarse iterator is used to initialize data at discrete time steps for a fine model that runs in parallel. This coarse solver is based on a larger time step and typically a coarser discretization in space. Iterative refinement enables the compute-intensive fine iterator to be modeled with temporal parallelization. The algorithm consists of a series of prediction-corrector iterations completing when the results have converged within a certain tolerance. Combined, these developments allow large fluid models to be simulated for longer time durations than previously possible.
Bongert, Markus; Geller, Marius; Pennekamp, Werner; Nicolas, Volkmar
2018-03-03
Diseases of the cardiovascular system account for nearly 42% of all deaths in the European Union. In Germany, approximately 12,000 patients receive surgical replacement of the aortic valve due to heart valve disease alone each year. A three-dimensional (3D) numerical model based on patient-specific anatomy derived from four-dimensional (4D) magnetic resonance imaging (MRI) data was developed to investigate preoperatively the flow-induced impact of mounting positions of aortic prosthetic valves to select the best orientation for individual patients. Systematic steady-state analysis of blood flow for different rotational mounting positions of the valve is only possible using a virtual patient model. A maximum velocity of 1 m/s was used as an inlet boundary condition, because the opening angle of the valve is at its largest at this velocity. For a comparative serial examination, it is important to define the standardised general requirements to avoid impacts other than the rotated implantation of the prosthetic aortic valve. In this study, a uniform velocity profile at the inlet for the inflow of the aortic valve and the real aortic anatomy were chosen for all simulations. An iterative process, with the weighted parameters flow resistance (1), shear stress (2) and velocity (3), was necessary to determine the best rotated orientation. Blood flow was optimal at a 45° rotation from the standard implantation orientation, which will offer a supply to the coronary arteries.
An experimental study and finite element modeling of head and neck cooling for brain hypothermia.
Li, Hui; Chen, Roland K; Tang, Yong; Meurer, William; Shih, Albert J
2018-01-01
Reducing brain temperature by head and neck cooling is likely to be the protective treatment for humans when subjects to sudden cardiac arrest. This study develops the experimental validation model and finite element modeling (FEM) to study the head and neck cooling separately, which can induce therapeutic hypothermia focused on the brain. Anatomically accurate geometries based on CT images of the skull and carotid artery are utilized to find the 3D geometry for FEM to analyze the temperature distributions and 3D-printing to build the physical model for experiment. The results show that FEM predicted and experimentally measured temperatures have good agreement, which can be used to predict the temporal and spatial temperature distributions of the tissue and blood during the head and neck cooling process. Effects of boundary condition, perfusion, blood flow rate, and size of cooling area are studied. For head cooling, the cooling penetration depth is greatly depending on the blood perfusion in the brain. In the normal blood flow condition, the neck internal carotid artery temperature is decreased only by about 0.13°C after 60min of hypothermia. In an ischemic (low blood flow rate) condition, such temperature can be decreased by about 1.0°C. In conclusion, decreasing the blood perfusion and metabolic reduction factor could be more beneficial to cool the core zone. The results also suggest that more SBC researches should be explored, such as the optimization of simulation and experimental models, and to perform the experiment on human subjects. Copyright © 2017 Elsevier Ltd. All rights reserved.
Assmann, Alexander; Benim, Ali Cemal; Gül, Fethi; Lux, Philipp; Akhyari, Payam; Boeken, Udo; Joos, Franz; Feindt, Peter; Lichtenberg, Artur
2012-01-03
Controversy on superiority of pulsatile versus non-pulsatile extracorporeal circulation in cardiac surgery still continues. Stroke as one of the major adverse events during cardiopulmonary bypass is, in the majority of cases, caused by mobilization of aortic arteriosclerotic plaques that is inducible by pathologically elevated wall shear stress values. The present study employs computational fluid dynamics to evaluate the aortic blood flow and wall shear stress profiles under the influence of antegrade or retrograde perfusion with pulsatile versus non-pulsatile extracorporeal circulation. While, compared to physiological flow, a non-pulsatile perfusion resulted in generally decreased blood velocities and only moderately increased shear forces (48 Pa versus 20 Pa antegradely and 127 Pa versus 30 Pa retrogradely), a pulsatile perfusion extensively enhanced the occurrence of turbulences, maximum blood flow speed and maximum wall shear stress (1020 Pa versus 20 Pa antegradely and 1178 Pa versus 30 Pa retrogradely). Under these circumstances arteriosclerotic embolism has to be considered. Further simulations and experimental work are necessary to elucidate the impact of our findings on the scientific discourse of pulsatile versus non-pulsatile extracorporeal circulation. Copyright © 2011 Elsevier Ltd. All rights reserved.
