Sample records for simulating galaxy clusters

  1. Dynamical evolution of globular-cluster systems in clusters of galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muzzio, J.C.

    1987-04-01

    The dynamical processes that affect globular-cluster systems in clusters of galaxies are analyzed. Two-body and impulsive approximations are utilized to study dynamical friction, drag force, tidal stripping, tidal radii, globular-cluster swapping, tidal accretion, and galactic cannibalism. The evolution of galaxies and the collision of galaxies are simulated numerically; the steps involved in the simulation are described. The simulated data are compared with observations. Consideration is given to the number of galaxies, halo extension, location of the galaxies, distribution of the missing mass, nonequilibrium initial conditions, mass dependence, massive central galaxies, globular-cluster distribution, and lost globular clusters. 116 references.

  2. Simulating The Dynamical Evolution Of Galaxies In Group And Cluster Environments

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, Rukmani

    2015-07-01

    Galaxy clusters are harsh environments for their constituent galaxies. A variety of physical processes effective in these dense environments transform gas-rich, spiral, star-forming galaxies to elliptical or spheroidal galaxies with very little gas and therefore minimal star formation. The consequences of these processes are well understood observationally. Galaxies in progressively denser environments have systematically declining star formation rates and gas content. However, a theoretical understanding of of where, when, and how these processes act, and the interplay between the various galaxy transformation mechanisms in clusters remains elusive. In this dissertation, I use numerical simulations of cluster mergers as well as galaxies evolving in quiescent environments to develop a theoretical framework to understand some of the physics of galaxy transformation in cluster environments. Galaxies can be transformed in smaller groups before they are accreted by their eventual massive cluster environments, an effect termed `pre-processing'. Galaxy cluster mergers themselves can accelerate many galaxy transformation mechanisms, including tidal and ram pressure stripping of galaxies and galaxy-galaxy collisions and mergers that result in reassemblies of galaxies' stars and gas. Observationally, cluster mergers have distinct velocity and phase-space signatures depending on the observer's line of sight with respect to the merger direction. Using dark matter only as well as hydrodynamic simulations of cluster mergers with random ensembles of particles tagged with galaxy models, I quantify the effects of cluster mergers on galaxy evolution before, during, and after the mergers. Based on my theoretical predictions of the dynamical signatures of these mergers in combination with galaxy transformation signatures, one can observationally identify remnants of mergers and quantify the effect of the environment on galaxies in dense group and cluster environments. The presence of long-lived, hot X-ray emitting coronae observed in a large fraction of group and cluster galaxies is not well-understood. These coronae are not fully stripped by ram pressure and tidal forces that are efficient in these environments. Theoretically, this is a fascinating and challenging problem that involves understanding and simulating the multitude of physical processes in these dense environments that can remove or replenish galaxies' hot coronae. To solve this problem, I have developed and implemented a robust simulation technique where I simulate the evolution of a realistic cluster environment with a population of galaxies and their gas. With this technique, it is possible to isolate and quantify the importance of the various cluster physical processes for coronal survival. To date, I have performed hydrodynamic simulations of galaxies being ram pressure stripped in quiescent group and cluster environments. Using these simulations, I have characterized the physics of ram pressure stripping and investigated the survival of these coronae in the presence of tidal and ram pressure stripping. I have also generated synthetic X-ray observations of these simulated systems to compare with observed coronae. I have also performed magnetohydrodynamic simulations of galaxies evolving in a magnetized intracluster medium plasma to isolate the effect of magnetic fields on coronal evolution, as well the effect of orbiting galaxies in amplifying magnetic fields. This work is an important step towards understanding the effect of cluster environments on galactic gas, and consequently, their long term evolution and impact on star formation rates.

  3. Pre-processing and post-processing in group-cluster mergers

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, R.; Ricker, P. M.

    2013-11-01

    Galaxies in clusters are more likely to be of early type and to have lower star formation rates than galaxies in the field. Recent observations and simulations suggest that cluster galaxies may be `pre-processed' by group or filament environments and that galaxies that fall into a cluster as part of a larger group can stay coherent within the cluster for up to one orbital period (`post-processing'). We investigate these ideas by means of a cosmological N-body simulation and idealized N-body plus hydrodynamics simulations of a group-cluster merger. We find that group environments can contribute significantly to galaxy pre-processing by means of enhanced galaxy-galaxy merger rates, removal of galaxies' hot halo gas by ram pressure stripping and tidal truncation of their galaxies. Tidal distortion of the group during infall does not contribute to pre-processing. Post-processing is also shown to be effective: galaxy-galaxy collisions are enhanced during a group's pericentric passage within a cluster, the merger shock enhances the ram pressure on group and cluster galaxies and an increase in local density during the merger leads to greater galactic tidal truncation.

  4. Gas loss in simulated galaxies as they fall into clusters

    PubMed Central

    Cen, Renyue; Pop, Ana Roxana; Bahcall, Neta A.

    2014-01-01

    We use high-resolution cosmological hydrodynamic galaxy formation simulations to gain insights into how galaxies lose their cold gas at low redshift as they migrate from the field to the high-density regions of clusters of galaxies. We find that beyond three cluster virial radii, the fraction of gas-rich galaxies is constant, representing the field. Within three cluster-centric radii, the fraction of gas-rich galaxies declines steadily with decreasing radius, reaching <10% near the cluster center. Our results suggest galaxies start to feel the effect of the cluster environment on their gas content well beyond the cluster virial radius. We show that almost all gas-rich galaxies at the cluster virial radius are falling in for the first time at nearly radial orbits. Furthermore, we find that almost no galaxy moving outward at the cluster virial radius is gas-rich (with a gas-to-baryon ratio greater than 1%). These results suggest that galaxies that fall into clusters lose their cold gas within a single radial round-trip. PMID:24843167

  5. Gas loss in simulated galaxies as they fall into clusters.

    PubMed

    Cen, Renyue; Pop, Ana Roxana; Bahcall, Neta A

    2014-06-03

    We use high-resolution cosmological hydrodynamic galaxy formation simulations to gain insights into how galaxies lose their cold gas at low redshift as they migrate from the field to the high-density regions of clusters of galaxies. We find that beyond three cluster virial radii, the fraction of gas-rich galaxies is constant, representing the field. Within three cluster-centric radii, the fraction of gas-rich galaxies declines steadily with decreasing radius, reaching <10% near the cluster center. Our results suggest galaxies start to feel the effect of the cluster environment on their gas content well beyond the cluster virial radius. We show that almost all gas-rich galaxies at the cluster virial radius are falling in for the first time at nearly radial orbits. Furthermore, we find that almost no galaxy moving outward at the cluster virial radius is gas-rich (with a gas-to-baryon ratio greater than 1%). These results suggest that galaxies that fall into clusters lose their cold gas within a single radial round-trip.

  6. Radial alignment of elliptical galaxies by the tidal force of a cluster of galaxies

    NASA Astrophysics Data System (ADS)

    Rong, Yu; Yi, Shu-Xu; Zhang, Shuang-Nan; Tu, Hong

    2015-08-01

    Unlike the random radial orientation distribution of field elliptical galaxies, galaxies in a cluster are expected to point preferentially towards the centre of the cluster, as a result of the cluster's tidal force on its member galaxies. In this work, an analytic model is formulated to simulate this effect. The deformation time-scale of a galaxy in a cluster is usually much shorter than the time-scale of change of the tidal force; the dynamical process of tidal interaction within the galaxy can thus be ignored. The equilibrium shape of a galaxy is then assumed to be the surface of equipotential that is the sum of the self-gravitational potential of the galaxy and the tidal potential of the cluster at this location. We use a Monte Carlo method to calculate the radial orientation distribution of cluster galaxies, by assuming a Navarro-Frenk-White mass profile for the cluster and the initial ellipticity of field galaxies. The radial angles show a single-peak distribution centred at zero. The Monte Carlo simulations also show that a shift of the reference centre from the real cluster centre weakens the anisotropy of the radial angle distribution. Therefore, the expected radial alignment cannot be revealed if the distribution of spatial position angle is used instead of that of radial angle. The observed radial orientations of elliptical galaxies in cluster Abell 2744 are consistent with the simulated distribution.

  7. Chemical pre-processing of cluster galaxies over the past 10 billion years in the IllustrisTNG simulations

    NASA Astrophysics Data System (ADS)

    Gupta, Anshu; Yuan, Tiantian; Torrey, Paul; Vogelsberger, Mark; Martizzi, Davide; Tran, Kim-Vy H.; Kewley, Lisa J.; Marinacci, Federico; Nelson, Dylan; Pillepich, Annalisa; Hernquist, Lars; Genel, Shy; Springel, Volker

    2018-06-01

    We use the IllustrisTNG simulations to investigate the evolution of the mass-metallicity relation (MZR) for star-forming cluster galaxies as a function of the formation history of their cluster host. The simulations predict an enhancement in the gas-phase metallicities of star-forming cluster galaxies (109 < M* < 1010 M⊙ h-1) at z ≤ 1.0 in comparisons to field galaxies. This is qualitatively consistent with observations. We find that the metallicity enhancement of cluster galaxies appears prior to their infall into the central cluster potential, indicating for the first time a systematic `chemical pre-processing' signature for infalling cluster galaxies. Namely, galaxies that will fall into a cluster by z = 0 show a ˜0.05 dex enhancement in the MZR compared to field galaxies at z ≤ 0.5. Based on the inflow rate of gas into cluster galaxies and its metallicity, we identify that the accretion of pre-enriched gas is the key driver of the chemical evolution of such galaxies, particularly in the stellar mass range (109 < M* < 1010 M⊙ h-1). We see signatures of an environmental dependence of the ambient/inflowing gas metallicity that extends well outside the nominal virial radius of clusters. Our results motivate future observations looking for pre-enrichment signatures in dense environments.

  8. The cluster galaxy circular velocity function

    NASA Astrophysics Data System (ADS)

    Desai, V.; Dalcanton, J. J.; Mayer, L.; Reed, D.; Quinn, T.; Governato, F.

    2004-06-01

    We present galaxy circular velocity functions (GCVFs) for 34 low-redshift (z<~ 0.15) clusters identified in the Sloan Digital Sky Survey (SDSS), for 15 clusters drawn from dark matter simulations of hierarchical structure growth in a ΛCDM cosmology, and for ~22 000 SDSS field galaxies. We find that the simulations successfully reproduce the shape, amplitude and scatter in the observed distribution of cluster galaxy circular velocities. The power-law slope of the observed cluster GCVF is ~-2.4, independent of cluster velocity dispersion. The average slope of the simulated GCVFs is somewhat steeper, although formally consistent given the errors. We find that the effects of baryons on galaxy rotation curves is to flatten the simulated cluster GCVF into better agreement with observations. The cumulative GCVFs of the simulated clusters are very similar across a wide range of cluster masses, provided individual subhalo circular velocities are scaled by the circular velocities of the parent cluster. The scatter is consistent with that measured in the cumulative, scaled observed cluster GCVF. Finally, the observed field GCVF deviates significantly from a power law, being flatter than the cluster GCVF at circular velocities less than 200 km s-1.

  9. A New Approach for Simulating Galaxy Cluster Properties

    NASA Astrophysics Data System (ADS)

    Arieli, Y.; Rephaeli, Y.; Norman, M. L.

    2008-08-01

    We describe a subgrid model for including galaxies into hydrodynamical cosmological simulations of galaxy cluster evolution. Each galaxy construct—or galcon—is modeled as a physically extended object within which star formation, galactic winds, and ram pressure stripping of gas are modeled analytically. Galcons are initialized at high redshift (z ~ 3) after galaxy dark matter halos have formed but before the cluster has virialized. Each galcon moves self-consistently within the evolving cluster potential and injects mass, metals, and energy into intracluster (IC) gas through a well-resolved spherical interface layer. We have implemented galcons into the Enzo adaptive mesh refinement code and carried out a simulation of cluster formation in a ΛCDM universe. With our approach, we are able to economically follow the impact of a large number of galaxies on IC gas. We compare the results of the galcon simulation with a second, more standard simulation where star formation and feedback are treated using a popular heuristic prescription. One advantage of the galcon approach is explicit control over the star formation history of cluster galaxies. Using a galactic SFR derived from the cosmic star formation density, we find the galcon simulation produces a lower stellar fraction, a larger gas core radius, a more isothermal temperature profile, and a flatter metallicity gradient than the standard simulation, in better agreement with observations.

  10. The E-MOSAICS project: simulating the formation and co-evolution of galaxies and their star cluster populations

    NASA Astrophysics Data System (ADS)

    Pfeffer, Joel; Kruijssen, J. M. Diederik; Crain, Robert A.; Bastian, Nate

    2018-04-01

    We introduce the MOdelling Star cluster population Assembly In Cosmological Simulations within EAGLE (E-MOSAICS) project. E-MOSAICS incorporates models describing the formation, evolution, and disruption of star clusters into the EAGLE galaxy formation simulations, enabling the examination of the co-evolution of star clusters and their host galaxies in a fully cosmological context. A fraction of the star formation rate of dense gas is assumed to yield a cluster population; this fraction and the population's initial properties are governed by the physical properties of the natal gas. The subsequent evolution and disruption of the entire cluster population are followed accounting for two-body relaxation, stellar evolution, and gravitational shocks induced by the local tidal field. This introductory paper presents a detailed description of the model and initial results from a suite of 10 simulations of ˜L⋆ galaxies with disc-like morphologies at z = 0. The simulations broadly reproduce key observed characteristics of young star clusters and globular clusters (GCs), without invoking separate formation mechanisms for each population. The simulated GCs are the surviving population of massive clusters formed at early epochs (z ≳ 1-2), when the characteristic pressures and surface densities of star-forming gas were significantly higher than observed in local galaxies. We examine the influence of the star formation and assembly histories of galaxies on their cluster populations, finding that (at similar present-day mass) earlier-forming galaxies foster a more massive and disruption-resilient cluster population, while galaxies with late mergers are capable of forming massive clusters even at late cosmic epochs. We find that the phenomenological treatment of interstellar gas in EAGLE precludes the accurate modelling of cluster disruption in low-density environments, but infer that simulations incorporating an explicitly modelled cold interstellar gas phase will overcome this shortcoming.

  11. Radial Alignment of Ellipitcal Galaxies by the Tidal Force of a Cluster of Galaxies

    NASA Astrophysics Data System (ADS)

    Zhang, Shuang-Nan; Rong, Yu; Tu, Hong

    2015-08-01

    Unlike the random radial orientation distribution of field elliptical galaxies, galaxies in a cluster of galaxies are expected to point preferentially toward the center of the cluster, as a result of the cluster's tidal force on its member galaxies. In this work an analytic model is formulated to simulate this effect. The deformation time scale of a galaxy in a cluster is usually much shorter than the time scale of change of the tidal force; the dynamical process of the tidal interaction within the galaxy can thus be ignored. An equilibrium shape of a galaxy is then assumed to be the surface of equipotential, which is the sum of the self-gravitational potential of the galaxy and the tidal potential of the cluster at this location. We use a Monte-Carlo method to calculate the radial orientation distribution of these galaxies, by assuming the NFW mass profile of the cluster and the initial ellipticity of field galaxies. The radial angles show a single peak distribution centered at zero. The Monte-Carlo simulations also show that a shift of the reference center from the real cluster center weakens the anisotropy of the radial angle distribution. Therefore, the expected radial alignment cannot be revealed if the distribution of spatial position angle is used instead of that of radial angle. The observed radial orientations of elliptical galaxies in cluster Abell~2744 are consistent with the simulated distribution.

  12. Radial Alignment of Elliptical Galaxies by the Tidal Force of a Cluster of Galaxies

    NASA Astrophysics Data System (ADS)

    Zhang, Shuang-Nan; Rong, Yu; Tu, Hong

    2015-08-01

    Unlike the random radial orientation distribution of field elliptical galaxies, galaxies in a cluster of galaxies are expected to point preferentially toward the center of the cluster, as a result of the cluster's tidal force on its member galaxies. In this work an analytic model is formulated to simulate this effect. The deformation time scale of a galaxy in a cluster is usually much shorter than the time scale of change of the tidal force; the dynamical process of the tidal interaction within the galaxy can thus be ignored. An equilibrium shape of a galaxy is then assumed to be the surface of equipotential, which is the sum of the self-gravitational potential of the galaxy and the tidal potential of the cluster at this location. We use a Monte-Carlo method to calculate the radial orientation distribution of these galaxies, by assuming the NFW mass profile of the cluster and the initial ellipticity of field galaxies. The radial angles show a single peak distribution centered at zero. The Monte-Carlo simulations also show that a shift of the reference center from the real cluster center weakens the anisotropy of the radial angle distribution. Therefore, the expected radial alignment cannot be revealed if the distribution of spatial position angle is used instead of that of radial angle. The observed radial orientations of elliptical galaxies in cluster Abell~2744 are consistent with the simulated distribution.

  13. Evolution of Late-type Galaxies in a Cluster Environment: Effects of High-speed Multiple Encounters with Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Hwang, Jeong-Sun; Park, Changbom; Banerjee, Arunima; Hwang, Ho Seong

    2018-04-01

    Late-type galaxies falling into a cluster would evolve being influenced by the interactions with both the cluster and the nearby cluster member galaxies. Most numerical studies, however, tend to focus on the effects of the former with little work done on those of the latter. We thus perform a numerical study on the evolution of a late-type galaxy interacting with neighboring early-type galaxies at high speed using hydrodynamic simulations. Based on the information obtained from the Coma cluster, we set up the simulations for the case where a Milky Way–like late-type galaxy experiences six consecutive collisions with twice as massive early-type galaxies having hot gas in their halos at the closest approach distances of 15–65 h ‑1 kpc at the relative velocities of 1500–1600 km s‑1. Our simulations show that the evolution of the late-type galaxy can be significantly affected by the accumulated effects of the high-speed multiple collisions with the early-type galaxies, such as on cold gas content and star formation activity of the late-type galaxy, particularly through the hydrodynamic interactions between cold disk and hot gas halos. We find that the late-type galaxy can lose most of its cold gas after the six collisions and have more star formation activity during the collisions. By comparing our simulation results with those of galaxy–cluster interactions, we claim that the role of the galaxy–galaxy interactions on the evolution of late-type galaxies in clusters could be comparable with that of the galaxy–cluster interactions, depending on the dynamical history.

  14. The Galaxy Cluster Merger Catalog: An Online Repository of Mock Observations from Simulated Galaxy Cluster Mergers

    NASA Astrophysics Data System (ADS)

    ZuHone, J. A.; Kowalik, K.; Öhman, E.; Lau, E.; Nagai, D.

    2018-01-01

    We present the “Galaxy Cluster Merger Catalog.” This catalog provides an extensive suite of mock observations and related data for N-body and hydrodynamical simulations of galaxy cluster mergers and clusters from cosmological simulations. These mock observations consist of projections of a number of important observable quantities in several different wavebands, as well as along different lines of sight through each simulation domain. The web interface to the catalog consists of easily browsable images over epoch and projection direction, as well as download links for the raw data and a JS9 interface for interactive data exploration. The data are presented within a consistent format so that comparison between simulations is straightforward. All of the data products are provided in the standard Flexible Image Transport System file format. The data are being stored on the yt Hub (http://hub.yt), which allows for remote access and analysis using a Jupyter notebook server. Future versions of the catalog will include simulations from a number of research groups and a variety of research topics related to the study of interactions of galaxy clusters with each other and with their member galaxies. The catalog is located at http://gcmc.hub.yt.

  15. Mapping Dark Matter in Simulated Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Bowyer, Rachel

    2018-01-01

    Galaxy clusters are the most massive bound objects in the Universe with most of their mass being dark matter. Cosmological simulations of structure formation show that clusters are embedded in a cosmic web of dark matter filaments and large scale structure. It is thought that these filaments are found preferentially close to the long axes of clusters. We extract galaxy clusters from the simulations "cosmo-OWLS" in order to study their properties directly and also to infer their properties from weak gravitational lensing signatures. We investigate various stacking procedures to enhance the signal of the filaments and large scale structure surrounding the clusters to better understand how the filaments of the cosmic web connect with galaxy clusters. This project was supported in part by the NSF REU grant AST-1358980 and by the Nantucket Maria Mitchell Association.

  16. Projected alignment of non-sphericities of stellar, gas, and dark matter distributions in galaxy clusters: analysis of the Horizon-AGN simulation

    NASA Astrophysics Data System (ADS)

    Okabe, Taizo; Nishimichi, Takahiro; Oguri, Masamune; Peirani, Sébastien; Kitayama, Tetsu; Sasaki, Shin; Suto, Yasushi

    2018-04-01

    While various observations measured ellipticities of galaxy clusters and alignments between orientations of the brightest cluster galaxies and their host clusters, there are only a handful of numerical simulations that implement realistic baryon physics to allow direct comparisons with those observations. Here we investigate ellipticities of galaxy clusters and alignments between various components of them and the central galaxies in the state-of-the-art cosmological hydrodynamical simulation Horizon-AGN, which contains dark matter, stellar, and gas components in a large simulation box of (100h-1 Mpc)3 with high spatial resolution (˜1 kpc). We estimate ellipticities of total matter, dark matter, stellar, gas surface mass density distributions, X-ray surface brightness, and the Compton y-parameter of the Sunyaev-Zel'dovich effect, as well as alignments between these components and the central galaxies for 120 projected images of galaxy clusters with masses M200 > 5 × 1013M⊙. Our results indicate that the distributions of these components are well aligned with the major-axes of the central galaxies, with the root mean square value of differences of their position angles of ˜20°, which vary little from inner to the outer regions. We also estimate alignments of these various components with total matter distributions, and find tighter alignments than those for central galaxies with the root mean square value of ˜15°. We compare our results with previous observations of ellipticities and position angle alignments and find reasonable agreements. The comprehensive analysis presented in this paper provides useful prior information for analyzing stacked lensing signals as well as designing future observations to study ellipticities and alignments of galaxy clusters.

  17. Projected alignment of non-sphericities of stellar, gas, and dark matter distributions in galaxy clusters: analysis of the Horizon-AGN simulation

    NASA Astrophysics Data System (ADS)

    Okabe, Taizo; Nishimichi, Takahiro; Oguri, Masamune; Peirani, Sébastien; Kitayama, Tetsu; Sasaki, Shin; Suto, Yasushi

    2018-07-01

    While various observations measured ellipticities of galaxy clusters and alignments between orientations of the brightest cluster galaxies and their host clusters, there are only a handful of numerical simulations that implement realistic baryon physics to allow direct comparisons with those observations. Here, we investigate ellipticities of galaxy clusters and alignments between various components of them and the central galaxies in the state-of-the-art cosmological hydrodynamical simulation Horizon-AGN, which contains dark matter, stellar, and gas components in a large simulation box of (100h-1 Mpc)3 with high spatial resolution (˜1 kpc). We estimate ellipticities of total matter, dark matter, stellar, gas surface mass density distributions, X-ray surface brightness, and the Compton y-parameter of the Sunyaev-Zel'dovich effect, as well as alignments between these components and the central galaxies for 120 projected images of galaxy clusters with masses M200 > 5 × 1013 M⊙. Our results indicate that the distributions of these components are well aligned with the major axes of the central galaxies, with the root-mean-square value of differences of their position angles of ˜20°, which vary little from inner to the outer regions. We also estimate alignments of these various components with total matter distributions, and find tighter alignments than those for central galaxies with the root-mean-square value of ˜15°. We compare our results with previous observations of ellipticities and position angle alignments and find reasonable agreements. The comprehensive analysis presented in this paper provides useful prior information for analysing stacked lensing signals as well as designing future observations to study ellipticities and alignments of galaxy clusters.

  18. Dynamical evolution of galaxies in dense cluster environment.

    NASA Astrophysics Data System (ADS)

    Gnedin, O. Y.

    1997-12-01

    I present the results of study of the dynamics of galaxies in clusters of galaxies. The effects of the galaxy environment could be quite dramatic. The time-varying gravitational potential of the cluster subjects the galaxies to strong tidal effects. The tidal density cutoff effectively strips the dark matter halos and leads to highly concentrated structures in the galactic centers. The fast gravitational tidal shocks raise the random motion of stars in the galaxies, transforming the thin disks into the kinematically hot thick configurations. The tidal shocks also cause relaxation of stellar energies that enhances the rate of accretion onto the galactic centers. These effects of the time-varying cluster potential have not been consistently taken into account before. I present numerical N-body simulations of galaxies using the Self-Consistent Field code with 10(7) - 10(8) particles. The code is coupled with the PM code that provides a fully dynamic simulation of the cluster potential. The tidal field of the cluster along the galaxy trajectories is imposed as an external perturbation on the galaxies in the SCF scheme. Recent HST observations show that the high-redshift (z > 0.4) clusters contain numerous bright blue spirals, often with distorted profiles, whereas the nearby clusters are mostly populated by featureless ellipticals. The goal of my study is to understand whether dynamics is responsible for the observed strong evolution of galaxies in clusters.

  19. Ram Pressure Stripping of Galaxy JO201

    NASA Astrophysics Data System (ADS)

    Zhong, Greta; Tonnesen, Stephanie; Jaffé, Yara; Bellhouse, Callum; Bianca Poggianti

    2017-01-01

    Despite the discovery of the morphology-density relation more than 30 years ago, the process driving the evolution of spiral galaxies into S0s in clusters is still widely debated. Ram pressure stripping--the removal of a galaxy's interstellar medium by the pressure of the intracluster medium through which it orbits--may help explain galactic evolution and quenching in clusters. MUSE (Multi Unit Spectroscopic Explorer) observational data of galaxy JO201 in cluster Abell 85 reveal it to be a jellyfish galaxy--one with an H-alpha emitting gas tail on only one side. We model the possible orbits for this galaxy, constrained by the cluster mass profile, line of sight velocity, and projected distance from the cluster center. Using Enzo, an adaptive mesh refinement hydrodynamics code, we simulate effects of ram pressure on this galaxy for a range of possible orbits. We present comparisons of both the morphology and velocity structure of our simulated galaxy to the observations of H-alpha emission.

  20. A detection of wobbling brightest cluster galaxies within massive galaxy clusters

    NASA Astrophysics Data System (ADS)

    Harvey, David; Courbin, F.; Kneib, J. P.; McCarthy, Ian G.

    2017-12-01

    A striking signal of dark matter beyond the standard model is the existence of cores in the centre of galaxy clusters. Recent simulations predict that a brightest cluster galaxy (BCG) inside a cored galaxy cluster will exhibit residual wobbling due to previous major mergers, long after the relaxation of the overall cluster. This phenomenon is absent with standard cold dark matter where a cuspy density profile keeps a BCG tightly bound at the centre. We test this hypothesis using cosmological simulations and deep observations of 10 galaxy clusters acting as strong gravitational lenses. Modelling the BCG wobble as a simple harmonic oscillator, we measure the wobble amplitude, Aw, in the BAHAMAS suite of cosmological hydrodynamical simulations, finding an upper limit for the cold dark matter paradigm of Aw < 2 kpc at the 95 per cent confidence limit. We carry out the same test on the data finding a non-zero amplitude of A_w=11.82^{+7.3}_{-3.0} kpc, with the observations dis-favouring Aw = 0 at the 3σ confidence level. This detection of BCG wobbling is evidence for a dark matter core at the heart of galaxy clusters. It also shows that strong lensing models of clusters cannot assume that the BCG is exactly coincident with the large-scale halo. While our small sample of galaxy clusters already indicates a non-zero Aw, with larger surveys, e.g. Euclid, we will be able to not only confirm the effect but also to use it to determine whether or not the wobbling finds its origin in new fundamental physics or astrophysical process.

  1. The Effect of Mergers on Galaxy Cluster Mass Estimates

    NASA Astrophysics Data System (ADS)

    Johnson, Ryan E.; Zuhone, John A.; Thorsen, Tessa; Hinds, Andre

    2015-08-01

    At vertices within the filamentary structure that describes the universal matter distribution, clusters of galaxies grow hierarchically through merging with other clusters. As such, the most massive galaxy clusters should have experienced many such mergers in their histories. Though we cannot see them evolve over time, these mergers leave lasting, measurable effects in the cluster galaxies' phase space. By simulating several different galaxy cluster mergers here, we examine how the cluster galaxies kinematics are altered as a result of these mergers. Further, we also examine the effect of our line of sight viewing angle with respect to the merger axis. In projecting the 6-dimensional galaxy phase space onto a 3-dimensional plane, we are able to simulate how these clusters might actually appear to optical redshift surveys. We find that for those optical cluster statistics which are most often used as a proxy for the cluster mass (variants of σv), the uncertainty due to an inprecise or unknown line of sight may alter the derived cluster masses moreso than the kinematic disturbance of the merger itself. Finally, by examining these, and several other clustering statistics, we find that significant events (such as pericentric crossings) are identifiable over a range of merger initial conditions and from many different lines of sight.

  2. Velocity segregation and systematic biases in velocity dispersion estimates with the SPT-GMOS spectroscopic survey

    DOE PAGES

    Bayliss, Matthew. B.; Zengo, Kyle; Ruel, Jonathan; ...

    2017-03-07

    The velocity distribution of galaxies in clusters is not universal; rather, galaxies are segregated according to their spectral type and relative luminosity. We examine the velocity distributions of different populations of galaxies within 89 Sunyaev Zel'dovich (SZ) selected galaxy clusters spanningmore » $ 0.28 < z < 1.08$. Our sample is primarily draw from the SPT-GMOS spectroscopic survey, supplemented by additional published spectroscopy, resulting in a final spectroscopic sample of 4148 galaxy spectra---2868 cluster members. The velocity dispersion of star-forming cluster galaxies is $$17\\pm4$$% greater than that of passive cluster galaxies, and the velocity dispersion of bright ($$m < m^{*}-0.5$$) cluster galaxies is $$11\\pm4$$% lower than the velocity dispersion of our total member population. We find good agreement with simulations regarding the shape of the relationship between the measured velocity dispersion and the fraction of passive vs. star-forming galaxies used to measure it, but we find a small offset between this relationship as measured in data and simulations in which suggests that our dispersions are systematically low by as much as 3\\% relative to simulations. We argue that this offset could be interpreted as a measurement of the effective velocity bias that describes the ratio of our observed velocity dispersions and the intrinsic velocity dispersion of dark matter particles in a published simulation result. Here, by measuring velocity bias in this way suggests that large spectroscopic surveys can improve dispersion-based mass-observable scaling relations for cosmology even in the face of velocity biases, by quantifying and ultimately calibrating them out.« less

  3. Velocity segregation and systematic biases in velocity dispersion estimates with the SPT-GMOS spectroscopic survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayliss, Matthew. B.; Zengo, Kyle; Ruel, Jonathan

    The velocity distribution of galaxies in clusters is not universal; rather, galaxies are segregated according to their spectral type and relative luminosity. We examine the velocity distributions of different populations of galaxies within 89 Sunyaev Zel'dovich (SZ) selected galaxy clusters spanningmore » $ 0.28 < z < 1.08$. Our sample is primarily draw from the SPT-GMOS spectroscopic survey, supplemented by additional published spectroscopy, resulting in a final spectroscopic sample of 4148 galaxy spectra---2868 cluster members. The velocity dispersion of star-forming cluster galaxies is $$17\\pm4$$% greater than that of passive cluster galaxies, and the velocity dispersion of bright ($$m < m^{*}-0.5$$) cluster galaxies is $$11\\pm4$$% lower than the velocity dispersion of our total member population. We find good agreement with simulations regarding the shape of the relationship between the measured velocity dispersion and the fraction of passive vs. star-forming galaxies used to measure it, but we find a small offset between this relationship as measured in data and simulations in which suggests that our dispersions are systematically low by as much as 3\\% relative to simulations. We argue that this offset could be interpreted as a measurement of the effective velocity bias that describes the ratio of our observed velocity dispersions and the intrinsic velocity dispersion of dark matter particles in a published simulation result. Here, by measuring velocity bias in this way suggests that large spectroscopic surveys can improve dispersion-based mass-observable scaling relations for cosmology even in the face of velocity biases, by quantifying and ultimately calibrating them out.« less

  4. Velocity Segregation and Systematic Biases In Velocity Dispersion Estimates with the SPT-GMOS Spectroscopic Survey

    NASA Astrophysics Data System (ADS)

    Bayliss, Matthew. B.; Zengo, Kyle; Ruel, Jonathan; Benson, Bradford A.; Bleem, Lindsey E.; Bocquet, Sebastian; Bulbul, Esra; Brodwin, Mark; Capasso, Raffaella; Chiu, I.-non; McDonald, Michael; Rapetti, David; Saro, Alex; Stalder, Brian; Stark, Antony A.; Strazzullo, Veronica; Stubbs, Christopher W.; Zenteno, Alfredo

    2017-03-01

    The velocity distribution of galaxies in clusters is not universal; rather, galaxies are segregated according to their spectral type and relative luminosity. We examine the velocity distributions of different populations of galaxies within 89 Sunyaev Zel’dovich (SZ) selected galaxy clusters spanning 0.28< z< 1.08. Our sample is primarily draw from the SPT-GMOS spectroscopic survey, supplemented by additional published spectroscopy, resulting in a final spectroscopic sample of 4148 galaxy spectra—2868 cluster members. The velocity dispersion of star-forming cluster galaxies is 17 ± 4% greater than that of passive cluster galaxies, and the velocity dispersion of bright (m< {m}* -0.5) cluster galaxies is 11 ± 4% lower than the velocity dispersion of our total member population. We find good agreement with simulations regarding the shape of the relationship between the measured velocity dispersion and the fraction of passive versus star-forming galaxies used to measure it, but we find a small offset between this relationship as measured in data and simulations, which suggests that our dispersions are systematically low by as much as 3% relative to simulations. We argue that this offset could be interpreted as a measurement of the effective velocity bias that describes the ratio of our observed velocity dispersions and the intrinsic velocity dispersion of dark matter particles in a published simulation result. Measuring velocity bias in this way suggests that large spectroscopic surveys can improve dispersion-based mass-observable scaling relations for cosmology even in the face of velocity biases, by quantifying and ultimately calibrating them out.

  5. Galaxy clusters in local Universe simulations without density constraints: a long uphill struggle

    NASA Astrophysics Data System (ADS)

    Sorce, Jenny G.

    2018-06-01

    Galaxy clusters are excellent cosmological probes provided that their formation and evolution within the large scale environment are precisely understood. Therefore studies with simulated galaxy clusters have flourished. However detailed comparisons between simulated and observed clusters and their population - the galaxies - are complicated by the diversity of clusters and their surrounding environment. An original way initiated by Bertschinger as early as 1987, to legitimize the one-to-one comparison exercise down to the details, is to produce simulations constrained to resemble the cluster under study within its large scale environment. Subsequently several methods have emerged to produce simulations that look like the local Universe. This paper highlights one of these methods and its essential steps to get simulations that not only resemble the local Large Scale Structure but also that host the local clusters. It includes a new modeling of the radial peculiar velocity uncertainties to remove the observed correlation between the decreases of the simulated cluster masses and of the amount of data used as constraints with the distance from us. This method has the particularity to use solely radial peculiar velocities as constraints: no additional density constraints are required to get local cluster simulacra. The new resulting simulations host dark matter halos that match the most prominent local clusters such as Coma. Zoom-in simulations of the latter and of a volume larger than the 30h-1 Mpc radius inner sphere become now possible to study local clusters and their effects. Mapping the local Sunyaev-Zel'dovich and Sachs-Wolfe effects can follow.

  6. Dark matter phenomenology of high-speed galaxy cluster collisions

    DOE PAGES

    Mishchenko, Yuriy; Ji, Chueng-Ryong

    2017-07-29

    Here, we perform a general computational analysis of possible post-collision mass distributions in high-speed galaxy cluster collisions in the presence of self-interacting dark matter. Using this analysis, we show that astrophysically weakly self-interacting dark matter can impart subtle yet measurable features in the mass distributions of colliding galaxy clusters even without significant disruptions to the dark matter halos of the colliding galaxy clusters themselves. Most profound such evidence is found to reside in the tails of dark matter halos’ distributions, in the space between the colliding galaxy clusters. Such features appear in our simulations as shells of scattered dark mattermore » expanding in alignment with the outgoing original galaxy clusters, contributing significant densities to projected mass distributions at large distances from collision centers and large scattering angles of up to 90°. Our simulations indicate that as much as 20% of the total collision’s mass may be deposited into such structures without noticeable disruptions to the main galaxy clusters. Such structures at large scattering angles are forbidden in purely gravitational high-speed galaxy cluster collisions.Convincing identification of such structures in real colliding galaxy clusters would be a clear indication of the self-interacting nature of dark matter. Our findings may offer an explanation for the ring-like dark matter feature recently identified in the long-range reconstructions of the mass distribution of the colliding galaxy cluster CL0024+017.« less

  7. Dark matter phenomenology of high-speed galaxy cluster collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishchenko, Yuriy; Ji, Chueng-Ryong

    Here, we perform a general computational analysis of possible post-collision mass distributions in high-speed galaxy cluster collisions in the presence of self-interacting dark matter. Using this analysis, we show that astrophysically weakly self-interacting dark matter can impart subtle yet measurable features in the mass distributions of colliding galaxy clusters even without significant disruptions to the dark matter halos of the colliding galaxy clusters themselves. Most profound such evidence is found to reside in the tails of dark matter halos’ distributions, in the space between the colliding galaxy clusters. Such features appear in our simulations as shells of scattered dark mattermore » expanding in alignment with the outgoing original galaxy clusters, contributing significant densities to projected mass distributions at large distances from collision centers and large scattering angles of up to 90°. Our simulations indicate that as much as 20% of the total collision’s mass may be deposited into such structures without noticeable disruptions to the main galaxy clusters. Such structures at large scattering angles are forbidden in purely gravitational high-speed galaxy cluster collisions.Convincing identification of such structures in real colliding galaxy clusters would be a clear indication of the self-interacting nature of dark matter. Our findings may offer an explanation for the ring-like dark matter feature recently identified in the long-range reconstructions of the mass distribution of the colliding galaxy cluster CL0024+017.« less

  8. The dwarf galaxy population of nearby galaxy clusters

    NASA Astrophysics Data System (ADS)

    Lisker, Thorsten; Wittmann, Carolin; Pak, Mina; Janz, Joachim; Bialas, Daniel; Peletier, Reynier; Grebel, Eva; Falcon Barroso, Jesus; Toloba, Elisa; Smakced Collaboration, Focus Collaboration

    2015-01-01

    The Fornax, Virgo, Ursa Major and Perseus galaxy clusters all have very different characteristics, in terms of their density, mass, and large-scale environment. We can regard these clusters as laboratories for studying environmental influence on galaxy evolution, using the sensitive low-mass galaxies as probes for external mechanisms. Here we report on recent and ongoing observational studies of the said clusters with imaging and spectroscopy, as well as on the interpretation of present-day cluster galaxy populations with the aid of cosmological simulations.Multicolor imaging data allow us to identify residual star formation in otherwise red early-type dwarf galaxies, which hold clues to the strength of gas stripping processes. Major-axis spectra and 2D kinematical maps provide insight regarding the amount of rotational support and how much dynamical heating a dwarf galaxy may have experienced. To this end, dedicated N-body simulations that follow the evolution of galaxies since early epochs reveal their path through parameter space, and can be compared to observations in order to understand the time-integrated effect of environmental influence.

  9. Cosmological Simulations of Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Borgani, Stefano; Kravtsov, Andrey

    2011-02-01

    We review recent progress in the description of the formation and evolution of galaxy clusters in a cosmological context by using state-of-art numerical simulations. We focus our presentation on the comparison between simulated and observed X-ray properties, while we will also discuss numerical predictions on properties of the galaxy population in clusters, as observed in the optical band. Many of the salient observed properties of clusters, such as scaling relations between X-ray observables and total mass, radial profiles of entropy and density of the intracluster gas, and radial distribution of galaxies are reproduced quite well. In particular, the outer regions of cluster at radii beyond about 10 per cent of the virial radius are quite regular and exhibit scaling with mass remarkably close to that expected in the simplest case in which only the action of gravity determines the evolution of the intra-cluster gas. However, simulations generally fail at reproducing the observed "cool core" structure of clusters: simulated clusters generally exhibit a significant excess of gas cooling in their central regions, which causes both an overestimate of the star formation in the cluster centers and incorrect temperature and entropy profiles. The total baryon fraction in clusters is below the mean universal value, by an amount which depends on the cluster-centric distance and the physics included in the simulations, with interesting tensions between observed stellar and gas fractions in clusters and predictions of simulations. Besides their important implications for the cosmological application of clusters, these puzzles also point towards the important role played by additional physical processes, beyond those already included in the simulations. We review the role played by these processes, along with the difficulty for their implementation, and discuss the outlook for the future progress in numerical modeling of clusters.

  10. First results from the IllustrisTNG simulations: matter and galaxy clustering

    NASA Astrophysics Data System (ADS)

    Springel, Volker; Pakmor, Rüdiger; Pillepich, Annalisa; Weinberger, Rainer; Nelson, Dylan; Hernquist, Lars; Vogelsberger, Mark; Genel, Shy; Torrey, Paul; Marinacci, Federico; Naiman, Jill

    2018-03-01

    Hydrodynamical simulations of galaxy formation have now reached sufficient volume to make precision predictions for clustering on cosmologically relevant scales. Here, we use our new IllustrisTNG simulations to study the non-linear correlation functions and power spectra of baryons, dark matter, galaxies, and haloes over an exceptionally large range of scales. We find that baryonic effects increase the clustering of dark matter on small scales and damp the total matter power spectrum on scales up to k ˜ 10 h Mpc-1 by 20 per cent. The non-linear two-point correlation function of the stellar mass is close to a power-law over a wide range of scales and approximately invariant in time from very high redshift to the present. The two-point correlation function of the simulated galaxies agrees well with Sloan Digital Sky Survey at its mean redshift z ≃ 0.1, both as a function of stellar mass and when split according to galaxy colour, apart from a mild excess in the clustering of red galaxies in the stellar mass range of109-1010 h-2 M⊙. Given this agreement, the TNG simulations can make valuable theoretical predictions for the clustering bias of different galaxy samples. We find that the clustering length of the galaxy autocorrelation function depends strongly on stellar mass and redshift. Its power-law slope γ is nearly invariant with stellar mass, but declines from γ ˜ 1.8 at redshift z = 0 to γ ˜ 1.6 at redshift z ˜ 1, beyond which the slope steepens again. We detect significant scale dependences in the bias of different observational tracers of large-scale structure, extending well into the range of the baryonic acoustic oscillations and causing nominal (yet fortunately correctable) shifts of the acoustic peaks of around ˜ 5 per cent.

  11. The galaxy luminosity function around groups

    NASA Astrophysics Data System (ADS)

    González, R. E.; Padilla, N. D.; Galaz, G.; Infante, L.

    2005-11-01

    We present a study on the variations of the luminosity function of galaxies around clusters in a numerical simulation with semi-analytic galaxies, attempting to detect these variations in the 2dF Galaxy Redshift Survey. We subdivide the simulation box into equal-density regions around clusters, which we assume can be achieved by selecting objects at a given normalized distance (r/rrms, where rrms is an estimate of the halo radius) from the group centre. The semi-analytic model predicts important variations in the luminosity function out to r/rrms~= 5. In brief, variations in the mass function of haloes around clusters (large dark matter haloes with M > 1012h-1Msolar) lead to cluster central regions that present a high abundance of bright galaxies (high M* values) as well as low-luminosity galaxies (high α) at r/rrms~= 3 there is a lack of bright galaxies, which shows the depletion of galaxies in the regions surrounding clusters (minimum in M* and α), and a tendency to constant luminosity function parameters at larger cluster-centric distances. We take into account the observational biases present in the real data by reproducing the peculiar velocity effect on the redshifts of galaxies in the simulation box, and also by producing mock catalogues. We find that excluding from the analysis galaxies which in projection are close to the centres of the groups provides results that are qualitatively consistent with the full simulation box results. When we apply this method to mock catalogues of the 2dF Galaxy Redshift Survey (2dFGRS) and the 2PIGG catalogue of groups, we find that the variations in the luminosity function are almost completely erased by the Finger of God effect; only a lack of bright galaxies at r/rrms~= 3 can be marginally detected in the mock catalogues. The results from the real 2dFGRS data show a clearer detection of a dip in M* and α for r/rrms= 3, consistent with the semi-analytic predictions.

  12. The Universe at Moderate Redshift

    NASA Technical Reports Server (NTRS)

    Cen, Renyue; Ostriker, Jeremiah P.

    1997-01-01

    The report covers the work done in the past year and a wide range of fields including properties of clusters of galaxies; topological properties of galaxy distributions in terms of galaxy types; patterns of gravitational nonlinear clustering process; development of a ray tracing algorithm to study the gravitational lensing phenomenon by galaxies, clusters and large-scale structure, one of whose applications being the effects of weak gravitational lensing by large-scale structure on the determination of q(0); the origin of magnetic fields on the galactic and cluster scales; the topological properties of Ly(alpha) clouds the Ly(alpha) optical depth distribution; clustering properties of Ly(alpha) clouds; and a determination (lower bound) of Omega(b) based on the observed Ly(alpha) forest flux distribution. In the coming year, we plan to continue the investigation of Ly(alpha) clouds using larger dynamic range (about a factor of two) and better simulations (with more input physics included) than what we have now. We will study the properties of galaxies on 1 - 100h(sup -1) Mpc scales using our state-of-the-art large scale galaxy formation simulations of various cosmological models, which will have a resolution about a factor of 5 (in each dimension) better than our current, best simulations. We will plan to study the properties of X-ray clusters using unprecedented, very high dynamic range (20,000) simulations which will enable us to resolve the cores of clusters while keeping the simulation volume sufficiently large to ensure a statistically fair sample of the objects of interest. The details of the last year's works are now described.

  13. A BARYONIC EFFECT ON THE MERGER TIMESCALE OF GALAXY CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Congyao; Yu, Qingjuan; Lu, Youjun, E-mail: yuqj@pku.edu.cn

    2016-04-01

    Accurate estimation of the merger timescales of galaxy clusters is important for understanding the cluster merger process and further understanding the formation and evolution of the large-scale structure of the universe. In this paper, we explore a baryonic effect on the merger timescale of galaxy clusters by using hydrodynamical simulations. We find that the baryons play an important role in accelerating the merger process. The merger timescale decreases upon increasing the gas fraction of galaxy clusters. For example, the merger timescale is shortened by a factor of up to 3 for merging clusters with gas fractions of 0.15, compared withmore » the timescale obtained with 0 gas fractions. The baryonic effect is significant for a wide range of merger parameters and is particularly more significant for nearly head-on mergers and high merging velocities. The baryonic effect on the merger timescale of galaxy clusters is expected to have an impact on the structure formation in the universe, such as the cluster mass function and massive substructures in galaxy clusters, and a bias of “no-gas” may exist in the results obtained from the dark matter-only cosmological simulations.« less

  14. SPMHD simulations of structure formation

    NASA Astrophysics Data System (ADS)

    Barnes, David J.; On, Alvina Y. L.; Wu, Kinwah; Kawata, Daisuke

    2018-05-01

    The intracluster medium of galaxy clusters is permeated by μ {G} magnetic fields. Observations with current and future facilities have the potential to illuminate the role of these magnetic fields play in the astrophysical processes of galaxy clusters. To obtain a greater understanding of how the initial seed fields evolve to the magnetic fields in the intracluster medium requires magnetohydrodynamic simulations. We critically assess the current smoothed particle magnetohydrodynamic (SPMHD) schemes, especially highlighting the impact of a hyperbolic divergence cleaning scheme and artificial resistivity switch on the magnetic field evolution in cosmological simulations of the formation of a galaxy cluster using the N-body/SPMHD code GCMHD++. The impact and performance of the cleaning scheme and two different schemes for the artificial resistivity switch is demonstrated via idealized test cases and cosmological simulations. We demonstrate that the hyperbolic divergence cleaning scheme is effective at suppressing the growth of the numerical divergence error of the magnetic field and should be applied to any SPMHD simulation. Although the artificial resistivity is important in the strong field regime, it can suppress the growth of the magnetic field in the weak field regime, such as galaxy clusters. With sufficient resolution, simulations with divergence cleaning can reproduce observed magnetic fields. We conclude that the cleaning scheme alone is sufficient for galaxy cluster simulations, but our results indicate that the SPMHD scheme must be carefully chosen depending on the regime of the magnetic field.

  15. Galaxy Cluster Bulk Flows and Collision Velocities in QUMOND

    NASA Astrophysics Data System (ADS)

    Katz, Harley; McGaugh, Stacy; Teuben, Peter; Angus, G. W.

    2013-07-01

    We examine the formation of clusters of galaxies in numerical simulations of a QUMOND cosmogony with massive sterile neutrinos. Clusters formed in these exploratory simulations develop higher velocities than those found in ΛCDM simulations. The bulk motions of clusters attain ~1000 km s-1 by low redshift, comparable to observations whereas ΛCDM simulated clusters tend to fall short. Similarly, high pairwise velocities are common in cluster-cluster collisions like the Bullet Cluster. There is also a propensity for the most massive clusters to be larger in QUMOND and to appear earlier than in ΛCDM, potentially providing an explanation for "pink elephants" like El Gordo. However, it is not obvious that the cluster mass function can be recovered.

  16. The effect of clulstering of galaxies on the statistics of gravitational lenses

    NASA Technical Reports Server (NTRS)

    Anderson, N.; Alcock, C.

    1986-01-01

    It is examined whether clustering of galaxies can significantly alter the statistical properties of gravitational lenses? Only models of clustering that resemble the observed distribution of galaxies in the properties of the two-point correlation function are considered. Monte-Carlo simulations of the imaging process are described. It is found that the effect of clustering is too small to be significant, unless the mass of the deflectors is so large that gravitational lenses become common occurrences. A special model is described which was concocted to optimize the effect of clustering on gravitational lensing but still resemble the observed distribution of galaxies; even this simulation did not satisfactorily produce large numbers of wide-angle lenses.

  17. Modelling baryonic effects on galaxy cluster mass profiles

    NASA Astrophysics Data System (ADS)

    Shirasaki, Masato; Lau, Erwin T.; Nagai, Daisuke

    2018-06-01

    Gravitational lensing is a powerful probe of the mass distribution of galaxy clusters and cosmology. However, accurate measurements of the cluster mass profiles are limited by uncertainties in cluster astrophysics. In this work, we present a physically motivated model of baryonic effects on the cluster mass profiles, which self-consistently takes into account the impact of baryons on the concentration as well as mass accretion histories of galaxy clusters. We calibrate this model using the Omega500 hydrodynamical cosmological simulations of galaxy clusters with varying baryonic physics. Our model will enable us to simultaneously constrain cluster mass, concentration, and cosmological parameters using stacked weak lensing measurements from upcoming optical cluster surveys.

  18. The Cluster-EAGLE project: velocity bias and the velocity dispersion-mass relation of cluster galaxies

    NASA Astrophysics Data System (ADS)

    Armitage, Thomas J.; Barnes, David J.; Kay, Scott T.; Bahé, Yannick M.; Dalla Vecchia, Claudio; Crain, Robert A.; Theuns, Tom

    2018-03-01

    We use the Cluster-EAGLE simulations to explore the velocity bias introduced when using galaxies, rather than dark matter particles, to estimate the velocity dispersion of a galaxy cluster, a property known to be tightly correlated with cluster mass. The simulations consist of 30 clusters spanning a mass range 14.0 ≤ log10(M200 c/M⊙) ≤ 15.4, with their sophisticated subgrid physics modelling and high numerical resolution (subkpc gravitational softening), making them ideal for this purpose. We find that selecting galaxies by their total mass results in a velocity dispersion that is 5-10 per cent higher than the dark matter particles. However, selecting galaxies by their stellar mass results in an almost unbiased (<5 per cent) estimator of the velocity dispersion. This result holds out to z = 1.5 and is relatively insensitive to the choice of cluster aperture, varying by less than 5 per cent between r500 c and r200 m. We show that the velocity bias is a function of the time spent by a galaxy inside the cluster environment. Selecting galaxies by their total mass results in a larger bias because a larger fraction of objects have only recently entered the cluster and these have a velocity bias above unity. Galaxies that entered more than 4 Gyr ago become progressively colder with time, as expected from dynamical friction. We conclude that velocity bias should not be a major issue when estimating cluster masses from kinematic methods.

  19. Optical signatures of high-redshift galaxy clusters

    NASA Technical Reports Server (NTRS)

    Evrard, August E.; Charlot, Stephane

    1994-01-01

    We combine an N-body and gasdynamic simulation of structure formation with an updated population synthesis code to explore the expected optical characteristics of a high-redshift cluster of galaxies. We examine a poor (2 keV) cluster formed in a biased, cold dark matter cosmology and employ simple, but plausible, threshold criteria to convert gas into stars. At z = 2, the forming cluster appears as a linear chain of very blue (g-r approximately equals 0) galaxies, with 15 objects brighter than r = 25 within a 1 square arcmin field of view. After 2 Gyr of evolution, the cluster viewed at z = 1 displays both freshly infalling blue galaxies and red galaxies robbed of recent accretion by interaction with the hot intracluster medium. The range in G-R colors is approximately 3 mag at z = 1, with the reddest objects lying at sites of highest galaxy density. We suggest that red, high-redshift galaxies lie in the cores of forming clusters and that their existence indicates the presence of a hot intracluster medium at redshifts z approximately equals 2. The simulated cluster viewed at z = 2 has several characteristics similar to the collection of faint, blue objects identified by Dressler et al. in a deep Hubble Space Telescope observation. The similarities provide some support for the interpretation of this collection as a high-redshift cluster of galaxies.

  20. Extracting Galaxy Cluster Gas Inhomogeneity from X-Ray Surface Brightness: A Statistical Approach and Application to Abell 3667

    NASA Astrophysics Data System (ADS)

    Kawahara, Hajime; Reese, Erik D.; Kitayama, Tetsu; Sasaki, Shin; Suto, Yasushi

    2008-11-01

    Our previous analysis indicates that small-scale fluctuations in the intracluster medium (ICM) from cosmological hydrodynamic simulations follow the lognormal probability density function. In order to test the lognormal nature of the ICM directly against X-ray observations of galaxy clusters, we develop a method of extracting statistical information about the three-dimensional properties of the fluctuations from the two-dimensional X-ray surface brightness. We first create a set of synthetic clusters with lognormal fluctuations around their mean profile given by spherical isothermal β-models, later considering polytropic temperature profiles as well. Performing mock observations of these synthetic clusters, we find that the resulting X-ray surface brightness fluctuations also follow the lognormal distribution fairly well. Systematic analysis of the synthetic clusters provides an empirical relation between the three-dimensional density fluctuations and the two-dimensional X-ray surface brightness. We analyze Chandra observations of the galaxy cluster Abell 3667, and find that its X-ray surface brightness fluctuations follow the lognormal distribution. While the lognormal model was originally motivated by cosmological hydrodynamic simulations, this is the first observational confirmation of the lognormal signature in a real cluster. Finally we check the synthetic cluster results against clusters from cosmological hydrodynamic simulations. As a result of the complex structure exhibited by simulated clusters, the empirical relation between the two- and three-dimensional fluctuation properties calibrated with synthetic clusters when applied to simulated clusters shows large scatter. Nevertheless we are able to reproduce the true value of the fluctuation amplitude of simulated clusters within a factor of 2 from their two-dimensional X-ray surface brightness alone. Our current methodology combined with existing observational data is useful in describing and inferring the statistical properties of the three-dimensional inhomogeneity in galaxy clusters.

  1. The impact of baryonic matter on gravitational lensing by galaxy clusters

    NASA Astrophysics Data System (ADS)

    Lee, Brandyn E.; King, Lindsay; Applegate, Douglas; McCarthy, Ian

    2017-01-01

    Since the bulk of the matter comprising galaxy clusters exists in the form of dark matter, gravitational N-body simulations have historically been an effective way to investigate large scale structure formation and the astrophysics of galaxy clusters. However, upcoming telescopes such as the Large Synoptic Survey Telescope are expected to have lower systematic errors than older generations, reducing measurement uncertainties and requiring that astrophysicists better quantify the impact of baryonic matter on the cluster lensing signal. Here we outline the effects of baryonic processes on cluster density profiles and on weak lensing mass and concentration estimates. Our analysis is done using clusters grown in the suite of cosmological hydrodynamical simulations known as cosmo-OWLS.

  2. Triggering active galactic nuclei in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Marshall, Madeline A.; Shabala, Stanislav S.; Krause, Martin G. H.; Pimbblet, Kevin A.; Croton, Darren J.; Owers, Matt S.

    2018-03-01

    We model the triggering of active galactic nuclei (AGN) in galaxy clusters using the semi-analytic galaxy formation model SAGE. We prescribe triggering methods based on the ram pressure galaxies experience as they move throughout the intracluster medium, which is hypothesized to trigger star formation and AGN activity. The clustercentric radius and velocity distribution of the simulated active galaxies produced by these models are compared with those of AGN and galaxies with intense star formation from a sample of low-redshift relaxed clusters from the Sloan Digital Sky Survey. The ram pressure triggering model that best explains the clustercentric radius and velocity distribution of these observed galaxies has AGN and star formation triggered if 2.5 × 10-14 Pa < Pram < 2.5 × 10-13 Pa and Pram > 2Pinternal; this is consistent with expectations from hydrodynamical simulations of ram-pressure-induced star formation. Our results show that ram pressure is likely to be an important mechanism for triggering star formation and AGN activity in clusters.

  3. The effect of gas dynamics on semi-analytic modelling of cluster galaxies

    NASA Astrophysics Data System (ADS)

    Saro, A.; De Lucia, G.; Dolag, K.; Borgani, S.

    2008-12-01

    We study the degree to which non-radiative gas dynamics affect the merger histories of haloes along with subsequent predictions from a semi-analytic model (SAM) of galaxy formation. To this aim, we use a sample of dark matter only and non-radiative smooth particle hydrodynamics (SPH) simulations of four massive clusters. The presence of gas-dynamical processes (e.g. ram pressure from the hot intra-cluster atmosphere) makes haloes more fragile in the runs which include gas. This results in a 25 per cent decrease in the total number of subhaloes at z = 0. The impact on the galaxy population predicted by SAMs is complicated by the presence of `orphan' galaxies, i.e. galaxies whose parent substructures are reduced below the resolution limit of the simulation. In the model employed in our study, these galaxies survive (unaffected by the tidal stripping process) for a residual merging time that is computed using a variation of the Chandrasekhar formula. Due to ram-pressure stripping, haloes in gas simulations tend to be less massive than their counterparts in the dark matter simulations. The resulting merging times for satellite galaxies are then longer in these simulations. On the other hand, the presence of gas influences the orbits of haloes making them on average more circular and therefore reducing the estimated merging times with respect to the dark matter only simulation. This effect is particularly significant for the most massive satellites and is (at least in part) responsible for the fact that brightest cluster galaxies in runs with gas have stellar masses which are about 25 per cent larger than those obtained from dark matter only simulations. Our results show that gas dynamics has only a marginal impact on the statistical properties of the galaxy population, but that its impact on the orbits and merging times of haloes strongly influences the assembly of the most massive galaxies.

  4. GALAXY CLUSTER BULK FLOWS AND COLLISION VELOCITIES IN QUMOND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katz, Harley; McGaugh, Stacy; Teuben, Peter

    We examine the formation of clusters of galaxies in numerical simulations of a QUMOND cosmogony with massive sterile neutrinos. Clusters formed in these exploratory simulations develop higher velocities than those found in {Lambda}CDM simulations. The bulk motions of clusters attain {approx}1000 km s{sup -1} by low redshift, comparable to observations whereas {Lambda}CDM simulated clusters tend to fall short. Similarly, high pairwise velocities are common in cluster-cluster collisions like the Bullet Cluster. There is also a propensity for the most massive clusters to be larger in QUMOND and to appear earlier than in {Lambda}CDM, potentially providing an explanation for ''pink elephants''more » like El Gordo. However, it is not obvious that the cluster mass function can be recovered.« less

  5. Stellar Populations and Radial Migrations in Virgo Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Roediger, Joel C.; Courteau, Stéphane; Sánchez-Blázquez, Patricia; McDonald, Michael

    2012-10-01

    We present new stellar age profiles, derived from well-resolved optical and near-infrared images of 64 Virgo cluster disk galaxies, whose analysis poses a challenge for current disk galaxy formation models. Our ability to break the age-metallicity degeneracy and the significant size of our sample represent key improvements over complementary studies of field disk galaxies. Our results can be summarized as follows: first, and contrary to observations of disk galaxies in the field, these cluster galaxies are distributed almost equally amongst the three main types of disk galaxy luminosity profiles (I/II/III), indicating that the formation and/or survival of Type II breaks is suppressed within the cluster environment. Second, we find examples of statistically significant inversions ("U-shapes") in the age profiles of all three disk galaxy types, reminiscent of predictions from high-resolution simulations of classically truncated Type II disks in the field. These features characterize the age profiles for only about a third (<=36%) of each disk galaxy type in our sample. An even smaller fraction of cluster disks (~11% of the total sample) exhibit age profiles that decrease outward (i.e., negative age gradients). Instead, flat and/or positive age gradients prevail (>=50%) within our Type I, II, and III subsamples. These observations thus suggest that while stellar migrations and inside-out growth can play a significant role in the evolution of all disk galaxy types, other factors contributing to the evolution of galaxies can overwhelm the predicted signatures of these processes. We interpret our observations through a scenario whereby Virgo cluster disk galaxies formed initially like their brethren in the field but which, upon falling into the cluster, were transformed into their present state through external processes linked to the environment (e.g., ram-pressure stripping and harassment). Current disk galaxy formation models, which have largely focused on field galaxies, fail to reproduce these results, thus calling for adequate hydrodynamical simulations of dense galaxy environments if we are to understand cluster disks. The current paper highlights numerous constraints for such simulations. In the Appendix, we confirm the claim by Erwin et al. that Type II breaks are absent in Virgo cluster S0s and discuss the detection of Type III breaks in such galaxies.

  6. Cold fronts and shocks formed by gas streams in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Zinger, E.; Dekel, A.; Birnboim, Y.; Nagai, D.; Lau, E.; Kravtsov, A. V.

    2018-05-01

    Cold fronts (CFs) and shocks are hallmarks of the complex intra-cluster medium (ICM) in galaxy clusters. They are thought to occur due to gas motions within the ICM and are often attributed to galaxy mergers within the cluster. Using hydro-cosmological simulations of clusters of galaxies, we show that collisions of inflowing gas streams, seen to penetrate to the very centre of about half the clusters, offer an additional mechanism for the formation of shocks and CFs in cluster cores. Unlike episodic merger events, a gas stream inflow persists over a period of several Gyr and it could generate a particular pattern of multiple CFs and shocks.

  7. Formation of Cool Cores in Galaxy Clusters via Hierarchical Mergers

    NASA Astrophysics Data System (ADS)

    Motl, Patrick M.; Burns, Jack O.; Loken, Chris; Norman, Michael L.; Bryan, Greg

    2004-05-01

    We present a new scenario for the formation of cool cores in rich galaxy clusters, based on results from recent high spatial dynamic range, adaptive mesh Eulerian hydrodynamic simulations of large-scale structure formation. We find that cores of cool gas, material that would be identified as a classical cooling flow on the basis of its X-ray luminosity excess and temperature profile, are built from the accretion of discrete stable subclusters. Any ``cooling flow'' present is overwhelmed by the velocity field within the cluster; the bulk flow of gas through the cluster typically has speeds up to about 2000 km s-1, and significant rotation is frequently present in the cluster core. The inclusion of consistent initial cosmological conditions for the cluster within its surrounding supercluster environment is crucial when the evolution of cool cores in rich galaxy clusters is simulated. This new model for the hierarchical assembly of cool gas naturally explains the high frequency of cool cores in rich galaxy clusters, despite the fact that a majority of these clusters show evidence of substructure that is believed to arise from recent merger activity. Furthermore, our simulations generate complex cluster cores in concordance with recent X-ray observations of cool fronts, cool ``bullets,'' and filaments in a number of galaxy clusters. Our simulations were computed with a coupled N-body, Eulerian, adaptive mesh refinement, hydrodynamics cosmology code that properly treats the effects of shocks and radiative cooling by the gas. We employ up to seven levels of refinement to attain a peak resolution of 15.6 kpc within a volume 256 Mpc on a side and assume a standard ΛCDM cosmology.

