Long-term effects of fire and harvest on carbon stocks of boreal forests in northeastern China
NASA Astrophysics Data System (ADS)
Huang, C.; He, H. S.; Hawbaker, T. J.; Zhu, Z.; Liang, Y.; Gong, P.
2017-12-01
Fire, harvest and their interactions have strong effects on boreal forests carbon stocks. Repeated disturbances associated with relatively short fire return intervals and harvest rotations, and their interactions caused their effects to increase over simulation time.Boreal forests in the northeastern of China cover 8.46×105 km2, store about 350 Tg aboveground carbon, and play an important role in maintaining China's carbon balance. Boreal forests in this region are facing pressures from repeated fires and timber harvesting activities.The objectives of our study were to evaluate the effects of fire, harvest and their interactions on boreal forest carbon stocks of northeastern China.We used the LANDIS PRO-LINKAGES model-coupling framework to simulate the landscape-level effects of fire and harvest and their interactions over 150 years. Our simulation results suggested that aboveground and soil organic carbon are significantly reduced by fire and harvest over 150 years. The long-term effects of fire and harvest on carbon stocks were greater than the short-term effects in the Great Xing' an Mountains. The total effects of fire-harvest interactions on boreal forests are less than the sum of separate effects of fire and harvest. The response of carbon stocks among ecoregions diverged and was due to the spatial variability of fire and harvest regimes.These results emphasize that fire, harvest, and their interactions play an important role in regulating boreal forest carbon stocks, the extent of fire and harvest effects depended on the intensity of these disturbances.
NASA Astrophysics Data System (ADS)
Yue, C.; Ciais, P.; Luyssaert, S.; Cadule, P.; Harden, J.; Randerson, J.; Bellassen, V.; Wang, T.; Piao, S. L.; Poulter, B.; Viovy, N.
2013-04-01
Stand-replacing fires are the dominant fire type in North American boreal forest and leave a historical legacy of a mosaic landscape of different aged forest cohorts. To accurately quantify the role of fire in historical and current regional forest carbon balance using models, one needs to explicitly simulate the new forest cohort that is established after fire. The present study adapted the global process-based vegetation model ORCHIDEE to simulate boreal forest fire CO2 emissions and follow-up recovery after a stand-replacing fire, with representation of postfire new cohort establishment, forest stand structure and the following self-thinning process. Simulation results are evaluated against three clusters of postfire forest chronosequence observations in Canada and Alaska. Evaluation variables for simulated postfire carbon dynamics include: fire carbon emissions, CO2 fluxes (gross primary production, total ecosystem respiration and net ecosystem exchange), leaf area index (LAI), and biometric measurements (aboveground biomass carbon, forest floor carbon, woody debris carbon, stand individual density, stand basal area, and mean diameter at breast height). The model simulation results, when forced by local climate and the atmospheric CO2 history on each chronosequence site, generally match the observed CO2 fluxes and carbon stock data well, with model-measurement mean square root of deviation comparable with measurement accuracy (for CO2 flux ~100 g C m-2 yr-1, for biomass carbon ~1000 g C m-2 and for soil carbon ~2000 g C m-2). We find that current postfire forest carbon sink on evaluation sites observed by chronosequence methods is mainly driven by historical atmospheric CO2 increase when forests recover from fire disturbance. Historical climate generally exerts a negative effect, probably due to increasing water stress caused by significant temperature increase without sufficient increase in precipitation. Our simulation results demonstrate that a global vegetation model such as ORCHIDEE is able to capture the essential ecosystem processes in fire-disturbed boreal forests and produces satisfactory results in terms of both carbon fluxes and carbon stocks evolution after fire, making it suitable for regional simulations in boreal regions where fire regimes play a key role on ecosystem carbon balance.
Seasonal Course of Boreal Forest Reflectance
NASA Astrophysics Data System (ADS)
Rautiainen, M.; Heiskanen, J.; Mottus, M.; Eigemeier, E.; Majasalmi, T.; Vesanto, V.; Stenberg, P.
2011-12-01
According to the IPCC 2007 report, northern ecosystems are especially likely to be affected by climate change. Therefore, understanding the seasonal dynamics of boreal ecosystems and linking their phenological phases to satellite reflectance data is crucial for the efficient monitoring and modeling of northern hemisphere vegetation dynamics and productivity trends in the future. The seasonal reflectance course of a boreal forest is a result of the temporal cycle in optical properties of both the tree canopy and understory layers. Seasonal reflectance changes of the two layers are explained by the complex combination of changes in biochemistry and geometrical structure of different plant species as well as seasonal and diurnal variation in solar illumination. Analyzing the role of each of the contributing factors can only be achieved by linking radiative transfer modeling to empirical reflectance data sets. The aim of our project is to identify the seasonal reflectance changes and their driving factors in boreal forests from optical satellite images using new forest reflectance modeling techniques based on the spectral invariants theory. We have measured an extensive ground reference database on the seasonal changes of structural and optical properties of tree canopy and understory layers for a boreal forest site in central Finland in 2010. The database is complemented by a concurrent time series of Hyperion and SPOT satellite images. We use the empirical ground reference database as input to forest reflectance simulations and validate our simulation results using the empirical reflectance data obtained from satellite images. Based on our simulation results, we quantify 1) the driving factors influencing the seasonal reflectance courses of a boreal forest, and 2) the relative contribution of the understory and tree-level layers to forest reflectance as the growing season proceeds.
Simulation of Longwave Enhancement beneath Montane and Boreal Forests in CLM4.5
NASA Astrophysics Data System (ADS)
Todt, M.; Rutter, N.; Fletcher, C. G.; Wake, L. M.; Loranty, M. M.
2017-12-01
CMIP5 models have been shown to underestimate both trend and variability in northern hemisphere spring snow cover extent. A substantial fraction of this area is covered by boreal forests, in which the snow energy balance is dominated by radiation. Forest coverage impacts the surface radiation budget by shading the ground and enhancing longwave radiation. Longwave enhancement in boreal forests is a potential mechanism that contributes to uncertainty in snowmelt modelling, however, its impact on snowmelt in global land models has not been analysed yet. This study assesses the simulation of sub-canopy longwave radiation and longwave enhancement by CLM4.5, the land component of the NCAR Community Earth System Model, in which boreal forests are represented by three plant functional types (PFT): evergreen needleleaf trees (ENT), deciduous needleleaf trees (DNT), and deciduous broadleaf trees (DBT). Simulation of sub-canopy longwave enhancement is evaluated at boreal forest sites covering the three boreal PFT in CLM4.5 to assess the dependence of simulation errors on meteorological forcing, vegetation type and vegetation density. ENT are evaluated over a total of six snowmelt seasons in Swiss alpine and subalpine forests, as well as a single season at a Finnish arctic site with varying vegetation density. A Swedish artic site features varying vegetation density for DBT for a single winter, and two sites in Eastern Siberia are included covering a total of four snowmelt seasons in DNT forests. CLM4.5 overestimates the diurnal range of sub-canopy longwave radiation and consequently longwave enhancement, overestimating daytime values and underestimating nighttime values. Simulation errors result mainly from clear sky conditions, due to high absorption of shortwave radiation during daytime and radiative cooling during nighttime. Using recent improvements to the canopy parameterisations of SNOWPACK as a guideline, CLM4.5 simulations of sub-canopy longwave radiation improved through the implementation of a heat mass parameterisation, i.e. including thermal inertia due to biomass. However, this improvement does not substantially reduce the amplitude of the diurnal cycle, a result also found during the development of SNOWPACK.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinzman, Larry D.; Bolton, William Robert; Young-Robertson, Jessica
This project improves meso-scale hydrologic modeling in the boreal forest by: (1) demonstrating the importance of capturing the heterogeneity of the landscape using small scale datasets for parameterization for both small and large basins; (2) demonstrating that in drier parts of the landscape and as the boreal forest dries with climate change, modeling approaches must consider the sensitivity of simulations to soil hydraulic parameters - such as residual water content - that are usually held constant. Thus, variability / flexibility in residual water content must be considered for accurate simulation of hydrologic processes in the boreal forest; (3) demonstrating thatmore » assessing climate change impacts on boreal forest hydrology through multiple model integration must account for direct effects of climate change (temperature and precipitation), and indirect effects from climate impacts on landscape characteristics (permafrost and vegetation distribution). Simulations demonstrated that climate change will increase runoff, but will increase ET to a greater extent and result in a drying of the landscape; and (4) vegetation plays a significant role in boreal hydrologic processes in permafrost free areas that have deciduous trees. This landscape type results in a decoupling of ET and precipitation, a tight coupling of ET and temperature, low runoff, and overall soil drying.« less
Yue, C.; Ciais, P.; Luyssaert, S.; Cadule, P.; Harden, J.; Randerson, J.; Bellassen, V.; Wang, T.; Piao, S.L.; Poulter, B.; Viovy, N.
2013-01-01
Stand-replacing fires are the dominant fire type in North American boreal forests. They leave a historical legacy of a mosaic landscape of different aged forest cohorts. This forest age dynamics must be included in vegetation models to accurately quantify the role of fire in the historical and current regional forest carbon balance. The present study adapted the global process-based vegetation model ORCHIDEE to simulate the CO2 emissions from boreal forest fire and the subsequent recovery after a stand-replacing fire; the model represents postfire new cohort establishment, forest stand structure and the self-thinning process. Simulation results are evaluated against observations of three clusters of postfire forest chronosequences in Canada and Alaska. The variables evaluated include: fire carbon emissions, CO2 fluxes (gross primary production, total ecosystem respiration and net ecosystem exchange), leaf area index, and biometric measurements (aboveground biomass carbon, forest floor carbon, woody debris carbon, stand individual density, stand basal area, and mean diameter at breast height). When forced by local climate and the atmospheric CO2 history at each chronosequence site, the model simulations generally match the observed CO2 fluxes and carbon stock data well, with model-measurement mean square root of deviation comparable with the measurement accuracy (for CO2 flux ~100 g C m−2 yr−1, for biomass carbon ~1000 g C m−2 and for soil carbon ~2000 g C m−2). We find that the current postfire forest carbon sink at the evaluation sites, as observed by chronosequence methods, is mainly due to a combination of historical CO2 increase and forest succession. Climate change and variability during this period offsets some of these expected carbon gains. The negative impacts of climate were a likely consequence of increasing water stress caused by significant temperature increases that were not matched by concurrent increases in precipitation. Our simulation results demonstrate that a global vegetation model such as ORCHIDEE is able to capture the essential ecosystem processes in fire-disturbed boreal forests and produces satisfactory results in terms of both carbon fluxes and carbon-stock evolution after fire. This makes the model suitable for regional simulations in boreal regions where fire regimes play a key role in the ecosystem carbon balance.
NASA Astrophysics Data System (ADS)
Yue, C.; Ciais, P.; Luyssaert, S.; Cadule, P.; Harden, J.; Randerson, J.; Bellassen, V.; Wang, T.; Piao, S. L.; Poulter, B.; Viovy, N.
2013-12-01
Stand-replacing fires are the dominant fire type in North American boreal forests. They leave a historical legacy of a mosaic landscape of different aged forest cohorts. This forest age dynamics must be included in vegetation models to accurately quantify the role of fire in the historical and current regional forest carbon balance. The present study adapted the global process-based vegetation model ORCHIDEE to simulate the CO2 emissions from boreal forest fire and the subsequent recovery after a stand-replacing fire; the model represents postfire new cohort establishment, forest stand structure and the self-thinning process. Simulation results are evaluated against observations of three clusters of postfire forest chronosequences in Canada and Alaska. The variables evaluated include: fire carbon emissions, CO2 fluxes (gross primary production, total ecosystem respiration and net ecosystem exchange), leaf area index, and biometric measurements (aboveground biomass carbon, forest floor carbon, woody debris carbon, stand individual density, stand basal area, and mean diameter at breast height). When forced by local climate and the atmospheric CO2 history at each chronosequence site, the model simulations generally match the observed CO2 fluxes and carbon stock data well, with model-measurement mean square root of deviation comparable with the measurement accuracy (for CO2 flux ~100 g C m-2 yr-1, for biomass carbon ~1000 g C m-2 and for soil carbon ~2000 g C m-2). We find that the current postfire forest carbon sink at the evaluation sites, as observed by chronosequence methods, is mainly due to a combination of historical CO2 increase and forest succession. Climate change and variability during this period offsets some of these expected carbon gains. The negative impacts of climate were a likely consequence of increasing water stress caused by significant temperature increases that were not matched by concurrent increases in precipitation. Our simulation results demonstrate that a global vegetation model such as ORCHIDEE is able to capture the essential ecosystem processes in fire-disturbed boreal forests and produces satisfactory results in terms of both carbon fluxes and carbon-stock evolution after fire. This makes the model suitable for regional simulations in boreal regions where fire regimes play a key role in the ecosystem carbon balance.
Douglas J. Shinneman; Meredith W. Cornett; Brian J. Palik
2010-01-01
Restoring altered forest landscapes toward their ranges of natural variability (RNV) may enhance ecosystem sustainability and resiliency, but such efforts can be hampered by complex land ownership and management patterns. We evaluated restoration potential for southern-boreal forests in the ~2.1 million ha Border Lakes Region of northern Minnesota (U.S.A.) and...
An approach to the real time risk evaluation system of boreal forest fire
NASA Astrophysics Data System (ADS)
Nakau, K.; Fukuda, M.; Kimura, K.; Hayasaka, H.; Tani, H.; Kushida, K.
2005-12-01
Huge boreal forest fire may cause massive impacts not only on global warming gas emission but also local communities. Thus, it is important to control forest fire. We collected data about boreal forest fire as satellite imagery and fire observation simultaneously in Alaska and east Siberia in summer fire seasons for these three years. Fire observation data was collected from aircraft flying between Japan and Europe. Fire detection results were compared with observed data to evaluate the accuracy and earliness of automatic detection. NOAA and MODIS satellite images covering Alaska and East Siberia are collected. We are also developing fire expansion simulation model to forecast the possible fire expansion area. On the basis of fire expansion forecast, risk analysis of possible fire expansion for decision aid of fire-fighting activities will be analyzed. To identify the risk of boreal forest fire and public concern about forest fire, we collected local news paper in Fairbanks, AK and discuss the statistics of articles related to forest fire on the newspaper.
Li, Xiaona; He, Hong S; Wu, Zhiwei; Liang, Yu; Schneiderman, Jeffrey E
2013-01-01
Forest management under a changing climate requires assessing the effects of climate warming and disturbance on the composition, age structure, and spatial patterns of tree species. We investigated these effects on a boreal forest in northeastern China using a factorial experimental design and simulation modeling. We used a spatially explicit forest landscape model (LANDIS) to evaluate the effects of three independent variables: climate (current and expected future), fire regime (current and increased fire), and timber harvesting (no harvest and legal harvest). Simulations indicate that this forested landscape would be significantly impacted under a changing climate. Climate warming would significantly increase the abundance of most trees, especially broadleaf species (aspen, poplar, and willow). However, climate warming would have less impact on the abundance of conifers, diversity of forest age structure, and variation in spatial landscape structure than burning and harvesting. Burning was the predominant influence in the abundance of conifers except larch and the abundance of trees in mid-stage. Harvesting impacts were greatest for the abundance of larch and birch, and the abundance of trees during establishment stage (1-40 years), early stage (41-80 years) and old- growth stage (>180 years). Disturbance by timber harvesting and burning may significantly alter forest ecosystem dynamics by increasing forest fragmentation and decreasing forest diversity. Results from the simulations provide insight into the long term management of this boreal forest.
Boreal forests and atmosphere - Biosphere exchange of carbon dioxide
NASA Technical Reports Server (NTRS)
D'Arrigo, Rosanne; Jacoby, Gordon C.; Fung, Inez Y.
1987-01-01
Two approaches to investigating the role of boreal forests in the global carbon cycle are presented. First, a tracer support model which incorporates the normalized-difference vegetation index obtained from advanced, very high resolution radiometer radiances was used to simulate the annual cycle of CO2 in the atmosphere. Results indicate that the seasonal growth of the combined boreal forests of North America and Eurasia accounts for about 50 percent of the mean seasonal CO2 amplitude recorded at Pt. Barrow, Alaska and about 30 percent of the more globally representative CO2 signal at Mauna Loa, Hawaii. Second, tree-ring width data from four boreal treeline sites in northern Canada were positively correlated with Pt. Barrow CO2 drawdown for the period 1971-1982. These results suggest that large-scale changes in the growth of boreal forests may be contributing to the observed increasing trend in CO2 amplitude. They further suggest that tree-ring data may be applicable as indices for CO2 uptake and remote sensing estimates of photosynthetic activity.
Simulating Snow in Canadian Boreal Environments with CLASS for ESM-SnowMIP
NASA Astrophysics Data System (ADS)
Wang, L.; Bartlett, P. A.; Derksen, C.; Ireson, A. M.; Essery, R.
2017-12-01
The ability of land surface schemes to provide realistic simulations of snow cover is necessary for accurate representation of energy and water balances in climate models. Historically, this has been particularly challenging in boreal forests, where poor treatment of both snow masking by forests and vegetation-snow interaction has resulted in biases in simulated albedo and snowpack properties, with subsequent effects on both regional temperatures and the snow albedo feedback in coupled simulations. The SnowMIP (Snow Model Intercomparison Project) series of experiments or `MIPs' was initiated in order to provide assessments of the performance of various snow- and land-surface-models at selected locations, in order to understand the primary factors affecting model performance. Here we present preliminary results of simulations conducted for the third such MIP, ESM-SnowMIP (Earth System Model - Snow Model Intercomparison Project), using the Canadian Land Surface Scheme (CLASS) at boreal forest sites in central Saskatchewan. We assess the ability of our latest model version (CLASS 3.6.2) to simulate observed snowpack properties (snow water equivalent, density and depth) and above-canopy albedo over 13 winters. We also examine the sensitivity of these simulations to climate forcing at local and regional scales.
Li, Xiaona; He, Hong S.; Wu, Zhiwei; Liang, Yu; Schneiderman, Jeffrey E.
2013-01-01
Forest management under a changing climate requires assessing the effects of climate warming and disturbance on the composition, age structure, and spatial patterns of tree species. We investigated these effects on a boreal forest in northeastern China using a factorial experimental design and simulation modeling. We used a spatially explicit forest landscape model (LANDIS) to evaluate the effects of three independent variables: climate (current and expected future), fire regime (current and increased fire), and timber harvesting (no harvest and legal harvest). Simulations indicate that this forested landscape would be significantly impacted under a changing climate. Climate warming would significantly increase the abundance of most trees, especially broadleaf species (aspen, poplar, and willow). However, climate warming would have less impact on the abundance of conifers, diversity of forest age structure, and variation in spatial landscape structure than burning and harvesting. Burning was the predominant influence in the abundance of conifers except larch and the abundance of trees in mid-stage. Harvesting impacts were greatest for the abundance of larch and birch, and the abundance of trees during establishment stage (1–40 years), early stage (41–80 years) and old- growth stage (>180 years). Disturbance by timber harvesting and burning may significantly alter forest ecosystem dynamics by increasing forest fragmentation and decreasing forest diversity. Results from the simulations provide insight into the long term management of this boreal forest. PMID:23573209
Linda B. Brubaker; Philip E. Higuera; T. Scott Rupp; Mark A. Olson; Patricia M. Anderson; Feng Sheng. Hu
2009-01-01
Interactions between vegetation and fire have the potential to overshadow direct effects of climate change on fire regimes in boreal forests of North America. We develop methods to compare sediment-charcoal records with fire regimes simulated by an ecological model, ALFRESCO (Alaskan Frame-based Ecosystem Code) and apply these methods to evaluate potential causes of a...
Relating Vegetation Aerodynamic Roughness Length to Interferometric SAR Measurements
NASA Technical Reports Server (NTRS)
Saatchi, Sassan; Rodriquez, Ernesto
1998-01-01
In this paper, we investigate the feasibility of estimating aerodynamic roughness parameter from interferometric SAR (INSAR) measurements. The relation between the interferometric correlation and the rms height of the surface is presented analytically. Model simulations performed over realistic canopy parameters obtained from field measurements in boreal forest environment demonstrate the capability of the INSAR measurements for estimating and mapping surface roughness lengths over forests and/or other vegetation types. The procedure for estimating this parameter over boreal forests using the INSAR data is discussed and the possibility of extending the methodology over tropical forests is examined.
Collected Data of The Boreal Ecosystem and Atmosphere Study (BOREAS)
NASA Technical Reports Server (NTRS)
Newcomer, J. (Editor); Landis, D. (Editor); Conrad, S. (Editor); Curd, S. (Editor); Huemmrich, K. (Editor); Knapp, D. (Editor); Morrell, A. (Editor); Nickerson, J. (Editor); Papagno, A. (Editor); Rinker, D. (Editor)
2000-01-01
The Boreal Ecosystem-Atmosphere Study (BOREAS) was a large-scale international interdisciplinary climate-ecosystem interaction experiment in the northern boreal forests of Canada. Its goal was to improve our understanding of the boreal forests -- how they interact with the atmosphere, how much CO2 they can store, and how climate change will affect them. BOREAS wanted to learn to use satellite data to monitor the forests, and to improve computer simulation and weather models so scientists can anticipate the effects of global change. This BOREAS CD-ROM set is a set of 12 CD-ROMs containing the finalized point data sets and compressed image data from the BOREAS Project. All point data are stored in ASCII text files, and all image and GIS products are stored as binary images, compressed using GZip. Additional descriptions of the various data sets on this CD-ROM are available in other documents in the BOREAS series.
Kellomäki, Seppo; Peltola, Heli; Nuutinen, Tuula; Korhonen, Kari T; Strandman, Harri
2008-07-12
This study investigated the sensitivity of managed boreal forests to climate change, with consequent needs to adapt the management to climate change. Model simulations representing the Finnish territory between 60 and 70 degrees N showed that climate change may substantially change the dynamics of managed boreal forests in northern Europe. This is especially probable at the northern and southern edges of this forest zone. In the north, forest growth may increase, but the special features of northern forests may be diminished. In the south, climate change may create a suboptimal environment for Norway spruce. Dominance of Scots pine may increase on less fertile sites currently occupied by Norway spruce. Birches may compete with Scots pine even in these sites and the dominance of birches may increase. These changes may reduce the total forest growth locally but, over the whole of Finland, total forest growth may increase by 44%, with an increase of 82% in the potential cutting drain. The choice of appropriate species and reduced rotation length may sustain the productivity of forest land under climate change.
The pyrogeography of eastern boreal Canada from 1901 to 2012 simulated with the LPJ-LMfire model
NASA Astrophysics Data System (ADS)
Chaste, Emeline; Girardin, Martin P.; Kaplan, Jed O.; Portier, Jeanne; Bergeron, Yves; Hély, Christelle
2018-03-01
Wildland fires are the main natural disturbance shaping forest structure and composition in eastern boreal Canada. On average, more than 700 000 ha of forest burns annually and causes as much as CAD 2.9 million worth of damage. Although we know that occurrence of fires depends upon the coincidence of favourable conditions for fire ignition, propagation, and fuel availability, the interplay between these three drivers in shaping spatiotemporal patterns of fires in eastern Canada remains to be evaluated. The goal of this study was to reconstruct the spatiotemporal patterns of fire activity during the last century in eastern Canada's boreal forest as a function of changes in lightning ignition, climate, and vegetation. We addressed this objective using the dynamic global vegetation model LPJ-LMfire, which we parametrized for four plant functional types (PFTs) that correspond to the prevalent tree genera in eastern boreal Canada (Picea, Abies, Pinus, Populus). LPJ-LMfire was run with a monthly time step from 1901 to 2012 on a 10 km2 resolution grid covering the boreal forest from Manitoba to Newfoundland. Outputs of LPJ-LMfire were analyzed in terms of fire frequency, net primary productivity (NPP), and aboveground biomass. The predictive skills of LPJ-LMfire were examined by comparing our simulations of annual burn rates and biomass with independent data sets. The simulation adequately reproduced the latitudinal gradient in fire frequency in Manitoba and the longitudinal gradient from Manitoba towards southern Ontario, as well as the temporal patterns present in independent fire histories. However, the simulation led to the underestimation and overestimation of fire frequency at both the northern and southern limits of the boreal forest in Québec. The general pattern of simulated total tree biomass also agreed well with observations, with the notable exception of overestimated biomass at the northern treeline, mainly for PFT Picea. In these northern areas, the predictive ability of LPJ-LMfire is likely being affected by the low density of weather stations, which leads to underestimation of the strength of fire-weather interactions and, therefore, vegetation consumption during extreme fire years. Agreement between the spatiotemporal patterns of fire frequency and the observed data across a vast portion of the study area confirmed that fire therein is strongly ignition limited. A drier climate coupled with an increase in lightning frequency during the second half of the 20th century notably led to an increase in fire activity. Finally, our simulations highlighted the importance of both climate and fire in vegetation: despite an overarching CO2-induced enhancement of NPP in LPJ-LMfire, forest biomass was relatively stable because of the compensatory effects of increasing fire activity.
NASA Astrophysics Data System (ADS)
Armstrong, A. H.; Foster, A.; Rogers, B. M.; Hogg, T.; Michaelian, M.; Shuman, J. K.; Shugart, H. H., Jr.; Goetz, S. J.
2017-12-01
The Arctic-Boreal zone is known be warming at an accelerated rate relative to other biomes. Persistent warming has already affected the high northern latitudes, altering vegetation productivity, carbon sequestration, and many other ecosystem processes and services. The central-western Canadian boreal forests and aspen parkland are experiencing a decade long drought, and rainfall has been identified as a key factor controlling the location of the boundary between forest and prairie in this region. Shifting biome with related greening and browning trends are readily measureable with remote sensing, but the dynamics that create and result from them are not well understood. In this study, we use the University of Virginia Forest Model Enhanced (UVAFME), an individual-based forest model, to simulate the changes that are occurring across the southern boreal and parkland forests of west-central Canada. We present a parameterization of UVAFME for western central Canadian forests, validated with CIPHA data (Climate Change Impacts on the Productivity and Health of Aspen), and improved mortality. In order to gain a fine-scale understanding of how climate change and specifically drought will continue to affect the forests of this region, we simulated forest conditions following CMIP5 climate scenarios. UVAFME predictions were compared with statistical models and satellite observations of productivity across the landscape. Changes in forest cover, forest type, aboveground biomass, and mortality and recruitment dynamics are presented, highlighting the high vulnerability of this region to vegetation transitions associated with future droughts.
Palaeodata-informed modelling of large carbon losses from recent burning of boreal forests
Kelly, Ryan; Genet, Helene; McGuire, A. David; Hu, Feng Sheng
2016-01-01
Wildfires play a key role in the boreal forest carbon cycle1, 2, and models suggest that accelerated burning will increase boreal C emissions in the coming century3. However, these predictions may be compromised because brief observational records provide limited constraints to model initial conditions4. We confronted this limitation by using palaeoenvironmental data to drive simulations of long-term C dynamics in the Alaskan boreal forest. Results show that fire was the dominant control on C cycling over the past millennium, with changes in fire frequency accounting for 84% of C stock variability. A recent rise in fire frequency inferred from the palaeorecord5 led to simulated C losses of 1.4 kg C m−2 (12% of ecosystem C stocks) from 1950 to 2006. In stark contrast, a small net C sink of 0.3 kg C m−2 occurred if the past fire regime was assumed to be similar to the modern regime, as is common in models of C dynamics. Although boreal fire regimes are heterogeneous, recent trends6 and future projections7 point to increasing fire activity in response to climate warming throughout the biome. Thus, predictions8 that terrestrial C sinks of northern high latitudes will mitigate rising atmospheric CO2 may be over-optimistic.
NASA Astrophysics Data System (ADS)
Erler, A. E.; Shuman, J. K.; Soukhavolosky, V.; Kovalev, A.; Stevens, T.; Shugart, H. H.
2008-12-01
FAREAST: an individual-based forest dynamics model was initially developed to simulate the forested region around Changbai Mountain in northern China. In recent years the model has been expanded across Siberia. The model output for biomass (tCha-1) has been verified against forest inventory data for a number of sites across Russia. With this success, an additional module for the model was written by Anton Kovalev to predict the impact of insect disturbance on the Boreal forests. This model predicts the probability of an insect outbreak occurring, and then, by assessing each individual tree in a modeled stand, predicts whether a tree will be killed as a result of insect predation. From this, a disturbance index is calculated that includes lost biomass as a result of insect disturbance and subsequent species composition. This disturbance "fingerprint" is being compared to forest inventory and insect disturbance data from the Usolsky forests in the Krasnoyarsk region of central Siberia. Silkworm disturbance is expressed in this geo- database as a percentage of trees damaged or killed in a stand. The forest inventory data allows us to calculate a biomass estimate that will be compared to the biomass outputs generated by the model post insect disturbance. The validation of simulated biomass with independent inventory data confirms that FAREAST is a robust model of Russian forest dynamics. Effective validation of the insect disturbance model will allow us to generate a more complete picture of the changing ecology of the Siberian Boreal landscape. The economic cost of lumber lost as a result of Silkworm damage has been enormous, if verified, FAREAST will afford us the opportunity to estimate the extent of that loss and predict the changing ecological dynamics of the Boreal forest system under the worlds evolving climate.
Simulating ungulate herbivory across forest landscapes: A browsing extension for LANDIS-II
DeJager, Nathan R.; Drohan, Patrick J.; Miranda, Brian M.; Sturtevant, Brian R.; Stout, Susan L.; Royo, Alejandro; Gustafson, Eric J.; Romanski, Mark C.
2017-01-01
Browsing ungulates alter forest productivity and vegetation succession through selective foraging on species that often dominate early succession. However, the long-term and large-scale effects of browsing on forest succession are not possible to project without the use of simulation models. To explore the effects of ungulates on succession in a spatially explicit manner, we developed a Browse Extension that simulates the effects of browsing ungulates on the growth and survival of plant species cohorts within the LANDIS-II spatially dynamic forest landscape simulation model framework. We demonstrate the capabilities of the new extension and explore the spatial effects of ungulates on forest composition and dynamics using two case studies. The first case study examined the long-term effects of persistently high white-tailed deer browsing rates in the northern hardwood forests of the Allegheny National Forest, USA. In the second case study, we incorporated a dynamic ungulate population model to simulate interactions between the moose population and boreal forest landscape of Isle Royale National Park, USA. In both model applications, browsing reduced total aboveground live biomass and caused shifts in forest composition. Simulations that included effects of browsing resulted in successional patterns that were more similar to those observed in the study regions compared to simulations that did not incorporate browsing effects. Further, model estimates of moose population density and available forage biomass were similar to previously published field estimates at Isle Royale and in other moose-boreal forest systems. Our simulations suggest that neglecting effects of browsing when modeling forest succession in ecosystems known to be influenced by ungulates may result in flawed predictions of aboveground biomass and tree species composition.
Regional atmospheric cooling and wetting effect of permafrost thaw-induced boreal forest loss.
Helbig, Manuel; Wischnewski, Karoline; Kljun, Natascha; Chasmer, Laura E; Quinton, William L; Detto, Matteo; Sonnentag, Oliver
2016-12-01
In the sporadic permafrost zone of North America, thaw-induced boreal forest loss is leading to permafrost-free wetland expansion. These land cover changes alter landscape-scale surface properties with potentially large, however, still unknown impacts on regional climates. In this study, we combine nested eddy covariance flux tower measurements with satellite remote sensing to characterize the impacts of boreal forest loss on albedo, eco-physiological and aerodynamic surface properties, and turbulent energy fluxes of a lowland boreal forest region in the Northwest Territories, Canada. Planetary boundary layer modelling is used to estimate the potential forest loss impact on regional air temperature and atmospheric moisture. We show that thaw-induced conversion of forests to wetlands increases albedo: and bulk surface conductance for water vapour and decreases aerodynamic surface temperature. At the same time, heat transfer efficiency is reduced. These shifts in land surface properties increase latent at the expense of sensible heat fluxes, thus, drastically reducing Bowen ratios. Due to the lower albedo of forests and their masking effect of highly reflective snow, available energy is lower in wetlands, especially in late winter. Modelling results demonstrate that a conversion of a present-day boreal forest-wetland to a hypothetical homogeneous wetland landscape could induce a near-surface cooling effect on regional air temperatures of up to 3-4 °C in late winter and 1-2 °C in summer. An atmospheric wetting effect in summer is indicated by a maximum increase in water vapour mixing ratios of 2 mmol mol -1 . At the same time, maximum boundary layer heights are reduced by about a third of the original height. In fall, simulated air temperature and atmospheric moisture between the two scenarios do not differ. Therefore, permafrost thaw-induced boreal forest loss may modify regional precipitation patterns and slow down regional warming trends. © 2016 John Wiley & Sons Ltd.
Simulating the onset of spring vegetation growth across the Northern Hemisphere.
Liu, Qiang; Fu, Yongshuo H; Liu, Yongwen; Janssens, Ivan A; Piao, Shilong
2018-03-01
Changes in the spring onset of vegetation growth in response to climate change can profoundly impact climate-biosphere interactions. Thus, robust simulation of spring onset is essential to accurately predict ecosystem responses and feedback to ongoing climate change. To date, the ability of vegetation phenology models to reproduce spatiotemporal patterns of spring onset at larger scales has not been thoroughly investigated. In this study, we took advantage of phenology observations via remote sensing to calibrate and evaluated six models, including both one-phase (considering only forcing temperatures) and two-phase (involving forcing, chilling, and photoperiod) models across the Northern Hemisphere between 1982 and 2012. Overall, we found that the model that integrated the photoperiod effect performed best at capturing spatiotemporal patterns of spring phenology in boreal and temperate forests. By contrast, all of the models performed poorly in simulating the onset of growth in grasslands. These results suggest that the photoperiod plays a role in controlling the onset of growth in most Northern Hemisphere forests, whereas other environmental factors (e.g., precipitation) should be considered when simulating the onset of growth in grasslands. We also found that the one-phase model performed as well as the two-phase models in boreal forests, which implies that the chilling requirement is probably fulfilled across most of the boreal zone. Conversely, two-phase models performed better in temperate forests than the one-phase model, suggesting that photoperiod and chilling play important roles in these temperate forests. Our results highlight the significance of including chilling and photoperiod effects in models of the spring onset of forest growth at large scales, and indicate that the consideration of additional drivers may be required for grasslands. © 2017 John Wiley & Sons Ltd.
Fire in Siberian boreal forests -- implications for global climate and air quality
Eduard P. Davidenko
1998-01-01
Boreal forests and woodlands comprise about 29 percent of the world's forest cover. About 70 percent of this forest is in Eurasia, mostly in the Russian Federation. Boreal forests contain about 45 percent of the world's growing stock and are an increasingly important part of global timber production. Fire impacts large areas of boreal forest annually in...
NASA Astrophysics Data System (ADS)
Gennaretti, Fabio; Gea-Izquierdo, Guillermo; Boucher, Etienne; Berninger, Frank; Arseneault, Dominique; Guiot, Joel
2017-11-01
A better understanding of the coupling between photosynthesis and carbon allocation in the boreal forest, together with its associated environmental factors and mechanistic rules, is crucial to accurately predict boreal forest carbon stocks and fluxes, which are significant components of the global carbon budget. Here, we adapted the MAIDEN ecophysiological forest model to consider important processes for boreal tree species, such as nonlinear acclimation of photosynthesis to temperature changes, canopy development as a function of previous-year climate variables influencing bud formation and the temperature dependence of carbon partition in summer. We tested these modifications in the eastern Canadian taiga using black spruce (Picea mariana (Mill.) B.S.P.) gross primary production and ring width data. MAIDEN explains 90 % of the observed daily gross primary production variability, 73 % of the annual ring width variability and 20-30 % of its high-frequency component (i.e., when decadal trends are removed). The positive effect on stem growth due to climate warming over the last several decades is well captured by the model. In addition, we illustrate how we improve the model with each introduced model adaptation and compare the model results with those of linear response functions. Our results demonstrate that MAIDEN simulates robust relationships with the most important climate variables (those detected by classical response-function analysis) and is a powerful tool for understanding how environmental factors interact with black spruce ecophysiology to influence present-day and future boreal forest carbon fluxes.
Persson, Inga-Lill; Nilsson, Mats B; Pastor, John; Eriksson, Tobias; Bergström, Roger; Danell, Kjell
2009-10-01
Large herbivores can affect the carbon cycle in boreal forests by changing productivity and plant species composition, which in turn could ultimately alter litter production, nutrient cycling, and the partitioning between aboveground and belowground allocation of carbon. Here we experimentally tested how moose (Alces alces) at different simulated population densities affected belowground respiration rates (estimated as CO2 flux) in young boreal forest stands situated along a site productivity gradient. At high simulated population density, moose browsing considerably depressed belowground respiration rates (24-56% below that of no-moose controls) except during June, where the difference only was 10%. Moose browsing depressed belowground respiration the most on low-productivity sites. Soil moisture and temperature did not affect respiration rates. Impact of moose on belowground respiration was closely linked to litter production and followed Michaelis-Menten dynamics. The main mechanism by which moose decrease belowground respiration rates is likely their effect on photosynthetic biomass (especially decreased productivity of deciduous trees) and total litter production. An increased productivity of deciduous trees along the site productivity gradient causes an unequal effect of moose along the same gradient. The rapid growth of deciduous trees may offer higher resilience against negative effects of moose browsing on litter production and photosynthate allocation to roots.
NASA Astrophysics Data System (ADS)
Trugman, A. T.; Fenton, N. J.; Bergeron, Y.; Xu, X.; Welp, L. R.; Medvigy, D.
2016-09-01
Previous empirical work has shown that feedbacks between fire severity, soil organic layer thickness, tree recruitment, and forest growth are important factors controlling carbon accumulation after fire disturbance. However, current boreal forest models inadequately simulate this feedback. We address this deficiency by updating the ED2 model to include a dynamic feedback between soil organic layer thickness, tree recruitment, and forest growth. The model is validated against observations spanning monthly to centennial time scales and ranging from Alaska to Quebec. We then quantify differences in forest development after fire disturbance resulting from changes in soil organic layer accumulation, temperature, nitrogen availability, and atmospheric CO2. First, we find that ED2 accurately reproduces observations when a dynamic soil organic layer is included. Second, simulations indicate that the presence of a thick soil organic layer after a mild fire disturbance decreases decomposition and productivity. The combination of the biological and physical effects increases or decreases total ecosystem carbon depending on local conditions. Third, with a 4°C temperature increase, some forests transition from undergoing succession to needleleaf forests to recruiting multiple cohorts of broadleaf trees, decreasing total ecosystem carbon by ˜40% after 300 years. However, the presence of a thick soil organic layer due to a persistently mild fire regime can prevent this transition and mediate carbon losses even under warmer temperatures. Fourth, nitrogen availability regulates successional dynamics; broadleaf species are less competitive with needleleaf trees under low nitrogen regimes. Fifth, the boreal forest shows additional short-term capacity for carbon sequestration as atmospheric CO2 increases.
The changing effects of Alaska's boreal forest on the climate system
E.S. Euskirchen; A.D. McGuire; F.S. Chapin; T.S. Rupp
2010-01-01
In the boreal forests of Alaska, recent changes in climate have influenced the exchange of trace gases, water, and energy between these forests and the atmosphere. These changes in the structure and function of boreal forests can then feed back to impact regional and global climates. We examine the type and magnitude of the climate feedbacks from boreal forests in...
Potential changes in forest composition could reduce impacts of climate change on boreal wildfires.
Terrier, Aurélie; Girardin, Martin P; Périé, Catherine; Legendre, Pierre; Bergeron, Yves
2013-01-01
There is general consensus that wildfires in boreal forests will increase throughout this century in response to more severe and frequent drought conditions induced by climate change. However, prediction models generally assume that the vegetation component will remain static over the next few decades. As deciduous species are less flammable than conifer species, it is reasonable to believe that a potential expansion of deciduous species in boreal forests, either occurring naturally or through landscape management, could offset some of the impacts of climate change on the occurrence of boreal wildfires. The objective of this study was to determine the potential of this offsetting effect through a simulation experiment conducted in eastern boreal North America. Predictions of future fire activity were made using multivariate adaptive regression splines (MARS) with fire behavior indices and ecological niche models as predictor variables so as to take into account the effects of changing climate and tree distribution on fire activity. A regional climate model (RCM) was used for predictions of future fire risk conditions. The experiment was conducted under two tree dispersal scenarios: the status quo scenario, in which the distribution of forest types does not differ from the present one, and the unlimited dispersal scenario, which allows forest types to expand their range to fully occupy their climatic niche. Our results show that future warming will create climate conditions that are more prone to fire occurrence. However, unlimited dispersal of southern restricted deciduous species could reduce the impact of climate change on future fire occurrence. Hence, the use of deciduous species could be a good option for an efficient strategic fire mitigation strategy aimed at reducing fire Propagation in coniferous landscapes and increasing public safety in remote populated areas of eastern boreal Canada under climate change.
Kimball, J. S.; Keyser, A. R.; Running, S. W.; Saatchi, S. S.
2000-06-01
An ecological process model (BIOME-BGC) was used to assess boreal forest regional net primary production (NPP) and response to short-term, year-to-year weather fluctuations based on spatially explicit, land cover and biomass maps derived by radar remote sensing, as well as soil, terrain and daily weather information. Simulations were conducted at a 30-m spatial resolution, over a 1205 km(2) portion of the BOREAS Southern Study Area of central Saskatchewan, Canada, over a 3-year period (1994-1996). Simulations of NPP for the study region were spatially and temporally complex, averaging 2.2 (+/- 0.6), 1.8 (+/- 0.5) and 1.7 (+/- 0.5) Mg C ha(-1) year(-1) for 1994, 1995 and 1996, respectively. Spatial variability of NPP was strongly controlled by the amount of aboveground biomass, particularly photosynthetic leaf area, whereas biophysical differences between broadleaf deciduous and evergreen coniferous vegetation were of secondary importance. Simulations of NPP were strongly sensitive to year-to-year variations in seasonal weather patterns, which influenced the timing of spring thaw and deciduous bud-burst. Reductions in annual NPP of approximately 17 and 22% for 1995 and 1996, respectively, were attributed to 3- and 5-week delays in spring thaw relative to 1994. Boreal forest stands with greater proportions of deciduous vegetation were more sensitive to the timing of spring thaw than evergreen coniferous stands. Similar relationships were found by comparing simulated snow depth records with 10-year records of aboveground NPP measurements obtained from biomass harvest plots within the BOREAS region. These results highlight the importance of sub-grid scale land cover complexity in controlling boreal forest regional productivity, the dynamic response of the biome to short-term interannual climate variations, and the potential implications of climate change and other large-scale disturbances.
Ter-Mikaelian, Michael T; Colombo, Stephen J; Chen, Jiaxin
2013-10-01
Carbon stocks in managed forests of Ontario, Canada, and in harvested wood products originated from these forests were estimated for 2010-2100. Simulations included four future forest harvesting scenarios based on historical harvesting levels (low, average, high, and maximum available) and a no-harvest scenario. In four harvesting scenarios, forest carbon stocks in Ontario's managed forest were estimated to range from 6202 to 6227 Mt C (millions of tons of carbon) in 2010, and from 6121 to 6428 Mt C by 2100. Inclusion of carbon stored in harvested wood products in use and in landfills changed the projected range in 2100 to 6710-6742 Mt C. For the no-harvest scenario, forest carbon stocks were projected to change from 6246 Mt C in 2010 to 6680 Mt C in 2100. Spatial variation in projected forest carbon stocks was strongly related to changes in forest age (r = 0.603), but had weak correlation with harvesting rates. For all managed forests in Ontario combined, projected carbon stocks in combined forest and harvested wood products converged to within 2% difference by 2100. The results suggest that harvesting in the boreal forest, if applied within limits of sustainable forest management, will eventually have a relatively small effect on long-term combined forest and wood products carbon stocks. However, there was a large time lag to approach carbon equality, with more than 90 years with a net reduction in stored carbon in harvested forests plus wood products compared to nonharvested boreal forest which also has low rates of natural disturbance. The eventual near equivalency of carbon stocks in nonharvested forest and forest that is harvested and protected from natural disturbance reflects both the accumulation of carbon in harvested wood products and the relatively young age at which boreal forest stands undergo natural succession in the absence of disturbance.
Quantifying the missing link between forest albedo and productivity in the boreal zone
NASA Astrophysics Data System (ADS)
Hovi, Aarne; Liang, Jingjing; Korhonen, Lauri; Kobayashi, Hideki; Rautiainen, Miina
2016-11-01
Albedo and fraction of absorbed photosynthetically active radiation (FAPAR) determine the shortwave radiation balance and productivity of forests. Currently, the physical link between forest albedo and productivity is poorly understood, yet it is crucial for designing optimal forest management strategies for mitigating climate change. We investigated the relationships between boreal forest structure, albedo and FAPAR using a radiative transfer model called Forest Reflectance and Transmittance model FRT and extensive forest inventory data sets ranging from southern boreal forests to the northern tree line in Finland and Alaska (N = 1086 plots). The forests in the study areas vary widely in structure, species composition, and human interference, from intensively managed in Finland to natural growth in Alaska. We show that FAPAR of tree canopies (FAPARCAN) and albedo are tightly linked in boreal coniferous forests, but the relationship is weaker if the forest has broadleaved admixture, or if canopies have low leaf area and the composition of forest floor varies. Furthermore, the functional shape of the relationship between albedo and FAPARCAN depends on the angular distribution of incoming solar irradiance. We also show that forest floor can contribute to over 50 % of albedo or total ecosystem FAPAR. Based on our simulations, forest albedos can vary notably across the biome. Because of larger proportions of broadleaved trees, the studied plots in Alaska had higher albedo (0.141-0.184) than those in Finland (0.136-0.171) even though the albedo of pure coniferous forests was lower in Alaska. Our results reveal that variation in solar angle will need to be accounted for when evaluating climate effects of forest management in different latitudes. Furthermore, increasing the proportion of broadleaved trees in coniferous forests is the most important means of maximizing albedo without compromising productivity: based on our findings the potential of controlling forest density (i.e., basal area) to increase albedo may be limited compared to the effect of favoring broadleaved species.
Quantifying nitrogen-fixation in feather moss carpets of boreal forests.
DeLuca, Thomas H; Zackrisson, Olle; Nilsson, Marie-Charlotte; Sellstedt, Anita
2002-10-31
Biological nitrogen (N) fixation is the primary source of N within natural ecosystems, yet the origin of boreal forest N has remained elusive. The boreal forests of Eurasia and North America lack any significant, widespread symbiotic N-fixing plants. With the exception of scattered stands of alder in early primary successional forests, N-fixation in boreal forests is considered to be extremely limited. Nitrogen-fixation in northern European boreal forests has been estimated at only 0.5 kg N ha(-1) yr(-1); however, organic N is accumulated in these ecosystems at a rate of 3 kg N ha(-1) yr(-1) (ref. 8). Our limited understanding of the origin of boreal N is unacceptable given the extent of the boreal forest region, but predictable given our imperfect knowledge of N-fixation. Herein we report on a N-fixing symbiosis between a cyanobacterium (Nostoc sp.) and the ubiquitous feather moss, Pleurozium schreberi (Bird) Mitt. that alone fixes between 1.5 and 2.0 kg N ha(-1) yr(-1) in mid- to late-successional forests of northern Scandinavia and Finland. Previous efforts have probably underestimated N-fixation potential in boreal forests.
NASA Technical Reports Server (NTRS)
Kimball, John; Kang, Sinkyu
2003-01-01
The original objectives of this proposed 3-year project were to: 1) quantify the respective contributions of land cover and disturbance (i.e., wild fire) to uncertainty associated with regional carbon source/sink estimates produced by a variety of boreal ecosystem models; 2) identify the model processes responsible for differences in simulated carbon source/sink patterns for the boreal forest; 3) validate model outputs using tower and field- based estimates of NEP and NPP; and 4) recommend/prioritize improvements to boreal ecosystem carbon models, which will better constrain regional source/sink estimates for atmospheric C02. These original objectives were subsequently distilled to fit within the constraints of a 1 -year study. This revised study involved a regional model intercomparison over the BOREAS study region involving Biome-BGC, and TEM (A.D. McGuire, UAF) ecosystem models. The major focus of these revised activities involved quantifying the sensitivity of regional model predictions associated with land cover classification uncertainties. We also evaluated the individual and combined effects of historical fire activity, historical atmospheric CO2 concentrations, and climate change on carbon and water flux simulations within the BOREAS study region.
Study of landscape change under forest harvesting and climate warming-induced fire disturbance
S. He Hong; David J. Mladenoff; Eric J. Gustafson
2002-01-01
We examined tree species responses under forest harvesting and an increased fire disturbance scenario due to climate warming in northern Wisconsin where northern hardwood and boreal forests are currently predominant. Individual species response at the ecosystem scale was simulated with a gap model, which integrates soil, climate and species data, stratified by...
NASA Astrophysics Data System (ADS)
Thurner, Martin; Beer, Christian; Carvalhais, Nuno; Forkel, Matthias; Tito Rademacher, Tim; Santoro, Maurizio; Tum, Markus; Schmullius, Christiane
2016-04-01
Long-term vegetation dynamics are one of the key uncertainties of the carbon cycle. There are large differences in simulated vegetation carbon stocks and fluxes including productivity, respiration and carbon turnover between global vegetation models. Especially the implementation of climate-related mortality processes, for instance drought, fire, frost or insect effects, is often lacking or insufficient in current models and their importance at global scale is highly uncertain. These shortcomings have been due to the lack of spatially extensive information on vegetation carbon stocks, which cannot be provided by inventory data alone. Instead, we recently have been able to estimate northern boreal and temperate forest carbon stocks based on radar remote sensing data. Our spatially explicit product (0.01° resolution) shows strong agreement to inventory-based estimates at a regional scale and allows for a spatial evaluation of carbon stocks and dynamics simulated by global vegetation models. By combining this state-of-the-art biomass product and NPP datasets originating from remote sensing, we are able to study the relation between carbon turnover rate and a set of climate indices in northern boreal and temperate forests along spatial gradients. We observe an increasing turnover rate with colder winter temperatures and longer winters in boreal forests, suggesting frost damage and the trade-off between frost adaptation and growth being important mortality processes in this ecosystem. In contrast, turnover rate increases with climatic conditions favouring drought and insect outbreaks in temperate forests. Investigated global vegetation models from the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), including HYBRID4, JeDi, JULES, LPJml, ORCHIDEE, SDGVM, and VISIT, are able to reproduce observation-based spatial climate - turnover rate relationships only to a limited extent. While most of the models compare relatively well in terms of NPP, simulated vegetation carbon stocks are severely biased compared to our biomass dataset. Current limitations lead to considerable uncertainties in the estimated vegetation carbon turnover, contributing substantially to the forest feedback to climate change. Our results are the basis for improving mortality concepts in models and estimating their impact on the land carbon balance.
NASA Technical Reports Server (NTRS)
Hall, F. G.; Huemmrich, K. F.; Strebel, D. E.; Goetz, S. J.; Nickeson, J. E.; Woods, K. D.
1992-01-01
Described here are the results of a NASA field experiment conducted in the Superior National Forest near Ely, Minnesota, during the summers of 1983 and 1984. The purpose of the experiment was to examine the use of remote sensing to provide measurements of biophysical parameters in the boreal forests. Leaf area index, biomass, net primary productivity, canopy coverage, overstory and understory species composition data are reported for about 60 sites, representing a range of stand density and age for aspen and spruce. Leaf, needle, and bark high-resolution spectral reflectance and transmittance data are reported for the major boreal forest species. Canopy bidirectional reflectance measurements are provided from a helicopter-mounted Barnes Multiband Modular Radiometer (MMR) and the Thematic Mapper Simulator (TMS) on the NASA C-130 aircraft.
Beguin, Julien; McIntire, Eliot J B; Raulier, Frédéric
2015-11-01
Protected area networks are the dominant conservation approach that is used worldwide for protecting biodiversity. Conservation planning in managed forests, however, presents challenges when endangered species use old-growth forests targeted by the forest industry for timber supply. In many ecosystems, this challenge is further complicated by the occurrence of natural disturbance events that disrupt forest attributes at multiple scales. Using spatially explicit landscape simulation experiments, we gather insights into how these large scale, multifaceted processes (fire risk, timber harvesting and the amount of protected area) influenced both the persistence of the threatened boreal caribou and the level of timber supply in the boreal forest of eastern Canada. Our result showed that failure to account explicitly and a priori for fire risk in the calculation of timber supply led to an overestimation of timber harvest volume, which in turn led to rates of cumulative disturbances that threatened both the long-term persistence of boreal caribou and the sustainability of the timber supply itself. Salvage logging, however, allowed some compensatory cumulative effects. It minimised the reductions of timber supply within a range of ∼10% while reducing the negative impact of cumulative disturbances caused by fire and logging on caribou. With the global increase of the human footprint on forest ecosystems, our approach and results provide useful tools and insights for managers to resolve what often appear as lose-lose situation between the persistence of species at risk and timber harvest in other forest ecosystems. These tools contribute to bridge the gap between conservation and forest management, two disciplines that remain too often disconnected in practice. Copyright © 2015 Elsevier Ltd. All rights reserved.
Modelling Variable Fire Severity in Boreal Forests: Effects of Fire Intensity and Stand Structure
Miquelajauregui, Yosune; Cumming, Steven G.; Gauthier, Sylvie
2016-01-01
It is becoming clear that fires in boreal forests are not uniformly stand-replacing. On the contrary, marked variation in fire severity, measured as tree mortality, has been found both within and among individual fires. It is important to understand the conditions under which this variation can arise. We integrated forest sample plot data, tree allometries and historical forest fire records within a diameter class-structured model of 1.0 ha patches of mono-specific black spruce and jack pine stands in northern Québec, Canada. The model accounts for crown fire initiation and vertical spread into the canopy. It uses empirical relations between fire intensity, scorch height, the percent of crown scorched and tree mortality to simulate fire severity, specifically the percent reduction in patch basal area due to fire-caused mortality. A random forest and a regression tree analysis of a large random sample of simulated fires were used to test for an effect of fireline intensity, stand structure, species composition and pyrogeographic regions on resultant severity. Severity increased with intensity and was lower for jack pine stands. The proportion of simulated fires that burned at high severity (e.g. >75% reduction in patch basal area) was 0.80 for black spruce and 0.11 for jack pine. We identified thresholds in intensity below which there was a marked sensitivity of simulated fire severity to stand structure, and to interactions between intensity and structure. We found no evidence for a residual effect of pyrogeographic region on simulated severity, after the effects of stand structure and species composition were accounted for. The model presented here was able to produce variation in fire severity under a range of fire intensity conditions. This suggests that variation in stand structure is one of the factors causing the observed variation in boreal fire severity. PMID:26919456
Modelling Variable Fire Severity in Boreal Forests: Effects of Fire Intensity and Stand Structure.
Miquelajauregui, Yosune; Cumming, Steven G; Gauthier, Sylvie
2016-01-01
It is becoming clear that fires in boreal forests are not uniformly stand-replacing. On the contrary, marked variation in fire severity, measured as tree mortality, has been found both within and among individual fires. It is important to understand the conditions under which this variation can arise. We integrated forest sample plot data, tree allometries and historical forest fire records within a diameter class-structured model of 1.0 ha patches of mono-specific black spruce and jack pine stands in northern Québec, Canada. The model accounts for crown fire initiation and vertical spread into the canopy. It uses empirical relations between fire intensity, scorch height, the percent of crown scorched and tree mortality to simulate fire severity, specifically the percent reduction in patch basal area due to fire-caused mortality. A random forest and a regression tree analysis of a large random sample of simulated fires were used to test for an effect of fireline intensity, stand structure, species composition and pyrogeographic regions on resultant severity. Severity increased with intensity and was lower for jack pine stands. The proportion of simulated fires that burned at high severity (e.g. >75% reduction in patch basal area) was 0.80 for black spruce and 0.11 for jack pine. We identified thresholds in intensity below which there was a marked sensitivity of simulated fire severity to stand structure, and to interactions between intensity and structure. We found no evidence for a residual effect of pyrogeographic region on simulated severity, after the effects of stand structure and species composition were accounted for. The model presented here was able to produce variation in fire severity under a range of fire intensity conditions. This suggests that variation in stand structure is one of the factors causing the observed variation in boreal fire severity.
Long term effects of fire on the carbon balance in boreal forests
NASA Astrophysics Data System (ADS)
Berninger, Frank; Köster, Kaja; Pumpanen, Jukka
2013-04-01
Fire is the primary process which organizes the physical and biological attributes of the boreal biome and influences energy flows and biogeochemical cycles, particularly the carbon and nitrogen cycle. We established a forest fire chronosequence in the northern boreal forest in Lapland (Värriö Strict Nature Reserve), Finland (67°46' N, 29°35' E) that spans 160 years. Soil organic matter and its turnover were measured in and ex situ, as well as biomass of trees. The fungal biomass was assessed using soil ergosterol contents. The results indicate that fires slow down the turnover of soil organic matter for a period of at least 50 years. The turnover rate in recently burnt sites was only half of the turnover of the old forest site. Decreases in the turnover where still substantial 50 years after fire. The slow recovery of fungal biomass after fires seems to be the cause of the decrease since sites with a higher concentration of fungal biomass in the soils had shorter soil organic matter turnover rates. Increases in stand foliar biomass were less important for the turnover of soil organic matter. We tried to explore the potential importance of our finding using a simple data driven simulation model that estimates soil carbon dynamic from litter input and the measured soil carbon turnover times. The results indicate the initial post-fire slowdown of soil carbon turnover is an important component of the boreal carbon cycle. Using our fire intervals the simulated soil carbon stocks with a lower post-fire soil organic matter turnover were up to 15 % larger than simulations assuming a constant carbon turnover rate. Our sensitivity analysis indicates that the effects will be larger in areas with frequent fires. We do not know which environmental factors cause the delay in the turnover time and the effects of fires on post fire soil organic matter turnover could be considerably smaller or larger. Altogether our results fit well to published results from laboratory studies and show that post-fire depression of microbial activities are important on the ecosystem and landscape level. Since fire frequencies in boreal forests will increase in many areas as the result of climate change, it will be important to better understand the effects of fire on the soil carbon turnover and to incorporate it into carbon cycle models.
Luo, Xu; Wang, Yu Li; Zhang, Jin Quan
2018-03-01
Predicting the effects of climate warming and fire disturbance on forest aboveground biomass is a central task of studies in terrestrial ecosystem carbon cycle. The alteration of temperature, precipitation, and disturbance regimes induced by climate warming will affect the carbon dynamics of forest ecosystem. Boreal forest is an important forest type in China, the responses of which to climate warming and fire disturbance are increasingly obvious. In this study, we used a forest landscape model LANDIS PRO to simulate the effects of climate change on aboveground biomass of boreal forests in the Great Xing'an Mountains, and compared direct effects of climate warming and the effects of climate warming-induced fires on forest aboveground biomass. The results showed that the aboveground biomass in this area increased under climate warming scenarios and fire disturbance scenarios with increased intensity. Under the current climate and fire regime scenario, the aboveground biomass in this area was (97.14±5.78) t·hm -2 , and the value would increase up to (97.93±5.83) t·hm -2 under the B1F2 scenario. Under the A2F3 scenario, aboveground biomass at landscape scale was relatively higher at the simulated periods of year 100-150 and year 150-200, and the value were (100.02±3.76) t·hm -2 and (110.56±4.08) t·hm -2 , respectively. Compared to the current fire regime scenario, the predicted biomass at landscape scale was increased by (0.56±1.45) t·hm -2 under the CF2 scenario (fire intensity increased by 30%) at some simulated periods, and the aboveground biomass was reduced by (7.39±1.79) t·hm -2 in CF3 scenario (fire intensity increased by 230%) at the entire simulation period. There were significantly different responses between coniferous and broadleaved species under future climate warming scenarios, in that the simulated biomass for both Larix gmelinii and Betula platyphylla showed decreasing trend with climate change, whereas the simulated biomass for Pinus sylvestris var. mongolica, Picea koraiensis and Populus davidiana showed increasing trend at different degrees during the entire simulation period. There was a time lag for the direct effect of climate warming on biomass for coniferous and broadleaved species. The response time of coniferous species to climate warming was 25-30 years, which was longer than that for broadleaf species. The forest landscape in the Great Xing'an Mountains was sensitive to the interactive effect of climate warming (high CO 2 emissions) and high intensity fire disturbance. Future climate warming and high intensity forest fire disturbance would significantly change the composition and structure of forest ecosystem.
Bichet, Orphé; Dupuch, Angélique; Hébert, Christian; Le Borgne, Hélène Le; Fortin, Daniel
2016-03-01
With the intensification of human activities, preserving animal populations is a contemporary challenge of critical importance. In this context, the umbrella species concept is appealing because preserving a single species should result in the protection of multiple co-occurring species. Practitioners, though, face the task of having to find suitable umbrellas to develop single-species management guidelines. In North America, boreal forests must be managed to facilitate the recovery of the threatened boreal caribou (Rangifer tarandus). Yet, the effect of caribou conservation on co-occurring animal species remains poorly documented. We tested if boreal caribou can constitute an effective umbrella for boreal fauna. Birds, small mammals, and insects were sampled along gradients of post-harvest and post-fire forest succession. Predictive models of occupancy were developed from the responses of 95 species to characteristics of forest stands and their surroundings. We then assessed the similarity of species occupancy expected between simulated harvested landscapes and a 90 000-km2 uncut landscape. Managed landscapes were simulated based on three levels of disturbance, two timber-harvest rotation cycles, and dispersed or aggregated cut-blocks. We found that management guidelines that were more likely to maintain caribou populations should also better preserve animal assemblages. Relative to fragmentation or harvest cycle, we detected a stronger effect of habitat loss on species assemblages. Disturbing 22%, 35%, and 45% of the landscape should result, respectively, in 80%, 60%, and 40% probability for caribou populations to be sustainable; in turn, this should result in regional species assemblages with Jaccard similarity indices of 0.86, 0.79, and 0.74, respectively, relative to the uncut landscape. Our study thus demonstrates the value of single-species management for animal conservation. Our quantitative approach allows for the evaluation of management guidelines prior to implementation, thereby providing a tool for establishing suitable compromises between economic and environmental sustainability of human activities.
Douglas J. Shinneman; Brian J. Palik; Meredith W. Cornett
2012-01-01
Management strategies to restore forest landscapes are often designed to concurrently reduce fire risk. However, the compatibility of these two objectives is not always clear, and uncoordinated management among landowners may have unintended consequences. We used a forest landscape simulation model to compare the effects of contemporary management and hypothetical...
NASA Astrophysics Data System (ADS)
Koh, Y.; Jeong, J. H.; Kim, B. M.; Park, T. W.; Jeong, S. J.
2017-12-01
Vegetation activities over the high-latitude in the Northern-Hemisphere are known to be very sensitive to climate change, which can, in turn, affect the entire climate system. This is one of the important feedback effects on global climate change. In this study, we have detected a declining trend of vegetation index in the boreal forest (Taiga) region of Eurasia in early spring from the late 1990s, and confirmed that the cause is closely related to the decrease in winter temperature linked to the Arctic sea ice change. The reduction of Arctic sea ice induces weakening of the Polar vortex around the Arctic, which has a chilling effect throughout Eurasia until the early spring (March) by strengthening the Siberian high in the Eurasian continent. The decrease of vegetation growth is caused by the extreme cold phenomenon directly affecting the growth of the boreal trees. To verify this, we used vegetation-climate coupled models to investigate climate-vegetation sensitivity to sea ice reduction. As a result, when the Arctic sea ice decreased in the model simulation, the vegetation index of the boreal forest, especially needleleaf evergreen trees, decreased as similarly detected by observations.
A Passive Microwave L-Band Boreal Forest Freeze/Thaw and Vegetation Phenology Study
NASA Astrophysics Data System (ADS)
Roy, A.; Sonnentag, O.; Pappas, C.; Mavrovic, A.; Royer, A.; Berg, A. A.; Rowlandson, T. L.; Lemay, J.; Helgason, W.; Barr, A.; Black, T. A.; Derksen, C.; Toose, P.
2016-12-01
The boreal forest is the second largest land biome in the world and thus plays a major role in the global and regional climate systems. The extent, timing and duration of seasonal freeze/thaw (F/T) state influences vegetation developmental stages (phenology) and, consequently, constitute an important control on how boreal forest ecosystems exchange carbon, water and energy with the atmosphere. The effective retrieval of seasonal F/T state from L-Band radiometry was demonstrated using satellite mission. However, disentangling the seasonally differing contributions from forest overstory and understory vegetation, and the soil surface to the satellite signal remains challenging. Here we present initial results from a radiometer field campaign to improve our understanding of the L-Band derived boreal forest F/T signal and vegetation phenology. Two L-Band surface-based radiometers (SBR) are installed on a micrometeorological tower at the Southern Old Black Spruce site in central Saskatchewan over the 2016-2017 F/T season. One radiometer unit is installed on the flux tower so it views forest including all overstory and understory vegetation and the moss-covered ground surface. A second radiometer unit is installed within the boreal forest overstory, viewing the understory and the ground surface. The objectives of our study are (i) to disentangle the L-Band F/T signal contribution of boreal forest overstory from the understory and ground surface, (ii) to link the L-Band F/T signal to related boreal forest structural and functional characteristics, and (iii) to investigate the use of the L-Band signal to characterize boreal forest carbon, water and energy fluxes. The SBR observations above and within the forest canopy are used to retrieve the transmissivity (γ) and the scattering albedo (ω), two parameters that describe the emission of the forest canopy though the F/T season. These two forest parameters are compared with boreal forest structural and functional characteristics including eddy-covariance measurements of carbon dioxide, water and energy exchanges, sap flux density measurements of tree-level water dynamics, L-Band tree permittivity and temperature. The study will lead to improved monitoring of soil F/T and vegetation phenology at the boreal forest-scale from satellite L-Band observations.
Wei, Yawei; Li, Maihe; Chen, Hua; Lewis, Bernard J; Yu, Dapao; Zhou, Li; Zhou, Wangming; Fang, Xiangmin; Zhao, Wei; Dai, Limin
2013-01-01
The northeastern forest region of China is an important component of total temperate and boreal forests in the northern hemisphere. But how carbon (C) pool size and distribution varies among tree, understory, forest floor and soil components, and across stand ages remains unclear. To address this knowledge gap, we selected three major temperate and two major boreal forest types in northeastern (NE) China. Within both forest zones, we focused on four stand age classes (young, mid-aged, mature and over-mature). Results showed that total C storage was greater in temperate than in boreal forests, and greater in older than in younger stands. Tree biomass C was the main C component, and its contribution to the total forest C storage increased with increasing stand age. It ranged from 27.7% in young to 62.8% in over-mature stands in boreal forests and from 26.5% in young to 72.8% in over-mature stands in temperate forests. Results from both forest zones thus confirm the large biomass C storage capacity of old-growth forests. Tree biomass C was influenced by forest zone, stand age, and forest type. Soil C contribution to total forest C storage ranged from 62.5% in young to 30.1% in over-mature stands in boreal and from 70.1% in young to 26.0% in over-mature in temperate forests. Thus soil C storage is a major C pool in forests of NE China. On the other hand, understory and forest floor C jointly contained less than 13% and <5%, in boreal and temperate forests respectively, and thus play a minor role in total forest C storage in NE China.
Wei, Yawei; Li, Maihe; Chen, Hua; Lewis, Bernard J.; Yu, Dapao; Zhou, Li; Zhou, Wangming; Fang, Xiangmin; Zhao, Wei; Dai, Limin
2013-01-01
The northeastern forest region of China is an important component of total temperate and boreal forests in the northern hemisphere. But how carbon (C) pool size and distribution varies among tree, understory, forest floor and soil components, and across stand ages remains unclear. To address this knowledge gap, we selected three major temperate and two major boreal forest types in northeastern (NE) China. Within both forest zones, we focused on four stand age classes (young, mid-aged, mature and over-mature). Results showed that total C storage was greater in temperate than in boreal forests, and greater in older than in younger stands. Tree biomass C was the main C component, and its contribution to the total forest C storage increased with increasing stand age. It ranged from 27.7% in young to 62.8% in over-mature stands in boreal forests and from 26.5% in young to 72.8% in over-mature stands in temperate forests. Results from both forest zones thus confirm the large biomass C storage capacity of old-growth forests. Tree biomass C was influenced by forest zone, stand age, and forest type. Soil C contribution to total forest C storage ranged from 62.5% in young to 30.1% in over-mature stands in boreal and from 70.1% in young to 26.0% in over-mature in temperate forests. Thus soil C storage is a major C pool in forests of NE China. On the other hand, understory and forest floor C jointly contained less than 13% and <5%, in boreal and temperate forests respectively, and thus play a minor role in total forest C storage in NE China. PMID:23977252
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holden, Sandra R.; Berhe, Asmeret A.; Treseder, Kathleen K.
Climate warming is projected to increase the frequency and severity of wildfires in boreal forests, and increased wildfire activity may alter the large soil carbon (C) stocks in boreal forests. Changes in boreal soil C stocks that result from increased wildfire activity will be regulated in part by the response of microbial decomposition to fire, but post-fire changes in microbial decomposition are poorly understood. Here, we investigate the response of microbial decomposition to a boreal forest fire in interior Alaska and test the mechanisms that control post-fire changes in microbial decomposition. We used a reciprocal transplant between a recently burnedmore » boreal forest stand and a late successional boreal forest stand to test how post-fire changes in abiotic conditions, soil organic matter (SOM) composition, and soil microbial communities influence microbial decomposition. We found that SOM decomposing at the burned site lost 30.9% less mass over two years than SOM decomposing at the unburned site, indicating that post-fire changes in abiotic conditions suppress microbial decomposition. Our results suggest that moisture availability is one abiotic factor that constrains microbial decomposition in recently burned forests. In addition, we observed that burned SOM decomposed more slowly than unburned SOM, but the exact nature of SOM changes in the recently burned stand are unclear. Finally, we found no evidence that post-fire changes in soil microbial community composition significantly affect decomposition. Taken together, our study has demonstrated that boreal forest fires can suppress microbial decomposition due to post-fire changes in abiotic factors and the composition of SOM. Models that predict the consequences of increased wildfires for C storage in boreal forests may increase their predictive power by incorporating the observed negative response of microbial decomposition to boreal wildfires.« less
Nitrogen alters carbon dynamics during early succession in boreal forest
Steven D. Allison; Tracy B. Gartner; Michelle C. Mack; Krista McGuire; Kathleen Treseder
2010-01-01
Boreal forests are an important source of wood products, and fertilizers could be used to improve forest yields, especially in nutrient poor regions of the boreal zone. With climate change, fire frequencies may increase, resulting in a larger fraction of the boreal landscape present in early successional stages. Since most fertilization studies have focused on mature...
Identifying forest patterns from space to explore dynamics across the circumpolar boreal
NASA Astrophysics Data System (ADS)
Montesano, P. M.; Neigh, C. S. R.; Feng, M.; Channan, S.; Sexton, J. O.; Wagner, W.; Wooten, M.; Poulter, B.; Wang, L.
2017-12-01
A variety of forest patterns are the result of interactions between broad-scale climate and local-scale site factors and history across the northernmost portion of the circumpolar boreal. Patterns of forest extent, height, and cover help describe forest structure transitions that influence future and reflect past dynamics. Coarse spaceborne observations lack structural detail at forest transitions, which inhibits understanding of these dynamics. We highlight: (1) the use of sub-meter spaceborne stereogrammetry for deriving structure estimates in boreal forests; (2) its potential to complement other spaceborne estimates of forest structure at critical scales; and (3) the potential of these sub-meter and other Landsat-derived structure estimates for improving understanding of broad-scale boreal dynamics such as carbon flux and albedo, capturing the spatial variability of the boreal-tundra biome boundary, and assessing its potential for change.
Gundale, Michael J; Bach, Lisbet H; Nordin, Annika
2013-01-01
Bryophytes achieve substantial biomass and play several key functional roles in boreal forests that can influence how carbon (C) and nitrogen (N) cycling respond to atmospheric deposition of reactive nitrogen (Nr). They associate with cyanobacteria that fix atmospheric N₂, and downregulation of this process may offset anthropogenic Nr inputs to boreal systems. Bryophytes also promote soil C accumulation by thermally insulating soils, and changes in their biomass influence soil C dynamics. Using a unique large-scale (0.1 ha forested plots), long-term experiment (16 years) in northern Sweden where we simulated anthropogenic Nr deposition, we measured the biomass and N₂-fixation response of two bryophyte species, the feather mosses Hylocomium splendens and Pleurozium schreberi. Our data show that the biomass declined for both species; however, N₂-fixation rates per unit mass and per unit area declined only for H. splendens. The low and high treatments resulted in a 29% and 54% reduction in total feather moss biomass, and a 58% and 97% reduction in total N₂-fixation rate per unit area, respectively. These results help to quantify the sensitivity of feather moss biomass and N₂ fixation to chronic Nr deposition, which is relevant for modelling ecosystem C and N balances in boreal ecosystems.
Ecology of snowshoe hares in southern boreal and montane forests [Chapter 7
Karen E. Hodges
2000-01-01
Snowshoe hares occur in many of the montane and sub-boreal forests of the continental United States, as well as throughout the boreal forests of Canada and Alaska. Population dynamics in their southern range were previously thought to be noncyclic, in contrast to the strong 10-year fluctuation that typifies boreal populations of snowshoe hares. Time series data and...
Spatiotemporal patterns of fire-induced forest mortality in boreal regions and its potential drivers
NASA Astrophysics Data System (ADS)
Yang, J.; Tian, H.; Pan, S.; Hansen, M.; Wang, Y.
2017-12-01
Wildfire is the major natural disturbance in boreal forests, which have substantially affected various biological and biophysical processes. Although a few previous studies examined fire severity in boreal regions and reported a higher fire-induced forest mortality in boreal North America than in boreal Eurasia, it remains unclear how this mortality changes over time and how environmental factors affect the temporal dynamics of mortality at a large scale. By using a combination of multiple sources of satellite observations, we investigate the spatiotemporal patterns of fire-induced forest mortality in boreal regions, and examine the contributions of potential drivers. Our results show that forest composition is the key factor influencing the spatial variations of fire mortality across ecoregions. For the temporal variations, we find that the late-season burning was associated with higher fire intensity, which lead to greater forest mortality than the early-season burning. Forests burned in the warm and dry years had greater mortality than those burned in the cool and wet years. Our findings suggest that climate warming and drying not only stimulated boreal fire frequency, but also enhanced fire severity and forest mortality. Due to the significant effects of forest mortality on vegetation structure and ecosystem carbon dynamics, the spatiotemporal changes of fire-induced forest mortality should be explicitly considered to better understand fire impacts on regional and global climate change.
The Perfect Fire? Aging Stands in the Alaskan Boreal Forest Encounter Global Warming
NASA Astrophysics Data System (ADS)
Mann, D.; Rupp, S.; Duffy, P.
2008-12-01
The ecological responses of the boreal forest to climate change have global significance because of the large amount of carbon stored in its soils and biomass. Fire, mostly ignited by lightning, is the keystone disturbance agent in this forest. It triggers cycles of forest succession in its wake, and burning is the main avenue for carbon release back to the atmosphere. We studied the interactions between climate, fires, forest succession, and the age distributions of forest stands in a 60-million hectare region of Interior Alaska over the past 150 years. First we developed a statistical model relating climate to area burned over the period of record (1950-2005). Next we combined this model with climate reconstructions to extend the estimates of area burned back to A.D. 1860. We checked the resultant fire history against stand-age data from 5000 living trees sampled in the study region. Then we fed the history of area burned into a computer model that simulates forest succession on real landscapes. Results show striking changes in the means and variances of stand ages over the last 150 years in response to interactions between climate change and the successional dynamics of the boreal forest. Average stand age increased steadily between 1880 and 1940 and has fluctuated at high levels since then, indicating a historically unusual abundance of flammable stands. This accumulation of old stands has created the potential for unusually large fires. Some support for this conclusion comes from the unprecedented large sizes of the areas burned in 2004 and 2005. Further support comes when we add to the analysis the forecasts made by global climate models for Alaska over the next twenty years. Bracketing estimates for climate warming and precipitation change suggest that warmer, drier summers combined with aging forest stands will cause a series of unusually large fires, the like of which have not occurred in the region for >150 years. We infer that the enhanced burning of the Alaska boreal forest over the next 20 years will increase the release of trace gases from this region. We speculate that the forest will be transformed from being conifer dominated to one dominated by deciduous tree species, which could have sweeping effects on the region's other biota, its hydrology, and the role of the boreal forest in the global carbon cycle.
Boreal forests, aerosols and the impacts on clouds and climate.
Spracklen, Dominick V; Bonn, Boris; Carslaw, Kenneth S
2008-12-28
Previous studies have concluded that boreal forests warm the climate because the cooling from storage of carbon in vegetation and soils is cancelled out by the warming due to the absorption of the Sun's heat by the dark forest canopy. However, these studies ignored the impacts of forests on atmospheric aerosol. We use a global atmospheric model to show that, through emission of organic vapours and the resulting condensational growth of newly formed particles, boreal forests double regional cloud condensation nuclei concentrations (from approx. 100 to approx. 200 cm(-3)). Using a simple radiative model, we estimate that the resulting change in cloud albedo causes a radiative forcing of between -1.8 and -6.7 W m(-2) of forest. This forcing may be sufficiently large to result in boreal forests having an overall cooling impact on climate. We propose that the combination of climate forcings related to boreal forests may result in an important global homeostasis. In cold climatic conditions, the snow-vegetation albedo effect dominates and boreal forests warm the climate, whereas in warmer climates they may emit sufficiently large amounts of organic vapour modifying cloud albedo and acting to cool climate.
NASA Astrophysics Data System (ADS)
Foster, A.; Armstrong, A. H.; Shuman, J. K.; Ranson, K.; Shugart, H. H., Jr.; Rogers, B. M.; Goetz, S. J.
2017-12-01
Global temperatures have increased about 0.2°C per decade since 1979, and the high latitudes are warming faster than the rest of the globe. Climate change within Alaska is likely to bring about increased drought and longer fire seasons, as well as increases in the severity and frequency of fires. These changes in disturbance regimes and their associated effects on ecosystem C stocks, including permafrost, may lead to a positive feedback to further climate warming. As of now, it is uncertain how vegetation will respond to ongoing climate change, and the addition of disturbance effects leads to even more complicated and varied scenarios. Through ecological modeling, we have the capacity to examine forest processes at multiple temporal and spatial scales, allowing for the testing of complex interactions between vegetation, climate, and disturbances. The University of Virginia Forest Model Enhanced (UVAFME) is an individual tree-based forest model that has been updated for use in interior boreal Alaska, with a new permafrost model and updated fire simulation. These updated submodels allow for feedback between soils, vegetation, and fire severity through fuels tracking and impact of depth of burn on permafrost dynamics. We present these updated submodels as well as calibration and validation of UVAFME to the Yukon River Basin in Alaska, with comparisons to inventory data. We also present initial findings from simulations of potential future forest biomass, structure, and species composition across the Yukon River Basin under expected changes in precipitation, temperature, and disturbances. We predict changing climate and the associated impacts on wildfire and permafrost dynamics will result in shifts in biomass and species composition across the region, with potential for further feedback to the climate-vegetation-disturbance system. These simulations advance our understanding of the possible futures for the Alaskan boreal forest, which is a valuable part of the global carbon budget.
Krawchuk, Meg A; Cumming, Steve G
2011-01-01
Predictions of future fire activity over Canada's boreal forests have primarily been generated from climate data following assumptions that direct effects of weather will stand alone in contributing to changes in burning. However, this assumption needs explicit testing. First, areas recently burned can be less likely to burn again in the near term, and this endogenous regulation suggests the potential for self-limiting, negative biotic feedback to regional climate-driven increases in fire. Second, forest harvest is ongoing, and resulting changes in vegetation structure have been shown to affect fire activity. Consequently, we tested the assumption that fire activity will be driven by changes in fire weather without regulation by biotic feedback or regional harvest-driven changes in vegetation structure in the mixedwood boreal forest of Alberta, Canada, using a simulation experiment that includes the interaction of fire, stand dynamics, climate change, and clear cut harvest management. We found that climate change projected with fire weather indices calculated from the Canadian Regional Climate Model increased fire activity, as expected, and our simulations established evidence that the magnitude of regional increase in fire was sufficient to generate negative feedback to subsequent fire activity. We illustrate a 39% (1.39-fold) increase in fire initiation and 47% (1.47-fold) increase in area burned when climate and stand dynamics were included in simulations, yet 48% (1.48-fold) and 61% (1.61-fold) increases, respectively, when climate was considered alone. Thus, although biotic feedbacks reduced burned area estimates in important ways, they were secondary to the direct effect of climate on fire. We then show that ongoing harvest management in this region changed landscape composition in a way that led to reduced fire activity, even in the context of climate change. Although forest harvesting resulted in decreased regional fire activity when compared to unharvested conditions, forest composition and age structure was shifted substantially, illustrating a trade-off between management goals to minimize fire and conservation goals to emulate natural disturbance.