Altered thermoregulatory responses after 15 days of head-down tilt
NASA Technical Reports Server (NTRS)
Crandall, Craig G.; Johnson, John M.; Convertino, Victor A.; Raven, Peter B.; Engelke, Keith A.
1994-01-01
To determine whether extended exposure to a simulation of microgravity alters thermoregulatory reflex control of skin blood flow, six adult males were exposed to 15 days of 6 deg head-down tilt (HDT). On an ambulatory control day before HDT exposure and on HDT day 15 the core temperature of each subject was increased by 0.5 - 1.0 C by whole body heating with a water-perfused suit. Mean skin temperature, oral temperature (T (sub or)), mean arterial pressure, and forearm blood flow were measured throughout the protocol. Forearm vascular conductance (FVC) was calculated from the ratio of forearm blood flow to mean arterial pressure. After HDT exposure, the T(sub or) threshold at which reflex thermally induced increases in FVC began was elevated, whereas the slope of the T(sub or)-FVC relationship after this threshold was reduced. Moreover, normothermic FVC and FVC at the highest common T(sub or) between pre- and post-HDT trials were reduced after HDT. These data suggest that HDT exposure reduces thermoregulatory responses to heat stress. The mechanisms resulting in such an impaired thermoregulatory response are unknown but are likely related to the relative dehydration that accompanies this exposure.
Beigzadeh, Borhan; Mirmohammadi, Seyed Alireza; Ayatollahi, Majid Reza
2017-01-01
Stenting has been proposed as an effective treatment to restore blood flow in obstructed arteries by plaques. Although several modified designs for stents have been suggested, most designs have the risk of disturbing blood flow. The main objective is to propose a stent design to attain a uniform lumen section after stent deployment. Mechanical response of five different designs of J & J Palmaz-Schatz stent with the presence of plaque and artery are investigated; four stents have variable strut thickness of different magnitudes and the rest one is a uniform-strut-thickness stent. Nonlinear finite element is employed to simulate the expansion procedure of the intended designs using ABAQUS explicit. The stent design whose first cell thickness linearly increases by 35 percent, exhibits the best performance, that is it has the lowest recoiling and stress induced in the intima for a given lumen gain. It also enjoys the minimal discrepancy between the final at the distal and proximal ends. A uniform widened artery can be achieved by using the stent design with 35 percent increase in its first cell, which provides the possibility to prevent from disturbing blood flow and consequently post-operation complications.
Causin, Paola; Guidoboni, Giovanna; Malgaroli, Francesca; Sacco, Riccardo; Harris, Alon
2016-06-01
The scientific community continues to accrue evidence that blood flow alterations and ischemic conditions in the retina play an important role in the pathogenesis of ocular diseases. Many factors influence retinal hemodynamics and tissue oxygenation, including blood pressure, blood rheology, oxygen arterial permeability and tissue metabolic demand. Since the influence of these factors on the retinal circulation is difficult to isolate in vivo, we propose here a novel mathematical and computational model describing the coupling between blood flow mechanics and oxygen ([Formula: see text]) transport in the retina. Albeit in a simplified manner, the model accounts for the three-dimensional anatomical structure of the retina, consisting in a layered tissue nourished by an arteriolar/venular network laying on the surface proximal to the vitreous. Capillary plexi, originating from terminal arterioles and converging into smaller venules, are embedded in two distinct tissue layers. Arteriolar and venular networks are represented by fractal trees, whereas capillary plexi are represented using a simplified lumped description. In the model, [Formula: see text] is transported along the vasculature and delivered to the tissue at a rate that depends on the metabolic demand of the various tissue layers. First, the model is validated against available experimental results to identify baseline conditions. Then, a sensitivity analysis is performed to quantify the influence of blood pressure, blood rheology, oxygen arterial permeability and tissue oxygen demand on the [Formula: see text] distribution within the blood vessels and in the tissue. This analysis shows that: (1) systemic arterial blood pressure has a strong influence on the [Formula: see text] profiles in both blood and tissue; (2) plasma viscosity and metabolic consumption rates have a strong influence on the [Formula: see text] tension at the level of the retinal ganglion cells; and (3) arterial [Formula: see text] permeability has a strong influence on the [Formula: see text] saturation in the retinal arterioles.
