NASA Astrophysics Data System (ADS)
Chopra, Nikita; Agarwal, Shivangi; Verma, Shashikala; Bhatnagar, Sonika; Bhatnagar, Rakesh
2011-03-01
Our previous report on Bacillus anthracis toxin-antitoxin module (MoxXT) identified it to be a two component system wherein, PemK-like toxin (MoxT) functions as a ribonuclease (Agarwal S et al. JBC 285:7254-7270, 2010). The labile antitoxin (MoxX) can bind to/neutralize the action of the toxin and is also a DNA-binding protein mediating autoregulation. In this study, molecular modeling of MoxX in its biologically active dimeric form was done. It was found that it contains a conserved Ribbon-Helix-Helix (RHH) motif, consistent with its DNA-binding function. The modeled MoxX monomers dimerize to form a two-stranded antiparallel ribbon, while the C-terminal region adopts an extended conformation. Knowledge guided protein-protein docking, molecular dynamics simulation, and energy minimization was performed to obtain the structure of the MoxXT complex, which was exploited for the de novo design of a peptide capable of binding to MoxT. It was found that the designed peptide caused a decrease in MoxX binding to MoxT by 42% at a concentration of 2 μM in vitro. We also show that MoxX mediates negative transcriptional autoregulation by binding to its own upstream DNA. The interacting regions of both MoxX and DNA were identified in order to model their complex. The repressor activity of MoxX was found to be mediated by the 16 N-terminal residues that contains the ribbon of the RHH motif. Based on homology with other RHH proteins and deletion mutant studies, we propose a model of the MoxX-DNA interaction, with the antiparallel β-sheet of the MoxX dimer inserted into the major groove of its cognate DNA. The structure of the complex of MoxX with MoxT and its own upstream regulatory region will facilitate design of molecules that can disrupt these interactions, a strategy for development of novel antibacterials.
Yu, Wei; Niu, Tianshui; Xiao, Tingting; Zhang, Jing; Xiao, Yonghong
2018-01-01
Objectives The aim of this study was to evaluate the bactericidal effects of moxalactam (MOX), cefotaxime (CTX), and cefoperazone/sulbactam (CFZ/SBT) against extended-spectrum β-lactamase (ESBL) producing Escherichia coli and Klebsiella pneumoniae, using an in vitro pharmacokinetics (PK)/pharmacodynamics model. Methods Two clinical ESBL-producing strains (blaCTX-M-15 positive E. coli 3376 and blaCTX-M-14 positive K. pneumoniae 2689) and E. coli American Type Culture Collection (ATCC)25922 were used in the study. The PK Auto Simulation System 400 was used to simulate the human PK procedures after intravenous administration of different doses of MOX, CTX, and CFZ/SBT. Bacterial growth recovery time (RT) and the area between the control growth curve and bactericidal curves (IE) were employed to assess the antibacterial efficacies of all the agents. Results The minimum inhibitory concentrations of MOX, CTX, and CFZ/SBT against E. coli ATCC25922, 3376, and 2689 strains were 0.5, 0.5, 0.25; 0.06, >256, 256; and 0.5/0.5, 16/16, 32/32 mg/L. All the agents demonstrated outstanding bactericidal effects against E. coli ATCC25922 (RT >24 h and IE >120 log10 CFU/mL·h−1) with simulating PK procedures, especially in the multiple dose administration models. Against ESBL producers, CTX and CFZ/SBT displayed only weak bactericidal effects, and subsequent regrowth was evident. MOX exhibited potent antibacterial activity against all the strains tested. The values of effective parameters of MOX were much higher than those of CTX and CFZ/SBT (the bacterial RTs with the 3 agents were >24, <4, and <13 h, and the IEs were >110, <10, and <60 log10 CFU/mL·h−1, respectively). Conclusion MOX demonstrated excellent bactericidal effect, which is worthy of further exploration to serve as an alternative therapeutic agent against ESBL-producing Enterobacteriaceae. PMID:29391816
Cross-correlation measurements with the EJ-299-33 plastic scintillator
NASA Astrophysics Data System (ADS)
Bourne, Mark M.; Whaley, Jeff; Dolan, Jennifer L.; Polack, John K.; Flaska, Marek; Clarke, Shaun D.; Tomanin, Alice; Peerani, Paolo; Pozzi, Sara A.
2015-06-01
New organic-plastic scintillation compositions have demonstrated pulse-shape discrimination (PSD) of neutrons and gamma rays. We present cross-correlation measurements of 252Cf and mixed uranium-plutonium oxide (MOX) with the EJ-299-33 plastic scintillator. For comparison, equivalent measurements were performed with an EJ-309 liquid scintillator. Offline, digital PSD was applied to each detector. These measurements show that EJ-299-33 sacrifices a factor of 5 in neutron-neutron efficiency relative to EJ-309, but could still utilize the difference in neutron-neutron efficiency and neutron single-to-double ratio to distinguish 252Cf from MOX. These measurements were modeled with MCNPX-PoliMi, and MPPost was used to convert the detailed collision history into simulated cross-correlation distributions. MCNPX-PoliMi predicted the measured 252Cf cross-correlation distribution for EJ-309 to within 10%. Greater photon uncertainty in the MOX sample led to larger discrepancy in the simulated MOX cross-correlation distribution. The modeled EJ-299-33 plastic also gives reasonable agreement with measured cross-correlation distributions, although the MCNPX-PoliMi model appears to under-predict the neutron detection efficiency.
The underwater coincidence counter (UWCC) for plutonium measurements in mixed oxide fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eccleston, G.W.; Menlove, H.O.; Abhold, M.
1998-12-31
The use of fresh uranium-plutonium mixed oxide (MOX) fuel in light-water reactors (LWR) is increasing in Europe and Japan and it is necessary to verify the plutonium content in the fuel for international safeguards purposes. The UWCC is a new instrument that has been designed to operate underwater and nondestructively measure the plutonium in unirradiated MOX fuel assemblies. The UWCC can be quickly configured to measure either boiling-water reactor (BWR) or pressurized-water reactor (PWR) fuel assemblies. The plutonium loading per unit length is measured using the UWCC to precisions of less than 1% in a measurement time of 2 tomore » 3 minutes. Initial calibrations of the UWCC were completed on measurements of MOX fuel in Mol, Belgium. The MCNP-REN Monte Carlo simulation code is being benchmarked to the calibration measurements to allow accurate simulations for extended calibrations of the UWCC.« less
NASA Astrophysics Data System (ADS)
Åberg Lindell, M.; Andersson, P.; Grape, S.; Hellesen, C.; Håkansson, A.; Thulin, M.
2018-03-01
This paper investigates how concentrations of certain fission products and their related gamma-ray emissions can be used to discriminate between uranium oxide (UOX) and mixed oxide (MOX) type fuel. Discrimination of irradiated MOX fuel from irradiated UOX fuel is important in nuclear facilities and for transport of nuclear fuel, for purposes of both criticality safety and nuclear safeguards. Although facility operators keep records on the identity and properties of each fuel, tools for nuclear safeguards inspectors that enable independent verification of the fuel are critical in the recovery of continuity of knowledge, should it be lost. A discrimination methodology for classification of UOX and MOX fuel, based on passive gamma-ray spectroscopy data and multivariate analysis methods, is presented. Nuclear fuels and their gamma-ray emissions were simulated in the Monte Carlo code Serpent, and the resulting data was used as input to train seven different multivariate classification techniques. The trained classifiers were subsequently implemented and evaluated with respect to their capabilities to correctly predict the classes of unknown fuel items. The best results concerning successful discrimination of UOX and MOX-fuel were acquired when using non-linear classification techniques, such as the k nearest neighbors method and the Gaussian kernel support vector machine. For fuel with cooling times up to 20 years, when it is considered that gamma-rays from the isotope 134Cs can still be efficiently measured, success rates of 100% were obtained. A sensitivity analysis indicated that these methods were also robust.
The Mars oxidant experiment (MOx) for Mars '96
NASA Technical Reports Server (NTRS)
McKay, C. P.; Grunthaner, F. J.; Lane, A. L.; Herring, M.; Bartman, R. K.; Ksendzov, A.; Manning, C. M.; Lamb, J. L.; Williams, R. M.; Ricco, A. J.;
1998-01-01
The MOx instrument was developed to characterize the reactive nature of the martian soil. The objectives of MOx were: (1) to measure the rate of degradation of organics in the martian environment; (2) to determine if the reactions seen by the Viking biology experiments were caused by a soil oxidant and measure the reactivity of the soil and atmosphere: (3) to monitor the degradation, when exposed to the martian environment, of materials of potential use in future missions; and, finally, (4) to develop technologies and approaches that can be part of future soil analysis instrumentation. The basic approach taken in the MOx instrument was to place a variety of materials composed as thin films in contact with the soil and monitor the physical and chemical changes that result. The optical reflectance of the thin films was the primary sensing-mode. Thin films of organic materials, metals, and semiconductors were prepared. Laboratory simulations demonstrated the response of thin films to active oxidants.
Imminent: Irradiation Testing of (Th,Pu)O{sub 2} Fuel - 13560
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, Julian F.; Franceschini, Fausto
2013-07-01
Commercial-prototype thorium-plutonium oxide (Th-MOX) fuel pellets have been loaded into the material test reactor in Halden, Norway. The fuel is being operated at full power - with instrumentation - in simulated LWR / PHWR conditions and its behaviour is measured 'on-line' as it operates to high burn-up. This is a vital test on the commercialization pathway for this robust new thoria-based fuel. The performance data that is collected will support a fuel modeling effort to support its safety qualification. Several different samples of Th-MOX fuel will be tested, thereby collecting information on ceramic behaviours and their microstructure dependency. The fuel-cyclemore » reasoning underpinning the test campaign is that commercial Th- MOX fuels are an achievable intermediate / near-term SNF management strategy that integrates well with a fast reactor future. (authors)« less
Carral, N; Lukas, J C; Oteo, I; Suarez, E
2015-01-01
The purpose of this report was to assess the impact of poor compliance on the efficacy of levofloxacin (LFX) and moxifloxacin (MOX), two fluoroquinolones with different pharmacokinetic (PK) and pharmacodynamic (PD) properties, in respiratory infections. The fAUC0-24h and fAUC0-24h/MIC90 ratio, a PK/PD index predictive of bacterial eradication, were extracted from previously described population PK models for LFX and MOX. The MIC90 was according to EUCAST. Monte Carlo simulations were used with LFX 500 mg every 24h (q24 h) or every 12h (q12h), LFX 750 mg q24 h and MOX 400mg q24 h in non-compliance scenarios to derive the proportion of patients achieving target ratios of fAUC0-24h/MIC90>33.8 for Streptococcus pneumoniae and >100 for Haemophilus influenzae and Moraxella catarrhalis (PTA>90%). In non-adherent dosing scenarios, LFX 500 mg q24 h was not able to reach the PK/PD index guaranteeing clinical efficacy. With LFX 500 mg q12 h or 750 mg q24 h, this probability was maintained although patients can take the dose with delays of up to 12h and 11h, respectively, for the three bacterial types. With MOX 400mg q24 h, the probability of achieving this PK/PD index is maintained with delay in dosing up to 16h. In conclusion, LFX 500 mg q24 h is the least robust treatment against S. pneumoniae, H. influenzae and M. catarrhalis in a non-adherence situation. A good choice is LFX 500 mg q12h, but in order to favour patient adherence, LFX 750 mg q24 h or MOX 400mg q24h appears as more appropriate. Copyright © 2014 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
Performance of the MTR core with MOX fuel using the MCNP4C2 code.
Shaaban, Ismail; Albarhoum, Mohamad
2016-08-01
The MCNP4C2 code was used to simulate the MTR-22 MW research reactor and perform the neutronic analysis for a new fuel namely: a MOX (U3O8&PuO2) fuel dispersed in an Al matrix for One Neutronic Trap (ONT) and Three Neutronic Traps (TNTs) in its core. Its new characteristics were compared to its original characteristics based on the U3O8-Al fuel. Experimental data for the neutronic parameters including criticality relative to the MTR-22 MW reactor for the original U3O8-Al fuel at nominal power were used to validate the calculated values and were found acceptable. The achieved results seem to confirm that the use of MOX fuel in the MTR-22 MW will not degrade the safe operational conditions of the reactor. In addition, the use of MOX fuel in the MTR-22 MW core leads to reduce the uranium fuel enrichment with (235)U and the amount of loaded (235)U in the core by about 34.84% and 15.21% for the ONT and TNTs cases, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Insulander Björk, Klara; Kekkonen, Laura
2015-12-01
Thorium-plutonium Mixed OXide (Th-MOX) fuel is considered for use in light water reactors fuel due to some inherent benefits over conventional fuel types in terms of neutronic properties. The good material properties of ThO2 also suggest benefits in terms of thermal-mechanical fuel performance, but the use of Th-MOX fuel for commercial power production demands that its thermal-mechanical behavior can be accurately predicted using a well validated fuel performance code. Given the scant operational experience with Th-MOX fuel, no such code is available today. This article describes the first phase of the development of such a code, based on the well-established code FRAPCON 3.4, and in particular the correlations reviewed and chosen for the fuel material properties. The results of fuel temperature calculations with the code in its current state of development are shown and compared with data from a Th-MOX test irradiation campaign which is underway in the Halden research reactor. The results are good for fresh fuel, whereas experimental complications make it difficult to judge the adequacy of the code for simulations of irradiated fuel.
NASA Astrophysics Data System (ADS)
Bai, Xian-Ming; Shah, Binoy; Keer, Leon; Wang, Jane; Snurr, Randall
2008-03-01
Mechanical damping systems with granular particles as the damping media have promising applications in extreme temperature conditions. In particle-based damping systems, the mechanical energy is dissipated through the inelastic collision and friction of particles. In the past, many experiments have been performed to investigate the particle damping problems. However, the detailed energy dissipation mechanism is still unclear due to the complex collision and flow behavior of dense particles. In this work, we use 3-D particle dynamics simulation to investigate the damping mechanism of an oscillating cylinder piston immerged in millimeter-size steel particles. The time evolution of the energy dissipation through the friction and inelastic collision is accurately monitored during the damping process. The contribution from the particle-particle interaction and particle-wall interaction is also separated for investigation. The effects of moisture, surface roughness, and density of particles are carefully investigated in the simulation. The comparison between the numerical simulation and experiment is also performed. The simulation results can help us understand the particle damping mechanism and design the new generation of particle damping devices.
RMS active damping augmentation
NASA Technical Reports Server (NTRS)
Gilbert, Michael G.; Scott, Michael A.; Demeo, Martha E.
1992-01-01
The topics are presented in viewgraph form and include: RMS active damping augmentation; potential space station assembly benefits to CSI; LaRC/JSC bridge program; control law design process; draper RMS simulator; MIMO acceleration control laws improve damping; potential load reduction benefit; DRS modified to model distributed accelerations; accelerometer location; Space Shuttle aft cockpit simulator; simulated shuttle video displays; SES test goals and objectives; and SES modifications to support RMS active damping augmentation.
NASA Astrophysics Data System (ADS)
Nakamura, Koichi
2018-06-01
Thermoelectric properties of transition metal dichalcogenide (TMDC) monolayer models, such as Seebeck coefficient and lattice heat capacity, were simulated on the basis of first-principles calculations. The calculated Seebeck coefficients are appropriate for the thermoelectric element of all the TMDC monolayer models introduced in this study. In the MoX2/WX2 (X = S, Se, and Te) heterojunction structure, carrier electrons and holes are respectively distributed in the MoX2 and WX2 regions by adopting a common Fermi energy for both electronic structures. In particular, in the X = Te case, the practical carrier concentration with a large Seebeck coefficient can be evaluated without doping. The lattice heat capacities and their temperature dependence tendencies can be classified on the basis of the minimum frequencies of the optical modes. The quotient of the lattice thermal conductivity over the phonon relaxation time gives the temperature-independent specific values according to the kind of TMDC monolayer.
Canadian experience in irradiation and testing of MOX fuel
NASA Astrophysics Data System (ADS)
Yatabe, S.; Floyd, M.; Dimayuga, F.
2018-04-01
Experimental irradiation and performance testing of Mixed OXide (MOX) fuel at the Canadian Nuclear Laboratories (CNL) has taken place for more than 40 years. These experiments investigated MOX fuel behaviour and compared it with UO2 behaviour to develop and verify fuel performance models. This article compares the performance of MOX of various concentrations and homogeneities, under different irradiation conditions. These results can be applied to future fuel designs. MOX fuel irradiated by CNL was found to be comparable in performance to similarly designed and operated UO2 fuel. MOX differs in behaviour from UO2 fuel in several ways. Fission-gas release, grain growth and the thickness of zirconium oxide on the inner sheath appear to be related to MOX fuel homogeneity. Columnar grains formed at the pellet centre begin to develop at lower powers in MOX than in UO2 fuel.
Squeeze-Film Air Damping of a Five-Axis Electrostatic Bearing for Rotary Micromotors
Wang, Shunyue; Han, Fengtian; Sun, Boqian; Li, Haixia
2017-01-01
Air-film damping, which dominates over other losses, plays a significant role in the dynamic response of many micro-fabricated devices with a movable mass suspended by various bearing mechanisms. Modeling the damping characteristics accurately will be greatly helpful to the bearing design, control, and test in various micromotor devices. This paper presents the simulated and experimental squeeze-film air damping results of an electrostatic bearing for use in a rotary high-speed micromotor. It is shown that the boundary condition to solve the three-dimensional Reynolds equation, which governs the squeeze-film damping in the air gap between the rotor and its surrounding stator sealed in a three-layer evacuated cavity, behaves with strong cross-axis coupling characteristics. To accurately characterize the damping effect, a set of multiphysics finite-element simulations are performed by computing both the rotor velocity and the distribution of the viscous damping force acting on the rotor. The damping characteristics varying with several key structure parameters are simulated and discussed to optimize the device structure for desirable rotor dynamics. An electrical measurement method is also proposed and applied to validate the numerical results of the damping coefficients experimentally. Given that the frequency response of the electric bearing is critically dependent on the damping coefficients at atmospheric pressure, a solution to the air-film damping measurement problem is presented by taking approximate curve fitting of multi-axis experimental frequency responses. The measured squeeze-film damping coefficients for the five-axis electric bearing agrees well with the numerical solutions. This indicates that numerical multiphysics simulation is an effective method to accurately examine the air-film damping effect for complex device geometry and arbitrary boundary condition. The accurate damping coefficients obtained by FEM simulation will greatly simplify the design of the five-axis bearing control system and facilitate the initial suspension test of the rotor for various micromotor devices. PMID:28505089
Squeeze-Film Air Damping of a Five-Axis Electrostatic Bearing for Rotary Micromotors.
Wang, Shunyue; Han, Fengtian; Sun, Boqian; Li, Haixia
2017-05-13
Air-film damping, which dominates over other losses, plays a significant role in the dynamic response of many micro-fabricated devices with a movable mass suspended by various bearing mechanisms. Modeling the damping characteristics accurately will be greatly helpful to the bearing design, control, and test in various micromotor devices. This paper presents the simulated and experimental squeeze-film air damping results of an electrostatic bearing for use in a rotary high-speed micromotor. It is shown that the boundary condition to solve the three-dimensional Reynolds equation, which governs the squeeze-film damping in the air gap between the rotor and its surrounding stator sealed in a three-layer evacuated cavity, behaves with strong cross-axis coupling characteristics. To accurately characterize the damping effect, a set of multiphysics finite-element simulations are performed by computing both the rotor velocity and the distribution of the viscous damping force acting on the rotor. The damping characteristics varying with several key structure parameters are simulated and discussed to optimize the device structure for desirable rotor dynamics. An electrical measurement method is also proposed and applied to validate the numerical results of the damping coefficients experimentally. Given that the frequency response of the electric bearing is critically dependent on the damping coefficients at atmospheric pressure, a solution to the air-film damping measurement problem is presented by taking approximate curve fitting of multi-axis experimental frequency responses. The measured squeeze-film damping coefficients for the five-axis electric bearing agrees well with the numerical solutions. This indicates that numerical multiphysics simulation is an effective method to accurately examine the air-film damping effect for complex device geometry and arbitrary boundary condition. The accurate damping coefficients obtained by FEM simulation will greatly simplify the design of the five-axis bearing control system and facilitate the initial suspension test of the rotor for various micromotor devices.
Thorium-based mixed oxide fuel in a pressurized water reactor: A feasibility analysis with MCNP
NASA Astrophysics Data System (ADS)
Tucker, Lucas Powelson
This dissertation investigates techniques for spent fuel monitoring, and assesses the feasibility of using a thorium-based mixed oxide fuel in a conventional pressurized water reactor for plutonium disposition. Both non-paralyzing and paralyzing dead-time calculations were performed for the Portable Spectroscopic Fast Neutron Probe (N-Probe), which can be used for spent fuel interrogation. Also, a Canberra 3He neutron detector's dead-time was estimated using a combination of subcritical assembly measurements and MCNP simulations. Next, a multitude of fission products were identified as candidates for burnup and spent fuel analysis of irradiated mixed oxide fuel. The best isotopes for these applications were identified by investigating half-life, photon energy, fission yield, branching ratios, production modes, thermal neutron absorption cross section and fuel matrix diffusivity. 132I and 97Nb were identified as good candidates for MOX fuel on-line burnup analysis. In the second, and most important, part of this work, the feasibility of utilizing ThMOX fuel in a pressurized water reactor (PWR) was first examined under steady-state, beginning of life conditions. Using a three-dimensional MCNP model of a Westinghouse-type 17x17 PWR, several fuel compositions and configurations of a one-third ThMOX core were compared to a 100% UO2 core. A blanket-type arrangement of 5.5 wt% PuO2 was determined to be the best candidate for further analysis. Next, the safety of the ThMOX configuration was evaluated through three cycles of burnup at several using the following metrics: axial and radial nuclear hot channel factors, moderator and fuel temperature coefficients, delayed neutron fraction, and shutdown margin. Additionally, the performance of the ThMOX configuration was assessed by tracking cycle length, plutonium destroyed, and fission product poison concentration.
NASA Astrophysics Data System (ADS)
Qi, Chenkun; Zhao, Xianchao; Gao, Feng; Ren, Anye; Sun, Qiao
2016-06-01
The hardware-in-the-loop (HIL) contact simulator is to simulate the contact process of two flying objects in space. The contact stiffness and damping are important parameters used for the process monitoring, compliant contact control and force compensation control. In this study, a contact stiffness and damping identification approach is proposed for the HIL contact simulation with the force measurement delay. The actual relative position of two flying objects can be accurately measured. However, the force measurement delay needs to be compensated because it will lead to incorrect stiffness and damping identification. Here, the phase lead compensation is used to reconstruct the actual contact force from the delayed force measurement. From the force and position data, the contact stiffness and damping are identified in real time using the recursive least squares (RLS) method. The simulations and experiments are used to verify that the proposed stiffness and damping identification approach is effective.
Moxidectin and the avermectins: Consanguinity but not identity
Prichard, Roger; Ménez, Cécile; Lespine, Anne
2012-01-01
The avermectins and milbemycins contain a common macrocyclic lactone (ML) ring, but are fermentation products of different organisms. The principal structural difference is that avermectins have sugar groups at C13 of the macrocyclic ring, whereas the milbemycins are protonated at C13. Moxidectin (MOX), belonging to the milbemycin family, has other differences, including a methoxime at C23. The avermectins and MOX have broad-spectrum activity against nematodes and arthropods. They have similar but not identical, spectral ranges of activity and some avermectins and MOX have diverse formulations for great user flexibility. The longer half-life of MOX and its safety profile, allow MOX to be used in long-acting formulations. Some important differences between MOX and avermectins in interaction with various invertebrate ligand-gated ion channels are known and could be the basis of different efficacy and safety profiles. Modelling of IVM interaction with glutamate-gated ion channels suggest different interactions will occur with MOX. Similarly, profound differences between MOX and the avermectins are seen in interactions with ABC transporters in mammals and nematodes. These differences are important for pharmacokinetics, toxicity in animals with defective transporter expression, and probable mechanisms of resistance. Resistance to the avermectins has become widespread in parasites of some hosts and MOX resistance also exists and is increasing. There is some degree of cross-resistance between the avermectins and MOX, but avermectin resistance and MOX resistance are not identical. In many cases when resistance to avermectins is noticed, MOX produces a higher efficacy and quite often is fully effective at recommended dose rates. These similarities and differences should be appreciated for optimal decisions about parasite control, delaying, managing or reversing resistances, and also for appropriate anthelmintic combination. PMID:24533275
Isotopic Details of the Spent Catawba-1 MOX Fuel Rods at ORNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellis, Ronald James
The United States Department of Energy funded Shaw/AREVA MOX Services LLC to fabricate four MOX Lead Test Assemblies (LTA) from weapons-grade plutonium. A total of four MOX LTAs (including MX03) were irradiated in the Catawba Nuclear Station (Unit 1) Catawba-1 PWR which operated at a total thermal power of 3411 MWt and had a core with 193 total fuel assemblies. The MOX LTAs were irradiated along with Duke Energy s irradiation of eight Westinghouse Next Generation Fuel (NGF) LEU LTAs (ref.1) and the remaining 181 LEU fuel assemblies. The MX03 LTA was irradiated in the Catawba-1 PWR core (refs.2,3) duringmore » cycles C-16 and C-17. C-16 began on June 5, 2005, and ended on November 11, 2006, after 499 effective full power days (EFPDs). C-17 started on December 29, 2006, (after a shutdown of 48 days) and continued for 485 EFPDs. The MX03 and three other MOX LTAs (and other fuel assemblies) were discharged at the end of C-17 on May 3, 2008. The design of the MOX LTAs was based on the (Framatome ANP, Inc.) Mark-BW/MOX1 17 17 fuel assembly design (refs. 4,5,6) for use in Westinghouse PWRs, but with MOX fuel rods with three Pu loading ranges: the nominal Pu loadings are 4.94 wt%, 3.30 wt%, and 2.40 wt%, respectively, for high, medium, and low Pu content. The Mark-BW/MOX1 (MOX LTA) fuel assembly design is the same as the Advanced Mark-BW fuel assembly design but with the LEU fuel rods replaced by MOX fuel rods (ref. 5). The fabrication of the fuel pellets and fuel rods for the MOX LTAs was performed at the Cadarache facility in France, with the fabrication of the LTAs performed at the MELOX facility, also in France.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, D.J.; Lidstrom, M.E.
The polypeptides encoded by a putative methanol oxidation (mox) operon of Methylobacterium sp. strain AM1 were expressed in Escherichia coli, using a coupled in vivo T7 RNA polymerase/promoter gene expression system. Two mox genes had been previously mapped to this region: moxF, the gene encoding the methanol dehydrogenase (MeDH) polypeptide; and moxG, a gene believed to encode a soluble type c cytochrome, cytochrome c/sub L/. In this study, four polypeptides of M/sub r/, 60,000, 30,000, 20,000, and 12,000 were found to be encoded by the moxFG region and were tentatively designated moxF, -J, -G, and -I, respectively. The arrangement ofmore » the genes (5' to 3') was found to be moxFJGI. The identities of three of the four polypeptides were determined by protein immunoblot analysis. The product of moxF, the M/sub r/-60,000 polypeptide, was confirmed to be the MeDH polypeptide. The product of moxG, the M/sub r/-20,000 polypeptide, was identified as mature cytochrome c/sub L/, and the product of moxI, the M/sub r/-12,000 polypeptide, was identified as a MeDH-associated polypeptide that copurifies with the holoenzyme. The identity of the M/sub r/-30,000 polypeptide (the moxJ gene product) could not be determined. The function of the M/sub r/-12,000 MeDH-associated polypeptide is not yet clear. However, it is not present in mutants that lack the M/sub r/-60,000 MeDH subunit, and it appears that the stability of the MeDH-associated polypeptide is dependent on the presence of the M/sub r/-60,000 MeDH polypeptide. Our data suggest that both the M/sub r/-30,000 and -12,000 polypeptides are involved in methanol oxidation, which would bring to 12 the number of mox genes in Methylobacterium sp. strain AM1.« less
A novel approach to the analysis of squeezed-film air damping in microelectromechanical systems
NASA Astrophysics Data System (ADS)
Yang, Weilin; Li, Hongxia; Chatterjee, Aveek N.; Elfadel, Ibrahim (Abe M.; Ender Ocak, Ilker; Zhang, TieJun
2017-01-01
Squeezed-film damping (SFD) is a phenomenon that significantly affects the performance of micro-electro-mechanical systems (MEMS). The total damping force in MEMS mainly include the viscous damping force and elastic damping force. Quality factor (Q factor) is usually used to evaluate the damping in MEMS. In this work, we measure the Q factor of a resonator through experiments in a wide range of pressure levels. In fact, experimental characterizations of MEMS have some limitations because it is difficult to conduct experiments at very high vacuum and also hard to differentiate the damping mechanisms from the overall Q factor measurements. On the other hand, classical theoretical analysis of SFD is restricted to strong assumptions and simple geometries. In this paper, a novel numerical approach, which is based on lattice Boltzmann simulations, is proposed to investigate SFD in MEMS. Our method considers the dynamics of squeezed air flow as well as fluid-solid interactions in MEMS. It is demonstrated that Q factor can be directly predicted by numerical simulation, and our simulation results agree well with experimental data. Factors that influence SFD, such as pressure, oscillating amplitude, and driving frequency, are investigated separately. Furthermore, viscous damping and elastic damping forces are quantitatively compared based on comprehensive simulation. The proposed numerical approach as well as experimental characterization enables us to reveal the insightful physics of squeezed-film air damping in MEMS.
Collisionless Electrostatic Shock Modeling and Simulation
2016-10-21
unlimited. PA#16490 Dissipation Controls Wave Train Under- and Over-damped Shocks – Under-damped: • Dissipation is weak, ripples persist. • High...Density Position – Over-damped: ● Strong dissipation damps ripples . ● Low Density Position 12 Position Distribution A. Approved for public release...distribution unlimited. PA#16490 Model Verification Comparison with Linearized Solution – Evolution of the First Ripple Wavelength: • Simulated
Ménez, Cécile; Sutra, Jean-François; Prichard, Roger; Lespine, Anne
2012-01-01
The anthelmintics ivermectin (IVM) and moxidectin (MOX) display differences in toxicity in several host species. Entrance into the brain is restricted by the P-glycoprotein (P-gp) efflux transporter, while toxicity is mediated through the brain GABA(A) receptors. This study compared the toxicity of IVM and MOX in vivo and their interaction with GABA(A) receptors in vitro. Drug toxicity was assessed in Mdr1ab(−/−) mice P-gp-deficient after subcutaneous administration of increasing doses (0.11–2.0 and 0.23–12.9 µmol/kg for IVM and MOX in P-gp-deficient mice and half lethal doses (LD50) in wild-type mice). Survival was evaluated over 14-days. In Mdr1ab(−/−) mice, LD50 was 0.46 and 2.3 µmol/kg for IVM and MOX, respectively, demonstrating that MOX was less toxic than IVM. In P-gp-deficient mice, MOX had a lower brain-to-plasma concentration ratio and entered into the brain more slowly than IVM. The brain sublethal drug concentrations determined after administration of doses close to LD50 were, in Mdr1ab(−/−) and wild-type mice, respectively, 270 and 210 pmol/g for IVM and 830 and 740–1380 pmol/g for MOX, indicating that higher brain concentrations are required for MOX toxicity than IVM. In rat α1β2γ2 GABA channels expressed in Xenopus oocytes, IVM and MOX were both allosteric activators of the GABA-induced response. The Hill coefficient was 1.52±0.45 for IVM and 0.34±0.56 for MOX (p<0.001), while the maximum potentiation caused by IVM and MOX relative to GABA alone was 413.7±66.1 and 257.4±40.6%, respectively (p<0.05), showing that IVM causes a greater potentiation of GABA action on this receptor. Differences in the accumulation of IVM and MOX in the brain and in the interaction of IVM and MOX with GABA(A) receptors account for differences in neurotoxicity seen in intact and Mdr1-deficient animals. These differences in neurotoxicity of IVM and MOX are important in considering their use in humans. PMID:23133688
Shaaban, Ismail; Albarhoum, Mohamad
2017-07-01
The MOX (UO 2 &PuO 2 ) caramel fuel mixed with 241 Am, 242m Am and 243 Am as burnable absorber actinides was proposed as a fuel of the MTR-22MW reactor. The MCNP4C code was used to simulate the MTR-22MW reactor and estimate the criticality and the neutronic parameters, and the power peaking factors before and after replacing its original fuel (U 3 O 8 -Al) by the MOX caramel fuel mixed with 241 Am, 242m Am and 243 Am actinides. The obtained results of the criticality, the neutronic parameters, and the power peaking factors for the MOX caramel fuel mixed with 241 Am, 242m Am and 243 Am actinides were compared with the same parameters of the U 3 O 8 -Al original fuel and a maximum difference is -6.18% was found. Additionally, by recycling 2.65% and 2.71% plutonium and 241 Am, 242m Am and 243 Am actinides in the MTR-22MW reactor, the level of 235 U enrichment is reduced from 4.48% to 3% and 2.8%, respectively. This also results in the reduction of the 235 U loading by 32.75% and 37.22% for the 2.65%, the 2.71% plutonium and 241 Am, 242m Am and 243 Am actinides, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wang, Long; Zou, Wei; Chi, Qing-bin
2009-06-01
In order to explore the problems and countermeasure in the methodology of acupuncture and moxibustion clinical researches at present, clinical research literatures about acupuncture and moxibustion (Acup-Mox) published in recent years in our country were reviewed. For the urgent need of the current internationalization of Acup-Mox, the authors proposed the model of clinical research on Acup-Mox, which should strictly stick to the international standard and fully embody traditional Chinese medicine characteristics in the intervention measures of acupuncture. It is indicated that innovation of the methodology about clinical researches of Acup-Mox has great significance in improving the quality of clinical research on Acup-Mox in our country and promoting internationalization of Acup-Mox.
Mustafa, Sanaul; Devi, V Kusum; Pai, Roopa S
2017-02-01
Moxifloxacin (MOX) is a Mycobacterium tuberculosis DNA gyrase inhibitor. Due to its intense hydrophilicity, MOX is cleared from the body within 24 h and required for repetitive doses which may then result in hepatotoxicity and acquisition of MOX resistant-TB, related with its use. To overcome the aforementioned limitations, the current study aimed to develop PLGA nanoparticles (PLGA NPs), to act as an efficient carrier for controlled delivery of MOX. To achieve a substantial extension in blood circulation, a combined design, affixation of polyethylene glycol (PEG) to MOX-PLGA NPs and adsorption of water-soluble chitosan (WSC) (cationic deacetylated chitin) to particle surface, was rose for surface modification of NPs. Surface modified NPs (MOX-PEG-WSC NPs) were prepared to provide controlled delivery and circulate in the bloodstream for an extended period of time, thus minimizing dosing frequency. In vivo pharmacokinetic and in vivo biodistribution following oral administration were investigated. NP surface charge was closed to neutral +4.76 mV and significantly affected by the WSC coating. MOX-PEG-WSC NPs presented striking prolongation in blood circulation, reduced protein binding, and long-drawn-out the blood circulation half-life with resultant reduced liver sequestration vis-à-vis MOX-PLGA NPs. The studies, therefore, indicate the successful formulation development of MOX-PEG-WSC NPs that showed sustained release behavior from nanoparticles which indicates low frequency of dosing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carbajo, J.J.
2005-05-27
The purpose of this report is to quantify the differences between mixed oxide (MOX) and low-enriched uranium (LEU) fuels and to assess in reasonable detail the potential impacts of MOX fuel use in VVER-1000 nuclear power plants in Russia. This report is a generic tool to assist in the identification of plant modifications that may be required to accommodate receiving, storing, handling, irradiating, and disposing of MOX fuel in VVER-1000 reactors. The report is based on information from work performed by Russian and U.S. institutions. The report quantifies each issue, and the differences between LEU and MOX fuels are describedmore » as accurately as possible, given the current sources of data.« less
Muscle oxygenation as an early predictor of shock severity in trauma patients
Arakaki, Lorilee S. L.; Bulger, Eileen M.; Ciesielski, Wayne A.; Carlbom, David J.; Fisk, Dana M.; Sheehan, Kellie L.; Asplund, Karin M.; Schenkman, Kenneth A.
2016-01-01
Introduction We evaluated the potential utility of a new prototype noninvasive muscle oxygenation (MOx) measurement for the identification of shock severity in a population of patients admitted to the trauma resuscitation rooms of a Level I regional trauma center. The goal of this project was to correlate MOx with shock severity as defined by standard measures of shock: systolic blood pressure, heart rate, and lactate. Methods Optical spectra were collected from subjects by placement of a custom-designed optical probe over the first dorsal interosseous muscles on the back of the hand. Spectra were acquired from trauma patients as soon as possible upon admission to the trauma resuscitation room. Patients with any injury were eligible for study. MOx was determined from the collected optical spectra with a multi-wavelength analysis that used both visible and near-infrared regions of light. Shock severity was determined in each patient by a scoring system based on combined degrees of hypotension, tachycardia, and lactate. MOx values of patients in each shock severity group (mild, moderate, and severe) were compared using two-sample t-tests. Results In 17 healthy control patients, the mean MOx value was 91.0 ± 5.5%. A total of 69 trauma patients were studied. Patients classified as having mild shock had a mean MOx of 62.5 ± 26.2% (n = 33), those classified as in moderate shock had a mean MOx of 56.9 ± 26.9% (n = 25) and those classified as in severe shock had a MOx of 31.0 ± 17.1% (n = 11). Mean MOx for each of these groups was statistically different from the healthy control group (p<0.05). Receiver operating characteristic (ROC) analyses show that MOx and shock index (heart rate/systolic blood pressure) identified shock similarly well (area under the curves (AUC) = 0.857 and 0.828, respectively). However, MOx identified mild shock better than shock index in the same group of patients (AUC = 0.782 and 0.671, respectively). Conclusions The results obtained from this pilot study indicate that MOx correlates with shock severity in a population of trauma patients. Noninvasive and continuous MOx holds promise to aid in patient triage and to evaluate patient condition throughout the course of resuscitation. PMID:27820776
Primary photophysical properties of moxifloxacin--a fluoroquinolone antibiotic.
Lorenzo, Fernando; Navaratnam, Suppiah; Edge, Ruth; Allen, Norman S
2008-01-01
The photophysical properties of the fluoroquinolone antibiotic moxifloxacin (MOX) were investigated in aqueous media. MOX in water, at pH 7.4, shows two intense absorption bands at 287 and 338 nm (epsilon = 44,000 and 17,000 dm(3) mol(-1) cm(-1), respectively). The absorption and emission properties of MOX are pH-dependent, pK(a) values for the protonation equilibria of both the ground (6.1 and 9.6) and excited singlet states (6.8 and 9.1) of MOX were determined spectroscopically. MOX fluoresces weakly, the quantum yield for fluorescence emission being maximum (0.07) at pH 8. Phosphorescence from the excited triplet state in frozen ethanol solution has a quantum yield of 0.046. Laser flash photolysis and pulse radiolysis studies have been carried out to characterize the transient species of MOX in aqueous solution. On laser excitation, MOX undergoes monophotonic photoionization with a quantum yield of 0.14. This leads to the formation of a long-lived cation radical whose absorption is maximum at 470 nm (epsilon(470) = 3400 dm(3) mol(-1) cm(-1)). The photoionization process releases hydrated electron which rapidly reacts (k = 2.8 x 10(10) dm(3) mol(-1) s(-1)) with ground state MOX, yielding a long-lived anion radical with maximum absorption at 390 nm (epsilon(390) = 2400 dm(3) mol(-1) cm(-1)). The cation radical of MOX is able to oxidize protein components tryptophan and tyrosine. The bimolecular rate constants for these reactions are 2.3 x 10(8) dm(3) mol(-1) s(-1) and 1.3 x 10(8) dm(3) mol(-1) s(-1), respectively. Singlet oxygen sensitized by the MOX triplet state was also detected only in oxygen-saturated D(2)O solutions, with a quantum yield of 0.075.
Stability Estimation of ABWR on the Basis of Noise Analysis
NASA Astrophysics Data System (ADS)
Furuya, Masahiro; Fukahori, Takanori; Mizokami, Shinya; Yokoya, Jun
In order to investigate the stability of a nuclear reactor core with an oxide mixture of uranium and plutonium (MOX) fuel installed, channel stability and regional stability tests were conducted with the SIRIUS-F facility. The SIRIUS-F facility was designed and constructed to provide a highly accurate simulation of thermal-hydraulic (channel) instabilities and coupled thermalhydraulics-neutronics instabilities of the Advanced Boiling Water Reactors (ABWRs). A real-time simulation was performed by modal point kinetics of reactor neutronics and fuel-rod thermal conduction on the basis of a measured void fraction in a reactor core section of the facility. A time series analysis was performed to calculate decay ratio and resonance frequency from a dominant pole of a transfer function by applying auto regressive (AR) methods to the time-series of the core inlet flow rate. Experiments were conducted with the SIRIUS-F facility, which simulates ABWR with MOX fuel installed. The variations in the decay ratio and resonance frequency among the five common AR methods are within 0.03 and 0.01 Hz, respectively. In this system, the appropriate decay ratio and resonance frequency can be estimated on the basis of the Yule-Walker method with the model order of 30.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephens, R.L.; Haygood, M.G.; Lidstrom, M.E.
An open-reading-frame fragment of a Methylobacterium sp. strain AM1 gene (moxF) encoding a portion of the methanol dehydrogenase structural protein has been used as a hybridization probe to detect similar sequences in a variety of methylotrophic bacteria. This hybridization was used to isolate clones containing putative moxF genes from two obligate methanotrophic bacteria, Methylococcus capsulatus Bath and Methylomonas albus BG8. The identity of these genes was confirmed in two ways. A T7 expression vector was used to produce methanol dehydrogenase protein in Escherichia coli from the cloned genes,a and in each case the protein was identified by immunoblotting with antiserummore » against the Methylomonas albus methanol dehydrogenase. In addition, a moxF mutant of Methylobacterium strain AM1 was complemented to a methanol-positive phenotype that partially restored methanol dehydrogenase activity, using broad-host-range plasmids containing the moxF genes from each methanotroph. The partial complementation of a moxF mutant in a facultative serine pathway methanol utilizer by moxF genes from type I and type X obligate methane utilizers suggests broad functional conservation of the methanol oxidation system among gram-negative methylotrophs.« less
Lyons, Eugene T; Tolliver, Sharon C; Collins, Sandra S; Ionita, Mariana; Kuzmina, Tetiana A; Rossano, Mary
2011-02-01
Efficacy of ivermectin (IVM) and moxidectin (MOX) against small strongyles was evaluated in horses (n=363) in field tests on 14 farms in Central Kentucky between 2007 and 2009. Most of the horses were yearlings but a few were weanlings and mares. The number of horses treated with IVM was 255 and those treated with MOX was 108. Horses on six farms were allotted into two groups. One group was treated with each of the two drugs, whereas horses on the other eight farms were treated with only one of the two drugs--IVM on six farms and MOX on two farms. Strongyle eggs per gram of feces (EPGs) compared to initial use of IVM and MOX returned almost twice as quickly after treatment of horses on all of the farms. IVM has been used much more extensively in this geographical area than MOX. Reduced activity of MOX was evident even on farms with rare or no apparent previous use of MOX but with probable extensive use of IVM.
Barrel maturation, oak alternatives and micro-oxygenation: influence on red wine aging and quality.
Oberholster, A; Elmendorf, B L; Lerno, L A; King, E S; Heymann, H; Brenneman, C E; Boulton, R B
2015-04-15
The impact of micro-oxygenation (MOX) in conjunction with a variety of oak alternatives on phenolic composition and red wine aging was investigated and compared with traditional barrel aging. Although several studies concluded that MOX give similar results to barrel aging, few have compared them directly and none directly compared MOX with and without wood alternatives and barrel aging. Results confirmed that MOX had a positive effect on colour density, even after 5 months of bottle aging. This is supported by an increase in polymeric phenol and pigment content not only with aging but in the MOX compared to barrel matured wine treatments. Descriptive analysis showed that MOX in combination with wood alternatives such as oak chips and staves could mimic short term (six months) barrel aging in new American and French oak barrels in regards to sensory characteristics. Published by Elsevier Ltd.
Modelling and study of active vibration control for off-road vehicle
NASA Astrophysics Data System (ADS)
Zhang, Junwei; Chen, Sizhong
2014-05-01
In view of special working characteristics and structure, engineering machineries do not have conventional suspension system typically. Consequently, operators have to endure severe vibrations which are detrimental both to their health and to the productivity of the loader. Based on displacement control, a kind of active damping method is developed for a skid-steer loader. In this paper, the whole hydraulic system for active damping method is modelled which include swash plate dynamics model, proportional valve model, piston accumulator model, pilot-operated check valve model, relief valve model, pump loss model, and cylinder model. A new road excitation model is developed for the skid-steer loader specially. The response of chassis vibration acceleration to road excitation is verified through simulation. The simulation result of passive accumulator damping is compared with measurements and the comparison shows that they are close. Based on this, parallel PID controller and track PID controller with acceleration feedback are brought into the simulation model, and the simulation results are compared with passive accumulator damping. It shows that the active damping methods with PID controllers are better in reducing chassis vibration acceleration and pitch movement. In the end, the test work for active damping method is proposed for the future work.
Thermal property change of MOX and UO2 irradiated up to high burnup of 74 GWd/t
NASA Astrophysics Data System (ADS)
Nakae, Nobuo; Akiyama, Hidetoshi; Miura, Hiromichi; Baba, Toshikazu; Kamimura, Katsuichiro; Kurematsu, Shigeru; Kosaka, Yuji; Yoshino, Aya; Kitagawa, Takaaki
2013-09-01
Thermal property is important because it controls fuel behavior under irradiation. The thermal property change at high burnup of more than 70 GWd/t is examined. Two kinds of MOX fuel rods, which were fabricated by MIMAS and SBR methods, and one referenced UO2 fuel rod were used in the experiment. These rods were taken from the pre-irradiated rods (IFA 609/626, of which irradiation test were carried out by Japanese PWR group) and re-fabricated and re-irradiated in HBWR as IFA 702 by JNES. The specification of fuel corresponds to that of 17 × 17 PWR type fuel and the axially averaged linear heat rates (LHR) of MOX rods are 25 kW/m (BOL of IFA 702) and 20 kW/m (EOL of IFA 702). The axial peak burnups achieved are about 74 GWd/t for both of MOX and UO2. Centerline temperature and plenum gas pressure were measured in situ during irradiation. The measured centerline temperature is plotted against LHR at the position where thermocouples are fixed. The slopes of MOX are corresponded to each other, but that of UO2 is higher than those of MOX. This implies that the thermal conductivity of MOX is higher than that of UO2 at high burnup under the condition that the pellet-cladding gap is closed during irradiation. Gap closure is confirmed by the metallography of the postirradiation examinations. It is understood that thermal conductivity of MOX is lower than that of UO2 before irradiation since phonon scattering with plutonium in MOX becomes remarkable. A phonon scattering with plutonium decreases in MOX when burnup proceeds. Thus, thermal conductivity of MOX becomes close to that of UO2. A reverse phenomenon is observed at high burnup region. The phonon scattering with fission products such as Nd and Zr causes a degradation of thermal conductivity of burnt fuel. It might be speculated that this scattering effect causes the phenomenon and the mechanism is discussed here.
Islam, Naz Niamul; Hannan, M A; Shareef, Hussain; Mohamed, Azah; Salam, M A
2014-01-01
Power oscillation damping controller is designed in linearized model with heuristic optimization techniques. Selection of the objective function is very crucial for damping controller design by optimization algorithms. In this research, comparative analysis has been carried out to evaluate the effectiveness of popular objective functions used in power system oscillation damping. Two-stage lead-lag damping controller by means of power system stabilizers is optimized using differential search algorithm for different objective functions. Linearized model simulations are performed to compare the dominant mode's performance and then the nonlinear model is continued to evaluate the damping performance over power system oscillations. All the simulations are conducted in two-area four-machine power system to bring a detailed analysis. Investigated results proved that multiobjective D-shaped function is an effective objective function in terms of moving unstable and lightly damped electromechanical modes into stable region. Thus, D-shape function ultimately improves overall system damping and concurrently enhances power system reliability.
Active damping of modal vibrations by force apportioning
NASA Technical Reports Server (NTRS)
Hallauer, W. L., Jr.
1980-01-01
Force apportioning, a method of active structural damping based on that used in modal vibration testing of isolating modes by multiple shaker excitation, was analyzed and numerically simulated. A distribution of as few forces as possible on the structure is chosen so as to maximally affect selected vibration modes while minimally exciting all other modes. The accuracy of numerical simulations of active damping, active damping of higher-frequency modes, and studies of imperfection sensitivity are discussed. The computer programs developed are described and possible refinements of the research are examined.
None
2017-12-09
In 1999, the National Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-05-21
In 1999, the National Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2009-07-29
In 1999, the Nuclear Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.
None
2018-01-16
In 1999, the Nuclear Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.
Tissue residue depletion of moxidectin in lambs (Ovis aries) following subcutaneous administration.
Cruz, Michelle Del Bianchi A; Fernandes, Maria Ângela M; Monteiro, Alda Lúcia G; Teles, Juliana A; Anadón, Arturo; Reyes, Felix G R
2018-06-07
To date, a tissue depletion study of moxidectin (MOX) in lambs is not available. Thus, considering that lamb meat is of great commercial interest in the world, the aim of the present study was to determine the residue levels of MOX in lamb target-tissues (muscle, liver, kidney and fat) and subsequently calculate the MOX withdrawal period. For this purpose, the target-tissues were analysed by ultra-high-performance liquid chromatography-tandem mass spectrometry. Method validation was performed based on Commission Decision 2002/657/EC and VICH GL49. To quantify the analyte, matrix-matched analytical curves were constructed with spiked blank tissues. The limits of detection and quantitation were 1.5 and 5 ng g -1 , respectively, for all matrices. The linearity, decision limit, detection capability accuracy and inter- and intra-day precision of the method are reported. The lambs were treated with a single subcutaneous dose of 0.2 mg MOX kg -1 body weight and were slaughtered in accordance with accepted animal care protocols. Samples of target-tissues were collected on 2, 4, 7, 14, 28 and 42 days after MOX administration. During the whole study, the highest drug residue level occurred in the fat. For the other target-tissues (muscle, liver and kidney), MOX concentrations were below the maximum residue limit (MRL). Considering the MRL value of 500 µg kg -1 for MOX residues in sheep fat, our results in lambs allowed the estimation of a MOX withdrawal period of 31 days. This indicates that the withdrawal period established for MOX in adult sheep (28 days) does not apply for lambs.
Development of ORIGEN Libraries for Mixed Oxide (MOX) Fuel Assembly Designs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mertyurek, Ugur; Gauld, Ian C.
In this research, ORIGEN cross section libraries for reactor-grade mixed oxide (MOX) fuel assembly designs have been developed to provide fast and accurate depletion calculations to predict nuclide inventories, radiation sources and thermal decay heat information needed in safety evaluations and safeguards verification measurements of spent nuclear fuel. These ORIGEN libraries are generated using two-dimensional lattice physics assembly models that include enrichment zoning and cross section data based on ENDF/B-VII.0 evaluations. Using the SCALE depletion sequence, burnup-dependent cross sections are created for selected commercial reactor assembly designs and a representative range of reactor operating conditions, fuel enrichments, and fuel burnup.more » The burnup dependent cross sections are then interpolated to provide problem-dependent cross sections for ORIGEN, avoiding the need for time-consuming lattice physics calculations. The ORIGEN libraries for MOX assembly designs are validated against destructive radiochemical assay measurements of MOX fuel from the MALIBU international experimental program. This program included measurements of MOX fuel from a 15 × 15 pressurized water reactor assembly and a 9 × 9 boiling water reactor assembly. The ORIGEN MOX libraries are also compared against detailed assembly calculations from the Phase IV-B numerical MOX fuel burnup credit benchmark coordinated by the Nuclear Energy Agency within the Organization for Economic Cooperation and Development. Finally, the nuclide compositions calculated by ORIGEN using the MOX libraries are shown to be in good agreement with other physics codes and with experimental data.« less
Development of ORIGEN Libraries for Mixed Oxide (MOX) Fuel Assembly Designs
Mertyurek, Ugur; Gauld, Ian C.
2015-12-24
In this research, ORIGEN cross section libraries for reactor-grade mixed oxide (MOX) fuel assembly designs have been developed to provide fast and accurate depletion calculations to predict nuclide inventories, radiation sources and thermal decay heat information needed in safety evaluations and safeguards verification measurements of spent nuclear fuel. These ORIGEN libraries are generated using two-dimensional lattice physics assembly models that include enrichment zoning and cross section data based on ENDF/B-VII.0 evaluations. Using the SCALE depletion sequence, burnup-dependent cross sections are created for selected commercial reactor assembly designs and a representative range of reactor operating conditions, fuel enrichments, and fuel burnup.more » The burnup dependent cross sections are then interpolated to provide problem-dependent cross sections for ORIGEN, avoiding the need for time-consuming lattice physics calculations. The ORIGEN libraries for MOX assembly designs are validated against destructive radiochemical assay measurements of MOX fuel from the MALIBU international experimental program. This program included measurements of MOX fuel from a 15 × 15 pressurized water reactor assembly and a 9 × 9 boiling water reactor assembly. The ORIGEN MOX libraries are also compared against detailed assembly calculations from the Phase IV-B numerical MOX fuel burnup credit benchmark coordinated by the Nuclear Energy Agency within the Organization for Economic Cooperation and Development. Finally, the nuclide compositions calculated by ORIGEN using the MOX libraries are shown to be in good agreement with other physics codes and with experimental data.« less
Bernigaud, Charlotte; Fang, Fang; Fischer, Katja; Lespine, Anne; Aho, Ludwig Serge; Dreau, Dominique; Kelly, Andrew; Sutra, Jean-François; Moreau, Francis; Lilin, Thomas; Botterel, Françoise; Guillot, Jacques; Chosidow, Olivier
2016-10-01
Scabies is one of the commonest dermatological conditions globally; however it is a largely underexplored and truly neglected infectious disease. Foremost, improvement in the management of this public health burden is imperative. Current treatments with topical agents and/or oral ivermectin (IVM) are insufficient and drug resistance is emerging. Moxidectin (MOX), with more advantageous pharmacological profiles may be a promising alternative. Using a porcine scabies model, 12 pigs were randomly assigned to receive orally either MOX (0.3 mg/kg once), IVM (0.2 mg/kg twice) or no treatment. We evaluated treatment efficacies by assessing mite count, clinical lesions, pruritus and ELISA-determined anti-S. scabiei IgG antibodies reductions. Plasma and skin pharmacokinetic profiles were determined. At day 14 post-treatment, all four MOX-treated but only two IVM-treated pigs were mite-free. MOX efficacy was 100% and remained unchanged until study-end (D47), compared to 62% (range 26-100%) for IVM, with one IVM-treated pig remaining infected until D47. Clinical scabies lesions, pruritus and anti-S. scabiei IgG antibodies had completely disappeared in all MOX-treated but only 75% of IVM-treated pigs. MOX persisted ~9 times longer than IVM in plasma and skin, thereby covering the mite's entire life cycle and enabling long-lasting efficacy. Our data demonstrate that oral single-dose MOX was more effective than two consecutive IVM-doses, supporting MOX as potential therapeutic approach for scabies.
Particle Tracking Simulation of Collective Modes. Parametric Landau Damping Off Coupling Resonance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macridin, Alexandru; Burov, Alexey; Stern, Eric
Employing Synergia simulations with the DMD method we investigate the Landau damping of space charge modes in bunched beams. The simulations reveal two instances of the parametric damping mechanism in bunched beams. The first example occurs in the proximity of coupling resonance and is due to the oscillation of particles’ amplitudes in the transverse plane. This oscillation modulates the modeparticle coupling with particle dependent trapping frequency. The second example is due to the modulation of the modeparticle coupling in one transverse plane by the oscillatory motion in the other plane.
NASA Astrophysics Data System (ADS)
Yang, Da-Wei; Zhao, Xiu-Ying; Zhang, Geng; Li, Qiang-Guo; Wu, Si-Zhu
2016-05-01
Molecule dynamics (MD) simulation, a molecular-level method, was applied to predict the damping properties of AO-60/polyacrylate rubber (AO-60/ACM) composites before experimental measures were performed. MD simulation results revealed that two types of hydrogen bond, namely, type A (AO-60) -OH•••O=C- (ACM), type B (AO-60) - OH•••O=C- (AO-60) were formed. Then, the AO-60/ACM composites were fabricated and tested to verify the accuracy of the MD simulation through dynamic mechanical thermal analysis (DMTA). DMTA results showed that the introduction of AO-60 could remarkably improve the damping properties of the composites, including the increase of glass transition temperature (Tg) alongside with the loss factor (tan δ), also indicating the AO-60/ACM(98/100) had the best damping performance amongst the composites which verified by the experimental.
Simulations of moving effect of coastal vegetation on tsunami damping
NASA Astrophysics Data System (ADS)
Tsai, Ching-Piao; Chen, Ying-Chi; Octaviani Sihombing, Tri; Lin, Chang
2017-05-01
A coupled wave-vegetation simulation is presented for the moving effect of the coastal vegetation on tsunami wave height damping. The problem is idealized by solitary wave propagation on a group of emergent cylinders. The numerical model is based on general Reynolds-averaged Navier-Stokes equations with renormalization group turbulent closure model by using volume of fluid technique. The general moving object (GMO) model developed in computational fluid dynamics (CFD) code Flow-3D is applied to simulate the coupled motion of vegetation with wave dynamically. The damping of wave height and the turbulent kinetic energy along moving and stationary cylinders are discussed. The simulated results show that the damping of wave height and the turbulent kinetic energy by the moving cylinders are clearly less than by the stationary cylinders. The result implies that the wave decay by the coastal vegetation may be overestimated if the vegetation was represented as stationary state.
Parpinello, Giuseppina Paola; Plumejeau, François; Maury, Chantal; Versari, Andrea
2012-04-01
The main objective of this study was to improve the structure of a Cabernet Sauvignon red wine in a short period of time by micro-oxygenation (MOX) at high rates (25 and 50 mL L(-1) month(-1) ), the effects of which were evaluated based on sensory characteristics and consumer preference. Sensory data were analysed by principal component analysis, discriminant analysis and ordinal logistic regression (OLR). MOX led to significant differences in the colour, colour stability and phenolic compounds of wine. Sensory characteristics also changed through MOX treatment, and wine experts were able to discriminate between MOX-treated and untreated samples, with olfactory intensity, complexity, astringency and roundness being the main discriminating characteristics. Ordinal logistic regression enabled identification of the sensory characteristics that drove consumer preference. MOX at high rates improved the sensory characteristics of wine and may therefore be considered a valid technique for obtaining structured wines in a short period of time, i.e. within just a few months after the vintage. The results highlight the need for (i) careful selection of the MOX dosage rate and duration (the 25 mL L(-1) month(-1) dose for 6 days provided the best result) and (ii) continuous monitoring of the MOX treatment. Copyright © 2011 Society of Chemical Industry.
Dynamic characteristics of specialty composite structures with embedded damping layers
NASA Technical Reports Server (NTRS)
Saravanos, D. A.; Chamis, C. C.
1993-01-01
Damping mechanics for simulating the damped dynamic characteristics in specialty composite structures with compliant interlaminar damping layers are presented. Finite-element based mechanics incorporating a discrete layer (or layer-wise) laminate damping theory are utilized to represent general laminate configurations in terms of lay-up and fiber orientation angles, cross-sectional thickness, shape, and boundary conditions. Evaluations of the method with exact solutions and experimental data illustrate the accuracy of the method. Additional applications investigate the potential for significant damping enhancement in angle-ply composite laminates with cocured interlaminar damping layers.
Damping characterization in large structures
NASA Technical Reports Server (NTRS)
Eke, Fidelis O.; Eke, Estelle M.
1991-01-01
This research project has as its main goal the development of methods for selecting the damping characteristics of components of a large structure or multibody system, in such a way as to produce some desired system damping characteristics. The main need for such an analytical device is in the simulation of the dynamics of multibody systems consisting, at least partially, of flexible components. The reason for this need is that all existing simulation codes for multibody systems require component-by-component characterization of complex systems, whereas requirements (including damping) often appear at the overall system level. The main goal was met in large part by the development of a method that will in fact synthesize component damping matrices from a given system damping matrix. The restrictions to the method are that the desired system damping matrix must be diagonal (which is almost always the case) and that interbody connections must be by simple hinges. In addition to the technical outcome, this project contributed positively to the educational and research infrastructure of Tuskegee University - a Historically Black Institution.
Griffiths, N M; Van der Meeren, A; Fritsch, P; Abram, M-C; Bernaudin, J-F; Poncy, J L
2010-09-01
Accidental exposure by inhalation to alpha-emitting particles from mixed oxide (MOX: uranium and plutonium oxide) fuels is a potential long-term health risk to workers in nuclear fuel fabrication plants. For MOX fuels, the risk of lung cancer development may be different from that assigned to individual components (plutonium, uranium) given different physico-chemical characteristics. The objective of this study was to investigate late effects in rat lungs following inhalation of MOX aerosols of similar particle size containing 2.5 or 7.1% plutonium. Conscious rats were exposed to MOX aerosols and kept for their entire lifespan. Different initial lung burdens (ILBs) were obtained using different amounts of MOX. Lung total alpha activity was determined by external counting and at autopsy for total lung dose calculation. Fixed lung tissue was used for anatomopathological, autoradiographical, and immunohistochemical analyses. Inhalation of MOX at ILBs ranging from 1-20 kBq resulted in lung pathologies (90% of rats) including fibrosis (70%) and malignant lung tumors (45%). High ILBs (4-20 kBq) resulted in reduced survival time (N = 102; p < 0.05) frequently associated with lung fibrosis. Malignant tumor incidence increased linearly with dose (up to 60 Gy) with a risk of 1-1.6% Gy for MOX, similar to results for industrial plutonium oxide alone (1.9% Gy). Staining with antibodies against Surfactant Protein-C, Thyroid Transcription Factor-1, or Oct-4 showed differential labeling of tumor types. In conclusion, late effects following MOX inhalation result in similar risk for development of lung tumors as compared with industrial plutonium oxide.
Bernigaud, Charlotte; Aho, Ludwig Serge; Dreau, Dominique; Kelly, Andrew; Sutra, Jean-François; Moreau, Francis; Lilin, Thomas; Botterel, Françoise; Guillot, Jacques; Chosidow, Olivier
2016-01-01
Background Scabies is one of the commonest dermatological conditions globally; however it is a largely underexplored and truly neglected infectious disease. Foremost, improvement in the management of this public health burden is imperative. Current treatments with topical agents and/or oral ivermectin (IVM) are insufficient and drug resistance is emerging. Moxidectin (MOX), with more advantageous pharmacological profiles may be a promising alternative. Methodology/Principal Findings Using a porcine scabies model, 12 pigs were randomly assigned to receive orally either MOX (0.3 mg/kg once), IVM (0.2 mg/kg twice) or no treatment. We evaluated treatment efficacies by assessing mite count, clinical lesions, pruritus and ELISA-determined anti-S. scabiei IgG antibodies reductions. Plasma and skin pharmacokinetic profiles were determined. At day 14 post-treatment, all four MOX-treated but only two IVM-treated pigs were mite-free. MOX efficacy was 100% and remained unchanged until study-end (D47), compared to 62% (range 26–100%) for IVM, with one IVM-treated pig remaining infected until D47. Clinical scabies lesions, pruritus and anti-S. scabiei IgG antibodies had completely disappeared in all MOX-treated but only 75% of IVM-treated pigs. MOX persisted ~9 times longer than IVM in plasma and skin, thereby covering the mite’s entire life cycle and enabling long-lasting efficacy. Conclusions/Significance Our data demonstrate that oral single-dose MOX was more effective than two consecutive IVM-doses, supporting MOX as potential therapeutic approach for scabies. PMID:27732588
Liu, Yong; Gracia, Jose R,; King, Jr, Thomas J.; ...
2014-05-16
The U.S. Eastern Interconnection (EI) is one of the largest electric power grids in the world and is expected to have difficulties in dealing with frequency regulation and oscillation damping issues caused by the increasing wind power. On the other side, variable-speed wind generators can actively engage in frequency regulation or oscillation damping with supplementary control loops. This paper creates a 5% wind power penetration simulation scenario based on the 16 000-bus EI system dynamic model and developed the user-defined wind electrical control model in PSS (R) E that incorporates additional frequency regulation and oscillation damping control loops. We evaluatedmore » the potential contributions of variable-speed wind generations to the EI system frequency regulation and oscillation damping, and simulation results demonstrate that current and future penetrations of wind power are promising in the EI system frequency regulation and oscillation damping.« less
Horii, T; Arakawa, Y; Ohta, M; Ichiyama, S; Wacharotayankun, R; Kato, N
1993-01-01
Klebsiella pneumoniae NU2936 was isolated from a patient and was found to produce a plasmid-encoded beta-lactamase (MOX-1) which conferred resistance to broad spectrum beta-lactams, including moxalactam, flomoxef, ceftizoxime, cefotaxime, and ceftazidime. Resistance could be transferred from K. pneumoniae NU2936 to Escherichia coli CSH2 by conjugation with a transfer frequency of 5 x 10(-7). The structural gene of MOX-1 (blaMOX-1) was cloned and expressed in E. coli HB101. The MIC of moxalactam for E. coli HB101 producing MOX-1 was > 512 micrograms/ml. The apparent molecular mass and pI of this enzyme were calculated to be 38 kDa and 8.9, respectively. Hg2+ and Cu2+ failed to block enzyme activity, and the presence of EDTA in the reaction buffer did not reduce the enzyme activity. However, clavulanate and cloxacillin, serine beta-lactamase inhibitors, inhibited the enzyme activity competitively (Kis = 5.60 and 0.35 microM, respectively). The kinetic study of MOX-1 suggested that it effectively hydrolyzed broad-spectrum beta-lactams. A hybridization study confirmed that blaMOX-1 is encoded on a large resident plasmid (pRMOX1; 180 kb) of strain NU2936. By deletion analysis, the functional region was localized within a 1.2-kb region of the plasmid. By amino acid sequencing, 18 of 33 amino acid residues at the N terminus of MOX-1 were found to be identical to those of Pseudomonas aeruginosa AmpC. These findings suggest that MOX-1 is a plasmid-mediated AmpC-type beta-lactamase that provides enteric bacteria resistance to broad-spectrum beta-lactams, including moxalactam. Images PMID:8517725
Dynamical shift condition for unequal mass black hole binaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, Doreen; Grigsby, Jason; Bruegmann, Bernd
Certain numerical frameworks used for the evolution of binary black holes make use of a gamma driver, which includes a damping factor. Such simulations typically use a constant value for damping. However, it has been found that very specific values of the damping factor are needed for the calculation of unequal mass binaries. We examine carefully the role this damping plays and provide two explicit, nonconstant forms for the damping to be used with mass ratios further from one. Our analysis of the resultant waveforms compares well against the constant damping case.
Human-in-the-loop evaluation of RMS Active Damping Augmentation
NASA Technical Reports Server (NTRS)
Demeo, Martha E.; Gilbert, Michael G.; Scott, Michael A.; Lepanto, Janet A.; Bains, Elizabeth M.; Jensen, Mary C.
1993-01-01
Active Damping Augmentation is the insertion of Controls-Structures Integration Technology to benefit the on-orbit performance of the Space Shuttle Remote Manipulator System. The goal is to reduce the vibration decay time of the Remote Manipulator System following normal payload maneuvers and operations. Simulation of Active Damping Augmentation was conducted in the realtime human-in-the-loop Systems Engineering Simulator at the NASA Johnson Space Center. The objective of this study was to obtain a qualitative measure of operational performance improvement from astronaut operators and to obtain supporting quantitative performance data. Sensing of vibratory motions was simulated using a three-axis accelerometer mounted at the end of the lower boom of the Remote Manipulator System. The sensed motions were used in a feedback control law to generate commands to the joint servo mechanisms which reduced the unwanted oscillations. Active damping of the Remote Manipulator System with an attached 3990 lb. payload was successfully demonstrated. Six astronaut operators examined the performance of an Active Damping Augmentation control law following single-joint and coordinated six-joint translational and rotational maneuvers. Active Damping Augmentation disturbance rejection of Orbiter thruster firings was also evaluated. Significant reductions in the dynamic response of the 3990 lb. payload were observed. Astronaut operators recommended investigation of Active Damping Augmentation benefits to heavier payloads where oscillations are a bigger problem (e.g. Space Station Freedom assembly operators).
Ridge, Justin P; Lin, Marianne; Larsen, Eloise I; Fegan, Mark; McEwan, Alastair G; Sly, Lindsay I
2007-04-01
Pedomicrobium sp. ACM 3067 is a budding-hyphal bacterium belonging to the alpha-Proteobacteria which is able to oxidize soluble Mn2+ to insoluble manganese oxide. A cosmid, from a whole-genome library, containing the putative genes responsible for manganese oxidation was identified and a primer-walking approach yielded 4350 bp of novel sequence. Analysis of this sequence showed the presence of a predicted three-gene operon, moxCBA. The moxA gene product showed homology to multicopper oxidases (MCOs) and contained the characteristic four copper-binding motifs (A, B, C and D) common to MCOs. An insertion mutation of moxA showed that this gene was essential for both manganese oxidation and laccase-like activity. The moxB gene product showed homology to a family of outer membrane proteins which are essential for Type I secretion in Gram-negative bacteria. moxBA has not been observed in other manganese-oxidizing bacteria but homologues were identified in the genomes of several bacteria including Sinorhizobium meliloti 1021 and Agrobacterium tumefaciens C58. These results suggest that moxBA and its homologues constitute a family of genes encoding an MCO and a predicted component of the Type I secretion system.
Opportunities for the Multi Recycling of Used MOX Fuel in the US - 12122
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, P.; Bailly, F.; Bouvier, E.
Over the last 50 years the US has accumulated an inventory of used nuclear fuel (UNF) in the region of 64,000 metric tons in 2010, and adds an additional 2,200 metric tons each year from the current fleet of 104 Light Water Reactors. This paper considers a fuel cycle option that would be available for a future pilot U.S. recycling plant that could take advantage of the unique opportunities offered by the age and size of the large U.S. UNF inventory. For the purpose of this scenario, recycling of UNF must use the available reactor infrastructure, currently LWR's, and themore » main product of recycling is considered to be plutonium (Pu), recycled into MOX fuel for use in these reactors. Use of MOX fuels must provide the service (burn-up) expected by the reactor operator, with the required level of safety. To do so, the fissile material concentration (Pu-239, Pu-241) in the MOX must be high enough to maintain criticality, while, in current recycle facilities, the Pu-238 content has to be kept low enough to prevent excessive heat load, neutron emission, and neutron capture during recycle operations. In most countries, used MOX fuel (MOX UNF) is typically stored after one irradiation in an LWR, pending the development of the GEN IV reactors, since it is considered difficult to directly reuse the recycled MOX fuel in LWRs due to the degraded Pu fissile isotopic composition. In the US, it is possible to blend MOX UNF with LEUOx UNF from the large inventory, using the oldest UNF first. Blending at the ratio of about one MOX UNF assembly with 15 LEUOx UNF assemblies, would achieve a fissile plutonium concentration sufficient for reirradiation in new MOX fuel. The Pu-238 yield in the new fuel will be sufficiently low to meet current fuel fabrication standards. Therefore, it should be possible in the context of the US, for discharged MOX fuel to be recycled back into LWR's, using only technologies already industrially deployed worldwide. Building on that possibility, two scenarios are assessed where current US inventory is treated; Pu recycled in LWR MOX fuels, and used MOX fuels themselves are treated in a continuous partitioning-transmutation mode (case 2a) or until the whole current UNF inventory (64,000 MT in 2010) has been treated followed by disposal of the MOX UNF to a geologic repository (case 2b). In the recycling scenario, two cases (2a and 2b) are considered. Benefits achieved are compared with the once through scenario (case 1) where UNF in the current US inventory are disposed directly to a geologic repository. For each scenario, the heat load and radioactivity of the high activity wastes disposed to a geologic repository are calculated and the savings in natural resources quantified, and compared with the once-through fuel cycle. Assuming an initial pilot recycling facility with a capacity of 800 metric tons a year of heavy metal begins operation in 2030, ∼8 metric tons per year of Pu is recovered from the LEUOx UNF inventory, and is used to produce fresh MOX fuels. At a later time, additional treatment and recycling capacities are assumed to begin operation, to accommodate blending and recycling of used MOX Pu, up to 2,400 MT/yr treatment capacity to enable processing UNF slightly faster than the rate of generation. Results of this scenario analysis study show the flexibility of the recycling scenarios so that Pu is managed in a way that avoids accumulating used MOX fuels. If at some future date, the decision is made to dispose of the MOX UNF to a geologic repository (case 2b), the scenario is neutral to final repository heat load in comparison to the direct disposal of all UNF (case 1), while diminishing use of natural uranium, enrichment, UNF accumulation, and the volume of HLW. Further recycling of Pu at the end of the scenario (case 2a) would exhibit further benefits. As expected, Pu-241 and Am-241 are the source of long term HLW heat load and Am-241 and Np-237 are the source of long term radiotoxicity. When advanced technology is available, introduction of minor actinide recycling, in addition to Pu recycling, by the end of this scenario, or sooner, would have a major impact on final repository heat load and long term radiotoxicity of the HLW. This scenario is also compatible with a gradual introduction of a small number of FR's for Pu management. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Hojin; Strachan, Alejandro
2015-11-28
We use large-scale molecular dynamics (MD) to characterize fluid damping between a substrate and an approaching beam. We focus on the near contact regime where squeeze film (where fluid gap is comparable to the mean free path of the gas molecules) and many-body effects in the fluid become dominant. The MD simulations provide explicit description of many-body and non-equilibrium processes in the fluid as well as the surface topography. We study how surface roughness and beam width increases the damping coefficient due to their effect on fluid mobility. We find that the explicit simulations are in good agreement with priormore » direct simulation Monte Carlo results except at near-contact conditions where many-body effects in the compressed fluid lead the increased damping and weaker dependence on beam width. We also show that velocity distributions near the beam edges and for short gaps deviate from the Boltzmann distribution indicating a degree of local non-equilibrium. These results will be useful to parameterize compact models used for microsystem device-level simulations and provide insight into mesoscale simulations of near-contact damping.« less
Macridin, Alexandru; Burov, Alexey; Stern, Eric; ...
2015-07-22
Transverse dipole modes in bunches with space charge are simulated using the synergia accelerator modeling package and analyzed with dynamic mode decomposition. The properties of the first three space charge modes, including their shape, damping rates, and tune shifts are described over the entire range of space charge strength. As a result, the intrinsic Landau damping predicted and estimated in 2009 by one of the authors is confirmed with a reasonable scaling factor of ≃2.4. For the KV distribution, very good agreement with PATRIC simulations performed by Kornilov and Boine-Frankenheim is obtained.