Simulating ozone dry deposition at a boreal forest with a multi-layer canopy deposition model
NASA Astrophysics Data System (ADS)
Zhou, Putian; Ganzeveld, Laurens; Rannik, Üllar; Zhou, Luxi; Gierens, Rosa; Taipale, Ditte; Mammarella, Ivan; Boy, Michael
2017-01-01
A multi-layer ozone (O3) dry deposition model has been implemented into SOSAA (a model to Simulate the concentrations of Organic vapours, Sulphuric Acid and Aerosols) to improve the representation of O3 concentration and flux within and above the forest canopy in the planetary boundary layer. We aim to predict the O3 uptake by a boreal forest canopy under varying environmental conditions and analyse the influence of different factors on total O3 uptake by the canopy as well as the vertical distribution of deposition sinks inside the canopy. The newly implemented dry deposition model was validated by an extensive comparison of simulated and observed O3 turbulent fluxes and concentration profiles within and above the boreal forest canopy at SMEAR II (Station to Measure Ecosystem-Atmosphere Relations II) in Hyytiälä, Finland, in August 2010. In this model, the fraction of wet surface on vegetation leaves was parametrised according to the ambient relative humidity (RH). Model results showed that when RH was larger than 70 % the O3 uptake onto wet skin contributed ˜ 51 % to the total deposition during nighttime and ˜ 19 % during daytime. The overall contribution of soil uptake was estimated about 36 %. The contribution of sub-canopy deposition below 4.2 m was modelled to be ˜ 38 % of the total O3 deposition during daytime, which was similar to the contribution reported in previous studies. The chemical contribution to O3 removal was evaluated directly in the model simulations. According to the simulated averaged diurnal cycle the net chemical production of O3 compensated up to ˜ 4 % of dry deposition loss from about 06:00 to 15:00 LT. During nighttime, the net chemical loss of O3 further enhanced removal by dry deposition by a maximum ˜ 9 %. Thus the results indicated an overall relatively small contribution of airborne chemical processes to O3 removal at this site.
Evolution of Canada’s Boreal Forest Spatial Patterns as Seen from Space
Pickell, Paul D.; Coops, Nicholas C.; Gergel, Sarah E.; Andison, David W.; Marshall, Peter L.
2016-01-01
Understanding the development of landscape patterns over broad spatial and temporal scales is a major contribution to ecological sciences and is a critical area of research for forested land management. Boreal forests represent an excellent case study for such research because these forests have undergone significant changes over recent decades. We analyzed the temporal trends of four widely-used landscape pattern indices for boreal forests of Canada: forest cover, largest forest patch index, forest edge density, and core (interior) forest cover. The indices were computed over landscape extents ranging from 5,000 ha (n = 18,185) to 50,000 ha (n = 1,662) and across nine major ecozones of Canada. We used 26 years of Landsat satellite imagery to derive annualized trends of the landscape pattern indices. The largest declines in forest cover, largest forest patch index, and core forest cover were observed in the Boreal Shield, Boreal Plain, and Boreal Cordillera ecozones. Forest edge density increased at all landscape extents for all ecozones. Rapidly changing landscapes, defined as the 90th percentile of forest cover change, were among the most forested initially and were characterized by four times greater decrease in largest forest patch index, three times greater increase in forest edge density, and four times greater decrease in core forest cover compared with all 50,000 ha landscapes. Moreover, approximately 18% of all 50,000 ha landscapes did not change due to a lack of disturbance. The pattern database results provide important context for forest management agencies committed to implementing ecosystem-based management strategies. PMID:27383055
Evolution of Canada's Boreal Forest Spatial Patterns as Seen from Space.
Pickell, Paul D; Coops, Nicholas C; Gergel, Sarah E; Andison, David W; Marshall, Peter L
2016-01-01
Understanding the development of landscape patterns over broad spatial and temporal scales is a major contribution to ecological sciences and is a critical area of research for forested land management. Boreal forests represent an excellent case study for such research because these forests have undergone significant changes over recent decades. We analyzed the temporal trends of four widely-used landscape pattern indices for boreal forests of Canada: forest cover, largest forest patch index, forest edge density, and core (interior) forest cover. The indices were computed over landscape extents ranging from 5,000 ha (n = 18,185) to 50,000 ha (n = 1,662) and across nine major ecozones of Canada. We used 26 years of Landsat satellite imagery to derive annualized trends of the landscape pattern indices. The largest declines in forest cover, largest forest patch index, and core forest cover were observed in the Boreal Shield, Boreal Plain, and Boreal Cordillera ecozones. Forest edge density increased at all landscape extents for all ecozones. Rapidly changing landscapes, defined as the 90th percentile of forest cover change, were among the most forested initially and were characterized by four times greater decrease in largest forest patch index, three times greater increase in forest edge density, and four times greater decrease in core forest cover compared with all 50,000 ha landscapes. Moreover, approximately 18% of all 50,000 ha landscapes did not change due to a lack of disturbance. The pattern database results provide important context for forest management agencies committed to implementing ecosystem-based management strategies.
Nancy H.F. French; Eric S. Kasischke; Ronald J. Hall; Karen A. Murphy; David L. Verbyla; Elizabeth E. Hoy; Jennifer L. Allen
2008-01-01
There has been considerable interest in the recent literature regarding the assessment of post-fire effects on forested areas within the North American boreal forest. Assessing the physical and ecological effects of fire in boreal forests has far-reaching implications for a variety of ecosystem processes -- such as post-fire forest succession -- and land management...
Estimate of temperature change due to ice and snow accretion in the boreal forest regions
NASA Astrophysics Data System (ADS)
Sugiura, K.; Nagai, S.; Suzuki, R.; Eicken, H.; Maximov, T. C.
2016-12-01
Previous research has demonstrated that there is a wide difference between the surface albedo in winter/spring in snow-covered forest regions in various global climate models. If the forest is covered with snow, the surface albedo would increase. In this study, we carried out field observations to monitor the frequency of ice and snow accretion in the boreal forest regions. The time-lapse digital camera was set up on each side of the observation towers at the site located to the north of Fairbanks (USA) and at the site located to the north of Yakutsk (Russia). It was confirmed that both forests were not necessarily covered with snow without a break from the start of continuous snow cover until the end. In addition, the boreal forest at the Yakutsk site is covered with snow in comparison with the boreal forest at the Fairbanks site for a long term such as for about five month. Using a one-dimensional mathematics model about the energy flow including atmospheric multiple scattering, we estimated temperature change due to ice and snow accretion in the boreal forest regions. The result show that the mean surface temperature rises approximately 0.5 [oC] when the boreal forest is not covered with snow. In this presentation, we discuss the snow albedo parameterization in the boreal forest regions and the one-dimensional mathematics model to provide a basis for a better understanding of the role of snow in the climate system.
The effect of fire intensity on soil respiration in Siberia boreal forest
S. Baker; A. V. Bogorodskaya
2010-01-01
Russian boreal forests have an annual wildfire activity averaging 10 to 20 million ha, which has increased in recent years. This wildfire activity, in response to changing climate has the potential to significantly affect the carbon storage capacity of Siberian forests. A better understanding of the effect of fire on soil respiration rates in the boreal forest of...
Effects of fire on regional evapotranspiration in the central Canadian boreal forest
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bond-Lamberty, Benjamin; Peckham, Scott D.; Gower, Stith T.
2009-04-08
Changes in fire regimes are driving the carbon balance of much of the North American boreal forest, but few studies have examined fire-driven changes in evapotranspiration (ET) at a regional scale. This study used a version of the Biome-BGC process model with dynamic and competing vegetation types, and explicit spatial representation of a large (106 km2) region, to simulate the effects of wildfire on ET and its components from 1948 to 2005 by comparing the fire dynamics of the 1948-1967 period with those of 1968-2005. Simulated ET averaged, over the entire temporal and spatial modeling domain, 323 mm yr-1; simulationmore » results indicated that changes in fire in recent decades decreased regional ET by 1.4% over the entire simulation, and by 3.9% in the last ten years (1996-2005). Conifers dominated the transpiration (EC) flux (120 mm yr-1) but decreased by 18% relative to deciduous broadleaf trees in the last part of the 20th century, when increased fire resulted in increased soil evaporation, lower canopy evaporation, lower EC and a younger and more deciduous forest. Well- and poorly-drained areas had similar rates of evaporation from the canopy and soil, but EC was twice as high in the well-drained areas. Mosses comprised a significant part of the evaporative flux to the atmosphere (22 mm yr-1). Modeled annual ET was correlated with net primary production, but not with temperature or precipitation; ET and its components were consistent with previous field and modeling studies. Wildfire is thus driving significant changes in hydrological processes, changes that may control the future carbon balance of the boreal forest.« less
Long-term boreal forest dynamics and disturbances: a multi-proxy approach
NASA Astrophysics Data System (ADS)
Stivrins, Normunds; Aakala, Tuomas; Kuuluvainen, Timo; Pasanen, Leena; Ilvonen, Liisa; Holmström, Lasse; Seppä, Heikki
2017-04-01
The boreal forest provides a variety of ecosystem services that are threatened under the ongoing climate warming. Along with the climate, there are several factors (fire, human-impact, pathogens), which influence boreal forest dynamics. Combination of short and long-term studies allowing complex assessment of forest response to natural abiotic and biotic stress factors is necessary for sustainable management of the boreal forest now and in the future. The ongoing EBOR (Ecological history and long-term dynamics of the boreal forest ecosystem) project integrates forest ecological and palaeoecological approaches to study boreal forest dynamics and disturbances. Using pollen, non-pollen palynomorphs, micro- and macrocharcoal, tree rings and fire scars, we analysed forest dynamics at stand-scale by sampling small forest hollows (small paludified depressions) and the surrounding forest stands in Finland and western Russia. Using charcoal data, we estimated a fire return interval of 320 years for the Russian sites, and, based on the fungi Neurospora that can grow on charred tree bark after a low-intensity fire, we were able to distinguish low- and high-intensity fire-events. In addition to the influence of fire events and/or fire regime changes, we further assessed potential relationships between tree species and herbivore presence and pathogens. As an example of such a relationship, our preliminary findings indicated a negative relationship between Picea and fungi Lasiosphaeria (caudata), which occurred during times of Picea decline.
Impact of mercury from the Canadian boreal forest widfires to New England
NASA Astrophysics Data System (ADS)
Hwang, G.; Talbot, R. W.
2010-12-01
Canadian Boreal forest fires release significant amounts of mercury and constitute several air quality episodes every year in New England, especially during summer. With continuous monitoring of mercury in two New England sites in both rural and elevated area from 2004 to date, several events of the wildfire transport was screened out using ensembles of backward trajectories to ensure the air parcels sampled spent substantial residence time within the box of burned area defined by the the Fire Information for Resource Management System(FIRMS) MODIS hotspot/fires data. Other biomass burning tracers, (such as HCN), were also used as criteria if they are were available during the events period. The mercury to CO ratios during the events were calculated as the input to the Sparse Matrix Operator Kernel Emissions System (SMOKE) model to simulate the high and low ranges of mercury emissions frorm the burned area. We are now using the Community Multiscale Air Quality Modeling System (CMAQ) to study the impact of the mercury emission from the Canadian boreal forest wildfires to the New England region in more details.
Carbon pool densities and a first estimate of the total carbon pool in the Mongolian forest-steppe.
Dulamsuren, Choimaa; Klinge, Michael; Degener, Jan; Khishigjargal, Mookhor; Chenlemuge, Tselmeg; Bat-Enerel, Banzragch; Yeruult, Yolk; Saindovdon, Davaadorj; Ganbaatar, Kherlenchimeg; Tsogtbaatar, Jamsran; Leuschner, Christoph; Hauck, Markus
2016-02-01
The boreal forest biome represents one of the most important terrestrial carbon stores, which gave reason to intensive research on carbon stock densities. However, such an analysis does not yet exist for the southernmost Eurosiberian boreal forests in Inner Asia. Most of these forests are located in the Mongolian forest-steppe, which is largely dominated by Larix sibirica. We quantified the carbon stock density and total carbon pool of Mongolia's boreal forests and adjacent grasslands and draw conclusions on possible future change. Mean aboveground carbon stock density in the interior of L. sibirica forests was 66 Mg C ha(-1) , which is in the upper range of values reported from boreal forests and probably due to the comparably long growing season. The density of soil organic carbon (SOC, 108 Mg C ha(-1) ) and total belowground carbon density (149 Mg C ha(-1) ) are at the lower end of the range known from boreal forests, which might be the result of higher soil temperatures and a thinner permafrost layer than in the central and northern boreal forest belt. Land use effects are especially relevant at forest edges, where mean carbon stock density was 188 Mg C ha(-1) , compared with 215 Mg C ha(-1) in the forest interior. Carbon stock density in grasslands was 144 Mg C ha(-1) . Analysis of satellite imagery of the highly fragmented forest area in the forest-steppe zone showed that Mongolia's total boreal forest area is currently 73 818 km(2) , and 22% of this area refers to forest edges (defined as the first 30 m from the edge). The total forest carbon pool of Mongolia was estimated at ~ 1.5-1.7 Pg C, a value which is likely to decrease in future with increasing deforestation and fire frequency, and global warming. © 2015 John Wiley & Sons Ltd.
Chapter 9. Review of technical knowledge: Boreal owls
Gregory D. Hayward
1994-01-01
The boreal owl (Aegolius funereus), known as Tengmalm's owl in Eurasia, occurs throughout the holarctic in boreal climatic zones. This medium-size owl (100-170 g) occupies boreal and subalpine forests in an almost continuous circumboreal distribution that extends from Scandinavia eastward across the northern forests of Siberia and from Alaska...
NASA Astrophysics Data System (ADS)
Genet, H.; Lara, M. J.; Bolton, W. R.; McGuire, A. D.
2016-12-01
Estimation of the magnitude and consequences of permafrost degradation in high latitude is one of the most urgent research challenges related to contemporary and future climate change. In addition to widespread vertical degradation, ice-rich permafrost can thaw laterally, often triggering abrupt subsidence of the ground surface called thermokart. In this depression, permafrost plateau vegetation will transition to wetlands or lakes, while surface water of the surrounding landscape may drain towards it. These abrupt changes in land cover and hydrology can have dramatic consequences from wildlife habitat and biogeochemical cycles. Although recent studies have documented an acceleration of the rates of thermokarst formation in boreal and arctic peatlands, the importance of thermokarst at the regional level is still poorly understood. To better understand the vulnerability of the landscape to thermokarst disturbance in Alaska, we developed the Alaska Thermokarst Model (ATM), a state-and-transition model designed to simulate land cover change associated with thermokarst disturbance. In boreal regions, the model simulates transitions from permafrost plateau forest to thermokarst lake, bog or fen, as a function of climate and fire dynamics, permafrost characteristics and physiographic information. This model is designed and parameterized based on existing literature and a new repeated imagery analysis we conducted in a major wetland complex in boreal Alaska. We will present simulation and validation of thermokarst dynamic and associated land cover change in two wetland complexes in boreal Alaska, from 2000 to 2100 for six climate scenarios associating three AR5 emission scenarios and two global circulation model simulations. By 2100, ATM is predicting decrease between 3.5 and 9.1 % in the extent of permafrost plateau forest, mostly to the benefit of thermokarst fen, and lake. This analysis allowed us to assess the importance of thermokarst dynamics and landscape evolution associated with permafrost thaw in vulnerable regions of boreal Alaska during the 21st century and could be used as a baseline for managers to incorporate projected land cover changes in designing land management strategies.
Rock, Paper, Protest: The Fight for the Boreal Forest
ERIC Educational Resources Information Center
Gunz, Sally; Whittaker, Linda
2016-01-01
Canada's boreal forests are second only to the Amazon in producing life-giving oxygen and providing a habitat for thousands of species, from the large woodland caribou to the smallest organisms. The boreal forests are the lifeblood of many Aboriginal communities and the thousands of workers, Aboriginal and non-Aboriginal, who harvest and process…
NASA Astrophysics Data System (ADS)
Pisek, J.; Lang, M.; Kuusk, J.; Kobayashi, H.; Suzuki, R.; Rautiainen, M.; Schaepman, M. E.; Nikopensius, M.; Raabe, K.
2013-12-01
Since ground vegetation (understory) has an essential contribution to the whole-stand reflectance signal in many boreal, sub-boreal and temperate forests, its reflectance spectra are urgently needed in various forest reflectance modelling efforts. However, systematic reflectance data covering different site types are almost missing. Measurement of understory reflectance is a real challenge because of extremely high variability of irradiance at the forest floor, weak signal in some parts of the spectrum and its variable nature. Understory consists of several sub-layers (tree regeneration, shrub, grasses or dwarf shrub, mosses or lichens, litter, bare soil), it has spatially-temporally variable species composition and ground coverage. Additional problems are introduced by patchiness of ground vegetation, ground surface roughness and understory-overstory relations. Due to this variability, remote sensing might be the only technology to provide consistent data at the required spatially extensive scales. Here we follow on our previous effort at mapping understory reflectance dynamics using multi-angle remote sensing observations (Pisek et al. (2012). Retrieval of seasonal dynamics of forest understory reflectance in a Northern European boreal forest from MODIS BRDF data. Remote Sensing of Environment, 117, 464-468). This presentation will focus on the validation of this approach against an extended collection of different types of forest sites with available in-situ understory reflectance measurements distributed along a wide latitudinal gradient: a sparse black spruce forest in Alaska (Poker range; 65.12 N), a northern European boreal forest (Hyytiala; 61.85 N), hemiboreal needleleaf and deciduous stands in Estonia (Jarvselja; 58.27 N), a temperate deciduous forest in Switzerland (Laegeren; 47.48 N), and a dense black spruce forest in Canada (Sudbury; 47.16 N). Our results are pertinent to the ultimate goal of production of circumpolar maps of seasonal dynamics of forest understory over boreal forests using the MODIS BRDF data, starting from 2000. This will allow us to assess the changes in seasonal dynamics of boreal forest understory over the full decade.
Gundale, Michael J.; Bach, Lisbet H.; Nordin, Annika
2013-01-01
Bryophytes achieve substantial biomass and play several key functional roles in boreal forests that can influence how carbon (C) and nitrogen (N) cycling respond to atmospheric deposition of reactive nitrogen (Nr). They associate with cyanobacteria that fix atmospheric N2, and downregulation of this process may offset anthropogenic Nr inputs to boreal systems. Bryophytes also promote soil C accumulation by thermally insulating soils, and changes in their biomass influence soil C dynamics. Using a unique large-scale (0.1 ha forested plots), long-term experiment (16 years) in northern Sweden where we simulated anthropogenic Nr deposition, we measured the biomass and N2-fixation response of two bryophyte species, the feather mosses Hylocomium splendens and Pleurozium schreberi. Our data show that the biomass declined for both species; however, N2-fixation rates per unit mass and per unit area declined only for H. splendens. The low and high treatments resulted in a 29% and 54% reduction in total feather moss biomass, and a 58% and 97% reduction in total N2-fixation rate per unit area, respectively. These results help to quantify the sensitivity of feather moss biomass and N2 fixation to chronic Nr deposition, which is relevant for modelling ecosystem C and N balances in boreal ecosystems. PMID:24196519
NASA Astrophysics Data System (ADS)
Abe, Manabu; Takata, Kumiko; Kawamiya, Michio; Watanabe, Shingo
2017-09-01
The Earth system model, Model for Interdisciplinary Research on Climate-Earth system model (MIROC-ESM), in which the leaf area index (LAI) is calculated interactively with an ecological land model, simulated future changes in the snow water equivalent under the scenario of global warming. Using MIROC-ESM, the effects of the snow albedo feedback (SAF) in a boreal forest region of northern Eurasia were examined under the possible climate future scenario RCP8.5. The simulated surface air temperature (SAT) in spring greatly increases across Siberia and the boreal forest region, whereas the snow cover decreases remarkably only in western Eurasia. The large increase in SAT across Siberia is attributed to strong SAF, which is caused by both the reduced snow-covered fraction and the reduced surface albedo of the snow-covered portion due to the vegetation masking effect in those grid cells. A comparison of the future changes with and without interactive LAI changes shows that in Siberia, the vegetation masking effect increases the spring SAF by about two or three times and enhances the spring warming by approximately 1.5 times. This implies that increases in vegetation biomass in the future are a potential contributing factor to warming trends and that further research on the vegetation masking effect is needed for reliable future projection.
Main dynamics and drivers of boreal forests fire regimes during the Holocene
NASA Astrophysics Data System (ADS)
Molinari, Chiara; Lehsten, Veiko; Blarquez, Olivier; Clear, Jennifer; Carcaillet, Christopher; Bradshaw, Richard HW
2015-04-01
Forest fire is one of the most critical ecosystem processes in the boreal megabiome, and it is likely that its frequency, size and severity have had a primary role in vegetation dynamics since the Last Ice Age (Kasischke & Stocks 2000). Fire not only organizes the physical and biological attributes of boreal forests, but also affects biogeochemical cycling, particularly the carbon balance (Balshi et al. 2007). Due to their location at climatically sensitive northern latitudes, boreal forests are likely to be significantly affected by global warming with a consequent increase in biomass burning (Soja et al. 2007), a variation in vegetation structure and composition (Johnstone et al. 2004) and a rise in atmospheric carbon dioxide concentration (Bond-Lamberty et al. 2007). Even if the ecological role of wildfire in boreal forest is widely recognized, a clearer understanding of the environmental factors controlling fire dynamics and how variations in fire regimes impact forest ecosystems is essential in order to place modern fire processes in a meaningful context for projecting ecosystem behaviour in a changing environment (Kelly et al. 2013). Because fire return intervals and successional cycles in boreal forests occur over decadal to centennial timescales (Hu et al. 2006), palaeoecological research seems to be one of the most promising tool for elucidating ecosystem changes over a broad range of environmental conditions and temporal scales. Within this context, our first aim is to reconstruct spatial and temporal patterns of boreal forests fire dynamics during the Holocene based on sedimentary charcoal records. As a second step, trends in biomass burning will be statistically analysed in order to disentangle between regional and local drivers. The use of European and north-American sites will give us the unique possibility to perform a large scale analysis on one of the broadest biome in the world and to underline the different patterns of fire in these two continents. Balshi MS, McGuire AD, Zhuang Q et al. (2007) The role of historical fire disturbance in the carbon dynamics of the pan-boreal region: A process-based analysis. J. Geophys. Res. 112:G2. Bond-Lamberty B, Peckham SD, Ahl DE et al. (2007) Fire as the dominant driver of central Canadian boreal forest carbon balance. Nature 450: 89-92. Hu FS, Brubaker LB, Gavin DG et al. (2006) How climate and vegetation influence the fire regime of the Alaskan boreal biome: the Holocene perspective. Mitigation Adapt. Strateg. Glob. Chang. 11: 829-846. Johnstone JF, Chapin III FS, Foote J et al. (2004) Decadal observations of tree regeneration following fire in boreal forests. Can. J. For. Res. 34: 267-273. Kasischke ES & Stocks BJ (2000) Fire, Climate Change and Carbon Cycling in the Boreal Forest. Ecological Studies 138, Springer-Verlag, New York. Kelly RF, Chipman ML, Higuera PE et al. (2013) Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years. Proc. Natl. Acad. Sci. U.S.A. 110: 13055-13060. Soja AJ, Tchebakova NM, French NHF et al. (2007) Climate-induced boreal forest change: predictions versus current observations. Glob. Planet. Chang. 56: 274-296.
NASA Astrophysics Data System (ADS)
Trugman, A. T.; Medvigy, D.; Anderegg, W.; Caspersen, J.; Zeng, H.; Pacala, S. W.
2016-12-01
Boreal forests contain over 30% of Earth's terrestrial carbon and are an important component of the land carbon sink. However, the future ability of the boreal forest to maintain a net carbon sink is uncertain and depends on potentially compensating interactions of CO2 fertilization, warmer temperatures, and hotter drought conditions. Observational studies have attributed drought as a major driver of recent declines in growth and increases in mortality in many parts of the North American boreal forest. Yet, most vegetation models have a simplistic representation of vegetation water stress and fail to capture drought-associated growth and mortality trends, impacting our ability to accurately forecast the effects of climate change on the boreal forest. Here, we show additional evidence for widespread declines in boreal tree growth and increasing insect-related mortality in aspen trees based on a mixed model analysis of the Cooperative Alaska Forest Inventory. Our findings indicate that the growth decline is controlled by high midsummer potential evapotranspiration that overpowers any CO2 fertilization signal. We also observe a possible shift in the distribution of angiosperm and gymnosperm, a biological transition that could impact long-term local carbon dynamics. Using insight gained from our mixed model analysis, we perform a regional-scale model evaluation using the boreal forest version of Ecosystem Demography model 2 that includes a dynamic soil organic layer, 7 boreal-specific plant functional types, and a fully mechanistic plant hydraulic scheme. We then use both the Alaskan and Canadian Forest Inventories to constrain our hypotheses and assess whether drought related growth declines can be better attributed to tree drought response from (1) carbon starvation, (2) permanent damage of hydraulic machinery, or (3) delayed recovery of hydraulic machinery. Under each of these scenarios we forecast how drought potentially impacts decadal-scale boreal carbon dynamics.
Simulated impacts of insect defoliation on forest carbon dynamics
D. Medvigy; K.L. Clark; N.S. Skowronski; K.V.R. Schäfer
2012-01-01
Many temperate and boreal forests are subject to insect epidemics. In the eastern US, over 41 million meters squared of tree basal area are thought to be at risk of gypsy moth defoliation. However, the decadal-to-century scale implications of defoliation events for ecosystem carbon dynamics are not well understood. In this study, the effects of defoliation intensity,...
Pennsylvania boreal conifer forests and their bird communities: past, present, and potential
Douglas A. Gross
2010-01-01
Pennsylvania spruce (Picea spp.)- and eastern hemlock (Tsuga canadensis)-dominated forests, found primarily on glaciated parts of the Allegheny Plateau, are relicts of boreal forest that covered the region following glacial retreat. The timber era of the late 1800s and early 1900s (as late as 1942) destroyed most of the boreal...
Ecology of Canada lynx in southern boreal forests [Chapter 13
Keith B. Aubry; Gary M. Koehler; John R. Squires
2000-01-01
Canada lynx occur throughout boreal forests of North America, but ecological conditions in southern regions differ in many respects from those in Canada and Alaska. To evaluate the extent to which lynx ecology and population biology may differ between these regions, we review existing information from southern boreal forests and compare our findings to...
Modeling insect disturbance across forested landscapes: Insights from the spruce budworm
Brian R. Sturtevant; Barry J. Cooke; Daniel D. Kneeshaw; David A. MacLean
2015-01-01
Insects are important disturbance agents affecting temperate and boreal biomes (Wermelinger 2004; Johnson et al. 2005; Cooke et al. 2007; Raffa et al. 2008). Defoliating insects in particular have historically affected a staggering area of North American forests, particularly across the boreal biome (Fig. 5.1). Principal among these boreal forest defoliators is the...
Silviculture's role in managing boreal forests
Russell T. Graham; Theresa B. Jain
1998-01-01
Boreal forests, which are often undeveloped, are a major source of raw materials for many countries. They are circumpolar in extent and occupy a belt to a width of 1000 km in certain regions. Various conifer and hardwood species ranging from true firs to poplars grow in boreal forests. These species exhibit a wide range of shade tolerance and growth characteristics,...
Impacts of forestry on boreal forests: An ecosystem services perspective.
Pohjanmies, Tähti; Triviño, María; Le Tortorec, Eric; Mazziotta, Adriano; Snäll, Tord; Mönkkönen, Mikko
2017-11-01
Forests are widely recognized as major providers of ecosystem services, including timber, other forest products, recreation, regulation of water, soil and air quality, and climate change mitigation. Extensive tracts of boreal forests are actively managed for timber production, but actions aimed at increasing timber yields also affect other forest functions and services. Here, we present an overview of the environmental impacts of forest management from the perspective of ecosystem services. We show how prevailing forestry practices may have substantial but diverse effects on the various ecosystem services provided by boreal forests. Several aspects of these processes remain poorly known and warrant a greater role in future studies, including the role of community structure. Conflicts among different interests related to boreal forests are most likely to occur, but the concept of ecosystem services may provide a useful framework for identifying and resolving these conflicts.
NASA Astrophysics Data System (ADS)
Liu, S.; Zhuang, Q.
2016-12-01
Climatic change affects the plant physiological and biogeochemistry processes, and therefore on the ecosystem water use efficiency (WUE). Therefore, a comprehensive understanding of WUE would help us understand the adaptability of ecosystem to variable climate conditions. Tree ring data have great potential in addressing the forest response to climatic changes compared with mechanistic model simulations, eddy flux measurement and manipulative experiments. Here, we collected the tree ring isotopic carbon data in 12 boreal forest sites to develop a multiple linear regression model, and the model was extrapolated to the whole boreal region to obtain the WUE spatial and temporal variation from 1948 to 2010. Two algorithms were also used to estimate the inter-annual gross primary productivity (GPP) based on our derived WUE. Our results demonstrated that most of boreal regions showed significant increasing WUE trend during the period except parts of Alaska. The spatial averaged annual mean WUE was predicted to increase by 13%, from 2.3±0.4 g C kg-1 H2O at 1948 to 2.6±0.7 g C kg-1 H2O at 2012, which was much higher than other land surface models. Our predicted GPP by the WUE definition algorithm was comparable with site observation, while for the revised light use efficiency algorithm, GPP estimation was higher than site observation as well as than land surface models. In addition, the increasing GPP trends by two algorithms were similar with land surface model simulations. This is the first study to evaluate regional WUE and GPP in forest ecosystem based on tree ring data and future work should consider other variables (elevation, nitrogen deposition) that influence tree ring isotopic signals and the dual-isotope approach may help improve predicting the inter-annual WUE variation.
2000-01-01
The papers in these proceedings cover a wide range of topics related to human and natural disturbance processes in forests of the boreal zone in North America and Eurasia. Topics include historic and predicted landscape change; forest management; disturbance by insects, fire, air pollution, severe weather, and global climate change; and carbon cycling.
NASA Astrophysics Data System (ADS)
Sulla-Menashe, Damien; Woodcock, Curtis E.; Friedl, Mark A.
2018-01-01
Recent studies have used satellite-derived normalized difference vegetation index (NDVI) time series to explore geographic patterns in boreal forest greening and browning. A number of these studies indicate that boreal forests are experiencing widespread browning, and have suggested that these patterns reflect decreases in forest productivity induced by climate change. Here we use NDVI time series from Landsat, which has much higher quality and spatial resolution than imagery used in most previous studies, to characterize biogeographic patterns in greening and browning across Canada’s boreal forest and to explore the drivers behind observed trends. Our results show that the majority of NDVI changes in Canada’s boreal forest reflect disturbance-recovery dynamics not climate change impacts, that greening and browning trends outside of disturbed forests are consistent with expected ecological responses to regional changes in climate, and that observed NDVI changes are geographically limited and relatively small in magnitude. By examining covariance between changes in NDVI and temperature and precipitation in locations not affected by disturbance, our results isolate and characterize the nature and magnitude of greening and browning directly associated with climate change. Consistent with biogeographic theory, greening and browning unrelated to disturbance tended to be located in ecotones near boundaries of the boreal forest bioclimatic envelope. We observed greening to be most prevalent in Eastern Canada, which is more humid, and browning to be most prevalent in Western Canada, where forests are more prone to moisture stress. We conclude that continued long-term climate change has the potential to significantly alter the character and function of Canada’s boreal forest, but recent changes have been modest and near-term impacts are likely to be focused in or near ecotones.
NASA Astrophysics Data System (ADS)
Evans, A.; Lafon, C. W.
2015-12-01
Identification of biotic and abiotic determinants of tree species range limits is critical for understanding the effects of climate change on species distributions. Upward shifts of species distributions in montane areas have been widely reported but there have been few reports of latitudinal range retractions. Previous studies have indicated that southern latitudinal limits of a species range are dictated by biotic factors such as competition while others have suggested that abiotic factors, such as temperature, dictate these limits. We investigated the potential climatic gradients at the southern latitudinal limit of the Spruce (Picea) and Fir (Abies) species that dominate the Canadian boreal forest community as well as relict boreal forests containing similar species found in the high elevation areas of the Southern Appalachians. Existing research has suggested that relict ecosystems are more sensitive to climate change and can be indicative of future changes at latitudinal range limits. Expanding on this literature, we hypothesized that we would see similar gradients in climatic variables at the southern latitudinal limit of the Canadian boreal forest and those in the relict boreal forests southern Appalachians acting as controlling factors of these species distributions. We used forty years of climate data from weather stations along the southern edge of the boreal forest in the Canadian Shield provinces, species distribution data from the Canadian National Forest Inventory, (CNFI) geospatial data from the National Park Service (NPS), and historical weather data from the National Oceanic and Atmospheric Administration (NOAA) to perform our analysis. Our results indicate different climate variables act as controls of warm edge range limits of the Canadian boreal forest than those of the relict boreal forest of the southern Appalachians. However, we believe range retractions of the relict forest may be indicative of a more gradual response of similar species across a latitudinal gradient.
Boreal forest health and global change.
Gauthier, S; Bernier, P; Kuuluvainen, T; Shvidenko, A Z; Schepaschenko, D G
2015-08-21
The boreal forest, one of the largest biomes on Earth, provides ecosystem services that benefit society at levels ranging from local to global. Currently, about two-thirds of the area covered by this biome is under some form of management, mostly for wood production. Services such as climate regulation are also provided by both the unmanaged and managed boreal forests. Although most of the boreal forests have retained the resilience to cope with current disturbances, projected environmental changes of unprecedented speed and amplitude pose a substantial threat to their health. Management options to reduce these threats are available and could be implemented, but economic incentives and a greater focus on the boreal biome in international fora are needed to support further adaptation and mitigation actions. Copyright © 2015, American Association for the Advancement of Science.
Early snowmelt significantly enhances boreal springtime carbon uptake
Pulliainen, Jouni; Aurela, Mika; Laurila, Tuomas; Aalto, Tuula; Takala, Matias; Salminen, Miia; Kulmala, Markku; Barr, Alan; Heimann, Martin; Lindroth, Anders; Laaksonen, Ari; Derksen, Chris; Mäkelä, Annikki; Markkanen, Tiina; Lemmetyinen, Juha; Susiluoto, Jouni; Dengel, Sigrid; Mammarella, Ivan; Tuovinen, Juha-Pekka; Vesala, Timo
2017-01-01
We determine the annual timing of spring recovery from space-borne microwave radiometer observations across northern hemisphere boreal evergreen forests for 1979–2014. We find a trend of advanced spring recovery of carbon uptake for this period, with a total average shift of 8.1 d (2.3 d/decade). We use this trend to estimate the corresponding changes in gross primary production (GPP) by applying in situ carbon flux observations. Micrometeorological CO2 measurements at four sites in northern Europe and North America indicate that such an advance in spring recovery would have increased the January–June GPP sum by 29 g⋅C⋅m−2 [8.4 g⋅C⋅m−2 (3.7%)/decade]. We find this sensitivity of the measured springtime GPP to the spring recovery to be in accordance with the corresponding sensitivity derived from simulations with a land ecosystem model coupled to a global circulation model. The model-predicted increase in springtime cumulative GPP was 0.035 Pg/decade [15.5 g⋅C⋅m−2 (6.8%)/decade] for Eurasian forests and 0.017 Pg/decade for forests in North America [9.8 g⋅C⋅m−2 (4.4%)/decade]. This change in the springtime sum of GPP related to the timing of spring snowmelt is quantified here for boreal evergreen forests. PMID:28973918
The changing effects of Alaska’s boreal forests on the climate system
Euskirchen, E.S.; McGuire, A. David; Chapin, F.S.; Rupp, T.S.
2010-01-01
In the boreal forests of Alaska, recent changes in climate have influenced the exchange of trace gases, water, and energy between these forests and the atmosphere. These changes in the structure and function of boreal forests can then feed back to impact regional and global climates. In this manuscript, we examine the type and magnitude of the climate feedbacks from boreal forests in Alaska. Research generally suggests that the net effect of a warming climate is a positive regional feedback to warming. Currently, the primary positive climate feedbacks are likely related to decreases in surface albedo due to decreases in snow cover. Fewer negative feedbacks have been identified, and they may not be large enough to counterbalance the large positive feedbacks. These positive feedbacks are most pronounced at the regional scale and reduce the resilience of the boreal vegetation – climate system by amplifying the rate of regional warming. Given the recent warming in this region, the large variety of associated mechanisms that can alter terrestrial ecosystems and influence the climate system, and a reduction in the boreal forest resilience, there is a strong need to continue to quantify and evaluate the feedback pathways.
Kutzbach, J.-E.; Bartlein, P.J.; Foley, J.A.; Harrison, S.P.; Hosteller, S.W.; Liu, Z.; Prentice, I.C.; Webb, T.
1996-01-01
Previous climate model simulations have shown that the configuration of the Earth's orbit during the early to mid-Holocene (approximately 10-5 kyr) can account for the generally warmer-than-present conditions experienced by the high latitudes of the northern hemisphere. New simulations for 6 kyr with two atmospheric/mixed-layer ocean models (Community Climate Model, version 1, CCM1, and Global ENvironmental and Ecological Simulation of Interactive Systems, version 2, GENESIS 2) are presented here and compared with results from two previous simulations with GENESIS 1 that were obtained with and without the albedo feedback due to climate-induced poleward expansion of the boreal forest. The climate model results are summarized in the form of potential vegetation maps obtained with the global BIOME model, which facilitates visual comparisons both among models and with pollen and plant macrofossil data recording shifts of the forest-tundra boundary. A preliminary synthesis shows that the forest limit was shifted 100-200 km north in most sectors. Both CCM1 and GENESIS 2 produced a shift of this magnitude. GENESIS 1 however produced too small a shift, except when the boreal forest albedo feedback was included. The feedback in this case was estimated to have amplified forest expansion by approximately 50%. The forest limit changes also show meridional patterns (greatest expansion in central Siberia and little or none in Alaska and Labrador) which have yet to be reproduced by models. Further progress in understanding of the processes involved in the response of climate and vegetation to orbital forcing will require both the deployment of coupled atmosphere-biosphere-ocean models and the development of more comprehensive observational data sets.
Large impacts of climatic warming on growth of boreal forests since 1960.
Kauppi, Pekka E; Posch, Maximilian; Pirinen, Pentti
2014-01-01
Boreal forests are sensitive to climatic warming, because low temperatures hold back ecosystem processes, such as the mobilization of nitrogen in soils. A greening of the boreal landscape has been observed using remote sensing, and the seasonal amplitude of CO2 in the northern hemisphere has increased, indicating warming effects on ecosystem productivity. However, field observations on responses of ecosystem productivity have been lacking on a large sub-biome scale. Here we report a significant increase in the annual growth of boreal forests in Finland in response to climatic warming, especially since 1990. This finding is obtained by linking meteorological records and forest inventory data on an area between 60° and 70° northern latitude. An additional increase in growth has occurred in response to changes in other drivers, such as forest management, nitrogen deposition and/or CO2 concentration. A similar warming impact can be expected in the entire boreal zone, where warming takes place. Given the large size of the boreal biome - more than ten million km2- important climate feedbacks are at stake, such as the future carbon balance, transpiration and albedo.
Traditional use of medicinal plants in the boreal forest of Canada: review and perspectives
2012-01-01
Background The boreal forest of Canada is home to several hundred thousands Aboriginal people who have been using medicinal plants in traditional health care systems for thousands of years. This knowledge, transmitted by oral tradition from generation to generation, has been eroding in recent decades due to rapid cultural change. Until now, published reviews about traditional uses of medicinal plants in boreal Canada have focused either on particular Aboriginal groups or on restricted regions. Here, we present a review of traditional uses of medicinal plants by the Aboriginal people of the entire Canadian boreal forest in order to provide comprehensive documentation, identify research gaps, and suggest perspectives for future research. Methods A review of the literature published in scientific journals, books, theses and reports. Results A total of 546 medicinal plant taxa used by the Aboriginal people of the Canadian boreal forest were reported in the reviewed literature. These plants were used to treat 28 disease and disorder categories, with the highest number of species being used for gastro-intestinal disorders, followed by musculoskeletal disorders. Herbs were the primary source of medicinal plants, followed by shrubs. The medicinal knowledge of Aboriginal peoples of the western Canadian boreal forest has been given considerably less attention by researchers. Canada is lacking comprehensive policy on harvesting, conservation and use of medicinal plants. This could be explained by the illusion of an infinite boreal forest, or by the fact that many boreal medicinal plant species are widely distributed. Conclusion To our knowledge, this review is the most comprehensive to date to reveal the rich traditional medicinal knowledge of Aboriginal peoples of the Canadian boreal forest. Future ethnobotanical research endeavours should focus on documenting the knowledge held by Aboriginal groups that have so far received less attention, particularly those of the western boreal forest. In addition, several critical issues need to be addressed regarding the legal, ethical and cultural aspects of the conservation of medicinal plant species and the protection of the associated traditional knowledge. PMID:22289509
Shuhua Yi; A. David McGuire; Eric Kasischke; Jennifer Harden; Kristen Manies; Michelle Mack; Merritt Turetsky
2010-01-01
Ecosystem models have not comprehensively considered how interactions among fire disturbance, soil environmental conditions, and biogeochemical processes affect ecosystem dynamics in boreal forest ecosystems. In this study, we implemented a dynamic organic soil structure in the Terrestrial Ecosystem Model (DOS-TEM) to investigate the effects of fire on soil temperature...
NASA Astrophysics Data System (ADS)
Dinsmore, P.; Prepas, E.; Putz, G.; Smith, D.
2008-12-01
The Forest Watershed and Riparian Disturbance (FORWARD) Project has collected data on weather, soils, vegetation, streamflow and stream water quality under relatively undisturbed conditions, as well as after experimental forest harvest, in partnership with industrial forest operations within the Boreal Plain and Boreal Shield ecozones of Canada. Research-based contributions from FORWARD were integrated into our Boreal Plain industry partner's 2007-2016 Detailed Forest Management Plan. These contributions consisted of three components: 1) A GIS watershed and stream layer that included a hydrological network, a Digital Elevation Model, and Strahler classified streams and watersheds for 1st- and 3rd-order watersheds; 2) a combined soil and wetland GIS layer that included maps and associated datasets for relatively coarse mineral soils (which drain quickly) and wetlands (which retain water), which were the key features that needed to be identified for the FORWARD modelling effort; and 3) a lookup table was developed that permits planners to determine runoff coefficients (the variable selected for hydrological modelling) for 1st-order watersheds, based upon slope, vegetation and soil attributes in forest polygons. The lookup table was populated with output from the deterministic Soil and Water Assessment Tool (SWAT), adapted for boreal forest vegetation with a version of the plant growth model, ALMANAC. The runoff coefficient lookup table facilitated integration of predictions of hydrologic impacts of forest harvest into planning. This pilot-scale effort will ultimately be extended to the Boreal Shield study area.
Reimplementation of the Biome-BGC model to simulate successional change.
Bond-Lamberty, Ben; Gower, Stith T; Ahl, Douglas E; Thornton, Peter E
2005-04-01
Biogeochemical process models are increasingly employed to simulate current and future forest dynamics, but most simulate only a single canopy type. This limitation means that mixed stands, canopy succession and understory dynamics cannot be modeled, severe handicaps in many forests. The goals of this study were to develop a version of Biome-BGC that supported multiple, interacting vegetation types, and to assess its performance and limitations by comparing modeled results to published data from a 150-year boreal black spruce (Picea mariana (Mill.) BSP) chronosequence in northern Manitoba, Canada. Model data structures and logic were modified to support an arbitrary number of interacting vegetation types; an explicit height calculation was necessary to prioritize radiation and precipitation interception. Two vegetation types, evergreen needle-leaf and deciduous broadleaf, were modeled based on site-specific meteorological and physiological data. The new version of Biome-BGC reliably simulated observed changes in leaf area, net primary production and carbon stocks, and should be useful for modeling the dynamics of mixed-species stands and ecological succession. We discuss the strengths and limitations of Biome-BGC for this application, and note areas in which further work is necessary for reliable simulation of boreal biogeochemical cycling at a landscape scale.
Simulation of ICESat-2 canopy height retrievals for different ecosystems
NASA Astrophysics Data System (ADS)
Neuenschwander, A. L.
2016-12-01
Slated for launch in late 2017 (or early 2018), the ICESat-2 satellite will provide a global distribution of geodetic measurements from a space-based laser altimeter of both the terrain surface and relative canopy heights which will provide a significant benefit to society through a variety of applications ranging from improved global digital terrain models to producing distribution of above ground vegetation structure. The ATLAS instrument designed for ICESat-2, will utilize a different technology than what is found on most laser mapping systems. The photon counting technology of the ATLAS instrument onboard ICESat-2 will record the arrival time associated with a single photon detection. That detection can occur anywhere within the vertical distribution of the reflected signal, that is, anywhere within the vertical distribution of the canopy. This uncertainty of where the photon will be returned from within the vegetation layer is referred to as the vertical sampling error. Preliminary simulation studies to estimate vertical sampling error have been conducted for several ecosystems including woodland savanna, montane conifers, temperate hardwoods, tropical forest, and boreal forest. The results from these simulations indicate that the canopy heights reported on the ATL08 data product will underestimate the top canopy height in the range of 1 - 4 m. Although simulation results indicate the ICESat-2 will underestimate top canopy height, there is, however, a strong correlation between ICESat-2 heights and relative canopy height metrics (e.g. RH75, RH90). In tropical forest, simulation results indicate the ICESat-2 height correlates strongly with RH90. Similarly, in temperate broadleaf forest, the simulated ICESat-2 heights were also strongly correlated with RH90. In boreal forest, the simulated ICESat-2 heights are strongly correlated with RH75 heights. It is hypothesized that the correlations between simulated ICESat-2 heights and canopy height metrics are a function of both canopy cover and vegetation physiology (e.g. leaf size/shape) which contributes to the horizontal and vertical structure of the vegetation.
Carbon balance of the Alaskan boreal forest
John Yarie; Tim Hammond
1996-01-01
Determination of the carbon balance in a broad forest region like the Alaskan boreal forest requires the development of a number of important environmental (state factors) classes to allow for the development of carbon balance estimates.
Latent heat exchange in the boreal and arctic biomes.
Kasurinen, Ville; Alfredsen, Knut; Kolari, Pasi; Mammarella, Ivan; Alekseychik, Pavel; Rinne, Janne; Vesala, Timo; Bernier, Pierre; Boike, Julia; Langer, Moritz; Belelli Marchesini, Luca; van Huissteden, Ko; Dolman, Han; Sachs, Torsten; Ohta, Takeshi; Varlagin, Andrej; Rocha, Adrian; Arain, Altaf; Oechel, Walter; Lund, Magnus; Grelle, Achim; Lindroth, Anders; Black, Andy; Aurela, Mika; Laurila, Tuomas; Lohila, Annalea; Berninger, Frank
2014-11-01
In this study latent heat flux (λE) measurements made at 65 boreal and arctic eddy-covariance (EC) sites were analyses by using the Penman-Monteith equation. Sites were stratified into nine different ecosystem types: harvested and burnt forest areas, pine forests, spruce or fir forests, Douglas-fir forests, broadleaf deciduous forests, larch forests, wetlands, tundra and natural grasslands. The Penman-Monteith equation was calibrated with variable surface resistances against half-hourly eddy-covariance data and clear differences between ecosystem types were observed. Based on the modeled behavior of surface and aerodynamic resistances, surface resistance tightly control λE in most mature forests, while it had less importance in ecosystems having shorter vegetation like young or recently harvested forests, grasslands, wetlands and tundra. The parameters of the Penman-Monteith equation were clearly different for winter and summer conditions, indicating that phenological effects on surface resistance are important. We also compared the simulated λE of different ecosystem types under meteorological conditions at one site. Values of λE varied between 15% and 38% of the net radiation in the simulations with mean ecosystem parameters. In general, the simulations suggest that λE is higher from forested ecosystems than from grasslands, wetlands or tundra-type ecosystems. Forests showed usually a tighter stomatal control of λE as indicated by a pronounced sensitivity of surface resistance to atmospheric vapor pressure deficit. Nevertheless, the surface resistance of forests was lower than for open vegetation types including wetlands. Tundra and wetlands had higher surface resistances, which were less sensitive to vapor pressure deficits. The results indicate that the variation in surface resistance within and between different vegetation types might play a significant role in energy exchange between terrestrial ecosystems and atmosphere. These results suggest the need to take into account vegetation type and phenology in energy exchange modeling. © 2014 John Wiley & Sons Ltd.
Yeboah, Daniel; Chen, Han Y H; Kingston, Steve
2016-02-01
Understanding species diversity and disturbance relationships is important for biodiversity conservation in disturbance-driven boreal forests. Species richness and evenness may respond differently with stand development following fire. Furthermore, few studies have simultaneously accounted for the influences of climate and local site conditions on species diversity. Using forest inventory data, we examined the relationships between species richness, Shannon's index, evenness, and time since last stand-replacing fire (TSF) in a large landscape of disturbance-driven boreal forest. TSF has negative effect on species richness and Shannon's index, and a positive effect on species evenness. Path analysis revealed that the environmental variables affect richness and Shannon's index only through their effects on TSF while affecting evenness directly as well as through their effects on TSF. Synthesis and applications. Our results demonstrate that species richness and Shannon's index decrease while species evenness increases with TSF in a boreal forest landscape. Furthermore, we show that disturbance frequency, local site conditions, and climate simultaneously influence tree species diversity through complex direct and indirect effects in the studied boreal forest.
Aspects of Boreal Forest Hydrology: From Stand to Watershed
NASA Technical Reports Server (NTRS)
Nijssen, B.
2000-01-01
This report evaluates land surface hydrologic processes in the boreal forest using observations collected during the Boreal Ecosystem Atmospheric Study (BOREAS), carried out in the boreal forest of central Canada from 1994 to 1996. Three separate studies, each of which constitutes a journal publication, are included. The first study describes the application of a spatially-distributed hydrologic model, originally developed for mid-latitude forested environments, to selected BOREAS flux measurement sites. Compared to point observations at the flux towers, the model represented energy and moisture fluxes reasonably well, but shortcomings were identified in the soil thermal submodel and the partitioning of evapotranspiration into canopy and subcanopy components. As a first step towards improving this partitioning, the second study develops a new parameterization for transmission of shortwave radiation through boreal forest canopies. The new model accounts for the transmission of diffuse and direct shortwave radiation and accounts for multiple scattering in the canopy and multiple reflections between the canopy layers.
AmeriFlux CA-Gro Ontario - Groundhog River, Boreal Mixedwood Forest.
McCaughey, Harry [Queen's University
2016-01-01
This is the AmeriFlux version of the carbon flux data for the site CA-Gro Ontario - Groundhog River, Boreal Mixedwood Forest.. Site Description - Groundhog River (FCRN or CCP site "ON-OMW") is situated in a typical boreal mixedwood forest in northeastern Ontario (48.217 degrees north and 82.156 degrees west) about 80 km southwest of Timmins in Reeves Twp. near the Groundhog River. Rowe (1972) places the site in the Missinaibi-Cabonga Section of the Boreal Forest Region. In terms of ecoregion and ecozone, the site is in the Lake Timiskaming Lowlands of the Boreal Shield. The forest developed after high-grade logging in the 1930's. The average age in 2013 is estimated at beteen 75 and 80 years. The forest is dominated by five species characteristic of Ontario boreal mixedwoods: trembling aspen (Populus tremuloides Michx.), black spruce (Picea mariana (Mill.) B.S.P.), white spruce (Picea glauca (Moench.) Voss.), white birch (Betula papyrifera Marsh.), and balsam fir (Abies balsamea (L.) Mill.). The surficial geology is a lacustrine deposit of varved or massive clays, silts and silty sands. The soil is an orthic gleysol with a soil moisture regime classified as fresh to very fresh. Plonski (1974) rates it as a site class 1. The topography is simple and flat with an overall elevation of 340 m ASL.
Vertical and seasonal dynamics of fungal communities in boreal Scots pine forest soil.
Santalahti, Minna; Sun, Hui; Jumpponen, Ari; Pennanen, Taina; Heinonsalo, Jussi
2016-11-01
Fungal communities are important for carbon (C) transformations in boreal forests that are one of the largest C pools in terrestrial ecosystems, warranting thus further investigation of fungal community dynamics in time and space. We investigated fungal diversity and community composition seasonally and across defined soil horizons in boreal Scots pine forest in Finland using 454 pyrosequencing. We collected a total of 120 samples from five vertical soil horizons monthly from March to October; in March, under snow. Boreal forest soil generally harbored diverse fungal communities across soil horizons. The communities shifted drastically and rapidly over time. In late winter, saprotrophs dominated the community and were replaced by ectomycorrhizal fungi during the growing season. Our studies are among the first to dissect the spatial and temporal dynamics in boreal forest ecosystems and highlights the ecological importance of vertically distinct communities and their rapid seasonal dynamics. As climate change is predicted to result in warmer and longer snow-free winter seasons, as well as increase the rooting depth of trees in boreal forest, the seasonal and vertical distribution of fungal communities may change. These changes are likely to affect the organic matter decomposition by the soil-inhabiting fungi and thus alter organic C pools. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Li, Xiao-Na; He, Hong-Shi; Wu, Zhi-Wei; Liang, Yu
2012-12-01
With the combination of forest landscape model (LANDIS) and forest gap model (LINKAGES), this paper simulated the effects of climate change on the boreal forest landscape in the Great Xing'an Mountains, and compared the direct effects of climate change and the effects of climate warming-induced fires on the forest landscape. The results showed that under the current climate conditions and fire disturbances, the forest landscape in the study area could maintain its dynamic balance, and Larix gmelinii was still the dominant tree species. Under the future climate and fire disturbances scenario, the distribution area of L. gmelinii and Pinus pumila would be decreased, while that of Betula platyphylla, Populus davidiana, Populus suaveolens, Chosenia arbutifolia, and Pinus sylvestris var. mongolica would be increased, and the forest fragmentation and forest diversity would have an increase. The changes of the forest landscape lagged behind climate change. Climate warming would increase the growth of most tree species except L. gmelinii, while the increased fires would increase the distribution area of P. davidiana, P. suaveolens, and C. arbutifolia and decrease the distribution area of L. gmelinii, P. sylvestris var. mongolica, and P. pumila. The effects of climate warming-induced fires on the forest landscape were almost equal to the direct effects of climate change, and aggravated the direct effects of climate change on forest composition, forest landscape fragmentation, and forest landscape diversity.
Large Impacts of Climatic Warming on Growth of Boreal Forests since 1960
Kauppi, Pekka E.; Posch, Maximilian; Pirinen, Pentti
2014-01-01
Boreal forests are sensitive to climatic warming, because low temperatures hold back ecosystem processes, such as the mobilization of nitrogen in soils. A greening of the boreal landscape has been observed using remote sensing, and the seasonal amplitude of CO2 in the northern hemisphere has increased, indicating warming effects on ecosystem productivity. However, field observations on responses of ecosystem productivity have been lacking on a large sub-biome scale. Here we report a significant increase in the annual growth of boreal forests in Finland in response to climatic warming, especially since 1990. This finding is obtained by linking meteorological records and forest inventory data on an area between 60° and 70° northern latitude. An additional increase in growth has occurred in response to changes in other drivers, such as forest management, nitrogen deposition and/or CO2 concentration. A similar warming impact can be expected in the entire boreal zone, where warming takes place. Given the large size of the boreal biome – more than ten million km2– important climate feedbacks are at stake, such as the future carbon balance, transpiration and albedo. PMID:25383552
Bright, Ryan M; Antón-Fernández, Clara; Astrup, Rasmus; Cherubini, Francesco; Kvalevåg, Maria; Strømman, Anders H
2014-02-01
Empirical models alongside remotely sensed and station measured meteorological observations are employed to investigate both the local and global direct climate change impacts of alternative forest management strategies within a boreal ecosystem of eastern Norway. Stand-level analysis is firstly executed to attribute differences in daily, seasonal, and annual mean surface temperatures to differences in surface intrinsic biophysical properties across conifer, deciduous, and clear-cut sites. Relative to a conifer site, a slight local cooling of −0.13 °C at a deciduous site and −0.25 °C at a clear-cut site were observed over a 6-year period, which were mostly attributed to a higher albedo throughout the year. When monthly mean albedo trajectories over the entire managed forest landscape were taken into consideration, we found that strategies promoting natural regeneration of coniferous sites with native deciduous species led to substantial global direct climate cooling benefits relative to those maintaining current silviculture regimes – despite predicted long-term regional warming feedbacks and a reduced albedo in spring and autumn months. The magnitude and duration of the cooling benefit depended largely on whether management strategies jointly promoted an enhanced material supply over business-as-usual levels. Expressed in terms of an equivalent CO2 emission pulse at the start of the simulation, the net climate response at the end of the 21st century spanned −8 to −159 Tg-CO2-eq., depending on whether near-term harvest levels increased or followed current trends, respectively. This magnitude equates to approximately −20 to −300% of Norway's annual domestic (production) emission impact. Our analysis supports the assertion that a carbon-only focus in the design and implementation of forest management policy in boreal and other climatically similar regions can be counterproductive – and at best – suboptimal if boreal forests are to be used as a tool to mitigate global warming.
Balshi, M. S.; McGuire, Anthony David; Duffy, P.; Flannigan, M.; Kicklighter, David W.; Melillo, J.
2009-01-01
The boreal forest contains large reserves of carbon. Across this region, wildfires influence the temporal and spatial dynamics of carbon storage. In this study, we estimate fire emissions and changes in carbon storage for boreal North America over the 21st century. We use a gridded data set developed with a multivariate adaptive regression spline approach to determine how area burned varies each year with changing climatic and fuel moisture conditions. We apply the process-based Terrestrial Ecosystem Model to evaluate the role of future fire on the carbon dynamics of boreal North America in the context of changing atmospheric carbon dioxide (CO2) concentration and climate in the A2 and B2 emissions scenarios of the CGCM2 global climate model. Relative to the last decade of the 20th century, decadal total carbon emissions from fire increase by 2.5–4.4 times by 2091–2100, depending on the climate scenario and assumptions about CO2fertilization. Larger fire emissions occur with warmer climates or if CO2 fertilization is assumed to occur. Despite the increases in fire emissions, our simulations indicate that boreal North America will be a carbon sink over the 21st century if CO2 fertilization is assumed to occur in the future. In contrast, simulations excluding CO2 fertilization over the same period indicate that the region will change to a carbon source to the atmosphere, with the source being 2.1 times greater under the warmer A2 scenario than the B2 scenario. To improve estimates of wildfire on terrestrial carbon dynamics in boreal North America, future studies should incorporate the role of dynamic vegetation to represent more accurately post-fire successional processes, incorporate fire severity parameters that change in time and space, account for human influences through increased fire suppression, and integrate the role of other disturbances and their interactions with future fire regime.
Jacobs, Jenna M; Bergeron, J A Colin
2017-01-01
Quedius (Raphirus) spencei Jacobs and Bergeron, new species, (Coleoptera: Staphylinidae), is described based on specimens from two localities (type locality: 35 km. E Dixonville, Alberta, Canada) in the Boreal Forest. Male genitalia are illustrated, compared with congeners ( Q. rusticus Smetana and Q. simulator Smetana) in the Aenescens species group, and included in a slightly modified key to the species of Quedius .
Forest management could counteract distribution retractions forced by climate change.
Mair, Louise; Harrison, Philip J; Räty, Minna; Bärring, Lars; Strandberg, Gustav; Snäll, Tord
2017-07-01
Climate change is expected to drive the distribution retraction of northern species. However, particularly in regions with a history of intensive exploitation, changes in habitat management could facilitate distribution expansions counter to expectations under climate change. Here, we test the potential for future forest management to facilitate the southward expansion of an old-forest species from the boreal region into the boreo-nemoral region, contrary to expectations under climate change. We used an ensemble of species distribution models based on citizen science data to project the response of Phellinus ferrugineofuscus, a red-listed old-growth indicator, wood-decaying fungus, to six forest management and climate change scenarios. We projected change in habitat suitability across the boreal and boreo-nemoral regions of Sweden for the period 2020-2100. Scenarios varied in the proportion of forest set aside from production, the level of timber extraction, and the magnitude of climate change. Habitat suitabilities for the study species were projected to show larger relative increases over time in the boreo-nemoral region compared to the boreal region, under all scenarios. By 2100, mean suitabilities in set-aside forest in the boreo-nemoral region were similar to the suitabilities projected for set-aside forest in the boreal region in 2020, suggesting that occurrence in the boreo-nemoral region could be increased. However, across all scenarios, consistently higher projected suitabilities in set-aside forest in the boreal region indicated that the boreal region remained the species stronghold. Furthermore, negative effects of climate change were evident in the boreal region, and projections suggested that climatic changes may eventually counteract the positive effects of forest management in the boreo-nemoral region. Our results suggest that the current rarity of this old-growth indicator species in the boreo-nemoral region may be due to the history of intensive forestry. Forest management therefore has the potential to compensate for the negative effects of climate change. However, increased occurrence at the southern range edge would depend on the dispersal and colonization ability of the species. An increase in the amount of set-aside forest across both the boreal and boreo-nemoral regions is therefore likely to be required to prevent the decline of old-forest species under climate change. © 2017 by the Ecological Society of America.
D. Bachelet; J. Lenihan; R. Neilson; R. Drapek; T. Kittel
2005-01-01
The dynamic global vegetation model MC1 was used to examine climate, fire, and ecosystems interactions in Alaska under historical (1922-1996) and future (1997-2100) climate conditions. Projections show that by the end of the 21st century, 75%-90% of the area simulated as tundra in 1922 is replaced by boreal and temperate forest. From 1922 to 1996, simulation results...
Combining MODIS and Landsat imagery to estimate and map boreal forest cover loss
Potapov, P.; Hansen, Matthew C.; Stehman, S.V.; Loveland, Thomas R.; Pittman, K.
2008-01-01
Estimation of forest cover change is important for boreal forests, one of the most extensive forested biomes, due to its unique role in global timber stock, carbon sequestration and deposition, and high vulnerability to the effects of global climate change. We used time-series data from the MODerate Resolution Imaging Spectroradiometer (MODIS) to produce annual forest cover loss hotspot maps. These maps were used to assign all blocks (18.5 by 18.5 km) partitioning the boreal biome into strata of high, medium and low likelihood of forest cover loss. A stratified random sample of 118 blocks was interpreted for forest cover and forest cover loss using high spatial resolution Landsat imagery from 2000 and 2005. Area of forest cover gross loss from 2000 to 2005 within the boreal biome is estimated to be 1.63% (standard error 0.10%) of the total biome area, and represents a 4.02% reduction in year 2000 forest cover. The proportion of identified forest cover loss relative to regional forest area is much higher in North America than in Eurasia (5.63% to 3.00%). Of the total forest cover loss identified, 58.9% is attributable to wildfires. The MODIS pan-boreal change hotspot estimates reveal significant increases in forest cover loss due to wildfires in 2002 and 2003, with 2003 being the peak year of loss within the 5-year study period. Overall, the precision of the aggregate forest cover loss estimates derived from the Landsat data and the value of the MODIS-derived map displaying the spatial and temporal patterns of forest loss demonstrate the efficacy of this protocol for operational, cost-effective, and timely biome-wide monitoring of gross forest cover loss.
NASA Astrophysics Data System (ADS)
Sulla-menashe, D. J.; Woodcock, C. E.; Friedl, M. A.
2017-12-01
Recent studies have used satellite-derived normalized difference vegetation index (NDVI) time series derived from the Advanced Very High Resolution Radiometer (AVHRR) to explore geographic patterns in boreal forest greening and browning. A number of these studies indicate that boreal forests are experiencing widespread browning, and have suggested that these patterns reflect decreases in forest productivity induced by climate change. A key limitation of these studies, however, is their reliance on AVHRR data, which provides imagery with very coarse spatial resolution and lower radiometric quality relative to other available remote sensing time series. Here we use NDVI time series from Landsat, which has much higher radiometric quality and spatial resolution than AVHRR, to characterize spatial patterns in greening and browning across Canada's boreal forest and to explore the drivers behind the observed trends. Our results show that the majority of NDVI changes in Canada's boreal forest reflect disturbance-recovery dynamics not climate change impacts, that greening and browning trends outside of disturbed forests are consistent with expected ecological responses to regional changes in climate, and that observed NDVI changes are geographically limited and relatively small in magnitude. Consistent with biogeographic theory, greening and browning unrelated to disturbance tended to be located in ecotones near boundaries of the boreal forest bioclimatic envelope. We observe greening to be most prevalent in Eastern Canada, which is more humid, and browning to be most prevalent in Western Canada, where there is more moisture stress. We conclude that continued long-term climate change has the potential to significantly alter the character and function of Canada's boreal forest, but recent changes have been modest and near-term impacts are likely to be focused in or near ecotones. As part of a NASA funded project supporting the Arctic-Boreal Vulnerability Experiment (ABoVE), we have extended the scope of this study from a set of 46 sites to the entire ABoVE domain covering Alaska and Northwestern Canada (over 6 million square kilometers). Using the full Landsat record, we will also be investigating climate change impacts to the timing of leaf phenology and disturbance frequency in these rapidly warming regions.
Hydrologic Modeling of Boreal Forest Ecosystems
NASA Technical Reports Server (NTRS)
Haddeland, I.; Lettenmaier, D. P.
1995-01-01
This study focused on the hydrologic response, including vegetation water use, of two test regions within the Boreal-Ecosystem-Atmosphere Study (BOREAS) region in the Canadian boreal forest, one north of Prince Albert, Saskatchewan, and the other near Thompson, Manitoba. Fluxes of moisture and heat were studied using a spatially distributed hydrology soil-vegetation-model (DHSVM).
Restoration Concepts for Temperate and Boreal Forests of North America and Western Europe
John A. Stanturf; P. Madsen
2002-01-01
Throughout the boreal and temperate zones, forest restoration efforts attempt to counteract negative effects of conversion to other land use (afforestation and remediation) and disturbance and stress on existing forests (rehabilitation). Appropriate silvicultural practices can be designed for any forest restoration objective. Most common objectives include timber,...
McGuire, A. David; Chapin, F. Stuart; Ruess, Roger W.
2016-01-01
Long-term research by the Bonanza Creek (BNZ) Long Term Ecological Research (LTER) program has documented natural patterns of interannual and successional variability of the boreal forest in interior Alaska against which we can detect changes in system behavior. Between 2004 and 2010 the BNZ LTER program focused on understanding the dynamics of change through studying the resilience and vulnerability of Alaska's boreal forest in response to climate warming. The overarching question in this endeavor has been “How are boreal ecosystems responding, both gradually and abruptly, to climate warming, and what new landscape patterns are emerging?”
NASA Astrophysics Data System (ADS)
Berry, J. A.; Wolf, A.; Vygodskaya, N. N.
2004-12-01
Measurements of energy and water balance over Boreal forest ecosystems have generally shown very large ratios of sensible heat flux to latent heat flux (Bowen ratio) - especially on fine summer days. This strong control on evaporation at the plant scale can restrict precipitation and effect hydrometeorlogy at the regional scale. The large Bowen ratio is, in part, explained by the low maximum stomatal conductance of Boreal forest tree species and is probably related to their very low photosynthetic capacity. However, mid-day conductance can be much lower than expected on this basis and reflects the additional effect of a dynamic feedback system between stomatal conductance and the properties of the atmospheric boundary layer. Low stomatal conductance leads to a large sensible heat flux which, in turn, leads to a deeper, warmer and dryer atmospheric boundary layer and to a greater evaporative demand on the plant, causing the stomata close still more. Predicting the response of this non-linear system presents a major challenge. Physiological studies conducted in the Canadian Boreal forest show very large differences in the tendency of species to experience mid day stomatal closure. Jack pine was found to be quite susceptible while black spruce the most resistant to mid day stomatal closure. These species had very similar photosynthetic capacity (Vmax) and Ball-Berry stomatal sensitivity coefficients. Jack pine was, however, more sensitive to inhibition of photosynthesis by elevated temperatures and, as a consequence, stomata closed as temperature and the vapor pressure deficit increased during mid day. In contrast, black spruce was much less effected. These differences could have profound implications for simulating regional scale hydrometeorology over large areas dominated by monospecific stands in the NEESPI domain.
Persistent and pervasive compositional shifts of western boreal forest plots in Canada.
Searle, Eric B; Chen, Han Y H
2017-02-01
Species compositional shifts have important consequences to biodiversity and ecosystem function and services to humanity. In boreal forests, compositional shifts from late-successional conifers to early-successional conifers and deciduous broadleaves have been postulated based on increased fire frequency associated with climate change truncating stand age-dependent succession. However, little is known about how climate change has affected forest composition in the background between successive catastrophic fires in boreal forests. Using 1797 permanent sample plots from western boreal forests of Canada measured from 1958 to 2013, we show that after accounting for stand age-dependent succession, the relative abundances of early-successional deciduous broadleaves and early-successional conifers have increased at the expense of late-successional conifers with climate change. These background compositional shifts are persistent temporally, consistent across all forest stand ages and pervasive spatially across the region. Rising atmospheric CO 2 promoted early-successional conifers and deciduous broadleaves, and warming increased early-successional conifers at the expense of late-successional conifers, but compositional shifts were not associated with climate moisture index. Our results emphasize the importance of climate change on background compositional shifts in the boreal forest and suggest further compositional shifts as rising CO 2 and warming will continue in the 21st century. © 2016 John Wiley & Sons Ltd.
Differential declines in Alaskan boreal forest vitality related to climate and competition.
Trugman, Anna T; Medvigy, David; Anderegg, William R L; Pacala, Stephen W
2018-03-01
Rapid warming and changes in water availability at high latitudes alter resource abundance, tree competition, and disturbance regimes. While these changes are expected to disrupt the functioning of boreal forests, their ultimate implications for forest composition are uncertain. In particular, recent site-level studies of the Alaskan boreal forest have reported both increases and decreases in productivity over the past few decades. Here, we test the idea that variations in Alaskan forest growth and mortality rates are contingent on species composition. Using forest inventory measurements and climate data from plots located throughout interior and south-central Alaska, we show significant growth and mortality responses associated with competition, midsummer vapor pressure deficit, and increased growing season length. The governing climate and competition processes differed substantially across species. Surprisingly, the most dramatic climate response occurred in the drought tolerant angiosperm species, trembling aspen, and linked high midsummer vapor pressure deficits to decreased growth and increased insect-related mortality. Given that species composition in the Alaskan and western Canadian boreal forests is projected to shift toward early-successional angiosperm species due to fire regime, these results underscore the potential for a reduction in boreal productivity stemming from increases in midsummer evaporative demand. © 2017 John Wiley & Sons Ltd.
Changes in forest productivity across Alaska consistent with biome shift.
Beck, Pieter S A; Juday, Glenn P; Alix, Claire; Barber, Valerie A; Winslow, Stephen E; Sousa, Emily E; Heiser, Patricia; Herriges, James D; Goetz, Scott J
2011-04-01
Global vegetation models predict that boreal forests are particularly sensitive to a biome shift during the 21st century. This shift would manifest itself first at the biome's margins, with evergreen forest expanding into current tundra while being replaced by grasslands or temperate forest at the biome's southern edge. We evaluated changes in forest productivity since 1982 across boreal Alaska by linking satellite estimates of primary productivity and a large tree-ring data set. Trends in both records show consistent growth increases at the boreal-tundra ecotones that contrast with drought-induced productivity declines throughout interior Alaska. These patterns support the hypothesized effects of an initiating biome shift. Ultimately, tree dispersal rates, habitat availability and the rate of future climate change, and how it changes disturbance regimes, are expected to determine where the boreal biome will undergo a gradual geographic range shift, and where a more rapid decline. © 2011 Blackwell Publishing Ltd/CNRS.
Defining fire environment zones in the boreal forests of northeastern China.
Wu, Zhiwei; He, Hong S; Yang, Jian; Liang, Yu
2015-06-15
Fire activity in boreal forests will substantially increase with prolonged growing seasons under a warming climate. This trend poses challenges to managing fires in boreal forest landscapes. A fire environment zone map offers a basis for evaluating these fire-related problems and designing more effective fire management plans to improve the allocation of management resources across a landscape. Toward that goal, we identified three fire environment zones across boreal forest landscapes in northeastern China using analytical methods to identify spatial clustering of the environmental variables of climate, vegetation, topography, and human activity. The three fire environment zones were found to be in strong agreement with the spatial distributions of the historical fire data (occurrence, size, and frequency) for 1966-2005. This paper discusses how the resulting fire environment zone map can be used to guide forest fire management and fire regime prediction. Copyright © 2015 Elsevier B.V. All rights reserved.
Estimating Subcanopy Soil Moisture with RADAR
NASA Technical Reports Server (NTRS)
Moghaddam, M.; Saatchi, S.; Cuenca, R. H.
1998-01-01
The subcanopy soil moisture of a boreal old jack pine forest is estimated using polarimetric L- and P-band AIRSAR data. Model simulations have shown that for this stand, the principal scattering mechanism responsible for radar backscatter is the double-bounce mechanism between the tree trunks and the ground.
Response of water use efficiency to summer drought in a boreal Scots pine forest in Finland
NASA Astrophysics Data System (ADS)
Gao, Yao; Markkanen, Tiina; Aurela, Mika; Mammarella, Ivan; Thum, Tea; Tsuruta, Aki; Yang, Huiyi; Aalto, Tuula
2017-09-01
The influence of drought on plant functioning has received considerable attention in recent years, however our understanding of the response of carbon and water coupling to drought in terrestrial ecosystems still needs to be improved. A severe soil moisture drought occurred in southern Finland in the late summer of 2006. In this study, we investigated the response of water use efficiency to summer drought in a boreal Scots pine forest (Pinus sylvestris) on the daily time scale mainly using eddy covariance flux data from the Hyytiälä (southern Finland) flux site. In addition, simulation results from the JSBACH land surface model were evaluated against the observed results. Based on observed data, the ecosystem level water use efficiency (EWUE; the ratio of gross primary production, GPP, to evapotranspiration, ET) showed a decrease during the severe soil moisture drought, while the inherent water use efficiency (IWUE; a quantity defined as EWUE multiplied with mean daytime vapour pressure deficit, VPD) increased and the underlying water use efficiency (uWUE, a metric based on IWUE and a simple stomatal model, is the ratio of GPP multiplied with a square root of VPD to ET) was unchanged during the drought. The decrease in EWUE was due to the stronger decline in GPP than in ET. The increase in IWUE was because of the decreased stomatal conductance under increased VPD. The unchanged uWUE indicates that the trade-off between carbon assimilation and transpiration of the boreal Scots pine forest was not disturbed by this drought event at the site. The JSBACH simulation showed declines of both GPP and ET under the severe soil moisture drought, but to a smaller extent compared to the observed GPP and ET. Simulated GPP and ET led to a smaller decrease in EWUE but a larger increase in IWUE because of the severe soil moisture drought in comparison to observations. As in the observations, the simulated uWUE showed no changes in the drought event. The model deficiencies exist mainly due to the lack of the limiting effect of increased VPD on stomatal conductance during the low soil moisture condition. Our study provides a deeper understanding of the coupling of carbon and water cycles in the boreal Scots pine forest ecosystem and suggests possible improvements to land surface models, which play an important role in the prediction of biosphere-atmosphere feedbacks in the climate system.
Jacobs, Jenna M.; Bergeron, J. A. Colin
2017-01-01
Abstract Quedius (Raphirus) spencei Jacobs and Bergeron, new species, (Coleoptera: Staphylinidae), is described based on specimens from two localities (type locality: 35 km. E Dixonville, Alberta, Canada) in the Boreal Forest. Male genitalia are illustrated, compared with congeners (Q. rusticus Smetana and Q. simulator Smetana) in the Aenescens species group, and included in a slightly modified key to the species of Quedius. PMID:28769643
NASA Astrophysics Data System (ADS)
Chen, B.; Chen, J. M.; Worthy, D.
2004-05-01
Ecosystem CO2 exchange and the planetary boundary layer (PBL) are correlated diurnally and seasonally. The simulation of this atmospheric rectifier effect is important in understanding the global CO2 distribution pattern. A 12-year (1990-1996, 1999-2003), continuous CO2 measurement record from Fraserdale, Ontario (located ~150 km north of Timmons), along with a coupled Vertical Diffusion Scheme (VDS) and ecosystem model (Boreal Ecosystem Productivity Simulator, BEPS), is used to investigate the interannual variability in this effect over a boreal forest region. The coupled model performed well in simulating CO2 vertical diffusion processes. Simulated annual atmospheric rectifier effects, (including seasonal and diurnal), quantified as the variation in the mean CO2 concentration from the surface to the top of the PBL, varied from 2.8 to 4.1 ppm, even though the modeled seasonal variations in the PBL depth were similar throughout the 12-year period. The differences in the interannual rectifier effect primarily resulted from changes in the biospheric CO2 uptake and heterotrophic respiration. Correlations in the year-to year variations of the CO2 rectification were found with mean annual air temperatures, simulated gross primary productivity (GPP) and heterotrophic respiration (Rh) (r2=0.5, 0.46, 0.42, respectively). A small increasing trend in the CO2 rectification was also observed. The year-to-year variation in the vertical distribution of the monthly mean CO2 mixing ratios (reflecting differences in the diurnal rectifier effect) was related to interannual climate variability, however, the seasonal rectifier effects were found to be more sensitive to climate variability than the diurnal rectifier effects.
Bonanza Creek Experimental Forest & Caribou-Poker Creeks Research Watershed.
Valerie Rapp
2003-01-01
Bonanza Creek Experimental Forest and Caribou-Poker Creeks Research Watershed are located in the boreal forest of interior Alaska. Research focuses on basic ecological processes, hydrology, disturbance regimes, and climate change in the boreal forest region. Interior Alaska lies between the Alaska Range to the south and the Brooks Range to the north and covers an area...
Chapter 14. Review of technical knowledge: Great gray owls
James R. Duncan; Patricia H. Hayward
1994-01-01
The great gray owl (Strix nebulosa) is the longest, but not heaviest, of the northern forest owls. Distributed holarctically across the boreal forests of North America and Eurasia, the great gray owl extends its range southward into the contiguous states by inhabiting forests other than the boreal type. The subalpine and montane forests of the...
Jill F. Johnstone; T. Scott Rupp; Mark Olson; David. Verbyla
2011-01-01
Much of the boreal forest in western North America and Alaska experiences frequent, stand-replacing wildfires. Secondary succession after fire initiates most forest stands and variations in fire characteristics can have strong effects on pathways of succession. Variations in surface fire severity that influence whether regenerating forests are dominated by coniferous...
Christian Messier; John Zasada; David Greene
1999-01-01
The three review papers presented in this issue of the Canadian Journal of Forest Research follow a 1-day workshop that was held in Montreal in early January 1997 entitled Functional Aspects of Regeneration In the Boreal Forest in the Context of Sustainable Forest Management. This workshop was held as part of the regeneration working group of Canada...
Fan, Zhaosheng; Jastrow, Julie D; Liang, Chao; Matamala, Roser; Miller, Raymond Michael
2013-01-01
Laboratory studies show that introduction of fresh and easily decomposable organic carbon (OC) into soil-water systems can stimulate the decomposition of soil OC (SOC) via priming effects in temperate forests, shrublands, grasslands, and agro-ecosystems. However, priming effects are still not well understood in the field setting for temperate ecosystems and virtually nothing is known about priming effects (e.g., existence, frequency, and magnitude) in boreal ecosystems. In this study, a coupled dissolved OC (DOC) transport and microbial biomass dynamics model was developed to simultaneously simulate co-occurring hydrological, physical, and biological processes and their interactions in soil pore-water systems. The developed model was then used to examine the importance of priming effects in two black spruce forest soils, with and without underlying permafrost. Our simulations showed that priming effects were strongly controlled by the frequency and intensity of DOC input, with greater priming effects associated with greater DOC inputs. Sensitivity analyses indicated that priming effects were most sensitive to variations in the quality of SOC, followed by variations in microbial biomass dynamics (i.e., microbial death and maintenance respiration), highlighting the urgent need to better discern these key parameters in future experiments and to consider these dynamics in existing ecosystem models. Water movement carries DOC to deep soil layers that have high SOC stocks in boreal soils. Thus, greater priming effects were predicted for the site with favorable water movement than for the site with limited water flow, suggesting that priming effects might be accelerated for sites where permafrost degradation leads to the formation of dry thermokarst.