Optimization in Cardiovascular Modeling
NASA Astrophysics Data System (ADS)
Marsden, Alison L.
2014-01-01
Fluid mechanics plays a key role in the development, progression, and treatment of cardiovascular disease. Advances in imaging methods and patient-specific modeling now reveal increasingly detailed information about blood flow patterns in health and disease. Building on these tools, there is now an opportunity to couple blood flow simulation with optimization algorithms to improve the design of surgeries and devices, incorporating more information about the flow physics in the design process to augment current medical knowledge. In doing so, a major challenge is the need for efficient optimization tools that are appropriate for unsteady fluid mechanics problems, particularly for the optimization of complex patient-specific models in the presence of uncertainty. This article reviews the state of the art in optimization tools for virtual surgery, device design, and model parameter identification in cardiovascular flow and mechanobiology applications. In particular, it reviews trade-offs between traditional gradient-based methods and derivative-free approaches, as well as the need to incorporate uncertainties. Key future challenges are outlined, which extend to the incorporation of biological response and the customization of surgeries and devices for individual patients.
FFR analysis of blood flow through a stenosed Left Anterior Descending Artery
NASA Astrophysics Data System (ADS)
Pasupathi, Jawahar; Arul Prakash, K.
2017-11-01
The numerical analyisis of blood flow through a stenosed tapering Left Anterior Descending (LAD) artery was done using Streamwise Upwind Petrov Galerkin (SUPG) method to obtain the clinical parameters such as Fractional Flow reserve (FFR) and Wall Shear Stress (WSS). The geometry was considered to be a straight tapering cylindrical duct with the severity of stenosis modeled using a curve equation based on the reduction in diameter at the stenosed region. Poiseuille velocity profile was given at the inlet such that at each time step the product of mean velocity and the inlet area gives the realistic flow rate through the LAD. The simulation was done for 30,50 and 70 percent reduction in cross-section of LAD. The average pressure values across the stenosis was used to quantify FFR. The FFR increased with higher pressure ratio across the stenosis, which is a result of increased severity of stenosis. The velocity gradients that are responsible for the shear stress at the walls were found to be dependent on the shape of the stenosis, i.e., the diameter and its length.
Menut, Marine; Boussel, Loïc; Escriva, Xavier; Bou-Saïd, Benyebka; Walter-Le Berre, Hélène; Marchesse, Yann; Millon, Antoine; Della Schiava, Nellie; Lermusiaux, Patrick; Tichy, John
2018-05-17
Blood is a complex fluid in which the presence of the various constituents leads to significant changes in its rheological properties. Thus, an appropriate non-Newtonian model is advisable; and we choose a Modified version of the rheological model of Phan-Thien and Tanner (MPTT). The different parameters of this model, derived from the rheology of polymers, allow characterization of the non-Newtonian nature of blood, taking into account the behavior of red blood cells in plasma. Using the MPTT model that we implemented in the open access software OpenFOAM, numerical simulations have been performed on blood flow in the thoracic aorta for a healthy patient. We started from a patient-specific model which was constructed from medical images. Exiting flow boundary conditions have been developped, based on a 3-element Windkessel model to approximate physiological conditions. The parameters of the Windkessel model were calibrated with in vivo measurements of flow rate and pressure. The influence of the selected viscosity of red blood cells on the flow and wall shear stress (WSS) was investigated. Results obtained from this model were compared to those of the Newtonian model, and to those of a generalized Newtonian model, as well as to in vivo dynamic data from 4D MRI during a cardiac cycle. Upon evaluating the results, the MPTT model shows better agreement with the MRI data during the systolic and diastolic phases than the Newtonian or generalized Newtonian model, which confirms our interest in using a complex viscoelastic model. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bok, Tae-Hoon; Hysi, Eno; Kolios, Michael C.