Constraint damping for the Z4c formulation of general relativity
NASA Astrophysics Data System (ADS)
Weyhausen, Andreas; Bernuzzi, Sebastiano; Hilditch, David
2012-01-01
One possibility for avoiding constraint violation in numerical relativity simulations adopting free-evolution schemes is to modify the continuum evolution equations so that constraint violations are damped away. Gundlach et al. demonstrated that such a scheme damps low-amplitude, high-frequency constraint-violating modes exponentially for the Z4 formulation of general relativity. Here we analyze the effect of the damping scheme in numerical applications on a conformal decomposition of Z4. After reproducing the theoretically predicted damping rates of constraint violations in the linear regime, we explore numerical solutions not covered by the theoretical analysis. In particular we examine the effect of the damping scheme on low-frequency and on high-amplitude perturbations of flat spacetime as well and on the long-term dynamics of puncture and compact star initial data in the context of spherical symmetry. We find that the damping scheme is effective provided that the constraint violation is resolved on the numerical grid. On grid noise the combination of artificial dissipation and damping helps to suppress constraint violations. We find that care must be taken in choosing the damping parameter in simulations of puncture black holes. Otherwise the damping scheme can cause undesirable growth of the constraints, and even qualitatively incorrect evolutions. In the numerical evolution of a compact static star we find that the choice of the damping parameter is even more delicate, but may lead to a small decrease of constraint violation. For a large range of values it results in unphysical behavior.
Offline software for the DAMPE experiment
NASA Astrophysics Data System (ADS)
Wang, Chi; Liu, Dong; Wei, Yifeng; Zhang, Zhiyong; Zhang, Yunlong; Wang, Xiaolian; Xu, Zizong; Huang, Guangshun; Tykhonov, Andrii; Wu, Xin; Zang, Jingjing; Liu, Yang; Jiang, Wei; Wen, Sicheng; Wu, Jian; Chang, Jin
2017-10-01
A software system has been developed for the DArk Matter Particle Explorer (DAMPE) mission, a satellite-based experiment. The DAMPE software is mainly written in C++ and steered using a Python script. This article presents an overview of the DAMPE offline software, including the major architecture design and specific implementation for simulation, calibration and reconstruction. The whole system has been successfully applied to DAMPE data analysis. Some results obtained using the system, from simulation and beam test experiments, are presented. Supported by Chinese 973 Program (2010CB833002), the Strategic Priority Research Program on Space Science of the Chinese Academy of Science (CAS) (XDA04040202-4), the Joint Research Fund in Astronomy under cooperative agreement between the National Natural Science Foundation of China (NSFC) and CAS (U1531126) and 100 Talents Program of the Chinese Academy of Science
NASA Technical Reports Server (NTRS)
Sadoff, Melvin; McFadden, Norman M.; Heinle, Donovan R.
1961-01-01
As part of a general investigation to determine the effects of simulator motions on pilot opinion and task performance over a wide range of vehicle longitudinal dynamics, a cooperative NASA-AMAL program was conducted on the centrifuge at Johnsville, Pennsylvania. The test parameters and measurements for this program duplicated those of earlier studies made at Ames Research Center with a variable-stability airplane and with a pitch-roll chair flight simulator. Particular emphasis was placed on the minimum basic damping and stability the pilots would accept and on the minimum dynamics they considered controllable in the event of stability-augmentation system failure. Results of the centrifuge-simulator program indicated that small positive damping was required by the pilots over most of the frequency range covered for configurations rated acceptable for emergency conditions only (e.g., failure of a pitch damper). It was shown that the pilot's tolerance for unstable dynamics was dependent primarily on the value of damping. For configurations rated acceptable for emergency operation only, the allowable instability and damping corresponded to a divergence time to double amplitude of about 1 second. Comparisons were made of centrifuge, pitch-chair and fixed-cockpit simulator tests with flight tests. Pilot ratings indicated that the effects of incomplete or spurious motion cues provided by these three modes of simulation were important only for high-frequency, lightly damped dynamics or unstable, moderately damped dynamics. The pitch- chair simulation, which provided accurate angular-acceleration cues to the pilot, compared most favorably with flight. For the centrifuge simulation, which furnished accurate normal accelerations but spurious pitching and longitudinal accelerations, there was a deterioration of pilots' opinion relative to flight results. Results of simulator studies with an analog pilot replacing the human pilot illustrated the adaptive capability of human pilots in coping with the wide range of vehicle dynamics and the control problems covered in this study. It was shown that pilot-response characteristics, deduced by the analog-pilot method, could be related to pilot opinion. Possible application of these results for predicting flight-control problems was illustrated by means of an example control-problem analysis. The results of a brief evaluation of a pencil-type side-arm controller in the centrifuge showed a considerable improvement in the pilots' ability to cope with high-frequency, low-damping dynamics, compared to results obtained with the center stick. This improvement with the pencil controller was attributed primarily to a marked reduction in the adverse effects of large and exaggerated pitching and longitudinal accelerations on pilot control precision.
MOXE: An X-ray all-sky monitor for Soviet Spectrum-X-Gamma Mission
NASA Technical Reports Server (NTRS)
Priedhorsky, W.; Fenimore, E. E.; Moss, C. E.; Kelley, R. L.; Holt, S. S.
1989-01-01
A Monitoring Monitoring X-Ray Equipment (MOXE) is being developed for the Soviet Spectrum-X-Gamma Mission. MOXE is an X-ray all-sky monitor based on array of pinhole cameras, to be provided via a collaboration between Goddard Space Flight Center and Los Alamos National Laboratory. The objectives are to alert other observers on Spectrum-X-Gamma and other platforms of interesting transient activity, and to synoptically monitor the X-ray sky and study long-term changes in X-ray binaries. MOXE will be sensitive to sources as faint as 2 milliCrab (5 sigma) in 1 day, and cover the 2 to 20 KeV band.
The phase state at high temperatures in the MOX-SiO 2 system
NASA Astrophysics Data System (ADS)
Nakamichi, S.; Kato, M.; Sunaoshi, T.; Uchida, T.; Morimoto, K.; Kashimura, M.; Kihara, Y.
2009-06-01
Influence of impurity Si on microstructure in a plutonium and uranium mixed oxide (MOX), which is used for fast breeder reactor fuel, was investigated, and phase state in 25% SiO 2 - (U 0.7Pu 0.3)O 2 was observed as a function of oxygen chemical potential. Compounds composed of Pu and Si with other elements were observed at grain boundaries of the MOX parent phase in the specimens after annealing. These compounds were not observed in the grain interior and the MOX phase was not affected significantly by impurity Si. It was found that the compounds tended to form more observably with decreasing O/M ratio and with increasing annealing temperatures.
Three-dimensional inverse modelling of damped elastic wave propagation in the Fourier domain
NASA Astrophysics Data System (ADS)
Petrov, Petr V.; Newman, Gregory A.
2014-09-01
3-D full waveform inversion (FWI) of seismic wavefields is routinely implemented with explicit time-stepping simulators. A clear advantage of explicit time stepping is the avoidance of solving large-scale implicit linear systems that arise with frequency domain formulations. However, FWI using explicit time stepping may require a very fine time step and (as a consequence) significant computational resources and run times. If the computational challenges of wavefield simulation can be effectively handled, an FWI scheme implemented within the frequency domain utilizing only a few frequencies, offers a cost effective alternative to FWI in the time domain. We have therefore implemented a 3-D FWI scheme for elastic wave propagation in the Fourier domain. To overcome the computational bottleneck in wavefield simulation, we have exploited an efficient Krylov iterative solver for the elastic wave equations approximated with second and fourth order finite differences. The solver does not exploit multilevel preconditioning for wavefield simulation, but is coupled efficiently to the inversion iteration workflow to reduce computational cost. The workflow is best described as a series of sequential inversion experiments, where in the case of seismic reflection acquisition geometries, the data has been laddered such that we first image highly damped data, followed by data where damping is systemically reduced. The key to our modelling approach is its ability to take advantage of solver efficiency when the elastic wavefields are damped. As the inversion experiment progresses, damping is significantly reduced, effectively simulating non-damped wavefields in the Fourier domain. While the cost of the forward simulation increases as damping is reduced, this is counterbalanced by the cost of the outer inversion iteration, which is reduced because of a better starting model obtained from the larger damped wavefield used in the previous inversion experiment. For cross-well data, it is also possible to launch a successful inversion experiment without laddering the damping constants. With this type of acquisition geometry, the solver is still quite effective using a small fixed damping constant. To avoid cycle skipping, we also employ a multiscale imaging approach, in which frequency content of the data is also laddered (with the data now including both reflection and cross-well data acquisition geometries). Thus the inversion process is launched using low frequency data to first recover the long spatial wavelength of the image. With this image as a new starting model, adding higher frequency data refines and enhances the resolution of the image. FWI using laddered frequencies with an efficient damping schemed enables reconstructing elastic attributes of the subsurface at a resolution that approaches half the smallest wavelength utilized to image the subsurface. We show the possibility of effectively carrying out such reconstructions using two to six frequencies, depending upon the application. Using the proposed FWI scheme, massively parallel computing resources are essential for reasonable execution times.
Correlation between electronic structure and electron conductivity in MoX2 (X = S, Se, and Te)
NASA Astrophysics Data System (ADS)
Muzakir, Saifful Kamaluddin
2017-12-01
Layered structure molybdenum dichalcogenides, MoX2 (X = S, Se, and Te) are in focus as reversible charge storage electrode for pseudocapacitor applications. Correlation between number of layer and bandgap of the materials has been established by previous researchers. The correlation would reveal a connection between the bandgap and charge storage properties i.e., amount of charges that could be stored, and speed of storage or dissociation. In this work, fundamental parameters viz., (i) size-offset between a monolayer and exciton Bohr radius of MoX2 and (ii) ground and excited state electron density have been studied. We have identified realistic monolayer models of MoX2 using quantum chemical calculations which explain a correlation between size-offset and charge storage properties. We conclude that as the size-offset decreases, the higher possibility of wave functions overlap between the excited state, and ground state electrons; therefore the higher the electron mobility, and conductivity of the MoX2 would be.
PDCI Wide-Area Damping Control: PSLF Simulations of the 2016 Open and Closed Loop Test Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilches Bernal, Felipe; Pierre, Brian Joseph; Elliott, Ryan Thomas
To demonstrate and validate the performance of the wide-are a damping control system, the project plans to conduct closed-loop tests on the PDCI in summer/fall 2016. A test plan details the open and closed loop tests to be conducted on the P DCI using the wide-area damping control system. To ensure the appropriate level of preparedness, simulations were performed in order to predict and evaluate any possible unsafe operations before hardware experiments are attempted. This report contains the result s from these simulations using the power system dynamics software PSLF (Power System Load Flow, trademark of GE). The simulations usemore » the WECC (Western Electricity Coordinating Council) 2016 light summer and heavy summer base cases.« less
Design of passive piezoelectric damping for space structures. Final Report Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Hagood, Nesbitt W., IV; Aldrich, Jack B.; Vonflotow, Andreas H.
1994-01-01
Passive damping of structural dynamics using piezoceramic electromechanical energy conversion and passive electrical networks is a relatively recent concept with little implementation experience base. This report describes an implementation case study, starting from conceptual design and technique selection, through detailed component design and testing to simulation on the structure to be damped. About 0.5kg. of piezoelectric material was employed to damp the ASTREX testbed, a 500kg structure. Emphasis was placed upon designing the damping to enable high bandwidth robust feedback control. Resistive piezoelectric shunting provided the necessary broadband damping. The piezoelectric element was incorporated into a mechanically-tuned vibration absorber in order to concentrate damping into the 30 to 40 Hz frequency modes at the rolloff region of the proposed compensator. A prototype of a steel flex-tensional motion amplification device was built and tested. The effective stiffness and damping of the flex-tensional device was experimentally verified. When six of these effective springs are placed in an orthogonal configuration, strain energy is absorbed from all six degrees of freedom of a 90kg. mass. A NASTRAN finite element model of the testbed was modified to include the six-spring damping system. An analytical model was developed for the spring in order to see how the flex-tensional device and piezoelectric dimensions effect the critical stress and strain energy distribution throughout the component. Simulation of the testbed demonstrated the damping levels achievable in the completed system.
Missile Aerodynamics for Ascent and Re-entry
NASA Technical Reports Server (NTRS)
Watts, Gaines L.; McCarter, James W.
2012-01-01
Aerodynamic force and moment equations are developed for 6-DOF missile simulations of both the ascent phase of flight and a tumbling re-entry. The missile coordinate frame (M frame) and a frame parallel to the M frame were used for formulating the aerodynamic equations. The missile configuration chosen as an example is a cylinder with fixed fins and a nose cone. The equations include both the static aerodynamic coefficients and the aerodynamic damping derivatives. The inclusion of aerodynamic damping is essential for simulating a tumbling re-entry. Appended information provides insight into aerodynamic damping.
Super-Alfvénic Propagation and Damping of Reconnection Onset Signatures
NASA Astrophysics Data System (ADS)
Sharma Pyakurel, P.; Shay, M. A.; Haggerty, C. C.; Parashar, T. N.; Drake, J. F.; Cassak, P. A.; Gary, S. Peter
2018-01-01
The quadrupolar out-of-plane Hall magnetic field generated during collisionless reconnection propagates away from the x line as a kinetic Alfvén wave (KAW). While it has been shown that this KAW carries substantial Poynting flux and propagates super-Alfvenically, how this KAW damps as it propagates away from the x line is not well understood. In this study, this damping is examined using kinetic particle-in-cell simulations of antiparallel symmetric magnetic reconnection in a one-dimensional current sheet equilibrium. In the reconnection simulations, the KAW wave vector has a typical magnitude comparable to an inverse fluid Larmor radius (effectively an inverse ion Larmor radius) and a direction of 85-89° relative to the local magnetic field. We find that the damping of the reconnection KAW is consistent with linear Landau damping results from a numerical Vlasov dispersion solver. This knowledge allows us to generalize our damping predictions to regions in the magnetotail and solar corona where the magnetic geometry can be approximated as a current sheet. For the magnetotail, the KAW from reconnection will not damp away before propagating the approximately 20 Earth radii associated with global magnetotail distances. For the solar corona, on the other hand, these KAWs will completely damp before reaching the distances comparable to the flare loop length.
Yalçin, Burçe; Kalkanci, Ayşe; Gürelik, Feryal; Fidan, Işil; Kustimur, Semra; Ozdek, Sengül
2010-01-01
Contradictory results such as synergy or indifferent effect, have been reported about the interactions between quinolones and antifungal drugs in different studies. The aim of this study was to investigate the in vitro susceptibilities of Candida spp. to moxifloxacin (MOX) alone and MOX + amphotericin B (AmB) combination. A total of 20 strains were included to the study, of which 19 were clinical isolates (10 Candida albicans, 4 Candida glabrata, 2 Candida parapsilosis, 1 Candida tropicalis, 1 Candida pelliculosa ve 1 Candida sake) and 1 was a standard strain (C. albicans ATCC 90028). In vitro susceptibilities of the strains to MOX with AmB were investigated by broth microdilution method according to the recommendations of the Clinical and Laboratory Standards Institute (CLSI), and in vitro interaction of these drugs were determined by a chequerboard titration method. Minimal inhibitory concentration (MIC) values of Candida spp. for MOX were found > or = 400 microg/ml indicating that MOX, by itself has no antifungal activity. AmB MIC values were found 1 microg/ml in 11 of the clinical isolates, and < or = 0.5 microg/ml in the other 8 clinical isolates and 1 standard strain. The inhibitor activity of AmB was slightly enhanced when combined with MOX, there being a decrease of 1-4 fold dilutions in the AmB MICs against all isolates tested. Synergistic effect between MOX and AmB, defined as a fractional inhibitory concentration (FIC) index as < or = 0.5, was observed in 90% (18/20; all were clinical isolates) of the strains, whereas indifferent effect (FIC = 1) was detected in 10% (2/20; 1 was clinical and 1 was standard strain) of the strains. Antagonistic effect was not observed for this combination even at 48th hours. It was concluded that these preliminary results should be confirmed by large-scaled in vitro and in vivo studies to evaluate MOX + AmB combination as a therapeutic option for the treatment of Candida infections.
Oscillation Amplitude Growth for a Decelerating Object with Constant Pitch Damping
NASA Technical Reports Server (NTRS)
Schoenenberger, Mark; Queen, Eric M.; Litton, Daniel
2006-01-01
The equations governing the deceleration and oscillation of a blunt body moving along a planar trajectory are re-expressed in the form of the Euler-Cauchy equation. An analytic solution of this equation describes the oscillation amplitude growth and frequency dilation with time for a statically stable decelerating body with constant pitch damping. The oscillation histories for several constant pitch damping values, predicted by the solution of the Euler-Cauchy equation are compared to POST six degree-of-freedom (6-DoF) trajectory simulations. The simulations use simplified aerodynamic coefficients matching the Euler-Cauchy approximations. Agreement between the model predictions and simulation results are excellent. Euler-Cauchy curves are also fit through nonlinear 6-DoF simulations and ballistic range data to identify static stability and pitch damping coefficients. The model os shown to closely fit through the data points and capture the behavior of the blunt body observed in simulation and experiment. The extracted coefficients are in reasonable agreement with higher fidelity, nonlinear parameter identification results. Finally, a nondimensional version of the Euler-Cauchy equation is presented and shown to be a simple and effective tool for designing dynamically scaled experiments for decelerating blunt capsule flight.
Sassani, Farrokh
2014-01-01
The simulation results for electromagnetic energy harvesters (EMEHs) under broad band stationary Gaussian random excitations indicate the importance of both a high transformation factor and a high mechanical quality factor to achieve favourable mean power, mean square load voltage, and output spectral density. The optimum load is different for random vibrations and for sinusoidal vibration. Reducing the total damping ratio under band-limited random excitation yields a higher mean square load voltage. Reduced bandwidth resulting from decreased mechanical damping can be compensated by increasing the electrical damping (transformation factor) leading to a higher mean square load voltage and power. Nonlinear EMEHs with a Duffing spring and with linear plus cubic damping are modeled using the method of statistical linearization. These nonlinear EMEHs exhibit approximately linear behaviour under low levels of broadband stationary Gaussian random vibration; however, at higher levels of such excitation the central (resonant) frequency of the spectral density of the output voltage shifts due to the increased nonlinear stiffness and the bandwidth broadens slightly. Nonlinear EMEHs exhibit lower maximum output voltage and central frequency of the spectral density with nonlinear damping compared to linear damping. Stronger nonlinear damping yields broader bandwidths at stable resonant frequency. PMID:24605063
Characterization of Slosh Damping for Ortho-Grid and Iso-Grid Internal Tank Structures
NASA Technical Reports Server (NTRS)
Westra, Douglas G.; Sansone, Marco D.; Eberhart, Chad J.; West, Jeffrey S.
2016-01-01
Grid stiffened tank structures such as Ortho-Grid and Iso-Grid are widely used in cryogenic tanks for providing stiffening to the tank while reducing mass, compared to tank walls of constant cross-section. If the structure is internal to the tank, it will positively affect the fluid dynamic behavior of the liquid propellant, in regard to fluid slosh damping. As NASA and commercial companies endeavor to explore the solar system, vehicles will by necessity become more mass efficient, and design margin will be reduced where possible. Therefore, if the damping characteristics of the Ortho-Grid and Iso-Grid structure is understood, their positive damping effect can be taken into account in the systems design process. Historically, damping by internal structures has been characterized by rules of thumb and for Ortho-Grid, empirical design tools intended for slosh baffles of much larger cross-section have been used. There is little or no information available to characterize the slosh behavior of Iso-Grid internal structure. Therefore, to take advantage of these structures for their positive damping effects, there is much need for obtaining additional data and tools to characterize them. Recently, the NASA Marshall Space Flight Center conducted both sub-scale testing and computational fluid dynamics (CFD) simulations of slosh damping for Ortho-Grid and Iso-Grid tanks for cylindrical tanks containing water. Enhanced grid meshing techniques were applied to the geometrically detailed and complex Ortho-Grid and Iso-Grid structures. The Loci-STREAM CFD program with the Volume of Fluid Method module for tracking and locating the water-air fluid interface was used to conduct the simulations. The CFD simulations were validated with the test data and new empirical models for predicting damping and frequency of Ortho-Grid and Iso-Grid structures were generated.
NASA Technical Reports Server (NTRS)
Thorwald, Gregory; Mikulas, Martin M., Jr.
1992-01-01
The concept of a large-stroke adaptive stiffness cable-device for damping control of space structures with large mass is introduced. The cable is used to provide damping in several examples, and its performance is shown through numerical simulation results. Displacement and velocity information of how the structure moves is used to determine when to modify the cable's stiffness in order to provide a damping force.
Sun, Jiangkun; Wu, Yulie; Xi, Xiang; Zhang, Yongmeng; Wu, Xuezhong
2017-01-01
The cylindrical resonator gyroscope (CRG) is a typical Coriolis vibratory gyroscope whose performance is mostly influenced by the damping characteristic of the cylindrical resonator. However, the tremendous damping influences caused by pasting piezoelectric electrodes on the gyroscope, which degrades the performance to a large extent, have rarely been studied. In this paper, the dynamical model is established to analyze various forms of energy consumption. In addition, a FE COMSOL model is also created to discuss the damping influences of several significant parameters of the adhesive layer and piezoelectric electrodes, respectively, and then explicit influence laws are obtained. Simulation results demonstrate that the adhesive layer has some impact on the damping characteristic, but it not significant. The Q factor decreases about 30.31% in total as a result of pasting piezoelectric electrodes. What is more, it is discovered that piezoelectric electrodes with short length, locations away from the outside edges, proper width and well-chosen thickness are able to reduce the damping influences to a large extent. Afterwards, experiments of testing the Q factor are set up to validate the simulation values. PMID:28471376
Design and testing of a magnetic suspension and damping system for a space telescope
NASA Technical Reports Server (NTRS)
Ockman, N. J.
1972-01-01
The basic equations of motion are derived for a two dimensional, three degree of freedom simulation of a space telescope coupled to a spacecraft by means of a magnetic suspension and isolation system. The system consists of paramagnetic or ferromagnetic discs confined to the magnetic field between two Helmholtz coils. Damping is introduced by varying the magnetic field in proportion to a velocity signal derived from the telescope. The equations of motion are nonlinear, similar in behavior to the one-dimensional Van der Pol equation. The computer simulation was verified by testing a 264-kilogram air bearing platform which simulates the telescope in a frictionless environment. The simulation demonstrated effective isolation capabilities for disturbance frequencies above resonance. Damping in the system improved the response near resonance and prevented the build-up of large oscillatory amplitudes.
Tsai, Tzu-Yun; Chen, Ta-Ching; Wang, I-Jong; Yeh, Chao-Yuan; Su, Ming-Jai; Chen, Ruey-Hua; Tsai, Tzu-Hsun; Hu, Fung-Rong
2015-02-10
Moxifloxacin (MOX), a fourth generation fluoroquinolone (FQ), has a wide antibacterial spectrum, but may show cytotoxicity characterized by high productions of reactive oxygen species (ROS). This study investigated the protective role of a common antioxidant agent, resveratrol (trans-3,5,4'-trihydroxystilbene), against the cytotoxicity caused by MOX. Experiments were performed with a human corneal epithelial cell line (HCECs; ATCC-CRL-11515). Another commonly used FQ, levofloxacin (LEV), and the most commonly used preservatives, benzalkonium chloride (BAC), were also used for comparison with MOX. Cell viability and morphologic changes after treatment were evaluated with trypan blue exclusion assay, propidium iodine/annexin V-FITC staining, and flow cytometry. Chemiluminescence immunoassay was used for ROS quantification. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, wound healing assay, and intracellular detections of oxidative stress were performed to evaluate the effects of resveratrol. The MOX group, similar to the BAC group, showed significant cell shrinkage and death compared with the LEV group. High ROS production in HCECs of MOX group was observed both by chemiluminescence immunoassay and intracellular images. Within the observations of MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay, live cell images, and wound healing process in vitro, the cytotoxic effects of the MOX and BAC groups were opposed by resveratrol. Human corneal epithelial cells pretreated with resveratrol demonstrated better cell viability and healing rate in the early stage. The protective effects of antioxidant agents indicate that MOX, similar to BAC, causes oxidative stress-related cell damage. The results also inspired us to think about a "supplementary regimen" to increase safety and decrease the adverse effect in the treatment of corneal infections. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.
Caillé, Soline; Samson, Alain; Wirth, Jérémie; Diéval, Jean-Baptiste; Vidal, Stéphane; Cheynier, Véronique
2010-02-15
It is widely accepted that oxygen contributes to wine development by impacting its colour, aromatic bouquet, and mouth-feel properties. The wine industry can now also take advantage of engineered solutions to deliver known amounts of oxygen into bottles through the closures. This study was aimed at monitoring the influence of oxygen pick-up, before (micro-oxygenation, Mox) and after (nano-oxygenation) bottling, on wine sensory evolution. Red Grenache wines were prepared either by flash release (FR) or traditional soaking (Trad) and with or without Mox during elevage (FR+noMox, FR+Mox, Trad+noMox, Trad+Mox). The rate of nano oxygenation was controlled by combining consistent oxygen transfer rate (OTR) closures and different oxygen controlled storage conditions. Wine sensory characteristics were analyzed by sensory profile, at bottling (T0) and after 5 and 10 months of ageing, by a panel of trained judges. Effects of winemaking techniques and OTR were analyzed by multivariate analysis (principal component analysis and agglomerative hierarchical clustering) and analysis of variance. Results showed that, at bottling, Trad wines were perceived more animal and FR wines more bitter and astringent. Mox wines showed more orange shade. At 5 and 10 months, visual and olfactory differences were observed according to the OTR levels: modalities with higher oxygen ingress were darker and fruitier but also perceived significantly less animal than modalities with lower oxygen. Along the 10 months of ageing, the influence of OTR became more important as shown by increased significance levels of the observed differences. As the mouth-feel properties of the wines were mainly dictated by winemaking techniques, OTR had only little impact on "in mouth" attributes. Copyright 2009 Elsevier B.V. All rights reserved.
Experience from start-ups of the first ANITA Mox plants.
Christensson, M; Ekström, S; Andersson Chan, A; Le Vaillant, E; Lemaire, R
2013-01-01
ANITA™ Mox is a new one-stage deammonification Moving-Bed Biofilm Reactor (MBBR) developed for partial nitrification to nitrite and autotrophic N-removal from N-rich effluents. This deammonification process offers many advantages such as dramatically reduced oxygen requirements, no chemical oxygen demand requirement, lower sludge production, no pre-treatment or requirement of chemicals and thereby being an energy and cost efficient nitrogen removal process. An innovative seeding strategy, the 'BioFarm concept', has been developed in order to decrease the start-up time of new ANITA Mox installations. New ANITA Mox installations are started with typically 3-15% of the added carriers being from the 'BioFarm', with already established anammox biofilm, the rest being new carriers. The first ANITA Mox plant, started up in 2010 at Sjölunda wastewater treatment plant (WWTP) in Malmö, Sweden, proved this seeding concept, reaching an ammonium removal rate of 1.2 kgN/m³ d and approximately 90% ammonia removal within 4 months from start-up. This first ANITA Mox plant is also the BioFarm used for forthcoming installations. Typical features of this first installation were low energy consumption, 1.5 kW/NH4-N-removed, low N₂O emissions, <1% of the reduced nitrogen and a very stable and robust process towards variations in loads and process conditions. The second ANITA Mox plant, started up at Sundets WWTP in Växjö, Sweden, reached full capacity with more than 90% ammonia removal within 2 months from start-up. By applying a nitrogen loading strategy to the reactor that matches the capacity of the seeding carriers, more than 80% nitrogen removal could be obtained throughout the start-up period.
New approaches for MOX multi-recycling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gain, T.; Bouvier, E.; Grosman, R.
Due to its low fissile content after irradiation, Pu from used MOX fuel is considered by some as not recyclable in LWR (Light Water Reactors). The point of this paper is hence to go back to those statements and provide a new analysis based on AREVA extended experience in the fields of fissile and fertile material management and optimized waste management. This is done using the current US fuel inventory as a case study. MOX Multi-recycling in LWRs is a closed cycle scenario where U and Pu management through reprocessing and recycling leads to a significant reduction of the usedmore » assemblies to be stored. The recycling of Pu in MOX fuel is moreover a way to maintain the self-protection of the Pu-bearing assemblies. With this scenario, Pu content is also reduced repetitively via a multi-recycling of MOX in LWRs. Simultaneously, {sup 238}Pu content decreases. All along this scenario, HLW (High-Level Radioactive Waste) vitrified canisters are produced and planned for deep geological disposal. Contrary to used fuel, HLW vitrified canisters do not contain proliferation materials. Moreover, the reprocessing of used fuel limits the space needed on current interim storage. With MOX multi-recycling in LWR, Pu isotopy needs to be managed carefully all along the scenario. The early introduction of a limited number of SFRs (Sodium Fast Reactors) can therefore be a real asset for the overall system. A few SFRs would be enough to improve the Pu isotopy from used LWR MOX fuel and provide a Pu-isotopy that could be mixed back with multi-recycled Pu from LWRs, hence increasing the Pu multi-recycling potential in LWRs.« less
ExoMars Entry Demonstrator Module Dynamic Stability
NASA Astrophysics Data System (ADS)
Dormieux, Marc; Gulhan, Ali; Berner, Claude
2011-05-01
In the frame of ExoMars DM aerodynamics characterization, pitch damping derivatives determination is required as it drives the parachute deployment conditions. Series of free-flight and free- oscillation tests (captive model) have been conducted with particular attention for data reduction. 6 Degrees- of-Freedom (DoF) analysis tools require the knowledge of local damping derivatives. In general ground tests do not provide them directly but only effective damping derivatives. Free-flight (ballistic range) tests with full oscillations around trim angle have been performed at ISL for 0.5
Silva, M D P; Gonçalves, R F; Nogueira, I C; Longo, V M; Mondoni, L; Moron, M G; Santana, Y V; Longo, E
2016-01-15
Ag2W(1-x)MoxO4 (x=0.0 and 0.50) powders were synthesized by the co-precipitation (drop-by-drop) method and processed using a microwave-assisted hydrothermal method. We report the real-time in situ formation and growth of Ag filaments on the Ag2W(1-x)MoxO4 crystals using an accelerated electron beam under high vacuum. Various techniques were used to evaluate the influence of the network-former substitution on the structural and optical properties, including photoluminescence (PL) emission, of these materials. X-ray diffraction results confirmed the phases obtained by the synthesis methods. Raman spectroscopy revealed significant changes in local order-disorder as a function of the network-former substitution. Field-emission scanning electron microscopy was used to determine the shape as well as dimensions of the Ag2W(1-x)MoxO4 heterostructures. The PL spectra showed that the PL-emission intensities of Ag2W(1-x)MoxO4 were greater than those of pure Ag2WO4, probably because of the increase of intermediary energy levels within the band gap of the Ag2W(1-x)MoxO4 heterostructures, as evidenced by the decrease in the band-gap values measured by ultraviolet-visible spectroscopy. Copyright © 2015 Elsevier B.V. All rights reserved.
Daher, Jalil; Martin, Maud; Rousseau, Alexandre; Nuyens, Vincent; Fayyad-Kazan, Hussein; Van Antwerpen, Pierre; Courbebaisse, Guy; Martiat, Philippe; Badran, Bassam; Dequiedt, Frank
2014-01-01
Cardiovascular disease linked to atherosclerosis is the leading cause of death worldwide. Atherosclerosis is mainly linked to dysfunction in vascular endothelial cells and subendothelial accumulation of oxidized forms of LDL. In the present study, we investigated the role of myeloperoxidase oxidized LDL (Mox-LDL) in endothelial cell dysfunction. We studied the effect of proinflammatory Mox-LDL treatment on endothelial cell motility, a parameter essential for normal vascular processes such as angiogenesis and blood vessel repair. This is particularly important in the context of an atheroma plaque, where vascular wall integrity is affected and interference with its repair could contribute to progression of the disease. We investigated in vitro the effect of Mox-LDL on endothelial cells angiogenic properties and we also studied the signalling pathways that could be affected by analysing Mox-LDL effect on the expression of angiogenesis-related genes. We report that Mox-LDL inhibits endothelial cell motility and tubulogenesis through an increase in miR-22 and heme oxygenase 1 expression. Our in vitro data indicate that Mox-LDL interferes with parameters associated with angiogenesis. They suggest that high LDL levels in patients would impair their endothelial cell capacity to cope with a damaged endothelium contributing negatively to the progression of the atheroma plaque. PMID:25530680
Validation of High-Resolution CFD Method for Slosh Damping Extraction of Baffled Tanks
NASA Technical Reports Server (NTRS)
Yang, H. Q.; West, Jeff
2016-01-01
Determination of slosh damping is a very challenging task as there is no analytical solution. The damping physics involve the vorticity dissipation which requires the full solution of the nonlinear Navier-Stokes equations. As a result, previous investigations and knowledge were mainly carried out by extensive experimental studies. A Volume-Of-Fluid (VOF) based CFD program developed at NASA MSFC was applied to extract slosh damping in a baffled tank from the first principle. First, experimental data using water with subscale smooth wall tank were used as the baseline validation. CFD simulation was demonstrated to be capable of accurately predicting natural frequency and very low damping value from the smooth wall tank at different fill levels. The damping due to a ring baffle at different liquid fill levels from barrel section and into the upper dome was then investigated to understand the slosh damping physics due to the presence of a ring baffle. Based on this study, the Root-Mean-Square error of our CFD simulation in estimating slosh damping was less than 4.8%, and the maximum error was less than 8.5%. Scalability of subscale baffled tank test using water was investigated using the validated CFD tool, and it was found that unlike the smooth wall case, slosh damping with baffle is almost independent of the working fluid and it is reasonable to apply water test data to the full scale LOX tank when the damping from baffle is dominant. On the other hand, for the smooth wall, the damping value must be scaled according to the Reynolds number. Comparison of experimental data, CFD, with the classical and modified Miles equations for upper dome was made, and the limitations of these semi-empirical equations were identified.
NASA Technical Reports Server (NTRS)
Yang, H. Q.; West, Jeff
2016-01-01
Determination of slosh damping is a very challenging task as there is no analytical solution. The damping physics involves the vorticity dissipation which requires the full solution of the nonlinear Navier-Stokes equations. As a result, previous investigations were mainly carried out by extensive experiments. A systematical study is needed to understand the damping physics of baffled tanks, to identify the difference between the empirical Miles equation and experimental measurements, and to develop new semi-empirical relations to better represent the real damping physics. The approach of this study is to use Computational Fluid Dynamics (CFD) technology to shed light on the damping mechanisms of a baffled tank. First, a 1-D Navier-Stokes equation representing different length scales and time scales in the baffle damping physics is developed and analyzed. Loci-STREAM-VOF, a well validated CFD solver developed at NASA MSFC, is applied to study the vorticity field around a baffle and around the fluid-gas interface to highlight the dissipation mechanisms at different slosh amplitudes. Previous measurement data is then used to validate the CFD damping results. The study found several critical parameters controlling fluid damping from a baffle: local slosh amplitude to baffle thickness (A/t), surface liquid depth to tank radius (d/R), local slosh amplitude to baffle width (A/W); and non-dimensional slosh frequency. The simulation highlights three significant damping regimes where different mechanisms dominate. The study proves that the previously found discrepancies between Miles equation and experimental measurement are not due to the measurement scatter, but rather due to different damping mechanisms at various slosh amplitudes. The limitations on the use of Miles equation are discussed based on the flow regime.
Tempest Simulations of Collisionless Damping of the Geodesic-Acoustic Mode in Edge-Plasma Pedestals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, X. Q.; Xiong, Z.; Nevins, W. M.
The fully nonlinear (full-f) four-dimensional TEMPEST gyrokinetic continuum code correctly produces the frequency and collisionless damping of geodesic-acoustic modes (GAMs) and zonal flow, with fully nonlinear Boltzmann electrons for the inverse aspect ratio {epsilon} scan and the tokamak safety factor q scan in homogeneous plasmas. TEMPEST simulations show that the GAMs exist in the edge pedestal for steep density and temperature gradients in the form of outgoing waves. The enhanced GAM damping may explain experimental beam emission spectroscopy measurements on the edge q scaling of the GAM amplitude.
Tempest Simulations of Collisionless Damping of the Geodesic-Acoustic Mode in Edge-Plasma Pedestals
NASA Astrophysics Data System (ADS)
Xu, X. Q.; Xiong, Z.; Gao, Z.; Nevins, W. M.; McKee, G. R.
2008-05-01
The fully nonlinear (full-f) four-dimensional TEMPEST gyrokinetic continuum code correctly produces the frequency and collisionless damping of geodesic-acoustic modes (GAMs) and zonal flow, with fully nonlinear Boltzmann electrons for the inverse aspect ratio γ scan and the tokamak safety factor q scan in homogeneous plasmas. TEMPEST simulations show that the GAMs exist in the edge pedestal for steep density and temperature gradients in the form of outgoing waves. The enhanced GAM damping may explain experimental beam emission spectroscopy measurements on the edge q scaling of the GAM amplitude.
TEMPEST simulations of collisionless damping of the geodesic-acoustic mode in edge-plasma pedestals.
Xu, X Q; Xiong, Z; Gao, Z; Nevins, W M; McKee, G R
2008-05-30
The fully nonlinear (full-f) four-dimensional TEMPEST gyrokinetic continuum code correctly produces the frequency and collisionless damping of geodesic-acoustic modes (GAMs) and zonal flow, with fully nonlinear Boltzmann electrons for the inverse aspect ratio scan and the tokamak safety factor q scan in homogeneous plasmas. TEMPEST simulations show that the GAMs exist in the edge pedestal for steep density and temperature gradients in the form of outgoing waves. The enhanced GAM damping may explain experimental beam emission spectroscopy measurements on the edge q scaling of the GAM amplitude.
Time cycle analysis and simulation of material flow in MOX process layout
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, S.; Saraswat, A.; Danny, K.M.
The (U,Pu)O{sub 2} MOX fuel is the driver fuel for the upcoming PFBR (Prototype Fast Breeder Reactor). The fuel has around 30% PuO{sub 2}. The presence of high percentages of reprocessed PuO{sub 2} necessitates the design of optimized fuel fabrication process line which will address both production need as well as meet regulatory norms regarding radiological safety criteria. The powder pellet route has highly unbalanced time cycle. This difficulty can be overcome by optimizing process layout in terms of equipment redundancy and scheduling of input powder batches. Different schemes are tested before implementing in the process line with the helpmore » of a software. This software simulates the material movement through the optimized process layout. The different material processing schemes have been devised and validity of the schemes are tested with the software. Schemes in which production batches are meeting at any glove box location are considered invalid. A valid scheme ensures adequate spacing between the production batches and at the same time it meets the production target. This software can be further improved by accurately calculating material movement time through glove box train. One important factor is considering material handling time with automation systems in place.« less
Modeling and Comparison of Options for the Disposal of Excess Weapons Plutonium in Russia
2002-04-01
fuel LWR cooling time LWR Pu load rate LWR net destruction frac ~ LWR reactors op life mox core frac Excess Separated Pu HTGR Cycle Pu in Waste LWR MOX...reflecting the cycle used in this type of reactor. For the HTGR , the entire core consists of plutonium fuel , therefore a core fraction is not specified...cooling time Time spent fuel unloaded from HTGR reactor must cool before permanently stored 3 years Mox core fraction Fraction of
Optimum design of a novel pounding tuned mass damper under harmonic excitation
NASA Astrophysics Data System (ADS)
Wang, Wenxi; Hua, Xugang; Wang, Xiuyong; Chen, Zhengqing; Song, Gangbing
2017-05-01
In this paper, a novel pounding tuned mass damper (PTMD) utilizing pounding damping is proposed to reduce structural vibration by increasing the damping ratio of a lightly damped structure. The pounding boundary covered by viscoelastic material is fixed right next to the tuned mass when the spring-mass system is in the equilibrium position. The dynamic properties of the proposed PTMD, including the natural frequency and the equivalent damping ratio, are derived theoretically. Moreover, the numerical simulation method by using an impact force model to study the PTMD is proposed and validated by pounding experiments. To minimize the maximum dynamic magnification factor under harmonic excitations, an optimum design of the PTMD is developed. Finally, the optimal PTMD is implemented to control a lightly damped frame structure. A comparison of experimental and simulated results reveals that the proposed impact force model can accurately model the pounding force. Furthermore, the proposed PTMD is effective to control the vibration in a wide frequency range, as demonstrated experimentally.
Evaluation of Drogue Parachute Damping Effects Utilizing the Apollo Legacy Parachute Model
NASA Technical Reports Server (NTRS)
Currin, Kelly M.; Gamble, Joe D.; Matz, Daniel A.; Bretz, David R.
2011-01-01
Drogue parachute damping is required to dampen the Orion Multi Purpose Crew Vehicle (MPCV) crew module (CM) oscillations prior to deployment of the main parachutes. During the Apollo program, drogue parachute damping was modeled on the premise that the drogue parachute force vector aligns with the resultant velocity of the parachute attach point on the CM. Equivalent Cm(sub q) and Cm(sub alpha) equations for drogue parachute damping resulting from the Apollo legacy parachute damping model premise have recently been developed. The MPCV computer simulations ANTARES and Osiris have implemented high fidelity two-body parachute damping models. However, high-fidelity model-based damping motion predictions do not match the damping observed during wind tunnel and full-scale free-flight oscillatory motion. This paper will present the methodology for comparing and contrasting the Apollo legacy parachute damping model with full-scale free-flight oscillatory motion. The analysis shows an agreement between the Apollo legacy parachute damping model and full-scale free-flight oscillatory motion.
NASA Astrophysics Data System (ADS)
Steinle, Lea; Maltby, Johanna; Treude, Tina; Kock, Annette; Bange, Hermann W.; Engbersen, Nadine; Zopfi, Jakob; Lehmann, Moritz F.; Niemann, Helge
2017-03-01
Coastal seas may account for more than 75 % of global oceanic methane emissions. There, methane is mainly produced microbially in anoxic sediments from which it can escape to the overlying water column. Aerobic methane oxidation (MOx) in the water column acts as a biological filter, reducing the amount of methane that eventually evades to the atmosphere. The efficiency of the MOx filter is potentially controlled by the availability of dissolved methane and oxygen, as well as temperature, salinity, and hydrographic dynamics, and all of these factors undergo strong temporal fluctuations in coastal ecosystems. In order to elucidate the key environmental controls, specifically the effect of oxygen availability, on MOx in a seasonally stratified and hypoxic coastal marine setting, we conducted a 2-year time-series study with measurements of MOx and physico-chemical water column parameters in a coastal inlet in the south-western Baltic Sea (Eckernförde Bay). We found that MOx rates generally increased toward the seafloor, but were not directly linked to methane concentrations. MOx exhibited a strong seasonal variability, with maximum rates (up to 11.6 nmol L-1 d-1) during summer stratification when oxygen concentrations were lowest and bottom-water temperatures were highest. Under these conditions, 2.4-19.0 times more methane was oxidized than emitted to the atmosphere, whereas about the same amount was consumed and emitted during the mixed and oxygenated periods. Laboratory experiments with manipulated oxygen concentrations in the range of 0.2-220 µmol L-1 revealed a submicromolar oxygen optimum for MOx at the study site. In contrast, the fraction of methane-carbon incorporation into the bacterial biomass (compared to the total amount of oxidized methane) was up to 38-fold higher at saturated oxygen concentrations, suggesting a different partitioning of catabolic and anabolic processes under oxygen-replete and oxygen-starved conditions, respectively. Our results underscore the importance of MOx in mitigating methane emission from coastal waters and indicate an organism-level adaptation of the water column methanotrophs to hypoxic conditions.
Near field Rayleigh wave on soft porous layers.
Geebelen, N; Boeckx, L; Vermeir, G; Lauriks, W; Allard, J F; Dazel, O
2008-03-01
Simulations performed for a typical semi-infinite reticulated plastic foam saturated by air show that, at distances less than three Rayleigh wavelengths from the area of mechanical excitation by a circular source, the normal frame velocity is close to the Rayleigh pole contribution. Simulated measurements show that a good order of magnitude estimate of the phase speed and damping can be obtained at small distances from the source. Simulations are also performed for layers of finite thickness, where the phase velocity and damping depend on frequency. They indicate that the normal frame velocity at small distances from the source is always close to the Rayleigh pole contribution and that a good order of magnitude estimate of the phase speed of the Rayleigh wave can be obtained at small distances from the source. Furthermore, simulations show that precise measurements of the damping of the Rayleigh wave need larger distances. Measurements performed on a layer of finite thickness confirm these trends.
Particle damping applied research on mining dump truck vibration control
NASA Astrophysics Data System (ADS)
Song, Liming; Xiao, Wangqiang; Guo, Haiquan; Yang, Zhe; Li, Zeguang
2018-05-01
Vehicle vibration characteristics has become an important evaluation indexes of mining dump truck. In this paper, based on particle damping technology, mining dump truck vibration control was studied by combining the theoretical simulation with actual testing, particle damping technology was successfully used in mining dump truck cab vibration control. Through testing results analysis, with a particle damper, cab vibration was reduced obviously, the methods and basis were provided for vehicle vibration control research and particle damping technology application.
Van der Meeren, Anne; Moureau, Agnes; Griffiths, Nina M
2014-11-01
Abstract Purpose: To investigate the consequences of alveolar macrophage (AM) depletion on Mixed OXide fuel (MOX: U, Pu oxide) distribution and clearance, as well as lung damage following MOX inhalation. Rats were exposed to MOX by nose only inhalation. AM were depleted with intratracheal administration of liposomal clodronate at 6 weeks. Lung changes, macrophage activation, as well as local and systemic actinide distribution were studied up to 3 months post-inhalation. Clodronate administration modified excretion/retention patterns of α activity. At 3 months post-inhalation lung retention was higher in clodronate-treated rats compared to Phosphate Buffered Saline (PBS)-treated rats, and AM-associated α activity was also increased. Retention in liver was higher in clodronate-treated rats and fecal and urinary excretions were lower. Three months after inhalation, rats exhibited lung fibrotic lesions and alveolitis, with no marked differences between the two groups. Foamy macrophages of M2 subtype [inducible Nitric Oxide Synthase (iNOS) negative but galectin-3 positive] were frequently observed, in correlation with the accumulation of MOX particles. AM from all MOX-exposed rats showed increased chemokine levels as compared to sham controls. Despite the transient reduced AM numbers in clodronate-treated animals no major differences on lung damage were observed as compared to non-treated rats after MOX inhalation. The higher lung activity retention in rats receiving clodronate seems to be part of a general inflammatory response and needs further investigation.
TEMPEST Simulations of Collisionless Damping of Geodesic-Acoustic Mode in Edge Plasma Pedestal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, X Q; Xiong, Z; Nevins, W M
The fully nonlinear (full-f) 4D TEMPEST gyrokinetic continuum code produces frequency, collisionless damping of GAM and zonal flow with fully nonlinear Boltzmann electrons for the inverse aspect ratio {epsilon}-scan and the tokamak safety factor q-scan in homogeneous plasmas. The TEMPEST simulation shows that GAM exists in edge plasma pedestal for steep density and temperature gradients, and an initial GAM relaxes to the standard neoclassical residual, rather than Rosenbluth-Hinton residual due to the presence of ion-ion collisions. The enhanced GAM damping explains experimental BES measurements on the edge q scaling of the GAM amplitude.
TEMPEST Simulations of Collisionless Damping of Geodesic-Acoustic Mode in Edge Plasma Pedestal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, X; Xiong, Z; Nevins, W
The fully nonlinear 4D TEMPEST gyrokinetic continuum code produces frequency, collisionless damping of geodesic-acoustic mode (GAM) and zonal flow with fully nonlinear Boltzmann electrons for the inverse aspect ratio {epsilon}-scan and the tokamak safety factor q-scan in homogeneous plasmas. The TEMPEST simulation shows that GAM exists in edge plasma pedestal for steep density and temperature gradients, and an initial GAM relaxes to the standard neoclassical residual, rather than Rosenbluth-Hinton residual due to the presence of ion-ion collisions. The enhanced GAM damping explains experimental BES measurements on the edge q scaling of the GAM amplitude.
NASA Astrophysics Data System (ADS)
Walker, C. T.; Goll, W.; Matsumura, T.
1997-06-01
The fuel investigated was manufactured by Siemens-KWU and irradiated at low rating in the KWO reactor in Germany. The MOX agglomerates in the cold outer region of the fuel shared several common features with the high burn-up structure at the rim of UO 2 fuel. It is proposed that in both cases the mechanism producing the microstructure change is recrystallisation. Further, it is shown that surface MOX agglomerates do not noticeably retard cladding creepdown although they swell into the gap. The contracting cladding appears able to push the agglomerates back into the fuel. The thickness of the oxide layer on the inner cladding surface increased at points where contact with surface MOX agglomerates had occurred. Despite this, the mean thickness of the oxide did not differ significantly from that found in UO 2 fuel rods of like design. It is judged that the high burn-up structure will form in the UO 2 matrix when the local burn-up there reaches 60 to 80 GWd/tM. Limiting the MOX scrap addition in the UO 2 matrix will delay its formation.
Chemical bonds and vibrational properties of ordered (U, Np, Pu) mixed oxides
NASA Astrophysics Data System (ADS)
Yang, Yu; Zhang, Ping
2013-01-01
We use density functional theory +U to investigate the chemical bonding characters and vibrational properties of the ordered (U, Np, Pu) mixed oxides (MOXs), UNpO4,NpPuO4, and UPuO4. It is found that the 5f electronic states of different actinide elements keep their localized characters in all three MOXs. The occupied 5f electronic states of different actinide elements do not overlap with each other and tend to distribute over the energy band gap of the other actinide element's 5f states. As a result, the three ordered MOXs all show smaller band gaps than those of the component dioxides, with values of 0.91, 1.47, and 0.19 eV for UNpO4,NpPuO4, and UPuO4, respectively. Through careful charge density analysis, we further show that the U-O and Pu-O bonds in MOXs show more ionic character than in UO2 and PuO2, while the Np-O bonds show more covalent character than in NpO2. The change in covalencies in the chemical bonds leads to vibrational frequencies of oxygen atoms that are different in MOXs.
Flux-driven algebraic damping of m = 1 diocotron mode
NASA Astrophysics Data System (ADS)
Chim, Chi Yung; O'Neil, Thomas
2015-11-01
Recent experiments with pure electron plasmas in a Malmberg-Penning trap have observed the algebraic damping of m = 1 diocotron modes. Transport due to small field asymmetries produce a low density halo of electrons moving radially outward from the plasma core, and the mode damping begins when the halo reaches the resonant radius rres, where f = mfE × B (rres) . The damping rate is proportional to the flux of halo particles through the resonant layer. The damping is related to, but distinct from spatial Landau damping, in which a linear wave-particle resonance produces exponential damping. This poster explains with analytic theory and simulations the new algebraic damping due to both mobility and diffusive fluxes. As electrons are swept around the ``cat's eye'' orbits of resonant wave-particle interaction, they form a dipole (m = 1) density distribution, and the electric field from this distribution produces an E × B drift of the core back to the axis, i.e. damps the m = 1 mode. Supported by National Science Foundation Grant PHY-1414570.
Wei, Dongshan; Wang, Feng
2010-08-28
The damped-short-range-interaction (DSRI) method is proposed to mimic coarse-grained simulations by propagating an atomistic scale system on a smoothed potential energy surface. The DSRI method has the benefit of enhanced sampling provided by a typical coarse-grained simulation without the need to perform coarse-graining. Our method was used to simulate liquid water, alanine dipeptide folding, and the self-assembly of dimyristoylphosphatidylcholine lipid. In each case, our method appreciably accelerated the dynamics without significantly changing the free energy surface. Additional insights from DSRI simulations and the promise of coupling our DSRI method with Hamiltonian replica-exchange molecular dynamics are discussed.
NASA Astrophysics Data System (ADS)
Wei, Dongshan; Wang, Feng
2010-08-01
The damped-short-range-interaction (DSRI) method is proposed to mimic coarse-grained simulations by propagating an atomistic scale system on a smoothed potential energy surface. The DSRI method has the benefit of enhanced sampling provided by a typical coarse-grained simulation without the need to perform coarse-graining. Our method was used to simulate liquid water, alanine dipeptide folding, and the self-assembly of dimyristoylphosphatidylcholine lipid. In each case, our method appreciably accelerated the dynamics without significantly changing the free energy surface. Additional insights from DSRI simulations and the promise of coupling our DSRI method with Hamiltonian replica-exchange molecular dynamics are discussed.
Irradiation performance of PFBR MOX fuel after 112 GWd/t burn-up
NASA Astrophysics Data System (ADS)
Venkiteswaran, C. N.; Jayaraj, V. V.; Ojha, B. K.; Anandaraj, V.; Padalakshmi, M.; Vinodkumar, S.; Karthik, V.; Vijaykumar, Ran; Vijayaraghavan, A.; Divakar, R.; Johny, T.; Joseph, Jojo; Thirunavakkarasu, S.; Saravanan, T.; Philip, John; Rao, B. P. C.; Kasiviswanathan, K. V.; Jayakumar, T.
2014-06-01
The 500 MWe Prototype Fast Breeder Reactor (PFBR) which is in advanced stage of construction at Kalpakkam, India, will use mixed oxide (MOX) fuel with a target burnup of 100 GWd/t. The fuel pellet is of annular design to enable operation at a peak linear power of 450 W/cm with the requirement of minimum duration of pre-conditioning. The performance of the MOX fuel and the D9 clad and wrapper material was assessed through Post Irradiation Examinations (PIE) after test irradiation of 37 fuel pin subassembly in Fast Breeder Test Reactor (FBTR) to a burn-up of 112 GWd/t. Fission product distribution, swelling and fuel-clad gap evolution, central hole diameter variation, restructuring, fission gas release and clad wastage due to fuel-clad chemical interaction were evaluated through non-destructive and destructive examinations. The examinations have indicated that the MOX fuel can safely attain the desired target burn-up in PFBR.
MOX fuel arrangement for nuclear core
Kantrowitz, M.L.; Rosenstein, R.G.
1998-10-13
In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion characteristics of the assembly. 38 figs.
Mox fuel arrangement for nuclear core
Kantrowitz, Mark L.; Rosenstein, Richard G.
2001-05-15
In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion. characteristics of the assembly.
MOX fuel arrangement for nuclear core
Kantrowitz, Mark L.; Rosenstein, Richard G.
2001-07-17
In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion characteristics of the assembly.
MOX fuel arrangement for nuclear core
Kantrowitz, Mark L.; Rosenstein, Richard G.
1998-01-01
In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion characteristics of the assembly.
Nonlocal Gilbert damping tensor within the torque-torque correlation model
NASA Astrophysics Data System (ADS)
Thonig, Danny; Kvashnin, Yaroslav; Eriksson, Olle; Pereiro, Manuel
2018-01-01
An essential property of magnetic devices is the relaxation rate in magnetic switching, which depends strongly on the damping in the magnetization dynamics. It was recently measured that damping depends on the magnetic texture and, consequently, is a nonlocal quantity. The damping enters the Landau-Lifshitz-Gilbert equation as the phenomenological Gilbert damping parameter α , which does not, in a straightforward formulation, account for nonlocality. Efforts were spent recently to obtain Gilbert damping from first principles for magnons of wave vector q . However, to the best of our knowledge, there is no report about real-space nonlocal Gilbert damping αi j. Here, a torque-torque correlation model based on a tight-binding approach is applied to the bulk elemental itinerant magnets and it predicts significant off-site Gilbert damping contributions, which could be also negative. Supported by atomistic magnetization dynamics simulations, we reveal the importance of the nonlocal Gilbert damping in atomistic magnetization dynamics. This study gives a deeper understanding of the dynamics of the magnetic moments and dissipation processes in real magnetic materials. Ways of manipulating nonlocal damping are explored, either by temperature, materials doping, or strain.
Study of spin dynamics and damping on the magnetic nanowire arrays with various nanowire widths
NASA Astrophysics Data System (ADS)
Cho, Jaehun; Fujii, Yuya; Konioshi, Katsunori; Yoon, Jungbum; Kim, Nam-Hui; Jung, Jinyong; Miwa, Shinji; Jung, Myung-Hwa; Suzuki, Yoshishige; You, Chun-Yeol
2016-07-01
We investigate the spin dynamics including Gilbert damping in the ferromagnetic nanowire arrays. We have measured the ferromagnetic resonance of ferromagnetic nanowire arrays using vector-network analyzer ferromagnetic resonance (VNA-FMR) and analyzed the results with the micromagnetic simulations. We find excellent agreement between the experimental VNA-FMR spectra and micromagnetic simulations result for various applied magnetic fields. We find that the same tendency of the demagnetization factor for longitudinal and transverse conditions, Nz (Ny) increases (decreases) as increasing the nanowire width in the micromagnetic simulations while Nx is almost zero value in transverse case. We also find that the Gilbert damping constant increases from 0.018 to 0.051 as the increasing nanowire width for the transverse case, while it is almost constant as 0.021 for the longitudinal case.
Synthesis, characterization and antimicrobial investigation of some moxifloxacin metal complexes
NASA Astrophysics Data System (ADS)
Sadeek, Sadeek A.; El-Shwiniy, Walaa H.; El-Attar, Mohamed S.
2011-12-01
The new complexes of moxifloxacin (MOX), with Ti(IV), Y(III), Pd(II) and Ce(IV) have been synthesized. These complexes were then characterized by melting point, magnetic studies and spectroscopic techniques involving infrared spectra (IR), UV-Vis, 1H NMR. C, H, N and halogen elemental analysis and thermal behavior of complexes also investigated. The results suggested that the molar ratio for all complexes is M: MOX = 1:2 where moxifloxacin acts as a bidentate via one of the oxygen atoms of the carboxylate group and through the ring carbonyl group and the complexes have the following formula [Ti(MOX) 2](SO 4) 2·7H 2O, [Y(MOX) 2Cl 2]Cl·12H 2O, [Pd(MOX) 2(H 2O) 2]Cl 2·6H 2O and [Ce(MOX) 2](SO 4) 2·2H 2O. The activation energies, E*, enthalpies, Δ H*, entropies, Δ S* and Gibbs free energies, Δ G*, of the thermal decomposition reactions have been derived from thermogravimetric (TGA) and differential thermogravimetric (DrTG) curves, using Coats-Redfern (CR) and Horowitz-Metzger (HM) methods. The antimicrobial activity of these complexes has been evaluated against three Gram-positive and three Gram-negative bacteria and compared with the reference drug moxifloxacin. The antibacterial activity of Ti(IV) complex is significant for E. coli K32 and highly significant for S. aureus K1, B. subtilis K22, Br. otitidis K76, P. aeruginosa SW1 and K. oxytoca K42 compared with free moxifloxacin.
Morris, C J; Lidstrom, M E
1992-01-01
In Methylobacterium extorquens AM1, gene encoding methanol dehydrogenase polypeptides are transcriptionally regulated in response to C1 compounds, including methanol (M. E. Lidstrom and D. I. Stirling, Annu. Rev. Microbiol. 44:27-57, 1990). In order to study this regulation, a transcriptional fusion has been constructed between a beta-galactosidase reporter gene and a 1.55-kb XhoI-SalI fragment of M. extorquens AM1rif DNA encoding the N terminus of the methanol dehydrogenase large subunit (moxF) and 1,289 bp of upstream DNA. The fusion exhibited orientation-specific promoter activity in M. extorquens AM1rif but was expressed constitutively when the transcriptional fusion was located on the plasmid. However, correct regulation was restored when the construction was inserted in the M. extorquens AM1rif chromosome. This DNA fragment was shown to contain both the moxFJGI promoter and the sequences necessary in cis for its transcriptional regulation by methanol. Transcription from this promoter was studied in the M. extorquens AM1rif moxB mutant strains UV4rif and UV25rif, which have a pleiotropic phenotype with regard to the components of methanol oxidation. In these mutants, beta-galactosidase activity from the fusion was reduced to a level equal to that of the vector background when the fusion was present in both plasmid and chromosomal locations. Since both constitutive and methanol-inducible promoter activities were lost in the mutants, moxB appears to be required for transcription of the genes encoding the methanol dehydrogenase polypeptides. Images PMID:1624436
NASA Technical Reports Server (NTRS)
Molusis, J. A.
1982-01-01
An on line technique is presented for the identification of rotor blade modal damping and frequency from rotorcraft random response test data. The identification technique is based upon a recursive maximum likelihood (RML) algorithm, which is demonstrated to have excellent convergence characteristics in the presence of random measurement noise and random excitation. The RML technique requires virtually no user interaction, provides accurate confidence bands on the parameter estimates, and can be used for continuous monitoring of modal damping during wind tunnel or flight testing. Results are presented from simulation random response data which quantify the identified parameter convergence behavior for various levels of random excitation. The data length required for acceptable parameter accuracy is shown to depend upon the amplitude of random response and the modal damping level. Random response amplitudes of 1.25 degrees to .05 degrees are investigated. The RML technique is applied to hingeless rotor test data. The inplane lag regressing mode is identified at different rotor speeds. The identification from the test data is compared with the simulation results and with other available estimates of frequency and damping.
NASA Astrophysics Data System (ADS)
Pandit, Rishi; Sentoku, Yasuhiko
2013-10-01
Effects of the radiative damping in the interaction of extremely intense laser (> 1022 W/cm2) with dense plasma is studied via a relativistic collisional particle-in-cell simulation, PICLS. When the laser intensity is getting close to 1024 W/cm2, the effect of quantum electrodynamics (QED) appears. We had calculated γ-rays from the radiative damping processes based on the classical model [1], but had taken into account the QED effect [2] in the spectrum calculation. In ultra-intense laser-plasma interaction, electrons are accelerated by the strong laser fields and emit γ-ray photons mainly via two processes, namely, Bremsstrahlung and radiative damping. Such relativistic γ-ray has wide range of frequencies and the angular distribution depends on the hot electron source. Comparing the details of γ-rays from the Bremsstrahlung and the radiative damping in simulations, we will discuss the laser parameters and the target conditions (geometry and material) to distinguish the photons from each process and also the QED effect in the γ-rays spectrum at the extremely relativistic intensity. Supported by US DOE DE-SC0008827.
Qualitative Simulator Study of Longitudinal Stick Forces and Displacements Desirable During Tracking
NASA Technical Reports Server (NTRS)
Faber, Stanley
1958-01-01
In this study in which an airplane simulator with one degree of freedom (pitch) was used, results were determined for three conditions of airplane dynamics. For an undamped natural frequency of 1/2 cps with a damping ratio of 0.18 and for an undamped natural frequency of 1 cps with a damping ratio of 0.11, moderate longitudinal stick forces and displacements were desired.
Reducing model uncertainty effects in flexible manipulators through the addition of passive damping
NASA Technical Reports Server (NTRS)
Alberts, T. E.
1987-01-01
An important issue in the control of practical systems is the effect of model uncertainty on closed loop performance. This is of particular concern when flexible structures are to be controlled, due to the fact that states associated with higher frequency vibration modes are truncated in order to make the control problem tractable. Digital simulations of a single-link manipulator system are employed to demonstrate that passive damping added to the flexible member reduces adverse effects associated with model uncertainty. A controller was designed based on a model including only one flexible mode. This controller was applied to larger order systems to evaluate the effects of modal truncation. Simulations using a Linear Quadratic Regulator (LQR) design assuming full state feedback illustrate the effect of control spillover. Simulations of a system using output feedback illustrate the destabilizing effect of observation spillover. The simulations reveal that the system with passive damping is less susceptible to these effects than the untreated case.
ANALYSIS AND EXAMINATION OF MOX FUEL FROM NONPROLIFERATION PROGRAMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCoy, Kevin; Machut, Dr McLean; Morris, Robert Noel
The U.S. Department of Energy has decided to dispose of a portion of the nation s surplus plutonium by reconstituting it into mixed oxide (MOX) fuel and irradiating it in commercial power reactors. Four lead assemblies were manufactured and irradiated to a maximum fuel rod burnup of 47.3 MWd/kg heavy metal. This was the first commercial irradiation of MOX fuel with a 240Pu/239Pu ratio of less than 0.10. Five fuel rods with varying burnups and plutonium contents were selected from one of the assemblies and shipped to Oak Ridge National Laboratory for hot cell examination. The performance of the rodsmore » was analyzed with AREVA s next-generation GALILEO code. The results of the analysis confirmed that the fuel rods had performed safely and predictably, and that GALILEO is applicable to MOX fuel with a low 240Pu/239Pu ratio as well as to standard MOX. The results are presented and compared to the GALILEO database. In addition, the fuel cladding was tested to confirm that traces of gallium in the fuel pellets had not affected the mechanical properties of the cladding. The irradiated cladding was found to remain ductile at both room temperature and 350 C for both the axial and circumferential directions.« less
Microoxidation in wine production.
Kilmartin, Paul A
2010-01-01
Microoxygenation (MOX) is now widely applied for the maturation of red wines as an alternative to barrel aging. The proposed improvements in wine quality arising from MOX include color stabilization, removal of unwanted off-odors, and improvements in wine mouthfeel. In this review, an outline is provided of oxygenation systems, particularly microbullage and polymer membrane delivery, and of the current understanding of wine oxidation processes. A summary of the results from published studies into red wine MOX is then provided, beginning with observations on O(2) and acetaldehyde accumulation, and the moderating effect of added sulfur dioxide. Effects upon red wine color, particularly the more rapid formation of polymeric pigments and higher color retention, have been consistently demonstrated in MOX studies, along with further effects on specific polyphenol compounds. A few reports have recently examined the effect of MOX on red wine aromas, but these have yet to identify compounds that consistently change in a manner that would explain sensory observations regarding a lowering of herbaceous and reductive odors. Likewise, tannin analyses have been undertaken in several studies, but explanations of the decline in wine astringency remain to be developed. The accelerated growth of unwanted microorganisms has also been examined in a limited number of studies, but no major problems have been identified in this area. Copyright © 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Wenqi; Ding, Xingeng; Wu, Huating; Yang, Hui
2018-07-01
Semiconductor photocatalysis is an effective green way to combat water pollution. For the first time, this study reports a novel method to develop Bi2MoxW1-xO6 solid solution with microsphere structure through anion-exchange method. All Bi2MoxW1-xO6 samples exhibit an Aurivillius-type crystal structure without any secondary phase, confirming that in complete solid solutions as the value of x increases, the band gap energy of Bi2MoxW1-xO6 solid solutions decreases, while the optical absorption edge moves to longer wavelength. The Raman spectra research shows an increase in orthorhombic distortion with progressive replacement of W sites in Bi2WO6 with Mo6+ ions. Compared to Bi2MoO6 and Bi2WO6 samples, Bi2Mo0.4W0.6O6 sample displayed best photocatalytic activity and cycling stability for degradation of RhB dye. The enhanced photocatalytic activity of Bi2Mo0.4W0.6O6 sample can be synergetically linked to hierarchical hollow structure, enhanced light absorbance, and high carrier-separation efficiency. Additionally, the hollow Bi2MoxW1-xO6 microspheres formation can be attributed to the Kirkendall effect.
Moxidectin: a review of chemistry, pharmacokinetics and use in horses
Cobb, Rami; Boeckh, Albert
2009-01-01
This article reviews the current knowledge of the use of moxidectin (MOX) in horses, including its mode of action, pharmacokinetic and pharmacodynamic properties, efficacy, safety and resistance profile. Moxidectin is a second generation macrocyclic lactone (ML) with potent endectocide activity. It is used for parasite control in horses in an oral gel formulation. The principal mode of action of MOX and of other MLs is binding to gamma-aminobutyric (GABA) and glutamate-gated chloride channels. Moxidectin is different from other MLs in that it is a poor substrate for P-glycoproteins (P-gps) and therefore less susceptible to elimination from parasite cells through this mechanism. Due to its unique physicochemical and pharmacokinetic characteristics, MOX provides broad distribution into tissues, long half-life, significant residual antiparasitic activity, and high efficacy against encysted cyathostomin larvae. These characteristics allow for high efficacy and longer treatment interval against all important nematodes, when compared to other equine anthelmintics. A combination of MOX with praziquantel provides expanded spectrum of activity by adding activity against cestodes. Appropriate use of MOX allows for the development of strategic anthelmintic programmes that are different from those with conventional anthelmintics. Fewer treatments are required over a period of time, and therefore impose less frequent selection pressure for resistance. PMID:19778466
Multirecycling of Plutonium from LMFBR Blanket in Standard PWRs Loaded with MOX Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sonat Sen; Gilles Youinou
2013-02-01
It is now well-known that, from a physics standpoint, Pu, or even TRU (i.e. Pu+M.A.), originating from LEU fuel irradiated in PWRs can be multirecycled also in PWRs using MOX fuel. However, the degradation of the isotopic composition during irradiation necessitates using enriched U in conjunction with the MOX fuel either homogeneously or heterogeneously to maintain the Pu (or TRU) content at a level allowing safe operation of the reactor, i.e. below about 10%. The study is related to another possible utilization of the excess Pu produced in the blanket of a LMFBR, namely in a PWR(MOX). In this casemore » the more Pu is bred in the LMFBR, the more PWR(MOX) it can sustain. The important difference between the Pu coming from the blanket of a LMFBR and that coming from a PWR(LEU) is its isotopic composition. The first one contains about 95% of fissile isotopes whereas the second one contains only about 65% of fissile isotopes. As it will be shown later, this difference allows the PWR fed by Pu from the LMFBR blanket to operate with natural U instead of enriched U when it is fed by Pu from PWR(LEU)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. Bays; W. Skerjanc; M. Pope
A comparative analysis and comparison of results obtained between 2-D lattice calculations and 3-D full core nodal calculations, in the frame of MOX fuel design, was conducted. This study revealed a set of advantages and disadvantages, with respect to each method, which can be used to guide the level of accuracy desired for future fuel and fuel cycle calculations. For the purpose of isotopic generation for fuel cycle analyses, the approach of using a 2-D lattice code (i.e., fuel assembly in infinite lattice) gave reasonable predictions of uranium and plutonium isotope concentrations at the predicted 3-D core simulation batch averagemore » discharge burnup. However, it was found that the 2-D lattice calculation can under-predict the power of pins located along a shared edge between MOX and UO2 by as much as 20%. In this analysis, this error did not occur in the peak pin. However, this was a coincidence and does not rule out the possibility that the peak pin could occur in a lattice position with high calculation uncertainty in future un-optimized studies. Another important consideration in realistic fuel design is the prediction of the peak axial burnup and neutron fluence. The use of 3-D core simulation gave peak burnup conditions, at the pellet level, to be approximately 1.4 times greater than what can be predicted using back-of-the-envelope assumptions of average specific power and irradiation time.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooper, M. W. D.; Kuganathan, N.; Burr, P. A.
In this study, the development of embedded atom method (EAM) many-body potentials for actinide oxides and associated mixed oxide (MOX) systems has motivated the development of a complementary parameter set for gas-actinide and gas-oxygen interactions. A comprehensive set of density functional theory (DFT) calculations were used to study Xe and Kr incorporation at a number of sites in CeO 2, ThO 2, UO 2 and PuO 2. These structures were used to fit a potential, which was used to generate molecular dynamics (MD) configurations incorporating Xe and Kr at 300 K, 1500 K, 3000 K and 5000 K. Subsequent matchingmore » to the forces predicted by DFT for these MD configurations was used to refine the potential set. This fitting approach ensured weighted fitting to configurations that are thermodynamically significant over a broad temperature range, while avoiding computationally expensive DFT-MD calculations. The resultant gas potentials were validated against DFT trapping energies and are suitable for simulating combinations of Xe and Kr in solid solutions of CeO 2, ThO 2, UO 2 and PuO 2, providing a powerful tool for the atomistic simulation of conventional nuclear reactor fuel UO 2 as well as advanced MOX fuels.« less
Cooper, M. W. D.; Kuganathan, N.; Burr, P. A.; ...
2016-08-23
In this study, the development of embedded atom method (EAM) many-body potentials for actinide oxides and associated mixed oxide (MOX) systems has motivated the development of a complementary parameter set for gas-actinide and gas-oxygen interactions. A comprehensive set of density functional theory (DFT) calculations were used to study Xe and Kr incorporation at a number of sites in CeO 2, ThO 2, UO 2 and PuO 2. These structures were used to fit a potential, which was used to generate molecular dynamics (MD) configurations incorporating Xe and Kr at 300 K, 1500 K, 3000 K and 5000 K. Subsequent matchingmore » to the forces predicted by DFT for these MD configurations was used to refine the potential set. This fitting approach ensured weighted fitting to configurations that are thermodynamically significant over a broad temperature range, while avoiding computationally expensive DFT-MD calculations. The resultant gas potentials were validated against DFT trapping energies and are suitable for simulating combinations of Xe and Kr in solid solutions of CeO 2, ThO 2, UO 2 and PuO 2, providing a powerful tool for the atomistic simulation of conventional nuclear reactor fuel UO 2 as well as advanced MOX fuels.« less
NASA Astrophysics Data System (ADS)
Teague, Melissa C.; Fromm, Bradley S.; Tonks, Michael R.; Field, David P.
2014-12-01
Nuclear energy is a mature technology with a small carbon footprint. However, work is needed to make current reactor technology more accident tolerant and to allow reactor fuel to be burned in a reactor for longer periods of time. Optimizing the reactor fuel performance is essentially a materials science problem. The current understanding of fuel microstructure have been limited by the difficulty in studying the structure and chemistry of irradiated fuel samples at the mesoscale. Here, we take advantage of recent advances in experimental capabilities to characterize the microstructure in 3D of irradiated mixed oxide (MOX) fuel taken from two radial positions in the fuel pellet. We also reconstruct these microstructures using Idaho National Laboratory's MARMOT code and calculate the impact of microstructure heterogeneities on the effective thermal conductivity using mesoscale heat conduction simulations. The thermal conductivities of both samples are higher than the bulk MOX thermal conductivity because of the formation of metallic precipitates and because we do not currently consider phonon scattering due to defects smaller than the experimental resolution. We also used the results to investigate the accuracy of simple thermal conductivity approximations and equations to convert 2D thermal conductivities to 3D. It was found that these approximations struggle to predict the complex thermal transport interactions between metal precipitates and voids.
The thermal conductivity of mixed fuel U xPu 1-xO 2: molecular dynamics simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiang-Yang; Cooper, Michael William Donald; Stanek, Christopher Richard
2015-10-16
Mixed oxides (MOX), in the context of nuclear fuels, are a mixture of the oxides of heavy actinide elements such as uranium, plutonium and thorium. The interest in the UO 2-PuO 2 system arises from the fact that these oxides are used both in fast breeder reactors (FBRs) as well as in pressurized water reactors (PWRs). The thermal conductivity of UO 2 fuel is an important material property that affects fuel performance since it is the key parameter determining the temperature distribution in the fuel, thus governing, e.g., dimensional changes due to thermal expansion, fission gas release rates, etc. Formore » this reason it is important to understand the thermal conductivity of MOX fuel and how it differs from UO 2. Here, molecular dynamics (MD) simulations are carried out to determine quantitatively, the effect of mixing on the thermal conductivity of U xPu 1-xO 2, as a function of PuO 2 concentrations, for a range of temperatures, 300 – 1500 K. The results will be used to develop enhanced continuum thermal conductivity models for MARMOT and BISON by INL. These models express the thermal conductivity as a function of microstructure state-variables, thus enabling thermal conductivity models with closer connection to the physical state of the fuel.« less
Factors Controlling Superelastic Damping Capacity of SMAs
NASA Astrophysics Data System (ADS)
Heller, L.; Šittner, P.; Pilch, J.; Landa, M.