  8. Integrated HI emission in galaxy groups and clusters

    NASA Astrophysics Data System (ADS)

    Ai, Mei; Zhu, Ming; Fu, Jian

    2017-09-01

    The integrated HI emission from hierarchical structures such as groups and clusters of galaxies can be detected by FAST at intermediate redshifts. Here we propose to use FAST to study the evolution of the global HI content of clusters and groups over cosmic time by measuring their integrated HI emissions. We use the Virgo Cluster as an example to estimate the detection limit of FAST, and have estimated the integration time to detect a Virgo type cluster at different redshifts (from z = 0.1 to z = 1.5).We have also employed a semi-analytic model (SAM) to simulate the evolution of HI contents in galaxy clusters. Our simulations suggest that the HI mass of a Virgo-like cluster could be 2-3 times higher and the physical size could be more than 50% smaller when redshift increases from z = 0.3 to z = 1. Thus the integration time could be reduced significantly and gas rich clusters at intermediate redshifts can be detected by FAST in less than 2 hours of integration time. For the local Universe, we have also used SAM simulations to create mock catalogs of clusters to predict the outcomes from FAST all sky surveys. Comparing with the optically selected catalogs derived by cross matching the galaxy catalogs from the SDSS survey and the ALFALFA survey, we find that the HI mass distribution of the mock catalog with 20 s of integration time agrees well with that of observations. However, the mock catalog with 120 s of integration time predicts many more groups and clusters that contain a population of low mass HI galaxies not detected by the ALFALFA survey. A future deep HI blind sky survey with FAST would be able to test such prediction and set constraints on the numerical simulation models. The observational strategy and sample selections for future FAST observations of galaxy clusters at high redshifts are also discussed.

  9. The dynamics of z ~ 1 clusters of galaxies from the GCLASS survey

    NASA Astrophysics Data System (ADS)

    Biviano, A.; van der Burg, R. F. J.; Muzzin, A.; Sartoris, B.; Wilson, G.; Yee, H. K. C.

    2016-10-01

    Context. The dynamics of clusters of galaxies and its evolution provide information on their formation and growth, on the nature of dark matter and on the evolution of the baryonic components. Poor observational constraints exist so far on the dynamics of clusters at redshift z > 0.8. Aims: We aim to constrain the internal dynamics of clusters of galaxies at redshift z ~ 1, namely their mass profile M(r), velocity anisotropy profile β(r), and pseudo-phase-space density profiles Q(r) and Qr(r), obtained from the ratio between the mass density profile and the third power of the (total and, respectively, radial) velocity dispersion profiles of cluster galaxies. Methods: We used the spectroscopic and photometric data-set of 10 clusters at 0.87 < z < 1.34 from the Gemini Cluster Astrophysics Spectroscopic Survey (GCLASS). We determined the individual cluster masses from their velocity dispersions, then stack the clusters in projected phase-space. We investigated the internal dynamics of this stack cluster, using the spatial and velocity distribution of its member galaxies. We determined the stack cluster M(r) using the MAMPOSSt method, and its β(r) by direct inversion of the Jeans equation. The procedures used to determine the two aforementioned profiles also allowed us to determine Q(r) and Qr(r). Results: Several M(r) models are statistically acceptable for the stack cluster (Burkert, Einasto, Hernquist, NFW). The stack cluster total mass concentration, c ≡ r200/r-2 = 4.0-0.6+1.0, is in agreement with theoretical expectations. The total mass distribution is less concentrated than both the cluster stellar-mass and the cluster galaxies distributions. The stack cluster β(r) indicates that galaxy orbits are isotropic near the cluster center and become increasingly radially elongated with increasing cluster-centric distance. Passive and star-forming galaxies have similar β(r). The observed β(r) is similar to that of dark matter particles in simulated cosmological halos. Q(r) and Qr(r) are almost power-law relations with slopes similar to those predicted from numerical simulations of dark matter halos. Conclusions: Comparing our results with those obtained for lower-redshift clusters, we conclude that the evolution of the concentration-total mass relation and pseudo-phase-space density profiles agree with the expectations from ΛCDM cosmological simulations. The fact that Q(r) and Qr(r) already follow the theoretical expectations in z ~ 1 clusters suggest these profiles are the result of rapid dynamical relaxation processes, such as violent relaxation. The different concentrations of the total and stellar mass distribution, and their subsequent evolution, can be explained by merging processes of central galaxies leading to the formation of the brightest cluster galaxy. The orbits of passive cluster galaxies appear to become more isotropic with time, while those of star-forming galaxies do not evolve, presumably because star-formation is quenched on a shorter timescale than that required for orbital isotropization.

  10. Topology of Large-Scale Structure by Galaxy Type: Hydrodynamic Simulations

    NASA Astrophysics Data System (ADS)

    Gott, J. Richard, III; Cen, Renyue; Ostriker, Jeremiah P.

    1996-07-01

    The topology of large-scale structure is studied as a function of galaxy type using the genus statistic. In hydrodynamical cosmological cold dark matter simulations, galaxies form on caustic surfaces (Zeldovich pancakes) and then slowly drain onto filaments and clusters. The earliest forming galaxies in the simulations (defined as "ellipticals") are thus seen at the present epoch preferentially in clusters (tending toward a meatball topology), while the latest forming galaxies (defined as "spirals") are seen currently in a spongelike topology. The topology is measured by the genus (number of "doughnut" holes minus number of isolated regions) of the smoothed density-contour surfaces. The measured genus curve for all galaxies as a function of density obeys approximately the theoretical curve expected for random- phase initial conditions, but the early-forming elliptical galaxies show a shift toward a meatball topology relative to the late-forming spirals. Simulations using standard biasing schemes fail to show such an effect. Large observational samples separated by galaxy type could be used to test for this effect.

  11. Adding Spice to Vanilla LCDM simulations: Alternative Cosmologies & Lighting up Simulations

    NASA Astrophysics Data System (ADS)

    Jahan Elahi, Pascal

    2015-08-01

    Cold Dark Matter simulations have formed the backbone of our theoretical understanding of cosmological structure formation. Predictions from the Lambda Cold Dark Matter (LCDM) cosmology, where the Universe contains two dark components, namely Dark Matter & Dark Energy, are in excellent agreement with the Large-Scale Structures observed, i.e., the distribution of galaxies across cosmic time. However, this paradigm is in tension with observations at small-scales, from the number and properties of satellite galaxies around galaxies such as the Milky Way and Andromeda, to the lensing statistics of massive galaxy clusters. I will present several alternative models of cosmology (from Warm Dark Matter to coupled Dark Matter-Dark Energy models) and how they compare to vanilla LCDM by studying formation of groups and clusters dark matter only and adiabatic hydrodynamical zoom simulations. I will show how modifications to the dark sector can lead to some surprising results. For example, Warm Dark Matter, so often examined on small satellite galaxies scales, can be probed observationally using weak lensing at cluster scales. Coupled dark sectors, where dark matter decays into dark energy and experiences an effective gravitational potential that differs from that experienced by normal matter, is effectively hidden away from direct observations of galaxies. Studies like these are vital if we are to pinpoint observations which can look for unique signatures of the physics that governs the hidden Universe. Finally, I will discuss how all of these predictions are affected by uncertain galaxy formation physics. I will present results from a major comparison study of numerous hydrodynamical codes, the nIFTY cluster comparison project. This comparison aims to understand the code-to-code scatter in the properties of dark matter haloes and the galaxies that reside in them. We find that even in purely adiabatic simulations, different codes form clusters with very different X-ray profiles. The galaxies that form in these simulations, which all use codes that attempt to reproduce the observed galaxy population via not unreasonable subgrid physics, vary in stellar mass, morphology and gas fraction, sometimes by an order of magnitude. I will end with a discussion of precision cosmology in light of these results.

  12. Galaxy clusters as hydrodynamics laboratories

    NASA Astrophysics Data System (ADS)

    Roediger, Elke; Sheardown, Alexander; Fish, Thomas; ZuHone, John; Hunt, Matthew; Su, Yuanyuan; Kraft, Ralph P.; Nulsen, Paul; Forman, William R.; Churazov, Eugene; Randall, Scott W.; Jones, Christine; Machacek, Marie E.

    2017-08-01

    The intra-cluster medium (ICM) of galaxy clusters shows a wealth of hydrodynamical features that trace the growth of clusters via the infall of galaxies or smaller subclusters. Such hydrodynamical features include the wakes of the infalling objects as well as the interfaces between the host cluster’s ICM and the atmosphere of the infalling object. Furthermore, the cluster dynamics can be traced by merger shocks, bow shocks, and sloshing motions of the ICM.The characteristics of these dynamical features, e.g., the direction, length, brightness, and temperature of the galaxies' or subclusters' gas tails varies significantly between different objects. This could be due to either dynamical conditions or ICM transport coefficients such as viscosity and thermal conductivity. For example, the cool long gas tails of of some infalling galaxies and groups have been attributed to a substantial ICM viscosity suppressing mixing of the stripped galaxy or group gas with the hotter ambient ICM.Using hydrodynamical simulations of minor mergers we show, however, that these features can be explained naturally by the dynamical conditions of each particular galaxy or group infall. Specifically, we identify observable features to distinguish the first and second infall of a galaxy or group into its host cluster as well as characteristics during apocentre passage. Comparing our simulations with observations, we can explain several puzzling observations such as the long and cold tail of M86 in Virgo and the very long and tangentially oriented tail of the group LEDA 87445 in Hydra A.Using our simulations, we also assess the validity of the stagnation pressure method that is widely used to determine an infalling galaxy's velocity. We show that near pericentre passage the method gives reasonable results, but near apocentre it is not easily applicable.

  13. The Large-scale Structure of the Universe: Probes of Cosmology and Structure Formation

    NASA Astrophysics Data System (ADS)

    Noh, Yookyung

    The usefulness of large-scale structure as a probe of cosmology and structure formation is increasing as large deep surveys in multi-wavelength bands are becoming possible. The observational analysis of large-scale structure guided by large volume numerical simulations are beginning to offer us complementary information and crosschecks of cosmological parameters estimated from the anisotropies in Cosmic Microwave Background (CMB) radiation. Understanding structure formation and evolution and even galaxy formation history is also being aided by observations of different redshift snapshots of the Universe, using various tracers of large-scale structure. This dissertation work covers aspects of large-scale structure from the baryon acoustic oscillation scale, to that of large scale filaments and galaxy clusters. First, I discuss a large- scale structure use for high precision cosmology. I investigate the reconstruction of Baryon Acoustic Oscillation (BAO) peak within the context of Lagrangian perturbation theory, testing its validity in a large suite of cosmological volume N-body simulations. Then I consider galaxy clusters and the large scale filaments surrounding them in a high resolution N-body simulation. I investigate the geometrical properties of galaxy cluster neighborhoods, focusing on the filaments connected to clusters. Using mock observations of galaxy clusters, I explore the correlations of scatter in galaxy cluster mass estimates from multi-wavelength observations and different measurement techniques. I also examine the sources of the correlated scatter by considering the intrinsic and environmental properties of clusters.

  14. Distributions of Gas and Galaxies from Galaxy Clusters to Larger Scales

    NASA Astrophysics Data System (ADS)

    Patej, Anna

    2017-01-01

    We address the distributions of gas and galaxies on three scales: the outskirts of galaxy clusters, the clustering of galaxies on large scales, and the extremes of the galaxy distribution. In the outskirts of galaxy clusters, long-standing analytical models of structure formation and recent simulations predict the existence of density jumps in the gas and dark matter profiles. We use these features to derive models for the gas density profile, obtaining a simple fiducial model that is in agreement with both observations of cluster interiors and simulations of the outskirts. We next consider the galaxy density profiles of clusters; under the assumption that the galaxies in cluster outskirts follow similar collisionless dynamics as the dark matter, their distribution should show a steep jump as well. We examine the profiles of a low-redshift sample of clusters and groups, finding evidence for the jump in some of these clusters. Moving to larger scales where massive galaxies of different types are expected to trace the same large-scale structure, we present a test of this prediction by measuring the clustering of red and blue galaxies at z 0.6, finding low stochasticity between the two populations. These results address a key source of systematic uncertainty - understanding how target populations of galaxies trace large-scale structure - in galaxy redshift surveys. Such surveys use baryon acoustic oscillations (BAO) as a cosmological probe, but are limited by the expense of obtaining sufficiently dense spectroscopy. With the intention of leveraging upcoming deep imaging data, we develop a new method of detecting the BAO in sparse spectroscopic samples via cross-correlation with a dense photometric catalog. This method will permit the extension of BAO measurements to higher redshifts than possible with the existing spectroscopy alone. Lastly, we connect galaxies near and far: the Local Group dwarfs and the high redshift galaxies observed by Hubble and Spitzer. We examine how the local dwarfs may have appeared in the past and compare their properties to the detection limits of the upcoming James Webb Space Telescope (JWST), finding that JWST should be able to detect galaxies similar to the progenitors of a few of the brightest of the local galaxies, revealing a hitherto unobserved population of galaxies at high redshifts.

  15. Cosmological Hydrodynamics on a Moving Mesh

    NASA Astrophysics Data System (ADS)

    Hernquist, Lars

    We propose to construct a model for the visible Universe using cosmological simulations of structure formation. Our simulations will include both dark matter and baryons, and will employ two entirely different schemes for evolving the gas: smoothed particle hydrodynamics (SPH) and a moving mesh approach as incorporated in the new code, AREPO. By performing simulations that are otherwise nearly identical, except for the hydrodynamics solver, we will isolate and understand differences in the properties of galaxies, galaxy groups and clusters, and the intergalactic medium caused by the computational approach that have plagued efforts to understand galaxy formation for nearly two decades. By performing simulations at different levels of resolution and with increasingly complex treatments of the gas physics, we will identify the results that are converged numerically and that are robust with respect to variations in unresolved physical processes, especially those related to star formation, black hole growth, and related feedback effects. In this manner, we aim to undertake a research program that will redefine the state of the art in cosmological hydrodynamics and galaxy formation. In particular, we will focus our scientific efforts on understanding: 1) the formation of galactic disks in a cosmological context; 2) the physical state of diffuse gas in galaxy clusters and groups so that they can be used as high-precision probes of cosmology; 3) the nature of gas inflows into galaxy halos and the subsequent accretion of gas by forming disks; 4) the co-evolution of galaxies and galaxy clusters with their central supermassive black holes and the implications of related feedback for galaxy evolution and the dichotomy between blue and red galaxies; 5) the physical state of the intergalactic medium (IGM) and the evolution of the metallicity of the IGM; and 6) the reaction of dark matter around galaxies to galaxy formation. Our proposed work will be of immediate significance for several NASA missions. Our simulations will allow a detailed comparison of observed CHANDRA X-ray groups and clusters with state-of-the-art theoretical models. Scaling relations and their evolution with redshift can constrain the processes occurring in cluster centers. At higher energies, data from the FERMI gamma-ray satellite combined with our simulated data set will permit us to estimate the non- thermal pressure support in clusters due to cosmic rays. Another science goal of FERMI is the search for annihilation radiation produced by dark matter. The high resolution of our proposed calculations gives us the capability of making predictions for the annihilation signature from large-scale structure. Our proposed work is also relevant to upcoming missions like the James Webb Space Telescope (JWST). With our scheme, we will study the morphological evolution of galaxies in a full cosmological setting for the first time. JWST is specifically designed to observe the high redshift structure of emerging galaxies and their subsequent evolution. Our simulations will thus provide an indispensable tool for understanding JWST observations. We will make our simulations available to the community, accessible through a web-based interface, including the simulation data as well as galaxy catalogs, images, and videos generated during the course of the calculations. This will be the first time that such a dataset, drawn from a hydrodynamical model of the Universe, will be made public. As we anticipate that our simulations will have numerous applications in addition to those listed above, this will ensure that our work will have the greatest possible impact by fostering research on diverse problems related to the formation of galaxies and larger-scale structures.

  16. Adding Spice to Vanilla LCDM simulations: From Alternative Cosmologies to Lighting up Galaxies

    NASA Astrophysics Data System (ADS)

    Jahan Elahi, Pascal

    2015-08-01

    Cold Dark Matter simulations have formed the backbone of our theoretical understanding of cosmological structure formation. Predictions from the Lambda Cold Dark Matter (LCDM) cosmology, in which the Universe contains two major dark components, namely Dark Matter and Dark Energy, are in excellent agreement with the Large-Scale Structures observed, i.e., the distribution of galaxies across cosmic time. However, this paradigm is in tension with observations at small-scales, from the number and properties of satellite galaxies around galaxies such as the Milky Way and Andromeda, to the lensing statistics of massive galaxy clusters. I will present several alternative models of cosmology (from Warm Dark Matter to coupled Dark Matter-Dark Energy models) and how they compare to vanilla LCDM by studying formation of groups and clusters dark matter only and adiabatic hydrodynamical zoom simulations. I will show how modifications to the dark sector can lead to some surprising results. For example, Warm Dark Matter, so often examined on small satellite galaxies scales, can be probed observationally using weak lensing at cluster scales. Coupled dark sectors, where dark matter decays into dark energy and experiences an effective gravitational potential that differs from that experienced by normal matter, is effectively hidden away from direct observations of galaxies. Studies like these are vital if we are to pinpoint observations which can look for unique signatures of the physics that governs the hidden Universe. Of course, all of these predictions are unfortunately affected by uncertain galaxy formation physics. I will end by presenting results from a comparison study of numerous hydrodynamical codes, the nIFTY cluster comparison project, and how even how purely adiabatic simulations run with different codes give in quite different galaxy populations. The galaxies that form in these simulations, which all attempt to reproduce the observed galaxy population via not unreasonable subgrid physics, can and do vary in stellar mass, morphology and gas fraction.

  17. Intra-cluster Globular Clusters in a Simulated Galaxy Cluster

    NASA Astrophysics Data System (ADS)

    Ramos-Almendares, Felipe; Abadi, Mario; Muriel, Hernán; Coenda, Valeria

    2018-01-01

    Using a cosmological dark matter simulation of a galaxy-cluster halo, we follow the temporal evolution of its globular cluster population. To mimic the red and blue globular cluster populations, we select at high redshift (z∼ 1) two sets of particles from individual galactic halos constrained by the fact that, at redshift z = 0, they have density profiles similar to observed ones. At redshift z = 0, approximately 60% of our selected globular clusters were removed from their original halos building up the intra-cluster globular cluster population, while the remaining 40% are still gravitationally bound to their original galactic halos. As the blue population is more extended than the red one, the intra-cluster globular cluster population is dominated by blue globular clusters, with a relative fraction that grows from 60% at redshift z = 0 up to 83% for redshift z∼ 2. In agreement with observational results for the Virgo galaxy cluster, the blue intra-cluster globular cluster population is more spatially extended than the red one, pointing to a tidally disrupted origin.

  18. Thermal Conduction in Simulated Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Dolag, K.; Jubelgas, M.; Springel, V.; Borgani, S.; Rasia, E.

    2004-05-01

    We study the formation of clusters of galaxies using high-resolution hydrodynamic cosmological simulations that include the effect of thermal conduction with an effective isotropic conductivity of 1/3 the classical Spitzer value. We find that, for both a hot (TLX~=12 keV) and several cold (TLX~=2 keV) galaxy clusters, the baryonic fraction converted into stars does not change significantly when thermal conduction is included. However, the temperature profiles are modified, particularly in our simulated hot system, where an extended isothermal core is readily formed. As a consequence of heat flowing from the inner regions of the cluster both to its outer parts and into its innermost resolved regions, the entropy profile is altered as well. This effect is almost negligible for the cold cluster, as expected based on the strong temperature dependence of the conductivity. Our results demonstrate that while thermal conduction can have a significant influence on the properties of the intracluster medium (ICM) of rich clusters, it appears unlikely to provide by itself a solution for the overcooling problem in clusters or to explain the current discrepancies between the observed and simulated properties of the ICM.

  19. A Universe of ultradiffuse galaxies: theoretical predictions from ΛCDM simulations

    NASA Astrophysics Data System (ADS)

    Rong, Yu; Guo, Qi; Gao, Liang; Liao, Shihong; Xie, Lizhi; Puzia, Thomas H.; Sun, Shuangpeng; Pan, Jun

    2017-10-01

    A particular population of galaxies have drawn much interest recently, which are as faint as typical dwarf galaxies but have the sizes as large as L* galaxies, the so called ultradiffuse galaxies (UDGs). The lack of tidal features of UDGs in dense environments suggests that their host haloes are perhaps as massive as that of the Milky Way. On the other hand, galaxy formation efficiency should be much higher in the haloes of such masses. Here, we use the model galaxy catalogue generated by populating two large simulations: the Millennium-II cosmological simulation and Phoenix simulations of nine big clusters with the semi-analytic galaxy formation model. This model reproduces remarkably well the observed properties of UDGs in the nearby clusters, including the abundance, profile, colour and morphology, etc. We search for UDG candidates using the public data and find two UDG candidates in our Local Group and 23 in our Local Volume, in excellent agreement with the model predictions. We demonstrate that UDGs are genuine dwarf galaxies, formed in the haloes of ˜1010 M⊙. It is the combination of the late formation time and high spins of the host haloes that results in the spatially extended feature of this particular population. The lack of tidal disruption features of UDGs in clusters can also be explained by their late infall-time.

  20. Discovery of the Kinematic Alignment of Early-type Galaxies in the Virgo Cluster

    NASA Astrophysics Data System (ADS)

    Kim, Suk; Jeong, Hyunjin; Lee, Jaehyun; Lee, Youngdae; Joo, Seok-Joo; Kim, Hak-Sub; Rey, Soo-Chang

    2018-06-01

    Using the kinematic position angles (PAkin), an accurate indicator for the spin axis of a galaxy, obtained from the ATLAS3D integral-field-unit (IFU) spectroscopic data, we discovered that 57 Virgo early-type galaxies tend to prefer the specific PAkin values of 20° and 100°, suggesting that they are kinematically aligned with each other. These kinematic alignment angles are further associated with the directions of the two distinct axes of the Virgo cluster extending east–west and north–south, strongly suggesting that the two distinct axes are the filamentary structures within the cluster as a trace of infall patterns of galaxies. Given that the spin axis of a massive early-type galaxy does not change easily even in clusters from the hydrodynamic simulations, Virgo early-type galaxies are likely to fall into the cluster along the filamentary structures while maintaining their angular momentum. This implies that many early-type galaxies in clusters are formed in filaments via major mergers before subsequently falling into the cluster. Investigating the kinematic alignment in other clusters will allow us to understand the formation of galaxy clusters and early-type galaxies.

  1. Rhapsody-G simulations I: the cool cores, hot gas and stellar content of massive galaxy clusters

    DOE PAGES

    Hahn, Oliver; Martizzi, Davide; Wu, Hao -Yi; ...

    2017-01-25

    We present the rhapsody-g suite of cosmological hydrodynamic zoom simulations of 10 massive galaxy clusters at the M vir ~10 15 M ⊙ scale. These simulations include cooling and subresolution models for star formation and stellar and supermassive black hole feedback. The sample is selected to capture the whole gamut of assembly histories that produce clusters of similar final mass. We present an overview of the successes and shortcomings of such simulations in reproducing both the stellar properties of galaxies as well as properties of the hot plasma in clusters. In our simulations, a long-lived cool-core/non-cool-core dichotomy arises naturally, andmore » the emergence of non-cool cores is related to low angular momentum major mergers. Nevertheless, the cool-core clusters exhibit a low central entropy compared to observations, which cannot be alleviated by thermal active galactic nuclei feedback. For cluster scaling relations, we find that the simulations match well the M 500–Y 500 scaling of Planck Sunyaev–Zeldovich clusters but deviate somewhat from the observed X-ray luminosity and temperature scaling relations in the sense of being slightly too bright and too cool at fixed mass, respectively. Stars are produced at an efficiency consistent with abundance-matching constraints and central galaxies have star formation rates consistent with recent observations. In conclusion, while our simulations thus match various key properties remarkably well, we conclude that the shortcomings strongly suggest an important role for non-thermal processes (through feedback or otherwise) or thermal conduction in shaping the intracluster medium.« less

  2. rhapsody-g simulations - I. The cool cores, hot gas and stellar content of massive galaxy clusters

    NASA Astrophysics Data System (ADS)

    Hahn, Oliver; Martizzi, Davide; Wu, Hao-Yi; Evrard, August E.; Teyssier, Romain; Wechsler, Risa H.

    2017-09-01

    We present the rhapsody-g suite of cosmological hydrodynamic zoom simulations of 10 massive galaxy clusters at the Mvir ˜ 1015 M⊙ scale. These simulations include cooling and subresolution models for star formation and stellar and supermassive black hole feedback. The sample is selected to capture the whole gamut of assembly histories that produce clusters of similar final mass. We present an overview of the successes and shortcomings of such simulations in reproducing both the stellar properties of galaxies as well as properties of the hot plasma in clusters. In our simulations, a long-lived cool-core/non-cool-core dichotomy arises naturally, and the emergence of non-cool cores is related to low angular momentum major mergers. Nevertheless, the cool-core clusters exhibit a low central entropy compared to observations, which cannot be alleviated by thermal active galactic nuclei feedback. For cluster scaling relations, we find that the simulations match well the M500-Y500 scaling of Planck Sunyaev-Zeldovich clusters but deviate somewhat from the observed X-ray luminosity and temperature scaling relations in the sense of being slightly too bright and too cool at fixed mass, respectively. Stars are produced at an efficiency consistent with abundance-matching constraints and central galaxies have star formation rates consistent with recent observations. While our simulations thus match various key properties remarkably well, we conclude that the shortcomings strongly suggest an important role for non-thermal processes (through feedback or otherwise) or thermal conduction in shaping the intracluster medium.

  3. Percolation analyses of observed and simulated galaxy clustering

    NASA Astrophysics Data System (ADS)

    Bhavsar, S. P.; Barrow, J. D.

    1983-11-01

    A percolation cluster analysis is performed on equivalent regions of the CFA redshift survey of galaxies and the 4000 body simulations of gravitational clustering made by Aarseth, Gott and Turner (1979). The observed and simulated percolation properties are compared and, unlike correlation and multiplicity function analyses, favour high density (Omega = 1) models with n = - 1 initial data. The present results show that the three-dimensional data are consistent with the degree of filamentary structure present in isothermal models of galaxy formation at the level of percolation analysis. It is also found that the percolation structure of the CFA data is a function of depth. Percolation structure does not appear to be a sensitive probe of intrinsic filamentary structure.

  4. Testing Numerical Models of Cool Core Galaxy Cluster Formation with X-Ray Observations

    NASA Astrophysics Data System (ADS)

    Henning, Jason W.; Gantner, Brennan; Burns, Jack O.; Hallman, Eric J.

    2009-12-01

    Using archival Chandra and ROSAT data along with numerical simulations, we compare the properties of cool core and non-cool core galaxy clusters, paying particular attention to the region beyond the cluster cores. With the use of single and double β-models, we demonstrate a statistically significant difference in the slopes of observed cluster surface brightness profiles while the cluster cores remain indistinguishable between the two cluster types. Additionally, through the use of hardness ratio profiles, we find evidence suggesting cool core clusters are cooler beyond their cores than non-cool core clusters of comparable mass and temperature, both in observed and simulated clusters. The similarities between real and simulated clusters supports a model presented in earlier work by the authors describing differing merger histories between cool core and non-cool core clusters. Discrepancies between real and simulated clusters will inform upcoming numerical models and simulations as to new ways to incorporate feedback in these systems.

  5. Mass and size growth of early-type galaxies by dry mergers in cluster environments

    NASA Astrophysics Data System (ADS)

    Oogi, Taira; Habe, Asao; Ishiyama, Tomoaki

    2016-02-01

    We perform dry merger simulations to investigate the role of dry mergers in the size growth of early-type galaxies in high-density environments. We replace the virialized dark matter haloes obtained by a large cosmological N-body simulation with N-body galaxy models consisting of two components, a stellar bulge and a dark matter halo, which have higher mass resolution than the cosmological simulation. We then resimulate nine cluster-forming regions, whose masses range from 1 × 1014 to 5 × 1014 M⊙. Masses and sizes of stellar bulges are also assumed to satisfy the stellar mass-size relation of high-z compact massive early-type galaxies. We find that dry major mergers considerably contribute to the mass and size growth of central massive galaxies. One or two dry major mergers double the average stellar mass and quadruple the average size between z = 2 and 0. These growths favourably agree with observations. Moreover, the density distributions of our simulated central massive galaxies grow from the inside-out, which is consistent with recent observations. The mass-size evolution is approximated as R∝ M_{{ast }}^{α }, with α ˜ 2.24. Most of our simulated galaxies are efficiently grown by dry mergers, and their stellar mass-size relations match the ones observed in the local Universe. Our results show that the central galaxies in the cluster haloes are potential descendants of high-z (z ˜ 2-3) compact massive early-type galaxies. This conclusion is consistent with previous numerical studies which investigate the formation and evolution of compact massive early-type galaxies.

  6. The Hydrodynamics of Galaxy Transformation in Extreme Cluster Environments

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, Rukmani

    2017-08-01

    Cluster of galaxies are hostile environments. Infalling cluster galaxies are stripped of their dark matter, stars, and hot and cold interstellar medium gas. The ISM, in addition to tidal and ram pressure stripping, can evaporate due to thermal conduction. Gas loss and the subsequent suppression of star formation is not straightforward: magnetic fields in the ISM and ICM shield galaxies and their stripped tails from shear instabilities and conduction, radiative cooling can inhibit gas loss, and feedback from stars and AGN can replenish the ISM. While there is observational evidence that these processes operate, a theoretical understanding of the physics controlling the energy cycle in cluster galaxies remains elusive. Additionally, galaxies have a significant impact on ICM evolution: orbiting galaxies stir up and stretch ICM magnetic field lines, inject turbulence into the ICM via their wakes and g-waves, and infuse metals into the ICM. Quantifying the balance between processes that remove, retain, and replenish the ISM, and the impact of galaxies on the ICM require specialized hydrodynamic simulations of the cluster environment and its galaxies. I will present results from some of these simulations that include ram pressure stripping of galaxies' hot ISM, the effect of magnetic fields on this process, and the effectiveness of isotropic and anisotropic thermal conduction in removing and retaining the ISM. I will also quantify magnetic field amplification and turbulence injection due to orbiting galaxies, and implications for X-ray and radio observations and measurements of galactic coronae, tails, magnetic fields, and turbulence.

  7. Galaxy clusters in the SDSS Stripe 82 based on photometric redshifts

    DOE PAGES

    Durret, F.; Adami, C.; Bertin, E.; ...

    2015-06-10

    Based on a recent photometric redshift galaxy catalogue, we have searched for galaxy clusters in the Stripe ~82 region of the Sloan Digital Sky Survey by applying the Adami & MAzure Cluster FInder (AMACFI). Extensive tests were made to fine-tune the AMACFI parameters and make the cluster detection as reliable as possible. The same method was applied to the Millennium simulation to estimate our detection efficiency and the approximate masses of the detected clusters. Considering all the cluster galaxies (i.e. within a 1 Mpc radius of the cluster to which they belong and with a photoz differing by less thanmore » 0.05 from that of the cluster), we stacked clusters in various redshift bins to derive colour-magnitude diagrams and galaxy luminosity functions (GLFs). For each galaxy with absolute magnitude brighter than -19.0 in the r band, we computed the disk and spheroid components by applying SExtractor, and by stacking clusters we determined how the disk-to-spheroid flux ratio varies with cluster redshift and mass. We also detected 3663 clusters in the redshift range 0.1513 and a few 10 14 solar masses. Furthermore, by stacking the cluster galaxies in various redshift bins, we find a clear red sequence in the (g'-r') versus r' colour-magnitude diagrams, and the GLFs are typical of clusters, though with a possible contamination from field galaxies. The morphological analysis of the cluster galaxies shows that the fraction of late-type to early-type galaxies shows an increase with redshift (particularly in high mass clusters) and a decrease with detection level, i.e. cluster mass. From the properties of the cluster galaxies, the majority of the candidate clusters detected here seem to be real clusters with typical cluster properties.« less

  8. Galaxy clusters in the SDSS Stripe 82 based on photometric redshifts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durret, F.; Adami, C.; Bertin, E.

    Based on a recent photometric redshift galaxy catalogue, we have searched for galaxy clusters in the Stripe ~82 region of the Sloan Digital Sky Survey by applying the Adami & MAzure Cluster FInder (AMACFI). Extensive tests were made to fine-tune the AMACFI parameters and make the cluster detection as reliable as possible. The same method was applied to the Millennium simulation to estimate our detection efficiency and the approximate masses of the detected clusters. Considering all the cluster galaxies (i.e. within a 1 Mpc radius of the cluster to which they belong and with a photoz differing by less thanmore » 0.05 from that of the cluster), we stacked clusters in various redshift bins to derive colour-magnitude diagrams and galaxy luminosity functions (GLFs). For each galaxy with absolute magnitude brighter than -19.0 in the r band, we computed the disk and spheroid components by applying SExtractor, and by stacking clusters we determined how the disk-to-spheroid flux ratio varies with cluster redshift and mass. We also detected 3663 clusters in the redshift range 0.1513 and a few 10 14 solar masses. Furthermore, by stacking the cluster galaxies in various redshift bins, we find a clear red sequence in the (g'-r') versus r' colour-magnitude diagrams, and the GLFs are typical of clusters, though with a possible contamination from field galaxies. The morphological analysis of the cluster galaxies shows that the fraction of late-type to early-type galaxies shows an increase with redshift (particularly in high mass clusters) and a decrease with detection level, i.e. cluster mass. From the properties of the cluster galaxies, the majority of the candidate clusters detected here seem to be real clusters with typical cluster properties.« less

  9. Confronting models of star formation quenching in galaxy clusters with archival Spitzer data

    NASA Astrophysics Data System (ADS)

    Rudnick, Gregory

    Large scale structures in the universe form hierarchically: small structures merge to form larger ones. Over the same epoch where these structures experience significant growth, the fraction of star forming galaxies within them decreases, and at a faster rate than for field galaxies. It is now widely accepted that there must be physical processes at work in these dense environments to actively quench star formation. However, despite no shortage of candidate mechanisms, sophisticated cosmological simulations still cannot reproduce the star formation rate distributions within dense environments, such as galaxy clusters. Insufficient observational constraints are a primary obstacle to further progress. In particular, the interpretation of observations of nearby clusters relies on untested assumptions about the properties of galaxies before they entered the dense cluster environment at higher redshifts. Clearly, direct constraints on these properties are required. Our group has assembled two data sets designed to address these concerns. The first focuses on an intermediate wide-field cluster sample and the second focuses on a well-matched low-redshift cluster sample. We will use these samples, along with sophisticated models of hierarchical galaxy formation, to meet the following objectives: 1. Directly measure the SFR distribution of the progenitors of present-day cluster galaxies. We will use ground-based spectroscopy to identify cluster members within four virial radii of eight intermediate-redshift clusters. We will couple this with archival Spitzer/MIPS data to measure the SFRs of galaxies out to the cluster outskirts. 2. Measure the SFR distribution of the present-day cluster galaxies using Spitzer and WISE. Robust N-body simulations tell us statistically which galaxies at intermediate redshifts will have entered the cluster virial radius by the current epoch. By combining our wide-field coverage at high redshift with our local cluster sample, we will determine the evolution in cluster galaxy SFRs over 6 billion years making minimal assumptions about the infalling galaxy population. 3. Provide a rigorous test of the quenching processes embedded in the theoretical models. We will create observed realizations of the theoretical models by subjecting them to our observational selection. This will enable a fair comparison between the models and the data, which will provide a valuable test of current theoretical implementations of quenching processes. We will also modify the quenching prescriptions in the models to determine the parameters required to reproduce the observations. The proposed research is novel for several reasons. 1) We have wide-field Spitzer/MIPS data that allows us to robustly measure SFRs in our distant cluster galaxies. WISE data on local clusters will provide us with analogous measurements in the nearby Universe. 2) Our significant investment in ancillary spectroscopy allows us to identify infalling galaxies that will eventually join the central regions of the cluster z=0. 3) Our intermediate redshift cluster sample was chosen to have characteristics expected for the progenitors of a large fraction of the known clusters at z=0. 4) We will take advantage of our own cosmological simulations of structure growth to interpret our data. 5) We have optical photometry over the full infall region, allowing us to control for stellar masses and to distinguish passive from dusty star-forming galaxies. We will learn which, if any, of the quenching prescriptions currently employed in semi-analytic models correctly reproduces the observed characteristics of the galaxies that will become cluster galaxies at z=0. We will pinpoint the cluster-centric radii over which quenching takes place between. We will determine the timescale (as a function of stellar mass) over which it must take place. This program will cement the legacy of Spitzer and WISE as tools for studying galaxy formation in clusters.

  10. BUDHIES II: a phase-space view of H I gas stripping and star formation quenching in cluster galaxies

    NASA Astrophysics Data System (ADS)

    Jaffé, Yara L.; Smith, Rory; Candlish, Graeme N.; Poggianti, Bianca M.; Sheen, Yun-Kyeong; Verheijen, Marc A. W.

    2015-04-01

    We investigate the effect of ram-pressure from the intracluster medium on the stripping of H I gas in galaxies in a massive, relaxed, X-ray bright, galaxy cluster at z = 0.2 from the Blind Ultra Deep H I Environmental Survey (BUDHIES). We use cosmological simulations, and velocity versus position phase-space diagrams to infer the orbital histories of the cluster galaxies. In particular, we embed a simple analytical description of ram-pressure stripping in the simulations to identify the regions in phase-space where galaxies are more likely to have been sufficiently stripped of their H I gas to fall below the detection limit of our survey. We find a striking agreement between the model predictions and the observed location of H I-detected and non-detected blue (late-type) galaxies in phase-space, strongly implying that ram-pressure plays a key role in the gas removal from galaxies, and that this can happen during their first infall into the cluster. However, we also find a significant number of gas-poor, red (early-type) galaxies in the infall region of the cluster that cannot easily be explained with our model of ram-pressure stripping alone. We discuss different possible additional mechanisms that could be at play, including the pre-processing of galaxies in their previous environment. Our results are strengthened by the distribution of galaxy colours (optical and UV) in phase-space, that suggests that after a (gas-rich) field galaxy falls into the cluster, it will lose its gas via ram-pressure stripping, and as it settles into the cluster, its star formation will decay until it is completely quenched. Finally, this work demonstrates the utility of phase-space diagrams to analyse the physical processes driving the evolution of cluster galaxies, in particular H I gas stripping.

  11. The effects of baryon physics, black holes and active galactic nucleus feedback on the mass distribution in clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Martizzi, Davide; Teyssier, Romain; Moore, Ben; Wentz, Tina

    2012-06-01

    The spatial distribution of matter in clusters of galaxies is mainly determined by the dominant dark matter component; however, physical processes involving baryonic matter are able to modify it significantly. We analyse a set of 500 pc resolution cosmological simulations of a cluster of galaxies with mass comparable to Virgo, performed with the AMR code RAMSES. We compare the mass density profiles of the dark, stellar and gaseous matter components of the cluster that result from different assumptions for the subgrid baryonic physics and galaxy formation processes. First, the prediction of a gravity-only N-body simulation is compared to that of a hydrodynamical simulation with standard galaxy formation recipes, and then all results are compared to a hydrodynamical simulation which includes thermal active galactic nucleus (AGN) feedback from supermassive black holes (SMBHs). We find the usual effects of overcooling and adiabatic contraction in the run with standard galaxy formation physics, but very different results are found when implementing SMBHs and AGN feedback. Star formation is strongly quenched, producing lower stellar densities throughout the cluster, and much less cold gas is available for star formation at low redshifts. At redshift z= 0 we find a flat density core of radius 10 kpc in both the dark and stellar matter density profiles. We speculate on the possible formation mechanisms able to produce such cores and we conclude that they can be produced through the coupling of different processes: (I) dynamical friction from the decay of black hole orbits during galaxy mergers; (II) AGN-driven gas outflows producing fluctuations of the gravitational potential causing the removal of collisionless matter from the central region of the cluster; (III) adiabatic expansion in response to the slow expulsion of gas from the central region of the cluster during the quiescent mode of AGN activity.

  12. Environmental Effects on Evolution of Cluster Galaxies in a Λ-dominated Cold Dark Matter Universe

    NASA Astrophysics Data System (ADS)

    Okamoto, Takashi; Nagashima, Masahiro

    2003-04-01

    We investigate environmental effects on evolution of bright cluster galaxies (L>L*) in a Λ-dominated cold dark matter universe using a combination of dissipationless N-body simulations and a semianalytic galaxy formation model. The N-body simulations enable us to calculate orbits of galaxies in simulated clusters. Therefore, we can incorporate stripping of cold gas from galactic disks by ram pressure (RP) from the intracluster medium into our model. In this paper we study how ram pressure stripping (RPS) and small starburst induced by a minor merger affect colors, star formation rates (SFRs), and morphologies of cluster galaxies. These processes are new ingredients in our model and have not been studied sufficiently. We find that the RPS is not important for colors and SFRs of galaxies in the cluster core if the star formation timescale is properly chosen, because the star formation is sufficiently suppressed by consumption of the cold gas in the disks. Then observed color and SFR gradients can be reproduced without the RPS. The small starburst triggered by a minor merger hardly affects the SFRs and colors of the galaxies as well. We also examine whether these two processes can resolve the known problem that the hierarchical clustering models based on the major merger-driven bulge formation scenario predict too few galaxies of intermediate bulge-to-total luminosity ratio (B/T) in clusters. When the minor burst is taken into account, the intermediate B/T population is increased, and the observed morphology gradients in clusters are successfully reproduced. Without the minor burst, the RPS cannot increase the intermediate B/T population. On the other hand, when the minor burst is considered, the RPS also plays an important role in formation of the intermediate B/T galaxies. We present redshift evolution of morphological fractions predicted by our models. The predicted number ratios of the intermediate B/T galaxies to the bulge-dominated galaxies show nearly flat or slightly increasing trends with increasing redshift. We conclude that these trends are inevitable when bulges are formed through mergers. We discuss whether our results conflict with observationally suggested NS0/NE evolution in clusters, which is a decreasing function of redshift.

  13. Correlation between the Total Gravitating Mass of Groups and Clusters and the Supermassive Black Hole Mass of Brightest Galaxies

    NASA Astrophysics Data System (ADS)

    Bogdán, Ákos; Lovisari, Lorenzo; Volonteri, Marta; Dubois, Yohan

    2018-01-01

    Supermassive black holes (BHs) residing in the brightest cluster galaxies are over-massive relative to the stellar bulge mass or central stellar velocity dispersion of their host galaxies. As BHs residing at the bottom of the galaxy cluster’s potential well may undergo physical processes that are driven by the large-scale characteristics of the galaxy clusters, it is possible that the growth of these BHs is (indirectly) governed by the properties of their host clusters. In this work, we explore the connection between the mass of BHs residing in the brightest group/cluster galaxies (BGGs/BCGs) and the virial temperature, and hence total gravitating mass, of galaxy groups/clusters. To this end, we investigate a sample of 17 BGGs/BCGs with dynamical BH mass measurements and utilize XMM-Newton X-ray observations to measure the virial temperatures and infer the {M}500 mass of the galaxy groups/clusters. We find that the {M}{BH}{--}{kT} relation is significantly tighter and exhibits smaller scatter than the {M}{BH}{--}{M}{bulge} relations. The best-fitting power-law relations are {{log}}10({M}{BH}/{10}9 {M}ȯ )=0.20+1.74{{log}}10({kT}/1 {keV}) and {{log}}10({M}{BH}/{10}9 {M}ȯ ) = -0.80+1.72{{log}}10({M}{bulge}/{10}11 {M}ȯ ). Thus, the BH mass of BGGs/BCGs may be set by physical processes that are governed by the properties of the host galaxy group/cluster. These results are confronted with the Horizon-AGN simulation, which reproduces the observed relations well, albeit the simulated relations exhibit notably smaller scatter.

  14. Galaxy clusters in simulations of the local Universe: a matter of constraints

    NASA Astrophysics Data System (ADS)

    Sorce, Jenny G.; Tempel, Elmo

    2018-06-01

    To study the full formation and evolution history of galaxy clusters and their population, high-resolution simulations of the latter are flourishing. However, comparing observed clusters to the simulated ones on a one-to-one basis to refine the models and theories down to the details is non-trivial. The large variety of clusters limits the comparisons between observed and numerical clusters. Simulations resembling the local Universe down to the cluster scales permit pushing the limit. Simulated and observed clusters can be matched on a one-to-one basis for direct comparisons provided that clusters are well reproduced besides being in the proper large-scale environment. Comparing random and local Universe-like simulations obtained with differently grouped observational catalogues of peculiar velocities, this paper shows that the grouping scheme used to remove non-linear motions in the catalogues that constrain the simulations affects the quality of the numerical clusters. With a less aggressive grouping scheme - galaxies still falling on to clusters are preserved - combined with a bias minimization scheme, the mass of the dark matter haloes, simulacra for five local clusters - Virgo, Centaurus, Coma, Hydra, and Perseus - is increased by 39 per cent closing the gap with observational mass estimates. Simulacra are found on average in 89 per cent of the simulations, an increase of 5 per cent with respect to the previous grouping scheme. The only exception is Perseus. Since the Perseus-Pisces region is not well covered by the used peculiar velocity catalogue, the latest release lets us foresee a better simulacrum for Perseus in a near future.

  15. Gamma-Ray Emission from Galaxy Clusters : DARK MATTER AND COSMIC-RAYS

    NASA Astrophysics Data System (ADS)

    Pinzke, Anders

    The quest for the first detection of a galaxy cluster in the high energy gamma-ray regime is ongoing, and even though clusters are observed in several other wave-bands, there is still no firm detection in gamma-rays. To complement the observational efforts we estimate the gamma-ray contributions from both annihilating dark matter and cosmic-ray (CR) proton as well as CR electron induced emission. Using high-resolution simulations of galaxy clusters, we find a universal concave shaped CR proton spectrum independent of the simulated galaxy cluster. Specifically, the gamma-ray spectra from decaying neutral pions, which are produced by CR protons, dominate the cluster emission. Furthermore, based on our derived flux and luminosity functions, we identify the galaxy clusters with the brightest galaxy clusters in gamma-rays. While this emission is challenging to detect using the Fermi satellite, major observations with Cherenkov telescopes in the near future may put important constraints on the CR physics in clusters. To extend these predictions, we use a dark matter model that fits the recent electron and positron data from Fermi, PAMELA, and H.E.S.S. with remarkable precision, and make predictions about the expected gamma-ray flux from nearby clusters. In order to remain consistent with the EGRET upper limit on the gamma-ray emission from Virgo, we constrain the minimum mass of substructures for cold dark matter halos. In addition, we find comparable levels of gamma-ray emission from CR interactions and dark matter annihilations without Sommerfeld enhancement.

  16. Galaxy clusters in the cosmic web

    NASA Astrophysics Data System (ADS)

    Acebrón, A.; Durret, F.; Martinet, N.; Adami, C.; Guennou, L.

    2014-12-01

    Simulations of large scale structure formation in the universe predict that matter is essentially distributed along filaments at the intersection of which lie galaxy clusters. We have analysed 9 clusters in the redshift range 0.4

  17. Enrichment and heating of the intracluster medium by ejection from galaxies

    NASA Technical Reports Server (NTRS)

    Metzler, Chris; Evrard, August

    1993-01-01

    Results of N-body + hydrodynamic simulations designed to model the formation and evolution of clusters of galaxies and intracluster gas are presented. Clusters of galaxies are the largest bound, relaxed objects in the universe. They are strong x-ray emitters; this radiation originates through thermal bremsstrahlung from a diffuse plasma filling the space between cluster galaxies, the intracluster medium or ICM. From observations, one can infer that the mass of the ICM is comparable to or greater than the mass of all the galaxies in the cluster, and that the ratio of mass in hot gas to mass in galaxies, M(sub ICM)/M(sub STARS), increases with the richness of the cluster. Spectroscopic studies of cluster x-ray emission show heavy element emission lines. While M(sub ICM)/M(sub STARS) is greater than or equal to 1 implies that most of the ICM is primordial in nature, the discovery of heavy elements indicates that some of the gas must have been processed through galaxies. Galaxy evolution thus directly impacts cluster evolution.

  18. The Co-Evolution of Galaxies, their ISM, and the ICM: The Hydrodynamics of Galaxy Transformation

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, Rukmani; Sarazin, Craig L.; Ricker, Paul M.

    2017-01-01

    Cluster of galaxies are hostile environments. Infalling cluster galaxies are stripped of their dark matter, stars, and hot and cold interstellar medium gas. The ISM, in addition to tidal and ram pressure stripping, can evaporate due to thermal conduction. Gas loss and the subsequent suppression of star formation is not straightforward: magnetic fields in the ISM and ICM shield galaxies and their stripped tails from shear instabilities and conduction, radiative cooling can inhibit gas loss, and feedback from stars and AGN can replenish the ISM. While there is observational evidence that these processes operate, a theoretical understanding of the physics controlling the energy cycle in cluster galaxies remains elusive. Additionally, galaxies have a significant impact on ICM evolution: orbiting galaxies stir up and stretch ICM magnetic field lines, inject turbulence into the ICM via their wakes and g-waves, and infuse metals into the ICM. Quantifying the balance between processes that remove, retain, and replenish the ISM, and the impact of galaxies on the ICM require specialized hydrodynamic simulations of the cluster environment and its galaxies. I will present results from some of these simulations that include ram pressure stripping of galaxies' hot ISM, the effect of magnetic fields on this process, and the effectiveness of isotropic and anisotropic thermal conduction in removing and retaining the ISM.

  19. Galaxy clustering dependence on the [O II] emission line luminosity in the local Universe

    NASA Astrophysics Data System (ADS)

    Favole, Ginevra; Rodríguez-Torres, Sergio A.; Comparat, Johan; Prada, Francisco; Guo, Hong; Klypin, Anatoly; Montero-Dorta, Antonio D.

    2017-11-01

    We study the galaxy clustering dependence on the [O II] emission line luminosity in the SDSS DR7 Main galaxy sample at mean redshift z ∼ 0.1. We select volume-limited samples of galaxies with different [O II] luminosity thresholds and measure their projected, monopole and quadrupole two-point correlation functions. We model these observations using the 1 h-1 Gpc MultiDark-Planck cosmological simulation and generate light cones with the SUrvey GenerAtoR algorithm. To interpret our results, we adopt a modified (Sub)Halo Abundance Matching scheme, accounting for the stellar mass incompleteness of the emission line galaxies. The satellite fraction constitutes an extra parameter in this model and allows to optimize the clustering fit on both small and intermediate scales (i.e. rp ≲ 30 h-1 Mpc), with no need of any velocity bias correction. We find that, in the local Universe, the [O II] luminosity correlates with all the clustering statistics explored and with the galaxy bias. This latter quantity correlates more strongly with the SDSS r-band magnitude than [O II] luminosity. In conclusion, we propose a straightforward method to produce reliable clustering models, entirely built on the simulation products, which provides robust predictions of the typical ELG host halo masses and satellite fraction values. The SDSS galaxy data, MultiDark mock catalogues and clustering results are made publicly available.

  20. Alignment of cD-galaxies with their surroundings

    NASA Technical Reports Server (NTRS)

    Vankampen, Eelco; Rhee, George

    1990-01-01

    For a sample of 122 rich Abell clusters the authors find a strong correlation of the position angle (orientation) of the first-ranked galaxy and its parent cluster. This alignment effect is strongest for cD-galaxies. Formation scenarios for cD galaxies, like the merging scenario, must produce such a strong alignment effect. The authors show some N-body simulations done for this purpose.

  1. Formation of globular cluster candidates in merging proto-galaxies at high redshift: a view from the FIRE cosmological simulations

    DOE PAGES

    Kim, Ji-hoon; Ma, Xiangcheng; Grudić, Michael Y.; ...

    2017-11-23

    Using a state-of-the-art cosmological simulation of merging proto-galaxies at high redshift from the FIRE project, with explicit treatments of star formation and stellar feedback in the interstellar medium, we investigate the formation of star clusters and examine one of the formation hypotheses of present-day metal-poor globular clusters. Here, we find that frequent mergers in high-redshift proto-galaxies could provide a fertile environment to produce long-lasting bound star clusters. The violent merger event disturbs the gravitational potential and pushes a large gas mass of ≳ 10 5–6 M ⊙ collectively to high density, at which point it rapidly turns into stars beforemore » stellar feedback can stop star formation. The high dynamic range of the reported simulation is critical in realizing such dense star-forming clouds with a small dynamical time-scale, tff ≲ 3 Myr, shorter than most stellar feedback time-scales. Our simulation then allows us to trace how clusters could become virialized and tightly bound to survive for up to ~420 Myr till the end of the simulation. Finally, because the cluster's tightly bound core was formed in one short burst, and the nearby older stars originally grouped with the cluster tend to be preferentially removed, at the end of the simulation the cluster has a small age spread.« less

  2. Formation of globular cluster candidates in merging proto-galaxies at high redshift: a view from the FIRE cosmological simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Ji-hoon; Ma, Xiangcheng; Grudić, Michael Y.

    Using a state-of-the-art cosmological simulation of merging proto-galaxies at high redshift from the FIRE project, with explicit treatments of star formation and stellar feedback in the interstellar medium, we investigate the formation of star clusters and examine one of the formation hypotheses of present-day metal-poor globular clusters. Here, we find that frequent mergers in high-redshift proto-galaxies could provide a fertile environment to produce long-lasting bound star clusters. The violent merger event disturbs the gravitational potential and pushes a large gas mass of ≳ 10 5–6 M ⊙ collectively to high density, at which point it rapidly turns into stars beforemore » stellar feedback can stop star formation. The high dynamic range of the reported simulation is critical in realizing such dense star-forming clouds with a small dynamical time-scale, tff ≲ 3 Myr, shorter than most stellar feedback time-scales. Our simulation then allows us to trace how clusters could become virialized and tightly bound to survive for up to ~420 Myr till the end of the simulation. Finally, because the cluster's tightly bound core was formed in one short burst, and the nearby older stars originally grouped with the cluster tend to be preferentially removed, at the end of the simulation the cluster has a small age spread.« less

  3. Formation of globular cluster candidates in merging proto-galaxies at high redshift: a view from the FIRE cosmological simulations

    NASA Astrophysics Data System (ADS)

    Kim, Ji-hoon; Ma, Xiangcheng; Grudić, Michael Y.; Hopkins, Philip F.; Hayward, Christopher C.; Wetzel, Andrew; Faucher-Giguère, Claude-André; Kereš, Dušan; Garrison-Kimmel, Shea; Murray, Norman

    2018-03-01

    Using a state-of-the-art cosmological simulation of merging proto-galaxies at high redshift from the FIRE project, with explicit treatments of star formation and stellar feedback in the interstellar medium, we investigate the formation of star clusters and examine one of the formation hypotheses of present-day metal-poor globular clusters. We find that frequent mergers in high-redshift proto-galaxies could provide a fertile environment to produce long-lasting bound star clusters. The violent merger event disturbs the gravitational potential and pushes a large gas mass of ≳ 105-6 M⊙ collectively to high density, at which point it rapidly turns into stars before stellar feedback can stop star formation. The high dynamic range of the reported simulation is critical in realizing such dense star-forming clouds with a small dynamical time-scale, tff ≲ 3 Myr, shorter than most stellar feedback time-scales. Our simulation then allows us to trace how clusters could become virialized and tightly bound to survive for up to ˜420 Myr till the end of the simulation. Because the cluster's tightly bound core was formed in one short burst, and the nearby older stars originally grouped with the cluster tend to be preferentially removed, at the end of the simulation the cluster has a small age spread.

  4. Gas stripping and mixing in galaxy clusters: a numerical comparison study

    NASA Astrophysics Data System (ADS)

    Heß, Steffen; Springel, Volker

    2012-11-01

    The ambient hot intrahalo gas in clusters of galaxies is constantly fed and stirred by infalling galaxies, a process that can be studied in detail with cosmological hydrodynamical simulations. However, different numerical methods yield discrepant predictions for crucial hydrodynamical processes, leading for example to different entropy profiles in clusters of galaxies. In particular, the widely used Lagrangian smoothed particle hydrodynamics (SPH) scheme is suspected to strongly damp fluid instabilities and turbulence, which are both crucial to establish the thermodynamic structure of clusters. In this study, we test to which extent our recently developed Voronoi particle hydrodynamics (VPH) scheme yields different results for the stripping of gas out of infalling galaxies and for the bulk gas properties of cluster. We consider both the evolution of isolated galaxy models that are exposed to a stream of intracluster medium or are dropped into cluster models, as well as non-radiative cosmological simulations of cluster formation. We also compare our particle-based method with results obtained with a fundamentally different discretization approach as implemented in the moving-mesh code AREPO. We find that VPH leads to noticeably faster stripping of gas out of galaxies than SPH, in better agreement with the mesh-code than with SPH. We show that despite the fact that VPH in its present form is not as accurate as the moving mesh code in our investigated cases, its improved accuracy of gradient estimates makes VPH an attractive alternative to SPH.

  5. Quenching of satellite galaxies at the outskirts of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Zinger, Elad; Dekel, Avishai; Kravtsov, Andrey V.; Nagai, Daisuke

    2018-04-01

    We find, using cosmological simulations of galaxy clusters, that the hot X-ray emitting intracluster medium (ICM) enclosed within the outer accretion shock extends out to Rshock ˜ (2-3)Rvir, where Rvir is the standard virial radius of the halo. Using a simple analytic model for satellite galaxies in the cluster, we evaluate the effect of ram-pressure stripping on the gas in the inner discs and in the haloes at different distances from the cluster centre. We find that significant removal of star-forming disc gas occurs only at r ≲ 0.5Rvir, while gas removal from the satellite halo is more effective and can occur when the satellite is found between Rvir and Rshock. Removal of halo gas sets the stage for quenching of the star formation by starvation over 2-3 Gyr, prior to the satellite entry to the inner cluster halo. This scenario explains the presence of quenched galaxies, preferentially discs, at the outskirts of galaxy clusters, and the delayed quenching of satellites compared to central galaxies.

  6. Tidally Induced Bars of Galaxies in Clusters

    NASA Astrophysics Data System (ADS)

    Łokas, Ewa L.; Ebrová, Ivana; del Pino, Andrés; Sybilska, Agnieszka; Athanassoula, E.; Semczuk, Marcin; Gajda, Grzegorz; Fouquet, Sylvain

    2016-08-01

    Using N-body simulations, we study the formation and evolution of tidally induced bars in disky galaxies in clusters. Our progenitor is a massive, late-type galaxy similar to the Milky Way, composed of an exponential disk and a Navarro-Frenk-White dark matter halo. We place the galaxy on four different orbits in a Virgo-like cluster and evolve it for 10 Gyr. As a reference case, we also evolve the same model in isolation. Tidally induced bars form on all orbits soon after the first pericenter passage and survive until the end of the evolution. They appear earlier, are stronger and longer, and have lower pattern speeds for tighter orbits. Only for the tightest orbit are the properties of the bar controlled by the orientation of the tidal torque from the cluster at pericenter. The mechanism behind the formation of the bars is the angular momentum transfer from the galaxy stellar component to its halo. All of the bars undergo extended periods of buckling instability that occur earlier and lead to more pronounced boxy/peanut shapes when the tidal forces are stronger. Using all simulation outputs of galaxies at different evolutionary stages, we construct a toy model of the galaxy population in the cluster and measure the average bar strength and bar fraction as a function of clustercentric radius. Both are found to be mildly decreasing functions of radius. We conclude that tidal forces can trigger bar formation in cluster cores, but not in the outskirts, and thus can cause larger concentrations of barred galaxies toward the cluster center.

  7. Cold Fronts in Clusters of Galaxies: Observations and Modeling

    NASA Technical Reports Server (NTRS)

    Markevitch, Maxim

    2012-01-01

    Mergers of galaxy clusters -- some of the most energetic events in the Universe -- produce disturbances in hot intracluster medium, such as shocks and cold fronts, that can be used as tools to study the physics of galaxy clusters. Cold fronts may constrain viscosity and the structure and strength of the cluster magnetic fields. Combined with radio data, these observations also shed light on the production of ultrarelativistic particles that are known to coexist with the cluster thermal plasma. This talk will summarize the current X-ray observations of cluster mergers, as well as some recent radio data and high resolution hydrodynamic simulations.

  8. Satellite quenching time-scales in clusters from projected phase space measurements matched to simulated orbits

    NASA Astrophysics Data System (ADS)

    Oman, Kyle A.; Hudson, Michael J.

    2016-12-01

    We measure the star formation quenching efficiency and time-scale in cluster environments. Our method uses N-body simulations to estimate the probability distribution of possible orbits for a sample of observed Sloan Digital Sky Survey galaxies in and around clusters based on their position and velocity offsets from their host cluster. We study the relationship between their star formation rates and their likely orbital histories via a simple model in which star formation is quenched once a delay time after infall has elapsed. Our orbit library method is designed to isolate the environmental effect on the star formation rate due to a galaxy's present-day host cluster from `pre-processing' in previous group hosts. We find that quenching of satellite galaxies of all stellar masses in our sample (109-10^{11.5}M_{⊙}) by massive (> 10^{13} M_{⊙}) clusters is essentially 100 per cent efficient. Our fits show that all galaxies quench on their first infall, approximately at or within a Gyr of their first pericentric passage. There is little variation in the onset of quenching from galaxy-to-galaxy: the spread in this time is at most ˜2 Gyr at fixed M*. Higher mass satellites quench earlier, with very little dependence on host cluster mass in the range probed by our sample.

  9. Star Clusters within FIRE

    NASA Astrophysics Data System (ADS)

    Perez, Adrianna; Moreno, Jorge; Naiman, Jill; Ramirez-Ruiz, Enrico; Hopkins, Philip F.

    2017-01-01

    In this work, we analyze the environments surrounding star clusters of simulated merging galaxies. Our framework employs Feedback In Realistic Environments (FIRE) model (Hopkins et al., 2014). The FIRE project is a high resolution cosmological simulation that resolves star forming regions and incorporates stellar feedback in a physically realistic way. The project focuses on analyzing the properties of the star clusters formed in merging galaxies. The locations of these star clusters are identified with astrodendro.py, a publicly available dendrogram algorithm. Once star cluster properties are extracted, they will be used to create a sub-grid (smaller than the resolution scale of FIRE) of gas confinement in these clusters. Then, we can examine how the star clusters interact with these available gas reservoirs (either by accreting this mass or blowing it out via feedback), which will determine many properties of the cluster (star formation history, compact object accretion, etc). These simulations will further our understanding of star formation within stellar clusters during galaxy evolution. In the future, we aim to enhance sub-grid prescriptions for feedback specific to processes within star clusters; such as, interaction with stellar winds and gas accretion onto black holes and neutron stars.

  10. A massive protocluster of galaxies at a redshift of z ≈ 5.3.

    PubMed

    Capak, Peter L; Riechers, Dominik; Scoville, Nick Z; Carilli, Chris; Cox, Pierre; Neri, Roberto; Robertson, Brant; Salvato, Mara; Schinnerer, Eva; Yan, Lin; Wilson, Grant W; Yun, Min; Civano, Francesca; Elvis, Martin; Karim, Alexander; Mobasher, Bahram; Staguhn, Johannes G

    2011-02-10

    Massive clusters of galaxies have been found that date from as early as 3.9 billion years (3.9 Gyr; z = 1.62) after the Big Bang, containing stars that formed at even earlier epochs. Cosmological simulations using the current cold dark matter model predict that these systems should descend from 'protoclusters'-early overdensities of massive galaxies that merge hierarchically to form a cluster. These protocluster regions themselves are built up hierarchically and so are expected to contain extremely massive galaxies that can be observed as luminous quasars and starbursts. Observational evidence for this picture, however, is sparse because high-redshift protoclusters are rare and difficult to observe. Here we report a protocluster region that dates from 1 Gyr (z = 5.3) after the Big Bang. This cluster of massive galaxies extends over more than 13 megaparsecs and contains a luminous quasar as well as a system rich in molecular gas. These massive galaxies place a lower limit of more than 4 × 10(11) solar masses of dark and luminous matter in this region, consistent with that expected from cosmological simulations for the earliest galaxy clusters.

  11. Herschel-ATLAS/GAMA: SDSS cross-correlation induced by weak lensing

    NASA Astrophysics Data System (ADS)

    González-Nuevo, J.; Lapi, A.; Negrello, M.; Danese, L.; De Zotti, G.; Amber, S.; Baes, M.; Bland-Hawthorn, J.; Bourne, N.; Brough, S.; Bussmann, R. S.; Cai, Z.-Y.; Cooray, A.; Driver, S. P.; Dunne, L.; Dye, S.; Eales, S.; Ibar, E.; Ivison, R.; Liske, J.; Loveday, J.; Maddox, S.; Michałowski, M. J.; Robotham, A. S. G.; Scott, D.; Smith, M. W. L.; Valiante, E.; Xia, J.-Q.

    2014-08-01

    We report a highly significant (>10σ) spatial correlation between galaxies with S350 μm ≥ 30 mJy detected in the equatorial fields of the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) with estimated redshifts ≳ 1.5, and Sloan Digital Sky Survey (SDSS) or Galaxy And Mass Assembly (GAMA) galaxies at 0.2 ≤ z ≤ 0.6. The significance of the cross-correlation is much higher than those reported so far for samples with non-overlapping redshift distributions selected in other wavebands. Extensive, realistic simulations of clustered sub-mm galaxies amplified by foreground structures confirm that the cross-correlation can be explained by weak gravitational lensing (μ < 2). The simulations also show that the measured amplitude and range of angular scales of the signal are larger than can be accounted for by galaxy-galaxy weak lensing. However, for scales ≲ 2 arcmin, the signal can be reproduced if SDSS/GAMA galaxies act as signposts of galaxy groups/clusters with halo masses in the range 1013.2-1014.5 M⊙. The signal detected on larger scales appears to reflect the clustering of such haloes.