Warming alters the energetic structure and function but not resilience of soil food webs
Schwarz, Benjamin; Barnes, Andrew D.; Thakur, Madhav P.; Brose, Ulrich; Ciobanu, Marcel; Reich, Peter B.; Rich, Roy L.; Rosenbaum, Benjamin; Stefanski, Artur; Eisenhauer, Nico
2017-01-01
Climate warming is predicted to alter the structure, stability, and functioning of food webs1–5. Yet, despite the importance of soil food webs for energy and nutrient turnover in terrestrial ecosystems, warming effects on these food webs—particularly in combination with other global change drivers—are largely unknown. Here, we present results from two complementary field experiments testing the interactive effects of warming with forest canopy disturbance and drought on energy fluxes in boreal-temperate ecotonal forest soil food webs. The first experiment applied a simultaneous above- and belowground warming treatment (ambient, +1.7°C, +3.4°C) to closed canopy and recently clear-cut forest, simulating common forest disturbance6. The second experiment crossed warming with a summer drought treatment (-40% rainfall) in the clear-cut habitats. We show that warming reduces energy fluxes to microbes, while forest canopy disturbance and drought facilitates warming-induced increases in energy flux to higher trophic levels and exacerbates reductions in energy flux to microbes, respectively. Contrary to expectations, we find no change in whole-network resilience to perturbations, but significant losses of ecosystem functioning. Warming thus interacts with forest disturbance and drought, shaping the energetic structure of soil food webs and threatening the provisioning of multiple ecosystem functions in boreal-temperate ecotonal forests. PMID:29218059
Warming alters energetic structure and function but not resilience of soil food webs
NASA Astrophysics Data System (ADS)
Schwarz, Benjamin; Barnes, Andrew D.; Thakur, Madhav P.; Brose, Ulrich; Ciobanu, Marcel; Reich, Peter B.; Rich, Roy L.; Rosenbaum, Benjamin; Stefanski, Artur; Eisenhauer, Nico
2017-12-01
Climate warming is predicted to alter the structure, stability, and functioning of food webs1-5. Yet, despite the importance of soil food webs for energy and nutrient turnover in terrestrial ecosystems, the effects of warming on these food webs—particularly in combination with other global change drivers—are largely unknown. Here, we present results from two complementary field experiments that test the interactive effects of warming with forest canopy disturbance and drought on energy flux in boreal-temperate ecotonal forest soil food webs. The first experiment applied a simultaneous above- and belowground warming treatment (ambient, +1.7 °C, +3.4 °C) to closed-canopy and recently clear-cut forest, simulating common forest disturbance6. The second experiment crossed warming with a summer drought treatment (-40% rainfall) in the clear-cut habitats. We show that warming reduces energy flux to microbes, while forest canopy disturbance and drought facilitates warming-induced increases in energy flux to higher trophic levels and exacerbates the reduction in energy flux to microbes, respectively. Contrary to expectations, we find no change in whole-network resilience to perturbations, but significant losses in ecosystem functioning. Warming thus interacts with forest disturbance and drought, shaping the energetic structure of soil food webs and threatening the provisioning of multiple ecosystem functions in boreal-temperate ecotonal forests.
Transformations of snow chemistry in the boreal forest: Accumulation and volatilization
Pomeroy, J.W.; Davies, T.D.; Jones, H.G.; Marsh, P.; Peters, N.E.; Tranter, M.
1999-01-01
This paper examines the processes and dynamics of ecologically-important inorganic chemical (primarily NO3-N) accumulation and loss in boreal forest snow during the cold winter period at a northern and southern location in the boreal forest of western Canada. Field observations from Inuvik, Northwest Territories and Waskesiu, Saskatchewan, Canada were used to link chemical transformations and physical processes in boreal forest snow. Data on the disposition and overwinter transformation of snow water equivalent, NO3-, SO42- and other major ions were examined. No evidence of enhanced dry deposition of chemical species to intercepted snow was found at either site except where high atmospheric aerosol concentrations prevailed. At Inuvik, concentrations of SO42- and Cl- were five to six times higher in intercepted snow than in surface snow away from the trees. SO4-S and Cl loads at Inuvik were correspondingly enhanced three-fold within the nearest 0.5 m to individual tree stems. Measurements of snow affected by canopy interception without rapid sublimation provided no evidence of ion volatilization from intercepted snow. Where intercepted snow sublimation rates were significant, ion loads in sub-canopy snow suggested that NO3- volatized with an efficiency of about 62% per snow mass sublimated. Extrapolating this measurement from Waskesiu to sublimation losses observed in other southern boreal environments suggests that 19-25% of snow inputs of NO3- can be lost during intercepted snow sublimation. The amount of N lost during sublimation may be large in high-snowfall, high N load southern boreal forests (Quebec) where 0.42 kg NO3-N ha-1 is estimated as a possible seasonal NO3- volatilization. The sensitivity of the N fluxes to climate and forest canopy variation and implications of the winter N losses for N budgets in the boreal forest are discussed.This paper examines the processes and dynamics of ecologically-important inorganic chemical (primarily NO3-N) accumulation and loss in boreal forest snow during the cold winter period at a northern and southern location in the boreal forest of western Canada. Field observations from Inuvik. Northwest Territories and Waskesiu, Saskatchewan, Canada were used to link chemical transformations and physical processes in boreal forest snow. Data on the disposition and overwinter transformation of snow water equivalent, NO3-, SO42- and other major ions were examined. No evidence of enhanced dry deposition of chemical species to intercepted snow was found at either site except where high atmospheric aerosol concentrations prevailed. At Inuvik, concentrations of SO42- and Cl- were five to six times higher in intercepted snow than in surface snow away from the trees. SO4-S and Cl loads at Inuvik were correspondingly enhanced three-fold within the nearest 0.5 m to individual tree stems. Measurements of snow affected by canopy interception without rapid sublimation provided no evidence of ion volatilization from intercepted snow. Where intercepted snow sublimation rates were significant, ion loads in sub-canopy snow suggested that NO3- volatized with an efficiency of about 62% per snow mass sublimated. Extrapolating this measurement from Waskesiu to sublimation losses observed in other southern boreal environments suggests that 19-25% of snow inputs of NO3- can be lost during intercepted snow sublimation. The amount of N lost during sublimation may be large in high-snowfall, high N load southern boreal forests (Quebec) where 0.42 kg NO3-N ha-1 is estimated as a possible seasonal NO3- volatilization. The sensitivity of the N fluxes to climate and forest canopy variation and implications of the winter N losses for N budgets in the boreal forest are discussed.
Lee E. Frelich; Peter B. Reich; David W. Peterson
2017-01-01
Historically, oak forests and woodlands intergraded with southern boreal forest, temperate mesic forest, and grassland biomes, forming complex fire-mediated relationships in the Great Lakes region of Minnesota, Wisconsin, and Michigan, USA. Variability in fire recurrence intervals allowed oaks to mix with grasses or with mesic forest species in areas with high (2â10 yr...
Ecophysiological controls of conifer distributions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodward, F.I.
1995-07-01
The boreal forest covers the most extensive worldwide area of conifer-dominated vegetation, with a total global area of about 12 million km{sup 2}. This large area is very species poor; in North America there are only nine widespread and dominant species of trees, of which six are conifers-Picea mariana, Picea glauca, Abies balsamea, Larix laricina, Pinus contorta, and Pinus banksiana. The remaining three angiosperms are Betula papyrifera, Populus tremuloides, and Populus balsamifera. In Fennoscandia and the former Soviet Union, 14 species dominate the boreal forest, 10 of which are conifers-Abies sibirica, Larix gmelinii, Larix sibirica, Larix sukaczewii, Picea abies, Piceamore » ajanensis, Picea obovata, Pinus pumila, Pinus sibifica, and Pinus sylvestris. The dominant angiosperm trees are Betula pendula, Betula pubescens, Chosenia arbutifolia, and Populus tremula. Such species paucity detracts from realizing the remarkable capacity of these species to endure the harshest forest climates of the world. Both the short-term geological history and the current climate are major causes of the species paucity in the boreal forest. In general, the boreal forest has been present in its current distribution only since the Holocene era. In most cases, the dominant species of the boreal forest completed their postglacial expansion to their current distributions only over the past 2000 years. So the ecology of the forest is very young, in comparison with forests in warmer climates. It might be expected that over subsequent millennia, with no climatic change, there could be a slow influx of new species to the boreal zone; however, the extreme climatic, edaphic, and disturbance characteristics of the area are likely to set insurmountable limits on this influx of diversity.« less
FOREST FIRES IN RUSSIA: CARBON DIOXIDE EMISSIONS IN THE ATMOSPHERE
Boreal forests of Russia play a significant role in the global carbon cycle and the f lux of greenhouse gases to the atmosphere. ecause f ire and other disturbances are ecologically inherent in boreal forests, large areas are burned annually and contributions to the flux of carbo...
Ecosystem services of boreal forests - Carbon budget mapping at high resolution.
Akujärvi, Anu; Lehtonen, Aleksi; Liski, Jari
2016-10-01
The carbon (C) cycle of forests produces ecosystem services (ES) such as climate regulation and timber production. Mapping these ES using simple land cover -based proxies might add remarkable inaccuracy to the estimates. A framework to map the current status of the C budget of boreal forested landscapes was developed. The C stocks of biomass and soil and the annual change in these stocks were quantified in a 20 × 20 m resolution at the regional level on mineral soils in southern Finland. The fine-scale variation of the estimates was analyzed geo-statistically. The reliability of the estimates was evaluated by comparing them to measurements from the national multi-source forest inventory. The C stocks of forests increased slightly from the south coast to inland whereas the changes in these stocks were more uniform. The spatial patches of C stocks were larger than those of C stock changes. The patch size of the C stocks reflected the spatial variation in the environmental conditions, and that of the C stock changes the typical area of forest management compartments. The simulated estimates agreed well with the measurements indicating a good mapping framework performance. The mapping framework is the basis for evaluating the effects of forest management alternatives on C budget at high resolution across large spatial scales. It will be coupled with the assessment of other ES and biodiversity to study their relationships. The framework integrated a wide suite of simulation models and extensive inventory data. It provided reliable estimates of the human influence on C cycle in forested landscapes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Monitoring Boreal Forest Owls in Ontario using tape playback surveys with volunteers
Charles M. Francis; Michael S. W. Bradstreet
1997-01-01
Long Point Bird Observatory ran pilot surveys in 1995 and 1996 to monitor boreal forest owls in Ontario using roadside surveys with tape playback of calls. A minimum of 791 owls on 84 routes in 1995, and 392 owls on 88 routes in 1996; nine different species were detected. Playback improved the response rate for Barred (Strix varia), Boreal (...
T.N. Hollingsworth; E.A.G. Schuur; F.S. III Chapin; M.D. Walker
2008-01-01
The boreal forest is the largest terrestrial biome in North America and holds a large portion of the world's reactive soil carbon. Therefore, understanding soil carbon accumulation on a landscape or regional scale across the boreal forest is useful for predicting future soil carbon storage. Here, we examined the relationship between floristic composition and...
Hayes, Daniel J.; McGuire, A. David; Kicklighter, David W.; Burnside , Todd J.; Melillo, Jerry M.
2010-01-01
Recent changes in climate, disturbance regimes and land use and management systems in Northern Eurasia have the potential to disrupt the terrestrial sink of atmospheric CO2 in a way that accelerates global climate change. To determine the recent trends in the carbon balance of the arctic and boreal ecosystems of this region, we performed a retrospective analysis of terrestrial carbon dynamics across northern Eurasia over a recent 10-year period using a terrestrial biogeochemical process model. The results of the simulations suggest a shift in direction of the net flux from the terrestrial sink of earlier decades to a net source on the order of 45 Tg C year−1between 1997 and 2006. The simulation framework and subsequent analyses presented in this study attribute this shift to a large loss of carbon from boreal forest ecosystems, which experienced a trend of decreasing precipitation and a large area burned during this time period.
NASA Technical Reports Server (NTRS)
McDonald, Kyle; Williams, Cynthia; Podest, Erika; Chapman, Bruce
1999-01-01
This paper presents an overview of the JERS-1 North American Boreal Forest Mapping Project and a preliminary assessment of JERS-1 SAR imagery for application to discriminating features applicable to boreal landscape processes. The present focus of the JERS-1 North American Boreal Forest Mapping Project is the production of continental scale wintertime and summertime SAR mosaics of the North American boreal forest for distribution to the science community. As part of this effort, JERS-1 imagery has been collected over much of Alaska and Canada during the 1997-98 winter and 1998 summer seasons. To complete the mosaics, these data will be augmented with data collected during previous years. These data will be made available to the scientific community via CD ROM containing these and similar data sets compiled from companion studies of Asia and Europe. Regional landscape classification with SAR is important for the baseline information it will provide about distribution of woodlands, positions of treeline, current forest biomass, distribution of wetlands, and extent of major rivercourses. As well as setting the stage for longer term change detection, comparisons across several years provides additional baseline information about short-term landscape change. Rapid changes, including those driven by fire, permafrost heat balance, flooding, and insect outbreaks can dominate boreal systems. We examine JERS-1 imagery covering selected sites in Alaska and Canada to assess quality and applicability to such relevant ecological and hydrological issues. The data are generally of high quality and illustrate many potential applications. A texture-based classification scheme is applied to selected regions to assess the applicability of these data for distinguishing distribution of such landcover types as wetland, tundra, woodland and forested landscapes.
Summary and synthesis: past and future changes in the Alaskan Boreal Forest.
F. Stuart Chapin; David McGuire; Roger W. Ruess; Marilyn W. Walker; Richard D. Boone; Mary E. Edwards; Bruce P. Finney; Larry D. Hinzman; Jeremy B. Jones; Glenn P. Juday; Eric S. Kasischke; Knut Kielland; Andrea H. Lloyd; Mark W. Oswood; Chien-Lu Ping; Eric Rexstad; Vladimir E. Romanovsky; Joshua P. Schimel; Elena B. Sparrow; Bjartmar Sveinbjörnsson; David W. Valentine; Keith Van Cleve; David L. Verbyla; Leslie A. Viereck; Richard A. Werner; Tricia L. Wurtz; John Yarie
2006-01-01
Historically the boreal forest has experienced major changes, and it remains a highly dynamic biome today. During cold phases of Quaternary climate cycles, forests were virtually absent from Alaska, and since the postglacial re-establishment of forests ca 13,000 years ago, here have been periods of both relative stability and rapid change (Chapter 5). Today, the...
James K. Agee
2000-01-01
Disturbance dynamics differ in the three subregions of the North American boreal forest (taiga, western United States, and eastern United States) where lynx are found, resulting in a range of potential effects on lynx populations. Fire severity tends to be high in most of the forest types where lynx habitat occurs, although subsequent succession will differ...
Kimberly P. Wickland; Jason C. Neff
2007-01-01
Black spruce forests are a dominant covertype in the boreal forest region, and they inhabit landscapes that span a wide range of hydrologic and thermal conditions. These forests often have large stores of soil organic carbon. Recent increases in temperature at northern latitudes may be stimulating decomposition rates of this soil carbon. It is unclear, however, how...
Bird Responses to burns and clear cuts in the boreal forest of Canada
Susan J. Hannon; Pierre Drapeau
2005-01-01
Unlike many other ecosystems in North America, the boreal forest in Canada still retains a natural fire regime. However, increasing industrial forestry, primarily clear cutting, could alter natural fire dynamics and adversely affect some species. A possible solution to this, promoted by many forest managers, is to cut the forest in a way that emulates natural fire...
Fire emissions in central Siberia
Douglas J. McRae; Steve P. Baker; Yuri N. Samsonov; Galina A. Ivanova
2009-01-01
Wildfires in the Russian boreal forest zone are estimated to typically burn 12-14 million hectares (ha) annually [Cahoon et al. 1994; Conard and Ivanova 1997; Conard et al. 2002; Dixon and Krankina 1993; Kasischke et al. 1999]. Boreal forests contain about 21 percent of global forest area and 28 percent of global forest carbon [Dixon et al. 1994], yet data on the...
Predicting global change effects on forest biomass and composition in south-central Siberia
Eric Gustafson; Anatoly D. Shvidenko; Brian R. Sturtevant; Robert M. Scheller
2010-01-01
Multiple global changes such as timber harvesting in areas not previously disturbed by cutting and climate change will undoubtedly affect the composition and spatial distribution of boreal forests, which will, in turn, affect the ability of these forests to retain carbon and maintain biodiversity. To predict future states of the boreal forest reliably, it is necessary...
NASA Astrophysics Data System (ADS)
Ito, A.
2005-12-01
Boreal forest is one of the focal areas in the study of global warming and carbon cycle. In this study, a coupled carbon cycle and fire regime model was developed and applied to a larch forest in East Siberia, near Yakutsk. Fire regime is simulated with a cellular automaton (20 km x 20 km), in which fire ignition, propagation, and extinction are parameterized in a stochastic manner, including the effects of fuel accumulation and weather condition. For each grid, carbon cycle is simulated with a 10-box scheme, in which net biome production by photosynthesis, respiration, decomposition, and biomass burning are calculated explicitly. Model parameters were calibrated with field data of biomass, litter stock, and fire statistics; the carbon cycle scheme was examined with flux measurement data. As a result, the model successfully captured average carbon stocks, productivity, fire frequency, and biomass burning. To assess the effects of global warming, a series of simulations were performed using climatic projections based on the IPCC-SRES emission scenarios from 1990 to 2100. The range of uncertainty among the different climate models and emission scenarios was assessed by using multi-model projection data by CCCma, CCSR/NIES, GFDL, and HCCPR corresponding to the SRES A2 and B2 scenarios. The model simulations showed that global warming in the 21st century would considerably enhance the fire regime (e.g., cumulative burnt area increased by 80 to 120 percent), leading to larger carbon emission by biomass burning. The effect was so strong that growth enhancement by elevated atmospheric CO2 concentration and elongated growing period was cancelled out at landscape scale. In many cases, the larch forest was estimated to act as net carbon sources of 2 to 5 kg C m_|2 by the end of the 21st century, underscoring the importance of forest fire monitoring and management in this region.
Tree species partition N uptake by soil depth in boreal forests.
Houle, D; Moore, J D; Ouimet, R; Marty, C
2014-05-01
It is recognized that the coexistence of herbaceous species in N-depleted habitats can be facilitated by N partitioning; however, the existence of such a phenomenon for trees has not yet been demonstrated. Here, we show from both foliage and soil 15N natural abundance values and from a 12-year in situ 15N addition experiment, that black spruce (Picea mariana) and jack pine (Pinus banksiana), two widespread species of the Canadian boreal forest, take up N at different depths. While black spruce takes up N from the organic soil, jack pine acquires it deeper within the highly N-depleted mineral soil. Systematic difference in foliar 15N natural abundance between the two species across seven sites distributed throughout the eastern Canadian boreal forest shows that N spatial partitioning is a widespread phenomenon. Distinct relationships between delta15N and N concentration in leaves of both species further emphasize their difference in N acquisition strategies. This result suggests that such complementary mechanisms of N acquisition could facilitate tree species coexistence in such N-depleted habitats and could contribute to the positive biodiversity-productivity relationship recently revealed for the eastern Canadian boreal forest, where jack pine is present. It also has implications for forest management and provides new insights to interpret boreal forest regeneration following natural or anthropogenic perturbations.
Wylie, Bruce K.; Rigge, Matthew B.; Brisco, Brian; Mrnaghan, Kevin; Rover, Jennifer R.; Long, Jordan
2014-01-01
A warming climate influences boreal forest productivity, dynamics, and disturbance regimes. We used ecosystem models and 250 m satellite Normalized Difference Vegetation Index (NDVI) data averaged over the growing season (GSN) to model current, and estimate future, ecosystem performance. We modeled Expected Ecosystem Performance (EEP), or anticipated productivity, in undisturbed stands over the 2000–2008 period from a variety of abiotic data sources, using a rule-based piecewise regression tree. The EEP model was applied to a future climate ensemble A1B projection to quantify expected changes to mature boreal forest performance. Ecosystem Performance Anomalies (EPA), were identified as the residuals of the EEP and GSN relationship and represent performance departures from expected performance conditions. These performance data were used to monitor successional events following fire. Results suggested that maximum EPA occurs 30–40 years following fire, and deciduous stands generally have higher EPA than coniferous stands. Mean undisturbed EEP is projected to increase 5.6% by 2040 and 8.7% by 2070, suggesting an increased deciduous component in boreal forests. Our results contribute to the understanding of boreal forest successional dynamics and its response to climate change. This information enables informed decisions to prepare for, and adapt to, climate change in the Yukon River Basin forest.
Resilience of Alaska's Boreal Forest to Climatic Change
NASA Technical Reports Server (NTRS)
Chapin, F. S., III; McGuire, A. D.; Ruess, R. W.; Hollingsworth, T. N.; Mack, M. C.; Johnstone, J. F.; Kasischke, E. S.; Euskirchen, E. S.; Jones, J. B.; Jorgenson, M. T.;
2010-01-01
This paper assesses the resilience of Alaska s boreal forest system to rapid climatic change. Recent warming is associated with reduced growth of dominant tree species, plant disease and insect outbreaks, warming and thawing of permafrost, drying of lakes, increased wildfire extent, increased postfire recruitment of deciduous trees, and reduced safety of hunters traveling on river ice. These changes have modified key structural features, feedbacks, and interactions in the boreal forest, including reduced effects of upland permafrost on regional hydrology, expansion of boreal forest into tundra, and amplification of climate warming because of reduced albedo (shorter winter season) and carbon release from wildfires. Other temperature-sensitive processes for which no trends have been detected include composition of plant and microbial communities, long-term landscape-scale change in carbon stocks, stream discharge, mammalian population dynamics, and river access and subsistence opportunities for rural indigenous communities. Projections of continued warming suggest that Alaska s boreal forest will undergo significant functional and structural changes within the next few decades that are unprecedented in the last 6000 years. The impact of these social ecological changes will depend in part on the extent of landscape reorganization between uplands and lowlands and on policies regulating subsistence opportunities for rural communities.
Resilience of Alaska’s boreal forest to climatic change
Chapin, F.S.; McGuire, A. David; Ruess, Roger W.; Hollingsworth, Teresa N.; Mack, M.C.; Johnstone, J.F.; Kasischke, E.S.; Euskirchen, E.S.; Jones, J.B.; Jorgenson, M.T.; Kielland, K.; Kofinas, G.; Turetsky, M.R.; Yarie, J.; Lloyd, A.H.; Taylor, D.L.
2010-01-01
This paper assesses the resilience of Alaska’s boreal forest system to rapid climatic change. Recent warming is associated with reduced growth of dominant tree species, plant disease and insect outbreaks, warming and thawing of permafrost, drying of lakes, increased wildfire extent, increased postfire recruitment of deciduous trees, and reduced safety of hunters traveling on river ice. These changes have modified key structural features, feedbacks, and interactions in the boreal forest, including reduced effects of upland permafrost on regional hydrology, expansion of boreal forest into tundra, and amplification of climate warming because of reduced albedo (shorter winter season) and carbon release from wildfires. Other temperature-sensitive processes for which no trends have been detected include composition of plant and microbial communities, long-term landscape-scale change in carbon stocks, stream discharge, mammalian population dynamics, and river access and subsistence opportunities for rural indigenous communities. Projections of continued warming suggest that Alaska’s boreal forest will undergo significant functional and structural changes within the next few decades that are unprecedented in the last 6000 years. The impact of these social–ecological changes will depend in part on the extent of landscape reorganization between uplands and lowlands and on policies regulating subsistence opportunities for rural communities.
Spatially explicit estimation of aboveground boreal forest biomass in the Yukon River Basin, Alaska
Ji, Lei; Wylie, Bruce K.; Brown, Dana R. N.; Peterson, Birgit E.; Alexander, Heather D.; Mack, Michelle C.; Rover, Jennifer R.; Waldrop, Mark P.; McFarland, Jack W.; Chen, Xuexia; Pastick, Neal J.
2015-01-01
Quantification of aboveground biomass (AGB) in Alaska’s boreal forest is essential to the accurate evaluation of terrestrial carbon stocks and dynamics in northern high-latitude ecosystems. Our goal was to map AGB at 30 m resolution for the boreal forest in the Yukon River Basin of Alaska using Landsat data and ground measurements. We acquired Landsat images to generate a 3-year (2008–2010) composite of top-of-atmosphere reflectance for six bands as well as the brightness temperature (BT). We constructed a multiple regression model using field-observed AGB and Landsat-derived reflectance, BT, and vegetation indices. A basin-wide boreal forest AGB map at 30 m resolution was generated by applying the regression model to the Landsat composite. The fivefold cross-validation with field measurements had a mean absolute error (MAE) of 25.7 Mg ha−1 (relative MAE 47.5%) and a mean bias error (MBE) of 4.3 Mg ha−1(relative MBE 7.9%). The boreal forest AGB product was compared with lidar-based vegetation height data; the comparison indicated that there was a significant correlation between the two data sets.
UAVSAR Radar Imagery of Boreal Forests Around Quebec City, Canada
2009-09-01
JPL Uninhabited Aerial Vehicle Synthetic Aperture Radar collected this composite radar image around Québec City, Canada, during an 11-day campaign to study the structure of temperate and boreal forests.
A sensible climate solution for the boreal forest
NASA Astrophysics Data System (ADS)
Astrup, Rasmus; Bernier, Pierre Y.; Genet, Hélène; Lutz, David A.; Bright, Ryan M.
2018-01-01
Climate change could increase fire risk across most of the managed boreal forest. Decreasing this risk by increasing the proportion of broad-leaved tree species is an overlooked mitigation-adaption strategy with multiple benefits.
Regional drought-induced reduction in the biomass carbon sink of Canada's boreal forests.
Ma, Zhihai; Peng, Changhui; Zhu, Qiuan; Chen, Huai; Yu, Guirui; Li, Weizhong; Zhou, Xiaolu; Wang, Weifeng; Zhang, Wenhua
2012-02-14
The boreal forests, identified as a critical "tipping element" of the Earth's climate system, play a critical role in the global carbon budget. Recent findings have suggested that terrestrial carbon sinks in northern high-latitude regions are weakening, but there has been little observational evidence to support the idea of a reduction of carbon sinks in northern terrestrial ecosystems. Here, we estimated changes in the biomass carbon sink of natural stands throughout Canada's boreal forests using data from long-term forest permanent sampling plots. We found that in recent decades, the rate of biomass change decreased significantly in western Canada (Alberta, Saskatchewan, and Manitoba), but there was no significant trend for eastern Canada (Ontario and Quebec). Our results revealed that recent climate change, and especially drought-induced water stress, is the dominant cause of the observed reduction in the biomass carbon sink, suggesting that western Canada's boreal forests may become net carbon sources if the climate change-induced droughts continue to intensify.
NASA Astrophysics Data System (ADS)
Ulander, Lars M. H.; Soja, Maciej J.; Monteith, Albert R.; Eriksson, Leif E. B.; Fransson, Johan E. S.; Persson, Henrik, J.
2016-08-01
This paper describes the tower-based radar BorealScat, which is being developed for polarimetric, tomographic and Doppler measurements at the hemi-boreal forest test site in Remningstorp, Sweden. The facility consists of a 50-m high tower equipped with an antenna array at the top of the tower, a 20-port vector network analyser (VNA), 20 low-loss cables for interconnection, and a calibration loop with a switching network. The first version of BorealScat will perform the full set of measurements in the frequency range 0.4 - 1.4 GHz, i.e. P-band and L-band. The tower is currently under construction at a forest stand dominated by Norway spruce (Picea abies (L.) Karst.). The mature stand has an above-ground dry biomass of 300 tons/ha. Data collections are planned to commence in autumn 2016.
Silviculture for restoration of degraded temperate and boreal forests
John A. Stanturf; Palle Madsen; Emile S. Gardiner
2004-01-01
Throughout the temperate and boreal zones, human intervention has influenced landscapes and forests for millennia. The degree of human disturbance has only been constrained by the technology and resources available to different cultures and by time since initial habitation. Humans have influenced forests by regulating populations of browsers, clearing for agriculture,...
Barred Owl (Strix varia) nest site characteristics in the boreal forest of Saskatchewan, Canada
Kurt M. Mazur; Paul C. James; Shanna D. Frith
1997-01-01
Between 1994 and 1996 we located 15 active Barred Owl (Strix varia) nests in the boreal forest of central Saskatchewan, Canada. Eighty-seven percent of Barred Owl nests were located within old mixedwood forest stands. Nest tree species included white spruce (Picea glauca), trembling aspen (Populus tremuloides),...
Relative importance of different secondary successional pathways in an Alaskan boreal forest
Thomas A. Kurkowski; Daniel H. Mann; T. Scott Rupp; David L. Verbyla
2008-01-01
Postfire succession in the Alaskan boreal forest follows several different pathways, the most common being self-replacement and species-dominance relay. In self-replacement, canopy-dominant tree species replace themselves as the postfire dominants. It implies a relatively unchanging forest composition through time maintained by trees segregated within their respective...
Appendix 1: Regional summaries - Alaska
Jane M. Wolken; Teresa N. Hollingsworth
2012-01-01
Alaskan forests cover one-third of the stateâs 52 million ha of land (Parson et al. 2001), and are regionally and globally significant. Ninety percent of Alaskan forests are classified as boreal, representing 4 percent of the worldâs boreal forests, and are located throughout interior and south-central Alaska (fig. A1-1). The remaining 10 percent of Alaskan forests are...
Jessica R. Miesel; William C. Hockaday; Randy Kolka; Philip A. Townsend
2015-01-01
Recent patterns of prolonged regional drought in southern boreal forests of the Great Lakes region, USA, suggest that the ecological effects of disturbance by wildfire may become increasingly severe. Losses of forest soil organic matter (SOM) during fire can limit soil nutrient availability and forest regeneration. These processes are also influenced by the composition...
NASA Astrophysics Data System (ADS)
Trugman, A. T.; Fenton, N.; Bergeron, Y.; Xu, X.; Welp, L.; Medvigy, D.
2015-12-01
Soil organic layer dynamics strongly affect boreal forest development after fire. Field studies show that soil organic layer thickness exerts a species-specific control on propagule establishment in the North American boreal forest. On organic soils thicker than a few centimeters, all propagules are less able to recruit, but broadleaf trees recruit less effectively than needleleaf trees. In turn, forest growth controls organic layer accumulation through modulating litter input and litter quality. These dynamics have not been fully incorporated into models, but may be essential for accurate projections of ecosystem carbon storage. Here, we develop a data-constrained model for understanding boreal forest development after fire. We update the ED2 model to include new aspen and black spruce species-types, species-specific propagule survivorship dependent on soil organic layer depth, species-specific litter decay rates, dynamically accumulating moss and soil organic layers, and nitrogen fixation by cyanobacteria associated with moss. The model is validated against diverse observations ranging from monthly to centennial timescales and spanning a climate gradient in Alaska, central Canada, and Quebec. We then quantify differences in forest development that result from changes in organic layer accumulation, temperature, and nitrogen. We find that (1) the model accurately reproduces a range of observations throughout the North American boreal forest; (2) the presence of a thick organic layer results in decreased decomposition and decreased aboveground productivity, effects that can increase or decrease ecosystem carbon uptake depending on location-specific attributes; (3) with a mean warming of 4°C, some forests switch from undergoing succession to needleleaf forests to recruiting multiple cohorts of broadleaf trees, decreasing ecosystem accumulation by ~30% after 300 years; (4) the availability of nitrogen regulates successional dynamics such than broadleaf species are less able to compete with needleleaf trees under low nitrogen regimes. We conclude that a joint regulation between the soil organic layer, temperature, and nitrogen will likely play an important role in influencing boreal forests development after fire in future climates, and should be represented in models.
Northeastern North America as a potential refugium for boreal forests in a warming climate.
D'Orangeville, L; Duchesne, L; Houle, D; Kneeshaw, D; Côté, B; Pederson, N
2016-06-17
High precipitation in boreal northeastern North America could help forests withstand the expected temperature-driven increase in evaporative demand, but definitive evidence is lacking. Using a network of tree-ring collections from 16,450 stands across 583,000 km(2) of boreal forests in Québec, Canada, we observe a latitudinal shift in the correlation of black spruce growth with temperature and reduced precipitation, from negative south of 49°N to largely positive to the north of that latitude. Our results suggest that the positive effect of a warmer climate on growth rates and growing season length north of 49°N outweighs the potential negative effect of lower water availability. Unlike the central and western portions of the continent's boreal forest, northeastern North America may act as a climatic refugium in a warmer climate. Copyright © 2016, American Association for the Advancement of Science.
Seasonality of a boreal forest: a remote sensing perspective
NASA Astrophysics Data System (ADS)
Rautiainen, Miina; Heiskanen, Janne; Lukes, Petr; Majasalmi, Titta; Mottus, Matti; Pisek, Jan
2016-04-01
Understanding the seasonal dynamics of boreal ecosystems through interpretation of satellite reflectance data is needed for efficient large-scale monitoring of northern vegetation dynamics and productivity trends. Satellite remote sensing enables continuous global monitoring of vegetation status and is not limited to single-date phenological metrics. Using remote sensing also enables gaining a wider perspective to the seasonality of vegetation dynamics. The seasonal reflectance cycles of boreal forests observed in optical satellite images are explained by changes in biochemical properties and geometrical structure of vegetation as well as seasonal variation in solar illumination. This poster provides a synthesis of a research project (2010-2015) dedicated to monitoring the seasonal cycle of boreal forests. It is based on satellite and field data collected from the Hyytiälä Forestry Field Station in Finland. The results highlight the role understory vegetation has in forming the forest reflectance measured by satellite instruments.
Boreal Forest Watch: A BOREAS Outreach Program
NASA Technical Reports Server (NTRS)
Rock, Barrett N.
1999-01-01
The Boreal Forest Watch program was initiated in the fall of 1994 to act as an educational outreach program for the BOREAS project in both the BOREAS Southern Study Area (SSA) and Northern Study Area (NSA). Boreal Forest Watch (13FW) was designed to introduce area high school teachers and their students to the types of research activities occurring as part of the BOREAS study of Canadian boreal forests. Several teacher training workshops were offered to teachers from central and northern Saskatchewan and northern Manitoba between May, 1995 and February, 1999; teachers were introduced to techniques for involving their students in on-going environmental monitoring studies within local forested stands. Boreal Forest Watch is an educational outreach program which brings high school students and research scientists together to study the forest and foster a sustainable relationship between people and the planetary life-support system we depend upon. Personnel from the University of New Hampshire (UNH), Complex Systems Research Center (CSRC), with the cooperation from the Prince Albert National Park (PANP), instituted this program to help teachers within the BOREAS Study Areas offer real science research experience to their students. The program has the potential to complement large research projects, such as BOREAS, by providing useful student- collected data to scientists. Yet, the primary goal of BFW is to allow teachers and students to experience a hands-on, inquiry-based approach to leaming science - emulating the process followed by research scientists. In addition to introducing these teachers to on-going BOREAS research, the other goals of the BFW program were to: 1) to introduce authentic science topics and methods to students and teachers through hands-on, field-based activities; and, 2) to build a database of student-collected environmental monitoring data for future global change studies in the boreal region.
Boulanger, Yan; Cyr, Dominic; Taylor, Anthony R.; Price, David T.; St-Laurent, Martin-Hugues
2018-01-01
Many studies project future bird ranges by relying on correlative species distribution models. Such models do not usually represent important processes explicitly related to climate change and harvesting, which limits their potential for predicting and understanding the future of boreal bird assemblages at the landscape scale. In this study, we attempted to assess the cumulative and specific impacts of both harvesting and climate-induced changes on wildfires and stand-level processes (e.g., reproduction, growth) in the boreal forest of eastern Canada. The projected changes in these landscape- and stand-scale processes (referred to as “drivers of change”) were then assessed for their impacts on future habitats and potential productivity of black-backed woodpecker (BBWO; Picoides arcticus), a focal species representative of deadwood and old-growth biodiversity in eastern Canada. Forest attributes were simulated using a forest landscape model, LANDIS-II, and were used to infer future landscape suitability to BBWO under three anthropogenic climate forcing scenarios (RCP 2.6, RCP 4.5 and RCP 8.5), compared to the historical baseline. We found climate change is likely to be detrimental for BBWO, with up to 92% decline in potential productivity under the worst-case climate forcing scenario (RCP 8.5). However, large declines were also projected under baseline climate, underlining the importance of harvest in determining future BBWO productivity. Present-day harvesting practices were the single most important cause of declining areas of old-growth coniferous forest, and hence appeared as the single most important driver of future BBWO productivity, regardless of the climate scenario. Climate-induced increases in fire activity would further promote young, deciduous stands at the expense of old-growth coniferous stands. This suggests that the biodiversity associated with deadwood and old-growth boreal forests may be greatly altered by the cumulative impacts of natural and anthropogenic disturbances under a changing climate. Management adaptations, including reduced harvesting levels and strategies to promote coniferous species content, may help mitigate these cumulative impacts. PMID:29414989
Tremblay, Junior A; Boulanger, Yan; Cyr, Dominic; Taylor, Anthony R; Price, David T; St-Laurent, Martin-Hugues
2018-01-01
Many studies project future bird ranges by relying on correlative species distribution models. Such models do not usually represent important processes explicitly related to climate change and harvesting, which limits their potential for predicting and understanding the future of boreal bird assemblages at the landscape scale. In this study, we attempted to assess the cumulative and specific impacts of both harvesting and climate-induced changes on wildfires and stand-level processes (e.g., reproduction, growth) in the boreal forest of eastern Canada. The projected changes in these landscape- and stand-scale processes (referred to as "drivers of change") were then assessed for their impacts on future habitats and potential productivity of black-backed woodpecker (BBWO; Picoides arcticus), a focal species representative of deadwood and old-growth biodiversity in eastern Canada. Forest attributes were simulated using a forest landscape model, LANDIS-II, and were used to infer future landscape suitability to BBWO under three anthropogenic climate forcing scenarios (RCP 2.6, RCP 4.5 and RCP 8.5), compared to the historical baseline. We found climate change is likely to be detrimental for BBWO, with up to 92% decline in potential productivity under the worst-case climate forcing scenario (RCP 8.5). However, large declines were also projected under baseline climate, underlining the importance of harvest in determining future BBWO productivity. Present-day harvesting practices were the single most important cause of declining areas of old-growth coniferous forest, and hence appeared as the single most important driver of future BBWO productivity, regardless of the climate scenario. Climate-induced increases in fire activity would further promote young, deciduous stands at the expense of old-growth coniferous stands. This suggests that the biodiversity associated with deadwood and old-growth boreal forests may be greatly altered by the cumulative impacts of natural and anthropogenic disturbances under a changing climate. Management adaptations, including reduced harvesting levels and strategies to promote coniferous species content, may help mitigate these cumulative impacts.
Girardin, Martin P; Hogg, Edward H; Bernier, Pierre Y; Kurz, Werner A; Guo, Xiao Jing; Cyr, Guillaume
2016-02-01
An increasing number of studies conclude that water limitations and heat stress may hinder the capacity of black spruce (Picea mariana (Mill.) B.S.P.) trees, a dominant species of Canada's boreal forests, to grow and assimilate atmospheric carbon. However, there is currently no scientific consensus on the future of these forests over the next century in the context of widespread climate warming. The large spatial extent of black spruce forests across the Canadian boreal forest and associated variability in climate, demography, and site conditions pose challenges for projecting future climate change responses. Here we provide an evaluation of the impacts of climate warming and drying, as well as increasing [CO2 ], on the aboveground productivity of black spruce forests across Canada south of 60°N for the period 1971 to 2100. We use a new extensive network of tree-ring data obtained from Canada's National Forest Inventory, spatially explicit simulations of net primary productivity (NPP) and its drivers, and multivariate statistical modeling. We found that soil water availability is a significant driver of black spruce interannual variability in productivity across broad areas of the western to eastern Canadian boreal forest. Interannual variability in productivity was also found to be driven by autotrophic respiration in the warmest regions. In most regions, the impacts of soil water availability and respiration on interannual variability in productivity occurred during the phase of carbohydrate accumulation the year preceding tree-ring formation. Results from projections suggest an increase in the importance of soil water availability and respiration as limiting factors on NPP over the next century due to warming, but this response may vary to the extent that other factors such as carbon dioxide fertilization, and respiration acclimation to high temperature, contribute to dampening these limitations. © 2015 Her Majesty the Queen in Right of Canada. Reproduced with the permission of the Minister of Natural Resources Canada.
Impact of Land Cover Characterization and Properties on Snow Albedo in Climate Models
NASA Astrophysics Data System (ADS)
Wang, L.; Bartlett, P. A.; Chan, E.; Montesano, P.
2017-12-01
The simulation of winter albedo in boreal and northern environments has been a particular challenge for land surface modellers. Assessments of output from CMIP3 and CMIP5 climate models have revealed that many simulations are characterized by overestimation of albedo in the boreal forest. Recent studies suggest that inaccurate representation of vegetation distribution, improper simulation of leaf area index, and poor treatment of canopy-snow processes are the primary causes of albedo errors. While several land cover datasets are commonly used to derive plant functional types (PFT) for use in climate models, new land cover and vegetation datasets with higher spatial resolution have become available in recent years. In this study, we compare the spatial distribution of the dominant PFTs and canopy cover fractions based on different land cover datasets, and present results from offline simulations of the latest version Canadian Land Surface Scheme (CLASS) over the northern Hemisphere land. We discuss the impact of land cover representation and surface properties on winter albedo simulations in climate models.
NASA Technical Reports Server (NTRS)
Sellers, Piers J.
1991-01-01
The Boreal Ecosystems Atmosphere Study (BOREAS) is a cooperative field and analysis project involving elements of land surface climatology, tropospheric chemistry, and terrestrial ecology. The goal of the study is to understand the interactions between the boreal forest biome and the atmosphere in order to clarify their roles in global change. The study will be centered on two 20 by 20 km sites within the North American boreal forest region, located near the northern and southern limits of the biome. Studies based at these sites will be used to explore the roles of various environmental factors in controlling the extent and character of the biome. The sites will be the subject of surface, airborne, and satellite based observations which aim to improve understanding of the biological and physical processes and states which govern the exchanges of energy, water, carbon, and trace gases between boreal forest ecosystems and the atmosphere. Particular reference will be made to those processes and states that may be sensitive to global change. The study also aims to develop the use of remote sensing techniques to transfer understanding of the above process from local scales out to regional scales. The BOREAS project is being planned for 1992-1996, with a major field effort in 1994.
Influence of the forest canopy on total and methyl mercury deposition in the boreal forest
E.L. Witt; R.K. Kolka; E.A. Nater; T.R. Wickman
2009-01-01
Atmospheric mercury deposition by wet and dry processes contributes mercury to terrestrial and aquatic systems. Factors influencing the amount of mercury deposited to boreal forests were identified in this study. Throughfall and open canopy precipitation samples were collected in 2005 and 2006 using passive precipitation collectors from pristine sites located across...
Quantifying the effect of fuel reduction treatments on fire behavior in boreal forests
B.W. Butler; R.D. Ottmar; T.S. Rupp; R. Jandt; E. Miller; K. Howard; R. Schmoll; S. Theisen; R.E. Vihnanek; D. Jimenez
2013-01-01
Mechanical (e.g., shearblading) and manual (e.g., thinning) fuel treatments have become the preferred strategy of many fire managers and agencies for reducing fire hazard in boreal forests. This study attempts to characterize the effectiveness of four fuel treatments through direct measurement of fire intensity and forest floor consumption during a single prescribed...
Pinus sylvestris as a missing source of nitrous oxide and methane in boreal forest.
Machacova, Katerina; Bäck, Jaana; Vanhatalo, Anni; Halmeenmäki, Elisa; Kolari, Pasi; Mammarella, Ivan; Pumpanen, Jukka; Acosta, Manuel; Urban, Otmar; Pihlatie, Mari
2016-03-21
Boreal forests comprise 73% of the world's coniferous forests. Based on forest floor measurements, they have been considered a significant natural sink of methane (CH4) and a natural source of nitrous oxide (N2O), both of which are important greenhouse gases. However, the role of trees, especially conifers, in ecosystem N2O and CH4 exchange is only poorly understood. We show for the first time that mature Scots pine (Pinus sylvestris L.) trees consistently emit N2O and CH4 from both stems and shoots. The shoot fluxes of N2O and CH4 exceeded the stem flux rates by 16 and 41 times, respectively. Moreover, higher stem N2O and CH4 fluxes were observed from wet than from dry areas of the forest. The N2O release from boreal pine forests may thus be underestimated and the uptake of CH4 may be overestimated when ecosystem flux calculations are based solely on forest floor measurements. The contribution of pine trees to the N2O and CH4 exchange of the boreal pine forest seems to increase considerably under high soil water content, thus highlighting the urgent need to include tree-emissions in greenhouse gas emission inventories.
Large Carbon Dioxide Fluxes from Headwater Boreal and Sub-Boreal Streams
Venkiteswaran, Jason J.; Schiff, Sherry L.; Wallin, Marcus B.
2014-01-01
Half of the world's forest is in boreal and sub-boreal ecozones, containing large carbon stores and fluxes. Carbon lost from headwater streams in these forests is underestimated. We apply a simple stable carbon isotope idea for quantifying the CO2 loss from these small streams; it is based only on in-stream samples and integrates over a significant distance upstream. We demonstrate that conventional methods of determining CO2 loss from streams necessarily underestimate the CO2 loss with results from two catchments. Dissolved carbon export from headwater catchments is similar to CO2 loss from stream surfaces. Most of the CO2 originating in high CO2 groundwaters has been lost before typical in-stream sampling occurs. In the Harp Lake catchment in Canada, headwater streams account for 10% of catchment net CO2 uptake. In the Krycklan catchment in Sweden, this more than doubles the CO2 loss from the catchment. Thus, even when corrected for aquatic CO2 loss measured by conventional methods, boreal and sub-boreal forest carbon budgets currently overestimate carbon sequestration on the landscape. PMID:25058488
Frelich, Lee E; Peterson, Rolf O; Dovčiak, Martin; Reich, Peter B; Vucetich, John A; Eisenhauer, Nico
2012-11-05
As the climate warms, boreal tree species are expected to be gradually replaced by temperate species within the southern boreal forest. Warming will be accompanied by changes in above- and below-ground consumers: large moose (Alces alces) replaced by smaller deer (Odocoileus virginianus) above-ground, and small detritivores replaced by larger exotic earthworms below-ground. These shifts may induce a cascade of ecological impacts across trophic levels that could alter the boreal to temperate forest transition. Deer are more likely to browse saplings of temperate tree species, and European earthworms favour seedlings of boreal tree species more than temperate species, potentially hindering the ability of temperate tree species to expand northwards. We hypothesize that warming-induced changes in consumers will lead to novel plant communities by changing the filter on plant species success, and that above- and below-ground cascades of trophic interactions will allow boreal tree species to persist during early phases of warming, leading to an abrupt change at a later time. The synthesis of evidence suggests that consumers can modify the climate change-induced transition of ecosystems.
Large carbon dioxide fluxes from headwater boreal and sub-boreal streams.
Venkiteswaran, Jason J; Schiff, Sherry L; Wallin, Marcus B
2014-01-01
Half of the world's forest is in boreal and sub-boreal ecozones, containing large carbon stores and fluxes. Carbon lost from headwater streams in these forests is underestimated. We apply a simple stable carbon isotope idea for quantifying the CO2 loss from these small streams; it is based only on in-stream samples and integrates over a significant distance upstream. We demonstrate that conventional methods of determining CO2 loss from streams necessarily underestimate the CO2 loss with results from two catchments. Dissolved carbon export from headwater catchments is similar to CO2 loss from stream surfaces. Most of the CO2 originating in high CO2 groundwaters has been lost before typical in-stream sampling occurs. In the Harp Lake catchment in Canada, headwater streams account for 10% of catchment net CO2 uptake. In the Krycklan catchment in Sweden, this more than doubles the CO2 loss from the catchment. Thus, even when corrected for aquatic CO2 loss measured by conventional methods, boreal and sub-boreal forest carbon budgets currently overestimate carbon sequestration on the landscape.
Estimation of carbon emissions from wildfires in Alaskan boreal forests using AVHRR data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasischke, E.S.; French, N.H.F.; Bourgeau-Chavez, L.L
1993-06-01
The objectives of this research study were to evaluate the utility of using AVHRR data for locating and measuring the areal extent of wildfires in the boreal forests of Alaska and to estimate the amount of carbon being released during these fires. Techniques were developed to using the normalized difference vegetation signature derived from AVHRR data to detect and measure the area of fires in Alaska. A model was developed to estimate the amount of biomass/carbon being stored in Alaskan boreal forests, and the amount of carbon released during fires. The AVHRR analysis resulted in detection of > 83% ofmore » all forest fires greater than 2,000 ha in size in the years 1990 and 1991. The areal estimate derived from AVHRR data were 75% of the area mapped by the Alaska Fire Service for these years. Using fire areas and locations for 1954 through 1992, it was determined that on average, 13.0 gm-C-m-2 of boreal forest area is released during fires every year. This estimate is two to six times greater than previous reported estimates. Our conclusions are that the analysis of AVHRR data represents a viable means for detecting and mapping fires in boreal regions on a global basis.« less
Sierra, Carlos A; Loescher, Henry W; Harmon, Mark E; Richardson, Andrew D; Hollinger, David Y; Perakis, Steven S
2009-10-01
Interannual variation of carbon fluxes can be attributed to a number of biotic and abiotic controls that operate at different spatial and temporal scales. Type and frequency of disturbance, forest dynamics, and climate regimes are important sources of variability. Assessing the variability of carbon fluxes from these specific sources can enhance the interpretation of past and current observations. Being able to separate the variability caused by forest dynamics from that induced by climate will also give us the ability to determine if the current observed carbon fluxes are within an expected range or whether the ecosystem is undergoing unexpected change. Sources of interannual variation in ecosystem carbon fluxes from three evergreen ecosystems, a tropical, a temperate coniferous, and a boreal forest, were explored using the simulation model STANDCARB. We identified key processes that introduced variation in annual fluxes, but their relative importance differed among the ecosystems studied. In the tropical site, intrinsic forest dynamics contributed approximately 30% of the total variation in annual carbon fluxes. In the temperate and boreal sites, where many forest processes occur over longer temporal scales than those at the tropical site, climate controlled more of the variation among annual fluxes. These results suggest that climate-related variability affects the rates of carbon exchange differently among sites. Simulations in which temperature, precipitation, and radiation varied from year to year (based on historical records of climate variation) had less net carbon stores than simulations in which these variables were held constant (based on historical records of monthly average climate), a result caused by the functional relationship between temperature and respiration. This suggests that, under a more variable temperature regime, large respiratory pulses may become more frequent and high enough to cause a reduction in ecosystem carbon stores. Our results also show that the variation of annual carbon fluxes poses an important challenge in our ability to determine whether an ecosystem is a source, a sink, or is neutral in regard to CO2 at longer timescales. In simulations where climate change negatively affected ecosystem carbon stores, there was a 20% chance of committing Type II error, even with 20 years of sequential data.
NASA Astrophysics Data System (ADS)
Sonnentag, O.; Helbig, M.; Connon, R.; Hould Gosselin, G.; Ryu, Y.; Karoline, W.; Hanisch, J.; Moore, T. R.; Quinton, W. L.
2017-12-01
The permafrost region of the Northern Hemisphere has been experiencing twice the rate of climate warming compared to the rest of the Earth, resulting in the degradation of the cryosphere. A large portion of the high-latitude boreal forests of northwestern Canada grows on low-lying organic-rich lands with relative warm and thin isolated, sporadic and discontinuous permafrost. Along this southern limit of permafrost, increasingly warmer temperatures have caused widespread permafrost thaw leading to land cover changes at unprecedented rates. A prominent change includes wetland expansion at the expense of Picea mariana (black spruce)-dominated forest due to ground surface subsidence caused by the thawing of ice-rich permafrost leading to collapsing peat plateaus. Recent conceptual advances have provided important new insights into high-latitude boreal forest hydrology. However, refined quantitative understanding of the mechanisms behind water storage and movement at subcatchment and catchment scales is needed from a water resources management perspective. Here we combine multi-year daily runoff measurements with spatially explicit estimates of evapotranspiration, modelled with the Breathing Earth System Simulator, to characterize the monthly growing season catchment scale ( 150 km2) hydrological response of a boreal headwater peatland complex with sporadic permafrost in the southern Northwest Territories. The corresponding water budget components at subcatchment scale ( 0.1 km2) were obtained from concurrent cutthroat flume runoff and eddy covariance evapotranspiration measurements. The highly significant linear relationships for runoff (r2=0.64) and evapotranspiration (r2=0.75) between subcatchment and catchment scales suggest that the mineral upland-dominated downstream portion of the catchment acts hydrologically similar to the headwater portion dominated by boreal peatland complexes. Breakpoint analysis in combination with moving window statistics on multi-year time-series of daily total and liquid precipitation, and snow water equivalent suggest a recent (post-2010) transition to a more rainfall-controlled runoff regime.
Lagged processes and critical timescales in boreal forest response to climate
NASA Astrophysics Data System (ADS)
Wofsy, S. C.; Dunn, A. L.; Amiro, B. D.; Barr, A.; Rocha, A. V.; Goulden, M. L.
2006-12-01
Long-term eddy covariance datasets have recorded the response of boreal ecosystems to climate on timescales up to decadal (Dunn et al. 2006, Barr et al. 2006). Carbon balances in these forests are very dynamic, responding to climatic anomalies on timescales of months to years. A boreal black spruce forest in central Manitoba, Canada, was a source of carbon to the atmosphere in the mid-1990s (55 g C m^{- 2} y-1, 1995-1997), but switched to a sink in recent years (-25 g C m-2 y-1, 2003-2005). The short-term carbon exchange at this site was strongly controlled by temperature, but on long timescales the water balance was more important (Dunn et al. 2006). In a boreal aspen forest in central Saskatchewan, Canada, temperature was the main driver of phenology and canopy duration, but drought status, and especially the persistence of drought over multiple years, was a critical control on ecosystem respiration and resultant carbon balance (Barr et al. 2006). Lagged processes are especially important in the boreal forest: Dunn et al. (2006) found that carbon balances, and especially ecosystem respiration, were strongly controlled by the integrated water balance over preceding years, suggesting that the effects of climatic anomalies are expressed slowly in these forests. Rocha et al. (2006) found similar evidence in tree-ring cores from the NOBS site, which showed a strong correlation with lagged water balances, suggesting that wood growth in these forests is a process integrating over prior years. In a tree-ring analysis across aspen stands in western Canada, Hogg et al. (2005) found that current and lagged (up to four years) moisture status were critical factors regulating ecosystem carbon balance. These results from long-term boreal datasets suggest that the vulnerability of these forests to climate change will be strongly dependent on the future balance between precipitation and temperature. Persistent perturbations to the local climate will likely shift overall biome carbon balance.
Growth Decline Linked to Warming-Induced Water Limitation in Hemi-Boreal Forests
Wu, Xiuchen; Liu, Hongyan; Guo, Dali; Anenkhonov, Oleg A.; Badmaeva, Natalya K.; Sandanov, Denis V.
2012-01-01
Hemi-boreal forests, which make up the transition from temperate deciduous forests to boreal forests in southern Siberia, have experienced significant warming without any accompanying increase in precipitation during the last 80 years. This climatic change could have a profound impact on tree growth and on the stability of forest ecosystems in this region, but at present evidence for these impacts is lacking. In this study, we report a recent dramatic decline in the growth of hemi-boreal forests, based on ring width measurements from three dominant tree-species (Pinus sylvestris, Larix sibirica and Larix gmelinii), sampled from eight sites in the region. We found that regional tree growth has become increasingly limited by low soil water content in the pre- and early-growing season (from October of the previous year to July of the current year) over the past 80 years. A warming-induced reduction in soil water content has also increased the climate sensitivity of these three tree species. Beginning in the mid-1980s, a clear decline in growth is evident for both the pine forests and the larch forests, although there are increasing trends in the proxy of soil water use efficiencies. Our findings are consistent with those from other parts of the world and provide valuable insights into the regional carbon cycle and vegetation dynamics, and should be useful for devising adaptive forest management strategies. PMID:22916142
Growth decline linked to warming-induced water limitation in hemi-boreal forests.
Wu, Xiuchen; Liu, Hongyan; Guo, Dali; Anenkhonov, Oleg A; Badmaeva, Natalya K; Sandanov, Denis V
2012-01-01
Hemi-boreal forests, which make up the transition from temperate deciduous forests to boreal forests in southern Siberia, have experienced significant warming without any accompanying increase in precipitation during the last 80 years. This climatic change could have a profound impact on tree growth and on the stability of forest ecosystems in this region, but at present evidence for these impacts is lacking. In this study, we report a recent dramatic decline in the growth of hemi-boreal forests, based on ring width measurements from three dominant tree-species (Pinus sylvestris, Larix sibirica and Larix gmelinii), sampled from eight sites in the region. We found that regional tree growth has become increasingly limited by low soil water content in the pre- and early-growing season (from October of the previous year to July of the current year) over the past 80 years. A warming-induced reduction in soil water content has also increased the climate sensitivity of these three tree species. Beginning in the mid-1980s, a clear decline in growth is evident for both the pine forests and the larch forests, although there are increasing trends in the proxy of soil water use efficiencies. Our findings are consistent with those from other parts of the world and provide valuable insights into the regional carbon cycle and vegetation dynamics, and should be useful for devising adaptive forest management strategies.
ENHANCED: IMPORTING TIMBER, EXPORTING ECOLOGICAL IMPACT
Covering 32% of the planet, boreal forests are one of the last relatively intact terrestrial biomes, and are a critical carbon sink in global climate dynamics. Mature and old growth boreal forests provide a large number of products that are culturally and economically important, ...
E. Hyvarinen; H. Lappalainen; P. Martikainen; J. Kouki
2003-01-01
During the 1900s, the amount of dead and decaying wood has declined drastically in boreal forests in Finland because of intensive forest management. As a result, species requiring such resources have also declined or have even gone extinct. Recently it has been observed that in addition to old-growth forests, natural, early successional phases are also important for...
NASA Astrophysics Data System (ADS)
Melaas, Eli K.; Sulla-Menashe, Damien; Friedl, Mark A.
2018-03-01
The timing of leaf emergence is an important diagnostic of climate change impacts on ecosystems. Here we present the first continental-scale analysis of multidecadal changes in the timing of spring onset across North American temperate and boreal forests based on Landsat imagery. Our results show that leaf emergence in Eastern Temperate Forests has consistently trended earlier, with a median change of about 1 week over the 30 year study period. Changes in leaf emergence dates in boreal forests were more heterogeneous, with some sites showing trends toward later dates. Interannual variability in leaf emergence dates was strongly sensitive to springtime accumulated growing degree days across all sites, and geographic patterns of changes in onset dates were highly correlated with changes in regional springtime temperatures. These results provide a refined characterization of recent changes in springtime forest phenology and improve understanding regarding the sensitivity of North American forests to climate change.
Derivation of a northern-hemispheric biomass map for use in global carbon cycle models
NASA Astrophysics Data System (ADS)
Thurner, Martin; Beer, Christian; Santoro, Maurizio; Carvalhais, Nuno; Wutzler, Thomas; Schepaschenko, Dmitry; Shvidenko, Anatoly; Kompter, Elisabeth; Levick, Shaun; Schmullius, Christiane
2013-04-01
Quantifying the state and the change of the World's forests is crucial because of their ecological, social and economic value. Concerning their ecological importance, forests provide important feedbacks on the global carbon, energy and water cycles. In addition to their influence on albedo and evapotranspiration, they have the potential to sequester atmospheric carbon dioxide and thus to mitigate global warming. The current state and inter-annual variability of forest carbon stocks remain relatively unexplored, but remote sensing can serve to overcome this shortcoming. While for the tropics wall-to-wall estimates of above-ground biomass have been recently published, up to now there was a lack of similar products covering boreal and temperate forests. Recently, estimates of forest growing stock volume (GSV) were derived from ENVISAT ASAR C-band data for latitudes above 30° N. Utilizing a wood density and a biomass compartment database, a forest carbon density map covering North-America, Europe and Asia with 0.01° resolution could be derived out of this dataset. Allometric functions between stem, branches, root and foliage biomass were fitted and applied for different leaf types (broadleaf, needleleaf deciduous, needleleaf evergreen forest). Additionally, this method enabled uncertainty estimation of the resulting carbon density map. Intercomparisons with inventory-based biomass products in Russia, Europe and the USA proved the high accuracy of this approach at a regional scale (r2 = 0.70 - 0.90). Based on the final biomass map, the forest carbon stocks and densities (excluding understorey vegetation) for three biomes were estimated across three continents. While 40.7 ± 15.7 Gt of carbon were found to be stored in boreal forests, temperate broadleaf/mixed forests and temperate conifer forests contain 24.5 ± 9.4 Gt(C) and 14.5 ± 4.8 Gt(C), respectively. In terms of carbon density, most of the carbon per area is stored in temperate conifer (62.1 ± 20.7 Mg(C)/ha(Forest)) and broadleaf/mixed forests (58.0 ± 22.1 Mg(C)/ha(Forest)), whereas boreal forests have a carbon density of only 40.0 ± 15.4 Mg(C)/ha(Forest). While European forest carbon stocks are relatively small, the carbon density is higher compared to the other continents. The derived biomass map substantially improves the knowledge on the current carbon stocks of the northern-hemispheric boreal and temperate forests, serving as a new benchmark for spatially explicit and consistent biomass mapping with moderate spatial resolution. This product can be of great value for global carbon cycle models as well as national carbon monitoring systems. Further investigations concentrate on improving biomass parameterizations and representations in such kind of models. The presented map will help to improve the simulation of biomass spatial patterns and variability and enables identifying the dominant influential factors like climatic conditions and disturbances.
The Boreal Virtual Forest. [CD-ROM].
ERIC Educational Resources Information Center
Indiana Univ.-Purdue Univ., Indianapolis.
This CD-ROM is an educational CD-ROM aimed at classroom audiences in 5th grade and above. Using QuickTime Virtual Reality (QTVR), the Boreal Virtual Forest is designed so that students are able to see views from inside the central hardwood forest and look up or down or spin around 360 degrees. The program allows students to become familiar with…
Katie V. Spellman; Christa P.H. Mulder; Teresa N. Hollingsworth
2014-01-01
As climate rapidly warms at high-latitudes, the boreal forest faces the simultaneous threats of increasing invasive plant abundances and increasing area burned by wildfire. Highly flammable and widespread black spruce (Picea mariana) forest represents a boreal habitat that may be increasingly susceptible to non-native plant invasion. This study assess the role of burn...
Changes in fungal communities along a boreal forest soil fertility gradient.
Sterkenburg, Erica; Bahr, Adam; Brandström Durling, Mikael; Clemmensen, Karina E; Lindahl, Björn D
2015-09-01
Boreal forests harbour diverse fungal communities with decisive roles in decomposition and plant nutrition. Although changes in boreal plant communities along gradients in soil acidity and nitrogen (N) availability are well described, less is known about how fungal taxonomic and functional groups respond to soil fertility factors. We analysed fungal communities in humus and litter from 25 Swedish old-growth forests, ranging from N-rich Picea abies stands to acidic and N-poor Pinus sylvestris stands. 454-pyrosequencing of ITS2 amplicons was used to analyse community composition, and biomass was estimated by ergosterol analysis. Fungal community composition was significantly related to soil fertility at the levels of species, genera/orders and functional groups. Ascomycetes dominated in less fertile forests, whereas basidiomycetes increased in abundance in more fertile forests, both in litter and humus. The relative abundance of mycorrhizal fungi in the humus layer remained high even in the most fertile soils. Tolerance to acidity and nitrogen deficiency seems to be of greater importance than plant carbon (C) allocation patterns in determining responses of fungal communities to soil fertility, in old-growth boreal forests. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Arctic and boreal ecosystems of western North America as components of the climate system
Chapin, F. S.; McGuire, A.D.; Randerson, J.; Pielke, R.; Baldocchi, D.; Hobbie, S.E.; Roulet, Nigel; Eugster, W.; Kasischke, E.; Rastetter, E.B.; Zimov, S.A.; Running, S.W.
2000-01-01
Synthesis of results from several Arctic and boreal research programmes provides evidence for the strong role of high-latitude ecosystems in the climate system. Average surface air temperature has increased 0.3??C per decade during the twentieth century in the western North American Arctic and boreal forest zones. Precipitation has also increased, but changes in soil moisture are uncertain. Disturbance rates have increased in the boreal forest; for example, there has been a doubling of the area burned in North America in the past 20 years. The disturbance regime in tundra may not have changed. Tundra has a 3-6-fold higher winter albedo than boreal forest, but summer albedo and energy partitioning differ more strongly among ecosystems within either tundra or boreal forest than between these two biomes. This indicates a need to improve our understanding of vegetation dynamics within, as well as between, biomes. If regional surface warming were to continue, changes in albedo and energy absorption would likely act as a positive feedback to regional warming due to earlier melting of snow and, over the long term, the northward movement of treeline. Surface drying and a change in dominance from mosses to vascular plants would also enhance sensible heat flux and regional warming in tundra. In the boreal forest of western North America, deciduous forests have twice the albedo of conifer forests in both winter and summer, 50-80% higher evapotranspiration, and therefore only 30-50% of the sensible heat flux of conifers in summer. Therefore, a warming-induced increase in fire frequency that increased the proportion of deciduous forests in the landscape, would act as a negative feedback to regional warming. Changes in thermokarst and the aerial extent of wetlands, lakes, and ponds would alter high-latitude methane flux. There is currently a wide discrepancy among estimates of the size and direction of CO2 flux between high-latitude ecosystems and the atmosphere. These discrepancies relate more strongly to the approach and assumptions for extrapolation than to inconsistencies in the underlying data. Inverse modelling from atmospheric CO2 concentrations suggests that high latitudes are neutral or net sinks for atmospheric CO2, whereas field measurements suggest that high latitudes are neutral or a net CO2 source. Both approaches rely on assumptions that are difficult to verify. The most parsimonious explanation of the available data is that drying in tundra and disturbance in boreal forest enhance CO2 efflux. Nevertheless, many areas of both tundra and boreal forests remain net sinks due to regional variation in climate and local variation in topographically determined soil moisture. Improved understanding of the role of high-latitude ecosystems in the climate system requires a concerted research effort that focuses on geographical variation in the processes controlling land-atmosphere exchange, species composition, and ecosystem structure. Future studies must be conducted over a long enough time-period to detect and quantify ecosystem feedbacks.
Fire as the dominant driver of central Canadian boreal forest carbon balance.
Bond-Lamberty, Ben; Peckham, Scott D; Ahl, Douglas E; Gower, Stith T
2007-11-01
Changes in climate, atmospheric carbon dioxide concentration and fire regimes have been occurring for decades in the global boreal forest, with future climate change likely to increase fire frequency--the primary disturbance agent in most boreal forests. Previous attempts to assess quantitatively the effect of changing environmental conditions on the net boreal forest carbon balance have not taken into account the competition between different vegetation types on a large scale. Here we use a process model with three competing vascular and non-vascular vegetation types to examine the effects of climate, carbon dioxide concentrations and fire disturbance on net biome production, net primary production and vegetation dominance in 100 Mha of Canadian boreal forest. We find that the carbon balance of this region was driven by changes in fire disturbance from 1948 to 2005. Climate changes affected the variability, but not the mean, of the landscape carbon balance, with precipitation exerting a more significant effect than temperature. We show that more frequent and larger fires in the late twentieth century resulted in deciduous trees and mosses increasing production at the expense of coniferous trees. Our model did not however exhibit the increases in total forest net primary production that have been inferred from satellite data. We find that poor soil drainage decreased the variability of the landscape carbon balance, which suggests that increased climate and hydrological changes have the potential to affect disproportionately the carbon dynamics of these areas. Overall, we conclude that direct ecophysiological changes resulting from global climate change have not yet been felt in this large boreal region. Variations in the landscape carbon balance and vegetation dominance have so far been driven largely by increases in fire frequency.
NASA Astrophysics Data System (ADS)
Thomas, R. Q.; Goodale, C. L.; Bonan, G. B.; Mahowald, N. M.; Ricciuto, D. M.; Thornton, P. E.
2010-12-01
Recent research from global land surface models emphasizes the important role of nitrogen cycling on global climate, via its control on the terrestrial carbon balance. Despite the implications of nitrogen cycling on global climate predictions, the research community has not performed a systematic evaluation of nitrogen cycling in global models. Here, we present such an evaluation for one global land model, CLM-CN. In the evaluation we simulated 45 plot-scale nitrogen-fertilization experiments distributed across 33 temperate and boreal forest sites. Model predictions were evaluated against field observations by comparing the vegetation and soil carbon responses to the additional nitrogen. Aggregated across all experiments, the model predicted a larger vegetation carbon response and a smaller soil carbon response than observed; the responses partially offset each other, leading to a slightly larger total ecosystem carbon response than observed. However, the model-observation agreement improved for vegetation carbon when the sites with observed negative carbon responses to nitrogen were excluded, which may be because the model lacks mechanisms whereby nitrogen additions increase tree mortality. Among experiments, younger forests and boreal forests’ vegetation carbon responses were less than predicted and mature forests (> 40 years old) were greater than predicted. Specific to the CLM-CN, this study used a systematic evaluation to identify key areas to focus model development, especially soil carbon- nitrogen interactions and boreal forest nitrogen cycling. Applicable to the modeling community, this study demonstrates a standardized protocol for comparing carbon-nitrogen interactions among global land models.
NASA Astrophysics Data System (ADS)
Simpson, I. J.; Akagi, S. K.; Barletta, B.; Blake, N. J.; Choi, Y.; Diskin, G. S.; Fried, A.; Fuelberg, H. E.; Meinardi, S.; Rowland, F. S.; Vay, S. A.; Weinheimer, A. J.; Wennberg, P. O.; Wiebring, P.; Wisthaler, A.; Yang, M.; Yokelson, R. J.; Blake, D. R.
2011-03-01
Boreal regions comprise about 17% of the global land area, and they both affect and are influenced by climate change. To better understand boreal forest fire emissions and plume evolution, 947 whole air samples were collected aboard the NASA DC-8 research aircraft in summer 2008 as part of the ARCTAS-B field mission, and analyzed for 79 non-methane volatile organic compounds (NMVOCs) using gas chromatography. Together with simultaneous measurements of CO2, CO, CH4, CH2O, NO2, NO, HCN and CH3CN, these measurements represent the most comprehensive assessment of trace gas emissions from boreal forest fires to date. Based on 105 air samples collected in fresh Canadian smoke plumes, 57 of the 80 measured NMVOCs (including CH2O) were emitted from the fires, including 45 species that were quantified from boreal forest fires for the first time. After CO2, CO and CH4, the largest emission factors (EFs) for individual species were formaldehyde (2.1 ± 0.2 g kg-1), followed by methanol, NO2, HCN, ethene, α-pinene, β-pinene, ethane, benzene, propene, acetone and CH3CN. Globally, we estimate that boreal forest fires release 2.4 ± 0.6 Tg C yr-1 in the form of NMVOCs, with approximately 41% of the carbon released as C1-C2 NMVOCs and 21% as pinenes. These are the first reported field measurements of monoterpene emissions from boreal forest fires, and we speculate that the pinenes, which are relatively heavy molecules, were detected in the fire plumes as the result of distillation of stored terpenes as the vegetation is heated. Their inclusion in smoke chemistry models is expected to improve model predictions of secondary organic aerosol (SOA) formation. The fire-averaged EF of dichloromethane or CH2Cl2, (6.9 ± 8.6) ×10-4 g kg-1, was not significantly different from zero and supports recent findings that its global biomass burning source appears to have been overestimated. Similarly, we found no evidence for emissions of chloroform (CHCl3) or methyl chloroform (CH3CCl3) from boreal forest fires. The speciated hydrocarbon measurements presented here show the importance of carbon released by short-chain NMVOCs, the strong contribution of pinene emissions from boreal forest fires, and the wide range of compound classes in the most abundantly emitted NMVOCs, all of which can be used to improve biomass burning inventories in local/global models and reduce uncertainties in model estimates of trace gas emissions and their impact on the atmosphere.
NASA Astrophysics Data System (ADS)
Simpson, I. J.; Akagi, S. K.; Barletta, B.; Blake, N. J.; Choi, Y.; Diskin, G. S.; Fried, A.; Fuelberg, H. E.; Meinardi, S.; Rowland, F. S.; Vay, S. A.; Weinheimer, A. J.; Wennberg, P. O.; Wiebring, P.; Wisthaler, A.; Yang, M.; Yokelson, R. J.; Blake, D. R.
2011-07-01
Boreal regions comprise about 17 % of the global land area, and they both affect and are influenced by climate change. To better understand boreal forest fire emissions and plume evolution, 947 whole air samples were collected aboard the NASA DC-8 research aircraft in summer 2008 as part of the ARCTAS-B field mission, and analyzed for 79 non-methane volatile organic compounds (NMVOCs) using gas chromatography. Together with simultaneous measurements of CO2, CO, CH4, CH2O, NO2, NO, HCN and CH3CN, these measurements represent the most comprehensive assessment of trace gas emissions from boreal forest fires to date. Based on 105 air samples collected in fresh Canadian smoke plumes, 57 of the 80 measured NMVOCs (including CH2O) were emitted from the fires, including 45 species that were quantified from boreal forest fires for the first time. After CO2, CO and CH4, the largest emission factors (EFs) for individual species were formaldehyde (2.1 ± 0.2 g kg-1), followed by methanol, NO2, HCN, ethene, α-pinene, β-pinene, ethane, benzene, propene, acetone and CH3CN. Globally, we estimate that boreal forest fires release 2.4 ± 0.6 Tg C yr-1 in the form of NMVOCs, with approximately 41 % of the carbon released as C1-C2 NMVOCs and 21 % as pinenes. These are the first reported field measurements of monoterpene emissions from boreal forest fires, and we speculate that the pinenes, which are relatively heavy molecules, were detected in the fire plumes as the result of distillation of stored terpenes as the vegetation is heated. Their inclusion in smoke chemistry models is expected to improve model predictions of secondary organic aerosol (SOA) formation. The fire-averaged EF of dichloromethane or CH2Cl2, (6.9 ± 8.6) × 10-4 g kg-1, was not significantly different from zero and supports recent findings that its global biomass burning source appears to have been overestimated. Similarly, we found no evidence for emissions of chloroform (CHCl3) or methyl chloroform (CH3CCl3) from boreal forest fires. The speciated hydrocarbon measurements presented here show the importance of carbon released by short-chain NMVOCs, the strong contribution of pinene emissions from boreal forest fires, and the wide range of compound classes in the most abundantly emitted NMVOCs, all of which can be used to improve biomass burning inventories in local/global models and reduce uncertainties in model estimates of trace gas emissions and their impact on the atmosphere.
Saproxylic beetles in a Swedish boreal forest landscape managed according to 'new forestry'
Stig Larsson; Barbara Ekbom; L. Martin Schroeder; Melodie A. McGeoch
2006-01-01
A major threat to biodiversity in Swedish forests is the decline of Coarse Woody Debris (CWD), which is an essential resource for many organisms and plays an essential role for the structure and function of boreal forests. Removal of CWD in commercial forestry has depleted important resources for many rare wood-living (saproxylic) beetles. Replenishment of CWD has been...
Tree and forest water use under elevated CO2 and temperature in Scandinavian boreal forest
NASA Astrophysics Data System (ADS)
Berg Hasper, Thomas; Wallin, Göran; Lamba, Shubhangi; Sigurdsson, Bjarni D.; Laudon, Hjalmar; Medhurst, Jane L.; Räntfors, Mats; Linder, Sune; Uddling, Johan
2014-05-01
According to experimental studies and models, rising atmospheric carbon dioxide concentration ([CO2]) and temperature have the potential to affect stomatal conductance and, consequently, tree and forest transpiration. This effect has in turn the capacity to influence the terrestrial energy and water balance, including affecting of the magnitude of river runoff. Furthermore, forest productivity is currently water-limited in southern Scandinavia and in a near future, under the projected climatic change, this limitation may become a reality in the central and northern parts of Scandinavia. In this study we examine the water-use responses in 12 40-year old native boreal Norway spruce (Picea abies (L.) Karst.) trees exposed to a factorial combination of two levels of [CO2] (ambient and doubled) and temperature (ambient and +2.8 °C in summer / +5.6 °C in winter), as well as of entire boreal forests to temporal variation in [CO2], temperature and precipitation over the past 50 years in central and northern Sweden. The controlled factorial CO2 and temperature whole-tree chamber experiment at Flakaliden study site demonstrated that Norway spruce trees lacked elevated [CO2]-induced water savings at guard cell, shoot, and tree levels in the years of measurements. Experimentally, elevated temperature did not result in increased shoot or tree water use as stomatal closure fully cancelled the effect of higher vapour pressure deficit in warmed air environment. Consistent with these results, large scale river runoff data and evapotranspiration estimates from large forested watersheds in central Sweden supported lack of elevated CO2-mediated water savings, and rather suggested that the increasing evapotranspiration trend found in this study was primarily linked to increasing precipitation, rising temperature and more efficient forest management. The results from the whole-tree chamber experiment and boreal forested watersheds have important implications for more accurate predictions of boreal atmosphere-biosphere interactions, indicating that tree responses to precipitation and temperature are more important than responses to elevated [CO2] in determining the future forest water-use and hydrology of Scandinavian boreal ecosystems.
Bolton, Douglas K; Coops, Nicholas C; Wulder, Michael A
2013-08-01
The structure and productivity of boreal forests are key components of the global carbon cycle and impact the resources and habitats available for species. With this research, we characterized the relationship between measurements of forest structure and satellite-derived estimates of gross primary production (GPP) over the Canadian boreal. We acquired stand level indicators of canopy cover, canopy height, and structural complexity from nearly 25,000 km of small-footprint discrete return Light Detection and Ranging (Lidar) data and compared these attributes to GPP estimates derived from the MODerate resolution Imaging Spectroradiometer (MODIS). While limited in our capacity to control for stand age, we removed recently disturbed and managed forests using information on fire history, roads, and anthropogenic change. We found that MODIS GPP was strongly linked to Lidar-derived canopy cover (r = 0.74, p < 0.01), however was only weakly related to Lidar-derived canopy height and structural complexity as these attributes are largely a function of stand age. A relationship was apparent between MODIS GPP and the maximum sampled heights derived from Lidar as growth rates and resource availability likely limit tree height in the prolonged absence of disturbance. The most structurally complex stands, as measured by the coefficient of variation of Lidar return heights, occurred where MODIS GPP was highest as productive boreal stands are expected to contain a wider range of tree heights and transition to uneven-aged structures faster than less productive stands. While MODIS GPP related near-linearly to Lidar-derived canopy cover, the weaker relationships to Lidar-derived canopy height and structural complexity highlight the importance of stand age in determining the structure of boreal forests. We conclude that an improved quantification of how both productivity and disturbance shape stand structure is needed to better understand the current state of boreal forests in Canada and how these forests are changing in response to changing climate and disturbance regimes.
Frelich, Lee E.; Peterson, Rolf O.; Dovčiak, Martin; Reich, Peter B.; Vucetich, John A.; Eisenhauer, Nico
2012-01-01
As the climate warms, boreal tree species are expected to be gradually replaced by temperate species within the southern boreal forest. Warming will be accompanied by changes in above- and below-ground consumers: large moose (Alces alces) replaced by smaller deer (Odocoileus virginianus) above-ground, and small detritivores replaced by larger exotic earthworms below-ground. These shifts may induce a cascade of ecological impacts across trophic levels that could alter the boreal to temperate forest transition. Deer are more likely to browse saplings of temperate tree species, and European earthworms favour seedlings of boreal tree species more than temperate species, potentially hindering the ability of temperate tree species to expand northwards. We hypothesize that warming-induced changes in consumers will lead to novel plant communities by changing the filter on plant species success, and that above- and below-ground cascades of trophic interactions will allow boreal tree species to persist during early phases of warming, leading to an abrupt change at a later time. The synthesis of evidence suggests that consumers can modify the climate change-induced transition of ecosystems. PMID:23007083
Influence of wildfires in the boreal forests of Eastern Siberia on atmospheric aerosol parameters
NASA Astrophysics Data System (ADS)
Tomshin, Oleg A.; Solovyev, Vladimir S.
2017-11-01
The results of studies of the dynamics of forest fires in the boreal forests of Yakutia (Eastern Siberia) for 2001-2016 are presented. Variations of aerosol optical thickness (AOT), aerosol index (AI) and total carbon monoxide content during May-September were studied depending on the different forest fire activity level. It is shown that the seasonal variations of AOT, AI and CO in the most fire-dangerous years differ significantly from the fire seasons when forest fire activity was medium or low.