2009-08-01
In this paper, questions linked to the practical use of superelastic damping exploiting stress-induced martensitic transformation for vibration damping are addressed. Four parameters, particularly vibration amplitude, prestrain, temperature of surroundings, and frequency, are identified as having the most pronounced influence on the superelastic damping. Their influence on superelastic damping of a commercially available superelastic NiTi wire was experimentally investigated using a self-developed dedicated vibrational equipment. Experimental results show how the vibration amplitude, frequency, prestrain, and temperature affect the capacity of a superelastic NiTi wire to dissipate energy of vibrations through the superelastic damping. A special attention is paid to the frequency dependence (i.e., rate dependence) of the superelastic damping. It is shown that this is nearly negligible in case the wire is in the thermal chamber controlling actively the environmental temperature. In case of wire exposed to free environmental temperature in actual damping applications, however, the superelastic damping capacity significantly decreases with increasing frequency. This was explained to be a combined effect of the heat effects affecting the mean wire temperature and material properties with the help of simulations using the heat equation coupled phenomenological SMA model.
NASA Astrophysics Data System (ADS)
Guangwen, Xu; Xi, Li; Ze, Yao
2018-06-01
To solve the damping problem of water hammer wave in the modeling method of water diversion system of hydropower station, this paper introduces the feedback regulation technology from head to flow, that is: A fixed water head is taken out for flow feedback, and the following conclusions are obtained through modeling and simulation. Adjusting the feedback coefficient F of the water head to the flow rate can change the damping characteristic of the system, which can simulate the attenuation process of the water shock wave in the true water diversion pipeline. Even if a small feedback coefficient is introduced, the damping effect of the system is very obvious, but it has little effect on the amplitude of the first water shock wave after the transition process. Therefore, it is feasible and reasonable to introduce water head to flow rate feedback coefficient F in hydraulic turbine diversion system.
Shi, Jingjing; Cao, Hongxia; Wang, Ruiyu
2017-01-01
CeO2–MOx (M = Cu, Co, Ni) composite yolk–shell nanospheres with uniform size were fabricated by a general wet-chemical approach. It involved a non-equilibrium heat-treatment of Ce coordination polymer colloidal spheres (Ce-CPCSs) with a proper heating rate to produce CeO2 yolk–shell nanospheres, followed by a solvothermal treatment of as-synthesized CeO2 with M(CH3COO)2 in ethanol solution. During the solvothermal process, highly dispersed MOx species were decorated on the surface of CeO2 yolk–shell nanospheres to form CeO2–MOx composites. As a CO oxidation catalyst, the CeO2–MOx composite yolk–shell nanospheres showed strikingly higher catalytic activity than naked CeO2 due to the strong synergistic interaction at the interface sites between MOx and CeO2. Cycling tests demonstrate the good cycle stability of these yolk–shell nanospheres. The initial concentration of M(CH3COO)2·xH2O in the synthesis process played a significant role in catalytic performance for CO oxidation. Impressively, complete CO conversion as reached at a relatively low temperature of 145 °C over the CeO2–CuOx-2 sample. Furthermore, the CeO2–CuOx catalyst is more active than the CeO2–CoOx and CeO2–NiO catalysts, indicating that the catalytic activity is correlates with the metal oxide. Additionally, this versatile synthesis approach can be expected to create other ceria-based composite oxide systems with various structures for a broad range of technical applications. PMID:29234577
Structural, electronic, magnetic and optical properties of semiconductor Zn1-xMoxTe compound
NASA Astrophysics Data System (ADS)
Feng, Zhong-Ying; Zhang, Jian-Min
2018-03-01
The structural, electronic, magnetic and optical properties of the Zn1-xMoxTe (x = 0.00, 0.25, 0.50, 0.75, 1.00) have been investigated by the spin-polarized first-principles calculations. The Zn0.50Mo0.50Te has tetragonal structure while the Zn1-xMoxTe (x = 0.00, 0.25, 0.75, 1.00) crystallize in cubic structures. For Zn1-xMoxTe (x = 0.25, 0.50, 0.75, 1.00) alloys, the lattice constant and the volume are found larger than those of pure ZnTe alloy. The Zn1-xMoxTe (x = 0.25, 0.50, 0.75, 1.00) is magnetic and the Mo element is found dominant in the bands crossing the Fermi level in the spin-up channel. The Zn0.75Mo0.25Te and MoTe have half-metallic (HM) behavior. In spin-down channel of the Zn0.75Mo0.25Te, the Zn atom mainly contributed to the conduction band minimum (CBM), while the valence band maximum (VBM) appears mainly due to contribution of Te element. A positive spin splitting and crystal field splitting of d-states of Mo atom has been observed for Zn0.75Mo0.25Te alloy. The maximum values of the absorption coefficients αMAX(ω) of the Zn0.50Mo0.50Te alloy along a or b axes are smaller than the absorption coefficient along c axis. The first absorption peak appearing in the energy range of 0.000-1.000 eV for Zn1-xMoxTe (x = 0.25, 0.50, 0.75 or 1.00) alloys is the new peak which is not observed in ZnTe.
A Novel Damping Mechanism for Diocotron Modes
NASA Astrophysics Data System (ADS)
Chim, Chi Yung; O'Neil, Thomas M.
2014-10-01
Recent experiments with pure electron plasmas in a Malmberg-Penning trap have observed the algebraic damping of m = 1 and m = 2 diocotron modes. Transport due to small field asymmetries produces a low density halo of electrons moving radially outward from the plasma core, and the mode damping begins when the halo reaches the resonant radius, where f = mfE × B (r) . The damping rate is proportional to the flux of halo particles through the resonant layer. The damping is related to, but distinct from spatial Landau damping, in which a linear wave-particle resonance produces exponential damping. This poster explains with analytic theory and simulations the new algebraic damping due to both mobility and diffusive fluxes. The damping is due to transfer of canonical angular momentum from the mode to halo particles, as they are swept around the ``cat's eye'' orbits of resonant wave-particle interaction. Another picture is that the electrons in the resonant layer form a dipole (m = 1) or quadrupole (m = 2) density distribution, and the electric field for this distribution produces E × B drifts that symmetrizes the core and damps the mode. Supported by NSF/DOE Partnership Grants PHY-0903877 and DE-SC0002451.
Research on mining truck vibration control based on particle damping
NASA Astrophysics Data System (ADS)
Liming, Song; Wangqiang, Xiao; Zeguang, Li; Haiquan, Guo; Zhe, Yang
2018-03-01
More and more attentions were got by people about the research on mining truck driving comfort. As the vibration transfer terminal, cab is one of the important part of mining truck vibration control. In this paper, based on particle damping technology and its application characteristics, through the discrete element modeling, DEM & FEM coupling simulation and analysis, lab test verification and actual test in the truck, particle damping technology was successfully used in driver’s seat base of mining truck, cab vibration was reduced obviously, meanwhile applied research and method of particle damping technology in mining truck vibration control were provided.
Analytical collisionless damping rate of geodesic acoustic mode
NASA Astrophysics Data System (ADS)
Ren, H.; Xu, X. Q.
2016-10-01
Collisionless damping of geodesic acoustic mode (GAM) is analytically investigated by considering the finite-orbit-width (FOW) resonance effect to the 3rd order in the gyro-kinetic equations. A concise and transparent expression for the damping rate is presented for the first time. Good agreement is found between the analytical damping rate and the previous TEMPEST simulation result (Xu 2008 et al Phys. Rev. Lett. 100 215001) for systematic q scans. Our result also shows that it is of sufficient accuracy and has to take into account the FOW effect to the 3rd order.
NASA Technical Reports Server (NTRS)
Warner, R. W.; Wilcox, P. R.
1972-01-01
Free-oscillation damping measurements at hypersonic and transonic Mach numbers are presented for the lower pitch flap of the M2-F2 reentry vehicle. For the flow and model conditions tested, the damping measurements indicate the absence of hypersonic buzz instability for flap rotation frequencies of 47.3 Hz, 153 Hz, and 360 Hz, the presence of transonic buzz for 47.3 Hz flap, and the absence of transonic buzz for a 115 Hz flap. There are not enough flap damping data for an error estimate based on repeatability, but a partial damping calibration is presented in which an analog computer simulation of random flap response for a known flap damping is fed into the autocorrelation computer and filter combination used for most of the damping measurements.
Consequences of eccentricity and inclination damping for the in-situ formation of STIPs
NASA Astrophysics Data System (ADS)
Granados Contreras, Agueda Paula
2018-01-01
In Boley, Granados, and Gladman (2016), we proposed that hot and warm Jupiters could form in-situ from the consolidation of planets in meta-stable, high-multiplicity System with Tightly-packed Inner Planets (STIPs) in the presence of gas. Under this hypothesis, the timing of instability within the STIP relative to the gas depletion timescale can lead to a wide range of planetary diversity, from short-orbital period gas giants to high-density, massive planets. The simulations used Kepler-11 as a base and assumed that a gas giant could form if instability in the gaseous disc led to the consolidation of a 10 Mearth core. The results showed that such consolidation could work, in principle. However, in the simulations we excluded the effects of eccentricity and inclination damping. We present new simulations that explore this effect on the consolidation paradigm. For the parameters so far explored, gas damping significantly increases the stability of the system, although consolidation does occur in some cases. We further find that the eccentricity damping can lead to the formation of stable co-orbiting planets, although this is a rare outcome. Briefly, we explore the implications of the detection of transiting co-orbital planets.
A numerically efficient damping model for acoustic resonances in microfluidic cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hahn, P., E-mail: hahnp@ethz.ch; Dual, J.
Bulk acoustic wave devices are typically operated in a resonant state to achieve enhanced acoustic amplitudes and high acoustofluidic forces for the manipulation of microparticles. Among other loss mechanisms related to the structural parts of acoustofluidic devices, damping in the fluidic cavity is a crucial factor that limits the attainable acoustic amplitudes. In the analytical part of this study, we quantify all relevant loss mechanisms related to the fluid inside acoustofluidic micro-devices. Subsequently, a numerical analysis of the time-harmonic visco-acoustic and thermo-visco-acoustic equations is carried out to verify the analytical results for 2D and 3D examples. The damping results aremore » fitted into the framework of classical linear acoustics to set up a numerically efficient device model. For this purpose, all damping effects are combined into an acoustofluidic loss factor. Since some components of the acoustofluidic loss factor depend on the acoustic mode shape in the fluid cavity, we propose a two-step simulation procedure. In the first step, the loss factors are deduced from the simulated mode shape. Subsequently, a second simulation is invoked, taking all losses into account. Owing to its computational efficiency, the presented numerical device model is of great relevance for the simulation of acoustofluidic particle manipulation by means of acoustic radiation forces or acoustic streaming. For the first time, accurate 3D simulations of realistic micro-devices for the quantitative prediction of pressure amplitudes and the related acoustofluidic forces become feasible.« less
Chérif, Thouraya; Saidani, Mabrouka; Decré, Dominique; Boutiba-Ben Boubaker, Ilhem; Arlet, Guillaume
2016-01-01
Over a period of 40 months, plasmid-mediated AmpC β-lactamases were detected in Tunis, Tunisia, in 78 isolates (0.59%) of Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis. In 67 isolates, only one ampC gene was detected, i.e., blaCMY-2-type (n = 33), blaACC (n = 23), blaDHA (n = 6) or blaEBC (n = 5). Multiple ampC genes were detected in 11 isolates, with the following distribution: blaMOX-2, blaFOX-3, and blaCMY-4/16 (n = 6), blaFOX-3 and blaMOX-2 (n = 3), and blaCMY-4 and blaMOX-2 (n = 2). A great variety of plasmids carrying these genes was found, independently of the species and the bla gene. If the genetic context of blaCMY-2-type is variable, that of blaMOX-2, reported in part previously, is unique and that of blaFOX-3 is unique and new. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Damping parameter study of a perforated plate with bias flow
NASA Astrophysics Data System (ADS)
Mazdeh, Alireza
One of the main impediments to successful operation of combustion systems in industrial and aerospace applications including gas turbines, ramjets, rocket motors, afterburners (augmenters) and even large heaters/boilers is the dynamic instability also known as thermo-acoustic instability. Concerns with this ongoing problem have grown with the introduction of Lean Premixed Combustion (LPC) systems developed to address the environmental concerns associated with the conventional combustion systems. The most common way to mitigate thermo-acoustic instability is adding acoustic damping to the combustor using acoustic liners. Recently damping properties of bias flow initially introduced to liners only for cooling purposes have been recognized and proven to be an asset in enhancing the damping effectiveness of liners. Acoustic liners are currently being designed using empirical design rules followed by build-test-improve steps; basically by trial and error. There is growing concerns on the lack of reliability associated with the experimental evaluation of the acoustic liners with small size apertures. The development of physics-based tools in assisting the design of such liners has become of great interest to practitioners recently. This dissertation focuses primarily on how Large-Eddy Simulations (LES) or similar techniques such as Scaled Adaptive Simulation (SAS) can be used to characterize damping properties of bias flow. The dissertation also reviews assumptions made in the existing analytical, semi-empirical, and numerical models, provides a criteria to rank order the existing models, and identifies the best existing theoretical model. Flow field calculations by LES provide good insight into the mechanisms that led to acoustic damping. Comparison of simulation results with empirical and analytical studies shows that LES simulation is a viable alternative to the empirical and analytical methods and can accurately predict the damping behavior of liners. Currently the role of LES for research studies concerned with damping properties of liners is limited to validation of other empirical or theoretical approaches. This research has shown that LES can go beyond that and can be used for performing parametric studies to characterize the sensitivity of acoustic properties of multi--perforated liners to the changes in the geometry and flow conditions and be used as a tool to design acoustic liners. The conducted research provides an insightful understanding about the contribution of different flow and geometry parameters such as perforated plate thickness, aperture radius, porosity factors and bias flow velocity. While the study agrees with previous observations obtained by analytical or experimental methods, it also quantifies the impact from these parameters on the acoustic impedance of perforated plate, a key parameter to determine the acoustic performance of any system. The conducted study has also explored the limitations and capabilities of commercial tool when are applied for performing simulation studies on damping properties of liners. The overall agreement between LES results and previous studies proves that commercial tools can be effectively used for these applications under certain conditions.
Electron-cyclotron damping of helicon waves in low diverging magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lafleur, T.; Charles, C.; Boswell, R. W.
2011-04-15
Particle-in-cell simulations are performed to investigate wave propagation and absorption behavior of low-field (B{sub 0}<5 mT) helicon waves in the presence of a diverging magnetic field. The 1D electromagnetic simulations, which include experimental external magnetic field profiles, provide strong evidence for electron-cyclotron damping of helicon waves in the spatially decaying nonuniform magnetic field. For a dipole-type magnetic field configuration, the helicon waves are absence in the downstream (lower field) region of the plasma and are observed to be completely absorbed. As the magnetic field is changed slightly however, wave damping decreases, and waves are able to propagate freely downstream, confirmingmore » previous experimental measurements of this phenomenon.« less
Spatially Localized Particle Energization by Landau Damping in Current Sheets
NASA Astrophysics Data System (ADS)
Howes, G. G.; Klein, K. G.; McCubbin, A. J.
2017-12-01
Understanding the mechanisms of particle energization through the removal of energy from turbulent fluctuations in heliospheric plasmas is a grand challenge problem in heliophysics. Under the weakly collisional conditions typical of heliospheric plasma, kinetic mechanisms must be responsible for this energization, but the nature of those mechanisms remains elusive. In recent years, the spatial localization of plasma heating near current sheets in the solar wind and numerical simulations has gained much attention. Here we show, using the innovative and new field-particle correlation technique, that the spatially localized particle energization occurring in a nonlinear gyrokinetic simulation has the velocity space signature of Landau damping, suggesting that this well-known collisionless damping mechanism indeed actively leads to spatially localized heating in the vicinity of current sheets.
Transportation and storage of MOX and LEU assemblies at the Balakovo Nuclear Power Plant
DOT National Transportation Integrated Search
2001-01-01
The VVER-1000-type Balakovo Nuclear Power Plant has been chosen to dispose of the : plutonium created as part of Russian weapons program. The plutonium will be converted to mixed-oxide : (MOX), fabricated into assemblies and loaded into the reactor. ...
Contact stiffness and damping of liquid films in dynamic atomic force microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Rong-Guang; Leng, Yongsheng, E-mail: leng@gwu.edu
2016-04-21
The mechanical properties and dissipation behaviors of nanometers confined liquid films have been long-standing interests in surface force measurements. The correlation between the contact stiffness and damping of the nanoconfined film is still not well understood. We establish a novel computational framework through molecular dynamics (MD) simulation for the first time to study small-amplitude dynamic atomic force microscopy (dynamic AFM) in a simple nonpolar liquid. Through introducing a tip driven dynamics to mimic the mechanical oscillations of the dynamic AFM tip-cantilever assembly, we find that the contact stiffness and damping of the confined film exhibit distinct oscillations within 6-7 monolayermore » distances, and they are generally out-of-phase. For the solid-like film with integer monolayer thickness, further compression of the film before layering transition leads to higher stiffness and lower damping, while much lower stiffness and higher damping occur at non-integer monolayer distances. These two alternating mechanisms dominate the mechanical properties and dissipation behaviors of simple liquid films under cyclic elastic compression and inelastic squeeze-out. Our MD simulations provide a direct picture of correlations between the structural property, mechanical stiffness, and dissipation behavior of the nanoconfined film.« less
NASA Astrophysics Data System (ADS)
Pandit, Rishi; Sentoku, Yasuhiko
2012-10-01
Spectral and angular distribution of photons produced in the interaction of extremely intense laser (> 10^22,/cm^2) with dense plasma are studied with a help of a collisional particle-in-cell simulation, PICLS. In ultra-intense laser-plasma interaction, electrons are accelerated by the strong laser fields and emit γ-ray photons mainly via two processes, namely, Bremsstrahlung and radiative damping. We had developed numerical models of these processes in PICLS and study the spectrum and the angular distribution of γ-rays produced in the relativistic laser regime. Such relativistic γ-rays have wide range of frequencies and the angular distribution depends on the hot electron source. From the power loss calculation in PICLS we found that the Bremsstrahlung will get saturated at I > 10^22,/cm^2 while the radiative damping will continuously increase. Comparing the details of γ-rays from the Bremsstrahlung and the radiative damping in simulations, we will discuss the laser parameters and the target conditions (geometry and material) to distinguish the photons from each process and how to catch the signature of the radiative damping in future experiments.
Vlasov Simulation Study of Landau Damping Near the Persisting to Arrested Transition
NASA Astrophysics Data System (ADS)
Vinas, A. F.; Klimas, A. J.; Araneda, J. A.
2017-12-01
A 1-D electrostatic filtered Vlasov-Poisson simulation study is discussed. The transition from persisting to arrested Landau damping that is produced by increasing the strength of a sinusoidal perturbation on a background Vlasov-Poisson equilibrium is explored. Emphasis is placed on observed features of the electron phase-space distribution when the perturbation strength is near the transition value. A single ubiquitous waveform is found perturbing the space-averaged phase space distribution at almost any time in all of the simulations; the sole exception is the saturation stage that can occur at the end of the arrested damping scenario. This waveform contains relatively strong, very narrow structures in velocity bracketing ±vres - the velocities at which electrons must move to traverse the dominant field mode wavelength in one of its oscillation periods - and propagating with ±vres respectively. Local streams of electrons are found in these structures crossing the resonant velocities from low speed to high speed during Landau damping and from high speed to low speed during Landau growth. At the arrest time, when the field strength is briefly constant, these streams vanish. It is conjectured that the expected transfer of energy between electrons and field during Landau growth or damping has been visualized for the first time. No evidence is found in the phase-space distribution to support recent well established discoveries of a second order phase transition in the electric field evolution. While trapping is known to play a role for larger perturbation strengths, it is shown that trapping plays no role at any time in any of the simulations near the transition perturbation strength.
Micro-oxygenation of red wine: techniques, applications, and outcomes.
Schmidtke, Leigh M; Clark, Andrew C; Scollary, Geoff R
2011-02-01
Wine micro-oxygenation (MOX) is the controlled addition of oxygen to wine in a manner designed to ensure that complete mass transfer of molecular oxygen from gaseous to dissolved state occurs. MOX was initially developed to improve the body, structure, and fruitfulness in red wines with high concentrations of tannins and anthocyanins, by replicating the ingress of oxygen thought to arise from barrel maturation, but without the need for putting all wine to barrel. This review describes the operational parameters essential for the effective performance of the micro-oxidation process as well as the chemical and microbiological outcomes. The methodologies for introducing oxygen into the wine, the rates of oxygen addition, and their relationship to oxygen solubility in the wine matrix are examined. The review focuses on the techniques used for monitoring the MOX process, including sensory assessment, physicochemical properties, and the critical balance of the rate of oxygen addition in relation to maintaining the sulfur dioxide concentration. The chemistry of oxygen reactivity with wine components, the changes in wine composition that occur as a consequence of MOX, and the potential for wine spoilage if proper monitoring is not adopted are examined. Gaps in existing knowledge are addressed focusing on the limitations associated with the transfer of concepts from research trials in small volume tanks to commercial practice, and the dearth of kinetic data for the various chemical and physical processes that are claimed to occur during MOX.
Lata, Manju; Sharma, Divakar; Kumar, Bhavnesh; Deo, Nirmala; Tiwari, Pramod Kumar; Bisht, Deepa; Venkatesan, Krishnamurthy
2015-01-01
Ofloxacin (OFX) and moxifloxacin (MOX) are the most promising second line drugs for tuberculosis treatment. Although the primary mechanism of action of OFX and MOX is gyrase inhibition, other possible mechanisms cannot be ruled out. Being the functional moiety of cell, the proteins act as primary targets for developing drugs, diagnostics and therapeutics. In this study we have investigated the proteomic changes of Mycobacterium tuberculosis isolates induced by OFX and MOX by applying comparative proteomic approaches based on two-dinensional gel electrophoresis (2DE) along with matrix assisted laser desorption ionisation time of flight mass spectrometry (MALDI TOF/TOF-MS) and bioinformatic tools. The findings are likely to provide new understanding of OFX and MOX mechanisms that might be helpful in exploring new diagnostics and drug targets. Our study explored eleven proteins (Rv2889c, Rv2623, Rv0952, Rv1827, Rv1932, Rv0054, Rv1080c, Rv3418c, Rv3914, Rv1636 and Rv0009) that were overexpressed in the presence of drugs. Among them, Rv2623, Rv1827 and Rv1636 were identified as proteins with unknown function. InterProScan and molecular docking revealed that the conserved domain of hypothetical proteins interact with OFX and MOX which indicate a probable inhibition/modulation of the functioning of these proteins by both drugs, which might be overexpressed to overcome this effect.
NASA Astrophysics Data System (ADS)
Ahmed, Mohammad Shamsuddin; Park, Dongchul; Jeon, Seungwon
2016-03-01
A rare combination of graphene (G)-supported palladium and manganese in mixed-oxides binary alloyed catalysts (BACs) have been synthesized with the addition of Pd and Mn metals in various ratios (G/PdmMn1-mOx) through a facile wet-chemical method and employed as an efficient anode catalyst for ethanol oxidation reaction (EOR) in alkaline fuel cells. The as prepared G/PdmMn1-mOx BACs have been characterized by several instrumental techniques; the transmission electron microscopy images show that the ultrafine alloyed nanoparticles (NPs) are excellently monodispersed onto the G. The Pd and Mn in G/PdmMn1-mOx BACs have been alloyed homogeneously, and Mn presents in mixed-oxidized form that resulted by X-ray diffraction. The electrochemical performances, kinetics and stability of these catalysts toward EOR have been evaluated using cyclic voltammetry in 1 M KOH electrolyte. Among all G/PdmMn1-mOx BACs, the G/Pd0.5Mn0.5Ox catalyst has shown much superior mass activity and incredible stability than that of pure Pd catalysts (G/Pd1Mn0Ox, Pd/C and Pt/C). The well dispersion, ultrafine size of NPs and higher degree of alloying are the key factor for enhanced and stable EOR electrocatalysis on G/Pd0.5Mn0.5Ox.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai, Xian-Xu, E-mail: bai@hfut.edu.cn; Wereley, Norman M.; Hu, Wei
A single-degree-of-freedom (SDOF) semi-active vibration control system based on a magnetorheological (MR) damper with an inner bypass is investigated in this paper. The MR damper employing a pair of concentric tubes, between which the key structure, i.e., the inner bypass, is formed and MR fluids are energized, is designed to provide large dynamic range (i.e., ratio of field-on damping force to field-off damping force) and damping force range. The damping force performance of the MR damper is modeled using phenomenological model and verified by the experimental tests. In order to assess its feasibility and capability in vibration control systems, themore » mathematical model of a SDOF semi-active vibration control system based on the MR damper and skyhook control strategy is established. Using an MTS 244 hydraulic vibration exciter system and a dSPACE DS1103 real-time simulation system, experimental study for the SDOF semi-active vibration control system is also conducted. Simulation results are compared to experimental measurements.« less
Near-wall k-epsilon turbulence modeling
NASA Technical Reports Server (NTRS)
Mansour, N. N.; Kim, J.; Moin, P.
1987-01-01
The flow fields from a turbulent channel simulation are used to compute the budgets for the turbulent kinetic energy (k) and its dissipation rate (epsilon). Data from boundary layer simulations are used to analyze the dependence of the eddy-viscosity damping-function on the Reynolds number and the distance from the wall. The computed budgets are used to test existing near-wall turbulence models of the k-epsilon type. It was found that the turbulent transport models should be modified in the vicinity of the wall. It was also found that existing models for the different terms in the epsilon-budget are adequate in the region from the wall, but need modification near the wall. The channel flow is computed using a k-epsilon model with an eddy-viscosity damping function from the data and no damping functions in the epsilon-equation. These computations show that the k-profile can be adequately predicted, but to correctly predict the epsilon-profile, damping functions in the epsilon-equation are needed.
Simulation of a slope adapting ankle prosthesis provided by semi-active damping.
LaPrè, Andrew K; Sup, Frank
2011-01-01
Modern passive prosthetic foot/ankles cannot adapt to variations in ground slope. The lack of active adaptation significantly compromises an amputee's balance and stability on uneven terrains. To address this deficit, this paper proposes an ankle prosthesis that uses semi-active damping as a mechanism to provide active slope adaptation. The conceptual ankle prosthesis consists of a modulated damper in series with a spring foot that allows the foot to conform to the angle of the surface in the sagittal plane. In support of this approach, biomechanics data is presented showing unilateral transtibial amputees stepping on a wedge with their daily-use passive prosthesis. Based on this data, a simulation of the ankle prosthesis with semi-active damping is developed. The model shows the kinematic adaptation of the prosthesis to sudden changes in ground slope. The results show the potential of an ankle prosthesis with semi-active damping to actively adapt to the ground slope at each step.
Flux-driven algebraic damping of m=2 diocotron mode
NASA Astrophysics Data System (ADS)
Chim, C. Y.; O'Neil, T. M.
2016-10-01
Recent experiments with pure electron plasmas in a Malmberg-Penning trap have observed the algebraic damping of m = 2 diocotron modes. Due to small field asymmetries a low density halo of electrons is transported radially outward from the plasma core, and the mode damping begins when the halo reaches the resonant radius rres, where f = mfE × B (rres) . The damping rate is proportional to the flux of halo particles through the resonant layer. The damping is related to, but distinct from the exponential spatial Landau damping in a linear wave-particle resonance. This poster uses analytic theory and simulations to explain the new flux-driven algebraic damping of the mode. As electrons are swept around the nonlinear ``cat's eye'' orbits of the resonant wave-particle interaction, they form a quadrupole (m = 2) density distribution, which sets up an electric field that acts back on the plasma core. The field causes an E × B drift motion that symmetrizes the core, i.e. damps the m = 2 mode. Supported by NSF Grant PHY-1414570, and DOE Grants DE-SC0002451.
Controllable outrigger damping system for high rise building with MR dampers
NASA Astrophysics Data System (ADS)
Wang, Zhihao; Chang, Chia-Ming; Spencer, Billie F., Jr.; Chen, Zhengqing
2010-04-01
A novel energy dissipation system that can achieve the amplified damping ratio for a frame-core tube structures is explored, where vertical dampers are equipped between the outrigger and perimeter columns. The modal characteristics of the structural system with linear viscous dampers are theoretically analyzed from the simplified finite element model by parametric analysis. The result shows that modal damping ratios of the first several modes can increase a lot with this novel damping system. To improve the control performance of system, the semi-active control devices, magnetorheological (MR) dampers, are adopted to develop a controllable outrigger damping system. The clipped optimal control with the linear-quadratic Gaussian (LQG) acceleration feedback is adopted in this paper. The effectiveness of both passive and semi-active control outrigger damping systems is evaluated through the numerical simulation of a representative tall building subjected to two typical earthquake records.
NASA Technical Reports Server (NTRS)
West, Jeff; Yang, H. Q.; Brodnick, Jacob; Sansone, Marco; Westra, Douglas
2016-01-01
The Miles equation has long been used to predict slosh damping in liquid propellant tanks due to ring baffles. The original work by Miles identifies defined limits to its range of application. Recent evaluations of the Space Launch System identified that the Core Stage baffle designs resulted in violating the limits of the application of the Miles equation. This paper describes the work conducted by NASA/MSFC to develop methods to predict slosh damping from ring baffles for conditions for which Miles equation is not applicable. For asymptotically small slosh amplitudes or conversely large baffle widths, an asymptotic expression for slosh damping was developed and calibrated using historical experimental sub-scale slosh damping data. For the parameter space that lies between region of applicability of the asymptotic expression and the Miles equation, Computational Fluid Dynamics simulations of slosh damping were used to develop an expression for slosh damping. The combined multi-regime slosh prediction methodology is shown to be smooth at regime boundaries and consistent with both sub-scale experimental slosh damping data and the results of validated Computational Fluid Dynamics predictions of slosh damping due to ring baffles.
NASA Astrophysics Data System (ADS)
Sun, Xiaoqiang; Yuan, Chaochun; Cai, Yingfeng; Wang, Shaohua; Chen, Long
2017-09-01
This paper presents the hybrid modeling and the model predictive control of an air suspension system with damping multi-mode switching damper. Unlike traditional damper with continuously adjustable damping, in this study, a new damper with four discrete damping modes is applied to vehicle semi-active air suspension. The new damper can achieve different damping modes by just controlling the on-off statuses of two solenoid valves, which makes its damping adjustment more efficient and more reliable. However, since the damping mode switching induces different modes of operation, the air suspension system with the new damper poses challenging hybrid control problem. To model both the continuous/discrete dynamics and the switching between different damping modes, the framework of mixed logical dynamical (MLD) systems is used to establish the system hybrid model. Based on the resulting hybrid dynamical model, the system control problem is recast as a model predictive control (MPC) problem, which allows us to optimize the switching sequences of the damping modes by taking into account the suspension performance requirements. Numerical simulations results demonstrate the efficacy of the proposed control method finally.
Vadose zone controls on damping of climate-induced transient recharge fluxes in U.S. agroecosystems
NASA Astrophysics Data System (ADS)
Gurdak, Jason
2017-04-01
Understanding the physical processes in the vadose zone that link climate variability with transient recharge fluxes has particular relevance for the sustainability of groundwater-supported irrigated agriculture and other groundwater-dependent ecosystems. Natural climate variability on interannual to multidecadal timescales has well-documented influence on precipitation, evapotranspiration, soil moisture, infiltration flux, and can augment or diminish human stresses on water resources. Here the behavior and damping depth of climate-induced transient water flux in the vadose zone is explored. The damping depth is the depth in the vadose zone that the flux variation damps to 5% of the land surface variation. Steady-state recharge occurs when the damping depth is above the water table, and transient recharge occurs when the damping depth is below the water table. Findings are presented from major agroecosystems of the United States (U.S.), including the High Plains, Central Valley, California Coastal Basin, and Mississippi Embayment aquifer systems. Singular spectrum analysis (SSA) is used to identify quasi-periodic signals in precipitation and groundwater time series that are coincident with the Arctic Oscillation (AO) (6-12 mo cycle), Pacific/North American oscillation (PNA) (<1-4 yr cycle), El Niño/Southern Oscillation (ENSO) (2-7 yr cycle), North Atlantic Oscillation (NAO) (3-6 yr cycle), Pacific Decadal Oscillation (PDO) (15-30 yr cycle), and Atlantic Multidecadal Oscillation (AMO) (50-70 yr cycle). SSA results indicate that nearly all of the quasi-periodic signals in the precipitation and groundwater levels have a statistically significant lag correlation (95% confidence interval) with the AO, PNA, ENSO, NAO, PDO, and AMO indices. Results from HYDRUS-1D simulations indicate that transient water flux through the vadose zone are controlled by highly nonlinear interactions between mean infiltration flux and infiltration period related to the modes of climate variability and the local soil textures, layering, and depth to the water table. Simulation results for homogeneous profiles generally show that shorter-period climate oscillations, smaller mean fluxes, and finer-grained soil textures generally produce damping depths closer to land surface. Simulation results for layered soil textures indicate more complex responses in the damping depth, including the finding that finer-textured layers in a coarser soil profile generally result in damping depths closer to land surface, while coarser-textured layers in coarser soil profile result in damping depths deeper in the vadose zone. Findings from this study improve understanding of how vadose zone properties influences transient recharge flux and damp climate variability signals in groundwater systems, and have important implications for sustainable management of groundwater resources and coupled agroecosystems under future climate variability and change.
NASA Technical Reports Server (NTRS)
Yang, H. Q.; West, Jeffrey
2016-01-01
To meet the flight control damping requirement, baffles of various configurations have been devised to increase the natural viscous damping and decrease the magnitude of the slosh forces and torques. In the design of slosh baffles, the most widely used damping equation is the one derived by Miles, which is based on the experiments of Keulegan and Carpenter. This equation has been used in predicting damping of the baffled tanks in different diameters ranging from 12 to 112 inches. The analytical expression of Miles equation is easy to use, especially in the design of complex baffle system. Previous investigations revealed that some experiments had shown good agreements with the prediction method of Miles, whereas other experiments have shown significant deviations. For example, damping from Miles equation differs from experimental measurements by as much as 100 percent over a range of tank diameters from 12 to 112 inches, oscillation amplitudes from 0.1 to 1.5 baffle widths, and baffle depths of 0.3 to 0.5 tank radius. Previously, much of this difference has been attributed to experimental scatter. A systematical study is needed to understand the damping physics of baffled tanks, to identify the difference between Miles equation and experimental measurement, and to develop new semi-empirical relations to better represent the real damping physics. The approach of this study is to use CFD technology to shed light on the damping mechanisms of a baffled tank. First, a 1-D Navier-Stokes equation representing different length scales and time scales in the baffle damping physics is developed and analyzed. A well validated CFD solver, developed at NASA MSFC, Loci-STREAM-VOF, is applied to study vorticity field around the baffle and around the fluid interface to highlight the dissipation mechanisms at different slosh amplitudes. Previous measurement data are then used to validate the CFD damping results. The study found several critical parameters controlling fluid damping from a baffle: local slosh amplitude to baffle thickness (A/t), surface liquid depth to tank radius (h/R), local slosh amplitude to baffle width (A/W); and non-dimensional slosh frequency. The simulation highlights three significant damping regimes where different mechanisms dominate. The study proves that the previously found discrepancies between Miles equation and experimental measurement are not due to the measurement scatter, but rather due to different damping mechanisms at various slosh amplitudes. The limitations on the use of Miles equation are discussed based on the flow regime.
Research of vibration control based on current mode piezoelectric shunt damping circuit
NASA Astrophysics Data System (ADS)
Liu, Weiwei; Mao, Qibo
2017-12-01
The piezoelectric shunt damping circuit using current mode approach is imposed to control the vibration of a cantilever beam. Firstly, the simulated inductance with large values are designed for the corresponding RL series shunt circuits. Moreover, with an example of cantilever beam, the second natural frequency of the beam is targeted to control for experiment. By adjusting the values of the equivalent inductance and equivalent resistance of the shunt circuit, the optimal damping of the shunt circuit is obtained. Meanwhile, the designed piezoelectric shunt damping circuit stability is experimental verified. Experimental results show that the proposed piezoelectric shunt damping circuit based on current mode circuit has good vibration control performance. However, the control performance will be reduced if equivalent inductance and equivalent resistance values deviate from optimal values.
Genetics in methylotrophic bacteria: Appendix. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lidstrom, M.E.
This research has focused primarily on promoters in Methylobacterium extorquens AM1 and in methanotrophic bacteria. In Methylobacterium extorquens work continued on the moxF promoter. The author constructed chromosomal lacZ fusions of this promoter to avoid the regulation problems of plasmid-borne fragments and has shown that this is regulated normally in the chromosome. She has constructed lacZ fusions to some of the mox genes involved in the synthesis of the cofactor, PQQ, in order to carry out similar analysis of transcription of PQQ genes. The author has continued to isolate mox genes in methanotrophs for the purpose of studying their promotersmore » and transcriptional regulation.« less
Modal analysis of the ultrahigh finesse Haroche QED cavity
NASA Astrophysics Data System (ADS)
Marsic, Nicolas; De Gersem, Herbert; Demésy, Guillaume; Nicolet, André; Geuzaine, Christophe
2018-04-01
In this paper, we study a high-order finite element approach to simulate an ultrahigh finesse Fabry–Pérot superconducting open resonator for cavity quantum electrodynamics. Because of its high quality factor, finding a numerically converged value of the damping time requires an extremely high spatial resolution. Therefore, the use of high-order simulation techniques appears appropriate. This paper considers idealized mirrors (no surface roughness and perfect geometry, just to cite a few hypotheses), and shows that under these assumptions, a damping time much higher than what is available in experimental measurements could be achieved. In addition, this work shows that both high-order discretizations of the governing equations and high-order representations of the curved geometry are mandatory for the computation of the damping time of such cavities.
Note: Tesla transformer damping
NASA Astrophysics Data System (ADS)
Reed, J. L.
2012-07-01
Unexpected heavy damping in the two winding Tesla pulse transformer is shown to be due to small primary inductances. A small primary inductance is a necessary condition of operability, but is also a refractory inefficiency. A 30% performance loss is demonstrated using a typical "spiral strip" transformer. The loss is investigated by examining damping terms added to the transformer's governing equations. A significant alteration of the transformer's architecture is suggested to mitigate these losses. Experimental and simulated data comparing the 2 and 3 winding transformers are cited to support the suggestion.
Suppression of Instabilities Generated by an Anti-Damper with a Nonlinear Magnetic Element in IOTA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stern, E.
The Integrable Optics Test Accelerator (IOTA) storage ring is being constructed at Fermilab as a testbed for new accelerator concepts. One important series of experiments tests the use of a novel nonlinear magnetic insert to damp coherent instabilities. To test the damping power of the element, an instability of desired strength may be intentionally excited with an anti-damper. We report on simulations of beam stabilization using the Synergia modeling framework over ranges of driving and damping strengths.
Damping capacity of a sealed squeeze film bearing
NASA Technical Reports Server (NTRS)
Dede, M. M.; Dogan, M.; Holmes, R.
1984-01-01
The advantages of incorporating an open-ended or weakly-sealed squeeze-film bearing in a flexible support structure simulating an aero-engine assembly were examined. Attention is given to empirically modelling the hydrodynamics of the more usual tightly-sealed squeeze-film bearing, with a view to assessing its damping performance.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-22
... NUCLEAR REGULATORY COMMISSION [Docket No. 70-3098; NRC-2011-0081] Shaw AREVA MOX Services, Mixed... following methods: Federal Rulemaking Web site: Go to http://www.regulations.gov and search for documents... publicly available documents related to this notice using the following methods: NRC's Public Document Room...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akkurt, H
2001-01-11
In 1967, a series of critical experiments were conducted at the Westinghouse Reactor Evaluation Center (WREC) using mixed-oxide (MOX) PuO{sub 2}-UO{sub 2} and/or UO{sub 2} fuels in various lattices and configurations . These experiments were performed under the joint sponsorship of the Empire State Atomic Development Associates (ESADA) plutonium program and Westinghouse . The purpose of these experiments was to develop experimental data to validate analytical methods used in the design of a plutonium-bearing replacement fuel for water reactors. Three different fuels were used during the experimental program: two MOX fuels and a low-enriched UO{sub 2} fuel. The MOX fuelsmore » were distinguished by their {sup 240}Pu content: 8 wt% {sup 240}Pu and 24 wt% {sup 240}Pu. Both MOX fuels contained 2.0 wt % PuO{sub 2} in natural UO{sub 2} . The UO{sub 2} fuel with 2.72 wt % enrichment was used for comparison with the plutonium data and for use in multiregion experiments.« less
Self-Test Procedures for Gas Sensors Embedded in Microreactor Systems
Helwig, Andreas; Hackner, Angelika; Zappa, Dario; Sberveglieri, Giorgio
2018-01-01
Metal oxide (MOX) gas sensors sensitively respond to a wide variety of combustible, explosive and poisonous gases. However, due to the lack of a built-in self-test capability, MOX gas sensors have not yet been able to penetrate safety-critical applications. In the present work we report on gas sensing experiments performed on MOX gas sensors embedded in ceramic micro-reaction chambers. With the help of an external micro-pump, such systems can be operated in a periodic manner alternating between flow and no-flow conditions, thus allowing repetitive measurements of the sensor resistances under clean air, R0, and under gas exposure, Rgas, to be obtained, even under field conditions. With these pairs of resistance values, eventual drifts in the sensor baseline resistance can be detected and drift-corrected values of the relative resistance response Resp=(R0−Rgas)/R0 can be determined. Residual poisoning-induced changes in the relative resistance response can be detected by reference to humidity measurements taken with room-temperature-operated capacitive humidity sensors which are insensitive to the poisoning processes operative on heated MOX gas sensors. PMID:29401673
NASA Technical Reports Server (NTRS)
Brandon, Jay M.; Foster, John V.
1998-01-01
As airplane designs have trended toward the expansion of flight envelopes into the high angle of attack and high angular rate regimes, concerns regarding modeling the complex unsteady aerodynamics for simulation have arisen. Most current modeling methods still rely on traditional body axis damping coefficients that are measured using techniques which were intended for relatively benign flight conditions. This paper presents recent wind tunnel results obtained during large-amplitude pitch, roll and yaw testing of several fighter airplane configurations. A review of the similitude requirements for applying sub-scale test results to full-scale conditions is presented. Data is then shown to be a strong function of Strouhal number - both the traditional damping terms, but also the associated static stability terms. Additionally, large effects of sideslip are seen in the damping parameter that should be included in simulation math models. Finally, an example of the inclusion of frequency effects on the data in a simulation is shown.
Toxic effects of butyl elastomers on aerobic methane oxidation
NASA Astrophysics Data System (ADS)
Niemann, Helge; Steinle, Lea I.; Blees, Jan H.; Krause, Stefan; Bussmann, Ingeborg; Lehmann, Moritz F.; Treude, Tina
2013-04-01
Large quantities of the potent greenhouse gas methane are liberated into the water column of marine and lacustrine environments where it may be consumed by aerobic methane oxidising bacteria before reaching the atmosphere.The reliable quantification of aerobic methane oxidation (MOx) rates is consequently of paramount importance for estimating methane budgets and to understand the controls on water column methane cycling. A widely used set of methods for measuring MOx rates is based on the incubation of water samples during which the consumption of methane is monitored, for instance with radio-tracer assays. Typically, incubation vessels are sealed with butyl rubber stoppers because these elastomers are essentially impermeable for gases at the relevant time scales. We tested the effect of different stopper materials (unmodified- and halogenated butyl rubber) on MOx activity in environmental samples and in cultures of methane oxidising bacteria. MOx rates in samples sealed with unmodified butyl rubber were > 75% lower compared to parallel incubations with halogenated butyl rubber seals, suggesting inhibiting/toxic effects associated with the use of unmodified butyl elastomers. To further explore the cause of these effects, we analysed aqueous extracts of the different stoppers. Halogenated butyl rubber stoppers appeared to bleed off comparably little amounts of organics. In stark contrast, extracts of unmodified butyl rubber were contaminated with various organic compounds including potential bactericides such as benzyltoluenes, phenylalkanes and benzuothiazoles. We also found tetramethylthiourea, a scavenger of active oxygen species, which may inhibit the MOx pathway.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, R.S.
In the past several years researchers have identified at least 20 genes whose products were required for the oxidation of methanol to formaldehyde in three different facultative methylotrophic bacteria. These genes include structural genes for a cytochrome c{sub L} (mox G) and is a specific electron acceptor for methanol dehydrogenase (MDH), and the two structural genes that encode the large subunit (mox F) and smaller subunit (mox I) of MDH. Other genes are required for the synthesis of the prosthetic group of MDH, Pyrroloquinoline quinone (PQQ), and proteins required for assembly of the active MDH in the periplasm. Three genesmore » are believed to be required for incorporation of calcium into the MDH tetramer. The principal investigator`s group has studied the regulation of methanol oxidation in the pink-pigmented-facultative methylotroph Methylobacterium organophilum XX. The authors have mapped several genes and have sequenced the mox F gene and sequences upstream of mox F. The authors had tentatively identified several genes required for the transcription of the MDH structural genes in three methylotrophs. In the previous proposal, the P.I. proposed to establish an in-vitro transcription/translation system to study the function of the regulatory gene products. Further studies demonstrated that the regulation of transcription of these genes was far more complex than imagined at that time and the research plan was modified to determine the number and function of the regulatory genes using genetic approaches.« less
Tang, Jia-Min; Li, Fen; Cheng, Tian-Yin; Duan, De-Yong; Liu, Guo-Hua
2018-05-22
The sheep ked Melophagus ovinus is mainly found in Europe, Northwestern Africa, and Asia. Although M. ovinus is an important ectoparasite of sheep in many countries, the population genetics, molecular biology, and systematics of this ectoparasite remain poorly understood. Herein, we determined the mitochondrial (mt) genome of M. ovinus from Gansu Province, China (MOG) and compared with that of M. ovinus Xinjiang Uygur Autonomous Region, China (MOX). The mt genome sequence (15,044 bp) of M. ovinus MOG was significantly shorter (529 bp) than M. ovinus MOX. Nucleotide sequence difference in the whole mt genome except for non-coding region was 0.37% between M. ovinus MOG and MOX. For the 13 protein-coding genes, comparison revealed sequence divergences at both the nucleotide (0-1.1%) and amino acid (0-0.59%) levels between M. ovinus MOG and MOX, respectively. Interestingly, the cox1 gene of M. ovinus MOX is predicted to employ unusual mt start codons AAA, which has not been predicted previously for any parasite genome. Phylogenetic analyses showed that M. ovinus (Hippoboscoidea) is related to the superfamilies Oestroidea + Muscoidea. Our results have also indicated the paraphylies of the four families (Anthomyiidae, Calliphoridae, Muscidae, and Oestridae) and two superfamilies (Oestroidea and Muscoidea). This mt genome of M. ovinus provides useful molecular markers for studies into the population genetics, molecular biology, and systematics of this ectoparasite.
Characterization of un-irradiated MIMAS MOX fuel by Raman spectroscopy and EPMA
NASA Astrophysics Data System (ADS)
Talip, Zeynep; Peuget, Sylvain; Magnin, Magali; Tribet, Magaly; Valot, Christophe; Vauchy, Romain; Jégou, Christophe
2018-02-01
In this study, Raman spectroscopy technique was implemented to characterize un-irradiated MIMAS (MIcronized - MASter blend) MOX fuel samples with average 7 wt.% Pu content and different damage levels, 13 years after fabrication, one year after thermal recovery and soon after annealing, respectively. The impacts of local Pu content, deviation from stoichiometry and self-radiation damage on Raman spectrum of the studied MIMAS MOX samples were assessed. MIMAS MOX fuel has three different phases Pu-rich agglomerate, coating phase and uranium matrix. In order to distinguish these phases, Raman results were associated with Pu content measurements performed by Electron Microprobe Analysis. Raman results show that T2g frequency significantly shifts from 445 to 453 cm-1 for Pu contents increasing from 0.2 to 25 wt.%. These data are satisfactorily consistent with the calculations obtained with Gruneisen parameters. It was concluded that the position of the T2g band is mainly controlled by Pu content and self-radiation damage. Deviation from stoichiometry does not have a significant influence on T2g band position. Self-radiation damage leads to a shift of T2g band towards lower frequency (∼1-2 cm-1 for the UO2 matrix of damaged sample). However, this shift is difficult to quantify for the coating phase and Pu agglomerates given the dispersion of high Pu concentrations. In addition, 525 cm-1 band, which was attributed to sub-stoichiometric structural defects, is presented for the first time for the self-radiation damaged MOX sample. Thanks to the different oxidation resistance of each phase, it was shown that laser induced oxidation could be alternatively used to identify the phases. It is demonstrated that micro-Raman spectroscopy is an efficient technique for the characterization of heterogeneous MOX samples, due to its low spatial resolution.
Analytical investigation of the dynamics of tethered constellations in Earth orbit, phase 2
NASA Astrophysics Data System (ADS)
Lorenzini, E. C.; Arnold, D. A.; Cosmo, M.; Grossi, M. D.
1986-10-01
The following topics related to the dynamics of the 4-mass tethered system are addressed: (1) the development of damping algorithms for damping the out-of-plane libration of the system and the interaction of the out-of-plane control with the other degrees of freedom; and (2) the development of environmental models to be added to the dynamics simulation computer code. The environmental models are specifically a new drag routine based on the Jacchia's 1977 model, a J(2) model and an accurate thermal model of the wire. Regarding topic (1) a survey of various out-of-plane libration control laws was carried out. Consequently a yo-yo control law with amplitude of the tether length variation proportional to the amplitude of the out-of-game libration has been selected. This control law provides good damping when applied to a (theoretical) two-dimensional system. In the actual 3-dimensional 4-mass tethered system, however, energy is transferred to the least damped degrees of freedom (the out-of-plane lateral deflections are still undamped in the present simulations) in such a way as to decrease the effectiveness of the algorithm for out-of-plane libration control. The addition of damping algorithms for the out-of-plane lateral deflections is therefore necessary.
Analytical investigation of the dynamics of tethered constellations in Earth orbit, phase 2
NASA Technical Reports Server (NTRS)
Lorenzini, E. C.; Arnold, D. A.; Cosmo, M.; Grossi, M. D.
1986-01-01
The following topics related to the dynamics of the 4-mass tethered system are addressed: (1) the development of damping algorithms for damping the out-of-plane libration of the system and the interaction of the out-of-plane control with the other degrees of freedom; and (2) the development of environmental models to be added to the dynamics simulation computer code. The environmental models are specifically a new drag routine based on the Jacchia's 1977 model, a J(2) model and an accurate thermal model of the wire. Regarding topic (1) a survey of various out-of-plane libration control laws was carried out. Consequently a yo-yo control law with amplitude of the tether length variation proportional to the amplitude of the out-of-game libration has been selected. This control law provides good damping when applied to a (theoretical) two-dimensional system. In the actual 3-dimensional 4-mass tethered system, however, energy is transferred to the least damped degrees of freedom (the out-of-plane lateral deflections are still undamped in the present simulations) in such a way as to decrease the effectiveness of the algorithm for out-of-plane libration control. The addition of damping algorithms for the out-of-plane lateral deflections is therefore necessary.
NASA Technical Reports Server (NTRS)
Yew, Alvin G.; Chai, Dean J.; Olney, David J.
2010-01-01
The goal of NASA's Magnetospheric MultiScale (MMS) mission is to understand magnetic reconnection with sensor measurements from four spinning satellites flown in a tight tetrahedron formation. Four of the six electric field sensors on each satellite are located at the end of 60- meter wire booms to increase measurement sensitivity in the spin plane and to minimize motion coupling from perturbations on the main body. A propulsion burn however, might induce boom oscillations that could impact science measurements if oscillations do not damp to values on the order of 0.1 degree in a timely fashion. Large damping time constants could also adversely affect flight dynamics and attitude control performance. In this paper, we will discuss the implementation of a high resolution method for calculating the boom's intrinsic damping, which was used in multi-body dynamics simulations. In summary, experimental data was obtained with a scaled-down boom, which was suspended as a pendulum in vacuum. Optical techniques were designed to accurately measure the natural decay of angular position and subsequently, data processing algorithms resulted in excellent spatial and temporal resolutions. This method was repeated in a parametric study for various lengths, root tensions and vacuum levels. For all data sets, regression models for damping were applied, including: nonlinear viscous, frequency-independent hysteretic, coulomb and some combination of them. Our data analysis and dynamics models have shown that the intrinsic damping for the baseline boom is insufficient, thereby forcing project management to explore mitigation strategies.
Homentcovschi, Dorel; Murray, Bruce T.; Miles, Ronald N.
2013-01-01
There are a number of applications for microstructure devices consisting of a regular pattern of perforations, and many of these utilize fluid damping. For the analysis of viscous damping and for calculating the spring force in some cases, it is possible to take advantage of the regular hole pattern by assuming periodicity. Here a model is developed to determine these quantities based on the solution of the Stokes' equations for the air flow. Viscous damping is directly related to thermal-mechanical noise. As a result, the design of perforated microstructures with minimal viscous damping is of real practical importance. A method is developed to calculate the damping coefficient in microstructures with periodic perforations. The result can be used to minimize squeeze film damping. Since micromachined devices have finite dimensions, the periodic model for the perforated microstructure has to be associated with the calculation of some frame (edge) corrections. Analysis of the edge corrections has also been performed. Results from analytical formulas and numerical simulations match very well with published measured data. PMID:24058267
Homentcovschi, Dorel; Murray, Bruce T; Miles, Ronald N
2013-10-15
There are a number of applications for microstructure devices consisting of a regular pattern of perforations, and many of these utilize fluid damping. For the analysis of viscous damping and for calculating the spring force in some cases, it is possible to take advantage of the regular hole pattern by assuming periodicity. Here a model is developed to determine these quantities based on the solution of the Stokes' equations for the air flow. Viscous damping is directly related to thermal-mechanical noise. As a result, the design of perforated microstructures with minimal viscous damping is of real practical importance. A method is developed to calculate the damping coefficient in microstructures with periodic perforations. The result can be used to minimize squeeze film damping. Since micromachined devices have finite dimensions, the periodic model for the perforated microstructure has to be associated with the calculation of some frame (edge) corrections. Analysis of the edge corrections has also been performed. Results from analytical formulas and numerical simulations match very well with published measured data.
Proliferation resistance of small modular reactors fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polidoro, F.; Parozzi, F.; Fassnacht, F.
2013-07-01
In this paper the proliferation resistance of different types of Small Modular Reactors (SMRs) has been examined and classified with criteria available in the literature. In the first part of the study, the level of proliferation attractiveness of traditional low-enriched UO{sub 2} and MOX fuels to be used in SMRs based on pressurized water technology has been analyzed. On the basis of numerical simulations both cores show significant proliferation risks. Although the MOX core is less proliferation prone in comparison to the UO{sub 2} core, it still can be highly attractive for diversion or undeclared production of nuclear material. Inmore » the second part of the paper, calculations to assess the proliferation attractiveness of fuel in typical small sodium cooled fast reactor show that proliferation risks from spent fuel cannot be neglected. The core contains a highly attractive plutonium composition during the whole life cycle. Despite some aspects of the design like the sealed core that enables easy detection of unauthorized withdrawal of fissile material and enhances proliferation resistance, in case of open Non-Proliferation Treaty break-out, weapon-grade plutonium in sufficient quantities could be extracted from the reactor core.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-08
... established pursuant to the policies duly authorized under the National Industrial Security Program. The proxy... Influence (FOCI) in order to maintain the Facility Security Clearance held by MOX Services. No physical... Facility Security Clearance, is in accordance with the provisions of the AEA of 1954, as amended. The...
[Influence factors on supply and demand changes in the field of acupuncture and moxibustion].
Liu, Bin; Li, Ping
2011-11-01
Based on principles of health economy and the present situation, the possibility and regularity on changes in the supply and demand field of acupuncture and moxibustion through various viewpoints were analyzed, which included demand and supply elasticity of acup-mox services to market price and the relevant factors, categories and nature of acup-mox services, business idea of supplier on the strength of marginal cost and marginal benefit, expenditure level and inclination of demander, complementary and substitutive treatment of acup-mox therapy, and the relevant time and geographic factors to change in quantity demand and supply. Therefore, it could be applied as reference to redaction and reform of the relevant health economics policy by health administrative management.
Damping Effects of Drogue Parachutes on Orion Crew Module Dynamics
NASA Technical Reports Server (NTRS)
Aubuchon, Vanessa V.
2013-01-01
Currently, simulation predictions of the Orion Crew Module (CM) dynamics with drogue parachutes deployed are under-predicting the amount of damping as seen in free-flight tests. The Apollo Legacy Chute Damping model has been resurrected and applied to the Orion system. The legacy model has been applied to predict CM damping under drogue parachutes for both Vertical Spin Tunnel free flights and the Pad Abort-1 flight test. Comparisons between the legacy Apollo prediction method and test data are favorable. A key hypothesis in the Apollo legacy drogue damping analysis is that the drogue parachutes' net load vector aligns with the CM drogue attachment point velocity vector. This assumption seems reasonable and produces good results, but has never been quantitatively proven. The wake of the CM influences the drogue parachutes, which makes performance predictions of the parachutes difficult. Many of these effects are not currently modeled in the simulations. A forced oscillation test of the CM with parachutes was conducted in the NASA LaRC 20-Ft Vertical Spin Tunnel (VST) to gather additional data to validate and refine the Apollo legacy drogue model. A second loads balance was added to the original Orion VST model to measure the drogue parachute loads independently of the CM. The objective of the test was to identify the contribution of the drogues to CM damping and provide additional information to quantify wake effects and the interactions between the CM and parachutes. The drogue parachute force vector was shown to be highly dependent on the CM wake characteristics. Based on these wind tunnel test data, the Apollo Legacy Chute Damping model was determined to be a sufficient approximation of the parachute dynamics in relationship to the CM dynamics for preliminary entry vehicle system design. More wake effects should be included to better model the system. These results are being used to improve simulation model fidelity of CM flight with drogues deployed, which has been identified by the project as key to a successful Orion Critical Design Review.
Time-domain simulation of damped impacted plates. II. Numerical model and results.
Lambourg, C; Chaigne, A; Matignon, D
2001-04-01
A time-domain model for the flexural vibrations of damped plates was presented in a companion paper [Part I, J. Acoust. Soc. Am. 109, 1422-1432 (2001)]. In this paper (Part II), the damped-plate model is extended to impact excitation, using Hertz's law of contact, and is solved numerically in order to synthesize sounds. The numerical method is based on the use of a finite-difference scheme of second order in time and fourth order in space. As a consequence of the damping terms, the stability and dispersion properties of this scheme are modified, compared to the undamped case. The numerical model is used for the time-domain simulation of vibrations and sounds produced by impact on isotropic and orthotropic plates made of various materials (aluminum, glass, carbon fiber and wood). The efficiency of the method is validated by comparisons with analytical and experimental data. The sounds produced show a high degree of similarity with real sounds and allow a clear recognition of each constitutive material of the plate without ambiguity.
Effect of damping on the laser induced ultrafast switching in rare earth-transition metal alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oniciuc, Eugen; Stoleriu, Laurentiu; Cimpoesu, Dorin
2014-06-02
In this paper, we present simulations of thermally induced magnetic switching in ferrimagnetic systems performed with a Landau-Lifshitz-Bloch (LLB) equation for damping constant in a wide range of values. We have systematically studied the GdFeCo ferrimagnet with various concentrations of Gd and compared for some values of parameters the LLB results with atomistic simulations. The agreement is remarkably good, which shows that the dynamics described by the ferrimagnetic LLB is a reasonable approximation of this complex physical phenomenon. As an important element, we show that the LLB is able to also describe the intermediate formation of a ferromagnetic state whichmore » seems to be essential to understand laser induced ultrafast switching. The study reveals the fundamental role of damping during the switching process.« less
Equivalent linear damping characterization in linear and nonlinear force-stiffness muscle models.
Ovesy, Marzieh; Nazari, Mohammad Ali; Mahdavian, Mohammad
2016-02-01
In the current research, the muscle equivalent linear damping coefficient which is introduced as the force-velocity relation in a muscle model and the corresponding time constant are investigated. In order to reach this goal, a 1D skeletal muscle model was used. Two characterizations of this model using a linear force-stiffness relationship (Hill-type model) and a nonlinear one have been implemented. The OpenSim platform was used for verification of the model. The isometric activation has been used for the simulation. The equivalent linear damping and the time constant of each model were extracted by using the results obtained from the simulation. The results provide a better insight into the characteristics of each model. It is found that the nonlinear models had a response rate closer to the reality compared to the Hill-type models.
Damping in Space Constructions
NASA Astrophysics Data System (ADS)
de Vreugd, Jan; de Lange, Dorus; Winters, Jasper; Human, Jet; Kamphues, Fred; Tabak, Erik
2014-06-01
Monolithic structures are often used in optomechanical designs for space applications to achieve high dimensional stability and to prevent possible backlash and friction phenomena. The capacity of monolithic structures to dissipate mechanical energy is however limited due to the high Q-factor, which might result in high stresses during dynamic launch loads like random vibration, sine sweeps and shock. To reduce the Q-factor in space applications, the effect of constrained layer damping (CLD) is investigated in this work. To predict the damping increase, the CLD effect is implemented locally at the supporting struts in an existing FE model of an optical instrument. Numerical simulations show that the effect of local damping treatment in this instrument could reduce the vibrational stresses with 30-50%. Validation experiments on a simple structure showed good agreement between measured and predicted damping properties. This paper presents material characterization, material modeling, numerical implementation of damping models in finite element code, numerical results on space hardware and the results of validation experiments.
ENERGY DISSIPATION AND LANDAU DAMPING IN TWO- AND THREE-DIMENSIONAL PLASMA TURBULENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Tak Chu; Howes, Gregory G.; Klein, Kristopher G.
Plasma turbulence is ubiquitous in space and astrophysical plasmas, playing an important role in plasma energization, but the physical mechanisms leading to dissipation of the turbulent energy remain to be definitively identified. Kinetic simulations in two dimensions (2D) have been extensively used to study the dissipation process. How the limitation to 2D affects energy dissipation remains unclear. This work provides a model of comparison between two- and three-dimensional (3D) plasma turbulence using gyrokinetic simulations; it also explores the dynamics of distribution functions during the dissipation process. It is found that both 2D and 3D nonlinear gyrokinetic simulations of a low-betamore » plasma generate electron velocity-space structures with the same characteristics as that of the linear Landau damping of Alfvén waves in a 3D linear simulation. The continual occurrence of the velocity-space structures throughout the turbulence simulations suggests that the action of Landau damping may be responsible for the turbulent energy transfer to electrons in both 2D and 3D, and makes possible the subsequent irreversible heating of the plasma through collisional smoothing of the velocity-space fluctuations. Although, in the 2D case where variation along the equilibrium magnetic field is absent, it may be expected that Landau damping is not possible, a common trigonometric factor appears in the 2D resonant denominator, leaving the resonance condition unchanged from the 3D case. The evolution of the 2D and 3D cases is qualitatively similar. However, quantitatively, the nonlinear energy cascade and subsequent dissipation is significantly slower in the 2D case.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubin, David L.
2015-01-23
Accelerators that collide high energy beams of matter and anti-matter are essential tools for the investigation of the fundamental constituents of matter, and the search for new forms of matter and energy. A “Linear Collider” is a machine that would bring high energy and very compact bunches of electrons and positrons (anti-electrons) into head-on collision. Such a machine would produce (among many other things) the newly discovered Higgs particle, enabling a detailed study of its properties. Among the most critical and challenging components of a linear collider are the damping rings that produce the very compact and intense beams ofmore » electrons and positrons that are to be accelerated into collision. Hot dilute particle beams are injected into the damping rings, where they are compressed and cooled. The size of the positron beam must be reduced more than a thousand fold in the damping ring, and this compression must be accomplished in a fraction of a second. The cold compact beams are then extracted from the damping ring and accelerated into collision at high energy. The proposed International Linear Collider (ILC), would require damping rings that routinely produce such cold, compact and intense beams. The goal of the Cornell study was a credible design for the damping rings for the ILC. Among the technical challenges of the damping rings; the development of instrumentation that can measure the properties of the very small beams in a very narrow window of time, and mitigation of the forces that can destabilize the beams and prevent adequate cooling, or worse lead to beam loss. One of the most pernicious destabilizing forces is due to the formation of clouds of electrons in the beam pipe. The electron cloud effect is a phenomenon in particle accelerators in which a high density of low energy electrons, build up inside the vacuum chamber. At the outset of the study, it was anticipated that electron cloud effects would limit the intensity of the positron ring, and that an instability associated with residual gas in the beam pipe would limit the intensity of the electron ring. It was also not clear whether the required very small beam size could be achieved. The results of this study are important contributions to the design of both the electron and positron damping rings in which all of those challenges are addressed and overcome. Our findings are documented in the ILC Technical Design Report, a document that represents the work of an international collaboration of scientists. Our contributions include design of the beam magnetic optics for the 3 km circumference damping rings, the vacuum system and surface treatments for electron cloud mitigation, the design of the guide field magnets, design of the superconducting damping wigglers, and new detectors for precision measurement of beam properties. Our study informed the specification of the basic design parameters for the damping rings, including alignment tolerances, magnetic field errors, and instrumentation. We developed electron cloud modelling tools and simulations to aid in the interpretation of the measurements that we carried out in the Cornell Electron-positron Storage Ring (CESR). The simulations provide a means for systematic extrapolation of our measurements at CESR to the proposed ILC damping rings, and ultimately to specify how the beam pipes should be fabricated in order to minimize the effects of the electron cloud. With the conclusion of this study, the design of the essential components of the damping rings is complete, including the development and characterization (with computer simulations) of the beam optics, specification of techniques for minimizing beam size, design of damping ring instrumentation, R&D into electron cloud suppression methods, tests of long term durability of electron cloud coatings, and design of damping ring vacuum system components.« less
NASA Astrophysics Data System (ADS)
Refaat, Heba M.; Noor El-Din, Doaa A.
2018-07-01
Novel complexes of the formula [M(MOX)(Ben)Cl(H2O)m].nH2O and [Ag(MOX)(Ben)] 3.5H2O; M = Co, Ni, and Zn, n = 1.5, 2 and 1, m = 0 or 2, MOX; Moxifloxacin and Ben; benzimidazole, were synthesized. Their effect on different cancer cells together with bacterial and fungal activity was determined. Formulation of the complexes was based on elemental analyses, different spectrophotometric methods (FT-IR, UV/Vis, NMR), and magnetic studies. FT-IR data indicated that the bonding of the Co(II), Ni(II) and Zn(II) ions with MOX to be achieved through the quinolone and carboxylate oxygen atoms. On the other hand Ag(I) bonded to the MOX through hydro-pyrrolopyridine nitrogen atom. TGA and DTA studies for the metal complexes showed them to possess considerable stability. Thermodynamic parameters ΔE*, ΔS* and ΔH* were evaluated and the appearance of fractional orders suggested that the reactions proceed via complicated mechanisms. The novel mixed ligands complexes were evaluated for their biological activity against the bacterial species (S. aureus) and (E. coli) and the fungal species Aspergillus flavus and Candida albicans. The complexes were found to possess better antibacterial and antifungal activities compared to the Moxifloxacin ligand. The compounds' effects were also screened for their anti-oxidant activity by DPPH method and were tested for their cytotoxicity activity against Breast cancer cell lines (MCF-7), Colon carcinoma cells (HCT) and Hepatocellular carcinoma cells (HepG2) by viability assay method.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-23
... MOX Services (Mixed Oxide Fuel Fabrication Facility); Notice of Atomic Safety and Licensing Board Reconstitution Pursuant to 10 CFR 2.313(c) and 2.321(b), the Atomic Safety and Licensing Board (Board) in the... Rockville, Maryland this 16th day of November 2012. E. Roy Hawkens, Chief Administrative Judge, Atomic...
A high converter concept for fuel management with blanket fuel assemblies in boiling water reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez-Frances, N.; Timm, W.; Rossbach, D.
2012-07-01
Studies on the natural Uranium saving and waste reduction potential of a multiple-plant BWR system were performed. The BWR High Converter system should enable a multiple recycling of MOX fuel in current BWR plants by introducing blanket fuel assemblies and burning Uranium and MOX fuel separately. The feasibility of Uranium cores with blankets and full-MOX cores with Plutonium qualities as low as 40% were studied. The power concentration due to blanket insertion is manageable with modern fuel and acceptable values for the thermal limits and reactivity coefficients were obtained. While challenges remain, full-MOX cores also complied with the main designmore » criteria. The combination of Uranium and Plutonium burners in appropriate proportions could enable obtaining as much as 40% more energy out of Uranium ore. Moreover, a proper adjustment of blanket average stay and Plutonium qualities could lead to a system with nearly no Plutonium left for final disposal. The achievement of such goals with current light water technology makes the BWR HC concept an attractive option to improve the fuel cycle until Gen-IV designs are mature. (authors)« less
Self-Test Procedures for Gas Sensors Embedded in Microreactor Systems.
Helwig, Andreas; Hackner, Angelika; Müller, Gerhard; Zappa, Dario; Sberveglieri, Giorgio
2018-02-03
Metal oxide (MOX) gas sensors sensitively respond to a wide variety of combustible, explosive and poisonous gases. However, due to the lack of a built-in self-test capability, MOX gas sensors have not yet been able to penetrate safety-critical applications. In the present work we report on gas sensing experiments performed on MOX gas sensors embedded in ceramic micro-reaction chambers. With the help of an external micro-pump, such systems can be operated in a periodic manner alternating between flow and no-flow conditions, thus allowing repetitive measurements of the sensor resistances under clean air, R 0 , and under gas exposure, R g a s , to be obtained, even under field conditions. With these pairs of resistance values, eventual drifts in the sensor baseline resistance can be detected and drift-corrected values of the relative resistance response R e s p = ( R 0 - R g a s ) / R 0 can be determined. Residual poisoning-induced changes in the relative resistance response can be detected by reference to humidity measurements taken with room-temperature-operated capacitive humidity sensors which are insensitive to the poisoning processes operative on heated MOX gas sensors.
A passively controlled appendage deployment system for the San Marco D/L spacecraft
NASA Technical Reports Server (NTRS)
Lang, W. E.; Frisch, H. P.; Schwartz, D. A.
1984-01-01
The analytical simulation of deployment dynamics of these two axis concepts as well as the evolution of practical designs for the add on deployable inertia boom units is described. With the boom free to swing back in response to Coriolis forces as well as outwards in response to centrifugal forces, the kinematics of motion are complex but admit the possibility of absorbing deployment energy in frictional or other damping devices about the radial axis, where large amplitude motions can occur and where the design envelope allows more available volume. An acceptable range is defined for frictional damping for any given spin rate. Inadequate damping allows boom motions which strike the spacecraft; excessive damping causes the boom to swing out and latch with damaging violence. The acceptable range is a design parameter and must accommodate spin rate tolerance and also the tolerance and repeatability of the damping mechanisms.
NASA Technical Reports Server (NTRS)
Schiller, Noah H.; Cabell, Randolph H.; Fuller, Chris R.
2008-01-01
This paper describes a combined control strategy designed to reduce sound radiation from stiffened aircraft-style panels. The control architecture uses robust active damping in addition to high-authority linear quadratic Gaussian (LQG) control. Active damping is achieved using direct velocity feedback with triangularly shaped anisotropic actuators and point velocity sensors. While active damping is simple and robust, stability is guaranteed at the expense of performance. Therefore the approach is often referred to as low-authority control. In contrast, LQG control strategies can achieve substantial reductions in sound radiation. Unfortunately, the unmodeled interaction between neighboring control units can destabilize decentralized control systems. Numerical simulations show that combining active damping and decentralized LQG control can be beneficial. In particular, augmenting the in-bandwidth damping supplements the performance of the LQG control strategy and reduces the destabilizing interaction between neighboring control units.
Simulation Analysis of Helicopter Ground Resonance Nonlinear Dynamics
NASA Astrophysics Data System (ADS)
Zhu, Yan; Lu, Yu-hui; Ling, Ai-min
2017-07-01
In order to accurately predict the dynamic instability of helicopter ground resonance, a modeling and simulation method of helicopter ground resonance considering nonlinear dynamic characteristics of components (rotor lead-lag damper, landing gear wheel and absorber) is presented. The numerical integral method is used to calculate the transient responses of the body and rotor, simulating some disturbance. To obtain quantitative instabilities, Fast Fourier Transform (FFT) is conducted to estimate the modal frequencies, and the mobile rectangular window method is employed in the predictions of the modal damping in terms of the response time history. Simulation results show that ground resonance simulation test can exactly lead up the blade lead-lag regressing mode frequency, and the modal damping obtained according to attenuation curves are close to the test results. The simulation test results are in accordance with the actual accident situation, and prove the correctness of the simulation method. This analysis method used for ground resonance simulation test can give out the results according with real helicopter engineering tests.
Ahmed, Ashik; Al-Amin, Rasheduzzaman; Amin, Ruhul
2014-01-01
This paper proposes designing of Static Synchronous Series Compensator (SSSC) based damping controller to enhance the stability of a Single Machine Infinite Bus (SMIB) system by means of Invasive Weed Optimization (IWO) technique. Conventional PI controller is used as the SSSC damping controller which takes rotor speed deviation as the input. The damping controller parameters are tuned based on time integral of absolute error based cost function using IWO. Performance of IWO based controller is compared to that of Particle Swarm Optimization (PSO) based controller. Time domain based simulation results are presented and performance of the controllers under different loading conditions and fault scenarios is studied in order to illustrate the effectiveness of the IWO based design approach.
Shunted Piezoelectric Vibration Damping Analysis Including Centrifugal Loading Effects
NASA Technical Reports Server (NTRS)
Min, James B.; Duffy, Kirsten P.; Provenza, Andrew J.
2011-01-01
Excessive vibration of turbomachinery blades causes high cycle fatigue problems which require damping treatments to mitigate vibration levels. One method is the use of piezoelectric materials as passive or active dampers. Based on the technical challenges and requirements learned from previous turbomachinery rotor blades research, an effort has been made to investigate the effectiveness of a shunted piezoelectric for the turbomachinery rotor blades vibration control, specifically for a condition with centrifugal rotation. While ample research has been performed on the use of a piezoelectric material with electric circuits to attempt to control the structural vibration damping, very little study has been done regarding rotational effects. The present study attempts to fill this void. Specifically, the objectives of this study are: (a) to create and analyze finite element models for harmonic forced response vibration analysis coupled with shunted piezoelectric circuits for engine blade operational conditions, (b) to validate the experimental test approaches with numerical results and vice versa, and (c) to establish a numerical modeling capability for vibration control using shunted piezoelectric circuits under rotation. Study has focused on a resonant damping control using shunted piezoelectric patches on plate specimens. Tests and analyses were performed for both non-spinning and spinning conditions. The finite element (FE) shunted piezoelectric circuit damping simulations were performed using the ANSYS Multiphysics code for the resistive and inductive circuit piezoelectric simulations of both conditions. The FE results showed a good correlation with experimental test results. Tests and analyses of shunted piezoelectric damping control, demonstrating with plate specimens, show a great potential to reduce blade vibrations under centrifugal loading.