  12. Globular clusters and environmental effects in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Sales, Laura

    2016-10-01

    Globular clusters are old compact stellar systems orbiting around galaxies of all types. Tens of thousands of them can also be found populating the intra-cluster regions of nearby galaxy clusters like Virgo and Coma. Thanks to the HST Frontier Fields program, GCs are starting now to be detected also in intermediate redshift clusters. Yet, despite their ubiquity, a theoretical model for the formation and evolution of GCs is still missing, especially within the cosmological context.Here we propose to use cosmological hydrodynamical simulations of 18 galaxy clusters coupled to a post-processing GC formation model to explore the assembly of galaxies in clusters together with their expected GC population. The method, which has already been implemented and tested, will allow us to characterize for the first time the number, radial distribution and kinematics of GCs in clusters, with products directly comparable to observational maps. We will explore cluster-to-cluster variations and also characterize the build up of the intra-cluster component of GCs with time.As the method relies on a detailed study of the star-formation history of galaxies, we will jointly constrain the predicted quenching time-scales for satellites and the occurrence of starburst events associated to infall and orbital pericenters of galaxies in massive clusters. This will inform further studies on the distribution, velocity and properties of post-starburst galaxies in past, ongoing and future HST programs.

  13. THE TEMPERATURE OF HOT GAS IN GALAXIES AND CLUSTERS: BARYONS DANCING TO THE TUNE OF DARK MATTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Steen H.; Maccio, Andrea V.; Romano-Diaz, Emilio

    2011-06-10

    The temperature profile of hot gas in galaxies and galaxy clusters is largely determined by the depth of the total gravitational potential and thereby by the dark matter (DM) distribution. We use high-resolution hydrodynamical simulations of galaxy formation to derive a surprisingly simple relation between the gas temperature and DM properties. We show that this relation holds not just for galaxy clusters but also for equilibrated and relaxed galaxies at radii beyond the central stellar-dominated region of typically a few kpc. It is then clarified how a measurement of the temperature and density of the hot gas component can leadmore » to an indirect measurement of the DM velocity anisotropy in galaxies. We also study the temperature relation for galaxy clusters in the presence of self-regulated, recurrent active galactic nuclei (AGNs), and demonstrate that this temperature relation even holds outside the inner region of {approx}30 kpc in clusters with an active AGN.« less

  14. Star Clusters Simulations Using GRAPE-5

    NASA Astrophysics Data System (ADS)

    Fukushige, Toshiyuki

    We discuss simulations of star cluster, such as globular cluster, galaxy, and galaxy cluster, using GRAPE(GRAvity PipE)-5. GRAPE-5 is a new version of special-purpose computer for many-body simulation, GRAPE. GRAPE-5 has eight custom pipeline LSI (G5 chip) per board, and its peak performance is 38.4 Gflops. GRAPE-5 is different from its predecessor, GRAPE-3, regarding four points: a) the calculation speed per chip is 8 time faster, b) the PCI bus is adapted as an interface between host computer and GRAPE-5, and, therefore, the communication speed is order of magnitude faster, c) in addition to the pure 1/r potential, GRAPE-5 can calculate force with arbitrary cutoff function so that it can be applied to the Ewald or P3M methods, and d) the pair wise force calculated on GRAPE-5 is about 10 times more accurate. Using the GRAPE-5 system with Barnes-Hut tree algorithm, we can complete force calculations for one timestep in 10(N/106) seconds. This speed enables us to perform a pre-collapse globular cluster simulation with real number of particles, and a galaxy simulation with more than 1 million particles, within several days. We also present some results of star cluster simulations using the GRAPE-5 system.

  15. A simulation of the intracluster medium with feedback from cluster galaxies

    NASA Technical Reports Server (NTRS)

    Metzler, Christopher A.; Evrard, August E.

    1994-01-01

    We detail method and report first results from a three-dimensional hydrodynamical and N-body simulation of the formation and evolution of a Coma-sized cluster of galaxies, with the intent of studying the history of the hot, X-ray emitting intracluster medium. Cluster gas, galaxies, and dark matter are included in the model. The galaxies and dark matter fell gravitational forces; the cluster gas also undergoes hydrodynamical effects such as shock heating and PdV work. For the first time in three dimensions, we include modeling of ejection of processed gas from the simulated galaxies by winds, including heating and heavy element enrichment. For comparison, we employ a `pure infall' simulation using the same initial conditions but with no galaxies or winds. We employ an extreme ejection history for galactic feedback in order to define the boundary of likely models. As expected, feedback raises the entropy of the intracluster gas, preventing it from collapsing to densities as high as those attained in the infall model. The effect is more pronounced in subclusters formed at high redshift. The cluster with feedback is always less X-ray luminous, but experiences more rapid luminosity evolution, than the pure infall cluster. Even employing an extreme ejection model, the final gas temperature is only approximately 15% larger than in the infall model. The radial temperature profile is very nearly isothermal within 1.5 Mpc. The cluster galaxies in the feedback model have a velocity dispersion approximately 15% lower than the dark matter. This results in the true ratio of specific energies in galaxies to gas being less than one, beta(sub spec) approximately 0.7. The infall model predicts beta(sub spec) approximately 1.2. Large excursions in these values occur over time, following the complex dynamical history of the cluster. The morphology of the X-ray emission is little affected by feedback. The emission profiles of both clusters are well described by the standard beta-model with beta(sub fit) approximately equal to 0.7 - 0.9. X-ray mass estimates based on the assumptions of hydrostatic equilibrium and the applicability of the beta-model are quite accurate in both cases. A strong, radial iron abundance gradient is present, which develops as a consequence of the steepening of the galaxy density profile over time. Spectroscopic observations using nonimaging detectors with wide (approximately 45 min) fields of view dramatically smear the gradient. Observations with arcminute resolution, made available with the ASCA satellite, would readily resolve the gradient.

  16. Stirred, Not Clumped: Evolution of Temperature Profiles in the Outskirts of Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Avestruz, Camille; Nagai, Daisuke; Lau, Erwin T.

    2016-12-01

    Recent statistical X-ray measurements of the intracluster medium (ICM) indicate that gas temperature profiles in the outskirts of galaxy clusters deviate from self-similar evolution. Using a mass-limited sample of galaxy clusters from cosmological hydrodynamical simulations, we show that the departure from self-similarity can be explained by non-thermal gas motions driven by mergers and accretion. Contrary to previous claims, gaseous substructures only play a minor role in the temperature evolution in cluster outskirts. A careful choice of halo overdensity definition in self-similar scaling mitigates these departures. Our work highlights the importance of non-thermal gas motions in ICM evolution and the use of galaxy clusters as cosmological probes.

  17. What do Simulations Predict for the Galaxy Stellar Mass Function and its Evolution in Different Environments?

    NASA Astrophysics Data System (ADS)

    Vulcani, Benedetta; De Lucia, Gabriella; Poggianti, Bianca M.; Bundy, Kevin; More, Surhud; Calvi, Rosa

    2014-06-01

    We present a comparison between the observed galaxy stellar mass function and the one predicted from the De Lucia & Blaizot semi-analytic model applied to the Millennium Simulation, for cluster satellites and galaxies in the field (meant as a wide portion of the sky, including all environments), in the local universe (z ~ 0.06), and at intermediate redshift (z ~ 0.6), with the aim to shed light on the processes which regulate the mass distribution in different environments. While the mass functions in the field and in its finer environments (groups, binary, and single systems) are well matched in the local universe down to the completeness limit of the observational sample, the model overpredicts the number of low-mass galaxies in the field at z ~ 0.6 and in clusters at both redshifts. Above M * = 1010.25 M ⊙, it reproduces the observed similarity of the cluster and field mass functions but not the observed evolution. Our results point out two shortcomings of the model: an incorrect treatment of cluster-specific environmental effects and an overefficient galaxy formation at early times (as already found by, e.g., Weinmann et al.). Next, we consider only simulations. Also using the Guo et al. model, we find that the high-mass end of the mass functions depends on halo mass: only very massive halos host massive galaxies, with the result that their mass function is flatter. Above M * = 109.4 M ⊙, simulations show an evolution in the number of the most massive galaxies in all environments. Mass functions obtained from the two prescriptions are different, however, results are qualitatively similar, indicating that the adopted methods to model the evolution of central and satellite galaxies still have to be better implemented in semi-analytic models.

  18. Galactic cannibalism. III. The morphological evolution of galaxies and clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hausman, M.A.; Ostriker, J.P.

    1978-09-01

    We present a numerical simulation for the evolution of massive cluster galaxies due to the accretion of other galaxies, finding that after several accretions a bright ''normal'' galaxy begins to resemble a cD giant, with a bright core and large core radius. Observable quantities such as color, scale size, and logarithmic intensity gradient ..cap alpha.. are calculated and are consistent with observations. The multiple nuclei sometimes found in cD galaxies may be understood as the undigested remnants of cannibalized companions. A cluster's bright galaxies are selectively depleted, an effect which can transform the cluster's luminosity function from a power lawmore » to the observed form with a steep high-luminosity falloff and which pushes the turnover point to lower luminosities with time. We suggest that these effects may account for apparent nonstatistical features observed in the luminosity distribution of bright cluster galaxies, and that the sequence of cluster types discovered by Bautz and Morgan and Oemler is essentially one of increasing dynamical evolution, the rate of evolution depending inversely on the cluster's central relaxation time.« less

  19. Accretion of satellites on to central galaxies in clusters: merger mass ratios and orbital parameters

    NASA Astrophysics Data System (ADS)

    Nipoti, Carlo; Giocoli, Carlo; Despali, Giulia

    2018-05-01

    We study the statistical properties of mergers between central and satellite galaxies in galaxy clusters in the redshift range 0 < z < 1, using a sample of dark-matter only cosmological N-body simulations from Le SBARBINE data set. Using a spherical overdensity algorithm to identify dark-matter haloes, we construct halo merger trees for different values of the overdensity Δc. While the virial overdensity definition allows us to probe the accretion of satellites at the cluster virial radius rvir, higher overdensities probe satellite mergers in the central region of the cluster, down to ≈0.06rvir, which can be considered a proxy for the accretion of satellite galaxies on to central galaxies. We find that the characteristic merger mass ratio increases for increasing values of Δc: more than 60 per cent of the mass accreted by central galaxies since z ≈ 1 comes from major mergers. The orbits of satellites accreting on to central galaxies tend to be more tangential and more bound than orbits of haloes accreting at the virial radius. The obtained distributions of merger mass ratios and orbital parameters are useful to model the evolution of the high-mass end of the galaxy scaling relations without resorting to hydrodynamic cosmological simulations.

  20. Probing Self-interacting Dark Matter with Disk Galaxies in Cluster Environments

    NASA Astrophysics Data System (ADS)

    Secco, Lucas F.; Farah, Amanda; Jain, Bhuvnesh; Adhikari, Susmita; Banerjee, Arka; Dalal, Neal

    2018-06-01

    Self-interacting dark matter (SIDM) has long been proposed as a solution to small-scale problems posed by standard cold dark matter. We use numerical simulations to study the effect of dark matter interactions on the morphology of disk galaxies falling into galaxy clusters. The effective drag force on dark matter leads to offsets of the stellar disk with respect to the surrounding halo, causing distortions in the disk. For anisotropic scattering cross sections of 0.5 and 1.0 {cm}}2 {{{g}}}-1, we show that potentially observable warps, asymmetries, and thickening of the disk occur in simulations. We discuss observational tests of SIDM with galaxy surveys and more realistic simulations needed to obtain detailed predictions.

  1. Prospects for Determining the Mass Distributions of Galaxy Clusters on Large Scales Using Weak Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Fong, M.; Bowyer, R.; Whitehead, A.; Lee, B.; King, L.; Applegate, D.; McCarthy, I.

    2018-05-01

    For more than two decades, the Navarro, Frenk, and White (NFW) model has stood the test of time; it has been used to describe the distribution of mass in galaxy clusters out to their outskirts. Stacked weak lensing measurements of clusters are now revealing the distribution of mass out to and beyond their virial radii, where the NFW model is no longer applicable. In this study we assess how well the parameterised Diemer & Kravstov (DK) density profile describes the characteristic mass distribution of galaxy clusters extracted from cosmological simulations. This is determined from stacked synthetic lensing measurements of the 50 most massive clusters extracted from the Cosmo-OWLS simulations, using the Dark Matter Only run and also the run that most closely matches observations. The characteristics of the data reflect the Weighing the Giants survey and data from the future Large Synoptic Survey Telescope (LSST). In comparison with the NFW model, the DK model favored by the stacked data, in particular for the future LSST data, where the number density of background galaxies is higher. The DK profile depends on the accretion history of clusters which is specified in the current study. Eventually however subsamples of galaxy clusters with qualities indicative of disparate accretion histories could be studied.

  2. Constraining hydrostatic mass bias of galaxy clusters with high-resolution X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Ota, Naomi; Nagai, Daisuke; Lau, Erwin T.

    2018-04-01

    Gas motions in galaxy clusters play important roles in determining the properties of the intracluster medium (ICM) and in the constraint of cosmological parameters via X-ray and Sunyaev-Zel'dovich effect observations of galaxy clusters. The Hitomi measurements of gas motions in the core of the Perseus Cluster have provided new insights into the physics in galaxy clusters. The XARM mission, equipped with the Resolve X-ray micro-calorimeter, will continue Hitomi's legacy by measuring ICM motions through Doppler shifting and broadening of emission lines in a larger number of galaxy clusters, and at larger radii. In this work, we investigate how well we can measure bulk and turbulent gas motions in the ICM with XARM, by analyzing mock XARM simulations of galaxy clusters extracted from cosmological hydrodynamic simulations. We assess how photon counts, spectral fitting methods, multiphase ICM structure, deprojections, and region selection affect the measurements of gas motions. We first show that XARM is capable of recovering the underlying spherically averaged turbulent and bulk velocity profiles for dynamically relaxed clusters to within ˜50% with a reasonable amount of photon counts in the X-ray emission lines. We also find that there are considerable azimuthal variations in the ICM velocities, where the velocities measured in a single azimuthal direction can significantly deviate from the true value even in dynamically relaxed systems. Such variation must be taken into account when interpreting data and developing observing strategies. We will discuss the prospect of using the upcoming XARM mission to measure non-thermal pressure and to correct for the hydrostatic mass bias of galaxy clusters. Our results are broadly applicable for future X-ray missions, such as Athena and Lynx.

  3. Constraining hydrostatic mass bias of galaxy clusters with high-resolution X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Ota, Naomi; Nagai, Daisuke; Lau, Erwin T.

    2018-06-01

    Gas motions in galaxy clusters play important roles in determining the properties of the intracluster medium (ICM) and in the constraint of cosmological parameters via X-ray and Sunyaev-Zel'dovich effect observations of galaxy clusters. The Hitomi measurements of gas motions in the core of the Perseus Cluster have provided new insights into the physics in galaxy clusters. The XARM mission, equipped with the Resolve X-ray micro-calorimeter, will continue Hitomi's legacy by measuring ICM motions through Doppler shifting and broadening of emission lines in a larger number of galaxy clusters, and at larger radii. In this work, we investigate how well we can measure bulk and turbulent gas motions in the ICM with XARM, by analyzing mock XARM simulations of galaxy clusters extracted from cosmological hydrodynamic simulations. We assess how photon counts, spectral fitting methods, multiphase ICM structure, deprojections, and region selection affect the measurements of gas motions. We first show that XARM is capable of recovering the underlying spherically averaged turbulent and bulk velocity profiles for dynamically relaxed clusters to within ˜50% with a reasonable amount of photon counts in the X-ray emission lines. We also find that there are considerable azimuthal variations in the ICM velocities, where the velocities measured in a single azimuthal direction can significantly deviate from the true value even in dynamically relaxed systems. Such variation must be taken into account when interpreting data and developing observing strategies. We will discuss the prospect of using the upcoming XARM mission to measure non-thermal pressure and to correct for the hydrostatic mass bias of galaxy clusters. Our results are broadly applicable for future X-ray missions, such as Athena and Lynx.

  4. WEIGHING GALAXY CLUSTERS WITH GAS. I. ON THE METHODS OF COMPUTING HYDROSTATIC MASS BIAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, Erwin T.; Nagai, Daisuke; Nelson, Kaylea, E-mail: erwin.lau@yale.edu

    2013-11-10

    Mass estimates of galaxy clusters from X-ray and Sunyeav-Zel'dovich observations assume the intracluster gas is in hydrostatic equilibrium with their gravitational potential. However, since galaxy clusters are dynamically active objects whose dynamical states can deviate significantly from the equilibrium configuration, the departure from the hydrostatic equilibrium assumption is one of the largest sources of systematic uncertainties in cluster cosmology. In the literature there have been two methods for computing the hydrostatic mass bias based on the Euler and the modified Jeans equations, respectively, and there has been some confusion about the validity of these two methods. The word 'Jeans' wasmore » a misnomer, which incorrectly implies that the gas is collisionless. To avoid further confusion, we instead refer these methods as 'summation' and 'averaging' methods respectively. In this work, we show that these two methods for computing the hydrostatic mass bias are equivalent by demonstrating that the equation used in the second method can be derived from taking spatial averages of the Euler equation. Specifically, we identify the correspondences of individual terms in these two methods mathematically and show that these correspondences are valid to within a few percent level using hydrodynamical simulations of galaxy cluster formation. In addition, we compute the mass bias associated with the acceleration of gas and show that its contribution is small in the virialized regions in the interior of galaxy clusters, but becomes non-negligible in the outskirts of massive galaxy clusters. We discuss future prospects of understanding and characterizing biases in the mass estimate of galaxy clusters using both hydrodynamical simulations and observations and their implications for cluster cosmology.« less

  5. Weighing Galaxy Clusters with Gas. I. On the Methods of Computing Hydrostatic Mass Bias

    NASA Astrophysics Data System (ADS)

    Lau, Erwin T.; Nagai, Daisuke; Nelson, Kaylea

    2013-11-01

    Mass estimates of galaxy clusters from X-ray and Sunyeav-Zel'dovich observations assume the intracluster gas is in hydrostatic equilibrium with their gravitational potential. However, since galaxy clusters are dynamically active objects whose dynamical states can deviate significantly from the equilibrium configuration, the departure from the hydrostatic equilibrium assumption is one of the largest sources of systematic uncertainties in cluster cosmology. In the literature there have been two methods for computing the hydrostatic mass bias based on the Euler and the modified Jeans equations, respectively, and there has been some confusion about the validity of these two methods. The word "Jeans" was a misnomer, which incorrectly implies that the gas is collisionless. To avoid further confusion, we instead refer these methods as "summation" and "averaging" methods respectively. In this work, we show that these two methods for computing the hydrostatic mass bias are equivalent by demonstrating that the equation used in the second method can be derived from taking spatial averages of the Euler equation. Specifically, we identify the correspondences of individual terms in these two methods mathematically and show that these correspondences are valid to within a few percent level using hydrodynamical simulations of galaxy cluster formation. In addition, we compute the mass bias associated with the acceleration of gas and show that its contribution is small in the virialized regions in the interior of galaxy clusters, but becomes non-negligible in the outskirts of massive galaxy clusters. We discuss future prospects of understanding and characterizing biases in the mass estimate of galaxy clusters using both hydrodynamical simulations and observations and their implications for cluster cosmology.

  6. The peculiar velocities of rich clusters in the hot and cold dark matter scenarios

    NASA Technical Reports Server (NTRS)

    Rhee, George F.; West, Michael J.; Villumsen, Jens V.

    1993-01-01

    We present the results of a study of the peculiar velocities of rich clusters of galaxies. The peculiar motion of rich clusters in various cosmological scenarios is of interest for a number of reasons. Observationally, one can measure the peculiar motion of clusters to greater distances than galaxies because cluster peculiar motions can be determined to greater accuracy. One can also test the slope of distance indicator relations using clusters to see if galaxy properties vary with environment. We have used N-body simulations to measure the amplitude and rms cluster peculiar velocity as a function of bias parameter in the hot and cold dark matter scenarios. In addition to measuring the mean and rms peculiar velocity of clusters in the two models, we determined whether the peculiar velocity vector of a given cluster is well aligned with the gravity vector due to all the particles in the simulation and the gravity vector due to the particles present only in the clusters. We have investigated the peculiar velocities of rich clusters of galaxies in the cold dark matter and hot dark matter galaxy formation scenarios. We have derived peculiar velocities and associated errors for the scenarios using four values of the bias parameter ranging from b = 1 to b = 2.5. The growth of the mean peculiar velocity with scale factor has been determined and compared to that predicted by linear theory. In addition, we have compared the orientation of force and velocity in these simulations to see if a program such as that proposed by Bertschinger and Dekel (1989) for elliptical galaxy peculiar motions can be applied to clusters. The method they describe enables one to recover the density field from large scale redshift distance samples. The method makes it possible to do this when only radial velocities are known by assuming that the velocity field is curl free. Our analysis suggests that this program if applied to clusters is only realizable for models with a low value of the bias parameter, i.e., models in which the peculiar velocities of clusters are large enough that the errors do not render the analysis impracticable.

  7. Towards a realistic population of simulated galaxy groups and clusters

    NASA Astrophysics Data System (ADS)

    Le Brun, Amandine M. C.; McCarthy, Ian G.; Schaye, Joop; Ponman, Trevor J.

    2014-06-01

    We present a new suite of large-volume cosmological hydrodynamical simulations called cosmo-OWLS. They form an extension to the OverWhelmingly Large Simulations (OWLS) project, and have been designed to help improve our understanding of cluster astrophysics and non-linear structure formation, which are now the limiting systematic errors when using clusters as cosmological probes. Starting from identical initial conditions in either the Planck or WMAP7 cosmologies, we systematically vary the most important `sub-grid' physics, including feedback from supernovae and active galactic nuclei (AGN). We compare the properties of the simulated galaxy groups and clusters to a wide range of observational data, such as X-ray luminosity and temperature, gas mass fractions, entropy and density profiles, Sunyaev-Zel'dovich flux, I-band mass-to-light ratio, dominance of the brightest cluster galaxy and central massive black hole (BH) masses, by producing synthetic observations and mimicking observational analysis techniques. These comparisons demonstrate that some AGN feedback models can produce a realistic population of galaxy groups and clusters, broadly reproducing both the median trend and, for the first time, the scatter in physical properties over approximately two decades in mass (1013 M⊙ ≲ M500 ≲ 1015 M⊙) and 1.5 decades in radius (0.05 ≲ r/r500 ≲ 1.5). However, in other models, the AGN feedback is too violent (even though they reproduce the observed BH scaling relations), implying that calibration of the models is required. The production of realistic populations of simulated groups and clusters, as well as models that bracket the observations, opens the door to the creation of synthetic surveys for assisting the astrophysical and cosmological interpretation of cluster surveys, as well as quantifying the impact of selection effects.

  8. N-body simulations of gravitational redshifts and other relativistic distortions of galaxy clustering

    NASA Astrophysics Data System (ADS)

    Zhu, Hongyu; Alam, Shadab; Croft, Rupert A. C.; Ho, Shirley; Giusarma, Elena

    2017-10-01

    Large redshift surveys of galaxies and clusters are providing the first opportunities to search for distortions in the observed pattern of large-scale structure due to such effects as gravitational redshift. We focus on non-linear scales and apply a quasi-Newtonian approach using N-body simulations to predict the small asymmetries in the cross-correlation function of two galaxy different populations. Following recent work by Bonvin et al., Zhao and Peacock and Kaiser on galaxy clusters, we include effects which enter at the same order as gravitational redshift: the transverse Doppler effect, light-cone effects, relativistic beaming, luminosity distance perturbation and wide-angle effects. We find that all these effects cause asymmetries in the cross-correlation functions. Quantifying these asymmetries, we find that the total effect is dominated by the gravitational redshift and luminosity distance perturbation at small and large scales, respectively. By adding additional subresolution modelling of galaxy structure to the large-scale structure information, we find that the signal is significantly increased, indicating that structure on the smallest scales is important and should be included. We report on comparison of our simulation results with measurements from the SDSS/BOSS galaxy redshift survey in a companion paper.

  9. The Morphologies and Alignments of Gas, Mass, and the Central Galaxies of CLASH Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Donahue, Megan; Ettori, Stefano; Rasia, Elena; Sayers, Jack; Zitrin, Adi; Meneghetti, Massimo; Voit, G. Mark; Golwala, Sunil; Czakon, Nicole; Yepes, Gustavo; Baldi, Alessandro; Koekemoer, Anton; Postman, Marc

    2016-03-01

    Morphology is often used to infer the state of relaxation of galaxy clusters. The regularity, symmetry, and degree to which a cluster is centrally concentrated inform quantitative measures of cluster morphology. The Cluster Lensing and Supernova survey with Hubble Space Telescope (CLASH) used weak and strong lensing to measure the distribution of matter within a sample of 25 clusters, 20 of which were deemed to be “relaxed” based on their X-ray morphology and alignment of the X-ray emission with the Brightest Cluster Galaxy. Toward a quantitative characterization of this important sample of clusters, we present uniformly estimated X-ray morphological statistics for all 25 CLASH clusters. We compare X-ray morphologies of CLASH clusters with those identically measured for a large sample of simulated clusters from the MUSIC-2 simulations, selected by mass. We confirm a threshold in X-ray surface brightness concentration of C ≳ 0.4 for cool-core clusters, where C is the ratio of X-ray emission inside 100 h70-1 kpc compared to inside 500 {h}70-1 kpc. We report and compare morphologies of these clusters inferred from Sunyaev-Zeldovich Effect (SZE) maps of the hot gas and in from projected mass maps based on strong and weak lensing. We find a strong agreement in alignments of the orientation of major axes for the lensing, X-ray, and SZE maps of nearly all of the CLASH clusters at radii of 500 kpc (approximately 1/2 R500 for these clusters). We also find a striking alignment of clusters shapes at the 500 kpc scale, as measured with X-ray, SZE, and lensing, with that of the near-infrared stellar light at 10 kpc scales for the 20 “relaxed” clusters. This strong alignment indicates a powerful coupling between the cluster- and galaxy-scale galaxy formation processes.

  10. A single population of red globular clusters around the massive compact galaxy NGC 1277

    NASA Astrophysics Data System (ADS)

    Beasley, Michael A.; Trujillo, Ignacio; Leaman, Ryan; Montes, Mireia

    2018-03-01

    Massive galaxies are thought to form in two phases: an initial collapse of gas and giant burst of central star formation, followed by the later accretion of material that builds up their stellar and dark-matter haloes. The systems of globular clusters within such galaxies are believed to form in a similar manner. The initial central burst forms metal-rich (spectrally red) clusters, whereas more metal-poor (spectrally blue) clusters are brought in by the later accretion of less-massive satellites. This formation process is thought to result in the multimodal optical colour distributions that are seen in the globular cluster systems of massive galaxies. Here we report optical observations of the massive relic-galaxy candidate NGC 1277—a nearby, un-evolved example of a high-redshift ‘red nugget’ galaxy. We find that the optical colour distribution of the cluster system of NGC 1277 is unimodal and entirely red. This finding is in strong contrast to other galaxies of similar and larger stellar mass, the cluster systems of which always exhibit (and are generally dominated by) blue clusters. We argue that the colour distribution of the cluster system of NGC 1277 indicates that the galaxy has undergone little (if any) mass accretion after its initial collapse, and use simulations of possible merger histories to show that the stellar mass due to accretion is probably at most ten per cent of the total stellar mass of the galaxy. These results confirm that NGC 1277 is a genuine relic galaxy and demonstrate that blue clusters constitute an accreted population in present-day massive galaxies.

  11. A single population of red globular clusters around the massive compact galaxy NGC 1277.

    PubMed

    Beasley, Michael A; Trujillo, Ignacio; Leaman, Ryan; Montes, Mireia

    2018-03-22

    Massive galaxies are thought to form in two phases: an initial collapse of gas and giant burst of central star formation, followed by the later accretion of material that builds up their stellar and dark-matter haloes. The systems of globular clusters within such galaxies are believed to form in a similar manner. The initial central burst forms metal-rich (spectrally red) clusters, whereas more metal-poor (spectrally blue) clusters are brought in by the later accretion of less-massive satellites. This formation process is thought to result in the multimodal optical colour distributions that are seen in the globular cluster systems of massive galaxies. Here we report optical observations of the massive relic-galaxy candidate NGC 1277-a nearby, un-evolved example of a high-redshift 'red nugget' galaxy. We find that the optical colour distribution of the cluster system of NGC 1277 is unimodal and entirely red. This finding is in strong contrast to other galaxies of similar and larger stellar mass, the cluster systems of which always exhibit (and are generally dominated by) blue clusters. We argue that the colour distribution of the cluster system of NGC 1277 indicates that the galaxy has undergone little (if any) mass accretion after its initial collapse, and use simulations of possible merger histories to show that the stellar mass due to accretion is probably at most ten per cent of the total stellar mass of the galaxy. These results confirm that NGC 1277 is a genuine relic galaxy and demonstrate that blue clusters constitute an accreted population in present-day massive galaxies.

  12. Ram pressure stripping of hot coronal gas from group and cluster galaxies and the detectability of surviving X-ray coronae

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, Rukmani; Ricker, Paul M.

    2015-05-01

    Ram pressure stripping can remove hot and cold gas from galaxies in the intracluster medium, as shown by observations of X-ray and H I galaxy wakes in nearby clusters of galaxies. However, ram pressure stripping, including pre-processing in group environments, does not remove all the hot coronal gas from cluster galaxies. Recent high-resolution Chandra observations have shown that ˜1-4 kpc extended, hot galactic coronae are ubiquitous in group and cluster galaxies. To better understand this result, we simulate ram pressure stripping of a cosmologically motivated population of galaxies in isolated group and cluster environments. The galaxies and the host group and cluster are composed of collisionless dark matter and hot gas initially in hydrostatic equilibrium with the galaxy and host potentials. We show that the rate at which gas is lost depends on the galactic and host halo mass. Using synthetic X-ray observations, we evaluate the detectability of stripped galactic coronae in real observations by stacking images on the known galaxy centres. We find that coronal emission should be detected within ˜10 arcsec, or ˜5 kpc up to ˜2.3 Gyr in the lowest (0.1-1.2 keV) energy band. Thus, the presence of observed coronae in cluster galaxies significantly smaller than the hot X-ray haloes of field galaxies indicates that at least some gas removal occurs within cluster environments for recently accreted galaxies. Finally, we evaluate the possibility that existing and future X-ray cluster catalogues can be used in combination with optical galaxy positions to detect galactic coronal emission via stacking analysis. We briefly discuss the effects of additional physical processes on coronal survival, and will address them in detail in future papers in this series.

  13. Blooming Trees: Substructures and Surrounding Groups of Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Yu, Heng; Diaferio, Antonaldo; Serra, Ana Laura; Baldi, Marco

    2018-06-01

    We develop the Blooming Tree Algorithm, a new technique that uses spectroscopic redshift data alone to identify the substructures and the surrounding groups of galaxy clusters, along with their member galaxies. Based on the estimated binding energy of galaxy pairs, the algorithm builds a binary tree that hierarchically arranges all of the galaxies in the field of view. The algorithm searches for buds, corresponding to gravitational potential minima on the binary tree branches; for each bud, the algorithm combines the number of galaxies, their velocity dispersion, and their average pairwise distance into a parameter that discriminates between the buds that do not correspond to any substructure or group, and thus eventually die, and the buds that correspond to substructures and groups, and thus bloom into the identified structures. We test our new algorithm with a sample of 300 mock redshift surveys of clusters in different dynamical states; the clusters are extracted from a large cosmological N-body simulation of a ΛCDM model. We limit our analysis to substructures and surrounding groups identified in the simulation with mass larger than 1013 h ‑1 M ⊙. With mock redshift surveys with 200 galaxies within 6 h ‑1 Mpc from the cluster center, the technique recovers 80% of the real substructures and 60% of the surrounding groups; in 57% of the identified structures, at least 60% of the member galaxies of the substructures and groups belong to the same real structure. These results improve by roughly a factor of two the performance of the best substructure identification algorithm currently available, the σ plateau algorithm, and suggest that our Blooming Tree Algorithm can be an invaluable tool for detecting substructures of galaxy clusters and investigating their complex dynamics.

  14. STIRRED, NOT CLUMPED: EVOLUTION OF TEMPERATURE PROFILES IN THE OUTSKIRTS OF GALAXY CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avestruz, Camille; Nagai, Daisuke; Lau, Erwin T., E-mail: avestruz@uchicago.edu

    Recent statistical X-ray measurements of the intracluster medium (ICM) indicate that gas temperature profiles in the outskirts of galaxy clusters deviate from self-similar evolution. Using a mass-limited sample of galaxy clusters from cosmological hydrodynamical simulations, we show that the departure from self-similarity can be explained by non-thermal gas motions driven by mergers and accretion. Contrary to previous claims, gaseous substructures only play a minor role in the temperature evolution in cluster outskirts. A careful choice of halo overdensity definition in self-similar scaling mitigates these departures. Our work highlights the importance of non-thermal gas motions in ICM evolution and the usemore » of galaxy clusters as cosmological probes.« less

  15. THE CLUSTERING OF ALFALFA GALAXIES: DEPENDENCE ON H I MASS, RELATIONSHIP WITH OPTICAL SAMPLES, AND CLUES OF HOST HALO PROPERTIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papastergis, Emmanouil; Giovanelli, Riccardo; Haynes, Martha P.

    We use a sample of ≈6000 galaxies detected by the Arecibo Legacy Fast ALFA (ALFALFA) 21 cm survey to measure the clustering properties of H I-selected galaxies. We find no convincing evidence for a dependence of clustering on galactic atomic hydrogen (H I) mass, over the range M{sub H{sub I}} ≈ 10{sup 8.5}-10{sup 10.5} M{sub ☉}. We show that previously reported results of weaker clustering for low H I mass galaxies are probably due to finite-volume effects. In addition, we compare the clustering of ALFALFA galaxies with optically selected samples drawn from the Sloan Digital Sky Survey (SDSS). We findmore » that H I-selected galaxies cluster more weakly than even relatively optically faint galaxies, when no color selection is applied. Conversely, when SDSS galaxies are split based on their color, we find that the correlation function of blue optical galaxies is practically indistinguishable from that of H I-selected galaxies. At the same time, SDSS galaxies with red colors are found to cluster significantly more than H I-selected galaxies, a fact that is evident in both the projected as well as the full two-dimensional correlation function. A cross-correlation analysis further reveals that gas-rich galaxies 'avoid' being located within ≈3 Mpc of optical galaxies with red colors. Next, we consider the clustering properties of halo samples selected from the Bolshoi ΛCDM simulation. A comparison with the clustering of ALFALFA galaxies suggests that galactic H I mass is not tightly related to host halo mass and that a sizable fraction of subhalos do not host H I galaxies. Lastly, we find that we can recover fairly well the correlation function of H I galaxies by just excluding halos with low spin parameter. This finding lends support to the hypothesis that halo spin plays a key role in determining the gas content of galaxies.« less

  16. Real & Simulated IFU Observations of Low-Mass Early-Type Galaxies: Environmental Influence Probed for Cluster Galaxies

    NASA Astrophysics Data System (ADS)

    Sybilska, Agnieszka; Łokas, Ewa Luiza; Fouquet, Sylvain

    2017-03-01

    We combine high-quality IFU data with a new set of numerical simulations to study low-mass early type galaxies (dEs) in dense environments. Our earlier study of dEs in the Virgo cluster has produced the first large-scale maps of kinematic and stellar population properties of dEs in those environments (Ryś et al. 2013, 2014, 2015). A quantitative discrimination between various (trans)formation processes proposed for these objects is, however, a complex issue, requiring a priori assumptions about the progenitors of galaxies we observe and study today. To bridge this gap between observations and theoretical predictions, we use the expertise gained in the IFU data analysis to look ``through the eye of SAURON'' at our new suite of high-resolution N-body simulations of dEs in the Virgo cluster. Mimicking the observers perspective as closely as possible, we can also indicate the existing instrumental and viewer limitations regarding what we are/are not able to detect as observers.

  17. GEMINI/GMOS SPECTROSCOPY OF 26 STRONG-LENSING-SELECTED GALAXY CLUSTER CORES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayliss, Matthew B.; Gladders, Michael D.; Koester, Benjamin P.

    2011-03-15

    We present results from a spectroscopic program targeting 26 strong-lensing cluster cores that were visually identified in the Sloan Digital Sky Survey (SDSS) and the Second Red-Sequence Cluster Survey (RCS-2). The 26 galaxy cluster lenses span a redshift range of 0.2 < z < 0.65, and our spectroscopy reveals 69 unique background sources with redshifts as high as z = 5.200. We also identify redshifts for 262 cluster member galaxies and measure the velocity dispersions and dynamical masses for 18 clusters where we have redshifts for N {>=} 10 cluster member galaxies. We account for the expected biases in dynamicalmore » masses of strong-lensing-selected clusters as predicted by results from numerical simulations and discuss possible sources of bias in our observations. The median dynamical mass of the 18 clusters with N {>=} 10 spectroscopic cluster members is M {sub Vir} = 7.84 x 10{sup 14} M {sub sun} h {sup -1} {sub 0.7}, which is somewhat higher than predictions for strong-lensing-selected clusters in simulations. The disagreement is not significant considering the large uncertainty in our dynamical data, systematic uncertainties in the velocity dispersion calibration, and limitations of the theoretical modeling. Nevertheless our study represents an important first step toward characterizing large samples of clusters that are identified in a systematic way as systems exhibiting dramatic strong-lensing features.« less

  18. Construcción de un catálogo de cúmulos de galaxias en proceso de colisión

    NASA Astrophysics Data System (ADS)

    de los Ríos, M.; Domínguez, M. J.; Paz, D.

    2015-08-01

    In this work we present first results of the identification of colliding galaxy clusters in galaxy catalogs with redshift measurements (SDSS, 2DF), and introduce the methodology. We calibrated a method by studying the merger trees of clusters in a mock catalog based on a full-blown semi-analytic model of galaxy formation on top of the Millenium cosmological simulation. We also discuss future actions for studding our sample of colliding galaxy clusters, including x-ray observations and mass reconstruction obtained by using weak gravitational lenses.

  19. Is the non-isothermal double β-model incompatible with no time evolution of galaxy cluster gas mass fraction?

    NASA Astrophysics Data System (ADS)

    Holanda, R. F. L.

    2018-05-01

    In this paper, we propose a new method to obtain the depletion factor γ(z), the ratio by which the measured baryon fraction in galaxy clusters is depleted with respect to the universal mean. We use exclusively galaxy cluster data, namely, X-ray gas mass fraction (fgas) and angular diameter distance measurements from Sunyaev-Zel'dovich effect plus X-ray observations. The galaxy clusters are the same in both data set and the non-isothermal spherical double β-model was used to describe their electron density and temperature profiles. In order to compare our results with those from recent cosmological hydrodynamical simulations, we suppose a possible time evolution for γ(z), such as, γ(z) =γ0(1 +γ1 z) . As main conclusions we found that: the γ0 value is in full agreement with the simulations. On the other hand, although the γ1 value found in our analysis is compatible with γ1 = 0 within 2σ c.l., our results show a non-negligible time evolution for the depletion factor, unlike the results of the simulations. However, we also put constraints on γ(z) by using the fgas measurements and angular diameter distances obtained from the flat ΛCDM model (Planck results) and from a sample of galaxy clusters described by an elliptical profile. For these cases no significant time evolution for γ(z) was found. Then, if a constant depletion factor is an inherent characteristic of these structures, our results show that the spherical double β-model used to describe the galaxy clusters considered does not affect the quality of their fgas measurements.

  20. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: modelling the clustering and halo occupation distribution of BOSS CMASS galaxies in the Final Data Release

    NASA Astrophysics Data System (ADS)

    Rodríguez-Torres, Sergio A.; Chuang, Chia-Hsun; Prada, Francisco; Guo, Hong; Klypin, Anatoly; Behroozi, Peter; Hahn, Chang Hoon; Comparat, Johan; Yepes, Gustavo; Montero-Dorta, Antonio D.; Brownstein, Joel R.; Maraston, Claudia; McBride, Cameron K.; Tinker, Jeremy; Gottlöber, Stefan; Favole, Ginevra; Shu, Yiping; Kitaura, Francisco-Shu; Bolton, Adam; Scoccimarro, Román; Samushia, Lado; Schlegel, David; Schneider, Donald P.; Thomas, Daniel

    2016-08-01

    We present a study of the clustering and halo occupation distribution of Baryon Oscillation Spectroscopic Survey (BOSS) CMASS galaxies in the redshift range 0.43 < z < 0.7 drawn from the Final SDSS-III Data Release. We compare the BOSS results with the predictions of a halo abundance matching (HAM) clustering model that assigns galaxies to dark matter haloes selected from the large BigMultiDark N-body simulation of a flat Λ cold dark matter Planck cosmology. We compare the observational data with the simulated ones on a light cone constructed from 20 subsequent outputs of the simulation. Observational effects such as incompleteness, geometry, veto masks and fibre collisions are included in the model, which reproduces within 1σ errors the observed monopole of the two-point correlation function at all relevant scales: from the smallest scales, 0.5 h-1 Mpc, up to scales beyond the baryon acoustic oscillation feature. This model also agrees remarkably well with the BOSS galaxy power spectrum (up to k ˜ 1 h Mpc-1), and the three-point correlation function. The quadrupole of the correlation function presents some tensions with observations. We discuss possible causes that can explain this disagreement, including target selection effects. Overall, the standard HAM model describes remarkably well the clustering statistics of the CMASS sample. We compare the stellar-to-halo mass relation for the CMASS sample measured using weak lensing in the Canada-France-Hawaii Telescope Stripe 82 Survey with the prediction of our clustering model, and find a good agreement within 1σ. The BigMD-BOSS light cone including properties of BOSS galaxies and halo properties is made publicly available.

  1. Testing for X-Ray–SZ Differences and Redshift Evolution in the X-Ray Morphology of Galaxy Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nurgaliev, D.; McDonald, M.; Benson, B. A.

    We present a quantitative study of the X-ray morphology of galaxy clusters, as a function of their detection method and redshift. We analyze two separate samples of galaxy clusters: a sample of 36 clusters atmore » $$0.35\\lt z\\lt 0.9$$ selected in the X-ray with the ROSAT PSPC 400 deg(2) survey, and a sample of 90 clusters at $$0.25\\lt z\\lt 1.2$$ selected via the Sunyaev–Zel’dovich (SZ) effect with the South Pole Telescope. Clusters from both samples have similar-quality Chandra observations, which allow us to quantify their X-ray morphologies via two distinct methods: centroid shifts (w) and photon asymmetry ($${A}_{\\mathrm{phot}}$$). The latter technique provides nearly unbiased morphology estimates for clusters spanning a broad range of redshift and data quality. We further compare the X-ray morphologies of X-ray- and SZ-selected clusters with those of simulated clusters. We do not find a statistically significant difference in the measured X-ray morphology of X-ray and SZ-selected clusters over the redshift range probed by these samples, suggesting that the two are probing similar populations of clusters. We find that the X-ray morphologies of simulated clusters are statistically indistinguishable from those of X-ray- or SZ-selected clusters, implying that the most important physics for dictating the large-scale gas morphology (outside of the core) is well-approximated in these simulations. Finally, we find no statistically significant redshift evolution in the X-ray morphology (both for observed and simulated clusters), over the range of $$z\\sim 0.3$$ to $$z\\sim 1$$, seemingly in contradiction with the redshift-dependent halo merger rate predicted by simulations.« less

  2. Testing for X-Ray–SZ Differences and Redshift Evolution in the X-Ray Morphology of Galaxy Clusters

    DOE PAGES

    Nurgaliev, D.; McDonald, M.; Benson, B. A.; ...

    2017-05-16

    We present a quantitative study of the X-ray morphology of galaxy clusters, as a function of their detection method and redshift. We analyze two separate samples of galaxy clusters: a sample of 36 clusters atmore » $$0.35\\lt z\\lt 0.9$$ selected in the X-ray with the ROSAT PSPC 400 deg(2) survey, and a sample of 90 clusters at $$0.25\\lt z\\lt 1.2$$ selected via the Sunyaev–Zel’dovich (SZ) effect with the South Pole Telescope. Clusters from both samples have similar-quality Chandra observations, which allow us to quantify their X-ray morphologies via two distinct methods: centroid shifts (w) and photon asymmetry ($${A}_{\\mathrm{phot}}$$). The latter technique provides nearly unbiased morphology estimates for clusters spanning a broad range of redshift and data quality. We further compare the X-ray morphologies of X-ray- and SZ-selected clusters with those of simulated clusters. We do not find a statistically significant difference in the measured X-ray morphology of X-ray and SZ-selected clusters over the redshift range probed by these samples, suggesting that the two are probing similar populations of clusters. We find that the X-ray morphologies of simulated clusters are statistically indistinguishable from those of X-ray- or SZ-selected clusters, implying that the most important physics for dictating the large-scale gas morphology (outside of the core) is well-approximated in these simulations. Finally, we find no statistically significant redshift evolution in the X-ray morphology (both for observed and simulated clusters), over the range of $$z\\sim 0.3$$ to $$z\\sim 1$$, seemingly in contradiction with the redshift-dependent halo merger rate predicted by simulations.« less

  3. Ram Pressure Stripping: Observations Meet Simulations

    NASA Astrophysics Data System (ADS)

    Past, Matthew; Ruszkowski, Mateusz; Sharon, Keren

    2017-01-01

    Ram pressure stripping occurs when a galaxy falls into the potential well of a cluster, removing gas and dust as the galaxy travels through the intracluster medium. This interaction leads to filamentary gas tails stretching behind the galaxy and plays an important role in galaxy evolution. Previously, these “jellyfish” galaxies had only been observed in nearby clusters, but recently, higher redshift (z > 0.3) examples have been found from HST data imaging.Recent work has shown that cosmic rays injected by supernovae can cause galactic disks to thicken due to cosmic ray pressure. We run three-dimensional magneto-hydrodynamical simulations of ram pressure stripping including cosmic rays to compare to previous models. We study how the efficiency of the ram pressure stripping of the gas, and the morphology of the filamentary tails, depend on the magnitude of the cosmic ray pressure support. We generate mock X-ray images and radio polarization data. Simultaneously, we perform an exhaustive search of the HST archive to increase the sample of jellyfish galaxies and compare selected cases to simulations.

  4. Discovery of a Giant, 200,000 Light-year Long Wave Rolling Through the Perseus Galaxy Cluster

    NASA Astrophysics Data System (ADS)

    Walker, Stephen; Hlavacek-Larrondo, Julie; Gendon-Marsolais, Marie-Lou; Fabian, Andy; Intema, Huib; Sanders, Jeremy

    2018-01-01

    Deep observations of nearby galaxy clusters with Chandra have revealed concave 'bay' structures in a number of clusters (Perseus, Centaurus and Abell 1795), which have similar X-ray and radio properties. These bays have all the properties of cold fronts brought about by minor mergers causing the cluster gas to slosh around in the gravitational potential. At these cold fronts the temperature rises and density falls sharply. Unusually, in the case of the 'bays' these cold fronts are concave rather than convex. By comparing to simulations of gas sloshing, we find that the bay in the Perseus cluster bears a striking resemblance in its size, location and thermal structure, to a giant (≈50 kpc) wave resulting from Kelvin-Helmholtz instabilities. Such instabilities are commonly seen on far smaller scales in nature, from billow clouds in the Earth's atmosphere, to structures in the cloud belts of gas giant planets. Here we are witnessing this phenomenon on the largest scale ever seen, twice the size of the Milky Way galaxy. The morphology of this structure seen in Perseus can be compared to simulations to put constraints on the initial magnetic pressure throughout the overall cluster before the sloshing occurs. Such Kelvin-Helmholtz features in galaxy clusters have long been predicted by simulations, but it is only now that they have finally been observed, opening up an important new way to probe the physics of the intracluster medium, which contains the majority of the baryonic matter in clusters.

  5. Optical spectroscopy and velocity dispersions of galaxy clusters from the SPT-SZ survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruel, J.; Bayliss, M.; Bazin, G.

    2014-09-01

    We present optical spectroscopy of galaxies in clusters detected through the Sunyaev-Zel'dovich (SZ) effect with the South Pole Telescope (SPT). We report our own measurements of 61 spectroscopic cluster redshifts, and 48 velocity dispersions each calculated with more than 15 member galaxies. This catalog also includes 19 dispersions of SPT-observed clusters previously reported in the literature. The majority of the clusters in this paper are SPT-discovered; of these, most have been previously reported in other SPT cluster catalogs, and five are reported here as SPT discoveries for the first time. By performing a resampling analysis of galaxy velocities, we findmore » that unbiased velocity dispersions can be obtained from a relatively small number of member galaxies (≲ 30), but with increased systematic scatter. We use this analysis to determine statistical confidence intervals that include the effect of membership selection. We fit scaling relations between the observed cluster velocity dispersions and mass estimates from SZ and X-ray observables. In both cases, the results are consistent with the scaling relation between velocity dispersion and mass expected from dark-matter simulations. We measure a ∼30% log-normal scatter in dispersion at fixed mass, and a ∼10% offset in the normalization of the dispersion-mass relation when compared to the expectation from simulations, which is within the expected level of systematic uncertainty.« less

  6. MASS ACCRETION AND ITS EFFECTS ON THE SELF-SIMILARITY OF GAS PROFILES IN THE OUTSKIRTS OF GALAXY CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, Erwin T.; Nagai, Daisuke; Avestruz, Camille

    2015-06-10

    Galaxy clusters exhibit remarkable self-similar behavior which allows us to establish simple scaling relationships between observable quantities and cluster masses, making galaxy clusters useful cosmological probes. Recent X-ray observations suggested that self-similarity may be broken in the outskirts of galaxy clusters. In this work, we analyze a mass-limited sample of massive galaxy clusters from the Omega500 cosmological hydrodynamic simulation to investigate the self-similarity of the diffuse X-ray emitting intracluster medium (ICM) in the outskirts of galaxy clusters. We find that the self-similarity of the outer ICM profiles is better preserved if they are normalized with respect to the mean densitymore » of the universe, while the inner profiles are more self-similar when normalized using the critical density. However, the outer ICM profiles as well as the location of accretion shock around clusters are sensitive to their mass accretion rate, which causes the apparent breaking of self-similarity in cluster outskirts. We also find that the collisional gas does not follow the distribution of collisionless dark matter (DM) perfectly in the infall regions of galaxy clusters, leading to 10% departures in the gas-to-DM density ratio from the cosmic mean value. Our results have a number implications for interpreting observations of galaxy clusters in X-ray and through the Sunyaev–Zel’dovich effect, and their applications to cosmology.« less

  7. Featured Image: The Birth of Spiral Arms

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-01-01

    In this figure, the top panels show three spiral galaxies in the Virgo cluster, imaged with the Sloan Digital Sky Survey. The bottom panels provide a comparison with three morphologically similar galaxies generated insimulations. The simulations run by Marcin Semczuk, Ewa okas, and Andrs del Pino (Nicolaus Copernicus Astronomical Center, Poland) were designed to examine how the spiral arms of galaxies like the Milky Way may have formed. In particular, the group exploredthe possibility that so-called grand-design spiral arms are caused by tidal effects as a Milky-Way-like galaxy orbits a cluster of galaxies. The authors show that the gravitational potential of the cluster can trigger the formation of two spiral arms each time the galaxy passes through the pericenter of its orbit around the cluster. Check out the original paper below for more information!CitationMarcin Semczuk et al 2017 ApJ 834 7. doi:10.3847/1538-4357/834/1/7

  8. Reproducing the local and global morphological segregation between S and S0 galaxies in rich clusters by simple ram-pressure stripping

    NASA Astrophysics Data System (ADS)

    Solanes, Jose M.; Salvador-Sole, Eduardo

    1992-08-01

    We calculate the morphological segregation in rich galaxy clusters expected to arise from the possible evolution of S galaxies into S0 galaxies via the gas removal of their disks by ram-pressure stripping. The calculation is run on Monte Carlo simulations by following individual S galaxies in the potential well of a spherical anisotropic cluster making use of Gunn and Gott's (1972) stripping condition. The results are compared with both Dressler's (1980) local type/density relation and a global population-richness correlation inferred from real data in the present work. We find that, contrary to a rather extended opinion, this evolution scheme reproduces very well the observed morphological segregation between S and S0 galaxies in rich clusters provided that the initial populations are close to those i dense loose groups.

  9. A critical analysis of high-redshift, massive, galaxy clusters. Part I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoyle, Ben; Jimenez, Raul; Verde, Licia

    2012-02-01

    We critically investigate current statistical tests applied to high redshift clusters of galaxies in order to test the standard cosmological model and describe their range of validity. We carefully compare a sample of high-redshift, massive, galaxy clusters with realistic Poisson sample simulations of the theoretical mass function, which include the effect of Eddington bias. We compare the observations and simulations using the following statistical tests: the distributions of ensemble and individual existence probabilities (in the > M, > z sense), the redshift distributions, and the 2d Kolmogorov-Smirnov test. Using seemingly rare clusters from Hoyle et al. (2011), and Jee etmore » al. (2011) and assuming the same survey geometry as in Jee et al. (2011, which is less conservative than Hoyle et al. 2011), we find that the ( > M, > z) existence probabilities of all clusters are fully consistent with ΛCDM. However assuming the same survey geometry, we use the 2d K-S test probability to show that the observed clusters are not consistent with being the least probable clusters from simulations at > 95% confidence, and are also not consistent with being a random selection of clusters, which may be caused by the non-trivial selection function and survey geometry. Tension can be removed if we examine only a X-ray selected sub sample, with simulations performed assuming a modified survey geometry.« less

  10. Galaxies in X-ray Selected Clusters and Groups in Dark Energy Survey Data: Stellar Mass Growth of Bright Central Galaxies Since z~1.2

    DOE PAGES

    Zhang, Y.; Miller, C.; McKay, T.; ...

    2016-01-10

    Using the science verification data of the Dark Energy Survey for a new sample of 106 X-ray selected clusters and groups, we study the stellar mass growth of bright central galaxies (BCGs) since redshift z ~ 1.2. Compared with the expectation in a semi-analytical model applied to the Millennium Simulation, the observed BCGs become under-massive/under-luminous with decreasing redshift. We incorporate the uncertainties associated with cluster mass, redshift, and BCG stellar mass measurements into analysis of a redshift-dependent BCG-cluster mass relation.

  11. Dark-ages reionization and galaxy formation simulation-XI. Clustering and halo masses of high redshift galaxies

    NASA Astrophysics Data System (ADS)

    Park, Jaehong; Kim, Han-Seek; Liu, Chuanwu; Trenti, Michele; Duffy, Alan R.; Geil, Paul M.; Mutch, Simon J.; Poole, Gregory B.; Mesinger, Andrei; Wyithe, J. Stuart B.

    2017-12-01

    We investigate the clustering properties of Lyman-break galaxies (LBGs) at z ∼ 6 - 8. Using the semi-analytical model MERAXES constructed as part of the dark-ages reionization and galaxy-formation observables from numerical simulation (DRAGONS) project, we predict the angular correlation function (ACF) of LBGs at z ∼ 6 - 8. Overall, we find that the predicted ACFs are in good agreement with recent measurements at z ∼ 6 and z ∼ 7.2 from observations consisting of the Hubble eXtreme Deep Field, the Hubble Ultra Deep Field and cosmic sssembly near-infrared deep extragalactic legacy survey field. We confirm the dependence of clustering on luminosity, with more massive dark matter haloes hosting brighter galaxies, remains valid at high redshift. The predicted galaxy bias at fixed luminosity is found to increase with redshift, in agreement with observations. We find that LBGs of magnitude MAB(1600) < -19.4 at 6 ≲ z ≲ 8 reside in dark matter haloes of mean mass ∼1011.0-1011.5 M⊙, and this dark matter halo mass does not evolve significantly during reionisation.

  12. What drives the evolution of Luminous Compact Blue Galaxies in Clusters vs. the Field?

    NASA Astrophysics Data System (ADS)

    Wirth, Gregory

    2017-08-01

    Present-day galaxy clusters consist chiefly of low-mass dwarf elliptical galaxies, but the progenitors of this dominant population remain unclear. A prime candidate is the class of objects known as Luminous Compact Blue Galaxies, common in intermediate-reshift clusters but virtually extinct today. Recent cosmological simulations suggest that the present-day dwarfs galaxies begin as irregular field galaxies, undergo an environmentally-driven starburst phase as they enter the cluster, and stop forming stars earlier than their counterparts in the field. This model predicts that cluster dwarfs should have lower stellar mass per unit dynamical mass than their counterparts in the field. We propose a two-pronged archival research program to test this key prediction using the combination of precision photometry from space and high-quality spectroscopy. First, we will combine optical HST/ACS imaging of five z=0.55 clusters (including two HST Frontier Fields) with Spitzer IR imaging and publicly-released Keck/DEIMOS spectroscopy to measure stellar-to-dynamical-mass ratios for a large sample of cluster LCBGs. Second, we will exploit a new catalog of LCBGs in the COSMOS field to gather corresponding data for a significant sample of field LCBGs. By comparing mass ratios from these datasets, we will test theoretical predictions and determine the primary physical driver of cluster dwarf-galaxy evolution.

  13. The Next Generation of Numerical Modeling in Mergers- Constraining the Star Formation Law

    NASA Astrophysics Data System (ADS)

    Chien, Li-Hsin

    2010-09-01

    Spectacular images of colliding galaxies like the "Antennae", taken with the Hubble Space Telescope, have revealed that a burst of star/cluster formation occurs whenever gas-rich galaxies interact. A?The ages and locations of these clusters reveal the interaction history and provide crucial clues to the process of star formation in galaxies. A?We propose to carry out state-of-the-art numerical simulations to model six nearby galaxy mergers {Arp 256, NGC 7469, NGC 4038/39, NGC 520, NGC 2623, NGC 3256}, hence increasing the number with this level of sophistication by a factor of 3. These simulations provide specific predictions for the age and spatial distributions of young star clusters. The comparison between these simulation results and the observations will allow us to answer a number of fundamental questions including: 1} is shock-induced or density-dependent star formation the dominant mechanism; 2} are the demographics {i.e. mass and age distributions} of the clusters in different mergers similar, i.e. "universal", or very different; and 3} will it be necessary to include other mechanisms, e.g., locally triggered star formation, in the models to better match the observations?

  14. The galaxy-subhalo connection in low-redshift galaxy clusters from weak gravitational lensing

    NASA Astrophysics Data System (ADS)

    Sifón, Cristóbal; Herbonnet, Ricardo; Hoekstra, Henk; van der Burg, Remco F. J.; Viola, Massimo

    2018-07-01

    We measure the gravitational lensing signal around satellite galaxies in a sample of galaxy clusters at z < 0.15 by combining high-quality imaging data from the Canada-France-Hawaii Telescope with a large sample of spectroscopically confirmed cluster members. We use extensive image simulations to assess the accuracy of shape measurements of faint, background sources in the vicinity of bright satellite galaxies. We find a small but significant bias, as light from the lenses makes the shapes of background galaxies appear radially aligned with the lens. We account for this bias by applying a correction that depends on both lens size and magnitude. We also correct for contamination of the source sample by cluster members. We use a physically motivated definition of subhalo mass, namely the mass bound to the subhalo, mbg, similar to definitions used by common subhalo finders in numerical simulations. Binning the satellites by stellar mass we provide a direct measurement of the subhalo-to-stellar-mass relation, log mbg/M⊙ = (11.54 ± 0.05) + (0.95 ± 0.10)log [m⋆/(2 × 1010 M⊙)]. This best-fitting relation implies that, at a stellar mass m⋆ ˜ 3 × 1010 M⊙, subhalo masses are roughly 50 per cent of those of central galaxies, and this fraction decreases at higher stellar masses. We find some evidence for a sharp change in the total-to-stellar mass ratio around the clusters' scale radius, which could be interpreted as galaxies within the scale radius having suffered more strongly from tidal stripping, but remain cautious regarding this interpretation.

  15. The galaxy-subhalo connection in low-redshift galaxy clusters from weak gravitational lensing

    NASA Astrophysics Data System (ADS)

    Sifón, Cristóbal; Herbonnet, Ricardo; Hoekstra, Henk; van der Burg, Remco F. J.; Viola, Massimo

    2018-05-01

    We measure the gravitational lensing signal around satellite galaxies in a sample of galaxy clusters at z < 0.15 by combining high-quality imaging data from the Canada-France-Hawaii Telescope with a large sample of spectroscopically-confirmed cluster members. We use extensive image simulations to assess the accuracy of shape measurements of faint, background sources in the vicinity of bright satellite galaxies. We find a small but significant bias, as light from the lenses makes the shapes of background galaxies appear radially aligned with the lens. We account for this bias by applying a correction that depends on both lens size and magnitude. We also correct for contamination of the source sample by cluster members. We use a physically-motivated definition of subhalo mass, namely the mass bound to the subhalo, mbg, similar to definitions used by common subhalo finders in numerical simulations. Binning the satellites by stellar mass we provide a direct measurement of the subhalo-to-stellar-mass relation, log mbg/M⊙ = (11.54 ± 0.05) + (0.95 ± 0.10)log [m⋆/(2 × 1010M⊙)]. This best-fitting relation implies that, at a stellar mass m⋆ ˜ 3 × 1010 M⊙, subhalo masses are roughly 50 per cent of those of central galaxies, and this fraction decreases at higher stellar masses. We find some evidence for a sharp change in the total-to-stellar mass ratio around the clusters' scale radius, which could be interpreted as galaxies within the scale radius having suffered more strongly from tidal stripping, but remain cautious regarding this interpretation.

  16. Strong Lensing Analysis of the Galaxy Cluster MACS J1319.9+7003 and the Discovery of a Shell Galaxy

    NASA Astrophysics Data System (ADS)

    Zitrin, Adi

    2017-01-01

    We present a strong-lensing (SL) analysis of the galaxy cluster MACS J1319.9+7003 (z = 0.33, also known as Abell 1722), as part of our ongoing effort to analyze massive clusters with archival Hubble Space Telescope (HST) imaging. We spectroscopically measured with Keck/Multi-Object Spectrometer For Infra-Red Exploration (MOSFIRE) two galaxies multiply imaged by the cluster. Our analysis reveals a modest lens, with an effective Einstein radius of {θ }e(z=2)=12+/- 1\\prime\\prime , enclosing 2.1+/- 0.3× {10}13 M⊙. We briefly discuss the SL properties of the cluster, using two different modeling techniques (see the text for details), and make the mass models publicly available (ftp://wise-ftp.tau.ac.il/pub/adiz/MACS1319/). Independently, we identified a noteworthy, young shell galaxy (SG) system forming around two likely interacting cluster members, 20″ north of the brightest cluster galaxy. SGs are rare in galaxy clusters, and indeed, a simple estimate reveals that they are only expected in roughly one in several dozen, to several hundred, massive galaxy clusters (the estimate can easily change by an order of magnitude within a reasonable range of characteristic values relevant for the calculation). Taking advantage of our lens model best-fit, mass-to-light scaling relation for cluster members, we infer that the total mass of the SG system is ˜ 1.3× {10}11 {M}⊙ , with a host-to-companion mass ratio of about 10:1. Despite being rare in high density environments, the SG constitutes an example to how stars of cluster galaxies are efficiently redistributed to the intra-cluster medium. Dedicated numerical simulations for the observed shell configuration, perhaps aided by the mass model, might cast interesting light on the interaction history and properties of the two galaxies. An archival HST search in galaxy cluster images can reveal more such systems.

  17. Constraints on the Energy Density Content of the Universe Using Only Clusters of Galaxies

    NASA Technical Reports Server (NTRS)

    Molnar, Sandor M.; Haiman, Zoltan; Birkinshaw, Mark

    2003-01-01

    We demonstrate that it is possible to constrain the energy content of the Universe with high accuracy using observations of clusters of galaxies only. The degeneracies in the cosmological parameters are lifted by combining constraints from different observables of galaxy clusters. We show that constraints on cosmological parameters from galaxy cluster number counts as a function of redshift and accurate angular diameter distance measurements to clusters are complementary to each other and their combination can constrain the energy density content of the Universe well. The number counts can be obtained from X-ray and/or SZ (Sunyaev-Zeldovich effect) surveys, the angular diameter distances can be determined from deep observations of the intra-cluster gas using their thermal bremsstrahlung X-ray emission and the SZ effect (X-SZ method). In this letter we combine constraints from simulated cluster number counts expected from a 12 deg2 SZ cluster survey and constraints from simulated angular diameter distance measurements based on using the X-SZ method assuming an expected accuracy of 7% in the angular diameter distance determination of 70 clusters with redshifts less than 1.5. We find that R, can be determined within about 25%, A within 20%, and w within 16%. Any cluster survey can be used to select clusters for high accuracy distance measurements, but we assumed accurate angular diameter distance measurements for only 70 clusters since long observations are necessary to achieve high accuracy in distance measurements. Thus the question naturally arises: How to select clusters of galaxies for accurate diameter distance determinations? In this letter, as an example, we demonstrate that it is possible to optimize this selection changing the number of clusters observed, and the upper cut off of their redshift range. We show that constraints on cosmological parameters from combining cluster number counts and angular diameter distance measurements, as opposed to general expectations, will not improve substantially selecting clusters with redshifts higher than one. This important conclusion allow us to restrict our cluster sample to clusters closer than one, in a range where the observational time for accurate distance measurements are more manageable. Subject headings: cosmological parameters - cosmology: theory - galaxies: clusters: general - X-rays: galaxies: clusters

  18. On the occurrence of galaxy harassment

    NASA Astrophysics Data System (ADS)

    Bialas, D.; Lisker, T.; Olczak, C.; Spurzem, R.; Kotulla, R.