NASA Astrophysics Data System (ADS)
Nordin, Annika; Strengbom, Joachim; From, Fredrik
2014-05-01
In management of boreal forests, nitrogen (N) enrichment from atmospheric deposition or from forest fertilization can appear in combination with land-use related disturbances, i.e. tree harvesting by clear-felling. Long-term interactive effects between N enrichment and disturbance on boreal forest ecosystem structure and function are, however, poorly known. We investigated effects of N enrichment by forest fertilization done > 25 years ago on forest understory species composition in old-growth (undisturbed) forests, and in forests clear-felled 10 years ago (disturbed). In clear-felled forests we also investigated effects of the previous N addition on growth of tree saplings. The results show that the N enrichment effect on the understory species composition was strongly dependent on the disturbance caused by clear-felling. In undisturbed forests, there were small or no effects on understory species composition from N addition. In contrast, effects were large in forests first exposed to N addition and subsequently disturbed by clear-felling. Effects of N addition differed among functional groups of plants. Abundance of graminoids increased (+232%) and abundance of dwarf shrubs decreased (-44%) following disturbance in N fertilized forests. For vascular plants, the two perturbations had contrasting effects on α-(within forests) and β-diversity (among forests): in disturbed forests, N addition reduced, or had no effect on α-diversity, while β-diversity increased. For bryophytes, negative effects of disturbance on α-diversity were smaller in N fertilized forests than in forests not fertilized, while neither N addition nor disturbance had any effects on β-diversity. Moreover, sapling growth in forests clear-felled 10 years ago was significantly higher in previously N fertilized forests than in forests not fertilized. Our study show that effects of N addition on plant communities may appear small, short-lived, or even absent until exposed to a disturbance. This highlights the importance of considering interactive effects with disturbance when evaluating long-term effects of N enrichment on boreal forest ecosystem structure and function.
Interannual variability in the atmospheric CO2 rectification over a boreal forest region
NASA Astrophysics Data System (ADS)
Chen, Baozhang; Chen, Jing M.; Worthy, Douglas E. J.
2005-08-01
Ecosystem CO2 exchange with the atmosphere and the planetary boundary layer (PBL) dynamics are correlated diurnally and seasonally. The strength of this kind of covariation is quantified as the rectifier effect, and it affects the vertical gradient of CO2 and thus the global CO2 distribution pattern. An 11-year (1990-1996, 1999-2002), continuous CO2 record from Fraserdale, Ontario (49°52'29.9″N, 81°34'12.3″W), along with a coupled vertical diffusion scheme (VDS) and ecosystem model named Boreal Ecosystem Productivity Simulator (BEPS), are used to investigate the interannual variability of the rectifier effect over a boreal forest region. The coupled model performed well (r2 = 0.70 and 0.87, at 40 m at hourly and daily time steps, respectively) in simulating CO2 vertical diffusion processes. The simulated annual atmospheric rectifier effect varies from 3.99 to 5.52 ppm, while the diurnal rectifying effect accounted for about a quarter of the annual total (22.8˜28.9%).The atmospheric rectification of CO2 is not simply influenced by terrestrial source and sink strengths, but by seasonal and diurnal variations in the land CO2 flux and their interaction with PBL dynamics. Air temperature and moisture are found to be the dominant climatic factors controlling the rectifier effect. The annual rectifier effect is highly correlated with annual mean temperature (r2 = 0.84), while annual mean air relative humidity can explain 51% of the interannual variation in rectification. Seasonal rectifier effect is also found to be more sensitive to climate variability than diurnal rectifier effect.
NASA Astrophysics Data System (ADS)
He, Hongxing; Meyer, Astrid; Jansson, Per-Erik; Svensson, Magnus; Rütting, Tobias; Klemedtsson, Leif
2018-02-01
The symbiosis between plants and Ectomycorrhizal fungi (ECM) is shown to considerably influence the carbon (C) and nitrogen (N) fluxes between the soil, rhizosphere, and plants in boreal forest ecosystems. However, ECM are either neglected or presented as an implicit, undynamic term in most ecosystem models, which can potentially reduce the predictive power of models.
In order to investigate the necessity of an explicit consideration of ECM in ecosystem models, we implement the previously developed MYCOFON model into a detailed process-based, soil-plant-atmosphere model, Coup-MYCOFON, which explicitly describes the C and N fluxes between ECM and roots. This new Coup-MYCOFON model approach (ECM explicit) is compared with two simpler model approaches: one containing ECM implicitly as a dynamic uptake of organic N considering the plant roots to represent the ECM (ECM implicit), and the other a static N approach in which plant growth is limited to a fixed N level (nonlim). Parameter uncertainties are quantified using Bayesian calibration in which the model outputs are constrained to current forest growth and soil C / N ratio for four forest sites along a climate and N deposition gradient in Sweden and simulated over a 100-year period.
The nonlim
approach could not describe the soil C / N ratio due to large overestimation of soil N sequestration but simulate the forest growth reasonably well. The ECM implicit
and explicit
approaches both describe the soil C / N ratio well but slightly underestimate the forest growth. The implicit approach simulated lower litter production and soil respiration than the explicit approach. The ECM explicit Coup-MYCOFON model provides a more detailed description of internal ecosystem fluxes and feedbacks of C and N between plants, soil, and ECM. Our modeling highlights the need to incorporate ECM and organic N uptake into ecosystem models, and the nonlim approach is not recommended for future long-term soil C and N predictions. We also provide a key set of posterior fungal parameters that can be further investigated and evaluated in future ECM studies.
NASA Astrophysics Data System (ADS)
Lauren, Ari; Hökkä, Hannu; Launiainen, Samuli; Palviainen, Marjo; Lehtonen, Aleksi
2016-04-01
Forest growth in peatlands is nutrient limited; principal source of nutrients is the decomposition of organic matter. Excess water decreases O2 diffusion and slows down the nutrient release. Drainage increases organic matter decomposition, CO2 efflux, and nutrient supply, and enhances the growth of forest. Profitability depends on costs, gained extra yield and its allocation into timber assortments, and the rate of interest. We built peatland simulator Susi to define and parameterize these interrelations. We applied Susi-simulator to compute water and nutrient processes, forest growth, and CO2 efflux of forested drained peatland. The simulator computes daily water fluxes and storages in two dimensions for a peatland forest strip located between drainage ditches. The CO2 efflux is made proportional to peat bulk density, soil temperature and O2 availability. Nutrient (N, P, K) release depends on decomposition and peat nutrient content. Growth limiting nutrient is detected by comparing the need and supply of nutrients. Increased supply of growth limiting nutrient is used to quantify the forest growth response to improved drainage. The extra yield is allocated into pulpwood and sawlogs based on volume of growing stock. The net present values of ditch cleaning operation and the gained extra yield are computed under different rates of interest to assess the profitability of the ditch cleaning. The hydrological sub-models of Susi-simulator were first parameterized using daily water flux data from Hyytiälä SMEAR II-site, after which the predictions were tested against independent hydrologic data from two drained peatland forests in Southern Finland. After verification of the hydrologic model, the CO2 efflux, nutrient release and forest growth proportionality hypothesis was tested and model performance validated against long-term forest growth and groundwater level data from 69 forested peatland sample plots in Central Finland. The results showed a clear relation between the stand growth, nutrient availability, and CO2 efflux. Potassium was the main limiting factor for the forest growth. This indicates that management aiming at decreasing heterotrophic CO2 efflux by raising the ground water table will decrease the forest growth. From the C balance perspective the growth rate of the tree stand becomes essential. Modelling approach enables a search for an optimal management schedule for producing timber in situation when there is a price given for release of C. Ditch network maintenance by ditch cleaning becomes profitable if: i) the initial drainage is very poor, ii) the availability of the critical nutrient is sufficient, iii) during prolonged rainy conditions, and iv) the tree stand is Scots pine (Pinus sylvestris) dominated and v) in a phase where most of the extra yield is allocated into sawlogs. The simulator and its holistic approach has been successfully implemented in both tropical pulpwood plantations in Sumatra, Indonesia and in Finnish boreal forests.
I. J. Simpson; S. K. Akagi; B. Barletta; N. J. Blake; Y. Choi; G. S. Diskin; A. Fried; H. E. Fuelberg; S. Meinardi; F. S. Rowland; S. A. Vay; A. J. Weinheimer; P. O. Wennberg; P. Wiebring; A. Wisthaler; M. Yang; R. J. Yokelson; D. R. Blake
2011-01-01
Boreal regions comprise about 17% of the global land area, and they both affect and are influenced by climate change. To better understand boreal forest fire emissions and plume evolution, 947 whole air samples were collected aboard the NASA DC-8 research aircraft in summer 2008 as part of the ARCTAS-B field mission, and analyzed for 79 non-methane volatile organic...
Dynamics of phytophagous insects and their pathogens in Alaskan boreal forests
Richard A. Werner; Kenneth F. Raffa; Barbara L. Illman
2006-01-01
Boreal forests support an array of insects, including phytophagous (plant-eating) insects, saprophagous (detritus-eating) insects, and their associated parasites, predators, and symbionts. The phytophagous species include folivorous leaf chewers and miners, phloeophagous cambial and sapwood borers, stem gallers, and root feeders. Biological diversity and distribution...
CARBON MONOXIDE FLUXES OF DIFFERENT SOIL LAYERS IN UPLAND CANADIAN BOREAL FORESTS
Dark or low-light carbon monoxide fluxes at upland Canadian boreal forest sites were measured on-site with static chambers and with a laboratory incubation technique using cores from different depths at the same sites. Three different upland black spruce sites, burned in 1987,199...
Dennis S. Ojima; Louis R. Iverson; Brent L. Sohngen
2012-01-01
Alaskan forests cover one-third of the stateâs 52 million ha of land (Parson et al. 2001), and are regionally and globally significant. Ninety percent of Alaskan forests are classified as boreal, representing 4 percent of the worldâs boreal forests, and are located throughout interior and south-central Alaska (fig. A1-1). The remaining 10 percent of Alaskan forests are...
Crystal L. Raymond
2012-01-01
Alaskan forests cover one-third of the stateâs 52 million ha of land (Parson et al. 2001), and are regionally and globally significant. Ninety percent of Alaskan forests are classified as boreal, representing 4 percent of the worldâs boreal forests, and are located throughout interior and south-central Alaska (fig. A1-1). The remaining 10 percent of Alaskan forests are...
NASA Astrophysics Data System (ADS)
Ueyama, M.; Ichii, K.; Hirata, R.; Takagi, K.; Asanuma, J.; Machimura, T.; Nakai, Y.; Ohta, T.; Saigusa, N.; Takahashi, Y.; Hirano, T.
2010-03-01
Larch forests are widely distributed across many cool-temperate and boreal regions, and they are expected to play an important role in global carbon and water cycles. Model parameterizations for larch forests still contain large uncertainties owing to a lack of validation. In this study, a process-based terrestrial biosphere model, BIOME-BGC, was tested for larch forests at six AsiaFlux sites and used to identify important environmental factors that affect the carbon and water cycles at both temporal and spatial scales. The model simulation performed with the default deciduous conifer parameters produced results that had large differences from the observed net ecosystem exchange (NEE), gross primary productivity (GPP), ecosystem respiration (RE), and evapotranspiration (ET). Therefore, we adjusted several model parameters in order to reproduce the observed rates of carbon and water cycle processes. This model calibration, performed using the AsiaFlux data, substantially improved the model performance. The simulated annual GPP, RE, NEE, and ET from the calibrated model were highly consistent with observed values. The observed and simulated GPP and RE across the six sites were positively correlated with the annual mean air temperature and annual total precipitation. On the other hand, the simulated carbon budget was partly explained by the stand disturbance history in addition to the climate. The sensitivity study indicated that spring warming enhanced the carbon sink, whereas summer warming decreased it across the larch forests. The summer radiation was the most important factor that controlled the carbon fluxes in the temperate site, but the VPD and water conditions were the limiting factors in the boreal sites. One model parameter, the allocation ratio of carbon between belowground and aboveground, was site-specific, and it was negatively correlated with the annual climate of annual mean air temperature and total precipitation. Although this study substantially improved the model performance, the uncertainties that remained in terms of the sensitivity to water conditions should be examined in ongoing and long-term observations.
NASA Astrophysics Data System (ADS)
Ueyama, M.; Ichii, K.; Hirata, R.; Takagi, K.; Asanuma, J.; Machimura, T.; Nakai, Y.; Ohta, T.; Saigusa, N.; Takahashi, Y.; Hirano, T.
2009-08-01
Larch forests are widely distributed across many cool-temperate and boreal regions, and they are expected to play an important role in global carbon and water cycles. Model parameterizations for larch forests still contain large uncertainties owing to a lack of validation. In this study, a process-based terrestrial biosphere model, BIOME-BGC, was tested for larch forests at six AsiaFlux sites and used to identify important environmental factors that affect the carbon and water cycles at both temporal and spatial scales. The model simulation performed with the default deciduous conifer parameters produced results that had large differences from the observed net ecosystem exchange (NEE), gross primary productivity (GPP), ecosystem respiration (RE), and evapotranspiration (ET). Therefore, we adjusted several model parameters in order to reproduce the observed rates of carbon and water cycle processes. This model calibration, performed using the AsiaFlux data, significantly improved the model performance. The simulated annual GPP, RE, NEE, and ET from the calibrated model were highly consistent with observed values. The observed and simulated GPP and RE across the six sites are positively correlated with the annual mean air temperature and annual total precipitation. On the other hand, the simulated carbon budget is partly explained by the stand disturbance history in addition to the climate. The sensitivity study indicates that spring warming enhances the carbon sink, whereas summer warming decreases it across the larch forests. The summer radiation is the most important factor that controls the carbon fluxes in the temperate site, but the VPD and water conditions are the limiting factors in the boreal sites. One model parameter, the allocation ratio of carbon between aboveground and belowground, is site-specific, and it is negatively correlated with the annual climate of annual mean air temperature and total precipitation. Although this study significantly improves the model performance, the uncertainties that remain in terms of the sensitivity to water conditions should be examined in ongoing and long-term observations.
The Pleistocene biogeography of eastern North America: A nonmigration scenario for deciduous forest
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loehle, C.; Iltis, H.
The current reconstruction of the vegetation of eastern North America at the last glacial maximum postulates a very wide zone of tundra and boreal forest south of the ice. This reconstruction requires that the deciduous forest retreated far to the south. The authors believe that this reconstruction is seriously in error. Geologic evidence for glacial activity or tundra is absent from the southern Appalachians. Positive evidence for boreal forest is based on pollen identifications for Picea, Betula, and Pinus, when in reality southern members of these genera have pollen that cannot be distinguished from that of northern members. Further, pollenmore » of typical southern species such as oaks and hickories occurs throughout profiles that past authors had labeled boreal. Pollen evidence for a far southern deciduous forest refuge is lacking. Data on endemics are particularly challenging for the scenario in which deciduous forest migrated to the south and back. The southern Appalachian region is rife with endemics that are often extreme-habitat specialists unable to migrate. The previously glaciated zone is almost completely lacking in endemics. Outlier populations, range boundaries, and absence of certain hybrids all argue against a large boreal zone. The new reconstruction postulates a cold zone no more than 75--100 miles wide south of the ice in the East.« less
Simple and Multiple Endmember Mixture Analysis in the Boreal Forest
NASA Technical Reports Server (NTRS)
Roberts, Dar A.; Gamon, John A.; Qiu, Hong-Lie
2000-01-01
A key scientific objective of the original Boreal Ecosystem-Atmospheric Study (BOREAS) field campaign (1993-1996) was to obtain the baseline data required for modeling and predicting fluxes of energy, mass, and trace gases in the boreal forest biome. These data sets are necessary to determine the sensitivity of the boreal forest biome to potential climatic changes and potential biophysical feedbacks on climate. A considerable volume of remotely sensed and supporting field data were acquired by numerous researchers to meet this objective. By design, remote sensing and modeling were considered critical components for scaling efforts, extending point measurements from flux towers and field sites over larger spatial and longer temporal scales. A major focus of the BOREAS Follow-on program was concerned with integrating the diverse remotely sensed and ground-based data sets to address specific questions such as carbon dynamics at local to regional scales.
Hydro-climatic forcing of dissolved organic carbon in two boreal lakes of Canada.
Diodato, Nazzareno; Higgins, Scott; Bellocchi, Gianni; Fiorillo, Francesco; Romano, Nunzio; Guadagno, Francesco M
2016-11-15
The boreal forest of the northern hemisphere represents one of the world's largest ecozones and contains nearly one third of the world's intact forests and terrestrially stored carbon. Long-term variations in temperature and precipitation have been implied in altering carbon cycling in forest soils, including increased fluxes to receiving waters. In this study, we use a simple hydrologic model and a 40-year dataset (1971-2010) of dissolved organic carbon (DOC) from two pristine boreal lakes (ELA, Canada) to examine the interactions between precipitation and landscape-scale controls of DOC production and export from forest catchments to surface waters. Our results indicate that a simplified hydrologically-based conceptual model can enable the long-term temporal patterns of DOC fluxes to be captured within boreal landscapes. Reconstructed DOC exports from forested catchments in the period 1901-2012 follow largely a sinusoidal pattern, with a period of about 37years and are tightly linked to multi-decadal patterns of precipitation. By combining our model with long-term precipitation estimates, we found no evidence of increasing DOC transport or in-lake concentrations through the 20th century. Copyright © 2016 Elsevier B.V. All rights reserved.
Modeling soil thermal and carbon dynamics of a fire chronosequence in interior Alaska
Q. Zhuang; A. D. McGuire; K. P. O' Neill; J. W. Harden; V. E. Romanovsky; J. Yarie
2003-01-01
In this study, the dynamics of soil thermal, hydrologic, and ecosystem processes were coupled to project how the carbon budgets of boreal forests will respond to changes in atmospheric CO2, climate, and fire disturbance. The ability of the model to simulate gross primary production and ecosystem respiration was verified for a mature black spruce...
Reconciling salvage logging of boreal forests with a tural-disturbance management model.
Schmiegelow, Fiona K A; Stepnisky, David P; Stambaugh, Curtis A; Koivula, Matti
2006-08-01
In North American boreal forests, wildfire is the dominant agent of natural disturbance. A natural-disturbance model has therefore been promoted as an ecologically based approach to forest harvesting in these systems. Given accelerating resource demands, fire competes with harvest for timber and there is increasing pressure to salvage naturally burned areas. This creates a management paradox: simultaneous promotion of natural disturbance as a guide to sustainability while salvaging forests that have been naturally disturbed. The major drivers of postfire salvage in Canadian boreal forests are societal perceptions, overallocation of forest resources, and economic and policy incentives, and postfire salvage compromisesforest sustainability by diminishing the role of fire as a critical, natural process. These factors might be reconciled through consideration of fire in resource allocations and application of active adaptive management. We provide novel treatment of the role of burn severity in mediating biotic response by examining its influence on the amount, type, and distribution of live, postfire residual material, and we highlight the role of fire in shaping spatial and temporal patterns in forest biodiversity. Maintenance of natural postfire forests is a critical component of an ecosystem-based approach to forest management in boreal systems. Nevertheless, presentpracticesfocus heavily on expediting removal of timber from burned forests, despite increasing evidence that postfire communities differ markedly from postharvest systems, and there is a mismatch between emerging management models and past management practices. Policies that recognize the critical role of fire in these systems and facilitate enhanced understanding of natural system dynamics in support of development of sustainable management practices are urgently needed.
NASA Astrophysics Data System (ADS)
Jiang, Y.; Rastetter, E.; Shaver, G. R.; Rocha, A. V.
2012-12-01
In Alaska, fire disturbance is a major component influencing the soil water and energy balance in both tundra and boreal forest ecosystems. Fire-caused changes in soil environment further affect both above- and below-ground carbon cycles depending on different fire severities. Understanding the effects of fire disturbance on soil thermal change requires implicit modeling work on the post-fire soil thawing and freezing processes. In this study, we model the soil temperature profiles in multiple burned and non-burned sites using a well-developed soil thermal model which fully couples soil water and heat transport. The subsequent change in carbon dynamics is analyzed based on site level observations and simulations from the Multiple Element Limitation (MEL) model. With comparison between burned and non-burned sites, we compare and contrast fire effects on soil thermal and carbon dynamics in continuous permafrost (Anaktuvik fire in north slope), discontinuous permafrost (Erickson Creek fire at Hess Creek) and non-permafrost zone (Delta Junction fire in interior Alaska). Then we check the post-fire recovery of soil temperature profiles at sites with different fire severities in both tundra and boreal forest fire areas. We further project the future changes in soil thermal and carbon dynamics using projected climate data from Scenarios Network for Alaska & Arctic Planning (SNAP). This study provides information to improve the understanding of fire disturbance on soil thermal and carbon dynamics and the consequent response under a warming climate.
Declining plant nitrogen supply and carbon accumulation in ageing primary boreal forest ecosystems
NASA Astrophysics Data System (ADS)
Högberg, Mona N.; Yarwood, Stephanie A.; Trumbore, Susan; Högberg, Peter
2016-04-01
Boreal forest soils are commonly characterized by a low plant nitrogen (N) supply. A high tree below-ground allocation of carbon (C) to roots and soil microorganisms in response to the shortage of N may lead to high microbial immobilisation of N, thus aggravating the N limitation. We studied the N supply at a Swedish boreal forest ecosystem chronosequence created by new land rising out of the sea due to iso-static rebound. The youngest soils develop with meadows by the coast, followed by a zone of dinitrogen fixing alder trees, and primary boreal conifer forest on ground up to 560 years old. With increasing ecosystem age, the proportion of microbial C out of the total soil C pool from the youngest to the oldest coniferous ecosystem was constant (c. 1-1.5%), whereas immobilised N (microbial N out of total soil N) increased and approached the levels commonly observed in similar boreal coniferous forests (c. 6-7 %), whereas gross N mineralization declined. Simultaneously, plant foliar N % decreased and the natural abundance of N-15 in the soil increased. More specifically, the difference in N-15 between plant foliage and soil increased, which is related to greater retention of N-15 relative to N-14 by ectomycorrhizal fungi as N is taken up from the soil and some N is transferred to the plant host. In the conifer forest, where these changes were greatest, we found increased fungal biomass in the F- and H-horizons of the mor-layer, in which ectomycorrhizal fungi are known to dominate (the uppermost horizon with litter and moss is dominated by saprotrophic fungi). Hence, we propose that the decreasing N supply to the plants and the subsequent decline in plant production in ageing boreal forests is linked to high tree belowground C allocation to C limited ectomycorrhizal fungi (and other soil microorganisms), a strong sink for available soil N. Data on organic matter C-14 suggested that the largest input of recently fixed plant C occurred in the younger coniferous forest ecosystems, whereas the soil C accumulation rate declined as N supply to the plants declined.
NASA Astrophysics Data System (ADS)
Alonzo, M.; Cook, B.; Andersen, H. E.; Babcock, C. R.; Morton, D. C.
2016-12-01
Fire in boreal forests initiates a cascade of biogeochemical and biophysical processes. Over typical fire return intervals, net radiative forcing from boreal forest fires depends on the offsetting impacts of greenhouse gas emissions and post-fire changes in land surface albedo. Whether boreal forest fires warm or cool the climate over these multi-decadal intervals depends on the magnitude of fire emissions and the time scales of decomposition, albedo changes, and forest regrowth. Our understanding of vegetation and surface organic matter (SOM) changes from boreal forest fires is shaped by field measurements and moderate resolution remote sensing data. Intensive field plot measurements offer detailed data on overstory, understory, and SOM changes from fire, but sparse plot data can be difficult to extend across the heterogeneous boreal forest landscape. Conversely, satellite measurements of burn severity are spatially extensive but only provide proxy measures of fire effects. In this research, we seek to bridge the scale gap between existing intensive and extensive methods using a combination of airborne lidar data and time series of Landsat data to evaluate pre- and post-fire conditions across Alaska's Kenai Peninsula. Lidar-based estimates of pre-fire stand structure and composition were essential to characterize the loss of canopy volume from fires between 2001 and 2014, quantify transitions from live to dead standing carbon pools, and isolate vegetation recovery following fire over 1 to 13 year time scales. Results from this study demonstrate the utility of lidar for estimating pre-fire structure and species composition at the scale of individual tree crowns. Multi-temporal airborne lidar data also provide essential insights regarding the heterogeneity of canopy and SOM losses at a sub-Landsat pixel scale. Fire effects are forest-structure and species dependent with variable temporal lags in carbon release due to delayed mortality (>5 years post fire) and standing dead trees. Establishing the spatial and temporal scales of canopy structural change will aid in constraining estimates of net radiative forcing from both carbon release and albedo in the years following fire.
Resistance of the boreal forest to high burn rates.
Héon, Jessie; Arseneault, Dominique; Parisien, Marc-André
2014-09-23
Boreal ecosystems and their large carbon stocks are strongly shaped by extensive wildfires. Coupling climate projections with records of area burned during the last 3 decades across the North American boreal zone suggests that area burned will increase by 30-500% by the end of the 21st century, with a cascading effect on ecosystem dynamics and on the boreal carbon balance. Fire size and the frequency of large-fire years are both expected to increase. However, how fire size and time since previous fire will influence future burn rates is poorly understood, mostly because of incomplete records of past fire overlaps. Here, we reconstruct the length of overlapping fires along a 190-km-long transect during the last 200 y in one of the most fire-prone boreal regions of North America to document how fire size and time since previous fire will influence future fire recurrence. We provide direct field evidence that extreme burn rates can be sustained by a few occasional droughts triggering immense fires. However, we also show that the most fire-prone areas of the North American boreal forest are resistant to high burn rates because of overabundant young forest stands, thereby creating a fuel-mediated negative feedback on fire activity. These findings will help refine projections of fire effect on boreal ecosystems and their large carbon stocks.
Thresholds for boreal biome transitions.
Scheffer, Marten; Hirota, Marina; Holmgren, Milena; Van Nes, Egbert H; Chapin, F Stuart
2012-12-26
Although the boreal region is warming twice as fast as the global average, the way in which the vast boreal forests and tundras may respond is poorly understood. Using satellite data, we reveal marked alternative modes in the frequency distributions of boreal tree cover. At the northern end and at the dry continental southern extremes, treeless tundra and steppe, respectively, are the only possible states. However, over a broad intermediate temperature range, these treeless states coexist with boreal forest (∼75% tree cover) and with two more open woodland states (∼20% and ∼45% tree cover). Intermediate tree covers (e.g., ∼10%, ∼30%, and ∼60% tree cover) between these distinct states are relatively rare, suggesting that they may represent unstable states where the system dwells only transiently. Mechanisms for such instabilities remain to be unraveled, but our results have important implications for the anticipated response of these ecosystems to climatic change. The data reveal that boreal forest shows no gradual decline in tree cover toward its limits. Instead, our analysis suggests that it becomes less resilient in the sense that it may more easily shift into a sparse woodland or treeless state. Similarly, the relative scarcity of the intermediate ∼10% tree cover suggests that tundra may shift relatively abruptly to a more abundant tree cover. If our inferences are correct, climate change may invoke massive nonlinear shifts in boreal biomes.
Resistance of the boreal forest to high burn rates
Héon, Jessie; Arseneault, Dominique; Parisien, Marc-André
2014-01-01
Boreal ecosystems and their large carbon stocks are strongly shaped by extensive wildfires. Coupling climate projections with records of area burned during the last 3 decades across the North American boreal zone suggests that area burned will increase by 30–500% by the end of the 21st century, with a cascading effect on ecosystem dynamics and on the boreal carbon balance. Fire size and the frequency of large-fire years are both expected to increase. However, how fire size and time since previous fire will influence future burn rates is poorly understood, mostly because of incomplete records of past fire overlaps. Here, we reconstruct the length of overlapping fires along a 190-km-long transect during the last 200 y in one of the most fire-prone boreal regions of North America to document how fire size and time since previous fire will influence future fire recurrence. We provide direct field evidence that extreme burn rates can be sustained by a few occasional droughts triggering immense fires. However, we also show that the most fire-prone areas of the North American boreal forest are resistant to high burn rates because of overabundant young forest stands, thereby creating a fuel-mediated negative feedback on fire activity. These findings will help refine projections of fire effect on boreal ecosystems and their large carbon stocks. PMID:25201981
Observation and simulation of net primary productivity in Qilian Mountain, western China.
Zhou, Y; Zhu, Q; Chen, J M; Wang, Y Q; Liu, J; Sun, R; Tang, S
2007-11-01
We modeled net primary productivity (NPP) at high spatial resolution using an advanced spaceborne thermal emission and reflection radiometer (ASTER) image of a Qilian Mountain study area using the boreal ecosystem productivity simulator (BEPS). Two key driving variables of the model, leaf area index (LAI) and land cover type, were derived from ASTER and moderate resolution imaging spectroradiometer (MODIS) data. Other spatially explicit inputs included daily meteorological data (radiation, precipitation, temperature, humidity), available soil water holding capacity (AWC), and forest biomass. NPP was estimated for coniferous forests and other land cover types in the study area. The result showed that NPP of coniferous forests in the study area was about 4.4 tCha(-1)y(-1). The correlation coefficient between the modeled NPP and ground measurements was 0.84, with a mean relative error of about 13.9%.
NASA Astrophysics Data System (ADS)
Walther, Sophia; Guanter, Luis; Voigt, Maximilian; Köhler, Philipp; Jung, Martin; Joiner, Joanna
2015-04-01
sophia.walther@gfz-potsdam.de The seasonality of photosynthesis of boreal forests is an essential driver of the terrestrial carbon, water and energy cycles. However, current carbon cycle model results only poorly represent interannual variability and predict very different magnitudes and timings of carbon fluxes between the atmosphere and the land surface (e.g. Jung et al. 2011, Richardson et al. 2012). Reflectance-based satellite measurements, which give an indication of the amount of green biomass on the Earth's surface, have so far been used as input to global carbon cycle simulations, but they have limitations as they are not directly linked to instantaneous photosynthesis. As an alternative, space-borne retrievals of sun-induced chlorophyll fluorescence (SIF) boast the potential to provide a direct indication of the seasonality of boreal forest photosynthetic activity and thus to improve carbon model performances. SIF is a small electromagnetic signal that is re-emitted from the photosystems in the chloroplasts, which results in a direct relationship to photosynthetic efficiency. In this contribution we examine the seasonality of the boreal forests with three different vegetation parameters, namely greenness, SIF and model simulations of gross primary production (gross carbon flux into the plants by photosynthesis, GPP). We use the enhanced vegetation index (EVI) to represent green biomass. EVI is calculated from NBAR MODIS reflectance measurements (0.05deg, 16 days temporal resolution) for the time from January 2007-May 2013. SIF data originate from GOME-2 measurements on board the MetOp-A satellite in a spatial resolution of 0.5deg for the time from 2007-2011 (Joiner et al. (2013), Köhler et al. (2014)). As a third data source, data-driven GPP model results are used for the time from 2006-2012 with 0.5deg spatial resolution. The method to quantify phenology developed by Gonsamo et al. (2013) is applied to infer the main phenological phases (greenup/onset of activity, maturity, senescence and end of season) from all 3 data streams. Maps of the transition dates (most of all the start of season) of EVI, SIF and GPP are derived and compared. Further, local comparisons of the annual cycle over several large scale regions and forest types are done. Among other results, we find that in the boreal evergreen needleleaf forests both model GPP and SIF indicate much earlier onset of activity than EVI. This confirms - on a larger scale - findings from tower observations. Moreover, the end of activity occurs later in the case of SIF and GPP, which results in an overall longer growing season. Summer peak values of chlorophyll fluorescence, model GPP and greenness are reached approximately at the time of the annual temperature maximum one month after the illumination peak. In deciduous forests the length of the growing season indicated by the three proxies is very similar, however, SIF and GPP show large intraseasonal variability that cannot be identified using EVI. Also a slight decline in all three proxies can be observed from the end of June until August indicating that greenness and photosynthesis are already reduced to a small extent before autumn senescence starts and before the annual temperature maximum is reached. This might be due to higher sensitivity to illumination than to temperature at that time of year. These and other results show that satellite measurements of chlorophyll fluorescence reliably indicate plant activity and that they might be useful for benchmarking dynamic global vegetation and carbon cycle models.
Timing of plant phenophases since 1752 in the boreal forest environment
NASA Astrophysics Data System (ADS)
Kubin, Eero; Tolvanen, Anne; Karhu, Jouni; Valkama, Jari
2016-04-01
Global warming and climate change will significantly affect on forest environment in northern latitudes. There is the strong evidence that increase of early spring and late autumn temperatures will have impacts on growth and growth cycles. In Finland the Finnish Forest Research Institute (Luke since 2015) established in 1996 National Phenological Network to study changes of phenophases all over the country representing southern, middle and northern boreal forest zones. Continuous detailed scientific monitoring includes eleven forest plant species and it forms an excellent basis to evaluate responses of forest vegetation in respect to climate change. Monitoring is done together with Universities and other Institutes. Prior to the establishment of the Finnish National Phenological Network observations has been made solely based on volunteers since 1752. This citizen-science data is very important to analyze phenophases together with the results of the National Network. The long-term data since 1752 shows e.g. an advancement in the onset of Prunus padus flowering by five days per 100 years and correspondingly three days in the rowan (Sorbus aucuparia). The latest results of the Finnish National Network (1996 - 2014) fits well to this long term trend. In the Finnish National Phenological Network we have monitored phenophases of forest spieces throughout the growth period, focusing on nine forest tree species and two dwarf shrubs. The results can be followed in real time at: http://www.metla.fi/metinfo/fenologia/index-en.htm. We have observed big differences in phenophases between southern and northern boreal zone. Onset of downy birch leafing happens one month later in the north compared with southern boreal zone. Coming into leaf has clearly occurred earlier during the research period since 1996 in the northern boreal zone compared with southern boreal zone. This indicates the response of climate change. The timing of leaf colouring and leaf fall was observed remained almost constant in the southern boreal zone. Effective temperature sum is important for the timing of the bud burst. The timing of phenological phenomena of forest vegetation, berry and seed crops reflects information about the response of the forest environment to the changes in the environmental factors. The global warming will be at its most powerful in the northern latitudes and this phenomenon is predicted to become increasingly more powerful in the future. Study of the regional differences will yield information about the changes in the northern limits of distribution of different plant species, and these changes can significantly affect the quantitative proportions of plant species. These changes, in turn, have an indirect impact on the entire ecosystem and the sources of livelihood relying on it. Phenological monitoring is nowadays more important than ever especially in boreal regions, where spring temperatures are elevated. Compilation and documentation of observations on plant phenophases play a key role in working out the rate of global climate change. To utilize citizen-science data together with the scientific monitoring will be discussed in the conference.
Improved simulation of poorly drained forests using Biome-BGC.
Bond-Lamberty, Ben; Gower, Stith T; Ahl, Douglas E
2007-05-01
Forested wetlands and peatlands are important in boreal and terrestrial biogeochemical cycling, but most general-purpose forest process models are designed and parameterized for upland systems. We describe changes made to Biome-BGC, an ecophysiological process model, that improve its ability to simulate poorly drained forests. Model changes allowed for: (1) lateral water inflow from a surrounding watershed, and variable surface and subsurface drainage; (2) adverse effects of anoxic soil on decomposition and nutrient mineralization; (3) closure of leaf stomata in flooded soils; and (4) growth of nonvascular plants (i.e., bryophytes). Bryophytes were treated as ectohydric broadleaf evergreen plants with zero stomatal conductance, whose cuticular conductance to CO(2) was dependent on plant water content. Individual model changes were parameterized with published data, and ecosystem-level model performance was assessed by comparing simulated output to field data from the northern BOREAS site in Manitoba, Canada. The simulation of the poorly drained forest model exhibited reduced decomposition and vascular plant growth (-90%) compared with that of the well-drained forest model; the integrated bryophyte photosynthetic response accorded well with published data. Simulated net primary production, biomass and soil carbon accumulation broadly agreed with field measurements, although simulated net primary production was higher than observed data in well-drained stands. Simulated net primary production in the poorly drained forest was most sensitive to oxygen restriction on soil processes, and secondarily to stomatal closure in flooded conditions. The modified Biome-BGC remains unable to simulate true wetlands that are subject to prolonged flooding, because it does not track organic soil formation, water table changes, soil redox potential or anaerobic processes.
Interactions between white spruce and shrubby alders at three boreal forest sites in Alaska.
Tricia L. Wurtz
2000-01-01
To document possible soil nitrogen mosaics before timber harvesting on three boreal forest sites in Alaska, maps of the distribution of understory green (Alnus crispa (Ait.) Pursh) and Sitka alder (A. sitchensis(Reg.) Rydb.) stems were made. Understory alders were regularly distributed throughout the northernmost site (Standard...
The paper assesses the role in boreal forest growth played by environment. It examines past changes in climate coupled with glaciation, and future changes in climate coupled with agricultural land use and tree species availability. The objective was to define and evaluate potenti...
AmeriFlux CA-SJ1 Saskatchewan - Western Boreal, Jack Pine forest harvested in 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barr, Alan
This is the AmeriFlux version of the carbon flux data for the site CA-SJ1 Saskatchewan - Western Boreal, Jack Pine forest harvested in 1994. Site Description - 53.908408° N, 104.655885° W, elavation of 580m, BERMS climate and flux measurements began in Spring 2001
AmeriFlux CA-SJ2 Saskatchewan - Western Boreal, Jack Pine forest harvested in 2002
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barr, Alan; Black, Andrew T.
This is the AmeriFlux version of the carbon flux data for the site CA-SJ2 Saskatchewan - Western Boreal, Jack Pine forest harvested in 2002. Site Description - 53.944737° N, 104.649340° W, BERMS flux and climate measurements to begin by Mar 2003
Maintaining saproxylic insects in Canada's extensively managed boreal forests: a review
David W. Langor; John R. Spence; H.E. James Hammond; Joshua Jacobs; Tyler P. Cobb
2006-01-01
Recent work on saproxylic insect assemblages in western Canadian boreal forests has demonstrated high faunal diversity and variability, and that adequate assessment of these insects involves significant sampling and taxonomic challenges. Some major determinants of assemblage structure include tree species, degree of decay, stand age and cause of tree death. Experiments...
Resilience of Alaska's boreal forest to climate change
F.S. Chapin; A.D. McGuire; R.W. Ruess; T.N. Hollingsworth; M.C. Mack; J.F. Johnstone; E.S. Kasischke; E.S. Euskirchen; J.B. Jones; M.T. Jorgenson; K. Kielland; G.P. Kofinas; M.R. Turetsky; J. Yarie; A.H. Lloyd; D.L. Taylor
2010-01-01
This paper assesses the resilience of Alaska's boreal forest system to rapid climatic change. Recent warming is associated with reduced growth of dominant tree species, plant disease and insect outbreaks, warming and thawing of permafrost, drying of lakes, increased wildfire extent, increased postfire recruitment of deciduous trees, and reduced safety of hunters...
USDA-ARS?s Scientific Manuscript database
We evaluate local differences in thermal regimes and turbulent heat fluxes across the heterogeneous canopy of a black spruce boreal forest on discontinuous permafrost in interior Alaska. The data was taken during an intensive observing period in the summer of 2013 from two micrometeorological tower...
Water and heat transport in boreal soils: Implications for soil response to climate change
Fan, Z.; Neff, J.C.; Harden, J.W.; Zhang, T.; Veldhuis, H.; Czimczik, C.I.; Winston, G.C.; O'Donnell, J. A.
2011-01-01
Soil water content strongly affects permafrost dynamics by changing the soil thermal properties. However, the movement of liquid water, which plays an important role in the heat transport of temperate soils, has been under-represented in boreal studies. Two different heat transport models with and without convective heat transport were compared to measurements of soil temperatures in four boreal sites with different stand ages and drainage classes. Overall, soil temperatures during the growing season tended to be over-estimated by 2-4??C when movement of liquid water and water vapor was not represented in the model. The role of heat transport in water has broad implications for site responses to warming and suggests reduced vulnerability of permafrost to thaw at drier sites. This result is consistent with field observations of faster thaw in response to warming in wet sites compared to drier sites over the past 30. years in Canadian boreal forests. These results highlight that representation of water flow in heat transport models is important to simulate future soil thermal or permafrost dynamics under a changing climate. ?? 2011 Elsevier B.V.
Water and heat transport in boreal soils: Implications for soil response to climate change
Fan, Zhaosheng; Harden, Jennifer W.; Winston, G.C.; O'Donnell, Jonathan A.; Neff, Jason C.; Zhang, Tingjun; Veldhuis, Hugo; Czimczik, C.I.
2011-01-01
Soil water content strongly affects permafrost dynamics by changing the soil thermal properties. However, the movement of liquid water, which plays an important role in the heat transport of temperate soils, has been under-represented in boreal studies. Two different heat transport models with and without convective heat transport were compared to measurements of soil temperatures in four boreal sites with different stand ages and drainage classes. Overall, soil temperatures during the growing season tended to be over-estimated by 2–4 °C when movement of liquid water and water vapor was not represented in the model. The role of heat transport in water has broad implications for site responses to warming and suggests reduced vulnerability of permafrost to thaw at drier sites. This result is consistent with field observations of faster thaw in response to warming in wet sites compared to drier sites over the past 30 years in Canadian boreal forests. These results highlight that representation of water flow in heat transport models is important to simulate future soil thermal or permafrost dynamics under a changing climate.
NASA Astrophysics Data System (ADS)
Foster, A.; Armstrong, A. H.; Shuman, J. K.; Ranson, K.; Shugart, H. H., Jr.; Rogers, B. M.; Goetz, S. J.
2016-12-01
Global temperatures have increased about 0.2°C per decade since 1979, and the high latitudes are warming faster than the rest of the globe. Climate change within Alaska is likely to bring about increased drought and longer fire seasons, as well as increases in the severity and frequency of fires. These changes in disturbance regimes and their associated effects on ecosystem C stocks, including permafrost, may lead to a positive feedback to further climate warming. As of now, it is uncertain how vegetation will respond to ongoing climate change, and the addition of disturbance effects leads to even more complicated and varied scenarios. Through ecological modeling, we have the capacity to examine forest processes at multiple temporal and spatial scales, allowing for the testing of complex interactions between vegetation, climate, and disturbances. The University of Virginia Forest Model Enhanced (UVAFME) is an individual tree-based forest model that has been updated for use in interior boreal Alaska, with a new permafrost model and updated fire simulation. These updated submodels allow for feedback between soils, vegetation, and fire severity through fuels tracking and impact of depth of burn on permafrost dynamics. We present these updated submodels as well as calibration and validation of UVAFME to the Yukon River Basin in Alaska, with comparisons to inventory data. We also present initial findings from simulations of potential future forest biomass, structure, and species composition across the Yukon River Basin under expected changes in precipitation, temperature, and disturbances. We predict changing climate and the associated impacts on wildfire and permafrost dynamics will result in shifts in biomass and species composition across the region, with potential for further feedback to the climate-vegetation-disturbance system. These simulations advance our understanding of the possible futures for the Alaskan boreal forest, which is a valuable part of the global carbon budget.
NASA Astrophysics Data System (ADS)
Haverd, V.; Smith, B.; Nieradzik, L. P.; Briggs, P. R.
2014-08-01
Poorly constrained rates of biomass turnover are a key limitation of Earth system models (ESMs). In light of this, we recently proposed a new approach encoded in a model called Populations-Order-Physiology (POP), for the simulation of woody ecosystem stand dynamics, demography and disturbance-mediated heterogeneity. POP is suitable for continental to global applications and designed for coupling to the terrestrial ecosystem component of any ESM. POP bridges the gap between first-generation dynamic vegetation models (DVMs) with simple large-area parameterisations of woody biomass (typically used in current ESMs) and complex second-generation DVMs that explicitly simulate demographic processes and landscape heterogeneity of forests. The key simplification in the POP approach, compared with second-generation DVMs, is to compute physiological processes such as assimilation at grid-scale (with CABLE (Community Atmosphere Biosphere Land Exchange) or a similar land surface model), but to partition the grid-scale biomass increment among age classes defined at sub-grid-scale, each subject to its own dynamics. POP was successfully demonstrated along a savanna transect in northern Australia, replicating the effects of strong rainfall and fire disturbance gradients on observed stand productivity and structure. Here, we extend the application of POP to wide-ranging temporal and boreal forests, employing paired observations of stem biomass and density from forest inventory data to calibrate model parameters governing stand demography and biomass evolution. The calibrated POP model is then coupled to the CABLE land surface model, and the combined model (CABLE-POP) is evaluated against leaf-stem allometry observations from forest stands ranging in age from 3 to 200 year. Results indicate that simulated biomass pools conform well with observed allometry. We conclude that POP represents an ecologically plausible and efficient alternative to large-area parameterisations of woody biomass turnover, typically used in current ESMs.
Hank A. Margolis; Ross F. Nelson; Paul M. Montesano; André Beaudoin; Guoqing Sun; Hans-Erik Andersen; Michael A. Wulder
2015-01-01
We report estimates of the amount, distribution, and uncertainty of aboveground biomass (AGB) of the different ecoregions and forest land cover classes within the North American boreal forest, analyze the factors driving the error estimates, and compare our estimates with other reported values. A three-phase sampling strategy was used (i) to tie ground plot AGB to...
The Uncertainty of Biomass Estimates from Modeled ICESat-2 Returns Across a Boreal Forest Gradient
NASA Technical Reports Server (NTRS)
Montesano, P. M.; Rosette, J.; Sun, G.; North, P.; Nelson, R. F.; Dubayah, R. O.; Ranson, K. J.; Kharuk, V.
2014-01-01
The Forest Light (FLIGHT) radiative transfer model was used to examine the uncertainty of vegetation structure measurements from NASA's planned ICESat-2 photon counting light detection and ranging (LiDAR) instrument across a synthetic Larix forest gradient in the taiga-tundra ecotone. The simulations demonstrate how measurements from the planned spaceborne mission, which differ from those of previous LiDAR systems, may perform across a boreal forest to non-forest structure gradient in globally important ecological region of northern Siberia. We used a modified version of FLIGHT to simulate the acquisition parameters of ICESat-2. Modeled returns were analyzed from collections of sequential footprints along LiDAR tracks (link-scales) of lengths ranging from 20 m-90 m. These link-scales traversed synthetic forest stands that were initialized with parameters drawn from field surveys in Siberian Larix forests. LiDAR returns from vegetation were compiled for 100 simulated LiDAR collections for each 10 Mg · ha(exp -1) interval in the 0-100 Mg · ha(exp -1) above-ground biomass density (AGB) forest gradient. Canopy height metrics were computed and AGB was inferred from empirical models. The root mean square error (RMSE) and RMSE uncertainty associated with the distribution of inferred AGB within each AGB interval across the gradient was examined. Simulation results of the bright daylight and low vegetation reflectivity conditions for collecting photon counting LiDAR with no topographic relief show that 1-2 photons are returned for 79%-88% of LiDAR shots. Signal photons account for approximately 67% of all LiDAR returns, while approximately 50% of shots result in 1 signal photon returned. The proportion of these signal photon returns do not differ significantly (p greater than 0.05) for AGB intervals greater than 20 Mg · ha(exp -1). The 50m link-scale approximates the finest horizontal resolution (length) at which photon counting LiDAR collection provides strong model fits and minimizes forest structure uncertainty in the synthetic Larix stands. At this link-scale AGB greater than 20 Mg · ha(exp -1) has AGB error from 20-50% at the 95% confidence level. These results suggest that the theoretical sensitivity of ICESat-2 photon counting LiDAR measurements alone lack the ability to consistently discern differences in inferred AGB at 10 Mg · ha(exp -1) intervals in sparse forests characteristic of the taiga-tundra ecotone.
NASA Astrophysics Data System (ADS)
Steyaert, L. T.; Hall, F. G.; Loveland, T. R.
1997-12-01
A multitemporal 1 km advanced very high resolution radiometer (AVHRR) land cover analysis approach was used as the basis for regional land cover mapping, fire disturbance-regeneration, and multiresolution land cover scaling studies in the boreal forest ecosystem of central Canada. The land cover classification was developed by using regional field observations from ground and low-level aircraft transits to analyze spectral-temporal clusters that were derived from an unsupervised cluster analysis of monthly normalized difference vegetation index (NDVI) image composites (April-September 1992). Quantitative areal proportions of the major boreal forest components were determined for a 821 km × 619 km region, ranging from the southern grasslands-boreal forest ecotone to the northern boreal transitional forest. The boreal wetlands (mostly lowland black spruce, tamarack, mosses, fens, and bogs) occupied approximately 33% of the region, while lakes accounted for another 13%. Upland mixed coniferous-deciduous forests represented 23% of the ecosystem. A SW-NE productivity gradient across the region is manifested by three levels of tree stand density for both the boreal wetland conifer and the mixed forest classes, which are generally aligned with isopleths of regional growing degree days. Approximately 30% of the region was directly affected by fire disturbance within the preceding 30-35 years, especially in the Canadian Shield Zone where large fire-regeneration patterns contribute to the heterogeneous boreal landscape. Intercomparisons with land cover classifications derived from 30-m Landsat Thematic Mapper (TM) data provided important insights into the relative accuracy of the 1 km AVHRR land cover classification. Primarily due to the multitemporal NDVI image compositing process, the 1 km AVHRR land cover classes have an effective spatial resolution in the 3-4 km range; therefore fens, bogs, small water bodies, and small patches of dry jack pine cannot be resolved within the wet conifer mosaic. Major differences in the 1-km AVHRR and 30-m Landsat TM-derived land cover classes are most likely due to differences in the spatial resolution of the data sets. In general, the 1 km AVHRR land cover classes are vegetation mosaics consisting of mixed combinations of the Landsat classes. Detailed mapping of the global boreal forest with this approach will benefit from algorithms for cloud screening and to atmospherically correct reflectance data for both aerosol and water vapor effects. We believe that this 1 km AVHRR land cover analysis provides new and useful information for regional water, energy, carbon, and trace gases studies in BOREAS, especially given the significant spatial variability in land cover type and associated biophysical land cover parameters (e.g., albedo, leaf area index, FPAR, and surface roughness). Multiresolution land cover comparisons (30 m, l km, and 100 km grid cells) also illustrated how heterogeneous landscape patterns are represented in land cover maps with differing spatial scales and provided insights on the requirements and challenges for parameterizing landscape heterogeneity as part of land surface process research.
Steyaert, L.T.; Hall, F.G.; Loveland, Thomas R.
1997-01-01
A multitemporal 1 km advanced very high resolution radiometer (AVHRR) land cover analysis approach was used as the basis for regional land cover mapping, fire disturbance-regeneration, and multiresolution land cover scaling studies in the boreal forest ecosystem of central Canada. The land cover classification was developed by using regional field observations from ground and low-level aircraft transits to analyze spectral-temporal clusters that were derived from an unsupervised cluster analysis of monthly normalized difference vegetation index (NDVI) image composites (April-September 1992). Quantitative areal proportions of the major boreal forest components were determined for a 821 km ?? 619 km region, ranging from the southern grasslands-boreal forest ecotone to the northern boreal transitional forest. The boreal wetlands (mostly lowland black spruce, tamarack, mosses, fens, and bogs) occupied approximately 33% of the region, while lakes accounted for another 13%. Upland mixed coniferous-deciduous forests represented 23% of the ecosystem. A SW-NE productivity gradient across the region is manifested by three levels of tree stand density for both the boreal wetland conifer and the mixed forest classes, which are generally aligned with isopleths of regional growing degree days. Approximately 30% of the region was directly affected by fire disturbance within the preceding 30-35 years, especially in the Canadian Shield Zone where large fire-regeneration patterns contribute to the heterogeneous boreal landscape. Intercomparisons with land cover classifications derived from 30-m Landsat Thematic Mapper (TM) data provided important insights into the relative accuracy of the 1 km AVHRR land cover classification. Primarily due to the multitemporal NDVI image compositing process, the 1 km AVHRR land cover classes have an effective spatial resolution in the 3-4 km range; therefore fens, bogs, small water bodies, and small patches of dry jack pine cannot be resolved within the wet conifer mosaic. Major differences in the 1-km AVHRR and 30-m Landsat TM-derived land cover classes are most likely due to differences in the spatial resolution of the data sets. In general, the 1 km AVHRR land cover classes are vegetation mosaics consisting of mixed combinations of the Landsat classes. Detailed mapping of the global boreal forest with this approach will benefit from algorithms for cloud screening and to atmospherically correct reflectance data for both aerosol and water vapor effects. We believe that this 1 km AVHRR land cover analysis provides new and useful information for regional water, energy, carbon, and trace gases studies in BOREAS, especially given the significant spatial variability in land cover type and associated biophysical land cover parameters (e.g., albedo, leaf area index, FPAR, and surface roughness). Multiresolution land cover comparisons (30 m, 1 km, and 100 km grid cells) also illustrated how heterogeneous landscape patterns are represented in land cover maps with differing spatial scales and provided insights on the requirements and challenges for parameterizing landscape heterogeneity as part of land surface process research.
Global Boreal Forest Mapping with JERS-1: North America
NASA Technical Reports Server (NTRS)
Williams, Cynthia L.; McDonald, Kyle; Chapman, Bruce
2000-01-01
Collaborative effort is underway to map boreal forests worldwide using L-band, single polarization Synthetic Aperture Radar (SAR) imagery from the Japanese Earth Resources (JERS-1) satellite. Final products of the North American Boreal Forest Mapping Project will include two continental scale radar mosaics and supplementary multitemporal mosaics for Alaska, central Canada, and eastern Canada. For selected sites, we are also producing local scale (100 km x 100 km) and regional scale maps (1000 km x 1000 km). As with the nearly completed Amazon component of the Global Rain Forest Mapping project, SAR imagery, radar image mosaics and SAR-derived texture image products will be available to the scientific community on the World Wide Web. Image acquisition for this project has been completed and processing and image interpretation is underway at the Alaska SAR Facility.
AmeriFlux CA-NS6 UCI-1989 burn site
Goulden, Mike [University of California - Irvine
2016-01-01
This is the AmeriFlux version of the carbon flux data for the site CA-NS6 UCI-1989 burn site. Site Description - The UCI-1989 site is located in a continental boreal forest, dominated by black spruce trees, within the BOREAS northern study area in central Manitoba, Canada. The site is a member of a chronological series of sites that are representative secondary succession growth stages after large stand replacement fires. Black spruce trees undergo a slow growth process enabling the accurate determination of the chronosequence of stand age disturbance. Additionally, boreal forests make up approximately 25% of forest ecosystems on earth. With both of these in mind, the UCI sites provide an excellent location to study the CO2 exchange between the atmosphere and boreal forest ecosystems as a function of sequential wildfires.
AmeriFlux CA-NS2 UCI-1930 burn site
Goulden, Mike [University of California - Irvine
2016-01-01
This is the AmeriFlux version of the carbon flux data for the site CA-NS2 UCI-1930 burn site. Site Description - The UCI-1930 site is located in a continental boreal forest, dominated by black spruce trees, within the BOREAS northern study area in central Manitoba, Canada. The site is a member of a chronological series of sites that are representative secondary succession growth stages after large stand replacement fires. Black spruce trees undergo a slow growth process enabling the accurate determination of the chronosequence of stand age disturbance. Additionally, boreal forests make up approximately 25% of forest ecosystems on earth. With both of these in mind, the UCI sites provide an excellent location to study the CO2 exchange between the atmosphere and boreal forest ecosystems as a function of sequential wildfires.
AmeriFlux CA-NS3 UCI-1964 burn site
Goulden, Mike [University of California - Irvine
2016-01-01
This is the AmeriFlux version of the carbon flux data for the site CA-NS3 UCI-1964 burn site. Site Description - The UCI-1964 site is located in a continental boreal forest, dominated by black spruce trees, within the BOREAS northern study area in central Manitoba, Canada. The site is a member of a chronological series of sites that are representative secondary succession growth stages after large stand replacement fires. Black spruce trees undergo a slow growth process enabling the accurate determination of the chronosequence of stand age disturbance. Additionally, boreal forests make up approximately 25% of forest ecosystems on earth. With both of these in mind, the UCI sites provide an excellent location to study the CO2 exchange between the atmosphere and boreal forest ecosystems as a function of sequential wildfires.
AmeriFlux CA-NS7 UCI-1998 burn site
Goulden, Mike [University of California - Irvine
2016-01-01
This is the AmeriFlux version of the carbon flux data for the site CA-NS7 UCI-1998 burn site. Site Description - The UCI-1998 site is located in a continental boreal forest, dominated by black spruce trees, within the BOREAS northern study area in central Manitoba, Canada. The site is a member of a chronological series of sites that are representative secondary succession growth stages after large stand replacement fires. Black spruce trees undergo a slow growth process enabling the accurate determination of the chronosequence of stand age disturbance. Additionally, boreal forests make up approximately 25% of forest ecosystems on earth. With both of these in mind, the UCI sites provide an excellent location to study the CO2 exchange between the atmosphere and boreal forest ecosystems as a function of sequential wildfires.
AmeriFlux CA-NS8 UCI-2003 burn site
Goulden, Mike [University of California - Irvine
2016-01-01
This is the AmeriFlux version of the carbon flux data for the site CA-NS8 UCI-2003 burn site. Site Description - The UCI-2003 site is located in a continental boreal forest, dominated by black spruce trees, within the BOREAS northern study area in central Manitoba, Canada. The site is a member of a chronological series of sites that are representative secondary succession growth stages after large stand replacement fires. Black spruce trees undergo a slow growth process enabling the accurate determination of the chronosequence of stand age disturbance. Additionally, boreal forests make up approximately 25% of forest ecosystems on earth. With both of these in mind, the UCI sites provide an excellent location to study the CO2 exchange between the atmosphere and boreal forest ecosystems as a function of sequential wildfires.
AmeriFlux CA-NS5 UCI-1981 burn site
Goulden, Mike [University of California - Irvine
2016-01-01
This is the AmeriFlux version of the carbon flux data for the site CA-NS5 UCI-1981 burn site. Site Description - The UCI-1981 site is located in a continental boreal forest, dominated by black spruce trees, within the BOREAS northern study area in central Manitoba, Canada. The site is a member of a chronological series of sites that are representative secondary succession growth stages after large stand replacement fires. Black spruce trees undergo a slow growth process enabling the accurate determination of the chronosequence of stand age disturbance. Additionally, boreal forests make up approximately 25% of forest ecosystems on earth. With both of these in mind, the UCI sites provide an excellent location to study the CO2 exchange between the atmosphere and boreal forest ecosystems as a function of sequential wildfires.
AmeriFlux CA-NS4 UCI-1964 burn site wet
Goulden, Mike [University of California - Irvine
2016-01-01
This is the AmeriFlux version of the carbon flux data for the site CA-NS4 UCI-1964 burn site wet. Site Description - The UCI-1964 wet site is located in a continental boreal forest, dominated by black spruce trees, within the BOREAS northern study area in central Manitoba, Canada. The site is a member of a chronological series of sites that are representative secondary succession growth stages after large stand replacement fires. Black spruce trees undergo a slow growth process enabling the accurate determination of the chronosequence of stand age disturbance. Additionally, boreal forests make up approximately 25% of forest ecosystems on earth. With both of these in mind, the UCI sites provide an excellent location to study the CO2 exchange between the atmosphere and boreal forest ecosystems as a function of sequential wildfires.
AmeriFlux CA-NS1 UCI-1850 burn site
Goulden, Mike [University of California - Irvine
2016-01-01
This is the AmeriFlux version of the carbon flux data for the site CA-NS1 UCI-1850 burn site. Site Description - The UCI-1850 site is located in a continental boreal forest, dominated by black spruce trees, within the BOREAS northern study area in central Manitoba, Canada. The site is a member of a chronological series of sites that are representative secondary succession growth stages after large stand replacement fires. Black spruce trees undergo a slow growth process enabling the accurate determination of the chronosequence of stand age disturbance. Additionally, boreal forests make up approximately 25% of forest ecosystems on earth. With both of these in mind, the UCI sites provide an excellent location to study the CO2 exchange between the atmosphere and boreal forest ecosystems as a function of sequential wildfires.
Kang, Sinkyu; Kimball, John S; Running, Steven W
2006-06-01
We used a terrestrial ecosystem process model, BIOME-BGC, to investigate historical climate change and fire disturbance effects on regional carbon and water budgets within a 357,500 km(2) portion of the Canadian boreal forest. Historical patterns of increasing atmospheric CO2, climate change, and regional fire activity were used as model drivers to evaluate the relative effects of these impacts to spatial patterns and temporal trends in forest net primary production (NPP) and evapotranspiration (ET). Historical trends of increasing atmospheric CO2 resulted in overall 13% and 5% increases in annual NPP and ET from 1994 to 1996, respectively. NPP was found to be relatively sensitive to changes in air temperature (T(a)), while ET was more sensitive to precipitation (P) change within the ranges of observed climate variability (e.g., +/-2 degrees C for T(a) and +/-20% for P). In addition, the potential effect of climate change related warming on NPP is exacerbated or offset depending on whether these changes are accompanied by respective decreases or increases in precipitation. Historical fire activity generally resulted in reductions of both NPP and ET, which consumed an average of approximately 6% of annual NPP from 1959 to 1996. Areas currently occupied by dry conifer forests were found to be subject to more frequent fire activity, which consumed approximately 8% of annual NPP. The results of this study show that the North American boreal ecosystem is sensitive to historical patterns of increasing atmospheric CO2, climate change and regional fire activity. The relative impacts of these disturbances on NPP and ET interact in complex ways and are spatially variable depending on regional land cover and climate gradients.
Contribution of climate and fires to vegetation composition in the boreal forest of China
NASA Astrophysics Data System (ADS)
Venevsky, S.; Wu, C.; Sitch, S.
2017-12-01
Climate is well known as an important determinant of biogeography. Although climate is directly important for vegetation composition in the boreal forests, these ecosystems are strongly sensitive to an indirect effect of climate via fire disturbance. However, the driving balance of fire disturbance and climate on composition is poorly understood. In this study we quantitatively analyzed their individual contributions for the boreal forests of the Heilongjiang province, China and their response to climate change using four warming scenarios (+1.5, 2, 3, and 4°C). This study employs the statistical methods of Redundancy Analysis (RDA) and variation partitioning combined with simulation results from a Dynamic Global Vegetation Model, SEVER-DGVM, and remote sensing datasets of global land cover (GLC2000) and the Global Fire Emissions Database (GFED3). Results show that the vegetation distribution for the present day is mainly determined directly by climate (35%) rather than fire (1%-10.9%). However, with a future global warming of 1.5°C, local vegetation composition will be determined by fires rather than climate (36.3% > 29.3%). Above a 1.5°C warming, temperature will be more important than fires in regulating vegetation distribution although other factors like precipitation can also contribute. The spatial pattern in vegetation composition over the region, as evaluated by Moran's Eigenvector Map (MEM), has a significant impact on local vegetation coverage, i.e. composition at any individual location is highly related to that in its neighborhood. It represents the largest contribution to vegetation distribution in all scenarios, but will not change the driving balance between climate and fires. Our results are highly relevant for forest and wildfires' management.
Retrieval of Understory NDVI in Sparse Boreal Forests By MODIS Brdf Data
NASA Astrophysics Data System (ADS)
Yang, W.; Kobayashi, H.; Suzuki, R.; Nasahara, K. N.
2014-12-01
Global products of leaf area index (LAI) usually show large uncertainties in sparsely vegetated areas. The reason is that the understory contribution is not negligible in reflectance modeling for the case of low to intermediate canopy cover. Therefore many efforts have been carried out on inclusion of understory properties in the LAI estimation algorithms. Compared with conventional data bank method, estimation of forest understory property from satellite data is superior in the studies at global or continental scale during a long periods. However, the existing remote sensing method based on multi-angular observations is very complicated to implement. Alternatively, a simple method to retrieve understory NDVI (NDVIu) for sparse boreal forests was proposed in this study. The method is based on the property that the bi-directional variation of NDVIu is much smaller than that of the canopy-level NDVI. To retrieve NDVIu for a certain pixel, linear extrapolation was applied using the pixels within a 5×5 target-pixel-centered window. The NDVI values were reconstructed from the MODIS BRDF data corresponding to eight different solar-view angles. NDVIu was estimated as the average of the NDVI values corresponding to the position where the stand NDVI has the smallest angular variation. Validation by noise-free simulation dataset yielded high agreement between estimated and true NDVIu with R2 and RMSE of 0.99 and 0.03, respectively. By the MODIS BRDF data, we got the estimate of NDVIu close to the in situ measured value (0.61 vs. 0.66 for estimate and measurement, respectively), and also reasonable seasonal patterns of NDVIu in 2010-2013. The results imply a potential application of the retrieved NDVIu to improve the estimation of overstory LAI for sparse boreal forests.
NASA Astrophysics Data System (ADS)
Minunno, F.; Peltoniemi, M.; Launiainen, S.; Aurela, M.; Lindroth, A.; Lohila, A.; Mammarella, I.; Minkkinen, K.; Mäkelä, A.
2015-07-01
The problem of model complexity has been lively debated in environmental sciences as well as in the forest modelling community. Simple models are less input demanding and their calibration involves a lower number of parameters, but they might be suitable only at local scale. In this work we calibrated a simplified ecosystem process model (PRELES) to data from multiple sites and we tested if PRELES can be used at regional scale to estimate the carbon and water fluxes of Boreal conifer forests. We compared a multi-site (M-S) with site-specific (S-S) calibrations. Model calibrations and evaluations were carried out by the means of the Bayesian method; Bayesian calibration (BC) and Bayesian model comparison (BMC) were used to quantify the uncertainty in model parameters and model structure. To evaluate model performances BMC results were combined with more classical analysis of model-data mismatch (M-DM). Evapotranspiration (ET) and gross primary production (GPP) measurements collected in 10 sites of Finland and Sweden were used in the study. Calibration results showed that similar estimates were obtained for the parameters at which model outputs are most sensitive. No significant differences were encountered in the predictions of the multi-site and site-specific versions of PRELES with exception of a site with agricultural history (Alkkia). Although PRELES predicted GPP better than evapotranspiration, we concluded that the model can be reliably used at regional scale to simulate carbon and water fluxes of Boreal forests. Our analyses underlined also the importance of using long and carefully collected flux datasets in model calibration. In fact, even a single site can provide model calibrations that can be applied at a wider spatial scale, since it covers a wide range of variability in climatic conditions.
Tautenhahn, Susanne; Lichstein, Jeremy W; Jung, Martin; Kattge, Jens; Bohlman, Stephanie A; Heilmeier, Hermann; Prokushkin, Anatoly; Kahl, Anja; Wirth, Christian
2016-06-01
Fire is a primary driver of boreal forest dynamics. Intensifying fire regimes due to climate change may cause a shift in boreal forest composition toward reduced dominance of conifers and greater abundance of deciduous hardwoods, with potential biogeochemical and biophysical feedbacks to regional and global climate. This shift has already been observed in some North American boreal forests and has been attributed to changes in site conditions. However, it is unknown if the mechanisms controlling fire-induced changes in deciduous hardwood cover are similar among different boreal forests, which differ in the ecological traits of the dominant tree species. To better understand the consequences of intensifying fire regimes in boreal forests, we studied postfire regeneration in five burns in the Central Siberian dark taiga, a vast but poorly studied boreal region. We combined field measurements, dendrochronological analysis, and seed-source maps derived from high-resolution satellite images to quantify the importance of site conditions (e.g., organic layer depth) vs. seed availability in shaping postfire regeneration. We show that dispersal limitation of evergreen conifers was the main factor determining postfire regeneration composition and density. Site conditions had significant but weaker effects. We used information on postfire regeneration to develop a classification scheme for successional pathways, representing the dominance of deciduous hardwoods vs. evergreen conifers at different successional stages. We estimated the spatial distribution of different successional pathways under alternative fire regime scenarios. Under intensified fire regimes, dispersal limitation of evergreen conifers is predicted to become more severe, primarily due to reduced abundance of surviving seed sources within burned areas. Increased dispersal limitation of evergreen conifers, in turn, is predicted to increase the prevalence of successional pathways dominated by deciduous hardwoods. The likely fire-induced shift toward greater deciduous hardwood cover may affect climate-vegetation feedbacks via surface albedo, Bowen ratio, and carbon cycling. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Wu, S. H.; Jansson, P.-E.
2012-05-01
Recovery of photosynthesis and transpiration is strongly restricted by low temperatures in air and/or soil during the transition period from winter to spring in boreal zones. The extent to which air temperature (Ta) and soil temperature (Ts) influence the seasonality of photosynthesis and transpiration of a boreal spruce ecosystem was investigated using a process-based ecosystem model (CoupModel) together with eddy covariance (EC) data from one eddy flux tower and nearby soil measurements at Knottåsen, Sweden. A Monte Carlo based uncertainty method (GLUE) provided prior and posterior distributions of simulations representing a wide range of soil conditions and performance indicators. The simulated results showed sufficient flexibility to predict the measured cold and warm Ts in the moist and dry plots around the eddy flux tower. Moreover, the model presented a general ability to describe both biotic and abiotic processes for the Norway spruce stand. The dynamics of sensible heat fluxes were well described the corresponding latent heat fluxes and net ecosystem exchange of CO2. The parameter ranges obtained are probably valid to represent regional characteristics of boreal conifer forests, but were not easy to constrain to a smaller range than that produced by the assumed prior distributions. Finally, neglecting the soil temperature response function resulted in fewer behavioural models and probably more compensatory errors in other response functions for regulating the seasonality of ecosystem fluxes.
Sierra, C.A.; Loescher, H.W.; Harmon, M.E.; Richardson, A.D.; Hollinger, D.Y.; Perakis, S.S.
2009-01-01
Interannual variation of carbon fluxes can be attributed to a number of biotic and abiotic controls that operate at different spatial and temporal scales. Type and frequency of disturbance, forest dynamics, and climate regimes are important sources of variability. Assessing the variability of carbon fluxes from these specific sources can enhance the interpretation of past and current observations. Being able to separate the variability caused by forest dynamics from that induced by climate will also give us the ability to determine if the current observed carbon fluxes are within an expected range or whether the ecosystem is undergoing unexpected change. Sources of interannual variation in ecosystem carbon fluxes from three evergreen ecosystems, a tropical, a temperate coniferous, and a boreal forest, were explored using the simulation model STANDCARB. We identified key processes that introduced variation in annual fluxes, but their relative importance differed among the ecosystems studied. In the tropical site, intrinsic forest dynamics contributed ?? 30% of the total variation in annual carbon fluxes. In the temperate and boreal sites, where many forest processes occur over longer temporal scales than those at the tropical site, climate controlled more of the variation among annual fluxes. These results suggest that climate-related variability affects the rates of carbon exchange differently among sites. Simulations in which temperature, precipitation, and radiation varied from year to year (based on historical records of climate variation) had less net carbon stores than simulations in which these variables were held constant (based on historical records of monthly average climate), a result caused by the functional relationship between temperature and respiration. This suggests that, under a more variable temperature regime, large respiratory pulses may become more frequent and high enough to cause a reduction in ecosystem carbon stores. Our results also show that the variation of annual carbon fluxes poses an important challenge in our ability to determine whether an ecosystem is a source, a sink, or is neutral in regard to CO2 at longer timescales. In simulations where climate change negatively affected ecosystem carbon stores, there was a 20% chance of committing Type II error, even with 20 years of sequential data. ?? 2009 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Feurdean, Angelica; Veski, Siim; Florescu, Gabriela; Vannière, Boris; Pfeiffer, Mirjam; O'Hara, Robert B.; Stivrins, Normunds; Amon, Leeli; Heinsalu, Atko; Vassiljev, Jüri; Hickler, Thomas
2017-08-01
Disturbances by fire are essential for the functioning of boreal/hemiboreal forests, but knowledge of long-term fire regime dynamics is limited. We analysed macrocharcoal morphologies and pollen of a sediment record from Lake Lielais Svētiņu (eastern Latvia), and in conjunction with fire traits analysis present the first record of Holocene variability in fire regime, fuel sources and fire types in boreal forests of the Baltic region. We found a phase of moderate to high fire activity during the cool and moist early (mean fire return interval; mFRI of ∼280 years; 11,700-7500 cal yr BP) and the late (mFRI of ∼190 years; 4500-0 cal yr BP) Holocene and low fire activity (mFRI of ∼630 years) during the Holocene Thermal Optimum (7500-4500 cal yr BP). Charcoal morphotypes and the pollen record show the predominance of frequent surface fires, occasionally transitioning to the crown during Pinus sylvestris-Betula boreal forests and less frequent surface fires during the dominance of temperate deciduous forests. In contrast to the prevailing opinion that fires in boreal forests are mostly low to moderate severity surface fires, we found evidence for common occurrence of stand-replacing crown fires in Picea abies canopy. Our results highlight that charcoal morphotypes analysis allows for distinguishing the fuel types and surface from crown fires, therefore significantly advancing our interpretation of fire regime. Future warmer temperatures and increase in the frequency of dry spells and abundant biomass accumulation can enhance the fire risk on the one hand, but will probably promote the expansion of broadleaf deciduous forests to higher latitudes, on the other hand. By highlighting the capability of broadleaf deciduous forests to act as fire-suppressing landscape elements, our results suggest that fire activity may not increase in the Baltic area under future climate change.
NASA Astrophysics Data System (ADS)
Itter, M.; D'Orangeville, L.; Dawson, A.; Kneeshaw, D.; Finley, A. O.
2017-12-01
Drought and insect defoliation have lasting impacts on the dynamics of the boreal forest. Impacts are expected to worsen under global climate change as hotter, drier conditions forecast for much of the boreal increase the frequency and severity of drought and defoliation events. Contemporary ecological theory predicts physiological feedbacks in tree responses to drought and defoliation amplify impacts potentially causing large-scale productivity losses and forest mortality. Quantifying the interactive impacts of drought and insect defoliation on regional forest health is difficult given delayed and persistent responses to disturbance events. We developed a Bayesian hierarchical model to estimate forest growth responses to interactions between drought and insect defoliation by species and size class. Delayed and persistent responses to past drought and defoliation were quantified using empirical memory functions allowing for improved detection of interactions. The model was applied to tree-ring data from stands in Western (Alberta) and Eastern (Québec) regions of the Canadian boreal forest with different species compositions, disturbance regimes, and regional climates. Western stands experience chronic water deficit and forest tent caterpillar (FTC) defoliation; Eastern stands experience irregular water deficit and spruce budworm (SBW) defoliation. Ecosystem memory to past water deficit peaked in the year previous to growth and decayed to zero within 5 (West) to 8 (East) years; memory to past defoliation ranged from 8 (West) to 12 (East) years. The drier regional climate and faster FTC defoliation dynamics (compared to SBW) likely contribute to shorter ecosystem memory in the West. Drought and defoliation had the largest negative impact on large-diameter, host tree growth. Surprisingly, a positive interaction was observed between drought and defoliation for large-diameter, non-host trees likely due to reduced stand-level competition for water. Results highlight the temporal persistence of drought and defoliation stress on boreal forest growth dynamics and provide an empirical estimate of their interactive effects with explicit uncertainty.
Effects of wild fires on the emissions of reactive gases from boreal and subarctic soils
NASA Astrophysics Data System (ADS)
Zhang-Turpeinen, Huizhong; Pumpanen, Jukka; Kivimäenpää, Minna
2017-04-01
Wild fire has long-term effects on the ecosystem and biological processes of boreal forest, and the frequency of wild fires is increasing as a consequence of climate change. Boreal forests lie largely on permafrost area, and the increase in fire frequency or intensity will affect the depth of the active layer on top of permafrost. The thawing of permafrost soils and increase in the active layer depth could induce significant reactive trace gas emissions. Biogenic volatile organic compounds (BVOCs) and nitrous acid (HONO) are closely associated with air chemistry in the troposphere. They react easily with ozone, hydroxyl radicals, and the reaction products may condense into aerosol particles or affect the growth of atmospheric aerosols which act as cloud condensation nuclei. Forests, and in particular permafrost soils, could be potentially large sources of BVOCs and HONO, because of the large amount of decomposing litter and soil organic matter. However, the forest soil BVOC emissions are poorly known, in contrast to BVOCs emitted from branch and canopy levels in boreal forests. The production rates of HONO in various soils are also poorly known. We studied BVOC and HONO fluxes from boreal forest soils and the effects of wild fires and the time since the last fire on them. We measured BVOCs emissions in west Siberia larch forest stands on permafrost soil in a fire chronosequence where the last forest fires had occurred 2, 24, and more than 100 years ago. HONO emissions in northern boreal subarctic Scots pine forest stands in Eastern Lapland in Finland in a fire chronosequence where the last fires had occurred 7, 47, 72 and 157 years ago. BVOC flux measurements were carried out by drawing air samples from chamber headspace into a steel adsorbent tube containing Tenax TA and carbopack B. The sampling tubes were analyzed on gas chromatography-mass spectrometry (GC-MS). Soil samples were measured for HONO flux in laboratory with LOPAP (Long path absorption photometer). According to our preliminary results the influence and the duration of the impact of forest fires were not observed in HONO emissions. However, the HONO emissions were sensitive to soil moisture. The unexpectedly high rate of release of isoprene measured in the middle age forest sites with warm scenario. Environmental parameters were correlated with the presence of BVOCs. We compared the BVOC fluxes with environmental parameters such as temperature, humidity and PAR, and with ground vegetation coverage and with litter input. The BVOC data is under processing still and more detail results is coming later.
Detecting post-fire salvage logging with Landsat change maps and national fire survey data
Todd A. Schroeder; Michael A. Wulder; Sean P. Healey; Gretchen G. Moisen
2012-01-01
In Canadian boreal forests, wildfire is the predominant agent of natural disturbance often with millions of hectares burning annually. In addition to fire, nearly one quarter of Canada's boreal forest is also managed for industrial wood production. Post-fire logging (or salvage harvesting) is increasingly used to minimize economic losses from fire, notwithstanding...
Fire spread probabilities for experimental beds composed of mixedwood boreal forest fuels
M.B. Dickinson; E.A. Johnson; R. Artiaga
2013-01-01
Although fuel characteristics are assumed to have an important impact on fire regimes through their effects on extinction dynamics, limited capabilities exist for predicting whether a fire will spread in mixedwood boreal forest surface fuels. To improve predictive capabilities, we conducted 347 no-wind, laboratory test burns in surface fuels collected from the mixed-...
Modeling Alaska boreal forests with a controlled trend surface approach
Mo Zhou; Jingjing Liang
2012-01-01
An approach of Controlled Trend Surface was proposed to simultaneously take into consideration large-scale spatial trends and nonspatial effects. A geospatial model of the Alaska boreal forest was developed from 446 permanent sample plots, which addressed large-scale spatial trends in recruitment, diameter growth, and mortality. The model was tested on two sets of...
Influence of harvesting on understory vegetation along a boreal riparian-upland gradient
Rebecca L. MacDonald; Han Y.H. Chen; Brian P. Palik; Ellie E. Prepas
2014-01-01
Management of riparian forests, and how they respond to disturbance, continues to be a focus of interest in the literature. Earlier studies on riparian plant community assembly following harvesting in the boreal forest have focused merely on highly contrasting microhabitats within a landscape, for example, streambank riparian habitat or upland habitat. Sustaining...
The browning of Alaska's boreal forest
Mary Beth Parent; David Verbyla
2010-01-01
We used twelve Landsat scenes from the 1980s-2009 and regional 2000-2009 MODIS data to examine the long-term trend in the normalized difference vegetation index (NDVI) within unburned areas of the Alaskan boreal forest. Our analysis shows that there has been a declining trend in NDVI in this region, with the strongest "browning trend" occurring in eastern...
BOREAS TE-9 NSA Photosynthetic Capacity and Foliage Nitrogen Data
NASA Technical Reports Server (NTRS)
Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Dang, Qinglai; Margolis, Hank; Coyea, Marie
2000-01-01
The Boreal Ecosystem-Atmospheric Study (BOREAS) TE-9 (Terrestrial Ecology) team collected several data sets related to chemical and photosynthetic properties of leaves in boreal forest tree species. This data set describes the spatial and temporal relationship between foliage nitrogen concentration and photosynthetic capacity in the canopies of black spruce, jack pine, and aspen located within the Northern Study Area (NSA). The data were collected from June to September 1994 and are useful for modeling the vertical distribution of carbon fixation for different forest types in the boreal forest. The data are available in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).
Vegetation and paleoclimate of the last interglacial period, central Alaska
Muhs, D.R.; Ager, T.A.; Beget, J.E.
2001-01-01
The last interglacial period is thought to be the last time global climate was significantly warmer than present. New stratigraphic studies at Eva Creek, near Fairbanks, Alaska indicate a complex last interglacial record wherein periods of loess deposition alternated with periods of soil formation. The Eva Forest Bed appears to have formed about the time of or after deposition of the Old Crow tephra (dated to ??? 160 to ??? 120 ka), and is therefore correlated with the last interglacial period. Pollen, macrofossils, and soils from the Eva Forest Bed indicate that boreal forest was the dominant vegetation and precipitation may have been greater than present around Fairbanks during the peak of the last interglacial period. A new compilation of last interglacial localities indicates that boreal forest was extensive over interior Alaska and Yukon Territory. Boreal forest also extended beyond its present range onto the Seward and Baldwin Peninsulas, and probably migrated to higher elevations, now occupied by tundra, in the interior. Comparison of last interglacial pollen and macrofossil data with atmospheric general circulation model results shows both agreement and disagreement. Model results of warmer-than-present summers are in agreement with fossil data. However, numerous localities with boreal forest records are in conflict with model reconstructions of an extensive cool steppe in interior Alaska and much of Yukon Territory during the last interglacial. ?? 2000 Elsevier Science Ltd.