Damping Effects of Drogue Parachutes on Orion Crew Module Dynamics
NASA Technical Reports Server (NTRS)
Aubuchon, Vanessa V.; Owens, D. Bruce
2016-01-01
Because simulations of the Orion Crew Module (CM) dynamics with drogue parachutes deployed were under-predicting the amount of damping seen in free-flight tests, an attach-point damping model was applied to the Orion system. A key hypothesis in this model is that the drogue parachutes' net load vector aligns with the CM drogue attachment point velocity vector. This assumption seems reasonable and has historically produced good results, but has never been experimentally verified. The wake of the CM influences the drogue parachutes, which makes performance predictions of the parachutes difficult. Many of these effects are not currently modeled in the simulations. A forced oscillation test of the CM with parachutes was conducted in the NASA LaRC 20-Ft Vertical Spin Tunnel (VST) to gather additional data to validate and refine the attach-point damping model. A second loads balance was added to the original Orion VST model to measure the drogue parachute loads independently of the CM. The objective of the test was to identify the contribution of the drogues to CM damping and provide additional information to quantify wake effects and the interactions between the CM and parachutes. The drogue parachute force vector was shown to be highly dependent on the CM wake characteristics. Based on these wind tunnel test data, the attach-point damping model was determined to be a sufficient approximation of the parachute dynamics in relationship to the CM dynamics for preliminary entry vehicle system design. More wake effects should be included to better model the system.
Numerical study on aerodynamic damping of floating vertical axis wind turbines
NASA Astrophysics Data System (ADS)
Cheng, Zhengshun; Aagaard Madsen, Helge; Gao, Zhen; Moan, Torgeir
2016-09-01
Harvesting offshore wind energy resources using floating vertical axis wind turbines (VAWTs) has attracted an increasing interest in recent years. Due to its potential impact on fatigue damage, the aerodynamic damping should be considered in the preliminary design of a floating VAWT based on the frequency domain method. However, currently the study on aerodynamic damping of floating VAWTs is very limited. Due to the essential difference in aerodynamic load characteristics, the aerodynamic damping of a floating VAWT could be different from that of a floating horizontal axis wind turbine (HAWT). In this study, the aerodynamic damping of floating VAWTs was studied in a fully coupled manner, and its influential factors and its effects on the motions, especially the pitch motion, were demonstrated. Three straight-bladed floating VAWTs with identical solidity and with a blade number varying from two to four were considered. The aerodynamic damping under steady and turbulent wind conditions were estimated using fully coupled aero-hydro-servo-elastic time domain simulations. It is found that the aerodynamic damping ratio of the considered floating VAWTs ranges from 1.8% to 5.3%. Moreover, the aerodynamic damping is almost independent of the rotor azimuth angle, and is to some extent sensitive to the blade number.
Two-phase damping and interface surface area in tubes with vertical internal flow
NASA Astrophysics Data System (ADS)
Béguin, C.; Anscutter, F.; Ross, A.; Pettigrew, M. J.; Mureithi, N. W.
2009-01-01
Two-phase flow is common in the nuclear industry. It is a potential source of vibration in piping systems. In this paper, two-phase damping in the bubbly flow regime is related to the interface surface area and, therefore, to flow configuration. Experiments were performed with a vertical tube clamped at both ends. First, gas bubbles of controlled geometry were simulated with glass spheres let to settle in stagnant water. Second, air was injected in stagnant alcohol to generate a uniform and measurable bubble flow. In both cases, the two-phase damping ratio is correlated to the number of bubbles (or spheres). Two-phase damping is directly related to the interface surface area, based on a spherical bubble model. Further experiments were carried out on tubes with internal two-phase air-water flows. A strong dependence of two-phase damping on flow parameters in the bubbly flow regime is observed. A series of photographs attests to the fact that two-phase damping in bubbly flow increases for a larger number of bubbles, and for smaller bubbles. It is highest immediately prior to the transition from bubbly flow to slug or churn flow regimes. Beyond the transition, damping decreases. It is also shown that two-phase damping increases with the tube diameter.
Measurement of damping of graphite epoxy composite materials and structural joints
NASA Technical Reports Server (NTRS)
Crocker, Malcolm J.; Rao, Mohan D.; Raju, P. K.; Yan, Xinche
1989-01-01
The damping capacity of graphite epoxy materials and structural joints was evaluated. The damping ratio of different composite specimens and bonded joints were systematically evaluated under normal atmospheric conditions and in a vacuum environment. Free and forced vibration test methods were employed for measuring the damping ratios. The effect of edge support conditions on the damping value of a composite tube specimen was studied by using a series of experiments performed on the specimen with different edge supports. It was found that simulating a free-free boundary conditions by having no constraints at the ends gives the lowest value of the material damping of the composite. The accuracy of the estimation of the damping ratio value was improved by using a curve-fitting technique on the response data obtained through measurement. The effect of outgassing (moisture desorption) on the damping capacity was determined by measuring the damping ratio of the tube specimen in a vacuum environment before and after outgassing had occurred. The effects of high and low temperatures on the damping was also investigated by using a series of experiments on tube and beam specimens. An analytical model to study the vibrations of a bonded lap joint system was formulated. Numerical results were generated for different overlap ratios of the system. These were compared with experimental results. In order to determine the influence of bonded joints on the material damping capacity, experiments were conducted on bonded lap-jointed and double-butt-jointed specimens. These experimental results were compared with simple beam specimens with no joints.
Thermal conductivity of heterogeneous LWR MOX fuels
NASA Astrophysics Data System (ADS)
Staicu, D.; Barker, M.
2013-11-01
It is generally observed that the thermal conductivity of LWR MOX fuel is lower than that of pure UO2. For MOX, the degradation is usually only interpreted as an effect of the substitution of U atoms by Pu. This hypothesis is however in contradiction with the observations of Duriez and Philiponneau showing that the thermal conductivity of MOX is independent of the Pu content in the ranges 3-15 and 15-30 wt.% PuO2 respectively. Attributing this degradation to Pu only implies that stoichiometric heterogeneous MOX can be obtained, while we show that any heterogeneity in the plutonium distribution in the sample introduces a variation in the local stoichiometry which in turn has a strong impact on the thermal conductivity. A model quantifying this effect is obtained and a new set of experimental results for homogeneous and heterogeneous MOX fuels is presented and used to validate the proposed model. In irradiated fuels, this effect is predicted to disappear early during irradiation. The 3, 6 and 10 wt.% Pu samples have a similar thermal conductivity. Comparison of the results for this homogeneous microstructure with MIMAS (heterogeneous) fuel of the same composition showed no difference for the Pu contents of 3, 5.9, 6, 7.87 and 10 wt.%. A small increase of the thermal conductivity was obtained for 15 wt.% Pu. This increase is of about 6% when compared to the average of the values obtained for 3, 6 and 10 wt.% Pu. For comparison purposes, Duriez also measured the thermal conductivity of FBR MOX with 21.4 wt.% Pu with O/M = 1.982 and a density close to 95% TD and found a value in good agreement with the estimation obtained using the formula of Philipponneau [8] for FBR MOX, and significantly lower than his results corresponding to the range 3-15 wt.% Pu. This difference in thermal conductivity is of about 20%, i.e. higher than the measurement uncertainties.Thus, a significant difference was observed between FBR and PWR MOX fuels, but was not explained. This difference was observed for hypostoichiometric fuels, that correspond to the condition used for irradiation. However, if these two formulas are evaluated for O/M = 2.000, the difference between the predictions is negligible (Fig. 1). The difference becomes significant for non-stoichiometric fuels, as shown for O/M = 1.975 in Fig. 1. The microstructure of the FBR fuel with 21.4 wt.% Pu was not described in the paper of Duriez. Taking into account the rigorous experimental methodology used by Duriez (characterisation of the stoichiometry), a possible explanation is an interaction between the plutonium distribution and the stoichiometry. Another parameter having a strong impact on the conductivity is the porosity correction used to obtain the values for 95% TD. This correction is small in the work of Duriez as the samples density is very close to 95% TD. This was also the case for the samples selected by Philipponneau in order to obtain his recommendation. An effect due to differences in the pores shape can also be excluded, as the results are identical for stoichiometric fuels (Fig. 1). Usually the apparent stoichiometry is obtained by heat treatments and checked before and after the measurements, either by XRD or thermogravimetry. However, for non-perfectly homogeneous samples, the gradients in the plutonium distribution induce a non-uniform oxygen distribution, which is difficult to characterise experimentally. It has been proposed by Baron that the deviation from stoichiometry is the main cause for the differences observed between fresh UO2 and MOX [14,15], this effect is quantified in the next section. In the first model ("Model 1"), the effect of Pu is neglected over the entire relevant Pu compositions range (up to 24 wt.% PuO2), and a correlation obtained for non-stoichiometric homogeneous (U,Pu)O2 is used. In the second model ("Model 2", the effect of Pu is supposed to be present at all compositions, with the stoichiometry effect. The thermal conductivity is described by the correlations of Fink [16] for the UO2 matrix, Duriez at low PuO2 contents (coating phase) and of Philipponneau at high PuO2 contents (agglomerates). For the first model, applying a correlation for non-stoichiometric UO2 would be relevant, but such a correlation does not exist for physical reasons in the hypostoichiometric domain. A correlation for homogeneous (U,Pu)O2+x has to be obtained in order to predict the thermal conductivity of heterogeneous MOX fuel, supposing that the effect of Pu can be neglected, i.e. supposing that the thermal conductivities of homogeneous (U,Pu)O2 and UO2 are equal both for stoichiometric and non-stoichiometric fuels. Such a correlation has to be obtained considering reliable data for stoichiometric UO2 and stoichiometry dependence. Different correlations for non-stoichiometric fuels were reviewed [2,8,12,13,15,35,36]. The correlation of Martin [36], available for hyperstoichiometric UO2, was evaluated in the hypostoichiometric domain and the predictions were found to give a stoichiometry dependence very similar to a correlation already proposed [15]. Investigations by Molecular Dynamics [37] have confirmed the almost symmetric effect of the hypo- and hyper-stoichiometry in UO2. We therefore use the correlation of Martin, with however a correction, as for stoichiometric fuels it over predicts the conductivity of stoichiometric UO2 at high temperatures, when compared to the recommendation of Fink [16] (Fig. 4). Analysis has shown that this over-prediction was due to the high temperature term in the correlation of Martin, and that, if this term is removed, the predictions of Martin and Fink were identical for stoichiometric fuels in the temperature range 500-1500 K. The correlation proposed for homogeneous MOX is therefore given by the following equation. k=(0.035 The series and parallel bounds (Eq. (2)) were calculated using the thermal conductivity values given by Eq. (5) for the heterogeneous MOX constituents and the maximum difference between these two bounds is 2% over the considered temperature range. The predictions obtained with the equations of Maxwell-Eucken (Eq. (3)) and Bergman (Eq. (4)) are equal and are in the interval between the series and parallel bounds. This result shows that the use of a sophisticated analytical or numerical model to predict the thermal conductivity is not justified [38]. The model of Maxwell-Eucken [31] was therefore chosen to predict the equivalent thermal conductivity of the heterogeneous MOX.The equivalent thermal conductivity of the stoichiometric heterogeneous MOX with an average PuO2 content of 7.2 wt.% (constituted by a stoichiometric UO2 matrix containing 15 vol.% of (U0.76Pu0.24)O1.975 agglomerates and 55 vol.% of a coating phase of (U0.94Pu0.06)O1.995) was calculated. The results show that the apparent thermal conductivity of the heterogeneous MOX, calculated using homogeneous MOX data (Eq. (5)) with O/M = 2.000, 1.995 and 1.975 (labeled Model 1 in Fig. 4) is not significantly different from the values measured by Duriez. The latter values are also very similar to the thermal conductivity of homogeneous MOX with O/M = 1.995. This simple model shows that the stoichiometry effect is sufficient to explain the lower thermal conductivity of LWR MOX fuel as compared to UO2. The advantage of this simple model is its consistency, as the calculations for the heterogeneous MOX are based on a unique formula for non-stoichiometric homogeneous (U,Pu)O2.In the second model, the effect of the plutonium is taken into account for the coating phase and for the Pu-rich agglomerates. The thermal conductivity is described by the correlations of Fink [16] for UO2.000, of Duriez et al. [2] for (U0.94Pu0.06)O1.995 (coating phase with low PuO2 content) and of Philipponneau [8] for (U0.76Pu0.24)O1.975 (Pu-rich agglomerates with high PuO2 content). The results (labeled Model 2 in Fig. 5) show that the calculated thermal conductivity of the heterogeneous 'stoichiometric' MOX is lower than UO2 and also lower than for stoichiometric MOX as given by Duriez. Therefore taking into account both the heterogeneity in the oxygen distribution and the Pu content leads to an underprediction of the thermal conductivity of heterogeneous MOX. A possible cause for the lower thermal conductivity of unirradiated heterogeneous MOX is therefore the intrinsic fluctuations of the local stoichiometry and only to a lesser extent the perturbation of the heat transfer due to the substitution of the U by Pu atoms in the crystal lattice. This interpretation was already proposed by Baron [14,15]. This assumption is acceptable if the size of the heterogeneities is much smaller that the thickness of the sample. A theoretical criterion for the impact of these parameters, initially proposed by Kerrish [40], was checked experimentally by Lee and Taylor [41] and was found to be too restrictive. The conclusions resulting from the investigations of Lee are that for diffusivity ratios between 1 and 3.5 and volume fractions up to 30%, a ratio of 5 between the sample thickness and inclusions diameter is sufficient. Our heterogeneous samples fulfill this criterion, taking into account that the thermal diffusivity ratio is close to 1 in MOX, that the volume fraction of Pu rich agglomerates is under 30%, and that the agglomerates have a diameter of less than 200 μm compared to the sample (disc) thickness of 1 mm. The most severe requirement that one could use to define a medium behaving like a homogeneous material is that the heat transfer is not affected by the heterogeneities. This is the case for instance if we have a heterogeneous material where the two constituents have equal thermal diffusivity and no thermal resistance is present at the interfaces. This requirement is very close to be perfectly verified for the heterogeneous MOX, as UO2 and (U,Pu)O2 have very close values of the thermal diffusivity. An effect of the sample heterogeneity can also be excluded from the point of view of the location where the thermograms are recorded: the temperature transients on the rear face of the samples are measured with a pyrometer and the system is provided with a lens assembly which enables a 1 mm diameter spot of the sample surface to be focused onto the signal collecting fibre. The thermograms are therefore averaged over a 1 mm diameter surface, which is much larger than the size of the heterogeneities (Pu rich agglomerates with a size of less than 200 μm).The impact of sample thickness on the measured thermal diffusivity was experimentally investigated for the MIMAS MOX with 7.0 wt.% Pu. For this purpose, discs of 0.5, 1, 2, and 3 mm thickness were cut and the thermal diffusivity was measured. The same investigation was done for standard UO2, in order to verify the accuracy of the inverse technique used for the identification of the thermal diffusivity from the thermograms. The inverse technique [39] explicitly takes into account the sample thickness in the calculation of the heat losses. The results for UO2 (Fig. 6) show that the measured thermal diffusivity does not depend on sample thickness, and is in good agreement with the recommendation of Fink [16]. The results for the heterogeneous MOX (Fig. 7) also show no dependence on sample thickness.
Propagation and damping of Alfvén waves in low solar atmosphere
NASA Astrophysics Data System (ADS)
Ryu, Chang-Mo; Huynh, Cong Tuan
2017-10-01
Propagation and damping of Alfvén waves in the inner solar corona are studied using a 2D magnetohydrodynamics (MHD) simulation code with realistic density and temperature profiles in a uniform background magnetic field. A linear wave is launched by ascribing a sinusoidal fluid motion at about 1000 km from the surface of the Sun, which is shown to generate Alfvénic wave motions along the height. The 2D MHD simulation shows that for B0 ≈ 3 G, Alfvén waves of about 10-2 Hz with an infinite horizontal length-scale can penetrate into the corona, transferring about 90 per cent their energies. This raises the possibility that the wave can be dissipated by various physical processes. The results show that the propagating wave can effectively damp via viscosity in the lower region of the corona, if a horizontal scale of granular size is incorporated.
Kinetic theory and Vlasov simulation of nonlinear ion-acoustic waves in multi-ion species plasmas.
Chapman, T; Berger, R L; Brunner, S; Williams, E A
2013-05-10
The theory of damping and nonlinear frequency shifts from particles resonant with ion-acoustic waves (IAWs) is presented for multi-ion species plasma and compared to driven wave Vlasov simulations. Two distinct IAW modes may be supported in multi-ion species plasmas, broadly classified as fast and slow by their phase velocity relative to the constituent ion thermal velocities. In current fusion-relevant long pulse experiments, the ion to electron temperature ratio, T(i)/T(e), is expected to reach a level such that the least damped and thus more readily driven mode is the slow mode, with both linear and nonlinear properties that are shown to differ significantly from the fast mode. The lighter ion species of the slow mode is found to make no significant contribution to the IAW frequency shift despite typically being the dominant contributor to the Landau damping.
Ho, Kuo-Ning; Lee, Sheng-Yang; Huang, Haw-Ming
2017-08-03
The purpose of this study was to evaluate the feasibility of using damping ratio (DR) analysis combined with resonance frequency (RF) and periotest (PTV) analyses to provide additional information about natural tooth stability under various simulated degrees of alveolar vertical bone loss and various root types. Three experimental tooth models, including upper central incisor, upper first premolar, and upper first molar were fabricated using Ti6Al4V alloy. In the tooth models, the periodontal ligament and alveolar bone were simulated using a soft lining material and gypsum, respectively. Various degrees of vertical bone loss were simulated by decreasing the surrounding bone level apically from the cementoenamel junction in 2-mm steps incrementally downward for 10 mm. A commercially available RF analyzer was used to measure the RF and DR of impulse-forced vibrations on the tooth models. The results showed that DRs increased as alveolar vertical bone height decreased and had high coefficients of determination in the linear regression analysis. The damping ratio of the central incisor model without a simulated periodontal ligament were 11.95 ± 1.92 and 27.50 ± 0.67% respectively when their bone levels were set at 2 and 10 mm apically from the cementoenamel junction. These values significantly changed to 28.85 ± 2.54% (p = 0.000) and 51.25 ± 4.78% (p = 0.003) when the tooth model was covered with simulated periodontal ligament. Moreover, teeth with different root types showed different DR and RF patterns. Teeth with multiple roots had lower DRs than teeth with single roots. Damping ratio analysis combined with PTV and RF analysis provides more useful information on the assessment of changes in vertical alveolar bone loss than PTV or RF analysis alone.
Modeling and dynamic properties of dual-chamber solid and liquid mixture vibration isolator
NASA Astrophysics Data System (ADS)
Li, F. S.; Chen, Q.; Zhou, J. H.
2016-07-01
The dual-chamber solid and liquid mixture (SALiM) vibration isolator, mainly proposed for vibration isolation of heavy machines with low frequency, consists of four principle parts: SALiM working media including elastic elements and incompressible oil, multi-layers bellows container, rigid reservoir and the oil tube connecting the two vessels. The isolation system under study is governed by a two-degrees-of-freedom (2-DOF) nonlinear equation including quadratic damping. Simplifying the nonlinear damping into viscous damping, the equivalent stiffness and damping model is derived from the equation for the response amplitude. Theoretical analysis and numerical simulation reveal that the isolator's stiffness and damping have multiple properties with different parameters, among which the effects of exciting frequency, vibrating amplitude, quadratic damping coefficient and equivalent stiffness of the two chambers on the isolator's dynamics are discussed in depth. Based on the boundary characteristics of stiffness and damping and the main causes for stiffness hardening effect, improvement strategies are proposed to obtain better dynamic properties. At last, experiments were implemented and the test results were generally consistent with the theoretical ones, which verified the reliability of the nonlinear dynamic model.
Rossano, M G; Smith, A R; Lyons, E T
2010-10-29
Deworming horses with anthelmintics that have activity against encysted small strongyle larvae (L(3) and L(4)) is a common practice in parasite control programs. The two drugs currently available for this use are moxidectin (MOX) administered in a single dose of 0.4 mg/kg and fenbendazole (FBZ) given at the larvicidal dose (10mg/kg for 5 days). Here, we report the efficacy of MOX and the larvicidal dose of FBZ for reducing counts of strongyle-type eggs per gram of feces in naturally infected horses. Fecal egg counts (FECs) of 15 yearlings were observed following deworming. On day 0, 6 of the 15 yearlings were administered a larvicidal dose of FBZ; 14 days later, all 15 yearlings received MOX at a single dose of 0.4 mg/kg. Feces were collected on day 0 for pre-treatment egg counts. Feces were collected at weekly intervals thereafter during FEC observation periods. FECs of FBZ-treated horses were compared at day 0 and 14 days post-treatment. The difference in means pre- and post-treatment with FBZ was not statistically significant (p=0.65). On days 0 and 42 of the MOX treatment observation period the mean FEC of the yearlings that had not received the FBZ treatment did not differ significantly from that of the FBZ-treated yearlings. MOX was effective in reducing fecal egg counts to 0 EPG for 21 days. At day 35 all but 2 of the yearlings had some eggs present (range=4-361 EPG) and at day 42 all but 1 yearling had eggs present (range=3-432 EPG). At day 42 the group mean FEC reduction had fallen from 100% to 67%. Results of this study do not support the use of the larvicidal dose of FBZ for small strongyle control. Larger field studies will be needed to investigate whether egg reappearance periods are shortening for MOX-treated horses. Copyright © 2010 Elsevier B.V. All rights reserved.
Burgués, Javier; Marco, Santiago
2018-08-17
Metal oxide semiconductor (MOX) sensors are usually temperature-modulated and calibrated with multivariate models such as partial least squares (PLS) to increase the inherent low selectivity of this technology. The multivariate sensor response patterns exhibit heteroscedastic and correlated noise, which suggests that maximum likelihood methods should outperform PLS. One contribution of this paper is the comparison between PLS and maximum likelihood principal components regression (MLPCR) in MOX sensors. PLS is often criticized by the lack of interpretability when the model complexity increases beyond the chemical rank of the problem. This happens in MOX sensors due to cross-sensitivities to interferences, such as temperature or humidity and non-linearity. Additionally, the estimation of fundamental figures of merit, such as the limit of detection (LOD), is still not standardized in multivariate models. Orthogonalization methods, such as orthogonal projection to latent structures (O-PLS), have been successfully applied in other fields to reduce the complexity of PLS models. In this work, we propose a LOD estimation method based on applying the well-accepted univariate LOD formulas to the scores of the first component of an orthogonal PLS model. The resulting LOD is compared to the multivariate LOD range derived from error-propagation. The methodology is applied to data extracted from temperature-modulated MOX sensors (FIS SB-500-12 and Figaro TGS 3870-A04), aiming at the detection of low concentrations of carbon monoxide in the presence of uncontrolled humidity (chemical noise). We found that PLS models were simpler and more accurate than MLPCR models. Average LOD values of 0.79 ppm (FIS) and 1.06 ppm (Figaro) were found using the approach described in this paper. These values were contained within the LOD ranges obtained with the error-propagation approach. The mean LOD increased to 1.13 ppm (FIS) and 1.59 ppm (Figaro) when considering validation samples collected two weeks after calibration, which represents a 43% and 46% degradation, respectively. The orthogonal score-plot was a very convenient tool to visualize MOX sensor data and to validate the LOD estimates. Copyright © 2018 Elsevier B.V. All rights reserved.
Gyrokinetic particle simulation of beta-induced Alfven-acoustic eigenmode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, H. S., E-mail: zhang.huasen@gmail.com; Institute of Applied Physics and Computational Mathematics, Beijing 100088; Liu, Y. Q.
2016-04-15
The beta-induced Alfven-acoustic eigenmode (BAAE) in toroidal plasmas is verified and studied by global gyrokinetic particle simulations. When ion temperature is much lower than electron temperature, the existence of the weakly damped BAAE is verified in the simulations using initial perturbation, antenna excitation, and energetic particle excitation, respectively. When the ion temperature is comparable to the electron temperature, the unstable BAAE can be excited by realistic energetic particle density gradient, even though the stable BAAE (in the absence of energetic particles) is heavily damped by the thermal ions. In the simulations with reversed magnetic shear, BAAE frequency sweeping is observedmore » and poloidal mode structure has a triangle shape with a poloidal direction similar to that observed in tokamak experiments. The triangle shape changes the poloidal direction, and no frequency sweeping is found in the simulations with normal magnetic shear.« less
Non-Linear Slosh Damping Model Development and Validation
NASA Technical Reports Server (NTRS)
Yang, H. Q.; West, Jeff
2015-01-01
Propellant tank slosh dynamics are typically represented by a mechanical model of spring mass damper. This mechanical model is then included in the equation of motion of the entire vehicle for Guidance, Navigation and Control (GN&C) analysis. For a partially-filled smooth wall propellant tank, the critical damping based on classical empirical correlation is as low as 0.05%. Due to this low value of damping, propellant slosh is potential sources of disturbance critical to the stability of launch and space vehicles. It is postulated that the commonly quoted slosh damping is valid only under the linear regime where the slosh amplitude is small. With the increase of slosh amplitude, the critical damping value should also increase. If this nonlinearity can be verified and validated, the slosh stability margin can be significantly improved, and the level of conservatism maintained in the GN&C analysis can be lessened. The purpose of this study is to explore and to quantify the dependence of slosh damping with slosh amplitude. Accurately predicting the extremely low damping value of a smooth wall tank is very challenging for any Computational Fluid Dynamics (CFD) tool. One must resolve thin boundary layers near the wall and limit numerical damping to minimum. This computational study demonstrates that with proper grid resolution, CFD can indeed accurately predict the low damping physics from smooth walls under the linear regime. Comparisons of extracted damping values with experimental data for different tank sizes show very good agreements. Numerical simulations confirm that slosh damping is indeed a function of slosh amplitude. When slosh amplitude is low, the damping ratio is essentially constant, which is consistent with the empirical correlation. Once the amplitude reaches a critical value, the damping ratio becomes a linearly increasing function of the slosh amplitude. A follow-on experiment validated the developed nonlinear damping relationship. This discovery can lead to significant savings by reducing the number and size of slosh baffles in liquid propellant tanks.
NASA Astrophysics Data System (ADS)
Yang, Xiaokang; Petrov, Yuri; Ceccherini, Francesco; Koehn, Alf; Galeotti, Laura; Dettrick, Sean; Binderbauer, Michl
2017-10-01
Numerous efforts have been made at Tri-Alpha Energy (TAE) to theoretically explore the physics of microwave electron heating in field-reversed configuration (FRC) plasmas. For the fixed 2D profiles of plasma density and temperature for both electrons and thermal ions and equilibrium field of the C-2U machine, simulations with GENRAY-C ray-tracing code have been conducted for the ratios of ω/ωci[D] in the range of 6 - 20. Launch angles and antenna radial and axial positions have been optimized in order to simultaneously achieve good wave penetration into the core of FRC plasmas and efficient power damping on electrons. It is found that in an optimal regime, single pass absorption efficiency is 100% and most of the power is deposited inside the separatrix of FRC plasmas, with power damping efficiency of about 72% on electrons and less than 19% on ions. Calculations have clearly demonstrated that substantial power absorption on electrons is mainly attributed to high beta enhancement of magnetic pumping; complete power damping occurs before Landau damping has a significant effect on power absorption.
NASA Astrophysics Data System (ADS)
Abolfathi, Ali; O'Boy, Dan J.; Walsh, Stephen J.; Dowsett, Amy; Fisher, Stephen A.
2016-09-01
Small plastic clips are used in large numbers in automotive vehicles to connect interior trims to vehicle structures. The variability in their properties can contribute to the overall variability in noise and vibration response of the vehicle. The variability arises due to their material and manufacturing tolerances and more importantly due to the boundary condition. To measure their stiffness and damping, a simple experimental rig is used where a mass is supported by the clip which is modelled as a single degree of freedom system. The rig is designed in a way that it simulates the boundary condition as those of the real vehicle. The variability in clip and also due to the boundary condition at the structure side is first examined which is 7% for stiffness and 8% for damping. To simulate the connection of the trim side, a mount is built using a 3D printer. Rattling occurs in the response of the clips with loose connections, however by preloading the mount the effective stiffness increases and the rattling is eliminated. The variability due to the boundary condition at the trim side was as large as 40% for stiffness and 52% for damping.
Chemical interaction matrix between reagents in a Purex based process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brahman, R.K.; Hennessy, W.P.; Paviet-Hartmann, P.
2008-07-01
The United States Department of Energy (DOE) is the responsible entity for the disposal of the United States excess weapons grade plutonium. DOE selected a PUREX-based process to convert plutonium to low-enriched mixed oxide fuel for use in commercial nuclear power plants. To initiate this process in the United States, a Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF) is under construction and will be operated by Shaw AREVA MOX Services at the Savannah River Site. This facility will be licensed and regulated by the U.S. Nuclear Regulatory Commission (NRC). A PUREX process, similar to the one used at La Hague,more » France, will purify plutonium feedstock through solvent extraction. MFFF employs two major process operations to manufacture MOX fuel assemblies: (1) the Aqueous Polishing (AP) process to remove gallium and other impurities from plutonium feedstock and (2) the MOX fuel fabrication process (MP), which processes the oxides into pellets and manufactures the MOX fuel assemblies. The AP process consists of three major steps, dissolution, purification, and conversion, and is the center of the primary chemical processing. A study of process hazards controls has been initiated that will provide knowledge and protection against the chemical risks associated from mixing of reagents over the life time of the process. This paper presents a comprehensive chemical interaction matrix evaluation for the reagents used in the PUREX-based process. Chemical interaction matrix supplements the process conditions by providing a checklist of any potential inadvertent chemical reactions that may take place. It also identifies the chemical compatibility/incompatibility of the reagents if mixed by failure of operations or equipment within the process itself or mixed inadvertently by a technician in the laboratories. (aut0010ho.« less
Yeast alter micro-oxygenation of wine: oxygen consumption and aldehyde production.
Han, Guomin; Webb, Michael R; Richter, Chandra; Parsons, Jessica; Waterhouse, Andrew L
2017-08-01
Micro-oxygenation (MOx) is a common winemaking treatment used to improve red wine color development and diminish vegetal aroma, amongst other effects. It is commonly applied to wine immediately after yeast fermentation (phase 1) or later, during aging (phase 2). Although most winemakers avoid MOx during malolactic (ML) fermentation, it is often not possible to avoid because ML bacteria are often present during phase 1 MOx treatment. We investigated the effect of common yeast and bacteria on the outcome of micro-oxygenation. Compared to sterile filtered wine, Saccharomyces cerevisiae inoculation significantly increased oxygen consumption, keeping dissolved oxygen in wine below 30 µg L -1 during micro-oxygenation, whereas Oenococcus oeni inoculation was not associated with a significant impact on the concentration of dissolved oxygen. The unfiltered baseline wine also had both present, although with much higher populations of bacteria and consumed oxygen. The yeast-treated wine yielded much higher levels of acetaldehyde, rising from 4.3 to 29 mg L -1 during micro-oxygenation, whereas no significant difference was found between the bacteria-treated wine and the filtered control. The unfiltered wine exhibited rapid oxygen consumption but no additional acetaldehyde, as well as reduced pyruvate. Analysis of the acetaldehyde-glycerol acetal levels showed a good correlation with acetaldehyde concentrations. The production of acetaldehyde is a key outcome of MOx and it is dramatically increased in the presence of yeast, although it is possibly counteracted by the metabolism of O. oeni bacteria. Additional controlled experiments are necessary to clarify the interaction of yeast and bacteria during MOx treatments. Analysis of the glycerol acetals may be useful as a proxy for acetaldehyde levels. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
SUN, D.; TONG, L.
2002-05-01
A detailed model for the beams with partially debonded active constraining damping (ACLD) treatment is presented. In this model, the transverse displacement of the constraining layer is considered to be non-identical to that of the host structure. In the perfect bonding region, the viscoelastic core is modelled to carry both peel and shear stresses, while in the debonding area, it is assumed that no peel and shear stresses be transferred between the host beam and the constraining layer. The adhesive layer between the piezoelectric sensor and the host beam is also considered in this model. In active control, the positive position feedback control is employed to control the first mode of the beam. Based on this model, the incompatibility of the transverse displacements of the active constraining layer and the host beam is investigated. The passive and active damping behaviors of the ACLD patch with different thicknesses, locations and lengths are examined. Moreover, the effects of debonding of the damping layer on both passive and active control are examined via a simulation example. The results show that the incompatibility of the transverse displacements is remarkable in the regions near the ends of the ACLD patch especially for the high order vibration modes. It is found that a thinner damping layer may lead to larger shear strain and consequently results in a larger passive and active damping. In addition to the thickness of the damping layer, its length and location are also key factors to the hybrid control. The numerical results unveil that edge debonding can lead to a reduction of both passive and active damping, and the hybrid damping may be more sensitive to the debonding of the damping layer than the passive damping.
NASA Technical Reports Server (NTRS)
Yang, H. Q.; West, Jeff
2018-01-01
Determination of slosh damping is a very challenging task as there is no analytical solution. The damping physics involves the vorticity dissipation which requires the full solution of the nonlinear Navier-Stokes equations. As a result, previous investigations were mainly carried out by extensive experiments. A systematical study is needed to understand the damping physics of baffled tanks, to identify the difference between the empirical Miles equation and experimental measurements, and to develop new semi-empirical relations to better represent the real damping physics. The approach of this study is to use Computational Fluid Dynamics (CFD) technology to shed light on the damping mechanisms of a baffled tank. First, a 1-D Navier-Stokes equation representing different length scales and time scales in the baffle damping physics is developed and analyzed. Loci-STREAM-VOF, a well validated CFD solver developed at NASA MSFC, is applied to study the vorticity field around a baffle and around the fluid-gas interface to highlight the dissipation mechanisms at different slosh amplitudes. Previous measurement data is then used to validate the CFD damping results. The study found several critical parameters controlling fluid damping from a baffle: local slosh amplitude to baffle thickness (A/t), surface liquid depth to tank radius (d/R), local slosh amplitude to baffle width (A/W); and non-dimensional slosh frequency. The simulation highlights three significant damping regimes where different mechanisms dominate. The study proves that the previously found discrepancies between Miles equation and experimental measurement are not due to the measurement scatter, but rather due to different damping mechanisms at various slosh amplitudes. The limitations on the use of Miles equation are discussed based on the flow regime.
A Clear Success for International Transport of Plutonium and MOX Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blachet, L.; Jacot, P.; Bariteau, J.P.
2006-07-01
An Agreement between the United States and Russia to eliminate 68 metric tons of surplus weapons-grade plutonium provided the basis for the United States government and its agency, the Department of Energy (DOE), to enter into contracts with industry leaders to fabricate mixed oxide (MOX) fuels (a blend of uranium oxide and plutonium oxide) for use in existing domestic commercial reactors. DOE contracted with Duke, COGEMA, Stone and Webster (DCS), a limited liability company comprised of Duke Energy, COGEMA Inc. and Stone and Webster to design a Mixed Oxide Fuel Fabrication Facility (MFFF) which would be built and operated atmore » the DOE Savannah River Site (SRS) near Aiken, South Carolina. During this same time frame, DOE commissioned fabrication and irradiation of lead test assemblies in one of the Mission Reactors to assist in obtaining NRC approval for batch implementation of MOX fuel prior to the operations phase of the MFFF facility. On February 2001, DOE directed DCS to initiate a pre-decisional investigation to determine means to obtain lead assemblies including all international options for manufacturing MOX fuels. This lead to implementation of the EUROFAB project and work was initiated in earnest on EUROFAB by DCS on November 7, 2003. (authors)« less
Bajar, Somvir; Singh, Anita; Kaushik, C P; Kaushik, Anubha
2017-05-01
Biocovers are considered as the most effective and efficient way to treat methane (CH 4 ) emission from dumpsites and landfills. Active methanotrophs in the biocovers play a crucial role in reduction of emissions through microbiological methane oxidation. Several factors affecting methane bio-oxidation (MOX) have been well documented, however, their interactive effect on the oxidation process needs to be explored. Therefore, the present study was undertaken to investigate the suitability of a dumpsite soil to be employed as biocover, under the influence of substrate concentrations (CH 4 and O 2 ) and temperature at variable incubation periods. Statistical design matrix of Response Surface Methodology (RSM) revealed that MOX rate up to 69.58μgCH 4 g -1 dw h -1 could be achieved under optimum conditions. MOX was found to be more dependent on CH 4 concentration at higher level (30-40%, v/v), in comparison to O 2 concentration. However, unlike other studies MOX was found in direct proportionality relationship with temperature within a range of 25-35°C. The results obtained with the dumpsite soil biocover open up a new possibility to provide improved, sustained and environmental friendly systems to control even high CH 4 emissions from the waste sector. Copyright © 2017 Elsevier Ltd. All rights reserved.
Phenotypic characterization of ten methanol oxidation (Mox) mutant classes in methylobacterium AM1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nunn, D.N.; Lidstrom, M.E.
Twenty-five methanol oxidation mutants of the facultative methylotroph Methylobacterium strain AM1 have been characterized by complementation analysis and assigned to ten complementation groups, Mox A1,A2,A3 and B-H. We have characterized each of the mutants belonging to the ten Mox complementation groups by PMS-DCPIP dye linked methanol dehydrogenase activity, by methanol-dependent whole cell oxygen consumption, by the presence or absence of methanol dehydrogenase protein by SDS-polyacrylamide gels and Western blotting, by the absorption spectra of purified mutant methanol dehydrogenase proteins and by the presence or absence of the soluble cytochrome c proteins of Methylobacterium AM1. We propose functions for each ofmore » the genes deficient in the mutants of the ten Mox complementation groups. These functions include two linked genes that encode the methanol dehydrogenase structural protein and the soluble cytochrome c/sub L/, a gene encoding a secretion function essential for the synthesis and export of methanol dehydrogenase and cytochrome c/sub L/, three gene functions responsible for the proper association of the PQQ prosthetic group with the methanol dehydrogenase apoprotein and four positive regulatory gene functions controlling the expression of the ability to oxidize methanol. 24 refs., 5 figs., 2 tabs.« less
Electrochemical reduction of (U-40Pu-5Np)O 2 in molten LiCl electrolyte
NASA Astrophysics Data System (ADS)
Iizuka, Masatoshi; Sakamura, Yoshiharu; Inoue, Tadashi
2006-12-01
The electrochemical reduction of neptunium-containing MOX ((U-40Pu-5Np)O 2) was performed in molten lithium chloride melt at 923 K to investigate fundamental behavior of the transuranium elements and applicability of the method to reduction process for these materials. The Np-MOX was electrochemically reduced at the potential lower than -0.6 V vs. Bi-35 mol% Li reference electrode. The reduced metal grains in the surface region of the sample cohered with each other and made the layer of relatively high density, although it did not prevent the reduction of the sample toward the center. Complete reduction of the Np-MOX was shown by the weight change measurement through the electrochemical reduction and also by SEM-EDX observation. The chemical composition of the reduction products was homogeneous and agreed to that of the initial Np-MOX, which indicates that the reduction was completed and not selective among the actinides. The concentrations of the actinide elements, especially plutonium and americium in the electrolyte, increased with the progress of the tests, although their absolute values were very small. It is quite likely that plutonium and americium dissolve into the melt in the same manner as the lanthanide elements in the lithium reduction process.
A screening tool for delineating subregions of steady recharge within groundwater models
Dickinson, Jesse; Ferré, T.P.A.; Bakker, Mark; Crompton, Becky
2014-01-01
We have developed a screening method for simplifying groundwater models by delineating areas within the domain that can be represented using steady-state groundwater recharge. The screening method is based on an analytical solution for the damping of sinusoidal infiltration variations in homogeneous soils in the vadose zone. The damping depth is defined as the depth at which the flux variation damps to 5% of the variation at the land surface. Groundwater recharge may be considered steady where the damping depth is above the depth of the water table. The analytical solution approximates the vadose zone diffusivity as constant, and we evaluated when this approximation is reasonable. We evaluated the analytical solution through comparison of the damping depth computed by the analytic solution with the damping depth simulated by a numerical model that allows variable diffusivity. This comparison showed that the screening method conservatively identifies areas of steady recharge and is more accurate when water content and diffusivity are nearly constant. Nomograms of the damping factor (the ratio of the flux amplitude at any depth to the amplitude at the land surface) and the damping depth were constructed for clay and sand for periodic variations between 1 and 365 d and flux means and amplitudes from nearly 0 to 1 × 10−3 m d−1. We applied the screening tool to Central Valley, California, to identify areas of steady recharge. A MATLAB script was developed to compute the damping factor for any soil and any sinusoidal flux variation.
NASA Technical Reports Server (NTRS)
Goodrich, John W.
2017-01-01
This paper presents results from numerical experiments for controlling the error caused by a damping layer boundary treatment when simulating the propagation of an acoustic signal from a continuous pressure source. The computations are with the 2D Linearized Euler Equations (LEE) for both a uniform mean flow and a steady parallel jet. The numerical experiments are with algorithms that are third, fifth, seventh and ninth order accurate in space and time. The numerical domain is enclosed in a damping layer boundary treatment. The damping is implemented in a time accurate manner, with simple polynomial damping profiles of second, fourth, sixth and eighth power. At the outer boundaries of the damping layer the propagating solution is uniformly set to zero. The complete boundary treatment is remarkably simple and intrinsically independant from the dimension of the spatial domain. The reported results show the relative effect on the error from the boundary treatment by varying the damping layer width, damping profile power, damping amplitude, propagtion time, grid resolution and algorithm order. The issue that is being addressed is not the accuracy of the numerical solution when compared to a mathematical solution, but the effect of the complete boundary treatment on the numerical solution, and to what degree the error in the numerical solution from the complete boundary treatment can be controlled. We report maximum relative absolute errors from just the boundary treatment that range from O[10-2] to O[10-7].
Day, Judy D.; Metes, Diana M.; Vodovotz, Yoram
2015-01-01
A mathematical model of the early inflammatory response in transplantation is formulated with ordinary differential equations. We first consider the inflammatory events associated only with the initial surgical procedure and the subsequent ischemia/reperfusion (I/R) events that cause tissue damage to the host as well as the donor graft. These events release damage-associated molecular pattern molecules (DAMPs), thereby initiating an acute inflammatory response. In simulations of this model, resolution of inflammation depends on the severity of the tissue damage caused by these events and the patient’s (co)-morbidities. We augment a portion of a previously published mathematical model of acute inflammation with the inflammatory effects of T cells in the absence of antigenic allograft mismatch (but with DAMP release proportional to the degree of graft damage prior to transplant). Finally, we include the antigenic mismatch of the graft, which leads to the stimulation of potent memory T cell responses, leading to further DAMP release from the graft and concomitant increase in allograft damage. Regulatory mechanisms are also included at the final stage. Our simulations suggest that surgical injury and I/R-induced graft damage can be well-tolerated by the recipient when each is present alone, but that their combination (along with antigenic mismatch) may lead to acute rejection, as seen clinically in a subset of patients. An emergent phenomenon from our simulations is that low-level DAMP release can tolerize the recipient to a mismatched allograft, whereas different restimulation regimens resulted in an exaggerated rejection response, in agreement with published studies. We suggest that mechanistic mathematical models might serve as an adjunct for patient- or sub-group-specific predictions, simulated clinical studies, and rational design of immunosuppression. PMID:26441988
Analytical Solution and Physics of a Propellant Damping Device
NASA Technical Reports Server (NTRS)
Yang, H. Q.; Peugeot, John
2011-01-01
NASA design teams have been investigating options for "detuning" Ares I to prevent oscillations originating in the vehicle solid-rocket main stage from synching up with the natural resonance of the rest of the vehicle. An experimental work started at NASA MSFC center in 2008 using a damping device showed great promise in damping the vibration level of an 8 resonant tank. However, the mechanisms of the vibration damping were not well understood and there were many unknowns such as the physics, scalability, technology readiness level (TRL), and applicability for the Ares I vehicle. The objectives of this study are to understand the physics of intriguing slosh damping observed in the experiments, to further validate a Computational Fluid Dynamics (CFD) software in propellant sloshing against experiments with water, and to study the applicability and efficiency of the slosh damper to a full scale propellant tank and to cryogenic fluids. First a 2D fluid-structure interaction model is built to model the system resonance of liquid sloshing and structure vibration. A damper is then added into the above model to simulate experimentally observed system damping phenomena. Qualitative agreement is found. An analytical solution is then derived from the Newtonian dynamics for the thrust oscillation damper frequency, and a slave mass concept is introduced in deriving the damper and tank interaction dynamics. The paper will elucidate the fundamental physics behind the LOX damper success from the derivation of the above analytical equation of the lumped Newtonian dynamics. Discussion of simulation results using high fidelity multi-phase, multi-physics, fully coupled CFD structure interaction model will show why the LOX damper is unique and superior compared to other proposed mitigation techniques.
Effect of squeeze on electrostatic TG wave damping
NASA Astrophysics Data System (ADS)
Ashourvan, A.; Dubin, D. H. E.
2013-03-01
We present a 1D theory, neglecting radial dependency, for the damping of cylindrically symmetric plasma modes due to a cylindrically symmetric squeeze potential Vsq(z), applied to the axial midpoint of a non-neutral plasma column. Inside the plasma, particles experience a much smaller, Debye shielded squeeze potential φ0(z) of magnitude φs. The squeeze divides the plasma into passing and trapped particles; the latter cannot pass over the squeeze. Both analytical and computer simulation methods were used to study a 1D squeezed plasma mode. For our analytical study, in the regime where qφs/T ≪ 1, we assume the trapped particle population to be negligibly small and we treat qφ0(z) as a pertubation in the equilibrium hamiltonian. Our computer simulations consist of solving the 1D Vlasov-Poisson system and obtaining the damping rate for a self-consistent plasma mode. Damping of the mode in collisionless theory is caused by Landau resonances at energies En for which the bounce frequency ωb(En) and the wave frequency ω satisfy ω = nωb(En). Particles experience a non-sinusoidal wave potential along their bounce orbits due to the squeeze potential. As a result, the squeeze induces bounce harmonics with n ≫ 1 in the perturbed distribution. The harmonics allow resonances at energies En ≤ T and cause a substantial damping, even at wave phase velocities much larger than the thermal velocity, which is not expected for an unsqueezed plasma. In the regime ω/k≫√T/m (k is the wave number) and T ≫ qφs, the resonance damping rate has a |Vsq|2 dependence. This behavior is consistent with the observed experimental results.
NASA Technical Reports Server (NTRS)
Saravanos, D. A.
1993-01-01
The development of novel composite mechanics for the analysis of damping in composite laminates and structures and the more significant results of this effort are summarized. Laminate mechanics based on piecewise continuous in-plane displacement fields are described that can represent both intralaminar stresses and interlaminar shear stresses and the associated effects on the stiffness and damping characteristics of a composite laminate. Among other features, the mechanics can accurately model the static and damped dynamic response of either thin or thick composite laminates, as well as, specialty laminates with embedded compliant damping layers. The discrete laminate damping theory is further incorporated into structural analysis methods. In this context, an exact semi-analytical method for the simulation of the damped dynamic response of composite plates was developed. A finite element based method and a specialty four-node plate element were also developed for the analysis of composite structures of variable shape and boundary conditions. Numerous evaluations and applications demonstrate the quality and superiority of the mechanics in predicting the damped dynamic characteristics of composite structures. Finally, additional development was focused on the development of optimal tailoring methods for the design of thick composite structures based on the developed analytical capability. Applications on composite plates illustrated the influence of composite mechanics in the optimal design of composites and the potential for significant deviations in the resultant designs when more simplified (classical) laminate theories are used.
Uncertainties for Swiss LWR spent nuclear fuels due to nuclear data
NASA Astrophysics Data System (ADS)
Rochman, Dimitri A.; Vasiliev, Alexander; Dokhane, Abdelhamid; Ferroukhi, Hakim
2018-05-01
This paper presents a study of the impact of the nuclear data (cross sections, neutron emission and spectra) on different quantities for spent nuclear fuels (SNF) from Swiss power plants: activities, decay heat, neutron and gamma sources and isotopic vectors. Realistic irradiation histories are considered using validated core follow-up models based on CASMO and SIMULATE. Two Pressurized and one Boiling Water Reactors (PWR and BWR) are considered over a large number of operated cycles. All the assemblies at the end of the cycles are studied, being reloaded or finally discharged, allowing spanning over a large range of exposure (from 4 to 60 MWd/kgU for ≃9200 assembly-cycles). Both UO2 and MOX fuels were used during the reactor cycles, with enrichments from 1.9 to 4.7% for the UO2 and 2.2 to 5.8% Pu for the MOX. The SNF characteristics presented in this paper are calculated with the SNF code. The calculated uncertainties, based on the ENDF/B-VII.1 library are obtained using a simple Monte Carlo sampling method. It is demonstrated that the impact of nuclear data is relatively important (e.g. up to 17% for the decay heat), showing the necessity to consider them for safety analysis of the SNF handling and disposal.
Validation of Analytical Damping Ratio by Fatigue Stress Limit
NASA Astrophysics Data System (ADS)
Foong, Faruq Muhammad; Chung Ket, Thein; Beng Lee, Ooi; Aziz, Abdul Rashid Abdul
2018-03-01
The optimisation process of a vibration energy harvester is usually restricted to experimental approaches due to the lack of an analytical equation to describe the damping of a system. This study derives an analytical equation, which describes the first mode damping ratio of a clamp-free cantilever beam under harmonic base excitation by combining the transverse equation of motion of the beam with the damping-stress equation. This equation, as opposed to other common damping determination methods, is independent of experimental inputs or finite element simulations and can be solved using a simple iterative convergence method. The derived equation was determined to be correct for cases when the maximum bending stress in the beam is below the fatigue limit stress of the beam. However, an increasing trend in the error between the experiment and the analytical results were observed at high stress levels. Hence, the fatigue limit stress was used as a parameter to define the validity of the analytical equation.
A Noise Spectroscopy-Based Selective Gas Sensing with MOX Gas Sensors
NASA Astrophysics Data System (ADS)
Gomri, S.; Seguin, J.; Contaret, T.; Fiorido, T.; Aguir, K.
We propose a new method for obtaining a fluctuation-enhanced sensing (FES) signature of a gas using a single metal oxide (MOX) gas micro sensor. Starting from our model of adsorption-desorption (A-D) noise previously developed, we show theoretically that the product of frequency by the power spectrum density (PSD) of the gas sensing layer resistance fluctuations often has a maximum which is characteristic of the gas. This property was experimentally confirmed in the case of the detection of NO2 and O3 using a WO3 sensing layer. This method could be useful for classifying gases. Furthermore, our noise measurements confirm our previous model showing that PSD of the A-Dnoise in MOX gas sensor is a combination of Lorentzians having a low frequency magnitude and a cut-off frequency which depends on the nature of the detected gas.
Active tower damping and pitch balancing - design, simulation and field test
NASA Astrophysics Data System (ADS)
Duckwitz, Daniel; Shan, Martin
2014-12-01
The tower is one of the major components in wind turbines with a contribution to the cost of energy of 8 to 12% [1]. In this overview the load situation of the tower will be described in terms of sources of loads, load components and fatigue contribution. Then two load reduction control schemes are described along with simulation and field test results. Pitch Balancing is described as a method to reduce aerodynamic asymmetry and the resulting fatigue loads. Active Tower Damping is reducing the tower oscillations by applying appropiate pitch angle changes. A field test was conducted on an Areva M5000 wind turbine.
A numerical study of the acoustic radiation due to eddy current-cryostat interactions.
Wang, Yaohui; Liu, Feng; Zhou, Xiaorong; Li, Yu; Crozier, Stuart
2017-06-01
To investigate the acoustic radiation due to eddy current-cryostat interactions and perform a qualitative analysis on noise reduction methods. In order to evaluate the sound pressure level (SPL) of the eddy current induced warm bore wall vibration, a Finite Element (FE) model was created to simulate the noises from both the warm bore wall vibration and the gradient coil assembly. For the SPL reduction of the warm bore wall vibration, we first improved the active shielding of the gradient coil, thus reducing the eddy current on the warm bore wall. A damping treatment was then applied to the warm bore wall to control the acoustic radiation. Initial simulations show that the SPL of the warm bore wall is higher than that of the gradient assembly with typical design shielding ratios at many frequencies. Subsequent simulation results of eddy current control and damping treatment application show that the average SPL reduction of the warm bore wall can be as high as 9.6 dB, and even higher in some frequency bands. Combining eddy current control and suggested damping scheme, the noise level in a MRI system can be effectively reduced. © 2017 American Association of Physicists in Medicine.
Study on Active Suppression Control of Drivetrain Oscillations in an Electric Vehicle
NASA Astrophysics Data System (ADS)
Huang, Lei; Cui, Ying
2017-07-01
Due to the low damping in a central driven electric vehicle and lack of passive damping mechanisms as compared with a conventional vehicle, the vehicle may endure torsional vibrations which may deteriorates the vehicle’s drivability. Thus active damping control strategy is required to reduce the undesirable oscillations in an EV. In this paper, the origin of the vibration and the design of a damping control method to suppress such oscillations to improve the drivability of an EV are studied. The traction motor torque that is given by the vehicle controller is adjusted according to the acceleration rate of the motor speed to attenuate the resonant frequency. Simulations and experiments are performed to validate the system. The results show that the proposed control system can effectively suppress oscillations and hence improve drivability.
Measurement of damping of graphite epoxy materials
NASA Technical Reports Server (NTRS)
Crocker, M. J.
1985-01-01
The design of an experiment to measure the damping of a cylindrical graphite-epoxy specimen with a three point support and a knife edge support is described as well as equipment used in tests conducted to determine the influence of the support at the two ends of the specimen and to simulate an idealized free-free boundary condition at the two edges. A curve fitting technique is being used to process the frequency response data obtained. Experiments conducted on the thin plate specimen also reveal the influence of the end support condition on the damping ratio of the specimen. The damping ratio values measured for both specimens appear to be strongly influenced by the shape of the specimen and appear to depend on length and fiber orientation as well as the presence of discontinuities such as sharp bends, corners, and notches.
NASA Astrophysics Data System (ADS)
Dumitriu, M.
2017-08-01
The paper approaches the issue of reduction in the vertical bending vibrations of the railway vehicle carbody and the ride comfort enhancement at high velocities, starting from the prospect of isolating the vibrations by the best possible selection of the passive suspension damping in the vehicle. To this purpose, the examination falls on the influence of the vertical suspension damping upon the vibrations regime of the vehicle at the bending resonance frequency and upon the ride comfort. The results of the numerical simulations regarding the frequency response of the carbody acceleration and the comfort index will be therefore used. A value of the secondary suspension damping can be thus identified that will provide the best ride comfort performance. Similarly, the ride comfort can be increased by raising the primary suspension damping ratio.
The formation of co-orbital planets and their resulting transit signatures
NASA Astrophysics Data System (ADS)
Granados Contreras, Agueda Paula; Boley, Aaron
2018-04-01
Systems with Tightly-packed Inner Planets (STIPs) are metastable, exhibiting sudden transitions to an unstable state that can potentially lead to planet consolidation. When these systems are embedded in a gaseous disc, planet-disc interactions can significantly reduce the frequency of instabilities, and if they do occur, disc torques alter the dynamical outcomes. We ran a suite of N-body simulations of synthetic 6-planet STIPs using an independent implementation of IAS15 that includes a prescription for gaseous tidal damping. The algorithm is based on the results of disc simulations that self-consistently evolve gas and planets. Even for very compact configurations, the STIPS are resistant to instability when gas is present. However, instability can still occur, and in some cases, the combination of system instability and gaseous damping leads to the formation of co-orbiting planets that are stable even when gas damping is removed. While rare, such systems should be detectable in transit surveys, although the dynamics of the system can make the transit signature difficult to identify.
High β effects on cosmic ray streaming in galaxy clusters
NASA Astrophysics Data System (ADS)
Wiener, Joshua; Zweibel, Ellen G.; Oh, S. Peng
2018-01-01
Diffuse, extended radio emission in galaxy clusters, commonly referred to as radio haloes, indicate the presence of high energy cosmic ray (CR) electrons and cluster-wide magnetic fields. We can predict from theory the expected surface brightness of a radio halo, given magnetic field and CR density profiles. Previous studies have shown that the nature of CR transport can radically effect the expected radio halo emission from clusters (Wiener, Oh & Guo 2013). Reasonable levels of magnetohydrodynamic (MHD) wave damping can lead to significant CR streaming speeds. But a careful treatment of MHD waves in a high β plasma, as expected in cluster environments, reveals damping rates may be enhanced by a factor of β1/2. This leads to faster CR streaming and lower surface brightnesses than without this effect. In this work, we re-examine the simplified, 1D Coma cluster simulations (with radial magnetic fields) of Wiener et al. (2013) and discuss observable consequences of this high β damping. Future work is required to study this effect in more realistic simulations.
Huang, Weiquan; Fang, Tao; Luo, Li; Zhao, Lin; Che, Fengzhu
2017-07-03
The grid strapdown inertial navigation system (SINS) used in polar navigation also includes three kinds of periodic oscillation errors as common SINS are based on a geographic coordinate system. Aiming ships which have the external information to conduct a system reset regularly, suppressing the Schuler periodic oscillation is an effective way to enhance navigation accuracy. The Kalman filter based on the grid SINS error model which applies to the ship is established in this paper. The errors of grid-level attitude angles can be accurately estimated when the external velocity contains constant error, and then correcting the errors of the grid-level attitude angles through feedback correction can effectively dampen the Schuler periodic oscillation. The simulation results show that with the aid of external reference velocity, the proposed external level damping algorithm based on the Kalman filter can suppress the Schuler periodic oscillation effectively. Compared with the traditional external level damping algorithm based on the damping network, the algorithm proposed in this paper can reduce the overshoot errors when the state of grid SINS is switched from the non-damping state to the damping state, and this effectively improves the navigation accuracy of the system.
Tropp, James; Van Criekinge, Mark
2010-09-01
The basic equation describing radiation damping in nuclear magnetic resonance (NMR) is rewritten by means of the reciprocity principle, to remove the dependence of the damping constant upon filling factor - a parameter which is neither uniquely defined for easily measured. The new equation uses instead the transceive efficiency, i.e. the peak amplitude of the radiofrequency B field in laboratory coordinates, divided by the square root of the resistance of the detection coil, for which a simple and direct means of measurement exists. We use the efficiency to define the intrinsic damping constant, i.e. that which obtains when both probe and preamplifier are perfectly matched to the system impedance. For imperfect matching of the preamp, it is shown that the damping constant varies with electrical distance to the probe, and equations are given and simulations performed, to predict the distance dependence, which (for lossless lines) is periodic modulo a half wavelength. Experimental measurements of the radiation-damped free induction NMR signal of protons in neat water are performed at a static B field strength of 14.1T; and an intrinsic damping constant measured using the variable line method. For a sample of 5mm diameter, in an inverse detection probe we measure an intrinsic damping constant of 204 s(-1), corresponding to a damping linewidth of 65 Hz for small tip angles. The predicted intrinsic linewidth, based upon three separate measurements of the efficiency, is 52.3 Hz, or 80% of the measured value. (c) 2010 Elsevier Inc. All rights reserved.
A comparison of two integrated approaches of controlling nematode parasites in small ruminants.
Miller, J E; Burke, J M; Terrill, T H; Kearney, M T
2011-06-10
Control of gastrointestinal nematodes (GIN) in small ruminants in regions of the world where anthelmintic resistance is prevalent must rely on more than just chemical deworming strategies. The objective of this experiment was to compare two integrated treatment protocols for control of GIN (primarily Haemonchus contortus in this region) using anthelmintics, copper oxide wire particles (COWP) and FAMACHA(©), compared to traditional anthelmintic use only. Three separate trials were conducted on mature ewes, weaned goats, and weaned lambs in which three deworming management strategies were applied: 1) all animals were dewormed with levamisole at four week intervals (LEV), 2) individual animals were dewormed with moxidectin when scored≥4 (ewes) or ≥3 (kids and lambs) using FAMACHA(©) (FAM/MOX), 3) all animals were dewormed with moxidectin initially and again with COWP (2g) when group mean FEC exceeded 500 (ewes), 3000 (kids), or 1000 (lambs) eggs/g (MOX/COWP). In this final group, during periods between group treatments, individual animals were dewormed with albendazole and levamisole according to FAMACHA(©) score. Fecal egg counts (FEC) and blood packed cell volume (PCV) were determined every 7 days and body weight every 28 days for 30, 20, or 16 weeks in ewes, goats, and lambs, respectively. Efficacy of levamisole was 83.4-86.4%, efficacy of moxidectin was 93.5-100%, and efficacy of COWP was 10.8-98.1% among the three trials. The mean number of deworming treatments per animal that occurred for the LEV, FAM/MOX, and MOX/COWP groups, respectively, was 7.9, 0.6, and 2.5±0.4 (P<0.001) for ewes, 5.2, 1.6, and 3.4±0.3 (P<0.001) for goats, and 4.0, 1.7, and 3.6±0.2 (P<0.001) for lambs. Production (body weight of lambs weaned from ewes or final body weight of kids and lambs) was similar among management strategy groups for ewes and kids, but FAM/MOX lambs were lighter by the end of the trial (P<0.003). While more time and labor was required to use the FAMACHA(©) system, a more conservative use of anthelmintics occurred in the FAM/MOX group. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lehmann, M. F.; Niemann, H.; Bartosiewicz, M.; Blees, J.; Steinle, L.; Su, G.; Zopfi, J.
2016-12-01
The standing paradigm is that methane (CH4) production through methanogenesis occurs exclusively under anoxic conditions and that at least in freshwater environments most of the biogenic CH4 is oxidized by aerobic methanotrophic bacteria (MOB) under oxic conditions. However, subsurface CH4 accumulation in oxic waters, a phenomenon referred to as the "CH4 paradox", has been observed both in the ocean and in lakes, and suggests in-situ CH4 production or a remarkable tolerance of at least some methanogens to O2. Analogously, MOB seem to thrive also under micro-oxic conditions, i.e., they may be responsible for significant CH4 turnover at extremely low O2 concentrations. O2 availability particularly within the sub-micromolar range is likely one of the key factors controlling the balance between CH4 production and consumption in redox-transition zones of aquatic environments, yet threshold O2 concentrations are poorly constrained. Here we provide multiple lines of evidence for apparent "methanogenesis" in well-oxygenated waters and discuss the potential mechanisms that lead to CH4 accumulation in the oxic epilimnia of two south-alpine lakes. On the other end, we present data from a deep meromictic lake, which indicate aerobic CH4 oxidation (MOx) at O2 concentrations below the detection limit of common O2 sensors. A strong MOx potential throughout the anoxic hyplimnion of the studied lake implies that the MOB community is able to survive prolonged periods of O2 starvation and is capable to rapidly resume microaerobic MOx upon introduction of low levels of O2. This conclusion is qualitatively consistent with field data from a coastal shelf environment in the Baltic Sea, where we observed maximum MOx rates during the summer stratification period when O2 concentrations were lowest, implying that in both environments MOx bacteria are adapted to trace levels of O2. Indeed, laboratory experiments at different manipulated O2 concentration levels suggest a nanomolar O2 optimum for MOx in both environments. The very low O2 requirements may reflect the adaption of water column MOB at the organismic level to O2-limited conditions, with several ecological advantages: it allows them to escape grazing pressure and to avoid the detrimental effects of oxidative stress and/or CH4 starvation in more oxygenated waters.
Pulsation damping of the reciprocating compressor with Helmholtz resonator
NASA Astrophysics Data System (ADS)
Wang, W.; Zhang, Y.; Zhou, Q.; Peng, X.; Feng, J.; Jia, X.
2017-08-01
Research presented in this paper investigated the mounting of a Helmholtz resonator near the valve chamber of a reciprocating compressor to attenuate the gas pulsation in the valve chamber as well as the pipeline downstream. Its attenuation characteristics were simulated with the plane wave theory together with the transfer matrix method, and the damping effect was checked by comparing the pressure pulsation levels before and after mounting the resonator. The results show that the Helmholtz resonator was effective in attenuating the gas pulsation in the valve chamber and piping downstream, and the pulsation level was decreased by 40% in the valve chamber and 30% at maximum in the piping downstream. The damping effect of the resonator was sensitive to its resonant frequency, and various resonators working simultaneously didn’t interfere with each other. When two resonators were mounted in parallel, with resonant frequencies equal to the second and fourth harmonic frequencies, the pressure pulsation components corresponding to the resonant frequencies were remarkably decreased at the same time, while the pulsation levels at other harmonic frequencies kept almost unchanged. After a series of simulations and experiments a design criterion of chock tube and volume parameter has been proposed for the targeted frequencies to be damped. Furthermore, the frequency-adjustable Helmholtz resonator which was applied to the variable speed compressor was investigated.
An algorithm to resolve γ-rays from charged cosmic rays with DAMPE
NASA Astrophysics Data System (ADS)
Xu, Zun-Lei; Duan, Kai-Kai; Shen, Zhao-Qiang; Lei, Shi-Jun; Dong, Tie-Kuang; Gargano, Fabio; Garrappa, Simone; Guo, Dong-Ya; Jiang, Wei; Li, Xiang; Liang, Yun-Feng; Mazziotta, Mario Nicola; Munoz Salinas, Maria Fernanda; Su, Meng; Vagelli, Valerio; Yuan, Qiang; Yue, Chuan; Zang, Jing-Jing; Zhang, Ya-Peng; Zhang, Yun-Long; Zimmer, Stephan
2018-03-01
The DArk Matter Particle Explorer (DAMPE), also known as Wukong in China, which was launched on 2015 December 17, is a new high energy cosmic ray and γ-ray satellite-borne observatory. One of the main scientific goals of DAMPE is to observe GeV-TeV high energy γ-rays with accurate energy, angular and time resolution, to indirectly search for dark matter particles and for the study of high energy astrophysics. Due to the comparatively higher fluxes of charged cosmic rays with respect to γ-rays, it is challenging to identify γ-rays with sufficiently high efficiency, minimizing the amount of charged cosmic ray contamination. In this work we present a method to identify γ-rays in DAMPE data based on Monte Carlo simulations, using the powerful electromagnetic/hadronic shower discrimination provided by the calorimeter and the veto detection of charged particles provided by the plastic scintillation detector. Monte Carlo simulations show that after this selection the number of electrons and protons that contaminate the selected γ-ray events at ∼ 10GeV amounts to less than 1% of the selected sample. Finally, we use flight data to verify the effectiveness of the method by highlighting known γ-ray sources in the sky and by reconstructing preliminary light curves of the Geminga pulsar.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Z.; Klann, R. T.; Nuclear Engineering Division
2007-08-03
An initial series of calculations of the reactivity-worth of the OSMOSE samples in the MINERVE reactor with the R2-UO2 and MORGANE/R core configuration were completed. The calculation model was generated using the lattice physics code DRAGON. In addition, an initial comparison of calculated values to experimental measurements was performed based on preliminary results for the R1-MOX configuration.
Osudar, Roman; Liebner, Susanne; Alawi, Mashal; Yang, Sizhong; Bussmann, Ingeborg; Wagner, Dirk
2016-08-01
Large amounts of organic carbon are stored in Arctic permafrost environments, and microbial activity can potentially mineralize this carbon into methane, a potent greenhouse gas. In this study, we assessed the methane budget, the bacterial methane oxidation (MOX) and the underlying environmental controls of arctic lake systems, which represent substantial sources of methane. Five lake systems located on Samoylov Island (Lena Delta, Siberia) and the connected river sites were analyzed using radiotracers to estimate the MOX rates, and molecular biology methods to characterize the abundance and the community composition of methane-oxidizing bacteria (MOB). In contrast to the river, the lake systems had high variation in the methane concentrations, the abundance and composition of the MOB communities, and consequently, the MOX rates. The highest methane concentrations and the highest MOX rates were detected in the lake outlets and in a lake complex in a flood plain area. Though, in all aquatic systems, we detected both, Type I and II MOB, in lake systems, we observed a higher diversity including MOB, typical of the soil environments. The inoculation of soil MOB into the aquatic systems, resulting from permafrost thawing, might be an additional factor controlling the MOB community composition and potentially methanotrophic capacity. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Oxidative mitigation of aquatic methane emissions in large Amazonian rivers.
Sawakuchi, Henrique O; Bastviken, David; Sawakuchi, André O; Ward, Nicholas D; Borges, Clovis D; Tsai, Siu M; Richey, Jeffrey E; Ballester, Maria Victoria R; Krusche, Alex V
2016-03-01
The flux of methane (CH4 ) from inland waters to the atmosphere has a profound impact on global atmospheric greenhouse gas (GHG) levels, and yet, strikingly little is known about the dynamics controlling sources and sinks of CH4 in the aquatic setting. Here, we examine the cycling and flux of CH4 in six large rivers in the Amazon basin, including the Amazon River. Based on stable isotopic mass balances of CH4 , inputs and outputs to the water column were estimated. We determined that ecosystem methane oxidation (MOX) reduced the diffusive flux of CH4 by approximately 28-96% and varied depending on hydrologic regime and general geochemical characteristics of tributaries of the Amazon River. For example, the relative amount of MOX was maximal during high water in black and white water rivers and minimal in clear water rivers during low water. The abundance of genetic markers for methane-oxidizing bacteria (pmoA) was positively correlated with enhanced signals of oxidation, providing independent support for the detected MOX patterns. The results indicate that MOX in large Amazonian rivers can consume from 0.45 to 2.07 Tg CH4 yr(-1) , representing up to 7% of the estimated global soil sink. Nevertheless, climate change and changes in hydrology, for example, due to construction of dams, can alter this balance, influencing CH4 emissions to atmosphere. © 2015 John Wiley & Sons Ltd.
New developments and prospects on COSI, the simulation software for fuel cycle analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eschbach, R.; Meyer, M.; Coquelet-Pascal, C.
2013-07-01
COSI, software developed by the Nuclear Energy Direction of the CEA, is a code simulating a pool of nuclear power plants with its associated fuel cycle facilities. This code has been designed to study various short, medium and long term options for the introduction of various types of nuclear reactors and for the use of associated nuclear materials. In the frame of the French Act for waste management, scenario studies are carried out with COSI, to compare different options of evolution of the French reactor fleet and options of partitioning and transmutation of plutonium and minor actinides. Those studies aimmore » in particular at evaluating the sustainability of Sodium cooled Fast Reactors (SFR) deployment and the possibility to transmute minor actinides. The COSI6 version is a completely renewed software released in 2006. COSI6 is now coupled with the last version of CESAR (CESAR5.3 based on JEFF3.1.1 nuclear data) allowing the calculations on irradiated fuel with 200 fission products and 100 heavy nuclides. A new release is planned in 2013, including in particular the coupling with a recommended database of reactors. An exercise of validation of COSI6, carried out on the French PWR historic nuclear fleet, has been performed. During this exercise quantities like cumulative natural uranium consumption, or cumulative depleted uranium, or UOX/MOX spent fuel storage, or stocks of reprocessed uranium, or plutonium content in fresh MOX fuel, or the annual production of high level waste, have been computed by COSI6 and compared to industrial data. The results have allowed us to validate the essential phases of the fuel cycle computation, and reinforces the credibility of the results provided by the code.« less
Vlasov Simulation of the Effects of Collisions on the Damping of Electron Plasma Waves
NASA Astrophysics Data System (ADS)
Banks, Jeff; Berger, Richard; Chapman, Thomas; Brunner, Stephan; Tran, T.
2015-11-01
Kinetic simulation of two dimensional plasma waves through direct discretization of the Vlasov equation may be particularly attractive for situations where minimal numerical fluctuation levels are desired, such as when measuring growth rates of plasma wave instabilities. In many cases collisional effects can be important to the evolution of plasma waves because they both set a minimum damping rate for plasma waves and can scatter particles out of resonance through pitch angle scattering. Here we present Vlasov simulations of evolving electron plasma waves (EPWs) in plasmas of varying collisionality. We consider first the effects of electron-ion pitch angle collisions on the frequency and damping, Landau and collisional, of small-amplitude EPWs for a range of collision rates. In addition, the wave phase velocities are extracted from the simulation results and compared with theory. For this study we use the Eulerian-based kinetic code LOKI that evolves the Vlasov-Poisson system in 2+2-dimensional phase space. We then discuss extensions of the collision operator to include thermalization. Discretization of these collision operators using 4th order accurate conservative finite-differencing will be discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the LDRD program at LLNL under project tracking code 15-ERD-038.
NASA Astrophysics Data System (ADS)
Ping, Ping; Zhang, Yu; Xu, Yixian; Chu, Risheng
2016-12-01
In order to improve the perfectly matched layer (PML) efficiency in viscoelastic media, we first propose a split multi-axial PML (M-PML) and an unsplit convolutional PML (C-PML) in the second-order viscoelastic wave equations with the displacement as the only unknown. The advantage of these formulations is that it is easy and efficient to revise the existing codes of the second-order spectral element method (SEM) or finite-element method (FEM) with absorbing boundaries in a uniform equation, as well as more economical than the auxiliary differential equations PML. Three models which are easily suffered from late time instabilities are considered to validate our approaches. Through comparison the M-PML with C-PML efficiency of absorption and stability for long time simulation, it can be concluded that: (1) for an isotropic viscoelastic medium with high Poisson's ratio, the C-PML will be a sufficient choice for long time simulation because of its weak reflections and superior stability; (2) unlike the M-PML with high-order damping profile, the M-PML with second-order damping profile loses its stability in long time simulation for an isotropic viscoelastic medium; (3) in an anisotropic viscoelastic medium, the C-PML suffers from instabilities, while the M-PML with second-order damping profile can be a better choice for its superior stability and more acceptable weak reflections than the M-PML with high-order damping profile. The comparative analysis of the developed methods offers meaningful significance for long time seismic wave modeling in second-order viscoelastic wave equations.
Simulation of linear and nonlinear Landau damping of lower hybrid waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Lei; Wang, X. Y.; Lin, Y.
2013-06-15
The linear physics of lower hybrid waves (LHWs) and their nonlinear interaction with particles through Landau damping are studied with the gyrokinetic electron and fully kinetic ion (GeFi) particle simulation model in the electrostatic limit. Unlike most other wave modes, the LHWs can resonantly interact with both electrons and ions, with the former being highly magnetized and latter nearly unmagnetized around the lower hybrid frequency. Direct interactions of LHWs with electrons and/or ions are investigated for cases with various k{sub ∥}/k,T{sub i}/T{sub e}, and wave amplitudes. In the linear electron Landau damping (ELD), the dispersion relation and the linear dampingmore » rate obtained from our simulation agree well with the analytical linear theory. As the wave amplitude increases, the nonlinear Landau effects are present, and a transition from strong decay at smaller amplitudes to weak decay at larger amplitudes is observed. In the nonlinear stage, the LHWs in the long time evolution finally exhibit a steady Bernstein-Greene-Kruskal mode, in which the wave amplitude is saturated above the noise level. While the resonant electrons are trapped in the wave field in the nonlinear ELD, the resonant ions are untrapped in the LHW time scales. The ion Landau damping is thus predominantly in a linear fashion, leading to a wave saturation level significantly lower than that in the ELD. On the long time scales, however, the ions are still weakly trapped. The results show a coupling between the LHW frequency and the ion cyclotron frequency during the long-time LHW evolution.« less
Direct measurement of Kramers turnover with a levitated nanoparticle
NASA Astrophysics Data System (ADS)
Rondin, Loïc; Gieseler, Jan; Ricci, Francesco; Quidant, Romain; Dellago, Christoph; Novotny, Lukas
2017-12-01
Understanding the thermally activated escape from a metastable state is at the heart of important phenomena such as the folding dynamics of proteins, the kinetics of chemical reactions or the stability of mechanical systems. In 1940, Kramers calculated escape rates both in the high damping and low damping regimes, and suggested that the rate must have a maximum for intermediate damping. This phenomenon, today known as the Kramers turnover, has triggered important theoretical and numerical studies. However, as yet, there is no direct and quantitative experimental verification of this turnover. Using a nanoparticle trapped in a bistable optical potential, we experimentally measure the nanoparticle's transition rates for variable damping and directly resolve the Kramers turnover. Our measurements are in agreement with an analytical model that is free of adjustable parameters. The levitated nanoparticle presented here is a versatile experimental platform for studying and simulating a wide range of stochastic processes and testing theoretical models and predictions.