    2015-04-01

    Context. Tidal interactions of galaxies in galaxy clusters have been proposed as one potential explanation of the morphology-density relation at low masses. Earlier studies have shown that galaxy harassment is a suitable mechanism for inducing a morphological transformation from low-mass late-type disk galaxies to the abundant early-type galaxies. Aims: The efficiency of tidal transformation is expected to depend strongly on the orbit of a galaxy within the cluster halo. The orbit determines both the strength of the cluster's global tidal field and the probability of encounters with other cluster members. Here we aim to explore these dependencies. Methods: We use a combination of N-body simulation and Monte-Carlo method to study the efficiency of the transformation of late-type galaxies by tidal interactions on different orbits in a galaxy cluster. Additionally, we investigate the effect of an inclination between the disk of the infalling galaxy and its orbital plane. We compare our results to observational data to assess the possible relevance of such transformations for the existing cluster galaxy population. Results: We find that galaxies that entered a cluster from the outskirts are unlikely to be significantly transformed (stellar mass loss ≤6%). Closer to the cluster centre, tidal interactions are a more efficient mechanism (stellar mass loss up to 50%) for producing harassed galaxies. The inclination of the disk can reduce the mass loss significantly, yet it amplifies the thickening of the galaxy disk. Galaxies with smaller sizes on intermediate orbits are nearly unaffected by tidal interactions. The tidal influence on an infalling galaxy and the likelihood that it leads to galaxy harassment make a very stochastical process that depends on the galaxy's specific history. Conclusions: We conclude that harassment is a suitable mechanism that could explain the transformation of at least a fraction of galaxies inside galaxy clusters. However, the transformation would have to start at an early epoch in protocluster environments and continue until today, in order to result in a complete morphological transformation. Appendices are available in electronic form at http://www.aanda.org

  19. On the Formation of Ultra-Difuse Galaxies as Tidally-Stripped Systems

    NASA Astrophysics Data System (ADS)

    Carleton, Timothy; Cooper, Michael; Kaplinghat, Manoj; Errani, Raphael; Penarrubia, Jorge

    2018-01-01

    The recent identification of a large population of so-called 'Ultra-Diffuse' Galaxies (UDGs), with stellar masses ~108 M⊙, but half light radii over 1.5 kpc, has challenged our understanding of galaxy evolution. Motivated by the environmental dependence of UDG properties and abundance, I present a model for the formation of UDGs through tidal-stripping of dwarf galaxies in cored dark matter halos. To test this scenario, I utilize results from simulations of tidal stripping, which demonstrate that changes in the stellar profile of a tidally stripped galaxy can be written as a function of the amount of tidal stripping experienced by the halo (tidal tracks). These tracks, however, are different for cored and cuspy halos. Additional simulations show how the halo responds to tidal interactions given the halo orbit within a cluster.In particular, dwarf elliptical galaxies, born in 1010-10.5 M⊙ halos, expand significantly as a result of tidal stripping and produce UDGs. Applying these models to the population of halos in the Bolshoi simulation, I am able to follow the effects of tidal stripping on the dwarf galaxy population in clusters. Using tidal tracks for cuspy halos does not reproduce the observed properties of UDGs. However, using the tidal tracks for cored halos, I reproduce the distribution of sizes, stellar masses, and abundance of UDGs in clusters remarkably well.

  20. The sensitivity of harassment to orbit: mass loss from early-type dwarfs in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Smith, R.; Sánchez-Janssen, R.; Beasley, M. A.; Candlish, G. N.; Gibson, B. K.; Puzia, T. H.; Janz, J.; Knebe, A.; Aguerri, J. A. L.; Lisker, T.; Hensler, G.; Fellhauer, M.; Ferrarese, L.; Yi, S. K.

    2015-12-01

    We conduct a comprehensive numerical study of the orbital dependence of harassment on early-type dwarfs consisting of 168 different orbits within a realistic, Virgo-like cluster, varying in eccentricity and pericentre distance. We find harassment is only effective at stripping stars or truncating their stellar discs for orbits that enter deep into the cluster core. Comparing to the orbital distribution in cosmological simulations, we find that the majority of the orbits (more than three quarters) result in no stellar mass loss. We also study the effects on the radial profiles of the globular cluster systems of early-type dwarfs. We find these are significantly altered only if harassment is very strong. This suggests that perhaps most early-type dwarfs in clusters such as Virgo have not suffered any tidal stripping of stars or globular clusters due to harassment, as these components are safely embedded deep within their dark matter halo. We demonstrate that this result is actually consistent with an earlier study of harassment of dwarf galaxies, despite the apparent contradiction. Those few dwarf models that do suffer stellar stripping are found out to the virial radius of the cluster at redshift = 0, which mixes them in with less strongly harassed galaxies. However when placed on phase-space diagrams, strongly harassed galaxies are found offset to lower velocities compared to weakly harassed galaxies. This remains true in a cosmological simulation, even when haloes have a wide range of masses and concentrations. Thus phase-space diagrams may be a useful tool for determining the relative likelihood that galaxies have been strongly or weakly harassed.

  1. LoCuSS: weak-lensing mass calibration of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Okabe, Nobuhiro; Smith, Graham P.

    2016-10-01

    We present weak-lensing mass measurements of 50 X-ray luminous galaxy clusters at 0.15 ≤ z ≤ 0.3, based on uniform high-quality observations with Suprime-Cam mounted on the 8.2-m Subaru telescope. We pay close attention to possible systematic biases, aiming to control them at the ≲4 per cent level. The dominant source of systematic bias in weak-lensing measurements of the mass of individual galaxy clusters is contamination of background galaxy catalogues by faint cluster and foreground galaxies. We extend our conservative method for selecting background galaxies with (V - I') colours redder than the red sequence of cluster members to use a colour-cut that depends on cluster-centric radius. This allows us to define background galaxy samples that suffer ≤1 per cent contamination, and comprise 13 galaxies per square arcminute. Thanks to the purity of our background galaxy catalogue, the largest systematic that we identify in our analysis is a shape measurement bias of 3 per cent, that we measure using simulations that probe weak shears up to g = 0.3. Our individual cluster mass and concentration measurements are in excellent agreement with predictions of the mass-concentration relation. Equally, our stacked shear profile is in excellent agreement with the Navarro Frenk and White profile. Our new Local Cluster Substructure Survey mass measurements are consistent with the Canadian Cluster Cosmology Project and Cluster Lensing And Supernova Survey with Hubble surveys, and in tension with the Weighing the Giants at ˜1σ-2σ significance. Overall, the consensus at z ≤ 0.3 that is emerging from these complementary surveys represents important progress for cluster mass calibration, and augurs well for cluster cosmology.

  2. A Database of Young Star Clusters for Five Hundred Galaxies

    NASA Astrophysics Data System (ADS)

    Whitmore, Brad

    2009-07-01

    We propose to use the source lists developed as part of the Hubble Legacy Archive {HLA: Data Release 1 - February 8, 2008} to obtain a large {N 50 galaxies for multi-wavelength, N 500 galaxies for ACS F814W}, uniform {ACS + WFPC2 + NICMOS: DAOphot used for object detection} database of super star clusters in nearby star-forming galaxies in order to address two fundamental astronomical questions: 1} To what degree is the cluster luminosity {and mass} function of star clusters universal ? 2} What fraction of super star clusters are "missing" in optical studies {i.e., are hidden by dust}? This database will also support comparisons with new Monte-Carlo simulations that have independently been developed in the past few years by co-I Larsen and PI Whitmore, and will be used to test the Whitmore, Chandar, Fall {2007} framework designed to understand the demographics of star clusters in all star forming galaxies. The catalogs will increase the number of galaxies with measured mass and luminosity functions by an order of magnitude, and will provide a powerful new tool for comparative studies, both ours and the community's.

  3. The Relationship Between Galaxies and the Large-Scale Structure of the Universe

    NASA Astrophysics Data System (ADS)

    Coil, Alison L.

    2018-06-01

    I will describe our current understanding of the relationship between galaxies and the large-scale structure of the Universe, often called the galaxy-halo connection. Galaxies are thought to form and evolve in the centers of dark matter halos, which grow along with the galaxies they host. Large galaxy redshift surveys have revealed clear observational signatures of connections between galaxy properties and their clustering properties on large scales. For example, older, quiescent galaxies are known to cluster more strongly than younger, star-forming galaxies, which are more likely to be found in galactic voids and filaments rather than the centers of galaxy clusters. I will show how cosmological numerical simulations have aided our understanding of this galaxy-halo connection and what is known from a statistical point of view about how galaxies populate dark matter halos. This knowledge both helps us learn about galaxy evolution and is fundamental to our ability to use galaxy surveys to reveal cosmological information. I will talk briefly about some of the current open questions in the field, including galactic conformity and assembly bias.

  4. Brighter galaxy bias: underestimating the velocity dispersions of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Old, L.; Gray, M. E.; Pearce, F. R.

    2013-09-01

    We study the systematic bias introduced when selecting the spectroscopic redshifts of brighter cluster galaxies to estimate the velocity dispersion of galaxy clusters from both simulated and observational galaxy catalogues. We select clusters with Ngal ≥ 50 at five low-redshift snapshots from the publicly available De Lucia & Blaziot semi-analytic model galaxy catalogue. Clusters are also selected from the Tempel Sloan Digital Sky Survey Data Release 8 groups and clusters catalogue across the redshift range 0.021 ≤ z ≤ 0.098. We employ various selection techniques to explore whether the velocity dispersion bias is simply due to a lack of dynamical information or is the result of an underlying physical process occurring in the cluster, for example, dynamical friction experienced by the brighter cluster members. The velocity dispersions of the parent dark matter (DM) haloes are compared to the galaxy cluster dispersions and the stacked distribution of DM particle velocities is examined alongside the corresponding galaxy velocity distribution. We find a clear bias between the halo and the semi-analytic galaxy cluster velocity dispersion on the order of σgal/σDM ˜ 0.87-0.95 and a distinct difference in the stacked galaxy and DM particle velocities distribution. We identify a systematic underestimation of the velocity dispersions when imposing increasing absolute I-band magnitude limits. This underestimation is enhanced when using only the brighter cluster members for dynamical analysis on the order of 5-35 per cent, indicating that dynamical friction is a serious source of bias when using galaxy velocities as tracers of the underlying gravitational potential. In contrast to the literature we find that the resulting bias is not only halo mass dependent but also that the nature of the dependence changes according to the galaxy selection strategy. We make a recommendation that, in the realistic case of limited availability of spectral observations, a strictly magnitude-limited sample should be avoided to ensure an unbiased estimate of the velocity dispersion.

  5. The coma cluster after lunch: Has a galaxcy group passed through the cluster core?

    NASA Technical Reports Server (NTRS)

    Burns, Jack O.; Roettiger, Kurt; Ledlow, Michael; Klypin, Anatoly

    1994-01-01

    We propose that the Coma cluster has recently undergone a collision with the NGC 4839 galaxy group. The ROSAT X-ray morphology, the Coma radio halo, the presence of poststarburst galaxies in the bridge between Coma and NGC 4839, the usually high velocity dispersion for the NGC 4839 group, and the position of a large-scale galaxy filament to the NE of Coma are all used to argue that the NGC 4839 group passed through the core of Coma approximately 2 Gyr ago. We present a new Hydro/N-body simulation of the merger between a galaxy group and a rich cluster that reproduces many of the observed X-ray and optical properties of Coma/NGC 4839.

  6. The Atacama Cosmology Telescope: Dynamical Masses for 44 SZ-Selected Galaxy Clusters over 755 Square Degrees

    NASA Technical Reports Server (NTRS)

    Sifon, Cristobal; Battaglia, Nick; Hasselfield, Matthew; Menanteau, Felipe; Barrientos, L. Felipe; Bond, J. Richard; Crichton, Devin; Devlin, Mark J.; Dunner, Rolando; Hilton, Matt; hide

    2016-01-01

    We present galaxy velocity dispersions and dynamical mass estimates for 44 galaxy clusters selected via the Sunyaev-Zeldovich (SZ) effect by the Atacama Cosmology Telescope. Dynamical masses for 18 clusters are reported here for the first time. Using N-body simulations, we model the different observing strategies used to measure the velocity dispersions and account for systematic effects resulting from these strategies. We find that the galaxy velocity distributions may be treated as isotropic, and that an aperture correction of up to 7 per cent in the velocity dispersion is required if the spectroscopic galaxy sample is sufficiently concentrated towards the cluster centre. Accounting for the radial profile of the velocity dispersion in simulations enables consistent dynamical mass estimates regardless of the observing strategy. Cluster masses M200 are in the range (1 - 15) times 10 (sup 14) Solar Masses. Comparing with masses estimated from the SZ distortion assuming a gas pressure profile derived from X-ray observations gives a mean SZ-to-dynamical mass ratio of 1:10 plus or minus 0:13, but there is an additional 0.14 systematic uncertainty due to the unknown velocity bias; the statistical uncertainty is dominated by the scatter in the mass-velocity dispersion scaling relation. This ratio is consistent with previous determinations at these mass scales.

  7. Formation of ultra-compact dwarf galaxies from supergiant molecular clouds

    NASA Astrophysics Data System (ADS)

    Goodman, Morgan; Bekki, Kenji

    2018-05-01

    The origin of ultra-compact dwarf galaxies (UCDs) is not yet clear. One possible formation path of UCDs is the threshing of a nucleated elliptical dwarf galaxy (dE, N), however, it remains unclear how such massive nuclear stellar systems were formed in dwarf galaxies. To better establish the early history of UCDs, we investigate the formation of UCD progenitor clusters from super giant molecular clouds (SGMCs), using hydrodynamical simulations. In this study we focus on SGMCs with masses 107 - 108 M_{\\odot } that can form massive star clusters that display physical properties similar to UCDs. We find that the clusters have extended star formation histories with two phases, producing multiple distinct stellar populations, and that the star formation rate is dependent on the feedback effects of SNe and AGB stars. The later generations of stars formed in these clusters are more compact, leading to a clearly nested structure, and these stars will be more He-rich than those of the first generation, leading to a slight colour gradient. The simulated clusters demonstrate scaling relations between Reff and M and σv and M consistent with those observed in UCDs and strongly consistent with those of the original SGMC. We discuss whether SGMCs such as these can be formed through merging of self-gravitating molecular clouds in galaxies at high-z.

  8. Clusters of Galaxies at High Redshift

    NASA Astrophysics Data System (ADS)

    Fort, Bernard

    For a long time, the small number of clusters at z > 0.3 in the Abell survey catalogue and simulations of the standard CDM formation of large scale structures provided a paradigm where clusters were considered as young merging structures. At earlier times, loose concentrations of galaxy clumps were mostly anticipated. Recent observations broke the taboo. Progressively we became convinced that compact and massive clusters at z = 1 or possibly beyond exist and should be searched for.

  9. Energy spectra of X-ray clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Avni, Y.

    1976-01-01

    A procedure for estimating the ranges of parameters that describe the spectra of X-rays from clusters of galaxies is presented. The applicability of the method is proved by statistical simulations of cluster spectra; such a proof is necessary because of the nonlinearity of the spectral functions. Implications for the spectra of the Perseus, Coma, and Virgo clusters are discussed. The procedure can be applied in more general problems of parameter estimation.

  10. Galaxies at the Extremes: Ultradiffuse Galaxies in the Virgo Cluster

    NASA Astrophysics Data System (ADS)

    Mihos, Chris

    2017-08-01

    The ultradiffuse galaxies (UDGs) recently discovered in massive galaxy clusters presents both challenges and opportunities for our understanding of galaxy evolution in dense clusters. Such large, low density galaxies should be most vulnerable to gravitational destruction within the cluster environment. Thus their presence in cluster cores argues either that they must be stabilized by massive dark halos or else be short-lived objects undergoing rapid transformation, perhaps leading to the formation of ultracompact dwarf galaxies (UCDs) if their destruction leaves only a compact nucleus behind. We propose deep imaging of four Virgo Cluster UDGs to probe their local environment within Virgo via accurate tip of the red giant branch (TRGB) distances. With a distance precision of 1 Mpc, we will accurately place the objects in the Virgo core, cluster outskirts, or intervening field. When coupled with our extant kinematic data, we can determine whether they are infalling objects or instead have already passed through the cluster core. We will also compare their compact nuclei to Virgo UCDs, and study their globular cluster (GC) populations in detail. Probing three magnitudes beyond the turnover in the GC luminosity function, we will construct larger and cleaner GC samples than possible with ground-based imaging, using the total mass and radial extent of the globular cluster systems to estimate the dark halo mass and tidal radius for each UDG. The new information provided by HST about the local environment and intrinsic properties of these Virgo UDGs will be used in conjunction with simulation data to study cluster-driven evolution and transformation of low density galaxies.

  11. Galaxy Kinematics and Mass Calibration in Massive SZE Selected Galaxy Clusters to z=1.3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capasso, R.; et al.

    The galaxy phase-space distribution in galaxy clusters provides insights into the formation and evolution of cluster galaxies, and it can also be used to measure cluster mass profiles. We present a dynamical study based onmore » $$\\sim$$3000 passive, non-emission line cluster galaxies drawn from 110 galaxy clusters. The galaxy clusters were selected using the Sunyaev-Zel'dovich effect (SZE) in the 2500 deg$^2$ SPT-SZ survey and cover the redshift range $0.2 < z < 1.3$. We model the clusters using the Jeans equation, while adopting NFW mass profiles and a broad range of velocity dispersion anisotropy profiles. The data prefer velocity dispersion anisotropy profiles that are approximately isotropic near the center and increasingly radial toward the cluster virial radius, and this is true for all redshifts and masses we study. The pseudo-phase-space density profile of the passive galaxies is consistent with expectations for dark matter particles and subhalos from cosmological $N$-body simulations. The dynamical mass constraints are in good agreement with external mass estimates of the SPT cluster sample from either weak lensing, velocity dispersions, or X-ray $$Y_X$$ measurements. However, the dynamical masses are lower (at the 2.2$$\\sigma$$ level) when compared to the mass calibration favored when fitting the SPT cluster data to a LCDM model with external cosmological priors, including CMB anisotropy data from Planck. The tension grows with redshift, where in the highest redshift bin the ratio of dynamical to SPT+Planck masses is $$\\eta=0.63^{+0.13}_{-0.08}\\pm0.05$$ (statistical and systematic), corresponding to 2.6$$\\sigma$$ tension.« less

  12. A study of hierarchical clustering of galaxies in an expanding universe

    NASA Astrophysics Data System (ADS)

    Porter, D. H.

    The nonlinear hierarchical clustering of galaxies in an Einstein-deSitter (Omega = 1), initially white noise mass fluctuations (n = 0) model universe is investigated and shown to be in contradiction with previous results. The model is done in terms of an 11,000-body numerical simulation. The independent statics of 0.72 million particles are used to simulte the boundary conditions. A new method for integrating the Newtonian N-body gravity equations, which has controllable accuracy, incorporates a recursive center of mass reduction, and regularizes two body encounters is used to do the simulation. The coordinate system used here is well suited for the investigation of galaxy clustering, incorporating the independent positions and velocities of an arbitrary number of particles into a logarithmic hierarchy of center of mass nodes. The boundary for the simulation is created by using this hierarchy to map the independent statics of 0.72 million particles into just 4,000 particles. This method for simulating the boundary conditions also has controllable accuracy.

  13. Is ram-pressure stripping an efficient mechanism to remove gas in galaxies?

    NASA Astrophysics Data System (ADS)

    Quilis, Vicent; Planelles, Susana; Ricciardelli, Elena

    2017-07-01

    We study how the gas in a sample of galaxies (M* > 109 M⊙) in clusters, obtained in a cosmological simulation, is affected by the interaction with the intracluster medium (ICM). The dynamical state of each elemental parcel of gas is studied using the total energy. At z ˜ 2, the galaxies in the simulation are evenly distributed within clusters, later moving towards more central locations. In this process, gas from the ICM is accreted and mixed with the gas in the galactic halo. Simultaneously, the interaction with the environment removes part of the gas. A characteristic stellar mass around M* ˜ 1010 M⊙ appears as a threshold marking two differentiated behaviours. Below this mass, galaxies are located at the external part of clusters and have eccentric orbits. The effect of the interaction with the environment is marginal. Above, galaxies are mainly located at the inner part of clusters with mostly radial orbits with low velocities. In these massive systems, part of the gas, strongly correlated with the stellar mass of the galaxy, is removed. The amount of removed gas is subdominant compared with the quantity of retained gas, which is continuously influenced by the hot gas coming from the ICM. The analysis of individual galaxies reveals the existence of a complex pattern of flows, turbulence and a constant fuelling of gas to the hot corona from the ICM, which could mean that the global effect of the interaction of galaxies with their environment is substantially less dramatic than previously expected.

  14. A Systematic Study of Kelvin-Helmholtz Instability in Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Su, Yuanyuan

    2017-09-01

    Kelvin-Helmholtz instabilities (KHI) were observed at cold fronts in a handful of clusters. KHI are predicted at all cold fronts in hydro simulation of intracluster medium (ICM). Their presence and absence provides a unique probe of transport processes in the hot plasma, which are essential to the dissipation and redistribution of the energy in the ICM. We propose the first systematic study of the prevalence of KHI in galaxy clusters by analyzing the archived Chandra observations of a sample of 50 nearby galaxy clusters. We will associate the occurrence and properties of KHI rolls with various cluster parameters such as their gas temperature and density, and put constraints on effective transport coefficients in the ICM

  15. DISCOVERY OF A LARGE NUMBER OF CANDIDATE PROTOCLUSTERS TRACED BY ∼15 Mpc-SCALE GALAXY OVERDENSITIES IN COSMOS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiang, Yi-Kuan; Gebhardt, Karl; Overzier, Roderik

    2014-02-10

    To demonstrate the feasibility of studying the epoch of massive galaxy cluster formation in a more systematic manner using current and future galaxy surveys, we report the discovery of a large sample of protocluster candidates in the 1.62 deg{sup 2} COSMOS/UltraVISTA field traced by optical/infrared selected galaxies using photometric redshifts. By comparing properly smoothed three-dimensional galaxy density maps of the observations and a set of matched simulations incorporating the dominant observational effects (galaxy selection and photometric redshift uncertainties), we first confirm that the observed ∼15 comoving Mpc-scale galaxy clustering is consistent with ΛCDM models. Using further the relation between high-z overdensitymore » and the present day cluster mass calibrated in these matched simulations, we found 36 candidate structures at 1.6 < z < 3.1, showing overdensities consistent with the progenitors of M{sub z} {sub =} {sub 0} ∼ 10{sup 15} M {sub ☉} clusters. Taking into account the significant upward scattering of lower mass structures, the probabilities for the candidates to have at least M{sub z=} {sub 0} ∼ 10{sup 14} M {sub ☉} are ∼70%. For each structure, about 15%-40% of photometric galaxy candidates are expected to be true protocluster members that will merge into a cluster-scale halo by z = 0. With solely photometric redshifts, we successfully rediscover two spectroscopically confirmed structures in this field, suggesting that our algorithm is robust. This work generates a large sample of uniformly selected protocluster candidates, providing rich targets for spectroscopic follow-up and subsequent studies of cluster formation. Meanwhile, it demonstrates the potential for probing early cluster formation with upcoming redshift surveys such as the Hobby-Eberly Telescope Dark Energy Experiment and the Subaru Prime Focus Spectrograph survey.« less

  16. Probing dark matter physics with galaxy clusters

    NASA Astrophysics Data System (ADS)

    Dalal, Neal

    2016-10-01

    We propose a theoretical investigation of the effects of a class of dark matter (DM) self-interactions on the properties of galaxy clusters and their host dark matter halos. Recent work using HST has claimed the detection of a particular form of DM self-interaction, which can lead to observable displacements between satellite galaxies within clusters and the DM subhalos hosting them. This form of self-interaction is highly anisotropic, favoring forward scattering with low momentum transfer, unlike isotropically scattering self-interacting dark matter (SIDM) models. This class of models has not been simulated numerically, clouding the interpretation of the claimed offsets between galaxies and lensing peaks observed by HST. We propose to perform high resolution simulations of cosmological structure formation for this class of SIDM model, focusing on three observables accessible to existing HST observations of clusters. First, we will quantify the extent to which offsets between baryons and DM can arise in these models, as a function of the cross section. Secondly, we will also quantify the effects of this type of DM self-interaction on halo concentrations, to determine the range of cross-sections allowed by existing stringent constraints from HST. Finally we will compute the so-called splashback feature in clusters, specifically focusing on whether SIDM can resolve the current discrepancy between observed values of splashback radii in clusters compared to theoretical predictions for CDM. The proposed investigations will add value to all existing deep HST observations of galaxy clusters by allowing them to probe dark matter physics in three independent ways.

  17. On the Scatter of the Present-day Stellar Metallicity–Mass Relation of Cluster Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Engler, Christoph; Lisker, Thorsten; Pillepich, Annalisa

    2018-04-01

    We examine the scatter of the relation between stellar mass and stellar metallicity for cluster dwarf galaxies in the cosmological simulation Illustris. The mass-metallicity relation exhibits the smallest intrinsic scatter at the galaxies' times of peak stellar mass, suggesting stellar mass stripping to be the primary effect responsible for the rather broad relation at present. However, for about 40% of galaxies in the high-metallicity tail of the relation, we find mass stripping to coincide with an increased enrichment of stellar metallicity, possibly caused by the stripping of low-metallicity stars in the galaxy outskirts.

  18. GalWeight: A New and Effective Weighting Technique for Determining Galaxy Cluster and Group Membership

    NASA Astrophysics Data System (ADS)

    Abdullah, Mohamed H.; Wilson, Gillian; Klypin, Anatoly

    2018-07-01

    We introduce GalWeight, a new technique for assigning galaxy cluster membership. This technique is specifically designed to simultaneously maximize the number of bona fide cluster members while minimizing the number of contaminating interlopers. The GalWeight technique can be applied to both massive galaxy clusters and poor galaxy groups. Moreover, it is effective in identifying members in both the virial and infall regions with high efficiency. We apply the GalWeight technique to MDPL2 and Bolshoi N-body simulations, and find that it is >98% accurate in correctly assigning cluster membership. We show that GalWeight compares very favorably against four well-known existing cluster membership techniques (shifting gapper, den Hartog, caustic, SIM). We also apply the GalWeight technique to a sample of 12 Abell clusters (including the Coma cluster) using observations from the Sloan Digital Sky Survey. We conclude by discussing GalWeight’s potential for other astrophysical applications.

  19. Non-linear clustering in the cold plus hot dark matter model

    NASA Astrophysics Data System (ADS)

    Bonometto, Silvio A.; Borgani, Stefano; Ghigna, Sebastiano; Klypin, Anatoly; Primack, Joel R.

    1995-03-01

    The main aim of this work is to find out if hierarchical scaling, observed in galaxy clustering, can be dynamically explained by studying N-body simulations. Previous analyses of dark matter (DM) particle distributions indicated heavy distortions with respect to the hierarchical pattern. Here, we shall describe how such distortions are to be interpreted and why they can be fully reconciled with the observed galaxy clustering. This aim is achieved by using high-resolution (512^3 grid-points) particle-mesh (PM) N-body simulations to follow the development of non-linear clustering in a Omega=1 universe, dominated either by cold dark matter (CDM) or by a mixture of cold+hot dark matter (CHDM) with Omega_cold=0.6, and Omega_hot=0.3 and Omega_baryon=0.1 a simulation box of side 100 Mpc (h=0.5) is used. We analyse two CHDM realizations with biasing factor b=1.5 (COBE normalization), starting from different initial random numbers, and compare them with CDM simulations with b=1 (COBE-compatible) and b=1.5. We evaluate high-order correlation functions and the void probability function (VPF). Correlation functions are obtained from both counts in cells and counts of neighbours. The analysis is carried out for DM particles and for galaxies identified as massive haloes of the evolved density field. We confirm that clustering of DM particles systematically exhibits deviations from hierarchical scaling, although the deviation increases somewhat in redshift space. Deviations from the hierarchical scaling of DM particles are found to be related to the spectrum shape, in a way that indicates that such distortions arise from finite sampling effects. We identify galaxy positions in the simulations and show that, quite differently from the DM particle background, galaxies follow hierarchical scaling (S_q=xi_q/& xgr^q-1_2=consta nt) far more closely, with reduced skewness and kurtosis coefficients S_3~2.5 and S_4~7.5, in general agreement with observational results. Unlike DM, the scaling of galaxy clustering is must marginally affected by redshift distortions and is obtained for both CDM and CHDM models. Hierarchical scaling in simulations is confirmed by VPF analysis. Also in this case, we find substantial agreement with observational findings.

  20. Extrinsic Sources of Scatter in the Richness-mass Relation of Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Rozo, Eduardo; Rykoff, Eli; Koester, Benjamin; Nord, Brian; Wu, Hao-Yi; Evrard, August; Wechsler, Risa

    2011-10-01

    Maximizing the utility of upcoming photometric cluster surveys requires a thorough understanding of the richness-mass relation of galaxy clusters. We use Monte Carlo simulations to study the impact of various sources of observational scatter on this relation. Cluster ellipticity, photometric errors, photometric redshift errors, and cluster-to-cluster variations in the properties of red-sequence galaxies contribute negligible noise. Miscentering, however, can be important, and likely contributes to the scatter in the richness-mass relation of galaxy maxBCG clusters at the low-mass end, where centering is more difficult. We also investigate the impact of projection effects under several empirically motivated assumptions about cluster environments. Using Sloan Digital Sky Survey data and the maxBCG cluster catalog, we demonstrate that variations in cluster environments can rarely (≈1%-5% of the time) result in significant richness boosts. Due to the steepness of the mass/richness function, the corresponding fraction of optically selected clusters that suffer from these projection effects is ≈5%-15%. We expect these numbers to be generic in magnitude, but a precise determination requires detailed, survey-specific modeling.

  1. The growth of central and satellite galaxies in cosmological smoothed particle hydrodynamics simulations

    NASA Astrophysics Data System (ADS)

    Simha, Vimal; Weinberg, David H.; Davé, Romeel; Gnedin, Oleg Y.; Katz, Neal; Kereš, Dušan

    2009-10-01

    We examine the accretion and merger histories of central and satellite galaxies in a smoothed particle hydrodynamics (SPH) cosmological simulation that resolves galaxies down to 7 × 109Msolar. Most friends-of-friends haloes in the simulation have a distinct central galaxy, typically 2-5 times more massive than the most massive satellite. As expected, satellites have systematically higher assembly redshifts than central galaxies of the same baryonic mass, and satellites in more massive haloes form earlier. However, contrary to the simplest expectations, satellite galaxies continue to accrete gas and convert it to stars; the gas accretion declines steadily over a period of 0.5-1 Gyr after the satellite halo merges with a larger parent halo. Satellites in a cluster mass halo eventually begin to lose baryonic mass. Typically, satellites in our simulation are 0.1-0.2 mag bluer than in models that assume no gas accretion on to satellites after a halo merger. Since z = 1, 27 per cent of central galaxies (above 3 × 1010Msolar) and 22 per cent of present-day satellite galaxies have merged with a smaller system above a 1:4 mass ratio; about half of the satellite mergers occurred after the galaxy became a satellite and half before. In effect, satellite galaxies can remain `central' objects of halo substructures, with continuing accretion and mergers, making the transition in assembly histories and physical properties a gradual one. Implementing such a gradual transformation in semi-analytic models would improve their agreement with observed colour distributions of satellite galaxies in groups and with the observed colour dependence of galaxy clustering.

  2. The structure of clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Fox, David Charles

    When infalling gas is accreted onto a cluster of galaxies, its kinetic energy is converted to thermal energy in a shock, heating the ions. Using a self-similar spherical model, we calculate the collisional heating of the electrons by the ions, and predict the electron and ion temperature profiles. While there are significant differences between the two, they occur at radii larger than currently observable, and too large to explain observed X-ray temperature declines in clusters. Numerical simulations by Navarro, Frenk, & White (1996) predict a universal dark matter density profile. We calculate the expected number of multiply-imaged background galaxies in the Hubble Deep Field due to foreground groups and clusters with this profile. Such groups are up to 1000 times less efficient at lensing than the standard singular isothermal spheres. However, with either profile, the expected number of galaxies lensed by groups in the Hubble Deep Field is at most one, consistent with the lack of clearly identified group lenses. X-ray and Sunyaev-Zel'dovich (SZ) effect observations can be combined to determine the distance to clusters of galaxies, provided the clusters are spherical. When applied to an aspherical cluster, this method gives an incorrect distance. We demonstrate a method for inferring the three-dimensional shape of a cluster and its correct distance from X-ray, SZ effect, and weak gravitational lensing observations, under the assumption of hydrostatic equilibrium. We apply this method to simple, analytic models of clusters, and to a numerically simulated cluster. Using artificial observations based on current X-ray and SZ effect instruments, we recover the true distance without detectable bias and with uncertainties of 4 percent.

  3. The Halo Boundary of Galaxy Clusters in the SDSS

    NASA Astrophysics Data System (ADS)

    Baxter, Eric; Chang, Chihway; Jain, Bhuvnesh; Adhikari, Susmita; Dalal, Neal; Kravtsov, Andrey; More, Surhud; Rozo, Eduardo; Rykoff, Eli; Sheth, Ravi K.

    2017-05-01

    Analytical models and simulations predict a rapid decline in the halo density profile associated with the transition from the “infalling” regime outside the halo to the “collapsed” regime within the halo. Using data from SDSS, we explore evidence for such a feature in the density profiles of galaxy clusters using several different approaches. We first estimate the steepening of the outer galaxy density profile around clusters, finding evidence for truncation of the halo profile. Next, we measure the galaxy density profile around clusters using two sets of galaxies selected on color. We find evidence of an abrupt change in galaxy colors that coincides with the location of the steepening of the density profile. Since galaxies that have completed orbits within the cluster are more likely to be quenched of star formation and thus appear redder, this abrupt change in galaxy color can be associated with the transition from single-stream to multi-stream regimes. We also use a standard model comparison approach to measure evidence for a “splashback”-like feature, but find that this approach is very sensitive to modeling assumptions. Finally, we perform measurements using an independent cluster catalog to test for potential systematic errors associated with cluster selection. We identify several avenues for future work: improved understanding of the small-scale galaxy profile, lensing measurements, identification of proxies for the halo accretion rate, and other tests. With upcoming data from the DES, KiDS, and HSC surveys, we can expect significant improvements in the study of halo boundaries.

  4. MERGING GALAXY CLUSTERS: OFFSET BETWEEN THE SUNYAEV-ZEL'DOVICH EFFECT AND X-RAY PEAKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molnar, Sandor M.; Hearn, Nathan C.; Stadel, Joachim G., E-mail: sandor@phys.ntu.edu.tw

    2012-03-20

    Galaxy clusters, the most massive collapsed structures, have been routinely used to determine cosmological parameters. When using clusters for cosmology, the crucial assumption is that they are relaxed. However, subarcminute resolution Sunyaev-Zel'dovich (SZ) effect images compared with high-resolution X-ray images of some clusters show significant offsets between the two peaks. We have carried out self-consistent N-body/hydrodynamical simulations of merging galaxy clusters using FLASH to study these offsets quantitatively. We have found that significant displacements result between the SZ and X-ray peaks for large relative velocities for all masses used in our simulations as long as the impact parameters were aboutmore » 100-250 kpc. Our results suggest that the SZ peak coincides with the peak in the pressure times the line-of-sight characteristic length and not the pressure maximum (as it would for clusters in equilibrium). The peak in the X-ray emission, as expected, coincides with the density maximum of the main cluster. As a consequence, the morphology of the SZ signal, and therefore the offset between the SZ and X-ray peaks, change with viewing angle. As an application, we compare the morphologies of our simulated images to observed SZ and X-ray images and mass surface densities derived from weak-lensing observations of the merging galaxy cluster CL0152-1357, we find that a large relative velocity of 4800 km s{sup -1} is necessary to explain the observations. We conclude that an analysis of the morphologies of multi-frequency observations of merging clusters can be used to put meaningful constraints on the initial parameters of the progenitors.« less

  5. A common origin for globular clusters and ultra-faint dwarfs in simulations of the first galaxies

    DOE PAGES

    Ricotti, Massimo; Parry, Owen H.; Gnedin, Nickolay Y.

    2016-11-09

    In this study, the first in a series on galaxy formation before reionization, we focus on understanding what determines the size and morphology of stellar objects in the first low-mass galaxies, using parsec-scale cosmological simulations performed with an adaptive mesh hydrodynamics code. Although the dense gas in which stars are formed tends to have a disk structure, stars are found in spheroids with little rotation. Halos with masses betweenmore » $${10}^{6}\\,{M}_{\\odot }$$ and $$5\\times {10}^{8}\\,{M}_{\\odot }$$ form stars stochastically, with stellar masses in the range $${10}^{4}\\,{M}_{\\odot }$$ to $$2\\times {10}^{6}\\,{M}_{\\odot }$$. We observe, nearly independent of stellar mass, a large range of half-light radii for the stars, from a few parsecs to a few hundred parsecs and surface brightnesses and mass-to-light ratios ranging from those typical of globular clusters to ultra-faint dwarfs. In our simulations, stars form in dense stellar clusters with high gas-to-star conversion efficiencies and rather uniform metallicities. A fraction of these clusters remain bound after the gas is removed by feedback, but others are destroyed, and their stars, which typically have velocity dispersions of 20–40 km s –1, expand until they become bound by the dark matter halo. We thus speculate that the stars in ultra-faint dwarf galaxies may show kinematic and chemical signatures consistent with their origin in a few distinct stellar clusters. On the other hand, some globular clusters may form at the center of primordial dwarf galaxies and may contain dark matter, perhaps detectable in the outer parts.« less

  6. A common origin for globular clusters and ultra-faint dwarfs in simulations of the first galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ricotti, Massimo; Parry, Owen H.; Gnedin, Nickolay Y.

    In this study, the first in a series on galaxy formation before reionization, we focus on understanding what determines the size and morphology of stellar objects in the first low-mass galaxies, using parsec-scale cosmological simulations performed with an adaptive mesh hydrodynamics code. Although the dense gas in which stars are formed tends to have a disk structure, stars are found in spheroids with little rotation. Halos with masses betweenmore » $${10}^{6}\\,{M}_{\\odot }$$ and $$5\\times {10}^{8}\\,{M}_{\\odot }$$ form stars stochastically, with stellar masses in the range $${10}^{4}\\,{M}_{\\odot }$$ to $$2\\times {10}^{6}\\,{M}_{\\odot }$$. We observe, nearly independent of stellar mass, a large range of half-light radii for the stars, from a few parsecs to a few hundred parsecs and surface brightnesses and mass-to-light ratios ranging from those typical of globular clusters to ultra-faint dwarfs. In our simulations, stars form in dense stellar clusters with high gas-to-star conversion efficiencies and rather uniform metallicities. A fraction of these clusters remain bound after the gas is removed by feedback, but others are destroyed, and their stars, which typically have velocity dispersions of 20–40 km s –1, expand until they become bound by the dark matter halo. We thus speculate that the stars in ultra-faint dwarf galaxies may show kinematic and chemical signatures consistent with their origin in a few distinct stellar clusters. On the other hand, some globular clusters may form at the center of primordial dwarf galaxies and may contain dark matter, perhaps detectable in the outer parts.« less

  7. The Hubble Space Telescope Medium Deep Survey Cluster Sample: Methodology and Data

    NASA Astrophysics Data System (ADS)

    Ostrander, E. J.; Nichol, R. C.; Ratnatunga, K. U.; Griffiths, R. E.

    1998-12-01

    We present a new, objectively selected, sample of galaxy overdensities detected in the Hubble Space Telescope Medium Deep Survey (MDS). These clusters/groups were found using an automated procedure that involved searching for statistically significant galaxy overdensities. The contrast of the clusters against the field galaxy population is increased when morphological data are used to search around bulge-dominated galaxies. In total, we present 92 overdensities above a probability threshold of 99.5%. We show, via extensive Monte Carlo simulations, that at least 60% of these overdensities are likely to be real clusters and groups and not random line-of-sight superpositions of galaxies. For each overdensity in the MDS cluster sample, we provide a richness and the average of the bulge-to-total ratio of galaxies within each system. This MDS cluster sample potentially contains some of the most distant clusters/groups ever detected, with about 25% of the overdensities having estimated redshifts z > ~0.9. We have made this sample publicly available to facilitate spectroscopic confirmation of these clusters and help more detailed studies of cluster and galaxy evolution. We also report the serendipitous discovery of a new cluster close on the sky to the rich optical cluster Cl l0016+16 at z = 0.546. This new overdensity, HST 001831+16208, may be coincident with both an X-ray source and a radio source. HST 001831+16208 is the third cluster/group discovered near to Cl 0016+16 and appears to strengthen the claims of Connolly et al. of superclustering at high redshift.

  8. MACS J0416.1-2403: Impact of line-of-sight structures on strong gravitational lensing modelling of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Chirivì, G.; Suyu, S. H.; Grillo, C.; Halkola, A.; Balestra, I.; Caminha, G. B.; Mercurio, A.; Rosati, P.

    2018-06-01

    Exploiting the powerful tool of strong gravitational lensing by galaxy clusters to study the highest-redshift Universe and cluster mass distributions relies on precise lens mass modelling. In this work, we aim to present the first attempt at modelling line-of-sight (LOS) mass distribution in addition to that of the cluster, extending previous modelling techniques that assume mass distributions to be on a single lens plane. We have focussed on the Hubble Frontier Field cluster MACS J0416.1-2403, and our multi-plane model reproduces the observed image positions with a rms offset of 0.''53. Starting from this best-fitting model, we simulated a mock cluster that resembles MACS J0416.1-2403 in order to explore the effects of LOS structures on cluster mass modelling. By systematically analysing the mock cluster under different model assumptions, we find that neglecting the lensing environment has a significant impact on the reconstruction of image positions (rms 0.''3); accounting for LOS galaxies as if they were at the cluster redshift can partially reduce this offset. Moreover, foreground galaxies are more important to include into the model than the background ones. While the magnification factor of the lensed multiple images are recovered within 10% for 95% of them, those 5% that lie near critical curves can be significantly affected by the exclusion of the lensing environment in the models. In addition, LOS galaxies cannot explain the apparent discrepancy in the properties of massive sub-halos between MACS J0416.1-2403 and N-body simulated clusters. Since our model of MACS J0416.1-2403 with LOS galaxies only reduced modestly the rms offset in the image positions, we conclude that additional complexities would be needed in future models of MACS J0416.1-2403.

  9. Weighing galaxy clusters with gas. II. On the origin of hydrostatic mass bias in ΛCDM galaxy clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Kaylea; Nagai, Daisuke; Yu, Liang

    2014-02-20

    The use of galaxy clusters as cosmological probes hinges on our ability to measure their masses accurately and with high precision. Hydrostatic mass is one of the most common methods for estimating the masses of individual galaxy clusters, which suffer from biases due to departures from hydrostatic equilibrium. Using a large, mass-limited sample of massive galaxy clusters from a high-resolution hydrodynamical cosmological simulation, in this work we show that in addition to turbulent and bulk gas velocities, acceleration of gas introduces biases in the hydrostatic mass estimate of galaxy clusters. In unrelaxed clusters, the acceleration bias is comparable to themore » bias due to non-thermal pressure associated with merger-induced turbulent and bulk gas motions. In relaxed clusters, the mean mass bias due to acceleration is small (≲ 3%), but the scatter in the mass bias can be reduced by accounting for gas acceleration. Additionally, this acceleration bias is greater in the outskirts of higher redshift clusters where mergers are more frequent and clusters are accreting more rapidly. Since gas acceleration cannot be observed directly, it introduces an irreducible bias for hydrostatic mass estimates. This acceleration bias places limits on how well we can recover cluster masses from future X-ray and microwave observations. We discuss implications for cluster mass estimates based on X-ray, Sunyaev-Zel'dovich effect, and gravitational lensing observations and their impact on cluster cosmology.« less

  10. Weighing Galaxy Clusters with Gas. II. On the Origin of Hydrostatic Mass Bias in ΛCDM Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Nelson, Kaylea; Lau, Erwin T.; Nagai, Daisuke; Rudd, Douglas H.; Yu, Liang

    2014-02-01

    The use of galaxy clusters as cosmological probes hinges on our ability to measure their masses accurately and with high precision. Hydrostatic mass is one of the most common methods for estimating the masses of individual galaxy clusters, which suffer from biases due to departures from hydrostatic equilibrium. Using a large, mass-limited sample of massive galaxy clusters from a high-resolution hydrodynamical cosmological simulation, in this work we show that in addition to turbulent and bulk gas velocities, acceleration of gas introduces biases in the hydrostatic mass estimate of galaxy clusters. In unrelaxed clusters, the acceleration bias is comparable to the bias due to non-thermal pressure associated with merger-induced turbulent and bulk gas motions. In relaxed clusters, the mean mass bias due to acceleration is small (lsim 3%), but the scatter in the mass bias can be reduced by accounting for gas acceleration. Additionally, this acceleration bias is greater in the outskirts of higher redshift clusters where mergers are more frequent and clusters are accreting more rapidly. Since gas acceleration cannot be observed directly, it introduces an irreducible bias for hydrostatic mass estimates. This acceleration bias places limits on how well we can recover cluster masses from future X-ray and microwave observations. We discuss implications for cluster mass estimates based on X-ray, Sunyaev-Zel'dovich effect, and gravitational lensing observations and their impact on cluster cosmology.

  11. On the statistics of proto-cluster candidates detected in the Planck all-sky survey

    NASA Astrophysics Data System (ADS)

    Negrello, M.; Gonzalez-Nuevo, J.; De Zotti, G.; Bonato, M.; Cai, Z.-Y.; Clements, D.; Danese, L.; Dole, H.; Greenslade, J.; Lapi, A.; Montier, L.

    2017-09-01

    Observational investigations of the abundance of massive precursors of local galaxy clusters ('proto-clusters') allow us to test the growth of density perturbations, to constrain cosmological parameters that control it, to test the theory of non-linear collapse and how the galaxy formation takes place in dense environments. The Planck collaboration has recently published a catalogue of ≳2000 cold extragalactic sub-millimeter sources, I.e. with colours indicative of z ≳ 2, almost all of which appear to be overdensities of star-forming galaxies. They are thus considered as proto-cluster candidates. Their number densities (or their flux densities) are far in excess of expectations from the standard scenario for the evolution of large-scale structure. Simulations based on a physically motivated galaxy evolution model show that essentially all cold peaks brighter than S545GHz = 500 mJy found in Planck maps after having removed the Galactic dust emission can be interpreted as positive Poisson fluctuations of the number of high-z dusty proto-clusters within the same Planck beam, rather then being individual clumps of physically bound galaxies. This conclusion does not change if an empirical fit to the luminosity function of dusty galaxies is used instead of the physical model. The simulations accurately reproduce the statistic of the Planck detections and yield distributions of sizes and ellipticities in qualitative agreement with observations. The redshift distribution of the brightest proto-clusters contributing to the cold peaks has a broad maximum at 1.5 ≤ z ≤ 3. Therefore follow-up of Planck proto-cluster candidates will provide key information on the high-z evolution of large scale structure.

  12. The evolution of the Y-M scaling relation in MUSIC clusters

    NASA Astrophysics Data System (ADS)

    Sembolini, F.; Yepes, G.; De Petris, M.; Gottlöber, S.; Lamagna, L.; Comis, B.

    2013-04-01

    This work describes the baryon content and Sunyaev-Zeld'ovich properties of the MUSIC (Marenostrum-MultiDark SImulations of galaxy clusters) dataset and their evolution with redshift and aperture radius. The MUSIC dataset is one of the largest samples of hydrodynamically simulated galaxy clusters (more than 2000 objects, including more than 500 clusters). We show that when the effects of cooling and stellar feedbacks are properly taken into account, the gas fraction of the MUSIC clusters consistently agrees with recent observational results. Moreover, the gas fraction has a net dependence with the total mass of the cluster and increases slightly with redshift at high overdensities. The study of the Y-M relation confirms the consistence of the self-similar model, showing no evolution with redshift at low overdensities.

  13. Major cluster mergers and the location of the brightest cluster galaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martel, Hugo; Robichaud, Fidèle; Barai, Paramita, E-mail: Hugo.Martel@phy.ulaval.ca

    Using a large N-body cosmological simulation combined with a subgrid treatment of galaxy formation, merging, and tidal destruction, we study the formation and evolution of the galaxy and cluster population in a comoving volume (100 Mpc){sup 3} in a ΛCDM universe. At z = 0, our computational volume contains 1788 clusters with mass M {sub cl} > 1.1 × 10{sup 12} M {sub ☉}, including 18 massive clusters with M {sub cl} > 10{sup 14} M {sub ☉}. It also contains 1, 088, 797 galaxies with mass M {sub gal} ≥ 2 × 10{sup 9} M {sub ☉} and luminositymore » L > 9.5 × 10{sup 5} L {sub ☉}. For each cluster, we identified the brightest cluster galaxy (BCG). We then computed two separate statistics: the fraction f {sub BNC} of clusters in which the BCG is not the closest galaxy to the center of the cluster in projection, and the ratio Δv/σ, where Δv is the difference in radial velocity between the BCG and the whole cluster and σ is the radial velocity dispersion of the cluster. We found that f {sub BNC} increases from 0.05 for low-mass clusters (M {sub cl} ∼ 10{sup 12} M {sub ☉}) to 0.5 for high-mass clusters (M {sub cl} > 10{sup 14} M {sub ☉}) with very little dependence on cluster redshift. Most of this result turns out to be a projection effect and when we consider three-dimensional distances instead of projected distances, f {sub BNC} increases only to 0.2 at high-cluster mass. The values of Δv/σ vary from 0 to 1.8, with median values in the range 0.03-0.15 when considering all clusters, and 0.12-0.31 when considering only massive clusters. These results are consistent with previous observational studies and indicate that the central galaxy paradigm, which states that the BCG should be at rest at the center of the cluster, is usually valid, but exceptions are too common to be ignored. We built merger trees for the 18 most massive clusters in the simulation. Analysis of these trees reveal that 16 of these clusters have experienced 1 or several major or semi-major mergers in the past. These mergers leave each cluster in a non-equilibrium state, but eventually the cluster settles into an equilibrium configuration, unless it is disturbed by another major or semi-major merger. We found evidence that these mergers are responsible for the off-center positions and peculiar velocities of some BCGs. Our results thus support the merging-group scenario, in which some clusters form by the merging of smaller groups in which the galaxies have already formed, including the galaxy destined to become the BCG. Finally, we argue that f {sub BNC} is not a very robust statistics, as it is very sensitive to projection and selection effects, but that Δv/σ is more robust. Still, both statistics exhibit a signature of major mergers between clusters of galaxies.« less

  14. Illuminating the star clusters and satellite galaxies with multi-scale baryonic simulations

    NASA Astrophysics Data System (ADS)

    Maji, Moupiya; Zhu, Qirong; Li, Yuexing; Marinacci, Federico; Charlton, Jane; Hernquist, Lars; Knebe, Alexander

    2018-01-01

    Over the past decade, advances in computational architecture have made it possible for the first time to investigate some of the fundamental questions around the formation, evolution and assembly of the building blocks of the universe; star clusters and galaxies. In this talk, I will focus on two major questions: What is the origin of the observed universal lognormal mass function in globular clusters? What is the statistical distribution of the properties of satellite planes in a large sample of satellite systems?Observations of globular clusters show that they have universal lognormal mass functions with a characteristic peak at 2X105 MSun, although the origin of this peaked distribution is unclear. We investigate the formation of star clusters in interacting galaxies using baryonic simulations and found that massive clusters preferentially form in extremely high pressure gas clouds which reside in highly shocked regions produced by galaxy interactions. These massive clusters have quasi-lognormal initial mass functions with a peak around ~106MSun which may survive dynamical evolution and slowly evolve into the universal lognormal profiles observed today.The classical Milky Way (MW) satellites are observed to be distributed in a highly-flattened plane, called Disk of Satellites (DoS). However the significance, coherence and origin of DoS is highly debated. To understand this, we first analyze all MW satellites and find that a small sample size can artificially produce a highly anisotropic spatial distribution and a strong clustering of their angular momentum. Comparing a baryonic simulation of a MW-sized galaxy with its N-body counterpart we find that an anisotropic DoS can originate from baryonic processes. Furthermore, we explore the statistical distribution of DoS properties by analyzing 2591 satellite systems in the cosmological hydrodynamic simulation Illustris. We find that the DoS becomes more isotropic with increasing sample sizes and most (~90%) satellite systems have no clear coherent rotation. Their overall evolution indicate that the DoS may be part of large scale filamentary structure. Our results show that baryonic processes may be the key to solve many long standing theoretical problems.

  15. Flash Galaxy Cluster Merger, Simulated using the Flash Code, Mass Ratio 1:1

    ScienceCinema

    None

    2018-05-11

    Since structure in the universe forms in a bottom-up fashion, with smaller structures merging to form larger ones, modeling the merging process in detail is crucial to our understanding of cosmology. At the current epoch, we observe clusters of galaxies undergoing mergers. It is seen that the two major components of galaxy clusters, the hot intracluster gas and the dark matter, behave very differently during the course of a merger. Using the N-body and hydrodynamics capabilities in the FLASH code, we have simulated a suite of representative galaxy cluster mergers, including the dynamics of both the dark matter, which is collisionless, and the gas, which has the properties of a fluid. 3-D visualizations such as these demonstrate clearly the different behavior of these two components over time. Credits: Science: John Zuhone (Harvard-Smithsonian Center for Astrophysics Visualization: Jonathan Gallagher (Flash Center, University of Chicago)

 This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Dept. of Energy (DOE) under contract DE-AC02-06CH11357. This research was supported by the National Nuclear Security Administration's (NNSA) Advanced Simulation and Computing (ASC) Academic Strategic Alliance Program (ASAP).

  16. Flash Galaxy Cluster Merger, Simulated using the Flash Code, Mass Ratio 1:1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-08-09

    Since structure in the universe forms in a bottom-up fashion, with smaller structures merging to form larger ones, modeling the merging process in detail is crucial to our understanding of cosmology. At the current epoch, we observe clusters of galaxies undergoing mergers. It is seen that the two major components of galaxy clusters, the hot intracluster gas and the dark matter, behave very differently during the course of a merger. Using the N-body and hydrodynamics capabilities in the FLASH code, we have simulated a suite of representative galaxy cluster mergers, including the dynamics of both the dark matter, which ismore » collisionless, and the gas, which has the properties of a fluid. 3-D visualizations such as these demonstrate clearly the different behavior of these two components over time. Credits: Science: John Zuhone (Harvard-Smithsonian Center for Astrophysics Visualization: Jonathan Gallagher (Flash Center, University of Chicago)

 This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Dept. of Energy (DOE) under contract DE-AC02-06CH11357. This research was supported by the National Nuclear Security Administration's (NNSA) Advanced Simulation and Computing (ASC) Academic Strategic Alliance Program (ASAP).« less

  17. A massive core for a cluster of galaxies at a redshift of 4.3.

    PubMed

    Miller, T B; Chapman, S C; Aravena, M; Ashby, M L N; Hayward, C C; Vieira, J D; Weiß, A; Babul, A; Béthermin, M; Bradford, C M; Brodwin, M; Carlstrom, J E; Chen, Chian-Chou; Cunningham, D J M; De Breuck, C; Gonzalez, A H; Greve, T R; Harnett, J; Hezaveh, Y; Lacaille, K; Litke, K C; Ma, J; Malkan, M; Marrone, D P; Morningstar, W; Murphy, E J; Narayanan, D; Pass, E; Perry, R; Phadke, K A; Rennehan, D; Rotermund, K M; Simpson, J; Spilker, J S; Sreevani, J; Stark, A A; Strandet, M L; Strom, A L

    2018-04-01

    Massive galaxy clusters have been found that date to times as early as three billion years after the Big Bang, containing stars that formed at even earlier epochs 1-3 . The high-redshift progenitors of these galaxy clusters-termed 'protoclusters'-can be identified in cosmological simulations that have the highest overdensities (greater-than-average densities) of dark matter 4-6 . Protoclusters are expected to contain extremely massive galaxies that can be observed as luminous starbursts 7 . However, recent detections of possible protoclusters hosting such starbursts 8-11 do not support the kind of rapid cluster-core formation expected from simulations 12 : the structures observed contain only a handful of starbursting galaxies spread throughout a broad region, with poor evidence for eventual collapse into a protocluster. Here we report observations of carbon monoxide and ionized carbon emission from the source SPT2349-56. We find that this source consists of at least 14 gas-rich galaxies, all lying at redshifts of 4.31. We demonstrate that each of these galaxies is forming stars between 50 and 1,000 times more quickly than our own Milky Way, and that all are located within a projected region that is only around 130 kiloparsecs in diameter. This galaxy surface density is more than ten times the average blank-field value (integrated over all redshifts), and more than 1,000 times the average field volume density. The velocity dispersion (approximately 410 kilometres per second) of these galaxies and the enormous gas and star-formation densities suggest that this system represents the core of a cluster of galaxies that was already at an advanced stage of formation when the Universe was only 1.4 billion years old. A comparison with other known protoclusters at high redshifts shows that SPT2349-56 could be building one of the most massive structures in the Universe today.

  18. Andromeda's SMBH Projected Accretion Rate

    NASA Astrophysics Data System (ADS)

    Wilson, John

    2014-03-01

    A formula for calculating the half-life of galaxy clusters is proposed. A galactic half-life is the estimated amount of time that the most massive supermassive black hole (SMBH) in the galaxy cluster will have accreted one half of the mass in the cluster. The calculation is based on a projection of the SMBH continuing its exponentially decreasing rate of accretion that it had in its first 13 billion years. The calculated half-life for the Andromeda SMBH is approximately 1.4327e14 years from the Big Bang. Several proposals have suggested that black holes could be significant factors in the formation of new universes. Part of the verification or falsification of this hypothesis could be done by an N-body simulation. These simulations require an enormous amount of computer power and time. Some plausible projection of the growth of the supermassive black hole is needed to prepare an N-body simulation budget proposal. For now, this method provides an estimate for the growth rate of the Andromeda SMBH and deposition of the outcome of most of the galaxy cluster's mass which is either accreted by the SMBH, lost by ejection from the cluster, or lost in the form of energy.

  19. Using numerical simulations to study the ICM metallicity fields in clusters and groups

    NASA Astrophysics Data System (ADS)

    Mazzei, Renato; Vijayaraghavan, Rukmani; Sarazin, Craig L.

    2018-01-01

    Most baryonic matter in clusters resides in the intracluster medium (ICM) as hot and diffuse gas. The metal content of this gas is deposited from dying stars, typically synthesized in type Ia or core-collapse supernovae. The ICM gas traces the formation history of the cluster and the compositional signature of its constituent galaxies as a function of time. Studying the metallicity content thus aids in understanding the gradual evolution of the cluster as it is constructed. Within this framework, galaxy and star formation and evolution can be studied by tracing metals in the ICM. In this work we use numerical simulations to study the evolution of ICM metallicity due to the stripping of galaxies’ gas. We model metallicity fields using cloud-in-cell techniques, to determine the ratio between the mass of particles tracing galaxy outflows and the mass of ICM gas at different spatial locations in each simulation time step. Integrated abundance maps are produced. We then project photons and construct mock X-ray images to investigate the relationship between ICM metallicity and observable information.

  20. Merger types forming the Virgo cluster in recent gigayears

    NASA Astrophysics Data System (ADS)

    Olchanski, M.; Sorce, J. G.

    2018-06-01

    Context. As our closest cluster-neighbor, the Virgo cluster of galaxies is intensely studied by observers to unravel the mysteries of galaxy evolution within clusters. At this stage, cosmological numerical simulations of the cluster are useful to efficiently test theories and calibrate models. However, it is not trivial to select the perfect simulacrum of the Virgo cluster to fairly compare in detail its observed and simulated galaxy populations that are affected by the type and history of the cluster. Aims: Determining precisely the properties of Virgo for a later selection of simulated clusters becomes essential. It is still not clear how to access some of these properties, such as the past history of the Virgo cluster from current observations. Therefore, directly producing effective simulacra of the Virgo cluster is inevitable. Methods: Efficient simulacra of the Virgo cluster can be obtained via simulations that resemble the local Universe down to the cluster scale. In such simulations, Virgo-like halos form in the proper local environment and permit assessing the most probable formation history of the cluster. Studies based on these simulations have already revealed that the Virgo cluster has had a quiet merging history over the last seven gigayears and that the cluster accretes matter along a preferential direction. Results: This paper reveals that in addition such Virgo halos have had on average only one merger larger than about a tenth of their mass at redshift zero within the last four gigayears. This second branch (by opposition to main branch) formed in a given sub-region and merged recently (within the last gigayear). These properties are not shared with a set of random halos within the same mass range. Conclusions: This study extends the validity of the scheme used to produce the Virgo simulacra down to the largest sub-halos of the Virgo cluster. It opens up great prospects for detailed comparisons with observations, including substructures and markers of past history, to be conducted with a large sample of high resolution "Virgos" and including baryons, in the near future.

  1. The uniformity and time-invariance of the intra-cluster metal distribution in galaxy clusters from the IllustrisTNG simulations

    NASA Astrophysics Data System (ADS)

    Vogelsberger, Mark; Marinacci, Federico; Torrey, Paul; Genel, Shy; Springel, Volker; Weinberger, Rainer; Pakmor, Rüdiger; Hernquist, Lars; Naiman, Jill; Pillepich, Annalisa; Nelson, Dylan

    2018-02-01

    The distribution of metals in the intra-cluster medium (ICM) encodes important information about the enrichment history and formation of galaxy clusters. Here, we explore the metal content of clusters in IllustrisTNG - a new suite of galaxy formation simulations building on the Illustris project. Our cluster sample contains 20 objects in TNG100 - a ˜(100 Mpc)3 volume simulation with 2 × 18203 resolution elements, and 370 objects in TNG300 - a ˜(300 Mpc)3 volume simulation with 2 × 25003 resolution elements. The z = 0 metallicity profiles agree with observations, and the enrichment history is consistent with observational data going beyond z ˜ 1, showing nearly no metallicity evolution. The abundance profiles vary only minimally within the cluster samples, especially in the outskirts with a relative scatter of ˜ 15 per cent. The average metallicity profile flattens towards the centre, where we find a logarithmic slope of -0.1 compared to -0.5 in the outskirts. Cool core clusters have more centrally peaked metallicity profiles (˜0.8 solar) compared to non-cool core systems (˜0.5 solar), similar to observational trends. Si/Fe and O/Fe radial profiles follow positive gradients. The outer abundance profiles do not evolve below z ˜ 2, whereas the inner profiles flatten towards z = 0. More than ˜ 80 per cent of the metals in the ICM have been accreted from the proto-cluster environment, which has been enriched to ˜0.1 solar already at z ˜ 2. We conclude that the intra-cluster metal distribution is uniform among our cluster sample, nearly time-invariant in the outskirts for more than 10 Gyr, and forms through a universal enrichment history.

  2. The Gas Distribution in the Outer Regions of Galaxy Clusters

    NASA Technical Reports Server (NTRS)

    Eckert, D.; Vazza, F.; Ettori, S.; Molendi, S.; Nagai, D.; Lau, E. T.; Roncarelli, M.; Rossetti, M.; Snowden, L.; Gastaldello, F.

    2012-01-01

    Aims. We present our analysis of a local (z = 0.04 - 0.2) sample of 31 galaxy clusters with the aim of measuring the density of the X-ray emitting gas in cluster outskirts. We compare our results with numerical simulations to set constraints on the azimuthal symmetry and gas clumping in the outer regions of galaxy clusters. Methods. We have exploited the large field-of-view and low instrumental background of ROSAT/PSPC to trace the density of the intracluster gas out to the virial radius, We stacked the density profiles to detect a signal beyond T200 and measured the typical density and scatter in cluster outskirts. We also computed the azimuthal scatter of the profiles with respect to the mean value to look for deviations from spherical symmetry. Finally, we compared our average density and scatter profiles with the results of numerical simulations. Results. As opposed to some recent Suzaku results, and confirming previous evidence from ROSAT and Chandra, we observe a steepening of the density profiles beyond approximately r(sub 500). Comparing our density profiles with simulations, we find that non-radiative runs predict density profiles that are too steep, whereas runs including additional physics and/ or treating gas clumping agree better with the observed gas distribution. We report high-confidence detection of a systematic difference between cool-core and non cool-core clusters beyond approximately 0.3r(sub 200), which we explain by a different distribution of the gas in the two classes. Beyond approximately r(sub 500), galaxy clusters deviate significantly from spherical symmetry, with only small differences between relaxed and disturbed systems. We find good agreement between the observed and predicted scatter profiles, but only when the 1% densest clumps are filtered out in the ENZO simulations. Conclusions. Comparing our results with numerical simulations, we find that non-radiative simulations fail to reproduce the gas distribution, even well outside cluster cores. Although their general behavior agrees more closely with the observations, simulations including cooling and star formation convert a large amount of gas into stars, which results in a low gas fraction with respect to the observations. Consequently, a detailed treatment of gas cooling, star formation, AGN feedback, and consideration of gas clumping is required to construct realistic models of the outer regions of clusters.