Clemmensen, Karina E; Finlay, Roger D; Dahlberg, Anders; Stenlid, Jan; Wardle, David A; Lindahl, Björn D
2015-03-01
Boreal forest soils store a major proportion of the global terrestrial carbon (C) and below-ground inputs contribute as much as above-ground plant litter to the total C stored in the soil. A better understanding of the dynamics and drivers of root-associated fungal communities is essential to predict long-term soil C storage and climate feedbacks in northern ecosystems. We used 454-pyrosequencing to identify fungal communities across fine-scaled soil profiles in a 5000 yr fire-driven boreal forest chronosequence, with the aim of pinpointing shifts in fungal community composition that may underlie variation in below-ground C sequestration. In early successional-stage forests, higher abundance of cord-forming ectomycorrhizal fungi (such as Cortinarius and Suillus species) was linked to rapid turnover of mycelial biomass and necromass, efficient nitrogen (N) mobilization and low C sequestration. In late successional-stage forests, cord formers declined, while ericoid mycorrhizal ascomycetes continued to dominate, potentially facilitating long-term humus build-up through production of melanized hyphae that resist decomposition. Our results suggest that cord-forming ectomycorrhizal fungi and ericoid mycorrhizal fungi play opposing roles in below-ground C storage. We postulate that, by affecting turnover and decomposition of fungal tissues, mycorrhizal fungal identity and growth form are critical determinants of C and N sequestration in boreal forests. © 2014 The Authors New Phytologist © 2014 New Phytologist Trust.
NASA Technical Reports Server (NTRS)
Ranson, K. Jon; Sun, Guoqing; Kimes, Daniel; Kovacs, Katalin; Kharuk, Viatscheslav
2006-01-01
Mapping of boreal forest's type, biomass, and other structural parameters are critical for understanding of the boreal forest's significance in the carbon cycle, its response to and impact on global climate change. We believe the nature of the forest structure information available from MISR and GLAS can be used to help identify forest type, age class, and estimate above ground biomass levels beyond that now possible with MODIS alone. The ground measurements will be used to develop relationships between remote sensing observables and forest characteristics and provide new information for understanding forest changes with respect to environmental change. Lidar is a laser altimeter that determines the distance from the instrument to the physical surface by measuring the time elapsed between the pulse emission and the reflected return. Other studies have shown that the returned signal may identify multiple returns originating from trees, building and other objects and permits the calculation of their height. Studies using field data have shown that lidar data can provide estimates of structural parameters such as biomass, stand volume and leaf area index and allows remarkable differentiation between primary and secondary forest. NASA's IceSAT Geoscience Laser Altimeter System (GLAS) was launched in January 2003 and collected data during February and September of that year. This study used data acquired over our study sites in central Siberia to examine the GLAS signal as a source of forest height and other structural characteristics. The purpose of our Siberia project is to improve forest cover maps and produce above-ground biomass maps of the boreal forest in Northern Eurasia from MODIS by incorporating structural information inherent in the Terra MISR and ICESAT Geoscience Laser Altimeter System (GLAS) instruments. A number of forest cover classifications exist for the boreal forest. We believe the limiting factor in these products is the lack of structural information, particularly in the vertical dimension. The emphasis of this project is to improve upon satellite maps of boreal forest structure parameters (i.e. height and biomass) using temporal, multi-angle, and vertical profile information of GLAS data. The existing and near future lidar data is useful for demonstrating these techniques and pursuing current estimates. Future lidar missions may be several years in the future, so we will work other new data sets that may aide in biomass estimates such as ALOS PALSAR We will continue this work to produce an accurate map of current above ground forest phytomass/carbon storage possible for the study area. We plan to develop, test, and integrate remote sensing methods for extracting forest canopy structure measures. We are compiling our field measurements and will compare them with the remote sensing methods where possible. We also be able to produce a realistic error bound on the remotely sensed carbon estimates.
NASA Astrophysics Data System (ADS)
Nikopensius, Maris; Raabe, Kairi; Pisek, Jan
2014-05-01
The knowledge about spectral properties and seasonal dynamics of understory layers in boreal forests currently holds several gaps. This introduces severe uncertainties while modelling the carbon balance of this ecosystem, which is expected to be prone to major shifts with climate change in the future. In this work the seasonal reflectance dynamics in European hemi-boreal forests are studied. The data for this study was collected at Järvselja Training and Experimental Forestry District (Estonia, 27.26°E 58.30°N). Measurements were taken in three different stands. The silver birch (Betula Pendula Roth) stand grows on typical brown gley-soil and its understory vegetation is dominated by a mixture of several grass species. The Scots pine (Pinus sylvestris) stand grows on a bog with understory vegetation composed of sparse labrador tea, cotton grass, and a continuous Sphagnum moss layer. The third stand, Norway spruce (Picea abies), grows on a Gleyi Ferric Podzol site with understory vegetation either partially missing or consisting of mosses such as Hylocomium splendens or Pleurozium schreberi [1]. The sampling design was similar to the study by Rautiainen et al. [3] in northern European boreal forests. At each study site, a 100 m long permanent transect was marked with flags. In addition, four intensive study plots (1 m × 1 m) were marked next to the transects at 20 m intervals. The field campaign lasted from May to September 2013. For each site the fractional cover of understory and understory spectra were estimated ten times i.e. every 2 to 3 weeks. Results from Järvselja forest were compared with the seasonal profiles from boreal forests in Hyytiälä, Finland [2]. References [1] A. Kuusk, M. Lang, J. Kuusk, T. Lükk, T. Nilson, M. Mõttus, M. Rautiainen, and A. Eenmäe, "Database of optical and structural data for validation of radiative transfer models", Technical Report, September 2009 [2] M. Rautiainen, M. Mõttus, J. Heiskanen, A. Akujärvi, T. Majasalmi, P. Stenberg, "Seasonal reflectance dynamics of common understory types in a northern Europe boreal forest," Remote Sensing of Environment, vol. 115, pp. 3020-3028, July 2011
Lewis, Tyler; Schmutz, Joel A.; Amundson, Courtney L.; Lindberg, Mark S.
2016-01-01
Summary 1. Wildfires are the principal disturbance in the boreal forest, and their size and frequency are increasing as the climate warms. Impacts of fires on boreal wildlife are largely unknown, especially for the tens of millions of waterfowl that breed in the region. This knowledge gap creates significant barriers to the integrative management of fires and waterfowl, leading to fire policies that largely disregard waterfowl. 2. Waterfowl populations across the western boreal forest of North America have been monitored annually since 1955 by the Waterfowl Breeding Population and Habitat Survey (BPOP), widely considered the most extensive wildlife survey in the world. Using these data, we examined impacts of forest fires on abundance of two waterfowl guilds – dabblers and divers. We modelled waterfowl abundance in relation to fire extent (i.e. amount of survey transect burned) and time since fire, examining both immediate and lagged fire impacts. 3. From 1955 to 2014, >1100 fires in the western boreal forest intersected BPOP survey transects, and many transects burned multiple times. Nonetheless, fires had no detectable impact on waterfowl abundance; annual transect counts of dabbler and diver pairs remained stable from the pre- to post-fire period. 4. The absence of fire impacts on waterfowl abundance extended from the years immediately following the fire to those more than a decade afterwards. Likewise, the amount of transect burned did not influence waterfowl abundance, with similar pair counts from the pre- to post-fire period for small (1–20% burned), medium (21–60%) and large (>60%) burns. 5. Policy implications. Waterfowl populations appear largely resilient to forest fires, providing initial evidence that current policies of limited fire suppression, which predominate throughout much of the boreal forest, have not been detrimental to waterfowl populations. Likewise, fire-related management actions, such as prescribed burning or targeted suppression, seem to have limited impacts on waterfowl abundance and productivity. For waterfowl managers, our results suggest that adaptive models of waterfowl harvest, which annually guide hunting quotas, do not need to emphasize fires when integrating climate change effects.
Modeling physical and biogeochemical controls over carbon accumulation in a boreal forest soil
Carrasco, J.J.; Neff, J.C.; Harden, J.W.
2006-01-01
Boreal soils are important to the global C cycle owing to large C stocks, repeated disturbance from fire, and the potential for permafrost thaw to expose previously stable, buried C. To evaluate the primary mechanisms responsible for both short- and long-term C accumulation in boreal soils, we developed a multi-isotope (12,14C) Soil C model with dynamic soil layers that develop through time as soil organic matter burns and reaccumulates. We then evaluated the mechanisms that control organic matter turnover in boreal regions including carbon input rates, substrate recalcitrance, soil moisture and temperature, and the presence of historical permafrost to assess the importance of these factors in boreal C accumulation. Results indicate that total C accumulation is controlled by the rate of carbon input, decomposition rates, and the presence of historical permafrost. However, unlike more temperate ecosystems, one of the key mechanisms involved in C preservation in boreal soils examined here is the cooling of subsurface soil layers as soil depth increases rather than increasing recalcitrance in subsurface soils. The propagation of the 14C bomb spike into soils also illustrates the importance of historical permafrost and twentieth century warming in contemporary boreal soil respiration fluxes. Both 14C and total C simulation data also strongly suggest that boreal SOM need not be recalcitrant to accumulate; the strong role of soil temperature controls on boreal C accumulation at our modeling test site in Manitoba, Canada, indicates that carbon in the deep organic soil horizons is probably relatively labile and thus subject to perturbations that result from changing climatic conditions in the future. Copyright 2006 by the American Geophysical Union.
Simulated Biomass Retrieval from the Spaceborne Tomographic SAOCOM-CS Mission at L-Band
NASA Astrophysics Data System (ADS)
Blomberg, Erik; Soja, Maciej J.; Ferro-Famil, Laurent; Ulander, Lars M. H.; Tebaldini, Stefano
2016-08-01
This paper presents an evaluation of above-ground biomass (ABG) retrieval in boreal forests using simulated tomographic synthetic-aperture radar (SAR) data corresponding to the future SAOCOM-CS (L-band 1.275 GHz) mission. Using forest and radar data from the BioSAR 2008 campaign at the Krycklan test site in northern Sweden the expected performance of SAOCOM-CS is evaluated and compared with the E-SAR airborne L- band SAR (1.300 GHz). It is found that SAOCOM-CS data produce retrievals on par with those obtained with E-SAR, with retrievals having a relative RMSE of 30% or less. This holds true even if the acquisitions are limited to a single polarization, with HH results shown as an example.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thornton, Joel A
The major goals of this project were to make unique measurements, as part of the DOE sponsored Biogenic Aerosol Effects on Clouds and Climate (BAECC) campaign, of the volatility and molecular composition of organic aerosol, as well as gas-phase concentrations of oxygenated organic compounds that interact and affect organic aerosol. In addition, we aimed to conduct a similar set of measurements as part of a collaborative set of environmental simulation chamber experiments at PNNL, the aim of which was to simulate the atmospheric oxidation of key biogenic volatile organic compounds (BVOC) and study the associated formation and evolution of secondarymore » organic aerosol (SOA). The target BVOC were a set of monoterpenes, isoprene, and related intermediates such as IEPOX. The ultimate goal of such measurements are to develop a more detailed mechanistic understanding of the sensitivity of SOA mass formation and lifetime to precursor and environmental conditions. Molecular composition and direct volatility measurements provide robust tracers of chemical processing and properties. As such, meeting these goals will allow for stronger constraints on the types of processes and their fundamental descriptions needed to simulate aerosol particle number and size, and cloud nucleating ability in regional and global earth system models.« less
The interactive effects of temperature and light on biological nitrogen fixation in boreal forests.
Gundale, Michael J; Nilsson, Madeleine; Bansal, Sheel; Jäderlund, Anders
2012-04-01
Plant productivity is predicted to increase in northern latitudes as a result of climate warming; however, this may depend on whether biological nitrogen (N)-fixation also increases. We evaluated how the variation in temperature and light affects N-fixation by two boreal feather mosses, Pleurozium schreberi and Hylocomium splendens, which are the primary source of N-fixation in most boreal environments. We measured N-fixation rates 2 and 4 wk after exposure to a factorial combination of environments of normal, intermediate and high temperature (16.3, 22.0 and 30.3°C) and light (148.0, 295.7 and 517.3 μmol m(-2) s(-1)). Our results showed that P. schreberi achieved higher N-fixation rates relative to H. splendens in response to warming treatments, but that the highest warming treatment eventually caused N-fixation to decline for both species. Light strongly interacted with warming treatments, having positive effects at low or intermediate temperatures and damaging effects at high temperatures. These results suggest that climate warming may increase N-fixation in boreal forests, but that increased shading by the forest canopy or the occurrence of extreme temperature events could limit increases. They also suggest that P. schreberi may become a larger source of N in boreal forests relative to H. splendens as climate warming progresses. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
Köster, Egle; Köster, Kajar; Berninger, Frank; Aaltonen, Heidi; Zhou, Xuan; Pumpanen, Jukka
2017-12-01
Forest fires are one of the most important natural disturbances in boreal forests, and their occurrence and severity are expected to increase as a result of climate warming. A combination of factors induced by fire leads to a thawing of the near-surface permafrost layer in subarctic boreal forest. Earlier studies reported that an increase in the active layer thickness results in higher carbon dioxide (CO 2 ) and methane (CH 4 ) emissions. We studied changes in CO 2 , CH 4 and nitrous oxide (N 2 O) fluxes in this study, and the significance of several environmental factors that influence the greenhouse gas (GHG) fluxes at three forest sites that last had fires in 2012, 1990 and 1969, and we compared these to a control area that had no fire for at least 100years. The soils in our study acted as sources of CO 2 and N 2 O and sinks for CH 4 . The elapsed time since the last forest fire was the only factor that significantly influenced all studied GHG fluxes. Soil temperature affected the uptake of CH 4 , and the N 2 O fluxes were significantly influenced by nitrogen and carbon content of the soil, and by the active layer depth. Results of our study confirm that the impacts of a forest fire on GHGs last for a rather long period of time in boreal forests, and are influenced by the fire induced changes in the ecosystem. Copyright © 2017 Elsevier B.V. All rights reserved.
Lu, Xiaoman; Zheng, Guang; Miller, Colton; Alvarado, Ernesto
2017-09-08
Monitoring and understanding the spatio-temporal variations of forest aboveground biomass (AGB) is a key basis to quantitatively assess the carbon sequestration capacity of a forest ecosystem. To map and update forest AGB in the Greater Khingan Mountains (GKM) of China, this work proposes a physical-based approach. Based on the baseline forest AGB from Landsat Enhanced Thematic Mapper Plus (ETM+) images in 2008, we dynamically updated the annual forest AGB from 2009 to 2012 by adding the annual AGB increment (ABI) obtained from the simulated daily and annual net primary productivity (NPP) using the Boreal Ecosystem Productivity Simulator (BEPS) model. The 2012 result was validated by both field- and aerial laser scanning (ALS)-based AGBs. The predicted forest AGB for 2012 estimated from the process-based model can explain 31% ( n = 35, p < 0.05, RMSE = 2.20 kg/m²) and 85% ( n = 100, p < 0.01, RMSE = 1.71 kg/m²) of variation in field- and ALS-based forest AGBs, respectively. However, due to the saturation of optical remote sensing-based spectral signals and contribution of understory vegetation, the BEPS-based AGB tended to underestimate/overestimate the AGB for dense/sparse forests. Generally, our results showed that the remotely sensed forest AGB estimates could serve as the initial carbon pool to parameterize the process-based model for NPP simulation, and the combination of the baseline forest AGB and BEPS model could effectively update the spatiotemporal distribution of forest AGB.
Lu, Xiaoman; Zheng, Guang; Miller, Colton
2017-01-01
Monitoring and understanding the spatio-temporal variations of forest aboveground biomass (AGB) is a key basis to quantitatively assess the carbon sequestration capacity of a forest ecosystem. To map and update forest AGB in the Greater Khingan Mountains (GKM) of China, this work proposes a physical-based approach. Based on the baseline forest AGB from Landsat Enhanced Thematic Mapper Plus (ETM+) images in 2008, we dynamically updated the annual forest AGB from 2009 to 2012 by adding the annual AGB increment (ABI) obtained from the simulated daily and annual net primary productivity (NPP) using the Boreal Ecosystem Productivity Simulator (BEPS) model. The 2012 result was validated by both field- and aerial laser scanning (ALS)-based AGBs. The predicted forest AGB for 2012 estimated from the process-based model can explain 31% (n = 35, p < 0.05, RMSE = 2.20 kg/m2) and 85% (n = 100, p < 0.01, RMSE = 1.71 kg/m2) of variation in field- and ALS-based forest AGBs, respectively. However, due to the saturation of optical remote sensing-based spectral signals and contribution of understory vegetation, the BEPS-based AGB tended to underestimate/overestimate the AGB for dense/sparse forests. Generally, our results showed that the remotely sensed forest AGB estimates could serve as the initial carbon pool to parameterize the process-based model for NPP simulation, and the combination of the baseline forest AGB and BEPS model could effectively update the spatiotemporal distribution of forest AGB. PMID:28885556
Brubaker, Linda B; Higuera, Philip E; Rupp, T Scott; Olson, Mark A; Anderson, Patricia M; Hu, Feng Sheng
2009-07-01
Interactions between vegetation and fire have the potential to overshadow direct effects of climate change on fire regimes in boreal forests of North America. We develop methods to compare sediment-charcoal records with fire regimes simulated by an ecologica model, ALFRESCO (Alaskan Frame-based Ecosystem Code) and apply these methods to evaluate potential causes of a mid-Holocene fire-regime shift in boreal forests of the south-central Brooks Range, Alaska, U.S.A. Fire-return intervals (FRIs, number of years between fires) are estimated over the past 7000 calibrated 14C years (7-0 kyr BP [before present]) from short-term variations in charcoal accumulation rates (CHARs) at three lakes, and an index of area burned is inferred from long-term CHARs at these sites. ALFRESCO simulations of FRIs and annual area burned are based on prescribed vegetation and climate for 7-5 kyr BP and 5-0 kyr BP, inferred from pollen and stomata records and qualitative paleoclimate proxies. Two sets of experiments examine potential causes of increased burning between 7-5 and 5-0 kyr BP. (1) Static-vegetation scenarios: white spruce dominates with static mean temperature and total precipitation of the growing season for 7-0 kyr BP or with decreased temperature and/or increased precipitation for 5-0 kyr BP. (2) Changed-vegetation scenarios: black spruce dominates 5-0 kyr BP, with static temperature and precipitation or decreased temperature and/or increased precipitation. Median FRIs decreased between 7-5 and 5-0 kyr BP in empirical data and changed-vegetation scenarios but remained relatively constant in static-vegetation scenarios. Median empirical and simulated FRIs are not statistically different for 7-5 kyr BP and for two changed-vegetation scenarios (temperature decrease, precipitation increase) for 5-0 kyr BP. In these scenarios, cooler temperatures or increased precipitation dampened the effect of increased landscape flammability resulting from the increase in black spruce. CHAR records and all changed-vegetation scenarios indicate long-term increases in area burned between 7-5 and 5-0 kyr BP. The similarity of CHAR and ALFRESCO results demonstrates the compatibility of these independent data sets for investigating ecological mechanisms causing past fire-regime changes. The finding that vegetation flammability was a major driver of Holocene fire regimes is consistent with other investigations that suggest that landscape fuel characteristics will mediate the direct effects of future climate change on boreal fire regimes.
Modeling of larch forest dynamics under a changing climate in eastern Siberia
NASA Astrophysics Data System (ADS)
Nakai, T.; Kumagai, T.; Iijima, Y.; Ohta, T.; Kotani, A.; Maximov, T. C.; Hiyama, T.
2017-12-01
According to the projection by an earth system model under RCP8.5 scenario, boreal forest in eastern Siberia (near Yakutsk) is predicted to experience significant changes in climate, in which the mean annual air temperature is projected to be positive and the annual precipitation will be doubled by the end of 21st century. Since the forest in this region is underlain by continuous permafrost, both increasing temperature and precipitation can affect the dynamics of forest through the soil water processes. To investigate such effects, we adopted a newly developed terrestrial ecosystem dynamics model named S-TEDy (SEIB-DGVM-originated Terrestrial Ecosystem Dynamics model), which mechanistically simulates "the way of life" of each individual tree and resulting tree mortality under the future climate conditions. This model was first developed for the simulation of the dynamics of a tropical rainforest in the Borneo Island, and successfully reproduced higher mortality of large trees due to a prolonged drought induced by ENSO event of 1997-1998. To apply this model to a larch forest in eastern Siberia, we are developing a soil submodel to consider the effect of thawing-freezing processes. We will present a simulation results using the future climate projection.
McGuire, Krista L; Allison, Steven D; Fierer, Noah; Treseder, Kathleen K
2013-01-01
Fungi regulate key nutrient cycling processes in many forest ecosystems, but their diversity and distribution within and across ecosystems are poorly understood. Here, we examine the spatial distribution of fungi across a boreal and tropical ecosystem, focusing on ectomycorrhizal fungi. We analyzed fungal community composition across litter (organic horizons) and underlying soil horizons (0-20 cm) using 454 pyrosequencing and clone library sequencing. In both forests, we found significant clustering of fungal communities by site and soil horizons with analogous patterns detected by both sequencing technologies. Free-living saprotrophic fungi dominated the recently-shed leaf litter and ectomycorrhizal fungi dominated the underlying soil horizons. This vertical pattern of fungal segregation has also been found in temperate and European boreal forests, suggesting that these results apply broadly to ectomycorrhizal-dominated systems, including tropical rain forests. Since ectomycorrhizal and free-living saprotrophic fungi have different influences on soil carbon and nitrogen dynamics, information on the spatial distribution of these functional groups will improve our understanding of forest nutrient cycling.
Past and future changes in Canadian boreal wildfire activity.
Girardin, Martin P; Mudelsee, Manfred
2008-03-01
Climate change in Canadian boreal forests is usually associated with increased drought severity and fire activity. However, future fire activity could well be within the range of values experienced during the preindustrial period. In this study, we contrast 21st century forecasts of fire occurrence (FireOcc, number of large forest fires per year) in the southern part of the Boreal Shield, Canada, with the historical range of the past 240 years statistically reconstructed from tree-ring width data. First, a historical relationship between drought indices and FireOcc is developed over the calibration period 1959-1998. Next, together with seven tree-ring based drought reconstructions covering the last 240 years and simulations from the CGCM3 and ECHAM4 global climate models, the calibration model is used to estimate past (prior to 1959) and future (post 1999) FireOcc. Last, time-dependent changes in mean FireOcc and in the occurrence rate of extreme fire years are evaluated with the aid of advanced methods of statistical time series analysis. Results suggest that the increase in precipitation projected toward the end of the 21st century will be insufficient to compensate for increasing temperatures and will be insufficient to maintain potential evapotranspiration at current levels. Limited moisture availability would cause FireOcc to increase as well. But will future FireOcc exceed its historical range? The results obtained from our approach suggest high probabilities of seeing future FireOcc reach the upper limit of the historical range. Predictions, which are essentially weighed on northwestern Ontario and eastern boreal Manitoba, indicate that, by 2061-2100, typical FireOcc could increase by more than 34% when compared with the past two centuries. Increases in fire activity as projected by this study could negatively affect the implementation in the next century of forest management inspired by historical or natural disturbance dynamics. This approach is indeed feasible only if current and future fire activities are sufficiently low compared with the preindustrial fire activity, so a substitution of fire by forest management could occur without elevating the overall frequency of disturbance. Conceivable management options will likely have to be directed toward minimizing the adverse impacts of the increasing fire activity.
NASA Astrophysics Data System (ADS)
Klimova, N. V.; Chernova, N. A.; Pologova, N. N.
2018-03-01
Paludified forests formed in transitional forest-bog zone aren’t studied enough, inspite of its high expected diversity and large areas in the south of boreal forest zone of West Siberia. In this article wet birch (Betula pubescens) forests of forest-bog ecotones of eutrophic paludification are investigated on Vasyugan plain with nutrient-rich calcareous clays as soil-forming rocks. Species diversity and ecocoenotic structure of these phytocoenoses are discussed. They correlated with wetness and nutrient-availability of habitats evaluated with indicator values of plants. The participation of hydrophylous species is increasing as wetness of habitats increasing in the forest-to-bog direction like in mesotrophic paludification series. However the number of species is higher in the phytocoenoses of eutrophic paludification. The share of species required to nutrient availability is also higher, both in number and in abundance. A lot of these species are usual for eutrophic boreal forested swamps with groundwater input and absent in forests of mesotrophic paludification. Accordingly the nutrient-availability of habitats is also higher. All these features we connect with birch to be a forest forming species instead of dark-coniferous and with the influence of nutrient-rich parent rocks, which is evident in forest-bog ecotones of Vasyugan plain gradually decreasing together with peat horizon thickening.
Soil concentrations and soil-atmosphere exchange of alkylamines in a boreal Scots pine forest
NASA Astrophysics Data System (ADS)
Kieloaho, Antti-Jussi; Pihlatie, Mari; Launiainen, Samuli; Kulmala, Markku; Riekkola, Marja-Liisa; Parshintsev, Jevgeni; Mammarella, Ivan; Vesala, Timo; Heinonsalo, Jussi
2017-03-01
Alkylamines are important precursors in secondary aerosol formation in the boreal forest atmosphere. To better understand the behavior and sources of two alkylamines, dimethylamine (DMA) and diethylamine (DEA), we estimated the magnitudes of soil-atmosphere fluxes of DMA and DEA using a gradient-diffusion approximation based on measured concentrations in soil solution and in the canopy air space. The ambient air concentration of DMA used in this study was a sum of DMA and ethylamine. To compute the amine fluxes, we first estimated the soil air space concentration from the measured soil solution amine concentration using soil physical (temperature, soil water content) and chemical (pH) state variables. Then, we used the resistance analogy to account for gas transport mechanisms in the soil, soil boundary layer, and canopy air space. The resulting flux estimates revealed that the boreal forest soil with a typical long-term mean pH 5.3 is a possible source of DMA (170 ± 51 nmol m-2 day-1) and a sink of DEA (-1.2 ± 1.2 nmol m-2 day-1). We also investigated the potential role of fungi as a reservoir for alkylamines in boreal forest soil. We found high DMA and DEA concentrations both in fungal hyphae collected from field humus samples and in fungal pure cultures. The highest DMA and DEA concentrations were found in fungal strains belonging to decay and ectomycorrhizal fungal groups, indicating that boreal forest soil and, in particular, fungal biomass may be important reservoirs for these alkylamines.
NASA Astrophysics Data System (ADS)
Helene, G.; Lara, M. J.; McGuire, A. D.; Euskirchen, E. S.; Bolton, W. R.; Romanovsky, V. E.
2017-12-01
Our capacity to project future ecosystem trajectories in northern permafrost regions depends on our ability to characterize complex interactions between climatic and ecological processes at play in the soil, the vegetation, and the atmosphere. We present a study that uses remote sensing analyses, field observations, and data synthesis to inform models for the prediction of ecosystem responses to climate change in the boreal zone of Alaska. Recent warming, altered precipitation and fire regimes are driving permafrost degradation, threatening to mobilize vast reservoirs of ancient carbon previously protected from decomposition. Although large scale, progressive, top-down permafrost thaw have been well studied and represented in high-latitude ecosystem models, the consequences of abrupt and local thermokarst disturbances (TK) are less well understood. To fill this gap, we conducted a detection analysis characterizing 60 years of land cover change in the Tanana Flats, a wetland complex subjected to TK disturbance in Interior Alaska, using aerial and satellite images. We observed a nonlinear loss of permafrost plateau forest associated with TK and driven by precipitation and forest fragmentation. The results of this analysis were integrated into the Alaska Thermokarst Model (ATM), a state-and-transition model that simulates land cover change associated with TK disturbance. Thermokarst-related land cover change was simulated from 2000 to 2100 across the Tanana Flats. By 2100, the model predicts a mean decrease of 7.4% (sd 1.8%) in permafrost plateau forests associated with an increase in TK fens and bogs. Transitions from permafrost plateau forests to TK wetlands are accompanied with changes in physical and biogeochemical processes affecting ecosystem carbon balance. We evaluated the consequences of TK disturbances on the regional carbon balance by coupling outputs from the ATM and from a process-based biogeochemical model. We used long-term field observations of vegetation and soil physical and biogeochemical attributes to develop new parameterizations for TK wetlands and permafrost plateau forest land cover types. Preliminary simulations from 2000 to 2100 estimate that the conversion of permafrost plateau forest to young TK wetlands would result in a 7.5% (sd 3.5%) decrease in Net Ecosystem Exchange.
Will growing forests make the global warming problem better or worse?
NASA Astrophysics Data System (ADS)
Caldeira, K.; Gibbard, S.; Bala, G.; Wickett, M. E.; Phillips, T. J.
2005-12-01
Carbon storage in forests has been promoted as a means to slow global warming. However, forests affect climate not only through the carbon cycle; forests also affect both the absorption of solar radiation and evapotranspiration. Previously, it has been shown that boreal forests have the potential to warm the planet, offsetting the benefits of carbon storage in boreal forests (Betts, Nature 408, 187-190, 2000). Here, we show that direct climate effects of forest growth in mid-latitudes also have the potential to offset benefits of carbon storage. This suggests that mid-latitude afforestation projects must be evaluated very carefully, taking direct climate effects into account. In contrast, low-latitude tropical forests appear to cool the planet both by storing carbon and by increasing evapotranspiration; thus, slowing or reversing tropical deforestation is a win/win strategy from both carbon storage and direct climate perspectives. Evaluation of costs and benefits of afforestation depends on the time scales under consideration. On the shortest time scale, each unit of CO2 taken up by a plant is removed from the atmosphere. However, over centuries most of this CO2 taken up from the atmosphere by plants is replaced by outgassing from the ocean. On the longest time scales, atmospheric carbon dioxide content is controlled by the carbonate-silicate cycle, so the amount of carbon stored in a forest is not relevant to long-term climate change. While atmospheric CO2 impacts of afforestation diminish over time, the direct effects on climate (and silicate weathering) persist, so these effects become more important as the time scale of concern lengthens. In some cases, afforestation is predicted to lead to cooling on the time scale of decades followed by warming on the time scale of centuries. Our study involves simulations using the NCAR CAM3 atmospheric general circulation model with a slab ocean to perform idealized (and extreme) land-cover change simulations. We explore the time-dependent carbon-cycle/climate implications of these results using a schematic model of the long-term carbon cycle and climate.
Elizabeth Bent; Preston Kiekel; Rebecca Brenton; D.Lee Taylor
2011-01-01
The role of common mycorrhizal networks (CMNs) in postfire boreal forest successional trajectories is unknown. We investigated this issue by sampling a 50-m by 40-m area of naturally regenerating black spruce (Picea mariana), trembling aspen, (Populus tremuloides), and paper birch (Betula papyrifera)...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barr, Alan
This is the AmeriFlux version of the carbon flux data for the site CA-SJ3 Saskatchewan - Western Boreal, Jack Pine forest harvested in 1975 (BOREAS Young Jack Pine). Site Description - 53.87581° N, 104.64529° W, BOREAS 1994, 1996, BERMS climate and flux measurements to begin Spring 2003
Emma F. Betts; Jeremy B. Jones
2009-01-01
With climatic warming, wildfire occurrence is increasing in the boreal forest of interior Alaska. Loss of catchment vegetation during fire can impact streams directly through altered solute and debris inputs and changed light and temperature regimes. Over longer time scales, fire can accelerate permafrost degradation, altering catchment hydrology and stream nutrient...
The role of mosses in ecosystem succession and function in Alaska's boreal forest
Merritt R. Turetsky; Michelle C. Mack; Teresa N. Hollingsworth; Jennifer W. Harden
2010-01-01
Shifts in moss communities may affect the resilience of boreal ecosystems to a changing climate because of the role of moss species in regulating soil climate and biogeochemical cycling. Here, we use long-term data analysis and literature synthesis to examine the role of moss in ecosystem succession, productivity, and decomposition. In Alaskan forests, moss abundance...
A. David McGuire; F.S. Chapin; R.W. Ruess
2010-01-01
Long-term research by the Bonanza Creek (BNZ) Long Term Ecological Research (LTER) program has documented natural patterns of interannual and successional variability of the boreal forest in interior Alaska against which we can detect changes in system behavior. Between 2004 and 2010 the BNZ LTER program focused on understanding the dynamics of change through studying...
Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands
Merritt R. Turetsky; Evan S. Kane; Jennifer W. Harden; Roger D. Ottmar; Kristen L. Maines; Elizabeth Hoy; Eric S. Kasischke
2010-01-01
Climate change has increased the area affected by forest fires each year in boreal North America. Increases in burned area and fire frequency are expected to stimulate boreal carbon losses. However, the impact of wildfires on carbon emissions is also affected by the severity of burning. How climate change influences the severity of biomass burning has proved difficult...
Grizelle Gonzalez; William Gould; Andrew T. Hudak; Teresa Nettleton Hollingsworth
2008-01-01
In this study, we set up a wood decomposition experiment to i) quantify the percent of mass remaining, decay constant and performance strength of aspen stakes (Populus tremuloides) in dry and moist boreal (Alaska and Minnesota, USA), temperate (Washington and Idaho, USA), and tropical (Puerto Rico) forest types, and ii) determine the effects of...
Amy C. Angell; Knut Kielland
2009-01-01
White spruce (Picea glauca (Moench) Voss) is a dominant species in late-successional ecosystems along the Tanana River, interior Alaska, and the most important commercial timber species in these boreal floodplain forests. Whereas white spruce commonly seed in on young terraces in early primary succession, the species does not become a conspicuous...
A. Shenoy; K. Kielland; J.F. Johnstone
2013-01-01
Fire activity in the North American boreal region is projected to increase under a warming climate and trigger changes in vegetation composition. In black spruce forests of interior Alaska, fire severity impacts residual organic layer depth which is strongly linked to the relative dominance of deciduous versus coniferous trees in early succession. These alternate...
The effect of climate anomalies and human ignition factor on wildfires in Russian boreal forests.
Achard, Frédéric; Eva, Hugh D; Mollicone, Danilo; Beuchle, René
2008-07-12
Over the last few years anomalies in temperature and precipitation in northern Russia have been regarded as manifestations of climate change. During the same period exceptional forest fire seasons have been reported, prompting many authors to suggest that these in turn are due to climate change. In this paper, we examine the number and areal extent of forest fires across boreal Russia for the period 2002-2005 within two forest categories: 'intact forests' and 'non-intact forests'. Results show a far lower density of fire events in intact forests (5-14 times less) and that those events tend to be in the first 10 km buffer zone inside intact forest areas. Results also show that, during exceptional climatic years (2002 and 2003), fire event density is twice that found during normal years (2004 and 2005) and average areal extent of fire events (burned area) in intact forests is 2.5 times larger than normal. These results suggest that a majority of the fire events in boreal Russia are of human origin and a maximum of one-third of their impact (areal extension) can be attributed to climate anomalies alone, the rest being due to the combined effect of human disturbances and climate anomalies.
Walther, Sophia; Voigt, Maximilian; Thum, Tea; Gonsamo, Alemu; Zhang, Yongguang; Köhler, Philipp; Jung, Martin; Varlagin, Andrej; Guanter, Luis
2016-09-01
Mid-to-high latitude forests play an important role in the terrestrial carbon cycle, but the representation of photosynthesis in boreal forests by current modelling and observational methods is still challenging. In particular, the applicability of existing satellite-based proxies of greenness to indicate photosynthetic activity is hindered by small annual changes in green biomass of the often evergreen tree population and by the confounding effects of background materials such as snow. As an alternative, satellite measurements of sun-induced chlorophyll fluorescence (SIF) can be used as a direct proxy of photosynthetic activity. In this study, the start and end of the photosynthetically active season of the main boreal forests are analysed using spaceborne SIF measurements retrieved from the GOME-2 instrument and compared to that of green biomass, proxied by vegetation indices including the Enhanced Vegetation Index (EVI) derived from MODIS data. We find that photosynthesis and greenness show a similar seasonality in deciduous forests. In high-latitude evergreen needleleaf forests, however, the length of the photosynthetically active period indicated by SIF is up to 6 weeks longer than the green biomass changing period proxied by EVI, with SIF showing a start-of-season of approximately 1 month earlier than EVI. On average, the photosynthetic spring recovery as signalled by SIF occurs as soon as air temperatures exceed the freezing point (2-3 °C) and when the snow on the ground has not yet completely melted. These findings are supported by model data of gross primary production and a number of other studies which evaluated in situ observations of CO2 fluxes, meteorology and the physiological state of the needles. Our results demonstrate the sensitivity of space-based SIF measurements to light-use efficiency of boreal forests and their potential for an unbiased detection of photosynthetic activity even under the challenging conditions interposed by evergreen boreal ecosystems. © 2015 John Wiley & Sons Ltd.
Thurner, Martin; Beer, Christian; Ciais, Philippe; Friend, Andrew D; Ito, Akihiko; Kleidon, Axel; Lomas, Mark R; Quegan, Shaun; Rademacher, Tim T; Schaphoff, Sibyll; Tum, Markus; Wiltshire, Andy; Carvalhais, Nuno
2017-08-01
Turnover concepts in state-of-the-art global vegetation models (GVMs) account for various processes, but are often highly simplified and may not include an adequate representation of the dominant processes that shape vegetation carbon turnover rates in real forest ecosystems at a large spatial scale. Here, we evaluate vegetation carbon turnover processes in GVMs participating in the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP, including HYBRID4, JeDi, JULES, LPJml, ORCHIDEE, SDGVM, and VISIT) using estimates of vegetation carbon turnover rate (k) derived from a combination of remote sensing based products of biomass and net primary production (NPP). We find that current model limitations lead to considerable biases in the simulated biomass and in k (severe underestimations by all models except JeDi and VISIT compared to observation-based average k), likely contributing to underestimation of positive feedbacks of the northern forest carbon balance to climate change caused by changes in forest mortality. A need for improved turnover concepts related to frost damage, drought, and insect outbreaks to better reproduce observation-based spatial patterns in k is identified. As direct frost damage effects on mortality are usually not accounted for in these GVMs, simulated relationships between k and winter length in boreal forests are not consistent between different regions and strongly biased compared to the observation-based relationships. Some models show a response of k to drought in temperate forests as a result of impacts of water availability on NPP, growth efficiency or carbon balance dependent mortality as well as soil or litter moisture effects on leaf turnover or fire. However, further direct drought effects such as carbon starvation (only in HYBRID4) or hydraulic failure are usually not taken into account by the investigated GVMs. While they are considered dominant large-scale mortality agents, mortality mechanisms related to insects and pathogens are not explicitly treated in these models. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Remote Sensing of Forest Cover in Boreal Zones of the Earth
NASA Astrophysics Data System (ADS)
Sedykh, V. N.
2011-12-01
Ecological tension resulting from human activities generates a need for joint efforts of countries in the boreal zone aimed at sustainable forest development, including: conservation of forests binding carbon and ensuring stability of the atmosphere gas composition; preservation of purity and water content of forest areas as conditions ensuring sustainability of the historically formed structure of forest landscapes; and preservation of all flora and fauna species composition diversity as a condition for sustainable existence and functioning of forest ecosystems. We have to address these problems urgently due to climate warming which can interact with the forest cover. In particular, in the forest zone of Siberia, the climate aridization will inevitably result in periodic drying of shallow bogs and upland forests with thick forest litter. This will bring fires of unprecedented intensity which will lead to catastrophic atmospheric pollution. In this connection, the above problems can be solved only by the united efforts of boreal-zone countries, through establishing a uniform system for remote sensing of forests aimed at obtaining and periodic update of comprehensive information for rational decision-making in prevention of adverse human effect on the forest. A need to join efforts in this field of natural resource management is determined by disparate data which were created expressly for economic accounting units used mainly for the solution of economic timber resource problems. However, ecological tasks outlined above can be solved appropriately only by using uniform technologies that are registered within natural territorial complexes (landscapes) established throughout the entire boreal zone. Knowledge of forest state within natural territorial entities having specific physiographic conditions, with account for current and future anthropogenic load, allow one to define evidence-based forest growth potential at these landscapes to ensure development of historically formed ecological properties of the forest. Constantly updated information will permit the regulation of human pressure on forests to ensure that there is no reduction in their role in the biosphere processes of carbon accumulation and release. Satellite monitoring within identified landscape requires initial quantitative information about forest, about other biotic components of landscapes, and about their abiotic environment determined through both ground-based measurements and remote sensing. Thus, a kind of passport should be kept for each landscape as a starting point for subsequent updating of remote sensing monitoring of forests and their habitats and the assessment of their changes. Implementation of such monitoring across the entire boreal zone of the Earth is possible on the basis of geographical and genetic typology of forest and phyto-geomorphological method of aerospace image interpretation. Both approaches are based on the use of relationships between topography and vegetation, and were successfully applied by the author to aerospace monitoring of the forest cover of West Siberian Plain.
Stenbacka, Fredrik; Hjältén, Joakim; Hilszczański, Jacek; Dynesius, Mats
2010-12-01
Current clear-cutting forestry practices affect many boreal organisms negatively, and those dependent on dead wood (saproxylics) are considered as particularly vulnerable. The succession of species assemblages in managed forest habitats regenerating after clear-cutting is, however, poorly known. We compared beetle assemblages in three successional stages of managed boreal spruce forests established after clear-cutting and two types of older spruce forests that had not been clear-cut. We also assessed whether saproxylic and non-saproxylic beetle assemblages show similar biodiversity patterns among these forest types. Beetles were collected in window traps in nine study areas, each encompassing a protected old-growth forest (mean forest age approximately 160 years, mean dead wood volume 34 m3/ha), an unprotected mature forest (approximately 120 years old, 15 m3/ha), a middle-aged commercially thinned forest (53 years old, 3 m3/ha), a young unthinned forest (30 years old, 4 m3/ha), and a clearcut (5-7 years after harvest, 11 m3/ha). Saproxylic beetles, in particular red-listed species, were more abundant and more species rich in older forest types, whereas no significant differences among forest types in these variables were detected for non-saproxylics. The saproxylic assemblages were clearly differentiated; with increasing forest age, assemblage compositions gradually became more similar to those of protected old-growth forests, but the assemblage composition in thinned forests could not be statistically distinguished from those of the two oldest forest types. Many saproxylic beetles adapted to late-successional stages were present in thinned middle-aged forests but absent from younger unthinned forests. In contrast, non-saproxylics were generally more evenly distributed among the five forest types, and the assemblages were mainly differentiated between clearcuts and forested habitats. The saproxylic beetle assemblages of unprotected mature forests were very similar to those of protected old-growth forests. This indicates a relatively high conservation value of mature boreal forests currently subjected to clear-cutting and raises the question of whether future mature forests will have the same qualities. Our results suggest a high beetle conservation potential of developing managed forests, provided that sufficient amounts and qualities of dead wood are made available (e.g., during thinning operations). Confirming studies of beetle reproduction in dead wood introduced during thinning are, however, lacking.
NASA Astrophysics Data System (ADS)
Pappas, C.; Matheny, A. M.; Maillet, J.; Baltzer, J. L.; Stephens, J.; Barr, A.; Black, T. A.; Sonnentag, O.
2016-12-01
Boreal forests cover about one third of the world's forested area with a large part of the boreal zone located in Canada. These high-latitude ecosystems respond rapidly to environmental changes. Plant water stress and the resulting drought-induced mortality has been recently hypothesised as a major driver of forest changes in western Canada. Although boreal forests often exhibit low floristic complexity, local scale abiotic heterogeneities may lead to highly variable plant functional traits and thus to diverging plant responses to environmental changes. However, detailed measurements of plant hydraulic strategies and their inter- and intra-specific variability are still lacking for these ecosystems. Here, we quantify plant water use and hydraulic strategies of black spruce (Picea mariana) and larch (Larix laricina), that are widespread in the boreal zone, at a long-term monitoring site located in central Saskatchewan (53.99° N, 105.12° W; elevation 628.94 m a.s.l.). The site is characterized by a mature black spruce overstorey that dominates the landscape with few larch individuals. The ground cover consists mainly of mosses with some peat moss and lichens over a rich soil organic layer. Tree-level sap flux density, measured with Granier-style thermal dissipation probes (N=39), and concurrently recorded radial stem dynamics, measured with high frequency dendrometers (N=13), are used to quantify plant hydraulic functioning during the 2016 growing season. Hydrometeorological measurements, including soil moisture and micrometeorological data, are used to describe environmental constraints in plant water use. Tree-level dynamics are then integrated to the landscape and compared with ecosystem-level evapotranspiration measurements from an adjacent eddy-covariance flux tower. This experimental design allows us to quantify the main environmental drivers that shape plant hydraulic strategies in this southern boreal zone and to provide new insights into the inter- and intra-specific variability in plant hydraulic functioning in high-latitude ecosystems.
Light-induced diurnal pattern of methane exchange in a boreal forest
NASA Astrophysics Data System (ADS)
Sundqvist, Elin; Crill, Patrick; Mölder, Meelis; Vestin, Patrik; Lindroth, Anders
2013-04-01
Boreal forests represents one third of the Earth's forested land surface area and is a net sink of methane and an important component of the atmospheric methane budget. Methane is oxidized in well-aerated forest soils whereas ponds and bog soils are sources of methane. Besides the microbial processes in the soil also forest vegetation might contribute to methane exchange. Due to a recent finding of methane consumption by boreal plants that correlated with photosynthetic active radiation (PAR), we investigate the impact of PAR on soil methane exchange at vegetated plots on the forest floor. The study site, Norunda in central Sweden, is a 120 years old boreal forest stand, dominated by Scots pine and Norway spruce. We used continuous chamber measurements in combination with a high precision laser gas analyzer (Los Gatos Research), to measure the methane exchange at four different plots in July-November 2009, and April-June 2010. The ground vegetation consisted almost entirely of mosses and blueberry-shrubs. Two of the plots acted as stable sinks of methane whereas the other two plots shifted from sinks to sources during very wet periods. The preliminary results show a clear diurnal pattern of the methane exchange during the growing season, which cannot be explained by temperature. The highest consumption occurs at high PAR levels. The amplitude of the diurnal methane exchange during the growing season is in the order of 10 μmol m-2 h-1. This indicates that besides methane oxidation by methanotrophs in the soil there is an additional removal of methane at soil level by a process related to ground vegetation.
Chen, Han Y H; Luo, Yong
2015-10-01
Biomass change of the world's forests is critical to the global carbon cycle. Despite storing nearly half of global forest carbon, the boreal biome of diverse forest types and ages is a poorly understood component of the carbon cycle. Using data from 871 permanent plots in the western boreal forest of Canada, we examined net annual aboveground biomass change (ΔAGB) of four major forest types between 1958 and 2011. We found that ΔAGB was higher for deciduous broadleaf (DEC) (1.44 Mg ha(-1) year(-1) , 95% Bayesian confidence interval (CI), 1.22-1.68) and early-successional coniferous forests (ESC) (1.42, CI, 1.30-1.56) than mixed forests (MIX) (0.80, CI, 0.50-1.11) and late-successional coniferous (LSC) forests (0.62, CI, 0.39-0.88). ΔAGB declined with forest age as well as calendar year. After accounting for the effects of forest age, ΔAGB declined by 0.035, 0.021, 0.032 and 0.069 Mg ha(-1) year(-1) per calendar year in DEC, ESC, MIX and LSC forests, respectively. The ΔAGB declines resulted from increased tree mortality and reduced growth in all forest types except DEC, in which a large biomass loss from mortality was accompanied with a small increase in growth. With every degree of annual temperature increase, ΔAGB decreased by 1.00, 0.20, 0.55 and 1.07 Mg ha(-1) year(-1) in DEC, ESC, MIX and LSC forests, respectively. With every cm decrease of annual climatic moisture availability, ΔAGB decreased 0.030, 0.045 and 0.17 Mg ha(-1) year(-1) in ESC, MIX and LSC forests, but changed little in DEC forests. Our results suggest that persistent warming and decreasing water availability have profound negative effects on forest biomass in the boreal forests of western Canada. Furthermore, our results indicate that forest responses to climate change are strongly dependent on forest composition with late-successional coniferous forests being most vulnerable to climate changes in terms of aboveground biomass. © 2015 John Wiley & Sons Ltd.
Satellite Analysis of the Severe 1987 Forest Fires in Northern China and Southeastern Siberia
NASA Technical Reports Server (NTRS)
Cahoon, Donald R., Jr.; Stocks, Brian J.; Levine, Joel S.; Cofer, Wesley R., III; Pierson, Joseph M.
1994-01-01
Meteorological conditions, extremely conducive to fire development and spread in the spring of 1987, resulted in forest fires burning over extremely large areas in the boreal forest zone in northeastern China and the southeastern region of Siberia. The great China fire, one of the largest and most destructive forest fires in recent history, occurred during this period in the Heilongjiang Province of China. Satellite imagery is used to examine the development and areal distribution of 1987 forest fires in this region. Overall trace gas emissions to the atmosphere from these fires are determined using a satellite-derived estimate of area burned in combination with fuel consumption figures and carbon emission ratios for boreal forest fires.
Satellite analysis of the severe 1987 forest fires in northern China and southeastern Siberia
NASA Technical Reports Server (NTRS)
Cahoon, Donald R, Jr.; Stocks, Brian J.; Levine, Joel S.; Cofer, Wesley R., III; Pierson, Joseph M.
1994-01-01
Meteorological conditions, extremely conducive to fire development and spread in the spring of 1987, resulted in forest fires burning over extremely large areas in the boreal forest zone in northeastern China and the southeastern region of Siberia. The great China fire, one of the largest and most destructive forest fires in recent history, occurred during this period in the Heilongjiang Province of China. Satellite imagery is used to examine the development and areal distribution of 1987 forest fires in this region. Overall trace gas emissions to the atmosphere from these fires are determined using a satellite-derived estimate of area burned in combination with fuel consumption figures and carbon emission ratios for boreal forest fires.
Driving Factors of Understory Evapotranspiration within a Siberian Larch Forest
NASA Astrophysics Data System (ADS)
Tobio, A.; Loranty, M. M.; Kropp, H.; Pena, H., III; Alexander, H. D.; Natali, S.; Kholodov, A. L.; Spawn, S.; Farmer, S.
2017-12-01
Amplified rates of climate change are causing alterations in vegetation productivity, hydrologic cycling, and wildfire severity and intensity in arctic ecosystems. Boreal larch forests in northeastern Siberia are a critical but understudied ecosystem that are affected by these modifications. These forests cover 2.5 million km2 with densities ranging from spare to thick. The current average canopy cover is at around 17% and is expected to increase with the observed increases in vegetation productivity and wildfire. These projected changes in forest density can alter the proportional contributions of over- and understory vegetation to whole ecosystem evapotranspiration. Low density boreal forests have much higher rates of understory evapotranspiration and can contribute as much as 80% to total ecosystem evapotranspiration, while the understory in high density forests is responsible for only around 15% of total ecosystem evapotranspiration. The objective of this research is to understand why there are changes in understory evapotranspiration with varying overstory density by looking at light levels, biomass, vegetation, and air and soil differences. To better learn about these differences in understory evapotranspiration in boreal larch forests the driving factors of evapotranspiration were measured within a burn scar with varying densities of high, medium, and low. Water fluxes were conducted using the static chamber technique under different environmental conditions. Furthermore, controlling factors of evapotranspiration such as photosynethically active radiation, vapor pressure deficit, soil moisture, moss cover, biomass, and leaf area index were measured or derived. In general, we found that low density areas have highest rates of evapotranspiration due to larger amount of biomass, and increased access to light, despite low levels of soil moisture. These results can help us understand how and why total ecosystem water exchange will change in boreal larch forests as they become denser.
Regional paleofire regimes affected by non-uniform climate, vegetation and human drivers
NASA Astrophysics Data System (ADS)
Blarquez, Olivier; Ali, Adam A.; Girardin, Martin P.; Grondin, Pierre; Fréchette, Bianca; Bergeron, Yves; Hély, Christelle
2015-09-01
Climate, vegetation and humans act on biomass burning at different spatial and temporal scales. In this study, we used a dense network of sedimentary charcoal records from eastern Canada to reconstruct regional biomass burning history over the last 7000 years at the scale of four potential vegetation types: open coniferous forest/tundra, boreal coniferous forest, boreal mixedwood forest and temperate forest. The biomass burning trajectories were compared with regional climate trends reconstructed from general circulation models, tree biomass reconstructed from pollen series, and human population densities. We found that non-uniform climate, vegetation and human drivers acted on regional biomass burning history. In the open coniferous forest/tundra and dense coniferous forest, the regional biomass burning was primarily shaped by gradual establishment of less climate-conducive burning conditions over 5000 years. In the mixed boreal forest an increasing relative proportion of flammable conifers in landscapes since 2000 BP contributed to maintaining biomass burning constant despite climatic conditions less favourable to fires. In the temperate forest, biomass burning was uncoupled with climatic conditions and the main driver was seemingly vegetation until European colonization, i.e. 300 BP. Tree biomass and thus fuel accumulation modulated fire activity, an indication that biomass burning is fuel-dependent and notably upon long-term co-dominance shifts between conifers and broadleaf trees.
Scale-dependent controls on the area burned in the boreal forest of Canada, 1980-2005
Marc-Andre Parisien; Sean A. Parks; Meg A. Krawchuck; Mike D. Flannigan; Lynn M. Bowman; Max A. Moritz
2011-01-01
In the boreal forest of North America, as in any fire-prone biome, three environmental factors must coincide for a wildfire to occur: an ignition source, flammable vegetation, and weather that is conducive to fire. Despite recent advances, the relative importance of these factors remains the subject of some debate. The aim of this study was to develop models that...
Mercedes Berterretche; Andrew T. Hudak; Warren B. Cohen; Thomas K. Maiersperger; Stith T. Gower; Jennifer Dungan
2005-01-01
This study compared aspatial and spatial methods of using remote sensing and field data to predict maximum growing season leaf area index (LAI) maps in a boreal forest in Manitoba, Canada. The methods tested were orthogonal regression analysis (reduced major axis, RMA) and two geostatistical techniques: kriging with an external drift (KED) and sequential Gaussian...
A method for locating Barred Owl (Strix varia) nests in the southern boreal forest of Saskatchewan
Shanna D. Frith; Kurt M. Mazur; Paul C. James
1997-01-01
Barred Owl (Strix varia) nests are often very difficult to locate. We developed a method for locating Barred Owl nests within the boreal forest of central Saskatchewan, Canada. During the nesting period, we located pairs of Barred Owls through call-playback surveys. We returned to the survey location at sunset and listened for vocalizations from the...
Browning boreal forests of western North America
David Verbyla
2011-01-01
The GIMMS NDVI dataset has been widely used to document a âbrowning trendâ in North American boreal forests (Goetz et al. 2005, Bunn et al. 2007, Beck and Goetz 2011). However, there has been speculation (Alcaraz-Segura et al. 2010) that this trend may be an artifact due to processing algorithms rather than an actual decline in vegetation activity. This conclusion was...
T.L. Wurtz; J.C. Zasada
2001-01-01
We present 27-year results from a comparison of clear-cutting and shelterwood harvesting in the boreal forest of Alaska. Three patch clearcut and three shelterwood units were harvested in 1972; about 100 dispersed white spruce (Picea glauca (Moench) Voss) leave trees per hectare were retained in the shelterwoods. Units were mechanically scarified...
Kamal J.K. Gandhi; Daniel W. Gilmore; Steven A. Katovich; William J. Mattson; John C. Zasada; Steven J. Seybold
2008-01-01
We studied the short-term effects of a catastrophic windstorm and subsequent salvage-logging and prescribed-burning fuel-reduction treatments on ground beetle (Coleoptera: Carabidae) assemblages in a sub-boreal forest in northeastern Minnesota, USA. During 2000?2003, 29,873 ground beetles represented by 71 species were caught in unbaited and baited pitfall traps in...
A Multitemporal, Multisensor Approach to Mapping the Canadian Boreal Forest
NASA Astrophysics Data System (ADS)
Reith, Ernest
The main anthropogenic source of CO2 emissions is the combustion of fossil fuels, while the clearing and burning of forests contribute significant amounts as well. Vegetation represents a major reservoir for terrestrial carbon stocks, and improving our ability to inventory vegetation will enhance our understanding of the impacts of land cover and climate change on carbon stocks and fluxes. These relationships may be an indication of a series of troubling biosphere-atmospheric feedback mechanisms that need to be better understood and modeled. Valuable land cover information can be provided to the global climate change modeling community using advanced remote sensing capabilities such as Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Airborne Synthetic Aperture Radar (AIRSAR). Individually and synergistically, data were successfully used to characterize the complex nature of the Canadian boreal forest land cover types. The multiple endmember spectral mixture analysis process was applied against seasonal AVIRIS data to produce species-level vegetated land cover maps of two study sites in the Canadian boreal forest: Old Black Spruce (OBS) and Old Jack Pine (OJP). The highest overall accuracy was assessed to be at least 66% accurate to the available reference map, providing evidence that high-quality, species-level land cover mapping of the Canadian boreal forest is achievable at accuracy levels greater than other previous research efforts in the region. Backscatter information from multichannel, polarimetric SAR utilizing a binary decision tree-based classification technique methodology was moderately successfully applied to AIRSAR to produce maps of the boreal land cover types at both sites, with overall accuracies at least 59%. A process, centered around noise whitening and principal component analysis features of the minimum noise fraction transform, was implemented to leverage synergies contained within spatially coregistered multitemporal and multisensor AVIRIS and AIRSAR data sets to successfully produce high-accuracy boreal forest land cover maps. Overall land cover map accuracies of 78% and 72% were assessed for OJP and OBS sites, respectively, for either seasonal or multitemporal data sets. High individual land cover accuracies appeared to be independent of site, season, or multisensor combination in the minimum-noise fraction-based approach.
The full annual carbon balance of Eurasian boreal forests is highly sensitive to precipitation
NASA Astrophysics Data System (ADS)
Öquist, Mats; Bishop, Kevin; Grelle, Achim; Klemedtsson, Leif; Köhler, Stephan; Laudon, Hjalmar; Lindroth, Anders; Ottosson Löfvenius, Mikaell; Wallin, Marcus; Nilsson, Mats
2013-04-01
Boreal forest biomes are identified as one of the major sinks for anthropogenic atmospheric CO2 and are also predicted to be particularly sensitive to climate change. Recent advances in understanding the carbon balance of these biomes stems mainly from eddy-covariance measurements of the net ecosystem exchange (NEE). However, NEE includes only the vertical CO2 exchange driven by photosynthesis and ecosystem respiration. A full net ecosystem carbon balance (NECB) also requires inclusion of lateral carbon export (LCE) through catchment discharge. Currently LCE is often regarded as negligible for the NECB of boreal forest ecosystems of the northern hemisphere, commonly corresponding to ~5% of annual NEE. Here we use long term (13 year) data showing that annual LCE and NEE are strongly correlated (p=0.003); years with low C sequestration by the forest coincide with years when lateral C loss is high. The fraction of NEE lost annually through LCE varied markedly from <3% to ca. 25%. Deviation in annual precipitation from the 28-year average (1980-2008) explained 90% of the variation observed in the fraction of C lost annually by LCE. The relationship suggests that an increase in annual precipitation of 10-20% in the boreal region would approximately double the fraction of NEE lost annually from the terrestrial system to surface waters. The correlation between NEE and LCE arises because the annual precipitation is correlated with both NEE (p<0.004) and LCE (p<0.001). Both these strong correlations contribute to an overall correlation between annual NECB and precipitation. The likely mechanism behind decreased NEE in response to increasing precipitation is a reduction in incoming solar radiation caused by clouds. The dual effect of precipitation implies that both the observed and the predicted increases in annual precipitation at high latitudes may reduce NECB in boreal forest ecosystems. Based on regional scaling of hydrological discharge and observed spatio-temporal variations in forest NEE we conclude that our finding is relevant for large areas of the boreal Eurasian landscape.
Realizing Mitigation Efficiency of European Commercial Forests by Climate Smart Forestry.
Yousefpour, Rasoul; Augustynczik, Andrey Lessa Derci; Reyer, Christopher P O; Lasch-Born, Petra; Suckow, Felicitas; Hanewinkel, Marc
2018-01-10
European temperate and boreal forests sequester up to 12% of Europe's annual carbon emissions. Forest carbon density can be manipulated through management to maximize its climate mitigation potential, and fast-growing tree species may contribute the most to Climate Smart Forestry (CSF) compared to slow-growing hardwoods. This type of CSF takes into account not only forest resource potentials in sequestering carbon, but also the economic impact of regional forest products and discounts both variables over time. We used the process-based forest model 4 C to simulate European commercial forests' growth conditions and coupled it with an optimization algorithm to simulate the implementation of CSF for 18 European countries encompassing 68.3 million ha of forest (42.4% of total EU-28 forest area). We found a European CSF policy that could sequester 7.3-11.1 billion tons of carbon, projected to be worth 103 to 141 billion euros in the 21st century. An efficient CSF policy would allocate carbon sequestration to European countries with a lower wood price, lower labor costs, high harvest costs, or a mixture thereof to increase its economic efficiency. This policy prioritized the allocation of mitigation efforts to northern, eastern and central European countries and favored fast growing conifers Picea abies and Pinus sylvestris to broadleaves Fagus sylvatica and Quercus species.
Climate and wildfires in the North American boreal forest.
Macias Fauria, Marc; Johnson, E A
2008-07-12
The area burned in the North American boreal forest is controlled by the frequency of mid-tropospheric blocking highs that cause rapid fuel drying. Climate controls the area burned through changing the dynamics of large-scale teleconnection patterns (Pacific Decadal Oscillation/El Niño Southern Oscillation and Arctic Oscillation, PDO/ENSO and AO) that control the frequency of blocking highs over the continent at different time scales. Changes in these teleconnections may be caused by the current global warming. Thus, an increase in temperature alone need not be associated with an increase in area burned in the North American boreal forest. Since the end of the Little Ice Age, the climate has been unusually moist and variable: large fire years have occurred in unusual years, fire frequency has decreased and fire-climate relationships have occurred at interannual to decadal time scales. Prolonged and severe droughts were common in the past and were partly associated with changes in the PDO/ENSO system. Under these conditions, large fire years become common, fire frequency increases and fire-climate relationships occur at decadal to centennial time scales. A suggested return to the drier climate regimes of the past would imply major changes in the temporal dynamics of fire-climate relationships and in area burned, a reduction in the mean age of the forest, and changes in species composition of the North American boreal forest.
Gaglioti, Benjamin V.; Mann, Daniel H.; Jones, Benjamin M.; Wooller, Matthew J.; Finney, Bruce P.
2016-01-01
Stand-replacing wildfires are a keystone disturbance in the boreal forest, and they are becoming more common as the climate warms. Paleo-fire archives from the wildland–urban interface can quantify the prehistoric fire regime and assess how both human land-use and climate change impact ecosystem dynamics. Here, we use a combination of a sedimentary charcoal record preserved in varved lake sediments (annually layered) and fire scars in living trees to document changes in local fire return intervals (FRIs) and regional fire activity over the last 500 years. Ace Lake is within the boreal forest, located near the town of Fairbanks in interior Alaska, which was settled by gold miners in AD 1902. In the 400 years before settlement, fires occurred near the lake on average every 58 years. After settlement, fires became much more frequent (average every 18 years), and background charcoal flux rates rose to four times their preindustrial levels, indicating a region-wide increase in burning. Despite this surge in burning, the preindustrial boreal forest ecosystem and permafrost in the watershed have remained intact. Although fire suppression has reduced charcoal influx since the 1950s, an aging fuel load experiencing increasingly warm summers may pose management problems for this and other boreal sites that have similar land-use and fire histories. The large human-caused fire events that we identify can be used to test how increasingly common megafires may alter ecosystem dynamics in the future.
Forests and climate change: forcings, feedbacks, and the climate benefits of forests.
Bonan, Gordon B
2008-06-13
The world's forests influence climate through physical, chemical, and biological processes that affect planetary energetics, the hydrologic cycle, and atmospheric composition. These complex and nonlinear forest-atmosphere interactions can dampen or amplify anthropogenic climate change. Tropical, temperate, and boreal reforestation and afforestation attenuate global warming through carbon sequestration. Biogeophysical feedbacks can enhance or diminish this negative climate forcing. Tropical forests mitigate warming through evaporative cooling, but the low albedo of boreal forests is a positive climate forcing. The evaporative effect of temperate forests is unclear. The net climate forcing from these and other processes is not known. Forests are under tremendous pressure from global change. Interdisciplinary science that integrates knowledge of the many interacting climate services of forests with the impacts of global change is necessary to identify and understand as yet unexplored feedbacks in the Earth system and the potential of forests to mitigate climate change.
Auclair, A.N.D. [Science and Policy Associates, Inc., Washington, D.C. (United States; Bedford, J.A. [Science and Policy Associates, Inc., Washington, D.C. (United States); Revenga, C. [Science and Policy Associates, Inc., Washington, D.C. (United States); Brenkert, A.L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
1997-01-01
This database lists annual changes in areal extent (Ha) and gross merchantable wood volume (m3) produced by depletion and accrual processes in boreal and temperate forests in Alaska, Canada, Europe, Former Soviet Union, Non-Soviet temperate Asia, and the contiguous United States for the years 1890 through 1990. Forest depletions (source terms for atmospheric CO2) are identified as forest pests, forest dieback, forest fires, forest harvest, and land-use changes (predominantly the conversion of forest, temperate woodland, and shrubland to cropland). Forest accruals (sink terms for atmospheric CO2) are identified as fire exclusion, fire suppression, and afforestation or crop abandonment. The changes in areal extent and gross merchantable wood volume are calculated separately for each of the following biomes: forest tundra, boreal softwoods, mixed hardwoods, temperate softwoods, temperate hardwoods, and temperate wood- and shrublands.
DeJager, Nathan R.; Rohweder, Jason; Miranda, Brian R.; Sturtevant, Brian R.; Fox, Timothy J.; Romanski, Mark C.
2017-01-01
Loss of top predators may contribute to high ungulate population densities and chronic over-browsing of forest ecosystems. However, spatial and temporal variability in the strength of interactions between predators and ungulates occurs over scales that are much shorter than the scales over which forest communities change, making it difficult to characterize trophic cascades in forest ecosystems. We applied the LANDIS-II forest succession model and a recently developed ungulate browsing extension to model how the moose population could interact with the forest ecosystem of Isle Royale National Park, USA, under three different wolf predation scenarios. We contrasted a 100-yr future without wolves (no predation) with two predation scenarios (weak, long-term average predation rates and strong, higher than average rates). Increasing predation rates led to lower peak moose population densities, lower biomass removal rates, and higher estimates of forage availability and landscape carrying capacity, especially during the first 40 yr of simulations. Thereafter, moose population density was similar for all predation scenarios, but available forage biomass and the carrying capacity of the landscape continued to diverge among predation scenarios. Changes in total aboveground live biomass and species composition were most pronounced in the no predation and weak predation scenarios. Consistent with smaller-scale studies, high browsing rates led to reductions in the biomass of heavily browsed Populus tremuloides, Betula papyrifera, and Abies balsamea, and increases in the biomass of unbrowsed Picea glauca and Picea mariana, especially after the simulation year 2050, when existing boreal hardwood stands at Isle Royale are projected to senesce. As a consequence, lower predation rates corresponded with a landscape that progressively shifted toward dominance by Picea glauca and Picea mariana, and lacking available forage biomass. Consistencies with previously documented small-scale successional shifts, and population estimates and trends that approximate those from this and other boreal forests that support moose provide some confidence that these dynamics represent a trophic cascade and therefore provide an important baseline against which to evaluate long-term and large-scale effects of alternative predator management strategies on ungulate populations and forest succession.
NASA Astrophysics Data System (ADS)
Wu, S. H.; Jansson, P.-E.
2013-02-01
Recovery of photosynthesis and transpiration is strongly restricted by low temperatures in air and/or soil during the transition period from winter to spring in boreal zones. The extent to which air temperature (Ta) and soil temperature (Ts) influence the seasonality of photosynthesis and transpiration of a boreal spruce ecosystem was investigated using a process-based ecosystem model (CoupModel) together with eddy covariance (EC) data from one eddy flux tower and nearby soil measurements at Knottåsen, Sweden. A Monte Carlo-based uncertainty method (GLUE) provided prior and posterior distributions of simulations representing a wide range of soil conditions and performance indicators. The simulated results showed sufficient flexibility to predict the measured cold and warm Ts in the moist and dry plots around the eddy flux tower. Moreover, the model presented a general ability to describe both biotic and abiotic processes for the Norway spruce stand. The dynamics of sensible heat fluxes were well described by the corresponding latent heat fluxes and net ecosystem exchange of CO2. The parameter ranges obtained are probably valid to represent regional characteristics of boreal conifer forests, but were not easy to constrain to a smaller range than that produced by the assumed prior distributions. Finally, neglecting the soil temperature response function resulted in fewer behavioural models and probably more compensatory errors in other response functions for regulating the seasonality of ecosystem fluxes.
NASA Astrophysics Data System (ADS)
Ueyama, M.; Kondo, M.; Ichii, K.; Iwata, H.; Euskirchen, E. S.; Zona, D.; Rocha, A. V.; Harazono, Y.; Nakai, T.; Oechel, W. C.
2013-12-01
To better predict carbon and water cycles in Arctic ecosystems, we modified a process-based ecosystem model, BIOME-BGC, by introducing new processes: change in active layer depth on permafrost and phenology of tundra vegetation. The modified BIOME-BGC was optimized using an optimization method. The model was constrained using gross primary productivity (GPP) and net ecosystem exchange (NEE) at 23 eddy covariance sites in Alaska, and vegetation/soil carbon from a literature survey. The model was used to simulate regional carbon and water fluxes of Alaska from 1900 to 2011. Simulated regional fluxes were validated with upscaled GPP, ecosystem respiration (RE), and NEE based on two methods: (1) a machine learning technique and (2) a top-down model. Our initial simulation suggests that the original BIOME-BGC with default ecophysiological parameters substantially underestimated GPP and RE for tundra and overestimated those fluxes for boreal forests. We will discuss how optimization using the eddy covariance data impacts the historical simulation by comparing the new version of the model with simulated results from the original BIOME-BGC with default ecophysiological parameters. This suggests that the incorporation of the active layer depth and plant phenology processes is important to include when simulating carbon and water fluxes in Arctic ecosystems.
Mapping stand-age distribution of Russian forests from satellite data
NASA Astrophysics Data System (ADS)
Chen, D.; Loboda, T. V.; Hall, A.; Channan, S.; Weber, C. Y.
2013-12-01
Russian boreal forest is a critical component of the global boreal biome as approximately two thirds of the boreal forest is located in Russia. Numerous studies have shown that wildfire and logging have led to extensive modifications of forest cover in the region since 2000. Forest disturbance and subsequent regrowth influences carbon and energy budgets and, in turn, affect climate. Several global and regional satellite-based data products have been developed from coarse (>100m) and moderate (10-100m) resolution imagery to monitor forest cover change over the past decade, record of forest cover change pre-dating year 2000 is very fragmented. Although by using stacks of Landsat images, some information regarding the past disturbances can be obtained, the quantity and locations of such stacks with sufficient number of images are extremely limited, especially in Eastern Siberia. This paper describes a modified method which is built upon previous work to hindcast the disturbance history and map stand-age distribution in the Russian boreal forest. Utilizing data from both Landsat and the Moderate Resolution Imaging Spectroradiometer (MODIS), a wall-to-wall map indicating the estimated age of forest in the Russian boreal forest is created. Our previous work has shown that disturbances can be mapped successfully up to 30 years in the past as the spectral signature of regrowing forests is statistically significantly different from that of mature forests. The presented algorithm ingests 55 multi-temporal stacks of Landsat imagery available over Russian forest before 2001 and processes through a standardized and semi-automated approach to extract training and validation data samples. Landsat data, dating back to 1984, are used to generate maps of forest disturbance using temporal shifts in Disturbance Index through the multi-temporal stack of imagery in selected locations. These maps are then used as reference data to train a decision tree classifier on 50 MODIS-based indices. The resultant map provides an estimate of forest age based on the regrowth curves observed from Landsat imagery. The accuracy of the resultant map is assessed against three datasets: 1) subset of the disturbance maps developed within the algorithm, 2) independent disturbance maps created by the Northern Eurasia Land Dynamics Analysis (NELDA) project, and 3) field-based stand-age distribution from forestry inventory units. The current version of the product presents a considerable improvement on the previous version which used Landsat data samples at a set of randomly selected locations, resulting a strong bias of the training samples towards the Landsat-rich regions (e.g. European Russia) whereas regions such as Siberia were under-sampled. Aiming at improving accuracy, the current method significantly increases the number of training Landsat samples compared to the previous work. Aside from the previously used data, the current method uses all available Landsat data for the under-sampled regions in order to increase the representativeness of the total samples. The finial accuracy assessment is still ongoing, however, the initial results suggested an overall accuracy expressed in Kappa > 0.8. We plan to release both the training data and the final disturbance map of the Russian boreal forest to the public after the validation is completed.
The affection of boreal forest changes on imbalance of Nature (Invited)
NASA Astrophysics Data System (ADS)
Tana, G.; Tateishi, R.
2013-12-01
Abstract: The balance of nature does not exist, and, perhaps, never has existed [1]. In other words, the Mother Nature is imbalanced at all. The Mother Nature is changing every moment and never returns to previous condition. Because of the imbalance of nature, global climate has been changing gradually. To reveal the imbalance of nature, there is a need to monitor the dynamic changes of the Earth surface. Forest cover and forest cover change have been grown in importance as basic variables for modelling of global biogeochemical cycles as well as climate [2]. The boreal area contains 1/3 of the earth's trees. These trees play a large part in limiting harmful greenhouse gases by aborbing much of the earth's carbon dioxide (CO2) [3]. The boreal area mainly consists of needleleaf evergreen forest and needleleaf deciduous forest. Both of the needleleaf evergreen forest and needleleaf deciduous forest play the important roles on the uptake of CO2. However, because of the dormant period of needleleaf evergreen forest are shorter than that of needleleaf deciduous forest, needleleaf evergreen forest makes a greater contribution to the absorbtion of CO2. Satellite sensor because of its ability to observe the Earth continuously, can provide the opportunity to monitor the dynamic changes of the Earth. In this study, we used the MODerate resolution Imaging Spectroradiometer (MODIS) satellite data to monitor the dynamic change of boreal forest area which are mainly consist from needleleaf evergreen forest and needleleaf deciduous forest during 2003-2012. Three years MODIS data from the year 2003, 2008 and 2012 were used to detect the forest changed area. A hybrid change detection method which combines the threshold method and unsupervised classification method was used to detect the changes of forest area. In the first step, the difference of Normalized Difference Vegetation Index (NDVI) of the three years were calculated and were used to extract the changed areas by the threshold method. In the second step, the unsupervised classification method was used to classify and analyze detected change areas derived from the first step. Finally, the changed area were validated using the traning data collected for the three years. The validation result revealed that the forest in the study area has undergone the area and type changes during 2003-2012. The detailed procedure will be presented in the meeting. References: [1] Elton, C.S. (1930). Animal Ecology and Evolution. New York, Oxford University Press. [2] Potapov, P., Hansen, M. C., Stehman, S. V., Loveland, T. R., Pittman, K. (2008). Combining MODIS and Landsat imagery to estimate and map boreal forest cover loss, Remote Sensing of Environment, 112, 3708-3719. [3] Houghton, R. A. (2003). Why are estimates of the terrestrial carbon balance so different? Global Change Biology, 9, 500-509.
Fire, humans, and climate: modeling distribution dynamics of boreal forest waterbirds.
Börger, Luca; Nudds, Thomas D
2014-01-01
Understanding the effects of landscape change and environmental variability on ecological processes is important for evaluating resource management policies, such as the emulation of natural forest disturbances. We analyzed time series of detection/nondetection data using hierarchical models in a Bayesian multi-model inference framework to decompose the dynamics of species distributions into responses to environmental variability, spatial variation in habitat conditions, and population dynamics and interspecific interactions, while correcting for observation errors and variation in sampling regimes. We modeled distribution dynamics of 14 waterbird species (broadly defined, including wetland and riparian species) using data from two different breeding bird surveys collected in the Boreal Shield ecozone within Ontario, Canada. Temporal variation in species occupancy (2000-2006) was primarily driven by climatic variability. Only two species showed evidence of consistent temporal trends in distribution: Ring-necked Duck (Aythya collaris) decreased, and Red-winged Blackbird (Agelaius phoeniceus) increased. The models had good predictive ability on independent data over time (1997-1999). Spatial variation in species occupancy was strongly related to the distribution of specific land cover types and habitat disturbance: Fire and forest harvesting influenced occupancy more than did roads, settlements, or mines. Bioclimatic and habitat heterogeneity indices and geographic coordinates exerted negligible influence on most species distributions. Estimated habitat suitability indices had good predictive ability on spatially independent data (Hudson Bay Lowlands ecozone). Additionally, we detected effects of interspecific interactions. Species responses to fire and forest harvesting were similar for 13 of 14 species; thus, forest-harvesting practices in Ontario generally appeared to emulate the effects of fire for waterbirds over timescales of 10-20 years. Extrapolating to all 84 waterbird species breeding on the Ontario Boreal Shield, however, suggested that up to 30 species may instead have altered (short-term) distribution dynamics due to forestry practices. Hence, natural disturbances are critical components of the ecology of the boreal forest and forest practices which aim to approximate them may succeed in allowing the maintenance of the associated species, but improved monitoring and modeling of large-scale boreal forest bird distribution dynamics will be necessary to resolve existing uncertainties, especially on less-common species.
Archaeal communities in boreal forest tree rhizospheres respond to changing soil temperatures.
Bomberg, Malin; Münster, Uwe; Pumpanen, Jukka; Ilvesniemi, Hannu; Heinonsalo, Jussi
2011-07-01
Temperature has generally great effects on both the activity and composition of microbial communities in different soils. We tested the impact of soil temperature and three different boreal forest tree species on the archaeal populations in the bulk soil, rhizosphere, and mycorrhizosphere. Scots pine, silver birch, and Norway spruce seedlings were grown in forest humus microcosms at three different temperatures, 7-11.5°C (night-day temperature), 12-16°C, and 16-22°C, of which 12-16°C represents the typical mid-summer soil temperature in Finnish forests. RNA and DNA were extracted from indigenous ectomycorrhiza, non-mycorrhizal long roots, and boreal forest humus and tested for the presence of archaea by nested PCR of the archaeal 16S rRNA gene followed by denaturing gradient gel electrophoresis (DGGE) profiling and sequencing. Methanogenic Euryarchaeota belonging to Methanolobus sp. and Methanosaeta sp. were detected on the roots and mycorrhiza. The most commonly detected archaeal 16S rRNA gene sequences belonged to group I.1c Crenarchaeota, which are typically found in boreal and alpine forest soils. Interestingly, also one sequence belonging to group I.1b Crenarchaeota was detected from Scots pine mycorrhiza although sequences of this group are usually found in agricultural and forest soils in temperate areas. Tree- and temperature-related shifts in the archaeal population structure were observed. A clear decrease in crenarchaeotal DGGE band number was seen with increasing temperature, and correspondingly, the number of euryarchaeotal DGGE bands, mostly methanogens, increased. The greatest diversity of archaeal DGGE bands was detected in Scots pine roots and mycorrhizas. No archaea were detected from humus samples from microcosms without tree seedling, indicating that the archaea found in the mycorrhizosphere and root systems were dependent on the plant host. The detection of archaeal 16S rRNA gene sequences from both RNA and DNA extractions show that the archaeal populations were living and that they may have significant contribution to the methane cycle in boreal forest soil, especially when soil temperatures rise.