Xiao, Xiaofei; Hao, Weiya; Li, Xuhong; Wan, Bingjun; Shan, Gongbing
2017-01-01
About 70% injury of gymnasts happened during landing - an interaction between gymnast and landing mat. The most injured joint is the ankle. The current study examined the effect of mechanical properties of landing mat on ankle loading with aims to identify means of decreasing the risk of ankle injury. Gymnastic skill - salto backward stretched with 3/2 twist was captured by two high-speed camcorders and digitized by using SIMI-Motion software. A subject-specific, 14-segment rigid-body model and a mechanical landing-mat model were built using BRG.LifeMODTM. The landings were simulated with varied landing-mat mechanical properties (i.e., stiffness, dampness and friction coefficients). Real landing performance could be accurately reproduced by the model. The simulations revealed that the ankle angle was relatively sensitive to stiffness and dampness of the landing mat, the ankle loading rate increased 26% when the stiffness was increased by 30%, and the changing of dampness had notable effect on horizontal ground reaction force and foot velocity. Further, the peak joint-reaction force and joint torque were more sensitive to friction than to stiffness and dampness of landing mat. Finally, ankle muscles would dissipate about twice energy (189%) when the friction was increased by 30%. Loads to ankles during landing would increase as the stiffness and dampness of the landing mat increase. Yet, increasing friction would cause a substantial rise of the ankle internal loads. As such, the friction should be a key factor influencing the risk of injury. Unfortunately, this key factor has rarely attracted attention in practice.
A generalized plasma dispersion function for electron damping in tokamak plasmas
Berry, L. A.; Jaeger, E. F.; Phillips, C. K.; ...
2016-10-14
Radio frequency wave propagation in finite temperature, magnetized plasmas exhibits a wide range of physics phenomena. The plasma response is nonlocal in space and time, and numerous modes are possible with the potential for mode conversions and transformations. Additionally, diffraction effects are important due to finite wavelength and finite-size wave launchers. Multidimensional simulations are required to describe these phenomena, but even with this complexity, the fundamental plasma response is assumed to be the uniform plasma response with the assumption that the local plasma current for a Fourier mode can be described by the Stix conductivity. But, for plasmas with non-uniformmore » magnetic fields, the wave vector itself is nonlocal. When resolved into components perpendicular (k ) and parallel (k ||) to the magnetic field, locality of the parallel component can easily be violated when the wavelength is large. The impact of this inconsistency is that estimates of the wave damping can be incorrect (typically low) due to unresolved resonances. For the case of ion cyclotron damping, this issue has already been addressed by including the effect of parallel magnetic field gradients. In this case, a modified plasma response (Z function) allows resonance broadening even when k || = 0, and this improves the convergence and accuracy of wave simulations. In our paper, we extend this formalism to include electron damping and find improved convergence and accuracy for parameters where electron damping is dominant, such as high harmonic fast wave heating in the NSTX-U tokamak, and helicon wave launch for off-axis current drive in the DIII-D tokamak.« less
NASA Astrophysics Data System (ADS)
Brewick, P. T.; Smyth, A. W.
2014-12-01
The accurate and reliable estimation of modal damping from output-only vibration measurements of structural systems is a continuing challenge in the fields of operational modal analysis (OMA) and system identification. In this paper a modified version of the blind source separation (BSS)-based Second-Order Blind Identification (SOBI) method was used to perform modal damping identification on a model bridge structure under varying loading conditions. The bridge model was created with finite elements and consisted of a series of stringer beams supported by a larger girder. The excitation was separated into two categories: ambient noise and traffic loads with noise modeled with random forcing vectors and traffic simulated with moving loads for cars and partially distributed moving masses for trains. The acceleration responses were treated as the mixed output signals for the BSS algorithm. The modified SOBI method used a windowing technique to maximize the amount of information used for blind identification from the responses. The modified SOBI method successfully found the mode shapes for both types of excitation with strong accuracy, but power spectral densities (PSDs) of the recovered modal responses showed signs of distortion for the traffic simulations. The distortion had an adverse affect on the damping ratio estimates for some of the modes but no correlation could be found between the accuracy of the damping estimates and the accuracy of the recovered mode shapes. The responses and their PSDs were compared to real-world collected data and patterns similar to distortion were observed implying that this issue likely affects real-world estimates.
The ROSETTA PHILAE Lander damping mechanism as probe for the Comet soil strength.
NASA Astrophysics Data System (ADS)
Roll, R.
2015-10-01
The ROSETTA Lander is equipped with an one axis damping mechanism to dissipate kinetic energy during the touch down. This damping is necessary to avoid damages to the Lander by a hard landing shock and more important to avoid re-bouncing from ground with high velocity. The damping mechanism works best for perpendicular impact, which means the velocity vector is parallel to the damper axis and all three feet touch the ground at the same time. That is usually not the case. Part of the impact energy can be transferred into rotational energy at ground contact if the impact is not perpendicular. This energy will lift up the Lander from the ground if the harpoons and the hold down thruster fail, as happen in mission. The damping mechanism itself is an electrical generator, driven by a spindle inside a telescopic tube. This tube was extended in mission for landing by 200mm. A maximum damping length of 140mm would be usually required to compensate a landing velocity of 1m/s, if the impact happens perpendicular on hard ground. After landing the potentiometer of the telescopic tube reading shows a total damping length of only 42,5mm. The damping mechanism and the overall mechanical behavior of the Lander at touch down are well tested and characterized and transferred to a multi-body computer model. The incoming and outgoing flightpath of PHILAE allow via computer-simulation the reconstruction of the touch down. It turns out, that the outgoing flight direction is dominated by the local ground slope and that the damping length is strongly dependent on the soil strength. Damping of soft comet ground must be included to fit the damping length measured. Scenario variations of the various feet contact with different local surface features (stone or regolith) and of different soil models finally lead to a restricted range for the soil strength at the touch down area.
Quantum resonances of Landau damping in the electromagnetic response of metallic nanoslabs.
Castillo-López, S G; Makarov, N M; Pérez-Rodríguez, F
2018-05-15
The resonant quantization of Landau damping in far-infrared absorption spectra of metal nano-thin films is predicted within the Kubo formalism. Specifically, it is found that the discretization of the electromagnetic and electron wave numbers inside a metal nanoslab produces quantum nonlocal resonances well-resolved at slab thicknesses smaller than the electromagnetic skin depth. Landau damping manifests itself precisely as such resonances, tracing the spectral curve obtained within the semiclassical Boltzmann approach. For slab thicknesses much greater than the skin depth, the classical regime emerges. Here the results of the quantum model and the Boltzmann approach coincide. Our analytical study is in perfect agreement with corresponding numerical simulations.
Preliminary studies on SMA embedded wind turbine blades for passive control of vibration
NASA Astrophysics Data System (ADS)
Haghdoust, P.; Cinquemani, S.; Lo Conte, A.
2018-03-01
Wind turbine blades are being bigger and bigger, thus requiring lightweight structures that are more flexible and thus more sensitive to dynamic excitations and to vibration problems. This paper investigates a preliminary architecture of large wind turbine blades, embedding thin sheets of SMA to passively improve their total damping. A phenomenological material model is used for simulation of strain-dependent damping in SMA materials and an user defined material model was developed for this purpose. The response of different architectures of SMA embedded blades have been investigated in the time domain to find an optimal solution in which the less amount of SMA is used while the damping of the system is maximized
NASA Astrophysics Data System (ADS)
Zhileykin, M. M.; Kotiev, G. O.; Nagatsev, M. V.
2018-02-01
In order to meet the growing mobility requirements for the wheeled vehicles on all types of terrain the engineers have to develop a large number of specialized control algorithms for the multi-axle wheeled vehicle (MWV) suspension improving such qualities as ride comfort, handling and stability. The authors have developed an adaptive algorithm of the dynamic damping of the MVW body oscillations. The algorithm provides high ride comfort and high mobility of the vehicle. The article discloses a method for synthesis of an adaptive dynamic continuous algorithm of the MVW body oscillation damping and provides simulation results proving high efficiency of the developed control algorithm.
NASA Technical Reports Server (NTRS)
Ku, C.-P. Roger; Walton, James F., Jr.; Lund, Jorgen W.
1994-01-01
This paper provided an opportunity to quantify the angular stiffness and equivalent viscous damping coefficients of an axial spline coupling used in high-speed turbomachinery. A unique test methodology and data reduction procedures were developed. The bending moments and angular deflections transmitted across an axial spline coupling were measured while a nonrotating shaft was excited by an external shaker. A rotor dynamics computer program was used to simulate the test conditions and to correlate the angular stiffness and damping coefficients. In addition, sensitivity analyses were performed to show that the accuracy of the dynamic coefficients do not rely on the accuracy of the data reduction procedures.
NASA Astrophysics Data System (ADS)
Dobaj, K.
2016-09-01
The work deals with the simulation analysis of the half car vehicle model parameters on the suspension testing results. The Matlab simulation software was used. The considered model parameters are involved with the shock absorber damping coefficient, the tire radial stiffness, the car width and the rocker arm length. The consistent vibrations of both test plates were considered. Both wheels of the car were subjected to identical vibration, with frequency changed similar to the EUSAMA Plus principle. The shock absorber damping coefficient (for several values of the car width and rocker arm length) was changed on one and both sides of the vehicle. The obtained results are essential for the new suspension testing algorithm (basing on the EUSAMA Plus principle), which will be the aim of the further author's work.
Mechanical design of NASA Ames Research Center vertical motion simulator
NASA Technical Reports Server (NTRS)
Engelbert, D. F.; Bakke, A. P.; Chargin, M. K.; Vallotton, W. C.
1976-01-01
NASA has designed and is constructing a new flight simulator with large vertical travel. Several aspects of the mechanical design of this Vertical Motion Simulator (VMS) are discussed, including the multiple rack and pinion vertical drive, a pneumatic equilibration system, and the friction-damped rigid link catenaries used as cable supports.
NASA Astrophysics Data System (ADS)
Chen, Ying-Ying; Jin, Fei-Fei
2017-12-01
In this study, a simple coupled framework established in Part I is utilized to investigate inter-model diversity in simulating the equatorial Pacific SST annual cycle (SSTAC). It demonstrates that the simulated amplitude and phase characteristics of SSTAC in models are controlled by two internal dynamical factors (the damping rate and phase speed) and two external forcing factors (the strength of the annual and semi-annual harmonic forcing). These four diagnostic factors are further condensed into a dynamical response factor and a forcing factor to derive theoretical solutions of amplitude and phase of SSTAC. The theoretical solutions are in remarkable agreement with observations and CMIP5 simulations. The great diversity in the simulated SSTACs is related to the spreads in these dynamic and forcing factors. Most models tend to simulate a weak SSTAC, due to their weak damping rate and annual harmonic forcing. The latter is due to bias in the meridional asymmetry of the annual mean state of the tropical Pacific, represented by the weak cross-equatorial winds in the cold tongue region.
NASA Astrophysics Data System (ADS)
Chan, Edward K.; Dutton, Robert W.
1999-03-01
The important practical and realistic design issues of an electrostatic actuator/positioner with full-gap travel are discussed. Analytic expressions and numerical simulations show that parasitic capacitances, and non-uniform deformation in two and three dimensions influence the range of travel of an electrostatic positioner stabilized by the addition of a series capacitor. The effects of residual charge on electrostatically-actuated devices are described. The dynamic stepping characteristics of the positioner under compressible squeeze-film damping and resistive damping are compared. The physical descriptions of devices being fabricated in the MUMPs process are presented along with 3D simulation results that demonstrate viability.
Intra-arterial pressure measurement in neonates: dynamic response requirements.
van Genderingen, H R; Gevers, M; Hack, W W
1995-02-01
A computer simulation of a catheter manometer system was used to quantify measurement errors in neonatal blood pressure parameters. Accurate intra-arterial pressure recordings of 21 critically ill newborns were fed into this simulated system. The dynamic characteristics, natural frequency and damping coefficient, were varied from 2.5 to 60 Hz and from 0.1 to 1.4, respectively. As a result, errors in systolic, diastolic and pulse arterial pressure were obtained as a function of natural frequency and damping coefficient. Iso-error curves for 2%, 5% and 10% were constructed. Using these curves, the maximum inaccuracy of any neonatal catheter manometer system can be determined and used in the clinical setting.
Xiao, Yanwen; Xu, Wei; Wang, Liang
2016-03-01
This paper focuses on the study of the stochastic Van der Pol vibro-impact system with fractional derivative damping under Gaussian white noise excitation. The equations of the original system are simplified by non-smooth transformation. For the simplified equation, the stochastic averaging approach is applied to solve it. Then, the fractional derivative damping term is facilitated by a numerical scheme, therewith the fourth-order Runge-Kutta method is used to obtain the numerical results. And the numerical simulation results fit the analytical solutions. Therefore, the proposed analytical means to study this system are proved to be feasible. In this context, the effects on the response stationary probability density functions (PDFs) caused by noise excitation, restitution condition, and fractional derivative damping are considered, in addition the stochastic P-bifurcation is also explored in this paper through varying the value of the coefficient of fractional derivative damping and the restitution coefficient. These system parameters not only influence the response PDFs of this system but also can cause the stochastic P-bifurcation.
NASA Astrophysics Data System (ADS)
Nguyen, Q. H.; Choi, S. B.; Lee, Y. S.; Han, M. S.
2013-11-01
This paper focuses on the optimal design of a compact and high damping force engine mount featuring magnetorheological fluid (MRF). In the mount, a MR valve structure with both annular and radial flows is employed to generate a high damping force. First, the configuration and working principle of the proposed MR mount is introduced. The MRF flows in the mount are then analyzed and the governing equations of the MR mount are derived based on the Bingham plastic behavior of the MRF. An optimal design of the MR mount is then performed to find the optimal structure of the MR valve to generate a maximum damping force with certain design constraints. In addition, the gap size of MRF ducts is empirically chosen considering the ‘lockup’ problem of the mount at high frequency. Performance of the optimized MR mount is then evaluated based on finite element analysis and discussions on performance results of the optimized MR mount are given. The effectiveness of the proposed MR engine mount is demonstrated via computer simulation by presenting damping force and power consumption.
NASA Astrophysics Data System (ADS)
Lee, Tae-Hoon; Han, Chulhee; Choi, Seung-Bok
2018-01-01
This work proposes a novel type of tunable magnetorheological (MR) damper operated based solely on the location of a permanent magnet incorporated into the piston. To create a larger damping force variation in comparison with the previous model, a different design configuration of the permanent-magnet-based MR (PMMR) damper is introduced to provide magnetic flux dispersion in two magnetic circuits by utilizing two materials with different magnetic reluctance. After discussing the design configuration and some advantages of the newly designed mechanism, the magnetic dispersion principle is analyzed through both the formulated analytical model of the magnetic circuit and the computer simulation based on the magnetic finite element method. Sequentially, the principal design parameters of the damper are determined and fabricated. Then, experiments are conducted to evaluate the variation in damping force depending on the location of the magnet. It is demonstrated that the new design and magnetic dispersion concept are valid showing higher damping force than the previous model. In addition, a curved structure of the two materials is further fabricated and tested to realize the linearity of the damping force variation.
High Harmonic Fast Wave Damping on an Ion Beam: NSTX and DIII-D Regimes Compared
NASA Astrophysics Data System (ADS)
Pinsker, R. I.; Choi, C. C.; Petty, C. C.; Porkolab, M.; Wilson, J. R.; Murakami, M.; Harvey, R. W.
2004-11-01
Both NSTX and DIII-D use the combination of fast Alfven waves (FW) and neutral beam injection (NBI) for central electron heating and current drive. Damping of the fast wave on the beam ions at moderate to high harmonics (4th--20th) of the beam ion cyclotron frequency represents a loss process. In DIII-D current drive experiments at low density in which 4th and 8th harmonics were compared, damping at the 8th harmonic damping was much weaker than at the 4th [1]. However, recent simulations have predicted that in higher density and higher beam power regimes (of interest to the Advanced Tokamak program) the beam ion absorption will transition to the unmagnetized ion regime, where the damping is significant and essentially independent of harmonic number. In the present work, the transition from magnetized to unmagnetized ion regimes for the NSTX and DIII-D HHFW experiments is studied theoretically, with a combination of simple semi-analytic models and numerical models. \\vspace0.25 em [1] C.C. Petty, et al., Plasma Phys. and Contr. Fusion 43, 1747 (2001).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Yanwen; Xu, Wei, E-mail: weixu@nwpu.edu.cn; Wang, Liang
2016-03-15
This paper focuses on the study of the stochastic Van der Pol vibro-impact system with fractional derivative damping under Gaussian white noise excitation. The equations of the original system are simplified by non-smooth transformation. For the simplified equation, the stochastic averaging approach is applied to solve it. Then, the fractional derivative damping term is facilitated by a numerical scheme, therewith the fourth-order Runge-Kutta method is used to obtain the numerical results. And the numerical simulation results fit the analytical solutions. Therefore, the proposed analytical means to study this system are proved to be feasible. In this context, the effects onmore » the response stationary probability density functions (PDFs) caused by noise excitation, restitution condition, and fractional derivative damping are considered, in addition the stochastic P-bifurcation is also explored in this paper through varying the value of the coefficient of fractional derivative damping and the restitution coefficient. These system parameters not only influence the response PDFs of this system but also can cause the stochastic P-bifurcation.« less
Effects of Radiation Damping in Extreme Ultra-intense Laser-Plasma Interaction
NASA Astrophysics Data System (ADS)
Pandit, Rishi R.
Recent advances in the development of intense short pulse lasers are significant. Now it is available to access a laser with intensity 1021W/cm2 by focusing a petawatt class laser. In a few years, the intensity will exceed 1022W/cm2 , at which intensity electrons accelerated by the laser get energy more than 100 MeV and start to emit radiation strongly. Resultingly, the damping of electron motion can become large. In order to study this problem, we developed a code to solve a set of equations describing the evolution of a strong electromagnetic wave interacting with a single electron. Usually the equation of motion of an electron including radiation damping under the influence of electromagnetic fields is derived from the Lorentz-Dirac equation treating the damping as a perturbation. So far people had used the first order damping equation. This is because the second order term seems to be small and actually it is negligible under 1022W/cm2 intensity. The derivation of 2nd order equation is also complicated and challenging. We derived the second order damping equations for the first time and implemented in the code. The code was then tested via single particle motion in the extreme intensity laser. It was found that the 1st order damping term is reasonable up to the intensity 1022W/cm2, but the 2nd oder term becomes not negligible and comparable in magnitude to the first order term beyond 1023W/cm2. The radiation damping model was introduced using a one-dimensional particle-in-cell code (PIC), and tested in the laser-plasma interaction at extreme intensity. The strong damping of hot electrons in high energy tail was demonstrated in PIC simulations.
Parametric survey of longitudinal prominence oscillation simulations
NASA Astrophysics Data System (ADS)
Zhang, Q. M.; Chen, P. F.; Xia, C.; Keppens, R.; Ji, H. S.
2013-06-01
Context. Longitudinal filament oscillations recently attracted increasing attention, while the restoring force and the damping mechanisms are still elusive. Aims: We intend to investigate the underlying physics for coherent longitudinal oscillations of the entire filament body, including their triggering mechanism, dominant restoring force, and damping mechanisms. Methods: With the MPI-AMRVAC code, we carried out radiative hydrodynamic numerical simulations of the longitudinal prominence oscillations. We modeled two types of perturbations of the prominence, impulsive heating at one leg of the loop and an impulsive momentum deposition, which cause the prominence to oscillate. We studied the resulting oscillations for a large parameter scan, including the chromospheric heating duration, initial velocity of the prominence, and field line geometry. Results: We found that both microflare-sized impulsive heating at one leg of the loop and a suddenly imposed velocity perturbation can propel the prominence to oscillate along the magnetic dip. Our extensive parameter survey resulted in a scaling law that shows that the period of the oscillation, which weakly depends on the length and height of the prominence and on the amplitude of the perturbations, scales with √R/g⊙, where R represents the curvature radius of the dip, and g⊙ is the gravitational acceleration of the Sun. This is consistent with the linear theory of a pendulum, which implies that the field-aligned component of gravity is the main restoring force for the prominence longitudinal oscillations, as confirmed by the force analysis. However, the gas pressure gradient becomes significant for short prominences. The oscillation damps with time in the presence of non-adiabatic processes. Radiative cooling is the dominant factor leading to damping. A scaling law for the damping timescale is derived, i.e., τ~ l1.63 D0.66w-1.21v0-0.30, showing strong dependence on the prominence length l, the geometry of the magnetic dip (characterized by the depth D and the width w), and the velocity perturbation amplitude v0. The larger the amplitude, the faster the oscillation damps. We also found that mass drainage significantly reduces the damping timescale when the perturbation is too strong.
Aeromechanical stability augmentation using semi-active friction-based lead-lag damper
NASA Astrophysics Data System (ADS)
Agarwal, Sandeep
2005-11-01
Lead-lag dampers are present in most rotors to provide the required level of damping in all flight conditions. These dampers are a critical component of the rotor system, but they also represent a major source of maintenance cost. In present rotor systems, both hydraulic and elastomeric lead-lag dampers have been used. Hydraulic dampers are complex mechanical components that require hydraulic fluids and have high associated maintenance costs. Elastomeric dampers are conceptually simpler and provide a "dry" rotor, but are rather costly. Furthermore, their damping characteristics can degrade with time without showing external signs of failure. Hence, the dampers must be replaced on a regular basis. A semi-active friction based lead-lag damper is proposed as a replacement for hydraulic and elastomeric dampers. Damping is provided by optimized energy dissipation due to frictional forces in semi-active joints. An actuator in the joint modulates the normal force that controls energy dissipation at the frictional interfaces, resulting in large hysteretic loops. Various selective damping strategies are developed and tested for a simple system containing two different frequency modes in its response, one of which needs to be damped out. The system reflects the situation encountered in rotor response where 1P excitation is present along with the potentially unstable regressive lag motion. Simulation of the system response is obtained to compare their effectiveness. Next, a control law governing the actuation in the lag damper is designed to generate the desired level of damping for performing adaptive selective damping of individual blade lag motion. Further, conceptual design of a piezoelectric friction based lag damper for a full-scale rotor is presented and various factors affecting size, design and maintenance cost, damping capacity, and power requirements of the damper are discussed. The selective semi-active damping strategy is then studied in the context of classical ground resonance problem. In view of the inherent nonlinearity in the system due to friction phenomena, multiblade transformation from rotating frame to nonrotating frame is not useful. Stability analysis of the system is performed in the rotating frame to gain an understanding of the dynamic characteristics of rotor system with attached semi-active friction based lag dampers. This investigation is extended to the ground resonance stability analysis of a comprehensive UH-60 model within the framework of finite element based multibody dynamics formulations. Simulations are conducted to study the performance of several integrated lag dampers ranging from passive to semi-active ones with varying levels of selectivity. Stability analysis is performed for a nominal range of rotor speeds using Prony's method.
Spatial eigenmodes and synchronous oscillation: co-incidence detection in simulated cerebral cortex.
Chapman, Clare L; Wright, James J; Bourke, Paul D
2002-07-01
Zero-lag synchronisation arises between points on the cerebral cortex receiving concurrent independent inputs; an observation generally ascribed to nonlinear mechanisms. Using simulations of cerebral cortex and Principal Component Analysis (PCA) we show patterns of zero-lag synchronisation (associated with empirically realistic spectral content) can arise from both linear and nonlinear mechanisms. For low levels of activation, we show the synchronous field is described by the eigenmodes of the resultant damped wave activity. The first and second spatial eigenmodes (which capture most of the signal variance) arise from the even and odd components of the independent input signals. The pattern of zero-lag synchronisation can be accounted for by the relative dominance of the first mode over the second, in the near-field of the inputs. The simulated cortical surface can act as a few millisecond response coincidence detector for concurrent, but uncorrelated, inputs. As cortical activation levels are increased, local damped oscillations in the gamma band undergo a transition to highly nonlinear undamped activity with 40 Hz dominant frequency. This is associated with "locking" between active sites and spatially segregated phase patterns. The damped wave synchronisation and the locked nonlinear oscillations may combine to permit fast representation of multiple patterns of activity within the same field of neurons.
NASA Technical Reports Server (NTRS)
Corless, L. D.; Blanken, C. L.
1983-01-01
A multi-phase program is being conducted to study, in a generic sense and through ground simulation, the effects of engine response, rotor inertia, rpm control, excess power, and vertical damping on specific maneuvers included in nap-of-the-Earth (NOE) operations. The helicopter configuration with an rpm-governed gas-turbine engine are considered. Handling-qualities-criteria data are considered in light of aspects peculiar to rotary-wing and NOE operations. The results of three moving-based piloted simulation studies are summarized and the frequency, characteristics of the helicopter thrust response which set it apart from other VTOL types are explained. Power-system response is affected by both the engine-governor response and the level of rotor inertia. However, results indicate that with unlimited power, variations in engine response can have a significant effect on pilot rating, whereas changes in rotor inertia, in general, do not. The results also show that any pilot interaction required to maintain proper control can significantly degrade handling qualities. Data for variations in vertical damping and collective sensitivity are compared with existing handling-qualities specifications, MIL-F-83300 and AGARD 577, and show a need for higher minimums for both damping and sensitivity for the bob-up task. Results for cases of limited power are also shown.
NASA Astrophysics Data System (ADS)
Rogers, Keir K.; Bird, Simeon; Peiris, Hiranya V.; Pontzen, Andrew; Font-Ribera, Andreu; Leistedt, Boris
2018-03-01
We measure the effect of high column density absorbing systems of neutral hydrogen (H I) on the one-dimensional (1D) Lyman α forest flux power spectrum using cosmological hydrodynamical simulations from the Illustris project. High column density absorbers (which we define to be those with H I column densities N(H I) > 1.6 × 10^{17} atoms cm^{-2}) cause broadened absorption lines with characteristic damping wings. These damping wings bias the 1D Lyman α forest flux power spectrum by causing absorption in quasar spectra away from the location of the absorber itself. We investigate the effect of high column density absorbers on the Lyman α forest using hydrodynamical simulations for the first time. We provide templates as a function of column density and redshift, allowing the flexibility to accurately model residual contamination, i.e. if an analysis selectively clips out the largest damping wings. This flexibility will improve cosmological parameter estimation, for example, allowing more accurate measurement of the shape of the power spectrum, with implications for cosmological models containing massive neutrinos or a running of the spectral index. We provide fitting functions to reproduce these results so that they can be incorporated straightforwardly into a data analysis pipeline.
Data-driven Modeling of Metal-oxide Sensors with Dynamic Bayesian Networks
NASA Astrophysics Data System (ADS)
Gosangi, Rakesh; Gutierrez-Osuna, Ricardo
2011-09-01
We present a data-driven probabilistic framework to model the transient response of MOX sensors modulated with a sequence of voltage steps. Analytical models of MOX sensors are usually built based on the physico-chemical properties of the sensing materials. Although building these models provides an insight into the sensor behavior, they also require a thorough understanding of the underlying operating principles. Here we propose a data-driven approach to characterize the dynamical relationship between sensor inputs and outputs. Namely, we use dynamic Bayesian networks (DBNs), probabilistic models that represent temporal relations between a set of random variables. We identify a set of control variables that influence the sensor responses, create a graphical representation that captures the causal relations between these variables, and finally train the model with experimental data. We validated the approach on experimental data in terms of predictive accuracy and classification performance. Our results show that DBNs can accurately predict the dynamic response of MOX sensors, as well as capture the discriminatory information present in the sensor transients.
Determining Reactor Fuel Type from Continuous Antineutrino Monitoring
NASA Astrophysics Data System (ADS)
Jaffke, Patrick; Huber, Patrick
2017-09-01
We investigate the ability of an antineutrino detector to determine the fuel type of a reactor. A hypothetical 5-ton antineutrino detector is placed 25 m from the core and measures the spectral shape and rate of antineutrinos emitted by fission fragments in the core for a number of 90-d periods. Our results indicate that four major fuel types can be differentiated from the variation of fission fractions over the irradiation time with a true positive probability of detection at approximately 95%. In addition, we demonstrate that antineutrinos can identify the burnup at which weapons-grade mixed-oxide (MOX) fuel would be reduced to reactor-grade MOX, on average, providing assurance that plutonium-disposition goals are met. We also investigate removal scenarios where plutonium is purposefully diverted from a mixture of MOX and low-enriched uranium fuel. Finally, we discuss how our analysis is impacted by a spectral distortion around 6 MeV observed in the antineutrino spectrum measured from commercial power reactors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gauntt, Randall O.; Ross, Kyle W.; Smith, James Dean
2010-04-01
The Oak Ridge National Laboratory computer code, ORIGEN2.2 (CCC-371, 2002), was used to obtain the elemental composition of irradiated low-enriched uranium (LEU)/mixed-oxide (MOX) pressurized-water reactor fuel assemblies. Described in this report are the input parameters for the ORIGEN2.2 calculations. The rationale for performing the ORIGEN2.2 calculation was to generate inventories to be used to populate MELCOR radionuclide classes. Therefore the ORIGEN2.2 output was subsequently manipulated. The procedures performed in this data reduction process are also described herein. A listing of the ORIGEN2.2 input deck for two-cycle MOX is provided in the appendix. The final output from this data reduction processmore » was three tables containing the radionuclide inventories for LEU/MOX in elemental form. Masses, thermal powers, and activities were reported for each category.« less
Ceria-thoria pellet manufacturing in preparation for plutonia-thoria LWR fuel production
NASA Astrophysics Data System (ADS)
Drera, Saleem S.; Björk, Klara Insulander; Sobieska, Matylda
2016-10-01
Thorium dioxide (thoria) has potential to assist in niche roles as fuel for light water reactors (LWRs). One such application for thoria is its use as the fertile component to burn plutonium in a mixed oxide fuel (MOX). Thor Energy and an international consortium are currently irradiating plutonia-thoria (Th-MOX) fuel in an effort to produce data for its licensing basis. During fuel-manufacturing research and development (R&D), surrogate materials were utilized to highlight procedures and build experience. Cerium dioxide (ceria) provides a good surrogate platform to replicate the chemical nature of plutonium dioxide. The project's fuel manufacturing R&D focused on powder metallurgical techniques to ensure manufacturability with the current commercial MOX fuel production infrastructure. The following paper highlights basics of the ceria-thoria fuel production including powder milling, pellet pressing and pellet sintering. Green pellets and sintered pellets were manufactured with average densities of 67.0% and 95.5% that of theoretical density respectively.
NASA Astrophysics Data System (ADS)
Falceta-Gonçalves, D.; Lazarian, A.; Houde, M.
2010-04-01
Theoretical and observational studies on the turbulence of the interstellar medium developed fast in the past decades. The theory of supersonic magnetized turbulence, as well as the understanding of the projection effects of observed quantities, is still in progress. In this work, we explore the characterization of the turbulent cascade and its damping from observational spectral line profiles. We address the difference of ion and neutral velocities by clarifying the nature of the turbulence damping in the partially ionized. We provide theoretical arguments in favor of the explanation of the larger Doppler broadening of lines arising from neutral species compared to ions as arising from the turbulence damping of ions at larger scales. Also, we compute a number of MHD numerical simulations for different turbulent regimes and explicit turbulent damping, and compare both the three-dimensional distributions of velocity and the synthetic line profile distributions. From the numerical simulations, we place constraints on the precision with which one can measure the three-dimensional dispersion depending on the turbulence sonic Mach number. We show that no universal correspondence between the three-dimensional velocity dispersions measured in the turbulent volume and minima of the two-dimensional velocity dispersions available through observations exist. For instance, for subsonic turbulence the correspondence is poor at scales much smaller than the turbulence injection scale, while for supersonic turbulence the correspondence is poor for the scales comparable with the injection scale. We provide a physical explanation of the existence of such a two-dimensional to three-dimensional correspondence and discuss the uncertainties in evaluating the damping scale of ions that can be obtained from observations. However, we show that the statistics of velocity dispersion from observed line profiles can provide the spectral index and the energy transfer rate of turbulence. Also, by comparing two similar simulations with different viscous coefficients, it was possible to constrain the turbulent cut-off scale. This may especially prove useful since it is believed that ambipolar diffusion may be one of the dominant dissipative mechanisms in star-forming regions. In this case, the determination of the ambipolar diffusion scale may be used as a complementary method for the determination of magnetic field intensity in collapsing cores. We discuss the implications of our findings in terms of a new approach to magnetic field measurement proposed by Li & Houde.
Optical measurement of damping in nanomagnet arrays using magnetoelastically driven resonances
NASA Astrophysics Data System (ADS)
Yahagi, Y.; Berk, C.; Hebler, B.; Dhuey, S.; Cabrini, S.; Albrecht, M.; Schmidt, H.
2017-05-01
Surface acoustic waves (SAWs) are optically excited in periodic nanomagnet arrays and drive the magnetization precession via magnetoelastic coupling. The frequency of this mechanically induced magnetic response is pinned at the SAW frequency over an extended range of applied fields. First, we show by experimental and numerical investigation of materials with different combinations of damping and magnetoelastic coupling strengths that the field-dependent width of this pinned resonance depends only on the effective damping α eff. Second, we derive an analytical expression for determining α eff from the Lorentzian lineshape of the field-dependent Fourier amplitude of this resonance. We show that the intrinsic Gilbert damping can be determined in the high field limit by analyzing multiple pinned resonances at different applied fields. This demonstrates that intrinsic damping can be extracted all-optically, despite interactions with nonmagnetic degrees of freedom. We find damping values of 0.027, 0.028 and 0.25 for Ni, Co and TbFe respectively. Finally, the validity of the experimental results is verified by excellent agreement with micromagnetic simulations incorporating the magnetoelastic coupling, which shows that the pinning width is unaffected by the magnetoelastic coupling constant over three orders of magnitude. This finding has implications for the rational design of spintronic devices that involve magnetoelastic effects.
A dynamic and harmonic damped finite element analysis model of stapedotomy.
Blayney, A W; Williams, K R; Rice, H J
1997-03-01
This study was undertaken in an attempt to better understand the mechanics of sound transmission at the footplate following stapedotomy. The insertion of a Teflon (polytetrafluoroethylene) stapes prosthesis introduces new constraints within the reconstructed ossicular chain which have an effect on the normal vibration patterns of the tympanic membrane. In a finite element model of the ear, constraints have been reproduced as a series of spring constants in the incus/prosthesis/footplate interfaces incorporating damping to simulate the impedance of the inner ear. At zero damping, the frequency response at the pseudo stapes footplate exhibit several maxima and minima between 800 Hz and 2.5 Hz. At higher damping values, these maxima and minima become smoothened out with two or three naturals occurring over the same frequency range. Severe ankylosis of a diseased footplate is reproduced by over-damped conditions. The umbo, incus and stapes footplate vibrate in phase with similar frequencies at light damping levels. The movement of the prosthesis at the pseudo-footplate can be large in the out of plane axis of the ossicular chain, unless sufficient support is provided at the reconstructed footplate. Clinically, this would suggest the vein graft interposed between the piston and stapedotomy hole should endow resistance and elasticity to the system.
NASA Astrophysics Data System (ADS)
Bai, Xian-Xu; Zhong, Wei-Min; Zou, Qi; Zhu, An-Ding; Sun, Jun
2018-07-01
Based on the structural design concept of ‘functional integration’, this paper proposes the principle of a power-generated magnetorheological energy absorber with velocity self-sensing capability (PGMREA), which realizes the integration of controllable damping mechanism and mechanical energy-electrical energy conversion mechanism in structure profile and multiple functions in function profile, including controllable damping, power generation and velocity self-sensing. The controllable damping mechanism consists of an annular gap and a ball screw. The annular gap fulfilled with MR fluid that operates in pure shear mode under controllable electromagnetic field. The rotational damping torque generated from the controllable damping mechanism is translated to a linear damping force via the ball screw. The mechanical energy-electrical energy conversion mechanism is realized by the ball screw and a generator composed of a permanent magnet rotor and a generator stator. The ball screw based mechanical energy-electrical energy conversion mechanism converts the mechanical energy of excitations to electrical energy for storage or directly to power the controllable damping mechanism of the PGMREA. The velocity self-sensing capability of the PGMREA is achieved via signal processing using the mechanical energy-electrical energy conversion information. Based on the principle of the proposed PGMREA, the mathematical model of the PGMREA is established, including the damping force, generated power and self-sensing velocity. The electromagnetic circuit of the PGMREA is simulated and verified via a finite element analysis software ANSYS. The developed PGMREA prototype is experimentally tested on a servo-hydraulic testing system. The model-based predicted results and the experimental results are compared and analyzed.
GOES-R active vibration damping controller design, implementation, and on-orbit performance
NASA Astrophysics Data System (ADS)
Clapp, Brian R.; Weigl, Harald J.; Goodzeit, Neil E.; Carter, Delano R.; Rood, Timothy J.
2018-01-01
GOES-R series spacecraft feature a number of flexible appendages with modal frequencies below 3.0 Hz which, if excited by spacecraft disturbances, can be sources of undesirable jitter perturbing spacecraft pointing. To meet GOES-R pointing stability requirements, the spacecraft flight software implements an Active Vibration Damping (AVD) rate control law which acts in parallel with the nadir point attitude control law. The AVD controller commands spacecraft reaction wheel actuators based upon Inertial Measurement Unit (IMU) inputs to provide additional damping for spacecraft structural modes below 3.0 Hz which vary with solar wing angle. A GOES-R spacecraft dynamics and attitude control system identified model is constructed from pseudo-random reaction wheel torque commands and IMU angular rate response measurements occurring over a single orbit during spacecraft post-deployment activities. The identified Fourier model is computed on the ground, uplinked to the spacecraft flight computer, and the AVD controller filter coefficients are periodically computed on-board from the Fourier model. Consequently, the AVD controller formulation is based not upon pre-launch simulation model estimates but upon on-orbit nadir point attitude control and time-varying spacecraft dynamics. GOES-R high-fidelity time domain simulation results herein demonstrate the accuracy of the AVD identified Fourier model relative to the pre-launch spacecraft dynamics and control truth model. The AVD controller on-board the GOES-16 spacecraft achieves more than a ten-fold increase in structural mode damping for the fundamental solar wing mode while maintaining controller stability margins and ensuring that the nadir point attitude control bandwidth does not fall below 0.02 Hz. On-orbit GOES-16 spacecraft appendage modal frequencies and damping ratios are quantified based upon the AVD system identification, and the increase in modal damping provided by the AVD controller for each structural mode is presented. The GOES-16 spacecraft AVD controller frequency domain stability margins and nadir point attitude control bandwidth are presented along with on-orbit time domain disturbance response performance.
GOES-R Active Vibration Damping Controller Design, Implementation, and On-Orbit Performance
NASA Technical Reports Server (NTRS)
Clapp, Brian R.; Weigl, Harald J.; Goodzeit, Neil E.; Carter, Delano R.; Rood, Timothy J.
2017-01-01
GOES-R series spacecraft feature a number of flexible appendages with modal frequencies below 3.0 Hz which, if excited by spacecraft disturbances, can be sources of undesirable jitter perturbing spacecraft pointing. In order to meet GOES-R pointing stability requirements, the spacecraft flight software implements an Active Vibration Damping (AVD) rate control law which acts in parallel with the nadir point attitude control law. The AVD controller commands spacecraft reaction wheel actuators based upon Inertial Measurement Unit (IMU) inputs to provide additional damping for spacecraft structural modes below 3.0 Hz which vary with solar wing angle. A GOES-R spacecraft dynamics and attitude control system identified model is constructed from pseudo-random reaction wheel torque commands and IMU angular rate response measurements occurring over a single orbit during spacecraft post-deployment activities. The identified Fourier model is computed on the ground, uplinked to the spacecraft flight computer, and the AVD controller filter coefficients are periodically computed on-board from the Fourier model. Consequently, the AVD controller formulation is based not upon pre-launch simulation model estimates but upon on-orbit nadir point attitude control and time-varying spacecraft dynamics. GOES-R high-fidelity time domain simulation results herein demonstrate the accuracy of the AVD identified Fourier model relative to the pre-launch spacecraft dynamics and control truth model. The AVD controller on-board the GOES-16 spacecraft achieves more than a ten-fold increase in structural mode damping of the fundamental solar wing mode while maintaining controller stability margins and ensuring that the nadir point attitude control bandwidth does not fall below 0.02 Hz. On-orbit GOES-16 spacecraft appendage modal frequencies and damping ratios are quantified based upon the AVD system identification, and the increase in modal damping provided by the AVD controller for each structural mode is presented. The GOES-16 spacecraft AVD controller frequency domain stability margins and nadir point attitude control bandwidth are presented along with on-orbit time domain disturbance response performance.
Simulation of Self-consistent Radio Wave Artificial Ionospheric Turbulence Pumping and Damping
NASA Astrophysics Data System (ADS)
Kochetov, Andrey
The numerical simulations of the action of self-consistent incident powerful electromagnetic wave absorption arising in the regions of artificial plasma turbulence excitation at formation, saturation and relaxation stages of turbulent structures (Kochetov, A.V., Mironov, V.A., Te-rina, G.I., Bubukina V. N, Physica D, Nonlinear phenomena, 2001, 152-153, 723) to reflection index dynamics are carried out. The nonlinear Schrüdinger equation in inhomogeneous plasma layer with incident electromagnetic wave pumping and backscattered radiation damping (Ko-chetov, et al, Adv. Space Res., 2002, 29, 1369 and 2006, 38, 2490) is extended with the imagi-nary part of plasma dielectric constant (volume damping), which is should be taken into account in strong electromagnetic field plasma regions and results the energy transformation from elec-tromagnetic waves to plasma ones at resonance interaction (D.V. Shapiro, V.I. Shevchenko, in Handbook of Plasma Physics 2, eds. A.A Galeev, R.N. Sudan. Elsevier, Amsterdam, 1984). The volume damping reproduces the basic energy transformation peculiarities: hard excitation, nonlinearity, hysteresis (A.V. Kochetov, E. Mjoelhus, Proc. of IV Intern. Workshop "SMP", Ed. A.G. Litvak, Vol.2, N. Novgorod, 2000, 491). Computer modeling demonstrates that the amplitude and period of reflection index oscillations at the formation stage slowly depend on damping parameters of turbulent plasma regions. The transformation from complicated: quasi-periodic and chaotic dynamics, to quasi-stationary regimes is shown at the saturation stage. Transient processes time becomes longer if the incident wave amplitude and nonlinear plasma response increase, but damping decreases. It is obtained that the calculated reflection and absorption index dynamics at the beginning of the saturation stage agrees qualitatively to the experimental results for ionosphere plasma modification study (Thide B., E.N. Sergeev, S.M. Grach, et. al., Phys. Rev. Lett., 2005, 95, 255002). The work was supported in part by RFBR grant 09-02-01150-a.
Computational study of elements of stability of a four-helix bundle protein biosurfactant
NASA Astrophysics Data System (ADS)
Schaller, Andrea; Connors, Natalie K.; Dwyer, Mirjana Dimitrijev; Oelmeier, Stefan A.; Hubbuch, Jürgen; Middelberg, Anton P. J.
2015-01-01
Biosurfactants are surface-active molecules produced principally by microorganisms. They are a sustainable alternative to chemically-synthesized surfactants, having the advantages of being non-toxic, highly functional, eco-friendly and biodegradable. However they are currently only used in a few industrial products due to costs associated with production and purification, which exceed those for commodity chemical surfactants. DAMP4, a member of a four-helix bundle biosurfactant protein family, can be produced in soluble form and at high yield in Escherichia coli, and can be recovered using a facile thermal phase-separation approach. As such, it encompasses an interesting synergy of biomolecular and chemical engineering with prospects for low-cost production even for industrial sectors. DAMP4 is highly functional, and due to its extraordinary thermal stability it can be purified in a simple two-step process, in which the combination of high temperature and salt leads to denaturation of all contaminants, whereas DAMP4 stays stable in solution and can be recovered by filtration. This study aimed to characterize and understand the fundamental drivers of DAMP4 stability to guide further process and surfactant design studies. The complementary use of experiments and molecular dynamics simulation revealed a broad pH and temperature tolerance for DAMP4, with a melting point of 122.4 °C, suggesting the hydrophobic core as the major contributor to thermal stability. Simulation of systematically created in silico variants of DAMP4 showed an influence of number and location of hydrophilic mutations in the hydrophobic core on stability, demonstrating a tolerance of up to three mutations before a strong loss in stability occurred. The results suggest a consideration of a balance of stability, functionality and kinetics for new designs according to their application, aiming for maximal functionality but at adequate stability to allow for cost-efficient production using thermal phase separation approaches.
Chemical Reduction of SIM MOX in Molten Lithium Chloride Using Lithium Metal Reductant
NASA Astrophysics Data System (ADS)
Kato, Tetsuya; Usami, Tsuyoshi; Kurata, Masaki; Inoue, Tadashi; Sims, Howard E.; Jenkins, Jan A.
2007-09-01
A simulated spent oxide fuel in a sintered pellet form, which contained the twelve elements U, Pu, Am, Np, Cm, Ce, Nd, Sm, Ba, Zr,Mo, and Pd, was reduced with Li metal in a molten LiCl bath at 923 K. More than 90% of U and Pu were reduced to metal to form a porous alloy without significant change in the Pu/U ratio. Small fractions of Pu were also combined with Pd to form stable alloys. In the gap of the porous U-Pu alloy, the aggregation of the rare-earth (RE) oxide was observed. Some amount of the RE elements and the actinoides leached from the pellet. The leaching ratio of Am to the initially loaded amount was only several percent, which was far from about 80% obtained in the previous ones on simple MOX including U, Pu, and Am. The difference suggests that a large part of Am existed in the RE oxide rather than in the U-Pu alloy. The detection of the RE elements and actinoides in the molten LiCl bath seemed to indicate that they dissolved into the molten LiCl bath containing the oxide ion, which is the by-product of the reduction, as solubility of RE elements was measured in the molten LiCl-Li2O previously.
Understanding resonance graphs using Easy Java Simulations (EJS) and why we use EJS
NASA Astrophysics Data System (ADS)
Wee, Loo Kang; Lee, Tat Leong; Chew, Charles; Wong, Darren; Tan, Samuel
2015-03-01
This paper reports a computer model simulation created using Easy Java Simulation (EJS) for learners to visualize how the steady-state amplitude of a driven oscillating system varies with the frequency of the periodic driving force. The simulation shows (N = 100) identical spring-mass systems being subjected to (1) a periodic driving force of equal amplitude but different driving frequencies, and (2) different amounts of damping. The simulation aims to create a visually intuitive way of understanding how the series of amplitude versus driving frequency graphs are obtained by showing how the displacement of the system changes over time as it transits from the transient to the steady state. A suggested ‘how to use’ the model is added to help educators and students in their teaching and learning, where we explain the theoretical steady-state equation time conditions when the model begins to allow data recording of maximum amplitudes to closely match the theoretical equation, and the steps to collect different runs of the degree of damping. We also discuss two of the design features in our computer model: displaying the instantaneous oscillation together with the achieved steady-state amplitudes, and the explicit world view overlay with scientific representation with different degrees of damping runs. Three advantages of using EJS include: (1) open source codes and creative commons attribution licenses for scaling up of interactively engaging educational practices; (2) the models made can run on almost any device, including Android and iOS; and (3) it allows the redefinition of physics educational practices through computer modeling.
Mode Analyses of Gyrokinetic Simulations of Plasma Microturbulence
NASA Astrophysics Data System (ADS)
Hatch, David R.
This thesis presents analysis of the excitation and role of damped modes in gyrokinetic simulations of plasma microturbulence. In order to address this question, mode decompositions are used to analyze gyrokinetic simulation data. A mode decomposition can be constructed by projecting a nonlinearly evolved gyrokinetic distribution function onto a set of linear eigenmodes, or alternatively by constructing a proper orthogonal decomposition of the distribution function. POD decompositions are used to examine the role of damped modes in saturating ion temperature gradient driven turbulence. In order to identify the contribution of different modes to the energy sources and sinks, numerical diagnostics for a gyrokinetic energy quantity were developed for the GENE code. The use of these energy diagnostics in conjunction with POD mode decompositions demonstrates that ITG turbulence saturates largely through dissipation by damped modes at the same perpendicular spatial scales as those of the driving instabilities. This defines a picture of turbulent saturation that is very different from both traditional hydrodynamic scenarios and also many common theories for the saturation of plasma turbulence. POD mode decompositions are also used to examine the role of subdominant modes in causing magnetic stochasticity in electromagnetic gyrokinetic simulations. It is shown that the magnetic stochasticity, which appears to be ubiquitous in electromagnetic microturbulence, is caused largely by subdominant modes with tearing parity. The application of higher-order singular value decomposition (HOSVD) to the full distribution function from gyrokinetic simulations is presented. This is an effort to demonstrate the ability to characterize and extract insight from a very large, complex, and high-dimensional data-set - the 5-D (plus time) gyrokinetic distribution function.
Stelnicki, E J; Kömüves, L G; Holmes, D; Clavin, W; Harrison, M R; Adzick, N S; Largman, C
1997-10-01
In order to identify homeobox genes which may regulate skin development and possibly mediate scarless fetal wound healing we have screened amplified human fetal skin cDNAs by polymerase chain reaction (PCR) using degenerate oligonucleotide primers designed against highly conserved regions within the homeobox. We identified three non-HOX homeobox genes, MSX-1, MSX-2, and MOX-1, which were differentially expressed in fetal and adult human skin. MSX-1 and MSX-2 were detected in the epidermis, hair follicles, and fibroblasts of the developing fetal skin by in situ hybridization. In contrast, MSX-1 and MSX-2 expression in adult skin was confined to epithelially derived structures. Immunohistochemical analysis of these two genes suggested that their respective homeoproteins may be differentially regulated. While Msx-1 was detected in the cell nucleus of both fetal and adult skin; Msx-2 was detected as a diffuse cytoplasmic signal in fetal epidermis and portions of the hair follicle and dermis, but was localized to the nucleus in adult epidermis. MOX-1 was expressed in a pattern similar to MSX early in gestation but then was restricted exclusively to follicular cells in the innermost layer of the outer root sheath by 21 weeks of development. Furthermore, MOX-1 expression was completely absent in adult cutaneous tissue. These data imply that each of these homeobox genes plays a specific role in skin development.
Making chaotic behavior in a damped linear harmonic oscillator
NASA Astrophysics Data System (ADS)
Konishi, Keiji
2001-06-01
The present Letter proposes a simple control method which makes chaotic behavior in a damped linear harmonic oscillator. This method is a modified scheme proposed in paper by Wang and Chen (IEEE CAS-I 47 (2000) 410) which presents an anti-control method for making chaotic behavior in discrete-time linear systems. We provide a systematic procedure to design parameters and sampling period of a feedback controller. Furthermore, we show that our method works well on numerical simulations.
Robot vibration control using inertial damping forces
NASA Technical Reports Server (NTRS)
Lee, Soo Han; Book, Wayne J.
1991-01-01
This paper concerns the suppression of the vibration of a large flexible robot by inertial forces of a small robot which is located at the tip of the large robot. A controller for generating damping forces to a large robot is designed based on the two time scale model. The controller does not need to calculate the quasi-steady variables and is efficient in computation. Simulation results show the effectiveness of the inertial forces and the controller designed.
Robot vibration control using inertial damping forces
NASA Technical Reports Server (NTRS)
Lee, Soo Han; Book, Wayne J.
1989-01-01
The suppression is examined of the vibration of a large flexible robot by inertial forces of a small robot which is located at the tip of the large robot. A controller for generating damping forces to a large robot is designed based on the two time scale mode. The controller does not need to calculate the quasi-steady state variables and is efficient in computation. Simulation results show the effectiveness of the inertial forces and the controller designed.
Sub-synchronous resonance damping using high penetration PV plant
NASA Astrophysics Data System (ADS)
Khayyatzadeh, M.; Kazemzadeh, R.
2017-02-01
The growing need to the clean and renewable energy has led to the fast development of transmission voltage-level photovoltaic (PV) plants all over the world. These large scale PV plants are going to be connected to power systems and one of the important subjects that should be investigated is the impact of these plants on the power system stability. Can large scale PV plants help to damp sub-synchronous resonance (SSR) and how? In this paper, this capability of a large scale PV plant is investigated. The IEEE Second Benchmark Model aggregated with a PV plant is utilized as the case study. A Wide Area Measurement System (WAMS) based conventional damping controller is designed and added to the main control loop of PV plant in order to damp the SSR and also investigation of the destructive effect of time delay in remote feedback signal. A new optimization algorithm called teaching-learning-based-optimization (TLBO) algorithm has been used for managing the optimization problems. Fast Furrier Transformer (FFT) analysis and also transient simulations of detailed nonlinear system are considered to investigate the performance of the controller. Robustness of the proposed system has been analyzed by facing the system with disturbances leading to significant changes in generator and power system operating point, fault duration time and PV plant generated power. All the simulations are carried out in MATLAB/SIMULINK environment.
Non-linear modelling and control of semi-active suspensions with variable damping
NASA Astrophysics Data System (ADS)
Chen, Huang; Long, Chen; Yuan, Chao-Chun; Jiang, Hao-Bin
2013-10-01
Electro-hydraulic dampers can provide variable damping force that is modulated by varying the command current; furthermore, they offer advantages such as lower power, rapid response, lower cost, and simple hardware. However, accurate characterisation of non-linear f-v properties in pre-yield and force saturation in post-yield is still required. Meanwhile, traditional linear or quarter vehicle models contain various non-linearities. The development of a multi-body dynamics model is very complex, and therefore, SIMPACK was used with suitable improvements for model development and numerical simulations. A semi-active suspension was built based on a belief-desire-intention (BDI)-agent model framework. Vehicle handling dynamics were analysed, and a co-simulation analysis was conducted in SIMPACK and MATLAB to evaluate the BDI-agent controller. The design effectively improved ride comfort, handling stability, and driving safety. A rapid control prototype was built based on dSPACE to conduct a real vehicle test. The test and simulation results were consistent, which verified the simulation.
NASA Technical Reports Server (NTRS)
Raney, David L.; Jackson, E. Bruce; Buttrill, Carey S.
2002-01-01
A piloted simulation study conducted in NASA Langley Visual Motion Simulator addressed the impact of dynamic aero- servoelastic effects on flying qualities of a High Speed Civil Transport. The intent was to determine effectiveness of measures to reduce the impact of aircraft flexibility on piloting tasks. Potential solutions examined were increasing frequency of elastic modes through structural stiffening, increasing damping of elastic modes through active control, elimination of control effector excitation of the lowest frequency elastic modes, and elimination of visual cues associated with elastic modes. Six test pilots evaluated and performed simulated maneuver tasks, encountering incidents wherein cockpit vibrations due to elastic modes fed back into the control stick through involuntary vibrations of the pilots upper body and arm. Structural stiffening and compensation of the visual display were of little benefit in alleviating this impact, while increased damping and elimination of control effector excitation of the elastic modes both offered great improvements when applied in sufficient degree.
Turning behaviour depends on frictional damping in the fruit fly Drosophila.
Hesselberg, Thomas; Lehmann, Fritz-Olaf
2007-12-01
Turning behaviour in the fruit fly Drosophila depends on several factors including not only feedback from sensory organs and muscular control of wing motion, but also the mass moments of inertia and the frictional damping coefficient of the rotating body. In the present study we evaluate the significance of body friction for yaw turning and thus the limits of visually mediated flight control in Drosophila, by scoring tethered flies flying in a flight simulator on their ability to visually compensate a bias on a moving object and a visual background panorama at different simulated frictional dampings. We estimated the fly's natural damping coefficient from a numerical aerodynamic model based on both friction on the body and the flapping wings during saccadic turning. The model predicts a coefficient of 54 x 10(-12) Nm s, which is more than 100-times larger than the value estimated from a previous study on the body alone. Our estimate suggests that friction plays a larger role for yaw turning in Drosophila than moments of inertia. The simulator experiments showed that visual performance of the fruit fly collapses near the physical conditions estimated for freely flying animals, which is consistent with the suggested role of the halteres for flight stabilization. However, kinematic analyses indicate that the measured loss of flight control might be due predominantly to the limited fine control in the fly's steering muscles below a threshold of 1-2 degrees stroke amplitude, rather than resulting from the limits of visual motion detection by the fly's compound eyes. We discuss the impact of these results and suggest that the elevated frictional coefficient permits freely flying fruit flies to passively terminate rotational body movements without producing counter-torque during the second half of the saccadic turning manoeuvre.
Experimental validation of solid rocket motor damping models
NASA Astrophysics Data System (ADS)
Riso, Cristina; Fransen, Sebastiaan; Mastroddi, Franco; Coppotelli, Giuliano; Trequattrini, Francesco; De Vivo, Alessio
2017-12-01
In design and certification of spacecraft, payload/launcher coupled load analyses are performed to simulate the satellite dynamic environment. To obtain accurate predictions, the system damping properties must be properly taken into account in the finite element model used for coupled load analysis. This is typically done using a structural damping characterization in the frequency domain, which is not applicable in the time domain. Therefore, the structural damping matrix of the system must be converted into an equivalent viscous damping matrix when a transient coupled load analysis is performed. This paper focuses on the validation of equivalent viscous damping methods for dynamically condensed finite element models via correlation with experimental data for a realistic structure representative of a slender launch vehicle with solid rocket motors. A second scope of the paper is to investigate how to conveniently choose a single combination of Young's modulus and structural damping coefficient—complex Young's modulus—to approximate the viscoelastic behavior of a solid propellant material in the frequency band of interest for coupled load analysis. A scaled-down test article inspired to the Z9-ignition Vega launcher configuration is designed, manufactured, and experimentally tested to obtain data for validation of the equivalent viscous damping methods. The Z9-like component of the test article is filled with a viscoelastic material representative of the Z9 solid propellant that is also preliminarily tested to investigate the dependency of the complex Young's modulus on the excitation frequency and provide data for the test article finite element model. Experimental results from seismic and shock tests performed on the test configuration are correlated with numerical results from frequency and time domain analyses carried out on its dynamically condensed finite element model to assess the applicability of different equivalent viscous damping methods to describe damping properties of slender launch vehicles in payload/launcher coupled load analysis.
Experimental validation of solid rocket motor damping models
NASA Astrophysics Data System (ADS)
Riso, Cristina; Fransen, Sebastiaan; Mastroddi, Franco; Coppotelli, Giuliano; Trequattrini, Francesco; De Vivo, Alessio
2018-06-01
In design and certification of spacecraft, payload/launcher coupled load analyses are performed to simulate the satellite dynamic environment. To obtain accurate predictions, the system damping properties must be properly taken into account in the finite element model used for coupled load analysis. This is typically done using a structural damping characterization in the frequency domain, which is not applicable in the time domain. Therefore, the structural damping matrix of the system must be converted into an equivalent viscous damping matrix when a transient coupled load analysis is performed. This paper focuses on the validation of equivalent viscous damping methods for dynamically condensed finite element models via correlation with experimental data for a realistic structure representative of a slender launch vehicle with solid rocket motors. A second scope of the paper is to investigate how to conveniently choose a single combination of Young's modulus and structural damping coefficient—complex Young's modulus—to approximate the viscoelastic behavior of a solid propellant material in the frequency band of interest for coupled load analysis. A scaled-down test article inspired to the Z9-ignition Vega launcher configuration is designed, manufactured, and experimentally tested to obtain data for validation of the equivalent viscous damping methods. The Z9-like component of the test article is filled with a viscoelastic material representative of the Z9 solid propellant that is also preliminarily tested to investigate the dependency of the complex Young's modulus on the excitation frequency and provide data for the test article finite element model. Experimental results from seismic and shock tests performed on the test configuration are correlated with numerical results from frequency and time domain analyses carried out on its dynamically condensed finite element model to assess the applicability of different equivalent viscous damping methods to describe damping properties of slender launch vehicles in payload/launcher coupled load analysis.
Jiménez-Pulido, Sonia B; Hueso-Ureña, Francisco; Fernández-Liencres, M Paz; Fernández-Gómez, Manuel; Moreno-Carretero, Miguel N
2013-01-14
The oxime derived from 6-acetyl-1,3,7-trimethyllumazine (1) ((E-6-(hydroxyimino)ethyl)-1,3,7-trimethylpteridine-2,4(1H,3H)-dione, DLMAceMox) has been prepared and its molecular and crystal structure determined from spectral and XRD data. The oxime ligand was reacted with silver nitrate, perchlorate, thiocyanate, trifluoromethylsulfonate and tetrafluoroborate to give complexes with formulas [Ag(2)(DLMAceMox)(2)(NO(3))(2)](n) (2), [Ag(2)(DLMAceMox)(2)(ClO(4))(2)](n) (3), [Ag(2)(DLMAceMox)(2)(SCN)(2)] (4), [Ag(2)(DLMAceMox)(2)(CF(3)SO(3))(2)(CH(3)CH(2)OH)]·CH(3)CH(2)OH (5) and [Ag(DLMAceMox)(2)]BF(4) (6). Single-crystal XRD studies show that the asymmetrical residual unit of complexes 2, 3 and 5 contains two quite different but connected silver centers (Ag1-Ag2, 2.9-3.2 Å). In addition to this, the Ag1 ion displays coordination with the N5 and O4 atoms from both lumazine moieties and a ligand (nitrato, perchlorato or ethanol) bridging to another disilver unit. The Ag2 ion is coordinated to the N61 oxime nitrogens, a monodentate and a (O,O)-bridging nitrato/perchlorato or two monodentate O-trifluoromethylsulfonato anions. The coordination polyhedra can be best described as a strongly distorted octahedron (around Ag1) and a square-based pyramid (around Ag2). The Ag-N and Ag-O bond lengths range between 2.22-2.41 and 2.40-2.67 Å, respectively. Although the structure of 4 cannot be resolved by XRD, it is likely to be similar to those described for 2, 3 and 5, containing Ag-Ag units with S-thiocyanato terminal ligands. Finally, the structure of the tetrafluoroborate compound 6 is mononuclear with a strongly distorted tetrahedral AgN(4) core (Ag-N, 2.27-2.43 Å). Always, the different Ag-N distances found clearly point to the more basic character of the oxime N61 nitrogen atom when compared with the pyrazine N5 one. A topological analysis of the electron density within the framework provided by the quantum theory of atoms in molecules (QTAIM) using DFT(M06L) levels of theory has been performed. Every Ag-Ag and Ag-ligand interaction has been characterized in terms of Laplacian of the electron density, [nabla](2)ρ(r), and the total energy density, H(r).
Geurden, Thomas; Hodge, Andrew; Noé, Laura; Winstanley, Dana; Bartley, David J; Taylor, Mike; Morgan, Colin; Fraser, Sarah J; Maeder, Steven; Bartram, David
2012-10-26
The objective of the present studies was to evaluate the efficacy of a combined formulation (Startect(®) Dual Active Oral Solution for Sheep, Pfizer Animal Health) of derquantel (DQL) and abamectin (ABA) for the treatment of: (1) sheep experimentally infected with a moxidectin (MOX)-resistant isolate of Teladorsagia circumcincta, and (2) multi-drug resistant gastrointestinal nematode parasites under UK field conditions. In the first study, a total of 40 animals were allocated into 4 treatment groups, and were either left untreated or treated with DQL+ABA, MOX or ABA. Faecal samples were collected on days 1-5 and on day 7 after treatment to examine the reduction in faecal egg excretion and to evaluate the egg viability. On day 14 post treatment all animals were euthanised for abomasal worm counts. There was a 100% reduction in geometric mean worm counts for the DQL+ABA treated animals compared to the untreated control animals (P<0.0001), whereas the percentage reduction in worm counts for the MOX- (P>0.05) and ABA-treated (P=0.0004) animals was 12.4% and 71.8%, respectively. The data from the egg hatch assay (EHA) indicated that in the MOX-treated and the ABA-treated animals, the majority of the eggs hatched after treatment. In the field study, performed on four farms, animals were allocated into 6 groups of 11-15 animals each in order to conduct a faecal egg count reduction test (FECRT), based on arithmetic mean egg counts. One group of animals remained untreated, whereas the other animals were treated with DQL+ABA, MOX, fenbendazole (FBZ), levamisole (LV) or ivermectin (IVM). On each of the farms the reduction in egg excretion after treatment with FBZ, LV or IVM was below 95.0%, indicating anthelmintic resistance. The efficacy of DQL+ABA ranged from 99.1 to 100%, yielding significantly lower egg counts compared to the untreated control group (P ≤ 0.003). For MOX the egg counts were significantly (P ≤ 0.003) lower compared to the untreated group at each farm, with reductions varying from 98.2 to 100%. The post-treatment copro-cultures for larva identification indicated that T. circumcincta was the most abundant worm species after treatment (52-99% of the larvae). The results of these studies confirm the high efficacy of the DQL+ABA combination formulation against anthelmintic resistant nematodes in the UK. Copyright © 2012 Elsevier B.V. All rights reserved.
Modelling linewidths of Kepler red giants in NGC 6819
NASA Astrophysics Data System (ADS)
Aarslev, Magnus J.; Houdek, Günter; Handberg, Rasmus; Christensen-Dalsgaard, Jørgen
2018-04-01
We present a comparison between theoretical, frequency-dependent, damping rates and linewidths of radial-mode oscillations in red-giant stars located in the open cluster NGC 6819. The calculations adopt a time-dependent non-local convection model, with the turbulent pressure profile being calibrated to results of 3D hydrodynamical simulations of stellar atmospheres. The linewidths are obtained from extensive peakbagging of Kepler lightcurves. These observational results are of unprecedented quality owing to the long continuous observations by Kepler. The uniqueness of the Kepler mission also means that, for asteroseismic properties, this is the best data that will be available for a long time to come. We therefore take great care in modelling nine RGB stars in NGC 6819 using information from 3D simulations to obtain realistic temperature stratifications and calibrated turbulent pressure profiles. Our modelled damping rates reproduce well the Kepler observations, including the characteristic depression in the linewidths around the frequency of maximum oscillation power. Furthermore, we thoroughly test the sensitivity of the calculated damping rates to changes in the parameters of the nonlocal convection model.
Vortex-Induced Vibrations of a Flexibly-Mounted Cyber-Physical Rectangular Plate
NASA Astrophysics Data System (ADS)
Onoue, Kyohei; Strom, Benjamin; Song, Arnold; Breuer, Kenneth
2013-11-01
We have developed a cyber-physical system to explore the vortex-induced vibration (VIV) behavior of a flat plate mounted on a virtual spring damper support. The plate is allowed to oscillate about its mid-chord and the measured angular position, velocity, and torque are used as inputs to a feedback control system that provides a restoring torque and can simulate a wide range of structural dynamic behavior. A series of experiments were carried out using different sized plates, and over a range of freestream velocities, equilibrium angles of attack, and simulated stiffness and damping. We observe a synchronization phenomenon over a wide range of parameter space, wherein the plate oscillates at moderate to large amplitude with a frequency dictated by the natural structural frequency of the system. Additionally, the existence of bistable states is reflected in the hysteretic response of the system. The cyber-physical damping extracts energy from the flow and the efficiency of this harvesting mechanism is characterized over a range of dimensionless stiffness and damping parameters. This research is funded by the Air Force Office of Scientific Research (AFOSR).
Modelling linewidths of Kepler red giants in NGC 6819
NASA Astrophysics Data System (ADS)
Aarslev, Magnus J.; Houdek, Günter; Handberg, Rasmus; Christensen-Dalsgaard, Jørgen
2018-07-01
We present a comparison between theoretical, frequency-dependent, damping rates and linewidths of radial-mode oscillations in red giant stars located in the open cluster NGC 6819. The calculations adopt a time-dependent non-local convection model, with the turbulent pressure profile being calibrated to results of 3D hydrodynamical simulations of stellar atmospheres. The linewidths are obtained from extensive peakbagging of Kepler light curves. These observational results are of unprecedented quality owing to the long continuous observations by Kepler. The uniqueness of the Kepler mission also means that, for asteroseismic properties, this is the best data that will be available for a long time to come. We therefore take great care in modelling nine RGB stars in NGC 6819 using information from 3D simulations to obtain realistic temperature stratifications and calibrated turbulent pressure profiles. Our modelled damping rates reproduce well the Kepler observations, including the characteristic depression in the linewidths around the frequency of maximum oscillation power. Furthermore, we thoroughly test the sensitivity of the calculated damping rates to changes in the parameters of the non-local convection model.
Integrated tuned vibration absorbers: a theoretical study.
Gardonio, Paolo; Zilletti, Michele
2013-11-01
This article presents a simulation study on two integrated tuned vibration absorbers (TVAs) designed to control the global flexural vibration of lightly damped thin structures subject to broad frequency band disturbances. The first one consists of a single axial switching TVA composed by a seismic mass mounted on variable axial spring and damper elements so that the characteristic damping and natural frequency of the absorber can be switched iteratively to control the resonant response of three flexural modes of the hosting structure. The second one consists of a single three-axes TVA composed by a seismic mass mounted on axial and rotational springs and dampers, which are arranged in such a way that the suspended mass is characterized by uncoupled heave and pitch-rolling vibrations. In this case the three damping and natural frequency parameters of the absorber are tuned separately to control three flexural modes of the hosting structure. The simulation study shows that the proposed single-unit absorbers produce, respectively, 5.3 and 8.7 dB reductions of the global flexural vibration of a rectangular plate between 20 and 120 Hz.
Simulation of a flexible spinning vehicle
NASA Technical Reports Server (NTRS)
Baudry, W. A.
1972-01-01
Results are presented of experimental investigation of the controlled and uncontrolled dynamical behavior of a rotating or artificial gravity space station including flexible body effects. A dynamically scaled model was supported by a spherical air bearing which provided a nearly moment free environment. Reaction jet system were provided for spin-up and spin-down and for damping of wobble motion. Two single-gimbal gyros were arranged as a control moment gyro wobble damping system. Remotely controllable movable masses were provided to simulate mass shift disturbances such as arise from crew motions. An active mass balance wobble damping system which acted to minimize the wobble motions induced by crew motions was also installed. Flexible body effects were provided by a pair of inertia augmentation booms. Inertia augmentation booms are contemplated for use on rotating space stations to cause the spin axis moment of inertia to be the largest of the three moments of inertia as is necessary to assure gyroscopic stability. Test runs were made with each of the control systems with the booms locked (rigid body) and unlocked (flexible body).
Optimal design of a shear magnetorheological damper for turning vibration suppression
NASA Astrophysics Data System (ADS)
Zhou, Y.; Zhang, Y. L.
2013-09-01
The intelligent material, so-called magnetorheological (MR) fluid, is utilized to control turning vibration. According to the structure of a common lathe CA6140, a shear MR damper is conceived by designing its structure and magnetic circuit. The vibration suppression effect of the damper is proved with dynamic analysis and simulation. Further, the magnetic circuit of the damper is optimized with the ANSYS parametric design language (APDL). In the optimization course, the area of the magnetic circuit and the damping force are considered. After optimization, the damper’s structure and its efficiency of electrical energy consumption are improved. Additionally, a comparative study on damping forces acquired from the initial and optimal design is conducted. A prototype of the developed MR damper is fabricated and magnetic tests are performed to measure the magnetic flux intensities and the residual magnetism in four damping gaps. Then, the testing results are compared with the simulated results. Finally, the suppressing vibration experimental system is set up and cylindrical turning experiments are performed to investigate the working performance of the MR damper.
Thermodynamic impact of abasic sites on simulated translesion DNA synthesis.
Malina, Jaroslav; Brabec, Viktor
2014-06-16
Loss of a base in DNA and the creation of an abasic (apurinic/apyrimidinic, AP) site is a frequent lesion that may occur spontaneously, or as a consequence of the action of DNA-damaging agents. The AP lesion is mutagenic or lethal if not repaired. We report a systematic thermodynamic investigation by differential scanning calorimetry on the evolution, during primer extension, of a model AP site in chemically simulated DNA translesion synthesis. Incorporation of dAMP (deoxyadenosine monophosphate), as well as dTMP (deoxythymidine monophosphate), opposite an AP site is enthalpically unfavorable, although incorporation of dTMP is more enthalpically unfavorable than that of dAMP. This finding is in a good agreement with experimental data showing that AP sites block various DNA polymerases of eukaryotic and prokaryotic origin and that, if bypassed, dAMP is preferentially inserted, whereas insertion of dTMP is less likely. The results emphasize the importance of thermodynamic contributions to the insertion of nucleotides opposite an AP site by DNA polymerases. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Moritsugu, Kei; Kidera, Akinori; Smith, Jeremy C
2014-07-24
Protein solvation dynamics has been investigated using atom-dependent Langevin friction coefficients derived directly from molecular dynamics (MD) simulations. To determine the effect of solvation on the atomic friction coefficients, solution and vacuum MD simulations were performed for lysozyme and staphylococcal nuclease and analyzed by Langevin mode analysis. The coefficients thus derived are roughly correlated with the atomic solvent-accessible surface area (ASA), as expected from the fact that friction occurs as the result of collisions with solvent molecules. However, a considerable number of atoms with higher friction coefficients are found inside the core region. Hence, the influence of solvent friction propagates into the protein core. The internal coefficients have large contributions from the low-frequency modes, yielding a simple picture of the surface-to-core long-range damping via solvation governed by collective low-frequency modes. To make use of these findings in implicit-solvent modeling, we compare the all-atom friction results with those obtained using Langevin dynamics (LD) with two empirical representations: the constant-friction and the ASA-dependent (Pastor-Karplus) friction models. The constant-friction model overestimates the core and underestimates the surface damping whereas the ASA-dependent friction model, which damps protein atoms only on the solvent-accessible surface, reproduces well the friction coefficients for both the surface and core regions observed in the explicit-solvent MD simulations. Therefore, in LD simulation, the solvent friction coefficients should be imposed only on the protein surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moritsugu, Kei; Kidera, Akinori; Smith, Jeremy C.