  3. The Gas Distribution in Galaxy Cluster Outer Regions

    NASA Technical Reports Server (NTRS)

    Eckert, D.; Vazza, F.; Ettori, S.; Molendi, S.; Nagai, D.; Laue, E. T.; Roncarelli, M.; Rossetti, M.; Snowden, S. L.; Gastaldello, F.

    2012-01-01

    Aims. We present the analysis of a local (z = 0.04 - 0.2) sample of 31 galaxy clusters with the aim of measuring the density of the X-ray emitting gas in cluster outskirts. We compare our results with numerical simulations to set constraints on the azimuthal symmetry and gas clumping in the outer regions of galaxy clusters. Methods. We exploit the large field-of-view and low instrumental background of ROSAT/PSPC to trace the density of the intracluster gas out to the virial radius. We perform a stacking of the density profiles to detect a signal beyond r200 and measure the typical density and scatter in cluster outskirts. We also compute the azimuthal scatter of the profiles with respect to the mean value to look for deviations from spherical symmetry. Finally, we compare our average density and scatter profiles with the results of numerical simulations. Results. As opposed to some recent Suzaku results, and confirming previous evidence from ROSAT and Chandra, we observe a steepening of the density profiles beyond approximately r(sub 500). Comparing our density profiles with simulations, we find that non-radiative runs predict too steep density profiles, whereas runs including additional physics and/or treating gas clumping are in better agreement with the observed gas distribution. We report for the first time the high-confidence detection of a systematic difference between cool-core and non-cool core clusters beyond 0.3r(sub 200), which we explain by a different distribution of the gas in the two classes. Beyond r(sub 500), galaxy clusters deviate significantly from spherical symmetry, with only little differences between relaxed and disturbed systems. We find good agreement between the observed and predicted scatter profiles, but only when the 1% densest clumps are filtered out in the simulations. Conclusions. Comparing our results with numerical simulations, we find that non-radiative simulations fail to reproduce the gas distribution, even well outside cluster cores. Although their general behavior is in better agreement with the observations, simulations including cooling and star formation convert a large amount of gas into stars, which results in a low gas fraction with respect to the observations. Consequently, a detailed treatment of gas cooling, star formation, AGN feedback, and taking into account gas clumping is required to construct realistic models of cluster outer regions.

  4. Subaru Weak-Lensing Survey II: Multi-Object Spectroscopy and Cluster Masses

    NASA Astrophysics Data System (ADS)

    Hamana, Takashi; Miyazaki, Satoshi; Kashikawa, Nobunari; Ellis, Richard S.; Massey, Richard J.; Refregier, Alexandre; Taylor, James E.

    2009-08-01

    We present the first results of a multi-object spectroscopic campaign to follow up cluster candidates located via weak lensing. Our main goals are to search for spatial concentrations of galaxies that are plausible optical counterparts of the weak-lensing signals, and to determine the cluster redshifts from those of member galaxies. Around each of 36 targeted cluster candidates, we obtained 15-32 galaxy redshifts. For 28 of these targets, we confirmed a secure cluster identification, with more than five spectroscopic galaxies within a velocity of ±3000km s-1. This includes three cases where two clusters at different redshifts are projected along the same line-of-sight. In 6 of the 8 unconfirmed targets, we found multiple small galaxy concentrations at different redshifts, each containing at least three spectroscopic galaxies. The weak-lensing signal around those systems was thus probably created by the projection of groups or small clusters along the same line-of-sight. In both of the remaining two targets, a single small galaxy concentration was found. In some candidate super-cluster systems, we found additional evidence of filaments connecting the main density peak to an additional nearby structure. For a subsample of our most cleanly measured clusters, we investigated the statistical relation between their weak-lensing mass (MNFW, σSIS) and the velocity dispersion of their member galaxies (σv), comparing our sample with optically and X-ray selected samples from the literature. Our lensing-selected clusters are consistent with σv = σSIS, with a similar scatter to that of optically and X-ray selected clusters. We also derived an empirical relation between the cluster mass and the galaxy velocity dispersion, M200E(z) = 11.0 × 1014 × (σv/1000km s-1)3.0 h-1 Modot, which is in reasonable agreement with predictions of N-body simulations in the Λ CDM cosmology.

  5. The impact of radiation feedback on the assembly of star clusters in a galactic context

    NASA Astrophysics Data System (ADS)

    Guillard, Nicolas; Emsellem, Eric; Renaud, Florent

    2018-07-01

    Massive star clusters are observed in galaxies spanning a broad range of luminosities and types, and are assumed to form in dense gas-rich environments. Using a parsec-resolution hydrodynamical simulation of an isolated gas-rich low-mass galaxy, we discuss here the non-linear effects of stellar feedback on the properties of star clusters with a focus on the progenitors of nuclear clusters. Our simulation shows two categories of star clusters: those for which feedback expels gas leftovers associated with their formation sites, and those, in a denser environment, around which feedback fails to totally clear the gas. We confirm that radiation feedback (photoionization and radiative pressure) plays a more important role than Type II supernovae in destroying dense gas structures, and in altering or quenching the subsequent cluster formation. Radiation feedback also disturbs the cluster mass growth, by increasing the internal energy of the gas component to the point at which radiation pressure overcomes the cluster gravity. We discuss how these effects may depend on the local properties of the interstellar medium, and also on the details of the subgrid recipes, which can affect the available cluster gas reservoirs, the evolution of potential nuclear cluster progenitors, and the overall galaxy morphology.

  6. Observational and Numerical Diagnostics of Galaxy Cluster Outer Regions

    NASA Technical Reports Server (NTRS)

    Eckert, D.; Vazza, F.; Ettori, S.; Molendi, S.; Nagai, D.; Lau, E.; Roncarelli, M.; Rossetti, M.; Snowden, S. L.; Gastaldello, F.

    2011-01-01

    Aims. We present the analysis of a local (z = 0.04 - 0.2) sample of 31 galaxy clusters with the aim of measuring the density of the X-ray emitting gas in cluster outskirts. We compare our results with numerical simulations to set constraints on the azimuthal symmetry and gas clumping in the outer regions of galaxy clusters. Methods. We exploit the large field-of-view and low instrumental background of ROSAT/PSPC to trace the density of the intracluster gas out to the virial radius. We perform a stacking of the density profiles to detect a signal beyond r(sub 200) and measure the typical density and scatter in cluster outskirts. We also compute the azimuthal scatter of the profiles with respect to the mean value to look for deviations from spherical symmetry. Finally, we compare our average density and scatter profiles with the results of numerical simulations. Results. As opposed to several recent results, we observe a steepening of the density profiles beyond approximately 0.3r(sub 500). Comparing our density profiles with simulations, we find that non-radiative runs predict too steep density profiles, whereas runs including additional physics and/or gas clumping are in better agreement with the observed gas distribution. We note a systematic difference between cool-core and non-cool core clusters beyond approximately 0.3r(sub 200), which we explain by a different distribution of the gas in the two classes. Beyond approximately r(sub 500), galaxy clusters deviate significantly from spherical symmetry, with only little differences between relaxed and disturbed systems. We find good agreement between the observed and predicted scatter profiles, but only when the 1% densest clumps are filtered out in the simulations. Conclusions. The general trend of steepening density around the virial radius indicates that the shallow density profiles found in several recent works were probably obtained along particular directions (e.g., filaments) and are not representative of the typical behavior of clusters. Comparing our results with numerical simulations, we find that non-radiative simulations fail to reproduce the gas distribution, even well outside cluster cores. Therefore, a detailed treatment of gas cooling, star formation, clumping, and AGN feedback is required to construct realistic models of cluster outer regions.

  7. Kinematics of AWM and MKW Poor Clusters

    NASA Astrophysics Data System (ADS)

    Koranyi, Daniel M.; Geller, Margaret J.

    2002-01-01

    We have measured 1365 redshifts to a limiting magnitude of R~15.5 in 15 AWM/MKW clusters and have collected another 203 from the literature in MKW 4s, MKW 2, and MKW 2s. In AWM 7 we have extended the redshift sample to R~18 in the cluster center. We have identified 704 cluster members in 17 clusters; 201 are newly identified. We summarize the kinematics and distributions of the cluster galaxies and provide an initial discussion of substructure, mass and luminosity segregation, spectral segregation, velocity-dispersion profiles, and the relation of the central galaxy to global cluster properties. We compute optical mass estimates, which we compare with X-ray mass determinations from the literature. The clusters are in a variety of dynamical states, reflected in the three classes of behavior of the velocity-dispersion profile in the core: rising, falling, or flat/ambiguous. The velocity dispersion of the emission-line galaxy population significantly exceeds that of the absorption-line galaxies in almost all of the clusters, and the presence of emission-line galaxies at small projected radii suggests continuing infall of galaxies onto the clusters. The presence of a cD galaxy does not constrain the global cluster properties; these clusters are similar to other poor clusters that contain no cD. We use the similarity of the velocity-dispersion profiles at small radii and the cD-like galaxies' internal velocity dispersions to argue that cD formation is a local phenomenon. Our sample establishes an empirical observational baseline of poor clusters for comparison with simulations of similar systems. Observations reported in this paper were obtained at the Multiple Mirror Telescope Observatory, a facility operated jointly by the University of Arizona and the Smithsonian Institution; at the Whipple Observatory, a facility operated jointly by the Smithsonian Astrophysical Observatory and Harvard University; and at the WIYN Observatory, a joint facility of the University of Wisconsin-Madison, Indiana University, Yale University, and the National Optical Astronomy Observatories.

  8. Early assembly of the most massive galaxies.

    PubMed

    Collins, Chris A; Stott, John P; Hilton, Matt; Kay, Scott T; Stanford, S Adam; Davidson, Michael; Hosmer, Mark; Hoyle, Ben; Liddle, Andrew; Lloyd-Davies, Ed; Mann, Robert G; Mehrtens, Nicola; Miller, Christopher J; Nichol, Robert C; Romer, A Kathy; Sahlén, Martin; Viana, Pedro T P; West, Michael J

    2009-04-02

    The current consensus is that galaxies begin as small density fluctuations in the early Universe and grow by in situ star formation and hierarchical merging. Stars begin to form relatively quickly in sub-galactic-sized building blocks called haloes which are subsequently assembled into galaxies. However, exactly when this assembly takes place is a matter of some debate. Here we report that the stellar masses of brightest cluster galaxies, which are the most luminous objects emitting stellar light, some 9 billion years ago are not significantly different from their stellar masses today. Brightest cluster galaxies are almost fully assembled 4-5 billion years after the Big Bang, having grown to more than 90 per cent of their final stellar mass by this time. Our data conflict with the most recent galaxy formation models based on the largest simulations of dark-matter halo development. These models predict protracted formation of brightest cluster galaxies over a Hubble time, with only 22 per cent of the stellar mass assembled at the epoch probed by our sample. Our findings suggest a new picture in which brightest cluster galaxies experience an early period of rapid growth rather than prolonged hierarchical assembly.

  9. LoCuSS: connecting the dominance and shape of brightest cluster galaxies with the assembly history of massive clusters

    NASA Astrophysics Data System (ADS)

    Smith, Graham P.; Khosroshahi, Habib G.; Dariush, A.; Sanderson, A. J. R.; Ponman, T. J.; Stott, J. P.; Haines, C. P.; Egami, E.; Stark, D. P.

    2010-11-01

    We study the luminosity gap, Δm12, between the first- and second-ranked galaxies in a sample of 59 massive (~1015Msolar) galaxy clusters, using data from the Hale Telescope, the Hubble Space Telescope, Chandra and Spitzer. We find that the Δm12 distribution, p(Δm12), is a declining function of Δm12 to which we fitted a straight line: p(Δm12) ~ -(0.13 +/- 0.02)Δm12. The fraction of clusters with `large' luminosity gaps is p(Δm12 >= 1) = 0.37 +/- 0.08, which represents a 3σ excess over that obtained from Monte Carlo simulations of a Schechter function that matches the mean cluster galaxy luminosity function. We also identify four clusters with `extreme' luminosity gaps, Δm12 >= 2, giving a fraction of . More generally, large luminosity gap clusters are relatively homogeneous, with elliptical/discy brightest cluster galaxies (BCGs), cuspy gas density profiles (i.e. strong cool cores), high concentrations and low substructure fractions. In contrast, small luminosity gap clusters are heterogeneous, spanning the full range of boxy/elliptical/discy BCG morphologies, the full range of cool core strengths and dark matter concentrations, and have large substructure fractions. Taken together, these results imply that the amplitude of the luminosity gap is a function of both the formation epoch and the recent infall history of the cluster. `BCG dominance' is therefore a phase that a cluster may evolve through and is not an evolutionary `cul-de-sac'. We also compare our results with semi-analytic model predictions based on the Millennium Simulation. None of the models is able to reproduce all of the observational results on Δm12, underlining the inability of the current generation of models to match the empirical properties of BCGs. We identify the strength of active galactic nucleus feedback and the efficiency with which cluster galaxies are replenished after they merge with the BCG in each model as possible causes of these discrepancies.

  10. Massive Stars and Star Clusters in the Era of JWST

    NASA Astrophysics Data System (ADS)

    Klein, Richard

    Massive stars lie at the center of the web of physical processes that has shaped the universe as we know it, governing the evolution of the interstellar medium of galaxies, producing a majority of the heavy elements, and thereby determining the evolution of galaxies. Massive stars are also important as signposts, since they produce most of the light and almost all the ionizing radiation in regions of active star formation. A significant fraction of all stars form in massive clusters, which will be observable throughout the visible universe with JWST. Their luminosities are so high that the pressure of their light on interstellar dust grains is likely the dominant feedback mechanism regulating their formation. While this process has been studied in the local Universe, much less attention has been focused on how it behaves at high redshift, where the dust abundance is much lower due to the overall lower abundance of heavy elements. The high redshift Universe also differs from the nearby one in that observations imply that high redshift star formation occurs at significantly higher densities than are typically found locally. We propose to simulate the formation of individual massive stars from the high redshift universe to the present day universe spanning metallicities ranging from 0.001 to 1.0 and column densities from 0.1to 30.0 g/cm2 focusing on how the process depends on both the dust abundance and on the density of the star-forming gas. These simulations will be among the first to treat the formation of Population II stars, which form in regions of low metallicity. Based on these results, we shall then simulate the formation of clusters of stars across also cosmic time, both of moderate mass, such as the Orion Nebula Cluster, and of high mass, such as the super star clusters seen in starburst galaxies. These state-of-the-art simulations will be carried out using our newly developed advanced techniques in our radiation-magneto-hydrodynamic AMR code ORION, for radiative transfer with both ionizing and non-ionizing radiation that accurately handle both the direct radiation from stars and the diffuse infrared radiation field that builds up when direct radiation is reprocessed by dust grains. Our simulations include all of the relevant feedback effects such as radiative heating, radiation pressure, photodissociation and photoionization, protostellar outflows and stellar winds. The challenge in simulating the formation of massive stars and massive clusters is to include all these feedback effects self-consistently as they occur collectively. We are in an excellent position to do so. The results of these simulations will be directly relevant to the interpretation of observations with JWST, which will probe cluster formation in both the nearby and distant universe, and with SOFIA, which can observe high-mass star formation in the Galaxy. We shall make direct comparison with observations of massive protostars in the Galactic disk. We shall also compare with observations of star clusters that form in dense environments, such as the Galactic Center and in merging galaxies (e.g., the Antennae), and in low metallicity environments, such as the dwarf starburst galaxy I Zw 18. Once our simulations have been benchmarked with observations of massive protostars in the Galaxy and massive protoclusters in the local universe, they will provide the theoretical basis for interpreting observations of the formation of massive star clusters at high redshift with JWST. What determines the maximum mass of a star? How does stellar feedback affect the formation of individual stars and the formation of massive star clusters and how the answers to these questions evolve with cosmic time. The proposed research will provide high-resolution input to the study of stellar feedback on galaxy formation with a significantly more accurate treatment of the physics, particularly the radiative transfer that is so important for feedback.

  11. The Mass Function of Abell Clusters

    NASA Astrophysics Data System (ADS)

    Chen, J.; Huchra, J. P.; McNamara, B. R.; Mader, J.

    1998-12-01

    The velocity dispersion and mass functions for rich clusters of galaxies provide important constraints on models of the formation of Large-Scale Structure (e.g., Frenk et al. 1990). However, prior estimates of the velocity dispersion or mass function for galaxy clusters have been based on either very small samples of clusters (Bahcall and Cen 1993; Zabludoff et al. 1994) or large but incomplete samples (e.g., the Girardi et al. (1998) determination from a sample of clusters with more than 30 measured galaxy redshifts). In contrast, we approach the problem by constructing a volume-limited sample of Abell clusters. We collected individual galaxy redshifts for our sample from two major galaxy velocity databases, the NASA Extragalactic Database, NED, maintained at IPAC, and ZCAT, maintained at SAO. We assembled a database with velocity information for possible cluster members and then selected cluster members based on both spatial and velocity data. Cluster velocity dispersions and masses were calculated following the procedures of Danese, De Zotti, and di Tullio (1980) and Heisler, Tremaine, and Bahcall (1985), respectively. The final velocity dispersion and mass functions were analyzed in order to constrain cosmological parameters by comparison to the results of N-body simulations. Our data for the cluster sample as a whole and for the individual clusters (spatial maps and velocity histograms) in our sample is available on-line at http://cfa-www.harvard.edu/ huchra/clusters. This website will be updated as more data becomes available in the master redshift compilations, and will be expanded to include more clusters and large groups of galaxies.

  12. The formation of Dwarf Spheroidal galaxies by the dissolving star cluster model.

    NASA Astrophysics Data System (ADS)

    Alarcon, Alex; Theory and Star Formation Group

    2018-01-01

    Dwarf spheroidal (dSph) galaxies are regarded as key object in the formation of larger galaxies and are believed to be the most dark matter dominated systems known. There are several model that attempt to explain their formation, but they have problems to model the formation of isolated dSph. Here we will explain a possible formation scenario in which star clusters form in the dark matter halo of a dSph. these cluster suffer from low star formation efficiency and dissolve while orbiting inside the halo. Thereby they build the faint luminous components that we observe in dSph galaxies. Here we will show the main results of this simulations and how they would be corroborated using observational data.

  13. What drives the evolution of Luminous Compact Blue Galaxies in Clusters vs. the Field?

    NASA Astrophysics Data System (ADS)

    Wirth, Gregory D.; Bershady, Matthew A.; Crawford, Steven M.; Hunt, Lucas; Pisano, Daniel J.; Randriamampandry, Solohery M.

    2018-06-01

    Low-mass dwarf ellipticals are the most numerous members of present-day galaxy clusters, but the progenitors of this dominant population remain unclear. A prime candidate is the class of objects known as Luminous Compact Blue Galaxies (LCBGs), common in intermediate-redshift clusters but virtually extinct today. Recent cosmological simulations suggest that present-day dwarf galaxies begin as irregular field galaxies, undergo an environmentally-driven starburst phase as they enter the cluster, and stop forming stars earlier than their counterparts in the field. This model predicts that cluster dwarfs should have lower stellar mass per unit dynamical mass than their counterparts in the field. We are undertaking a two-pronged archival research program to test this key prediction using the combination of precision photometry from space and high-quality spectroscopy. First, we are combining optical HST/ACS imaging of five z=0.55 clusters (including two HST Frontier Fields) with Spitzer IR imaging and publicly-released Keck/DEIMOS spectroscopy to measure stellar-to-dynamical-mass ratios for a large sample of cluster LCBGs. Second, we are exploiting a new catalog of LCBGs in the COSMOS field to gather corresponding data for a significant sample of field LCBGs. By comparing mass ratios from these datasets, we aim to test theoretical predictions and determine the primary physical driver of cluster dwarf-galaxy evolution.

  14. Dynamical Mass Measurements of Contaminated Galaxy Clusters Using Support Distribution Machines

    NASA Astrophysics Data System (ADS)

    Ntampaka, Michelle; Trac, Hy; Sutherland, Dougal; Fromenteau, Sebastien; Poczos, Barnabas; Schneider, Jeff

    2018-01-01

    We study dynamical mass measurements of galaxy clusters contaminated by interlopers and show that a modern machine learning (ML) algorithm can predict masses by better than a factor of two compared to a standard scaling relation approach. We create two mock catalogs from Multidark’s publicly available N-body MDPL1 simulation, one with perfect galaxy cluster membership infor- mation and the other where a simple cylindrical cut around the cluster center allows interlopers to contaminate the clusters. In the standard approach, we use a power-law scaling relation to infer cluster mass from galaxy line-of-sight (LOS) velocity dispersion. Assuming perfect membership knowledge, this unrealistic case produces a wide fractional mass error distribution, with a width E=0.87. Interlopers introduce additional scatter, significantly widening the error distribution further (E=2.13). We employ the support distribution machine (SDM) class of algorithms to learn from distributions of data to predict single values. Applied to distributions of galaxy observables such as LOS velocity and projected distance from the cluster center, SDM yields better than a factor-of-two improvement (E=0.67) for the contaminated case. Remarkably, SDM applied to contaminated clusters is better able to recover masses than even the scaling relation approach applied to uncon- taminated clusters. We show that the SDM method more accurately reproduces the cluster mass function, making it a valuable tool for employing cluster observations to evaluate cosmological models.

  15. The Grism Lens-Amplified Survey from Space (GLASS). VIII. The Influence of the Cluster Properties on Hα Emitter Galaxies at 0.3 < z < 0.7

    NASA Astrophysics Data System (ADS)

    Vulcani, Benedetta; Treu, Tommaso; Nipoti, Carlo; Schmidt, Kasper B.; Dressler, Alan; Morshita, Takahiro; Poggianti, Bianca M.; Malkan, Matthew; Hoag, Austin; Bradač, Marusa; Abramson, Louis; Trenti, Michele; Pentericci, Laura; von der Linden, Anja; Morris, Glenn; Wang, Xin

    2017-03-01

    Exploiting the data of the Grism Lens-Amplified Survey from Space (GLASS), we characterize the spatial distribution of star formation in 76 highly active star-forming galaxies in 10 clusters at 0.3< z< 0.7. All of these galaxies are likely restricted to first infall. In a companion paper, we contrast the properties of field and cluster galaxies, whereas here we correlate the properties of Hα emitters to a number of tracers of the cluster environment to investigate its role in driving galaxy transformations. Hα emitters are found in the clusters out to 0.5 virial radii, the maximum radius covered by GLASS. The peak of the Hα emission is offset with respect to the peak of the UV continuum. We decompose these offsets into a radial and a tangential component. The radial component points away from the cluster center in 60% of the cases, with 95% confidence. The decompositions agree with cosmological simulations; that is, the Hα emission offset correlates with galaxy velocity and ram-pressure stripping signatures. Trends between Hα emitter properties and surface mass density distributions and X-ray emissions emerge only for unrelaxed clusters. The lack of strong correlations with the global environment does not allow us to identify a unique environmental effect originating from the cluster center. In contrast, correlations between Hα morphology and local number density emerge. We conclude that local effects, uncorrelated to the cluster-centric radius, play a more important role in shaping galaxy properties.

  16. The serendipitous observation of a gravitationally lensed galaxy at z = 0.9057 from the Blanco Cosmology Survey: the Elliot Arc

    DOE PAGES

    Buckley-Geer, E. J.; Lin, H.; Drabek, E. R.; ...

    2011-11-03

    We report on the serendipitous discovery in the Blanco Cosmology Survey (BCS) imaging data of a z = 0.9057 galaxy that is being strongly lensed by a massive galaxy cluster at a redshift of z = 0.3838. The lens (BCS J2352-5452) was discovered while examining i- and z-band images being acquired in October 2006 during a BCS observing run. Follow-up spectroscopic observations with the GMOS instrument on the Gemini South 8m telescope confirmed the lensing nature of this system. Using weak plus strong lensing, velocity dispersion, cluster richness N 200, and fitting to an NFW cluster mass density profile, wemore » have made three independent estimates of the mass M 200 which are all very consistent with each other. The combination of the results from the three methods gives M 200 = (5.1 x 1.3) x 10 14 circle_dot, which is fully consistent with the individual measurements. The final NFW concentration c 200 from the combined fit is c 200 = 5.4 -1.1 +1.4. We have compared our measurements of M 200 and c 200 with predictions for (a) clusters from λCDM simulations, (b) lensing selected clusters from simulations, and (c) a real sample of cluster lenses. We find that we are most compatible with the predictions for λCDM simulations for lensing clusters, and we see no evidence based on this one system for an increased concentration compared to λCDM. Finally, using the flux measured from the [OII]3727 line we have determined the star formation rate (SFR) of the source galaxy and find it to be rather modest given the assumed lens magnification.« less

  17. Dynamic evolution of nearby galaxy clusters

    NASA Astrophysics Data System (ADS)

    Biernacka, M.; Flin, P.

    2011-06-01

    A study of the evolution of 377 rich ACO clusters with redshift z<0.2 is presented. The data concerning galaxies in the investigated clusters were obtained using FOCAS packages applied to Digital Sky Survey I. The 377 galaxy clusters constitute a statistically uniform sample to which visual galaxy/star reclassifications were applied. Cluster shape within 2.0 h-1 Mpc from the adopted cluster centre (the mean and the median of all galaxy coordinates, the position of the brightest and of the third brightest galaxy in the cluster) was determined through its ellipticity calculated using two methods: the covariance ellipse method (hereafter CEM) and the method based on Minkowski functionals (hereafter MFM). We investigated ellipticity dependence on the radius of circular annuli, in which ellipticity was calculated. This was realized by varying the radius from 0.5 to 2 Mpc in steps of 0.25 Mpc. By performing Monte Carlo simulations, we generated clusters to which the two ellipticity methods were applied. We found that the covariance ellipse method works better than the method based on Minkowski functionals. We also found that ellipticity distributions are different for different methods used. Using the ellipticity-redshift relation, we investigated the possibility of cluster evolution in the low-redshift Universe. The correlation of cluster ellipticities with redshifts is undoubtly an indicator of structural evolution. Using the t-Student statistics, we found a statistically significant correlation between ellipticity and redshift at the significance level of α = 0.95. In one of the two shape determination methods we found that ellipticity grew with redshift, while the other method gave opposite results. Monte Carlo simulations showed that only ellipticities calculated at the distance of 1.5 Mpc from cluster centre in the Minkowski functional method are robust enough to be taken into account, but for that radius we did not find any relation between e and z. Since CEM pointed towards the existence of the e(z) relation, we conclude that such an effect is real though rather weak. A detailed study of the e(z) relation showed that the observed relation is nonlinear, and the number of elongated structures grows rapidly for z>0.14.

  18. Climbing to the top of the galactic mass ladder: evidence for frequent prolate-like rotation among the most massive galaxies

    NASA Astrophysics Data System (ADS)

    Krajnović, Davor; Emsellem, Eric; den Brok, Mark; Marino, Raffaella Anna; Schmidt, Kasper Borello; Steinmetz, Matthias; Weilbacher, Peter M.

    2018-07-01

    We present the stellar velocity maps of 25 massive early-type galaxies located in dense environments observed with MUSE. Galaxies are selected to be brighter than MK = -25.7 mag, reside in the core of the Shapley Super Cluster or be the brightest galaxy in clusters richer than the Virgo Cluster. We thus targeted galaxies more massive than 1012 M⊙ and larger than 10 kpc (half-light radius). The velocity maps show a large variety of kinematic features: oblate-like regular rotation, kinematically distinct cores, and various types of non-regular rotation. The kinematic misalignment angles show that massive galaxies can be divided into two categories: those with small or negligible misalignment and those with misalignment consistent with being 90°. Galaxies in this latter group, comprising just under half of our galaxies, have prolate-like rotation (rotation around the major axis). Among the brightest cluster galaxies the incidence of prolate-like rotation is 50 per cent, while for a magnitude limited sub-sample of objects within the Shapley Super Cluster (mostly satellites), 35 per cent of galaxies show prolate-like rotation. Placing our galaxies on the mass-size diagram, we show that they all fall on a branch extending almost an order of magnitude in mass and a factor of 5 in size from the massive end of galaxies, previously recognized as associated with major dissipation-less mergers. The presence of galaxies with complex kinematics and, particularly, prolate-like rotators suggests, according to current numerical simulations, that the most massive galaxies grow predominantly through dissipation-less equal-mass mergers.

  19. Climbing to the top of the galactic mass ladder: evidence for frequent prolate-like rotation among the most massive galaxies

    NASA Astrophysics Data System (ADS)

    Krajnović, Davor; Emsellem, Eric; den Brok, Mark; Marino, Raffaella Anna; Schmidt, Kasper Borello; Steinmetz, Matthias; Weilbacher, Peter M.

    2018-04-01

    We present the stellar velocity maps of 25 massive early-type galaxies located in dense environments observed with MUSE. Galaxies are selected to be brighter than MK = -25.7 magnitude, reside in the core of the Shapley Super Cluster or be the brightest galaxy in clusters richer than the Virgo Cluster. We thus targeted galaxies more massive than 1012 M⊙ and larger than 10 kpc (half-light radius). The velocity maps show a large variety of kinematic features: oblate-like regular rotation, kinematically distinct cores and various types of non-regular rotation. The kinematic misalignment angles show that massive galaxies can be divided into two categories: those with small or negligible misalignment, and those with misalignment consistent with being 90°. Galaxies in this latter group, comprising just under half of our galaxies, have prolate-like rotation (rotation around the major axis). Among the brightest cluster galaxies the incidence of prolate-like rotation is 50 per cent, while for a magnitude limited sub-sample of objects within the Shapley Super Cluster (mostly satellites), 35 per cent of galaxies show prolate-like rotation. Placing our galaxies on the mass - size diagram, we show that they all fall on a branch extending almost an order of magnitude in mass and a factor of 5 in size from the massive end of galaxies, previously recognised as associated with major dissipation-less mergers. The presence of galaxies with complex kinematics and, particularly, prolate-like rotators suggests, according to current numerical simulations, that the most massive galaxies grow predominantly through dissipation-less equal-mass mergers.

  20. IDENTIFICATION OF MEMBERS IN THE CENTRAL AND OUTER REGIONS OF GALAXY CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serra, Ana Laura; Diaferio, Antonaldo, E-mail: serra@ph.unito.it

    2013-05-10

    The caustic technique measures the mass of galaxy clusters in both their virial and infall regions and, as a byproduct, yields the list of cluster galaxy members. Here we use 100 galaxy clusters with mass M{sub 200} {>=} 10{sup 14} h {sup -1} M{sub Sun} extracted from a cosmological N-body simulation of a {Lambda}CDM universe to test the ability of the caustic technique to identify the cluster galaxy members. We identify the true three-dimensional members as the gravitationally bound galaxies. The caustic technique uses the caustic location in the redshift diagram to separate the cluster members from the interlopers. Wemore » apply the technique to mock catalogs containing 1000 galaxies in the field of view of 12 h {sup -1} Mpc on a side at the cluster location. On average, this sample size roughly corresponds to 180 real galaxy members within 3r{sub 200}, similar to recent redshift surveys of cluster regions. The caustic technique yields a completeness, the fraction of identified true members, f{sub c} = 0.95 {+-} 0.03, within 3r{sub 200}. The contamination, the fraction of interlopers in the observed catalog of members, increases from f{sub i}=0.020{sup +0.046}{sub -0.015} at r{sub 200} to f{sub i}=0.08{sup +0.11}{sub -0.05} at 3r{sub 200}. No other technique for the identification of the members of a galaxy cluster provides such large completeness and small contamination at these large radii. The caustic technique assumes spherical symmetry and the asphericity of the cluster is responsible for most of the spread of the completeness and the contamination. By applying the technique to an approximately spherical system obtained by stacking the individual clusters, the spreads decrease by at least a factor of two. We finally estimate the cluster mass within 3r{sub 200} after removing the interlopers: for individual clusters, the mass estimated with the virial theorem is unbiased and within 30% of the actual mass; this spread decreases to less than 10% for the spherically symmetric stacked cluster.« less

  1. Counts-in-cylinders in the Sloan Digital Sky Survey with Comparisons to N-body Simulations

    NASA Astrophysics Data System (ADS)

    Berrier, Heather D.; Barton, Elizabeth J.; Berrier, Joel C.; Bullock, James S.; Zentner, Andrew R.; Wechsler, Risa H.

    2011-01-01

    Environmental statistics provide a necessary means of comparing the properties of galaxies in different environments, and a vital test of models of galaxy formation within the prevailing hierarchical cosmological model. We explore counts-in-cylinders, a common statistic defined as the number of companions of a particular galaxy found within a given projected radius and redshift interval. Galaxy distributions with the same two-point correlation functions do not necessarily have the same companion count distributions. We use this statistic to examine the environments of galaxies in the Sloan Digital Sky Survey Data Release 4 (SDSS DR4). We also make preliminary comparisons to four models for the spatial distributions of galaxies, based on N-body simulations and data from SDSS DR4, to study the utility of the counts-in-cylinders statistic. There is a very large scatter between the number of companions a galaxy has and the mass of its parent dark matter halo and the halo occupation, limiting the utility of this statistic for certain kinds of environmental studies. We also show that prevalent empirical models of galaxy clustering, that match observed two- and three-point clustering statistics well, fail to reproduce some aspects of the observed distribution of counts-in-cylinders on 1, 3, and 6 h -1 Mpc scales. All models that we explore underpredict the fraction of galaxies with few or no companions in 3 and 6 h -1 Mpc cylinders. Roughly 7% of galaxies in the real universe are significantly more isolated within a 6 h -1 Mpc cylinder than the galaxies in any of the models we use. Simple phenomenological models that map galaxies to dark matter halos fail to reproduce high-order clustering statistics in low-density environments.

  2. THE CLUSTERING CHARACTERISTICS OF H I-SELECTED GALAXIES FROM THE 40% ALFALFA SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Ann M.; Giovanelli, Riccardo; Haynes, Martha P.

    The 40% Arecibo Legacy Fast ALFA survey catalog ({alpha}.40) of {approx}10,150 H I-selected galaxies is used to analyze the clustering properties of gas-rich galaxies. By employing the Landy-Szalay estimator and a full covariance analysis for the two-point galaxy-galaxy correlation function, we obtain the real-space correlation function and model it as a power law, {xi}(r) = (r/r{sub 0}){sup -{gamma}}, on scales <10 h{sup -1} Mpc. As the largest sample of blindly H I-selected galaxies to date, {alpha}.40 provides detailed understanding of the clustering of this population. We find {gamma} = 1.51 {+-} 0.09 and r{sub 0} = 3.3 + 0.3, -0.2more » h{sup -1} Mpc, reinforcing the understanding that gas-rich galaxies represent the most weakly clustered galaxy population known; we also observe a departure from a pure power-law shape at intermediate scales, as predicted in {Lambda}CDM halo occupation distribution models. Furthermore, we measure the bias parameter for the {alpha}.40 galaxy sample and find that H I galaxies are severely antibiased on small scales, but only weakly antibiased on large scales. The robust measurement of the correlation function for gas-rich galaxies obtained via the {alpha}.40 sample constrains models of the distribution of H I in simulated galaxies, and will be employed to better understand the role of gas in environmentally dependent galaxy evolution.« less

  3. Large-scale motions in the universe: Using clusters of galaxies as tracers

    NASA Technical Reports Server (NTRS)

    Gramann, Mirt; Bahcall, Neta A.; Cen, Renyue; Gott, J. Richard

    1995-01-01

    Can clusters of galaxies be used to trace the large-scale peculiar velocity field of the universe? We answer this question by using large-scale cosmological simulations to compare the motions of rich clusters of galaxies with the motion of the underlying matter distribution. Three models are investigated: Omega = 1 and Omega = 0.3 cold dark matter (CDM), and Omega = 0.3 primeval baryonic isocurvature (PBI) models, all normalized to the Cosmic Background Explorer (COBE) background fluctuations. We compare the cluster and mass distribution of peculiar velocities, bulk motions, velocity dispersions, and Mach numbers as a function of scale for R greater than or = 50/h Mpc. We also present the large-scale velocity and potential maps of clusters and of the matter. We find that clusters of galaxies trace well the large-scale velocity field and can serve as an efficient tool to constrain cosmological models. The recently reported bulk motion of clusters 689 +/- 178 km/s on approximately 150/h Mpc scale (Lauer & Postman 1994) is larger than expected in any of the models studied (less than or = 190 +/- 78 km/s).

  4. On The Missing Dwarf Problem In Clusters And Around The Nearby Galaxy M33

    NASA Astrophysics Data System (ADS)

    Keenan, Olivia Charlotte

    2017-08-01

    This thesis explores possible solutions to the dwarf galaxy problem. This is a discrepancy between the number of dwarf galaxies we observe, and the number predicted from cosmological computer simulations. Simulations predict around ten times more dwarf galaxy satellites than are currently observed. I have investigated two possible solutions: dark galaxies and the low surface brightness universe. Dark galaxies are dark matter halos which contain gas, but few or no stars, hence are optically dark. As part of the Arecibo Galaxy Environment Survey I surveyed the neutral hydrogen gas around the nearby galaxy M33. I found 32 gas clouds, 11 of which are new detections. Amongst these there was one particularly interesting cloud. AGESM33-32 is ring shaped and larger than M33 itself, if at the same distance. It has a velocity width which is similar to the velocity dispersion of gas in a disk galaxy, as well as having a clear velocity gradient across it which may be due to rotation. The fact that it also currently has no observed associated stars means it is a dark galaxy candidate. Optically, dwarf galaxies may be out there, but too faint for us to detect. This means that with newer, deeper, images we may be able to unveil a large, low surface brightness, population of dwarf galaxies. However, the question remains as to how these can be distinguished from background galaxies. I have used Next Generation Virgo Survey (NGVS) data to carry out photometry on 852 Virgo galaxies in four bands. I also measured the photometric properties of galaxies on a background (non-cluster) NGVS frame. I discovered that a combination of colour, magnitude and surface brightness information could be used to identify cluster dwarf galaxies from background field galaxies. The most effective method is to use the surface brightness-magnitude relation.

  5. A Database of Young Star Clusters for Five Hundred Galaxies

    NASA Astrophysics Data System (ADS)

    Evans, Jessica; Whitmore, B. C.; Lindsay, K.; Chandar, R.; Larsen, S.

    2009-01-01

    The study of young massive stellar clusters has faced a series of observational challenges, such as the use of inconsistent data sets and low number statistics. To rectify these shortcomings, this project will use the source lists developed as part of the Hubble Legacy Archive to obtain a large, uniform database of super star clusters in nearby star-forming galaxies in order to address two fundamental astronomical questions: 1) To what degree is the cluster luminosity (and mass) function of star clusters universal? 2) What fraction of super star clusters are "missing" in optical studies (i.e., are hidden by dust)? The archive's recent data release (Data Release 2 - September, 2008) will help us achieve the large sample necessary (N 50 galaxies for multi-wavelength, N 500 galaxies for ACS F814W). The uniform data set will comprise of ACS, WFPC2, and NICMOS data, with DAOphot used for object detection. This database will also support comparisons with new Monte-Carlo simulations that have independently been developed in the past few years, and will be used to test the Whitmore, Chandar, Fall (2007) framework designed to understand the demographics of star clusters in all star forming galaxies. The catalogs will increase the number of galaxies with measured mass and luminosity functions by an order of magnitude, and will provide a powerful new tool for comparative studies, both ours and the community's. The poster will describe our preliminary investigation for the first 30 galaxies in the sample.

  6. The halo boundary of galaxy clusters in the SDSS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, Eric; Chang, Chihway; Jain, Bhuvnesh

    Analytical models and simulations predict a rapid decline in the halo density profile associated with the transition from the "infalling" regime outside the halo to the "collapsed" regime within the halo. Using data from SDSS, we explore evidence for such a feature in the density profiles of galaxy clusters using several different approaches. We first estimate the steepening of the outer galaxy density profile around clusters, finding evidence for truncation of the halo profile. Next, we measure the galaxy density profile around clusters using two sets of galaxies selected on color. We find evidence of an abrupt change in galaxymore » colors that coincides with the location of the steepening of the density profile. Since galaxies that have completed orbits within the cluster are more likely to be quenched of star formation and thus appear redder, this abrupt change in galaxy color can be associated with the transition from single-stream to multi-stream regimes. We also use a standard model comparison approach to measure evidence for a "splashback"-like feature, but find that this approach is very sensitive to modeling assumptions. Finally, we perform measurements using an independent cluster catalog to test for potential systematic errors associated with cluster selection. We identify several avenues for future work: improved understanding of the small-scale galaxy profile, lensing measurements, identification of proxies for the halo accretion rate, and other tests. As a result, with upcoming data from the DES, KiDS, and HSC surveys, we can expect significant improvements in the study of halo boundaries.« less

  7. The Halo Boundary of Galaxy Clusters in the SDSS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, Eric; Jain, Bhuvnesh; Sheth, Ravi K.

    Analytical models and simulations predict a rapid decline in the halo density profile associated with the transition from the “infalling” regime outside the halo to the “collapsed” regime within the halo. Using data from SDSS, we explore evidence for such a feature in the density profiles of galaxy clusters using several different approaches. We first estimate the steepening of the outer galaxy density profile around clusters, finding evidence for truncation of the halo profile. Next, we measure the galaxy density profile around clusters using two sets of galaxies selected on color. We find evidence of an abrupt change in galaxymore » colors that coincides with the location of the steepening of the density profile. Since galaxies that have completed orbits within the cluster are more likely to be quenched of star formation and thus appear redder, this abrupt change in galaxy color can be associated with the transition from single-stream to multi-stream regimes. We also use a standard model comparison approach to measure evidence for a “splashback”-like feature, but find that this approach is very sensitive to modeling assumptions. Finally, we perform measurements using an independent cluster catalog to test for potential systematic errors associated with cluster selection. We identify several avenues for future work: improved understanding of the small-scale galaxy profile, lensing measurements, identification of proxies for the halo accretion rate, and other tests. With upcoming data from the DES, KiDS, and HSC surveys, we can expect significant improvements in the study of halo boundaries.« less

  8. The halo boundary of galaxy clusters in the SDSS

    DOE PAGES

    Baxter, Eric; Chang, Chihway; Jain, Bhuvnesh; ...

    2017-05-18

    Analytical models and simulations predict a rapid decline in the halo density profile associated with the transition from the "infalling" regime outside the halo to the "collapsed" regime within the halo. Using data from SDSS, we explore evidence for such a feature in the density profiles of galaxy clusters using several different approaches. We first estimate the steepening of the outer galaxy density profile around clusters, finding evidence for truncation of the halo profile. Next, we measure the galaxy density profile around clusters using two sets of galaxies selected on color. We find evidence of an abrupt change in galaxymore » colors that coincides with the location of the steepening of the density profile. Since galaxies that have completed orbits within the cluster are more likely to be quenched of star formation and thus appear redder, this abrupt change in galaxy color can be associated with the transition from single-stream to multi-stream regimes. We also use a standard model comparison approach to measure evidence for a "splashback"-like feature, but find that this approach is very sensitive to modeling assumptions. Finally, we perform measurements using an independent cluster catalog to test for potential systematic errors associated with cluster selection. We identify several avenues for future work: improved understanding of the small-scale galaxy profile, lensing measurements, identification of proxies for the halo accretion rate, and other tests. As a result, with upcoming data from the DES, KiDS, and HSC surveys, we can expect significant improvements in the study of halo boundaries.« less

  9. Dark Energy Survey Year 1 results: cross-correlation redshifts - methods and systematics characterization

    NASA Astrophysics Data System (ADS)

    Gatti, M.; Vielzeuf, P.; Davis, C.; Cawthon, R.; Rau, M. M.; DeRose, J.; De Vicente, J.; Alarcon, A.; Rozo, E.; Gaztanaga, E.; Hoyle, B.; Miquel, R.; Bernstein, G. M.; Bonnett, C.; Carnero Rosell, A.; Castander, F. J.; Chang, C.; da Costa, L. N.; Gruen, D.; Gschwend, J.; Hartley, W. G.; Lin, H.; MacCrann, N.; Maia, M. A. G.; Ogando, R. L. C.; Roodman, A.; Sevilla-Noarbe, I.; Troxel, M. A.; Wechsler, R. H.; Asorey, J.; Davis, T. M.; Glazebrook, K.; Hinton, S. R.; Lewis, G.; Lidman, C.; Macaulay, E.; Möller, A.; O'Neill, C. R.; Sommer, N. E.; Uddin, S. A.; Yuan, F.; Zhang, B.; Abbott, T. M. C.; Allam, S.; Annis, J.; Bechtol, K.; Brooks, D.; Burke, D. L.; Carollo, D.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; D'Andrea, C. B.; DePoy, D. L.; Desai, S.; Eifler, T. F.; Evrard, A. E.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gerdes, D. W.; Goldstein, D. A.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; Hoormann, J. K.; Jain, B.; James, D. J.; Jarvis, M.; Jeltema, T.; Johnson, M. W. G.; Johnson, M. D.; Krause, E.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Li, T. S.; Lima, M.; Marshall, J. L.; Melchior, P.; Menanteau, F.; Nichol, R. C.; Nord, B.; Plazas, A. A.; Reil, K.; Rykoff, E. S.; Sako, M.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sheldon, E.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Tucker, B. E.; Tucker, D. L.; Vikram, V.; Walker, A. R.; Weller, J.; Wester, W.; Wolf, R. C.

    2018-06-01

    We use numerical simulations to characterize the performance of a clustering-based method to calibrate photometric redshift biases. In particular, we cross-correlate the weak lensing source galaxies from the Dark Energy Survey Year 1 sample with redMaGiC galaxies (luminous red galaxies with secure photometric redshifts) to estimate the redshift distribution of the former sample. The recovered redshift distributions are used to calibrate the photometric redshift bias of standard photo-z methods applied to the same source galaxy sample. We apply the method to two photo-z codes run in our simulated data: Bayesian Photometric Redshift and Directional Neighbourhood Fitting. We characterize the systematic uncertainties of our calibration procedure, and find that these systematic uncertainties dominate our error budget. The dominant systematics are due to our assumption of unevolving bias and clustering across each redshift bin, and to differences between the shapes of the redshift distributions derived by clustering versus photo-zs. The systematic uncertainty in the mean redshift bias of the source galaxy sample is Δz ≲ 0.02, though the precise value depends on the redshift bin under consideration. We discuss possible ways to mitigate the impact of our dominant systematics in future analyses.

  10. Percolation technique for galaxy clustering

    NASA Technical Reports Server (NTRS)

    Klypin, Anatoly; Shandarin, Sergei F.

    1993-01-01

    We study percolation in mass and galaxy distributions obtained in 3D simulations of the CDM, C + HDM, and the power law (n = -1) models in the Omega = 1 universe. Percolation statistics is used here as a quantitative measure of the degree to which a mass or galaxy distribution is of a filamentary or cellular type. The very fast code used calculates the statistics of clusters along with the direct detection of percolation. We found that the two parameters mu(infinity), characterizing the size of the largest cluster, and mu-squared, characterizing the weighted mean size of all clusters excluding the largest one, are extremely useful for evaluating the percolation threshold. An advantage of using these parameters is their low sensitivity to boundary effects. We show that both the CDM and the C + HDM models are extremely filamentary both in mass and galaxy distribution. The percolation thresholds for the mass distributions are determined.

  11. Pressure of the hot gas in simulations of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Planelles, S.; Fabjan, D.; Borgani, S.; Murante, G.; Rasia, E.; Biffi, V.; Truong, N.; Ragone-Figueroa, C.; Granato, G. L.; Dolag, K.; Pierpaoli, E.; Beck, A. M.; Steinborn, Lisa K.; Gaspari, M.

    2017-06-01

    We analyse the radial pressure profiles, the intracluster medium (ICM) clumping factor and the Sunyaev-Zel'dovich (SZ) scaling relations of a sample of simulated galaxy clusters and groups identified in a set of hydrodynamical simulations based on an updated version of the treepm-SPH GADGET-3 code. Three different sets of simulations are performed: the first assumes non-radiative physics, the others include, among other processes, active galactic nucleus (AGN) and/or stellar feedback. Our results are analysed as a function of redshift, ICM physics, cluster mass and cluster cool-coreness or dynamical state. In general, the mean pressure profiles obtained for our sample of groups and clusters show a good agreement with X-ray and SZ observations. Simulated cool-core (CC) and non-cool-core (NCC) clusters also show a good match with real data. We obtain in all cases a small (if any) redshift evolution of the pressure profiles of massive clusters, at least back to z = 1. We find that the clumpiness of gas density and pressure increases with the distance from the cluster centre and with the dynamical activity. The inclusion of AGN feedback in our simulations generates values for the gas clumping (√{C}_{ρ }˜ 1.2 at R200) in good agreement with recent observational estimates. The simulated YSZ-M scaling relations are in good accordance with several observed samples, especially for massive clusters. As for the scatter of these relations, we obtain a clear dependence on the cluster dynamical state, whereas this distinction is not so evident when looking at the subsamples of CC and NCC clusters.

  12. LoCuSS: THE SLOW QUENCHING OF STAR FORMATION IN CLUSTER GALAXIES AND THE NEED FOR PRE-PROCESSING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haines, C. P.; Pereira, M. J.; Egami, E.

    2015-06-10

    We present a study of the spatial distribution and kinematics of star-forming galaxies in 30 massive clusters at 0.15 < z < 0.30, combining wide-field Spitzer 24 μm and GALEX near-ultraviolet imaging with highly complete spectroscopy of cluster members. The fraction (f{sub SF}) of star-forming cluster galaxies rises steadily with cluster-centric radius, increasing fivefold by 2r{sub 200}, but remains well below field values even at 3r{sub 200}. This suppression of star formation at large radii cannot be reproduced by models in which star formation is quenched in infalling field galaxies only once they pass within r{sub 200} of the cluster,more » but is consistent with some of them being first pre-processed within galaxy groups. Despite the increasing f{sub SF}-radius trend, the surface density of star-forming galaxies actually declines steadily with radius, falling ∼15× from the core to 2r{sub 200}. This requires star formation to survive within recently accreted spirals for 2–3 Gyr to build up the apparent over-density of star-forming galaxies within clusters. The velocity dispersion profile of the star-forming galaxy population shows a sharp peak of 1.44 σ{sub ν} at 0.3r{sub 500}, and is 10%–35% higher than that of the inactive cluster members at all cluster-centric radii, while their velocity distribution shows a flat, top-hat profile within r{sub 500}. All of these results are consistent with star-forming cluster galaxies being an infalling population, but one that must also survive ∼0.5–2 Gyr beyond passing within r{sub 200}. By comparing the observed distribution of star-forming galaxies in the stacked caustic diagram with predictions from the Millennium simulation, we obtain a best-fit model in which star formation rates decline exponentially on quenching timescales of 1.73 ± 0.25 Gyr upon accretion into the cluster.« less

  13. LOCUSS: THE MID-INFRARED BUTCHER-OEMLER EFFECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haines, C. P.; Smith, G. P.; Sanderson, A. J. R.

    2009-10-10

    We study the mid-infrared (MIR) properties of galaxies in 30 massive galaxy clusters at 0.02 <= z <= 0.40, using panoramic Spitzer/MIPS 24 mum and near-infrared data, including 27 new observations from the LoCuSS and ACCESS surveys. This is the largest sample of clusters to date with such high-quality and uniform MIR data covering not only the cluster cores, but extending into the infall regions. We use these data to revisit the so-called Butcher-Oemler (BO) effect, measuring the fraction of massive infrared luminous galaxies (K < K* + 1.5, L {sub IR} > 5 x 10{sup 10} L {sub sun})more » within r {sub 200}, finding a steady increase in the fraction with redshift from approx3% at z = 0.02 to approx10% by z = 0.30, and an rms cluster-to-cluster scatter about this trend of 0.03. The best-fit redshift evolution model of the form f {sub SF} propor to (1 + z) {sup n} has n = 5.7{sup +2.1} {sub -1.8}, which is stronger redshift evolution than that of L*{sub IR} in both clusters and the field. We find that, statistically, this excess is associated with galaxies found at large cluster-centric radii, specifically r {sub 500} < r < r {sub 200}, implying that the MIR BO effect can be explained by a combination of both the global decline in star formation in the universe since z approx 1 and enhanced star formation in the infall regions of clusters at intermediate redshifts. This picture is supported by a simple infall model based on the Millennium Simulation semianalytic galaxy catalogs, whereby star formation in infalling galaxies is instantaneously quenched upon their first passage through the cluster, in that the observed radial trends of f {sub SF} trace those inferred from the simulations. The observed f {sub SF} values, however, lie systematically above the predictions, suggesting an overall excess of star formation, either due to triggering by environmental processes, or a gradual quenching. We also find that f {sub SF} does not depend on simple indicators of the dynamical state of clusters, including the offset between the brightest cluster galaxy and the peak of the X-ray emission. This is consistent with the picture described above in that most new star formation in clusters occurs in the infall regions, and is thus not sensitive to the details of cluster-cluster mergers in the core regions.« less

  14. Galaxy Clustering Topology in the Sloan Digital Sky Survey Main Galaxy Sample: A Test for Galaxy Formation Models

    NASA Astrophysics Data System (ADS)

    Choi, Yun-Young; Park, Changbom; Kim, Juhan; Gott, J. Richard, III; Weinberg, David H.; Vogeley, Michael S.; Kim, Sungsoo S.; SDSS Collaboration

    2010-09-01

    We measure the topology of the main galaxy distribution using the Seventh Data Release of the Sloan Digital Sky Survey, examining the dependence of galaxy clustering topology on galaxy properties. The observational results are used to test galaxy formation models. A volume-limited sample defined by Mr < -20.19 enables us to measure the genus curve with an amplitude of G = 378 at 6 h -1 Mpc smoothing scale, with 4.8% uncertainty including all systematics and cosmic variance. The clustering topology over the smoothing length interval from 6 to 10 h -1 Mpc reveals a mild scale dependence for the shift (Δν) and void abundance (AV ) parameters of the genus curve. We find substantial bias in the topology of galaxy clustering with respect to the predicted topology of the matter distribution, which varies with luminosity, morphology, color, and the smoothing scale of the density field. The distribution of relatively brighter galaxies shows a greater prevalence of isolated clusters and more percolated voids. Even though early (late)-type galaxies show topology similar to that of red (blue) galaxies, the morphology dependence of topology is not identical to the color dependence. In particular, the void abundance parameter AV depends on morphology more strongly than on color. We test five galaxy assignment schemes applied to cosmological N-body simulations of a ΛCDM universe to generate mock galaxies: the halo-galaxy one-to-one correspondence model, the halo occupation distribution model, and three implementations of semi-analytic models (SAMs). None of the models reproduces all aspects of the observed clustering topology; the deviations vary from one model to another but include statistically significant discrepancies in the abundance of isolated voids or isolated clusters and the amplitude and overall shift of the genus curve. SAM predictions of the topology color dependence are usually correct in sign but incorrect in magnitude. Our topology tests indicate that, in these models, voids should be emptier and more connected and the threshold for galaxy formation should be at lower densities.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Medina, L. A.; Pichardo, B.; Moreno, E.

    We present a dynamical study of the effect of the bar and spiral arms on the simulated orbits of open clusters in the Galaxy. Specifically, this work is devoted to the puzzling presence of high-altitude open clusters in the Galaxy. For this purpose we employ a very detailed observationally motivated potential model for the Milky Way and a careful set of initial conditions representing the newly born open clusters in the thin disk. We find that the spiral arms are able to raise an important percentage of open clusters (about one-sixth of the total employed in our simulations, depending onmore » the structural parameters of the arms) above the Galactic plane to heights beyond 200 pc, producing a bulge-shaped structure toward the center of the Galaxy. Contrary to what was expected, the spiral arms produce a much greater vertical effect on the clusters than the bar, both in quantity and height; this is due to the sharper concentration of the mass on the spiral arms, when compared to the bar. When a bar and spiral arms are included, spiral arms are still capable of raising an important percentage of the simulated open clusters through chaotic diffusion (as tested from classification analysis of the resultant high-z orbits), but the bar seems to restrain them, diminishing the elevation above the plane by a factor of about two.« less

  16. Galaxy clusters and cold dark matter - A low-density unbiased universe?

    NASA Technical Reports Server (NTRS)

    Bahcall, Neta A.; Cen, Renyue

    1992-01-01

    Large-scale simulations of a universe dominated by cold dark matter (CDM) are tested against two fundamental properties of clusters of galaxies: the cluster mass function and the cluster correlation function. We find that standard biased CDM models are inconsistent with these observations for any bias parameter b. A low-density, low-bias CDM-type model, with or without a cosmological constant, appears to be consistent with both the cluster mass function and the cluster correlations. The low-density model agrees well with the observed correlation function of the Abell, Automatic Plate Measuring Facility (APM), and Edinburgh-Durham cluster catalogs. The model is in excellent agreement with the observed dependence of the correlation strength on cluster mean separation, reproducing the measured universal dimensionless cluster correlation. The low-density model is also consistent with other large-scale structure observations, including the APM angular galaxy-correlations, and for lambda = 1-Omega with the COBE results of the microwave background radiation fluctuations.

  17. VizieR Online Data Catalog: WINGS: Deep optical phot. of 77 nearby clusters (Varela+, 2009)

    NASA Astrophysics Data System (ADS)

    Varela, J.; D'Onofrio, M.; Marmo, C.; Fasano, G.; Bettoni, D.; Cava, A.; Couch, J. W.; Dressler, A.; Kjaergaard, P.; Moles, M.; Pignatelli, E.; Poggianti, M. B.; Valentinuzzi, T.

    2009-05-01

    This is the second paper of a series devoted to the WIde Field Nearby Galaxy-cluster Survey (WINGS). WINGS is a long term project which is gathering wide-field, multi-band imaging and spectroscopy of galaxies in a complete sample of 77 X-ray selected, nearby clusters (0.04200deg). The main goal of this project is to establish a local reference for evolutionary studies of galaxies and galaxy clusters. This paper presents the optical (B,V) photometric catalogs of the WINGS sample and describes the procedures followed to construct them. We have paid special care to correctly treat the large extended galaxies (which includes the brightest cluster galaxies) and the reduction of the influence of the bright halos of very bright stars. We have constructed photometric catalogs based on wide-field images in B and V bands using SExtractor. Photometry has been performed on images in which large galaxies and halos of bright stars were removed after modeling them with elliptical isophotes. We publish deep optical photometric catalogs (90% complete at V21.7, which translates to ~ MV* + 6 at mean redshift), giving positions, geometrical parameters, and several total and aperture magnitudes for all the objects detected. For each field we have produced three catalogs containing galaxies, stars and objects of "unknown" classification (~16%). From simulations we found that the uncertainty of our photometry is quite dependent of the light profile of the objects with stars having the most robust photometry and de Vaucouleurs profiles showing higher uncertainties and also an additional bias of ~-0.2m. The star/galaxy classification of the bright objects (V<20) was checked visually making negligible the fraction of misclassified objects. For fainter objects, we found that simulations do not provide reliable estimates of the possible misclassification and therefore we have compared our data with that from deep counts of galaxies and star counts from models of our Galaxy. Both sets turned out to be consistent with our data within ~5% (in the ratio galaxies/total) up to V~24. Finally, we remark that the application of our special procedure to remove large halos improves the photometry of the large galaxies in our sample with respect to the use of blind automatic procedures and increases (~16%) the detection rate of objects projected onto them. (4 data files).

  18. Massive and refined: A sample of large galaxy clusters simulated at high resolution. I: Thermal gas and properties of shock waves

    NASA Astrophysics Data System (ADS)

    Vazza, F.; Brunetti, G.; Gheller, C.; Brunino, R.

    2010-11-01

    We present a sample of 20 massive galaxy clusters with total virial masses in the range of 6 × 10 14 M ⊙ ⩽ Mvir ⩽ 2 × 10 15 M ⊙, re-simulated with a customized version of the 1.5. ENZO code employing adaptive mesh refinement. This technique allowed us to obtain unprecedented high spatial resolution (≈25 kpc/h) up to the distance of ˜3 virial radii from the clusters center, and makes it possible to focus with the same level of detail on the physical properties of the innermost and of the outermost cluster regions, providing new clues on the role of shock waves and turbulent motions in the ICM, across a wide range of scales. In this paper, a first exploratory study of this data set is presented. We report on the thermal properties of galaxy clusters at z = 0. Integrated and morphological properties of gas density, gas temperature, gas entropy and baryon fraction distributions are discussed, and compared with existing outcomes both from the observational and from the numerical literature. Our cluster sample shows an overall good consistency with the results obtained adopting other numerical techniques (e.g. Smoothed Particles Hydrodynamics), yet it provides a more accurate representation of the accretion patterns far outside the cluster cores. We also reconstruct the properties of shock waves within the sample by means of a velocity-based approach, and we study Mach numbers and energy distributions for the various dynamical states in clusters, giving estimates for the injection of Cosmic Rays particles at shocks. The present sample is rather unique in the panorama of cosmological simulations of massive galaxy clusters, due to its dynamical range, statistics of objects and number of time outputs. For this reason, we deploy a public repository of the available data, accessible via web portal at http://data.cineca.it.

  19. Constraining the galaxy mass content in the core of A383 using velocity dispersion measurements for individual cluster members

    NASA Astrophysics Data System (ADS)

    Monna, A.; Seitz, S.; Zitrin, A.; Geller, M. J.; Grillo, C.; Mercurio, A.; Greisel, N.; Halkola, A.; Suyu, S. H.; Postman, M.; Rosati, P.; Balestra, I.; Biviano, A.; Coe, D.; Fabricant, D. G.; Hwang, H. S.; Koekemoer, A.

    2015-02-01

    We use velocity dispersion measurements of 21 individual cluster members in the core of Abell 383, obtained with Multiple Mirror Telescope Hectospec, to separate the galaxy and the smooth dark halo (DH) lensing contributions. While lensing usually constrains the overall, projected mass density, the innovative use of velocity dispersion measurements as a proxy for masses of individual cluster members breaks inherent degeneracies and allows us to (a) refine the constraints on single galaxy masses and on the galaxy mass-to-light scaling relation and, as a result, (b) refine the constraints on the DM-only map, a high-end goal of lens modelling. The knowledge of cluster member velocity dispersions improves the fit by 17 per cent in terms of the image reproduction χ2, or 20 per cent in terms of the rms. The constraints on the mass parameters improve by ˜10 per cent for the DH, while for the galaxy component, they are refined correspondingly by ˜50 per cent, including the galaxy halo truncation radius. For an L* galaxy with M^{*}B=-20.96, for example, we obtain best-fitting truncation radius r_tr^{*}=20.5^{+9.6}_{-6.7} kpc and velocity dispersion σ* = 324 ± 17 km s-1. Moreover, by performing the surface brightness reconstruction of the southern giant arc, we improve the constraints on rtr of two nearby cluster members, which have measured velocity dispersions, by more than ˜30 per cent. We estimate the stripped mass for these two galaxies, getting results that are consistent with numerical simulations. In the future, we plan to apply this analysis to other galaxy clusters for which velocity dispersions of member galaxies are available.

  20. Exploring the Web : The Active Galaxy Population in the ORELSE Survey

    NASA Astrophysics Data System (ADS)

    Lubin, Lori

    What are the physical processes that trigger starburst and nuclear activity in galaxies and drive galaxy evolution? Studies aimed at understanding this complex issue have largely focused on the cores of galaxy clusters or on field surveys, leaving underexplored intermediate-density regimes where rapid evolution occurs. As a result, we are conducting the ORELSE survey, a search for structure on scales > 10 Mpc around 18 clusters at 0.6 < z < 1.3. The survey covers 5 sq. deg., all targeted at high-density regions, making it comparable to field surveys such as DEEP2 and COSMOS. ORELSE is unmatched, with no other cluster survey having comparable breadth, depth, precision, and multi-band coverage. As such, ORELSE overcomes critical problems with previous high-redshift studies, including cosmic variance, restricted environmental ranges, sparse cluster samples, inconsistent star formation rate measures, and limited spectroscopy. From its initial spectral and photometric components, ORELSE already contains wellmeasured properties such as redshift, color, stellar mass, and star formation rate for a statistical sample of 7000 field+cluster galaxies. Because X-ray and mid-IR observations are crucial for a complete census of the active galaxy population, we propose to use the wealth of archival Chandra, Spitzer, and Herschel data in the ORELSE fields to map AGN and starburst galaxies over large scales. When complete, our sample will exceed by more than an order of magnitude the current samples of spectroscopically-confirmed active galaxies in high-redshift clusters and their environs. Combined with our numerical simulations plus galaxy formation models, we will provide a robust census of the active galaxy population in intermediate and high-density environments at z = 1, constrain the physical processes (e.g., merging, intracluster gas interactions, AGN feedback) responsible for triggering/quenching starburst and nuclear activity, and estimate their associated timescales.