NASA Astrophysics Data System (ADS)
Sonnentag, Oliver; Helbig, Manuel; Payette, Fanny; Wischnewski, Karoline; Kljun, Natascha; Chasmer, Laura; Pappas, Christoforos; Detto, Matteo; Baltzer, Jennifer; Quinton, William; Marsh, Philip
2016-04-01
Given their large areal coverage, high carbon densities, and unique land surface properties and disturbance regimes (e.g., wildfires), the world's boreal forests are integral components of the global and regional climate systems. A large portion of boreal forests contain permafrost, i.e., perennially cryotic ground. In the Taiga Plains ecozone in northwestern Canada, the northernmost boreal forests grow on cold (<-1.5 °C) and thick (>100 m) continuous permafrost (>90 % in areal extent). More southerly boreal forests occur in areas with discontinuous (>50 - 90 % in areal extent), sporadic (>10 - 50 % in areal extent) and isolated permafrost (<10 % in areal extent). Using annual MODIS Percent Tree Cover (PTC) data from the MOD44B product in combination with spatial information on fire history, and permafrost and drainage characteristics, we show that in low-lying, poorly-drained areas along the southern fringe of permafrost, thawing induces widespread decreases in PTC and dominates over PTC increases due to post-fire regrowth. In contrast, PTC appears to be slightly increasing in the central and northern Taiga Plains with more stable discontinuous and continuous permafrost, respectively. While these increases are partly explained by post-fire regrowth, more favourable growing conditions may also contribute to increasing PTC. To better understand the implications of permafrost thaw on land surface properties (e.g., aerodynamic conductance for heat [ga] and surface conductance for water vapour [gs]), and the turbulent fluxes of latent (LE) and sensible heat (H) along the southern fringe of permafrost, we examined nested eddy covariance flux measurements made at two nearby locations at Scotty Creek (61°18' N; 121°18' W) starting May 2013. The low-lying, poorly-drained southern portion of this 152 km2-watershed contains rapidly thawing sporadic permafrost resulting in a highly dynamic mosaic dominated by decreasing forested permafrost peat plateaus, and increasing permafrost-free wetlands. The spatial heterogeneities within the eddy covariance flux footprints (forest/wetland vs. wetland) were resolved with a two-dimensional footprint model parameterized with various remote sensing data sets. Our results suggest that an increasing coverage of wetlands at the expense of forests reduces ga and thus the efficiency of the land surface to transfer heat to the atmosphere. At the same time gs is increased and thus more moisture is lost to the atmosphere from saturated wetland surfaces. The alteration of bulk transfer land surface properties lead to drastic decreases in Bowen ratios by reducing H and increasing LE with increasing coverage of wetlands. The most pronounced contrasts between forests and wetlands are observed in H during the late snow cover period in April. We used a similar set of eddy covariance flux measurements made concurrently at Havikpak Creek (68°19' N; 133°31' W) and Trail Valley Creek (68°44' N; 133°26' W), a boreal forest and a nearby tundra site in the boreal-tundra ecotone, respectively, as a first-order proxy for potentially increasing PTC under more stable permafrost conditions in contrast to Scotty Creek. Preliminary results indicate trends in ga, gs, H and LE opposite to those observed at Scotty Creek between forests and wetlands. Our study demonstrates diverging implications of boreal tree cover changes on land surface properties and turbulent energy fluxes, thus on regional climate system feedback directions and strengths, as a function of permafrost conditions and fire history.
The impact of boreal forest fire on climate warming
Randerson, J.T.; Liu, H.; Flanner, M.G.; Chambers, S.D.; Jin, Y.; Hess, P.G.; Pfister, G.; Mack, M.C.; Treseder, K.K.; Welp, L.R.; Chapin, F.S.; Harden, J.W.; Goulden, M.L.; Lyons, E.; Neff, J.C.; Schuur, E.A.G.; Zender, C.S.
2006-01-01
We report measurements and analysis of a boreal forest fire, integrating the effects of greenhouse gases, aerosols, black carbon deposition on snow and sea ice, and postfire changes in surface albedo. The net effect of all agents was to increase radiative forcing during the first year (34 ?? 31 Watts per square meter of burned area), but to decrease radiative forcing when averaged over an 80-year fire cycle (-2.3 ?? 2.2 Watts per square meter) because multidecadal increases in surface albedo had a larger impact than fire-emitted greenhouse gases. This result implies that future increases in boreal fire may not accelerate climate warming.
The impact of boreal forest fire on climate warming.
Randerson, J T; Liu, H; Flanner, M G; Chambers, S D; Jin, Y; Hess, P G; Pfister, G; Mack, M C; Treseder, K K; Welp, L R; Chapin, F S; Harden, J W; Goulden, M L; Lyons, E; Neff, J C; Schuur, E A G; Zender, C S
2006-11-17
We report measurements and analysis of a boreal forest fire, integrating the effects of greenhouse gases, aerosols, black carbon deposition on snow and sea ice, and postfire changes in surface albedo. The net effect of all agents was to increase radiative forcing during the first year (34 +/- 31 Watts per square meter of burned area), but to decrease radiative forcing when averaged over an 80-year fire cycle (-2.3 +/- 2.2 Watts per square meter) because multidecadal increases in surface albedo had a larger impact than fire-emitted greenhouse gases. This result implies that future increases in boreal fire may not accelerate climate warming.
Use of ground-based radiometers for L-Band Freeze/Thaw retrieval in a boreal forest site
NASA Astrophysics Data System (ADS)
Roy, A.; Sonnentag, O.; Derksen, C.; Toose, P.; Pappas, C.; Mavrovic, A.; El Amine, M.; Royer, A.; Berg, A. A.; Rowlandson, T. L.; Barr, A.; Black, T. A.
2017-12-01
The boreal forest is the second largest land biome in the world and thus plays a major role in the global and regional climate systems. The extent, timing and duration of the seasonal freeze/thaw (F/T) state influences vegetation developmental stages (phenology) and, consequently, constitutes an important control on how boreal forest ecosystems exchange carbon, water and energy with the atmosphere. Recently, new L-Band satellite-derived F/T information has become available. However, disentangling the seasonally differing contributions from forest overstory and understory vegetation, and the ground surface to the satellite signal remains challenging. Here we present results from an ongoing campaign with two L-Band surface-based radiometers (SBR) installed on a micrometeorological tower at the Southern Old Black Spruce site (53.99°N / 105.12°W) in central Saskatchewan. One radiometer unit is installed on top of the tower viewing the multi-layer vegetation canopy from above. A second radiometer unit is installed within the multi-layer canopy, viewing the understory and the ground surface only. The objectives of our study are to (i) disentangle the L-Band F/T signal contribution of boreal forest overstory from the combined understory and ground surface contribution, and (ii) link the L-Band F/T signal to related boreal forest structural and functional characteristics. Analysis of these radiometer measurements made from September to November 2016 shows that when the ground surface is thawed, the main contributor to both radiometer signals is soil moisture. The Pearson correlation coefficient between brightness temperature (TB) at vertical polarization (V-pol) and soil permittivity is 0.79 for the radiometer above the canopy and 0.74 for the radiometer below the canopy. Under cold conditions when the soil was thawed (snow insulation) and the trees were frozen (below 0°C), TB at V-pol is negatively correlated with tree permittivity. The freezing tree contribution to the L-Band signal is however confirmed with L-Band coaxial probe measurements that show significant changes in tree L-Band permittivity when the tree temperature falls below 0 °C. This study will help develop freeze/thaw product and ecosystemic processes in boreal forest from satellite based remote sensing.
BOREAS TE-9 PAR and Leaf Nitrogen Data for NSA Species
NASA Technical Reports Server (NTRS)
Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Dang, Qinglai; Margolis, Hank; Coyea, Marie
2000-01-01
The Boreal Ecosystem-Atmospheric Study (BOREAS) TE-9 (Terrestrial Ecology) team collected several data sets related to chemical and photosynthetic properties of leaves in boreal forest tree species. This data set describes the relationship between photosynthetically active radiation (PAR) levels and foliage nitrogen in samples from six sites in the BOREAS Northern Study Area (NSA) collected during the three 1994 intensive field campaigns (IFCs). This information is useful for modeling the vertical distribution of carbon fixation for these different forest types in the boreal forest. The data were collected to quantify the relationship between PAR and leaf nitrogen of black spruce, jack pine, and aspen. The data are available in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).
Microwave dielectric properties of boreal forest trees
NASA Technical Reports Server (NTRS)
Xu, G.; Ahern, F.; Brown, J.
1993-01-01
The knowledge of vegetation dielectric behavior is important in studying the scattering properties of the vegetation canopy and radar backscatter modelling. Until now, a limited number of studies have been published on the dielectric properties in the boreal forest context. This paper presents the results of the dielectric constant as a function of depth in the trunks of two common boreal forest species: black spruce and trembling aspen, obtained from field measurements. The microwave penetration depth for the two species is estimated at C, L, and P bands and used to derive the equivalent dielectric constant for the trunk as a whole. The backscatter modelling is carried out in the case of black spruce and the results are compared with the JPL AIRSAR data. The sensitivity of the backscatter coefficient to the dielectric constant is also examined.
Simulating the effects of fire disturbance and vegetation recovery on boreal ecosystem carbon fluxes
NASA Astrophysics Data System (ADS)
Yi, Y.; Kimball, J. S.; Jones, L. A.; Zhao, M.
2011-12-01
Fire related disturbance and subsequent vegetation recovery has a major influence on carbon storage and land-atmosphere CO2 fluxes in boreal ecosystems. We applied a synthetic approach combining tower eddy covariance flux measurements, satellite remote sensing and model reanalysis surface meteorology within a terrestrial carbon model framework to estimate fire disturbance and recovery effects on boreal ecosystem carbon fluxes including gross primary production (GPP), ecosystem respiration and net CO2 exchange (NEE). A disturbance index based on MODIS land surface temperature and NDVI was found to coincide with vegetation recovery status inferred from tower chronosequence sites. An empirical algorithm was developed to track ecosystem recovery status based on the disturbance index and used to nudge modeled net primary production (NPP) and surface soil organic carbon stocks from baseline steady-state conditions. The simulations were conducted using a satellite based terrestrial carbon flux model driven by MODIS NDVI and MERRA reanalysis daily surface meteorology inputs. The MODIS (MCD45) burned area product was then applied for mapping recent (post 2000) regional disturbance history, and used with the disturbance index to define vegetation disturbance and recovery status. The model was then applied to estimate regional patterns and temporal changes in terrestrial carbon fluxes across the entire northern boreal forest and tundra domain. A sensitivity analysis was conducted to assess the relative importance of fire disturbance and recovery on regional carbon fluxes relative to assumed steady-state conditions. The explicit representation of disturbance and recovery effects produces more accurate NEE predictions than the baseline steady-state simulations and reduces uncertainty regarding the purported missing carbon sink in the high latitudes.
Ecology: human role in Russian wild fires.
Mollicone, Danilo; Eva, Hugh D; Achard, Frédéric
2006-03-23
Anomalies in temperature and precipitation in northern Russia over the past few years have been viewed as manifestations of anthropogenic climate change, prompting suggestions that this may also account for exceptional forest fires in the region. Here we examine the number of forest-fire events across the boreal Russian Federation for the period 2002 to 2005 in 'intact' forests, where human influence is limited, and in 'non-intact' forests, which have been shaped by human activity. Our results show that there were more fires in years during which the weather was anomalous, but that more than 87% of fires in boreal Russia were started by people.
Management of forest fires to maximize carbon sequestration in temperate and boreal forests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guggenheim, D.E.
1996-12-31
This study examines opportunities for applying prescribed burning strategies to forest stands to enhance net carbon sequestration and compared prescribed burning strategies with more conventional forestry-based climate change mitigation alternatives, including fire suppression and afforestation. Biomass burning is a major contributor to greenhouse gas accumulation in the atmosphere. Biomass burning has increased by 50% since 1850. Since 1977, the annual extent of burning in the northern temperate and boreal forests has increased dramatically, from six- to nine-fold. Long-term suppression of fires in North America, Russia, and other parts of the world has led to accumulated fuel load and an increasemore » in the destructive power of wildfires. Prescribed burning has been used successfully to reduce the destructiveness of wildfires. However, across vast areas of Russia and other regions, prescribed burning is not a component of forest management practices. Given these factors and the sheer size of the temperate-boreal carbon sink, increasing attention is being focused on the role of these forests in mitigating climate change, and the role of fire management strategies, such as prescribed burning, which could work alongside more conventional forestry-based greenhouse gas offset strategies, such as afforestation.« less
Yuan, F M; Yi, S H; McGuire, A D; Johnson, K D; Liang, J; Harden, J W; Kasischke, E S; Kurz, W A
2012-12-01
Carbon (C) dynamics of boreal forest ecosystems have substantial implications for efforts to mitigate the rise of atmospheric CO2 and may be substantially influenced by warming and changing wildfire regimes. In this study we applied a large-scale ecosystem model that included dynamics of organic soil horizons and soil organic matter characteristics of multiple pools to assess forest C stock changes of the Yukon River Basin (YRB) in Alaska, USA, and Canada from 1960 through 2006, a period characterized by substantial climate warming and increases in wildfire. The model was calibrated for major forests with data from long-term research sites and evaluated using a forest inventory database. The regional assessment indicates that forest vegetation C storage increased by 46 Tg C, but that total soil C storage did not change appreciably during this period. However, further analysis suggests that C has been continuously lost from the mineral soil horizon since warming began in the 1970s, but has increased in the amorphous organic soil horizon. Based on a factorial experiment, soil C stocks would have increased by 158 Tg C if the YRB had not undergone warming and changes in fire regime. The analysis also identified that warming and changes in fire regime were approximately equivalent in their effects on soil C storage, and interactions between these two suggests that the loss of organic horizon thickness associated with increases in wildfire made deeper soil C stocks more vulnerable to loss via decomposition. Subbasin analyses indicate that C stock changes were primarily sensitive to the fraction of burned forest area within each subbasin and that boreal forest ecosystems in the YRB are currently transitioning from being sinks to sources at -0.7% annual area burned. We conclude that it is important for international mitigation efforts focused on controlling atmospheric CO2 to consider how climate warming and changes in fire regime may concurrently affect the CO2 sink strength of boreal forests. It is also important for large-scale biogeochemical and earth system models to include organic soil dynamics in applications to assess regional C dynamics of boreal forests responding to warming and changes in fire regime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Fengming; Yi, Shuhua; McGuire, A. David
2012-01-01
Carbon (C) dynamics of boreal forest ecosystems have substantial implications for efforts to mitigate the rise of atmospheric CO2 and may be substantially influenced by warming and changing wildfire regimes. In this study we applied a large-scale ecosystem model that included dynamics of organic soil horizons and soil organic matter characteristics of multiple pools to assess forest C stock changes of the Yukon River Basin (YRB) in Alaska, USA, and Canada from 1960 through 2006, a period characterized by substantial climate warming and increases in wildfire. The model was calibrated for major forests with data from long-term research sites andmore » evaluated using a forest inventory database. The regional assessment indicates that forest vegetation C storage increased by 46 Tg C, but that total soil C storage did not change appreciably during this period. However, further analysis suggests that C has been continuously lost from the mineral soil horizon since warming began in the 1970s, but has increased in the amorphous organic soil horizon. Based on a factorial experiment, soil C stocks would have increased by 158 Tg C if the YRB had not undergone warming and changes in fire regime. The analysis also identified that warming and changes in fire regime were approximately equivalent in their effects on soil C storage, and interactions between these two suggests that the loss of organic horizon thickness associated with increases in wildfire made deeper soil C stocks more vulnerable to loss via decomposition. Subbasin analyses indicate that C stock changes were primarily sensitive to the fraction of burned forest area within each subbasin and that boreal forest ecosystems in the YRB are currently transitioning from being sinks to sources at ;0.7% annual area burned. We conclude that it is important for international mitigation efforts focused on controlling atmospheric CO2 to consider how climate warming and changes in fire regime may concurrently affect the CO2 sink strength of boreal forests. It is also important for large-scale biogeochemical and earth system models to include organic soil dynamics in applications to assess regional C dynamics of boreal forests responding to warming and changes in fire regime.« less
Yuan, F.M.; Yi, S.H.; McGuire, A.D.; Johnson, K.D.; Liang, J.; Harden, J.W.; Kasischke, E.S.; Kurz, W.A.
2012-01-01
Carbon (C) dynamics of boreal forest ecosystems have substantial implications for efforts to mitigate the rise of atmospheric CO2 and may be substantially influenced by warming and changing wildfire regimes. In this study we applied a large-scale ecosystem model that included dynamics of organic soil horizons and soil organic matter characteristics of multiple pools to assess forest C stock changes of the Yukon River Basin (YRB) in Alaska, USA, and Canada from 1960 through 2006, a period characterized by substantial climate warming and increases in wildfire. The model was calibrated for major forests with data from long-term research sites and evaluated using a forest inventory database. The regional assessment indicates that forest vegetation C storage increased by 46 Tg C, but that total soil C storage did not change appreciably during this period. However, further analysis suggests that C has been continuously lost from the mineral soil horizon since warming began in the 1970s, but has increased in the amorphous organic soil horizon. Based on a factorial experiment, soil C stocks would have increased by 158 Tg C if the YRB had not undergone warming and changes in fire regime. The analysis also identified that warming and changes in fire regime were approximately equivalent in their effects on soil C storage, and interactions between these two suggests that the loss of organic horizon thickness associated with increases in wildfire made deeper soil C stocks more vulnerable to loss via decomposition. Subbasin analyses indicate that C stock changes were primarily sensitive to the fraction of burned forest area within each subbasin and that boreal forest ecosystems in the YRB are currently transitioning from being sinks to sources at ∼0.7% annual area burned. We conclude that it is important for international mitigation efforts focused on controlling atmospheric CO2 to consider how climate warming and changes in fire regime may concurrently affect the CO2 sink strength of boreal forests. It is also important for large-scale biogeochemical and earth system models to include organic soil dynamics in applications to assess regional C dynamics of boreal forests responding to warming and changes in fire regime.
Reflectance spectra of subarctic lichens
NASA Technical Reports Server (NTRS)
Petzold, Donald E.; Goward, Samuel N.
1988-01-01
Lichens constitute a major portion of the ground cover of high latitude environments, but little has been reported concerning their in situ solar spectral reflectance properties. Knowledge of these properties is important for the interpretation of remotely sensed observations from high latitude regions, as well as in studies of high latitude ecology and energy balance climatology. The spectral reflectance of common boreal vascular plants is similar to that of vascular plants of the midlatitudes. The dominant lichens, in contrast, display variable reflectance patterns in visible wavelengths. The relative reflectance peak at 0.55 microns, common to green vegetation, is absent or indistinct in spectra of pervasive boreal forest and tundra lichens, despite the presence of chlorophyll in the inner algal cells. Lichens of the dominant genus, Cladina, display strong absorption of ultraviolet energy and short-wavelength blue light relative to their absorption in other visible wavelengths. Since the Cladinae dominate both the surface vegetation in open woodlands of the boreal forest and the low arctic tundra, their unusual spectral reflectance patterns will enable accurate monitoring of the boreal forest-tundra ecotone and detection of its vigor and movement in the future.
Morphological response of songbirds to 100 years of landscape change in North America.
Desrochers, A
2010-06-01
Major landscape changes caused by humans may create strong selection pressures and induce rapid evolution in natural populations. In the last 100 years, eastern North America has experienced extensive clear-cutting in boreal areas, while afforestation has occurred in most temperate areas. Based on museum specimens, I show that wings of several boreal forest songbirds and temperate songbirds of non-forest habitats have become more pointed over the last 100 years. In contrast, wings of most temperate forest and early-successional boreal forests species have become less pointed over the same period. In contrast to wing shape, the bill length of most species did not change significantly through time. These results are consistent with the "habitat isolation hypothesis", i.e., songbirds evolved in response to recent changes in the amount of available habitat and associated implications for mobility. Rapid morphological evolution may mitigate, without necessarily preventing, negative consequences of habitat loss caused by humans through direct exploitation or climate change.
Boonstra, Rudy; Andreassen, Harry P.; Boutin, Stan; Hušek, Jan; Ims, Rolf A.; Krebs, Charles J.; Skarpe, Christina; Wabakken, Petter
2016-01-01
Abstract The boreal forest is one of the largest terrestrial biomes on Earth. Conifers normally dominate the tree layer across the biome, but other aspects of ecosystem structure and dynamics vary geographically. The cause of the conspicuous differences in the understory vegetation and the herbivore–predator cycles between northwestern Europe and western North America presents an enigma. Ericaceous dwarf shrubs and 3– to 4-year vole–mustelid cycles characterize the European boreal forests, whereas tall deciduous shrubs and 10-year snowshoe hare–lynx cycles characterize the North American ones. We discuss plausible explanations for this difference and conclude that it is bottom-up: Winter climate is the key determinant of the dominant understory vegetation that then determines the herbivore–predator food-web interactions. The crucial unknown for the twenty-first century is how climate change and increasing instability will affect these forests, both with respect to the dynamics of individual plant and animal species and to their community interactions. PMID:28533563
Boonstra, Rudy; Andreassen, Harry P; Boutin, Stan; Hušek, Jan; Ims, Rolf A; Krebs, Charles J; Skarpe, Christina; Wabakken, Petter
2016-09-01
The boreal forest is one of the largest terrestrial biomes on Earth. Conifers normally dominate the tree layer across the biome, but other aspects of ecosystem structure and dynamics vary geographically. The cause of the conspicuous differences in the understory vegetation and the herbivore-predator cycles between northwestern Europe and western North America presents an enigma. Ericaceous dwarf shrubs and 3- to 4-year vole-mustelid cycles characterize the European boreal forests, whereas tall deciduous shrubs and 10-year snowshoe hare-lynx cycles characterize the North American ones. We discuss plausible explanations for this difference and conclude that it is bottom-up: Winter climate is the key determinant of the dominant understory vegetation that then determines the herbivore-predator food-web interactions. The crucial unknown for the twenty-first century is how climate change and increasing instability will affect these forests, both with respect to the dynamics of individual plant and animal species and to their community interactions.
The importance of old growth refugia in the Yukon boreal forest to cavity-nesting owls
D. H. Mossop
1997-01-01
The Yukon's boreal forest is a slow-growing yet dynamic system greatly affected by wildfire. Trees of a diameter and age to accommodate cavity-nesting owls and other larger birds should be rare. An experiment was conducted by erecting just over 100 nest boxes throughout the southern Yukon to test the availability of nest holes for small owls. After 5 years an...
Alaska's changing fire regime--implications for the vulnerability of its boreal forests
Eric S. Kasischke; David L. Verbyla; T. Scott Rupp; A. David McGuire; Karen A. Murphy; Randi Jandt; Jennifer L. Barnes; Elizabeth E. Hoy; Paul A. Duffy; Monika Calef; Merritt R. Turetsky
2010-01-01
A synthesis was carried out to examine Alaska's boreal forest fire regime. During the 2000s, an average of 767 000 haÃyear-1 burned, 50% higher than in any previous decade since the 1940s. Over the past 60 years, there was a decrease in the number of lightning-ignited fires, an increase in extreme lightning-ignited fire events, an increase...
Riitta Hyvönen; Göran I. Ågren; Sune Linder; Tryggve Persson; M. Francesca Cotrufo; Alf Ekblad; Michael Freeman; Achim Grelle; Ivan A. Janssens; Paul G. Jarvis; Seppo Kellomäki; Anders Lindroth; Denis Loustau; Tomas Lundmark; Richard J. Norby; Ram Oren; Kim Pilegaard; Michael G. Ryan; Bjarni D. Sigurdsson; Monika Strömgren; Marcel van Oijen; Göran Wallin
2007-01-01
Temperate and boreal forest ecosystems contain a large part of the carbon stored on land, in the form of both biomass and soil organic matter. Increasing atmospheric [CO2], increasing temperature, elevated nitrogen deposition and intensified management will change this C store. Well documented single-factor responses of net primary production are: higher photosynthetic...
Giesler, Reiner; Clemmensen, Karina E; Wardle, David A; Klaminder, Jonatan; Bindler, Richard
2017-03-07
Alterations in fire activity due to climate change and fire suppression may have profound effects on the balance between storage and release of carbon (C) and associated volatile elements. Stored soil mercury (Hg) is known to volatilize due to wildfires and this could substantially affect the land-air exchange of Hg; conversely the absence of fires and human disturbance may increase the time period over which Hg is sequestered. Here we show for a wildfire chronosequence spanning over more than 5000 years in boreal forest in northern Sweden that belowground inventories of total Hg are strongly related to soil humus C accumulation (R 2 = 0.94, p < 0.001). Our data clearly show that northern boreal forest soils have a strong sink capacity for Hg, and indicate that the sequestered Hg is bound in soil organic matter pools accumulating over millennia. Our results also suggest that more than half of the Hg stock in the sites with the longest time since fire originates from deposition predating the onset of large-scale anthropogenic emissions. This study emphasizes the importance of boreal forest humus soils for Hg storage and reveals that this pool is likely to persist over millennial time scales in the prolonged absence of fire.
NASA Astrophysics Data System (ADS)
Javed, M. U.; Hens, K.; Martinez, M.; Kubistin, D.; Novelli, A.; Beygi, Z. H.; Axinte, R.; Nölscher, A. C.; Sinha, V.; Song, W.; Johnson, A. M.; Auld, J.; Bohn, B.; Sander, R.; Taraborrelli, D.; Williams, J.; Fischer, H.; Lelieveld, J.; Harder, H.
2016-12-01
Peroxy radicals play a key role in ozone (O3) production and hydroxyl (OH) recycling influencing the self-cleansing capacity and air quality. Organic peroxy radical (RO2) concentrations are estimated by three different approaches for a boreal forest, based on the field campaign HUMPPA-COPEC 2010 in Southern Finland. RO2 concentrations were simulated by a box model constrained by the comprehensive dataset from the campaign and cross-checked against the photostationary state (PSS) of NOx [= nitric oxide (NO) + nitrogen dioxide (NO2)] calculations. The model simulated RO2 concentrations appear too low to explain the measured PSS of NOx. As the atmospheric RO2 production is proportional to OH loss, the total OH loss rate frequency (total OH reactivity) in the model is underestimated compared to the measurements. The total OH reactivity of the model is tuned to match the observed total OH reactivity by increasing the biogenic volatile organic compound (BVOCs) concentrations for the model simulations. The new-found simulated RO2 concentrations based on the tuned OH reactivity explain the measured PSS of NOx reasonably well. Furthermore, the sensitivity of the NOx lifetime and the catalytic efficiency of NOx (CE) in O3 production, in the context of organic alkyl nitrate (RONO2) formation, was also investigated. Based on the campaign data, it was found that the lifetime of NOx and the CE are reduced and are sensitive to the RONO2 formation under low-NOx conditions, which matches a previous model-based study.
Jiang, Xinyu; Huang, Jian-Guo; Cheng, Jiong; Dawson, Andria; Stadt, Kenneth J; Comeau, Philip G; Chen, Han Y H
2018-08-01
Tree growth of boreal forest plays an important role on global carbon (C) cycle, while tree growth in the western Canadian boreal mixed forests has been predicted to be negatively affected by regional drought. Individual tree growth can be controlled by many factors, such as competition, climate, tree size and age. However, information about contributions of different factors to tree growth is still limited in this region. In order to address this uncertainty, tree rings of two dominant tree species, trembling aspen (Populus tremuloides Michx.) and white spruce (Picea glauca (Moench.) Voss), were sampled from boreal mixed forest stands distributed across Alberta, Canada. Tree growth rates over different time intervals (10years interval, 1998-2007; 20years interval, 1988-2007; 30years interval, 1978-2007) were calculated to study the effects of different factors (tree size, competition, climate, and age) on tree growth. Results indicated that tree growth of two species were both primarily affected by competition or tree size, while climatic indices showed less effects on tree growth. Growth of trembling aspen was significantly affected by inter- and intraspecific competition, while growth of white spruce was primarily influenced by tree size, followed by competition. Positive relationship was found between growth of white spruce and competition index of coniferous group, suggesting an intraspecific mutualism mechanism within coniferous group. Our results further suggested that competition driven succession was the primary process of forest composition shift in the western Canadian boreal mixed forest. Although drought stress increased tree mortality, decline of stem density under climate change released competition stress of surviving trees, which in turn sustained growth of surviving trees. Therefore, climatic indices showed fewer effects on growth of dominant tree species compared to other factors in our study. Copyright © 2018 Elsevier B.V. All rights reserved.
Low historical nitrogen deposition effect on carbon sequestration in the boreal zone
NASA Astrophysics Data System (ADS)
Fleischer, K.; Wârlind, D.; van der Molen, M. K.; Rebel, K. T.; Arneth, A.; Erisman, J. W.; Wassen, M. J.; Smith, B.; Gough, C. M.; Margolis, H. A.; Cescatti, A.; Montagnani, L.; Arain, A.; Dolman, A. J.
2015-12-01
Nitrogen (N) cycle dynamics and N deposition play an important role in determining the terrestrial biosphere's carbon (C) balance. We assess global and biome-specific N deposition effects on C sequestration rates with the dynamic global vegetation model LPJ-GUESS. Modeled CN interactions are evaluated by comparing predictions of the C and CN version of the model with direct observations of C fluxes from 68 forest FLUXNET sites. N limitation on C uptake reduced overestimation of gross primary productivity for boreal evergreen needleleaf forests from 56% to 18%, presenting the greatest improvement among forest types. Relative N deposition effects on C sequestration (dC/dN) in boreal, temperate, and tropical sites ranged from 17 to 26 kg C kg N-1 when modeled at site scale and were reduced to 12-22 kg C kg N-1 at global scale. We find that 19% of the recent (1990-2007) and 24% of the historical global C sink (1900-2006) was driven by N deposition effects. While boreal forests exhibit highest dC/dN, their N deposition-induced C sink was relatively low and is suspected to stay low in the future as no major changes in N deposition rates are expected in the boreal zone. N deposition induced a greater C sink in temperate and tropical forests, while predicted C fluxes and N-induced C sink response in tropical forests were associated with greatest uncertainties. Future work should be directed at improving the ability of LPJ-GUESS and other process-based ecosystem models to reproduce C cycle dynamics in the tropics, facilitated by more benchmarking data sets. Furthermore, efforts should aim to improve understanding and model representations of N availability (e.g., N fixation and organic N uptake), N limitation, P cycle dynamics, and effects of anthropogenic land use and land cover changes.
Podur, Justin J; Martell, David L
2009-07-01
Forest fires are influenced by weather, fuels, and topography, but the relative influence of these factors may vary in different forest types. Compositional analysis can be used to assess the relative importance of fuels and weather in the boreal forest. Do forest or wild land fires burn more flammable fuels preferentially or, because most large fires burn in extreme weather conditions, do fires burn fuels in the proportions they are available despite differences in flammability? In the Canadian boreal forest, aspen (Populus tremuloides) has been found to burn in less than the proportion in which it is available. We used the province of Ontario's Provincial Fuels Database and fire records provided by the Ontario Ministry of Natural Resources to compare the fuel composition of area burned by 594 large (>40 ha) fires that occurred in Ontario's boreal forest region, a study area some 430,000 km2 in size, between 1996 and 2006 with the fuel composition of the neighborhoods around the fires. We found that, over the range of fire weather conditions in which large fires burned and in a study area with 8% aspen, fires burn fuels in the proportions that they are available, results which are consistent with the dominance of weather in controlling large fires.
Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands
Turetsky, M.R.; Kane, E.S.; Harden, J.W.; Ottmar, R.D.; Manies, K.L.; Hoy, E.; Kasischke, E.S.
2011-01-01
Climate change has increased the area affected by forest fires each year in boreal North America. Increases in burned area and fire frequency are expected to stimulate boreal carbon losses. However, the impact of wildfires on carbon emissions is also affected by the severity of burning. How climate change influences the severity of biomass burning has proved difficult to assess. Here, we examined the depth of ground-layer combustion in 178 sites dominated by black spruce in Alaska, using data collected from 31 fire events between 1983 and 2005. We show that the depth of burning increased as the fire season progressed when the annual area burned was small. However, deep burning occurred throughout the fire season when the annual area burned was large. Depth of burning increased late in the fire season in upland forests, but not in peatland and permafrost sites. Simulations of wildfire-induced carbon losses from Alaskan black spruce stands over the past 60 years suggest that ground-layer combustion has accelerated regional carbon losses over the past decade, owing to increases in burn area and late-season burning. As a result, soils in these black spruce stands have become a net source of carbon to the atmosphere, with carbon emissions far exceeding decadal uptake.
Major losses of nutrients following a severe drought in a boreal forest.
Houle, Daniel; Lajoie, Geneviève; Duchesne, Louis
2016-11-28
Because of global warming, the frequency and severity of droughts are expected to increase, which will have an impact on forest ecosystem health worldwide 1 . Although the impact of drought on tree growth and mortality is being increasingly documented 2-4 , very little is known about the impact on nutrient cycling in forest ecosystems. Here, based on long-term monitoring data, we report nutrient fluxes in a boreal forest before, during and following a severe drought in July 2012. During and shortly after the drought, we observed high throughfall (rain collected below the canopy) concentrations of nutrient base cations (potassium, calcium and magnesium), chlorine, phosphorus and dissolved organic carbon (DOC), differing by one to two orders of magnitude relative to the long-term normal, and resulting in important canopy losses. The high throughfall fluxes had repercussions in the soil solution at a depth of 30 cm, leading to high DOC, chlorine and potassium concentrations. The net potassium losses (atmospheric deposition minus leaching losses) following the drought were especially important, being the equivalent of nearly 20 years of net losses under 'normal' conditions. Our data show that droughts have unexpected impacts on nutrient cycling through impacts on tree canopy and soils and may lead to important episodes of potassium losses from boreal forest ecosystems. The potassium losses associated with drought will add to those originating from tree harvesting and from forest fires and insect outbreaks 5-7 (with the last two being expected to increase in the future as a result of climate change), and may contribute to reduced potassium availability in boreal forests in a warming world.
NASA Astrophysics Data System (ADS)
Williams, J.; Crowley, J.; Fischer, H.; Harder, H.; Martinez, M.; Petäjä, T.; Rinne, J.; Bäck, J.; Boy, M.; Dal Maso, M.; Hakala, J.; Kajos, M.; Keronen, P.; Rantala, P.; Aalto, J.; Aaltonen, H.; Paatero, J.; Vesala, T.; Hakola, H.; Levula, J.; Pohja, T.; Herrmann, F.; Auld, J.; Mesarchaki, E.; Song, W.; Yassaa, N.; Nölscher, A.; Johnson, A. M.; Custer, T.; Sinha, V.; Thieser, J.; Pouvesle, N.; Taraborrelli, D.; Tang, M. J.; Bozem, H.; Hosaynali-Beygi, Z.; Axinte, R.; Oswald, R.; Novelli, A.; Kubistin, D.; Hens, K.; Javed, U.; Trawny, K.; Breitenberger, C.; Hidalgo, P. J.; Ebben, C. J.; Geiger, F. M.; Corrigan, A. L.; Russell, L. M.; Ouwersloot, H.; Vilà-Guerau de Arellano, J.; Ganzeveld, L.; Vogel, A.; Beck, M.; Bayerle, A.; Kampf, C. J.; Bertelmann, M.; Köllner, F.; Hoffmann, T.; Valverde, J.; González, D.; Riekkola, M.-L.; Kulmala, M.; Lelieveld, J.
2011-05-01
This paper describes the background, instrumentation, goals, and the regional influences on the HUMPPA-COPEC intensive field measurement campaign, conducted at the Boreal forest research station SMEAR II (Station for Measuring Ecosystem-Atmosphere Relation) in Hyytiälä, Finland from 12 July-12 August 2010. The prevailing meteorological conditions during the campaign are examined and contrasted with those of the past six years. Back trajectory analyses show that meteorological conditions at the site were characterized by a higher proportion of southerly flow. As a result the summer of 2010 was anomalously warm and high in ozone making the campaign relevant for the analysis of possible future climates. A comprehensive land use analysis, provided on both 5 and 50 km scales, shows that the main vegetation types surrounding the site on both the regional and local scales are: coniferous forest (Scots pine and/or Norway spruce); mixed forest (Birch and conifers); and woodland scrub (e.g. Willows, Aspen); indicating that the campaign results can be taken as representative of the Boreal forest ecosystem. In addition to the influence of biogenic emissions, the measurement site was occasionally impacted by sources other than vegetation. Specific tracers have been used here to identify the time periods when such sources have impacted the site namely: biomass burning (acetonitrile and CO), urban anthropogenic pollution (pentane and SO2) and the nearby Korkeakoski sawmill (enantiomeric ratio of chiral monoterpenes). None of these sources dominated the study period, allowing the Boreal forest summertime emissions to be assessed and contrasted with various other source signatures.
Karlsen, Stein Rune; Jepsen, Jane Uhd; Odland, Arvid; Ims, Rolf Anker; Elvebakk, Arve
2013-11-01
The increased spread of insect outbreaks is among the most severe impacts of climate warming predicted for northern boreal forest ecosystems. Compound disturbances by insect herbivores can cause sharp transitions between vegetation states with implications for ecosystem productivity and climate feedbacks. By analysing vegetation plots prior to and immediately after a severe and widespread outbreak by geometrid moths in the birch forest-tundra ecotone, we document a shift in forest understorey community composition in response to the moth outbreak. Prior to the moth outbreak, the plots divided into two oligotrophic and one eutrophic plant community. The moth outbreak caused a vegetation state shift in the two oligotrophic communities, but only minor changes in the eutrophic community. In the spatially most widespread communities, oligotrophic dwarf shrub birch forest, dominance by the allelopathic dwarf shrub Empetrum nigrum ssp. hermaphroditum, was effectively broken and replaced by a community dominated by the graminoid Avenella flexuosa, in a manner qualitatively similar to the effect of wild fires in E. nigrum communities in coniferous boreal forest further south. As dominance by E. nigrum is associated with retrogressive succession the observed vegetation state shift has widespread implications for ecosystem productivity on a regional scale. Our findings reveal that the impact of moth outbreaks on the northern boreal birch forest system is highly initial-state dependent, and that the widespread oligotrophic communities have a low resistance to such disturbances. This provides a case for the notion that climate impacts on arctic and northern boreal vegetation may take place most abruptly when conveyed by changed dynamics of irruptive herbivores.
King, Stagg; Harden, Jennifer; Manies, Kristen L.; Munster, Jennie; White, L. Douglas
2002-01-01
Soils in Alaska, and in high latitude terrestrial ecosystems in general, contain significant amounts of organic carbon, most of which is believed to have accumulated since the start of the Holocene about 10 ky before present. High latitude soils are estimated to contain 30-40% of terrestrial soil carbon (Melillo et al., 1995; McGuire and Hobbie, 1997), or ~ 300-400 Gt C (Gt = 1015 g), which equals about half of the current atmospheric burden of carbon. Boreal forests in particular are estimated to have more soil carbon than any other terrestrial biome (Post et al., 1982; Chapin and Matthews, 1993). The relations among net primary production, soil carbon storage, recurrent fire disturbance, nutrients, the hydrologic cycle, permafrost and geomorphology are poorly understood in boreal forest. Fire disturbance has been suggested to play a key role in the interactions among the complex biogeochemical processes influencing carbon storage in boreal forest soils (Harden et al., 2000; Zhuang et al., 2002). There has been an observed increase in fire disturbance in North American boreal black spruce (Picea mariana) forests in recent decades (Murphy et al., 1999; Kasichke et al., 2000), concurrent with increases in Alaskan boreal and arctic surface temperatures and warming of permafrost (Osterkamp and Romanofsky, 1999). Understanding the role of fire in long term carbon storage and how recent changes in fire frequency and severity may influence future high latitude soil carbon pools is necessary for those working to understand or mitigate the effects of global climate change.
Temporal and Spatial Variations in Soil CO2 Effluxes of Different Ecosystems
NASA Astrophysics Data System (ADS)
Liang, N.; Kim, S.; Shimoyama, K.; Kim, Y.; Hirano, T.; Takagi, K.; Suto, H.; Fujinuma, Y.; Inoue, G.
2005-12-01
Regional networks for measuring carbon sequestration or loss by terrestrial ecosystems on a year round basis have been in operation since the mid-1990s. However, continuous measurements of soil CO2 efflux, the largest component of ecosystem respiration have only been reported over similar time scales at a few of the sites. Reasons include the lack of automated measurement systems that are commercially available, and the need for frequent servicing to ensure accurate measurements. We have developed a multichannel automated chamber system that can be used for continuous measuring soil CO2 efflux during snow-free seasons. We installed the chamber systems in boreal forest in Alaska, tundra in west Siberia, temperate and cool-temperate forests in Japan and Korea, tropical seasonal forest in Thailand, and tropical rainforest in Malaysia. Annual soil CO2 efflux were measured to be about 5-6 tC ha-1 y-1 in the boreal and cool-temperate forests, 10 tC ha-1 y-1 in the temperate forests, and 26 tC ha-1 y-1 in the tropical rainforests. Efflux showed significant seasonality in the boreal and temperate forest that corresponding with the seasonal soil temperature. However, the wavelike efflux rates in the tropical forests were correlated with the seasonality of soil moisture. Soil CO2 efflux of forest ecosystems showed large spatial variation and was correlated with vegetation type and the chamber size.
Regional paleofire regimes affected by non-uniform climate, vegetation and human drivers
Blarquez, Olivier; Ali, Adam A.; Girardin, Martin P.; Grondin, Pierre; Fréchette, Bianca; Bergeron, Yves; Hély, Christelle
2015-01-01
Climate, vegetation and humans act on biomass burning at different spatial and temporal scales. In this study, we used a dense network of sedimentary charcoal records from eastern Canada to reconstruct regional biomass burning history over the last 7000 years at the scale of four potential vegetation types: open coniferous forest/tundra, boreal coniferous forest, boreal mixedwood forest and temperate forest. The biomass burning trajectories were compared with regional climate trends reconstructed from general circulation models, tree biomass reconstructed from pollen series, and human population densities. We found that non-uniform climate, vegetation and human drivers acted on regional biomass burning history. In the open coniferous forest/tundra and dense coniferous forest, the regional biomass burning was primarily shaped by gradual establishment of less climate-conducive burning conditions over 5000 years. In the mixed boreal forest an increasing relative proportion of flammable conifers in landscapes since 2000 BP contributed to maintaining biomass burning constant despite climatic conditions less favourable to fires. In the temperate forest, biomass burning was uncoupled with climatic conditions and the main driver was seemingly vegetation until European colonization, i.e. 300 BP. Tree biomass and thus fuel accumulation modulated fire activity, an indication that biomass burning is fuel-dependent and notably upon long-term co-dominance shifts between conifers and broadleaf trees. PMID:26330162
Fungal Community Shifts in Structure and Function across a Boreal Forest Fire Chronosequence
Santalahti, Minna; Pumpanen, Jukka; Köster, Kajar; Berninger, Frank; Raffaello, Tommaso; Jumpponen, Ari; Asiegbu, Fred O.; Heinonsalo, Jussi
2015-01-01
Forest fires are a common natural disturbance in forested ecosystems and have a large impact on the microbial communities in forest soils. The response of soil fungal communities to forest fire is poorly documented. Here, we investigated fungal community structure and function across a 152-year boreal forest fire chronosequence using high-throughput sequencing of the internal transcribed spacer 2 (ITS2) region and a functional gene array (GeoChip). Our results demonstrate that the boreal forest soil fungal community was most diverse soon after a fire disturbance and declined over time. The differences in the fungal communities were explained by changes in the abundance of basidiomycetes and ascomycetes. Ectomycorrhizal (ECM) fungi contributed to the increase in basidiomycete abundance over time, with the operational taxonomic units (OTUs) representing the genera Cortinarius and Piloderma dominating in abundance. Hierarchical cluster analysis by using gene signal intensity revealed that the sites with different fire histories formed separate clusters, suggesting differences in the potential to maintain essential biogeochemical soil processes. The site with the greatest biological diversity had also the most diverse genes. The genes involved in organic matter degradation in the mature forest, in which ECM fungi were the most abundant, were as common in the youngest site, in which saprotrophic fungi had a relatively higher abundance. This study provides insight into the impact of fire disturbance on soil fungal community dynamics. PMID:26341215
NASA Astrophysics Data System (ADS)
Novenko, E. Yu; Tsyganov, A. N.; Olchev, A. V.
2018-01-01
New multi-proxy records (pollen, testate amoebae, and charcoal) were applied to reconstruct the vegetation dynamics in the boreal forest area of the southern part of Valdai Hills (the Central Forest Biosphere Reserve) during the Holocene. The reconstructions of the mean annual temperature and precipitation, the climate moisture index (CMI), peatland surface moisture, and fire activity have shown that climate change has a significant impact on the boreal forests of European Russia. Temperature growth and decreased moistening during the warmest phases of the Holocene Thermal Maximum in 7.0-6.2 ka BP and 6.0-5.5 ka BP and in the relatively warm phase in 3.4-2.5 ka BP led to structural changes in plant communities, specifically an increase in the abundance of broadleaf tree species in forest stands and the suppression of Picea. The frequency of forest fires was higher in that period, and it resulted in the replacement of spruce forests by secondary stands with Betula and Pinus. Despite significant changes in the climatic parameters projected for the 21st century using even the optimistic RCP2.6 scenario, the time lag between climate changes and vegetation responses makes any catastrophic vegetation disturbances (due to natural reasons) in the area in the 21st century unlikely.
Dessureault, Pierre-Luc; Boucher, Jean-François; Tremblay, Pascal; Bouchard, Sylvie; Villeneuve, Claude
2015-07-01
Hydropower in boreal conditions is generally considered the energy source emitting the least greenhouse gas per kilowatt-hour during its life cycle. The purpose of this study was to assess the relative contribution of the land-use change on the modification of the carbon sinks and sources following the flooding of upland forested territories to create the Eastmain-1 hydroelectric reservoir in Quebec's boreal forest using Carbon Budget Model of the Canadian Forest Sector. Results suggest a carbon sink loss after 100 yr of 300,000 ± 100,000 Mg CO equivalents (COe). A wildfire sensitivity analysis revealed that the ecosystem would have acted as a carbon sink as long as <75% of the territory had burned over the 100-yr-long period. Our long-term net carbon flux estimate resulted in emissions of 4 ± 2 g COe kWh as a contribution to the carbon footprint calculation, one-eighth what was obtained in a recent study that used less precise and less sensitive estimates. Consequently, this study significantly reduces the reported net carbon footprint of this reservoir and reveals how negligible the relative contribution of the land-use change in upland forests to the total net carbon footprint of a hydroelectric reservoir in the boreal zone can be. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
E.S. Kane; J.G. Vogel
2009-01-01
To understand how carbon (C) pools in boreal ecosystems may change with warming, we measured above- and belowground C pools and C increment along a soil temperature gradient across 16 mature upland black spruce (Picea mariana Mill. [Bâ¢S.P]) forests in interior Alaska. Total spruce C stocks (stand and root C) increased from 1.3 to 8.5 kg C m
The role of fire in the boreal carbon budget
Harden, J.W.; Trumbore, S.E.; Stocks, B.J.; Hirsch, A.; Gower, S.T.; O'Neill, K. P.; Kasischke, E.S.
2000-01-01
To reconcile observations of decomposition rates, carbon inventories, and net primary production (NPP), we estimated long-term averages for C exchange in boreal forests near Thompson, Manitoba. Soil drainage as defined by water table, moss cover, and permafrost dynamics, is the dominant control on direct fire emissions. In upland forests, an average of about 10-30% of annual NPP was likely consumed by fire over the past 6500 years since these landforms and ecosystems were established. This long-term, average fire emission is much larger than has been accounted for in global C cycle models and may forecast an increase in fire activity for this region. While over decadal to century times these boreal forests may be acting as slight net sinks for C from the atmosphere to land, periods of drought and severe fire activity may result in net sources of C from these systems.
Controls over hydrocarbon emissions from boreal forest conifers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lerdau, M.; Litvak, M.; Monson, R.
1995-06-01
The emissions of monoterpenes and isoprene were measured from two species of conifers native to the boreal forest of Canada, jack pine, Pinus rigida, and black spruce, Picea Mariana. We examined the effects of phenology and needle age on the emissions of these compounds, and the variations in tissue concentrations of monoterpenes. We measured photosynthetic carbon uptake and hydrocarbon emissions at two sites in northern Saskatchewan under controlled light, temperatures, and CO{sub 2} concentrations, and analyzed carbon uptake rates using an infra-red gas analyzer and hydrocarbon emissions using a solid sorbent/thermal desorption system coupled to a gas chromatograph with amore » mass spectrometer. Our data indicate a strong effect of temperature and seasonality on emissions but only small effects of site conditions. These results suggest that regional models of hydrocarbon emissions from boreal forests should focus on temperature and phenology as the most important controlling variables.« less
NASA Astrophysics Data System (ADS)
Helbig, M.; Pappas, C.; Sonnentag, O.
2016-02-01
Boreal forests cover vast areas of the permafrost zones of North America, and changes in their composition and structure can lead to pronounced impacts on the regional and global climate. We partition the variation in regional boreal tree cover changes between 2000 and 2014 across the Taiga Plains, Canada, into its main causes: permafrost thaw, wildfire disturbance, and postfire regrowth. Moderate Resolution Imaging Spectroradiometer Percent Tree Cover (PTC) data are used in combination with maps of historic fires, and permafrost and drainage characteristics. We find that permafrost thaw is equally important as fire history to explain PTC changes. At the southern margin of the permafrost zone, PTC loss due to permafrost thaw outweighs PTC gain from postfire regrowth. These findings emphasize the importance of permafrost thaw in controlling regional boreal forest changes over the last decade, which may become more pronounced with rising air temperatures and accelerated permafrost thaw.
Modeling snow accumulation and ablation processes in forested environments
NASA Astrophysics Data System (ADS)
Andreadis, Konstantinos M.; Storck, Pascal; Lettenmaier, Dennis P.
2009-05-01
The effects of forest canopies on snow accumulation and ablation processes can be very important for the hydrology of midlatitude and high-latitude areas. A mass and energy balance model for snow accumulation and ablation processes in forested environments was developed utilizing extensive measurements of snow interception and release in a maritime mountainous site in Oregon. The model was evaluated using 2 years of weighing lysimeter data and was able to reproduce the snow water equivalent (SWE) evolution throughout winters both beneath the canopy and in the nearby clearing, with correlations to observations ranging from 0.81 to 0.99. Additionally, the model was evaluated using measurements from a Boreal Ecosystem-Atmosphere Study (BOREAS) field site in Canada to test the robustness of the canopy snow interception algorithm in a much different climate. Simulated SWE was relatively close to the observations for the forested sites, with discrepancies evident in some cases. Although the model formulation appeared robust for both types of climates, sensitivity to parameters such as snow roughness length and maximum interception capacity suggested the magnitude of improvements of SWE simulations that might be achieved by calibration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Genet, Helene; McGuire, A. David; Barrett, K.
There is a substantial amount of carbon stored in the permafrost soils of boreal forest ecosystems, where it is currently protected from decomposition. The surface organic horizons insulate the deeper soil from variations in atmospheric temperature. The removal of these insulating horizons through consumption by fire increases the vulnerability of permafrost to thaw, and the carbon stored in permafrost to decomposition. In this study we ask how warming and fire regime may influence spatial and temporal changes in active layer and carbon dynamics across a boreal forest landscape in interior Alaska. To address this question, we (1) developed and testedmore » a predictive model of the effect of fire severity on soil organic horizons that depends on landscape-level conditions and (2) used this model to evaluate the long-term consequences of warming and changes in fire regime on active layer and soil carbon dynamics of black spruce forests across interior Alaska. The predictive model of fire severity, designed from the analysis of field observations, reproduces the effect of local topography (landform category, the slope angle and aspect and flow accumulation), weather conditions (drought index, soil moisture) and fire characteristics (day of year and size of the fire) on the reduction of the organic layercaused by fire. The integration of the fire severity model into an ecosystem process-based model allowed us to document the relative importance and interactions among local topography, fire regime and climate warming on active layer and soil carbon dynamics. Lowlands were more resistant to severe fires and climate warming, showing smaller increases in active layer thickness and soil carbon loss compared to drier flat uplands and slopes. In simulations that included the effects of both warming and fire at the regional scale, fire was primarily responsible for a reduction in organic layer thickness of 0.06 m on average by 2100 that led to an increase in active layer thickness of 1.1 m on average by 2100. The combination of warming and fire led to a simulated cumulative loss of 9.6 kgC m 2 on average by 2100. Our analysis suggests that ecosystem carbon storage in boreal forests in interior Alaska is particularly vulnerable, primarily due to the combustion of organic layer thickness in fire and the related increase in active layer thickness that exposes previously protected permafrost soil carbon to decomposition.« less
Charney, Noah D; Babst, Flurin; Poulter, Benjamin; Record, Sydne; Trouet, Valerie M; Frank, David; Enquist, Brian J; Evans, Margaret E K
2016-09-01
Predicting long-term trends in forest growth requires accurate characterisation of how the relationship between forest productivity and climatic stress varies across climatic regimes. Using a network of over two million tree-ring observations spanning North America and a space-for-time substitution methodology, we forecast climate impacts on future forest growth. We explored differing scenarios of increased water-use efficiency (WUE) due to CO2 -fertilisation, which we simulated as increased effective precipitation. In our forecasts: (1) climate change negatively impacted forest growth rates in the interior west and positively impacted forest growth along the western, southeastern and northeastern coasts; (2) shifting climate sensitivities offset positive effects of warming on high-latitude forests, leaving no evidence for continued 'boreal greening'; and (3) it took a 72% WUE enhancement to compensate for continentally averaged growth declines under RCP 8.5. Our results highlight the importance of locally adapted forest management strategies to handle regional differences in growth responses to climate change. © 2016 John Wiley & Sons Ltd/CNRS.
Estimation of avian population sizes and species richness across a boreal landscape in Alaska
Handel, Colleen M.; Swanson, S.A.; Nigro, Debora A.; Matsuoka, S.M.
2009-01-01
We studied the distribution of birds breeding within five ecological landforms in Yukon-Charley Rivers National Preserve, a 10,194-km2 roadless conservation unit on the Alaska-Canada border in the boreal forest zone. Passerines dominated the avifauna numerically, comprising 97% of individuals surveyed but less than half of the 115 species recorded in the Preserve. We used distance-sampling and discrete-removal models to estimate detection probabilities, densities, and population sizes across the Preserve for 23 species of migrant passerines and five species of resident passerines. Yellow-rumped Warblers (Dendroica coronata) and Dark-eyed Juncos (Junco hyemalis) were the most abundant species, together accounting for 41% of the migrant passerine populations estimated. White-winged Crossbills (Loxia leucoptera), Boreal Chickadees (Poecile hudsonica), and Gray Jays (Perisoreus canadensis) were the most abundant residents. Species richness was greatest in the Floodplain/Terrace landform flanking the Yukon River but densities were highest in the Subalpine landform. Species composition was related to past glacial history and current physiography of the region and differed notably from other areas of the northwestern boreal forest. Point-transect surveys, augmented with auxiliary observations, were well suited to sampling the largely passerine avifauna across this rugged landscape and could be used across the boreal forest region to monitor changes in northern bird distribution and abundance. ?? 2009 The Wilson Ornithological Society.
Genet, H.; McGuire, Anthony David; Barrett, K.; Breen, A.; Euskirchen, E.S.; Johnstone, J.F.; Kasischke, E.S.; Melvin, A.M.; Bennett, A.; Mack, M.C.; Rupp, T.S.; Schuur, A.E.G.; Turetsky, M.R.; Yuan, F.
2013-01-01
There is a substantial amount of carbon stored in the permafrost soils of boreal forest ecosystems, where it is currently protected from decomposition. The surface organic horizons insulate the deeper soil from variations in atmospheric temperature. The removal of these insulating horizons through consumption by fire increases the vulnerability of permafrost to thaw, and the carbon stored in permafrost to decomposition. In this study we ask how warming and fire regime may influence spatial and temporal changes in active layer and carbon dynamics across a boreal forest landscape in interior Alaska. To address this question, we (1) developed and tested a predictive model of the effect of fire severity on soil organic horizons that depends on landscape-level conditions and (2) used this model to evaluate the long-term consequences of warming and changes in fire regime on active layer and soil carbon dynamics of black spruce forests across interior Alaska. The predictive model of fire severity, designed from the analysis of field observations, reproduces the effect of local topography (landform category, the slope angle and aspect and flow accumulation), weather conditions (drought index, soil moisture) and fire characteristics (day of year and size of the fire) on the reduction of the organic layer caused by fire. The integration of the fire severity model into an ecosystem process-based model allowed us to document the relative importance and interactions among local topography, fire regime and climate warming on active layer and soil carbon dynamics. Lowlands were more resistant to severe fires and climate warming, showing smaller increases in active layer thickness and soil carbon loss compared to drier flat uplands and slopes. In simulations that included the effects of both warming and fire at the regional scale, fire was primarily responsible for a reduction in organic layer thickness of 0.06 m on average by 2100 that led to an increase in active layer thickness of 1.1 m on average by 2100. The combination of warming and fire led to a simulated cumulative loss of 9.6 kgC m−2 on average by 2100. Our analysis suggests that ecosystem carbon storage in boreal forests in interior Alaska is particularly vulnerable, primarily due to the combustion of organic layer thickness in fire and the related increase in active layer thickness that exposes previously protected permafrost soil carbon to decomposition.
Mazziotta, Adriano; Pouzols, Federico Montesino; Mönkkönen, Mikko; Kotiaho, Janne S; Strandman, Harri; Moilanen, Atte
2016-09-15
Resource allocation to multiple alternative conservation actions is a complex task. A common trade-off occurs between protection of smaller, expensive, high-quality areas versus larger, cheaper, partially degraded areas. We investigate optimal allocation into three actions in boreal forest: current standard forest management rules, setting aside of mature stands, or setting aside of clear-cuts. We first estimated how habitat availability for focal indicator species and economic returns from timber harvesting develop through time as a function of forest type and action chosen. We then developed an optimal resource allocation by accounting for budget size and habitat availability of indicator species in different forest types. We also accounted for the perspective adopted towards sustainability, modeled via temporal preference and economic and ecological time discounting. Controversially, we found that in boreal forest set-aside followed by protection of clear-cuts can become a winning cost-effective strategy when accounting for habitat requirements of multiple species, long planning horizon, and limited budget. It is particularly effective when adopting a long-term sustainability perspective, and accounting for present revenues from timber harvesting. The present analysis assesses the cost-effective conditions to allocate resources into an inexpensive conservation strategy that nevertheless has potential to produce high ecological values in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.
Liu, Zhihua
2016-11-18
Understanding the influence of climate variability and fire characteristics in shaping postfire vegetation recovery will help to predict future ecosystem trajectories in boreal forests. In this study, I asked: (1) which remotely-sensed vegetation index (VI) is a good proxy for vegetation recovery? and (2) what are the relative influences of climate and fire in controlling postfire vegetation recovery in a Siberian larch forest, a globally important but poorly understood ecosystem type? Analysis showed that the shortwave infrared (SWIR) VI is a good indicator of postfire vegetation recovery in boreal larch forests. A boosted regression tree analysis showed that postfire recovery was collectively controlled by processes that controlled seed availability, as well as by site conditions and climate variability. Fire severity and its spatial variability played a dominant role in determining vegetation recovery, indicating seed availability as the primary mechanism affecting postfire forest resilience. Environmental and immediate postfire climatic conditions appear to be less important, but interact strongly with fire severity to influence postfire recovery. If future warming and fire regimes manifest as expected in this region, seed limitation and climate-induced regeneration failure will become more prevalent and severe, which may cause forests to shift to alternative stable states.
Liu, Zhihua
2016-01-01
Understanding the influence of climate variability and fire characteristics in shaping postfire vegetation recovery will help to predict future ecosystem trajectories in boreal forests. In this study, I asked: (1) which remotely-sensed vegetation index (VI) is a good proxy for vegetation recovery? and (2) what are the relative influences of climate and fire in controlling postfire vegetation recovery in a Siberian larch forest, a globally important but poorly understood ecosystem type? Analysis showed that the shortwave infrared (SWIR) VI is a good indicator of postfire vegetation recovery in boreal larch forests. A boosted regression tree analysis showed that postfire recovery was collectively controlled by processes that controlled seed availability, as well as by site conditions and climate variability. Fire severity and its spatial variability played a dominant role in determining vegetation recovery, indicating seed availability as the primary mechanism affecting postfire forest resilience. Environmental and immediate postfire climatic conditions appear to be less important, but interact strongly with fire severity to influence postfire recovery. If future warming and fire regimes manifest as expected in this region, seed limitation and climate-induced regeneration failure will become more prevalent and severe, which may cause forests to shift to alternative stable states. PMID:27857204
NASA Technical Reports Server (NTRS)
Busilacchio, Marcella; Di Carlo, Piero; Aruffo, Eleonora; Biancofiore, Fabio; Salisburgo, Cesare Dari; Giammaria, Franco; Bauguitte, Stephane; Lee, James; Moller, Sarah; Hopkins, James;
2016-01-01
The observations collected during the BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS) campaign in summer 2011 over Canada are analysed to study the impact of forest fire emissions on the formation of ozone (O3 and total peroxy nitrates (sigma)PNs, (sigma)ROONO2. The suite of measurements on board the BAe-146 aircraft, deployed in this campaign, allows us to calculate the production of O3 and of (sigma)PNs, a long-lived NOx reservoir whose concentration is supposed to be impacted by biomass burning emissions.In fire plumes, profiles of carbon monoxide (CO), which is a well-established tracer of pyrogenic emission, show concentration enhancements that are in strong correspondence with a significant increase of concentrations of (sigma)PNs, where as minimal increase of the concentrations of O3 and NO2 is observed. The (sigma)PN and O3 productions have been calculated using the rate constants of the first- and second-order react Pions of volatile organic compound (VOC) oxidation. The (sigma)PN and O3 productions have also been quantified by 0-D model simulation based on the Master Chemical Mechanism. Both methods show that in fire plumes the average production of (sigma)PNs and O3 are greater than in the background plumes, but the increase of (sigma)PN production is more pronounced than the O3 production. The average (sigma)PN production in fire plumes is from 7 to 12 times greater than in the background, whereas the average O3 production in fire plumes is from 2 to 5 times greater than in the background. These results suggest that, at least for boreal forest fires and for the measurements recorded during the BORTAS campaign,fire emissions impact both the oxidized NOy and O3;but (1)(sigma)PN production is amplified significantly more thanO3 production and (2) in the forest fire plumes the ratio between the O3 production and the (sigma)PN production is lower than the ratio evaluated in the background air masses, thus confirming that the role played by the (sigma)PNs produced during biomass burning is significant in the O3 budget. The implication of these observations is that fire emissions in some cases, for example boreal forest fires and in the conditions reported here, may influence more long-lived precursors of O3than short-lived pollutants, which in turn can be transported and eventually diluted in a wide area.
AVIRIS Land-Surface Mapping in Support of the Boreal Ecosystem-Atmosphere Study
NASA Technical Reports Server (NTRS)
Green, R.; Roberts, D.; Gamon, J.; Keightley, K.; Prentiss, D.; Reith, E.
2000-01-01
A key scientific objective of the original BOREAS field campaign (1993-1996) was to obtain the baseline data required for modeling and predicting fluxes of energy, mass and trace gases in the boreal forest biome.
Modeling nonlinear responses of DOC transport in boreal catchments in Sweden
NASA Astrophysics Data System (ADS)
Kasurinen, Ville; Alfredsen, Knut; Ojala, Anne; Pumpanen, Jukka; Weyhenmeyer, Gesa A.; Futter, Martyn N.; Laudon, Hjalmar; Berninger, Frank
2016-07-01
Stream water dissolved organic carbon (DOC) concentrations display high spatial and temporal variation in boreal catchments. Understanding and predicting these patterns is a challenge with great implications for water quality projections and carbon balance estimates. Although several biogeochemical models have been used to estimate stream water DOC dynamics, model biases common during both rain and snow melt-driven events. The parsimonious DOC-model, K-DOC, with 10 calibrated parameters, uses a nonlinear discharge and catchment water storage relationship including soil temperature dependencies of DOC release and consumption. K-DOC was used to estimate the stream water DOC concentrations over 5 years for eighteen nested boreal catchments having total area of 68 km2 (varying from 0.04 to 67.9 km2). The model successfully simulated DOC concentrations during base flow conditions, as well as, hydrological events in catchments dominated by organic and mineral soils reaching NSEs from 0.46 to 0.76. Our semimechanistic model was parsimonious enough to have all parameters estimated using statistical methods. We did not find any clear differences between forest and mire-dominated catchments that could be explained by soil type or tree species composition. However, parameters controlling slow release and consumption of DOC from soil water behaved differently for small headwater catchments (less than 2 km2) than for those that integrate larger areas of different ecosystem types (10-68 km2). Our results emphasize that it is important to account for nonlinear dependencies of both, soil temperature, and catchment water storage, when simulating DOC dynamics of boreal catchments.
Murray, Dennis L.; Peers, Michael J. L.; Majchrzak, Yasmine N.; Wehtje, Morgan; Ferreira, Catarina; Pickles, Rob S. A.; Row, Jeffrey R.; Thornton, Daniel H.
2017-01-01
Climate change threatens natural landscapes through shifting distribution and abundance of species and attendant change in the structure and function of ecosystems. However, it remains unclear how climate-mediated variation in species’ environmental niche space may lead to large-scale fragmentation of species distributions, altered meta-population dynamics and gene flow, and disrupted ecosystem integrity. Such change may be especially relevant when species distributions are restricted either spatially or to a narrow environmental niche, or when environments are rapidly changing. Here, we use range-wide environmental niche models to posit that climate-mediated range fragmentation aggravates the direct effects of climate change on species in the boreal forest of North America. We show that climate change will directly alter environmental niche suitability for boreal-obligate species of trees, birds and mammals (n = 12), with most species ranges becoming smaller and shifting northward through time. Importantly, species distributions will become increasingly fragmented, as characterized by smaller mean size and greater isolation of environmentally-suitable landscape patches. This loss is especially pronounced along the Ontario-Québec border, where the boreal forest is narrowest and roughly 78% of suitable niche space could disappear by 2080. Despite the diversity of taxa surveyed, patterns of range fragmentation are remarkably consistent, with our models predicting that spruce grouse (Dendragapus canadensis), boreal chickadee (Poecile hudsonicus), moose (Alces americanus) and caribou (Rangifer tarandus) could have entirely disjunct east-west population segments in North America. These findings reveal potentially dire consequences of climate change on population continuity and species diversity in the boreal forest, highlighting the need to better understand: 1) extent and primary drivers of anticipated climate-mediated range loss and fragmentation; 2) diversity of species to be affected by such change; 3) potential for rapid adaptation in the most strongly-affected areas; and 4) potential for invasion by replacement species. PMID:28505173
Murray, Dennis L; Peers, Michael J L; Majchrzak, Yasmine N; Wehtje, Morgan; Ferreira, Catarina; Pickles, Rob S A; Row, Jeffrey R; Thornton, Daniel H
2017-01-01
Climate change threatens natural landscapes through shifting distribution and abundance of species and attendant change in the structure and function of ecosystems. However, it remains unclear how climate-mediated variation in species' environmental niche space may lead to large-scale fragmentation of species distributions, altered meta-population dynamics and gene flow, and disrupted ecosystem integrity. Such change may be especially relevant when species distributions are restricted either spatially or to a narrow environmental niche, or when environments are rapidly changing. Here, we use range-wide environmental niche models to posit that climate-mediated range fragmentation aggravates the direct effects of climate change on species in the boreal forest of North America. We show that climate change will directly alter environmental niche suitability for boreal-obligate species of trees, birds and mammals (n = 12), with most species ranges becoming smaller and shifting northward through time. Importantly, species distributions will become increasingly fragmented, as characterized by smaller mean size and greater isolation of environmentally-suitable landscape patches. This loss is especially pronounced along the Ontario-Québec border, where the boreal forest is narrowest and roughly 78% of suitable niche space could disappear by 2080. Despite the diversity of taxa surveyed, patterns of range fragmentation are remarkably consistent, with our models predicting that spruce grouse (Dendragapus canadensis), boreal chickadee (Poecile hudsonicus), moose (Alces americanus) and caribou (Rangifer tarandus) could have entirely disjunct east-west population segments in North America. These findings reveal potentially dire consequences of climate change on population continuity and species diversity in the boreal forest, highlighting the need to better understand: 1) extent and primary drivers of anticipated climate-mediated range loss and fragmentation; 2) diversity of species to be affected by such change; 3) potential for rapid adaptation in the most strongly-affected areas; and 4) potential for invasion by replacement species.
BOREAS TE-22 Allometric Forest Survey Data
NASA Technical Reports Server (NTRS)
Shugart, H. H.; Nielsen, Eric; Hall, Forrest G. (Editor); Papagno, Andrea (Editor)
2000-01-01
The Boreal Ecosystem-Atmospheric Study (BOREAS) TE-22 (Terrestrial Ecology) team collected data sets in support of its efforts to characterize and interpret information on the forest structure of boreal vegetation in the Southern and Northern Study Areas (SSA and NSA) during the 1994 growing season. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).
Total peroxy nitrates and ozone production : analysis of forest fire plumes during BORTAS campaign
NASA Astrophysics Data System (ADS)
Busilacchio, Marcella; Di Carlo, Piero; Aruffo, Eleonora; Biancofiore, Fabio; Giammaria, Franco; Bauguitte, Stephane; Lee, James; Moller, Sarah; Lewis, Ally; Parrington, Mark; Palmer, Paul; Dari Salisburgo, Cesare
2014-05-01
The goal of this work is to investigate the connection between PNS and ozone within plumes emitted from boreal forest fires and the possible perturbation to oxidant chemistry in the troposphere. During the Aircraft campaign in Canada called BORTAS (summer 2011 ) were carried out several profiles from ground up to 10 km with the BAe-146 aircraft to observe the atmospheric composition inside and outside fire plumes. The BORTAS flights have been selected based on the preliminary studies of 'Plume identification', selecting those effected by Boreal forest fire emissions (CO > 200 ppbv). The FLAMBE fire counts were used concertedly with back trajectory calculations generated by the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model to locate the sources of Boreal biomass burning.Profiles measured on board the BAe-146 aircraft are used to calculate the productions of PNs and O3 within the biomass burning plume. By selecting the flights that intercept the biomass burning plume, we evaluate the ratio between the ozone production and the PNs production within the plume. Analyzing this ratio it is possible to determine whether O3 production or PNs production is the dominant process in the biomass burning boreal plume detected during BORTAS campaign.
Applications of Principled Search Methods in Climate Influences and Mechanisms
NASA Technical Reports Server (NTRS)
Glymour, Clark
2005-01-01
Forest and grass fires cause economic losses in the billions of dollars in the U.S. alone. In addition, boreal forests constitute a large carbon store; it has been estimated that, were no burning to occur, an additional 7 gigatons of carbon would be sequestered in boreal soils each century. Effective wildfire suppression requires anticipation of locales and times for which wildfire is most probable, preferably with a two to four week forecast, so that limited resources can be efficiently deployed. The United States Forest Service (USFS), and other experts and agencies have developed several measures of fire risk combining physical principles and expert judgment, and have used them in automated procedures for forecasting fire risk. Forecasting accuracies for some fire risk indices in combination with climate and other variables have been estimated for specific locations, with the value of fire risk index variables assessed by their statistical significance in regressions. In other cases, the MAPSS forecasts [23, 241 for example, forecasting accuracy has been estimated only by simulated data. We describe alternative forecasting methods that predict fire probability by locale and time using statistical or machine learning procedures trained on historical data, and we give comparative assessments of their forecasting accuracy for one fire season year, April- October, 2003, for all U.S. Forest Service lands. Aside from providing an accuracy baseline for other forecasting methods, the results illustrate the interdependence between the statistical significance of prediction variables and the forecasting method used.
Potential climate change impacts on fire intensity and key wildfire suppression thresholds in Canada
NASA Astrophysics Data System (ADS)
Wotton, B. M.; Flannigan, M. D.; Marshall, G. A.
2017-09-01
Much research has been carried out on the potential impacts of climate change on forest fire activity in the boreal forest. Indeed, there is a general consensus that, while change will vary regionally across the vast extent of the boreal, in general the fire environment will become more conducive to fire. Land management agencies must consider ways to adapt to these new conditions. This paper examines the impact of that changed fire environment on overall wildfire suppression capability. We use multiple General Circulation Models and carbon emission pathways to generate future fire environment scenarios for Canada’s forested region. We then use these scenarios with the Canadian Forest Fire Behaviour Prediction System and spatial coverages of the current forest fuel composition across the landscape to examine potential variation in key fire behaviour outputs that influence whether fire management resources can effectively suppress fire. Specifically, we evaluate how the potential for crown fire occurrence and active growth of fires changes with the changing climate. We also examine future fire behaviour through the lens of operational fire intensity thresholds used to guide decisions about resources effectiveness. Results indicate that the proportion of days in fire seasons with the potential for unmanageable fire will increase across Canada’s forest, more than doubling in some regions in northern and eastern boreal forest.
Scaling Hydrologic Processes in Boreal Forest Stands: New Eco-hydrological Perspectives or Deja vu?
NASA Astrophysics Data System (ADS)
Silins, U.; Lieffers, V. J.; Landhausser, S. M.; Mendoza, C. A.; Devito, K. J.; Petrone, R. M.; Gan, T. Y.
2006-12-01
The leaf area of forest canopies is both main attribute of stands controlling water balance through transpiration and interception, and "engine" driving stand growth, stand dynamics, and forest succession. While transpiration and interception dynamics are classic themes in forest hydrology, we present results from our eco-hydrological research on boreal trees to highlight how more recent eco-physiological insights into species specific controls over water use and leaf area such as hydraulic architecture, cavitation, sapwood-leaf area relationships, and root system controls over water uptake are providing new insights into integrated atmospheric-autecological controls over these hydrologic processes. These results are discussed in the context of newer eco-hydrological frameworks which may serve to aid in exploring how forest disturbance and subsequent trajectories of hydrologic recovery are likely to affect both forest growth dynamics and hydrology of forested landscapes in response to forest management, severe forest pest epidemics such as the Mountain Pine Beetle epidemic in Western Canada, and climate change.
NASA Astrophysics Data System (ADS)
Williams, J.; Crowley, J.; Fischer, H.; Harder, H.; Martinez, M.; Petäjä, T.; Rinne, J.; Bäck, J.; Boy, M.; Dal Maso, M.; Hakala, J.; Kajos, M.; Keronen, P.; Rantala, P.; Aalto, J.; Aaltonen, H.; Paatero, J.; Vesala, T.; Hakola, H.; Levula, J.; Pohja, T.; Herrmann, F.; Auld, J.; Mesarchaki, E.; Song, W.; Yassaa, N.; Nölscher, A.; Johnson, A. M.; Custer, T.; Sinha, V.; Thieser, J.; Pouvesle, N.; Taraborrelli, D.; Tang, M. J.; Bozem, H.; Hosaynali-Beygi, Z.; Axinte, R.; Oswald, R.; Novelli, A.; Kubistin, D.; Hens, K.; Javed, U.; Trawny, K.; Breitenberger, C.; Hidalgo, P. J.; Ebben, C. J.; Geiger, F. M.; Corrigan, A. L.; Russell, L. M.; Ouwersloot, H. G.; Vilà-Guerau de Arellano, J.; Ganzeveld, L.; Vogel, A.; Beck, M.; Bayerle, A.; Kampf, C. J.; Bertelmann, M.; Köllner, F.; Hoffmann, T.; Valverde, J.; González, D.; Riekkola, M.-L.; Kulmala, M.; Lelieveld, J.
2011-10-01
This paper describes the background, instrumentation, goals, and the regional influences on the HUMPPA-COPEC intensive field measurement campaign, conducted at the Boreal forest research station SMEAR II (Station for Measuring Ecosystem-Atmosphere Relation) in Hyytiälä, Finland from 12 July-12 August 2010. The prevailing meteorological conditions during the campaign are examined and contrasted with those of the past six years. Back trajectory analyses show that meteorological conditions at the site in 2010 were characterized by a higher proportion of southerly flow than in the other years studied. As a result the summer of 2010 was anomalously warm and high in ozone making the campaign relevant for the analysis of possible future climates. A comprehensive land use analysis, provided on both 5 and 50 km scales, shows that the main vegetation types surrounding the site on both the regional and local scales are: coniferous forest (Scots pine and/or Norway spruce); mixed forest (Birch and conifers); and woodland scrub (e.g. Willows, Aspen); indicating that the campaign results can be taken as representative of the Boreal forest ecosystem. In addition to the influence of biogenic emissions, the measurement site was occasionally impacted by sources other than vegetation. Specific tracers have been used here to identify the time periods when such sources have impacted the site namely: biomass burning (acetonitrile and CO), urban anthropogenic pollution (pentane and SO2) and the nearby Korkeakoski sawmill (enantiomeric ratio of chiral monoterpenes). None of these sources dominated the study period, allowing the Boreal forest summertime emissions to be assessed and contrasted with various other source signatures.
NASA Astrophysics Data System (ADS)
Williams, J.; Petäjä, T.
2012-04-01
This submission describes the background, instrumentation, goals, and the regional influences on the HUMPPA-COPEC intensive field measurement campaign, conducted at the Boreal forest research station SMEAR II (Station for Measuring Ecosystem-Atmosphere Relation) in Hyytiälä, Finland from 12th July-12th August 2010. The prevailing meteorological conditions during the campaign are examined and contrasted with those of the past six years. Back trajectory analyses show that meteorological conditions at the site in 2010 were characterized by a higher proportion of southerly flow than in the other years studied. As a result the summer of 2010 was anomalously warm and high in ozone making the campaign relevant for the analysis of possible future climates. A comprehensive land use analysis, provided on both 5 and 50 km scales, shows that the main vegetation types surrounding the site on both the regional and local scales are: coniferous forest (Scots pine and/or Norway spruce); mixed forest (Birch and conifers); and woodland scrub (e.g. Willows, Aspen); indicating that the campaign results can be taken as representative of the Boreal forest ecosystem. In addition to the influence of biogenic emissions, the measurement site was occasionally impacted by sources other than vegetation. Specific tracers have been used here to identify the time periods when such sources have impacted the site namely: biomass burning (acetonitrile and CO), urban anthropogenic pollution (pentane and SO2) and the nearby Korkeakoski sawmill (enantiomeric ratio of chiral monoterpenes). None of these sources dominated the study period, allowing the Boreal forest summertime emissions to be assessed and contrasted with various other source signatures.
Is the northern high latitude land-based CO2 sink weakening?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mcguire, David; Kicklighter, David W.; Gurney, Kevin R
2011-01-01
Studies indicate that, historically, terrestrial ecosystems of the northern high latitude region may have been responsible for up to 60% of the global net land-based sink for atmospheric CO2. However, these regions have recently experienced remarkable modification of the major driving forces of the carbon cycle, including surface air temperature warming that is significantly greater than the global average and associated increases in the frequency and severity of disturbances. Whether arctic tundra and boreal forest ecosystems will continue to sequester atmospheric CO2 in the face of these dramatic changes is unknown. Here we show the results of model simulations thatmore » estimate a 41 Tg C yr-1 sink in the boreal land regions from 1997 to 2006, which represents a 73% reduction in the strength of the sink estimated for previous decades in the late 20th Century. Our results suggest that CO2 uptake by the region in previous decades may not be as strong as previously estimated. The recent decline in sink strength is the combined result of 1) weakening sinks due to warming-induced increases in soil organic matter decomposition and 2) strengthening sources from pyrogenic CO2 emissions as a result of the substantial area of boreal forest burned in wildfires across the region in recent years. Such changes create positive feedbacks to the climate system that accelerate global warming, putting further pressure on emission reductions to achieve atmospheric stabilization targets.« less
Is the northern high-latitude land-based CO2 sink weakening?
Hayes, D.J.; McGuire, A.D.; Kicklighter, D.W.; Gurney, K.R.; Burnside, T.J.; Melillo, J.M.
2011-01-01
Studies indicate that, historically, terrestrial ecosystems of the northern high-latitude region may have been responsible for up to 60% of the global net land-based sink for atmospheric CO2. However, these regions have recently experienced remarkable modification of the major driving forces of the carbon cycle, including surface air temperature warming that is significantly greater than the global average and associated increases in the frequency and severity of disturbances. Whether Arctic tundra and boreal forest ecosystems will continue to sequester atmospheric CO2 in the face of these dramatic changes is unknown. Here we show the results of model simulations that estimate a 41 Tg C yr-1 sink in the boreal land regions from 1997 to 2006, which represents a 73% reduction in the strength of the sink estimated for previous decades in the late 20th century. Our results suggest that CO 2 uptake by the region in previous decades may not be as strong as previously estimated. The recent decline in sink strength is the combined result of (1) weakening sinks due to warming-induced increases in soil organic matter decomposition and (2) strengthening sources from pyrogenic CO2 emissions as a result of the substantial area of boreal forest burned in wildfires across the region in recent years. Such changes create positive feedbacks to the climate system that accelerate global warming, putting further pressure on emission reductions to achieve atmospheric stabilization targets. Copyright 2011 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Blichner, Sara Marie; Koren Berntsen, Terje; Stordal, Frode
2017-04-01
As our understanding of the earth system improves, it is becoming increasingly clear that vegetation and ecosystems are not only influenced by the atmosphere, but that changes in these also feed back to the atmosphere and induce changes here. One such feedback involves the emission of biogenic volatile organic compounds (BVOCs) emitted from vegetation. As BVOCs are oxidized, they become less volatile and contribute to aerosol growth and formation in the atmosphere, and can thus change the radiative balance of the atmosphere through both the direct and indirect aerosol effects. The amount and type of BVOCs emitted by vegetation depends on a myriad of variables; temperature, leaf area index (LAI), species, water availability and various types of stress (e.g. insects attacks). They generally increase with higher temperatures and under stress. These factors beg the question of how emissions will change in the future in response to both temperature increase and changes to vegetation patterns and densities. The boreal region is of particular interest because forest cover in general has been thought to have a warming effect due to trees reducing the albedo, especially when snow covers the ground. We investigate feedbacks through BVOC emissions related to the expected northward expansion of boreal forests in response to global warming with a development version of the Norwegian Earth System Model (NorESM). BVOC emissions are computed by the Model of Emissions of Gases and Aerosols from Nature 2.1 (MEGAN2.1) which is incorporated into the Community Land Model v4.5 (CLM4.5). The atmospheric component is CAM5.3-Oslo. We will present preliminary results of effects on clouds and aerosol concentrations resulting from a fixed poleward shift in boreal forests and compare the radiative effects of this to changes in surface energy fluxes. CO2-concentrations and sea surface temperatures are kept fixed in order to isolate the effects of the change in vegetation patterns. Finally, these results are compared to simulations of a future climate (corresponding to 2xCO2-concentrations) both with present-day and shifted vegetation patterns.