2017-03-01
In the present paper, the optical wavelength dependence on the photoacoustic (PA) assessment of the pulsatile blood flow was investigated by means of the experimental and theoretical approaches analyzing PA radiofrequency spectral parameters such as the spectral slope (SS) and mid-band fit (MBF). For the experimental approach, the pulsatile flow of human whole blood at 60 bpm was imaged using the VevoLAZR system (40-MHz-linear-array probe, 700-900 nm illuminations). For the theoretical approach, a Monte Carlo simulation for the light transmit into a layered tissue phantom and a Green's function based method for the PA wave generation was implemented for illumination wavelengths of 700, 750, 800, 850 and 900 nm. The SS and MBF for the experimental results were compared to theoretical ones as a function of the illumination wavelength. The MBF increased with the optical wavelength in both theory and experiments. This was expected because the MBF is representative of the PA magnitude, and the PA signal from red blood cell (RBC) is dependent on the molar extinction coefficient of oxyhemoglobin. On the other hand, the SS decreased with the wavelength, even though the RBC size (absorber size which is related to the SS) cannot depend on the illumination wavelength. This conflicting result can be interpreted by means of the changes of the fluence pattern for different illumination wavelengths. The SS decrease with the increasing illumination wavelength should be further investigated.
Pulsatile flow in the aorta of the LVAD supported heart studied using particle image velocimetry
NASA Astrophysics Data System (ADS)
Moyedi, Zahra
Currently many patients die because of the end-stage heart failure, mainly due to the reduced number of donor heart transplant organs. Studies show that a permanent left ventricular assist device (LVAD), a battery driven pump which is surgically implanted, increased the survival rate of patients with end-stage heart failure and improved considerably their quality of life. The inlet conduit of the LVAD is attached to the left ventricle and the outflow conduit anastomosed to the ascending aorta. The purpose of LVAD support is to help a weakened heart to pump blood to the rest of the body. However LVAD can cause some alterations of the natural blood flow. When your blood comes in contact with something that isn't a natural part of your body blood clots can occur and disrupt blood flow. Aortic valve integrity is vital for optimal support of left ventricular assist LVAD. Due to the existence of high continuous transvalvular pressure on the aortic valve, the opening frequency of the valve is reduced. To prevent the development of aortic insufficiency, aortic valve closure during LVAD implantation has been performed. However, the closed aortic valve reduces wash out of the aortic root, which causes blood stagnation and potential thrombus formation. So for this reason, there is a need to minimize the risks of occurring blood clot, by having more knowledge about the flow structure in the aorta during LVAD use. The current study focuses on measuring the flow field in the aorta of the LVAD assisted heart with two different types of aortic valve (Flat and Finned) using the SDSU cardiac simulator. The pulsatile pump that mimics the natural pulsing action of the heart also added to the system. The flow field is visualized using Particle Image Velocimetry (PIV). Furthermore, The fluid mechanics of aorta has been studied when LVAD conduit attached to two different locations (proximal and distal to the aortic valve) with pump speeds of 8,000 to 10,000 revolutions per minute (RPM). As LVAD speed increases, the velocity of the defined area (close to the proximal anastomosis) increases linearly but inversely the stagnation index decreases. We observed that with Finned valve attachment, the stagnation value is lower than the flat valve so the results suggest that D1 valve has lower risk of thrombosis close to the aortic valve.
Kasahara, Masataka; Ichinohe, Tatsuya; Okamoto, Sota; Okada, Reina; Kanbe, Hiroaki; Matsuura, Nobuyuki
2015-06-01
To determine whether continuous administration of nitrous oxide and remifentanil—either alone or together—alters blood flow in oral tissues during sevoflurane anesthesia. Eight male tracheotomized Japanese white rabbits were anesthetized with sevoflurane under mechanical ventilation. Heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), common carotid arterial blood flow (CCBF), tongue mucosal blood flow (TMBF), mandibular bone marrow blood flow (BBF), masseter muscle blood flow (MBF), upper alveolar tissue blood flow (UBF), and lower alveolar tissue blood flow (LBF) were recorded in the absence of all test agents and after administration of the test agents (50 % nitrous oxide, 0.4 μg/kg/min remifentanil, and their combination) for 20 min. Nitrous oxide increased SBP, DBP, MAP, CCBF, BBF, MBF, UBF, and LBF relative to baseline values but did not affect HR or TMBF. Remifentanil decreased all hemodynamic variables except DBP. Combined administration of nitrous oxide and remifentanil recovered SBP, DBP, MAP, and CCBF to baseline levels, but HR and oral tissue blood flow remained lower than control values. Our findings suggest that concomitant administration of nitrous oxide and remifentanil reduces blood flow in oral tissues without decreasing blood pressure during sevoflurane anesthesia in rabbits.