2014-06-25
Protein solvation dynamics has been investigated using atom-dependent Langevin friction coefficients derived directly from molecular dynamics (MD) simulations. To determine the effect of solvation on the atomic friction coefficients, solution and vacuum MD simulations were performed for lysozyme and staphylococcal nuclease and analyzed by Langevin mode analysis. The coefficients thus derived are roughly correlated with the atomic solvent-accessible surface area (ASA), as expected from the fact that friction occurs as the result of collisions with solvent molecules. However, a considerable number of atoms with higher friction coefficients are found inside the core region. Hence, the influence of solvent friction propagatesmore » into the protein core. The internal coefficients have large contributions from the low-frequency modes, yielding a simple picture of the surface-to-core long-range damping via solvation governed by collective low-frequency modes. To make use of these findings in implicit-solvent modeling, we compare the all-atom friction results with those obtained using Langevin dynamics (LD) with two empirical representations: the constant-friction and the ASA-dependent (Pastor Karplus) friction models. The constant-friction model overestimates the core and underestimates the surface damping whereas the ASA-dependent friction model, which damps protein atoms only on the solvent-accessible surface, reproduces well the friction coefficients for both the surface and core regions observed in the explicit-solvent MD simulations. Furthermore, in LD simulation, the solvent friction coefficients should be imposed only on the protein surface.« less
NASA Astrophysics Data System (ADS)
Pascoe, D. J.; Anfinogentov, S. A.; Goddard, C. R.; Nakariakov, V. M.
2018-06-01
The shape of the damping profile of kink oscillations in coronal loops has recently allowed the transverse density profile of the loop to be estimated. This requires accurate measurement of the damping profile that can distinguish the Gaussian and exponential damping regimes, otherwise there are more unknowns than observables. Forward modeling of the transverse intensity profile may also be used to estimate the width of the inhomogeneous layer of a loop, providing an independent estimate of one of these unknowns. We analyze an oscillating loop for which the seismological determination of the transverse structure is inconclusive except when supplemented by additional spatial information from the transverse intensity profile. Our temporal analysis describes the motion of a coronal loop as a kink oscillation damped by resonant absorption, and our spatial analysis is based on forward modeling the transverse EUV intensity profile of the loop under the isothermal and optically thin approximations. We use Bayesian analysis and Markov chain Monte Carlo sampling to apply our spatial and temporal models both individually and simultaneously to our data and compare the results with numerical simulations. Combining the two methods allows both the inhomogeneous layer width and density contrast to be calculated, which is not possible for the same data when each method is applied individually. We demonstrate that the assumption of an exponential damping profile leads to a significantly larger error in the inferred density contrast ratio compared with a Gaussian damping profile.
Development of burnup dependent fuel rod model in COBRA-TF
NASA Astrophysics Data System (ADS)
Yilmaz, Mine Ozdemir
The purpose of this research was to develop a burnup dependent fuel thermal conductivity model within Pennsylvania State University, Reactor Dynamics and Fuel Management Group (RDFMG) version of the subchannel thermal-hydraulics code COBRA-TF (CTF). The model takes into account first, the degradation of fuel thermal conductivity with high burnup; and second, the fuel thermal conductivity dependence on the Gadolinium content for both UO2 and MOX fuel rods. The modified Nuclear Fuel Industries (NFI) model for UO2 fuel rods and Duriez/Modified NFI Model for MOX fuel rods were incorporated into CTF and fuel centerline predictions were compared against Halden experimental test data and FRAPCON-3.4 predictions to validate the burnup dependent fuel thermal conductivity model in CTF. Experimental test cases from Halden reactor fuel rods for UO2 fuel rods at Beginning of Life (BOL), through lifetime without Gd2O3 and through lifetime with Gd 2O3 and a MOX fuel rod were simulated with CTF. Since test fuel rod and FRAPCON-3.4 results were based on single rod measurements, CTF was run for a single fuel rod surrounded with a single channel configuration. Input decks for CTF were developed for one fuel rod located at the center of a subchannel (rod-centered subchannel approach). Fuel centerline temperatures predicted by CTF were compared against the measurements from Halden experimental test data and the predictions from FRAPCON-3.4. After implementing the new fuel thermal conductivity model in CTF and validating the model with experimental data, CTF model was applied to steady state and transient calculations. 4x4 PWR fuel bundle configuration from Purdue MOX benchmark was used to apply the new model for steady state and transient calculations. First, one of each high burnup UO2 and MOX fuel rods from 4x4 matrix were selected to carry out single fuel rod calculations and fuel centerline temperatures predicted by CTF/TORT-TD were compared against CTF /TORT-TD /FRAPTRAN predictions. After confirming that the new fuel thermal conductivity model in CTF worked and provided consistent results with FRAPTRAN predictions for a single fuel rod configuration, the same type of analysis was carried out for a bigger system which is the 4x4 PWR bundle consisting of 15 fuel pins and one control guide tube. Steady- state calculations at Hot Full Power (HFP) conditions for control guide tube out (unrodded) were performed using the 4x4 PWR array with CTF/TORT-TD coupled code system. Fuel centerline, surface and average temperatures predicted by CTF/TORT-TD with and without the new fuel thermal conductivity model were compared against CTF/TORT-TD/FRAPTRAN predictions to demonstrate the improvement in fuel centerline predictions when new model was used. In addition to that constant and CTF dynamic gap conductance model were used with the new thermal conductivity model to show the performance of the CTF dynamic gap conductance model and its impact on fuel centerline and surface temperatures. Finally, a Rod Ejection Accident (REA) scenario using the same 4x4 PWR array was run both at Hot Zero Power (HZP) and Hot Full Power (HFP) condition, starting at a position where half of the control rod is inserted. This scenario was run using CTF/TORT-TD coupled code system with and without the new fuel thermal conductivity model. The purpose of this transient analysis was to show the impact of thermal conductivity degradation (TCD) on feedback effects, specifically Doppler Reactivity Coefficient (DRC) and, eventually, total core reactivity.
Electrostatic plasma simulation by Particle-In-Cell method using ANACONDA package
NASA Astrophysics Data System (ADS)
Blandón, J. S.; Grisales, J. P.; Riascos, H.
2017-06-01
Electrostatic plasma is the most representative and basic case in plasma physics field. One of its main characteristics is its ideal behavior, since it is assumed be in thermal equilibrium state. Through this assumption, it is possible to study various complex phenomena such as plasma oscillations, waves, instabilities or damping. Likewise, computational simulation of this specific plasma is the first step to analyze physics mechanisms on plasmas, which are not at equilibrium state, and hence plasma is not ideal. Particle-In-Cell (PIC) method is widely used because of its precision for this kind of cases. This work, presents PIC method implementation to simulate electrostatic plasma by Python, using ANACONDA packages. The code has been corroborated comparing previous theoretical results for three specific phenomena in cold plasmas: oscillations, Two-Stream instability (TSI) and Landau Damping(LD). Finally, parameters and results are discussed.
Drawing simulation by static implicit analysis with the artificial damping method
NASA Astrophysics Data System (ADS)
Oide, K.; Mihara, Y.; Kobayashi, T.; Takizawa, H.; Amaishi, T.; Umezu, Y.
2016-08-01
Wrinkling during draw is typically a local instability problem. When the structural instability is localized, there will be a local transfer of strain energy from one part of the structure to neighboring parts, and global solution methods, which is typically represented by the arc length method, may not work. So, this type of problems has to be solved either dynamically or with the artificial damping. On the other hand, the essential nature of the buckling behavior can be regarded as a static problem, even though it may be possible to raise some side issues due to the inertia effect. In this study, we traced the local buckling behavior of anisotropic elasto-plastic thin shells in Numisheet2014 BM4 using the artificial damping method.
High stability design for new centrifugal compressor
NASA Technical Reports Server (NTRS)
Kanki, H.; Katayama, K.; Morii, S.; Mouri, Y.; Umemura, S.; Ozawa, U.; Oda, T.
1989-01-01
It is essential that high-performance centrifugal compressors be free of subsynchronous vibrations. A new high-performance centrifugal compressor has been developed by applying the latest rotordynamics knowledge and design techniques: (1) To improve the system damping, a specially designed oil film seal was developed. This seal attained a damping ratio three times that of the conventional design. The oil film seal contains a special damper ring in the seal cartridge. (2) To reduce the destabilizing effect of the labyrinth seal, a special swirl canceler (anti-swirl nozzle) was applied to the balance piston seal. (3) To confirm the system damping margin, the dynamic simulation rotor model test and the full load test applied the vibration exciting test in actual load conditions.
An experimental investigation of hingeless helicopter rotor-body stability in hover
NASA Technical Reports Server (NTRS)
Bousman, W. G.
1978-01-01
Model tests of a 1.62 m diameter rotor were performed to investigate the aeromechanical stability of coupled rotor-body systems in hover. Experimental measurements were made of modal frequencies and damping over a wide range of rotor speeds. Good data were obtained for the frequencies of the rotor lead-lag regressing mode. The quality of the damping measurements of the body modes was poor due to nonlinear damping in the gimbal ball bearings. Simulated vacuum testing was performed using substitute blades of tantalum that reduced the effective lock number to 0.2% of the model scale value while keeping the blade inertia constant. The experimental data were compared with theoretical predictions, and the correlation was in general very good.
Micro- and Macro-Fluid Dynamics and Acoustics of Resonant Liners
NASA Technical Reports Server (NTRS)
Tam, Christopher K. W.; Watson, Willie (Technical Monitor)
2002-01-01
The objectives of this project are to perform direct numerical simulation of the micro-fluid and acoustic fields of a resonant acoustic liner and to investigate the physical processes by which incident sound waves are damped by the acoustic liner. We would like to report that our research work and results have fulfilled both objectives of the grant. The following is a summary of the important accomplishments: (1) Two dimensional direct numerical simulation of the flow and acoustic field around the cavity of resonant liner were successfully carried out; (2) The simulations of (1) were extended to include a laminar grazing flow; (3) The numerical simulations provided strong evidence that there are two principal mechanisms by which a resonant liner damps out an incident acoustic wave; (4) A validation test was performed by comparing the computed dissipation coefficients (not impedance) with impedance tube measurements done at GTRI; and (5) Some resources of this grant were used to support the development of new CAA methods. (Our work on numerical simulation of acoustic liners has benefited by the availability of these improved methods).
A method for landing gear modeling and simulation with experimental validation
NASA Technical Reports Server (NTRS)
Daniels, James N.
1996-01-01
This document presents an approach for modeling and simulating landing gear systems. Specifically, a nonlinear model of an A-6 Intruder Main Gear is developed, simulated, and validated against static and dynamic test data. This model includes nonlinear effects such as a polytropic gas model, velocity squared damping, a geometry governed model for the discharge coefficients, stick-slip friction effects and a nonlinear tire spring and damping model. An Adams-Moulton predictor corrector was used to integrate the equations of motion until a discontinuity caused by a stick-slip friction model was reached, at which point, a Runga-Kutta routine integrated past the discontinuity and returned the problem solution back to the predictor corrector. Run times of this software are around 2 mins. per 1 sec. of simulation under dynamic circumstances. To validate the model, engineers at the Aircraft Landing Dynamics facilities at NASA Langley Research Center installed one A-6 main gear on a drop carriage and used a hydraulic shaker table to provide simulated runway inputs to the gear. Model parameters were tuned to produce excellent agreement for many cases.
Time domain simulation of the response of geometrically nonlinear panels subjected to random loading
NASA Technical Reports Server (NTRS)
Moyer, E. Thomas, Jr.
1988-01-01
The response of composite panels subjected to random pressure loads large enough to cause geometrically nonlinear responses is studied. A time domain simulation is employed to solve the equations of motion. An adaptive time stepping algorithm is employed to minimize intermittent transients. A modified algorithm for the prediction of response spectral density is presented which predicts smooth spectral peaks for discrete time histories. Results are presented for a number of input pressure levels and damping coefficients. Response distributions are calculated and compared with the analytical solution of the Fokker-Planck equations. RMS response is reported as a function of input pressure level and damping coefficient. Spectral densities are calculated for a number of examples.
Impact of conversion to mixed-oxide fuels on reactor structural components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yahr, G.T.
1997-04-01
The use of mixed-oxide (MOX) fuel to replace conventional uranium fuel in commercial light-water power reactors will result in an increase in the neutron flux. The impact of the higher flux on the structural integrity of reactor structural components must be evaluated. This report briefly reviews the effects of radiation on the mechanical properties of metals. Aging degradation studies and reactor operating experience provide a basis for determining the areas where conversion to MOX fuels has the potential to impact the structural integrity of reactor components.
X-ray Photoelectron Spectroscopy study of CaV1-xMoxO3-δ
NASA Astrophysics Data System (ADS)
Belyakov, S. A.; Kuznetsov, M. V.; Shkerin, S. N.
2018-06-01
An investigation was carried out on perovskite-based derivatives of CaV1-xMoxO3-δ using X-ray Photoelectron Spectroscopy (XPS). According to the XRD pattern, the area of homogeneity covers the region from x = 0 to x = 0.6. Wide XPS-peaks of Ca, V, Mo and O are observed, signalling that elements are presented in multiple states. A model for explaining the large chemical shifts of XPS peaks due to different charging effects on different parts of the sample surface is proposed.
NASA Astrophysics Data System (ADS)
El-Mahallawy, Nahed; Atia, Mostafa R. A.; Khaled, Amany; Shoeib, Madiha
2018-04-01
Research has adopted lately the improvement of solar collectors’ efficiency and durability by coating its surface with special selective coatings. The selectivity of any coat is governed by the ratio between the absorptivity of this coat in the UV range to its emissivity in the IR range (named selectivity). There emerged a need of using simulation software to estimate the effect of different elements and compounds on the optical properties before getting into experimental analysis. Several research has discussed the stability and durability of the coats under high temperature conditions since it was proved that the coat efficiency increases at high temperature; i.e. being more selective. This research has approached the simulation of different metal(M) / metal oxide (MOx) based tandems in order to obtain promising selective properties that can be taken into further experimental investigation. Five metals and six metal oxides were chosen based on previous literature to be simulated using OpenFilters open source software and results were analyzed. Oxides of tungsten, copper and silicon have shown superior selective results through different layering techniques than others.
Simulated and Experimental Damping Properties of a SMA/Fiber Glass Laminated Composite
NASA Astrophysics Data System (ADS)
Arnaboldi, S.; Bassani, P.; Biffi, C. A.; Tuissi, A.; Carnevale, M.; Lecis, N.; Loconte, A.; Previtali, B.
2011-07-01
In this article, an advanced laminated composite is developed, combining the high damping properties of shape memory alloy (SMA) with mechanical properties and light weight of a glass-fiber reinforced polymer. The composite is formed by stacking a glass-fiber reinforced epoxy core between two thin patterned strips of SMA alloy, and two further layers of fiber-glass reinforced epoxy. The bars of the laminated composite were assembled and cured in autoclave. The patterning was designed to enhance the interface adhesion between matrix and SMA inserts and optimally exploit the damping capacity of the SMA thin ribbons. The patterned ribbons of the SMA alloy were cut by means of a pulsed fiber laser source. Damping properties at different amplitudes on full scale samples were investigated at room temperature with a universal testing machine through dynamic tension tests, while temperature dependence was investigated by dynamic mechanical analyses (DMA) on smaller samples. Experimental results were used in conjunction with FEM analysis to optimize the geometry of the inserts. Experimental decay tests on the laminated composite have been carried out to identify the adimensional damping value related to their first flexural mode.
Tower Based Load Measurements for Individual Pitch Control and Tower Damping of Wind Turbines
NASA Astrophysics Data System (ADS)
Kumar, A. A.; Hugues-Salas, O.; Savini, B.; Keogh, W.
2016-09-01
The cost of IPC has hindered adoption outside of Europe despite significant loading advantages for large wind turbines. In this work we presented a method for applying individual pitch control (including for higher-harmonics) using tower-top strain gauge feedback instead of blade-root strain gauge feedback. Tower-top strain gauges offer hardware savings of approximately 50% in addition to the possibility of easier access for maintenance and installation and requiring a less specialised skill-set than that required for applying strain gauges to composite blade roots. A further advantage is the possibility of using the same tower-top sensor array for tower damping control. This method is made possible by including a second order IPC loop in addition to the tower damping loop to reduce the typically dominating 3P content in tower-top load measurements. High-fidelity Bladed simulations show that the resulting turbine spectral characteristics from tower-top feedback IPC and from the combination of tower-top IPC and damping loops largely match those of blade-root feedback IPC and nacelle- velocity feedback damping. Lifetime weighted fatigue analysis shows that the methods allows load reductions within 2.5% of traditional methods.
Optimal apparent damping as a function of the bandwidth of an array of vibration absorbers.
Vignola, Joseph; Glean, Aldo; Judge, John; Ryan, Teresa
2013-08-01
The transient response of a resonant structure can be altered by the attachment of one or more substantially smaller resonators. Considered here is a coupled array of damped harmonic oscillators whose resonant frequencies are distributed across a frequency band that encompasses the natural frequency of the primary structure. Vibration energy introduced to the primary structure, which has little to no intrinsic damping, is transferred into and trapped by the attached array. It is shown that, when the properties of the array are optimized to reduce the settling time of the primary structure's transient response, the apparent damping is approximately proportional to the bandwidth of the array (the span of resonant frequencies of the attached oscillators). Numerical simulations were conducted using an unconstrained nonlinear minimization algorithm to find system parameters that result in the fastest settling time. This minimization was conducted for a range of system characteristics including the overall bandwidth of the array, the ratio of the total array mass to that of the primary structure, and the distributions of mass, stiffness, and damping among the array elements. This paper reports optimal values of these parameters and demonstrates that the resulting minimum settling time decreases with increasing bandwidth.
Viscoelastic damping in crystalline composites and alloys
NASA Astrophysics Data System (ADS)
Ranganathan, Raghavan; Ozisik, Rahmi; Keblinski, Pawel
We use molecular dynamics simulations to study viscoelastic behavior of model Lennard-Jones (LJ) crystalline composites subject to an oscillatory shear deformation. The two crystals, namely a soft and a stiff phase, individually show highly elastic behavior and a very small loss modulus. On the other hand, when the stiff phase is included within the soft matrix as a sphere, the composite exhibits significant viscoelastic damping and a large phase shift between stress and strain. In fact, the maximum loss modulus in these model composites was found to be about 20 times greater than that given by the theoretical Hashin-Shtrikman upper bound. We attribute this behavior to the fact that in composites shear strain is highly inhomogeneous and mostly accommodated by the soft phase, corroborated by frequency-dependent Grüneisen parameter analysis. Interestingly, the frequency at which the damping is greatest scales with the microstructural length scale of the composite. Finally, a critical comparison between damping properties of these composites with ordered and disordered alloys and superlattice structures is made.
NASA Technical Reports Server (NTRS)
Yang, H. Q.; West, Jeff
2016-01-01
Propellant slosh is a potential source of disturbance critical to the stability of space vehicles. The slosh dynamics are typically represented by a mechanical model of a spring-mass-damper. This mechanical model is then included in the equation of motion of the entire vehicle for Guidance, Navigation and Control analysis. A Volume-Of-Fluid (VOF) based Computational Fluid Dynamics (CFD) program developed at MSFC was applied to extract slosh damping in the baffled tank from the first principle. First the experimental data using water with sub-scale smooth wall tank were used as the baseline validation. It is demonstrated that CFD can indeed accurately predict low damping values from the smooth wall at different fill levels. The damping due to a ring baffles at different depths from the free surface was then simulated, and fairly good agreement with experimental measurement was observed. Comparison with an empirical correlation of Miles equation is also made.
Saturation of a toroidal Alfvén eigenmode due to enhanced damping of nonlinear sidebands
NASA Astrophysics Data System (ADS)
Todo, Y.; Berk, H. L.; Breizman, B. N.
2012-09-01
This paper examines nonlinear magneto-hydrodynamic effects on the energetic particle driven toroidal Alfvén eigenmode (TAE) for lower dissipation coefficients and with higher numerical resolution than in the previous simulations (Todo et al 2010 Nucl. Fusion 50 084016). The investigation is focused on a TAE mode with toroidal mode number n = 4. It is demonstrated that the mechanism of mode saturation involves generation of zonal (n = 0) and higher-n (n ⩾ 8) sidebands, and that the sidebands effectively increase the mode damping rate via continuum damping. The n = 0 sideband includes the zonal flow peaks at the TAE gap locations. It is also found that the n = 0 poloidal flow represents a balance between the nonlinear driving force from the n = 4 components and the equilibrium plasma response to the n = 0 fluctuations. The spatial profile of the n = 8 sideband peaks at the n = 8 Alfvén continuum, indicating enhanced dissipation due to continuum damping.
Absorbing boundary layers for spin wave micromagnetics
NASA Astrophysics Data System (ADS)
Venkat, G.; Fangohr, H.; Prabhakar, A.
2018-03-01
Micromagnetic simulations are used to investigate the effects of different absorbing boundary layers (ABLs) on spin waves (SWs) reflected from the edges of a magnetic nano-structure. We define the conditions that a suitable ABL must fulfill and compare the performance of abrupt, linear, polynomial and tan hyperbolic damping profiles in the ABL. We first consider normal incidence in a permalloy stripe and propose a transmission line model to quantify reflections and calculate the loss introduced into the stripe due to the ABL. We find that a parabolic damping profile absorbs the SW energy efficiently and has a low reflection coefficient, thus performing much better than the commonly used abrupt damping profile. We then investigated SWs that are obliquely incident at 26.6 °, 45 ° and 63.4 ° on the edge of a yttrium-iron-garnet film. The parabolic damping profile again performs efficiently by showing a high SW energy transfer to the ABL and a low reflected SW amplitude.
Double-beam cantilever structure with embedded intelligent damping block: Dynamics and control
NASA Astrophysics Data System (ADS)
Szmidt, Tomasz; Pisarski, Dominik; Bajer, Czesław; Dyniewicz, Bartłomiej
2017-08-01
In this paper a semi-active method to control the vibrations of twin beams connected at their tips by a smart damping element is investigated. The damping element can be made of a magnetorheological elastomer or a smart material of another type, for instance vacuum packed particles. What is crucial is the ability to modify the storage and loss moduli of the damping block by means of devices attached directly to the vibrating structure. First, a simple dynamical model of the system is proposed. The continuous model is discretized using the Galerkin procedure. Then, a practical state-feedback control law is developed. The control strategy aims at achieving the best instantaneous energy dissipation of the system. Numerical simulations confirm its effectiveness in reducing free vibrations. The proposed control strategy appears to be robust in the sense that its application does not require any knowledge of the initial conditions imposed on the structure, and its performance is better than passive solutions, especially for the system induced in the first mode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Shekhar; Koganti, S.B.
2008-07-01
Acetohydroxamic acid (AHA) is a novel complexant for recycle of nuclear-fuel materials. It can be used in ordinary centrifugal extractors, eliminating the need for electro-redox equipment or complex maintenance requirements in a remotely maintained hot cell. In this work, the effect of AHA on Pu(IV) distribution ratios in 30% TBP system was quantified, modeled, and integrated in SIMPSEX code. Two sets of batch experiments involving macro Pu concentrations (conducted at IGCAR) and one high-Pu flowsheet (literature) were simulated for AHA based U-Pu separation. Based on the simulation and validation results, AHA based next-generation reprocessing flowsheets are proposed for co-processing basedmore » FBR and thermal-fuel reprocessing as well as evaporator-less macro-level Pu concentration process required for MOX fuel fabrication. Utilization of AHA results in significant simplification in plant design and simpler technology implementations with significant cost savings. (authors)« less
Natural Circulation Level Optimization and the Effect during ULOF Accident in the SPINNOR Reactors
NASA Astrophysics Data System (ADS)
Abdullah, Ade Gafar; Su'ud, Zaki; Kurniadi, Rizal; Kurniasih, Neny; Yulianti, Yanti
2010-12-01
Natural circulation level optimization and the effect during loss of flow accident in the 250 MWt MOX fuelled small Pb-Bi Cooled non-refueling nuclear reactors (SPINNOR) have been performed. The simulation was performed using FI-ITB safety code which has been developed in ITB. The simulation begins with steady state calculation of neutron flux, power distribution and temperature distribution across the core, hot pool and cool pool, and also steam generator. When the accident is started due to the loss of pumping power the power distribution and the temperature distribution of core, hot pool and cool pool, and steam generator change. Then the feedback reactivity calculation is conducted, followed by kinetic calculation. The process is repeated until the optimum power distribution is achieved. The results show that the SPINNOR reactor has inherent safety capability against this accident.
Sustained Recycle in Light Water and Sodium-Cooled Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steven J. Piet; Samuel E. Bays; Michael A. Pope
2010-11-01
From a physics standpoint, it is feasible to sustain recycle of used fuel in either thermal or fast reactors. This paper examines multi-recycle potential performance by considering three recycling approaches and calculating several fuel cycle parameters, including heat, gamma, and neutron emission of fresh fuel; radiotoxicity of waste; and uranium utilization. The first recycle approach is homogeneous mixed oxide (MOX) fuel assemblies in a light water reactor (LWR). The transuranic portion of the MOX was varied among Pu, NpPu, NpPuAm, or all-TRU. (All-TRU means all isotopes through Cf-252.) The Pu case was allowed to go to 10% Pu in freshmore » fuel, but when the minor actinides were included, the transuranic enrichment was kept below 8% to satisfy the expected void reactivity constraint. The uranium portion of the MOX was enriched uranium. That enrichment was increased (to as much as 6.5%) to keep the fuel critical for a typical LWR irradiation. The second approach uses heterogeneous inert matrix fuel (IMF) assemblies in an LWR - a mix of IMF and traditional UOX pins. The uranium-free IMF fuel pins were Pu, NpPu, NpPuAm, or all-TRU. The UOX pins were limited to 4.95% U-235 enrichment. The number of IMF pins was set so that the amount of TRU in discharged fuel from recycle N (from both IMF and UOX pins) was made into the new IMF pins for recycle N+1. Up to 60 of the 264 pins in a fuel assembly were IMF. The assembly-average TRU content was 1-6%. The third approach uses fast reactor oxide fuel in a sodium-cooled fast reactor with transuranic conversion ratio of 0.50 and 1.00. The transuranic conversion ratio is the production of transuranics divided by destruction of transuranics. The FR at CR=0.50 is similar to the CR for the MOX case. The fast reactor cases had a transuranic content of 33-38%, higher than IMF or MOX.« less
Wolschner, Christina; Giese, Armin; Kretzschmar, Hans A.; Huber, Robert; Moroder, Luis; Budisa, Nediljko
2009-01-01
Prion disease is characterized by the α→β structural conversion of the cellular prion protein (PrPC) into the misfolded and aggregated “scrapie” (PrPSc) isoform. It has been speculated that methionine (Met) oxidation in PrPC may have a special role in this process, but has not been detailed and assigned individually to the 9 Met residues of full-length, recombinant human PrPC [rhPrPC(23-231)]. To better understand this oxidative event in PrP aggregation, the extent of periodate-induced Met oxidation was monitored by electrospray ionization-MS and correlated with aggregation propensity. Also, the Met residues were replaced with isosteric and chemically stable, nonoxidizable analogs, i.e., with the more hydrophobic norleucine (Nle) and the highly hydrophilic methoxinine (Mox). The Nle-rhPrPC variant is an α-helix rich protein (like Met-rhPrPC) resistant to oxidation that lacks the in vitro aggregation properties of the parent protein. Conversely, the Mox-rhPrPC variant is a β-sheet rich protein that features strong proaggregation behavior. In contrast to the parent Met-rhPrPC, the Nle/Mox-containing variants are not sensitive to periodate-induced in vitro aggregation. The experimental results fully support a direct correlation of the α→β secondary structure conversion in rhPrPC with the conformational preferences of Met/Nle/Mox residues. Accordingly, sporadic prion and other neurodegenerative diseases, as well as various aging processes, might also be caused by oxidative stress leading to Met oxidation. PMID:19416900
Nonlinear damping of oblique whistler mode waves through Landau resonance
NASA Astrophysics Data System (ADS)
Hsieh, Y.; Omura, Y.
2017-12-01
Nonlinear trapping of electrons through Landau resonance is a characteristic dynamics in oblique whistler-mode wave particle interactions. The resonance velocity of the Landau resonance at quasi-parallel propagation becomes very close to the parallel group velocity of whistler-mode wave at frequency around 0.5 Ωe, causing a long distance of resonant interaction and strong acceleration of resonant electrons [1]. We demonstrate these effective accelerations for electrons with high equatorial pitch angle ( > 60°) by test particle simulations with parameters for the Earth's inner magnetosphere at L=5. In the simulations, we focus on slightly oblique whistler mode waves with wave normal angle < 20°. Analyzing the wave electric field E and the resonant current J, which is composed of electrons undergoing the Landau resonance, we find that the J·E is mainly positive, which denotes the damping of the wave. Furthermore, we confirm that this positive J•E is dominated by transverse component Jperp·Eperp rather than by longitudinal component Jpara·Eperp. The simulation results reveal that the Landau resonance contributes to the nonlinear damping at 0.5 Ωe for whistler mode waves. Reference [1] Hsieh, Y.-K., and Y. Omura (2017), Nonlinear dynamics of electrons interacting with oblique whistler mode chorus in the magnetosphere, J. Geophys. Res. Space Physics, 122, doi:10.1002/2016JA023255.
Taylor, Jonathon; Biddulph, Phillip; Davies, Michael; Lai, Ka man
2013-01-01
London is expected to experience more frequent periods of intense rainfall and tidal surges, leading to an increase in the risk of flooding. Damp and flooded dwellings can support microbial growth, including mould, bacteria, and protozoa, as well as persistence of flood-borne microorganisms. The amount of time flooded dwellings remain damp will depend on the duration and height of the flood, the contents of the flood water, the drying conditions, and the building construction, leading to particular properties and property types being prone to lingering damp and human pathogen growth or persistence. The impact of flooding on buildings can be simulated using Heat Air and Moisture (HAM) models of varying complexity in order to understand how water can be absorbed and dry out of the building structure. This paper describes the simulation of the drying of building archetypes representative of the English building stock using the EnergyPlus based tool 'UCL-HAMT' in order to determine the drying rates of different abandoned structures flooded to different heights and during different seasons. The results are mapped out using GIS in order to estimate the spatial risk across London in terms of comparative flood vulnerability, as well as for specific flood events. Areas of South and East London were found to be particularly vulnerable to long-term microbial exposure following major flood events. Copyright © 2012 Elsevier Ltd. All rights reserved.
Weakly damped modes in star clusters and galaxies
NASA Technical Reports Server (NTRS)
Weinberg, Martin D.
1994-01-01
A perturber may excite a coherent mode in a star cluster or galaxy. If the stellar system is stable, it is commonly assumed that such a mode will be strongly damped and therefore of little practical consequence other than redistributing momentum and energy deposited by the perturber. This paper demonstrates that this assumption is false; weakly damped modes exist and may persist long enough to have observable consequences. To do this, a method for investigating the dispersion relation for spherical stellar systems and for locating weakly damped modes in particular is developed and applied to King models of varying concentration. This leads to a following remarkable result: King models exhibit very weakly damped m = 1 modes over a wide range of concentration (0.67 less than or equal to c less than or equal to 1.5 have been examined). The predicted damping time is tens of hundreds of crossing times. This mode causes the peak density to shift from and slowly revolve about the initial center. The existence of the mode is supported by n-body simulation. Higher order modes and possible astronomical consequences are discussed. Weakly damped modes, for example, may provide a neutral explanation for observed discrepancies between density and kinematic centers in galaxies, off-center nuclei, the location of velocity cusps due to massive black holes, and both m = 1 and barlike disturbances of disks enbedded in massive halos or spheroids. Gravitational shocking may excite the m = 1 mode in globular clusters, which could modify their subsequent evolution and displace the positions of exotic remnants.
Development of Semi-Empirical Damping Equation for Baffled Tank with Oblate Spheroidal Dome
NASA Technical Reports Server (NTRS)
Yang, H. Q.; West, Jeff; Brodnick, Jacob; Eberhart, Chad
2016-01-01
Propellant slosh is a potential source of disturbance that can significantly impact the stability of space vehicles. The slosh dynamics are typically represented by a mechanical model of a spring-mass-damper. This mechanical model is then included in the equation of motion of the entire vehicle for Guidance, Navigation and Control analysis. The typical parameters required by the mechanical model include natural frequency of the slosh, slosh mass, slosh mass center location, and the critical damping ratio. A fundamental study has been undertaken at NASA MSFC to understand the fluid damping physics from a ring baffle in the barrel section of a propellant tank. An asymptotic damping equation and CFD blended equation have been derived by NASA MSFC team to complement the popularly used Miles equation at different flow regimes. The new development has found success in providing a nonlinear damping model for the Space Launch System. The purpose of this study is to further extend the semi-empirical damping equations into the oblate spheroidal dome section of the propellant tanks. First, previous experimental data from the spherical baffled tank are collected and analyzed. Several methods of taking the dome curvature effect, including a generalized Miles equation, area projection method, and equalized fill height method, are assessed. CFD simulation is used to shed light on the interaction of vorticity around the baffle with the locally curved wall and liquid-gas interface. The final damping equation will be validated by a recent subscale test with an oblate spheroidal dome conducted at NASA MSFC.
Assessment of empirical potential for MOX nuclear fuels and thermomechanical properties
NASA Astrophysics Data System (ADS)
Balboa, Hector; Van Brutzel, Laurent; Chartier, Alain; Le Bouar, Yann
2017-11-01
We assess five empirical interatomic potentials in the approximation of rigid ions and pair interactions for the (U1-y,Puy)O solid solution. The assessment compares available experimental data and Fink's recommendation with simulations on: the structural, thermodynamics, and mechanical properties over the full range of plutonium composition, from pure UO2 to pure PuO2 and for temperatures ranging from 300 K to the melting point. The best results are obtained by potentials referred as Cooper and Potashnikov potentials. The first one reproduces more accurately recommendations for the thermodynamics and mechanical properties exhibiting ductile-like behaviour during crack propagation, while the second one gives brittle behaviour at low temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raghunathan, M.; Ganesh, R.
2013-03-15
In the past, long-time evolution of an initial perturbation in collisionless Maxwellian plasma (q = 1) has been simulated numerically. The controversy over the nonlinear fate of such electrostatic perturbations was resolved by Manfredi [Phys. Rev. Lett. 79, 2815-2818 (1997)] using long-time simulations up to t=1600{omega}{sub p}{sup -1}. The oscillations were found to continue indefinitely leading to Bernstein-Greene-Kruskal (BGK)-like phase-space vortices (from here on referred as 'BGK structures'). Using a newly developed, high resolution 1D Vlasov-Poisson solver based on piecewise-parabolic method (PPM) advection scheme, we investigate the nonlinear Landau damping in 1D plasma described by toy q-distributions for long times,more » up to t=3000{omega}{sub p}{sup -1}. We show that BGK structures are found only for a certain range of q-values around q = 1. Beyond this window, for the generic parameters, no BGK structures were observed. We observe that for values of q<1 where velocity distributions have long tails, strong Landau damping inhibits the formation of BGK structures. On the other hand, for q>1 where distribution has a sharp fall in velocity, the formation of BGK structures is rendered difficult due to high wave number damping imposed by the steep velocity profile, which had not been previously reported. Wherever relevant, we compare our results with past work.« less
NASA Astrophysics Data System (ADS)
LaFleur, Adrienne Marie
The development of non-destructive assay (NDA) capabilities to directly measure the fissile content in spent fuel is needed to improve the timely detection of the diversion of significant quantities of fissile material. Currently, the International Atomic Energy Agency (IAEA) does not have effective NDA methods to verify spent fuel and recover continuity of knowledge in the event of a containment and surveillance systems failure. This issue has become increasingly critical with the worldwide expansion of nuclear power, adoption of enhanced safeguards criteria for spent fuel verification, and recent efforts by the IAEA to incorporate an integrated safeguards regime. In order to address these issues, the use of Self-Interrogation Neutron Resonance Densitometry (SINRD) has been developed to improve existing nuclear safeguards and material accountability measurements. The following characteristics of SINRD were analyzed: (1) ability to measure the fissile content in Light Water Reactors (LWR) fuel assemblies and (2) sensitivity and penetrability of SINRD to the removal of fuel pins from an assembly. The Monte Carlo Neutral Particle eXtended (MCNPX) transport code was used to simulate SINRD for different geometries. Experimental measurements were also performed with SINRD and were compared to MCNPX simulations of the experiment to verify the accuracy of the MCNPX model of SINRD. Based on the results from these simulations and measurements, we have concluded that SINRD provides a number of improvements over current IAEA verification methods. These improvements include: (1) SINRD provides absolute measurements of burnup independent of the operator's declaration. (2) SINRD is sensitive to pin removal over the entire burnup range and can verify the diversion of 6% of fuel pins within 3o from LWR spent LEU and MOX fuel. (3) SINRD is insensitive to the boron concentration and initial fuel enrichment and can therefore be used at multiple spent fuel storage facilities. (4) The calibration of SINRD at one reactor facility carries over to reactor sites in different countries because it uses the ratio of fission chambers (FCs) that are not facility dependent. (5) SINRD can distinguish fresh and 1-cycle spent MOX fuel from 3- and 4-cycles spent LEU fuel without using reactor burnup codes.
Wavelet-based identification of rotor blades in passage-through-resonance tests
NASA Astrophysics Data System (ADS)
Carassale, Luigi; Marrè-Brunenghi, Michela; Patrone, Stefano
2018-01-01
Turbine blades are critical components in turbo engines and their design process usually includes experimental tests in order to validate and/or update numerical models. These tests are generally carried out on full-scale rotors having some blades instrumented with strain gauges and usually involve a run-up or a run-down phase. The quantification of damping in these conditions is rather challenging for several reasons. In this work, we show through numerical simulations that the usual identification procedures lead to a systematic overestimation of damping due both to the finite sweep velocity, as well as to the variation of the blade natural frequencies with the rotation speed. To overcome these problems, an identification procedure based on the continuous wavelet transform is proposed and validated through numerical simulation.
Ferrite HOM Absorber for the RHIC ERL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hahn,H.; Choi, E.M.; Hammons, L.
A superconducting Energy Recovery Linac is under construction at Brookhaven National Laboratory to serve as test bed for RHIC upgrades. The damping of higher-order modes in the superconducting five-cell cavity for the Energy-Recovery linac at RHIC is performed exclusively by two ferrite absorbers. The ferrite properties have been measured in ferrite-loaded pill box cavities resulting in the permeability values given by a first-order Debye model for the tiled absorber structure and an equivalent permeability value for computer simulations with solid ring dampers. Measured and simulated results for the higher-order modes in the prototype copper cavity are discussed. First room-temperature measurementsmore » of the finished niobium cavity are presented which confirm the effective damping of higher-order modes in the ERL. by the ferrite absorbers.« less
Electron-phonon interaction within classical molecular dynamics
Tamm, A.; Samolyuk, G.; Correa, A. A.; ...
2016-07-14
Here, we present a model for nonadiabatic classical molecular dynamics simulations that captures with high accuracy the wave-vector q dependence of the phonon lifetimes, in agreement with quantum mechanics calculations. It is based on a local view of the e-ph interaction where individual atom dynamics couples to electrons via a damping term that is obtained as the low-velocity limit of the stopping power of a moving ion in a host. The model is parameter free, as its components are derived from ab initio-type calculations, is readily extended to the case of alloys, and is adequate for large-scale molecular dynamics computermore » simulations. We also show how this model removes some oversimplifications of the traditional ionic damped dynamics commonly used to describe situations beyond the Born-Oppenheimer approximation.« less
Mössbauer study of modified iron-molybdenum catalysts for methanol oxidation
NASA Astrophysics Data System (ADS)
Ivanov, K. I.; Mitov, I. G.; Krustev, St. V.; Boyanov, B. S.
2010-03-01
The preparation and catalytic properties of mixed Fe-Mo-W catalysts toward methanol oxidation are investigated. Mössbauer spectroscopy, X-ray diffraction and chemical studies revealed the formation of two types of solid solutions with compositions Fe2(MoxW1-xO4)3 and (MoxW1-x)O3. The solid solutions formed are characterized by high activity and selectivity upon methanol oxidation and are of interest in view of their practical application. Sodium-doped iron-molybdenum catalysts are also investigated and the NaFe(MoO4)2 formation was established.
Confirmation of shutdown cooling effects
NASA Astrophysics Data System (ADS)
Sato, Kotaro; Tabuchi, Masato; Sugimura, Naoki; Tatsumi, Masahiro
2015-12-01
After the Fukushima accidents, all nuclear power plants in Japan have gradually stopped their operations and have long periods of shutdown. During those periods, reactivity of fuels continues to change significantly especially for high-burnup UO2 fuels and MOX fuels due to radioactive decays. It is necessary to consider these isotopic changes precisely, to predict neutronics characteristics accurately. In this paper, shutdown cooling (SDC) effects of UO2 and MOX fuels that have unusual operation histories are confirmed by the advanced lattice code, AEGIS. The calculation results show that the effects need to be considered even after nuclear power plants come back to normal operation.
Numerical simulations of internal wave generation by convection in water.
Lecoanet, Daniel; Le Bars, Michael; Burns, Keaton J; Vasil, Geoffrey M; Brown, Benjamin P; Quataert, Eliot; Oishi, Jeffrey S
2015-06-01
Water's density maximum at 4°C makes it well suited to study internal gravity wave excitation by convection: an increasing temperature profile is unstable to convection below 4°C, but stably stratified above 4°C. We present numerical simulations of a waterlike fluid near its density maximum in a two-dimensional domain. We successfully model the damping of waves in the simulations using linear theory, provided we do not take the weak damping limit typically used in the literature. To isolate the physical mechanism exciting internal waves, we use the spectral code dedalus to run several simplified model simulations of our more detailed simulation. We use data from the full simulation as source terms in two simplified models of internal-wave excitation by convection: bulk excitation by convective Reynolds stresses, and interface forcing via the mechanical oscillator effect. We find excellent agreement between the waves generated in the full simulation and the simplified simulation implementing the bulk excitation mechanism. The interface forcing simulations overexcite high-frequency waves because they assume the excitation is by the "impulsive" penetration of plumes, which spreads energy to high frequencies. However, we find that the real excitation is instead by the "sweeping" motion of plumes parallel to the interface. Our results imply that the bulk excitation mechanism is a very accurate heuristic for internal-wave generation by convection.
Dynamic behavior of acoustic metamaterials and metaconfigured structures with local oscillators
NASA Astrophysics Data System (ADS)
Manimala, James Mathew
Dynamic behavior of acoustic metamaterials (AM) and metaconfigured structures (MCS) with various oscillator-type microstructures or local attachments was investigated. AM derive their unusual elastic wave manipulation capabilities not just from material constituents but more so from engineered microstructural configurations. Depending on the scale of implementation, these "microstructures" may be deployed as microscopic inclusions in metacomposites or even as complex endo-structures within load-bearing exo-structures in MCS. The frequency-dependent negative effective-mass exhibited by locally resonant microstructures when considered as a single degree of freedom system was experimentally verified using a structure with an internal mass-spring resonator. AM constructed by incorporating resonators in a host material display spatial attenuation of harmonic stress waves within a tunable bandgap frequency range. An apparent damping coefficient was derived to compare the degree of attenuation achieved in these wholly elastic AM to equivalent conventionally damped models illustrating their feasibility as stiff structures that simultaneously act as effective damping elements. Parametric studies were performed using simulations to design and construct MCS with attached resonators for dynamic load mitigation applications. 98% payload isolation at resonance (7 Hz) was experimentally attained using a low-frequency vibration isolator with tip-loaded cantilever beam resonators. Pendulum impact tests on a resonator stack substantiated a peak transmitted stress reduction of about 60% and filtering of the resonator frequencies in the transmitted spectrum. Drop-tower tests were done to gauge the shock mitigation performance of an AM-inspired infrastructural building-block with internal resonators. Proof-of-concept experiments using an array of multifunctional resonators demonstrate the possibility of integrating energy harvesting and transducer capabilities. Stress wave attenuation in locally dissipative AM with various damped oscillator microstructures was studied using mechanical lattice models. The presence of damping was represented by a complex effective-mass. Analytical transmissibilities and numerical verifications were obtained for Kelvin-Voigt-type, Maxwell-type and Zener-type oscillators. Although peak attenuation at resonance is diminished, broadband attenuation was found to be achievable without increasing mass ratio, obviating the bandgap width limitations of locally resonant AM. Static and frequency-dependent measures of optimal damping that maximize the attenuation characteristics were established. A transitional value for the excitation frequency was identified within the locally resonant bandgap, above which there always exists an optimal amount of damping that renders the attenuation for the dissipative AM greater than that for the locally resonant case. AM with nonlinear stiffnesses were also investigated. For a base-excited two degree of freedom system consisting of a master structure and a Duffing-type oscillator, approximate transmissibility was derived, verified using simulations and compared to its equivalent damped model. Analytical solutions for dispersion curve shifts in nonlinear chains with linear resonators and in linear chains with nonlinear oscillators were obtained using perturbation analysis and first order approximations for cubic hardening and softening cases. Amplitude-activated alterations in bandgap width and the possibility of phenomena such as branch curling and overtaking were observed. Device implications of nonlinear AM as amplitude-dependent filters and direction-biased waveguides were examined using simulations.
NASA Astrophysics Data System (ADS)
Park, Jhin Ha; Kim, Wan Ho; Shin, Cheol Soo; Choi, Seung-Bok
2017-01-01
This work compares the ride comfort of a passenger vehicle whose suspension system is equipped with two different magneto-rheological (MR) dampers: with and without bypass holes in the piston. In order to achieve this goal, two cylindrical type MR dampers, which otherwise have the same such geometrical dimensions as radius of piston, length of pole and distance between two poles, are designed based on a mathematical model and subsequently manufactured. One of MR dampers is then modified by making bypass holes in the piston bobbin structure to obtain a relatively low slope of damping force in the pre-yield region. The field-dependent damping force characteristics are investigated through both simulation and experiment. After characterizing the field-dependent damping force of the two MR dampers, a quarter car model is established to evaluate the ride comfort. In this work, a simple but very effective sky-hook controller is adopted, and vibration control performance is evaluated under two road profiles: bump and random road excitations. It is demonstrated through simulation and experiment that the MR damper with bypass holes provides better ride comfort to the car so equipped than that without.
NASA Technical Reports Server (NTRS)
Bivens, Courtland C.; Guercio, Joseph G.
1987-01-01
A piloted simulator experiment was conducted to investigate directional axis handling qualities requirements for low speed and hover tasks performed by a Scout/Attack helicopter. Included were the directional characteristics of various candidate light helicopter family configurations. Also, the experiment focused on conventional single main/tail rotor configurations of the OH-58 series aircraft, where the first-order yaw-axis dynamic effects that contributed to the loss of tail rotor control were modeled. Five pilots flew 22 configurations under various wind conditions. Cooper-Harper handling quality ratings were used as the primary measure of merit of each configuration. The results of the experiment indicate that rotorcraft configurations with high directional gust sensitivity require greater minimum yaw damping to maintain satisfactory handling qualities during nap-of-the-Earth flying tasks. It was also determined that both yaw damping and control response are critical handling qualities parameters in performing the air-to-air target acquisition and tracking task. Finally, the lack of substantial yaw damping and larger values of gust sensitivity increased the possibility of loss of directional control at low airspeeds for the single main/tail rotor configurations.
Cross-beam energy transfer: On the accuracy of linear stationary models in the linear kinetic regime
NASA Astrophysics Data System (ADS)
Debayle, A.; Masson-Laborde, P.-E.; Ruyer, C.; Casanova, M.; Loiseau, P.
2018-05-01
We present an extensive numerical study by means of particle-in-cell simulations of the energy transfer that occurs during the crossing of two laser beams. In the linear regime, when ions are not trapped in the potential well induced by the laser interference pattern, a very good agreement is obtained with a simple linear stationary model, provided the laser intensity is sufficiently smooth. These comparisons include different plasma compositions to cover the strong and weak Landau damping regimes as well as the multispecies case. The correct evaluation of the linear Landau damping at the phase velocity imposed by the laser interference pattern is essential to estimate the energy transfer rate between the laser beams, once the stationary regime is reached. The transient evolution obtained in kinetic simulations is also analysed by means of a full analytical formula that includes 3D beam energy exchange coupled with the ion acoustic wave response. Specific attention is paid to the energy transfer when the laser presents small-scale inhomogeneities. In particular, the energy transfer is reduced when the laser inhomogeneities are comparable with the Landau damping characteristic length of the ion acoustic wave.
Modeling, simulation, and flight characteristics of an aircraft designed to fly at 100,000 feet
NASA Technical Reports Server (NTRS)
Sim, Alex G.
1991-01-01
A manned real time simulation of a conceptual vehicle, the stratoplane, was developed to study the problems associated with the flight characteristics of a large, lightweight vehicle. Mathematical models of the aerodynamics, mass properties, and propulsion system were developed in support of the simulation and are presented. The simulation was at first conducted without control augmentation to determine the needs for a control system. The unaugmented flying qualities were dominated by lightly damped dutch roll oscillations. Constant pilot workloads were needed at high altitudes. Control augmentation was studied using basic feedbacks. For the longitudinal axis, flight path angle, and pitch rate feedback were sufficient to damp the phugoid mode and to provide good flying qualities. In the lateral directional axis, bank angle, roll rate, and yaw rate feedbacks were sufficient to provide a safe vehicle with acceptable handling qualities. Intentionally stalling the stratoplane to very high angles of attack (deep stall) was studied as a means of enable safe and rapid descent. It was concluded that the deep stall maneuver is viable for this class of vehicle.
Tempest simulations of kinetic GAM mode and neoclassical turbulence
NASA Astrophysics Data System (ADS)
Xu, X. Q.; Dimits, A. M.
2007-11-01
TEMPEST is a nonlinear five dimensional (3d2v) gyrokinetic continuum code for studies of H-mode edge plasma neoclassical transport and turbulence in real divertor geometry. The 4D TEMPEST code correctly produces frequency, collisionless damping of GAM and zonal flow with fully nonlinear Boltzmann electrons in homogeneous plasmas. For large q=4 to 9, the Tempest simulations show that a series of resonance at higher harmonics v||=φGqR0/n with n=4 become effective. The TEMPEST simulation also shows that GAM exists in edge plasma pedestal for steep density and temperature gradients, and an initial GAM relaxes to the standard neoclassical residual with neoclassical transport, rather than Rosenbluth-Hinton residual due to the presence of ion-ion collisions. The enhanced GAM damping explains experimental BES measurements on the edge q scaling of the GAM amplitude. Our 5D gyrokinetic code is built on 4D Tempest neoclassical code with extension to a fifth dimension in toroidal direction and with 3D domain decompositions. Progress on performing 5D neoclassical turbulence simulations will be reported.
Damping of drop oscillations by surfactants and surface viscosity
NASA Technical Reports Server (NTRS)
Rush, Brian M.; Nadim, Ali
1999-01-01
An energy equation is derived for the general case of a viscous drop suspended in a viscous medium with surfactants contaminating the interface. It contains terms that clearly identify dissipation contributions from the viscous effects in the bulk fluids, surface shear and dilatational viscosity effects at the interface, and surfactant transport. An efficient boundary integral method is developed which incorporates the effects of a constant surface dilatational viscosity in simulations of an oscillating two-dimensional inviscid drop. Surface dilatational viscosity is shown to have a significant damping effect on the otherwise undamped inviscid oscillations.
Real-time control of geometry and stiffness in adaptive structures
NASA Technical Reports Server (NTRS)
Ramesh, A. V.; Utku, S.; Wada, B. K.
1991-01-01
The basic theory is presented for the geometry, stiffness, and damping control of adaptive structures, with emphasis on adaptive truss structures. Necessary and sufficient conditions are given for stress-free geometry control in statically determinate and indeterminate adaptive discrete structures. Two criteria for selecting the controls are proposed, and their use in real-time control is illustrated by numerical simulation results. It is shown that the stiffness and damping control of adaptive truss structures for vibration suppression is possible by elongation and elongation rate dependent feedback forces from the active elements.
Effects of gas temperature on nozzle damping experiments on cold-flow rocket motors
NASA Astrophysics Data System (ADS)
Sun, Bing-bing; Li, Shi-peng; Su, Wan-xing; Li, Jun-wei; Wang, Ning-fei
2016-09-01
In order to explore the impact of gas temperature on the nozzle damping characteristics of solid rocket motor, numerical simulations were carried out by an experimental motor in Naval Ordnance Test Station of China Lake in California. Using the pulse decay method, different cases were numerically studied via Fluent along with UDF (User Defined Functions). Firstly, mesh sensitivity analysis and monitor position-independent analysis were carried out for the computer code validation. Then, the numerical method was further validated by comparing the calculated results and experimental data. Finally, the effects of gas temperature on the nozzle damping characteristics were studied in this paper. The results indicated that the gas temperature had cooperative effects on the nozzle damping and there had great differences between cold flow and hot fire test. By discussion and analysis, it was found that the changing of mainstream velocity and the natural acoustic frequency resulted from gas temperature were the key factors that affected the nozzle damping, while the alteration of the mean pressure had little effect. Thus, the high pressure condition could be replaced by low pressure to reduce the difficulty of the test. Finally, the relation of the coefficients "alpha" between the cold flow and hot fire was got.
Low Mass-Damping Vortex-Induced Vibrations of a Single Cylinder at Moderate Reynolds Number.
Jus, Y; Longatte, E; Chassaing, J-C; Sagaut, P
2014-10-01
The feasibility and accuracy of large eddy simulation is investigated for the case of three-dimensional unsteady flows past an elastically mounted cylinder at moderate Reynolds number. Although these flow problems are unconfined, complex wake flow patterns may be observed depending on the elastic properties of the structure. An iterative procedure is used to solve the structural dynamic equation to be coupled with the Navier-Stokes system formulated in a pseudo-Eulerian way. A moving mesh method is involved to deform the computational domain according to the motion of the fluid structure interface. Numerical simulations of vortex-induced vibrations are performed for a freely vibrating cylinder at Reynolds number 3900 in the subcritical regime under two low mass-damping conditions. A detailed physical analysis is provided for a wide range of reduced velocities, and the typical three-branch response of the amplitude behavior usually reported in the experiments is exhibited and reproduced by numerical simulation.
NASA Astrophysics Data System (ADS)
Gao, Longfei; Ketcheson, David; Keyes, David
2018-02-01
We consider the long-time instability issue associated with finite difference simulation of seismic acoustic wave equations on discontinuous grids. This issue is exhibited by a prototype algebraic problem abstracted from practical application settings. Analysis of this algebraic problem leads to better understanding of the cause of the instability and provides guidance for its treatment. Specifically, we use the concept of discrete energy to derive the proper solution transfer operators and design an effective way to damp the unstable solution modes. Our investigation shows that the interpolation operators need to be matched with their companion restriction operators in order to properly couple the coarse and fine grids. Moreover, to provide effective damping, specially designed diffusive terms are introduced to the equations at designated locations and discretized with specially designed schemes. These techniques are applied to simulations in practical settings and are shown to lead to superior results in terms of both stability and accuracy.
The Vibration Ring. Phase 1; [Seedling Fund
NASA Technical Reports Server (NTRS)
Asnani, Vivake M.; Krantz, Timothy L.; Delap, Damon C.; Stringer, David B.
2014-01-01
The vibration ring was conceived as a driveline damping device to prevent structure-borne noise in machines. It has the appearance of a metal ring, and can be installed between any two driveline components like an ordinary mechanical spacer. Damping is achieved using a ring-shaped piezoelectric stack that is poled in the axial direction and connected to an electrical shunt circuit. Surrounding the stack is a metal structure, called the compression cage, which squeezes the stack along its poled axis when excited by radial driveline forces. The stack in turn generates electrical energy, which is either dissipated or harvested using the shunt circuit. Removing energy from the system creates a net damping effect. The vibration ring is much stiffer than traditional damping devices, which allows it to be used in a driveline without disrupting normal operation. In phase 1 of this NASA Seedling Fund project, a combination of design and analysis was used to examine the feasibility of this concept. Several designs were evaluated using solid modeling, finite element analysis, and by creating prototype hardware. Then an analytical model representing the coupled electromechanical response was formulated in closed form. The model was exercised parametrically to examine the stiffness and loss factor spectra of the vibration ring, as well as simulate its damping effect in the context of a simplified driveline model. The results of this work showed that this is a viable mechanism for driveline damping, and provided several lessons for continued development.
Design of a fuel element for a lead-cooled fast reactor
NASA Astrophysics Data System (ADS)
Sobolev, V.; Malambu, E.; Abderrahim, H. Aït
2009-03-01
The options of a lead-cooled fast reactor (LFR) of the fourth generation (GEN-IV) reactor with the electric power of 600 MW are investigated in the ELSY Project. The fuel selection, design and optimization are important steps of the project. Three types of fuel are considered as candidates: highly enriched Pu-U mixed oxide (MOX) fuel for the first core, the MOX containing between 2.5% and 5.0% of the minor actinides (MA) for next core and Pu-U-MA nitride fuel as an advanced option. Reference fuel rods with claddings made of T91 ferrite-martensitic steel and two alternative fuel assembly designs (one uses a closed hexagonal wrapper and the other is an open square variant without wrapper) have been assessed. This study focuses on the core variant with the closed hexagonal fuel assemblies. Based on the neutronic parameters provided by Monte-Carlo modeling with MCNP5 and ALEPH codes, simulations have been carried out to assess the long-term thermal-mechanical behaviour of the hottest fuel rods. A modified version of the fuel performance code FEMAXI-SCK-1, adapted for fast neutron spectrum, new fuels, cladding materials and coolant, was utilized for these calculations. The obtained results show that the fuel rods can withstand more than four effective full power years under the normal operation conditions without pellet-cladding mechanical interaction (PCMI). In a variant with solid fuel pellets, a mild PCMI can appear during the fifth year, however, it remains at an acceptable level up to the end of operation when the peak fuel pellet burnup ∼80 MW d kg-1 of heavy metal (HM) and the maximum clad damage of about 82 displacements per atom (dpa) are reached. Annular pellets permit to delay PCMI for about 1 year. Based on the results of this simulation, further steps are envisioned for the optimization of the fuel rod design, aiming at achieving the fuel burnup of 100 MW d kg-1 of HM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carmack, Jon; Hayes, Steven; Walters, L. C.
This document explores startup fuel options for a proposed test/demonstration fast reactor. The fuel options considered are the metallic fuels U-Zr and U-Pu-Zr and the ceramic fuels UO 2 and UO 2-PuO 2 (MOX). Attributes of the candidate fuel choices considered were feedstock availability, fabrication feasibility, rough order of magnitude cost and schedule, and the existing irradiation performance database. The reactor-grade plutonium bearing fuels (U-Pu-Zr and MOX) were eliminated from consideration as the initial startup fuels because the availability and isotopics of domestic plutonium feedstock is uncertain. There are international sources of reactor grade plutonium feedstock but isotopics and availabilitymore » are also uncertain. Weapons grade plutonium is the only possible source of Pu feedstock in sufficient quantities needed to fuel a startup core. Currently, the available U.S. source of (excess) weapons-grade plutonium is designated for irradiation in commercial light water reactors (LWR) to a level that would preclude diversion. Weapons-grade plutonium also contains a significant concentration of gallium. Gallium presents a potential issue for both the fabrication of MOX fuel as well as possible performance issues for metallic fuel. Also, the construction of a fuel fabrication line for plutonium fuels, with or without a line to remove gallium, is expected to be considerably more expensive than for uranium fuels. In the case of U-Pu-Zr, a relatively small number of fuel pins have been irradiated to high burnup, and in no case has a full assembly been irradiated to high burnup without disassembly and re-constitution. For MOX fuel, the irradiation database from the Fast Flux Test Facility (FFTF) is extensive. If a significant source of either weapons-grade or reactor-grade Pu became available (i.e., from an international source), a startup core based on Pu could be reconsidered.« less
Analysis on fuel breeding capability of FBR core region based on minor actinide recycling doping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Permana, Sidik; Novitrian,; Waris, Abdul
Nuclear fuel breeding based on the capability of fuel conversion capability can be achieved by conversion ratio of some fertile materials into fissile materials during nuclear reaction processes such as main fissile materials of U-233, U-235, Pu-239 and Pu-241 and for fertile materials of Th-232, U-238, and Pu-240 as well as Pu-238. Minor actinide (MA) loading option which consists of neptunium, americium and curium will gives some additional contribution from converted MA into plutonium such as conversion Np-237 into Pu-238 and it's produced Pu-238 converts to Pu-239 via neutron capture. Increasing composition of Pu-238 can be used to produce fissilemore » material of Pu-239 as additional contribution. Trans-uranium (TRU) fuel (Mixed fuel loading of MOX (U-Pu) and MA composition) and mixed oxide (MOX) fuel compositions are analyzed for comparative analysis in order to show the effect of MA to the plutonium productions in core in term of reactor criticality condition and fuel breeding capability. In the present study, neptunium (Np) nuclide is used as a representative of MAin trans-uranium (TRU) fuel composition as Np-MOX fuel type. It was loaded into the core region gives significant contribution to reduce the excess reactivity in comparing to mixed oxide (MOX) fuel and in the same time it contributes to increase nuclear fuel breeding capability of the reactor. Neptunium fuel loading scheme in FBR core region gives significant production of Pu-238 as fertile material to absorp neutrons for reducing excess reactivity and additional contribution for fuel breeding.« less
DAMPE squib? Significance of the 1.4 TeV DAMPE excess
NASA Astrophysics Data System (ADS)
Fowlie, Andrew
2018-05-01
We present a Bayesian and frequentist analysis of the DAMPE charged cosmic ray spectrum. The spectrum, by eye, contained a spectral break at about 1TeV and a monochromatic excess at about 1.4TeV. The break was supported by a Bayes factor of about 1010 and we argue that the statistical significance was resounding. We investigated whether we should attribute the excess to dark matter annihilation into electrons in a nearby subhalo. We found a local significance of about 3.6σ and a global significance of about 2.3σ, including a two-dimensional look-elsewhere effect by simulating 1000 pseudo-experiments. The Bayes factor was sensitive to our choices of priors, but favoured the excess by about 2 for our choices. Thus, whilst intriguing, the evidence for a signal is not currently compelling.
Simulation of the injection damping and resonance correction systems for the HEB of the SSC
NASA Astrophysics Data System (ADS)
Li, M.; Zhang, P.; Machida, S.
1993-12-01
An injection damping and resonance correction system for the High Energy Booster (HEB) of the Superconducting Super Collider (SSC) was investigated by means of multiparticle tracking. For an injection damping study, the code Simpsons is modified to utilize two Beam Position Monitors (BPM) and two dampers. The particles of 200 Gev/c, numbered 1024 or more, with Gaussian distribution in 6-D phase space are injected into the HEB with certain injection offsets. The whole bunch of particles is then kicked in proportion to the BPM signals with some upper limit. Tracking these particles up to several hundred turns while the damping system is acting shows the turn-by-turn emittance growth, which is caused by the tune spread due to nonlinearity of the lattice and residual chromaticity with synchrotron oscillations. For a resonance correction study, the operating tune is scanned as a function of time so that a bunch goes through a resonance. The performance of the resonance correction system is demonstrated. We optimize the system parameters which satisfy the emittance budget of the HEB, taking into account the realistic hardware requirement.
NASA Astrophysics Data System (ADS)
Guerry, Paul; Brown, Steven P.; Smith, Mark E.
2017-10-01
In the context of improving J coupling measurements in disordered solids, strong coupling effects have been investigated in the spin-echo and refocused INADEQUATE spin-echo (REINE) modulations of three- and four-spin systems under magic-angle-spinning (MAS), using density matrix simulations and solid-state NMR experiments on a cadmium phosphate glass. Analytical models are developed for the different modulation regimes, which are shown to be distinguishable in practice using Akaike's information criterion. REINE modulations are shown to be free of the damping that occurs for spin-echo modulations when the observed spin has the same isotropic chemical shift as its neighbour. Damping also occurs when the observed spin is bonded to a strongly-coupled pair. For mid-chain units, the presence of both direct and relayed damping makes both REINE and spin-echo modulations impossible to interpret quantitatively. We nonetheless outline how a qualitative comparison of the modulation curves can provide valuable information on disordered networks, possibly also pertaining to dynamic effects therein.
Hasanvand, Hamed; Mozafari, Babak; Arvan, Mohammad R; Amraee, Turaj
2015-11-01
This paper addresses the application of a static Var compensator (SVC) to improve the damping of interarea oscillations. Optimal location and size of SVC are defined using bifurcation and modal analysis to satisfy its primary application. Furthermore, the best-input signal for damping controller is selected using Hankel singular values and right half plane-zeros. The proposed approach is aimed to design a robust PI controller based on interval plants and Kharitonov's theorem. The objective here is to determine the stability region to attain robust stability, the desired phase margin, gain margin, and bandwidth. The intersection of the resulting stability regions yields the set of kp-ki parameters. In addition, optimal multiobjective design of PI controller using particle swarm optimization (PSO) algorithm is presented. The effectiveness of the suggested controllers in damping of local and interarea oscillation modes of a multimachine power system, over a wide range of loading conditions and system configurations, is confirmed through eigenvalue analysis and nonlinear time domain simulation. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Prediction of Liquid Slosh Damping Using a High Resolution CFD Tool
NASA Technical Reports Server (NTRS)
Yang, H. Q.; Purandare, Ravi; Peugeot, John; West, Jeff
2012-01-01
Propellant slosh is a potential source of disturbance critical to the stability of space vehicles. The slosh dynamics are typically represented by a mechanical model of a spring mass damper. This mechanical model is then included in the equation of motion of the entire vehicle for Guidance, Navigation and Control analysis. Our previous effort has demonstrated the soundness of a CFD approach in modeling the detailed fluid dynamics of tank slosh and the excellent accuracy in extracting mechanical properties (slosh natural frequency, slosh mass, and slosh mass center coordinates). For a practical partially-filled smooth wall propellant tank with a diameter of 1 meter, the damping ratio is as low as 0.0005 (or 0.05%). To accurately predict this very low damping value is a challenge for any CFD tool, as one must resolve a thin boundary layer near the wall and must minimize numerical damping. This work extends our previous effort to extract this challenging parameter from first principles: slosh damping for smooth wall and for ring baffle. First the experimental data correlated into the industry standard for smooth wall were used as the baseline validation. It is demonstrated that with proper grid resolution, CFD can indeed accurately predict low damping values from smooth walls for different tank sizes. The damping due to ring baffles at different depths from the free surface and for different sizes of tank was then simulated, and fairly good agreement with experimental correlation was observed. The study demonstrates that CFD technology can be applied to the design of future propellant tanks with complex configurations and with smooth walls or multiple baffles, where previous experimental data is not available.
Design and experiment study of a semi-active energy-regenerative suspension system
NASA Astrophysics Data System (ADS)
Shi, Dehua; Chen, Long; Wang, Ruochen; Jiang, Haobin; Shen, Yujie
2015-01-01
A new kind of semi-active energy-regenerative suspension system is proposed to recover suspension vibration energy, as well as to reduce the suspension cost and demands for the motor-rated capacity. The system consists of an energy-regenerative damper and a DC-DC converter-based energy-regenerative circuit. The energy-regenerative damper is composed of an electromagnetic linear motor and an adjustable shock absorber with three regulating levels. The linear motor just works as the generator to harvest the suspension vibration energy. The circuit can be used to improve the system’s energy-regenerative performance and to continuously regulate the motor’s electromagnetic damping force. Therefore, although the motor works as a generator and damps the isolation without an external power source, the motor damping force is controllable. The damping characteristics of the system are studied based on a two degrees of freedom vehicle vibration model. By further analyzing the circuit operation characteristics under different working modes, the double-loop controller is designed to track the desired damping force. The external-loop is a fuzzy controller that offers the desired equivalent damping. The inner-loop controller, on one hand, is used to generate the pulse number and the frequency to control the angle and the rotational speed of the step motor; on the other hand, the inner-loop is used to offer the duty cycle of the energy-regenerative circuit. Simulations and experiments are conducted to validate such a new suspension system. The results show that the semi-active energy-regenerative suspension can improve vehicle ride comfort with the controllable damping characteristics of the linear motor. Meanwhile, it also ensures energy regeneration.
Nonlinear damping based semi-active building isolation system
NASA Astrophysics Data System (ADS)
Ho, Carmen; Zhu, Yunpeng; Lang, Zi-Qiang; Billings, Stephen A.; Kohiyama, Masayuki; Wakayama, Shizuka
2018-06-01
Many buildings in Japan currently have a base-isolation system with a low stiffness that is designed to shift the natural frequency of the building below the frequencies of the ground motion due to earthquakes. However, the ground motion observed during the 2011 Tohoku earthquake contained strong long-period waves that lasted for a record length of 3 min. To provide a novel and better solution against the long-period waves while maintaining the performance of the standard isolation range, the exploitation of the characteristics of nonlinear damping is proposed in this paper. This is motivated by previous studies of the authors, which have demonstrated that nonlinear damping can achieve desired performance over both low and high frequency regions and the optimal nonlinear damping force can be realized by closed loop controlled semi-active dampers. Simulation results have shown strong vibration isolation performance on a building model with identified parameters and have indicated that nonlinear damping can achieve low acceleration transmissibilities round the structural natural frequency as well as the higher ground motion frequencies that have been frequently observed during most earthquakes in Japan. In addition, physical building model based laboratory experiments are also conducted, The results demonstrate the advantages of the proposed nonlinear damping technologies over both traditional linear damping and more advanced Linear-Quadratic Gaussian (LQG) feedback control which have been used in practice to address building isolation system design and implementation problems. In comparison with the tuned-mass damper and other active control methods, the proposed solution offers a more pragmatic, low-cost, robust and effective alternative that can be readily installed into the base-isolation system of most buildings.
Study on longitudinal force simulation of heavy-haul train
NASA Astrophysics Data System (ADS)
Chang, Chongyi; Guo, Gang; Wang, Junbiao; Ma, Yingming
2017-04-01
The longitudinal dynamics model of heavy-haul trains and air brake model used in the longitudinal train dynamics (LTDs) are established. The dry friction damping hysteretic characteristic of steel friction draft gears is simulated by the equation which describes the suspension forces in truck leaf springs. The model of draft gears introduces dynamic loading force, viscous friction of steel friction and the damping force. Consequently, the numerical model of the draft gears is brought forward. The equation of LTDs is strongly non-linear. In order to solve the response of the strongly non-linear system, the high-precision and equilibrium iteration method based on the Newmark-β method is presented and numerical analysis is made. Longitudinal dynamic forces of the 20,000 tonnes heavy-haul train are tested, and models and solution method provided are verified by the test results.
Calibrating damping rates with LEGACY
NASA Astrophysics Data System (ADS)
Houdek, Günter
2017-10-01
Linear damping rates of radial oscillation modes in selected Kepler stars are estimated with the help of a nonadiabatic stability analysis. The convective fluxes are obtained from a nonlocal, time-dependent convection model. The mixing-length parameter is calibrated to the surface-convection-zone depth of a stellar model obtained from fitting adiabatic frequencies to the LEGACY* observations, and two of the three nonlocal convection parameters are calibrated to the corresponding LEGACY* linewidth measurements. The atmospheric structure in the 1D stability analysis adopts a temperature-optical-depth relation derived from 3D hydrodynamical simulations. Results from 3D simulations are also used to calibrate the turbulent pressure and to guide the functional form of the depth-dependence of the anisotropy of the turbulent velocity field in the 1D stability computations.
NASA Technical Reports Server (NTRS)
Shyy, W.; Thakur, S.; Udaykumar, H. S.
1993-01-01
A high accuracy convection scheme using a sequential solution technique has been developed and applied to simulate the longitudinal combustion instability and its active control. The scheme has been devised in the spirit of the Total Variation Diminishing (TVD) concept with special source term treatment. Due to the substantial heat release effect, a clear delineation of the key elements employed by the scheme, i.e., the adjustable damping factor and the source term treatment has been made. By comparing with the first-order upwind scheme previously utilized, the present results exhibit less damping and are free from spurious oscillations, offering improved quantitative accuracy while confirming the spectral analysis reported earlier. A simple feedback type of active control has been found to be capable of enhancing or attenuating the magnitude of the combustion instability.
NASA Technical Reports Server (NTRS)
Vomaske, Richard F.; Sadoff, Melvin; Drinkwater, Fred J., III
1961-01-01
A flight and fixed-base simulator study was made of the effects of aileron-induced yaw on pilot opinion of aircraft lateral-directional controllability characteristics. A wide range of adverse and favorable aileron-induced yaw was investigated in flight at several levels of Dutch-roll damping. The flight results indicated that the optimum values of aileron- induced yaw differed only slightly from zero for Dutch-roll damping from satisfactory to marginally controllable levels. It was also shown that each range of values of aileron-induced yawing moment considered satisfactory, acceptable, or controllable increased with an increase in the Dutch- roll damping. The increase was most marked for marginally controllable configurations exhibiting favorable aileron-induced yaw. Comparison of fixed-base flight simulator results with flight results showed agreement, indicating that absence of kinesthetic motion cues did not markedly affect the pilots' evaluation of the type of control problem considered in this study. The results of the flight study were recast in terms of several parameters which were considered to have an important effect on pilot opinion of lateral-directional handling qualities, including the effects of control coupling. Results of brief tests with a three-axis side-arm controller indicated that for control coupling problems associated with highly favorable yaw and cross-control techniques, use of the three-axis controller resulted in a deterioration of control relative to results obtained with the conventional center stick and rudder pedals.
Integration of regenerative shock absorber into vehicle electric system
NASA Astrophysics Data System (ADS)
Zhang, Chongxiao; Li, Peng; Xing, Shaoxu; Kim, Junyoung; Yu, Liangyao; Zuo, Lei
2014-03-01
Regenerative/Energy harvesting shock absorbers have a great potential to increase fuel efficiency and provide suspension damping simultaneously. In recent years there's intensive work on this topic, but most researches focus on electricity extraction from vibration and harvesting efficiency improvement. The integration of electricity generated from regenerative shock absorbers into vehicle electric system, which is very important to realize the fuel efficiency benefit, has not been investigated. This paper is to study and demonstrate the integration of regenerative shock absorber with vehicle alternator, battery and in-vehicle electrical load together. In the presented system, the shock absorber is excited by a shaker and it converts kinetic energy into electricity. The harvested electricity flows into a DC/DC converter which realizes two functions: controlling the shock absorber's damping and regulating the output voltage. The damping is tuned by controlling shock absorber's output current, which is also the input current of DC/DC converter. By adjusting the duty cycles of switches in the converter, its input impedance together with input current can be adjusted according to dynamic damping requirements. An automotive lead-acid battery is charged by the DC/DC converter's output. To simulate the working condition of combustion engine, an AC motor is used to drive a truck alternator, which also charges the battery. Power resistors are used as battery's electrical load to simulate in-vehicle electrical devices. Experimental results show that the proposed integration strategy can effectively utilize the harvested electricity and power consumption of the AC motor is decreased accordingly. This proves the combustion engine's load reduction and fuel efficiency improvement.
Sensitivity and Uncertainty Analysis of the GFR MOX Fuel Subassembly
NASA Astrophysics Data System (ADS)
Lüley, J.; Vrban, B.; Čerba, Š.; Haščík, J.; Nečas, V.; Pelloni, S.
2014-04-01
We performed sensitivity and uncertainty analysis as well as benchmark similarity assessment of the MOX fuel subassembly designed for the Gas-Cooled Fast Reactor (GFR) as a representative material of the core. Material composition was defined for each assembly ring separately allowing us to decompose the sensitivities not only for isotopes and reactions but also for spatial regions. This approach was confirmed by direct perturbation calculations for chosen materials and isotopes. Similarity assessment identified only ten partly comparable benchmark experiments that can be utilized in the field of GFR development. Based on the determined uncertainties, we also identified main contributors to the calculation bias.