Regulation of Boreal soil respiration: evidence from a Swedish forest fire chronosequence.
NASA Astrophysics Data System (ADS)
Mason, Kelly; Oakley, Simon; Ostle, Nicholas; DeLuca, Thomas; Arróniz-Crespo, María; Jones, Davey
2014-05-01
Globally, boreal forests occupy 14% of total land surface and are important regions for biogeochemical cycling of carbon (C) and nitrogen (N)1. They are recognised as stores of terrestrial C and reservoirs of uniquely adapted biodiversity. Like many forest biomes, boreal forests are under pressure from climate change and growing populations. C and N cycling in the boreal region is strongly influenced by the occurrence of forest fires, which return large amounts of stored N back into an otherwise N limited system2. The frequency and intensity of boreal forest fires is expected to increase in the next century as the global atmosphere warms and N deposition continues to increase due to human activities3,4. Despite the importance of these ecosystems, there is limited knowledge of the effects of interactions between climate and N limitation on soil respiration and feedbacks of carbon dioxide (CO2) and other greenhouse gases (GHGs) to the atmosphere. In this research we aimed to improve understanding of how changes in the frequency and intensity of fires might alter N and C dynamics in the boreal region. Specifically, we examined the degree of N limitation and the temperature sensitivity of GHG (CO2, N2O and CH4) fluxes from soils underlying carpets of Pleurozium schreberi, a feather moss known to form important symbiotic relationships with N-fixing cyanobacteria1, from a fire chronosequence of Swedish boreal forest stands. We hypothesised that: (1) soil respiration in late succession ecosystems is most N limited due to high soil C:N ratios and high microbial biomass; and (2) early succession forest soil respiration is most temperature sensitive due to higher N availability and higher bacterial biomass. To test these hypotheses, we took soil cores from a chronosequence of six sites in the northern boreal region of Sweden, including two early, two mid, and two late succession stands. These sites are dominated by mixed Pinus sylvestris and Picea abies, with an understory dominated by ericaceous dwarf shrubs and feather mosses. Soil properties including microbial community composition, C:N, pH, and extractable NH4and NO3 were measured and two microcosm experiments were conducted on cores incubated under controlled conditions. In the first experiment, ammonium nitrate (NH4NO3) fertilizer was applied and the dose-response of GHG emissions was measured over several weeks. Differences in fluxes between sites were observed in response to N additions, with greatest differences in N2O emissions compared to CH4 and CO2. In a second experiment, respiration was analysed from cores incubated at different temperatures over two weeks and Q10 values were calculated for the different sites. Q10 values obtained were approximately 2.5-3.5, indicating higher sensitivity to rising temperatures in these soils than predicted in most climate models5. We will present how these differences in N limitation and temperature sensitivity are driven by differences in soil properties along the chronosequence. References 1 DeLuca et al. 2002. Nature. 419. 2 Zackrisson et al. 2004. Ecology. 85. 3 Friedlingstein et al. 2006. JClimate. 19. 4 Dentener et al. 2006. Global Biogeochem Cy. 20. 5 Kilpeläinen et al. 2010. Climatic Change. 103.
Madis Sipols
1998-01-01
Systematic assessment and observation (survey, inventory) of forests in Latvia has been underway since the 1700's. Latvia's forests are in the boreal/temperate forest zone and cover 44 percent of the country. Forest growing conditions are subdivided into five site class types: forests on dry mineral, wet mineral, wet peat, drained mineral, drained peat soils...
John A. Stanturf
2005-01-01
The need to repair habitat and restore forest structure and funciton is recognized throughout the temperate and boreal zones as a component of sustainable forest management (Krishnaswamy and Hanson 1999; Dobson et al. 1997). Forest restoration is a complex task, complicated by diverse ecological and social conditions, that challenges our understanding of forest...
Modeling the disturbance of vegetation by fire in the boreal forest
NASA Astrophysics Data System (ADS)
Crevoisier, C.; Shevliakova, E.; Gloor, M.; Wirth, C.
2006-12-01
Boreal regions are important for the global carbon cycle because it is the largest forested area on earth and there are large belowground carbon pools (~1000 PgC). It is also a region where largest warming trends on the globe over the last decades have been observed and changes of the land ecosystems have already started. A major factor that determines the structure and carbon dynamics of the boreal forest is fire. As fire frequency depends strongly on climate, increased fire occurrence and related losses to the atmosphere are likely, and have already been reported. In order to predict with more confidence the occurrence and effect of fire on forest ecosystems in the boreal region, we have developed a fire model that takes advantage of the large on-ground, remote sensing and climate data from Canada, Alaska and Siberia. This prognostic model estimates the monthly burned area in a grid cell of 2 by 2.5 degrees, from four climate (air temperature, air relative humidity, precipitation and soil water content) and one human-related (road density) variables. Parameters are estimated using a Markov Chain Monte Carlo method applied to a dataset of observed burned area for Canada. The model is able to reproduce the seasonality of fire, the interannual variability, as well as the location of fire events, not only for Canada (on which data the model is based), but also for Siberia and Alaska, for which the results compare well with remote sensing observation, and are in the range of various current estimations of burned area. The fire model is being implemented in LM3V, the new vegetation model of GFDL earth system model, in order to make prediction of future fire behavior in boreal regions, and the related disturbance of the vegetation and carbon emissions.
Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years
Kelly, Ryan; Chipman, Melissa L.; Higuera, Philip E.; Stefanova, Ivanka; Brubaker, Linda B.; Hu, Feng Sheng
2013-01-01
Wildfire activity in boreal forests is anticipated to increase dramatically, with far-reaching ecological and socioeconomic consequences. Paleorecords are indispensible for elucidating boreal fire regime dynamics under changing climate, because fire return intervals and successional cycles in these ecosystems occur over decadal to centennial timescales. We present charcoal records from 14 lakes in the Yukon Flats of interior Alaska, one of the most flammable ecoregions of the boreal forest biome, to infer causes and consequences of fire regime change over the past 10,000 y. Strong correspondence between charcoal-inferred and observational fire records shows the fidelity of sedimentary charcoal records as archives of past fire regimes. Fire frequency and area burned increased ∼6,000–3,000 y ago, probably as a result of elevated landscape flammability associated with increased Picea mariana in the regional vegetation. During the Medieval Climate Anomaly (MCA; ∼1,000–500 cal B.P.), the period most similar to recent decades, warm and dry climatic conditions resulted in peak biomass burning, but severe fires favored less-flammable deciduous vegetation, such that fire frequency remained relatively stationary. These results suggest that boreal forests can sustain high-severity fire regimes for centuries under warm and dry conditions, with vegetation feedbacks modulating climate–fire linkages. The apparent limit to MCA burning has been surpassed by the regional fire regime of recent decades, which is characterized by exceptionally high fire frequency and biomass burning. This extreme combination suggests a transition to a unique regime of unprecedented fire activity. However, vegetation dynamics similar to feedbacks that occurred during the MCA may stabilize the fire regime, despite additional warming. PMID:23878258
Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years.
Kelly, Ryan; Chipman, Melissa L; Higuera, Philip E; Stefanova, Ivanka; Brubaker, Linda B; Hu, Feng Sheng
2013-08-06
Wildfire activity in boreal forests is anticipated to increase dramatically, with far-reaching ecological and socioeconomic consequences. Paleorecords are indispensible for elucidating boreal fire regime dynamics under changing climate, because fire return intervals and successional cycles in these ecosystems occur over decadal to centennial timescales. We present charcoal records from 14 lakes in the Yukon Flats of interior Alaska, one of the most flammable ecoregions of the boreal forest biome, to infer causes and consequences of fire regime change over the past 10,000 y. Strong correspondence between charcoal-inferred and observational fire records shows the fidelity of sedimentary charcoal records as archives of past fire regimes. Fire frequency and area burned increased ∼6,000-3,000 y ago, probably as a result of elevated landscape flammability associated with increased Picea mariana in the regional vegetation. During the Medieval Climate Anomaly (MCA; ∼1,000-500 cal B.P.), the period most similar to recent decades, warm and dry climatic conditions resulted in peak biomass burning, but severe fires favored less-flammable deciduous vegetation, such that fire frequency remained relatively stationary. These results suggest that boreal forests can sustain high-severity fire regimes for centuries under warm and dry conditions, with vegetation feedbacks modulating climate-fire linkages. The apparent limit to MCA burning has been surpassed by the regional fire regime of recent decades, which is characterized by exceptionally high fire frequency and biomass burning. This extreme combination suggests a transition to a unique regime of unprecedented fire activity. However, vegetation dynamics similar to feedbacks that occurred during the MCA may stabilize the fire regime, despite additional warming.
He, Y.; Zhuang, Q.; Harden, Jennifer W.; McGuire, A. David; Fan, Z.; Liu, Y.; Wickland, Kimberly P.
2014-01-01
The large amount of soil carbon in boreal forest ecosystems has the potential to influence the climate system if released in large quantities in response to warming. Thus, there is a need to better understand and represent the environmental sensitivity of soil carbon decomposition. Most soil carbon decomposition models rely on empirical relationships omitting key biogeochemical mechanisms and their response to climate change is highly uncertain. In this study, we developed a multi-layer microbial explicit soil decomposition model framework for boreal forest ecosystems. A thorough sensitivity analysis was conducted to identify dominating biogeochemical processes and to highlight structural limitations. Our results indicate that substrate availability (limited by soil water diffusion and substrate quality) is likely to be a major constraint on soil decomposition in the fibrous horizon (40–60% of soil organic carbon (SOC) pool size variation), while energy limited microbial activity in the amorphous horizon exerts a predominant control on soil decomposition (>70% of SOC pool size variation). Elevated temperature alleviated the energy constraint of microbial activity most notably in amorphous soils, whereas moisture only exhibited a marginal effect on dissolved substrate supply and microbial activity. Our study highlights the different decomposition properties and underlying mechanisms of soil dynamics between fibrous and amorphous soil horizons. Soil decomposition models should consider explicitly representing different boreal soil horizons and soil–microbial interactions to better characterize biogeochemical processes in boreal forest ecosystems. A more comprehensive representation of critical biogeochemical mechanisms of soil moisture effects may be required to improve the performance of the soil model we analyzed in this study.
On the relationship between boreal forest browning and tree mortality: insights from Alaska
NASA Astrophysics Data System (ADS)
Rogers, B. M.; Goetz, S. J.
2015-12-01
Long-term satellite measurements of vegetation productivity in high-latitude environments have revealed profound and widespread responses to climate warming. Although warmer and longer summers are causing the Arctic to "green", many regions of boreal forest are showing the opposite response, particularly since the mid 1990s. This "browning" phenomenon was generally unexpected at the time of discovery, is not captured by global models, and may have profound consequences for the boreal biome. A number of studies have linked satellite-based browning trends to tree productivity through tree rings. However, our understanding of the environmental controls and ecosystem consequences of browning remains remarkably limited. Here we examine to what extent browning patterns are related to a fundamental demographic process: tree mortality. We focus on a long-term inventory database in Alaska to characterize mortality events and trends from 1994 to 2014. These patterns were related to vegetation productivity indices from MODIS and the AVHRR-based GIMMS3g data set. We explore three central hypotheses: (1) mortality events are likely to be preceded by 5-10 year browning trends ("press stress"), (2) mortality events are likely to be preceded by distinct pulses of low productivity ("pulse stress"), and (3) long-term trends in mortality are related to long-term browning. Within our study region, which encompasses eastern Alaskan from the Pacific coastal mountains up through the interior, we find strong evidence for the first two hypotheses. The third is weakly supported, which may be a consequence of the episodic nature of mortality in the region. However, preliminary analyses in the southern Canadian boreal reveal a markedly stronger relationship between long-term mortality and browning. Taken together, our study suggests a robust correlation between satellite-based metrics of productivity and forest demography; one that has consequences for forest composition, carbon stocks, and early signs of a biome shift in boreal forests.
Hedwall, Per-Ola; Skoglund, Jerry; Linder, Sune
2015-02-01
The boreal forest is one of the largest terrestrial biomes and plays a key role for the global carbon balance and climate. The forest floor vegetation has a strong influence on the carbon and nitrogen cycles of the forests and is sensitive to changes in temperature conditions and nutrient availability. Additionally, the effects of climate warming on forest floor vegetation have been suggested to be moderated by the tree layer. Data on the effects of soil warming on forest floor vegetation from the boreal forest are, however, very scarce. We studied the effects on the forest floor vegetation in a long-term (18 years) soil warming and fertilization experiment in a Norway spruce stand in northern Sweden. During the first 9 years, warming favored early successional species such as grasses and forbs at the expense of dwarf shrubs and bryophytes in unfertilized stands, while the effects were smaller after fertilization. Hence, warming led to significant changes in species composition and an increase in species richness in the open canopy nutrient limited forest. After another 9 years of warming and increasing tree canopy closure, most of the initial effects had ceased, indicating an interaction between forest succession and warming. The only remaining effect of warming was on the abundance of bryophytes, which contrary to the initial phase was strongly favored by warming. We propose that the suggested moderating effects of the tree layer are specific to plant life-form and conclude that the successional phase of the forest may have a considerable impact on the effects of climate change on forest floor vegetation and its feedback effects on the carbon and nitrogen cycles, and thus on the climate.
Hedwall, Per-Ola; Skoglund, Jerry; Linder, Sune
2015-01-01
The boreal forest is one of the largest terrestrial biomes and plays a key role for the global carbon balance and climate. The forest floor vegetation has a strong influence on the carbon and nitrogen cycles of the forests and is sensitive to changes in temperature conditions and nutrient availability. Additionally, the effects of climate warming on forest floor vegetation have been suggested to be moderated by the tree layer. Data on the effects of soil warming on forest floor vegetation from the boreal forest are, however, very scarce. We studied the effects on the forest floor vegetation in a long-term (18 years) soil warming and fertilization experiment in a Norway spruce stand in northern Sweden. During the first 9 years, warming favored early successional species such as grasses and forbs at the expense of dwarf shrubs and bryophytes in unfertilized stands, while the effects were smaller after fertilization. Hence, warming led to significant changes in species composition and an increase in species richness in the open canopy nutrient limited forest. After another 9 years of warming and increasing tree canopy closure, most of the initial effects had ceased, indicating an interaction between forest succession and warming. The only remaining effect of warming was on the abundance of bryophytes, which contrary to the initial phase was strongly favored by warming. We propose that the suggested moderating effects of the tree layer are specific to plant life-form and conclude that the successional phase of the forest may have a considerable impact on the effects of climate change on forest floor vegetation and its feedback effects on the carbon and nitrogen cycles, and thus on the climate. PMID:25750720
NASA Astrophysics Data System (ADS)
Hogg, E.
2009-05-01
In western Canada, the boundary between boreal forest and prairie grasslands marks a dramatic change in nearly all aspects of ecosystem functioning. These include a steep spatial gradient in hydrological characteristics of the landscape (lake level variability, water runoff and stream flow patterns) that coincides with the southern range limit of peatlands and several species of boreal conifers. Previous studies indicate that the forest-grassland boundary in this region represents a critical "tipping point" (Lenton et al. 2008) where long-term water input by precipitation is barely sufficient to satisfy the water use demands of productive, closed-canopy forests. This concept is consistent with the observed, regional gradient in the character of forests dominated by aspen (Populus tremuloides), the most abundant and widespread deciduous tree in North America. Aspen-dominated forests are productive and continuous in the boreal zone, but are stunted and patchy in the boreal-grassland transition zone, often referred to as the aspen parkland. Based on the "tipping point" concept, there are concerns that aspen forests in this region are especially sensitive to the projected trend toward warmer and drier conditions under human-induced climate change. In response to these concerns, a large-scale study was established across west-central Canada in 2000, entitled "Climate Impacts on Productivity and Health of Aspen" (CIPHA). The study has hierarchical sampling design that is aimed at "scaling up" forest-climate responses from individual trees to the region. During 2001-2002, the region was affected by an exceptionally severe drought that subsequently led to massive dieback and mortality of aspen forests within the boreal-grassland transition zone. Drought severity and extent was quantified using a simple climate moisture index (CMI), and drought impacts were quantified using tree-ring analysis, in combination with plot-based and remotely-sensed measures. Results showed that stand-level productivity, dieback and mortality were governed primarily by moisture variation. Furthermore, during and following this drought there was increasing damage by wood-boring insects and elevated, regional-scale mortality of aspen over at least 6 years (2002-2008). Although it is premature to attribute these impacts to anthropogenic climate change, they provide an excellent analog for what may be expected in future, even under a modest trend toward drying over the next few decades. Furthermore, the recent aspen mortality in western Canada shares many features common to other recent episodes of drought-induced forest mortality that have been documented on all of the earth's forested continents. This suggests the need for an integrated, global research and monitoring system that would enable early detection and attribution of large-scale ecosystem changes, especially in climatically-sensitive regions along forest-grassland boundaries around the world.
Hydroxyl radical measurements and oxidation capacity in a boreal forest environment
NASA Astrophysics Data System (ADS)
Hens, K.; Tatum Ernest, C.; Novelli, A.; Paasonen, P.; Sipilä, M.; Petäjä, T.; Nölscher, A.; Taraborrelli, D.; Keronen, P.; Trawny, K.; Kubistin, D.; Oswald, R.; Axinte, R.; Hosaynali Beygi, Z.; Auld, J.; Klüpfel, T.; Mesarchaki, E.; Song, W.; Valverde Canossa, J.; González Orozco, D.; Königstedt, R.; Bohn, B.; Rudolf, M.; Fischer, H.; Williams, J.; Crowley, J.; Martinez, M.; Harder, H. D.; Lelieveld, J.
2012-12-01
Forests cover about one third of the earth's total land surface and are known to be an important global source of biogenic volatile organic compounds (BVOCs) that are partly very reactive towards OH. Different types of forests are known to emit various characteristic BVOCs significantly influencing atmospheric oxidation chemistry. Measurements of OH and HO2 radicals in forest environments, however, reveal a serious lack of understanding of the underlying processes. The HUMPPA-COPEC intensive field campaign took place in summer 2010 at the SMEAR II station, located in Hyytiälä, Southern Finland, as collaboration between the Max Planck Institute for Chemistry and the University of Helsinki. The main goal of the campaign was to investigate the summertime emissions and photochemistry in a boreal forest. Comprehensive measurements including observations of many VOCs, HOx, and total OH reactivity were conducted to increase our understanding of atmospheric self-cleaning processes based on detailed analysis of production and loss mechanisms of the hydroxyl radical. Also the HOx budget in a coniferous forest was examined by using direct calculations from measured species as well as an observationally constrained chemical box model in steady state. For HUMPPA-COPEC chemical reaction schemes considering isoprene as the predominant primary BVOC lead to an over prediction of the measured OH concentration by a factor of up to 4. However, only a minor fraction of the measured total OH reactivity can be explained by measured isoprene. A preliminary terpene mechanism, taking the most abundant terpenes measured during HUMPPA-COPEC-2010 and their oxidation products into account, improves the agreement between simulated and measured OH, but is not sufficient to explain the missing OH reactivity in all cases. HO2 is described reasonably well by the model for conditions where the modeled and measured total OH reactivity agree. For lower than measured reactivity, the HO2 mixing ratios are significantly under predicted indicating that the missing reactivity is an unaccounted source of HO2. An additional α-pinene equivalent is introduced into the model to match the measured total OH reactivity with the simulated one. The modification of the chemical mechanism is analyzed and discussed.
Simulation of the Intercontinental Transport, Aging, and Removal of a Boreal Fire Smoke Plume
NASA Astrophysics Data System (ADS)
Ghan, S. J.; Chapman, E. G.; Easter, R. C.; Reid, J. S.; Justice, C.
2003-12-01
Back trajectories suggest that an elevated absorbing aerosol plume observed over Oklahoma in May 2003 can be traced to intense forest fires in Siberia two weeks earlier. The Fire Locating and Modeling of Burning Emissions (FLAMBE) product is used to estimate smoke emissions from those fires. The Model for Integrated Research on Atmospheric Model Exchanges (MIRAGE) is used to simulate the transport, aging, radiative properties, and removal of the aerosol. The simulated aerosol optical depth is compared with satellite retrievals, and the vertical structure of the plume is compared with in situ measurements. Sensitivity experiments are performed to determine the sensitivity of the simulated plume to uncertainty in the emissions vertical profile, mass flux, size distribution, and composition.
Climate effects on vegetation vitality at the treeline of boreal forests of Mongolia
NASA Astrophysics Data System (ADS)
Klinge, Michael; Dulamsuren, Choimaa; Erasmi, Stefan; Nikolaus Karger, Dirk; Hauck, Markus
2018-03-01
In northern Mongolia, at the southern boundary of the Siberian boreal forest belt, the distribution of steppe and forest is generally linked to climate and topography, making this region highly sensitive to climate change and human impact. Detailed investigations on the limiting parameters of forest and steppe in different biomes provide necessary information for paleoenvironmental reconstruction and prognosis of potential landscape change. In this study, remote sensing data and gridded climate data were analyzed in order to identify main distribution patterns of forest and steppe in Mongolia and to detect environmental factors driving forest development. Forest distribution and vegetation vitality derived from the normalized differentiated vegetation index (NDVI) were investigated for the three types of boreal forest present in Mongolia (taiga, subtaiga and forest-steppe), which cover a total area of 73 818 km2. In addition to the forest type areas, the analysis focused on subunits of forest and nonforested areas at the upper and lower treeline, which represent ecological borders between vegetation types. Climate and NDVI data were analyzed for a reference period of 15 years from 1999 to 2013. The presented approach for treeline delineation by identifying representative sites mostly bridges local forest disturbances like fire or tree cutting. Moreover, this procedure provides a valuable tool to distinguish the potential forested area. The upper treeline generally rises from 1800 m above sea level (a.s.l.) in the northeast to 2700 m a.s.l. in the south. The lower treeline locally emerges at 1000 m a.s.l. in the northern taiga and rises southward to 2500 m a.s.l. The latitudinal gradient of both treelines turns into a longitudinal one on the eastern flank of mountain ranges due to higher aridity caused by rain-shadow effects. Less productive trees in terms of NDVI were identified at both the upper and lower treeline in relation to the respective total boreal forest type area. The mean growing season temperature (MGST) of 7.9-8.9 °C and a minimum MGST of 6 °C are limiting parameters at the upper treeline but are negligible for the lower treeline. The minimum of the mean annual precipitation (MAP) of 230-290 mm yr-1 is a limiting parameter at the lower treeline but also at the upper treeline in the forest-steppe ecotone. In general, NDVI and MAP are lower in grassland, and MGST is higher compared to the corresponding boreal forest. One exception occurs at the upper treeline of the subtaiga and taiga, where the alpine vegetation consists of mountain meadow mixed with shrubs. The relation between NDVI and climate data corroborates that more precipitation and higher temperatures generally lead to higher greenness in all ecological subunits. MGST is positively correlated with MAP of the total area of forest-steppe, but this correlation turns negative in the taiga. The limiting factor in the forest-steppe is the relative humidity and in the taiga it is the snow cover distribution. The subtaiga represents an ecological transition zone of approximately 300 mm yr-1 precipitation, which occurs independently from the MGST. Since the treelines are mainly determined by climatic parameters, the rapid climate change in inner Asia will lead to a spatial relocation of tree communities, treelines and boreal forest types. However, a direct deduction of future tree vitality, forest composition and biomass trends from the recent relationships between NDVI and climate parameters is challenging. Besides human impact, it must consider bio- and geoecological issues like, for example, tree rejuvenation, temporal lag of climate adaptation and disappearing permafrost.
NASA Astrophysics Data System (ADS)
Pisek, Jan; Chen, Jing; Kobayashi, Hideki; Rautiainen, Miina; Schaepman, Michael; Karnieli, Arnon; Sprintsin, Michael; Ryu, Youngryel; Nikopensius, Maris; Raabe, Kairi
2016-04-01
Ground vegetation (understory) provides an essential contribution to the whole-stand reflectance signal in many boreal, sub-boreal, and temperate forests. Accurate knowledge about forest understory reflectance is urgently needed in various forest reflectance modelling efforts. However, systematic collections of understory reflectance data covering different sites and ecosystems are almost missing. Measurement of understory reflectance is a real challenge because of an extremely high variability of irradiance at the forest floor, weak signal in some parts of the spectrum, spectral separability issues of over- and understory and its variable nature. Understory can consist of several sub-layers (regenerated tree, shrub, grasses or dwarf shrub, mosses, lichens, litter, bare soil), it has spatially-temporally variable species composition and ground coverage. Additional challenges are introduced by patchiness of ground vegetation, ground surface roughness, and understory-overstory relations. Due to this variability, remote sensing might be the only means to provide consistent data at spatially relevant scales. In this presentation, we report on retrieving seasonal courses of understory Normalized Difference Vegetation Index (NDVI) from multi-angular MODIS BRDF/Albedo data. We compared satellite-based seasonal courses of understory NDVI against an extended collection of different types of forest sites with available in-situ understory reflectance measurements. These sites are distributed along a wide latitudinal gradient on the Northern hemisphere: a sparse and dense black spruce forests in Alaska and Canada, a northern European boreal forest in Finland, hemiboreal needleleaf and deciduous stands in Estonia, a mixed temperate forest in Switzerland, a cool temperate deciduous broadleaf forest in Korea, and a semi-arid pine plantation in Israel. Our results indicated the retrieval method performs well particularly over open forests of different types. We also demonstrated the limitations of the method for closed canopies, where the understory signal retrieval is much attenuated. The retrieval of understory signal can be used e.g. to improve the estimates of leaf area index (LAI), fAPAR in sparsely vegetated areas, and also to study the phenology of understory layer. Our results are particularly useful to producing Northern hemisphere maps of seasonal dynamics of forests, allowing to separately retrieve understory variability, being a main contributor to spring emergence and fall senescence uncertainty. The inclusion of understory variability in ecological models will ultimately improve prediction and forecast horizons of vegetation dynamics.
Trace gas and particulate emissions from biomass burning in temperate ecosystems
NASA Technical Reports Server (NTRS)
Cofer, Wesley R., III; Levine, Joel S.; Winstead, Edward L.; Stocks, Brian J.
1991-01-01
Emissions measured from fires in graminoid wetlands, Mediterranean chaparrals, and boreal forests, suggest that such ecosystemic parameters as fuel size influence combustion emissions in ways that are broadly predictable. The degree of predictability is most noticeable when wetland fire-related results are compared with boreal forest emissions; the inorganic fraction of the particulate emissions is close in composition irrespective of the ecosystem. It is found that both aerosol and trace gas emissions are influenced by the phase of combustion.
NASA Astrophysics Data System (ADS)
Ebel, B. A.; Koch, J. C.; Walvoord, M. A.
2017-12-01
Boreal forest regions in interior Alaska, USA are subject to recurring wildfire disturbance and climate shifts. These "press" and "pulse" disturbances impact water, solute, carbon, and energy fluxes, with feedbacks and consequences that are not adequately characterized. The NASA Arctic Boreal Vulnerability Experiment (ABoVE) seeks to understand susceptibility to disturbance in boreal regions. Subsurface physical and hydraulic properties are among the largest uncertainties in cryohydrogeologic modeling aiming to predict impacts of disturbance in Arctic and boreal regions. We address this research gap by characterizing physical and hydraulic properties of soil across a gradient of sites covering disparate soil textures and wildfire disturbance in interior Alaska. Samples were collected in the field within the domain of the NASA ABoVE project and analyzed in the laboratory. Physical properties measured include soil organic matter fraction, soil-particle size distribution, dry bulk density, and saturated soil-water content. Hydraulic properties measured include soil-water retention and field-saturated hydraulic conductivity using tension infiltrometers (-1 cm applied pressure head). The physical and hydraulic properties provide the foundation for site conceptual model development, cryohydrogeologic model parameterization, and integration with geophysical data. This foundation contributes to the NASA ABoVE objectives of understanding the underlying physical processes that control vulnerability in Arctic and Boreal landscapes.
Jiang, Yueyang; Zhuang, Qianlai; O'Donnell, Jonathan A.
2012-01-01
Thawing and freezing processes are key components in permafrost dynamics, and these processes play an important role in regulating the hydrological and carbon cycles in the northern high latitudes. In the present study, we apply a well-developed soil thermal model that fully couples heat and water transport, to simulate the thawing and freezing processes at daily time steps across multiple sites that vary with vegetation cover, disturbance history, and climate. The model performance was evaluated by comparing modeled and measured soil temperatures at different depths. We use the model to explore the influence of climate, fire disturbance, and topography (north- and south-facing slopes) on soil thermal dynamics. Modeled soil temperatures agree well with measured values for both boreal forest and tundra ecosystems at the site level. Combustion of organic-soil horizons during wildfire alters the surface energy balance and increases the downward heat flux through the soil profile, resulting in the warming and thawing of near-surface permafrost. A projection of 21st century permafrost dynamics indicates that as the climate warms, active layer thickness will likely increase to more than 3 meters in the boreal forest site and deeper than one meter in the tundra site. Results from this coupled heat-water modeling approach represent faster thaw rates than previously simulated in other studies. We conclude that the discussed soil thermal model is able to well simulate the permafrost dynamics and could be used as a tool to analyze the influence of climate change and wildfire disturbance on permafrost thawing.
NASA Astrophysics Data System (ADS)
Betts, Alan K.; Viterbo, Pedro; Beljaars, Anton; Pan, Hua-Lu; Hong, Song-You; Goulden, Mike; Wofsy, Steve
1998-09-01
The National Center for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR) and European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis models are compared with First ISLSCP (International Satellite Land Surface Climatology Project) Field Experiment (FIFE) grassland data from Kansas in 1987 and Boreal Ecosystem-Atmosphere Study (BOREAS) data from an old black spruce site in 1996 near Thompson, Manitoba. Some aspects of the comparison are similar for the two ecosystems. Over grassland and after snowmelt in the boreal forest, both models represent the seasonal cycle of near-surface temperature well. The two models have quite different soil hydrology components. The ECMWF model includes soil water nudging based on low level humidity errors. While this works quite well for the FIFE grassland, it appears to give too high evaporation over the boreal forest. The NCEP/NCAR model constrains long-term drifts by nudging deep soil water toward climatology. Over the FIFE site, this seems to give too low evaporation in midsummer, while at the BOREAS site, evaporation in this model is high. Both models have some difficulty representing the surface diurnal cycle of humidity. In the NCEP/NCAR reanalysis this leads to errors primarily in June, when the surface boundary layer stays saturated and too much precipitation occurs. In the ECMWF reanalysis there is a morning peak of mixing ratio, which an earlier work showed resulted from too shallow a boundary layer in the morning. Over the northern boreal forest there are important physical processes, which are not represented in either reanalysis model. In particular very high model albedos in spring, when there is snow under the forest canopy, lead to a very low daytime net radiation. This in turn leads to a large underestimate of the daytime surface fluxes, particularly the sensible heat flux, and to daytime model surface temperatures that are as much as 15 K low. In addition, the models do not account for the reduction in evaporation associated with frozen soil, and they generally have too large evapotranspiration in June and July, probably because they do not model the tight stomatal control of the coniferous forest.
Lara, Mark J; Genet, Hélène; McGuire, Anthony D; Euskirchen, Eugénie S; Zhang, Yujin; Brown, Dana R N; Jorgenson, Mark T; Romanovsky, Vladimir; Breen, Amy; Bolton, William R
2016-02-01
Lowland boreal forest ecosystems in Alaska are dominated by wetlands comprised of a complex mosaic of fens, collapse-scar bogs, low shrub/scrub, and forests growing on elevated ice-rich permafrost soils. Thermokarst has affected the lowlands of the Tanana Flats in central Alaska for centuries, as thawing permafrost collapses forests that transition to wetlands. Located within the discontinuous permafrost zone, this region has significantly warmed over the past half-century, and much of these carbon-rich permafrost soils are now within ~0.5 °C of thawing. Increased permafrost thaw in lowland boreal forests in response to warming may have consequences for the climate system. This study evaluates the trajectories and potential drivers of 60 years of forest change in a landscape subjected to permafrost thaw in unburned dominant forest types (paper birch and black spruce) associated with location on elevated permafrost plateau and across multiple time periods (1949, 1978, 1986, 1998, and 2009) using historical and contemporary aerial and satellite images for change detection. We developed (i) a deterministic statistical model to evaluate the potential climatic controls on forest change using gradient boosting and regression tree analysis, and (ii) a 30 × 30 m land cover map of the Tanana Flats to estimate the potential landscape-level losses of forest area due to thermokarst from 1949 to 2009. Over the 60-year period, we observed a nonlinear loss of birch forests and a relatively continuous gain of spruce forest associated with thermokarst and forest succession, while gradient boosting/regression tree models identify precipitation and forest fragmentation as the primary factors controlling birch and spruce forest change, respectively. Between 1950 and 2009, landscape-level analysis estimates a transition of ~15 km² or ~7% of birch forests to wetlands, where the greatest change followed warm periods. This work highlights that the vulnerability and resilience of lowland ice-rich permafrost ecosystems to climate changes depend on forest type. © 2015 John Wiley & Sons Ltd.
Lara, M.; Genet, Helene; McGuire, A. David; Euskirchen, Eugénie S.; Zhang, Yujin; Brown, Dana R. N.; Jorgenson, M.T.; Romanovsky, V.; Breen, Amy L.; Bolton, W.R.
2016-01-01
Lowland boreal forest ecosystems in Alaska are dominated by wetlands comprised of a complex mosaic of fens, collapse-scar bogs, low shrub/scrub, and forests growing on elevated ice-rich permafrost soils. Thermokarst has affected the lowlands of the Tanana Flats in central Alaska for centuries, as thawing permafrost collapses forests that transition to wetlands. Located within the discontinuous permafrost zone, this region has significantly warmed over the past half-century, and much of these carbon-rich permafrost soils are now within ~0.5 °C of thawing. Increased permafrost thaw in lowland boreal forests in response to warming may have consequences for the climate system. This study evaluates the trajectories and potential drivers of 60 years of forest change in a landscape subjected to permafrost thaw in unburned dominant forest types (paper birch and black spruce) associated with location on elevated permafrost plateau and across multiple time periods (1949, 1978, 1986, 1998, and 2009) using historical and contemporary aerial and satellite images for change detection. We developed (i) a deterministic statistical model to evaluate the potential climatic controls on forest change using gradient boosting and regression tree analysis, and (ii) a 30 × 30 m land cover map of the Tanana Flats to estimate the potential landscape-level losses of forest area due to thermokarst from 1949 to 2009. Over the 60-year period, we observed a nonlinear loss of birch forests and a relatively continuous gain of spruce forest associated with thermokarst and forest succession, while gradient boosting/regression tree models identify precipitation and forest fragmentation as the primary factors controlling birch and spruce forest change, respectively. Between 1950 and 2009, landscape-level analysis estimates a transition of ~15 km² or ~7% of birch forests to wetlands, where the greatest change followed warm periods. This work highlights that the vulnerability and resilience of lowland ice-rich permafrost ecosystems to climate changes depend on forest type.
A data-led comparison of simple canopy radiative transfer models for the boreal forest
NASA Astrophysics Data System (ADS)
Reid, T.; Essery, R.; Rutter, N.; King, M.
2012-12-01
Given the computational complexity of numerical weather and climate models, it is worthwhile developing very simple parameterizations for processes such as the transmission of radiation through forest canopies. For this reason, the land surface schemes in global models, and most snow hydrological models, tend to use simple one-dimensional approaches based on Beer's Law or two-stream approximations. Such approaches assume a continuous canopy structure that may not be suitable for the varied, heterogeneous forest cover in boreal regions, especially in winter when snow in the canopy and on the ground may either block radiation or produce multiple reflections between the ground and the trees. There is great benefit in comparing models to real transmissivity values calculated from radiation measurements below and above Arctic canopies. In particular, there is a lack of data for leafless boreal deciduous forests, where canopy gaps are prevalent even at low solar elevation angles near the horizon. In this study, models are compared to radiation data collected in an area of boreal birch forest near Abisko, Sweden in March/April 2011 and mixed conifer forest at Sodankylä, Finland in March/April 2012. Arrays comprising ten shortwave pyranometers were deployed for periods of up to 50 days, under forest plots of varying canopy structures and densities. In addition, global and diffuse shortwave irradiances were recorded at nearby open sites representing the top-of-canopy conditions. A model is developed that explicitly accounts for both diffuse radiation and direct beam transmission on a 5-minute timestep, by using upward-looking hemispherical photographs taken from every pyranometer site. This model reproduces measured transmissivity, although with a slight underestimation, especially at low solar elevations - this could be attributed to multiple reflections that are not accounted for in the model. On the other hand, models based on Beer's Law tend to underestimate the canopy transmissivity significantly, especially for leafless birch canopies where the required assumption of a continuous canopy breaks down. These findings are important for the often sparse, heterogeneous forest cover in boreal regions, where forest edges and canopy gaps are plentiful. They could also have an impact on estimations of overall land surface albedo. Moreover, all models are sensitive to the partitioning of top-of-canopy radiation into its direct and diffuse components, which is complicated by the low solar elevations in the Arctic. More research is required to decide the best way of quantifying the diffuse fraction, using data alongside both physical and empirical models.
NASA Astrophysics Data System (ADS)
Liu, W.; Atherton, J.; Mõttus, M.; MacArthur, A.; Teemu, H.; Maseyk, K.; Robinson, I.; Honkavaara, E.; Porcar-Castell, A.
2017-10-01
Solar induced chlorophyll a fluorescence (SIF) has been shown to be an excellent proxy of photosynthesis at multiple scales. However, the mechanical linkages between fluorescence and photosynthesis at the leaf level cannot be directly applied at canopy or field scales, as the larger scale SIF emission depends on canopy structure. This is especially true for the forest canopies characterized by high horizontal and vertical heterogeneity. While most of the current studies on SIF radiative transfer in plant canopies are based on the assumption of a homogeneous canopy, recently codes have been developed capable of simulation of fluorescence signal in explicit 3-D forest canopies. Here we present a canopy SIF upscaling method consisting of the integration of the 3-D radiative transfer model DART and a 3-D object model BLENDER. Our aim was to better understand the effect of boreal forest canopy structure on SIF for a spatially explicit forest canopy.
Patterns of Canopy and Surface Layer Consumption in a Boreal Forest Fire from Repeat Airborne Lidar
NASA Technical Reports Server (NTRS)
Alonzo, Michael; Morton, Douglas C.; Cook, Bruce D.; Andersen, Hans-Erik; Babcock, Chad; Pattison, Robert
2017-01-01
Fire in the boreal region is the dominant agent of forest disturbance with direct impacts on ecosystem structure, carbon cycling, and global climate. Global and biome-scale impacts are mediated by burn severity, measured as loss of forest canopy and consumption of the soil organic layer. To date, knowledge of the spatial variability in burn severity has been limited by sparse field sampling and moderate resolution satellite data. Here, we used pre- and post-fire airborne lidar data to directly estimate changes in canopy vertical structure and surface elevation for a 2005 boreal forest fire on Alaskas Kenai Peninsula. We found that both canopy and surface losses were strongly linked to pre-fire species composition and exhibited important fine-scale spatial variability at sub-30m resolution. The fractional reduction in canopy volume ranged from 0.61 in lowland black spruce stands to 0.27 in mixed white spruce and broad leaf forest. Residual structure largely reflects standing dead trees, highlighting the influence of pre-fire forest structure on delayed carbon losses from above ground biomass, post-fire albedo, and variability in understory light environments. Median loss of surface elevation was highest in lowland black spruce stands (0.18 m) but much lower in mixed stands (0.02 m), consistent with differences in pre-fire organic layer accumulation. Spatially continuous depth-of-burn estimates from repeat lidar measurements provide novel information to constrain carbon emissions from the surface organic layer and may inform related research on post-fire successional trajectories. Spectral measures of burn severity from Landsat were correlated with canopy (r = 0.76) and surface (r = -0.71) removal in black spruce stands but captured less of the spatial variability in fire effects for mixed stands (canopy r = 0.56, surface r = -0.26), underscoring the difficulty in capturing fire effects in heterogeneous boreal forest landscapes using proxy measures of burn severity from Landsat.
NASA Astrophysics Data System (ADS)
Arroniz-Crespo, Maria; Jones, David L.; Zackrisson, Olle; Nilsson, Marie-Charlotte; DeLuca, Thomas H.
2014-05-01
Biological N2 fixation by cyanobacteria associated with feather mosses is an important cog in the nitrogen (N) cycle of boreal forests; still, our understanding of the turnover and fate of N fixed by this association remains greatly incomplete. The 15N signature of plants and soil serves as a powerful tool to explore N dynamics in forest ecosystems. In particular, in the present study we aimed to investigate the contribution of N2 fixation to δ15N signatures of plants and humus component of the boreal forest. Here we present results from a long-term (7 years) tacking of labelled 15N2 across the humus layer, seedlings of the tree species Pinus sylvestris, two common dwarf shrub species (Empetrum hermaphroditum and Vaccinium vitis-idaea) and the feather moss Pleurozium schreibery. The enriched experiment was conducted in 2005 in a natural boreal forest in northern Sweden. Two different treatments (10% 15N2 headspace enrichment and control) were setup in nine different plots (0.5 x 0.5 m) within the forest. We observed a significant reduction of δ15N signature of the 15N-enriched moss that could be explained by a growth dilution effect. Nevertheless, after 5 years since 15N2 enrichment some of the label 15N was still detected on the moss and in particular in the dead tissue. We could not detect a clear transfer of the labelled 15N2 from the moss-cyanobacteria system to other components of the ecosystem. However, we found consistence relationship through time between increments of δ15N signature of some of the forest components in plots which exhibited higher N fixation rates in the moss. In particular, changes in natural abundance δ15N that could be associated with N fixation were more apparent in the humus layer, the dwarf shrub Vaccinium vitis-idaea and the pine seedlings when comparing across plots and years.
Patterns of canopy and surface layer consumption in a boreal forest fire from repeat airborne lidar
NASA Astrophysics Data System (ADS)
Alonzo, Michael; Morton, Douglas C.; Cook, Bruce D.; Andersen, Hans-Erik; Babcock, Chad; Pattison, Robert
2017-05-01
Fire in the boreal region is the dominant agent of forest disturbance with direct impacts on ecosystem structure, carbon cycling, and global climate. Global and biome-scale impacts are mediated by burn severity, measured as loss of forest canopy and consumption of the soil organic layer. To date, knowledge of the spatial variability in burn severity has been limited by sparse field sampling and moderate resolution satellite data. Here, we used pre- and post-fire airborne lidar data to directly estimate changes in canopy vertical structure and surface elevation for a 2005 boreal forest fire on Alaska’s Kenai Peninsula. We found that both canopy and surface losses were strongly linked to pre-fire species composition and exhibited important fine-scale spatial variability at sub-30 m resolution. The fractional reduction in canopy volume ranged from 0.61 in lowland black spruce stands to 0.27 in mixed white spruce and broadleaf forest. Residual structure largely reflects standing dead trees, highlighting the influence of pre-fire forest structure on delayed carbon losses from aboveground biomass, post-fire albedo, and variability in understory light environments. Median loss of surface elevation was highest in lowland black spruce stands (0.18 m) but much lower in mixed stands (0.02 m), consistent with differences in pre-fire organic layer accumulation. Spatially continuous depth-of-burn estimates from repeat lidar measurements provide novel information to constrain carbon emissions from the surface organic layer and may inform related research on post-fire successional trajectories. Spectral measures of burn severity from Landsat were correlated with canopy (r = 0.76) and surface (r = -0.71) removal in black spruce stands but captured less of the spatial variability in fire effects for mixed stands (canopy r = 0.56, surface r = -0.26), underscoring the difficulty in capturing fire effects in heterogeneous boreal forest landscapes using proxy measures of burn severity from Landsat.
Forest structure and downed woody debris in boreal temperate, and tropical forest fragments
William A. Gould; Grizelle Gonzalez; Andrew T. Hudak; Teresa Nettleton Hollingsworth; Jamie Hollingsworth
2008-01-01
Forest fragmentation affects the heterogeneity of accumulated fuels by increasing the diversity of forest types and by increasing forest edges. This heterogeneity has implications in how we manage fuels, fire, and forests. Understanding the relative importance of fragmentation on woody biomass within a single climatic regime, and along climatic gradients, will improve...
Forest health status in Russia
Vladislav A. Alexeyev
1998-01-01
About 886.5 Mha in Russia is occupied by forests, including 763.5 Mha of tree stands and 123 Mha of nonstocked lands. The Russian forests comprise about 22 percent of the earth's forest area or 43 percent of the earth's temperate and boreal forests. Main forest-forming species are Larix sp. (32 percent of the growing stock), Pinus...
The South's forestland - on the hot seat to provide more
Raymond M. Sheffield; James G. Dickson
1998-01-01
Forests of the Southern United States range from tropical/subtropical forests on the southern extremities of the region, oak savanna forests on the western fringe, to central hardwood forests, and high elevation boreal forests in the north. Upland and bottomland hardwood, southern pine, and mixed pine-hardwood forests are found on the more moderate sites between these...
Forest structure and downed woody debris in boreal, temperate, and tropical forest fragments.
Gould, William A; González, Grizelle; Hudak, Andrew T; Hollingsworth, Teresa Nettleton; Hollingsworth, Jamie
2008-12-01
Forest fragmentation affects the heterogeneity of accumulated fuels by increasing the diversity of forest types and by increasing forest edges. This heterogeneity has implications in how we manage fuels, fire, and forests. Understanding the relative importance of fragmentation on woody biomass within a single climatic regime, and along climatic gradients, will improve our ability to manage forest fuels and predict fire behavior. In this study we assessed forest fuel characteristics in stands of differing moisture, i.e., dry and moist forests, structure, i.e., open canopy (typically younger) vs. closed canopy (typically older) stands, and size, i.e., small (10-14 ha), medium (33 to 60 ha), and large (100-240 ha) along a climatic gradient of boreal, temperate, and tropical forests. We measured duff, litter, fine and coarse woody debris, standing dead, and live biomass in a series of plots along a transect from outside the forest edge to the fragment interior. The goal was to determine how forest structure and fuel characteristics varied along this transect and whether this variation differed with temperature, moisture, structure, and fragment size. We found nonlinear relationships of coarse woody debris, fine woody debris, standing dead and live tree biomass with mean annual median temperature. Biomass for these variables was greatest in temperate sites. Forest floor fuels (duff and litter) had a linear relationship with temperature and biomass was greatest in boreal sites. In a five-way multivariate analysis of variance we found that temperature, moisture, and age/structure had significant effects on forest floor fuels, downed woody debris, and live tree biomass. Fragment size had an effect on forest floor fuels and live tree biomass. Distance from forest edge had significant effects for only a few subgroups sampled. With some exceptions edges were not distinguishable from interiors in terms of fuels.
How is FIA helping other countries monitor their forests?
Charles T. Scott
2012-01-01
The demand for forest monitoring is growing rapidly with emphasis on carbon dynamics, due in part by incentives being negotiated under the United Nation's Reducing Emissions from Deforestation and Forest Degradation (REDO+) process. While much of the temperate and boreal forest in developed countries is being monitored as part of national forest inventories,...
Fire, climate change, and forest resilience in interior Alaska
Jill F. Johnstone; F. Stuart Chapin; Teresa N. Hollingsworth; Michelle C. Mack; Vladimir Romanovsky; Merritt Turetsky
2010-01-01
In the boreal forests of interior Alaska, feedbacks that link forest soils, fire characteristics, and plant traits have supported stable cycles of forest succession for the past 6000 years. This high resilience of forest stands to fire disturbance is supported by two interrelated feedback cycles: (i) interactions among disturbance regime and plant-soil-microbial...
Drivers of surface moisture flux variations in northern terrestrial regions
NASA Astrophysics Data System (ADS)
Fischer, R.; Walsh, J. E.
2017-12-01
The wetness of the high-latitude land surface is strongly dependent on the difference between precipitation (P) and evapotranspiration (ET). Variations of ET over daily, seasonal and interannual timescales are poorly documented, as are their relationships to key drivers. A combination of regional climate model output and eddy covariance measurements from five flux tower sites in Alaska are used to test the hypothesis that temperature is the key driver of ET in tundra regions underlain by permafrost, while precipitation plays a greater role in boreal forest areas. At the tundra sites, both the flux tower data and the model simulations show that daily and warm-season totals of ET are largely temperature driven, although daily ET also shows a negative correlation with P. At the boreal forest sites, P is the main driver of year-to-year variations of the seasonally integrated net moisture flux, although ET does not correlate strongly with either P or T. A short period of negative P-ET typically occurs during the warm season in the flux tower data. The model depicts a stronger hydrologic cycle (larger P, larger ET) relative to the measurements at all the sites.
NASA Astrophysics Data System (ADS)
Remy, Cécile C.; Hély, Christelle; Blarquez, Olivier; Magnan, Gabriel; Bergeron, Yves; Lavoie, Martin; Ali, Adam A.
2017-03-01
Global warming could increase climatic instability and large wildfire activity in circumboreal regions, potentially impairing both ecosystem functioning and human health. However, links between large wildfire events and climatic and/or meteorological conditions are still poorly understood, partly because few studies have covered a wide range of past climate-fire interactions. We compared palaeofire and simulated climatic data over the last 7000 years to assess causes of large wildfire events in three coniferous boreal forest regions in north-eastern Canada. These regions span an east-west cline, from a hilly region influenced by the Atlantic Ocean currently dominated by Picea mariana and Abies balsamea to a flatter continental region dominated by Picea mariana and Pinus banksiana. The largest wildfires occurred across the entire study zone between 3000 and 1000 cal. BP. In western and central continental regions these events were triggered by increases in both the fire-season length and summer/spring temperatures, while in the eastern region close to the ocean they were likely responses to hydrological (precipitation/evapotranspiration) variability. The impact of climatic drivers on fire size varied spatially across the study zone, confirming that regional climate dynamics could modulate effects of global climate change on wildfire regimes.
NASA Astrophysics Data System (ADS)
Halim, M. A.; Thomas, S. C.
2017-12-01
Surface albedo is the most important biophysical radiative forcing in the boreal forest. General Circulation Model studies have suggested that harvesting of boreal forest has a net cooling effect, in contrast to other terrestrial biomes, by increasing surface albedo. However, albedo estimation in these models has been achieved by simplifying processes governing albedo at a coarse scale (both spatial and temporal). Biophysical processes that determine albedo likely operate on small spatial and temporal scales, requiring more direct estimates of effects of landcover change on net radiation. We established a chronosequence study in post-fire and post-clearcut sites (2013, 2006, 1998), logging data from July 2013 to July 2017 in boreal forest sites in northwestern Ontario, Canada. Each age-class X disturbance had 3 three replicates, matched to 18 permanent circular plots (10-m radius) each with an instrumented tower measuring surface albedo, air and soil temperature, and soil moisture. We also measured leaf area index, species composition and soil organic matter content at each site. BRDF-corrected surface albedo was calculated from daily 30m x 30m reflectance data fused from the MODIS MOD09GA product and Landsat 7 reflectance data. Calculated albedo was verified using ground-based measurements. Results show that fire sites generally had lower (15-25%) albedo than clearcut sites in all seasons. Because of rapid forest regrowth, large perturbations of clearcut harvests on forest albedo started to fade out within a year. Albedo differences between fire and clearcut sites also declined sharply with stand age. Younger stands generally had higher albedo than older stands mainly due to the presence of broadleaf species (for example, Populus tremuloides). In spring, snow melted 10-12 days earlier in recent (2013) clearcut sites compared to closed-canopy sites, causing a sharp reduction in surface albedo in comparison to old clearcut/fire sites (2006 and 1998). Snow melted faster in post-fire sites than in clearcut sites, with concomitant effects on albedo associated with snow. Findings of this study strongly suggest that harvests in boreal forest do not have as strong a radiative cooling effect as previously inferred from GCM experiments based on coarse-resolution data or "biome substitution" approaches.
BOREAS HYD-4 Standard Snow Course Data
NASA Technical Reports Server (NTRS)
Metcalfe, John R.; Goodison, Barry E.; Walker, Anne; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Smith, David E. (Technical Monitor)
2000-01-01
The Boreal Ecosystem-Atmosphere Study (BOREAS) Hydrology (HYD)-4 work was focused on collecting data during the winter focused field campaign (FFC-W) to improve the understanding of winter processes within the boreal forest. Knowledge of snow cover and its variability in the boreal forest is fundamental if BOREAS is to achieve its goals of understanding the processes and states involved in the exchange of energy and water. The development and validation of remote sensing algorithms will provide the means to extend the knowledge of these processes and states from the local to the regional scale. A specific thrust of the research is the development and validation of snow cover algorithms from airborne passive microwave measurements. Snow surveys were conducted at special snow courses throughout the 1993/94, 1994/95, 1995/96, and 1996/97 winter seasons. These snow courses were located in different boreal forest land cover types (i.e., old aspen, old black spruce, young jack pine, forest clearing, etc.) to document snow cover variations throughout the season as a function of different land cover. Measurements of snow depth, density, and water equivalent were acquired on or near the first and fifteenth of each month during the snow cover season. The data are provided in tabular ASCII files. The HYD-4 standard snow course data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).
Summer movements, predation and habitat use of wolves in human modified boreal forests.
Gurarie, Eliezer; Suutarinen, Johanna; Kojola, Ilpo; Ovaskainen, Otso
2011-04-01
Grey wolves (Canis lupus), formerly extirpated in Finland, have recolonized a boreal forest environment that has been significantly altered by humans, becoming a patchwork of managed forests and clearcuts crisscrossed by roads, power lines, and railways. Little is known about how the wolves utilize this impacted ecosystem, especially during the pup-rearing summer months. We tracked two wolves instrumented with GPS collars transmitting at 30-min intervals during two summers in eastern Finland, visiting all locations in the field, identifying prey items and classifying movement behaviors. We analyzed preference and avoidance of habitat types, linear elements and habitat edges, and tested the generality of our results against lower resolution summer movements of 23 other collared wolves. Wolves tended to show a strong preference for transitional woodlands (mostly harvested clearcuts) and mixed forests over coniferous forests and to use forest roads and low use linear elements to facilitate movement. The high density of primary roads in one wolf's territory led to more constrained use of the home territory compared to the wolf with fewer roads, suggesting avoidance of humans; however, there did not appear to be large differences on the hunting success or the success of pup rearing for the two packs. In total, 90 kills were identified, almost entirely moose (Alces alces) and reindeer (Rangifer tarandus sspp.) calves of which a large proportion were killed in transitional woodlands. Generally, wolves displayed a high level of adaptability, successfully exploiting direct and indirect human-derived modifications to the boreal forest environment.
Girardin, Martin P; Bouriaud, Olivier; Hogg, Edward H; Kurz, Werner; Zimmermann, Niklaus E; Metsaranta, Juha M; de Jong, Rogier; Frank, David C; Esper, Jan; Büntgen, Ulf; Guo, Xiao Jing; Bhatti, Jagtar
2016-12-27
Considerable evidence exists that current global temperatures are higher than at any time during the past millennium. However, the long-term impacts of rising temperatures and associated shifts in the hydrological cycle on the productivity of ecosystems remain poorly understood for mid to high northern latitudes. Here, we quantify species-specific spatiotemporal variability in terrestrial aboveground biomass stem growth across Canada's boreal forests from 1950 to the present. We use 873 newly developed tree-ring chronologies from Canada's National Forest Inventory, representing an unprecedented degree of sampling standardization for a large-scale dendrochronological study. We find significant regional- and species-related trends in growth, but the positive and negative trends compensate each other to yield no strong overall trend in forest growth when averaged across the Canadian boreal forest. The spatial patterns of growth trends identified in our analysis were to some extent coherent with trends estimated by remote sensing, but there are wide areas where remote-sensing information did not match the forest growth trends. Quantifications of tree growth variability as a function of climate factors and atmospheric CO 2 concentration reveal strong negative temperature and positive moisture controls on spatial patterns of tree growth rates, emphasizing the ecological sensitivity to regime shifts in the hydrological cycle. An enhanced dependence of forest growth on soil moisture during the late-20th century coincides with a rapid rise in summer temperatures and occurs despite potential compensating effects from increased atmospheric CO 2 concentration.
Who is the new sheriff in town regulating boreal forest growth?
NASA Astrophysics Data System (ADS)
Park Williams, A.; Xu, Chonggang; McDowell, Nate G.
2011-12-01
Climate change appears to be altering boreal forests. One recently observed symptom of these changes has been an apparent weakening of the positive relationship between high-latitude boreal tree growth and temperature at some sites (D'Arrigo et al 2008). This phenomenon is referred to as the 'divergence problem' or 'divergence effect' and is thought to reflect a non-linear relationship between temperature and tree growth, where recent warming has allowed other factors besides growing-season temperature to emerge as dominant regulators of annual growth rates. Figure 1 demonstrates this divergence phenomenon with records of tree-ring widths collected from 59 populations of white spruce in Alaska 1. Key tendencies among these populations include: (1) growth is most sensitive to temperature during relatively cold growing seasons (figure 1(a)), (2) populations at colder sites are more sensitive to temperature than those at warmer sites are (figure 1(a)), and (3) growth at warmer sites may respond negatively to increased temperature beyond some optimal growing-season temperature (figure 1(b)). Since temperature is rising rapidly at high latitudes, one interpretation of figures 1(a) and (b) is that warming has promoted increased growth at colder sites, but caused growth to plateau or slow at warmer sites. Corroborating this interpretation, satellite imagery and tree-ring data indicate increasing vegetation productivity near the forest-tundra boundary but declining productivity in warmer regions within forest interiors (e.g., Bunn and Goetz 2006, Beck and Goetz 2011, Beck et al 2011, Berner et al 2011). Will continued warming cause a northward migration of boreal forests, with mortality in the warmer, southern locations and expansion into the colder tundra? This question is difficult to answer because many factors besides temperature influence boreal forest dynamics. Widespread productivity declines within interior boreal forests appear to be related to warming-induced drought stress (Barber et al 2000). Notably, this response may be more complicated than simply a decline in soil moisture. Even when soil moisture is plentiful, warming can negatively impact plant growth and survival by causing increased respiratory consumption of stored carbohydrates (McDowell 2011) and decreased stomatal conductance due to hydraulic limitation (Flexas et al 2004). Some degree of acclimation may be occurring, as white spruce populations that experience moderate temperatures and precipitation have lower optimal growth temperatures than populations at warmer, drier sites do (figure 1(c)). Yet, populations at the warmest or driest sites show strong growth declines during warm periods, consistent with a decline in the viability of these populations in some regions (Goetz et al 2005, Beck and Goetz 2011, Beck et al 2011). Can interior boreal forests acclimate to the current era's rapid warming? Or will temperatures within interior boreal forests outpace or extend beyond the adaptive capabilities of boreal tree species? The answer remains a mystery, partly because important aspects of acclimation are still poorly understood, and partly because of other important processes such as wildfire and increases in CO2 concentration, nitrogen deposition, growing-season length, and tropospheric ozone concentration. Figure 1 Figure 1. Relationships between white spruce tree-ring widths and climate at 59 sites in Alaska. (a) Annual correlation between ring-width index and June-July average temperature during years when June--July temperature was colder (blue bars) and warmer (red bars) than average. Pairs of bars represent the coldest 20 sites (left), 19 sites with intermediate temperature (middle) and the warmest 20 sites (right). (b) Spline curves that represent the best-fit relationship between temperature (x-axis) and ring-width index variability (y-axis) at cold sites (blue line), intermediate sites (black line) and warm sites (orange line). (c) Same as (b) but for the wettest 20 sites (green line), 19 sites with intermediate annual precipitation (black line) and the driest 20 sites (brown line). Error bars in (a)-(c) are standard errors. Perhaps an even bigger mystery is what the future has in store at the cold ecotone where boreal forest gives way to arctic tundra. Just as for warmer sites, there tends to be a temperature threshold at cold and intermediate sites, above which further warming no longer positively influences growth rate (figures 1(a) and (b)). Rather than reverse sign once this threshold is surpassed, growth-temperature relationships at cold and intermediate sites tend to simply disappear or at least diminish. This is because metabolic rates are slow in the cold, but are optimal under moderately warmer conditions (Tjoelker et al 2009). As temperature increases into a range of variability that no longer limits metabolic rate, a host of other climatic and soil-related factors can limit or promote growth and seedling recruitment. At some cool treeline sites, rapidly rising temperatures may have already surpassed the level that supports optimal growth, as negative relationships have emerged between temperature and growth rate in most decades (McGuire et al 2010). In a recent contribution to this important body of research, Andreu-Hayles et al (2011) studied growth-temperature relations within a white spruce population growing at the northern treeline in Alaska. Consistent with observations elsewhere in boreal forests, Andreu-Hayles et al discovered that a positive and significant relationship between ring widths and June-July temperature during 1901-1950 disappeared during 1951-2000. Interestingly, ring widths and temperature both increased throughout the 20th century at this treeline site, in contrast to recent trends at many other sites in Alaska where warming is outpacing ring widths (e.g., D'Arrigo et al 2008). At the site studied by Andreu-Hayles et al, it seems recent warming has caused a release of white spruce growth from temperature limitation and there is now a new sheriff in town regulating annual growth rate. Who this new sheriff is, however, remains an open and important question. Another interesting result in the Andreu-Hayles et al study is that the relationship between temperature and density of tree-ring latewood (the dark band formed at the end of the growing season) was stable throughout the 20th century. This means that although temperature may no longer be the primary factor governing annual growth, it still has an important physiological impact at the end of the growing season. The stability of the latewood density-temperature relationship also offers a promising implication for dendroclimatic studies. While non-linear relationships between ring widths and temperature may make it difficult to use ring widths to infer information about historical temperature variability for some sites, Andreu-Hayles et al add to the evidence (e.g., Barber et al 2000, Davi et al 2003, D'Arrigo et al 2009) that latewood density may be particularly useful in reconstructing historical temperature at high latitudes. While the divergence problem and new contribution by Andreu-Hayles et al are interesting on their own, they are also important because they highlight the current limits to our understanding of the mechanisms driving boreal forest growth and survival. As Allen et al (2010) pointed out, understanding and predicting the consequences of climate changes on forests is emerging as a grand challenge for global change scientists. This is particularly true at high latitudes because boreal forests store ~32% of Earth's terrestrial forest carbon, more than twice that of temperate forests (Pan et al 2011). Will continued warming turn boreal forests into a sink or source of atmospheric CO2? And will boreal forest growth and distribution change enough to significantly impact the energy balance of high latitude landscapes and thereby influence large-scale atmospheric circulation? To answer these questions, it is critical to understand the factors influencing boreal forest growth under warmer conditions and how the relative contributions of these factors vary spatially. Our understanding of these factors can be improved through research campaigns that integrate field-measurements, remote sensing and ecological modeling (Goetz et al 2011). Field-studies that measure the physiological responses of trees to manipulations of environmental variables such as temperature, soil moisture, soil nutrients and insolation are critical for informing ecological models that predict forest responses to various scenarios of climate and environmental change. Remote sensing is critical in validating modeled projections of forest growth. At present, ecological models do poorly at characterizing observed trends in boreal-forest productivity in some regions (Beck et al 2011). It will be exciting in the coming years to see how field measurements, modeling and remote sensing can work together to resolve the mysteries of the divergence problem, how warming will influence the overall productivity and distribution of boreal forests, and how changes in boreal-forest characteristics may influence regional and global climates. References Allen C D et al 2010 A global overview of drought and head-induced tree mortality reveals emerging climate change risks for forests Forest Ecol. Manag. 259 660-84 Andreu-Hayles L, D'Arrigo R, Anchukaitis K J, Beck P S A, Frank D and Goetz S 2011 Varying boreal forest response to Arctic environmental change at the Firth River, Alaska Environ. Res. Lett. 6 045503 Barber V A, Juday G P and Finney B P 2000 Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress Nature 405 668-73 Beck P S A and Goetz S J 2011 Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: ecological variability and regional differences Environ. Res. Lett. 6 045501 Beck P S A, Juday G P, Alix C, Barber V A, Winslow S E, Sousa E E, Heiser P, Herriges J D and Goetz S J 2011 Changes in forest productivity across Alaska consistent with biome shift Ecol. Lett. 14 373-9 Berner L T, Beck P S A, Bunn A G, Lloyd A H and Goetz S J 2011 High-latitude tree growth and satellite vegetation indices: correlations and trends in Russia and Canada (1982-2008) J. Geophys. Res. 116 G01015 Bunn A G and Goetz S J 2006 Trends in satellite-observed circumpolar photosynthetic activity from 1982 to 2003: the influence of seasonality, cover type, and vegetation density Earth Interact. 10 1-19 D'Arrigo R, Jacoby G, Buckley B, Sakulich J, Frank D, Wilson R, Curtis A and Anchukaitis K 2009 Tree growth and inferred temperature variability at the North American Arctic treeline Glob. Planet. Change 65 71-82 D'Arrigo R, Wilson R, Liepert B, Cherubini P 2008 On the 'divergence problem' in northern forests: a review of the tree-ring evidence and possible causes Glob. Planet. Change 60 289-305 Davi N K, Jacoby G C and Wiles G C 2003 Boreal temperature variability inferred from maximum latewood density and tree-ring width data, Wrangell Mountain region, Alaska Quatern. Res. 60 252-62 Flexas J, Bota J, Loreto F, Cornic G and Sharkey T 2004 Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants Plant Biol. 6 269-79 Goetz S J, Bunn A G, Fiske G J and Houghton R 2005 Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance Proc. Natl Acad. Sci. USA 102 13521-5 Goetz S J, Kimball J S, Mack M C and Kasischke E S 2011 Scoping completed for an experiment to assess vulnerability of Arctic and boreal ecosystems EOS Trans. Am. Geophys. Union 92 150-1 McDowell N G 2011 Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality Plant Physiol. 155 1051-9 McGuire A D, Ruess R W, Lloyd A, Yarie J, Clein J S and Juday G P 2010 Vulnerability of white spruce tree growth in interior Alaska in response to climate variability: dendrochronological, demographic, and experimental perspectives Canadian J. Forest Res. 40 1197-209 Pan Y et al 2011 A large and persistent carbon sink in the world's forests Science 333 988-93 Tjoelker M G, Oleksyn J, Lorenc-Plucinska G and Reich P B 2009 Acclimation of respiratory temperature responses in northern and southern populations of Pinus banksiana New Phytologist 181 218-29 1 Tree-ring data: ftp.ncdc.noaa.gov/pub/data/paleo/treering. Climate data: snap.uaf.edu/downloads/alaska-climate-datasets.
Nitrogen dynamics in managed boreal forests: Recent advances and future research directions.
Sponseller, Ryan A; Gundale, Michael J; Futter, Martyn; Ring, Eva; Nordin, Annika; Näsholm, Torgny; Laudon, Hjalmar
2016-02-01
Nitrogen (N) availability plays multiple roles in the boreal landscape, as a limiting nutrient to forest growth, determinant of terrestrial biodiversity, and agent of eutrophication in aquatic ecosystems. We review existing research on forest N dynamics in northern landscapes and address the effects of management and environmental change on internal cycling and export. Current research foci include resolving the nutritional importance of different N forms to trees and establishing how tree-mycorrhizal relationships influence N limitation. In addition, understanding how forest responses to external N inputs are mediated by above- and belowground ecosystem compartments remains an important challenge. Finally, forestry generates a mosaic of successional patches in managed forest landscapes, with differing levels of N input, biological demand, and hydrological loss. The balance among these processes influences the temporal patterns of stream water chemistry and the long-term viability of forest growth. Ultimately, managing forests to keep pace with increasing demands for biomass production, while minimizing environmental degradation, will require multi-scale and interdisciplinary perspectives on landscape N dynamics.
Iain Davidson-Hunt; Luc C. Duchesne; John C., eds. Zasada
2001-01-01
Contains a wide variety of papers given at the first international conference on non-timber forest products (NTFP) in cold temperate and boreal forests. Focuses on many facets of NTFPs: economics, society, biology, resource management, business development, and others.
A Fair Trade Approach to Community Forest Certification? A Framework for Discussion
ERIC Educational Resources Information Center
Taylor, Peter Leigh
2005-01-01
Forest certification has gained growing attention as a market-based instrument to make globalizing markets a force for mitigating rather than fostering environmental degradation. Yet in practice, market mechanisms currently appear to encourage concentration of forest certification in Northern temperate and boreal forests, rather than in the…
Chapter 10. Dynamics of subalpine forests
Dennis H. Knight
1994-01-01
The boreal owl's fairly specific habitat requirements restrict its range in the conterminous U.S. to subalpine forests (see Chapter 9). These forests provide tree cavities, uncrusted snow that facilitates preying on small mammals, and cool microclimates essential for summer roosting. Such forests also provide habitat for the owl's prey which consists...
Atlantic SSTs control regime shifts in forest fire activity of Northern Scandinavia
Drobyshev, Igor; Bergeron, Yves; Vernal, Anne de; Moberg, Anders; Ali, Adam A.; Niklasson, Mats
2016-01-01
Understanding the drivers of the boreal forest fire activity is challenging due to the complexity of the interactions driving fire regimes. We analyzed drivers of forest fire activity in Northern Scandinavia (above 60 N) by combining modern and proxy data over the Holocene. The results suggest that the cold climate in northern Scandinavia was generally characterized by dry conditions favourable to periods of regionally increased fire activity. We propose that the cold conditions over the northern North Atlantic, associated with low SSTs, expansion of sea ice cover, and the southward shift in the position of the subpolar gyre, redirect southward the precipitation over Scandinavia, associated with the westerlies. This dynamics strengthens high pressure systems over Scandinavia and results in increased regional fire activity. Our study reveals a previously undocumented teleconnection between large scale climate and ocean dynamics over the North Atlantic and regional boreal forest fire activity in Northern Scandinavia. Consistency of the pattern observed annually through millennium scales suggests that a strong link between Atlantic SST and fire activity on multiple temporal scales over the entire Holocene is relevant for understanding future fire activity across the European boreal zone. PMID:26940995
Analysis of Alaskan burn severity patterns using remotely sensed data
Duffy, P.A.; Epting, J.; Graham, J.M.; Rupp, T.S.; McGuire, A.D.
2007-01-01
Wildland fire is the dominant large-scale disturbance mechanism in the Alaskan boreal forest, and it strongly influences forest structure and function. In this research, patterns of burn severity in the Alaskan boreal forest are characterised using 24 fires. First, the relationship between burn severity and area burned is quantified using a linear regression. Second, the spatial correlation of burn severity as a function of topography is modelled using a variogram analysis. Finally, the relationship between vegetation type and spatial patterns of burn severity is quantified using linear models where variograms account for spatial correlation. These results show that: 1) average burn severity increases with the natural logarithm of the area of the wildfire, 2) burn severity is more variable in topographically complex landscapes than in flat landscapes, and 3) there is a significant relationship between burn severity and vegetation type in flat landscapes but not in topographically complex landscapes. These results strengthen the argument that differential flammability of vegetation exists in some boreal landscapes of Alaska. Additionally, these results suggest that through feedbacks between vegetation and burn severity, the distribution of forest vegetation through time is likely more stable in flat terrain than it is in areas with more complex topography. ?? IAWF 2007.
Atlantic SSTs control regime shifts in forest fire activity of Northern Scandinavia
NASA Astrophysics Data System (ADS)
Drobyshev, Igor; Bergeron, Yves; Vernal, Anne De; Moberg, Anders; Ali, Adam A.; Niklasson, Mats
2016-03-01
Understanding the drivers of the boreal forest fire activity is challenging due to the complexity of the interactions driving fire regimes. We analyzed drivers of forest fire activity in Northern Scandinavia (above 60 N) by combining modern and proxy data over the Holocene. The results suggest that the cold climate in northern Scandinavia was generally characterized by dry conditions favourable to periods of regionally increased fire activity. We propose that the cold conditions over the northern North Atlantic, associated with low SSTs, expansion of sea ice cover, and the southward shift in the position of the subpolar gyre, redirect southward the precipitation over Scandinavia, associated with the westerlies. This dynamics strengthens high pressure systems over Scandinavia and results in increased regional fire activity. Our study reveals a previously undocumented teleconnection between large scale climate and ocean dynamics over the North Atlantic and regional boreal forest fire activity in Northern Scandinavia. Consistency of the pattern observed annually through millennium scales suggests that a strong link between Atlantic SST and fire activity on multiple temporal scales over the entire Holocene is relevant for understanding future fire activity across the European boreal zone.
Atlantic SSTs control regime shifts in forest fire activity of Northern Scandinavia.
Drobyshev, Igor; Bergeron, Yves; Vernal, Anne de; Moberg, Anders; Ali, Adam A; Niklasson, Mats
2016-03-04
Understanding the drivers of the boreal forest fire activity is challenging due to the complexity of the interactions driving fire regimes. We analyzed drivers of forest fire activity in Northern Scandinavia (above 60 N) by combining modern and proxy data over the Holocene. The results suggest that the cold climate in northern Scandinavia was generally characterized by dry conditions favourable to periods of regionally increased fire activity. We propose that the cold conditions over the northern North Atlantic, associated with low SSTs, expansion of sea ice cover, and the southward shift in the position of the subpolar gyre, redirect southward the precipitation over Scandinavia, associated with the westerlies. This dynamics strengthens high pressure systems over Scandinavia and results in increased regional fire activity. Our study reveals a previously undocumented teleconnection between large scale climate and ocean dynamics over the North Atlantic and regional boreal forest fire activity in Northern Scandinavia. Consistency of the pattern observed annually through millennium scales suggests that a strong link between Atlantic SST and fire activity on multiple temporal scales over the entire Holocene is relevant for understanding future fire activity across the European boreal zone.
Foster, Jane R; D'Amato, Anthony W
2015-12-01
Ecotones are transition zones that form, in forests, where distinct forest types meet across a climatic gradient. In mountains, ecotones are compressed and act as potential harbingers of species shifts that accompany climate change. As the climate warms in New England, USA, high-elevation boreal forests are expected to recede upslope, with northern hardwood species moving up behind. Yet recent empirical studies present conflicting findings on this dynamic, reporting both rapid upward ecotonal shifts and concurrent increases in boreal species within the region. These discrepancies may result from the limited spatial extent of observations. We developed a method to model and map the montane forest ecotone using Landsat imagery to observe change at scales not possible for plot-based studies, covering mountain peaks over 39 000 km(2) . Our results show that ecotones shifted downward or stayed stable on most mountains between 1991 and 2010, but also shifted upward in some cases (13-15% slopes). On average, upper ecotone boundaries moved down -1.5 m yr(-1) in the Green Mountains, VT, and -1.3 m yr(-1) in the White Mountains, NH. These changes agree with remeasured forest inventory data from Hubbard Brook Experimental Forest, NH, and suggest that processes of boreal forest recovery from prior red spruce decline, or human land use and disturbance, may swamp out any signal of climate-mediated migration in this ecosystem. This approach represents a powerful framework for evaluating similar ecotonal dynamics in other mountainous regions of the globe. © 2015 John Wiley & Sons Ltd.
Changes in very fine root respiration and morphology with time since last fire in a boreal forest
NASA Astrophysics Data System (ADS)
Makita, Naoki; Pumpanen, Jukka; Köster, Kajar; Berninger, Frank
2016-04-01
We examined the physiological and morphological responses of individual fine root segments in boreal forests stands with different age since the last fire to determine changes in specific fine root respiration and morphological traits during forest succession. We investigated the respiration of fine roots divided into three diameter classes (<0.5, 0.5-1.0, and 1.0-2.0 mm) in a Finnish boreal Pinus sylvestris L. in forest stands with 5, 45, 63, and 155 years since the last fire. Specific respiration rates of <0.5 mm roots in 155-year-old stands were 74%, 38%, and 31% higher than in 5-, 45-, and 63-year-old stands, respectively. However, the respiration rates of thicker diameter roots did not significantly change among stands with respect to time after fire. Similarly, fire disturbance had a strong impact on morphological traits of <0.5 mm roots, but not on thicker roots. Root respiration rates correlated positively with specific root length (length per unit mass) and negatively with root tissue density (mass per unit volume) in all stand ages. The linear regression lines fitted to the relationships between root respiration and specific root length or root tissue density showed significantly higher intercepts in 63- and 155-year-old than in 5-year-old stands. Significant shifts in the intercept of the common slope of respiration vs. morphology indicate the different magnitude of the changes in physiological performance among the fire age class. Despite a specific small geographic area, we suggest that the recovery of boreal forests following wildfire induces a strategy that favors carbon investment in nutrient and water exploitation efficiency with consequences for higher respiration, length, and lower tissue density of very fine roots.
Stable carbon isotope analysis reveals widespread drought stress in boreal black spruce forests.
Walker, Xanthe J; Mack, Michelle C; Johnstone, Jill F
2015-08-01
Unprecedented rates of climate warming over the past century have resulted in increased forest stress and mortality worldwide. Decreased tree growth in association with increasing temperatures is generally accepted as a signal of temperature-induced drought stress. However, variations in tree growth alone do not reveal the physiological mechanisms behind recent changes in tree growth. Examining stable carbon isotope composition of tree rings in addition to tree growth can provide a secondary line of evidence for physiological drought stress. In this study, we examined patterns of black spruce growth and carbon isotopic composition in tree rings in response to climate warming and drying in the boreal forest of interior Alaska. We examined trees at three nested scales: landscape, toposequence, and a subsample of trees within the toposequence. At each scale, we studied the potential effects of differences in microclimate and moisture availability by sampling on northern and southern aspects. We found that black spruce radial growth responded negatively to monthly metrics of temperature at all examined scales, and we examined ∆(13)C responses on a subsample of trees as representative of the wider region. The negative ∆(13)C responses to temperature reveal that black spruce trees are experiencing moisture stress on both northern and southern aspects. Contrary to our expectations, ∆(13)C from trees on the northern aspect exhibited the strongest drought signal. Our results highlight the prominence of drought stress in the boreal forest of interior Alaska. We conclude that if temperatures continue to warm, we can expect drought-induced productivity declines across large regions of the boreal forest, even for trees located in cool and moist landscape positions. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Petrone, R. M.; Thompson, D. K.; Chasmer, L.; Kljun, N.; Flannigan, M.; Devito, K. J.; Waddington, J. M.
2016-12-01
Boreal wildfire conflagrations have increased in frequency in the western boreal forest of Canada, with notable events in 2011, 2015, and 2016. Significant advances have been made in recent years in understanding fire-atmosphere interactions, with similar gains in the knowledge of carbon emissions and post-fire carbon cycling in forests. However, the focus of such studies is routinely on the burned stands themselves, with little attention to the adjacent forest whose boundary layer meteorology and carbon cycling may be impacted by smoke plume. We capitalize here on opportunistic eddy covariance observations of boundary-layer conditions and carbon cycling taken over a long-term monitoring site adjacent to an active wildfire in Alberta, Canada in 2011. Over a one-week period while the wildfire was burning near the footprint of the tower the turbulent structure of the boundary layer near the tower was altered with significant changes in friction velocity, air temperature, and vapour pressure deficit. Moreover, growing season net ecosystem productivity (NEP) decreased to almost zero largely due to reduced photosynthesis likely due to smoke-related reductions in photosynthetically active radiation (PAR). While the `smoke event' caused a reduction in forest CO2 sequestration by 7 g CO2 m-2 given that the smoked affected area was 120 times greater than the area burned this carbon reduction was equivalent to 30% of gross fire emissions from the fire. Consequently, we argue that smoke related inhibition of photosynthesis via reduced light should be considered when investigating the net radiative forcing of boreal forest wildfires.
Shifting Patterns of Boreal Forest Succession and Browning Over the Last 30 Years
NASA Astrophysics Data System (ADS)
Goulden, M.; Czimczik, C. I.; Randerson, J. T.