Experimental study of hemodynamics in the circle of willis
2015-01-01
Background The Circle of Willis (CoW) is an important collateral pathway of the cerebral blood flow. An experimental study of the cerebral blood flow (CBF) distribution in different anatomical variations may help to a better understanding of the collateral mechanism of the CoW. Methods An in-vitro test rig was developed to simulate the physiological cerebral blood flow in the CoW. Ten anatomical variations were considered in this study, include a set of different degrees of stenosis in L-ICA and L-ICA occlusion coexist with common anatomical variations. Volume flow rates of efferent arteries and pressure signals at the end of communicating arteries of each case were recorded. Physiological pressure waveforms were applied as inlet boundary condition. Results In the development of L-ICA stenosis, the total CBF decreases with the increase of stenosis degree. The blood supply of ipsilateral middle cerebral artery (MCA) was affected most by the stenosis of L-ICA. Anterior communicating artery (ACoA) and ipsilateral posterior communicating artery (PCoA) function as important collateral pathways of cerebral collateral circulation when unilateral stenosis occurred. The blood supply of anterior cerebral circulation was compensated by the posterior cerebral circulation through ipsilateral PCoA when L-ICA stenosis degree is greater than 40% and the affected side was compensated immediately by the unaffected side through ACoA. Blood flow of the anterior circulation and the total CBF reached the minimum among all cases studied when L-ICA occlusion coexist with the absence of PCoA. Conclusion The results demonstrated the flow distribution patterns of the CoW under anatomical variations and clarified the collateral mechanism of the CoW. The flow ACoA is the most sensitive indexes to the morphology change of ipsilateral ICA. The relative independence of the circulation in anterior and posterior sections of the CoW is not broken and the function of ipsilateral PCoA is not activated until a severe stenosis of unilateral ICA occurs. PCoA is the most important collateral pathway of the collateral circulation and the missing of PCoA has the highest risk of stroke when the ipsilateral ICA has severe stenosis. These findings may provide the basis for future therapeutic and diagnosis applications. PMID:25603138
NASA Astrophysics Data System (ADS)
Aycock, Kenneth; Sastry, Shankar; Kim, Jibum; Shontz, Suzanne; Campbell, Robert; Manning, Keefe; Lynch, Frank; Craven, Brent
2013-11-01
A computational methodology for simulating inferior vena cava (IVC) filter placement and IVC hemodynamics was developed and tested on two patient-specific IVC geometries: a left-sided IVC, and an IVC with a retroaortic left renal vein. Virtual IVC filter placement was performed with finite element analysis (FEA) using non-linear material models and contact modeling, yielding maximum vein displacements of approximately 10% of the IVC diameters. Blood flow was then simulated using computational fluid dynamics (CFD) with four cases for each patient IVC: 1) an IVC only, 2) an IVC with a placed filter, 3) an IVC with a placed filter and a model embolus, all at resting flow conditions, and 4) an IVC with a placed filter and a model embolus at exercise flow conditions. Significant hemodynamic differences were observed between the two patient IVCs, with the development of a right-sided jet (all cases) and a larger stagnation region (cases 3-4) in the left-sided IVC. These results support further investigation of the effects of IVC filter placement on a patient-specific basis.
Optical measurement of blood flow in exercising skeletal muscle: a pilot study
NASA Astrophysics Data System (ADS)
Wang, Detian; Baker, Wesley B.; Parthasarathy, Ashwin B.; Zhu, Liguo; Li, Zeren; Yodh, Arjun G.
2017-07-01
Blood flow monitoring during rhythm exercising is very important for sports medicine and muscle dieases. Diffuse correlation spectroscopy(DCS) is a relative new invasive way to monitor blood flow but suffering from muscle fiber motion. In this study we focus on how to remove exercise driven artifacts and obtain accurate estimates of the increase in blood flow from exercise. Using a novel fast software correlator, we measured blood flow in forearm flexor muscles of N=2 healthy adults during handgrip exercise, at a sampling rate of 20 Hz. Combining the blood flow and acceleration data, we resolved the motion artifact in the DCS signal induced by muscle fiber motion, and isolated the blood flow component of the signal from the motion artifact. The results show that muscle fiber motion strongly affects the DCS signal, and if not accounted for, will result in an overestimate of blood flow more than 1000%. Our measurements indicate rapid dilation of arterioles following exercise onset, which enabled blood flow to increase to a plateau of 200% in 10s. The blood flow also rapidly recovered to baseline following exercise in 10s. Finally, preliminary results on the dependence of blood flow from exercise intensity changes will be discussed.