  1. Reconstruction of the two-dimensional gravitational potential of galaxy clusters from X-ray and Sunyaev-Zel'dovich measurements

    NASA Astrophysics Data System (ADS)

    Tchernin, C.; Bartelmann, M.; Huber, K.; Dekel, A.; Hurier, G.; Majer, C. L.; Meyer, S.; Zinger, E.; Eckert, D.; Meneghetti, M.; Merten, J.

    2018-06-01

    Context. The mass of galaxy clusters is not a direct observable, nonetheless it is commonly used to probe cosmological models. Based on the combination of all main cluster observables, that is, the X-ray emission, the thermal Sunyaev-Zel'dovich (SZ) signal, the velocity dispersion of the cluster galaxies, and gravitational lensing, the gravitational potential of galaxy clusters can be jointly reconstructed. Aims: We derive the two main ingredients required for this joint reconstruction: the potentials individually reconstructed from the observables and their covariance matrices, which act as a weight in the joint reconstruction. We show here the method to derive these quantities. The result of the joint reconstruction applied to a real cluster will be discussed in a forthcoming paper. Methods: We apply the Richardson-Lucy deprojection algorithm to data on a two-dimensional (2D) grid. We first test the 2D deprojection algorithm on a β-profile. Assuming hydrostatic equilibrium, we further reconstruct the gravitational potential of a simulated galaxy cluster based on synthetic SZ and X-ray data. We then reconstruct the projected gravitational potential of the massive and dynamically active cluster Abell 2142, based on the X-ray observations collected with XMM-Newton and the SZ observations from the Planck satellite. Finally, we compute the covariance matrix of the projected reconstructed potential of the cluster Abell 2142 based on the X-ray measurements collected with XMM-Newton. Results: The gravitational potentials of the simulated cluster recovered from synthetic X-ray and SZ data are consistent, even though the potential reconstructed from X-rays shows larger deviations from the true potential. Regarding Abell 2142, the projected gravitational cluster potentials recovered from SZ and X-ray data reproduce well the projected potential inferred from gravitational-lensing observations. We also observe that the covariance matrix of the potential for Abell 2142 reconstructed from XMM-Newton data sensitively depends on the resolution of the deprojected grid and on the smoothing scale used in the deprojection. Conclusions: We show that the Richardson-Lucy deprojection method can be effectively applied on a grid and that the projected potential is well recovered from real and simulated data based on X-ray and SZ signal. The comparison between the reconstructed potentials from the different observables provides additional information on the validity of the assumptions as function of the projected radius.

  2. A massive core for a cluster of galaxies at a redshift of 4.3

    NASA Astrophysics Data System (ADS)

    Miller, T. B.; Chapman, S. C.; Aravena, M.; Ashby, M. L. N.; Hayward, C. C.; Vieira, J. D.; Weiß, A.; Babul, A.; Béthermin, M.; Bradford, C. M.; Brodwin, M.; Carlstrom, J. E.; Chen, Chian-Chou; Cunningham, D. J. M.; De Breuck, C.; Gonzalez, A. H.; Greve, T. R.; Harnett, J.; Hezaveh, Y.; Lacaille, K.; Litke, K. C.; Ma, J.; Malkan, M.; Marrone, D. P.; Morningstar, W.; Murphy, E. J.; Narayanan, D.; Pass, E.; Perry, R.; Phadke, K. A.; Rennehan, D.; Rotermund, K. M.; Simpson, J.; Spilker, J. S.; Sreevani, J.; Stark, A. A.; Strandet, M. L.; Strom, A. L.

    2018-04-01

    Massive galaxy clusters have been found that date to times as early as three billion years after the Big Bang, containing stars that formed at even earlier epochs1-3. The high-redshift progenitors of these galaxy clusters—termed `protoclusters'—can be identified in cosmological simulations that have the highest overdensities (greater-than-average densities) of dark matter4-6. Protoclusters are expected to contain extremely massive galaxies that can be observed as luminous starbursts7. However, recent detections of possible protoclusters hosting such starbursts8-11 do not support the kind of rapid cluster-core formation expected from simulations12: the structures observed contain only a handful of starbursting galaxies spread throughout a broad region, with poor evidence for eventual collapse into a protocluster. Here we report observations of carbon monoxide and ionized carbon emission from the source SPT2349-56. We find that this source consists of at least 14 gas-rich galaxies, all lying at redshifts of 4.31. We demonstrate that each of these galaxies is forming stars between 50 and 1,000 times more quickly than our own Milky Way, and that all are located within a projected region that is only around 130 kiloparsecs in diameter. This galaxy surface density is more than ten times the average blank-field value (integrated over all redshifts), and more than 1,000 times the average field volume density. The velocity dispersion (approximately 410 kilometres per second) of these galaxies and the enormous gas and star-formation densities suggest that this system represents the core of a cluster of galaxies that was already at an advanced stage of formation when the Universe was only 1.4 billion years old. A comparison with other known protoclusters at high redshifts shows that SPT2349-56 could be building one of the most massive structures in the Universe today.

  3. Gas stripping in galaxy clusters: a new SPH simulation approach

    NASA Astrophysics Data System (ADS)

    Jáchym, P.; Palouš, J.; Köppen, J.; Combes, F.

    2007-09-01

    Aims:The influence of a time-varying ram pressure on spiral galaxies in clusters is explored with a new simulation method based on the N-body SPH/tree code GADGET. Methods: We have adapted the code to describe the interaction of two different gas phases, the diffuse hot intracluster medium (ICM) and the denser and colder interstellar medium (ISM). Both the ICM and ISM components are introduced as SPH particles. As a galaxy arrives on a highly radial orbit from outskirts to cluster center, it crosses the ICM density peak and experiences a time-varying wind. Results: Depending on the duration and intensity of the ISM-ICM interaction, early and late type galaxies in galaxy clusters with either a large or small ICM distribution are found to show different stripping efficiencies, amounts of reaccretion of the extra-planar ISM, and final masses. We compare the numerical results with analytical approximations of different complexity and indicate the limits of the Gunn & Gott simple stripping formula. Conclusions: Our investigations emphasize the role of the galactic orbital history to the stripping amount. We discuss the contribution of ram pressure stripping to the origin of the ICM and its metallicity. We propose gas accumulations like tails, filaments, or ripples to be responsible for stripping in regions with low overall ICM occurrence. Appendix A is only available in electronic form at http://www.aanda.org

  4. A Global Model for Circumgalactic and Cluster-core Precipitation

    NASA Astrophysics Data System (ADS)

    Voit, G. Mark; Meece, Greg; Li, Yuan; O'Shea, Brian W.; Bryan, Greg L.; Donahue, Megan

    2017-08-01

    We provide an analytic framework for interpreting observations of multiphase circumgalactic gas that is heavily informed by recent numerical simulations of thermal instability and precipitation in cool-core galaxy clusters. We start by considering the local conditions required for the formation of multiphase gas via two different modes: (1) uplift of ambient gas by galactic outflows, and (2) condensation in a stratified stationary medium in which thermal balance is explicitly maintained. Analytic exploration of these two modes provides insights into the relationships between the local ratio of the cooling and freefall timescales (I.e., {t}{cool}/{t}{ff}), the large-scale gradient of specific entropy, and the development of precipitation and multiphase media in circumgalactic gas. We then use these analytic findings to interpret recent simulations of circumgalactic gas in which global thermal balance is maintained. We show that long-lasting configurations of gas with 5≲ \\min ({t}{cool}/{t}{ff})≲ 20 and radial entropy profiles similar to observations of cool cores in galaxy clusters are a natural outcome of precipitation-regulated feedback. We conclude with some observational predictions that follow from these models. This work focuses primarily on precipitation and AGN feedback in galaxy-cluster cores, because that is where the observations of multiphase gas around galaxies are most complete. However, many of the physical principles that govern condensation in those environments apply to circumgalactic gas around galaxies of all masses.

  5. The origin of ultra diffuse galaxies: stellar feedback and quenching

    NASA Astrophysics Data System (ADS)

    Chan, T. K.; Kereš, D.; Wetzel, A.; Hopkins, P. F.; Faucher-Giguère, C.-A.; El-Badry, K.; Garrison-Kimmel, S.; Boylan-Kolchin, M.

    2018-05-01

    We test if the cosmological zoom-in simulations of isolated galaxies from the FIRE project reproduce the properties of ultra diffuse galaxies (UDGs). We show that outflows that dynamically heat galactic stars, together with a passively aging stellar population after imposed quenching, naturally reproduce the observed population of red UDGs, without the need for high spin halos, or dynamical influence from their host cluster. We reproduce the range of surface brightness, radius and absolute magnitude of the observed red UDGs by quenching simulated galaxies at a range of different times. They represent a mostly uniform population of dark matter-dominated dwarf galaxies with M* ˜ 108 M⊙, low metallicity and a broad range of ages; the more massive the UDGs, the older they are. The most massive red UDG in our sample (M* ˜ 3 × 108M⊙) requires quenching at z ˜ 3 when its halo reached Mh ˜ 1011 M⊙. Our simulated UDGs form with normal stellar-to-halo ratios and match the central enclosed masses and the velocity dispersions of the observed UDGs. Enclosed masses remain largely fixed across a broad range of quenching times because the central regions of their dark matter halos complete their growth early. If our simulated dwarfs are not quenched, they evolve into bluer low-surface brightness galaxies with M/L similar to observed field dwarfs. While our simulation sample covers a limited range of formation histories and halo masses, we predict that UDG is a common, and perhaps even dominant, galaxy type around M* ˜ 108 M⊙, both in the field and in clusters.

  6. The origin of ultra diffuse galaxies: stellar feedback and quenching

    NASA Astrophysics Data System (ADS)

    Chan, T. K.; Kereš, D.; Wetzel, A.; Hopkins, P. F.; Faucher-Giguère, C.-A.; El-Badry, K.; Garrison-Kimmel, S.; Boylan-Kolchin, M.

    2018-07-01

    We test if the cosmological zoom-in simulations of isolated galaxies from the FIRE project reproduce the properties of ultra diffuse galaxies (UDGs). We show that outflows that dynamically heat galactic stars, together with a passively aging stellar population after imposed quenching, naturally reproduce the observed population of red UDGs, without the need for high spin haloes, or dynamical influence from their host cluster. We reproduce the range of surface brightness, radius, and absolute magnitude of the observed red UDGs by quenching simulated galaxies at a range of different times. They represent a mostly uniform population of dark matter-dominated dwarf galaxies with M* ˜ 108 M⊙, low metallicity, and a broad range of ages; the more massive the UDGs, the older they are. The most massive red UDG in our sample (M* ˜ 3 × 108 M⊙) requires quenching at z ˜ 3 when its halo reached Mh ˜ 1011 M⊙. Our simulated UDGs form with normal stellar-to-halo ratios and match the central enclosed masses and the velocity dispersions of the observed UDGs. Enclosed masses remain largely fixed across a broad range of quenching times because the central regions of their dark matter haloes complete their growth early. If our simulated dwarfs are not quenched, they evolve into bluer low surface brightness galaxies with M/L similar to observed field dwarfs. While our simulation sample covers a limited range of formation histories and halo masses, we predict that UDG is a common, and perhaps even dominant, galaxy type around M* ˜ 108 M⊙, both in the field and in clusters.

  7. Arcs from gravitational lensing

    NASA Technical Reports Server (NTRS)

    Grossman, Scott A.; Narayan, Ramesh

    1988-01-01

    The proposal made by Paczynski (1987) that the arcs of blue light found recently in two cluster cores are gravitationally lensed elongated images of background galaxies is investigated. It is shown that lenses that are circularly symmetric in projection produce pairs of arcs, in conflict with the observations. However, more realistic asymmetric lenses produce single arcs, which can become as elongated as the observed ones whenever the background galaxy is located on or close to a cusp caustic. Detailed computer simulations of lensing by clusters using a reasonable model of the mass distribution are presented. Elongated and curved lensed images longer than 10 arcsec occur in 12 percent of the simulated clusters. It is concluded that the lensing hypothesis must be taken seriously.

  8. Diversity in the stellar velocity dispersion profiles of a large sample of brightest cluster galaxies z ≤ 0.3

    NASA Astrophysics Data System (ADS)

    Loubser, S. I.; Hoekstra, H.; Babul, A.; O'Sullivan, E.

    2018-06-01

    We analyse spatially resolved deep optical spectroscopy of brightestcluster galaxies (BCGs) located in 32 massive clusters with redshifts of 0.05 ≤ z ≤ 0.30 to investigate their velocity dispersion profiles. We compare these measurements to those of other massive early-type galaxies, as well as central group galaxies, where relevant. This unique, large sample extends to the most extreme of massive galaxies, spanning MK between -25.7 and -27.8 mag, and host cluster halo mass M500 up to 1.7 × 1015 M⊙. To compare the kinematic properties between brightest group and cluster members, we analyse similar spatially resolved long-slit spectroscopy for 23 nearby brightest group galaxies (BGGs) from the Complete Local-Volume Groups Sample. We find a surprisingly large variety in velocity dispersion slopes for BCGs, with a significantly larger fraction of positive slopes, unique compared to other (non-central) early-type galaxies as well as the majority of the brightest members of the groups. We find that the velocity dispersion slopes of the BCGs and BGGs correlate with the luminosity of the galaxies, and we quantify this correlation. It is not clear whether the full diversity in velocity dispersion slopes that we see is reproduced in simulations.

  9. Topology in two dimensions. IV - CDM models with non-Gaussian initial conditions

    NASA Astrophysics Data System (ADS)

    Coles, Peter; Moscardini, Lauro; Plionis, Manolis; Lucchin, Francesco; Matarrese, Sabino; Messina, Antonio

    1993-02-01

    The results of N-body simulations with both Gaussian and non-Gaussian initial conditions are used here to generate projected galaxy catalogs with the same selection criteria as the Shane-Wirtanen counts of galaxies. The Euler-Poincare characteristic is used to compare the statistical nature of the projected galaxy clustering in these simulated data sets with that of the observed galaxy catalog. All the models produce a topology dominated by a meatball shift when normalized to the known small-scale clustering properties of galaxies. Models characterized by a positive skewness of the distribution of primordial density perturbations are inconsistent with the Lick data, suggesting problems in reconciling models based on cosmic textures with observations. Gaussian CDM models fit the distribution of cell counts only if they have a rather high normalization but possess too low a coherence length compared with the Lick counts. This suggests that a CDM model with extra large scale power would probably fit the available data.

  10. Hydrodynamic Simulation of the Cosmological X-Ray Background

    NASA Astrophysics Data System (ADS)

    Croft, Rupert A. C.; Di Matteo, Tiziana; Davé, Romeel; Hernquist, Lars; Katz, Neal; Fardal, Mark A.; Weinberg, David H.

    2001-08-01

    We use a hydrodynamic simulation of an inflationary cold dark matter model with a cosmological constant to predict properties of the extragalactic X-ray background (XRB). We focus on emission from the intergalactic medium (IGM), with particular attention to diffuse emission from warm-hot gas that lies in relatively smooth filamentary structures between galaxies and galaxy clusters. We also include X-rays from point sources associated with galaxies in the simulation, and we make maps of the angular distribution of the emission. Although much of the X-ray luminous gas has a filamentary structure, the filaments are not evident in the simulated maps because of projection effects. In the soft (0.5-2 keV) band, our calculated mean intensity of radiation from intergalactic and cluster gas is 2.3×10-12 ergs-1 cm-2 deg-2, 35% of the total softband emission. This intensity is compatible at the ~1 σ level with estimates of the unresolved soft background intensity from deep ROSAT and Chandra measurements. Only 4% of the hard (2-10 keV) emission is associated with intergalactic gas. Relative to active galactic nuclei flux, the IGM component of the XRB peaks at a lower redshift (median z~0.45) and spans a narrower redshift range, so its clustering makes an important contribution to the angular correlation function of the total emission. The clustering on the scales accessible to our simulation (0.1‧-10') is significant, with an amplitude roughly consistent with an extrapolation of recent ROSAT results to small scales. A cross-correlation analysis of the XRB against nearby galaxies taken from a simulated redshift survey also yields a strong signal from the IGM. Our conclusions about the soft background intensity differ from those of some recent papers that have argued that the expected emission from gas in galaxy, group, and cluster halos would exceed the observed background unless much of the gas is expelled by supernova feedback. We obtain reasonable compatibility with current observations in a simulation that incorporates cooling, star formation, and only modest feedback. A clear prediction of our model is that the unresolved portion of the soft XRB will remain mostly unresolved even as observations reach deeper point-source sensitivity.

  11. The Grism Lens-Amplified Survey from Space (GLASS). VIII. The Influence of the Cluster Properties on H α Emitter Galaxies at 0.3 < z < 0.7

    DOE PAGES

    Vulcani, Benedetta; Treu, Tommaso; Nipoti, Carlo; ...

    2017-03-10

    In exploiting the data of the Grism Lens-Amplified Survey from Space (GLASS), we characterize the spatial distribution of star formation in 76 highly active star-forming galaxies in 10 clusters atmore » $$0.3\\lt z\\lt 0.7$$. All of these galaxies are likely restricted to first infall. We contrast the properties of field and cluster galaxies, in a companion paper, whereas here we correlate the properties of Hα emitters to a number of tracers of the cluster environment to investigate its role in driving galaxy transformations. Hα emitters are found in the clusters out to 0.5 virial radii, the maximum radius covered by GLASS. The peak of the Hα emission is offset with respect to the peak of the UV continuum. We also decompose these offsets into a radial and a tangential component. The radial component points away from the cluster center in 60% of the cases, with 95% confidence. The decompositions agree with cosmological simulations; that is, the Hα emission offset correlates with galaxy velocity and ram-pressure stripping signatures. Furthermore, trends between Hα emitter properties and surface mass density distributions and X-ray emissions emerge only for unrelaxed clusters. The lack of strong correlations with the global environment does not allow us to identify a unique environmental effect originating from the cluster center. In contrast, correlations between Hα morphology and local number density emerge. We conclude that local effects, uncorrelated to the cluster-centric radius, play a more important role in shaping galaxy properties.« less

  12. The Grism Lens-Amplified Survey from Space (GLASS). VIII. The Influence of the Cluster Properties on H α Emitter Galaxies at 0.3 < z < 0.7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vulcani, Benedetta; Treu, Tommaso; Nipoti, Carlo

    In exploiting the data of the Grism Lens-Amplified Survey from Space (GLASS), we characterize the spatial distribution of star formation in 76 highly active star-forming galaxies in 10 clusters atmore » $$0.3\\lt z\\lt 0.7$$. All of these galaxies are likely restricted to first infall. We contrast the properties of field and cluster galaxies, in a companion paper, whereas here we correlate the properties of Hα emitters to a number of tracers of the cluster environment to investigate its role in driving galaxy transformations. Hα emitters are found in the clusters out to 0.5 virial radii, the maximum radius covered by GLASS. The peak of the Hα emission is offset with respect to the peak of the UV continuum. We also decompose these offsets into a radial and a tangential component. The radial component points away from the cluster center in 60% of the cases, with 95% confidence. The decompositions agree with cosmological simulations; that is, the Hα emission offset correlates with galaxy velocity and ram-pressure stripping signatures. Furthermore, trends between Hα emitter properties and surface mass density distributions and X-ray emissions emerge only for unrelaxed clusters. The lack of strong correlations with the global environment does not allow us to identify a unique environmental effect originating from the cluster center. In contrast, correlations between Hα morphology and local number density emerge. We conclude that local effects, uncorrelated to the cluster-centric radius, play a more important role in shaping galaxy properties.« less

  13. Dynamical Mass Measurements of Contaminated Galaxy Clusters Using Machine Learning

    NASA Astrophysics Data System (ADS)

    Ntampaka, M.; Trac, H.; Sutherland, D. J.; Fromenteau, S.; Póczos, B.; Schneider, J.

    2016-11-01

    We study dynamical mass measurements of galaxy clusters contaminated by interlopers and show that a modern machine learning algorithm can predict masses by better than a factor of two compared to a standard scaling relation approach. We create two mock catalogs from Multidark’s publicly available N-body MDPL1 simulation, one with perfect galaxy cluster membership information and the other where a simple cylindrical cut around the cluster center allows interlopers to contaminate the clusters. In the standard approach, we use a power-law scaling relation to infer cluster mass from galaxy line-of-sight (LOS) velocity dispersion. Assuming perfect membership knowledge, this unrealistic case produces a wide fractional mass error distribution, with a width of {{Δ }}ε ≈ 0.87. Interlopers introduce additional scatter, significantly widening the error distribution further ({{Δ }}ε ≈ 2.13). We employ the support distribution machine (SDM) class of algorithms to learn from distributions of data to predict single values. Applied to distributions of galaxy observables such as LOS velocity and projected distance from the cluster center, SDM yields better than a factor-of-two improvement ({{Δ }}ε ≈ 0.67) for the contaminated case. Remarkably, SDM applied to contaminated clusters is better able to recover masses than even the scaling relation approach applied to uncontaminated clusters. We show that the SDM method more accurately reproduces the cluster mass function, making it a valuable tool for employing cluster observations to evaluate cosmological models.

  14. Internal velocity and mass distributions in simulated clusters of galaxies for a variety of cosmogonic models

    NASA Technical Reports Server (NTRS)

    Cen, Renyue

    1994-01-01

    The mass and velocity distributions in the outskirts (0.5-3.0/h Mpc) of simulated clusters of galaxies are examined for a suite of cosmogonic models (two Omega(sub 0) = 1 and two Omega(sub 0) = 0.2 models) utilizing large-scale particle-mesh (PM) simulations. Through a series of model computations, designed to isolate the different effects, we find that both Omega(sub 0) and P(sub k) (lambda less than or = 16/h Mpc) are important to the mass distributions in clusters of galaxies. There is a correlation between power, P(sub k), and density profiles of massive clusters; more power tends to point to the direction of a stronger correlation between alpha and M(r less than 1.5/h Mpc); i.e., massive clusters being relatively extended and small mass clusters being relatively concentrated. A lower Omega(sub 0) universe tends to produce relatively concentrated massive clusters and relatively extended small mass clusters compared to their counterparts in a higher Omega(sub 0) model with the same power. Models with little (initial) small-scale power, such as the hot dark matter (HDM) model, produce more extended mass distributions than the isothermal distribution for most of the mass clusters. But the cold dark matter (CDM) models show mass distributions of most of the clusters more concentrated than the isothermal distribution. X-ray and gravitational lensing observations are beginning providing useful information on the mass distribution in and around clusters; some interesting constraints on Omega(sub 0) and/or the (initial) power of the density fluctuations on scales lambda less than or = 16/h Mpc (where linear extrapolation is invalid) can be obtained when larger observational data sets, such as the Sloan Digital Sky Survey, become available.

  15. Calibrating First-Order Strong Lensing Mass Estimates in Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Reed, Brendan; Remolian, Juan; Sharon, Keren; Li, Nan; SPT Clusters Cooperation

    2018-01-01

    We investigate methods to reduce the statistical and systematic errors inherent to using the Einstein Radius as a first-order mass estimate in strong lensing galaxy clusters. By finding an empirical universal calibration function, we aim to enable a first-order mass estimate of large cluster data sets in a fraction of the time and effort of full-scale strong lensing mass modeling. We use 74 simulated cluster data from the Argonne National Laboratory in a lens redshift slice of [0.159, 0.667] with various source redshifts in the range of [1.23, 2.69]. From the simulated density maps, we calculate the exact mass enclosed within the Einstein Radius. We find that the mass inferred from the Einstein Radius alone produces an error width of ~39% with respect to the true mass. We explore an array of polynomial and exponential correction functions with dependence on cluster redshift and projected radii of the lensed images, aiming to reduce the statistical and systematic uncertainty. We find that the error on the the mass inferred from the Einstein Radius can be reduced significantly by using a universal correction function. Our study has implications for current and future large galaxy cluster surveys aiming to measure cluster mass, and the mass-concentration relation.

  16. Galaxy two-point covariance matrix estimation for next generation surveys

    NASA Astrophysics Data System (ADS)

    Howlett, Cullan; Percival, Will J.

    2017-12-01

    We perform a detailed analysis of the covariance matrix of the spherically averaged galaxy power spectrum and present a new, practical method for estimating this within an arbitrary survey without the need for running mock galaxy simulations that cover the full survey volume. The method uses theoretical arguments to modify the covariance matrix measured from a set of small-volume cubic galaxy simulations, which are computationally cheap to produce compared to larger simulations and match the measured small-scale galaxy clustering more accurately than is possible using theoretical modelling. We include prescriptions to analytically account for the window function of the survey, which convolves the measured covariance matrix in a non-trivial way. We also present a new method to include the effects of super-sample covariance and modes outside the small simulation volume which requires no additional simulations and still allows us to scale the covariance matrix. As validation, we compare the covariance matrix estimated using our new method to that from a brute-force calculation using 500 simulations originally created for analysis of the Sloan Digital Sky Survey Main Galaxy Sample. We find excellent agreement on all scales of interest for large-scale structure analysis, including those dominated by the effects of the survey window, and on scales where theoretical models of the clustering normally break down, but the new method produces a covariance matrix with significantly better signal-to-noise ratio. Although only formally correct in real space, we also discuss how our method can be extended to incorporate the effects of redshift space distortions.

  17. The dependence of galaxy clustering on stellar mass, star-formation rate and redshift at z = 0.8-2.2, with HiZELS

    NASA Astrophysics Data System (ADS)

    Cochrane, R. K.; Best, P. N.; Sobral, D.; Smail, I.; Geach, J. E.; Stott, J. P.; Wake, D. A.

    2018-04-01

    The deep, near-infrared narrow-band survey HiZELS has yielded robust samples of H α-emitting star-forming galaxies within narrow redshift slices at z = 0.8, 1.47 and 2.23. In this paper, we distinguish the stellar mass and star-formation rate (SFR) dependence of the clustering of these galaxies. At high stellar masses (M*/M⊙ ≳ 2 × 1010), where HiZELS selects galaxies close to the so-called star-forming main sequence, the clustering strength is observed to increase strongly with stellar mass (in line with the results of previous studies of mass-selected galaxy samples) and also with SFR. These two dependencies are shown to hold independently. At lower stellar masses, however, where HiZELS probes high specific SFR galaxies, there is little or no dependence of the clustering strength on stellar mass, but the dependence on SFR remains: high-SFR low-mass galaxies are found in more massive dark matter haloes than their lower SFR counterparts. We argue that this is due to environmentally driven star formation in these systems. We apply the same selection criteria to the EAGLE cosmological hydrodynamical simulations. We find that, in EAGLE, the high-SFR low-mass galaxies are central galaxies in more massive dark matter haloes, in which the high SFRs are driven by a (halo-driven) increased gas content.

  18. Galaxy Distribution in Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Okamoto, T.; Yachi, S.; Habe, A.

    beta-discrepancy have been pointed out from comparison of optical and X-ray observations of clusters of galaxies. To examine physical reason of beta-discrepancy, we use N-body simulation which contains two components, dark particles and galaxies which are identified by using adaptive-linking friend of friend technique at a certain red-shift. The gas component is not included here, since the gas distribution follows the dark matter distribution in dark halos (Jubio F. Navarro, Carlos S. Frenk and Simon D. M. White 1995). We find that the galaxy distribution follows the dark matter distribution, therefore beta-discrepancy does not exist, and this result is consistent with the interpretation of the beta-discrepancy by Bahcall and Lubin (1994), which was based on recent observation.

  19. First results from the IllustrisTNG simulations: the stellar mass content of groups and clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Pillepich, Annalisa; Nelson, Dylan; Hernquist, Lars; Springel, Volker; Pakmor, Rüdiger; Torrey, Paul; Weinberger, Rainer; Genel, Shy; Naiman, Jill P.; Marinacci, Federico; Vogelsberger, Mark

    2018-03-01

    The IllustrisTNG project is a new suite of cosmological magnetohydrodynamical simulations of galaxy formation performed with the AREPO code and updated models for feedback physics. Here, we introduce the first two simulations of the series, TNG100 and TNG300, and quantify the stellar mass content of about 4000 massive galaxy groups and clusters (1013 ≤ M200c/M⊙ ≤ 1015) at recent times (z ≤ 1). The richest clusters have half of their total stellar mass bound to satellite galaxies, with the other half being associated with the central galaxy and the diffuse intracluster light. Haloes more massive than about 5 × 1014 M⊙ have more diffuse stellar mass outside 100 kpc than within 100 kpc, with power-law slopes of the radial mass density distribution as shallow as the dark matter's ( - 3.5 ≲ α3D ≲ -3). Total halo mass is a very good predictor of stellar mass, and vice versa: at z = 0, the 3D stellar mass measured within 30 kpc scales as ∝(M500c)0.49 with a ˜0.12 dex scatter. This is possibly too steep in comparison to the available observational constraints, even though the abundance of The Next Generation less-massive galaxies ( ≲ 1011 M⊙ in stars) is in good agreement with the measured galaxy stellar mass functions at recent epochs. The 3D sizes of massive galaxies fall too on a tight (˜0.16 dex scatter) power-law relation with halo mass, with r^stars_0.5 ∝ (M_200c)^{0.53}. Even more fundamentally, halo mass alone is a good predictor for the whole stellar mass profiles beyond the inner few kiloparsecs, and we show how on average these can be precisely recovered given a single-mass measurement of the galaxy or its halo.

  20. The Evaporation and Survival of Cluster Galaxy Coronae. I. The Effectiveness of Isotropic Thermal Conduction Including Saturation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vijayaraghavan, Rukmani; Sarazin, Craig, E-mail: rukmani@virginia.edu

    We simulate the evolution of cluster galaxy hot interstellar medium (ISM) gas that is a result of the effects of ram pressure and thermal conduction in the intracluster medium (ICM). At the density and temperature of the ICM, the mean free paths of ICM electrons are comparable to the sizes of galaxies, therefore electrons can efficiently transport heat that is due to thermal conduction from the hot ICM to the cooler ISM. Galaxies consisting of dark matter halos and hot gas coronae are embedded in an ICM-like “wind tunnel” in our simulations. In this paper, we assume that thermal conductionmore » is isotropic and include the effects of saturation. We find that as heat is transferred from the ICM to the ISM, the cooler denser ISM expands and evaporates. This process is significantly faster than gas loss due to ram pressure stripping; for our standard model galaxy, the evaporation time is 160 Myr, while the ram pressure stripping timescale is 2.5 Gyr. Thermal conduction also suppresses the formation of shear instabilities, and there are no stripped ISM tails since the ISM evaporates before tails can form. Observations of long-lived X-ray emitting coronae and ram pressure stripped X-ray tails in galaxies in group and cluster environments therefore require that thermal conduction is suppressed or offset by some additional physical process. The most likely process is anisotropic thermal conduction that is due to magnetic fields in the ISM and ICM, which we simulate and study in the next paper in this series.« less

  1. The Evaporation and Survival of Cluster Galaxy Coronae. I. The Effectiveness of Isotropic Thermal Conduction Including Saturation

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, Rukmani; Sarazin, Craig

    2017-05-01

    We simulate the evolution of cluster galaxy hot interstellar medium (ISM) gas that is a result of the effects of ram pressure and thermal conduction in the intracluster medium (ICM). At the density and temperature of the ICM, the mean free paths of ICM electrons are comparable to the sizes of galaxies, therefore electrons can efficiently transport heat that is due to thermal conduction from the hot ICM to the cooler ISM. Galaxies consisting of dark matter halos and hot gas coronae are embedded in an ICM-like “wind tunnel” in our simulations. In this paper, we assume that thermal conduction is isotropic and include the effects of saturation. We find that as heat is transferred from the ICM to the ISM, the cooler denser ISM expands and evaporates. This process is significantly faster than gas loss due to ram pressure stripping; for our standard model galaxy, the evaporation time is 160 Myr, while the ram pressure stripping timescale is 2.5 Gyr. Thermal conduction also suppresses the formation of shear instabilities, and there are no stripped ISM tails since the ISM evaporates before tails can form. Observations of long-lived X-ray emitting coronae and ram pressure stripped X-ray tails in galaxies in group and cluster environments therefore require that thermal conduction is suppressed or offset by some additional physical process. The most likely process is anisotropic thermal conduction that is due to magnetic fields in the ISM and ICM, which we simulate and study in the next paper in this series.

  2. Cluster galaxy dynamics and the effects of large-scale environment

    NASA Astrophysics Data System (ADS)

    White, Martin; Cohn, J. D.; Smit, Renske

    2010-11-01

    Advances in observational capabilities have ushered in a new era of multi-wavelength, multi-physics probes of galaxy clusters and ambitious surveys are compiling large samples of cluster candidates selected in different ways. We use a high-resolution N-body simulation to study how the influence of large-scale structure in and around clusters causes correlated signals in different physical probes and discuss some implications this has for multi-physics probes of clusters (e.g. richness, lensing, Compton distortion and velocity dispersion). We pay particular attention to velocity dispersions, matching galaxies to subhaloes which are explicitly tracked in the simulation. We find that not only do haloes persist as subhaloes when they fall into a larger host, but groups of subhaloes retain their identity for long periods within larger host haloes. The highly anisotropic nature of infall into massive clusters, and their triaxiality, translates into an anisotropic velocity ellipsoid: line-of-sight galaxy velocity dispersions for any individual halo show large variance depending on viewing angle. The orientation of the velocity ellipsoid is correlated with the large-scale structure, and thus velocity outliers correlate with outliers caused by projection in other probes. We quantify this orientation uncertainty and give illustrative examples. Such a large variance suggests that velocity dispersion estimators will work better in an ensemble sense than for any individual cluster, which may inform strategies for obtaining redshifts of cluster members. We similarly find that the ability of substructure indicators to find kinematic substructures is highly viewing angle dependent. While groups of subhaloes which merge with a larger host halo can retain their identity for many Gyr, they are only sporadically picked up by substructure indicators. We discuss the effects of correlated scatter on scaling relations estimated through stacking, both analytically and in the simulations, showing that the strong correlation of measures with mass and the large scatter in mass at fixed observable mitigate line-of-sight projections.

  3. Dust Evolution in Galaxy Cluster Simulations

    NASA Astrophysics Data System (ADS)

    Gjergo, Eda; Granato, Gian Luigi; Murante, Giuseppe; Ragone-Figueroa, Cinthia; Tornatore, Luca; Borgani, Stefano

    2018-06-01

    We implement a state-of-the-art treatment of the processes affecting the production and Interstellar Medium (ISM) evolution of carbonaceous and silicate dust grains within SPH simulations. We trace the dust grain size distribution by means of a two-size approximation. We test our method on zoom-in simulations of four massive (M200 ≥ 3 × 1014M⊙) galaxy clusters. We predict that during the early stages of assembly of the cluster at z ≳ 3, where the star formation activity is at its maximum in our simulations, the proto-cluster regions are rich in dusty gas. Compared to the case in which only dust production in stellar ejecta is active, if we include processes occurring in the cold ISM,the dust content is enhanced by a factor 2 - 3. However, the dust properties in this stage turn out to be significantly different from those observationally derived for the average Milky Way dust, and commonly adopted in calculations of dust reprocessing. We show that these differences may have a strong impact on the predicted spectral energy distributions. At low redshift in star forming regions our model reproduces reasonably well the trend of dust abundances over metallicity as observed in local galaxies. However we under-produce by a factor of 2 to 3 the total dust content of clusters estimated observationally at low redshift, z ≲ 0.5 using IRAS, Planck and Herschel satellites data. This discrepancy does not subsist by assuming a lower sputtering efficiency, which erodes dust grains in the hot Intracluster Medium (ICM).

  4. Sunyaev-Zel'dovich Effect and X-ray Scaling Relations from Weak-Lensing Mass Calibration of 32 SPT Selected Galaxy Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dietrich, J.P.; et al.

    Uncertainty in the mass-observable scaling relations is currently the limiting factor for galaxy cluster based cosmology. Weak gravitational lensing can provide a direct mass calibration and reduce the mass uncertainty. We present new ground-based weak lensing observations of 19 South Pole Telescope (SPT) selected clusters and combine them with previously reported space-based observations of 13 galaxy clusters to constrain the cluster mass scaling relations with the Sunyaev-Zel'dovich effect (SZE), the cluster gas massmore » $$M_\\mathrm{gas}$$, and $$Y_\\mathrm{X}$$, the product of $$M_\\mathrm{gas}$$ and X-ray temperature. We extend a previously used framework for the analysis of scaling relations and cosmological constraints obtained from SPT-selected clusters to make use of weak lensing information. We introduce a new approach to estimate the effective average redshift distribution of background galaxies and quantify a number of systematic errors affecting the weak lensing modelling. These errors include a calibration of the bias incurred by fitting a Navarro-Frenk-White profile to the reduced shear using $N$-body simulations. We blind the analysis to avoid confirmation bias. We are able to limit the systematic uncertainties to 6.4% in cluster mass (68% confidence). Our constraints on the mass-X-ray observable scaling relations parameters are consistent with those obtained by earlier studies, and our constraints for the mass-SZE scaling relation are consistent with the the simulation-based prior used in the most recent SPT-SZ cosmology analysis. We can now replace the external mass calibration priors used in previous SPT-SZ cosmology studies with a direct, internal calibration obtained on the same clusters.« less

  5. Jellyfish: Observational Properties of Extreme Ram-Pressure Stripping Events in Massive Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Conor, McPartland; Ebeling, Harald; Roediger, Elke

    2015-08-01

    We investigate the physical origin and observational signatures of extreme ram-pressure stripping (RPS) in 63 massive galaxy clusters at z=0.3-0.7, based on data in the F606W passband obtained with the Advanced Camera for Surveys aboard the Hubble Space Telescope. Using a training set of a dozen ``jellyfish" galaxies identified earlier in the same imaging data, we define quantitative morphological criteria to select candidate galaxies which are similar to known cases of RPS. Considering a sample of 16 ``jellyfish" galaxies (10 of which we present for the first time), we visually derive estimates of the projected direction of motion based on dynamical features such as apparent compression shocks and debris trails. Our findings suggest that the observed events occur primarily at large distances from the cluster core and involve infall trajectories featuring high impact parameters. Simple models of cluster growth show that such trajectories are consistent with two scenarios: 1) galaxy infall along filaments; and 2) infall at high velocities (≥1000 km/s) characteristic of cluster mergers. The observed distribution of events is best described by timescales of ˜few Myr in agreement with recent numerical simulations of RPS. The broader areal coverage of the Hubble Frontier Fields should provide an even larger sample of RPS events to determine the relative contributions of infall and cluster mergers. Prompted by the discovery of several jellyfish galaxies whose brightness in the F606W passband rivals or exceeds that of the respective brightest cluster galaxy, we attempt to constrain the luminosity function of galaxies undergoing RPS. The observed significant excess at the bright end compared to the luminosity functions of blue cluster members strongly suggests enhanced star formation, thus challenging theoretical and numerical studies according to which RPS merely displaces existing star-forming regions. In-depth studies of individual objects will help test our conclusions and allow a quantitative comparison with predictions of theoretical and numerical models of ram-pressure stripping.

  6. Multiwavelength mock observations of the WHIM in a simulated galaxy cluster

    NASA Astrophysics Data System (ADS)

    Planelles, Susana; Mimica, Petar; Quilis, Vicent; Cuesta-Martínez, Carlos

    2018-06-01

    About half of the expected total baryon budget in the local Universe is `missing'. Hydrodynamical simulations suggest that most of the missing baryons are located in a mildly overdense, warm-hot intergalactic medium (WHIM), which is difficult to be detected at most wavelengths. In this paper, we explore multiwavelength synthetic observations of a massive galaxy cluster developed in a full Eulerian-adaptive mesh refinement cosmological simulation. A novel numerical procedure is applied on the outputs of the simulation, which are post-processed with a full-radiative transfer code that can compute the change of the intensity at any frequency along the null geodesic of photons. We compare the emission from the whole intergalactic medium and from the WHIM component (defined as the gas with a temperature in the range 105-107 K) at three observational bands associated with thermal X-rays, thermal and kinematic Sunyaev-Zel'dovich effect, and radio emission. The synthetic maps produced by this procedure could be directly compared with existing observational maps and could be used as a guide for future observations with forthcoming instruments. The analysis of the different emissions associated with a high-resolution galaxy cluster is in broad agreement with previous simulated and observational estimates of both gas components.

  7. Spectroscopic study of formation, evolution and interaction of M31 and M33 with star clusters

    NASA Astrophysics Data System (ADS)

    Fan, Zhou; Yang, Yanbin

    2016-02-01

    The recent studies show that the formation and evolution process of the nearby galaxies are still unclear. By using the Canada France Hawaii Telescope (CFHT) 3.6m telescope, the PanDAS shows complicated substructures (dwarf satellite galaxies, halo globular clusters, extended clusters, star streams, etc.) in the halo of M31 to ~150 kpc from the center of galaxy and M31-M33 interaction has been studied. In our work, we would like to investigate formation, evolution and interaction of M31 and M33, which are the nearest two spiral galaxies in Local Group. The star cluster systems of the two galaxies are good tracers to study the dynamics of the substructures and the interaction. Since 2010, the Xinglong 2.16m, Lijiang 2.4m and MMT 6.5m telescopes have been used for our spectroscopic observations. The radial velocities and Lick absorption-line indices can thus be measured with the spectroscopy and then ages, metallicities and masses of the star clusters can be fitted with the simple stellar population models. These parameters could be used as the input physical parameters for numerical simulations of M31-M33 interaction.

  8. The MUSIC of Galaxy Clusters - III. Properties, evolution and Y-M scaling relation of protoclusters of galaxies

    NASA Astrophysics Data System (ADS)

    Sembolini, Federico; De Petris, Marco; Yepes, Gustavo; Foschi, Emma; Lamagna, Luca; Gottlöber, Stefan

    2014-06-01

    In this work, we study the properties of protoclusters of galaxies by employing the MultiDark SImulations of galaxy Clusters (MUSIC) set of hydrodynamical simulations, featuring a sample of 282 resimulated clusters with available merger trees up to z = 4. We study the characteristics and redshift evolution of the mass and the spatial distribution for all the protoclusters, which we define as the most massive progenitors of the clusters identified at z = 0. We extend the study of the baryon content to redshifts larger than 1 also in terms of gas and stars budgets: no remarkable variations with redshift are discovered. Furthermore, motivated by the proven potential of Sunyaev-Zel'dovich surveys to blindly search for faint distant objects, we compute the scaling relation between total object mass and integrated Compton y-parameter. We find that the slope of this scaling law is steeper than what expected for a self-similarity assumption among these objects, and it increases with redshift mainly when radiative processes are included. We use three different criteria to account for the dynamical state of the protoclusters, and find no significant dependence of the scaling parameters on the level of relaxation. We exclude the dynamical state as the cause of the observed deviations from self-similarity in protoclusters.

  9. The special growth history of central galaxies in groups and clusters

    NASA Astrophysics Data System (ADS)

    Nipoti, Carlo

    2017-05-01

    Central galaxies (CGs) in galaxy groups and clusters are believed to form and assemble a good portion of their stellar mass at early times, but they also accrete significant mass at late times via galactic cannibalism, that is merging with companion group or cluster galaxies that experience dynamical friction against the common host dark-matter halo. The effect of these mergers on the structure and kinematics of the CG depends not only on the properties of the accreted satellites, but also on the orbital parameters of the encounters. Here we present the results of numerical simulations aimed at estimating the distribution of merging orbital parameters of satellites cannibalized by the CGs in groups and clusters. As a consequence of dynamical friction, the satellites' orbits evolve losing energy and angular momentum, with no clear trend towards orbit circularization. The distributions of the orbital parameters of the central-satellite encounters are markedly different from the distributions found for halo-halo mergers in cosmological simulations. The orbits of satellites accreted by the CGs are on average less bound and less eccentric than those of cosmological halo-halo encounters. We provide fits to the distributions of the central-satellite merging orbital parameters that can be used to study the merger-driven evolution of the scaling relations of CGs.

  10. The diverse density profiles of galaxy clusters with self-interacting dark matter plus baryons

    NASA Astrophysics Data System (ADS)

    Robertson, Andrew; Massey, Richard; Eke, Vincent; Tulin, Sean; Yu, Hai-Bo; Bahé, Yannick; Barnes, David J.; Bower, Richard G.; Crain, Robert A.; Dalla Vecchia, Claudio; Kay, Scott T.; Schaller, Matthieu; Schaye, Joop

    2018-05-01

    We present the first simulated galaxy clusters (M200 > 1014 M⊙) with both self-interacting dark matter (SIDM) and baryonic physics. They exhibit a greater diversity in both dark matter and stellar density profiles than their counterparts in simulations with collisionless dark matter (CDM), which is generated by the complex interplay between dark matter self-interactions and baryonic physics. Despite variations in formation history, we demonstrate that analytical Jeans modelling predicts the SIDM density profiles remarkably well, and the diverse properties of the haloes can be understood in terms of their different final baryon distributions.

  11. The Splashback Feature around DES Galaxy Clusters: Galaxy Density and Weak Lensing Profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Chihway; et al.

    Splashback refers to the process of matter that is accreting onto a dark matter halo reaching its first orbital apocenter and turning around in its orbit. The cluster-centric radius at which this process occurs, r_sp, defines a halo boundary that is connected to the dynamics of the cluster, in contrast with other common halo boundary definitions such as R_200. A rapid decline in the matter density profile of the halo is expected near r_sp. We measure the galaxy number density and weak lensing mass profiles around RedMapper galaxy clusters in the first year Dark Energy Survey (DES) data. For amore » cluster sample with mean mass ~2.5 x 10^14 solar masses, we find strong evidence of a splashback-like steepening of the galaxy density profile and measure r_sp=1.16 +/- 0.08 Mpc/h, consistent with earlier SDSS measurements of More et al. (2016) and Baxter et al. (2017). Moreover, our weak lensing measurement demonstrates for the first time the existence of a splashback-like steepening of the matter profile of galaxy clusters. We measure r_sp=1.28 +/- 0.18 Mpc/h from the weak lensing data, in good agreement with our galaxy density measurements. Applying our analysis to different cluster and galaxy samples, we find that consistent with LambdaCDM simulations, r_sp scales with R_200m and does not evolve with redshift over the redshift range of 0.3--0.6. We also find that potential systematic effects associated with the RedMapper algorithm may impact the location of r_sp, in particular the choice of scale used to estimate cluster richness. We discuss progress needed to understand the systematic uncertainties and fully exploit forthcoming data from DES and future surveys, emphasizing the importance of more realistic mock catalogs and independent cluster samples.« less

  12. MULTIDARK-GALAXIES: data release and first results

    NASA Astrophysics Data System (ADS)

    Knebe, Alexander; Stoppacher, Doris; Prada, Francisco; Behrens, Christoph; Benson, Andrew; Cora, Sofia A.; Croton, Darren J.; Padilla, Nelson D.; Ruiz, Andrés N.; Sinha, Manodeep; Stevens, Adam R. H.; Vega-Martínez, Cristian A.; Behroozi, Peter; Gonzalez-Perez, Violeta; Gottlöber, Stefan; Klypin, Anatoly A.; Yepes, Gustavo; Enke, Harry; Libeskind, Noam I.; Riebe, Kristin; Steinmetz, Matthias

    2018-03-01

    We present the public release of the MULTIDARK-GALAXIES: three distinct galaxy catalogues derived from one of the Planck cosmology MULTIDARK simulations (i.e. MDPL2, with a volume of (1 h-1 Gpc)3 and mass resolution of 1.5 × 109 h-1 M⊙) by applying the semi-analytic models GALACTICUS, SAG, and SAGE to it. We compare the three models and their conformity with observational data for a selection of fundamental properties of galaxies like stellar mass function, star formation rate, cold gas fractions, and metallicities - noting that they sometimes perform differently reflecting model designs and calibrations. We have further selected galaxy subsamples of the catalogues by number densities in stellar mass, cold gas mass, and star formation rate in order to study the clustering statistics of galaxies. We show that despite different treatment of orphan galaxies, i.e. galaxies that lost their dark-matter host halo due to the finite-mass resolution of the N-body simulation or tidal stripping, the clustering signal is comparable, and reproduces the observations in all three models - in particular when selecting samples based upon stellar mass. Our catalogues provide a powerful tool to study galaxy formation within a volume comparable to those probed by ongoing and future photometric and redshift surveys. All model data consisting of a range of galaxy properties - including broad-band SDSS magnitudes - are publicly available.

  13. A survey for dwarf galaxy remnants around 14 globular clusters in the outer halo

    NASA Astrophysics Data System (ADS)

    Sollima, A.; Martínez Delgado, D.; Muñoz, R. R.; Carballo-Bello, J. A.; Valls-Gabaud, D.; Grebel, E. K.; Santana, F. A.; Côté, P.; Djorgovski, S. G.

    2018-06-01

    We report the results of a systematic photometric survey of the peripheral regions of a sample of 14 globular clusters in the outer halo of the Milky Way at distances dGC > 25 kpc from the Galactic Centre. The survey is aimed at searching for the remnants of the host satellite galaxies where these clusters could originally have been formed before being accreted on to the Galactic halo. The limiting surface brightness varies within our sample, but reaches μV, lim = 30-32 mag arcsec-2. For only two globular clusters (NGC 7492 and Whiting 1; already suggested to be associated with the Sagittarius galaxy), we detect extended stellar populations that cannot be associated with either the clusters themselves or with the surrounding Galactic field population. We show that the lack of substructures around globular clusters at these Galactocentric distances is still compatible with the predictions of cosmological simulations whereby in the outer halo the Galactic globular cluster system is built up through hierarchical accretion at early epochs.

  14. A possible formation scenario for dwarf spheroidal galaxies - III. Adding star formation histories to the fiducial model

    NASA Astrophysics Data System (ADS)

    Alarcón Jara, A. G.; Fellhauer, M.; Matus Carrillo, D. R.; Assmann, P.; Urrutia Zapata, F.; Hazeldine, J.; Aravena, C. A.

    2018-02-01

    Dwarf spheroidal galaxies are regarded as the basic building blocks in the formation of larger galaxies and are the most dark matter dominated systems in the Universe, known so far. There are several models that attempt to explain their formation and evolution, but they have problems modelling the formation of isolated dwarf spheroidal galaxies. Here, we will explain a possible formation scenario in which star clusters form inside the dark matter halo of a dwarf spheroidal galaxy. These star clusters suffer from low star formation efficiency and dissolve while orbiting inside the dark matter halo. Thereby, they build the faint luminous components that we observe in dwarf spheroidal galaxies. In this paper, we study this model by adding different star formation histories to the simulations and compare the results with our previous work and observational data to show that we can explain the formation of dwarf spheroidal galaxies.

  15. The galaxy clustering crisis in abundance matching

    NASA Astrophysics Data System (ADS)

    Campbell, Duncan; van den Bosch, Frank C.; Padmanabhan, Nikhil; Mao, Yao-Yuan; Zentner, Andrew R.; Lange, Johannes U.; Jiang, Fangzhou; Villarreal, Antonio

    2018-06-01

    Galaxy clustering on small scales is significantly underpredicted by sub-halo abundance matching (SHAM) models that populate (sub-)haloes with galaxies based on peak halo mass, Mpeak. SHAM models based on the peak maximum circular velocity, Vpeak, have had much better success. The primary reason for Mpeak-based models fail is the relatively low abundance of satellite galaxies produced in these models compared to those based on Vpeak. Despite success in predicting clustering, a simple Vpeak-based SHAM model results in predictions for galaxy growth that are at odds with observations. We evaluate three possible remedies that could `save' mass-based SHAM: (1) SHAM models require a significant population of `orphan' galaxies as a result of artificial disruption/merging of sub-haloes in modern high-resolution dark matter simulations; (2) satellites must grow significantly after their accretion; and (3) stellar mass is significantly affected by halo assembly history. No solution is entirely satisfactory. However, regardless of the particulars, we show that popular SHAM models based on Mpeak cannot be complete physical models as presented. Either Vpeak truly is a better predictor of stellar mass at z ˜ 0 and it remains to be seen how the correlation between stellar mass and Vpeak comes about, or SHAM models are missing vital component(s) that significantly affect galaxy clustering.

  16. How Supermassive Black Hole Feedback Might Work

    NASA Astrophysics Data System (ADS)

    Donahue, Megan

    2017-01-01

    How black holes regulate their own growth and the growth of their host galaxy is an unsolved problem in galaxy evolution. The problem is particularly acute in the centers of clusters of galaxies, where the largest and most massive galaxies in the universe are found. That is, coincidentally, also where the interaction between the black hole and the surrounding gas is the easiest to study because the gas is sufficiently hot and dense to emit X-rays. The massive central galaxies of clusters of galaxies (BCGs) exhibit striking patterns in their relationships between star formation, radio AGN activity, and the thermodynamic state of the hot, X-ray emitting intracluster gas (ICM) surrounding the galaxies. The AGN jets excavate giant, kpc-scale cavities in the hot gas, in principle, supplying enough heat to the ICM to replace energy lost to radiative cooling. Simulations suggest (by elimination) that AGN feedback must be required to explain the luminosity and colors of these galaxies, but cosmological simulations still struggle with modeling how AGN feedback works in detail. In clusters of galaxies with active AGN and star-forming BCGs, the AGN somehow regulates the gaseous atmosphere to be marginally critical, with a ratio of the cooling time to the free fall time of ~ 5-20. This behavior is also seen in elliptical galaxies, where the feedback is mostly coming from stars. I will discuss the observations that motivated this model. The precipitation model in BCGs is a class of models known as "preventative" feedback, regulated by jets in BCGs. Further, the complex behaviour seen in recent idealized simulations seem to follow emergent patterns predicted by this model, while reproducing the scatter and the time scales inferred from the observations. The link between the thermal instabilities and the depth of the gravitational potential may explain scaling laws such as the black hole mass-velocity dispersion relation, the galaxy mass-metallicity relation and the baryonic Tully-Fisher relation. I will discuss how future X-ray and UV telescopes could be used to test and inform this class of models.

  17. Cosmological constraints from Chandra observations of galaxy clusters.

    PubMed

    Allen, Steven W

    2002-09-15

    Chandra observations of rich, relaxed galaxy clusters allow the properties of the X-ray gas and the total gravitating mass to be determined precisely. Here, we present results for a sample of the most X-ray luminous, dynamically relaxed clusters known. We show that the Chandra data and independent gravitational lensing studies provide consistent answers on the mass distributions in the clusters. The mass profiles exhibit a form in good agreement with the predictions from numerical simulations. Combining Chandra results on the X-ray gas mass fractions in the clusters with independent measurements of the Hubble constant and the mean baryonic matter density in the Universe, we obtain a tight constraint on the mean total matter density of the Universe, Omega(m), and an interesting constraint on the cosmological constant, Omega(Lambda). We also describe the 'virial relations' linking the masses, X-ray temperatures and luminosities of galaxy clusters. These relations provide a key step in linking the observed number density and spatial distribution of clusters to the predictions from cosmological models. The Chandra data confirm the presence of a systematic offset of ca. 40% between the normalization of the observed mass-temperature relation and the predictions from standard simulations. This finding leads to a significant revision of the best-fit value of sigma(8) inferred from the observed temperature and luminosity functions of clusters.

  18. Measuring the hydrostatic mass bias in galaxy clusters by combining Sunyaev-Zel'dovich and CMB lensing data

    NASA Astrophysics Data System (ADS)

    Hurier, G.; Angulo, R. E.

    2018-02-01

    The cosmological parameters preferred by the cosmic microwave background (CMB) primary anisotropies predict many more galaxy clusters than those that have been detected via the thermal Sunyaev-Zeldovich (tSZ) effect. This discrepancy has attracted considerable attention since it might be evidence of physics beyond the simplest ΛCDM model. However, an accurate and robust calibration of the mass-observable relation for clusters is necessary for the comparison, which has been proven difficult to obtain so far. Here, we present new constraints on the mass-pressure relation by combining tSZ and CMB lensing measurements of optically selected clusters. Consequently, our galaxy cluster sample is independent of the data employed to derive cosmological constrains. We estimate an average hydrostatic mass bias of b = 0.26 ± 0.07, with no significant mass or redshift evolution. This value greatly reduces the discrepancy between the predictions of ΛCDM and the observed abundance of tSZ clusters but agrees with recent estimates from tSZ clustering. On the other hand, our value for b is higher than the predictions from hydrodynamical simulations. This suggests mechanisms that drive large departures from hydrostatic equilibrium and that are not included in the latest simulations, and/or unaccounted systematic errors such as biases in the cluster catalogue that are due to the optical selection.

  19. Testing the accuracy of clustering redshifts with simulations

    NASA Astrophysics Data System (ADS)

    Scottez, V.; Benoit-Lévy, A.; Coupon, J.; Ilbert, O.; Mellier, Y.

    2018-03-01

    We explore the accuracy of clustering-based redshift inference within the MICE2 simulation. This method uses the spatial clustering of galaxies between a spectroscopic reference sample and an unknown sample. This study give an estimate of the reachable accuracy of this method. First, we discuss the requirements for the number objects in the two samples, confirming that this method does not require a representative spectroscopic sample for calibration. In the context of next generation of cosmological surveys, we estimated that the density of the Quasi Stellar Objects in BOSS allows us to reach 0.2 per cent accuracy in the mean redshift. Secondly, we estimate individual redshifts for galaxies in the densest regions of colour space ( ˜ 30 per cent of the galaxies) without using the photometric redshifts procedure. The advantage of this procedure is threefold. It allows: (i) the use of cluster-zs for any field in astronomy, (ii) the possibility to combine photo-zs and cluster-zs to get an improved redshift estimation, (iii) the use of cluster-z to define tomographic bins for weak lensing. Finally, we explore this last option and build five cluster-z selected tomographic bins from redshift 0.2 to 1. We found a bias on the mean redshift estimate of 0.002 per bin. We conclude that cluster-z could be used as a primary redshift estimator by next generation of cosmological surveys.

  20. Relic galaxies: where are they?

    NASA Astrophysics Data System (ADS)

    Peralta de Arriba, L.; Quilis, V.; Trujillo, I.; Cebrián, M.; Balcells, M.

    2017-03-01

    The finding that massive galaxies grow with cosmic time fired the starting gun for the search of objects which could have survived up to the present day without suffering substantial changes (neither in their structures, neither in their stellar populations). Nevertheless, and despite the community efforts, up to now only one firm candidate to be considered one of these relics is known: NGC 1277. Curiously, this galaxy is located at the centre of one of the most rich near galaxy clusters: Perseus. Is its location a matter of chance? Should relic hunters focus their search on galaxy clusters? In order to reply this question, we have performed a simultaneous and analogous analysis using simulations (Millennium I-WMAP7) and observations (New York University Value-Added Galaxy Catalogue). Our results in both frameworks agree: it is more probable to find relics in high density environments.

  1. A new method to search for high-redshift clusters using photometric redshifts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castignani, G.; Celotti, A.; Chiaberge, M.

    2014-09-10

    We describe a new method (Poisson probability method, PPM) to search for high-redshift galaxy clusters and groups by using photometric redshift information and galaxy number counts. The method relies on Poisson statistics and is primarily introduced to search for megaparsec-scale environments around a specific beacon. The PPM is tailored to both the properties of the FR I radio galaxies in the Chiaberge et al. sample, which are selected within the COSMOS survey, and to the specific data set used. We test the efficiency of our method of searching for cluster candidates against simulations. Two different approaches are adopted. (1) Wemore » use two z ∼ 1 X-ray detected cluster candidates found in the COSMOS survey and we shift them to higher redshift up to z = 2. We find that the PPM detects the cluster candidates up to z = 1.5, and it correctly estimates both the redshift and size of the two clusters. (2) We simulate spherically symmetric clusters of different size and richness, and we locate them at different redshifts (i.e., z = 1.0, 1.5, and 2.0) in the COSMOS field. We find that the PPM detects the simulated clusters within the considered redshift range with a statistical 1σ redshift accuracy of ∼0.05. The PPM is an efficient alternative method for high-redshift cluster searches that may also be applied to both present and future wide field surveys such as SDSS Stripe 82, LSST, and Euclid. Accurate photometric redshifts and a survey depth similar or better than that of COSMOS (e.g., I < 25) are required.« less

  2. The halo Boltzmann equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biagetti, Matteo; Desjacques, Vincent; Kehagias, Alex

    2016-04-01

    Dark matter halos are the building blocks of the universe as they host galaxies and clusters. The knowledge of the clustering properties of halos is therefore essential for the understanding of the galaxy statistical properties. We derive an effective halo Boltzmann equation which can be used to describe the halo clustering statistics. In particular, we show how the halo Boltzmann equation encodes a statistically biased gravitational force which generates a bias in the peculiar velocities of virialized halos with respect to the underlying dark matter, as recently observed in N-body simulations.

  3. Weak lensing calibration of mass bias in the REFLEX+BCS X-ray galaxy cluster catalogue

    NASA Astrophysics Data System (ADS)

    Simet, Melanie; Battaglia, Nicholas; Mandelbaum, Rachel; Seljak, Uroš

    2017-04-01

    The use of large, X-ray-selected Galaxy cluster catalogues for cosmological analyses requires a thorough understanding of the X-ray mass estimates. Weak gravitational lensing is an ideal method to shed light on such issues, due to its insensitivity to the cluster dynamical state. We perform a weak lensing calibration of 166 galaxy clusters from the REFLEX and BCS cluster catalogue and compare our results to the X-ray masses based on scaled luminosities from that catalogue. To interpret the weak lensing signal in terms of cluster masses, we compare the lensing signal to simple theoretical Navarro-Frenk-White models and to simulated cluster lensing profiles, including complications such as cluster substructure, projected large-scale structure and Eddington bias. We find evidence of underestimation in the X-ray masses, as expected, with = 0.75 ± 0.07 stat. ±0.05 sys. for our best-fitting model. The biases in cosmological parameters in a typical cluster abundance measurement that ignores this mass bias will typically exceed the statistical errors.

  4. THE SERENDIPITOUS OBSERVATION OF A GRAVITATIONALLY LENSED GALAXY AT z = 0.9057 FROM THE BLANCO COSMOLOGY SURVEY: THE ELLIOT ARC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buckley-Geer, E. J.; Lin, H.; Drabek, E. R.

    2011-11-20

    We report on the serendipitous discovery in the Blanco Cosmology Survey (BCS) imaging data of a z = 0.9057 galaxy that is being strongly lensed by a massive galaxy cluster at a redshift of z = 0.3838. The lens (BCS J2352-5452) was discovered while examining i- and z-band images being acquired in 2006 October during a BCS observing run. Follow-up spectroscopic observations with the Gemini Multi-Object Spectrograph instrument on the Gemini-South 8 m telescope confirmed the lensing nature of this system. Using weak-plus-strong lensing, velocity dispersion, cluster richness N{sub 200}, and fitting to a Navarro-Frenk-White (NFW) cluster mass density profile,more » we have made three independent estimates of the mass M{sub 200} which are all very consistent with each other. The combination of the results from the three methods gives M{sub 200} = (5.1 {+-} 1.3) Multiplication-Sign 10{sup 14} M{sub Sun }, which is fully consistent with the individual measurements. The final NFW concentration c{sub 200} from the combined fit is c{sub 200} = 5.4{sup +1.4}{sub -1.1}. We have compared our measurements of M{sub 200} and c{sub 200} with predictions for (1) clusters from {Lambda}CDM simulations, (2) lensing-selected clusters from simulations, and (3) a real sample of cluster lenses. We find that we are most compatible with the predictions for {Lambda}CDM simulations for lensing clusters, and we see no evidence based on this one system for an increased concentration compared to {Lambda}CDM. Finally, using the flux measured from the [O II]3727 line we have determined the star formation rate of the source galaxy and find it to be rather modest given the assumed lens magnification.« less

  5. Redshift Space Distortion on the Small Scale Clustering of Structure

    NASA Astrophysics Data System (ADS)

    Park, Hyunbae; Sabiu, Cristiano; Li, Xiao-dong; Park, Changbom; Kim, Juhan

    2018-01-01

    The positions of galaxies in comoving Cartesian space varies under different cosmological parameter choices, inducing a redshift-dependent scaling in the galaxy distribution. The shape of the two-point correlation of galaxies exhibits a significant redshift evolution when the galaxy sample is analyzed under a cosmology differing from the true, simulated one. In our previous works, we can made use of this geometrical distortion to constrain the values of cosmological parameters governing the expansion history of the universe. This current work is a continuation of our previous works as a strategy to constrain cosmological parameters using redshift-invariant physical quantities. We now aim to understand the redshift evolution of the full shape of the small scale, anisotropic galaxy clustering and give a firmer theoretical footing to our previous works.