2017-12-01
Climate and fire largely control the productivity ("greenness") and biodiversity of boreal forests in North America. Our research focuses on better understanding: 1) the patterns of, controls on, and recent changes in North American Boreal Forest "Browning" and the declining Normalized Difference Vegetation Index (NDVI) observed in satellite records, and 2) the patterns of, controls on, and recent changes in North American Boreal Forest fire recovery and succession. Much of our effort has used the Landsat archive to analyze the patterns of wildfire and forest recovery along a transect cutting across central Canada; this study areas covers 3 Landsat rows x 25 paths with 2500 summer images. Key findings include: 1) Most (80-90%) of the recent NDVI trends in our study area are attributable to wildfire (areas that burned after 1995 and also before 1975 show browning; areas that burned in 1975-1995 show greening). 2) There are a significant number of non-fire related patches that show either browning or greening; some of these patches are related to fires or human disturbances that aren't in our disturbance database, but others occur in wetter areas, where there is a general tendency toward browning with many specific cases of greening. 3) Various remote sensing metrics yield complementary information providing a clearer sense of the biophysical trends during succession. 4) We see evidence of accelerating succession from 1985-1995 to 2005-2015. This acceleration isn't dramatic, just 1-3 years during early recovery and more during later succession, but it is a consistent feature of the analysis. We are not seeing a systematic decline in old-stand LAI. While NDVI declines in old stands with the loss of deciduous trees, we are not seeing a systematic decrease in old stand LAI or wide spread mortality.
NASA Astrophysics Data System (ADS)
Jaramillo, Fernando; Cory, Neil; Arheimer, Berit; Laudon, Hjalmar; van der Velde, Ype; Hasper, Thomas B.; Teutschbein, Claudia; Uddling, Johan
2018-01-01
During the last 6 decades, forest biomass has increased in Sweden mainly due to forest management, with a possible increasing effect on evapotranspiration. However, increasing global CO2 concentrations may also trigger physiological water-saving responses in broadleaf tree species, and to a lesser degree in some needleleaf conifer species, inducing an opposite effect. Additionally, changes in other forest attributes may also affect evapotranspiration. In this study, we aimed to detect the dominating effect(s) of forest change on evapotranspiration by studying changes in the ratio of actual evapotranspiration to precipitation, known as the evaporative ratio, during the period 1961-2012. We first used the Budyko framework of water and energy availability at the basin scale to study the hydroclimatic movements in Budyko space of 65 temperate and boreal basins during this period. We found that movements in Budyko space could not be explained by climatic changes in precipitation and potential evapotranspiration in 60 % of these basins, suggesting the existence of other dominant drivers of hydroclimatic change. In both the temperate and boreal basin groups studied, a negative climatic effect on the evaporative ratio was counteracted by a positive residual effect. The positive residual effect occurred along with increasing standing forest biomass in the temperate and boreal basin groups, increasing forest cover in the temperate basin group and no apparent changes in forest species composition in any group. From the three forest attributes, standing forest biomass was the one that could explain most of the variance of the residual effect in both basin groups. These results further suggest that the water-saving response to increasing CO2 in these forests is either negligible or overridden by the opposite effect of the increasing forest biomass. Thus, we conclude that increasing standing forest biomass is the dominant driver of long-term and large-scale evapotranspiration changes in Swedish forests.
Chapter 1. Approach: The flammulated, boreal, and great gray owl assessments
Gregory D. Hayward
1994-01-01
This forest owl conservation assessment focuses on three species of forest owls that occur on national forest lands in the United States. Sixteen other species of owls also regularly breed in the United States, but these three species were designated "sensitive" on forests in more than one region of the Forest Service in 1992. Within the National Forest...
NASA Astrophysics Data System (ADS)
Schelker, J.; Grabs, T. J.; Bishop, K. H.; Laudon, H.
2012-12-01
Concentrations of dissolved organic carbon (DOC) in stream water show large variations as a response to disturbances such as forestry operations. We used a paired catchment experiment in northern Sweden which shows well quantified increases of DOC concentrations and C-exports as a result of forest harvesting. To identify the drivers of these increases, a physically-based process model (Riparian Flow Integration Model, RIM) was used to inversely simulate the DOC availability in the peat-rich riparian soils of the catchments. DOC availability in soils followed a seasonal signal paralleling the seasonality of soil-temperatures (min: February; max: August) during 2005-2011. Further, high-frequency event sampling of DOC during spring and summer seasons of 2007, 2008 and 2009, respectively, revealed that event size acted as a secondary control of DOC in streams: Spring snowmelt events (as well as one major event in 2009) showed clockwise hysteresis, whereas minor runoff episodes during summer (when DOC availability in soils was highest) were characterized by a counterclockwise behavior. The higher hydro-meteorological forcing consisting of increases of soil temperature and soil moisture after the forest removal governed additional increases in DOC availability in soils. The higher DOC concentrations observed in streams after forest harvesting can therefore be ascribed to i) the increased climatic forcing comprising higher water flows through riparian soils, ii) increased soil temperatures and soil moisture, respectively, favoring an increased production of DOC, and iii) additional variation by event size. Overall these results underline the large impact of forestry operations on stream water quality as well as DOC exports leaving managed boreal forests. Simulated and measured soil water TOC concentration profiles within the three Balsjö catchments (CC-4 = clear-cut with 67% harvest; NO-5 = 35% harvest; NR-7 = northern reference). The simulated curves represent the inversely modeled soil profiles using the average f-parameter calculated for August 2009 for each catchment. Measured values represent TOC concentrations of soil water sampled in mid August 2009. Sample numbers (soil depth in bracket) are given as: n (-0.2m) = 16; n (-0.6m) = 17; n (-0.9m) = 15. Horizontal whiskers indicate the standard deviation of measured values for each soil depth.
Wood phenology: from organ-scale processes to terrestrial ecosystem models
NASA Astrophysics Data System (ADS)
Delpierre, Nicolas; Guillemot, Joannès
2016-04-01
In temperate and boreal trees, a dormancy period prevents organ development during adverse climatic conditions. Whereas the phenology of leaves and flowers has received considerable attention, to date, little is known regarding the phenology of other tree organs such as wood, fine roots, fruits and reserve compounds. In this presentation, we review both the role of environmental drivers in determining the phenology of wood and the models used to predict its phenology in temperate and boreal forest trees. Temperature is a key driver of the resumption of wood activity in spring. There is no such clear dominant environmental cue involved in the cessation of wood formation in autumn, but temperature and water stress appear as prominent factors. We show that wood phenology is a key driver of the interannual variability of wood growth in temperate tree species. Incorporating representations of wood phenology in a terrestrial ecosystem model substantially improved the simulation of wood growth under current climate.
NASA Astrophysics Data System (ADS)
Parajuli, A.; Nadeau, D.; Anctil, F.; Parent, A. C.; Bouchard, B.; Jutras, S.
2017-12-01
In snow-fed catchments, it is crucial to monitor and to model snow water equivalent (SWE), particularly to simulate the melt water runoff. However, the distribution of SWE can be highly heterogeneous, particularly within forested environments, mainly because of the large variability in snow depths. Although the boreal forest is the dominant land cover in Canada and in a few other northern countries, very few studies have quantified the spatiotemporal variability of snow depths and snowpack dynamics within this biome. The objective of this paper is to fill this research gap, through a detailed monitoring of snowpack dynamics at nine locations within a 3.57 km2 experimental forested catchment in southern Quebec, Canada (47°N, 71°W). The catchment receives 6 m of snow annually on average and is predominantly covered with balsam fir stand with some traces of spruce and white birch. In this study, we used a network of nine so-called `snow profiling stations', providing automated snow depth and snowpack temperature profile measurements, as well as three contrasting sites (juvenile, sapling and open areas) where sublimation rates were directly measured with flux towers. In addition, a total of 1401 manual snow samples supported by 20 snow pits measurements were collected throughout the winter of 2017. This paper presents some preliminary analyses of this unique dataset. Simple empirical relations relying SWE with easy-to-determine proxies, such as snow depths and snow temperature, are tested. Then, binary regression trees and multiple regression analysis are used to model SWE using topographic characteristics (slope, aspect, elevation), forest features (tree height, tree diameter, forest density and gap fraction) and meteorological forcing (solar radiation, wind speed, snow-pack temperature profile, air temperature, humidity). An analysis of sublimation rates comparing open area, saplings and juvenile forest is also presented in this paper.
Changes in forest productivity across Alaska consistent with biome shift
Peter S.A. Beck; Glenn P. Juday; Claire Alix; Valerie A. Barber; Stephen E. Winslow; Emily E. Sousa; Patricia Heiser; James D. Herriges; Scott J. Goetz
2011-01-01
Global vegetation models predict that boreal forests are particularly sensitive to a biome shift during the 21st century. This shift would manifest itself first at the biome's margins, with evergreen forest expanding into current tundra while being replaced by grasslands or temperate forest at the biome's southern edge. We evaluated changes in forest...
Introduction to: The Forest Health monitoring program
Barbara L. Conkling
2011-01-01
The National Forest Health Monitoring (FHM) Program of the Forest Service, U.S. Department of Agriculture, produces an annual technical report on forest health as one of its products. The report is organized using the Criteria and Indicators for the Conservation and Sustainable Management of Temperate and Boreal Forests (Montréal Process Working Group 2007) as a...
NASA Astrophysics Data System (ADS)
Carvalhais, N.; Thurner, M.; Beer, C.; Forkel, M.; Rademacher, T. T.; Santoro, M.; Tum, M.; Schmullius, C.
2015-12-01
While vegetation productivity is known to be strongly correlated to climate, there is a need for an improved understanding of the underlying processes of vegetation carbon turnover and their importance at a global scale. This shortcoming has been due to the lack of spatially extensive information on vegetation carbon stocks, which we recently have been able to overcome by a biomass dataset covering northern boreal and temperate forests originating from radar remote sensing. Based on state-of-the-art products on biomass and NPP, we are for the first time able to study the relation between carbon turnover rate and a set of climate indices in northern boreal and temperate forests. The implementation of climate-related mortality processes, for instance drought, fire, frost or insect effects, is often lacking or insufficient in current global vegetation models. In contrast to our observation-based findings, investigated models from the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), including HYBRID4, JeDi, JULES, LPJml, ORCHIDEE, SDGVM, and VISIT, are able to reproduce spatial climate - turnover rate relationships only to a limited extent. While most of the models compare relatively well to observation-based NPP, simulated vegetation carbon stocks are severely biased compared to our biomass dataset. Current limitations lead to considerable uncertainties in the estimated vegetation carbon turnover, contributing substantially to the forest feedback to climate change. Our results are the basis for improving mortality concepts in global vegetation models and estimating their impact on the land carbon balance.
Carbonaceous aerosols from prescribed burning of a boreal forest ecosystem
NASA Technical Reports Server (NTRS)
Mazurek, Monica A.; Cofer, Wesley R., III; Levine, Joel S.
1991-01-01
During the boreal forest burn studied, the ambient concentrations for the particle carbon smoke aerosol are highest for the full-fire burn conditions and vary significantly throughout the burn. Collection strategies must accordingly define ranges in the smoke aerosol concentrations produced. While the highest elemental C concentrations are observed during full-fire conditions, the great majority of smoke aerosol particles are in the form of organic C particles irrespective of fire temperature. The formation of organic C light-scattering particles was a significant process in the burn studied.
Flammulated, boreal, and great gray owls in the United States: A technical conservation assessment
G. D. Hayward; J. Verner
1994-01-01
Flammulated (Otus flammeolus), boreal (Aegolius funereus), and great gray (Strix nebulosa) owls occur over a broad portion of North America and each is designated as a "sensitive species" in four or more USDA Forest Service regions. The insectivorous flammulated owl is a neotropical migrant requiring...
NASA Technical Reports Server (NTRS)
McDonald, K. C.; Qualls, B.; Hardy, J.
2002-01-01
We examine the sensitivity of ERS-1 C-band synthetic aperture radar (SAR) backscatter to springtime snow and vegetation thaw dynamics for boreal forest stands within the BOREAS Southern Study Area (SSA) in Canada during the 1994 winter-spring thaw transition.
Mucha, Joanna; Peay, Kabir G; Smith, Dylan P; Reich, Peter B; Stefański, Artur; Hobbie, Sarah E
2018-02-01
Ectomycorrhizal (ECM) fungi can influence the establishment and performance of host species by increasing nutrient and water absorption. Therefore, understanding the response of ECM fungi to expected changes in the global climate is crucial for predicting potential changes in the composition and productivity of forests. While anthropogenic activity has, and will continue to, cause global temperature increases, few studies have investigated how increases in temperature will affect the community composition of ectomycorrhizal fungi. The effects of global warming are expected to be particularly strong at biome boundaries and in the northern latitudes. In the present study, we analyzed the effects of experimental manipulations of temperature and canopy structure (open vs. closed) on ectomycorrhizal fungi identified from roots of host seedlings through 454 pyrosequencing. The ecotonal boundary site selected for the study was between the southern boreal and temperate forests in northern Minnesota, USA, which is the southern limit range for Picea glauca and Betula papyrifera and the northern one for Pinus strobus and Quercus rubra. Manipulations that increased air and soil temperature by 1.7 and 3.4 °C above ambient temperatures, respectively, did not change ECM richness but did alter the composition of the ECM community in a manner dependent on host and canopy structure. The prediction that colonization of boreal tree species with ECM symbionts characteristic of temperate species would occur was not substantiated. Overall, only a small proportion of the ECM community appears to be strongly sensitive to warming.
BOREAS TE-6 Multiband Vegetation Imager Data
NASA Technical Reports Server (NTRS)
Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Kucharik, Christopher J.
2000-01-01
The BOREAS TE-6 team collected data in support of its efforts to examine the influence of vegetation and climate on the major carbon fluxes in boreal tree species. A newly developed ground-based canopy imaging system called an MVI was tested and used by the BOREAS TE-06 team to collect measurements of the canopy crap fraction (sky fraction), canopy gap-size distribution (size and frequency of gaps between foliage in canopy), branch architecture, and leaf angle distribution (fraction of leaf area in specific leaf inclination classes assuming azimuthal symmetry). Measurements of the canopy gap-size distribution are used to derive canopy clumping indices that can be used to adjust indirect LAI measurements made in nonrandom forests. These clumping factors will also help to describe the radiation penetration in clumped canopies more accurately by allowing for simple adjustments to Beer's law. Measurements of the above quantities were obtained at BOREAS NSA-OJP site in IFC-2 in 1994, at the SSA-OA in July 1995, and at the SSA-OBS and SSA-OA sites in IFC-2 in 1996. Modeling studies were also performed to further validate MVI measurements and to gain a more complete understanding of boreal forest canopy architecture. By using MVI measurements and Monte Carlo simulations, clumping indices as a function of zenith angle were derived for the three main boreal species studied during BOREAS. The analyzed data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distrobuted Activity Archive Center (DAAC).
Browning boreal forests of western North America
NASA Astrophysics Data System (ADS)
Verbyla, David
2011-12-01
The GIMMS NDVI dataset has been widely used to document a 'browning trend' in North American boreal forests (Goetz et al 2005, Bunn et al 2007, Beck and Goetz 2011). However, there has been speculation (Alcaraz-Segura et al 2010) that this trend may be an artifact due to processing algorithms rather than an actual decline in vegetation activity. This conclusion was based primarily on the fact that GIMMS NDVI did not capture NDVI recovery within most burned areas in boreal Canada, while another dataset consistently showed post-fire increasing NDVI. I believe that the results of Alcaraz-Segura et al (2010) were due simply to different pixel sizes of the two datasets (64 km2 versus 1 km2 pixels). Similar results have been obtained from tundra areas greening in Alaska, with the results simply due to these pixel size differences (Stow et al 2007). Furthermore, recent studies have documented boreal browning trends based on NDVI from other sensors. Beck and Goetz (2011) have shown the boreal browning trend derived from a different sensor (MODIS) to be very similar to the boreal browning trend derived from the GIMMS NDVI dataset for the circumpolar boreal region. Parent and Verbyla (2010) found similar declining NDVI patterns based on NDVI from Landsat sensors and GIMMS NDVI in boreal Alaska. Zhang et al (2008) found a similar 'browning trend' in boreal North America based on a production efficiency model using an integrated AVHRR and MODIS dataset. The declining NDVI trend in areas of boreal North America is consistent with tree-ring studies (D'Arrigo et al 2004, McGuire et al 2010, Beck et al 2011). The decline in tree growth may be due to temperature-induced drought stress (Barber et al 2000) caused by higher evaporative demands in a warming climate (Lloyd and Fastie 2002). In a circumpolar boreal study, Lloyd and Bunn (2007) found that a negative relationship between temperature and tree-ring growth occurred more frequently in warmer parts of species' ranges, suggesting that direct temperature stress might be a factor in some species. Since warm growing seasons are also typically dry growing seasons, direct temperature stress and moisture stress could occur simultaneously. For example, 2004 was the warmest summer in over 200 years in boreal Alaska (Barber et al 2004) but it was also during a drought with less than 50 mm of summer precipitation recorded in Fairbanks. In Fairbanks, the length of the growing season, as defined as the period above freezing, has increased by 45 per cent over the past 100 years, with no significant increase in precipitation (Wendler and Shulski 2009). Regional winter runoff has increased, likely associated with permafrost thawing (Brabets and Walvoord 2009), while surface water has decreased, likely associated with increased evapotranspiration (Riordan et al 2006, Anderson et al 2007, Berg et al 2009). The mean annual air temperature in boreal Alaska has increased by over 1.5 °C during the past 50 years (Stafford et al 2000), and is projected to increase by 3-7 °C by end of this century (Walsh et al 2008). Thus, it would be surprising if a declining NDVI trend was not occurring in the western boreal region of North America as the climate continues to warm. Insects and disease in the North American boreal forest may also affect the NDVI browning trends (Malmström and Raffa 2000), as the life histories of damaging insects may be linked to a warming boreal climate. For example, warmer temperatures contributed to the spruce beetle outbreaks in Alaska with a reduction in the beetle life cycle from two years to one year (Berg et al 2006). Thus, as the boreal climate continues to warm, tree growth reduction and mortality from insects and diseases may become more substantial. In boreal Alaska, recent alder dieback and mortality is likely to be related to alder's susceptibility to a canker-causing fungus in drought years (Ruess et al 2009). Recent widespread and prolonged outbreaks of aspen leaf miner and a willow leaf blotch miner in boreal Alaska are likely to have resulted in decreased NDVI (Parent and Verbyla 2010). The NDVI browning trend has expanded in area in boreal North America (Beck and Goetz 2011). If the trend towards a warmer and drier climate continues, these areas may represent a future tipping point where drought-induced mortality across a boreal region may occur. Such events have already occurred in the western United States (van Mantgem et al 2009) and the aspen parklands of the southern Canadian boreal forest (Michaelian et al 2010). References Alcaraz-Segura D, Chuvieco E, Epstein H E, Kasischke E S and Trishchenko A 2010 Debating the greening vs. browning of the North American boreal forest: differences between satellite datasets Glob. Change Biol. 16 760-70 Anderson L, Abbott M B, Finney B P and Burns S J 2007 Late Holocene moisture balance variability in the southwest Yukon Territory, Canada Quatern. Sci. Rev. 26 130-41 Barber V A, Juday G P and Finney B P 2000 Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress Nature 405 668-73 Barber V A, Juday G P, Finney B P and Wilmking M 2004 Reconstruction of summer temperatures in interior Alaska from tree-ring proxies: evidence for changing synoptic climate regimes Clim. Change 63 91-120 Beck P S A and Goetz S J 2011 Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: ecological variability and regional differences Environ. Res. Lett. 6 045501 Beck P S A, Juday G P, Alix C, Barber V A, Winslow S E, Sousa E E, Heiser P, Herriges J D and Goetz S J 2011 Changes in forest productivity across Alaska consistent with biome shift Ecol. Lett. 14 373-9 Berg E E, Henry J D, Fastie C L, De Volder A D and Matsuoka S M 2006 Spruce beetle outbreaks on the Kenai Peninsula, Alaska, and Kluane National Park and Reserve, Yukon Territory: relationship to summer temperatures and regional differences in disturbance regimes Forest Ecol. Manag. 227 219-32 Berg E E, Hillman K M, Dial R and DeRuwe A 2009 Recent woody invasion of wetlands on the Kenai Peninsula Lowlands, south-central Alaska: a major regime shift after 18 000 years of wet Sphagnum-sedge peat recruitment Canadian J. Forest Res. 39 2033-46 Brabets T P and Walvoord M A 2009 Trends in streamflow in the Yukon River Basin from 1944 to 2004 and the influence of the Pacific Decadal Oscillation J. Hydrol. 371 108-19 Bunn A G, Goetz S J, Kimball J S and Zhang K 2007 Northern high-latitude ecosystems respond to climate change EOS Trans. Am. Geophys. Union 88 333-40 D'Arrigo R, Kaufmann R K, Davi N, Jacoby G C, Laskowski C, Myneni R B and Cherubini P 2004 Thresholds for warming-induced growth decline at elevational tree line in the Yukon Territory, Canada Glob. Biogeochem. Cycles 18 GB3021 Goetz S J, Bunn A G, Fiske G J and Houghton R A 2005 Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance Proc. Natl Acad. Sci. USA 102 13521-5 Lloyd A H and Bunn A G 2007 Responses of the circumpolar boreal forest to the 20th century climate variability Environ. Res. Lett. 2 045013 Lloyd A H and Fastie C L 2002 Spatial and temporal variability in the growth and climate response of treeline trees in Alaska Clim. Change 52 481-509 Malmström C and Raffa K R 2000 Biotic disturbance agents in the boreal forest: considerations for vegetation change models Glob. Change Biol. 6 (Suppl. 1) 35-48 McGuire A D, Ruess R W, Lloyd A, Yarie J, Clein J S and Juday G P 2010 Vulnerability of white spruce tree growth in interior Alaska in response to climate variability: dendrochronological, demographic, and experimental perspectives Canadian J. Forest Res. 40 1197-209 Michealian M, Hogg E H, Hall R J and Arsenault E 2011 Massive mortality of aspen following severe drought along the southern edge of the Canadian boreal forest Glob. Change Biol. 17 2084-94 Parent M B and Verbyla D 2010 The browning of Alaska's boreal forest Remote Sens. 2 2729-47 Riordan B, Verbyla D and McGuire A D 2006 Shrinking ponds in subarctic Alaska based on 1950-2002 remotely sensed images J. Geophys. Res. 111 G04002 Ruess R W, McFarland J M, Trummer L M and Rohrs-Richey J K 2009 Disease-mediated declines in N-fixation inputs by Alnus tenuifolia to early-successional floodplains in interior and south-central Alaska Ecosystems 12 489-502 Stafford J M, Wendler G and Curtis J 2000 Temperature and precipitation of Alaska: 50 year trend analysis Theor. Appl. Climatology 67 33-44 Stow D, Peterson A, Hope A, Engstrom R and Coulter L 2007 Greenness trends of Arctic tundra vegetation in the 1990s: comparison of two NDVI data sets from NOAA AVHRR systems Int. J. Remote Sens. 28 4807-22 van Mantgem P J et al 2009 Widespread increase of tree mortality rates in the western United States Science 323 521-4 Walsh, J E, Chapman W L, Romanovsky V, Christensen J H and Stendel M 2008 Global climate model performance over Alaska and Greenland J. Clim. 21 6156-74 Wendler G and Shulski M 2009 A century of climate change for Fairbanks, Alaska Arctic 62 295-300 Zhang K, Kimball J S, Hogg E H, Zhao M, Oechel W C, Cassano J J and Running S W 2008 Satellite-based model detection of recent climate-driven changes in northern high-latitude vegetation productivity J. Geophys. Res. 113 G03033
Diverse growth trends and climate responses across Eurasia’s boreal forest
NASA Astrophysics Data System (ADS)
Hellmann, Lena; Agafonov, Leonid; Charpentier Ljungqvist, Fredrik; Churakova (Sidorova, Olga; Düthorn, Elisabeth; Esper, Jan; Hülsmann, Lisa; Kirdyanov, Alexander V.; Moiseev, Pavel; Myglan, Vladimir S.; Nikolaev, Anatoly N.; Reinig, Frederick; Schweingruber, Fritz H.; Solomina, Olga; Tegel, Willy; Büntgen, Ulf
2016-07-01
The area covered by boreal forests accounts for ˜16% of the global and 22% of the Northern Hemisphere landmass. Changes in the productivity and functioning of this circumpolar biome not only have strong effects on species composition and diversity at regional to larger scales, but also on the Earth’s carbon cycle. Although temporal inconsistency in the response of tree growth to temperature has been reported from some locations at the higher northern latitudes, a systematic dendroecological network assessment is still missing for most of the boreal zone. Here, we analyze the geographical patterns of changes in summer temperature and precipitation across northern Eurasia >60 °N since 1951 AD, as well as the growth trends and climate responses of 445 Pinus, Larix and Picea ring width chronologies in the same area and period. In contrast to widespread summer warming, fluctuations in precipitation and tree growth are spatially more diverse and overall less distinct. Although the influence of summer temperature on ring formation is increasing with latitude and distinct moisture effects are restricted to a few southern locations, growth sensitivity to June-July temperature variability is only significant at 16.6% of all sites (p ≤ 0.01). By revealing complex climate constraints on the productivity of Eurasia’s northern forests, our results question the a priori suitability of boreal tree-ring width chronologies for reconstructing summer temperatures. This study further emphasizes regional climate differences and their role on the dynamics of boreal ecosystems, and also underlines the importance of free data access to facilitate the compilation and evaluation of massively replicated and updated dendroecological networks.
Vulnerability to climate-induced changes in ecosystem services of boreal forests
NASA Astrophysics Data System (ADS)
Holmberg, Maria; Rankinen, Katri; Aalto, Tuula; Akujärvi, Anu; Nadir Arslan, Ali; Liski, Jari; Markkanen, Tiina; Mäkelä, Annikki; Peltoniemi, Mikko
2016-04-01
Boreal forests provide an array of ecosystem services. They regulate climate, and carbon, water and nutrient fluxes, and provide renewable raw material, food, and recreational possibilities. Rapid climate warming is projected for the boreal zone, and has already been observed in Finland, which sets these services at risk. MONIMET (LIFE12 ENV/FI/000409, 2.9.2013 - 1.9.2017) is a project funded by EU Life programme about Climate Change Indicators and Vulnerability of Boreal Zone Applying Innovative Observation and Modeling Techniques. The coordinating beneficiary of the project is the Finnish Meteorological Institute. Associated beneficiaries are the Natural Resources Institute Finland, the Finnish Environment Institute and the University of Helsinki. In the MONIMET project, we use state-of-the-art models and new monitoring methods to investigate the impacts of a warming climate on the provision of ecosystem services of boreal forests. This poster presents results on carbon storage in soil and assessment of drought indices, as a preparation for assessing the vulnerability of society to climate-induced changes in ecosystem services. The risk of decreasing provision of ecosystem services depends on the sensitivity of the ecosystem as well as its exposure to climate stress. The vulnerability of society, in turn, depends on the risk of decreasing provision of a certain service in combination with society's demand for that service. In the next phase, we will look for solutions to challenges relating to the quantification of the demand for ecosystem services and differences in spatial extent and resolution of the information on future supply and demand.
Multi-trophic resilience of boreal lake ecosystems to forest fires
Lewis, Tyler L.; Lindberg, Mark S.; Schmutz, Joel A.; Bertram, M.R.
2014-01-01
Fires are the major natural disturbance in the boreal forest, and their frequency and intensity will likely increase as the climate warms. Terrestrial nutrients released by fires may be transported to boreal lakes, stimulating increased primary productivity, which may radiate through multiple trophic levels. Using a before-after-control-impact (BACI) design, with pre- and postfire data from burned and unburned areas, we examined effects of a natural fire across several trophic levels of boreal lakes, from nutrient and chlorophyll levels, to macroinvertebrates, to waterbirds. Concentrations of total nitrogen and phosphorus were not affected by the fire. Chlorophyll levels were also unaffected, likely reflecting the stable nutrient concentrations. For aquatic invertebrates, we found that densities of three functional feeding groups did not respond to the fire (filterers, gatherers, scrapers), while two groups increased (shredders, predators). Amphipods accounted for 98% of shredder numbers, and we hypothesize that fire-mediated habitat changes may have favored their generalist feeding and habitat ecology. This increase in amphipods may, in turn, have driven increased predator densities, as amphipods were the most numerous invertebrate in our lakes and are commonly taken as prey. Finally, abundance of waterbird young, which feed primarily on aquatic invertebrates, was not affected by the fire. Overall, ecosystems of our study lakes were largely resilient to forest fires, likely due to their high initial nutrient concentrations and small catchment sizes. Moreover, this resilience spanned multiple trophic levels, a significant result for ecologically similar boreal regions, especially given the high potential for increased fires with future climate change.
Multi-trophic resilience of boreal lake ecosystems to forest fires.
Lewis, Tyler L; Lindberg, Mark S; Schmutz, Joel A; Bertram, Mark R
2014-05-01
Fires are the major natural disturbance in the boreal forest, and their frequency and intensity will likely increase as the climate warms. Terrestrial nutrients released by fires may be transported to boreal lakes, stimulating increased primary productivity, which may radiate through multiple trophic levels. Using a before-after-control-impact (BACI) design, with pre- and postfire data from burned and unburned areas, we examined effects of a natural fire across several trophic levels of boreal lakes, from nutrient and chlorophyll levels, to macroinvertebrates, to waterbirds. Concentrations of total nitrogen and phosphorus were not affected by the fire. Chlorophyll a levels were also unaffected, likely reflecting the stable nutrient concentrations. For aquatic invertebrates, we found that densities of three functional feeding groups did not respond to the fire (filterers, gatherers, scrapers), while two groups increased (shredders, predators). Amphipods accounted for 98% of shredder numbers, and we hypothesize that fire-mediated habitat changes may have favored their generalist feeding and habitat ecology. This increase in amphipods may, in turn, have driven increased predator densities, as amphipods were the most numerous invertebrate in our lakes and are commonly taken as prey. Finally, abundance of waterbird young, which feed primarily on aquatic invertebrates, was not affected by the fire. Overall, ecosystems of our study lakes were largely resilient to forest fires, likely due to their high initial nutrient concentrations and small catchment sizes. Moreover, this resilience spanned multiple trophic levels, a significant result for ecologically similar boreal regions, especially given the high potential for increased fires with future climate change.
Forest health monitoring: 2006 national technical report
Mark J. Ambrose; Barbara L. Conkling
2009-01-01
The Forest Health Monitoring Programâs annual national technical report presents results of forest health analyses from a national perspective using data from a variety of sources. The report is organized according to the Criteria and Indicators for the Conservation and Sustainable Management of Temperate and Boreal Forests of the...
Forest health monitoring: 2003 national technical report
John W. Coulston; Mark J. Ambrose; Kurt H. Riitters; Barbara L. Conkling; William D. Smith
2005-01-01
The Forest Health Monitoring Programâs annual national reports present results from forest health data analyses focusing on a national perspective. The Criteria and Indicators for the Conservation and Sustainable Management of Temperate and Boreal Forests are used as a reporting framework. This report has five main sections. The first contains introductory material....
Forest health monitoring: 2005 national technical report
Mark J. Ambrose; Barbara L. Conkling
2007-01-01
The Forest Health Monitoring program's annual national technical report presents results of forest health analyses from a national perspective using data from a variety of sources. The report is organized according to the Criteria and Indicators for the Conservation and Sustainable Management of Temperate and Boreal Forests of the Santiago Declaration. The results...
Angstmann, J L; Ewers, B E; Kwon, H
2012-05-01
Boreal forests are crucial to climate change predictions because of their large land area and ability to sequester and store carbon, which is controlled by water availability. Heterogeneity of these forests is predicted to increase with climate change through more frequent wildfires, warmer, longer growing seasons and potential drainage of forested wetlands. This study aims at quantifying controls over tree transpiration with drainage condition, stand age and species in a central Canadian black spruce boreal forest. Heat dissipation sensors were installed in 2007 and data were collected through 2008 on 118 trees (69 Picea mariana (Mill.) Britton, Sterns & Poggenb. (black spruce), 25 Populus tremuloides Michx. (trembling aspen), 19 Pinus banksiana Lamb. (jack pine), 3 Larix laricina (Du Roi) K. Koch (tamarack) and 2 Salix spp. (willow)) at four stand ages (18, 43, 77 and 157 years old) each containing a well- and poorly-drained stand. Transpiration estimates from sap flux were expressed per unit xylem area, J(S), per unit ground area, E(C) and per unit leaf area, E(L), using sapwood (A(S)) and leaf (A(L)) area calculated from stand- and species-specific allometry. Soil drainage differences in transpiration were variable; only the 43- and 157-year-old poorly-drained stands had ∼ 50% higher total stand E(C) than well-drained locations. Total stand E(C) tended to decrease with stand age after an initial increase between the 18- and 43-year-old stands. Soil drainage differences in transpiration were controlled primarily by short-term physiological drivers such as vapor pressure deficit and soil moisture whereas stand age differences were controlled by successional species shifts and changes in tree size (i.e., A(S)). Future predictions of boreal climate change must include stand age, species and soil drainage heterogeneity to avoid biased estimates of forest water loss and latent energy exchanges.
Timber Volume and Biomass Estimates in Central Siberia from Satellite Data
NASA Technical Reports Server (NTRS)
Ranson, K. Jon; Kimes, Daniel S.; Kharuk, Vyetcheslav I.
2007-01-01
Mapping of boreal forest's type, structure parameters and biomass are critical for understanding the boreal forest's significance in the carbon cycle, its response to and impact on global climate change. The biggest deficiency of the existing ground based forest inventories is the uncertainty in the inventory data, particularly in remote areas of Siberia where sampling is sparse, lacking, and often decades old. Remote sensing methods can help overcome these problems. In this joint US and Russian study, we used the moderate resolution imaging spectroradiometer (MODIS) and unique waveform data of the geoscience laser altimeter system (GLAS) and produced a map of timber volume for a 10degx12deg area in Central Siberia. Using these methods, the mean timber volume for the forested area in the total study area was 203 m3/ ha. The new remote sensing methods used in this study provide a truly independent estimate of forest structure, which is not dependent on traditional ground forest inventory methods.
Soil carbon stocks and their rates of accumulation and loss in a boreal forest landscape
Rapalee, G.; Trumbore, S.E.; Davidson, E.A.; Harden, J.W.; Veldhuis, H.
1998-01-01
Boreal forests and wetlands are thought to be significant carbon sinks, and they could become net C sources as the Earth warms. Most of the C of boreal forest ecosystems is stored in the moss layer and in the soil. The objective of this study was to estimate soil C stocks (including moss layers) and rates of accumulation and loss for a 733 km2 area of the BOReal Ecosystem-Atmosphere Study site in northern Manitoba, using data from smaller-scale intensive field studies. A simple process-based model developed from measurements of soil C inventories and radiocarbon was used to relate soil C storage and dynamics to soil drainage and forest stand age. Soil C stocks covary with soil drainage class, with the largest C stocks occurring in poorly drained sites. Estimated rates of soil C accumulation or loss are sensitive to the estimated decomposition constants for the large pool of deep soil C, and improved understanding of deep soil C decomposition is needed. While the upper moss layers regrow and accumulate C after fires, the deep C dynamics vary across the landscape, from a small net sink to a significant source. Estimated net soil C accumulation, averaged for the entire 733 km2 area, was 20 g C m-2 yr-1 (28 g C m-2 yr-1 accumulation in surface mosses offset by 8 g C m-2 yr-1 lost from deep C pools) in a year with no fire. Most of the C accumulated in poorly and very poorly drained soils (peatlands and wetlands). Burning of the moss layer in only 1% of uplands would offset the C stored in the remaining 99% of the area. Significant interannual variability in C storage is expected because of the irregular occurrence of fire in space and time. The effects of climate change and management on fire frequency and on decomposition of immense deep soil C stocks are key to understanding future C budgets in boreal forests.
Soil surface CO2 flux in a boreal black spruce fire chronosequence
NASA Astrophysics Data System (ADS)
Wang, Chuankuan; Bond-Lamberty, Ben; Gower, Stith T.
2003-02-01
Understanding the effects of wildfire on the carbon (C) cycle of boreal forests is essential to quantifying the role of boreal forests in the global carbon cycle. Soil surface CO2 flux (Rs), the second largest C flux in boreal forests, is directly and indirectly affected by fire and is hypothesized to change during forest succession following fire. The overall objective of this study was to measure and model Rs for a black spruce (Picea mariana [Mill.] BSP) postfire chronosequence in northern Manitoba, Canada. The experiment design was a nested factorial that included two soil drainage classes (well and poorly drained) × seven postfire aged stands. Specific objectives were (1) to quantify the relationship between Rs and soil temperature for different aged boreal black spruce forests in well-drained and poorly drained soil conditions, (2) to examine Rs dynamics along postfire successional stands, and (3) to estimate annual soil surface CO2 flux for these ecosystems. Soil surface CO2 flux was significantly affected by soil drainage class (p = 0.014) and stand age (p = 0.006). Soil surface CO2 flux was positively correlated to soil temperature (R2 = 0.78, p < 0.001), but different models were required for each drainage class × aged stand combination. Soil surface CO2 flux was significantly greater at the well-drained than the poorly drained stands (p = 0.007) during growing season. Annual soil surface CO2 flux for the 1998, 1995, 1989, 1981, 1964, 1930, and 1870 burned stands averaged 226, 412, 357, 413, 350, 274, and 244 g C m-2 yr-1 in the well-drained stands and 146, 380, 300, 303, 256, 233, and 264 g C m-2 yr-1 in the poorly drained stands. Soil surface CO2 flux during the winter (from 1 November to 30 April) comprised from 5 to 19% of the total annual Rs. We speculate that the smaller soil surface CO2 flux in the recently burned than the older stands is mainly caused by decreased root respiration.
Soil surface CO2 flux in a boreal black spruce fire chronosequence
NASA Astrophysics Data System (ADS)
Wang, Chuankuan; Bond-Lamberty, Ben; Gower, Stith T.
2002-02-01
Understanding the effects of wildfire on the carbon (C) cycle of boreal forests is essential to quantifying the role of boreal forests in the global carbon cycle. Soil surface CO2 flux (Rs), the second largest C flux in boreal forests, is directly and indirectly affected by fire and is hypothesized to change during forest succession following fire. The overall objective of this study was to measure and model Rs for a black spruce (Picea mariana [Mill.] BSP) postfire chronosequence in northern Manitoba, Canada. The experiment design was a nested factorial that included two soil drainage classes (well and poorly drained) × seven postfire aged stands. Specific objectives were (1) to quantify the relationship between Rs and soil temperature for different aged boreal black spruce forests in well-drained and poorly drained soil conditions, (2) to examine Rs dynamics along postfire successional stands, and (3) to estimate annual soil surface CO2 flux for these ecosystems. Soil surface CO2 flux was significantly affected by soil drainage class (p = 0.014) and stand age (p = 0.006). Soil surface CO2 flux was positively correlated to soil temperature (R2 = 0.78, p < 0.001), but different models were required for each drainage class × aged stand combination. Soil surface CO2 flux was significantly greater at the well-drained than the poorly drained stands (p = 0.007) during growing season. Annual soil surface CO2 flux for the 1998, 1995, 1989, 1981, 1964, 1930, and 1870 burned stands averaged 226, 412, 357, 413, 350, 274, and 244 g C m-2 yr-1 in the well-drained stands and 146, 380, 300, 303, 256, 233, and 264 g C m-2 yr-1 in the poorly drained stands. Soil surface CO2 flux during the winter (from 1 November to 30 April) comprised from 5 to 19% of the total annual Rs. We speculate that the smaller soil surface CO2 flux in the recently burned than the older stands is mainly caused by decreased root respiration.
Effects of Intensified 21st Century Drought on the Boreal Forest of Alaska
NASA Astrophysics Data System (ADS)
Juday, G. P.; Alix, C. M.; Jess, R.; Grant, T. A., III
2014-12-01
A long term perspective on several quasi-decadal cycles of intensifying drought stress across boreal Alaska has been synthesized from monitoring of forest reference stands at Bonanza Creek LTER, Interior Alaska Research Natural Areas, and tree ring sampling across Alaska. The Alaska boreal forest is largely made up of tree populations with two growth responses to temperature increases. Negative responders are more common, and found across the warm, dry Interior. Positive responders are largely in western Alaska, a maritime climate region near the Bering Sea, and at high elevation of the Brooks and Alaska Ranges. Following the North Pacific climate regime shift in 1976-77, negative responder Interior white and black spruce, aspen, and birch all experienced major growth reductions, particularly in warm drought years. Elevated summer temperatures and low annual precipitation of recent decades at low elevations of the Tanana and central Yukon Valleys were outside the values which previously defined the species distributions limits, Long term survival prospects are questionable. Simultaneously, recent elevated temperatures were associated with growth increases of positive responders. On fertile floodplain sites of the lower Yukon and Kuskokwim Rivers, the growth rate of positive responding white spruce is now greater than negative responders for the first time in centuries. NDVI trends in recent decades confirm these opposite growth trends in their respective regions. During peak warm/dry anomalies, forest disturbance, an important process for tree regeneration over the long term, intensified in boreal Alaska. Several insect outbreaks of wood-boring and defoliating species associated with warm temperature/drought stress anomalies appeared, many of them severe, and some not previously known to outbreak. Significant tree injury (e.g. top dieback) and mortality resulted. Wildfire extent and severity increased and reached record levels. The overall pattern has been described as biome shift. Future research is needed on the distribution of boreal forest refuge habitats in the Interior, drought effects on natural tree regeneration and growth/health of young tree populations, carbon accumulation profiles under the modern drought regime compared to earlier, and the genetic disruption of biome shift.
McNew, Lance; Handel, Colleen M.; Pearce, John; DeGange, Anthony R.; Holland-Bartels, Leslie; Whalen, Mary
2013-01-01
Arctic and boreal ecosystems provide important breeding habitat for more than half of North America’s migratory birds as well as many resident species. Northern landscapes are projected to experience more pronounced climate-related changes in habitat than most other regions. These changes include increases in shrub growth, conversion of tundra to forest, alteration of wetlands, shifts in species’ composition, and changes in the frequency and scale of fires and insect outbreaks. Changing habitat conditions, in turn, may have significant effects on the distribution and abundance of wildlife in these critical northern ecosystems. The U.S. Geological Survey (USGS) is conducting studies in the Boreal–Arctic transition zone of Alaska, an environment of accelerated change in this sensitive margin between Arctic tundra and boreal forest.
NASA Astrophysics Data System (ADS)
Drobyshev, Igor; Bergeron, Yves; Girardin, Martin P.; Gauthier, Sylvie; Ols, Clémentine; Ojal, John
2017-10-01
The length of the fire cycle is a critical factor affecting the vegetation cover in boreal and temperate regions. However, its responses to climate change remain poorly understood. We reanalyzed data from earlier studies of forest age structures at the landscape level, in order to map the evolution of regional fire cycles across Eastern North American boreal and temperate forests, following the termination of the Little Ice Age (LIA). We demonstrated a well-defined spatial pattern of post-LIA changes in the length of fire cycles toward lower fire activity during the 1800s and 1900s. The western section of Eastern North America (west of 77°W) experienced a decline in fire activity as early as the first half of the 1800s. By contrast, the eastern section showed these declines as late as the early 1900s. During a regionally fire-prone period of the 1910s-1920s, forests in the western section of Eastern boreal North America burned more than forests in the eastern section. The climate appeared to dominate over vegetation composition and human impacts in shaping the geographical pattern of the post-LIA change in fire activity. Changes in the atmospheric circulation patterns following the termination of the LIA, specifically changes in Arctic Oscillation and the strengthening of the Continental Polar Trough, were likely drivers of the regional fire dynamics.
Climate change vulnerabilities within the forestry sector for the Midwestern United States
Stephen D. Handler; Chris W. Swanston; Patricia R. Butler; Leslie A. Brandt; Maria K. Janowiak; Matthew D. Powers; P. Danielle. Shannon
2014-01-01
Forests are a defining landscape feature for much of the Midwest, from boreal forests surrounding the northern Great Lakes to oak-hickory forests blanketing the Ozarks. Savannas and open woodlands within this region mark a major transition zone between forest and grassland biomes within the U.S. Forests help sustain human communities in the region, ecologically,...
Wildlife of southern forests habitat & management (Chapter 4): Defining the Forests
James G. Dickson; Raymond M. Sheffield
2003-01-01
Forests of the South are very diverse and productive. Included among southern forests are the boreal spruce- fir forests of the highest mountain peaks of the Blue Ridge Mountains to the lowest bottomland hardwoods on flood-deposited soil with elevations near sea level. In between are the diverse upland hardwood stands in northerly mountainous areas of the South and...
Charcoal Reflectance Reveals Early Holocene Boreal Deciduous Forests Burned at High Intensities
Hudspith, Victoria A.; Belcher, Claire M.; Kelly, Ryan; Hu, Feng Sheng
2015-01-01
Wildfire size, frequency, and severity are increasing in the Alaskan boreal forest in response to climate warming. One of the potential impacts of this changing fire regime is the alteration of successional trajectories, from black spruce to mixed stands dominated by aspen, a vegetation composition not experienced since the early Holocene. Such changes in vegetation composition may consequently alter the intensity of fires, influencing fire feedbacks to the ecosystem. Paleorecords document past wildfire-vegetation dynamics and as such, are imperative for our understanding of how these ecosystems will respond to future climate warming. For the first time, we have used reflectance measurements of macroscopic charcoal particles (>180μm) from an Alaskan lake-sediment record to estimate ancient charring temperatures (termed pyrolysis intensity). We demonstrate that pyrolysis intensity increased markedly from an interval of birch tundra 11 ky ago (mean 1.52%Ro; 485°C), to the expansion of trees on the landscape ∼10.5 ky ago, remaining high to the present (mean 3.54%Ro; 640°C) irrespective of stand composition. Despite differing flammabilities and adaptations to fire, the highest pyrolysis intensities derive from two intervals with distinct vegetation compositions. 1) the expansion of mixed aspen and spruce woodland at 10 cal. kyr BP, and 2) the establishment of black spruce, and the modern boreal forest at 4 cal. kyr BP. Based on our analysis, we infer that predicted expansion of deciduous trees into the boreal forest in the future could lead to high intensity, but low severity fires, potentially moderating future climate-fire feedbacks. PMID:25853712
Charcoal reflectance reveals early holocene boreal deciduous forests burned at high intensities.
Hudspith, Victoria A; Belcher, Claire M; Kelly, Ryan; Hu, Feng Sheng
2015-01-01
Wildfire size, frequency, and severity are increasing in the Alaskan boreal forest in response to climate warming. One of the potential impacts of this changing fire regime is the alteration of successional trajectories, from black spruce to mixed stands dominated by aspen, a vegetation composition not experienced since the early Holocene. Such changes in vegetation composition may consequently alter the intensity of fires, influencing fire feedbacks to the ecosystem. Paleorecords document past wildfire-vegetation dynamics and as such, are imperative for our understanding of how these ecosystems will respond to future climate warming. For the first time, we have used reflectance measurements of macroscopic charcoal particles (>180μm) from an Alaskan lake-sediment record to estimate ancient charring temperatures (termed pyrolysis intensity). We demonstrate that pyrolysis intensity increased markedly from an interval of birch tundra 11 ky ago (mean 1.52%Ro; 485°C), to the expansion of trees on the landscape ~10.5 ky ago, remaining high to the present (mean 3.54%Ro; 640°C) irrespective of stand composition. Despite differing flammabilities and adaptations to fire, the highest pyrolysis intensities derive from two intervals with distinct vegetation compositions. 1) the expansion of mixed aspen and spruce woodland at 10 cal. kyr BP, and 2) the establishment of black spruce, and the modern boreal forest at 4 cal. kyr BP. Based on our analysis, we infer that predicted expansion of deciduous trees into the boreal forest in the future could lead to high intensity, but low severity fires, potentially moderating future climate-fire feedbacks.
Wu, Zhiwei; He, Hong S; Liu, Zhihua; Liang, Yu
2013-06-01
Fuel load is often used to prioritize stands for fuel reduction treatments. However, wildfire size and intensity are not only related to fuel loads but also to a wide range of other spatially related factors such as topography, weather and human activity. In prioritizing fuel reduction treatments, we propose using burn probability to account for the effects of spatially related factors that can affect wildfire size and intensity. Our burn probability incorporated fuel load, ignition probability, and spread probability (spatial controls to wildfire) at a particular location across a landscape. Our goal was to assess differences in reducing wildfire size and intensity using fuel-load and burn-probability based treatment prioritization approaches. Our study was conducted in a boreal forest in northeastern China. We derived a fuel load map from a stand map and a burn probability map based on historical fire records and potential wildfire spread pattern. The burn probability map was validated using historical records of burned patches. We then simulated 100 ignitions and six fuel reduction treatments to compare fire size and intensity under two approaches of fuel treatment prioritization. We calibrated and validated simulated wildfires against historical wildfire data. Our results showed that fuel reduction treatments based on burn probability were more effective at reducing simulated wildfire size, mean and maximum rate of spread, and mean fire intensity, but less effective at reducing maximum fire intensity across the burned landscape than treatments based on fuel load. Thus, contributions from both fuels and spatially related factors should be considered for each fuel reduction treatment. Published by Elsevier B.V.
Girardin, Martin P.; Hogg, Edward H.; Kurz, Werner; Zimmermann, Niklaus E.; Metsaranta, Juha M.; de Jong, Rogier; Frank, David C.; Esper, Jan; Büntgen, Ulf; Guo, Xiao Jing; Bhatti, Jagtar
2016-01-01
Considerable evidence exists that current global temperatures are higher than at any time during the past millennium. However, the long-term impacts of rising temperatures and associated shifts in the hydrological cycle on the productivity of ecosystems remain poorly understood for mid to high northern latitudes. Here, we quantify species-specific spatiotemporal variability in terrestrial aboveground biomass stem growth across Canada’s boreal forests from 1950 to the present. We use 873 newly developed tree-ring chronologies from Canada’s National Forest Inventory, representing an unprecedented degree of sampling standardization for a large-scale dendrochronological study. We find significant regional- and species-related trends in growth, but the positive and negative trends compensate each other to yield no strong overall trend in forest growth when averaged across the Canadian boreal forest. The spatial patterns of growth trends identified in our analysis were to some extent coherent with trends estimated by remote sensing, but there are wide areas where remote-sensing information did not match the forest growth trends. Quantifications of tree growth variability as a function of climate factors and atmospheric CO2 concentration reveal strong negative temperature and positive moisture controls on spatial patterns of tree growth rates, emphasizing the ecological sensitivity to regime shifts in the hydrological cycle. An enhanced dependence of forest growth on soil moisture during the late-20th century coincides with a rapid rise in summer temperatures and occurs despite potential compensating effects from increased atmospheric CO2 concentration. PMID:27956624
Melvin, April M.; Mack, Michelle C.; Johnstone, Jill F.; McGuire, A. David; Genet, Helene; Schuur, Edward A.G.
2015-01-01
In the boreal forest of Alaska, increased fire severity associated with climate change is expanding deciduous forest cover in areas previously dominated by black spruce (Picea mariana). Needle-leaf conifer and broad-leaf deciduous species are commonly associated with differences in tree growth, carbon (C) and nutrient cycling, and C accumulation in soils. Although this suggests that changes in tree species composition in Alaska could impact C and nutrient pools and fluxes, few studies have measured these linkages. We quantified C, nitrogen, phosphorus, and base cation pools and fluxes in three stands of black spruce and Alaska paper birch (Betula neoalaskana) that established following a single fire event in 1958. Paper birch consistently displayed characteristics of more rapid C and nutrient cycling, including greater aboveground net primary productivity, higher live foliage and litter nutrient concentrations, and larger ammonium and nitrate pools in the soil organic layer (SOL). Ecosystem C stocks (aboveground + SOL + 0–10 cm mineral soil) were similar for the two species; however, in black spruce, 78% of measured C was found in soil pools, primarily in the SOL, whereas aboveground biomass dominated ecosystem C pools in birch forest. Radiocarbon analysis indicated that approximately one-quarter of the black spruce SOL C accumulated prior to the 1958 fire, whereas no pre-fire C was observed in birch soils. Our findings suggest that tree species exert a strong influence over C and nutrient cycling in boreal forest and forest compositional shifts may have long-term implications for ecosystem C and nutrient dynamics.
Alaska's Changing Fire Regime - Implications for the Vulnerability of Its Boreal Forests
NASA Technical Reports Server (NTRS)
Kasischke, E. S.; Hoy, E. E.; Verbyla, D. L.; Rupp, T. S.; Duffy, P. A.; McGuire, A. D.; Murphy, K. A.; Jandt, R.; Barnes, J. L.; Calef, M.;
2010-01-01
A synthesis was carried out to examine Alaska s boreal forest fire regime. During the 2000s, an average of 767 000 ha/year burned, 50% higher than in any previous decade since the 1940s. Over the past 60 years, there was a decrease in the number of lightning-ignited fires, an increase in extreme lightning-ignited fire events, an increase in human-ignited fires, and a decrease in the number of extreme human-ignited fire events. The fraction of area burned from humanignited fires fell from 26% for the 1950s and 1960s to 5% for the 1990s and 2000s, a result from the change in fire policy that gave the highest suppression priorities to fire events that occurred near human settlements. The amount of area burned during late-season fires increased over the past two decades. Deeper burning of surface organic layers in black spruce (Picea mariana (Mill.) BSP) forests occurred during late-growing-season fires and on more well-drained sites. These trends all point to black spruce forests becoming increasingly vulnerable to the combined changes of key characteristics of Alaska s fire regime, except on poorly drained sites, which are resistant to deep burning. The implications of these fire regime changes to the vulnerability and resilience of Alaska s boreal forests and land and fire management are discussed.
Alaska’s changing fire regime - Implications for the vulnerability of its boreal forests
Kasischke, Eric S.; Verbyla, David L.; Rupp, T. Scott; McGuire, A. David; Murphy, Karen A.; Jandt, R.; Barnes, Jennifer L.; Hoy, E.; Duffy, Paul A.; Calef, Monika; Turetsky, Merritt R.
2010-01-01
A synthesis was carried out to examine Alaska’s boreal forest fire regime. During the 2000s, an average of 767 000 ha·year–1 burned, 50% higher than in any previous decade since the 1940s. Over the past 60 years, there was a decrease in the number of lightning-ignited fires, an increase in extreme lightning-ignited fire events, an increase in human-ignited fires, and a decrease in the number of extreme human-ignited fire events. The fraction of area burned from human-ignited fires fell from 26% for the 1950s and 1960s to 5% for the 1990s and 2000s, a result from the change in fire policy that gave the highest suppression priorities to fire events that occurred near human settlements. The amount of area burned during late-season fires increased over the past two decades. Deeper burning of surface organic layers in black spruce (Picea mariana (Mill.) BSP) forests occurred during late-growing-season fires and on more well-drained sites. These trends all point to black spruce forests becoming increasingly vulnerable to the combined changes of key characteristics of Alaska’s fire regime, except on poorly drained sites, which are resistant to deep burning. The implications of these fire regime changes to the vulnerability and resilience of Alaska’s boreal forests and land and fire management are discussed.
NASA Astrophysics Data System (ADS)
Griffin, Debora; Franklin, Jonathan; Parrington, Mark; Whaley, Cynthia; Hopper, Jason; Lesins, Glen; Tereszchuk, Keith; Walker, Kaley A.; Drummond, James R.; Palmer, Paul; Strong, Kimberly; Duck, Thomas J.; Abboud, Ihab; Dan, Lin; O'Neill, Norm; Clerbaux, Cathy; Coheur, Pierre; Bernath, Peter F.; Hyer, Edward; Kliever, Jenny
2013-04-01
We present the results of total column measurements of CO and C2H6 and aerosol optical depth (AOD) during the Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS-B) campaign over Eastern Canada. Ground-based observations, using Fourier transform spectrometers (FTSs) and sun photometers, were carried out in July and August 2011. They were taken in Halifax, Nova Scotia, which is an ideal location to monitor the outflow of boreal fires from North America, and in Toronto, Ontario. Measurements of enhanced fine mode AOD were highly correlated with enhancements in coincident trace gas (CO and C2H6) observations between 19 and 21 July 2011, which is typical for a smoke plume event. In this study, we will focus on the identification of the origin and the transport of this smoke plume. We use back-trajectories calculated by the Canadian Meteorological Centre (CMC) as well as FLEXPART forward-trajectories to demonstrate that the enhanced CO, C2H6 and fine mode AOD seen near Halifax and Toronto did originate from forest fires in Northwestern Ontario, that occurred between 17 and 19 July 2011. In addition, total column measurements of CO from the satellite-borne Infrared Atmospheric Sounding Interferometer (IASI) have been used to trace the smoke plume and to confirm the origin of the CO enhancement. Furthermore, the emission ratio (ERC2H6-CO) and the emission factor (EFC2H6) of C2H6 (with respect to the CO emission) were estimated from these ground-based observations. The C2H6 emission results from boreal fires in Northwestern Ontario agree well with C2H6 emission measurements from other boreal regions, and are relatively high compared to other geographical regions. The ground-based CO and C2H6 observations were compared with output from the 3-D global chemical transport model GEOS-Chem, using the inventory of the Fire Locating And Monitoring of Burning Emissions (FLAMBE). Good agreement was found for the magnitude of the enhancement of the total columns of CO between the measured and modelled results; however, a small shift in time of approximately 6 h of the arrival of the plume over Halifax is apparent between the results. The modeled C2H6 columns are systematically lower than the observations from the ground-based FTSs. It is possible that this difference between the model output and observations is due to the extra-tropical (rather than specific boreal) fire emission ratio used in the GEOS-Chem simulation, which seems to underestimate the C2H6 emission, derived from the presented ground-based observations. This suggests that a finer categorization of extra-tropical biomass burning is necessary and should be considered in future model simulations.
A novel plant-fungal mutualism associated with fire
USDA-ARS?s Scientific Manuscript database
Morchella, the genus of true morels, produces highly-prized edible fruiting bodies in temperate and boreal forests following fire, and other disturbances. Morels are not known to fruit in regions too dry to support forest. This restriction to forest may also be linked to the facult...
Fire in the range of the Western Arctic Caribou Herd
Kyle Joly; T. Scott Rupp; Randi R. Jandt; F. Stuart Chapin
2009-01-01
Wildfire is the dominant ecological driver in boreal forest ecosystems. Although much less is known, it also affects tundra ecosystems. Fires effectively consume fruticose lichens, the primary winter forage for caribou, in both boreal and tundra ecosystems. We summarize 1950-2007 fire regime data for northwestern Alaska and subregions. We also identified meteorological...
NASA Astrophysics Data System (ADS)
Chen, B.; Chen, J. M.; Higuchi, K.; Chan, D.; Shashkov, A.
2002-05-01
Atmospheric CO2 concentration measurements have been made by scientists of Meteorological Service of Canada on a 40 m tower for the last 10 years at 15 minute intervals over a mostly intact boreal forest near Fraserdale (50N, 81W), Ontario, Canada. The long time records of CO2 as well as basic meteorological variables provide a unique opportunity to investigate any potential changes in the ecosystem in terms of carbon balance. A model is needed to decipher the carbon cycle signals from the diurnal and seasonal variation patterns in the CO2 record. For this purpose, the Boreal Ecosystem Productivity Simulator (BEPS) is expanded to include a one-dimensional CO2 vertical transfer model involving the interaction between plant canopies and the atmosphere in the surface layer and the diurnal dynamics of the mixed layer. An analytical solution of the scalar transfer equation within the surface layer is found using an assumption that the diurnal oscillation of CO2 concentration at a given height is sinusoidal, which is suitable for the investigation of the changes in diurnal variation pattern over the 10 year period. The complex interactions between the daily cycle of the atmosphere and vegetation CO2 exchange and the daily evolution of mixed layer entrainment of CO2 determines the CO2 variation pattern at a given height. The expanded BEPS can simulate within ñ2 ppm the hourly CO2 records at the 40 m measurement height. The annual totals of gross primary productivity (GPP), net primary productivity (NPP) and net ecosystem productivity (NEP), summed up from the hourly results, agree within 5% of previous estimates of BEPS at daily steps, indicating the internal consistency of the hourly model. The model is therefore ready for exploring changes in the CO2 record as affected by changes in the forest ecosystems upwind of the tower. Preliminary results indicate that the diurnal variation amplitude of CO2 has increased by 10-20% over the 10 years period, and this change can largely be attributed to enhanced growth of the forest. The uncertainties are large because the record is short relative to boreal carbon residence time. There is also a possibility of long-term changes in the mixed layer dynamics which affect the diurnal variation pattern at the measurement height.
NASA Astrophysics Data System (ADS)
Bäck, Jaana; Taipale, Ditte; Aalto, Juho
2017-04-01
In boreal forests, deciduous trees such as birches may in future climate become more abundant due to their large biomass production capacity, relatively good resource use ability and large acclimation potential to elevated CO2 levels and warmer climate. Increase in birch abundance may lead to unpredicted consequences in atmospheric composition. Currently it is acknowledged that conifers such as Scots pine and Norway spruce are important sources for volatile organic compounds (VOCs), especially monoterpenes, throughout the year, although the strong temperature relationships implies that emissions are highest in summertime. However, the dynamics of the deciduous birch foliage VOC emissions and their relationship with environmental drivers during the development, maturation and senescence of foliage has not been well analyzed. Long-term measurements of birch, which are unfortunately very sparse, can provide very useful information for the development of biosphere-atmosphere models that simulate boreal and subarctic forested areas where birch is often a sub-canopy species, occurs as a mixture among conifers or forms even pure stands in the higher latitudes. We measured the branch level VOC emissions from a mature Silver birch with proton transfer reaction mass spectrometer during 2014 and 2015 at the SMEAR II station (Station for Measuring Ecosystem-Atmosphere Relations), southern Finland. Our results showed that the Silver birch foliage is a huge source for both short-chained volatiles such as methanol, acetaldehyde and acetone, as well as for monoterpenes. The mean emission rates from birch leaves were 5 to 10 times higher than the corresponding emissions from Scots pine shoots. We compared several semi-empirical model approaches for determining the birch foliage monoterpene standardized emission potentials, and utilized the continuous emission measurements from the two growing seasons for development of a novel algorithm which accounts for the leaf development and senescence in addition to prevailing temperature and light conditions. With these improvements and inputs to the 1D biosphere-atmosphere model SOSAA (model to Simulate Organic vapours, Sulphuric Acid and Aerosols), we showed that the contribution of Silver birch to stand scale atmospheric reactivity may exceed the ones from conifers, and therefore specific land use and species distribution patterns should be accounted for in biosphere-atmosphere models describing the surface-atmosphere exchange of reactive gases.
Long-term change in limnology and invertebrates in Alaskan boreal wetlands
Corcoran, R.M.; Lovvorn, J.R.; Heglund, P.J.
2009-01-01
Climate change is more pronounced at high northern latitudes, and may be affecting the physical, chemical, and biological attributes of the abundant wetlands in boreal forests. On the Yukon Flats, located in the boreal forest of northeast Alaska, wetlands originally sampled during 1985-1989 were re-sampled for water chemistry and macroinvertebrates in summer 2001-2003. Wetlands sampled lost on average 19% surface water area between these periods. Total nitrogen and most metal cations (Na, Mg, and Ca, but not K) increased between these periods, whereas total phosphorus and chlorophyll a (Chl a) declined. These changes were greater in wetlands that had experienced more drying (decreased surface area). Compared with 1985-1989, densities of cladocerans, copepods, and ostracods in both June and August were much higher in 2002-2003, whereas densities of amphipods, gastropods, and chironomid larvae were generally lower. In comparisons among wetlands in 2002-2003 only, amphipod biomass was lower in wetlands with lower Chl a, which might help explain the decline of amphipods since the late 1980s when Chl a was higher. The decline in Chl a corresponded to greatly increased zooplankton density in June, suggesting a shift in carbon flow from scrapers and deposit-feeders to water-column grazers. Declines in benthic and epibenthic deposit-feeding invertebrates suggest important food web effects of climate change in otherwise pristine wetlands of the boreal forest. ?? 2008 Springer Science+Business Media B.V.
Coupling of Water and Carbon Cycles in Boreal Ecosystems at Watershed and National Scales
NASA Astrophysics Data System (ADS)
Chen, J. M.; Ju, W.; Govind, A.; Sonnentag, O.
2009-05-01
The boreal landscapes is relatively flat giving the impression of spatial homogeneity. However, glacial activities have left distinct fingerprints on the vegetation distribution on moderately rolling terrains over the boreal landscape. Upland or lowland forests types or wetlands having various degrees of hydrological connectivitiy to the surrounding terrain are typical of the boreal landscape. The nature of the terrain creates unique hydrological conditions affecting the local-scale ecophysiological and biogeochemical processes. As part of the Canadian Carbon Program, we investigated the importance of lateral water redistribution through surface and subsurface flows in the spatial distribution of the vertical fluxes of water and carbon. A spatially explicit hydroecological model (BEPS-TerrainLab) has been developed and tested in forested and wetland watersheds . Remotely sensed vegetation parameters along with other spatial datasets are used to run this model, and tower flux data are used for partial validation. It is demonstrated in both forest and wetland watersheds that ignoring the lateral water redistribution over the landscape, commonly done in 1-dimensional bucket models, can cause considerable biases in the vertical carbon and water flux estimation, in addition to the distortion of the spatial patterns of these fluxes. The biases in the carbon flux are considerably larger than those in the water flux. The significance of these findings in national carbon budget estimation is demonstrated by separate modeling of 2015 watersheds over the Canadian landmass.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thornton, Joel
2016-05-01
The Thornton Laboratory participated in the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Biogenic Aerosol Effects on Clouds and Climate (BAECC) campaign in Finland by deploying our mass spectrometer. We then participated in environmental simulation chamber studies at Pacific Northwest National Laboratory (PNNL). Thereafter, we analyzed the results as demonstrated in the several presentations and publications. The field campaign and initial environmental chamber studies are described below.
Initial responses of forest understories to varying levels and patterns of green-tree retention.
Charles B. Halpern; Donald McKenzie; Shelley A. Evans; Douglas A. Maguire
2005-01-01
Timber harvest with "green-tree" retention has been adopted in many temperate and boreal forest ecosystems, reflecting growing appreciation for the ecological values of managed forests. On federal forest lands in the Pacific Northwest, standards and guidelines for green-tree retention have been adopted, but systematic assessments of ecosystem response have...
Predicting the effects of forest management on lynx populations
John R. Squires
2008-01-01
Lynx are quintessential snowshoe hare predators with morphological adaptations such as large paws. This species depends on boreal forests, so the listing of Canada Lynx as a Threatened species is a major conservation issue to forest managers. The U.S. Fish and Wildlife Service stated that human alteration of forest abundance, composition, and connectivity was the most...
NASA Technical Reports Server (NTRS)
Riggs, George A.; Hall, Dorothy K.; Foster, James L.
2009-01-01
Monitoring of snow cover extent and snow water equivalent (SWE) in boreal forests is important for determining the amount of potential runoff and beginning date of snowmelt. The great expanse of the boreal forest necessitates the use of satellite measurements to monitor snow cover. Snow cover in the boreal forest can be mapped with either the Moderate Resolution Imaging Spectroradiometer (MODIS) or the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) microwave instrument. The extent of snow cover is estimated from the MODIS data and SWE is estimated from the AMSR-E. Environmental limitations affect both sensors in different ways to limit their ability to detect snow in some situations. Forest density, snow wetness, and snow depth are factors that limit the effectiveness of both sensors for snow detection. Cloud cover is a significant hindrance to monitoring snow cover extent Using MODIS but is not a hindrance to the use of the AMSR-E. These limitations could be mitigated by combining MODIS and AMSR-E data to allow for improved interpretation of snow cover extent and SWE on a daily basis and provide temporal continuity of snow mapping across the boreal forest regions in Canada. The purpose of this study is to investigate if temporal monitoring of snow cover using a combination of MODIS and AMSR-E data could yield a better interpretation of changing snow cover conditions. The MODIS snow mapping algorithm is based on snow detection using the Normalized Difference Snow Index (NDSI) and the Normalized Difference Vegetation Index (NDVI) to enhance snow detection in dense vegetation. (Other spectral threshold tests are also used to map snow using MODIS.) Snow cover under a forest canopy may have an effect on the NDVI thus we use the NDVI in snow detection. A MODIS snow fraction product is also generated but not used in this study. In this study the NDSI and NDVI components of the snow mapping algorithm were calculated and analyzed to determine how they changed through the seasons. A blended snow product, the Air Force Weather Agency and NASA (ANSA) snow algorithm and product has recently been developed. The ANSA algorithm blends the MODIS snow cover and AMSR-E SWE products into a single snow product that has been shown to improve the performance of snow cover mapping. In this study components of the ANSA snow algorithm are used along with additional MODIS data to monitor daily changes in snow cover over the period of 1 February to 30 June 2008.
Katherine O' Neill; Michael Amacher; Craig Palmer; Barbara Conkling; Greg C. Liknes
2003-01-01
The Montreal Process was formed in 1994 to develop an internationally agreed upon set of criteria and indicators for the conservation and sustainable management of temperate and boreal forests. In response to this effort, the USDA Forest Service Forest Inventory and Analysis (FIA) and Forest Health Monitonhg (FHM) programs implemented a national soil monitoring program...
Spatiotemporal Trends in late-Holocene Fire Regimes in Arctic and Boreal Alaska
NASA Astrophysics Data System (ADS)
Hoecker, T. J.; Higuera, P. E.; Hu, F.; Kelly, R.
2015-12-01
Alaskan arctic and boreal ecosystems are of global importance owing to their sensitivity and feedbacks to directional climate change. Wildfires are a primary driver of boreal carbon balance, and altered fire regimes may significantly impact global climate through the release of stored carbon and changes to surface albedo. Paleoecological records provide a window to how these systems respond to change by revealing climatic and disturbance variability throughout the Holocene. These long-term records highlight the sensitivity of fire regimes to climate and vegetation change, including responses to the relatively warm Medieval Climate Anomaly (MCA), and the relatively cool Little Ice Age (LIA). Over millennial timescales, boreal forests and arctic tundra have been resilient to climate change, but continued directional climate change may result in novel vegetation compositions and fire regimes, with potentially significant implications for global climate. Here we present a spatiotemporal synthesis of 22 published sediment-charcoal records from three Alaskan ecoregions. We add to this network eight records collected in June 2015 from an additional ecoregion. Variability in fire return intervals (FRIs) was quantified within and among ecoregions and climatic periods spanning the past 2 millennia, based on a peak analysis representing local fire events. Preliminary results suggest that fire regimes were responsive to centennial-scale climatic shifts, including the MCA and LIA, but the degree of sensitivity varies by ecoregion. Over the past 2000 years, FRIs were shortest during the MCA, indicating the potential for climate warming to promote high rates of burning. FRIs in tundra regions of northwestern Alaska and in interior boreal forests were 20% shorter during the MCA than during the LIA, and 25% shorter in boreal forest in the south-central Brooks Range. Burning was likely promoted during the warmer, drier MCA through lower fuel moisture. Quantifying fire-regime response to climate forcing across multiple ecoregions helps reveal the mechanisms that connect fire and climate in Alaskan ecosystems.
Introduction: Forest restoration in temperate and boreal zones
Emile Gardiner; Katrine Hahn; Magnus Löf
2003-01-01
The past decade has witnessed an acceleration of forest restoration activities around the globe. Afforestation of former agricultural land, rehabilitation of natural forest processes and structures at the stand and landscape levels, and conversion of single-species plantations to mixed-species stands are among the prominent types of restoration practices currently...
Cooperative Alaska Forest Inventory
Thomas Malone; Jingjing Liang; Edmond C. Packee
2009-01-01
The Cooperative Alaska Forest Inventory (CAFI) is a comprehensive database of boreal forest conditions and dynamics in Alaska. The CAFI consists of field-gathered information from numerous permanent sample plots distributed across interior and south-central Alaska including the Kenai Peninsula. The CAFI currently has 570 permanent sample plots on 190 sites...
Franklin, Oskar; Näsholm, Torgny; Högberg, Peter; Högberg, Mona N
2014-07-01
Ectomycorrhizal symbiosis is omnipresent in boreal forests, where it is assumed to benefit plant growth. However, experiments show inconsistent benefits for plants and volatility of individual partnerships, which calls for a re-evaluation of the presumed role of this symbiosis. We reconcile these inconsistencies by developing a model that demonstrates how mycorrhizal networking and market mechanisms shape the strategies of individual plants and fungi to promote symbiotic stability at the ecosystem level. The model predicts that plants switch abruptly from a mixed strategy with both mycorrhizal and nonmycorrhizal roots to a purely mycorrhizal strategy as soil nitrogen availability declines, in agreement with the frequency distribution of ectomycorrhizal colonization intensity across a wide-ranging data set. In line with observations in field-scale isotope labeling experiments, the model explains why ectomycorrhizal symbiosis does not alleviate plant nitrogen limitation. Instead, market mechanisms may generate self-stabilization of the mycorrhizal strategy via nitrogen depletion feedback, even if plant growth is ultimately reduced. We suggest that this feedback mechanism maintains the strong nitrogen limitation ubiquitous in boreal forests. The mechanism may also have the capacity to eliminate or even reverse the expected positive effect of rising CO2 on tree growth in strongly nitrogen-limited boreal forests. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
Franklin, Oskar; Näsholm, Torgny; Högberg, Peter; Högberg, Mona N
2014-01-01
Ectomycorrhizal symbiosis is omnipresent in boreal forests, where it is assumed to benefit plant growth. However, experiments show inconsistent benefits for plants and volatility of individual partnerships, which calls for a re-evaluation of the presumed role of this symbiosis. We reconcile these inconsistencies by developing a model that demonstrates how mycorrhizal networking and market mechanisms shape the strategies of individual plants and fungi to promote symbiotic stability at the ecosystem level. The model predicts that plants switch abruptly from a mixed strategy with both mycorrhizal and nonmycorrhizal roots to a purely mycorrhizal strategy as soil nitrogen availability declines, in agreement with the frequency distribution of ectomycorrhizal colonization intensity across a wide-ranging data set. In line with observations in field-scale isotope labeling experiments, the model explains why ectomycorrhizal symbiosis does not alleviate plant nitrogen limitation. Instead, market mechanisms may generate self-stabilization of the mycorrhizal strategy via nitrogen depletion feedback, even if plant growth is ultimately reduced. We suggest that this feedback mechanism maintains the strong nitrogen limitation ubiquitous in boreal forests. The mechanism may also have the capacity to eliminate or even reverse the expected positive effect of rising CO2 on tree growth in strongly nitrogen-limited boreal forests. PMID:24824576
AmeriFlux CA-SF1 Saskatchewan - Western Boreal, forest burned in 1977.
Amiro, Brian [University of Manitoba
2016-01-01
This is the AmeriFlux version of the carbon flux data for the site CA-SF1 Saskatchewan - Western Boreal, forest burned in 1977.. Site Description - Regenerated jack pine (Pinus banksiana) following fire in 1977; canopy height 6 m and LAI = 2.8. Some black spruce understory developing. Trees tend to be clumpy, with some clear spaces that can be easily walked thorugh, and other areas are thick. Fire killed coarse woody debris on the ground, that is soft and decomposing. Very few perched trunks. Understory are short shrubs such as Vaccinium and Arctostaphylus uva-ursi.
Global estimates of boreal forest carbon stocks and flux
NASA Astrophysics Data System (ADS)
Bradshaw, Corey J. A.; Warkentin, Ian G.
2015-05-01
The boreal ecosystem is an important global reservoir of stored carbon and a haven for diverse biological communities. The natural disturbance dynamics there have historically been driven by fire and insects, with human-mediated disturbances increasing faster than in other biomes globally. Previous research on the total boreal carbon stock and predictions of its future flux reveal high uncertainty in regional patterns. We reviewed and standardised this extensive body of quantitative literature to provide the most up-to-date and comprehensive estimates of the global carbon balance in the boreal forest. We also compiled century-scale predictions of the carbon budget flux. Our review and standardisation confirmed high uncertainty in the available data, but there is evidence that the region's total carbon stock has been underestimated. We found a total carbon store of 367.3 to 1715.8 Pg (1015 g), the mid-point of which (1095 Pg) is between 1.3 and 3.8 times larger than any previous mean estimates. Most boreal carbon resides in its soils and peatlands, although estimates are highly uncertain. We found evidence that the region might become a net carbon source following a reduction in carbon uptake rate from at least the 1980s. Given that the boreal potentially constitutes the largest terrestrial carbon source in the world, in one of the most rapidly warming parts of the globe (Walsh, 2014), how we manage these stocks will be influential on future climate dynamics.
Sarah A. Lewis; Andrew T. Hudak; Roger D. Ottmar; Peter R. Robichaud; Leigh B. Lentile; Sharon M. Hood; James B. Cronan; Penny Morgan
2011-01-01
Wildfire is a major forest disturbance in interior Alaska that can both directly and indirectly alter ecological processes. We used a combination of pre- and post-fire forest floor depths and post-fire ground cover assessments measured in the field, and high-resolution airborne hyperspectral imagery, to map forest floor conditions after the 2004 Taylor Complex in...
Non-timber forest products: local livelihoods and integrated forest management
Iain Davidson-Hunt; Luc C. Duchesne; John C. Zasada
2001-01-01
In October of 1999 a conference was held in Kenora, Ontario, Canada, to explore the non-timber forest products (NTFPs) of boreal and cold temperate forests. Up to this time, the concept of NTFP, was one that had been developed largely for tropical and subtropical forests. An extensive body of literature exists on a wide range of topics for the NTFPs of tropical and...
NASA Astrophysics Data System (ADS)
Lenihan, J.; Neilson, R.; Bachelet, D.; Drapek, R.
2005-12-01
The VINCERA project is an intercomparison among three dynamic general vegetation models (DGVMs) simulating the response of North American ecosystems to six new future climate scenarios. The scenarios were produced by three general circulation models, each using two different future trace gas emissions scenarios. All of the scenarios are near the warmer end of the Intergovernmental Panel on Climate Change's projected future temperature range. Here we present results from the MC1 DGVM. All major forested ecosystems in North America exhibit carbon sequestration until the late 20th or early 21st century, followed by a drought induced decline and loss of carbon to levels below those at 1900 in the absence of fire suppression. By the end of the 21st century, the entire continent will have lost from 10 to 30 Pg of carbon, depending on the scenario. However, fire suppression can significantly mitigate carbon losses and ecosystem declines, producing a net change in carbon from a loss of about 5 Pg to a gain of about 8 Pg under the different scenarios. Most of the suppression benefits are obtained by forests in the western U.S. Suppression also mitigates carbon losses and conversions to savanna or grassland in the eastern U.S., but forest decline still occurs in the east under all scenarios. Dieback is triggered by two mechanisms. Reduced regional precipitation, variable among the scenarios, is one. The second more pervasive mechanism is the influence of rising temperatures on evapotranspiration. Even with the benefits of enhanced water use efficiency from elevated CO2 and slight increases in precipitation, dramatic increases in temperature can produce widespread forest dieback, and increases in fire severity. The eastern United States appear to be particularly vulnerable, as does the central Canadian boreal forest because of the relative flatness of climate gradients near ecotones. Under some scenarios, dieback is also driven by both increasing temperatures and decreasing precipitation, most notably the southeastern and northwestern United States. Following a period of gradual carbon sequestration, the enhanced evapotranspiration appears to overtake the 'greening' processes producing a rapid dieback. The point of turnaround from greenup to dieback occurs about now for the temperate forests and about a decade from now in the boreal forests, initiating an extended period of rapid losses of ecosystem carbon. These results underscore the critical importance of addressing uncertainties with respect to ecosystem water balance and the direct effects of elevated CO2 concentrations.
Development of an L-, C-, and X-band radar for backscattering studies over vegetation
NASA Technical Reports Server (NTRS)
Lockhart, G. Lance
1995-01-01
With the recent surge of interest in global change, the impact of different ecosystems on the Earth's carbon budget has become the focus of many scientific studies. Studies have been launched by NASA and other agencies to address this issue. One such study is the Boreal Ecosystem-Atmosphere Study (BOREAS). BOREAS focuses on the boreal ecosystem in Northern Canada. As a part of the BOREAS study, we have developed a helicopter-borne three-band radar system for measuring the scattering coefficient of various stands within the boreal forest. During the summer of 1994 the radar was used at the southern study area (SSA) in Saskatchewan over the young jack pine (YJP), old jack pine (OJP), old black spruce (OBS) and old aspen (OA) sites. The data collected will be used to study the interaction of microwaves with forest canopy. By making use of three different frequency bands the contribution to the backscatter from each of the layers within the canopy can be determined. Using the knowledge gained from these studies, we will develop algorithms to enable more accurate interpretation of SAR images of the boreal region. This report describes in detail the development of the L-, C- and X-band radar system. The first section provides background information and explains the objectives of the boreal forest experiment. The second section describes the design and implementation of the radar system. All of the subsystems of the radar are explained in this section. Next, problems that were encountered during system testing and the summer experiments are discussed. System performance and results are then presented followed by a section on conclusions and further work.