Tang, Yuanliang; He, Ying
2018-05-01
Type 2 diabetes mellitus (DM2) is frequently accompanied by microcirculation complications, including structural and functional alterations, which may have serious effects on substance exchanges between blood and interstitial tissue and the health of organs. In this paper, we aim to study the influence of microcirculation alterations in DM2 patients on fluid and oxygen exchanges through a model analysis. A fluid flow and oxygen transport model were developed by considering the interplay between blood in capillary network and interstitial tissue. The two regions were separately represented by 1D network model and 3D volume model, and the immersed boundary method (IBM) was adopted to solve fluid and mass transfer between these two regions. By using the model, the steady flow field and the distributions of oxygen in capillary network and surrounding tissue were firstly simulated. In the interstitial volume, fluid pressure and oxygen tension decreased with the increase of distance from the network; in the network, oxygen tension in blood plasma dropped from 100 mm Hg at the entrance to about 40 mm Hg at the exit. We further tested several structural and functional disorders related to diabetic pathological conditions. Simulated results show that the impaired connectivity of the network could result in poor robustness in maintaining blood flow and perfused surface; under high fluid permeability conditions of capillary walls, the pressure gradient was much larger around the capillary bed, and this alteration led to a saturation level of the interstitial pressure when lymphatic flow drainage can't work effectively; the variations in network connectivity and permeability of capillary wall also had unfavorable influence on oxygen distributions in interstitial tissue. In addition, when the oxygen releasing capacity of hemoglobin was confined by glycosylated hemoglobin (HbA1) in the case of diabetes, the plasma could not be complemented with adequate oxygen and thus the hypoxic tissue range will be extended. This study illustrates that when microcirculation disturbances, including the structure of capillary network, the wall osmosis property and the capacity of blood binding oxygen occur in DM2, some negative impacts are raised on microvascular hemodynamics and metabolism circumstance of interstitial tissue. Copyright © 2018 Elsevier Inc. All rights reserved.
Challa, Sravya T; Hargens, Alan R; Uzosike, Amarachi; Macias, Brandon R
2017-09-06
The current gold standard for diagnosing acute compartment syndrome (ACS) is an assessment of clinical signs, invasive measurement of intramuscular pressure (IMP), and measurement of local perfusion pressure. However, IMP measurements have several shortcomings, including pain, risk of infection, risk of technique error, plugging of the catheter tip, lack of consensus on the diagnostic pressure threshold, and lack of specificity and sensitivity. The objective of this study was to evaluate muscle hemodynamics, oxygenation, and pH as diagnostic parameters in a human model of ACS. We hypothesized that as IMP increases, muscle microvascular blood flow, oxygenation, and pH decrease in the anterior compartment of a leg at heart level and that they decrease significantly more when the leg is elevated further. An external pneumatic leg pressure chamber, combined with a venous stasis thigh cuff, was used to increase IMP and simulate ACS. Eight healthy subjects (5 males and 3 females; mean age, 26 years) had photoplethysmography and near-infrared spectroscopy-pH sensors placed over the middle aspect of the tibialis anterior muscle of the right (experimental) and left (control) legs. Leg chamber pressure conditions (40, 50, and 60 mm Hg) were applied in a randomized order after baseline measurements were taken. Data were collected continuously for each 11-minute pressure condition, with an 11-minute recovery period after each condition, and the average of the last 6 minutes was used for data analyses. The same protocol was repeated with each subject's legs elevated 12 cm above heart level. Data were analyzed using repeated-measures analysis of variance (ANOVA). As IMP increased, muscle microvascular blood flow (p = 0.01), oxygenation (p < 0.001), and pH (p < 0.001) all decreased significantly in the experimental leg compared with the control leg. At all IMP levels, leg elevation significantly decreased muscle oxygenation (p = 0.013) and perfusion pressure (p = 0.03) compared with the control leg at heart level. These results indicate that muscle microvascular blood flow, oxygenation, pH, and perfusion pressure decrease significantly as IMP increases in a human model of ACS. This study identifies hemodynamic and metabolic parameters as potential noninvasive diagnostic tools for ACS.