  6. High β effects on cosmic ray streaming in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Wiener, Joshua; Zweibel, Ellen G.; Oh, S. Peng

    2018-01-01

    Diffuse, extended radio emission in galaxy clusters, commonly referred to as radio haloes, indicate the presence of high energy cosmic ray (CR) electrons and cluster-wide magnetic fields. We can predict from theory the expected surface brightness of a radio halo, given magnetic field and CR density profiles. Previous studies have shown that the nature of CR transport can radically effect the expected radio halo emission from clusters (Wiener, Oh & Guo 2013). Reasonable levels of magnetohydrodynamic (MHD) wave damping can lead to significant CR streaming speeds. But a careful treatment of MHD waves in a high β plasma, as expected in cluster environments, reveals damping rates may be enhanced by a factor of β1/2. This leads to faster CR streaming and lower surface brightnesses than without this effect. In this work, we re-examine the simplified, 1D Coma cluster simulations (with radial magnetic fields) of Wiener et al. (2013) and discuss observable consequences of this high β damping. Future work is required to study this effect in more realistic simulations.

  7. The Very Small Scale Clustering of SDSS-II and SDSS-III Galaxies

    NASA Astrophysics Data System (ADS)

    Piscionere, Jennifer

    2015-01-01

    We measure the angular clustering of galaxies from the Sloan Digital Sky Survey Data Release 7 in order to probe the spatial distribution of satellite galaxies within their dark matter halos. Specifically, we measure the angular correlation function on very small scales (7 - 320‧‧) in a range of luminosity threshold samples (absolute r-band magnitudes of -18 up to -21) that are constructed from the subset of SDSS that has been spectroscopically observed more than once (the so-called plate overlap region). We choose to measure angular clustering in this reduced survey footprint in order to minimize the effects of fiber collision incompleteness, which are otherwise substantial on these small scales. We model our clustering measurements using a fully numerical halo model that populates dark matter halos in N-body simulations to create realistic mock galaxy catalogs. The model has free parameters that specify both the number and spatial distribution of galaxies within their host halos. We adopt a flexible density profile for the spatial distribution of satellite galaxies that is similar to the dark matter Navarro-Frenk-White (NFW) profile, except that the inner slope is allowed to vary. We find that the angular clustering of our most luminous samples (Mr < -20 and -21) suggests that luminous satellite galaxies have substantially steeper inner density profiles than NFW. Lower luminosity samples are less constraining, however, and are consistent with satellite galaxies having shallow density profiles. Our results confirm the findings of Watson et al. (2012) while using different clustering measurements and modeling methodology. With the new SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS; Dawson et al., 2013), we can measure how the same class of galaxy evolves over time. The BOSS CMASS sample is of roughly constant stellar mass and number density out to z ˜ 0.6. The clustering of these samples appears to evolve very little with redshift, and each of the samples exhibit flattening of wp at roughly the same comoving distance of 100kpc.

  8. Dependence of Nebular Heavy-element Abundance on H I Content for Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Robertson, Paul; Shields, Gregory A.; Davé, Romeel; Blanc, Guillermo A.; Wright, Audrey

    2013-08-01

    We analyze the galactic H I content and nebular log (O/H) for 60 spiral galaxies in the Moustakas et al. (2006a) spectral catalog. After correcting for the mass-metallicity relationship, we show that the spirals in cluster environments show a positive correlation for log (O/H) on DEF, the galactic H I deficiency parameter, extending the results of previous analyses of the Virgo and Pegasus I clusters. Additionally, we show for the first time that galaxies in the field obey a similar dependence. The observed relationship between H I deficiency and galactic metallicity resembles similar trends shown by cosmological simulations of galaxy formation including inflows and outflows. These results indicate the previously observed metallicity-DEF correlation has a more universal interpretation than simply a cluster's effects on its member galaxies. Rather, we observe in all environments the stochastic effects of metal-poor infall as minor mergers and accretion help to build giant spirals.

  9. ON THE CLUSTERING OF SUBMILLIMETER GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Christina C.; Giavalisco, Mauro; Yun, Min S.

    2011-06-01

    We measure the angular two-point correlation function of submillimeter galaxies (SMGs) from 1.1 mm imaging of the COSMOS field with the AzTEC camera and ASTE 10 m telescope. These data yield one of the largest contiguous samples of SMGs to date, covering an area of 0.72 deg{sup 2} down to a 1.26 mJy beam{sup -1} (1{sigma}) limit, including 189 (328) sources with S/N {>=}3.5 (3). We can only set upper limits to the correlation length r{sub 0}, modeling the correlation function as a power law with pre-assigned slope. Assuming existing redshift distributions, we derive 68.3% confidence level upper limits ofmore » r{sub 0} {approx}< 6-8h{sup -1} Mpc at 3.7 mJy and r{sub 0} {approx}< 11-12 h{sup -1} Mpc at 4.2 mJy. Although consistent with most previous estimates, these upper limits imply that the real r{sub 0} is likely smaller. This casts doubts on the robustness of claims that SMGs are characterized by significantly stronger spatial clustering (and thus larger mass) than differently selected galaxies at high redshift. Using Monte Carlo simulations we show that even strongly clustered distributions of galaxies can appear unclustered when sampled with limited sensitivity and coarse angular resolution common to current submillimeter surveys. The simulations, however, also show that unclustered distributions can appear strongly clustered under these circumstances. From the simulations, we predict that at our survey depth, a mapped area of 2 deg{sup 2} is needed to reconstruct the correlation function, assuming smaller beam sizes of future surveys (e.g., the Large Millimeter Telescope's 6'' beam size). At present, robust measures of the clustering strength of bright SMGs appear to be below the reach of most observations.« less

  10. The clustering of z > 7 galaxies: predictions from the BLUETIDES simulation

    NASA Astrophysics Data System (ADS)

    Bhowmick, Aklant K.; Di Matteo, Tiziana; Feng, Yu; Lanusse, Francois

    2018-03-01

    We study the clustering of the highest z galaxies (from ˜0.1 to a few tens Mpc scales) using the BLUETIDES simulation and compare it to current observational constraints from Hubble legacy and Hyper Suprime Cam (HSC) fields (at z = 6-7.2). With a box length of 400 Mpc h-1 on each side and 0.7 trillion particles, BLUETIDES is the largest volume high-resolution cosmological hydrodynamic simulation to date ideally suited for studies of high-z galaxies. We find that galaxies with magnitude mUV < 27.7 have a bias (bg) of 8.1 ± 1.2 at z = 8, and typical halo masses MH ≳ 6 × 1010 M⊙. Given the redshift evolution between z = 8 and z = 10 [bg ∝ (1 + z)1.6], our inferred values of the bias and halo masses are consistent with measured angular clustering at z ˜ 6.8 from these brighter samples. The bias of fainter galaxies (in the Hubble legacy field at H160 ≲ 29.5) is 5.9 ± 0.9 at z = 8 corresponding to halo masses MH ≳ 1010 M⊙. We investigate directly the 1-halo term in the clustering and show that it dominates on scales r ≲ 0.1 Mpc h-1 (Θ ≲ 3 arcsec) with non-linear effect at transition scales between the one-halo and two-halo term affecting scales 0.1 Mpc h-1≲ r ≲ 20 Mpc h-1 (3 arcsec ≲ Θ ≲ 90 arcsec). Current clustering measurements probe down to the scales in the transition between one-halo and two-halo regime where non-linear effects are important. The amplitude of the one-halo term implies that occupation numbers for satellites in BLUETIDES are somewhat higher than standard halo occupation distributions adopted in these analyses (which predict amplitudes in the one-halo regime suppressed by a factor 2-3). That possibly implies a higher number of galaxies detected by JWST (at small scales and even fainter magnitudes) observing these fields.

  11. Calibrating the Planck cluster mass scale with cluster velocity dispersions

    NASA Astrophysics Data System (ADS)

    Amodeo, S.; Mei, S.; Stanford, S. A.; Bartlett, J. G.; Lawrence, C. L.; Chary, R. R.; Shim, H.; Marleau, F.; Stern, D.

    2017-12-01

    The potential of galaxy clusters as cosmological probes critically depends on the capability to obtain accurate estimates of their mass. This will be a key measurement for the next generation of cosmological surveys, such as Euclid. The discrepancy between the cosmological parameters determined from anisotropies in the cosmic microwave background and those derived from cluster abundance measurements from the Planck satellite calls for careful evaluation of systematic biases in cluster mass estimates. For this purpose, it is crucial to use independent techniques, like analysis of the thermal emission of the intracluster medium (ICM), observed either in the X-rays or through the Sunyaev-Zeldovich (SZ) effect, dynamics of member galaxies or gravitational lensing. We discuss possible bias in the Planck SZ mass proxy, which is based on X-ray observations. Using optical spectroscopy from the Gemini Multi-Object Spectrograph of 17 Planck-selected clusters, we present new estimates of the cluster mass based on the velocity dispersion of the member galaxies and independently of the ICM properties. We show how the difference between the velocity dispersion of galaxy and dark matter particles in simulations is the primary factor limiting interpretation of dynamical cluster mass measurements at this time, and we give the first observational constraints on the velocity bias.

  12. The ellipticity of galaxy cluster haloes from satellite galaxies and weak lensing

    DOE PAGES

    Shin, Tae-hyeon; Clampitt, Joseph; Jain, Bhuvnesh; ...

    2018-01-04

    Here, we study the ellipticity of galaxy cluster haloes as characterized by the distribution of cluster galaxies and as measured with weak lensing. We use Monte Carlo simulations of elliptical cluster density profiles to estimate and correct for Poisson noise bias, edge bias and projection effects. We apply our methodology to 10 428 Sloan Digital Sky Survey clusters identified by the redMaPPer algorithm with richness above 20. We find a mean ellipticity =0.271 ± 0.002 (stat) ±0.031 (sys) corresponding to an axis ratio = 0.573 ± 0.002 (stat) ±0.039 (sys). We compare this ellipticity of the satellites to the halomore » shape, through a stacked lensing measurement using optimal estimators of the lensing quadrupole based on Clampitt and Jain (2016). We find a best-fitting axis ratio of 0.56 ± 0.09 (stat) ±0.03 (sys), consistent with the ellipticity of the satellite distribution. Thus, cluster galaxies trace the shape of the dark matter halo to within our estimated uncertainties. Finally, we restack the satellite and lensing ellipticity measurements along the major axis of the cluster central galaxy's light distribution. From the lensing measurements, we infer a misalignment angle with an root-mean-square of 30° ± 10° when stacking on the central galaxy. We discuss applications of halo shape measurements to test the effects of the baryonic gas and active galactic nucleus feedback, as well as dark matter and gravity. The major improvements in signal-to-noise ratio expected with the ongoing Dark Energy Survey and future surveys from Large Synoptic Survey Telescope, Euclid, and Wide Field Infrared Survey Telescope will make halo shapes a useful probe of these effects.« less

  13. The ellipticity of galaxy cluster haloes from satellite galaxies and weak lensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Tae-hyeon; Clampitt, Joseph; Jain, Bhuvnesh

    Here, we study the ellipticity of galaxy cluster haloes as characterized by the distribution of cluster galaxies and as measured with weak lensing. We use Monte Carlo simulations of elliptical cluster density profiles to estimate and correct for Poisson noise bias, edge bias and projection effects. We apply our methodology to 10 428 Sloan Digital Sky Survey clusters identified by the redMaPPer algorithm with richness above 20. We find a mean ellipticity =0.271 ± 0.002 (stat) ±0.031 (sys) corresponding to an axis ratio = 0.573 ± 0.002 (stat) ±0.039 (sys). We compare this ellipticity of the satellites to the halomore » shape, through a stacked lensing measurement using optimal estimators of the lensing quadrupole based on Clampitt and Jain (2016). We find a best-fitting axis ratio of 0.56 ± 0.09 (stat) ±0.03 (sys), consistent with the ellipticity of the satellite distribution. Thus, cluster galaxies trace the shape of the dark matter halo to within our estimated uncertainties. Finally, we restack the satellite and lensing ellipticity measurements along the major axis of the cluster central galaxy's light distribution. From the lensing measurements, we infer a misalignment angle with an root-mean-square of 30° ± 10° when stacking on the central galaxy. We discuss applications of halo shape measurements to test the effects of the baryonic gas and active galactic nucleus feedback, as well as dark matter and gravity. The major improvements in signal-to-noise ratio expected with the ongoing Dark Energy Survey and future surveys from Large Synoptic Survey Telescope, Euclid, and Wide Field Infrared Survey Telescope will make halo shapes a useful probe of these effects.« less

  14. The ellipticity of galaxy cluster haloes from satellite galaxies and weak lensing

    NASA Astrophysics Data System (ADS)

    Shin, Tae-hyeon; Clampitt, Joseph; Jain, Bhuvnesh; Bernstein, Gary; Neil, Andrew; Rozo, Eduardo; Rykoff, Eli

    2018-04-01

    We study the ellipticity of galaxy cluster haloes as characterized by the distribution of cluster galaxies and as measured with weak lensing. We use Monte Carlo simulations of elliptical cluster density profiles to estimate and correct for Poisson noise bias, edge bias and projection effects. We apply our methodology to 10 428 Sloan Digital Sky Survey clusters identified by the redMaPPer algorithm with richness above 20. We find a mean ellipticity =0.271 ± 0.002 (stat) ±0.031 (sys) corresponding to an axis ratio = 0.573 ± 0.002 (stat) ±0.039 (sys). We compare this ellipticity of the satellites to the halo shape, through a stacked lensing measurement using optimal estimators of the lensing quadrupole based on Clampitt and Jain (2016). We find a best-fitting axis ratio of 0.56 ± 0.09 (stat) ±0.03 (sys), consistent with the ellipticity of the satellite distribution. Thus, cluster galaxies trace the shape of the dark matter halo to within our estimated uncertainties. Finally, we restack the satellite and lensing ellipticity measurements along the major axis of the cluster central galaxy's light distribution. From the lensing measurements, we infer a misalignment angle with an root-mean-square of 30° ± 10° when stacking on the central galaxy. We discuss applications of halo shape measurements to test the effects of the baryonic gas and active galactic nucleus feedback, as well as dark matter and gravity. The major improvements in signal-to-noise ratio expected with the ongoing Dark Energy Survey and future surveys from Large Synoptic Survey Telescope, Euclid, and Wide Field Infrared Survey Telescope will make halo shapes a useful probe of these effects.

  15. Evidence for strong evolution in galaxy environmental quenching efficiency between z = 1.6 and z = 0.9

    NASA Astrophysics Data System (ADS)

    Nantais, Julie B.; Muzzin, Adam; van der Burg, Remco F. J.; Wilson, Gillian; Lidman, Chris; Foltz, Ryan; DeGroot, Andrew; Noble, Allison; Cooper, Michael C.; Demarco, Ricardo

    2017-02-01

    We analyse the evolution of environmental quenching efficiency, the fraction of quenched cluster galaxies which would be star forming if they were in the field, as a function of redshift in 14 spectroscopically confirmed galaxy clusters with 0.87 < z < 1.63 from the Spitzer Adaptation of the Red-Sequence Cluster Survey. The clusters are the richest in the survey at each redshift. Passive fractions rise from 42_{-13}^{+10} per cent at z ˜ 1.6 to 80_{-9}^{+12} per cent at z ˜ 1.3 and 88_{-3}^{+4} per cent at z < 1.1, outpacing the change in passive fraction in the field. Environmental quenching efficiency rises dramatically from 16_{-19}^{+15} per cent at z ˜ 1.6 to 62_{-15}^{+21} per cent at z ˜ 1.3 and 73_{-7}^{+8} per cent at z ≲ 1.1. This work is the first to show direct observational evidence for a rapid increase in the strength of environmental quenching in galaxy clusters at z ˜ 1.5, where simulations show cluster-mass haloes undergo non-linear collapse and virialization.

  16. The Formation and Evolution of Star Clusters in Interacting Galaxies

    NASA Astrophysics Data System (ADS)

    Maji, Moupiya; Zhu, Qirong; Li, Yuexing; Charlton, Jane; Hernquist, Lars; Knebe, Alexander

    2017-08-01

    Observations of globular clusters show that they have universal lognormal mass functions with a characteristic peak at ˜ 2× {10}5 {M}⊙ , but the origin of this peaked distribution is highly debated. Here we investigate the formation and evolution of star clusters (SCs) in interacting galaxies using high-resolution hydrodynamical simulations performed with two different codes in order to mitigate numerical artifacts. We find that massive SCs in the range of ˜ {10}5.5{--}{10}7.5 {M}⊙ form preferentially in the highly shocked regions produced by galaxy interactions. The nascent cluster-forming clouds have high gas pressures in the range of P/k˜ {10}8{--}{10}12 {{K}} {{cm}}-3, which is ˜ {10}4{--}{10}8 times higher than the typical pressure of the interstellar medium but consistent with recent observations of a pre-super-SC cloud in the Antennae Galaxies. Furthermore, these massive SCs have quasi-lognormal initial mass functions with a peak around ˜ {10}6 {M}⊙ . The number of clusters declines with time due to destructive processes, but the shape and the peak of the mass functions do not change significantly during the course of galaxy collisions. Our results suggest that gas-rich galaxy mergers may provide a favorable environment for the formation of massive SCs such as globular clusters, and that the lognormal mass functions and the unique peak may originate from the extreme high-pressure conditions of the birth clouds and may survive the dynamical evolution.

  17. Properties of galaxies reproduced by a hydrodynamic simulation

    NASA Astrophysics Data System (ADS)

    Vogelsberger, M.; Genel, S.; Springel, V.; Torrey, P.; Sijacki, D.; Xu, D.; Snyder, G.; Bird, S.; Nelson, D.; Hernquist, L.

    2014-05-01

    Previous simulations of the growth of cosmic structures have broadly reproduced the `cosmic web' of galaxies that we see in the Universe, but failed to create a mixed population of elliptical and spiral galaxies, because of numerical inaccuracies and incomplete physical models. Moreover, they were unable to track the small-scale evolution of gas and stars to the present epoch within a representative portion of the Universe. Here we report a simulation that starts 12 million years after the Big Bang, and traces 13 billion years of cosmic evolution with 12 billion resolution elements in a cube of 106.5 megaparsecs a side. It yields a reasonable population of ellipticals and spirals, reproduces the observed distribution of galaxies in clusters and characteristics of hydrogen on large scales, and at the same time matches the `metal' and hydrogen content of galaxies on small scales.

  18. The Origin of Dwarf Ellipticals in the Virgo Cluster

    NASA Astrophysics Data System (ADS)

    Boselli, A.; Boissier, S.; Cortese, L.; Gavazzi, G.

    2008-02-01

    We study the evolution of dwarf (LH < 109.6 LH⊙) star-forming and quiescent galaxies in the Virgo Cluster by comparing their UV to radio centimetric properties to the predictions of multizone chemospectrophotometric models of galaxy evolution especially tuned to take into account the perturbations induced by the interaction with the cluster intergalactic medium. Our models simulate one or multiple ram pressure stripping events and galaxy starvation. Models predict that all star-forming dwarf galaxies entering the cluster for the first time loose most, if not all, of their atomic gas content, quenching on short timescales (<=150 Myr) their activity of star formation. These dwarf galaxies soon become red and quiescent, gas metal-rich objects with spectrophotometric and structural properties similar to those of dwarf ellipticals. Young, low-luminosity, high surface brightness star-forming galaxies such as late-type spirals and BCDs are probably the progenitors of relatively massive dwarf ellipticals, while it is likely that low surface brightness Magellanic irregulars evolve into very low surface brightness quiescent objects hardly detectable in ground-based imaging surveys. The small number of dwarf galaxies with physical properties intermediate between those of star-forming and quiescent systems is consistent with a rapid (<1 Gyr) transitional phase between the two dwarf galaxy populations. These results, combined with statistical considerations, are consistent with the idea that most of the dwarf ellipticals dominating the faint end of the Virgo luminosity function were initially star-forming systems, accreted by the cluster and stripped of their gas by one or subsequent ram pressure stripping events.

  19. A Systematic Analysis of Caustic Methods for Galaxy Cluster Masses

    NASA Astrophysics Data System (ADS)

    Gifford, Daniel; Miller, Christopher; Kern, Nicholas

    2013-08-01

    We quantify the expected observed statistical and systematic uncertainties of the escape velocity as a measure of the gravitational potential and total mass of galaxy clusters. We focus our attention on low redshift (z <=0.15) clusters, where large and deep spectroscopic datasets currently exist. Utilizing a suite of Millennium Simulation semi-analytic galaxy catalogs, we find that the dynamical mass, as traced by either the virial relation or the escape velocity, is robust to variations in how dynamical friction is applied to "orphan" galaxies in the mock catalogs (i.e., those galaxies whose dark matter halos have fallen below the resolution limit). We find that the caustic technique recovers the known halo masses (M 200) with a third less scatter compared to the virial masses. The bias we measure increases quickly as the number of galaxies used decreases. For N gal > 25, the scatter in the escape velocity mass is dominated by projections along the line-of-sight. Algorithmic uncertainties from the determination of the projected escape velocity profile are negligible. We quantify how target selection based on magnitude, color, and projected radial separation can induce small additional biases into the escape velocity masses. Using N gal = 150 (25), the caustic technique has a per cluster scatter in ln (M|M 200) of 0.3 (0.5) and bias 1% ± 3} (16% ± 5}) for clusters with masses >1014 M ⊙ at z < 0.15.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koch, Andreas; Burkert, Andreas; Rich, R. Michael

    We report on the discovery of strong tidal features around a dwarf spheroidal galaxy in the Hydra I galaxy cluster, indicating its ongoing tidal disruption. This very low surface brightness object, HCC-087, was originally classified as an early-type dwarf in the Hydra Cluster Catalogue (HCC), but our re-analysis of the ESO-VLT/FORS images of the HCC unearthed a clear indication of an S-shaped morphology and a large spatial extent. Its shape, luminosity (M{sub V} = -11.6 mag), and physical size (at a half-light radius of 3.1 kpc and a full length of {approx}5.9 kpc) are comparable to the recently discovered NGCmore » 4449B and the Sagittarius dwarf spheroidal, all of which are undergoing clear tidal disruption. Aided by N-body simulations we argue that HCC-087 is currently at its first apocenter, at 150 kpc, around the cluster center and that it is being tidally disrupted by the galaxy cluster's potential itself. An interaction with the nearby (50 kpc) S0 cluster galaxy HCC-005, at M{sub *} {approx} 3 Multiplication-Sign 10{sup 10} M{sub Sun} is rather unlikely, as this constellation requires a significant amount of dynamical friction and thus low relative velocities. The S-shaped morphology and large spatial extent of the satellite would, however, also appear if HCC-087 would orbit the cluster center. These features appear to be characteristic properties of satellites that are seen in the process of being tidally disrupted, independent of the environment of the destruction. An important finding of our simulations is an orientation of the tidal tails perpendicular to the orbit.« less

  1. Simulating Astro-H Observations of Sloshing Gas Motions in the Cores of Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    ZuHone, J. A.; Miller, E. D.; Simionescu, A.; Bautz, M. W.

    2016-04-01

    Astro-H will be the first X-ray observatory to employ a high-resolution microcalorimeter, capable of measuring the shift and width of individual spectral lines to the precision necessary for estimating the velocity of the diffuse plasma in galaxy clusters. This new capability is expected to bring significant progress in understanding the dynamics, and therefore the physics, of the intracluster medium. However, because this plasma is optically thin, projection effects will be an important complicating factor in interpreting future Astro-H measurements. To study these effects in detail, we performed an analysis of the velocity field from simulations of a galaxy cluster experiencing gas sloshing and generated synthetic X-ray spectra, convolved with model Astro-H Soft X-ray Spectrometer (SXS) responses. We find that the sloshing motions produce velocity signatures that will be observable by Astro-H in nearby clusters: the shifting of the line centroid produced by the fast-moving cold gas underneath the front surface, and line broadening produced by the smooth variation of this motion along the line of sight. The line shapes arising from inviscid or strongly viscous simulations are very similar, indicating that placing constraints on the gas viscosity from these measurements will be difficult. Our spectroscopic analysis demonstrates that, for adequate exposures, Astro-H will be able to recover the first two moments of the velocity distribution of these motions accurately, and in some cases multiple velocity components may be discerned. The simulations also confirm the importance of accurate treatment of point-spread function scattering in the interpretation of Astro-H/SXS spectra of cluster plasmas.

  2. The impact of galaxy geometry and mass evolution on the survival of star clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madrid, Juan P.; Hurley, Jarrod R.; Martig, Marie

    2014-04-01

    Direct N-body simulations of globular clusters in a realistic Milky-Way-like potential are carried out using the code NBODY6 to determine the impact of the host galaxy disk mass and geometry on the survival of star clusters. A relation between disk mass and star-cluster dissolution timescale is derived. These N-body models show that doubling the mass of the disk from 5 × 10{sup 10} M {sub ☉} to 10 × 10{sup 10} M {sub ☉} halves the dissolution time of a satellite star cluster orbiting the host galaxy at 6 kpc from the galactic center. Different geometries in a disk ofmore » identical mass can determine either the survival or dissolution of a star cluster orbiting within the inner 6 kpc of the galactic center. Furthermore, disk geometry has measurable effects on the mass loss of star clusters up to 15 kpc from the galactic center. N-body simulations performed with a fine output time step show that at each disk crossing the outer layers of star clusters experiences an increase in velocity dispersion of ∼5% of the average velocity dispersion in the outer section of star clusters. This leads to an enhancement of mass loss—a clearly discernable effect of disk shocking. By running models with different inclinations, we determine that star clusters with an orbit that is perpendicular to the Galactic plane have larger mass loss rates than do clusters that evolve in the Galactic plane or in an inclined orbit.« less

  3. Massive star clusters in a z=1 star-forming galaxy seen at a 100 pc scale thanks to strong gravitational lensing

    NASA Astrophysics Data System (ADS)

    Dessauges-Zavadsky, Miroslava; Cava, Antonio; Richard, Johan; Schaerer, Daniel; Egami, Eiichi

    2015-08-01

    Deep and high-resolution imaging has revealed clumpy, rest-frame UV morphologies among z=1-3 galaxies. The majority of these galaxies has been shown to be dominated by ordered disk rotation, which led to the conclusion that the observed giant clumps, resolved on kpc-scales, are generated from disk fragmentation due to gravitational instability. State-of-the-art numerical simulations show that they may occupy a relevant role in galaxy evolution, contributing to the galactic bulge formation. Despite the high resolution attained by the most advanced ground- and space-based facilities, as well as in numerical simulations, the intrinsic typical masses and scale sizes of these star-forming clumps remain unconstrained, since they are barely resolved at z=1-3.Thanks to the amplification and stretching power provided by strong gravitational lensing, we are likely to reach the spatial resolving power for unveiling the physics of these star-forming regions. We report on the study of clumpy star formation observed in the Cosmic Snake, a strongly lensed galaxy at z=1, representative of the typical star-forming population close to the peak of Universe activity. About 20 clumps are identified in the HST images. Benefiting from extreme amplification factors up to 100, they are resolved down to an intrinsic scale of 100 pc, never reached before at z=1.The HST multi-wavelength analysis of these individual star clusters allows us to determine their intrinsic physical properties, showing stellar masses (Ms) from 106 to 108.3 Msun, sizes from 100 to 400 pc, and ages from 106 to 108.5 yr. The masses we find are in line with the new, very high resolution numerical simulations, which also suggest that the massive giant clumps previously observed at high redshift with Ms as high as 109-10 Msun may suffer from low resolution effects, being unresolved conglomerates of less massive star clusters. We also compare our results with those of massive young clusters in nearby galaxies. Our approved ALMA observations will reach the same 100 pc scale, which is essential for the study of associated giant molecular clouds in this galaxy.

  4. Galaxy clustering with photometric surveys using PDF redshift information

    DOE PAGES

    Asorey, J.; Carrasco Kind, M.; Sevilla-Noarbe, I.; ...

    2016-03-28

    Here, photometric surveys produce large-area maps of the galaxy distribution, but with less accurate redshift information than is obtained from spectroscopic methods. Modern photometric redshift (photo-z) algorithms use galaxy magnitudes, or colors, that are obtained through multi-band imaging to produce a probability density function (PDF) for each galaxy in the map. We used simulated data to study the effect of using different photo-z estimators to assign galaxies to redshift bins in order to compare their effects on angular clustering and galaxy bias measurements. We found that if we use the entire PDF, rather than a single-point (mean or mode) estimate, the deviations are less biased, especially when using narrow redshift bins. When the redshift bin widths aremore » $$\\Delta z=0.1$$, the use of the entire PDF reduces the typical measurement bias from 5%, when using single point estimates, to 3%.« less

  5. The topology of large-scale structure. I - Topology and the random phase hypothesis. [galactic formation models

    NASA Technical Reports Server (NTRS)

    Weinberg, David H.; Gott, J. Richard, III; Melott, Adrian L.

    1987-01-01

    Many models for the formation of galaxies and large-scale structure assume a spectrum of random phase (Gaussian), small-amplitude density fluctuations as initial conditions. In such scenarios, the topology of the galaxy distribution on large scales relates directly to the topology of the initial density fluctuations. Here a quantitative measure of topology - the genus of contours in a smoothed density distribution - is described and applied to numerical simulations of galaxy clustering, to a variety of three-dimensional toy models, and to a volume-limited sample of the CfA redshift survey. For random phase distributions the genus of density contours exhibits a universal dependence on threshold density. The clustering simulations show that a smoothing length of 2-3 times the mass correlation length is sufficient to recover the topology of the initial fluctuations from the evolved galaxy distribution. Cold dark matter and white noise models retain a random phase topology at shorter smoothing lengths, but massive neutrino models develop a cellular topology.

  6. nIFTY galaxy cluster simulations - III. The similarity and diversity of galaxies and subhaloes

    NASA Astrophysics Data System (ADS)

    Elahi, Pascal J.; Knebe, Alexander; Pearce, Frazer R.; Power, Chris; Yepes, Gustavo; Cui, Weiguang; Cunnama, Daniel; Kay, Scott T.; Sembolini, Federico; Beck, Alexander M.; Davé, Romeel; February, Sean; Huang, Shuiyao; Katz, Neal; McCarthy, Ian G.; Murante, Giuseppe; Perret, Valentin; Puchwein, Ewald; Saro, Alexandro; Teyssier, Romain

    2016-05-01

    We examine subhaloes and galaxies residing in a simulated Λ cold dark matter galaxy cluster (M^crit_{200}=1.1× 10^{15} h^{-1} M_{⊙}) produced by hydrodynamical codes ranging from classic smooth particle hydrodynamics (SPH), newer SPH codes, adaptive and moving mesh codes. These codes use subgrid models to capture galaxy formation physics. We compare how well these codes reproduce the same subhaloes/galaxies in gravity-only, non-radiative hydrodynamics and full feedback physics runs by looking at the overall subhalo/galaxy distribution and on an individual object basis. We find that the subhalo population is reproduced to within ≲10 per cent for both dark matter only and non-radiative runs, with individual objects showing code-to-code scatter of ≲0.1 dex, although the gas in non-radiative simulations shows significant scatter. Including feedback physics significantly increases the diversity. Subhalo mass and Vmax distributions vary by ≈20 per cent. The galaxy populations also show striking code-to-code variations. Although the Tully-Fisher relation is similar in almost all codes, the number of galaxies with 109 h- 1 M⊙ ≲ M* ≲ 1012 h- 1 M⊙ can differ by a factor of 4. Individual galaxies show code-to-code scatter of ˜0.5 dex in stellar mass. Moreover, systematic differences exist, with some codes producing galaxies 70 per cent smaller than others. The diversity partially arises from the inclusion/absence of active galactic nucleus feedback. Our results combined with our companion papers demonstrate that subgrid physics is not just subject to fine-tuning, but the complexity of building galaxies in all environments remains a challenge. We argue that even basic galaxy properties, such as stellar mass to halo mass, should be treated with errors bars of ˜0.2-0.4 dex.

  7. clustep: Initial conditions for galaxy cluster halo simulations

    NASA Astrophysics Data System (ADS)

    Ruggiero, Rafael

    2017-11-01

    clustep generates a snapshot in GADGET-2 (ascl:0003.001) format containing a galaxy cluster halo in equilibrium; this snapshot can also be read in RAMSES (ascl:1011.007) using the DICE patch. The halo is made of a dark matter component and a gas component, with the latter representing the ICM. Each of these components follows a Dehnen density profile, with gamma=0 or gamma=1. If gamma=1, then the profile corresponds to a Hernquist profile.

  8. Gas Dynamics in Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    McCourt, Michael Kingsley, Jr.

    Galaxy clusters are the most massive structures in the universe and, in the hierarchical pattern of cosmological structure formation, the largest objects in the universe form last. Galaxy clusters are thus interesting objects for a number of reasons. Three examples relevant to this thesis are: 1. Constraining the properties of dark energy: Due to the hierarchical nature of structure formation, the largest objects in the universe form last. The cluster mass function is thus sensitive to the entire expansion history of the universe and can be used to constrain the properties of dark energy. This constraint complements others derived from the CMB or from Type Ia supernovae and provides an important, independent confirmation of such methods. In particular, clusters provide detailed information about the equation of state parameter w because they sample a large redshift range z ˜ 0 - 1. 2. Probing galaxy formation: Clusters contain the most massive galaxies in the uni- verse, and the most massive black holes; because clusters form so late, we can still witness the assembly of these objects in the nearby universe. Clusters thus provide a more detailed view of galaxy formation than is possible in studies of lower-mass ob- jects. An important example comes from x-ray studies of clusters, which unexpectedly found that star formation in massive galaxies in clusters is closely correlated with the properties of the hot, virialized gas in their halos. This correlation persists despite the enormous separation in temperature, in dynamical time-scales, and in length-scales between the virialized gas in the halo and the star-forming regions in the galaxy. This remains a challenge to interpret theoretically. 3. Developing our knowledge of dilute plasmas: The masses and sizes of galaxy clusters imply that the plasma which permeates them is both very hot (˜ 108 K) and very dilute (˜ 10 -2 cm-3). This plasma is collisional enough to be considered a fluid, but collisionless enough to develop significant anisotropies with respect to the local magnetic field. This interesting regime is one of the frontiers in theoretical studies of fluid dynamics. Unlike other astrophysical environments of similar collisionality (e. g. accretion disk coronae), galaxy clusters are optically thin and subtend large angles on the sky. Thus, they are easily observed in the x-ray (to constrain thermal processes) and in the radio (to constrain non-thermal processes) and provide a wonderful environment to develop our understanding of dilute plasmas. This thesis studies the dynamics of the hot gas in galaxy clusters, which touches on all three of the above topics. Chapter 2 shows that galaxy clusters are likely to be unstable to a new, vigorous form of convection. As a dynamical process which involves thermodynamic and magnetic properties of the gas, this convection bears directly on our understanding of the physics of dilute plas- mas. Furthermore, by moving metals and thermal energy through the cluster, convection may change the cooling rate of the gas and thus significantly impact the process of galaxy formation. Cluster convection also impacts the use of clusters as cosmological probes. Convection may drive turbulence in clusters with mean Mach numbers of order-unity. This changes the force balance in clusters, decreasing the thermal energy of a cluster of a given mass. Current methods for using clusters to constrain dark energy rely on observational probes of the thermal energy as a proxy for total mass. The accuracy of these methods depends on how vigorous cluster convection is. Chapter 3 studies thermal instability in galaxy clusters. I argue that clusters are all likely to be thermally unstable, but that this instability only grows to large amplitude in a subset of systems. Later studies have applied this result to galaxy formation in clusters and shown that one can reproduce some features of the well-known non-self-similarity at the high mass end of the galaxy luminosity function. Chapters 4 and 5 extends my work on convection (and, eventually, thermal instability) to consider the cosmological context of galaxy formation. This work aims to remove any arbitrary initial and boundary conditions from my simulations and is an important step toward a self-consistent model for the plasma physics in clusters.

  9. Hot Gas Halos in Galaxies

    NASA Astrophysics Data System (ADS)

    Mulchaey, John

    Most galaxy formation models predict that massive low-redshift disk galaxies are embedded in extended hot halos of externally accreted gas. Such gas appears necessary to maintain ongoing star formation in isolated spirals like the Milky Way. To explain the large population of red galaxies in rich groups and clusters, most galaxy evolution models assume that these hot gas halos are stripped completely when a galaxy enters a denser environment. This simple model has been remarkably successful at reproducing many observed properties of galaxies. Although theoretical arguments suggest hot gas halos are an important component in galaxies, we know very little about this gas from an observational standpoint. In fact, previous observations have failed to detect soft X-ray emission from such halos in disk galaxies. Furthermore, the assumption that hot gas halos are stripped completely when a galaxy enters a group or cluster has not been verified. We propose to combine proprietary and archival XMM-Newton observations of galaxies in the field, groups and clusters to study how hot gas halos are impacted by environment. Our proposed program has three components: 1) The deepest search to date for a hot gas halo in a quiescent spiral galaxy. A detection will confirm a basic tenet of disk galaxy formation models, whereas a non-detection will seriously challenge these models and impose new constraints on the growth mode and feedback history of disk galaxies. 2) A detailed study of the hot gas halos properties of field early-type galaxies. As environmental processes such as stripping are not expected to be important in the field, a study of hot gas halos in this environment will allow us to better understand how feedback and other internal processes impact hot gas halos. 3) A study of hot gas halos in the outskirts of groups and clusters. By comparing observations with our suite of simulations we can begin to understand what role the stripping of hot gas halos plays in galaxy evolution.

  10. Weak lensing calibrated M-T scaling relation of galaxy groups in the cosmos field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kettula, K.; Finoguenov, A.; Massey, R.

    2013-11-20

    The scaling between X-ray observables and mass for galaxy clusters and groups is instrumental for cluster-based cosmology and an important probe for the thermodynamics of the intracluster gas. We calibrate a scaling relation between the weak lensing mass and X-ray spectroscopic temperature for 10 galaxy groups in the COSMOS field, combined with 55 higher-mass clusters from the literature. The COSMOS data includes Hubble Space Telescope imaging and redshift measurements of 46 source galaxies per arcminute{sup 2}, enabling us to perform unique weak lensing measurements of low-mass systems. Our sample extends the mass range of the lensing calibrated M-T relation anmore » order of magnitude lower than any previous study, resulting in a power-law slope of 1.48{sub −0.09}{sup +0.13}. The slope is consistent with the self-similar model, predictions from simulations, and observations of clusters. However, X-ray observations relying on mass measurements derived under the assumption of hydrostatic equilibrium have indicated that masses at group scales are lower than expected. Both simulations and observations suggest that hydrostatic mass measurements can be biased low. Our external weak lensing masses provide the first observational support for hydrostatic mass bias at group level, showing an increasing bias with decreasing temperature and reaching a level of 30%-50% at 1 keV.« less

  11. WINGS: A WIde-field Nearby Galaxy-cluster Survey. II. Deep optical photometry of 77 nearby clusters

    NASA Astrophysics Data System (ADS)

    Varela, J.; D'Onofrio, M.; Marmo, C.; Fasano, G.; Bettoni, D.; Cava, A.; Couch, W. J.; Dressler, A.; Kjærgaard, P.; Moles, M.; Pignatelli, E.; Poggianti, B. M.; Valentinuzzi, T.

    2009-04-01

    Context: This is the second paper of a series devoted to the WIde Field Nearby Galaxy-cluster Survey (WINGS). WINGS is a long term project which is gathering wide-field, multi-band imaging and spectroscopy of galaxies in a complete sample of 77 X-ray selected, nearby clusters (0.04 < z < 0.07) located far from the galactic plane (|b|≥ 20°). The main goal of this project is to establish a local reference for evolutionary studies of galaxies and galaxy clusters. Aims: This paper presents the optical (B,V) photometric catalogs of the WINGS sample and describes the procedures followed to construct them. We have paid special care to correctly treat the large extended galaxies (which includes the brightest cluster galaxies) and the reduction of the influence of the bright halos of very bright stars. Methods: We have constructed photometric catalogs based on wide-field images in B and V bands using SExtractor. Photometry has been performed on images in which large galaxies and halos of bright stars were removed after modeling them with elliptical isophotes. Results: We publish deep optical photometric catalogs (90% complete at V ~ 21.7, which translates to ˜ M^*_V+6 at mean redshift), giving positions, geometrical parameters, and several total and aperture magnitudes for all the objects detected. For each field we have produced three catalogs containing galaxies, stars and objects of “unknown” classification (~6%). From simulations we found that the uncertainty of our photometry is quite dependent of the light profile of the objects with stars having the most robust photometry and de Vaucouleurs profiles showing higher uncertainties and also an additional bias of ~-0.2^m. The star/galaxy classification of the bright objects (V < 20) was checked visually making negligible the fraction of misclassified objects. For fainter objects, we found that simulations do not provide reliable estimates of the possible misclassification and therefore we have compared our data with that from deep counts of galaxies and star counts from models of our Galaxy. Both sets turned out to be consistent with our data within ~5% (in the ratio galaxies/total) up to V ~ 24. Finally, we remark that the application of our special procedure to remove large halos improves the photometry of the large galaxies in our sample with respect to the use of blind automatic procedures and increases (~16%) the detection rate of objects projected onto them. Based on observations taken at the Issac Newton Telescope (2.5 m-INT) sited at Roque de los Muchachos (La Palma, Spain), and the MPG/ESO-2.2 m Telescope sited at La Silla (Chile). Appendices are only available in electronic form at http://www.aanda.org Catalog is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/497/667

  12. The Outer Limits of Galaxy Clusters: Observations to the Virial Radius with Suzaku, XMM,and Chandra

    NASA Technical Reports Server (NTRS)

    Miller, Eric D.; Bautz, Marshall; George, Jithin; Mushotzky, Richard; Davis, David; Henry, J. Patrick

    2012-01-01

    The outskirts of galaxy clusters, near the virial radius, remain relatively unexplored territory and yet are vital to our understanding of cluster growth, structure, and mass. In this presentation, we show the first results from a program to constrain the sate of the outer intra-cluster medium (ICM) in a large sample of galaxy clusters, exploiting the strengths of three complementary X-ray observatories: Suzaku (low, stable background), XMM-Newton (high sensitivity),and Chandra (good spatial resolution). By carefully combining observations from the cluster core to beyond r200, we are able to identify and reduce systematic uncertainties that would impede our spatial and spectral analysis using a single telescope. Our sample comprises nine clusters at z is approximately 0.1-0.2 fully covered in azimuth to beyond r200, and our analysis indicates that the ICM is not in hydrostatic equilibrium in the cluster outskirts, where we see clear azimuthal variations in temperature and surface brightness. In one of the clusters, we are able to measure the diffuse X-ray emission well beyond r200, and we find that the entropy profile and the gas fraction are consistent with expectations from theory and numerical simulations. These results stand in contrast to recent studies which point to gas clumping in the outskirts; the extent to which differences of cluster environment or instrumental effects factor in this difference remains unclear. From a broader perspective, this project will produce a sizeable fiducial data set for detailed comparison with high-resolution numerical simulations.

  13. Cold dark matter. 2: Spatial and velocity statistics

    NASA Technical Reports Server (NTRS)

    Gelb, James M.; Bertschinger, Edmund

    1994-01-01

    We examine high-resolution gravitational N-body simulations of the omega = 1 cold dark matter (CDM) model in order to determine whether there is any normalization of the initial density fluctuation spectrum that yields acceptable results for galaxy clustering and velocities. Dense dark matter halos in the evolved mass distribution are identified with luminous galaxies; the most massive halos are also considered as sites for galaxy groups, with a range of possibilities explored for the group mass-to-light ratios. We verify the earlier conclusions of White et al. (1987) for the low-amplitude (high-bias) CDM model-the galaxy correlation function is marginally acceptable but that there are too many galaxies. We also show that the peak biasing method does not accurately reproduce the results obtained using dense halos identified in the simulations themselves. The Cosmic Background Explorer (COBE) anisotropy implies a higher normalization, resulting in problems with excessive pairwise galaxy velocity dispersion unless a strong velocity bias is present. Although we confirm the strong velocity bias of halos reported by Couchman & Carlberg (1992), we show that the galaxy motions are still too large on small scales. We find no amplitude for which the CDM model can reconcile simultaneously and galaxy correlation function, the low pairwise velocity dispersion, and the richness distribution of groups and clusters. With the normalization implied by COBE, the CDM spectrum has too much power on small scales if omega = 1.

  14. Dark Energy Survey Year 1 Results: Cross-Correlation Redshifts - Methods and Systematics Characterization

    DOE PAGES

    Gatti, M.

    2018-02-22

    We use numerical simulations to characterize the performance of a clustering-based method to calibrate photometric redshift biases. In particular, we cross-correlate the weak lensing (WL) source galaxies from the Dark Energy Survey Year 1 (DES Y1) sample with redMaGiC galaxies (luminous red galaxies with secure photometric red- shifts) to estimate the redshift distribution of the former sample. The recovered redshift distributions are used to calibrate the photometric redshift bias of standard photo-z methods applied to the same source galaxy sample. We also apply the method to three photo-z codes run in our simulated data: Bayesian Photometric Redshift (BPZ), Directional Neighborhoodmore » Fitting (DNF), and Random Forest-based photo-z (RF). We characterize the systematic uncertainties of our calibration procedure, and find that these systematic uncertainties dominate our error budget. The dominant systematics are due to our assumption of unevolving bias and clustering across each redshift bin, and to differences between the shapes of the redshift distributions derived by clustering vs photo-z's. The systematic uncertainty in the mean redshift bias of the source galaxy sample is z ≲ 0.02, though the precise value depends on the redshift bin under consideration. Here, we discuss possible ways to mitigate the impact of our dominant systematics in future analyses.« less

  15. Dark Energy Survey Year 1 Results: Cross-Correlation Redshifts - Methods and Systematics Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gatti, M.

    We use numerical simulations to characterize the performance of a clustering-based method to calibrate photometric redshift biases. In particular, we cross-correlate the weak lensing (WL) source galaxies from the Dark Energy Survey Year 1 (DES Y1) sample with redMaGiC galaxies (luminous red galaxies with secure photometric red- shifts) to estimate the redshift distribution of the former sample. The recovered redshift distributions are used to calibrate the photometric redshift bias of standard photo-z methods applied to the same source galaxy sample. We also apply the method to three photo-z codes run in our simulated data: Bayesian Photometric Redshift (BPZ), Directional Neighborhoodmore » Fitting (DNF), and Random Forest-based photo-z (RF). We characterize the systematic uncertainties of our calibration procedure, and find that these systematic uncertainties dominate our error budget. The dominant systematics are due to our assumption of unevolving bias and clustering across each redshift bin, and to differences between the shapes of the redshift distributions derived by clustering vs photo-z's. The systematic uncertainty in the mean redshift bias of the source galaxy sample is z ≲ 0.02, though the precise value depends on the redshift bin under consideration. Here, we discuss possible ways to mitigate the impact of our dominant systematics in future analyses.« less

  16. Dwarf galaxy populations in present-day galaxy clusters - II. The history of early-type and late-type dwarfs

    NASA Astrophysics Data System (ADS)

    Lisker, Thorsten; Weinmann, Simone M.; Janz, Joachim; Meyer, Hagen T.

    2013-06-01

    How did the dwarf galaxy population of present-day galaxy clusters form and grow over time? We address this question by analysing the history of dark matter subhaloes in the Millennium II cosmological simulation. A semi-analytic model serves as the link to observations. We argue that a reasonable analogue to early morphological types or red-sequence dwarf galaxies are those subhaloes that experienced strong mass-loss, or alternatively those that have spent a long time in massive haloes. This approach reproduces well the observed morphology-distance relation of dwarf galaxies in the Virgo and Coma clusters, and thus provides insight into their history. Over their lifetime, present-day late types have experienced an amount of environmental influence similar to what the progenitors of dwarf ellipticals had already experienced at redshifts above 2. Therefore, dwarf ellipticals are more likely to be a result of early and continuous environmental influence in group- and cluster-size haloes, rather than a recent transformation product. The observed morphological sequences of late-type and early-type galaxies have developed in parallel, not consecutively. Consequently, the characteristics of today's late-type galaxies are not necessarily representative for the progenitors of today's dwarf ellipticals. Studies aiming to reproduce the present-day dwarf population thus need to start at early epochs, model the influence of various environments, and also take into account the evolution of the environments themselves.

  17. The effects of assembly bias on the inference of matter clustering from galaxy-galaxy lensing and galaxy clustering

    NASA Astrophysics Data System (ADS)

    McEwen, Joseph E.; Weinberg, David H.

    2018-07-01

    The combination of galaxy-galaxy lensing and galaxy clustering is a promising route to measuring the amplitude of matter clustering and testing modified gravity theories of cosmic acceleration. Halo occupation distribution (HOD) modelling can extend the approach down to non-linear scales, but galaxy assembly bias could introduce systematic errors by causing the HOD to vary with the large-scale environment at fixed halo mass. We investigate this problem using the mock galaxy catalogs created by Hearin & Watson (2013, HW13), which exhibit significant assembly bias because galaxy luminosity is tied to halo peak circular velocity and galaxy colour is tied to halo formation time. The preferential placement of galaxies (especially red galaxies) in older haloes affects the cutoff of the mean occupation function ⟨Ncen(Mmin)⟩ for central galaxies, with haloes in overdense regions more likely to host galaxies. The effect of assembly bias on the satellite galaxy HOD is minimal. We introduce an extended, environment-dependent HOD (EDHOD) prescription to describe these results and fit galaxy correlation measurements. Crucially, we find that the galaxy-matter cross-correlation coefficient, rgm(r) ≡ ξgm(r) . [ξmm(r)ξgg(r)]-1/2, is insensitive to assembly bias on scales r ≳ 1 h-1 Mpc, even though ξgm(r) and ξgg(r) are both affected individually. We can therefore recover the correct ξmm(r) from the HW13 galaxy-galaxy and galaxy-matter correlations using either a standard HOD or EDHOD fitting method. For Mr ≤ -19 or Mr ≤ -20 samples the recovery of ξmm(r) is accurate to 2 per cent or better. For a sample of red Mr ≤ -20 galaxies, we achieve 2 per cent recovery at r ≳ 2 h-1 Mpc with EDHOD modelling but lower accuracy at smaller scales or with a standard HOD fit. Most of our mock galaxy samples are consistent with rgm = 1 down to r = 1 h-1 Mpc, to within the uncertainties set by our finite simulation volume.

  18. The effects of assembly bias on the inference of matter clustering from galaxy-galaxy lensing and galaxy clustering

    NASA Astrophysics Data System (ADS)

    McEwen, Joseph E.; Weinberg, David H.

    2018-04-01

    The combination of galaxy-galaxy lensing (GGL) and galaxy clustering is a promising route to measuring the amplitude of matter clustering and testing modified gravity theories of cosmic acceleration. Halo occupation distribution (HOD) modeling can extend the approach down to nonlinear scales, but galaxy assembly bias could introduce systematic errors by causing the HOD to vary with large scale environment at fixed halo mass. We investigate this problem using the mock galaxy catalogs created by Hearin & Watson (2013, HW13), which exhibit significant assembly bias because galaxy luminosity is tied to halo peak circular velocity and galaxy colour is tied to halo formation time. The preferential placement of galaxies (especially red galaxies) in older halos affects the cutoff of the mean occupation function for central galaxies, with halos in overdense regions more likely to host galaxies. The effect of assembly bias on the satellite galaxy HOD is minimal. We introduce an extended, environment dependent HOD (EDHOD) prescription to describe these results and fit galaxy correlation measurements. Crucially, we find that the galaxy-matter cross-correlation coefficient, rgm(r) ≡ ξgm(r) . [ξmm(r)ξgg(r)]-1/2, is insensitive to assembly bias on scales r ≳ 1 h^{-1} Mpc, even though ξgm(r) and ξgg(r) are both affected individually. We can therefore recover the correct ξmm(r) from the HW13 galaxy-galaxy and galaxy-matter correlations using either a standard HOD or EDHOD fitting method. For Mr ≤ -19 or Mr ≤ -20 samples the recovery of ξmm(r) is accurate to 2% or better. For a sample of red Mr ≤ -20 galaxies we achieve 2% recovery at r ≳ 2 h^{-1} Mpc with EDHOD modeling but lower accuracy at smaller scales or with a standard HOD fit. Most of our mock galaxy samples are consistent with rgm = 1 down to r = 1h-1Mpc, to within the uncertainties set by our finite simulation volume.

  19. The Observational and Theoretical Tidal Radii of Globular Clusters in M87

    NASA Astrophysics Data System (ADS)

    Webb, Jeremy J.; Sills, Alison; Harris, William E.

    2012-02-01

    Globular clusters have linear sizes (tidal radii) which theory tells us are determined by their masses and by the gravitational potential of their host galaxy. To explore the relationship between observed and expected radii, we utilize the globular cluster population of the Virgo giant M87. Unusually deep, high signal-to-noise images of M87 are used to measure the effective and limiting radii of approximately 2000 globular clusters. To compare with these observations, we simulate a globular cluster population that has the same characteristics as the observed M87 cluster population. Placing these simulated clusters in the well-studied tidal field of M87, the orbit of each cluster is solved and the theoretical tidal radius of each cluster is determined. We compare the predicted relationship between cluster size and projected galactocentric distance to observations. We find that for an isotropic distribution of cluster velocities, theoretical tidal radii are approximately equal to observed limiting radii for R gc < 10 kpc. However, the isotropic simulation predicts a steep increase in cluster size at larger radii, which is not observed in large galaxies beyond the Milky Way. To minimize the discrepancy between theory and observations, we explore the effects of orbital anisotropy on cluster sizes, and suggest a possible orbital anisotropy profile for M87 which yields a better match between theory and observations. Finally, we suggest future studies which will establish a stronger link between theoretical tidal radii and observed radii.

  20. Variations in Metallicity and Gas Content in Spiral Galaxies: Accidents of Infall

    NASA Astrophysics Data System (ADS)

    Shields, Gregory A.; Robertson, P.; Dave, R.; Blanc, G. A.; Wright, A.

    2013-01-01

    Oxygen abundances are elevated in hydrogen deficient spirals in the Virgo and Pegasus clusters (Robertson et al. 2012, ApJ 748:48, and references therein). We confirm the relationship between O/H and H I deficiency "DEF" for an additional set of cluster spirals. In addition, we find that field spirals show a similar increase in O/H with DEF. Thus, the relationship is not uniquely the result of environmental processes in clusters. Cosmological simulations of galaxy formation predict a qualitatively similar trend of O/H with DEF for field spirals. This reflects excursions of gas content and metallicity above and below the mean mass-metallicity relationship as galaxies evolve. These excursions result from the stochastic effects of mergers and merger-free periods during the evolution.

  1. Discovery of a Large-Scale Filament Connected to the Massive Galaxy Cluster MACS J0717.5+3745 at z=0.551,

    NASA Astrophysics Data System (ADS)

    Ebeling, H.; Barrett, E.; Donovan, D.

    2004-07-01

    We report the detection of a 4 h-170 Mpc long large-scale filament leading into the massive galaxy cluster MACS J0717.5+3745. The extent of this object well beyond the cluster's nominal virial radius (~2.3 Mpc) rules out prior interaction between its constituent galaxies and the cluster and makes it a prime candidate for a genuine filament as opposed to a merger remnant or a double cluster. The structure was discovered as a pronounced overdensity of galaxies selected to have V-R colors close to the cluster red sequence. Extensive spectroscopic follow-up of over 300 of these galaxies in a region covering the filament and the cluster confirms that the entire structure is located at the cluster redshift of z=0.545. Featuring galaxy surface densities of typically 15 Mpc-2 down to luminosities of 0.13L*V, the most diffuse parts of the filament are comparable in density to the clumps of red galaxies found around A851 in the only similar study carried out to date (Kodama et al.). Our direct detection of an extended large-scale filament funneling matter onto a massive distant cluster provides a superb target for in-depth studies of the evolution of galaxies in environments of greatly varying density and supports the predictions from theoretical models and numerical simulations of structure formation in a hierarchical picture. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The observatory was made possible by the generous financial support of the W. M. Keck Foundation. Based partly on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (US), the Particle Physics and Astronomy Research Council (UK), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), CNP (Brazil), and CONICET (Argentina).

  2. The Next Generation Virgo Cluster Survey. IV. NGC 4216: A Bombarded Spiral in the Virgo Cluster

    NASA Astrophysics Data System (ADS)

    Paudel, Sanjaya; Duc, Pierre-Alain; Côté, Patrick; Cuillandre, Jean-Charles; Ferrarese, Laura; Ferriere, Etienne; Gwyn, Stephen D. J.; Mihos, J. Christopher; Vollmer, Bernd; Balogh, Michael L.; Carlberg, Ray G.; Boissier, Samuel; Boselli, Alessandro; Durrell, Patrick R.; Emsellem, Eric; MacArthur, Lauren A.; Mei, Simona; Michel-Dansac, Leo; van Driel, Wim

    2013-04-01

    The final stages of mass assembly of present-day massive galaxies are expected to occur through the accretion of multiple satellites. Cosmological simulations thus predict a high frequency of stellar streams resulting from this mass accretion around the massive galaxies in the Local Volume. Such tidal streams are difficult to observe, especially in dense cluster environments, where they are readily destroyed. We present an investigation into the origins of a series of interlaced narrow filamentary stellar structures, loops and plumes in the vicinity of the Virgo Cluster, edge-on spiral galaxy, NGC 4216 that were previously identified by the Blackbird telescope. Using the deeper, higher-resolution, and precisely calibrated optical CFHT/MegaCam images obtained as part of the Next Generation Virgo Cluster Survey (NGVS), we confirm the previously identified features and identify a few additional structures. The NGVS data allowed us to make a physical study of these low surface brightness features and investigate their origin. The likely progenitors of the structures were identified as either already cataloged Virgo Cluster Catalog dwarfs or newly discovered satellites caught in the act of being destroyed. They have the same g - i color index and likely contain similar stellar populations. The alignment of three dwarfs along an apparently single stream is intriguing, and we cannot totally exclude that these are second-generation dwarf galaxies being born inside the filament from the debris of an original dwarf. The observed complex structures, including in particular a stream apparently emanating from a satellite of a satellite, point to a high rate of ongoing dwarf destruction/accretion in the region of the Virgo Cluster where NGC 4216 is located. We discuss the age of the interactions and whether they occurred in a group that is just falling into the cluster and shows signs of the so-called pre-processing before it gets affected by the cluster environment, or in a group which already ventured toward the central regions of Virgo Cluster. In any case, compared to the other spiral galaxies in the Virgo Cluster, but also to those located in lower density environments, NGC 4216 seems to suffer an unusually heavy bombardment. Further studies will be needed to determine whether, given the surface brightness limit of our survey, about 29 mag arcsec-2, the number of observed streams around that galaxy is as predicted by cosmological simulations or conversely, whether the possible lack of similar structures in other galaxies poses a challenge to the merger-based model of galaxy mass assembly. Based on observations obtained with MegaPrime/MegaCam, a joint project of Canada-France-Hawaii Telescope (CFHT) and CEA/DAPNIA, at the CFHT which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.

  3. The origin of ICM enrichment in the outskirts of present-day galaxy clusters from cosmological hydrodynamical simulations

    NASA Astrophysics Data System (ADS)

    Biffi, V.; Planelles, S.; Borgani, S.; Rasia, E.; Murante, G.; Fabjan, D.; Gaspari, M.

    2018-05-01

    The uniformity of the intracluster medium (ICM) enrichment level in the outskirts of nearby galaxy clusters suggests that chemical elements were deposited and widely spread into the intergalactic medium before the cluster formation. This observational evidence is supported by numerical findings from cosmological hydrodynamical simulations, as presented in Biffi et al., including the effect of thermal feedback from active galactic nuclei. Here, we further investigate this picture, by tracing back in time the spatial origin and metallicity evolution of the gas residing at z = 0 in the outskirts of simulated galaxy clusters. In these regions, we find a large distribution of iron abundances, including a component of highly enriched gas, already present at z = 2. At z > 1, the gas in the present-day outskirts was distributed over tens of virial radii from the main cluster and had been already enriched within high-redshift haloes. At z = 2, about 40 {per cent} of the most Fe-rich gas at z = 0 was not residing in any halo more massive than 10^{11} h^{-1} M_{⊙} in the region and yet its average iron abundance was already 0.4, w.r.t. the solar value by Anders & Grevesse. This confirms that the in situ enrichment of the ICM in the outskirts of present-day clusters does not play a significant role, and its uniform metal abundance is rather the consequence of the accretion of both low-metallicity and pre-enriched (at z > 2) gas, from the diffuse component and through merging substructures. These findings do not depend on the mass of the cluster nor on its core properties.

  4. Anisotropic thermal conduction with magnetic fields in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Arth, Alexander; Dolag, Klaus; Beck, Alexander; Petkova, Margarita; Lesch, Harald

    2015-08-01

    Magnetic fields play an important role for the propagation and diffusion of charged particles, which are responsible for thermal conduction. In this poster, we present an implementation of thermal conduction including the anisotropic effects of magnetic fields for smoothed particle hydrodynamics (SPH). The anisotropic thermal conduction is mainly proceeding parallel to magnetic fields and suppressed perpendicular to the fields. We derive the SPH formalism for the anisotropic heat transport and solve the corresponding equation with an implicit conjugate gradient scheme. We discuss several issues of unphysical heat transport in the cases of extreme ansiotropies or unmagnetized regions and present possible numerical workarounds. We implement our algorithm into the cosmological simulation code GADGET and study its behaviour in several test cases. In general, we reproduce the analytical solutions of our idealised test problems, and obtain good results in cosmological simulations of galaxy cluster formations. Within galaxy clusters, the anisotropic conduction produces a net heat transport similar to an isotropic Spitzer conduction model with low efficiency. In contrast to isotropic conduction our new formalism allows small-scale structure in the temperature distribution to remain stable, because of their decoupling caused by magnetic field lines. Compared to observations, strong isotropic conduction leads to an oversmoothed temperature distribution within clusters, while the results obtained with anisotropic thermal conduction reproduce the observed temperature fluctuations well. A proper treatment of heat transport is crucial especially in the outskirts of clusters and also in high density regions. It's connection to the local dynamical state of the cluster also might contribute to the observed bimodal distribution of cool core and non cool core clusters. Our new scheme significantly advances the modelling of thermal conduction in numerical simulations and overall gives better results compared to observations.

  5. Properties of galaxies reproduced by a hydrodynamic simulation.

    PubMed

    Vogelsberger, M; Genel, S; Springel, V; Torrey, P; Sijacki, D; Xu, D; Snyder, G; Bird, S; Nelson, D; Hernquist, L

    2014-05-08

    Previous simulations of the growth of cosmic structures have broadly reproduced the 'cosmic web' of galaxies that we see in the Universe, but failed to create a mixed population of elliptical and spiral galaxies, because of numerical inaccuracies and incomplete physical models. Moreover, they were unable to track the small-scale evolution of gas and stars to the present epoch within a representative portion of the Universe. Here we report a simulation that starts 12 million years after the Big Bang, and traces 13 billion years of cosmic evolution with 12 billion resolution elements in a cube of 106.5 megaparsecs a side. It yields a reasonable population of ellipticals and spirals, reproduces the observed distribution of galaxies in clusters and characteristics of hydrogen on large scales, and at the same time matches the 'metal' and hydrogen content of galaxies on small scales.

  6. The origin of the Milky Way globular clusters

    NASA Astrophysics Data System (ADS)

    Renaud, Florent; Agertz, Oscar; Gieles, Mark

    2017-03-01

    We present a cosmological zoom-in simulation of a Milky Way-like galaxy used to explore the formation and evolution of star clusters. We investigate in particular the origin of the bimodality observed in the colour and metallicity of globular clusters, and the environmental evolution through cosmic times in the form of tidal tensors. Our results self-consistently confirm previous findings that the blue, metal-poor clusters form in satellite galaxies that are accreted on to the Milky Way, while the red, metal-rich clusters form mostly in situ, or, to a lower extent, in massive, self-enriched galaxies merging with the Milky Way. By monitoring the tidal fields these populations experience, we find that clusters formed in situ (generally centrally concentrated) feel significantly stronger tides than the accreted ones, both in the present day, and when averaged over their entire life. Furthermore, we note that the tidal field experienced by Milky Way clusters is significantly weaker in the past than at present day, confirming that it is unlikely that a power-law cluster initial mass function like that of young massive clusters, is transformed into the observed peaked distribution in the Milky Way with relaxation-driven evaporation in a tidal field.

  7. The Impact of Environment on the Stellar Mass–Halo Mass Relation

    NASA Astrophysics Data System (ADS)

    Golden-Marx, Jesse B.; Miller, Christopher J.

    2018-06-01

    A large variance exists in the amplitude of the stellar mass–halo mass (SMHM) relation for group- and cluster-size halos. Using a sample of 254 clusters, we show that the magnitude gap between the brightest central galaxy (BCG) and its second or fourth brightest neighbor accounts for a significant portion of this variance. We find that at fixed halo mass, galaxy clusters with a larger magnitude gap have a higher BCG stellar mass. This relationship is also observed in semi-analytic representations of low-redshift galaxy clusters in simulations. This SMHM–magnitude gap stratification likely results from BCG growth via hierarchical mergers and may link the assembly of the halo with the growth of the BCG. Using a Bayesian model, we quantify the importance of the magnitude gap in the SMHM relation using a multiplicative stretch factor, which we find to be significantly non-zero. The inclusion of the magnitude gap in the SMHM relation results in a large reduction in the inferred intrinsic scatter in the BCG stellar mass at fixed halo mass. We discuss the ramifications of this result in the context of galaxy formation models of centrals in group- and cluster-size halos.