Di Lello, Enrico; Trincavelli, Marco; Bruyninckx, Herman; De Laet, Tinne
2014-07-11
In this paper, we introduce a Bayesian time series model approach for gas concentration estimation using Metal Oxide (MOX) sensors in Open Sampling System (OSS). Our approach focuses on the compensation of the slow response of MOX sensors, while concurrently solving the problem of estimating the gas concentration in OSS. The proposed Augmented Switching Linear System model allows to include all the sources of uncertainty arising at each step of the problem in a single coherent probabilistic formulation. In particular, the problem of detecting on-line the current sensor dynamical regime and estimating the underlying gas concentration under environmental disturbances and noisy measurements is formulated and solved as a statistical inference problem. Our model improves, with respect to the state of the art, where system modeling approaches have been already introduced, but only provided an indirect relative measures proportional to the gas concentration and the problem of modeling uncertainty was ignored. Our approach is validated experimentally and the performances in terms of speed of and quality of the gas concentration estimation are compared with the ones obtained using a photo-ionization detector.
Di Lello, Enrico; Trincavelli, Marco; Bruyninckx, Herman; De Laet, Tinne
2014-01-01
In this paper, we introduce a Bayesian time series model approach for gas concentration estimation using Metal Oxide (MOX) sensors in Open Sampling System (OSS). Our approach focuses on the compensation of the slow response of MOX sensors, while concurrently solving the problem of estimating the gas concentration in OSS. The proposed Augmented Switching Linear System model allows to include all the sources of uncertainty arising at each step of the problem in a single coherent probabilistic formulation. In particular, the problem of detecting on-line the current sensor dynamical regime and estimating the underlying gas concentration under environmental disturbances and noisy measurements is formulated and solved as a statistical inference problem. Our model improves, with respect to the state of the art, where system modeling approaches have been already introduced, but only provided an indirect relative measures proportional to the gas concentration and the problem of modeling uncertainty was ignored. Our approach is validated experimentally and the performances in terms of speed of and quality of the gas concentration estimation are compared with the ones obtained using a photo-ionization detector. PMID:25019637
NASA Technical Reports Server (NTRS)
Brown, B Porter
1958-01-01
Report presents results of tests made on a power control system by means of a ground simulator to determine the effects of various combinations of valve friction and stick friction on the ability of the pilot to control the system. Various friction conditions were simulated with a rigid control system, a flexible system, and a rigid system having some backlash. For the tests, the period and damping of the simulated airplane were held constant.
Wakefield Simulation of CLIC PETS Structure Using Parallel 3D Finite Element Time-Domain Solver T3P
DOE Office of Scientific and Technical Information (OSTI.GOV)
Candel, A.; Kabel, A.; Lee, L.
In recent years, SLAC's Advanced Computations Department (ACD) has developed the parallel 3D Finite Element electromagnetic time-domain code T3P. Higher-order Finite Element methods on conformal unstructured meshes and massively parallel processing allow unprecedented simulation accuracy for wakefield computations and simulations of transient effects in realistic accelerator structures. Applications include simulation of wakefield damping in the Compact Linear Collider (CLIC) power extraction and transfer structure (PETS).
NASA Astrophysics Data System (ADS)
Wang, Kangpeng; Feng, Yanyan; Chang, Chunxia; Zhan, Jingxin; Wang, Chengwei; Zhao, Quanzhong; Coleman, Jonathan N.; Zhang, Long; Blau, Werner J.; Wang, Jun
2014-08-01
A series of layered molybdenum dichalcogenides, i.e., MoX2 (X = S, Se and Te), were prepared in cyclohexyl pyrrolidinone by a liquid-phase exfoliation technique. The high quality of the two-dimensional nanostructures was verified by transmission electron microscopy and absorption spectroscopy. Open- and closed-aperture Z-scans were employed to study the nonlinear absorption and nonlinear refraction of the MoX2 dispersions, respectively. All the three-layered nanostructures exhibit prominent ultrafast saturable absorption (SA) for both femtosecond (fs) and picosecond (ps) laser pulses over a broad wavelength range from the visible to the near infrared. While the dispersions treated with low-speed centrifugation (1500 rpm) have an SA response, and the MoS2 and MoSe2 dispersions after higher speed centrifugation (10 000 rpm) possess two-photon absorption for fs pulses at 1030 nm, which is due to the significant reduction of the average thickness of the nanosheets; hence, the broadening of band gap. In addition, all dispersions show obvious nonlinear self-defocusing for ps pulses at both 1064 nm and 532 nm, resulting from the thermally-induced nonlinear refractive index. The versatile ultrafast nonlinear properties imply a huge potential of the layered MoX2 semiconductors in the development of nanophotonic devices, such as mode-lockers, optical limiters, optical switches, etc.A series of layered molybdenum dichalcogenides, i.e., MoX2 (X = S, Se and Te), were prepared in cyclohexyl pyrrolidinone by a liquid-phase exfoliation technique. The high quality of the two-dimensional nanostructures was verified by transmission electron microscopy and absorption spectroscopy. Open- and closed-aperture Z-scans were employed to study the nonlinear absorption and nonlinear refraction of the MoX2 dispersions, respectively. All the three-layered nanostructures exhibit prominent ultrafast saturable absorption (SA) for both femtosecond (fs) and picosecond (ps) laser pulses over a broad wavelength range from the visible to the near infrared. While the dispersions treated with low-speed centrifugation (1500 rpm) have an SA response, and the MoS2 and MoSe2 dispersions after higher speed centrifugation (10 000 rpm) possess two-photon absorption for fs pulses at 1030 nm, which is due to the significant reduction of the average thickness of the nanosheets; hence, the broadening of band gap. In addition, all dispersions show obvious nonlinear self-defocusing for ps pulses at both 1064 nm and 532 nm, resulting from the thermally-induced nonlinear refractive index. The versatile ultrafast nonlinear properties imply a huge potential of the layered MoX2 semiconductors in the development of nanophotonic devices, such as mode-lockers, optical limiters, optical switches, etc. Electronic supplementary information (ESI) available: Electron scattering patterns from TEM characterizations of MX2 nanosheets; CA Z-scan results of graphene dispersions in the ps region. See DOI: 10.1039/c4nr02634a
Analysis of imperfections in the coherent optical excitation of single atoms to Rydberg states
NASA Astrophysics Data System (ADS)
de Léséleuc, Sylvain; Barredo, Daniel; Lienhard, Vincent; Browaeys, Antoine; Lahaye, Thierry
2018-05-01
We study experimentally various physical limitations and technical imperfections that lead to damping and finite contrast of optically driven Rabi oscillations between ground and Rydberg states of a single atom. Finite contrast is due to preparation and detection errors, and we show how to model and measure them accurately. Part of these errors originates from the finite lifetime of Rydberg states, and we observe its n3 scaling with the principal quantum number n . To explain the damping of Rabi oscillations, we use simple numerical models taking into account independently measured experimental imperfections and show that the observed damping actually results from the accumulation of several small effects, each at the level of a few percent. We discuss prospects for improving the coherence of ground-Rydberg Rabi oscillations in view of applications in quantum simulation and quantum information processing with arrays of single Rydberg atoms.
NASA Technical Reports Server (NTRS)
Ballin, M. G.
1982-01-01
The feasibility of using static wind tunnel tests to obtain information about spin damping characteristics of an isolated general aviation aircraft tail was investigated. A representative tail section was oriented to the tunnel free streamline at angles simulating an equilibrium spin. A full range of normally encountered spin conditions was employed. Results of parametric studies performed to determine the effect of spin damping on several tail design parameters show satisfactory agreement with NASA rotary balance tests. Wing and body interference effects are present in the NASA studies at steep spin attitudes, but agreement improves with increasing pitch angle and spin rate, suggesting that rotational flow effects are minimal. Vertical position of the horizontal stabilizer is found to be a primary parameter affecting yaw damping, and horizontal tail chordwise position induces a substantial effect on pitching moment.
Probabilistic performance-based design for high performance control systems
NASA Astrophysics Data System (ADS)
Micheli, Laura; Cao, Liang; Gong, Yongqiang; Cancelli, Alessandro; Laflamme, Simon; Alipour, Alice
2017-04-01
High performance control systems (HPCS) are advanced damping systems capable of high damping performance over a wide frequency bandwidth, ideal for mitigation of multi-hazards. They include active, semi-active, and hybrid damping systems. However, HPCS are more expensive than typical passive mitigation systems, rely on power and hardware (e.g., sensors, actuators) to operate, and require maintenance. In this paper, a life cycle cost analysis (LCA) approach is proposed to estimate the economic benefit these systems over the entire life of the structure. The novelty resides in the life cycle cost analysis in the performance based design (PBD) tailored to multi-level wind hazards. This yields a probabilistic performance-based design approach for HPCS. Numerical simulations are conducted on a building located in Boston, MA. LCA are conducted for passive control systems and HPCS, and the concept of controller robustness is demonstrated. Results highlight the promise of the proposed performance-based design procedure.
Collision mechanics and the structure of planetary ring edges
NASA Technical Reports Server (NTRS)
Spaute, Dominique; Greenberg, Richard
1987-01-01
The present numerical simulation of collisional evolution, in the case of a hypothetical ring whose parameters are modeled after those of Saturn's rings, gives attention to changes in radial structure near the ring edges and notes that when random motion is in equilibrium, the rings tend to spread in order to conserve angular momentum while energy is dissipated in collisions. As long as random motion is damped, ring edges may contract rather than spread, producing a concentration of material at the ring edges. For isotropic scattering, damping dominates for a coefficient of restitution of velocity value of up to 0.83.
Backward Raman amplification in the long-wavelength infrared
NASA Astrophysics Data System (ADS)
Johnson, L. A.; Gordon, D. F.; Palastro, J. P.; Hafizi, B.
2017-03-01
The wealth of work in backward Raman amplification in plasma has focused on the extreme intensity limit; however, backward Raman amplification may also provide an effective and practical mechanism for generating intense, broad bandwidth, long-wavelength infrared radiation (LWIR). An electromagnetic simulation coupled with a relativistic cold fluid plasma model is used to demonstrate the generation of picosecond pulses at a wavelength of 10 μm with terawatt powers through backward Raman amplification. The effects of collisional damping, Landau damping, pump depletion, and wave breaking are examined, as well as the resulting design considerations for an LWIR Raman amplifier.
NASA Astrophysics Data System (ADS)
Banks, J. W.; Henshaw, W. D.; Schwendeman, D. W.; Tang, Qi
2017-08-01
A stable partitioned algorithm is developed for fluid-structure interaction (FSI) problems involving viscous incompressible flow and rigid bodies. This added-mass partitioned (AMP) algorithm remains stable, without sub-iterations, for light and even zero mass rigid bodies when added-mass and viscous added-damping effects are large. The scheme is based on a generalized Robin interface condition for the fluid pressure that includes terms involving the linear acceleration and angular acceleration of the rigid body. Added-mass effects are handled in the Robin condition by inclusion of a boundary integral term that depends on the pressure. Added-damping effects due to the viscous shear forces on the body are treated by inclusion of added-damping tensors that are derived through a linearization of the integrals defining the force and torque. Added-damping effects may be important at low Reynolds number, or, for example, in the case of a rotating cylinder or rotating sphere when the rotational moments of inertia are small. In this first part of a two-part series, the properties of the AMP scheme are motivated and evaluated through the development and analysis of some model problems. The analysis shows when and why the traditional partitioned scheme becomes unstable due to either added-mass or added-damping effects. The analysis also identifies the proper form of the added-damping which depends on the discrete time-step and the grid-spacing normal to the rigid body. The results of the analysis are confirmed with numerical simulations that also demonstrate a second-order accurate implementation of the AMP scheme.
A single geophone to locate seismic events on Mars
NASA Astrophysics Data System (ADS)
Roques, Aurélien; Berenguer, Jean-Luc; Bozdag, Ebru
2016-04-01
Knowing the structure of Mars is a key point in understanding the formation of Earth-like planets as plate tectonics and erosion have erased the original suface of the Earth formation. Installing a seismometer on Mars surface makes it possible to identify its structure. An important step in the identification of the structure of a planet is the epicenter's location of a seismic source, typically a meteoric impact or an earthquake. On Earth, the classical way of locating epicenters is triangulation, which requires at least 3 stations. The Mars InSight Project plans to set a single station with 3 components. We propose a software to locate seismic sources on Mars thanks to the 3-components simulated data of an earthquake given by Geoazur (Nice Sophia-Antipolis University, CNRS) researchers. Instrumental response of a sensor is crucial for data interpretation. We study the oscillations of geophone in several situations so as to awaken students to the meaning of damping in second order modeling. In physics, car shock absorbers are often used to illustrate the principle of damping but rarely in practical experiments. We propose the use of a simple seismometer (a string with a mass and a damper) that allows changing several parameters (inductive damping, temperature and pressure) so as to see the effects of these parameters on the impulse response and, in particular, on the damping coefficient. In a second step, we illustrate the effect of damping on a seismogram with the difficulty of identifying and interpreting the different phase arrival times with low damping.
A new method to study he effective shear modulus of shocked material
NASA Astrophysics Data System (ADS)
Xiaojuan, Ma; Fusheng, Liu
2013-06-01
Shear modulus is a crucial material parameter for description of mechanical behavior. However, at strong shock compression, it is generally deduced from the longitudinal and bulk sound velocity evaluated by unloading wave profile measurement. Here, a new method called the disturbed amplitude damping method of shock wave is presented, that can directly measure the shear modulus of material. This method relies on the correlation between the shear modulus of shock compressed state and amplitude damping and oscillation of an initial sinusoidal disturbance on shock front in concerned substance. Two important steps are required to determine the shear modulus of material. The first is to measure the damping and oscillation feature of disturbance by the flyer impacted method. The second is to find the quantitative relationship between the disturbed amplitude damping and shear modulus by the finite difference method which is applied to obtain the numerical solutions for disturbance amplitude damping behavior of sinusoidal shock front in flyer impacted flow field. When aluminum shocked to 80 GPa is taken as an example, the shape of perturbed shock front and its disturbed amplitude development with propagation distance, are approximately mapped out. The figure shows an oscillatory damping characteristic. At the early stage the perturbation amplitude on the shock front experiences a decaying process until to zero point, then it rises to a maximum but in reverse phase, and then it decays again. Comparing these data with those simulated using the SCG constitutive model, the effective shear modulus for aluminum shocked to 80 GPa is determined to be about 90 GPa, which is higher than the result given by Yu.
NASA Astrophysics Data System (ADS)
Zapoměl, J.; Ferfecki, P.
2016-09-01
A frequently used technological solution for minimization of undesirable effects caused by vibration of rotating machines consists in placing damping devices in the rotor supports. The application of magnetorheological squeeze film dampers enables their optimum performance to be achieved in a wide range of rotating speeds by adapting their damping effect to the current operating conditions. The damping force, which is produced by squeezing the layer of magnetorheological oil, can be controlled by changing magnetic flux passing through the lubricant. The force acting between the rotor and its frame is transmitted through the rolling element bearing, the lubricating layer and the squirrel spring. The loading of the bearing produces a time variable friction moment, energy losses, uneven rotor running, and has an influence on the rotor service life and the current fluctuation in electric circuits. The carried out research consisted in the development of a mathematical model of a magnetorheological squeeze film damper, its implementation into the computational models of rotor systems, and in performing the study on the dependence of the energy losses and variation of the friction moment on the damping force and its control. The new and computationally stable mathematical model of a magnetorheological squeeze film damper, its implementation in the computational models of rigid rotors and learning more on the energy losses generated in the rotor supports in dependence on the damping effect are the principal contributions of this paper. The results of the computational simulations prove that a suitable control of the damping force enables the energy losses to be reduced in a wide velocity range.
Damping of Bernstein-Greene-Kruskal modes in collisional plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valentini, Francesco
2008-02-15
In this paper, the effect of Coulomb collisions on the stability of Bernstein-Greene-Kruskal (BGK) modes [I. B. Bernstein, J. M. Greene, and M. D. Krukal, Phys. Rev. 108, 546 (1957)] is analyzed by comparing the numerical results of collisional particle-in-cell (PIC) simulations with the theoretical predictions by Zakharov and Karpman [V. E. Zakharov and V. I. Karpman, Sov. Phys. JETP 16, 351 (1963)], for the collisional damping of nonlinear plasma waves. In the absence of collisions, BGK modes are undamped nonlinear electrostatic oscillations, solutions of the Vlasov-Poisson equations; in these structures nonlinearity manifests as the formation of a plateau inmore » the resonant region of the particle distribution function, due to trapping of resonant particles, thus preventing linear Landau damping. When particle-particle Coulomb collisions are effective, this plateau is smoothed out since collisions drive the velocity distribution towards the Maxwellian shape, thus destroying the BGK structure. As shown by Zakharov and Karpman in 1963, under certain assumptions, an exponential time decay with constant damping rate is predicted for the electric field amplitude and a linear dependence of the damping rate on the collision frequency is found. In this paper, the theory by Zakharov and Karpman is revisited and the effects of collisions on the stability of BGK modes and on the long time evolution of nonlinear Landau damping are numerically investigated. The numerical results are obtained through a collisional PIC code that reproduces a physical phenomenology also observed in recent experiments with trapped pure electron plasmas.« less
GEANT4 Simulation of Neutron Detector for DAMPE
NASA Astrophysics Data System (ADS)
Ming, He; Tao, Ma; Jin, Chang; Yan, Zhang; Yong-yi, Huang; Jing-jing, Zang; Jian, Wu; Tie-kuang, Dong
2016-10-01
In recent decades, dark matter has gradually become a hot topic in astronomical research, and the related theoretical research and experimental project are updated with each passing day. The Dark Matter Particle Explorer (DAMPE) of our country was proposed under this background. As the detected object involves high-energy electrons, appropriate methods must be taken to distinguish them from protons, in order to reduce the event probability of other charged particles (for example protons) being mistaken as electrons. The experiments show that the hadron shower of high-energy proton in BGO (Bismuth Germanium Oxide) calorimeter, which is usually accompanied with the emitting of a large number of secondary neutrons, is significantly different from the electromagnetic shower of high-energy electron. Through the detection of secondary neutron signals emerging from the bottom of BGO calorimeter, and the shower shape of incident particles in the BGO calorimeter, we can effectively distinguish whether the incident particles are high-energy protons or electrons. This paper introduces the structure and detection principle of the DAMPE neutron detector. We use the Monte-Carlo method and the GEANT4 software to simulate the signals produced by protons and electrons at the characteristic energy in the neutron detector, and finally summarize the neutron detector's ability to distinguish protons and electrons under different electron acceptabilities.
GEANT4 Simulation of Neutron Detector for DAMPE
NASA Astrophysics Data System (ADS)
He, M.; Ma, T.; Chang, J.; Zhang, Y.; Huang, Y. Y.; Zang, J. J.; Wu, J.; Dong, T. K.
2016-01-01
During recent tens of years dark matter has gradually become a hot topic in astronomical research field, and related theory researches and experiment projects change with each passing day. The Dark Matter Particle Explorer (DAMPE) of our country is proposed under this background. As the probing object involves high energy electrons, appropriate methods must be taken to distinguish them from protons in order to reduce the event probability of other charged particles (e.g. a proton) being mistaken as electrons. The experiments show that, the hadronic shower of high energy proton in BGO electromagnetic calorimeter, which is usually accompanied by the emitting of large number of secondary neutrons, is significantly different from the electromagnetic shower of high energy electron. Through the detection of secondary neutron signal emitting from the bottom of BGO electromagnetic calorimeter and the shower shape of incident particles in BGO electromagnetic calorimeter, we can effectively distinguish whether the incident particles are high energy protons or electrons. This paper introduces the structure and detecting principle of DAMPE neutron detector. We use Monte-Carlo method with GEANT4 software to simulate the signal emitting from protons and electrons at characteristic energy in the neutron detector, and finally summarize the neutron detector's ability to distinguish protons and electrons under different electron acception efficiencies.
Granular shear flows of flexible rod-like particles
NASA Astrophysics Data System (ADS)
Guo, Y.; Curtis, J.; Wassgren, C.; Ketterhagen, W.; Hancock, B.
2013-06-01
Flexible particles are widely encountered in nature, e.g., stalks of plants, fiberglass particles, and ceramic nanofibers. Early studies indicated that the deformability of particles has a significant impact on the properties of granular materials and fiber suspensions. In this study, shear flows of flexible particles are simulated using the Discrete Element Method (DEM) to explore the effect of particle flexibility on the flow behavior and constitutive laws. A flexible particle is formed by connecting a number of constituent spheres in a straight line using elastic bonds. The forces/moments due to the normal, tangential, bending, and torsional deformation of a bond resist the relative movement between two bonded constituent spheres. The bond stiffness determines how difficult it is to make a particle deform, and the bond damping accounts for the energy dissipation in the particle vibration process. The simulation results show that elastically bonded particles have smaller coefficients of restitution compared to rigidly connected particles, due to the fact that kinetic energy is partially converted to potential energy in a contact between flexible particles. The coefficient of restitution decreases as the bond stiffness decreases and the bond damping coefficient increases. As a result, smaller stresses are obtained for granular flows of the flexible particles with smaller bond stiffness and larger bond damping coefficient.
Integration of offshore wind farms through high voltage direct current networks
NASA Astrophysics Data System (ADS)
Livermore, Luke
The integration of offshore wind farms through Multi Terminal DC (MTDC) networks into the GB network was investigated. The ability of Voltage Source Converter (VSC) High Voltage Direct Current (HVDC) to damp Subsynchronous Resonance (SSR) and ride through onshore AC faults was studied. Due to increased levels of wind generation in Scotland, substantial onshore and offshore reinforcements to the GB transmission network are proposed. Possible inland reinforcements include the use of series compensation through fixed capacitors. This potentially can lead to SSR. Offshore reinforcements are proposed by two HVDC links. In addition to its primary functions of bulk power transmission, a HVDC link can be used to provide damping against SSR, and this function has been modelled. Simulation studies have been carried out in PSCAD. In addition, a real-time hardware-in-the-loop HVDC test rig has been used to implement and validate the proposed damping scheme on an experimental platform. When faults occur within AC onshore networks, offshore MTDC networks are vulnerable to DC overvoltages, potentially damaging the DC plant and cables. Power reduction and power dissipation control systems were investigated to ride through onshore AC faults. These methods do not require dedicated fast communication systems. Simulations and laboratory experiments are carried out to evaluate the control systems, with the results from the two platforms compared..
Fully Nonlinear Edge Gyrokinetic Simulations of Kinetic Geodesic-Acoustic Modes and Boundary Flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, X Q; Belli, E; Bodi, K
We present edge gyrokinetic neoclassical simulations of tokamak plasmas using the fully nonlinear (full-f) continuum code TEMPEST. A nonlinear Boltzmann model is used for the electrons. The electric field is obtained by solving the 2D gyrokinetic Poisson Equation. We demonstrate the following: (1) High harmonic resonances (n > 2) significantly enhance geodesic-acoustic mode (GAM) damping at high-q (tokamak safety factor), and are necessary to explain both the damping observed in our TEMPEST q-scans and experimental measurements of the scaling of the GAM amplitude with edge q{sub 95} in the absence of obvious evidence that there is a strong q dependencemore » of the turbulent drive and damping of the GAM. (2) The kinetic GAM exists in the edge for steep density and temperature gradients in the form of outgoing waves, its radial scale is set by the ion temperature profile, and ion temperature inhomogeneity is necessary for GAM radial propagation. (3) The development of the neoclassical electric field evolves through different phases of relaxation, including GAMs, their radial propagation, and their long-time collisional decay. (4) Natural consequences of orbits in the pedestal and scrape-off layer region in divertor geometry are substantial non-Maxwellian ion distributions and flow characteristics qualitatively like those observed in experiments.« less
NASA Astrophysics Data System (ADS)
Harvazinski, Matthew Evan
Self-excited combustion instabilities have been studied using a combination of two- and three-dimensional computational fluid dynamics (CFD) simulations. This work was undertaken to assess the ability of CFD simulations to generate the high-amplitude resonant combustion dynamics without external forcing or a combustion response function. Specifically, detached eddy simulations (DES), which allow for significantly coarser grid resolutions in wall bounded flows than traditional large eddy simulations (LES), were investigated for their capability of simulating the instability. A single-element laboratory rocket combustor which produces self-excited longitudinal instabilities is used for the configuration. The model rocket combustor uses an injector configuration based on practical oxidizer-rich staged-combustion devices; a sudden expansion combustion section; and uses decomposed hydrogen peroxide as the oxidizer and gaseous methane as the fuel. A better understanding of the physics has been achieved using a series of diagnostics. Standard CFD outputs like instantaneous and time averaged flowfield outputs are combined with other tools, like the Rayleigh index to provide additional insight. The Rayleigh index is used to identify local regions in the combustor which are responsible for driving and damping the instability. By comparing the Rayleigh index to flowfield parameters it is possible to connect damping and driving to specific flowfield conditions. A cost effective procedure to compute multidimensional local Rayleigh index was developed. This work shows that combustion instabilities can be qualitatively simulated using two-dimensional axisymmetric simulations for fuel rich operating conditions. A full three-dimensional simulation produces a higher level of instability which agrees quite well with the experimental results. In addition to matching the level of instability the three-dimensional simulation also predicts the harmonic nature of the instability that is observed in experiments. All fuel rich simulations used a single step global reaction for the chemical kinetic model. A fuel lean operating condition is also studied and has a lower level of instability. The two-dimensional results are unable to provide good agreement with experimental results unless a more expensive four-step chemical kinetic model is used. The three-dimensional simulation is able to predict the harmonic behavior but fails to capture the amplitude of the instability observed in the companion experiment, instead predicting lower amplitude oscillations. A detailed analysis of the three-dimensional results on a single cycle shows that the periodic heat release commonly associated with combustion instability can be interpreted to be a result of the time lag between the instant the fuel is injected and when it is burned. The time lag is due to two mechanisms. First, methane present near the backstep can become trapped and transported inside shed vortices to the point of combustion. The second aspect of the time lag arises due to the interaction of the fuel with upstream-running pressure waves. As the wave moves past the injection point the flow is temporarily disrupted, reducing the fuel flow into the combustor. A comparison between the fuel lean and fuel rich cases shows several differences. Whereas both cases can produce instability, the fuel-rich case is measurably more unstable. Using the tools developed differences in the location of the damping, and driving regions are evident. By moving the peak driving area upstream of the damping region the level of instability is lower in the fuel lean case. The location of the mean heat release is also important; locating the mean heat release adjacent to the vortex impingement point a higher level of instability is observed for the fuel rich case. This research shows that DES instability modeling has the ability to be a valuable tool in the study of combustion instability. The lower grid size requirement makes the use of DES based modeling a potential candidate in the modeling of full-scale rocket engines. Whereas three-dimensional simulations may be necessary for very good agreement, two-dimensional simulations allow efficient parametric investigation and tool development. The insights obtained from the simulations offer the possibility that their results can be used in the design of future engines to exploit damping and reduce driving.
Wave drift damping acting on multiple circular cylinders (model tests)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kinoshita, Takeshi; Sunahara, Shunji; Bao, W.
1995-12-31
The wave drift damping for the slow drift motion of a four-column platform is experimentally investigated. The estimation of damping force of the slow drift motion of moored floating structures in ocean waves, is one of the most important topics. Bao et al. calculated an interaction of multiple circular cylinders based on the potential flow theory, and showed that the wave drift damping is significantly influenced by the interaction between cylinders. This calculation method assumes that the slow drift motion is approximately replaced by steady current, that is, structures on slow drift motion are supposed to be equivalent to onesmore » in both regular waves and slow current. To validate semi-analytical solutions of Bao et al., experiments were carried out. At first, added resistance due to waves acting on a structure composed of multiple (four) vertical circular cylinders fixed to a slowly moving carriage, was measured in regular waves. Next, the added resistance of the structure moored by linear spring to the slowly moving carriage were measured in regular waves. Furthermore, to validate the assumption that the slow drift motion is replaced by steady current, free decay tests in still water and in regular waves were compared with the simulation of the slow drift motion using the wave drift damping coefficient obtained by the added resistance tests.« less
Super-Alfvenic Propagation and Damping of Reconnection Onset Signatures
NASA Astrophysics Data System (ADS)
Sharma, P.; Shay, M. A.; Haggerty, C. C.; Parashar, T.; Drake, J. F.; Gary, S. P.
2016-12-01
The onset of magnetic reconnection in the magnetotail has far reaching consequences for the dynamics of the magnetosphere. However, our understanding of the dynamics of onset as well as when and where it occurs in the magnetosphere is incomplete. One of the fastest propagating signatures of reconnection onset is the quadrupolar Hall magnetic field that has been shown to be a Kinetic Alfven Wave (KAW) . These KAW propagate extremely fast away from the reconnection site, carry substantial amounts of energy in the form of Poynting flux and electron flows, and may be responsible for electron acceleration and the generation of aurora[1]. However, to date there has not been a study of how reconnection generated KAWs will damp and disperse as they propagate. Using large scale kinetic particle-in-cell (PIC) simulations of reconnection we investigate the damping of the KAWs as they propagate away from the x-line. We show that the hall quadrupolar structure dissipates according to linear Landau damping determined from a numerical solution of the linear Vlasov equation. Extending results to magnetotail parameters, we find that only the part of the wave with k c/wpi 1 will damp weakly enough to propagate from the mid-tail to the inner magnetosphere. [1] M. A. Shay et al., PRL, 107, 065001, 2011, DOI: 10.1103/PhysRevLett.107.065001
NASA Astrophysics Data System (ADS)
Zhang, Junzhi; Li, Yutong; Lv, Chen; Gou, Jinfang; Yuan, Ye
2017-03-01
The flexibility of the electrified powertrain system elicits a negative effect upon the cooperative control performance between regenerative and hydraulic braking and the active damping control performance. Meanwhile, the connections among sensors, controllers, and actuators are realized via network communication, i.e., controller area network (CAN), that introduces time-varying delays and deteriorates the control performances of the closed-loop control systems. As such, the goal of this paper is to develop a control algorithm to cope with all these challenges. To this end, the models of the stochastic network induced time-varying delays, based on a real in-vehicle network topology and on a flexible electrified powertrain, were firstly built. In order to further enhance the control performances of active damping and cooperative control of regenerative and hydraulic braking, the time-varying delays compensation algorithm for the electrified powertrain active damping during regenerative braking was developed based on a predictive scheme. The augmented system is constructed and the H∞ performance is analyzed. Based on this analysis, the control gains are derived by solving a nonlinear minimization problem. The simulations and hardware-in-loop (HIL) tests were carried out to validate the effectiveness of the developed algorithm. The test results show that the active damping and cooperative control performances are enhanced significantly.
NASA Astrophysics Data System (ADS)
Brewick, Patrick T.; Smyth, Andrew W.
2016-12-01
The authors have previously shown that many traditional approaches to operational modal analysis (OMA) struggle to properly identify the modal damping ratios for bridges under traffic loading due to the interference caused by the driving frequencies of the traffic loads. This paper presents a novel methodology for modal parameter estimation in OMA that overcomes the problems presented by driving frequencies and significantly improves the damping estimates. This methodology is based on finding the power spectral density (PSD) of a given modal coordinate, and then dividing the modal PSD into separate regions, left- and right-side spectra. The modal coordinates were found using a blind source separation (BSS) algorithm and a curve-fitting technique was developed that uses optimization to find the modal parameters that best fit each side spectra of the PSD. Specifically, a pattern-search optimization method was combined with a clustering analysis algorithm and together they were employed in a series of stages in order to improve the estimates of the modal damping ratios. This method was used to estimate the damping ratios from a simulated bridge model subjected to moving traffic loads. The results of this method were compared to other established OMA methods, such as Frequency Domain Decomposition (FDD) and BSS methods, and they were found to be more accurate and more reliable, even for modes that had their PSDs distorted or altered by driving frequencies.
Salgotra, Aprajita; Pan, Somnath
2018-05-01
This paper explores a two-level control strategy by blending local controller with centralized controller for the low frequency oscillations in a power system. The proposed control scheme provides stabilization of local modes using a local controller and minimizes the effect of inter-connection of sub-systems performance through a centralized control. For designing the local controllers in the form of proportional-integral power system stabilizer (PI-PSS), a simple and straight forward frequency domain direct synthesis method is considered that works on use of a suitable reference model which is based on the desired requirements. Several examples both on one machine infinite bus and multi-machine systems taken from the literature are illustrated to show the efficacy of the proposed PI-PSS. The effective damping of the systems is found to be increased remarkably which is reflected in the time-responses; even unstable operation has been stabilized with improved damping after applying the proposed controller. The proposed controllers give remarkable improvement in damping the oscillations in all the illustrations considered here and as for example, the value of damping factor has been increased from 0.0217 to 0.666 in Example 1. The simulation results obtained by the proposed control strategy are favourably compared with some controllers prevalent in the literature. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Veijola, Timo; Råback, Peter
2007-01-01
We present a straightforward method to solve gas damping problems for perforated structures in two dimensions (2D) utilising a Perforation Profile Reynolds (PPR) solver. The PPR equation is an extended Reynolds equation that includes additional terms modelling the leakage flow through the perforations, and variable diffusivity and compressibility profiles. The solution method consists of two phases: 1) determination of the specific admittance profile and relative diffusivity (and relative compressibility) profiles due to the perforation, and 2) solution of the PPR equation with a FEM solver in 2D. Rarefied gas corrections in the slip-flow region are also included. Analytic profiles for circular and square holes with slip conditions are presented in the paper. To verify the method, square perforated dampers with 16–64 holes were simulated with a three-dimensional (3D) Navier-Stokes solver, a homogenised extended Reynolds solver, and a 2D PPR solver. Cases for both translational (in normal to the surfaces) and torsional motion were simulated. The presented method extends the region of accurate simulation of perforated structures to cases where the homogenisation method is inaccurate and the full 3D Navier-Stokes simulation is too time-consuming.
NASA Technical Reports Server (NTRS)
Forrest, R. D.; Chen, R. T. N.; Gerdes, R. M.; Alderete, T. S.; Gee, D. R.
1979-01-01
An exploratory piloted simulation was conducted to investigate the effects of the characteristics of helicopter flight control systems on instrument flight handling qualities. This joint FAA/NASA study was motivated by the need to improve instrument flight capability. A near-term objective is to assist in updating the airworthiness criteria for helicopter instrument flight. The experiment consisted of variations of single-rotor helicopter types and levels of stability and control augmentation systems (SCAS). These configurations were evaluated during an omnirange approach task under visual and instrument flight conditions. The levels of SCAS design included a simple rate damping system, collective decoupling plus rate damping, and an attitude command system with collective decoupling. A limited evaluation of stick force versus airspeed stability was accomplished. Some problems were experienced with control system mechanization which had a detrimental effect on longitudinal stability. Pilot ratings, pilot commentary, and performance data related to the task are presented.
Turbulent dissipation challenge: a community-driven effort
NASA Astrophysics Data System (ADS)
Parashar, Tulasi N.; Salem, Chadi; Wicks, Robert T.; Karimabadi, H.; Gary, S. Peter; Matthaeus, William H.
2015-10-01
> Many naturally occurring and man-made plasmas are collisionless and turbulent. It is not yet well understood how the energy in fields and fluid motions is transferred into the thermal degrees of freedom of constituent particles in such systems. The debate at present primarily concerns proton heating. Multiple possible heating mechanisms have been proposed over the past few decades, including cyclotron damping, Landau damping, heating at intermittent structures and stochastic heating. Recently, a community-driven effort was proposed (Parashar & Salem, 2013, arXiv:1303.0204) to bring the community together and understand the relative contributions of these processes under given conditions. In this paper, we propose the first step of this challenge: a set of problems and diagnostics for benchmarking and comparing different types of 2.5D simulations. These comparisons will provide insights into the strengths and limitations of different types of numerical simulations and will help guide subsequent stages of the challenge.
NASA Astrophysics Data System (ADS)
Bangga, Galih; Kusumadewi, Tri; Hutomo, Go; Sabila, Ahmad; Syawitri, Taurista; Setiadi, Herlambang; Faisal, Muhamad; Wiranegara, Raditya; Hendranata, Yongki; Lastomo, Dwi; Putra, Louis; Kristiadi, Stefanus
2018-03-01
Numerical simulations for relatively thick airfoils are carried out in the present studies. An attempt to improve the accuracy of the numerical predictions is done by adjusting the turbulent viscosity of the eddy-viscosity Menter Shear-Stress-Transport (SST) model. The modification involves the addition of a damping factor on the wall-bounded flows incorporating the ratio of the turbulent kinetic energy to its specific dissipation rate for separation detection. The results are compared with available experimental data and CFD simulations using the original Menter SST model. The present model improves the lift polar prediction even though the stall angle is still overestimated. The improvement is caused by the better prediction of separated flow under a strong adverse pressure gradient. The results show that the Reynolds stresses are damped near the wall causing variation of the logarithmic velocity profiles.
Identification of damping in a bridge using a moving instrumented vehicle
NASA Astrophysics Data System (ADS)
González, A.; OBrien, E. J.; McGetrick, P. J.
2012-08-01
In recent years, there has been a significant increase in the number of bridges which are being instrumented and monitored on an ongoing basis. This is in part due to the introduction of bridge management systems designed to provide a high level of protection to the public and early warning if the bridge becomes unsafe. This paper investigates a novel alternative; a low-cost method consisting of the use of a vehicle fitted with accelerometers on its axles to monitor the dynamic behaviour of bridges. A simplified half-car vehicle-bridge interaction model is used in theoretical simulations to test the effectiveness of the approach in identifying the damping ratio of the bridge. The method is tested for a range of bridge spans and vehicle velocities using theoretical simulations and the influences of road roughness, initial vibratory condition of the vehicle, signal noise, modelling errors and frequency matching on the accuracy of the results are investigated.
The extrudate swell of HDPE: Rheological effects
NASA Astrophysics Data System (ADS)
Konaganti, Vinod Kumar; Ansari, Mahmoud; Mitsoulis, Evan; Hatzikiriakos, Savvas G.
2017-05-01
The extrudate swell of an industrial grade high molecular weight high-density polyethylene (HDPE) in capillary dies is studied experimentally and numerically using the integral K-BKZ constitutive model. The non-linear viscoelastic flow properties of the polymer resin are studied for a broad range of large step shear strains and high shear rates using the cone partitioned plate (CPP) geometry of the stress/strain controlled rotational rheometer. This allowed the determination of the rheological parameters accurately, in particular the damping function, which is proven to be the most important in simulating transient flows such as extrudate swell. A series of simulations performed using the integral K-BKZ Wagner model with different values of the Wagner exponent n, ranging from n=0.15 to 0.5, demonstrates that the extrudate swell predictions are extremely sensitive to the Wagner damping function exponent. Using the correct n-value resulted in extrudate swell predictions that are in excellent agreement with experimental measurements.
Comment on “In-depth Plasma-Wave Heating of Dense Plasma Irradiated by Short Laser Pulses”
Kemp, A. J.; Sentoku, Y.
2016-04-14
Sherlock et al. have reported on the heating of solid density targets by collisional damping of wakefields that are driven by relativistic electron bunches generated in relativistic laser matter interaction. Analyzing collisional particle-in-cell simulations they calculate the fast electron current jf inside the plasma by adding contributions from electrons with energies greater than E cut = 50 keV; time-integrating the specific resistive energy deposition η j2f they arrive at a temperature profile and compare the result to the one 'measured' in their simulation, defined as the energy of particles with E < 30 keV; the discrepancy is due to collisionalmore » damping of wake fields (CDW). Here, we disagree with their metric of fast current, which leads to false conclusions about CDW heating being a volumetric, rather than surface effect.« less
A planar comparison of actuators for vibration control of flexible structures
NASA Technical Reports Server (NTRS)
Clark, William W.; Robertshaw, Harry H.; Warrington, Thomas J.
1989-01-01
The methods and results of an analytical study comparing the effectiveness of four actuators in damping the vibrations of a planar clamped-free beam are presented. The actuators studied are two inertia-type actuators, the proof mass and reaction wheel, and two variable geometry trusses, the planar truss and the planar truss proof mass (a combination variable geometry truss/inertia-type actuator). Actuator parameters used in the models were chosen based on the results of a parametric study. A full-state, LQR optimal feedback control law was used for control in each system. Numerical simulations of each beam/actuator system were performed in response to initial condition inputs. These simulations provided information such as time response of the closed-loop system and damping provided to the beam. This information can be used to determine the 'best' actuator for a given purpose.
NASA Technical Reports Server (NTRS)
Storey, Jedediah Morse
2016-01-01
Understanding, predicting, and controlling fluid slosh dynamics is critical to safety and improving performance of space missions when a significant percentage of the spacecraft's mass is a liquid. Computational fluid dynamics simulations can be used to predict the dynamics of slosh, but these programs require extensive validation. Many experimental and numerical studies of water slosh have been conducted. However, slosh data for cryogenic liquids is lacking. Water and cryogenic liquid nitrogen are used in various ground-based tests with a spherical tank to characterize damping, slosh mode frequencies, and slosh forces. A single ring baffle is installed in the tank for some of the tests. Analytical models for slosh modes, slosh forces, and baffle damping are constructed based on prior work. Select experiments are simulated using a commercial CFD software, and the numerical results are compared to the analytical and experimental results for the purposes of validation and methodology-improvement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novascone, Stephen Rhead; Peterson, John William
Abstract This report documents the progress of simulating pore migration in ceramic (UO 2 and mixed oxide or MOX) fuel using BISON. The porosity field is treated as a function of space and time whose evolution is governed by a custom convection-diffusion-reaction equation (described here) which is coupled to the heat transfer equation via the temperature field. The porosity is initialized to a constant value at every point in the domain, and as the temperature (and its gradient) are increased by application of a heat source, the pores move up the thermal gradient and accumulate at the center of themore » fuel in a time-frame that is consistent with observations from experiments. There is an inverse dependence of the fuel’s thermal conductivity on porosity (increasing porosity decreases thermal conductivity, and vice-versa) which is also accounted for, allowing the porosity equation to couple back into the heat transfer equation. Results from an example simulation are shown to demonstrate the new capability.« less
Specific low temperature release of 131Xe from irradiated MOX fuel
NASA Astrophysics Data System (ADS)
Hiernaut, J.-P.; Wiss, T.; Rondinella, V. V.; Colle, J.-Y.; Sasahara, A.; Sonoda, T.; Konings, R. J. M.
2009-08-01
A particular low temperature behaviour of the 131Xe isotope was observed during release studies of fission gases from MOX fuel samples irradiated at 44.5 GWd/tHM. A reproducible release peak, representing 2.7% of the total release of the only 131Xe, was observed at ˜1000 K, the rest of the release curve being essentially identical for all the other xenon isotopes. The integral isotopic composition of the different xenon isotopes is in very good agreement with the inventory calculated using ORIGEN-2. The presence of this particular release is explained by the relation between the thermal diffusion and decay properties of the various iodine radioisotopes decaying all into xenon.
NASA Astrophysics Data System (ADS)
Chen, Y. W.; Li, Y. K.; Cheng, X. W.; Wu, C.; Cheng, B.
2018-05-01
Refractory high entropy alloys (RHEAs), with excellent properties at high temperature, have several applications. In this work, the ZrTiHfNbMox (x=0.5, 1.0, 1.5) alloys were prepared by arc melting. All these alloys form body centered cubic (BCC) structure without other intermediate phases. The Mo element contributes to the strength of alloys at high temperature, but too much of Mo decreases the plasticity severely and enhances the strength. The ZrTiHfNbMo alloy, whose compressive stress is 1099 MPa at 800° C, is a promising material for high-temperature applications.
Helical waves in easy-plane antiferromagnets
NASA Astrophysics Data System (ADS)
Semenov, Yuriy G.; Li, Xi-Lai; Xu, Xinyi; Kim, Ki Wook
2017-12-01
Effective spin torques can generate the Néel vector oscillations in antiferromagnets (AFMs). Here, it is theoretically shown that these torques applied at one end of a normal AFM strip can excite a helical type of spin wave in the strip whose properties are drastically different from characteristic spin waves. An analysis based on both a Néel vector dynamical equation and the micromagnetic simulation identifies the direction of magnetic anisotropy and the damping factor as the two key parameters determining the dynamics. Helical wave propagation requires the hard axis of the easy-plane AFM to be aligned with the traveling direction, while the damping limits its spatial extent. If the damping is neglected, the calculation leads to a uniform periodic domain wall structure. On the other hand, finite damping decelerates the helical wave rotation around the hard axis, ultimately causing stoppage of its propagation along the strip. With the group velocity staying close to spin-wave velocity at the wave front, the wavelength becomes correspondingly longer away from the excitation point. In a sufficiently short strip, a steady-state oscillation can be established whose frequency is controlled by the waveguide length as well as the excitation energy or torque.
Finite Element Modeling of Magnetically-Damped Convection during Solidification
NASA Technical Reports Server (NTRS)
deGroh, H. C.; Li, B. Q.; Lu, X.
1998-01-01
A fully 3-D, transient finite element model is developed to represent the magnetic damping effects on complex fluid flow, heat transfer and electromagnetic field distributions in a Sn- 35.5%Pb melt undergoing unidirectional solidification. The model is developed based on our in- house finite element code for the fluid flow, heat transfer and electromagnetic field calculations. The numerical model is tested against numerical and experimental results for water as reported in literature. Various numerical simulations are carried out for the melt convection and temperature distribution with and without the presence of a transverse magnetic field. Numerical results show that magnetic damping can be effectively applied to stabilize melt flow, reduce turbulence and flow levels in the melt and over a certain threshold value a higher magnetic field resulted in a greater reduction in velocity. Also, for the study of melt flow instability, a long enough running time is needed to ensure the final fluid flow recirculation pattern. Moreover, numerical results suggest that there seems to exist a threshold value of applied magnetic field, above which magnetic damping becomes possible and below which the 0 convection in the melt is actually enhanced.
NASA Astrophysics Data System (ADS)
Yang, C.; Zhang, Y. K.; Liang, X.
2014-12-01
Damping effect of an unsaturated-saturated system on tempospatialvariations of pressurehead and specificflux was investigated. The variance and covariance of both pressure head and specific flux in such a system due to a white noise infiltration were obtained by solving the moment equations of water flow in the system and verified with Monte Carlo simulations. It was found that both the pressure head and specific flux in this case are temporally non-stationary. The variance is zero at early time due to a deterministic initial condition used, then increases with time, and approaches anasymptotic limit at late time.Both pressure head and specific flux arealso non-stationary in space since the variance decreases from source to sink. The unsaturated-saturated systembehavesasa noise filterand it damps both the pressure head and specific flux, i.e., reduces their variations and enhances their correlation. The effect is stronger in upper unsaturated zone than in lower unsaturated zone and saturated zone. As a noise filter, the unsaturated-saturated system is mainly a low pass filter, filtering out the high frequency components in the time series of hydrological variables. The damping effect is much stronger in the saturated zone than in the saturated zone.
State transition of a non-Ohmic damping system in a corrugated plane.
Lü, Kun; Bao, Jing-Dong
2007-12-01
Anomalous transport of a particle subjected to non-Ohmic damping of the power delta in a tilted periodic potential is investigated via Monte Carlo simulation of the generalized Langevin equation. It is found that the system exhibits two relative motion modes: the locked state and the running state. In an environment of sub-Ohmic damping (0
Kim, Daehyun; Sobel, Adam H.; Del Genio, Anthony; Wu, Jingbo
2017-01-01
Abstract The processes that lead to changes in the propagation and maintenance of the Madden‐Julian Oscillation (MJO) as a response to increasing CO2 are examined by analyzing moist static energy budget of the MJO in a series of NASA GISS model simulations. It is found changes in MJO propagation is dominated by several key processes. Horizontal moisture advection, a key process for MJO propagation, is found to enhance predominantly due to an increase in the mean horizontal moisture gradients. The terms that determine the strength of the advecting wind anomalies, the MJO horizontal scale and the dry static stability, are found to exhibit opposing trends that largely cancel out. Furthermore, reduced sensitivity of precipitation to changes in column moisture, i.e., a lengthening in the convective moisture adjustment time scale, also opposes enhanced propagation. The dispersion relationship of Adames and Kim, which accounts for all these processes, predicts an acceleration of the MJO at a rate of ∼3.5% K−1, which is consistent with the actual phase speed changes in the simulation. For the processes that contribute to MJO maintenance, it is found that damping by vertical MSE advection is reduced due to the increasing vertical moisture gradient. This weaker damping is nearly canceled by weaker maintenance by cloud‐radiative feedbacks, yielding the growth rate from the linear moisture mode theory nearly unchanged with the warming. Furthermore, the estimated growth rates are found to be a small, negative values, suggesting that the MJO in the simulation is a weakly damped mode. PMID:29497477
Experimental and analytical studies of advanced air cushion landing systems
NASA Technical Reports Server (NTRS)
Lee, E. G. S.; Boghani, A. B.; Captain, K. M.; Rutishauser, H. J.; Farley, H. L.; Fish, R. B.; Jeffcoat, R. L.
1981-01-01
Several concepts are developed for air cushion landing systems (ACLS) which have the potential for improving performance characteristics (roll stiffness, heave damping, and trunk flutter), and reducing fabrication cost and complexity. After an initial screening, the following five concepts were evaluated in detail: damped trunk, filled trunk, compartmented trunk, segmented trunk, and roll feedback control. The evaluation was based on tests performed on scale models. An ACLS dynamic simulation developed earlier is updated so that it can be used to predict the performance of full-scale ACLS incorporating these refinements. The simulation was validated through scale-model tests. A full-scale ACLS based on the segmented trunk concept was fabricated and installed on the NASA ACLS test vehicle, where it is used to support advanced system development. A geometrically-scaled model (one third full scale) of the NASA test vehicle was fabricated and tested. This model, evaluated by means of a series of static and dynamic tests, is used to investigate scaling relationships between reduced and full-scale models. The analytical model developed earlier is applied to simulate both the one third scale and the full scale response.
Experimental and simulation studies of hard contact in force reflecting teleoperation
NASA Technical Reports Server (NTRS)
Hannaford, Blake; Anderson, Robert
1988-01-01
Experiments and simulations of a single-axis force-reflecting teleoperation system have been conducted to investigate the problem of contacting a hard environment and maintaining a controlled force in teleoperation in which position is fed forward from the hand controller (master) to the manipulator (slave), and force is fed back to the human operator through motors in the master. The simulations, using an electrical circuit model, reproduce the behavior of the real system, including effects of human operator biomechanics. It is shown that human operator properties, which vary as a result of different types of grasp of the handle, affect the stability of the system in the hard-contact task. The effect of a heavier grasp on the handle is equivalent to increased hand-controller velocity damping in terms of the systems stability in the contact task, but control system damping sufficient to guarantee stable contact results in perceptible sluggishness of the control handle's response in free motion. These results suggest that human operator biomechanics must be taken into account to guarantee stable and ergonomic performance of advanced teleoperators.
NASA Astrophysics Data System (ADS)
Degueldre, C.; Martin, M.; Kuri, G.; Grolimund, D.; Borca, C.
2011-09-01
Plutonium-uranium mixed oxide (MOX) fuels are currently used in nuclear reactors. The potential differences of metal redox state and microstructural developments of the matrix before and after irradiation are commonly analysed by electron probe microanalysis. In this work the structure and next-neighbor atomic environments of Pu and U oxide features within unirradiated homogeneous MOX and irradiated (60 MW d kg -1) MOX samples was analysed by micro-X-ray fluorescence (μ-XRF), micro-X-ray diffraction (μ-XRD) and micro-X-ray absorption fine structure (μ-XAFS) spectroscopy. The grain properties, chemical bonding, valences and stoichiometry of Pu and U are determined from the experimental data gained for the unirradiated as well as for irradiated fuel material examined in the center of the fuel as well as in its peripheral zone (rim). The formation of sub-grains is observed as well as their development from the center to the rim (polygonization). In the irradiated sample Pu remains tetravalent (>95%) and no (<5%) Pu(V) or Pu(VI) can be detected while the fuel could undergo slight oxidation in the rim zone. Any slight potential plutonium oxidation is buffered by the uranium dioxide matrix while locally fuel cladding interaction could also affect the redox of the fuel.
Lu, Ting; George, Biju; Zhao, Hong; Liu, Wenjun
2016-01-01
A pilot study was conducted to study the treatability of high-strength landfill leachate by a combined process including upflow anaerobic sludge blanket (UASB), carbon removal (C-stage) moving bed biofilm reactor (MBBR) and ANITA™ Mox process. The major innovation on this pilot study is the patent-pending process invented by Veolia that integrates the above three unit processes with an effluent recycle stream, which not only maintains the low hydraulic retention time to enhance the treatment performance but also reduces inhibiting effect from chemicals present in the high-strength leachate. This pilot study has demonstrated that the combined process was capable of treating high-strength leachate with efficient chemical oxygen demand (COD) and nitrogen removals. The COD removal efficiency by the UASB was 93% (from 45,000 to 3,000 mg/L) at a loading rate of 10 kg/(m(3)·d). The C-stage MBBR removed an additional 500 to 1,000 mg/L of COD at a surface removal rate (SRR) of 5 g/(m(2)·d) and precipitated 400 mg/L of calcium. The total inorganic nitrogen removal efficiency by the ANITA Mox reactor was about 70% at SRR of 1.0 g/(m(2)·d).
Ishida, Yuko; Kuwahara, Yasumasa; Dadashipour, Mohammad; Ina, Atsutoshi; Yamaguchi, Takuya; Morita, Masashi; Ichiki, Yayoi; Asano, Yasuhisa
2016-01-01
Soldiers of some eusocial insects exhibit an altruistic self-destructive defense behavior in emergency situations when attacked by large enemies. The swarm-forming invasive millipede, Chamberlinius hualienensis, which is not classified as eusocial animal, exudes irritant chemicals such as benzoyl cyanide as a defensive secretion. Although it has been thought that this defensive chemical was converted from mandelonitrile, identification of the biocatalyst has remained unidentified for 40 years. Here, we identify the novel blood enzyme, mandelonitrile oxidase (ChuaMOX), which stoichiometrically catalyzes oxygen consumption and synthesis of benzoyl cyanide and hydrogen peroxide from mandelonitrile. Interestingly the enzymatic activity is suppressed at a blood pH of 7, and the enzyme is segregated by membranes of defensive sacs from mandelonitrile which has a pH of 4.6, the optimum pH for ChuaMOX activity. In addition, strong body muscle contractions are necessary for de novo synthesis of benzoyl cyanide. We propose that, to protect its swarm, the sacrificial millipede also applies a self-destructive defense strategy—the endogenous rupturing of the defensive sacs to mix ChuaMOX and mandelonitrile at an optimum pH. Further study of defensive systems in primitive arthropods will pave the way to elucidate the evolution of altruistic defenses in the animal kingdom. PMID:27265180
Müller, Fabian; Stookey, Stephanie; Cunningham, Tyler; Pastan, Ira
2017-05-09
CD22-targeted recombinant immunotoxins (rIT) are active in hairy cell leukemia or acute lymphoblastic leukemia (ALL), but not in mantle cell lymphoma (MCL) patients. The goal was to enhance rIT efficacy in vivo and to define a strong combination treatment. Activity of Moxetumomab pasudotox (Moxe) and LR combined with paclitaxel was tested against MCL cell lines in vitro and as bolus doses or continuous infusion in xenograft models. In the KOPN-8 ALL xenograft, Moxe or paclitaxel alone was active, but all mice died from leukemia; when combined, 60% of the mice achieved a sustained complete remission. Against MCL cells in vitro, LR was more active than Moxe and the cells had to be exposed to rIT for more than 24 hours for them to die. To maintain high blood levels in vivo, LR was administered continuously by 7-day pumps achieving a well-tolerated steady plasma concentration of 45 ng/ml. In JeKo-1 xenografts, continuously administered LR was 14-fold more active than bolus doses and the combination with paclitaxel additionally improved responses by 135-fold. Maintaining high rIT-plasma levels greatly improves responses in the JeKo-1 model and paclitaxel substantially enhances bolus and continuously infused rIT, supporting a clinical evaluation against B-cell malignancies.
Bio-Benchmarking of Electronic Nose Sensors
Berna, Amalia Z.; Anderson, Alisha R.; Trowell, Stephen C.
2009-01-01
Background Electronic noses, E-Noses, are instruments designed to reproduce the performance of animal noses or antennae but generally they cannot match the discriminating power of the biological original and have, therefore, been of limited utility. The manner in which odorant space is sampled is a critical factor in the performance of all noses but so far it has been described in detail only for the fly antenna. Methodology Here we describe how a set of metal oxide (MOx) E-Nose sensors, which is the most commonly used type, samples odorant space and compare it with what is known about fly odorant receptors (ORs). Principal Findings Compared with a fly's odorant receptors, MOx sensors from an electronic nose are on average more narrowly tuned but much more highly correlated with each other. A set of insect ORs can therefore sample broader regions of odorant space independently and redundantly than an equivalent number of MOx sensors. The comparison also highlights some important questions about the molecular nature of fly ORs. Conclusions The comparative approach generates practical learnings that may be taken up by solid-state physicists or engineers in designing new solid-state electronic nose sensors. It also potentially deepens our understanding of the performance of the biological system. PMID:19641604
Ishida, Yuko; Kuwahara, Yasumasa; Dadashipour, Mohammad; Ina, Atsutoshi; Yamaguchi, Takuya; Morita, Masashi; Ichiki, Yayoi; Asano, Yasuhisa
2016-06-06
Soldiers of some eusocial insects exhibit an altruistic self-destructive defense behavior in emergency situations when attacked by large enemies. The swarm-forming invasive millipede, Chamberlinius hualienensis, which is not classified as eusocial animal, exudes irritant chemicals such as benzoyl cyanide as a defensive secretion. Although it has been thought that this defensive chemical was converted from mandelonitrile, identification of the biocatalyst has remained unidentified for 40 years. Here, we identify the novel blood enzyme, mandelonitrile oxidase (ChuaMOX), which stoichiometrically catalyzes oxygen consumption and synthesis of benzoyl cyanide and hydrogen peroxide from mandelonitrile. Interestingly the enzymatic activity is suppressed at a blood pH of 7, and the enzyme is segregated by membranes of defensive sacs from mandelonitrile which has a pH of 4.6, the optimum pH for ChuaMOX activity. In addition, strong body muscle contractions are necessary for de novo synthesis of benzoyl cyanide. We propose that, to protect its swarm, the sacrificial millipede also applies a self-destructive defense strategy-the endogenous rupturing of the defensive sacs to mix ChuaMOX and mandelonitrile at an optimum pH. Further study of defensive systems in primitive arthropods will pave the way to elucidate the evolution of altruistic defenses in the animal kingdom.
Kondrachova, Lilia; Hahn, Benjamin P; Vijayaraghavan, Ganesh; Williams, Ryan D; Stevenson, Keith J
2006-12-05
Mixed molybdenum tungsten trioxide films of varying stoichiometry (MoxW1 - xO3, 0 < x < 1) were prepared by cathodic electrodeposition on indium tin oxide (ITO)-coated glass substrates from aqueous peroxo-polymolybdotungstate solutions. Electrochemical quartz crystal microbalance (EQCM), cyclic voltammetry, and chronocoulometry were used to gain insight into the electrodeposition mechanism. The compositional and structural properties were characterized for MoxW1 - xO3 films deposited at intermediate potentials (-0.35 V vs Ag/AgCl) and sintered at 250 degrees C using energy-dispersive spectroscopy, X-ray diffraction, and Raman spectroscopy. These studies reveal that films consist of homogeneously mixed MoxW1 - xO3, with an enriched Mo content ranging in composition from 0.4 < x < 0.7 depending upon the mol % Mo present in the deposition solution. Chronoamperometry and spectroelectrochemical measurements were conducted to estimate lithium ion diffusion coefficients and coloration efficiencies for the mixed metal oxide films in 1 M LiClO4/propylene carbonate. The subtle interplay between structural and compositional properties due to the uniform mixing of Mo and W oxide components shows that electrochromic and lithium ion transport properties are moderately enhanced relative to those of single-component WO3 and MoO3 and demonstrate improved structural stability over pure MoO3 polymorphs during electrochemical cycling.
A method for experimental modal separation
NASA Technical Reports Server (NTRS)
Hallauer, W. L., Jr.
1977-01-01
A method is described for the numerical simulation of multiple-shaker modal survey testing using simulated experimental data to optimize the shaker force-amplitude distribution for the purpose of isolating individual modes of vibration. Inertia, damping, stiffness, and model data are stored on magnetic disks, available by direct access to the interactive FORTRAN programs which perform all computations required by this relative force amplitude distribution method.
Benbouzid, Fathalah; Kodjikian, Laurent; Hartmann, Daniel; Renaud, François; Baillif, Stéphanie
2016-02-01
To compare the anti-adhesive effect of cefuroxime and moxifloxacin on the primary attachment phase of Staphylococcus epidermidis on hydrophobic acrylic intraocular lenses (IOLs). Forty hydrophobic acrylic IOLs were used. Two groups of IOLs were soaked in a moxifloxacin (Mox-T1: 0.5 mg/0.1 ml) or a cefuroxime (Cef-T1: cefuroxime 1 mg/0.1 ml) solution before incubation in a S. epidermidis bacterial suspension. Two other groups were incubated in the bacterial suspension before antibiotics (Cef-T2 and Mox-T2) were added. The control group (Ctrl) consisted of IOLs incubated in the bacterial suspension. After incubation, IOLs were sonicated and vortexed. The resultant suspension was spread over a nutritive agar plate. Bacterial colonies were counted after 24 hr of incubation. Mean number of colony-forming units per IOL was Cef-T1: 184 × 10(3) (SE: 5.24; SD: 28.21), Cef-T2: 117 × 10(3) (SE: 5.74; SD: 30.37), Mox-T1: 1.27 × 10(3) (SE: 0.12; SD: 0.61), Mox-T2: 25 × 10(3) (SE:1.98; SD: 9.72) and Ctrl: 361 × 10(3) (SE: 26.9; SD: 107.6). The number of adhering bacteria did not vary whether cefuroxime was added before or after IOL incubation in the bacterial suspension (p = 0.132). Moxifloxacin was more effective in reducing the number of adhering bacteria when used before IOL incubation (p < 0.001). Overall for T1 and T2, moxifloxacin was more effective than cefuroxime in reducing bacterial adhesion on IOLs (p < 0.001). Moxifloxacin and cefuroxime significantly reduced S. epidermidis adhesion on hydrophobic acrylic IOLs. The anti-adhesive effect was superior with moxifloxacin. © 2015 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Fate of methane in aquatic systems dominated by free-floating plants.
Kosten, Sarian; Piñeiro, Marcia; de Goede, Eefje; de Klein, Jeroen; Lamers, Leon P M; Ettwig, Katharina
2016-11-01
Worldwide the area of free-floating plants is increasing, which can be expected to alter methane (CH 4 ) emissions from aquatic systems in several ways. A large proportion of the CH 4 produced may become oxidized below the plants due to the accumulation of CH 4 as a result of a decrease in the diffusive water-atmosphere flux and the entrapment of part of the ebullitive CH 4 , in combination with suitable conditions for methane oxidizing (MOX) bacteria in the aerobic rhizosphere. We used a set of essays to test this hypothesis and to explore the effect of different densities for three widespread free-floating species: Azolla filiculoides, Salvinia natans, and Eichhornia crassipes. The gas exchange velocity, proportion of CH 4 bubbles trapped by the plants, occurrence of radial oxygen loss from roots, and MOX rates on the roots were assessed. We subsequently used the outcome of these experiments to parameterize a simple model. With this model we estimated the proportion of the produced CH 4 that is oxidized, for different plant species and different densities. We found that in a shallow (1 m) system up to 70% of the CH 4 produced may become oxidized as a result of a strong decrease in gas exchange combined with high MOX activity of the rhizosphere microbiome. As floating plants also are likely to increase CH 4 production by organic matter production, especially when their presence induces anaerobic conditions, the overall effect on CH 4 emission will strongly depend on local conditions. This explains the contrasting effects of floating plants on CH 4 emissions in literature as reviewed here. As the effect of floating plants on CH 4 emissions, including the high MOX rates we show here, can be substantial, there is an urgent need to consider this impact when assessing greenhouse gas budgets. Copyright © 2016 Elsevier Ltd. All rights reserved.
A Study of Alfven Wave Propagation and Heating the Chromosphere
NASA Astrophysics Data System (ADS)
Tu, J.; Song, P.
2013-12-01
Alfven wave propagation, reflection and heating of the solar atmosphere are studied for a one-dimensional solar atmosphere by self-consistently solving plasma and neutral fluid equations and Maxwell's equations with incorporation of the Hall effect, strong electron-neutral, electron-ion, and ion-neutral collisions. The governing equations are very stiff because of the strong coupling between the charged and neutral fluids. We have developed a numerical model based on an implicit backward difference formula (BDF2) of second order accuracy both in time and space to overcome the stiffness. A non-reflecting boundary condition is applied to the top boundary of the simulation domain so that the wave reflection within the domain due to the density gradient can be unambiguously determined. It is shown that the Alfven waves are partially reflected throughout the chromosphere. The reflection is increasingly stronger at higher altitudes and the strongest reflection occurs at the transition region. The waves are damped in the lower chromosphere dominantly through Joule dissipation due to electron collisions with neutrals and ions. The heating resulting from the wave damping is strong enough to balance the radiation energy loss for the quiet chromosphere. The collisional dissipation of the Alfven waves in the weakly collisional corona is negligible. The heating rates are larger for weaker background magnetic fields. In addition, higher frequency waves are subject to heavier damping. There is an upper cutoff frequency, depending on the background magnetic field, above which the waves are completely damped. At the frequencies below which the waves are not strongly damped, the waves may be strongly reflected at the transition region. The reflected waves interacting with the upward propagating waves may produce power at their double frequencies, which leads to more damping. Due to the reflection and damping, the energy flux of the waves transmitted to the corona is one order of magnitude smaller than that of the driving source.
NASA Astrophysics Data System (ADS)
Marhauser, Frank
2017-06-01
Research and development for superconducting radio-frequency cavities has made enormous progress over the last decades from the understanding of theoretical limitations to the industrial mass fabrication of cavities for large-scale particle accelerators. Key technologies remain hot topics due to continuously growing demands on cavity performance, particularly when in pursuit of high quality beams at higher beam currents or higher luminosities than currently achievable. This relates to higher order mode (HOM) damping requirements. Meeting the desired beam properties implies avoiding coupled multi-bunch or beam break-up instabilities depending on the machine and beam parameters that will set the acceptable cavity impedance thresholds. The use of cavity HOM-dampers is crucial to absorb the wakefields, comprised by all beam-induced cavity Eigenmodes, to beam-dynamically safe levels and to reduce the heat load at cryogenic temperature. Cavity damping concepts may vary, but are principally based on coaxial and waveguide couplers as well as beam line absorbers or any combination. Next generation energy recovery linacs and circular colliders call for cavities with strong HOM-damping that can exceed the state-of-the-art, while the operating mode efficiency shall not be significantly compromised concurrently. This imposes major challenges given the rather limited damping concepts. A detailed survey of established cavities is provided scrutinizing the achieved damping performance, shortcomings, and potential improvements. The scaling of the highest passband mode impedances is numerically evaluated in dependence on the number of cells for a single-cell up to a nine-cell cavity, which reveals the increased probability of trapped modes. This is followed by simulations for single-cell and five-cell cavities, which incorporate multiple damping schemes to assess the most efficient concepts. The usage and viability of on-cell dampers is elucidated for the single-cell cavity since it can push the envelope towards quasi HOM-free operation suited for next generation storage and collider rings. Geometrical end-cell shape alterations for the five-cell cavity with already efficient mode damping are discussed as a possibility to further lower specific high impedance modes. The findings are eventually put into relation with demanding impedance instability thresholds in future collider rings.
Marhauser, Frank
2017-05-15
Research and development for superconducting radio-frequency cavities has made enormous progress over the last decades from the understanding of theoretical limitations to the industrial mass fabrication of cavities for large-scale particle accelerators. Key technologies remain hot topics due to continuously growing demands on cavity performance, particularly when in pursuit of high quality beams at higher beam currents or higher luminosities than currently achievable. This relates to Higher Order Mode (HOM) damping requirements. Meeting the desired beam properties implies avoiding coupled multi-bunch or beam break-up instabilities depending on the machine and beam parameters that will set the acceptable cavity impedance thresholds.more » The use of cavity HOM-dampers is crucial to absorb the wakefields, comprised by all beam-induced cavity Eigenmodes, to beam-dynamically safe levels and to reduce the heat load at cryogenic temperature. Cavity damping concepts may vary, but are principally based on coaxial and waveguide couplers as well as beam line absorbers or any combination. Next generation Energy Recovery Linacs and circular colliders call for cavities with strong HOM-damping that can exceed the state-of-the-art, while the operating mode efficiency shall not be significantly compromised concurrently. This imposes major challenges given the rather limited damping concepts. A detailed survey of established cavities is provided scrutinizing the achieved damping performance, shortcomings, and potential improvements. The scaling of the highest passband mode impedances is numerically evaluated in dependence on the number of cells for a single-cell up to a nine-cell cavity, which reveals the increased probability of trapped modes. This is followed by simulations for single-cell and five-cell cavities, which incorporate multiple damping schemes to assess the most efficient concepts. The usage and viability of on-cell dampers is elucidated for the single-cell cavity since it can push the envelope towards quasi HOM-free operation suited for next generation storage and collider rings. Geometrical end-cell shape alterations for the five-cell cavity with already efficient mode damping are discussed as a possibility to further lower specific high impedance modes. Lastly, the findings are eventually put into relation with demanding impedance instability thresholds in future collider rings.« less
Niamul Islam, Naz; Hannan, M A; Mohamed, Azah; Shareef, Hussain
2016-01-01
Power system oscillation is a serious threat to the stability of multimachine power systems. The coordinated control of power system stabilizers (PSS) and thyristor-controlled series compensation (TCSC) damping controllers is a commonly used technique to provide the required damping over different modes of growing oscillations. However, their coordinated design is a complex multimodal optimization problem that is very hard to solve using traditional tuning techniques. In addition, several limitations of traditionally used techniques prevent the optimum design of coordinated controllers. In this paper, an alternate technique for robust damping over oscillation is presented using backtracking search algorithm (BSA). A 5-area 16-machine benchmark power system is considered to evaluate the design efficiency. The complete design process is conducted in a linear time-invariant (LTI) model of a power system. It includes the design formulation into a multi-objective function from the system eigenvalues. Later on, nonlinear time-domain simulations are used to compare the damping performances for different local and inter-area modes of power system oscillations. The performance of the BSA technique is compared against that of the popular particle swarm optimization (PSO) for coordinated design efficiency. Damping performances using different design techniques are compared in term of settling time and overshoot of oscillations. The results obtained verify that the BSA-based design improves the system stability significantly. The stability of the multimachine power system is improved by up to 74.47% and 79.93% for an inter-area mode and a local mode of oscillation, respectively. Thus, the proposed technique for coordinated design has great potential to improve power system stability and to maintain its secure operation.
NASA Astrophysics Data System (ADS)
Nauer, Philipp A.; Hutley, Lindsay B.; Bristow, Mila; Arndt, Stefan K.
2015-04-01
Methane emissions from termites contribute around 3% to global methane in the atmosphere, although the total source estimate for termites is the most uncertain among all sources. In tropical regions, the relative source contribution of termites can be far higher due to the high biomass and relative importance of termites in plant decomposition. Past research focused on net emission measurements and their variability, but little is known about underlying processes governing these emissions. In particular, microbial oxidation of methane (MOX) within termite mounds has rarely been investigated. In well-studied ecosystems featuring an oxic matrix above an anoxic methane-producing habitat (e.g. landfills or sediments), the fraction of oxidized methane (fox) can reach up to 90% of gross production. However, conventional mass-balance approaches to apportion production and consumption processes can be challenging to apply in the complex-structured and almost inaccessible environment of a termite mound. In effect, all field-based data on termite-mound MOX is based on one study that measured isotopic shifts in produced and emitted methane. In this study a closed-system isotope fractionation model was applied and estimated fox ranged from 10% to almost 100%. However, it is shown here that by applying an open-system isotope-pool model, the measured isotopic shifts can also be explained by physical transport of methane alone. Different field-based methods to quantify MOX in termite mounds are proposed which do not rely on assumptions of physical gas transport. A simple approach is the use of specific inhibitors for MOX, e.g. difluoromethane (CH2F2), combined with chamber-based flux measurements before and after their application. Data is presented on the suitability of different inhibitors and first results of their application in the field. Alternatively, gas-tracer methods allow the quantification of methane oxidation and reaction kinetics without knowledge of physical gas transport. Two concepts of gas-tracer-test applications in termite mounds are presented, together with 3D photogrammetric approaches to estimate volume, surface area and internal gas volume of termite mounds that enables acuare scaling of methane production and consumption. In a further phase of the project, the application of these methods in a comprehensive field survey in the Australian savanna ecosystem will give insights into major driving factors of MOX in termite mounds, a major driver of nutrient cycling in this extensive tropical ecosystem.
Experimental simulation of decoherence in photonics qudits
Marques, B.; Matoso, A. A.; Pimenta, W. M.; Gutiérrez-Esparza, A. J.; Santos, M. F.; Pádua, S.
2015-01-01
We experimentally perform the simulation of open quantum dynamics in single-qudit systems. Using a spatial light modulator as a dissipative optical device, we implement dissipative-dynamical maps onto qudits encoded in the transverse momentum of spontaneous parametric down-converted photon pairs. We show a well-controlled technique to prepare entangled qudits states as well as to implement dissipative local measurements; the latter realize two specific dynamics: dephasing and amplitude damping. Our work represents a new analogy-dynamical experiment for simulating an open quantum system. PMID:26527330
NASA Astrophysics Data System (ADS)
Witte, B. B. L.; Fletcher, L. B.; Galtier, E.; Gamboa, E.; Lee, H. J.; Zastrau, U.; Redmer, R.; Glenzer, S. H.; Sperling, P.
2017-06-01
We present simulations using finite-temperature density-functional-theory molecular dynamics to calculate the dynamic electrical conductivity in warm dense aluminum. The comparison between exchange-correlation functionals in the Perdew-Burke-Enzerhof and Heyd-Scuseria-Enzerhof (HSE) approximation indicates evident differences in the density of states and the dc conductivity. The HSE calculations show excellent agreement with experimental Linac Coherent Light Source x-ray plasmon scattering spectra revealing plasmon damping below the widely used random phase approximation. These findings demonstrate non-Drude-like behavior of the dynamic conductivity that needs to be taken into account to determine the optical properties of warm dense matter.
NASA Astrophysics Data System (ADS)
Amjadian, Mohsen; Agrawal, Anil K.