Park, Marcelo; Mendes, Pedro Vitale; Hirota, Adriana Sayuri; dos Santos, Edzangela Vasconcelos; Costa, Eduardo Leite Vieira; Azevedo, Luciano Cesar Pontes
2015-01-01
To analyze the correlations of the blood flow/pump rotation ratio and the transmembrane pressure, CO2 and O2 transfer during the extracorporeal respiratory support. Five animals were instrumented and submitted to extracorporeal membrane oxygenation in a five-step protocol, including abdominal sepsis and lung injury. This study showed that blood flow/pump rotations ratio variations are dependent on extracorporeal membrane oxygenation blood flow in a positive logarithmic fashion. Blood flow/pump rotation ratio variations are negatively associated with transmembrane pressure (R2 = 0.5 for blood flow = 1500mL/minute and R2 = 0.4 for blood flow = 3500mL/minute, both with p < 0.001) and positively associated with CO2 transfer variations (R2 = 0.2 for sweep gas flow ≤ 6L/minute, p < 0.001, and R2 = 0.1 for sweep gas flow > 6L/minute, p = 0.006), and the blood flow/pump rotation ratio is not associated with O2 transfer variations (R2 = 0.01 for blood flow = 1500mL/minute, p = 0.19, and R2 = - 0.01 for blood flow = 3500 mL/minute, p = 0.46). Blood flow/pump rotation ratio variation is negatively associated with transmembrane pressure and positively associated with CO2 transfer in this animal model. According to the clinical situation, a decrease in the blood flow/pump rotation ratio can indicate artificial lung dysfunction without the occurrence of hypoxemia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Simon C. H., E-mail: simonyu@cuhk.edu.hk; Liu, Wen; Wong, Randolph H. L.
PurposeWe aimed to assess the potential of computational fluid dynamics simulation (CFD) in detecting changes in pressure and flow velocity in response to morphological changes in type B aortic dissection.Materials and MethodsPressure and velocity in four morphological models of type B aortic dissection before and after closure of the entry tear were calculated with CFD and analyzed for changes among the different scenarios. The control model (Model 1) was patient specific and built from the DICOM data of CTA, which bore one entry tear and three re-entry tears. Models 2–4 were modifications of Model 1, with two re-entry tears lessmore » in Model 2, one re-entry tear more in Model 3, and a larger entry tear in Model 4.ResultsThe pressure and velocity pertaining to each of the morphological models were unique. Changes in pressure and velocity findings were accountable by the changes in morphological features of the different models. There was no blood flow in the false lumen across the entry tear after its closure, the blood flow direction across the re-entry tears was reversed after closure of the entry tear.ConclusionCFD simulation is probably useful to detect hemodynamic changes in the true and false lumens of type B aortic dissection in response to morphological changes, it may potentially be developed into a non-invasive and patient-specific tool for serial monitoring of hemodynamic changes of type B aortic dissection before and after treatment.« less
Tomographic sensing and localization of fluorescently labeled circulating cells in mice in vivo
NASA Astrophysics Data System (ADS)
Zettergren, Eric; Swamy, Tushar; Runnels, Judith; Lin, Charles P.; Niedre, Mark
2012-07-01
Sensing and enumeration of specific types of circulating cells in small animals is an important problem in many areas of biomedical research. Microscopy-based fluorescence in vivo flow cytometry methods have been developed previously, but these are typically limited to sampling of very small blood volumes, so that very rare circulating cells may escape detection. Recently, we described the development of a ‘diffuse fluorescence flow cytometer’ (DFFC) that allows sampling of much larger blood vessels and therefore circulating blood volumes in the hindlimb, forelimb or tail of a mouse. In this work, we extend this concept by developing and validating a method to tomographically localize circulating fluorescently labeled cells in the cross section of a tissue simulating optical flow phantom and mouse limb. This was achieved using two modulated light sources and an array of six fiber-coupled detectors that allowed rapid, high-sensitivity acquisition of full tomographic data sets at 10 Hz. These were reconstructed into two-dimensional cross-sectional images using Monte Carlo models of light propagation and the randomized algebraic reconstruction technique. We were able to obtain continuous images of moving cells in the sample cross section with 0.5 mm accuracy or better. We first demonstrated this concept in limb-mimicking optical flow photons with up to four flow channels, and then in the tails of mice with fluorescently labeled multiple myeloma cells. This approach increases the overall diagnostic utility of our DFFC instrument.
Bond Graph Model of Cerebral Circulation: Toward Clinically Feasible Systemic Blood Flow Simulations
Safaei, Soroush; Blanco, Pablo J.; Müller, Lucas O.; Hellevik, Leif R.; Hunter, Peter J.
2018-01-01
We propose a detailed CellML model of the human cerebral circulation that runs faster than real time on a desktop computer and is designed for use in clinical settings when the speed of response is important. A lumped parameter mathematical model, which is based on a one-dimensional formulation of the flow of an incompressible fluid in distensible vessels, is constructed using a bond graph formulation to ensure mass conservation and energy conservation. The model includes arterial vessels with geometric and anatomical data based on the ADAN circulation model. The peripheral beds are represented by lumped parameter compartments. We compare the hemodynamics predicted by the bond graph formulation of the cerebral circulation with that given by a classical one-dimensional Navier-Stokes model working on top of the whole-body ADAN model. Outputs from the bond graph model, including the pressure and flow signatures and blood volumes, are compared with physiological data. PMID:29551979
Human cutaneous vascular responses to whole-body tilting, Gz centrifugation, and LBNP
NASA Technical Reports Server (NTRS)
Watenpaugh, Donald E.; Breit, Gregory A.; Buckley, Theresa M.; Ballard, Richard E.; Murthy, Gita; Hargens, Alan R.
2004-01-01
We hypothesized that gravitational stimuli elicit cardiovascular responses in the following order with gravitational stress equalized at the level of the feet, from lowest to highest response: short-(SAC) and long-arm centrifugation (LAC), tilt, and lower body negative pressure (LBNP). Up to 15 healthy subjects underwent graded application of the four stimuli. Laser-Doppler flowmetry measured regional skin blood flow. At 0.6 G(z) (60 mmHg LBNP), tilt and LBNP similarly reduced leg skin blood flow to approximately 36% of supine baseline levels. Flow increased back toward baseline levels at 80-100 mmHg LBNP yet remained stable during 0.8-1.0 G(z) tilt. Centrifugation usually produced less leg vasoconstriction than tilt or LBNP. Surprisingly, SAC and LAC did not differ significantly. Thigh responses were less definitive than leg responses. No gravitational vasoconstriction occurred in the neck. All conditions except SAC increased heart rate, according to our hypothesized order. LBNP may be a more effective and practical means of simulating cardiovascular effects of gravity than centrifugation.
Clinical Investigation Program.
1979-10-01
It has been established by a series of dog experiments using the-e-e-ctromagnetic flow meter that the blood flow in the inferior vena cava between...by thermodilution. Hepatic vein blood flow could be estimated by subtraction of the blood flow in the vena cava at the level of the renal veins from...the vena cava blood flow at the level of the diaphragm. This should be liver blood flow. It should be possible to sample pure hepatic vein blood by
Mouser, J Grant; Ade, Carl J; Black, Christopher D; Bemben, Debra A; Bemben, Michael G
2018-05-01
Blood flow restriction (BFR), the application of external pressure to occlude venous return and restrict arterial inflow, has been shown to increase muscular size and strength when combined with low-load resistance exercise. BFR in the research setting uses a wide range of pressures, applying a pressure based upon an individual's systolic pressure or a percentage of occlusion pressure; not a directly determined reduction in blood flow. The relationship between relative pressure and blood flow has not been established. To measure blood flow in the arm under relative levels of BFR. Forty-five people (18-40 years old) participated. Arterial occlusion pressure in the right arm was measured using a 5-cm pneumatic cuff. Blood flow in the brachial artery was measured at rest and at pressures between 10% and 90% of occlusion using ultrasound. Blood flow decreased in a nonlinear, stepped fashion. Blood flow decreased at 10% of occlusion and remained constant until decreasing again at 40%, where it remained until 90% of occlusion. The decrease in brachial blood flow is not proportional to the applied relative pressure. The prescription of blood flow restriction should take into account the stimulus provided at each relative level of blood flow. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.