2018-01-01
Friction is considered as one of the most reliable mechanisms of energy dissipation that has been utilized extensively in passive damping devices to mitigate vibration of civil engineering structures subjected to extreme natural hazards such as earthquakes and windstorms. However, passive friction dampers are well-known for having a highly nonlinear hysteretic behavior caused by stick-slip motion at low velocities, a phenomenon that is inherent in friction and increases the acceleration response of the structure under control unfavorably. The authors have recently proposed the theoretical concept of a new type of damping device termed as "Passive Electromagnetic Eddy Current Friction Damper" (PEMECFD) in which an eddy current damping mechanism was utilized not only to decrease the undesirable effects of stick-slip motion, but also to increase the energy dissipation capacity of the damping device as a whole. That study was focused on demonstration of the theoretical performance of the proposed damping device through numerical simulations. This paper further investigates the influence of eddy current damping on energy dissipation due to friction through modeling, design, and testing of a proof-of-concept prototype damper. The design of this damper has been improved over the design in the previous study. The normal force in this damper is produced by the repulsive magnetic force between two cuboidal permanent magnets (PMs) magnetized in the direction normal to the direction of the motion. The eddy current damping force is generated because of the motion of the two PMs and two additional PMs relative to a copper plate in their vicinity. The dynamic models for the force-displacement relationship of the prototype damper are based on LuGre friction model, electromagnetic theory, and inertial effects of the prototype damper. The parameters of the dynamic models have been identified through a series of characterization tests on the prototype damper under harmonic excitations of different frequencies in the laboratory. Finally, the identified dynamic models have been validated by subjecting the prototype damper to two different random excitations. The results indicate that the proposed dynamic models are capable of representing force-displacement behavior of the new type of passive damping device for a wide range of operating conditions.
Forced Oscillation Wind Tunnel Testing for FASER Flight Research Aircraft
NASA Technical Reports Server (NTRS)
Hoe, Garrison; Owens, Donald B.; Denham, Casey
2012-01-01
As unmanned air vehicles (UAVs) continue to expand their flight envelopes into areas of high angular rate and high angle of attack, modeling the complex unsteady aerodynamics for simulation in these regimes has become more difficult using traditional methods. The goal of this experiment was to improve the current six degree-of-freedom aerodynamic model of a small UAV by replacing the analytically derived damping derivatives with experimentally derived values. The UAV is named the Free-flying Aircraft for Sub-scale Experimental Research, FASER, and was tested in the NASA Langley Research Center 12- Foot Low-Speed Tunnel. The forced oscillation wind tunnel test technique was used to measure damping in the roll and yaw axes. By imparting a variety of sinusoidal motions, the effects of non-dimensional angular rate and reduced frequency were examined over a large range of angle of attack and side-slip combinations. Tests were performed at angles of attack from -5 to 40 degrees, sideslip angles of -30 to 30 degrees, oscillation amplitudes from 5 to 30 degrees, and reduced frequencies from 0.010 to 0.133. Additionally, the effect of aileron or elevator deflection on the damping coefficients was examined. Comparisons are made of two different data reduction methods used to obtain the damping derivatives. The results show that the damping derivatives are mainly a function of angle of attack and have dependence on the non-dimensional rate and reduced frequency only in the stall/post-stall regime
Study on Dissipation of Landslide Generated Waves in Different Shape of Reservoirs
NASA Astrophysics Data System (ADS)
An, Y.; Liu, Q.
2017-12-01
The landslide generated waves are major risks for many reservoirs located in mountainous areas. As the initial wave is often very huge (e.g. 30m of the height in Xiaowan event, 2009, China), the dissipation of the wave, which is closely connected with the shape of the reservoir (e.g. channel type vs. lake type), is a crucial factor in risk estimation and prevention. While even for channel type reservoir, the wave damping also varies a lot due to details of the shape such as branches and turnings. Focusing on the influence of this shape details on the wave damping in channel type reservoir, we numerically studied two landslide generated wave events with both a triangle shape of the cross section but different longitudinal shape configurations (Xiaowan event in 2009 and an assuming event in real topography). The two-dimensional Saint-Venant equation and dry-wet boundary treatment method are used to simulate the wave generation and propagation processes. The simulation is based on an open source code called `Basilisk' and the adaptive mesh refinement technique is used to achieve enough precision with affordable computational resources. The sensitivity of the parameters representing bed drag and the vortex viscosity is discussed. We found that the damping is relatively not sensitive to the bed drag coefficient, which is natural as the water depth is large compared with wave height. While the vortex viscosity needs to be chosen carefully as it is related to cross sectional velocity distribution. It is also found that the longitudinal shape, i.e. the number of turning points and branches, is the key factor influencing the wave damping. The wave height at the far field could be only one seventh comparing with the initial wave in the case with complex longitudinal shape, while the damping is much weaker in the straight channel case. We guess that this phenomenon is due to the increasing sloshing at these abruptly changed positions. This work could provide a deeper understanding on the landslide generated waves in the reservoir and helps engineers design better risk prevention facilities.
Low-power lead-cooled fast reactor loaded with MOX-fuel
NASA Astrophysics Data System (ADS)
Sitdikov, E. R.; Terekhova, A. M.
2017-01-01
Fast reactor for the purpose of implementation of research, education of undergraduate and doctoral students in handling innovative fast reactors and training specialists for atomic research centers and nuclear power plants (BRUTs) was considered. Hard neutron spectrum achieved in the fast reactor with compact core and lead coolant. Possibility of prompt neutron runaway of the reactor is excluded due to the low reactivity margin which is less than the effective fraction of delayed neutrons. The possibility of using MOX fuel in the BRUTs reactor was examined. The effect of Keff growth connected with replacement of natural lead coolant to 208Pb coolant was evaluated. The calculations and reactor core model were performed using the Serpent Monte Carlo code.
Abbasi, Mostafa; Barakat, Mohammed S; Vahidkhah, Koohyar; Azadani, Ali N
2016-09-01
Computational modeling has an important role in design and assessment of medical devices. In computational simulations, considering accurate constitutive models is of the utmost importance to capture mechanical response of soft tissue and biomedical materials under physiological loading conditions. Lack of comprehensive three-dimensional constitutive models for soft tissue limits the effectiveness of computational modeling in research and development of medical devices. The aim of this study was to use inverse finite element (FE) analysis to determine three-dimensional mechanical properties of bovine pericardial leaflets of a surgical bioprosthesis under dynamic loading condition. Using inverse parameter estimation, 3D anisotropic Fung model parameters were estimated for the leaflets. The FE simulations were validated using experimental in-vitro measurements, and the impact of different constitutive material models was investigated on leaflet stress distribution. The results of this study showed that the anisotropic Fung model accurately simulated the leaflet deformation and coaptation during valve opening and closing. During systole, the peak stress reached to 3.17MPa at the leaflet boundary while during diastole high stress regions were primarily observed in the commissures with the peak stress of 1.17MPa. In addition, the Rayleigh damping coefficient that was introduced to FE simulations to simulate viscous damping effects of surrounding fluid was determined. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Jinting; Lu, Liqiao; Zhu, Fei
2018-01-01
Finite element (FE) is a powerful tool and has been applied by investigators to real-time hybrid simulations (RTHSs). This study focuses on the computational efficiency, including the computational time and accuracy, of numerical integrations in solving FE numerical substructure in RTHSs. First, sparse matrix storage schemes are adopted to decrease the computational time of FE numerical substructure. In this way, the task execution time (TET) decreases such that the scale of the numerical substructure model increases. Subsequently, several commonly used explicit numerical integration algorithms, including the central difference method (CDM), the Newmark explicit method, the Chang method and the Gui-λ method, are comprehensively compared to evaluate their computational time in solving FE numerical substructure. CDM is better than the other explicit integration algorithms when the damping matrix is diagonal, while the Gui-λ (λ = 4) method is advantageous when the damping matrix is non-diagonal. Finally, the effect of time delay on the computational accuracy of RTHSs is investigated by simulating structure-foundation systems. Simulation results show that the influences of time delay on the displacement response become obvious with the mass ratio increasing, and delay compensation methods may reduce the relative error of the displacement peak value to less than 5% even under the large time-step and large time delay.
Direct identification of predator-prey dynamics in gyrokinetic simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, Sumire, E-mail: sumire.kobayashi@lpp.polytechnique.fr; Gürcan, Özgür D; Diamond, Patrick H.
2015-09-15
The interaction between spontaneously formed zonal flows and small-scale turbulence in nonlinear gyrokinetic simulations is explored in a shearless closed field line geometry. It is found that when clear limit cycle oscillations prevail, the observed turbulent dynamics can be quantitatively captured by a simple Lotka-Volterra type predator-prey model. Fitting the time traces of full gyrokinetic simulations by such a reduced model allows extraction of the model coefficients. Scanning physical plasma parameters, such as collisionality and density gradient, it was observed that the effective growth rates of turbulence (i.e., the prey) remain roughly constant, in spite of the higher and varyingmore » level of primary mode linear growth rates. The effective growth rate that was extracted corresponds roughly to the zonal-flow-modified primary mode growth rate. It was also observed that the effective damping of zonal flows (i.e., the predator) in the parameter range, where clear predator-prey dynamics is observed, (i.e., near marginal stability) agrees with the collisional damping expected in these simulations. This implies that the Kelvin-Helmholtz-like instability may be negligible in this range. The results imply that when the tertiary instability plays a role, the dynamics becomes more complex than a simple Lotka-Volterra predator prey.« less
NASA Technical Reports Server (NTRS)
Gordon, Robert W.; Ozguner, Umit; Yurkovich, Steven
1989-01-01
The Flight Dynamics Laboratory is committed to an in-house, experimental investigation of several technical areas critical to the dynamic performance of future Air Force large space structures. The advanced beam experiment was successfully completed and provided much experience in the implementation of active control approaches on real hardware. A series of experiments is under way in evaluating ground test methods on the 12 meter trusses with significant passive damping. Ground simulated zero-g response data from the undamped truss will be compared directly with true zero-g flight test data. The performance of several leading active control approaches will be measured and compared on one of the trusses in the presence of significant passive damping. In the future, the PACOSS dynamic test article will be set up as a test bed for the evaluation of system identification and control techniques on a complex, representative structure with high modal density and significant passive damping.
NASA Technical Reports Server (NTRS)
Heeg, Jennifer; Miller, Jonathan M.; Doggett, Robert V., Jr.
1993-01-01
Dynamic response and damping data obtained from buffet studies conducted in a low-speed wind tunnel by using a simple, rigid model attached to spring supports are presented. The two parallel leaf spring supports provided a means for the model to respond in a vertical translation mode, thus simulating response in an elastic first bending mode. Wake-induced buffeting flow was created by placing an airfoil upstream of the model of that the wake of the airfoil impinged on the model. Model response was sensed by a strain gage mounted on one of the springs. The output signal from the strain gage was fed back through a control law implemented on a desktop computer. The processed signals were used to 'actuate' a piezoelectric bending actuator bonded to the other spring in such a way as to add damping as the model responded. The results of this 'proof-of-concept' study show that the piezoelectric actuator was effective in attenuating the wake-induced buffet response over the range of parameters investigated.
Impacting load control of floating supported friction plate and its experimental verification
NASA Astrophysics Data System (ADS)
Ning, Keyan; Wang, Yu; Huang, Dingchuan; Yin, Lei
2017-05-01
Friction plates are key components in automobile transmission system. Unfortunately, due to the tough working condition i.e. high impact, high temperature, fracture and plastic deformation are easily observed in friction plates. In order to reduce the impact load and increase the impact resistance and life span of the friction plate. This paper presents a variable damping design method and structure, by punching holes in the key position of the friction plate and filling it with damping materials, the impact load of the floating support friction plate can be controlled. Simulation is applied to study the effect of the position and number of damping holes on tooth root stress. Furthermore, physic test was designed and conducted to validate the correctness and effectiveness of the proposed method. Test result shows that the impact load of the new structure is reduced by 40% and its fatigue life is 4.7 times larger. The new structure provides a new way for floating supported friction plates design.
Lei, Youming; Zheng, Fan
2016-12-01
Stochastic chaos induced by diffusion processes, with identical spectral density but different probability density functions (PDFs), is investigated in selected lightly damped Hamiltonian systems. The threshold amplitude of diffusion processes for the onset of chaos is derived by using the stochastic Melnikov method together with a mean-square criterion. Two quasi-Hamiltonian systems, namely, a damped single pendulum and damped Duffing oscillator perturbed by stochastic excitations, are used as illustrative examples. Four different cases of stochastic processes are taking as the driving excitations. It is shown that in such two systems the spectral density of diffusion processes completely determines the threshold amplitude for chaos, regardless of the shape of their PDFs, Gaussian or otherwise. Furthermore, the mean top Lyapunov exponent is employed to verify analytical results. The results obtained by numerical simulations are in accordance with the analytical results. This demonstrates that the stochastic Melnikov method is effective in predicting the onset of chaos in the quasi-Hamiltonian systems.
Time-domain damping models in structural acoustics using digital filtering
NASA Astrophysics Data System (ADS)
Parret-Fréaud, Augustin; Cotté, Benjamin; Chaigne, Antoine
2016-02-01
This paper describes a new approach in order to formulate well-posed time-domain damping models able to represent various frequency domain profiles of damping properties. The novelty of this approach is to represent the behavior law of a given material directly in a discrete-time framework as a digital filter, which is synthesized for each material from a discrete set of frequency-domain data such as complex modulus through an optimization process. A key point is the addition of specific constraints to this process in order to guarantee stability, causality and verification of thermodynamics second law when transposing the resulting discrete-time behavior law into the time domain. Thus, this method offers a framework which is particularly suitable for time-domain simulations in structural dynamics and acoustics for a wide range of materials (polymers, wood, foam, etc.), allowing to control and even reduce the distortion effects induced by time-discretization schemes on the frequency response of continuous-time behavior laws.
Modelling redshift space distortion in the post-reionization H I 21-cm power spectrum
NASA Astrophysics Data System (ADS)
Sarkar, Debanjan; Bharadwaj, Somnath
2018-05-01
The post-reionization H I 21-cm signal is an excellent candidate for precision cosmology, this however requires accurate modelling of the expected signal. Sarkar et al. have simulated the real space H I 21-cm signal and have modelled the H I power spectrum as P_{{H I}}(k)=b^2 P(k), where P(k) is the dark matter power spectrum and b(k) is a (possibly complex) scale-dependent bias for which fitting formulas have been provided. This paper extends these simulations to incorporate redshift space distortion and predicts the expected redshift space H I 21-cm power spectrum P^s_{{H I}}(k_{\\perp },k_{allel }) using two different prescriptions for the H I distributions and peculiar velocities. We model P^s_{{H I}}(k_{\\perp },k_{allel }), assuming that it is the product of P_{{H I}}(k)=b^2 P(k) with a Kaiser enhancement term and a Finger of God (FoG) damping which has σp the pair velocity dispersion as a free parameter. Considering several possibilities for the bias and the damping profile, we find that the models with a scale-dependent bias and a Lorentzian damping profile best fit the simulated P^s_{{H I}}(k_{\\perp },k_{allel }) over the entire range 1 ≤ z ≤ 6. The best-fitting value of σp falls approximately as (1 + z)-m with m = 2 and 1.2, respectively, for the two different prescriptions. The model predictions are consistent with the simulations for k < 0.3 Mpc-1 over the entire z range for the monopole P^s_0(k), and at z ≤ 3 for the quadrupole P^s_2(k). At z ≥ 4 the models underpredict P^s_2(k) at large k, and the fit is restricted to k < 0.15 Mpc-1.
Using coronal seismology to estimate the magnetic field strength in a realistic coronal model
NASA Astrophysics Data System (ADS)
Chen, F.; Peter, H.
2015-09-01
Aims: Coronal seismology is used extensively to estimate properties of the corona, e.g. the coronal magnetic field strength is derived from oscillations observed in coronal loops. We present a three-dimensional coronal simulation, including a realistic energy balance in which we observe oscillations of a loop in synthesised coronal emission. We use these results to test the inversions based on coronal seismology. Methods: From the simulation of the corona above an active region, we synthesise extreme ultraviolet emission from the model corona. From this, we derive maps of line intensity and Doppler shift providing synthetic data in the same format as obtained from observations. We fit the (Doppler) oscillation of the loop in the same fashion as done for observations to derive the oscillation period and damping time. Results: The loop oscillation seen in our model is similar to imaging and spectroscopic observations of the Sun. The velocity disturbance of the kink oscillation shows an oscillation period of 52.5 s and a damping time of 125 s, which are both consistent with the ranges of periods and damping times found in observations. Using standard coronal seismology techniques, we find an average magnetic field strength of Bkink = 79 G for our loop in the simulation, while in the loop the field strength drops from roughly 300 G at the coronal base to 50 G at the apex. Using the data from our simulation, we can infer what the average magnetic field derived from coronal seismology actually means. It is close to the magnetic field strength in a constant cross-section flux tube, which would give the same wave travel time through the loop. Conclusions: Our model produced a realistic looking loop-dominated corona, and provides realistic information on the oscillation properties that can be used to calibrate and better understand the result from coronal seismology. A movie associated with Fig. 1 is available in electronic form at http://www.aanda.org
KINETIC SIMULATION OF SLOW MAGNETOSONIC WAVES AND QUASI-PERIODIC UPFLOWS IN THE SOLAR CORONA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruan, Wenzhi; He, Jiansen; Tu, Chuanyi
Quasi-periodic disturbances of emission-line parameters are frequently observed in the corona. These disturbances propagate upward along the magnetic field with speeds of ∼100 km s{sup −1}. This phenomenon has been interpreted as evidence of the propagation of slow magnetosonic waves or has been argued to be a signature of intermittent outflows superposed on the background plasmas. Here we aim to present a new “wave + flow” model to interpret these observations. In our scenario, the oscillatory motion is a slow-mode wave, and the flow is associated with a beam created by the wave–particle interaction owing to Landau resonance. With themore » help of a kinetic model, we simulate the propagation of slow-mode waves and the generation of beam flows. We find that weak periodic beam flows can be generated by to Landau resonance in the solar corona, and the phase with the strongest blueward asymmetry is ahead of that with the strongest blueshift by about 1/4 period. We also find that the slow wave damps to the level of 1/ e after the transit time of two wave periods, owing to Landau damping and Coulomb collisions in our simulation. This damping timescale is similar to that resulting from thermal conduction in the MHD regime. The beam flow is weakened/attenuated with increasing wave period and decreasing wave amplitude since Coulomb collisions become more and more dominant over the wave action. We suggest that this “wave + flow” kinetic model provides an alternative explanation for the observed quasi-periodic propagating perturbations in various parameters in the solar corona.« less
NASA Astrophysics Data System (ADS)
Williams, James; Tremblay, L. Bruno; Lemieux, Jean-François
2017-07-01
The plastic wave speed is derived from the linearized 1-D version of the widely used viscous-plastic (VP) and elastic-viscous-plastic (EVP) sea-ice models. Courant-Friedrichs-Lewy (CFL) conditions are derived using the propagation speed of the wave. 1-D numerical experiments of the VP, EVP and EVP* models successfully recreate a reference solution when the CFL conditions are satisfied, in agreement with the theory presented. The IMplicit-EXplicit (IMEX) method is shown to effectively alleviate the plastic wave CFL constraint on the timestep in the implicitly solved VP model in both 1-D and 2-D. In 2-D, the EVP and EVP* models show first order error in the simulated velocity field when the plastic wave is not resolved. EVP simulations are performed with various advective timestep, number of subcycles, and elastic-wave damping timescales. It is found that increasing the number of subcycles beyond that needed to resolve the elastic wave does not improve the quality of the solution. It is found that reducing the elastic wave damping timescale reduces the spatial extent of first order errors cause by the unresolved plastic wave. Reducing the advective timestep so that the plastic wave is resolved also reduces the velocity error in terms of magnitude and spatial extent. However, the parameter set required for convergence to within the error bars of satellite (RGPS) deformation fields is impractical for use in climate model simulations. The behavior of the EVP* method is analogous to that of the EVP method except that it is not possible to reduce the damping timescale with α = β.
Analysis of Handling Qualities Design Criteria for Active Inceptor Force-Feel Characteristics
NASA Technical Reports Server (NTRS)
Malpica, Carlos A.; Lusardi, Jeff A.
2013-01-01
The force-feel system characteristics of the cyclic inceptors of most helicopters are set based on the characteristics of the mechanical components in the control system (mass, springs, friction dampers, etc.). For these helicopters, the force-feel characteristics typically remain constant over the entire flight envelope, with perhaps a trim release to minimize control forces while maneuvering. With the advent of fly-by-wire control systems and active inceptors in helicopters, the force-feel characteristics are now determined by the closed-loop response of the active inceptor itself as defined by the inertia, force/displacement gradient, damping, breakout force and detent shape configuration parameters in the inceptor control laws. These systems give the flexibility to dynamically prescribe different feel characteristics for different control modes or flight conditions, and the ability to provide tactile cueing to the pilot through the actively controlled side-stick or center-stick cyclic inceptor. For rotorcraft, a few studies have been conducted to assess the effects of cyclic force-feel characteristics on handling qualities in flight. An early study provided valuable insight into the static force-deflection characteristics (force gradient) and the number of axes controlled by the side-stick controller for the U.S. Army's Advanced Digital/Optical Control System (ADOCS) demonstrator aircraft [1]. The first of a series of studies providing insight on the inceptor dynamic force-feel characteristics was conducted on the NASA/Army CH-47B variable-stability helicopter [2]. This work led to a proposed requirement that set boundaries based on the cyclic natural frequency and inertia, with the stipulation of a lower damping ratio limit of 0.3 [3]. A second study was conducted by the Canadian Institute for Aerospace Research using their variable-stability Bell 205A helicopter [4]. This research suggested boundaries for stick dynamics based on natural frequency and damping ratio. While these two studies produced boundaries for acceptable/unacceptable stick dynamics for rotorcraft, they were not able to provide guidance on how variations of the stick dynamics in the acceptable region impact handling qualities. More recently, a ground based simulation study [5] suggested little benefit was to be obtained from variations of the damping ratio for a side-stick controller exhibiting high natural frequencies (greater than 17 rad/s) and damping ratios (greater than 2.0). A flight test campaign was conducted concurrently on the RASCAL JUH-60A in-flight simulator and the ACT/FHS EC-135 in flight simulator [6]. Upon detailed analysis of the pilot evaluations the study identified a clear preference for a high damping ratio and natural frequency of the center stick inceptors. Side stick controllers were found to be less sensitive to the damping. While these studies have compiled a substantial amount of data, in the form of qualitative and quantitative pilot opinion, a fundamental analysis of the effect of the inceptor force-feel system on flight control is found to be lacking. The study of Ref. [6] specifically concluded that a systematic analysis was necessary, since discrepancies with the assigned handling qualities showed that proposed analytical design metrics, or criteria, were not suitable. The overall goal of the present study is to develop a clearer fundamental understanding of the underlying mechanisms associated with the inceptor dynamics that govern the handling qualities using a manageable analytical methodology.
The Frequency-dependent Damping of Slow Magnetoacoustic Waves in a Sunspot Umbral Atmosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prasad, S. Krishna; Jess, D. B.; Doorsselaere, T. Van
High spatial and temporal resolution images of a sunspot, obtained simultaneously in multiple optical and UV wavelengths, are employed to study the propagation and damping characteristics of slow magnetoacoustic waves up to transition region heights. Power spectra are generated from intensity oscillations in sunspot umbra, across multiple atmospheric heights, for frequencies up to a few hundred mHz. It is observed that the power spectra display a power-law dependence over the entire frequency range, with a significant enhancement around 5.5 mHz found for the chromospheric channels. The phase difference spectra reveal a cutoff frequency near 3 mHz, up to which themore » oscillations are evanescent, while those with higher frequencies propagate upward. The power-law index appears to increase with atmospheric height. Also, shorter damping lengths are observed for oscillations with higher frequencies suggesting frequency-dependent damping. Using the relative amplitudes of the 5.5 mHz (3 minute) oscillations, we estimate the energy flux at different heights, which seems to decay gradually from the photosphere, in agreement with recent numerical simulations. Furthermore, a comparison of power spectra across the umbral radius highlights an enhancement of high-frequency waves near the umbral center, which does not seem to be related to magnetic field inclination angle effects.« less
NASA Technical Reports Server (NTRS)
Beatty, R. F.; Hine, M. J.
1986-01-01
The high pressure turbomachinery of the Space Shuttle Main Engine has the highest power-to-weight ratio of any operational machine known. Subsynchronous rotor whirl of the high pressure oxygen turbopump occurred in development testing at full-power level (109 percent thrust). The means by which the turbopump was successfully uprated is presented herein. The subsynchronous motion was determined to be driven by impeller destabilizing forces in combination with low net damping and bearing degradation. The degradation resulted from ball wear due primarily to an excessive loading condition of operating too near the lightly damped rotor second critical speed while under a large static load and, secondarily, from reverse bearing loading or loss of internal clearance and coolant during simulated flight conditions. The rotor response was reduced by stiffening the shaft and supports, optimizing the stiffness and damping of annular seals, and increasing the bearing deadband. The uprated oxygen turbopump configuration was verified by converting the pump and bearing support into a load cell for the purpose of systematically quantifying the load reduction benefits relative to baseline turbopumps. The damped second critical speed margin and the load sharing have been substantially improved which has resulted in reduced bearing loads for improved service life of the machine at full-power level.
Magnetic Susceptibility Effects and Lorentz Damping in Diamagnetic Fluids
NASA Technical Reports Server (NTRS)
Ramachandran, Narayanan; Leslie, Fred W.
2000-01-01
A great number of crystals (semi-conductor and protein) grown in space are plagued by convective motions which contribute to structural flaws. The character of these instabilities is not well understood but is associated with density variations in the presence of residual gravity and g-jitter. Both static and dynamic (rotating or travelling wave) magnetic fields can be used to reduce the effects of convection in materials processing. In semi-conductor melts, due to their relatively high electrical conductivity, the induced Lorentz force can be effectively used to curtail convective effects. In melts/solutions with reduced electrical conductivity, such as aqueous solutions used in solution crystal growth, protein crystal growth and/or model fluid experiments for simulating melt growth, however, the variation of the magnetic susceptibility with temperature and/or concentration can be utilized to better damp fluid convection than the Lorentz force method. This paper presents a comprehensive, comparative numerical study of the relative damping effects using static magnetic fields and gradients in a simple geometry subjected to a thermal gradient. The governing equations are formulated in general terms and then simplified for the numerical calculations. Operational regimes, based on the best damping technique for different melts/solutions are identified based on fluid properties. Comparisons are provided between the numerical results and available results from experiments in surveyed literature.
Damping of collective modes and the echo effect in a confined Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Kuklov, A. B.; Chencinski, N.
1998-04-01
We discuss the reversible nature of two mechanisms of the apparent damping of the collective modes of a confined Bose-Einstein condensate -- Landau Damping (LD) and a dephasing caused by thermal fluctuations of the normal component. The reversibility of the damping in both cases can be tested by the echo effect, when two consecutive external pulses modulate the potential trapping the condensate and induce a third pulse -- the echo -- at the time approximately equal to twice the time interval between the first two pulses. This effect is similar to the phonon echo in powders (Koji Kajimura in Physical Acoustics), ed. W.P. Mason, V.XVI, Academic Press, NY, Toronto 1982.. Parameters of the echo for the isotropic condensate are calculated analytically in the adiabatic approximation for the case of the small external pulses. Numerical simulations for the arbitrary pulses are also presented. The echo in an anisotropic condensate, where the adaibatic approximation is not valid because of the LD, is described in terms of the model of a single oscillator interacting with a quasi-continuum of modes which constitutes the normal component. In both cases in the weak echo limit the echo amplitude turns out to be proportional to the amplitudes of the external pulses. We suggest to test these predictions experimentally.
ERIC Educational Resources Information Center
Gluck, P.; Krakower, Zeev
2010-01-01
We present a unit comprising theory, simulation and experiment for a body oscillating on a vertical spring, in which the simultaneous use of a force probe and an ultrasonic range finder enables one to explore quantitatively and understand many aspects of simple and damped harmonic motions. (Contains 14 figures.)
Martínez-Gonzáles, N E; Martínez-Chávez, L; Cabrera-Díaz, E; Martínez-Cárdenas, C; Gutiérrez-González, P; Castillo, A
2016-05-01
Polymyxin Ceftazidime Oxford Medium (PCOM), a novel selective and differential plating medium for Listeria monocytogenes was compared with Modified Oxford Agar (MOX) for efficacy to isolate L. monocytogenes and other Listeria spp. naturally present in non-pasteurized Mexican-style cheese (n = 50), non-pasteurized fresh squeezed orange juice (n = 50), raw beef chunks (n = 36), and fresh cabbage (n = 125). Samples were collected from retail markets and farms in Mexico and tested following the US Department of Agriculture enrichment technique. Listeria spp. were isolated from 23.4% of analyzed samples, and from those, 75.0% corresponded to raw beef chunks, 38.0% to non-pasteurized Mexican-style cheese, and 30.0% to fresh squeezed orange juice. No Listeria spp. were isolated from fresh cabbage samples. L. monocytogenes was recovered from 15.3% of food samples analyzed. Non-pasteurized Mexican-style cheese showed the highest proportion of L. monocytogenes positive samples (36.0%), followed by orange juice (26.0%) and raw beef (25.0%). The frequency of isolation of Listeria spp. and L. monocytogenes was not different (P > 0.05) between PCOM and MOX. The advantages of using PCOM when comparing to MOX, include the easier way to identify Listeria species, the lower cost per plate and the availability of its ingredients for Latin-American countries. Copyright © 2015 Elsevier Ltd. All rights reserved.
Vargas-Duarte, J. J.; Lozano-Márquez, H.; Grajales-Lombana, H. A.; Manrique-Perdomo, C.; Martínez-Bello, D. A.; Saegerman, C.; Raes, M.; Kirschvink, N.
2015-01-01
This study tested the impact of moxidectin at peripartum on nematode fecal egg count (FEC) and clinical parameters on ewes in the high altitude tropical Andes of Colombia. FEC and clinical evaluations were performed on 9 occasions in 43 naturally infected ewes before and during gestation and after lambing. Moxidectin (Mox, 200 µg kg−1) was applied at late pregnancy (T 1, n = 15) or 48 hours after parturition (T 2, n = 14). 14 untreated ewes served as controls (C). Suckling lambs (n = 58) remained untreated and underwent four clinical and parasitological evaluations until 8 weeks after birth. Mox efficacy equaled 99.3% (T 1) and 96.9% (T 2). Highest mean FEC value reflecting periparturient nematode egg rise (PPER) was recorded in C ewes at 4–6 weeks after lambing. Significant FEC reductions were found in T 1 (94.8%) and T 2 (96.7%) ewes (p < 0.05). All lambs showed a significant and ewes-group independent increase in FEC before weaning (p < 0.05). Clinical parameters (anemia and diarrhea) showed time- and treatment-related differences (p < 0.05). Monitoring of FEC and clinical parameters linked to gastrointestinal parasite infections allowed demonstrating that postpartum or preweaning are two critical periods to nematode infection for sheep raised under tropical Andes high altitude conditions. Use of Mox as anthelmintic treatment prevented PPER. PMID:26078913
Strength Loss in MA-MOX Green Pellets from Radiation Damage to Binders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul A. Lessing; W.R. Cannon; Gerald W. Egeland
The fracture strength of green Minor Actinides (MA)-MOX pellets containing 75 wt.% DUO2, 20 wt. % PuO2, 3 wt. % AmO2 and 2 wt. % NpO2 was studied as a function of storage time, after mixing in the binder and before sintering, to test the effect of radiation damage on binders. Fracture strength degraded continuously over the 10 days of the study for all three binders studied: PEG binder (Carbowax 8000), microcrystalline wax (Mobilcer X) and Styrene-acrylic copolymer (Duramax B1022) but the fracture strength of Duramax B1022 degraded the least. For instance, for several hours after mixing Carbowax 8000 withmore » MA MOX, the fracture strength of a pellet was reasonably high and pellets were easily handled without breaking but the pellets were too weak to handle after 10 days. Strength measured using diametral compression test showed strength degradation was more rapid in pellets containing 1.0 wt. % Carbowax PEG 8000 compared to those containing only 0.2 wt. %, suggesting that irradiation not only left the binder less effective but also reduced the pellet strength. In contrast the strength of pellets containing Duramax B1022 degraded very little over the 10 day period. It was suggested that the styrene portion of the Duramax B1022 copolymer provided the radiation resistance.« less
Mixed Oxide Fresh Fuel Package Auxiliary Equipment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yapuncich, F.; Ross, A.; Clark, R.H.
2008-07-01
The United States Department of Energy's National Nuclear Security Administration (NNSA) is overseeing the construction the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF) on the Savannah River Site. The new facility, being constructed by NNSA's contractor Shaw AREVA MOX Services, will fabricate fuel assemblies utilizing surplus plutonium as feedstock. The fuel will be used in designated commercial nuclear reactors. The MOX Fresh Fuel Package (MFFP), which has recently been licensed by the Nuclear Regulatory Commission (NRC) as a type B package (USA/9295/B(U)F-96), will be utilized to transport the fabricated fuel assemblies from the MFFF to the nuclear reactors. It wasmore » necessary to develop auxiliary equipment that would be able to efficiently handle the high precision fuel assemblies. Also, the physical constraints of the MFFF and the nuclear power plants require that the equipment be capable of loading and unloading the fuel assemblies both vertically and horizontally. The ability to reconfigure the load/unload evolution builds in a large degree of flexibility for the MFFP for the handling of many types of both fuel and non fuel payloads. The design and analysis met various technical specifications including dynamic and static seismic criteria. The fabrication was completed by three major fabrication facilities within the United States. The testing was conducted by Sandia National Laboratories. The unique design specifications and successful testing sequences will be discussed. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ricco, A.J.; Butler, M.A.; Grunthaner, F.J.
The authors have designed and built the prototype of an instrument that will use fiber optic micromirror-based chemical sensors to investigate the surprising reactivity of martian soil reported by several Viking Lander Experiments in the mid 1970s. The MOx (Mars Oxidant Experiment) Instrument, which will probe the reactivity of the near-surface martian atmosphere as well as soil, utilizes an array of chemically sensitive thin films including metals, organometallics, and organic dyes to produce a pattern of reflectivity changes characteristic of the species interacting with these sensing layers. The 850-g system includes LED light sources, optical fiber light guides, silicon micromachinedmore » fixtures, a line-array CCD detector, control-and-measurement electronics, microprocessor, memory, interface, batteries, and housing. This instrument monitors real-time reflectivities from an array of {approximately}200 separate micromirrors. The unmanned Russian Mars 96 mission is slated to carry the MOx Instrument along with experiments from several other nations. The principles of the chemically sensitive micromirror upon which this instrument is based will be described and preliminary data for reactions of micromirrors with oxidant materials believed to be similar to those on Mars will be presented. The general design of the instrument, including Si micromachined components, as well as the range of coatings and the rationale for their selection, will be discussed as well.« less
Environment-based pin-power reconstruction method for homogeneous core calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leroyer, H.; Brosselard, C.; Girardi, E.
2012-07-01
Core calculation schemes are usually based on a classical two-step approach associated with assembly and core calculations. During the first step, infinite lattice assemblies calculations relying on a fundamental mode approach are used to generate cross-sections libraries for PWRs core calculations. This fundamental mode hypothesis may be questioned when dealing with loading patterns involving several types of assemblies (UOX, MOX), burnable poisons, control rods and burn-up gradients. This paper proposes a calculation method able to take into account the heterogeneous environment of the assemblies when using homogeneous core calculations and an appropriate pin-power reconstruction. This methodology is applied to MOXmore » assemblies, computed within an environment of UOX assemblies. The new environment-based pin-power reconstruction is then used on various clusters of 3x3 assemblies showing burn-up gradients and UOX/MOX interfaces, and compared to reference calculations performed with APOLLO-2. The results show that UOX/MOX interfaces are much better calculated with the environment-based calculation scheme when compared to the usual pin-power reconstruction method. The power peak is always better located and calculated with the environment-based pin-power reconstruction method on every cluster configuration studied. This study shows that taking into account the environment in transport calculations can significantly improve the pin-power reconstruction so far as it is consistent with the core loading pattern. (authors)« less
Impact of Reprocessed Uranium Management on the Homogeneous Recycling of Transuranics in PWRs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Youinou, Gilles J.
This article presents the results of a neutronics analysis related to the homogeneous recycling of transuranics (TRU) in PWRs with a MOX fuel using enriched uranium instead of depleted uranium. It also addresses an often, if not always, overlooked aspect related to the recycling of TRU in PWRs, namely the use of reprocessed uranium. From a neutronics point of view, it is possible to multi-recycle the entirety of the plutonium with or without neptunium and americium in a PWR fleet using MOX-EU fuel in between one third and two thirds of the fleet. Recycling neptunium and americium with plutonium significantlymore » decreases the decay heat of the waste stream between 100 to 1,000 years compared to those of an open fuel cycle or when only plutonium is recycled. The uranium present in MOX-EU used fuel still contains a significant amount of 235uranium and recycling it makes a major difference on the natural uranium needs. For example, a PWR fleet recycling its plutonium, neptunium and americium in MOXEU needs 28 percent more natural uranium than a reference UO 2 open cycle fleet generating the same energy if the reprocessed uranium is not recycled and 19 percent less if the reprocessed uranium is recycled back in the reactors, i.e. a 47 percent difference.« less
Impact of Reprocessed Uranium Management on the Homogeneous Recycling of Transuranics in PWRs
Youinou, Gilles J.
2017-05-04
This article presents the results of a neutronics analysis related to the homogeneous recycling of transuranics (TRU) in PWRs with a MOX fuel using enriched uranium instead of depleted uranium. It also addresses an often, if not always, overlooked aspect related to the recycling of TRU in PWRs, namely the use of reprocessed uranium. From a neutronics point of view, it is possible to multi-recycle the entirety of the plutonium with or without neptunium and americium in a PWR fleet using MOX-EU fuel in between one third and two thirds of the fleet. Recycling neptunium and americium with plutonium significantlymore » decreases the decay heat of the waste stream between 100 to 1,000 years compared to those of an open fuel cycle or when only plutonium is recycled. The uranium present in MOX-EU used fuel still contains a significant amount of 235uranium and recycling it makes a major difference on the natural uranium needs. For example, a PWR fleet recycling its plutonium, neptunium and americium in MOXEU needs 28 percent more natural uranium than a reference UO 2 open cycle fleet generating the same energy if the reprocessed uranium is not recycled and 19 percent less if the reprocessed uranium is recycled back in the reactors, i.e. a 47 percent difference.« less
NASA Technical Reports Server (NTRS)
Stephens, Craig A.; Crawford, Michael E.
1990-01-01
Assessments were made of the simulation capabilities of transition models developed at the University of Minnesota, as applied to the Launder-Sharma and Lam-Bremhorst two-equation turbulence models, and at The University of Texas at Austin, as applied to the K. Y. Chien two-equation turbulence model. A major shortcoming in the use of the basic K. Y. Chien turbulence model for low-Reynolds number flows was identified. The problem with the Chien model involved premature start of natural transition and a damped response as the simulation moved to fully turbulent flow at the end of transition. This is in contrast to the other two-equation turbulence models at comparable freestream turbulence conditions. The damping of the transition response of the Chien turbulence model leads to an inaccurate estimate of the start and end of transition for freestream turbulence levels greater than 1.0 percent and to difficulty in calculating proper model constants for the transition model.
Active vibration absorber for CSI evolutionary model: Design and experimental results
NASA Technical Reports Server (NTRS)
Bruner, Anne M.; Belvin, W. Keith; Horta, Lucas G.; Juang, Jer-Nan
1991-01-01
The development of control of large flexible structures technology must include practical demonstration to aid in the understanding and characterization of controlled structures in space. To support this effort, a testbed facility was developed to study practical implementation of new control technologies under realistic conditions. The design is discussed of a second order, acceleration feedback controller which acts as an active vibration absorber. This controller provides guaranteed stability margins for collocated sensor/actuator pairs in the absence of sensor/actuator dynamics and computational time delay. The primary performance objective considered is damping augmentation of the first nine structural modes. Comparison of experimental and predicted closed loop damping is presented, including test and simulation time histories for open and closed loop cases. Although the simulation and test results are not in full agreement, robustness of this design under model uncertainty is demonstrated. The basic advantage of this second order controller design is that the stability of the controller is model independent.
Relaxation of ferroelectric states in 2D distributions of quantum dots: EELS simulation
NASA Astrophysics Data System (ADS)
Cortés, C. M.; Meza-Montes, L.; Moctezuma, R. E.; Carrillo, J. L.
2016-06-01
The relaxation time of collective electronic states in a 2D distribution of quantum dots is investigated theoretically by simulating EELS experiments. From the numerical calculation of the probability of energy loss of an electron beam, traveling parallel to the distribution, it is possible to estimate the damping time of ferroelectric-like states. We generate this collective response of the distribution by introducing a mean field interaction among the quantum dots, and then, the model is extended incorporating effects of long-range correlations through a Bragg-Williams approximation. The behavior of the dielectric function, the energy loss function, and the relaxation time of ferroelectric-like states is then investigated as a function of the temperature of the distribution and the damping constant of the electronic states in the single quantum dots. The robustness of the trends and tendencies of our results indicate that this scheme of analysis can guide experimentalists to develop tailored quantum dots distributions for specific applications.
Time Frequency Analysis of Spacecraft Propellant Tank Spinning Slosh
NASA Technical Reports Server (NTRS)
Green, Steven T.; Burkey, Russell C.; Sudermann, James
2010-01-01
Many spacecraft are designed to spin about an axis along the flight path as a means of stabilizing the attitude of the spacecraft via gyroscopic stiffness. Because of the assembly requirements of the spacecraft and the launch vehicle, these spacecraft often spin about an axis corresponding to a minor moment of inertia. In such a case, any perturbation of the spin axis will cause sloshing motions in the liquid propellant tanks that will eventually dissipate enough kinetic energy to cause the spin axis nutation (wobble) to grow further. This spinning slosh and resultant nutation growth is a primary design problem of spinning spacecraft and one that is not easily solved by analysis or simulation only. Testing remains the surest way to address spacecraft nutation growth. This paper describes a test method and data analysis technique that reveal the resonant frequency and damping behavior of liquid motions in a spinning tank. Slosh resonant frequency and damping characteristics are necessary inputs to any accurate numerical dynamic simulation of the spacecraft.
NASA Astrophysics Data System (ADS)
Zhang, Cun-quan; Zhong, Cheng
2015-03-01
The concept of a new type of pneumatically-driven split-Stirling-cycle cryocooler with clearance-phase-adjustor is proposed. In this implementation, the gap between the phase-adjusting part and the cylinder of the spring chamber is used, instead of dry friction acting on the pneumatically-driven rod to control motion damping of the displacer and to adjust the phase difference between the compression piston and displacer. It has the advantages of easy damping adjustment, low cost, and simplified manufacturing and assembly. A theoretical model has been established to simulate its dynamic performance. The linear compressor is modeled under adiabatic conditions, and the displacement of the compression piston is experimentally rectified. The working characteristics of the compressor motor and the principal losses of cooling, including regenerator inefficiency loss, solid conduction loss, shuttle loss, pump loss and radiation loss, are taken into account. The displacer motion was modeled as a single-degree-of-freedom (SDOF) forced system. A set of governing equations can be solved numerically to simulate the cooler's performance. The simulation is useful for understanding the physical processes occurring in the cooler and for predicting the cooler's performance.
NASA Technical Reports Server (NTRS)
Decker, William A.; Morris, Patrick M.; Williams, Jeffrey N.
1988-01-01
A piloted, fixed-base simulation study was conducted to investigate the handling qualities requirements for helicopter air-to-air combat using turreted guns in the near-terrain environment. The study used a version of the helicopter air combat system developed at NASA Ames Research Center for one-on-one air combat. The study focused on the potential trade-off between gun angular movement capability and required yaw axis response. Experimental variables included yaw axis response frequency and damping and the size of the gun-movement envelope. A helmet position and sighting system was used for pilot control of gun aim. Approximately 340 simulated air combat engagements were evaluated by pilots from the Army and industry. Results from the experiment indicate that a highly-damped, high frequency yaw response was desired for Level I handling qualities. Pilot preference for those characteristics became more pronounced as gun turret movement was restricted; however, a stable, slow-reacting platform could be used with a large turret envelope. Most pilots preferred to engage with the opponent near the own-ship centerline. Turret elevation restriction affected the engagement more than azimuth restrictions.
NASA Astrophysics Data System (ADS)
Oerder, V.; Colas, F.; Echevin, V.; Masson, S.; Lemarié, F.
2018-02-01
The ocean dynamical responses to the surface current-wind stress interaction at the oceanic mesoscale are investigated in the South-East Pacific using a high-resolution regional ocean-atmosphere coupled model. Two simulations are compared: one includes the surface current in the wind stress computation while the other does not. In the coastal region, absolute wind velocities are different between the two simulations but the wind stress remains very similar. As a consequence, the mean regional oceanic circulation is almost unchanged. On the contrary, the mesoscale activity is strongly reduced when taking into account the effect of the surface current on the wind stress. This is caused by a weakening of the eddy kinetic energy generation near the coast by the wind work and to intensified offshore eddy damping. We show that, above coherent eddies, the current-stress interaction generates eddy damping through Ekman pumping and eddy kinetic energy dissipation through wind work. This alters significantly the coherent eddy vertical structures compared with the control simulation, weakening the temperature and vorticity anomalies and increasing strongly the vertical velocity anomalies associated to eddies.
NASA Technical Reports Server (NTRS)
Stringer, Mary T.; Cowen, Brandon; Hoffler, Keith D.; Couch, Jesse C.; Ogburn, Marilyn E.; Diebler, Corey G.
2013-01-01
The NASA Langley Research Center Cockpit Motion Facility (CMF) was used to conduct a piloted simulation assessment of the impact of flexible structures on flying qualities. The CMF was used because of its relatively high bandwidth, six degree-of-freedom motion capability. Previous studies assessed and attempted to mitigate the effects of multiple dynamic aeroservoelastic modes (DASE). Those results indicated problems existed, but the specific cause and effect was difficult to ascertain. The goal of this study was to identify specific DASE frequencies, damping ratios, and gains that cause degradation in handling qualities. A generic aircraft simulation was developed and designed to have Cooper-Harper Level 1 handling qualities when flown without DASE models. A test matrix of thirty-six DASE modes was implemented. The modes had frequencies ranging from 1 to 3.5 Hz and were applied to each axis independently. Each mode consisted of a single axis, frequency, damping, and gain, and was evaluated individually by six subject pilots with test pilot backgrounds. Analysis completed to date suggests that a number of the DASE models evaluated degrade the handling qualities of this class of aircraft to an uncontrollable condition.
Non-Linear Signal Detection Improvement by Radiation Damping in Single-Pulse NMR Spectra
Schlagnitweit, Judith; Morgan, Steven W; Nausner, Martin; Müller, Norbert; Desvaux, Hervé
2012-01-01
When NMR lines overlap and at least one of them is affected by radiation damping, the resonance line shapes of all lines are no longer Lorentzian. We report the appearance of narrow signal distortions, which resemble hole-burnt spectra. This new experimental phenomenon facilitates the detection of tiny signals hidden below the main resonance. Theoretical analysis based on modified Maxwell–Bloch equations shows that the presence of strong transverse magnetization creates a feedback through the coil, which influences the magnetization of all spins with overlapping resonance lines. In the time domain this leads to cross-precession terms between magnetization densities, which ultimately cause non-linear behavior. Numerical simulations corroborate this interpretation. PMID:22266720
Effect of collisions on amplification of laser beams by Brillouin scattering in plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humphrey, K. A.; Speirs, D. C.; Trines, R. M. G. M.
2013-10-15
We report on particle in cell simulations of energy transfer between a laser pump beam and a counter-propagating seed beam using the Brillouin scattering process in uniform plasma including collisions. The results presented show that the ion acoustic waves excited through naturally occurring Brillouin scattering of the pump field are preferentially damped without affecting the driven Brillouin scattering process resulting from the beating of the pump and seed fields together. We find that collisions, including the effects of Landau damping, allow for a more efficient transfer of energy between the laser beams, and a significant reduction in the amount ofmore » seed pre-pulse produced.« less
Influence of tantalum underlayer on magnetization dynamics in Ni{sub 81}Fe{sub 19} films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, Jae Hyun; Deorani, Praveen; Yoon, Jungbum
2015-07-13
The effect of tantalum (Ta) underlayer is investigated in Ni{sub 81}Fe{sub 19} thin films for magnetization dynamics. The damping parameters extracted from spin wave measurements increase systematically with increasing Ta thickness, whereas the damping parameters from ferromagnetic resonance measurements are found to be weakly dependent on the Ta thickness. The difference is attributed to propagating properties of spin wave and short spin diffusion length in Ta. The group velocity of spin waves is found to be constant for different Ta thicknesses, and nonreciprocity of spin waves is not affected by the Ta thickness. The experimental observations are supported by micromagneticmore » simulations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, M.; Pinsker, R. I.; Chan, V. S.
2011-12-23
In recent moderate to high harmonic fast wave heating and current drive experiments in DIII-D, a synergy effect was observed when the 6{sup th} harmonic 90 MHz fast wave power is applied to the plasma preheated by neutral beams and the 4{sup th} harmonic 60 MHz fast wave. In this paper, we investigate how the synergy can occur using ORBIT-RF coupled with AORSA. Preliminary simulations suggest that damping of 4{sup th} harmonic FW on beam ions accelerates them above the injection energy, which may allow significant damping of 6{sup th} harmonic FW on beam ion tails to produce synergy.
Ponzoni, Andrea; Comini, Elisabetta; Concina, Isabella; Ferroni, Matteo; Falasconi, Matteo; Gobbi, Emanuela; Sberveglieri, Veronica; Sberveglieri, Giorgio
2012-01-01
In this work we report on metal oxide (MOX) based gas sensors, presenting the work done at the SENSOR laboratory of the CNR-IDASC and University of Brescia, Italy since the 80s up to the latest results achieved in recent times. In particular we report the strategies followed at SENSOR during these 30 years to increase the performance of MOX sensors through the development of different preparation techniques, from Rheotaxial Growth Thermal Oxidation (RGTO) to nanowire technology to address sensitivity and stability, and the development of electronic nose systems and pattern recognition techniques to address selectivity. We will show the obtained achievement in the context of selected applications such as safety and security and food quality control. PMID:23235445
A XAS study of the local environments of cations in (U, Ce)O 2
NASA Astrophysics Data System (ADS)
Martin, Philippe; Ripert, Michel; Petit, Thierry; Reich, Tobias; Hennig, Christoph; D'Acapito, Francesco; Hazemann, Jean Louis; Proux, Olivier
2003-01-01
Mixed oxide (MOX) fuel is usually considered as a solid solution formed by uranium and plutonium dioxides. Nevertheless, some physico-chemical properties of (U 1- y, Pu y)O 2 samples manufactured under industrial conditions showed anomalies in the domain of plutonium contents ranging between 3 and 15 at.%. Cerium is commonly used as an inactive analogue of plutonium in preliminary studies on MOX fuels. Extended X-ray Absorption Fine Structure (EXAFS) measurements performed at the European Synchrotron Radiation Facility (ESRF) at the cerium and uranium edges on (U 1- y, Ce y)O 2 samples are presented and discussed. They confirmed on an atomic scale the formation of an ideal solid solution for cerium concentrations ranging between 0 and 50 at.%.
Comparison of collision operators for the geodesic acoustic mode
NASA Astrophysics Data System (ADS)
Li, Yang; Gao, Zhe
2015-04-01
The collisional damping rate and real frequency of the geodesic acoustic mode (GAM) are solved from a drift kinetic model with different collision operators. As the ion collision rate increases, the damping rate increases at low collision rate but decays at high ion collision rate. Different collision operators do not change the overall trend but influence the magnitude of the damping rate. The collision damping is much overestimated with the number-conserving-only Krook operator; on the other hand, using the Lorentz operator with a constant collision rate, the damping is overestimated at low collision rate but underestimated at high collision rate. The results from the Krook operator with both number and energy conservation terms, the Lorentz operator with an energy-dependent collision rate and the full Hirshman-Sigmar-Clarke collision operator are very close. Meanwhile, as the ion collision rate increases, the GAM frequency decreases from the collisionless value, \\sqrt {7/4+τ} {vti}/R , to \\sqrt {1+τ} {vti}/R for the number-conserving-only Krook operator, but to \\sqrt {5/3+τ} {vti}/R for the other four operators, which conserve both number and energy, where τ, vti and R are the ratio of electron temperature to ion temperature, the ion thermal velocity and the major radius, respectively. The results imply that the property of energy conservation of the collision operator is important to the dynamics of the GAM as well as that of number conservation, which may provide guidance in choosing collision operators in further study of the zonal flow (ZF) dynamics, such as the nonlinear simulation of the ZF-turbulence system.
Resonant ultrasound spectroscopy for materials with high damping and samples of arbitrary geometry
Remillieux, Marcel C.; Ulrich, T. J.; Payan, Cédric; ...
2015-07-23
This paper describes resonant ultrasound spectroscopy (RUS) as a powerful and established technique for measuring elastic constants of a material with general anisotropy. The first step of this technique consists of extracting resonance frequencies and damping from the vibrational frequency spectrum measured on a sample with free boundary conditions. An inversion technique is then used to retrieve the elastic tensor from the measured resonance frequencies. As originally developed, RUS has been mostly applicable to (i) materials with small damping such that the resonances of the sample are well separated and (ii) samples with simple geometries for which analytical solutions exist.more » In this paper, these limitations are addressed with a new RUS approach adapted to materials with high damping and samples of arbitrary geometry. Resonances are extracted by fitting a sum of exponentially damped sinusoids to the measured frequency spectrum. The inversion of the elastic tensor is achieved with a genetic algorithm, which allows searching for a global minimum within a discrete and relatively wide solution space. First, the accuracy of the proposed approach is evaluated against numerical data simulated for samples with isotropic symmetry and transversely isotropic symmetry. Subsequently, the applicability of the approach is demonstrated using experimental data collected on a composite structure consisting of a cylindrical sample of Berea sandstone glued to a large piezoelectric disk. In the proposed experiments, RUS is further enhanced by the use of a 3-D laser vibrometer allowing the visualization of most of the modes in the frequency band studied.« less
Study on global performances and mooring-induced damping of a semi-submersible
NASA Astrophysics Data System (ADS)
Xiong, Ling-zhi; Yang, Jian-min; Lv, Hai-ning; Zhao, Wen-hua; Kou, Yu-feng
2016-10-01
The harsh environmental conditions bring strong nonlinearities to the hydrodynamic performances of the offshore floating platforms, which challenge the reliable prediction of the platform coupled with the mooring system. The present study investigates a typical semi-submersible under both the operational and the survival conditions through numerical and experimental methods. The motion responses, the mooring line tensions, and the wave loads on the longitudinal mid-section are investigated by both the fully non-linearly coupled numerical simulation and the physical experiment. Particularly, in the physical model test, the wave loads distributed on the semi-submersible's mid-section were measured by dividing the model into two parts, namely the port and the starboard parts, which were rigidly connected by three six-component force transducers. It is concluded that both the numerical and physical model can have good prediction of the semi-submersible's global responses. In addition, an improved numerical approach is proposed for the estimation of the mooring-induced damping, and is validated by both the experimental and the published results. The characteristics of the mooring-induced damping are further summarized in various sea states, including the operational and the survival environments. In order to obtain the better prediction of the system response in deep water, the mooring-induced damping of the truncated mooring lines applied in the physical experiment are compensated by comparing with those in full length. Furthermore, the upstream taut and the downstream slack mooring lines are classified and investigated to obtain the different mooring line damping performances in the comparative study.
ROSETTA lander Philae: Touch-down reconstruction
NASA Astrophysics Data System (ADS)
Roll, Reinhard; Witte, Lars
2016-06-01
The landing of the ROSETTA-mission lander Philae on November 12th 2014 on Comet 67 P/Churyumov-Gerasimenko was planned as a descent with passive landing and anchoring by harpoons at touch-down. Actually the lander was not fixed at touch-down to the ground due to failing harpoons. The lander internal damper was actuated at touch-down for 42.6 mm with a speed of 0.08 m/s while the lander touch-down speed was 1 m/s. The kinetic energy before touch-down was 50 J, 45 J were dissipated by the lander internal damper and by ground penetration at touch-down, and 5 J kinetic energy are left after touch-down (0.325 m/s speed). Most kinetic energy was dissipated by ground penetration (41 J) while only 4 J are dissipated by the lander internal damper. Based on these data, a value for a constant compressive soil-strength of between 1.55 kPa and 1.8 kPa is calculated. This paper focuses on the reconstruction of the touch-down at Agilkia over a period of around 20 s from first ground contact to lift-off again. After rebound Philae left a strange pattern on ground documented by the OSIRIS Narrow Angle Camera (NAC). The analysis shows, that the touch-down was not just a simple damped reflection on the surface. Instead the lander had repeated contacts with the surface over a period of about 20 s±10 s. This paper discusses scenarios for the reconstruction of the landing sequence based on the data available and on computer simulations. Simulations are performed with a dedicated mechanical multi-body model of the lander, which was validated previously in numerous ground tests. The SIMPACK simulation software was used, including the option to set forces at the feet to the ground. The outgoing velocity vector is mostly influenced by the timing of the ground contact of the different feet. It turns out that ground friction during damping has strong impact on the lander outgoing velocity, on its rotation, and on its nutation. After the end of damping, the attitude of the lander can be strongly changed by the additional ground contacts even with the flywheel still running inside the lander. The simulation shows that the outbound velocity vector and the lander rotation were formed immediately at touch-down during the first 1.5 s. The outbound velocity vector is found to be formed by the ground slope and the lander damping characteristic, especially the nearly horizontal flight out.
NASA Astrophysics Data System (ADS)
Juhász, Imre Benedek; Csurgay, Árpád I.
2018-04-01
In recent years, the role of molecular vibrations in exciton energy transfer taking place during the first stage of photosynthesis attracted increasing interest. Here, we present a model formulated as a Lindblad-type master equation that enables us to investigate the impact of undamped and especially damped intramolecular vibrational modes on the exciton energy transfer, particularly its efficiency. Our simulations confirm the already reported effects that the presence of an intramolecular vibrational mode can compensate the energy detuning of electronic states, thus promoting the energy transfer; and, moreover, that the damping of such a vibrational mode (in other words, vibrational relaxation) can further enhance the efficiency of the process by generating directionality in the energy flow. As a novel result, we show that this enhancement surpasses the one caused by pure dephasing, and we present its dependence on various system parameters (time constants of the environment-induced relaxation and excitation processes, detuning of the electronic energy levels, frequency of the intramolecular vibrational modes, Huang-Rhys factors, temperature) in dimer model systems. We demonstrate that vibrational-relaxation-enhanced exciton energy transfer (VREEET) is robust against the change of these characteristics of the system and occurs in wide ranges of the investigated parameters. With simulations performed on a heptamer model inspired by the Fenna-Matthews-Olson (FMO) complex, we show that this mechanism can be even more significant in larger systems at T = 300 K. Our results suggests that VREEET might be prevalent in light-harvesting complexes.
Zero-Point Energy Leakage in Quantum Thermal Bath Molecular Dynamics Simulations.
Brieuc, Fabien; Bronstein, Yael; Dammak, Hichem; Depondt, Philippe; Finocchi, Fabio; Hayoun, Marc
2016-12-13
The quantum thermal bath (QTB) has been presented as an alternative to path-integral-based methods to introduce nuclear quantum effects in molecular dynamics simulations. The method has proved to be efficient, yielding accurate results for various systems. However, the QTB method is prone to zero-point energy leakage (ZPEL) in highly anharmonic systems. This is a well-known problem in methods based on classical trajectories where part of the energy of the high-frequency modes is transferred to the low-frequency modes leading to a wrong energy distribution. In some cases, the ZPEL can have dramatic consequences on the properties of the system. Thus, we investigate the ZPEL by testing the QTB method on selected systems with increasing complexity in order to study the conditions and the parameters that influence the leakage. We also analyze the consequences of the ZPEL on the structural and vibrational properties of the system. We find that the leakage is particularly dependent on the damping coefficient and that increasing its value can reduce and, in some cases, completely remove the ZPEL. When using sufficiently high values for the damping coefficient, the expected energy distribution among the vibrational modes is ensured. In this case, the QTB method gives very encouraging results. In particular, the structural properties are well-reproduced. The dynamical properties should be regarded with caution although valuable information can still be extracted from the vibrational spectrum, even for large values of the damping term.
A statistical model of the wave field in a bounded domain
NASA Astrophysics Data System (ADS)
Hellsten, T.
2017-02-01
Numerical simulations of plasma heating with radiofrequency waves often require repetitive calculations of wave fields as the plasma evolves. To enable effective simulations, bench marked formulas of the power deposition have been developed. Here, a statistical model applicable to waves with short wavelengths is presented, which gives the expected amplitude of the wave field as a superposition of four wave fields with weight coefficients depending on the single pass damping, as. The weight coefficient for the wave field coherent with that calculated in the absence of reflection agrees with the coefficient for strong single pass damping of an earlier developed heuristic model, for which the weight coefficients were obtained empirically using a full wave code to calculate the wave field and power deposition. Antennas launching electromagnetic waves into bounded domains are often designed to produce localised wave fields and power depositions in the limit of strong single pass damping. The reflection of the waves changes the coupling that partly destroys the localisation of the wave field, which explains the apparent paradox arising from the earlier developed heuristic formula that only a fraction as2(2-as) and not as of the power is absorbed with a profile corresponding to the power deposition for the first pass of the rays. A method to account for the change in the coupling spectrum caused by reflection for modelling the wave field with ray tracing in bounded media is proposed, which should be applicable to wave propagation in non-uniform media in more general geometries.
NASA Astrophysics Data System (ADS)
Nieves, Ian
Dynamic finite element analysis (FEA) was used to verify the ability of a novel percussion instrument to characterize the composition and structure of laminated materials and glass columns and to elucidate key facets of this process. Initial simulations modeling the percussion process with varying probe geometries were performed to access which configuration most accurately represented in situ diagnostic activity. Percussion testing of monoliths and laminated duplex scaffolds consisting of PTFE and 6061 Al was simulated to assess the ability of the numeric methodology to model intrinsic damping in laminated scaffolds and determine the potential contributions of size effects, gripping configurations, and probe friction to the loading response of the material being tested. Percussion testing of laminated scaffolds and monoliths composed of either PMMA or PLGA was modeled to investigate the effects of defects on the impact response and to evaluate promising strategies for enhancing damping that promotes tissue regeneration in biomedical materials. Percussion testing of virgin and cracked glass columns was modeled and the resulting probe acceleration predictions compared to corresponding experimental findings to evaluate the overall accuracy of the methodology and to discern its capacity for elucidating facets of defect detection in rigid materials. Overall, the modeling the results validated the effectiveness of the numeric methodology for modeling and elucidating the mechanics of percussion testing and suggested strategies whereby this procedure can facilitate the development of innovative biomedical materials designed to promote tissue regeneration.
CORRELATIONS BETWEEN COMPOSITIONS AND ORBITS ESTABLISHED BY THE GIANT IMPACT ERA OF PLANET FORMATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawson, Rebekah I.; Lee, Eve J.; Chiang, Eugene, E-mail: rdawson@psu.edu
The giant impact phase of terrestrial planet formation establishes connections between super-Earths’ orbital properties (semimajor axis spacings, eccentricities, mutual inclinations) and interior compositions (the presence or absence of gaseous envelopes). Using N -body simulations and analytic arguments, we show that spacings derive not only from eccentricities, but also from inclinations. Flatter systems attain tighter spacings, a consequence of an eccentricity equilibrium between gravitational scatterings, which increase eccentricities, and mergers, which damp them. Dynamical friction by residual disk gas plays a critical role in regulating mergers and in damping inclinations and eccentricities. Systems with moderate gas damping and high solid surfacemore » density spawn gas-enveloped super-Earths with tight spacings, small eccentricities, and small inclinations. Systems in which super-Earths coagulate without as much ambient gas, in disks with low solid surface density, produce rocky planets with wider spacings, larger eccentricities, and larger mutual inclinations. A combination of both populations can reproduce the observed distributions of spacings, period ratios, transiting planet multiplicities, and transit duration ratios exhibited by Kepler super-Earths. The two populations, both formed in situ, also help to explain observed trends of eccentricity versus planet size, and bulk density versus method of mass measurement (radial velocities versus transit timing variations). Simplifications made in this study—including the limited time span of the simulations, and the approximate treatments of gas dynamical friction and gas depletion history—should be improved on in future work to enable a detailed quantitative comparison to the observations.« less
NASA Astrophysics Data System (ADS)
Rogers, Keir K.; Bird, Simeon; Peiris, Hiranya V.; Pontzen, Andrew; Font-Ribera, Andreu; Leistedt, Boris
2018-05-01
Correlations measured in three dimensions in the Lyman-alpha forest are contaminated by the presence of the damping wings of high column density (HCD) absorbing systems of neutral hydrogen (H I; having column densities N(H I) > 1.6 × 10^{17} atoms cm^{-2}), which extend significantly beyond the redshift-space location of the absorber. We measure this effect as a function of the column density of the HCD absorbers and redshift by measuring three-dimensional (3D) flux power spectra in cosmological hydrodynamical simulations from the Illustris project. Survey pipelines exclude regions containing the largest damping wings. We find that, even after this procedure, there is a scale-dependent correction to the 3D Lyman-alpha forest flux power spectrum from residual contamination. We model this residual using a simple physical model of the HCD absorbers as linearly biased tracers of the matter density distribution, convolved with their Voigt profiles and integrated over the column density distribution function. We recommend the use of this model over existing models used in data analysis, which approximate the damping wings as top-hats and so miss shape information in the extended wings. The simple `linear Voigt model' is statistically consistent with our simulation results for a mock residual contamination up to small scales (|k| < 1 h Mpc^{-1}). It does not account for the effect of the highest column density absorbers on the smallest scales (e.g. |k| > 0.4 h Mpc^{-1} for small damped Lyman-alpha absorbers; HCD absorbers with N(H I) ˜ 10^{21} atoms cm^{-2}). However, these systems are in any case preferentially removed from survey data. Our model is appropriate for an accurate analysis of the baryon acoustic oscillations feature. It is additionally essential for reconstructing the full shape of the 3D flux power spectrum.
SU-E-J-163: A Biomechanical Lung Model for Respiratory Motion Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, X; Belcher, AH; Grelewicz, Z
2015-06-15
Purpose: This work presents a biomechanical model to investigate the complex respiratory motion for the lung tumor tracking in radiosurgery by computer simulation. Methods: The models include networked massspring-dampers to describe the tumor motion, different types of surrogate signals, and the force generated by the diaphragm. Each mass-springdamper has the same mechanical structure and each model can have different numbers of mass-spring-dampers. Both linear and nonlinear stiffness parameters were considered, and the damping ratio was tuned in a range so that the tumor motion was over-damped (no natural tumor oscillation occurs without force from the diaphragm). The simulation was runmore » by using ODE45 (ordinary differential equations by Runge-Kutta method) in MATLAB, and all time courses of motions and inputs (force) were generated and compared. Results: The curvature of the motion time courses around their peaks was sensitive to the damping ratio. Therefore, the damping ratio can be determined based on the clinical data of a high sampling rate. The peak values of different signals and the time the peaks occurred were compared, and it was found that the diaphragm force had a time lead over the tumor motion, and the lead time (0.1–0.4 seconds) depended on the distance between the tumor and the diaphragm. Conclusion: We reported a model based analysis approach for the spatial and temporal relation between the motion of the lung tumor and the surrogate signals. Due to the phase lead of the diaphragm in comparing with the lung tumor motion, the measurement of diaphragm motion (or its electromyography signal) can be used as a beam gating signal in radiosurgery, and it can also be an additional surrogate signal for better tumor motion tracking. The research is funded by the American Cancer Society (ACS) grant. The grant name is: Frameless SRS Based on Robotic Head Motion Cancellation. The grant number is: RSG-13-313-01-CCE.« less
Modelling of deep gaps created by giant planets in protoplanetary disks
NASA Astrophysics Data System (ADS)
Kanagawa, Kazuhiro D.; Tanaka, Hidekazu; Muto, Takayuki; Tanigawa, Takayuki
2017-12-01
A giant planet embedded in a protoplanetary disk creates a gap. This process is important for both theory and observation. Using results of a survey for a wide parameter range with two-dimensional hydrodynamic simulations, we constructed an empirical formula for the gap structure (i.e., the radial surface density distribution), which can reproduce the gap width and depth obtained by two-dimensional simulations. This formula enables us to judge whether an observed gap is likely to be caused by an embedded planet or not. The propagation of waves launched by the planet is closely connected to the gap structure. It makes the gap wider and shallower as compared with the case where an instantaneous wave damping is assumed. The hydrodynamic simulations show that the waves do not decay immediately at the launching point of waves, even when the planet is as massive as Jupiter. Based on the results of hydrodynamic simulations, we also obtained an empirical model of wave propagation and damping in cases of deep gaps. The one-dimensional gap model with our wave propagation model is able to reproduce the gap structures in hydrodynamic simulations well. In the case of a Jupiter-mass planet, we also found that the waves with a smaller wavenumber (e.g., m = 2) are excited and transport the angular momentum to a location far away from the planet. The wave with m = 2 is closely related with a secondary wave launched by a site opposite from the planet.
Computational modeling of intrinsic dissipation in nano-structure
NASA Astrophysics Data System (ADS)
Kunal, Kumar
In this work, using computational modeling, we study the different mechanisms of intrinsic dissipation in nano-electro mechanical systems (NEMS). We, first, use molecular dynamics (MD) simulation and gain an understanding of the underlying loss mechanisms. Using insights from the MD simulation, a multi-scale method to model intrinsic damping is developed. The high frequency vibration in NEMS have important applications. A few examples include the sensing of atomic mass, detection of biological molecules and observation of quantum effects in macroscopic objects. For all these potential applications, dissipation plays a limiting role. While a number of experimental and theoretical studies have been performed, the individual role of different mechanisms remains unclear. In this work, we attempt to isolate and understand the surface and size effect on some of the intrinsic mechanisms. We, first, consider the case of the Akhiezer damping. The Akhiezer dynamics is expected to play an important role in nano-resonators with frequencies in the GHz range. Using a judiciously devised MD set-up, we isolate Akhiezer dynamics. We show that the surfaces aid in reducing the dissipation rate through increasing the rate of thermalization of the phonons. We, next, study damping under the flexure mode of operation. A comparative analysis with the stretching mode shows that the flexure mode is less dissipative. A reduced order model is considered to understand this novel behavior. We, also, investigate the role of tension on the Q factor, a measure of the inverse of dissipation rate. From these studies, we conclude that Akhiezer dynamics plays a dominant role in nano-resonators. We, then, develop a quasi-harmonic based multi-scale method to model Akhiezer damping. A stress component, that characterizes the non-equilibrium phonon population, is derived. We obtain constitutive relation that governs the time evolution of the non-equilibrium stress. Different methods to parametrize the constitutive relation are discussed. Using the proposed formulation, we compute the dissipation rate for different cases. The results are compared with those obtained using MD. Next, we use the Boltzmann transport equation and investigate the Q factor due to the thermo-elastic dissipation (TED). The Q factor obtained shows deviations from the classical theory of TED. Correction to the classical formula, for the case of longitudinal modes, is provided. We, then, study damping is low dimensional structure. We first consider the case of two dimensional graphene sheet and under in-plane stretching. We show that the coupling between the in-plane and the out-of-plane motions plays an important role in the loss of mechanical energy. Further, a hysteresis behavior in the out-of-plane dynamics is observed. Next, we investigate the stretching motion of graphene nano-ribbon. A normal mode Langevin dynamics is devised to understand the results from the MD simulation.
Study of stability and control moment gyro wobble damping of flexible, spinning space stations
NASA Technical Reports Server (NTRS)
Berman, H.; Markowitz, J.; Holmer, W.
1972-01-01
An executive summary and an analysis of the results are discussed. A user's guide for the digital computer program that simulates the flexible, spinning space station is presented. Control analysis activities and derivation of dynamic equations of motion and the modal analysis are also cited.
Buried Alive! An Investigation of Plant Dormancy
ERIC Educational Resources Information Center
Allen, Ashley J.; Balschweid, Mark; Hammond, Paul; Henderson, Brian; Johnson, Peggy A.; Kite, Abigayle; Martin, Stephanie
2004-01-01
In this investigation, pairs of upper elementary students test germination percentage using seeds of Indian corn ("Zea mays"), scarlet runner beans ("Phaseolus coccineus"), and the prairie cup-plant ("Silphium perfoliatum") grown on rolled, damp paper towels. The pairs compare seeds that have been stratified, a simulation of overwintering and…
Numerical Study of Magnetic Damping During Unidirectional Solidification
NASA Technical Reports Server (NTRS)
Li, Ben Q.
1997-01-01
A fully 3-D numerical model is developed to represent magnetic damping of complex fluid flow, heat transfer and electromagnetic field distributions in a melt cavity. The model is developed based on our in-house finite element code for the fluid flow, heat transfer and electromagnetic field calculations. The computer code has been tested against benchmark test problems that are solved by other commercial codes as well as analytical solutions whenever available. The numerical model is tested against numerical and experimental results for water reported in literature. With the model so tested, various numerical simulations are carried out for the Sn-35.5% Pb melt convection and temperature distribution in a cylindrical cavity with and without the presence of a transverse magnetic field. Numerical results show that magnetic damping can be effectively applied to reduce turbulence and flow levels in the melt undergoing solidification and over a certain threshold value a higher magnetic field resulted in a higher velocity reduction. It is found also that for a fully 3-D representation of the magnetic damping effects, the electric field induced in the melt by the applied DC magnetic field does not vanish, as some researchers suggested, and must be included even for molten metal and semiconductors. Also, for the study of the melt flow instability, a long enough time has to be applied to ensure the final fluid flow recirculation pattern. Moreover, our numerical results suggested that there seems to exist a threshold value of applied magnetic field, above which magnetic damping becomes possible and below which the convection in the melt is actually enhanced. Because of the limited financial resource allocated for the project, we are unable to carry out extensive study on this effect, which should warrant further theoretical and experimental study. In that endeavor, the developed numerical model should be very useful; and the model should serve as a useful tool for exploring necessary design parameters for planning magnetic damping experiments and interpreting the experimental results.
NASA Technical Reports Server (NTRS)
1972-01-01
Laboratory simulations of three concepts, based on maximum use of available off-the-shelf hardware elements, are described. The concepts are a stereo-foveal-peripheral TV system with symmetric steroscopic split-image registration and 90 deg counter rotation; a computer assisted model control system termed the trajectory following control system; and active manipulator damping. It is concluded that the feasibility of these concepts is established.
Revisiting linear plasma waves for finite value of the plasma parameter
NASA Astrophysics Data System (ADS)
Grismayer, Thomas; Fahlen, Jay; Decyk, Viktor; Mori, Warren
2010-11-01
We investigate through theory and PIC simulations the Landau-damping of plasma waves with finite plasma parameter. We concentrate on the linear regime, γφB, where the waves are typically small and below the thermal noise. We simulate these condition using 1,2,3D electrostatic PIC codes (BEPS), noting that modern computers now allow us to simulate cases where (nλD^3 = [1e2;1e6]). We study these waves by using a subtraction technique in which two simulations are carried out. In the first, a small wave is initialized or driven, in the second no wave is excited. The results are subtracted to provide a clean signal that can be studied. As nλD^3 is decreased, the number of resonant electrons can be small for linear waves. We show how the damping changes as a result of having few resonant particles. We also find that for small nλD^3 fluctuations can cause the electrons to undergo collisions that eventually destroy the initial wave. A quantity of interest is the the life time of a particular mode which depends on the plasma parameter and the wave number. The life time is estimated and then compared with the numerical results. A surprising result is that even for large values of nλD^3 some non-Vlasov discreteness effects appear to be important.