  8. Probing the Curious Case of a Galaxy Cluster Merger in Abell 115 with High-fidelity Chandra X-Ray Temperature and Radio Maps

    NASA Astrophysics Data System (ADS)

    Hallman, Eric J.; Alden, Brian; Rapetti, David; Datta, Abhirup; Burns, Jack O.

    2018-05-01

    We present results from an X-ray and radio study of the merging galaxy cluster Abell 115. We use the full set of five Chandra observations taken of A115 to date (360 ks total integration) to construct high-fidelity temperature and surface brightness maps. We also examine radio data from the Very Large Array at 1.5 GHz and the Giant Metrewave Radio Telescope at 0.6 GHz. We propose that the high X-ray spectral temperature between the subclusters results from the interaction of the bow shocks driven into the intracluster medium by the motion of the subclusters relative to one another. We have identified morphologically similar scenarios in Enzo numerical N-body/hydrodynamic simulations of galaxy clusters in a cosmological context. In addition, the giant radio relic feature in A115, with an arc-like structure and a relatively flat spectral index, is likely consistent with other shock-associated giant radio relics seen in other massive galaxy clusters. We suggest a dynamical scenario that is consistent with the structure of the X-ray gas, the hot region between the clusters, and the radio relic feature.

  9. Galaxy Protoclusters as Drivers of Cosmic Star Formation History in the First 2 Gyr

    NASA Astrophysics Data System (ADS)

    Chiang, Yi-Kuan; Overzier, Roderik A.; Gebhardt, Karl; Henriques, Bruno

    2017-08-01

    Present-day clusters are massive halos containing mostly quiescent galaxies, while distant protoclusters are extended structures containing numerous star-forming galaxies. We investigate the implications of this fundamental change in a cosmological context using a set of N-body simulations and semi-analytic models. We find that the fraction of the cosmic volume occupied by all (proto)clusters increases by nearly three orders of magnitude from z = 0 to z = 7. We show that (proto)cluster galaxies are an important and even dominant population at high redshift, as their expected contribution to the cosmic star formation rate density rises (from 1% at z = 0) to 20% at z = 2 and 50% at z = 10. Protoclusters thus provide a significant fraction of the cosmic ionizing photons, and may have been crucial in driving the timing and topology of cosmic reionization. Internally, the average history of cluster formation can be described by three distinct phases: at z ˜ 10-5, galaxy growth in protoclusters proceeded in an inside-out manner, with centrally dominant halos that are among the most active regions in the universe; at z ˜ 5-1.5, rapid star formation occurred within the entire 10-20 Mpc structures, forming most of their present-day stellar mass; at z ≲ 1.5, violent gravitational collapse drove these stellar contents into single cluster halos, largely erasing the details of cluster galaxy formation due to relaxation and virialization. Our results motivate observations of distant protoclusters in order to understand the rapid, extended stellar growth during cosmic noon, and their connection to reionization during cosmic dawn.

  10. The effect of host cluster gravitational tidal forces on the internal dynamics of spiral galaxies

    NASA Astrophysics Data System (ADS)

    Mayer, Alexander

    2013-04-01

    New empirical observation by Bidin, Carraro, Mendez & Smith finds ``a lack of dark matter in the Solar neighborhood" (2012 ApJ 751, 30). This, and the discovery of a vast polar structure of Milky Way satellites by Pawlowski, Pflamm-Altenburg & Kroupa (2012 MNRAS 423, 1109), conflict with the prevailing interpretation of the measured Galactic rotation curve. Simulating the dynamical effects of host cluster tidal forces on galaxy disks reveals radial migration in a spiral structure and an orbital velocity that accelerates with increasing galactocentric radial coordinate. A virtual ``toy model,'' which is based on an Earth-orbiting system of particles and is physically realizable in principle, is available at GravitySim.net. Given the perturbing gravitational effect of the host cluster on a spiral galaxy disk and that a similar effect does not exist for the Solar System, the two systems represent distinct classes of gravitational dynamical systems. The observed `flat' and accelerating rotation curves of spiral galaxies can be attributed to gravitational interaction with the host cluster; no `dark matter halo' is required to explain the observable.

  11. Cool Core Bias in Sunyaev-Zel’dovich Galaxy Cluster Surveys

    DOE PAGES

    Lin, Henry W.; McDonald, Michael; Benson, Bradford; ...

    2015-03-18

    Sunyaev-Zeldovich (SZ) surveys find massive clusters of galaxies by measuring the inverse Compton scattering of cosmic microwave background off of intra-cluster gas. The cluster selection function from such surveys is expected to be nearly independent of redshift and cluster astrophysics. In this work, we estimate the effect on the observed SZ signal of centrally-peaked gas density profiles (cool cores) and radio emission from the brightest cluster galaxy (BCG) by creating mock observations of a sample of clusters that span the observed range of classical cooling rates and radio luminosities. For each cluster, we make simulated SZ observations by the Southmore » Pole Telescope and characterize the cluster selection function, but note that our results are broadly applicable to other SZ surveys. We find that the inclusion of a cool core can cause a change in the measured SPT significance of a cluster between 0.01%–10% at z > 0.3, increasing with cuspiness of the cool core and angular size on the sky of the cluster (i.e., decreasing redshift, increasing mass). We provide quantitative estimates of the bias in the SZ signal as a function of a gas density cuspiness parameter, redshift, mass, and the 1.4 GHz radio luminosity of the central AGN. Based on this work, we estimate that, for the Phoenix cluster (one of the strongest cool cores known), the presence of a cool core is biasing the SZ significance high by ~6%. The ubiquity of radio galaxies at the centers of cool core clusters will offset the cool core bias to varying degrees« less

  12. VIVA (VLA Imaging of Virgo in Atomic gas): H I Stripping in Virgo Galaxies

    NASA Astrophysics Data System (ADS)

    Chung, A.; van Gorkom, J. H.; Crowl, H.; Kenney, J. D. P.; Vollmer, B.

    2008-08-01

    We present results of a new Very Large Array survey of 53 Virgo galaxies (48 spirals and 5 dwarf/irregular systems). The goal is to study how the H I gas properties are affected by the cluster environment. The survey covers galaxies in a wide range of densities from the center of the cluster to more than 3 Mpc from M 87. The gas is imaged down to a column-density sensitivity of a few times 1019cm-2. We find examples of gas stripping at all stages. Within ˜0.5 Mpc from M 87, most galaxies are severely H I stripped. The H I disks are truncated to well within the optical disks. While the H I looks asymmetric, the outer stellar disks look undisturbed. The fact that only the gas and not the stars has been stripped suggests that those galaxies have been affected by the hot and dense cluster gas. Interestingly we also find a few truncated disks at large projected distances from the center. Although some of these may have been stripped while crossing the cluster core, a detailed population-synthesis study of the outer disk of one of these shows that star formation was terminated recently. The time since stripping is too short for the galaxy to have traveled from the core to its current location. So at least one galaxy has lost its gas from the outer disk by another mechanism than ram-pressure stripping in the dense cluster core. At intermediate- to low-density regions (>0.6 Mpc) we find H I tails with various lengths. We find seven galaxies with long one-sided H I tails pointing away from M 87. The galaxies are at 0.6-1 Mpc from M 87. Since these galaxies are only mildly H I deficient and the tails point away from M 87, these galaxies are probably falling into the cluster for the first time on highly radial orbits. For all but two of the galaxies the estimated ram pressure at their location in the cluster would be sufficient to pull out the H I in the very outer disks. One galaxy also looks optically disturbed and a simulation suggests that a combination of ram pressure plus a tidal interaction has pulled out the tail. In the outskirts of the cluster we find several examples of tidally interacting galaxies. We possibly see evidence for some accretion of gas as well. Lastly, the merging of subclusters with Virgo can cause bulk motions of the ICM. We see one example of a galaxy far out that appears to be ram-pressure stripped by a dynamic ICM. In summary, our results show that galaxies are already affected in the low-density outer regions of the cluster through ram-pressure stripping and tidal interactions, or a combination of both.

  13. A SYSTEMATIC ANALYSIS OF CAUSTIC METHODS FOR GALAXY CLUSTER MASSES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gifford, Daniel; Miller, Christopher; Kern, Nicholas

    We quantify the expected observed statistical and systematic uncertainties of the escape velocity as a measure of the gravitational potential and total mass of galaxy clusters. We focus our attention on low redshift (z {<=}0.15) clusters, where large and deep spectroscopic datasets currently exist. Utilizing a suite of Millennium Simulation semi-analytic galaxy catalogs, we find that the dynamical mass, as traced by either the virial relation or the escape velocity, is robust to variations in how dynamical friction is applied to ''orphan'' galaxies in the mock catalogs (i.e., those galaxies whose dark matter halos have fallen below the resolution limit).more » We find that the caustic technique recovers the known halo masses (M{sub 200}) with a third less scatter compared to the virial masses. The bias we measure increases quickly as the number of galaxies used decreases. For N{sub gal} > 25, the scatter in the escape velocity mass is dominated by projections along the line-of-sight. Algorithmic uncertainties from the determination of the projected escape velocity profile are negligible. We quantify how target selection based on magnitude, color, and projected radial separation can induce small additional biases into the escape velocity masses. Using N{sub gal} = 150 (25), the caustic technique has a per cluster scatter in ln (M|M{sub 200}) of 0.3 (0.5) and bias 1% {+-} 3{r_brace} (16% {+-} 5{r_brace}) for clusters with masses >10{sup 14} M{sub Sun} at z < 0.15.« less

  14. Evolution of the degree of substructures in simulated galaxy clusters

    NASA Astrophysics Data System (ADS)

    De Boni, Cristiano; Böhringer, Hans; Chon, Gayoung; Dolag, Klaus

    2018-05-01

    We study the evolution of substructure in the mass distribution with mass, redshift and radius in a sample of simulated galaxy clusters. The sample, containing 1226 objects, spans the mass range M200 = 1014 - 1.74 × 1015 M⊙ h-1 in six redshift bins from z = 0 to z = 1.179. We consider three different diagnostics: 1) subhalos identified with SUBFIND; 2) overdense regions localized by dividing the cluster into octants; 3) offset between the potential minimum and the center of mass. The octant analysis is a new method that we introduce in this work. We find that none of the diagnostics indicate a correlation between the mass of the cluster and the fraction of substructures. On the other hand, all the diagnostics suggest an evolution of substructures with redshift. For SUBFIND halos, the mass fraction is constant with redshift at Rvir, but shows a mild evolution at R200 and R500. Also, the fraction of clusters with at least a subhalo more massive than one thirtieth of the total mass is less than 20%. Our new method based on the octants returns a mass fraction in substructures which has a strong evolution with redshift at all radii. The offsets also evolve strongly with redshift. We also find a strong correlation for individual clusters between the offset and the fraction of substructures identified with the octant analysis. Our work puts strong constraints on the amount of substructures we expect to find in galaxy clusters and on their evolution with redshift.

  15. Characterization of the velocity anisotropy of accreted globular clusters

    NASA Astrophysics Data System (ADS)

    Bianchini, P.; Sills, A.; Miholics, M.

    2017-10-01

    Galactic globular clusters (GCs) are believed to have formed in situ in the Galaxy as well as in dwarf galaxies later accreted on to the Milky Way. However, to date, there is no unambiguous signature to distinguish accreted GCs. Using specifically designed N-body simulations of GCs evolving in a variety of time-dependent tidal fields (describing the potential of a dwarf galaxy-Milky Way merger), we analyse the effects imprinted on the internal kinematics of an accreted GC. In particular, we look at the evolution of the velocity anisotropy. Our simulations show that at early phases, the velocity anisotropy is determined by the tidal field of the dwarf galaxy and subsequently the clusters will adapt to the new tidal environment, losing any signature of their original environment in a few relaxation times. At 10 Gyr, GCs exhibit a variety of velocity anisotropy profiles, namely, isotropic velocity distribution in the inner regions and either isotropy or radial/tangential anisotropy in the intermediate and outer regions. Independent of an accreted origin, the velocity anisotropy primarily depends on the strength of the tidal field cumulatively experienced by a cluster. Tangentially anisotropic clusters correspond to systems that have experienced stronger tidal fields and are characterized by higher tidal filling factor, r50/rj ≳ 0.17, higher mass-loss ≳ 60 per cent and relaxation times trel ≲ 109 Gyr. Interestingly, we demonstrate that the presence of tidal tails can significantly contaminate the measurements of velocity anisotropy when a cluster is observed in projection. Our characterization of the velocity anisotropy profiles in different tidal environments provides a theoretical benchmark for the interpretation of the unprecedented amount of three-dimensional kinematic data progressively available for Galactic GCs.

  16. Dark matter dynamics in Abell 3827: new data consistent with standard cold dark matter

    NASA Astrophysics Data System (ADS)

    Massey, Richard; Harvey, David; Liesenborgs, Jori; Richard, Johan; Stach, Stuart; Swinbank, Mark; Taylor, Peter; Williams, Liliya; Clowe, Douglas; Courbin, Frédéric; Edge, Alastair; Israel, Holger; Jauzac, Mathilde; Joseph, Rémy; Jullo, Eric; Kitching, Thomas D.; Leonard, Adrienne; Merten, Julian; Nagai, Daisuke; Nightingale, James; Robertson, Andrew; Romualdez, Luis Javier; Saha, Prasenjit; Smit, Renske; Tam, Sut-Ieng; Tittley, Eric

    2018-06-01

    We present integral field spectroscopy of galaxy cluster Abell 3827, using Atacama Large Millimetre Array (ALMA) and Very Large Telescope/Multi-Unit Spectroscopic Explorer. It reveals an unusual configuration of strong gravitational lensing in the cluster core, with at least seven lensed images of a single background spiral galaxy. Lens modelling based on Hubble Space Telescope imaging had suggested that the dark matter associated with one of the cluster's central galaxies may be offset. The new spectroscopic data enable better subtraction of foreground light, and better identification of multiple background images. The inferred distribution of dark matter is consistent with being centred on the galaxies, as expected by Λ cold dark matter. Each galaxy's dark matter also appears to be symmetric. Whilst, we do not find an offset between mass and light (suggestive of self-interacting dark matter) as previously reported, the numerical simulations that have been performed to calibrate Abell 3827 indicate that offsets and asymmetry are still worth looking for in collisions with particular geometries. Meanwhile, ALMA proves exceptionally useful for strong lens image identifications.

  17. The Emergence of Star Clusters

    NASA Astrophysics Data System (ADS)

    Calzetti, Daniela

    2017-08-01

    We propose to measure the timescale for the clearing of natal dust by young star clusters. We will augment existing archival UV-to-I imaging data with new WFC3/IR images at J, H, and Paschen-beta for a sample of six nearby star forming galaxies. Under the standard scenario that the clearing is performed by supernovae (> 3 Myr), simulations show that not enough ionizing photons can escape galaxies and reionize the Universe at z>6. However, the actual clearing timescale is poorly established. We will obtain accurate ages and extinctions for the embedded and emergent young clusters in our target galaxies, in order to: (1) determine whether dust clearing occurs before or after 3 Myr, (2) investigate environmental dependencies for the timescale, and (3) establish the principal mechanisms for enabling the escape of ionizing photons from galaxies. Our project provides the physical footing for future JWST observations aimed at determining the sources of reionization of the Universe. The combination of archival and new images will also equip the community with a lasting legacy of homogeneous UV-to-IR coverage for a sample of nearby galaxies.

  18. AMICO: optimized detection of galaxy clusters in photometric surveys

    NASA Astrophysics Data System (ADS)

    Bellagamba, Fabio; Roncarelli, Mauro; Maturi, Matteo; Moscardini, Lauro

    2018-02-01

    We present Adaptive Matched Identifier of Clustered Objects (AMICO), a new algorithm for the detection of galaxy clusters in photometric surveys. AMICO is based on the Optimal Filtering technique, which allows to maximize the signal-to-noise ratio (S/N) of the clusters. In this work, we focus on the new iterative approach to the extraction of cluster candidates from the map produced by the filter. In particular, we provide a definition of membership probability for the galaxies close to any cluster candidate, which allows us to remove its imprint from the map, allowing the detection of smaller structures. As demonstrated in our tests, this method allows the deblending of close-by and aligned structures in more than 50 per cent of the cases for objects at radial distance equal to 0.5 × R200 or redshift distance equal to 2 × σz, being σz the typical uncertainty of photometric redshifts. Running AMICO on mocks derived from N-body simulations and semi-analytical modelling of the galaxy evolution, we obtain a consistent mass-amplitude relation through the redshift range of 0.3 < z < 1, with a logarithmic slope of ∼0.55 and a logarithmic scatter of ∼0.14. The fraction of false detections is steeply decreasing with S/N and negligible at S/N > 5.

  19. Scaling Relations from Sunyaev-Zel'dovich Effect and Chandra X-ray Measurements of High-Redshift Galaxy Clusters

    NASA Technical Reports Server (NTRS)

    Bonamente, Massimiliano; Joy, Marshall; LaRoque, Samuel J.; Carlstrom, John E.; Nagai, Daisuke; Marrone, Dan

    2007-01-01

    We present Sunyaev-Zel'dovich Effect (SZE) scaling relations for 38 massive galaxy clusters at redshifts 0.14 less than or equal to z less than or equal to 0.89, observed with both the Chandra X-ray Observatory and the centimeter-wave SZE imaging system at the BIMA and OVRO interferometric arrays. An isothermal ,Beta-model with central 100 kpc excluded from the X-ray data is used to model the intracluster medium and to measure global cluster properties. For each Cluster, we measure the X-ray spectroscopic temperature, SZE gas mass, total mass. and integrated Compton-gamma parameters within r(sub 2500). Our measurements are in agreement with the expectations based on a simple self-similar model of cluster formation and evolution. We compare the cluster properties derived from our SZE observations with and without Chandra spatial and spectral information and find them to be in good agreement: We compare our results with cosmological numerical simulations, and find that simulations that include radiative cooling, star formation and feedback match well both the slope and normalization of our SZE scaling relations.

  20. Simulating the impact of dust cooling on the statistical properties of the intra-cluster medium

    NASA Astrophysics Data System (ADS)

    Pointecouteau, Etienne; da Silva, Antonio; Catalano, Andrea; Montier, Ludovic; Lanoux, Joseph; Roncarelli, Mauro; Giard, Martin

    2009-08-01

    From the first stages of star and galaxy formation, non-gravitational processes such as ram pressure stripping, SNs, galactic winds, AGNs, galaxy-galaxy mergers, etc. lead to the enrichment of the IGM in stars, metals as well as dust, via the ejection of galactic material into the IGM. We know now that these processes shape, side by side with gravitation, the formation and the evolution of structures. We present here hydrodynamic simulations of structure formation implementing the effect of the cooling by dust on large scale structure formation. We focus on the scale of galaxy clusters and study the statistical properties of clusters. Here, we present our results on the TX-M and the LX-M scaling relations which exhibit changes on both the slope and normalization when adding cooling by dust to the standard radiative cooling model. For example, the normalization of the TX-M relation changes only by a maximum of 2% at M=1014M⊙ whereas the normalization of the LX-TX changes by as much as 10% at TX=1keV for models that including dust cooling. Our study shows that the dust is an added non-gravitational process that contributes shaping the thermodynamical state of the hot ICM gas.

  1. The Peculiarities in O-Type Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Panko, E. A.; Emelyanov, S. I.

    We present the results of analysis of 2D distribution of galaxies in galaxy cluster fields. The Catalogue of Galaxy Clusters and Groups PF (Panko & Flin) was used as input observational data set. We selected open rich PF galaxy clusters, containing 100 and more galaxies for our study. According to Panko classification scheme open galaxy clusters (O-type) have no concentration to the cluster center. The data set contains both pure O-type clusters and O-type clusters with overdence belts, namely OL and OF types. According to Rood & Sastry and Struble & Rood ideas, the open galaxy clusters are the beginning stage of cluster evolution. We found in the O-type clusters some types of statistically significant regular peculiarities, such as two crossed belts or curved strip. We suppose founded features connected with galaxy clusters evolution and the distribution of DM inside the clusters.

  2. K2: A NEW METHOD FOR THE DETECTION OF GALAXY CLUSTERS BASED ON CANADA-FRANCE-HAWAII TELESCOPE LEGACY SURVEY MULTICOLOR IMAGES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thanjavur, Karun; Willis, Jon; Crampton, David, E-mail: karun@uvic.c

    2009-11-20

    We have developed a new method, K2, optimized for the detection of galaxy clusters in multicolor images. Based on the Red Sequence approach, K2 detects clusters using simultaneous enhancements in both colors and position. The detection significance is robustly determined through extensive Monte Carlo simulations and through comparison with available cluster catalogs based on two different optical methods, and also on X-ray data. K2 also provides quantitative estimates of the candidate clusters' richness and photometric redshifts. Initially, K2 was applied to the two color (gri) 161 deg{sup 2} images of the Canada-France-Hawaii Telescope Legacy Survey Wide (CFHTLS-W) data. Our simulationsmore » show that the false detection rate for these data, at our selected threshold, is only approx1%, and that the cluster catalogs are approx80% complete up to a redshift of z = 0.6 for Fornax-like and richer clusters and to z approx 0.3 for poorer clusters. Based on the g-, r-, and i-band photometric catalogs of the Terapix T05 release, 35 clusters/deg{sup 2} are detected, with 1-2 Fornax-like or richer clusters every 2 deg{sup 2}. Catalogs containing data for 6144 galaxy clusters have been prepared, of which 239 are rich clusters. These clusters, especially the latter, are being searched for gravitational lenses-one of our chief motivations for cluster detection in CFHTLS. The K2 method can be easily extended to use additional color information and thus improve overall cluster detection to higher redshifts. The complete set of K2 cluster catalogs, along with the supplementary catalogs for the member galaxies, are available on request from the authors.« less

  3. Testing the Reliability of Cluster Mass Indicators with a Systematics Limited Dataset

    NASA Technical Reports Server (NTRS)

    Juett, Adrienne M.; Davis, David S.; Mushotzky, Richard

    2009-01-01

    We present the mass X-ray observable scaling relationships for clusters of galaxies using the XMM-Newton cluster catalog of Snowden et al. Our results are roughly consistent with previous observational and theoretical work, with one major exception. We find 2-3 times the scatter around the best fit mass scaling relationships as expected from cluster simulations or seen in other observational studies. We suggest that this is a consequence of using hydrostatic mass, as opposed to virial mass, and is due to the explicit dependence of the hydrostatic mass on the gradients of the temperature and gas density profiles. We find a larger range of slope in the cluster temperature profiles at radii 500 than previous observational studies. Additionally, we find only a weak dependence of the gas mass fraction on cluster mass, consistent with a constant. Our average gas mass fraction results also argue for a closer study of the systematic errors due to instrumental calibration and modeling method variations between analyses. We suggest that a more careful study of the differences between various observational results and with cluster simulations is needed to understand sources of bias and scatter in cosmological studies of galaxy clusters.

  4. Intrinsic alignment of redMaPPer clusters: cluster shape-matter density correlation

    NASA Astrophysics Data System (ADS)

    van Uitert, Edo; Joachimi, Benjamin

    2017-07-01

    We measure the alignment of the shapes of galaxy clusters, as traced by their satellite distributions, with the matter density field using the public redMaPPer catalogue based on Sloan Digital Sky Survey-Data Release 8 (SDSS-DR8), which contains 26 111 clusters up to z ˜ 0.6. The clusters are split into nine redshift and richness samples; in each of them, we detect a positive alignment, showing that clusters point towards density peaks. We interpret the measurements within the tidal alignment paradigm, allowing for a richness and redshift dependence. The intrinsic alignment (IA) amplitude at the pivot redshift z = 0.3 and pivot richness λ = 30 is A_IA^gen=12.6_{-1.2}^{+1.5}. We obtain tentative evidence that the signal increases towards higher richness and lower redshift. Our measurements agree well with results of maxBCG clusters and with dark-matter-only simulations. Comparing our results to the IA measurements of luminous red galaxies, we find that the IA amplitude of galaxy clusters forms a smooth extension towards higher mass. This suggests that these systems share a common alignment mechanism, which can be exploited to improve our physical understanding of IA.

  5. The MUSIC of galaxy clusters - II. X-ray global properties and scaling relations

    NASA Astrophysics Data System (ADS)

    Biffi, V.; Sembolini, F.; De Petris, M.; Valdarnini, R.; Yepes, G.; Gottlöber, S.

    2014-03-01

    We present the X-ray properties and scaling relations of a large sample of clusters extracted from the Marenostrum MUltidark SImulations of galaxy Clusters (MUSIC) data set. We focus on a sub-sample of 179 clusters at redshift z ˜ 0.11, with 3.2 × 1014 h-1 M⊙ < Mvir < 2 × 1015 h-1 M⊙, complete in mass. We employed the X-ray photon simulator PHOX to obtain synthetic Chandra observations and derive observable-like global properties of the intracluster medium (ICM), as X-ray temperature (TX) and luminosity (LX). TX is found to slightly underestimate the true mass-weighted temperature, although tracing fairly well the cluster total mass. We also study the effects of TX on scaling relations with cluster intrinsic properties: total (M500 and gas Mg,500 mass; integrated Compton parameter (YSZ) of the Sunyaev-Zel'dovich (SZ) thermal effect; YX = Mg,500 TX. We confirm that YX is a very good mass proxy, with a scatter on M500-YX and YSZ-YX lower than 5 per cent. The study of scaling relations among X-ray, intrinsic and SZ properties indicates that simulated MUSIC clusters reasonably resemble the self-similar prediction, especially for correlations involving TX. The observational approach also allows for a more direct comparison with real clusters, from which we find deviations mainly due to the physical description of the ICM, affecting TX and, particularly, LX.

  6. LATE POP III STAR FORMATION DURING THE EPOCH OF REIONIZATION: RESULTS FROM THE RENAISSANCE SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Hao; Norman, Michael L.; O’Shea, Brian W.

    2016-06-01

    We present results on the formation of Population III (Pop III) stars at redshift 7.6 from the Renaissance Simulations, a suite of extremely high-resolution and physics-rich radiation transport hydrodynamics cosmological adaptive-mesh refinement simulations of high-redshift galaxy formation performed on the Blue Waters supercomputer. In a survey volume of about 220 comoving Mpc{sup 3}, we found 14 Pop III galaxies with recent star formation. The surprisingly late formation of Pop III stars is possible due to two factors: (i) the metal enrichment process is local and slow, leaving plenty of pristine gas to exist in the vast volume; and (ii) strongmore » Lyman–Werner radiation from vigorous metal-enriched star formation in early galaxies suppresses Pop III formation in (“not so”) small primordial halos with mass less than ∼3 × 10{sup 7} M {sub ⊙}. We quantify the properties of these Pop III galaxies and their Pop III star formation environments. We look for analogs to the recently discovered luminous Ly α emitter CR7, which has been interpreted as a Pop III star cluster within or near a metal-enriched star-forming galaxy. We find and discuss a system similar to this in some respects, however, the Pop III star cluster is far less massive and luminous than CR7 is inferred to be.« less

  7. Galaxies and gas in a cold dark matter universe

    NASA Technical Reports Server (NTRS)

    Katz, Neal; Hernquist, Lars; Weinberg, David H.

    1992-01-01

    We use a combined gravity/hydrodynamics code to simulate the formation of structure in a random 22 Mpc cube of a cold dark matter universe. Adiabatic compression and shocks heat much of the gas to temperatures of 10 exp 6 - 10 exp 7 K, but a fraction of the gas cools radiatively to about 10 exp 4 K and condenses into discrete, highly overdense lumps. We identify these lumps with galaxies. The high-mass end of their baryonic mass function fits the form of the observed galaxy luminosity function. They retain independent identities after their dark halos merge, so gravitational clustering produces groups of galaxies embedded in relatively smooth envelopes of hot gas and dark matter. The galaxy correlation function is approximately an r exp -2.1 power law from separations of 35 kpc to 7 Mpc. Galaxy fluctuations are biased relative to dark matter fluctuations by a factor b about 1.5. We find no significant 'velocity bias' between galaxies and dark matter particles. However, virial analysis of the simulation's richest group leads to an estimated Omega of about 0.3, even though the simulation adopts Omega = 1.

  8. Massive Star Clusters in Ongoing Galaxy Interactions: Clues to Cluster Formation

    NASA Astrophysics Data System (ADS)

    Keel, William C.; Borne, Kirk D.

    2003-09-01

    We present HST WFPC2 observations, supplemented by ground-based Hα data, of the star-cluster populations in two pairs of interacting galaxies selected for being in very different kinds of encounters seen at different stages. Dynamical information and n-body simulations provide the details of encounter geometry, mass ratio, and timing. In NGC 5752/4 we are seeing a weak encounter, well past closest approach, after about 2.5×108 yr. The large spiral NGC 5754 has a normal population of disk clusters, while the fainter companion NGC 5752 exhibits a rich population of luminous clusters with a flatter luminosity function. The strong, ongoing encounter in NGC 6621/2, seen about 1.0×108 yr past closest approach between roughly equal-mass galaxies, has produced an extensive population of luminous clusters, particularly young and luminous in a small region between the two nuclei. This region is dynamically interesting, with such a strong perturbation in the velocity field that the rotation curve reverses sign. From these results, in comparison with other strongly interacting systems discussed in the literature, cluster formation requires a threshold level of perturbation, with stage of the interaction a less important factor. The location of the most active star formation in NGC 6621/2 draws attention to a possible role for the Toomre stability threshold in shaping star formation in interacting galaxies. The rich cluster populations in NGC 5752 and NGC 6621 show that direct contact between gas-rich galaxy disks is not a requirement to form luminous clusters and that they can be triggered by processes happening within a single galaxy disk (albeit triggered by external perturbations). Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  9. THE STRUCTURE OF THE MERGING RCS 231953+00 SUPERCLUSTER AT z {approx} 0.9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faloon, A. J.; Webb, T. M. A.; Geach, J. E.

    2013-05-10

    The RCS 2319+00 supercluster is a massive supercluster at z = 0.9 comprising three optically selected, spectroscopically confirmed clusters separated by <3 Mpc on the plane of the sky. This supercluster is one of a few known examples of the progenitors of present-day massive clusters (10{sup 15} M{sub Sun} by z {approx} 0.5). We present an extensive spectroscopic campaign carried out on the supercluster field resulting, in conjunction with previously published data, in 1961 high-confidence galaxy redshifts. We find 302 structure members spanning three distinct redshift walls separated from one another by {approx}65 Mpc ({Delta} z = 0.03). The componentmore » clusters have spectroscopic redshifts of 0.901, 0.905, and 0.905. The velocity dispersions are consistent with those predicted from X-ray data, giving estimated cluster masses of {approx}10{sup 14.5}-10{sup 14.9} M{sub Sun }. The Dressler-Shectman test finds evidence of substructure in the supercluster field and a friends-of-friends analysis identified five groups in the supercluster, including a filamentary structure stretching between two cluster cores previously identified in the infrared by Coppin et al. The galaxy colors further show this filamentary structure to be a unique region of activity within the supercluster, comprised mainly of blue galaxies compared to the {approx}43%-77% red-sequence galaxies present in the other groups and cluster cores. Richness estimates from stacked luminosity function fits result in average group mass estimates consistent with {approx}10{sup 13} M{sub Sun} halos. Currently, 22% of our confirmed members reside in {approx}> 10{sup 13} M{sub Sun} groups/clusters destined to merge onto the most massive cluster, in agreement with the massive halo galaxy fractions important in cluster galaxy pre-processing in N-body simulation merger tree studies.« less

  10. Cluster-cluster correlations and constraints on the correlation hierarchy

    NASA Technical Reports Server (NTRS)

    Hamilton, A. J. S.; Gott, J. R., III

    1988-01-01

    The hypothesis that galaxies cluster around clusters at least as strongly as they cluster around galaxies imposes constraints on the hierarchy of correlation amplitudes in hierachical clustering models. The distributions which saturate these constraints are the Rayleigh-Levy random walk fractals proposed by Mandelbrot; for these fractal distributions cluster-cluster correlations are all identically equal to galaxy-galaxy correlations. If correlation amplitudes exceed the constraints, as is observed, then cluster-cluster correlations must exceed galaxy-galaxy correlations, as is observed.

  11. Quantifying substructures in Hubble Frontier Field clusters: comparison with ΛCDM simulations

    DOE PAGES

    Mohammed, Irshad; Saha, Prasenjit; Williams, Liliya L. R.; ...

    2016-04-13

    The Hubble Frontier Fields (HFF) are six clusters of galaxies, all showing indications of recent mergers, which have recently been observed for lensed images. As such they are the natural laboratories to study the merging history of galaxy clusters. In this work, we explore the 2D power spectrum of the mass distributionmore » $$P_{\\rm M}(k)$$ as a measure of substructure. We compare $$P_{\\rm M}(k)$$ of these clusters (obtained using strong gravitational lensing) to that of $$\\Lambda$$CDM simulated clusters of similar mass. In order to compute lensing $$P_{\\rm M}(k)$$, we produced free-form lensing mass reconstructions of HFF clusters, without any light traces mass (LTM) assumption. Moreover, the inferred power at small scales tends to be larger if (i)~the cluster is at lower redshift, and/or (ii)~there are deeper observations and hence more lensed images. In contrast, lens reconstructions assuming LTM show higher power at small scales even with fewer lensed images; it appears the small scale power in the LTM reconstructions is dominated by light information, rather than the lensing data. The average lensing derived $$P_{\\rm M}(k)$$ shows lower power at small scales as compared to that of simulated clusters at redshift zero, both dark-matter only and hydrodynamical. The possible reasons are: (i)~the available strong lensing data are limited in their effective spatial resolution on the mass distribution, (ii)~HFF clusters have yet to build the small scale power they would have at $$z\\sim 0$$, or (iii)~simulations are somehow overestimating the small scale power.« less

  12. Intracluster light at the Frontier - II. The Frontier Fields Clusters

    NASA Astrophysics Data System (ADS)

    Montes, Mireia; Trujillo, Ignacio

    2018-02-01

    Multiwavelength deep observations are a key tool to understand the origin of the diffuse light in clusters of galaxies: the intracluster light (ICL). For this reason, we take advantage of the Hubble Frontier Fields (HFF) survey to investigate the properties of the stellar populations of the ICL of its six massive intermediate redshift (0.3 < z < 0.6) clusters. We carry on this analysis down to a radial distance of ˜120 kpc from the brightest cluster galaxy. We found that the average metallicity of the ICL is [Fe/H]ICL ˜ -0.5, compatible with the value of the outskirts of the Milky Way. The mean stellar ages of the ICL are between 2 and 6 Gyr younger than the most massive galaxies of the clusters. Those results suggest that the ICL of these massive (>1015 M⊙) clusters is formed by the stripping of MW-like objects that have been accreted at z < 1, in agreement with current simulations. We do not find any significant increase in the fraction of light of the ICL with cosmic time, although the redshift range explored is narrow to derive any strong conclusion. When exploring the slope of the stellar mass density profile, we found that the ICL of the HFF clusters follows the shape of their underlying dark matter haloes, in agreement with the idea that the ICL is the result of the stripping of galaxies at recent times.

  13. Dark Energy Survey Year 1 Results: galaxy mock catalogues for BAO

    NASA Astrophysics Data System (ADS)

    Avila, S.; Crocce, M.; Ross, A. J.; García-Bellido, J.; Percival, W. J.; Banik, N.; Camacho, H.; Kokron, N.; Chan, K. C.; Andrade-Oliveira, F.; Gomes, R.; Gomes, D.; Lima, M.; Rosenfeld, R.; Salvador, A. I.; Friedrich, O.; Abdalla, F. B.; Annis, J.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Cunha, C. E.; da Costa, L. N.; Davis, C.; De Vicente, J.; Doel, P.; Fosalba, P.; Frieman, J.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Hartley, W. G.; Hollowood, D.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Miquel, R.; Plazas, A. A.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Walker, A. R.; Dark Energy Survey Collaboration

    2018-05-01

    Mock catalogues are a crucial tool in the analysis of galaxy surveys data, both for the accurate computation of covariance matrices, and for the optimisation of analysis methodology and validation of data sets. In this paper, we present a set of 1800 galaxy mock catalogues designed to match the Dark Energy Survey Year-1 BAO sample (Crocce et al. 2017) in abundance, observational volume, redshift distribution and uncertainty, and redshift dependent clustering. The simulated samples were built upon HALOGEN (Avila et al. 2015) halo catalogues, based on a 2LPT density field with an empirical halo bias. For each of them, a lightcone is constructed by the superposition of snapshots in the redshift range 0.45 < z < 1.4. Uncertainties introduced by so-called photometric redshifts estimators were modelled with a double-skewed-Gaussian curve fitted to the data. We populate halos with galaxies by introducing a hybrid Halo Occupation Distribution - Halo Abundance Matching model with two free parameters. These are adjusted to achieve a galaxy bias evolution b(zph) that matches the data at the 1-σ level in the range 0.6 < zph < 1.0. We further analyse the galaxy mock catalogues and compare their clustering to the data using the angular correlation function w(θ), the comoving transverse separation clustering ξμ < 0.8(s⊥) and the angular power spectrum Cℓ, finding them in agreement. This is the first large set of three-dimensional {ra,dec,z} galaxy mock catalogues able to simultaneously accurately reproduce the photometric redshift uncertainties and the galaxy clustering.

  14. Constraints on the Energy Content of the Universe from a Combination of Galaxy Cluster Observables

    NASA Technical Reports Server (NTRS)

    Molnar, Sandor M.; Haiman, Zoltan; Birkinshaw, Mark; Mushotzky, Richard F.

    2003-01-01

    We demonstrate that constraints on cosmological parameters from the distribution of clusters as a function of redshift (dN/dz) are complementary to accurate angular diameter distance (D(sub A)) measurements to clusters, and their combination significantly tightens constraints on the energy density content of the Universe. The number counts can be obtained from X-ray and/or SZ (Sunyaev-Ze'dovich effect) surveys, and the angular diameter distances can be determined from deep observations of the intra-cluster gas using their thermal bremsstrahlung X-ray emission and the SZ effect. We combine constraints from simulated cluster number counts expected from a 12 deg(sup 2) SZ cluster survey and constraints from simulated angular diameter distance measurements based on the X-ray/SZ method assuming a statistical accuracy of 10% in the angular diameter distance determination of 100 clusters with redshifts less than 1.5. We find that Omega(sub m), can be determined within about 25%, Omega(sub lambda) within 20% and w within 16%. We show that combined dN/dz+(sub lambda) constraints can be used to constrain the different energy densities in the Universe even in the presence of a few percent redshift dependent systematic error in D(sub lambda). We also address the question of how best to select clusters of galaxies for accurate diameter distance determinations. We show that the joint dN/dz+ D(lambda) constraints on cosmological parameters for a fixed target accuracy in the energy density parameters are optimized by selecting clusters with redshift upper cut-offs in the range 0.55 approx. less than 1. Subject headings: cosmological parameters - cosmology: theory - galaxies:clusters: general

  15. Imposing a Lagrangian Particle Framework on an Eulerian Hydrodynamics Infrastructure in Flash

    NASA Technical Reports Server (NTRS)

    Dubey, A.; Daley, C.; ZuHone, J.; Ricker, P. M.; Weide, K.; Graziani, C.

    2012-01-01

    In many astrophysical simulations, both Eulerian and Lagrangian quantities are of interest. For example, in a galaxy cluster merger simulation, the intracluster gas can have Eulerian discretization, while dark matter can be modeled using particles. FLASH, a component-based scientific simulation code, superimposes a Lagrangian framework atop an adaptive mesh refinement Eulerian framework to enable such simulations. The discretization of the field variables is Eulerian, while the Lagrangian entities occur in many different forms including tracer particles, massive particles, charged particles in particle-in-cell mode, and Lagrangian markers to model fluid structure interactions. These widely varying roles for Lagrangian entities are possible because of the highly modular, flexible, and extensible architecture of the Lagrangian framework. In this paper, we describe the Lagrangian framework in FLASH in the context of two very different applications, Type Ia supernovae and galaxy cluster mergers, which use the Lagrangian entities in fundamentally different ways.

  16. Imposing a Lagrangian Particle Framework on an Eulerian Hydrodynamics Infrastructure in FLASH

    NASA Astrophysics Data System (ADS)

    Dubey, A.; Daley, C.; ZuHone, J.; Ricker, P. M.; Weide, K.; Graziani, C.

    2012-08-01

    In many astrophysical simulations, both Eulerian and Lagrangian quantities are of interest. For example, in a galaxy cluster merger simulation, the intracluster gas can have Eulerian discretization, while dark matter can be modeled using particles. FLASH, a component-based scientific simulation code, superimposes a Lagrangian framework atop an adaptive mesh refinement Eulerian framework to enable such simulations. The discretization of the field variables is Eulerian, while the Lagrangian entities occur in many different forms including tracer particles, massive particles, charged particles in particle-in-cell mode, and Lagrangian markers to model fluid-structure interactions. These widely varying roles for Lagrangian entities are possible because of the highly modular, flexible, and extensible architecture of the Lagrangian framework. In this paper, we describe the Lagrangian framework in FLASH in the context of two very different applications, Type Ia supernovae and galaxy cluster mergers, which use the Lagrangian entities in fundamentally different ways.

  17. Simulations of the galaxy cluster CIZA J2242.8+5301 - I. Thermal model and shock properties

    NASA Astrophysics Data System (ADS)

    Donnert, J. M. F.; Beck, A. M.; Dolag, K.; Röttgering, H. J. A.

    2017-11-01

    The giant radio relic in CIZA J2242.8+5301 provides clear evidence of an Mpc-sized shock in a massive merging galaxy cluster. Here, we present idealized SPH hydrodynamical and collisionless dark matter simulations, aiming to find a model that is consistent with that large range of observations of this galaxy cluster. We first show that in the northern shock, the observed radio spectral index profile and integrated radio spectrum are consistent with the observed upstream X-ray temperature. Using simulations, we first find that only a cool-core versus non-cool-core merger can lead to the observed elongated X-ray morphology. We then carry out simulations for two merging clusters assuming a range of NFW and β-model density profiles and hydrostatic equilibrium. We find a fiducial model that mimics the overall morphology of the shock structures, has a total mass of 1.6 × 1015 M⊙ and a mass ratio of 1.76. For this model, the derived Mach number for the northern shock is 4.5. This is almost a factor 2 higher compared to the observational determination of the Mach number using X-ray observations or measurements of the radio injection spectral index. We could not find numerical models that both fit the X-ray properties and yielded such low Mach numbers. We discuss various ways of understanding this difference and argue that deep X-ray observations of CIZA J2242.8+5301 will be able to test our model and reconcile the differences.

  18. The impact of clustering and angular resolution on far-infrared and millimeter continuum observations

    NASA Astrophysics Data System (ADS)

    Béthermin, Matthieu; Wu, Hao-Yi; Lagache, Guilaine; Davidzon, Iary; Ponthieu, Nicolas; Cousin, Morgane; Wang, Lingyu; Doré, Olivier; Daddi, Emanuele; Lapi, Andrea

    2017-11-01

    Follow-up observations at high-angular resolution of bright submillimeter galaxies selected from deep extragalactic surveys have shown that the single-dish sources are comprised of a blend of several galaxies. Consequently, number counts derived from low- and high-angular-resolution observations are in tension. This demonstrates the importance of resolution effects at these wavelengths and the need for realistic simulations to explore them. We built a new 2 deg2 simulation of the extragalactic sky from the far-infrared to the submillimeter. It is based on an updated version of the 2SFM (two star-formation modes) galaxy evolution model. Using global galaxy properties generated by this model, we used an abundance-matching technique to populate a dark-matter lightcone and thus simulate the clustering. We produced maps from this simulation and extracted the sources, and we show that the limited angular resolution of single-dish instruments has a strong impact on (sub)millimeter continuum observations. Taking into account these resolution effects, we are reproducing a large set of observables, as number counts and their evolution with redshift and cosmic infrared background power spectra. Our simulation consistently describes the number counts from single-dish telescopes and interferometers. In particular, at 350 and 500 μm, we find that the number counts measured by Herschel between 5 and 50 mJy are biased towards high values by a factor 2, and that the redshift distributions are biased towards low redshifts. We also show that the clustering has an important impact on the Herschel pixel histogram used to derive number counts from P(D) analysis. We find that the brightest galaxy in the beam of a 500 μm Herschel source contributes on average to only 60% of the Herschel flux density, but that this number will rise to 95% for future millimeter surveys on 30 m-class telescopes (e.g., NIKA2 at IRAM). Finally, we show that the large number density of red Herschel sources found in observations but not in models might be an observational artifact caused by the combination of noise, resolution effects, and the steepness of color- and flux density distributions. Our simulation, called Simulated Infrared Dusty Extragalactic Sky (SIDES), is publicly available. Our simulation Simulated Infrared Dusty Extragalactic Sky (SIDES) is available at http://cesam.lam.fr/sides.

  19. Measuring the Scatter of the Mass–Richness Relation in Galaxy Clusters in Photometric Imaging Surveys by Means of Their Correlation Function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campa, Julia; Estrada, Juan; Flaugher, Brenna

    2017-02-03

    The knowledge of the scatter in the mass-observable relation is a key ingredient for a cosmological analysis based on galaxy clusters in a photometric survey. We demonstrate here how the linear bias measured in the correlation function for clusters can be used to determine the value of the scatter. The new method is tested in simulations of a 5.000 square degrees optical survey up to z~1, similar to the ongoing Dark Energy Survey. The results indicate that the scatter can be measured with a precision of 5% using this technique.

  20. Formation and Assembly of Massive Star Clusters

    NASA Astrophysics Data System (ADS)

    McMillan, Stephen

    The formation of stars and star clusters is a major unresolved problem in astrophysics. It is central to modeling stellar populations and understanding galaxy luminosity distributions in cosmological models. Young massive clusters are major components of starburst galaxies, while globular clusters are cornerstones of the cosmic distance scale and represent vital laboratories for studies of stellar dynamics and stellar evolution. Yet how these clusters form and how rapidly and efficiently they expel their natal gas remain unclear, as do the consequences of this gas expulsion for cluster structure and survival. Also unclear is how the properties of low-mass clusters, which form from small-scale instabilities in galactic disks and inform much of our understanding of cluster formation and star-formation efficiency, differ from those of more massive clusters, which probably formed in starburst events driven by fast accretion at high redshift, or colliding gas flows in merging galaxies. Modeling cluster formation requires simulating many simultaneous physical processes, placing stringent demands on both software and hardware. Simulations of galaxies evolving in cosmological contexts usually lack the numerical resolution to simulate star formation in detail. They do not include detailed treatments of important physical effects such as magnetic fields, radiation pressure, ionization, and supernova feedback. Simulations of smaller clusters include these effects, but fall far short of the mass of even single young globular clusters. With major advances in computing power and software, we can now directly address this problem. We propose to model the formation of massive star clusters by integrating the FLASH adaptive mesh refinement magnetohydrodynamics (MHD) code into the Astrophysical Multi-purpose Software Environment (AMUSE) framework, to work with existing stellar-dynamical and stellar evolution modules in AMUSE. All software will be freely distributed on-line, allowing open access to state-of- the-art simulation techniques within a modern, modular software environment. We will follow the gravitational collapse of 0.1-10 million-solar mass gas clouds through star formation and coalescence into a star cluster, modeling in detail the coupling of the gas and the newborn stars. We will study the effects of star formation by detecting accreting regions of gas in self-gravitating, turbulent, MHD, FLASH models that we will translate into collisional dynamical systems of stars modeled with an N-body code, coupled together in the AMUSE framework. Our FLASH models will include treatments of radiative transfer from the newly formed stars, including heating and radiative acceleration of the surrounding gas. Specific questions to be addressed are: (1) How efficiently does the gas in a star forming region form stars, how does this depend on mass, metallicity, and other parameters, and what terminates star formation? What observational predictions can be made to constrain our models? (2) How important are different mechanisms for driving turbulence and removing gas from a cluster: accretion, radiative feedback, and mechanical feedback? (3) How does the infant mortality rate of young clusters depend on the initial properties of the parent cloud? (4) What are the characteristic formation timescales of massive star clusters, and what observable imprints does the assembly process leave on their structure at an age of 10-20 Myr, when formation is essentially complete and many clusters can be observed? These studies are directly relevant to NASA missions at many electromagnetic wavelengths, including Chandra, GALEX, Hubble, and Spitzer. Each traces different aspects of cluster formation and evolution: X-rays trace supernovae, ultraviolet traces young stars, visible colors can distinguish between young blue stars and older red stars, and the infrared directly shows young embedded star clusters.

  1. A Deep Look at the Fornax Cluster

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    Traditionally, dense cluster centers are cannibalistic environments, with larger galaxies stripping stars from smaller interlopers in minor mergers and dynamical harassment. A recent survey of the Fornax cluster, one example of such an environment, reveals how this cluster may have been built.Clues in HalosContext for the southern constellation Fornax (the furnace). The Fornax cluster is marked with a red circle. [ESO, IAU and Sky Telescope]Deep surveys of dense cluster environments are necessary because the imprint of mass assembly is hidden in galactic halos, the faint outer regions of galaxies. Deep observations can reveal answers to questions about how the galaxies in these extreme environments formed and evolved for instance, did the majority of the galaxies stars form in situ, or were they accreted from interactions with other galaxies?The Fornax Deep Survey (FDS) is just such a campaign. FDS uses the European Southern Observatorys VLT Survey Telescope to obtain deep photometry of the entire 26 square degrees of the Fornax cluster, a spectacular galaxy cluster located 65 million light-years away.Central ObservationsThe FDS team plans to release the full results from the survey soon. For now, in an initial study led by Enrichetta Iodice (INAFs Astronomical Observatory of Capodimonte, Italy), the team presents their first findings from the two square degrees around NGC 1399, a supergiant elliptical galaxy in the cluster center.The two main results from this study are:The discovery of a faint stellar bridge between NGC 1399 and a nearby galaxy, NGC 1387.The characterization of NGC 1399s light profile, which shows that the galaxy consists of two main components separated by a strong break. The bright central galaxy is likely composed of stars that formed in situ, whereas the exponential outer component is a stellar halo composed of stars likely captured from accretion events.What do these points tell us about the history of the center of the Fornax cluster? These observations are indications that the Fornax cluster was built up by mergers and accretion events.A Violent PastThe light profile the authors found is consistent with those of simulated galaxies whose halos were formed through the multiple accretion of progenitors. This suggests that the stellar halo of NGC 1399 has been through a major merging event.This enlarged view of NGC 1399 and 1387 in the g band (top) and gi band (bottom) gives a better view of the faint stellar stream connecting the two galaxies. North is up and east is left. [Iodice et al. 2016]The faint stellar bridge is likely a sign of an ongoing interaction between NGC 1399 and NGC 1387, in which NGC 1387s outer envelope on its east side is being stripped away. But besides this indication, there is little evidence for recent merger activity, which would usually produce a significant number of luminous stellar streams and tidal tails.The authors argue that this means that any major mergers in the Fornax cluster center probably happened in an early formation epoch. The cluster is now in a more dynamically evolved stage, in which most of the gravitational interactions between galaxies have already taken place.Follow-up kinematics studies will be crucial to further interpreting these photometric observations from the center of the Fornax cluster. In the meantime, keep an eye out for future results from FDS!CitationE. Iodice et al 2016 ApJ 820 42. doi:10.3847/0004-637X/820/1/42

  2. An X-ray method for detecting substructure in galaxy clusters - Application to Perseus, A2256, Centaurus, Coma, and Sersic 40/6

    NASA Technical Reports Server (NTRS)

    Mohr, Joseph J.; Fabricant, Daniel G.; Geller, Margaret J.

    1993-01-01

    We use the moments of the X-ray surface brightness distribution to constrain the dynamical state of a galaxy cluster. Using X-ray observations from the Einstein Observatory IPC, we measure the first moment FM, the ellipsoidal orientation angle, and the axial ratio at a sequence of radii in the cluster. We argue that a significant variation in the image centroid FM as a function of radius is evidence for a nonequilibrium feature in the intracluster medium (ICM) density distribution. In simple terms, centroid shifts indicate that the center of mass of the ICM varies with radius. This variation is a tracer of continuing dynamical evolution. For each cluster, we evaluate the significance of variations in the centroid of the IPC image by computing the same statistics on an ensemble of simulated cluster images. In producing these simulated images we include X-ray point source emission, telescope vignetting, Poisson noise, and characteristics of the IPC. Application of this new method to five Abell clusters reveals that the core of each one has significant substructure. In addition, we find significant variations in the orientation angle and the axial ratio for several of the clusters.

  3. Methods in Computational Cosmology

    NASA Astrophysics Data System (ADS)

    Vakili, Mohammadjavad

    State of the inhomogeneous universe and its geometry throughout cosmic history can be studied by measuring the clustering of galaxies and the gravitational lensing of distant faint galaxies. Lensing and clustering measurements from large datasets provided by modern galaxy surveys will forever shape our understanding of the how the universe expands and how the structures grow. Interpretation of these rich datasets requires careful characterization of uncertainties at different stages of data analysis: estimation of the signal, estimation of the signal uncertainties, model predictions, and connecting the model to the signal through probabilistic means. In this thesis, we attempt to address some aspects of these challenges. The first step in cosmological weak lensing analyses is accurate estimation of the distortion of the light profiles of galaxies by large scale structure. These small distortions, known as the cosmic shear signal, are dominated by extra distortions due to telescope optics and atmosphere (in the case of ground-based imaging). This effect is captured by a kernel known as the Point Spread Function (PSF) that needs to be fully estimated and corrected for. We address two challenges a head of accurate PSF modeling for weak lensing studies. The first challenge is finding the centers of point sources that are used for empirical estimation of the PSF. We show that the approximate methods for centroiding stars in wide surveys are able to optimally saturate the information content that is retrievable from astronomical images in the presence of noise. The fist step in weak lensing studies is estimating the shear signal by accurately measuring the shapes of galaxies. Galaxy shape measurement involves modeling the light profile of galaxies convolved with the light profile of the PSF. Detectors of many space-based telescopes such as the Hubble Space Telescope (HST) sample the PSF with low resolution. Reliable weak lensing analysis of galaxies observed by the HST camera requires knowledge of the PSF at a resolution higher than the pixel resolution of HST. This PSF is called the super-resolution PSF. In particular, we present a forward model of the point sources imaged through filters of the HST WFC3 IR channel. We show that this forward model can accurately estimate the super-resolution PSF. We also introduce a noise model that permits us to robustly analyze the HST WFC3 IR observations of the crowded fields. Then we try to address one of the theoretical uncertainties in modeling of galaxy clustering on small scales. Study of small scale clustering requires assuming a halo model. Clustering of halos has been shown to depend on halo properties beyond mass such as halo concentration, a phenomenon referred to as assembly bias. Standard large-scale structure studies with halo occupation distribution (HOD) assume that halo mass alone is sufficient to characterize the connection between galaxies and halos. However, assembly bias could cause the modeling of galaxy clustering to face systematic effects if the expected number of galaxies in halos is correlated with other halo properties. Using high resolution N-body simulations and the clustering measurements of Sloan Digital Sky Survey (SDSS) DR7 main galaxy sample, we show that modeling of galaxy clustering can slightly improve if we allow the HOD model to depend on halo properties beyond mass. One of the key ingredients in precise parameter inference using galaxy clustering is accurate estimation of the error covariance matrix of clustering measurements. This requires generation of many independent galaxy mock catalogs that accurately describe the statistical distribution of galaxies in a wide range of physical scales. We present a fast and accurate method based on low-resolution N-body simulations and an empirical bias model for generating mock catalogs. We use fast particle mesh gravity solvers for generation of dark matter density field and we use Markov Chain Monti Carlo (MCMC) to estimate the bias model that connects dark matter to galaxies. We show that this approach enables the fast generation of mock catalogs that recover clustering at a percent-level accuracy down to quasi-nonlinear scales. Cosmological datasets are interpreted by specifying likelihood functions that are often assumed to be multivariate Gaussian. Likelihood free approaches such as Approximate Bayesian Computation (ABC) can bypass this assumption by introducing a generative forward model of the data and a distance metric for quantifying the closeness of the data and the model. We present the first application of ABC in large scale structure for constraining the connections between galaxies and dark matter halos. We present an implementation of ABC equipped with Population Monte Carlo and a generative forward model of the data that incorporates sample variance and systematic uncertainties. (Abstract shortened by ProQuest.).

  4. Slicing cluster mass functions with a Bayesian razor

    NASA Astrophysics Data System (ADS)

    Sealfon, C. D.

    2010-08-01

    We apply a Bayesian ``razor" to forecast Bayes factors between different parameterizations of the galaxy cluster mass function. To demonstrate this approach, we calculate the minimum size N-body simulation needed for strong evidence favoring a two-parameter mass function over one-parameter mass functions and visa versa, as a function of the minimum cluster mass.

  5. Galaxy Protoclusters as Drivers of Cosmic Star Formation History in the First 2 Gyr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiang, Yi-Kuan; Overzier, Roderik A.; Gebhardt, Karl

    Present-day clusters are massive halos containing mostly quiescent galaxies, while distant protoclusters are extended structures containing numerous star-forming galaxies. We investigate the implications of this fundamental change in a cosmological context using a set of N -body simulations and semi-analytic models. We find that the fraction of the cosmic volume occupied by all (proto)clusters increases by nearly three orders of magnitude from z = 0 to z = 7. We show that (proto)cluster galaxies are an important and even dominant population at high redshift, as their expected contribution to the cosmic star formation rate density rises (from 1% at zmore » = 0) to 20% at z = 2 and 50% at z = 10. Protoclusters thus provide a significant fraction of the cosmic ionizing photons, and may have been crucial in driving the timing and topology of cosmic reionization. Internally, the average history of cluster formation can be described by three distinct phases: at z ∼ 10–5, galaxy growth in protoclusters proceeded in an inside-out manner, with centrally dominant halos that are among the most active regions in the universe; at z ∼ 5–1.5, rapid star formation occurred within the entire 10–20 Mpc structures, forming most of their present-day stellar mass; at z ≲ 1.5, violent gravitational collapse drove these stellar contents into single cluster halos, largely erasing the details of cluster galaxy formation due to relaxation and virialization. Our results motivate observations of distant protoclusters in order to understand the rapid, extended stellar growth during cosmic noon, and their connection to reionization during cosmic dawn.« less

  6. AGN jet-driven stochastic cold accretion in cluster cores

    NASA Astrophysics Data System (ADS)

    Prasad, Deovrat; Sharma, Prateek; Babul, Arif

    2017-10-01

    Several arguments suggest that stochastic condensation of cold gas and its accretion on to the central supermassive black hole (SMBH) is essential for active galactic nuclei (AGNs) feedback to work in the most massive galaxies that lie at the centres of galaxy clusters. Our 3-D hydrodynamic AGN jet-ICM (intracluster medium) simulations, looking at the detailed angular momentum distribution of cold gas and its time variability for the first time, show that the angular momentum of the cold gas crossing ≲1 kpc is essentially isotropic. With almost equal mass in clockwise and counterclockwise orientations, we expect a cancellation of the angular momentum on roughly the dynamical time. This means that a compact accretion flow with a short viscous time ought to form, through which enough accretion power can be channeled into jet mechanical energy sufficiently quickly to prevent a cooling flow. The inherent stochasticity, expected in feedback cycles driven by cold gas condensation, gives rise to a large variation in the cold gas mass at the centres of galaxy clusters, for similar cluster and SMBH masses, in agreement with the observations. Such correlations are expected to be much tighter for the smoother hot/Bondi accretion. The weak correlation between cavity power and Bondi power obtained from our simulations also matches observations.

  7. Motions in Nearby Galaxy Cluster Reveal Presence of Hidden Superstructure

    NASA Astrophysics Data System (ADS)

    2004-09-01

    A nearby galaxy cluster is facing an intergalactic headwind as it is pulled by an underlying superstructure of dark matter, according to new evidence from NASA's Chandra X-ray Observatory. Astronomers think that most of the matter in the universe is concentrated in long large filaments of dark matter and that galaxy clusters are formed where these filaments intersect. A Chandra survey of the Fornax galaxy cluster revealed a vast, swept-back cloud of hot gas near the center of the cluster. This geometry indicates that the hot gas cloud, which is several hundred thousand light years in length, is moving rapidly through a larger, less dense cloud of gas. The motion of the core gas cloud, together with optical observations of a group of galaxies racing inward on a collision course with it, suggests that an unseen, large structure is collapsing and drawing everything toward a common center of gravity. X-ray Image of Fornax with labels X-ray Image of Fornax with labels "At a relatively nearby distance of about 60 million light years, the Fornax cluster represents a crucial laboratory for studying the interplay of galaxies, hot gas and dark matter as the cluster evolves." said Caleb Scharf of Columbia University in New York, NY, lead author of a paper describing the Chandra survey that was presented at an American Astronomical Society meeting in New Orleans, LA. "What we are seeing could be associated directly with the intergalactic gas surrounding a very large scale structure that stretches over millions of light years." The infalling galaxy group, whose motion was detected by Michael Drinkwater of the University of Melbourne in Australia, and colleagues, is about 3 million light years from the cluster core, so a collision with the core will not occur for a few billion years. Insight as to how this collision will look is provided by the elliptical galaxy NGC 1404 that is plunging into the core of the cluster for the first time. As discussed by Scharf and another group led by Marie Machacek of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass., the hot gas cloud surrounding this galaxy has a sharp leading edge and a trailing tail of gas being stripped from the galaxy. Illustration of Fornax Cluster Illustration of Fornax Cluster "One thing that makes what we see in Fornax rather compelling is that it looks a lot like some of the latest computer simulations," added Scharf. "The Fornax picture, with infalling galaxies, and the swept back geometry of the cluster gas - seen only with the Chandra resolution and the proximity of Fornax - is one of the best matches to date with these high-resolution simulations." Over the course of hundreds of millions of years, NGC 1404's orbit will take it through the cluster core several times, most of the gas it contains will be stripped away, and the formation of new stars will cease. In contrast, galaxies that remain outside the core will retain their gas, and new stars can continue to form. Indeed, Scharf and colleagues found that galaxies located in regions outside the core were more likely to show X-ray activity which could be associated with active star formation. Dissolve from Optical to X-ray View of Fornax Animation Dissolve from Optical to X-ray View of Fornax Animation The wide-field and deep X-ray view around Fornax was obtained through ten Chandra pointings, each lasting about 14 hours. Other members of the research team were David Zurek of the American Museum of Natural History, New York, NY, and Martin Bureau, a Hubble Fellow currently at Columbia. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for NASA's Office of Space Science, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov

  8. Metal distribution in the intracluster medium: a comprehensive numerical study of twelve galaxy clusters

    NASA Astrophysics Data System (ADS)

    Höller, Harald; Stöckl, Josef; Benson, Andrew; Haider, Markus; Steinhauser, Dominik; Lovisari, Lorenzo; Pranger, Florian

    2014-09-01

    We present a simulation setup for studying the dynamical and chemical evolution of the intracluster medium (ICM) and analyze a sample of 12 galaxy clusters that are diverse both kinetically (pre-merger, merging, virialized) and in total mass (Mvir = 1.17 × 1014 - 1.06 × 1015 M⊙). We analyzed the metal mass fraction in the ICM as a function of redshift and discuss radial trends as well as projected 2D metallicity maps. The setup combines high mass resolution N-body simulations with the semi-analytical galaxy formation model Galacticus for consistent treatment of the subgrid physics (such as galactic winds and ram-pressure stripping) in the cosmological hydrodynamical simulations. The interface between Galacticus and the hydro simulation of the ICM with FLASH is discussed with respect to observations of star formation rate histories, radial star formation trends in galaxy clusters, and the metallicity at different redshifts. As a test for the robustness of the wind model, we compare three prescriptions from different approaches. For the wind model directly taken from Galacticus, we find mean ICM metallicities between 0.2-0.8 Z⊙ within the inner 1 Mpc at z = 0. The main contribution to the metal mass fraction comes from galactic winds. The outflows are efficiently mixed in the ICM, leading to a steady homogenization of metallicities until ram-pressure stripping becomes effective at low redshifts. We find a very peculiar and yet common drop in metal mass fractions within the inner ~200 kpc of the cool cores, which is due to a combination of wind suppression by outer pressure within our model and a lack of mixing after the formation of these dense regions. Appendix A is available in electronic form at http://www.aanda.org

  9. The EAGLE simulations: atomic hydrogen associated with galaxies

    NASA Astrophysics Data System (ADS)

    Crain, Robert A.; Bahé, Yannick M.; Lagos, Claudia del P.; Rahmati, Alireza; Schaye, Joop; McCarthy, Ian G.; Marasco, Antonino; Bower, Richard G.; Schaller, Matthieu; Theuns, Tom; van der Hulst, Thijs

    2017-02-01

    We examine the properties of atomic hydrogen (H I) associated with galaxies in the Evolution and Assembly of GaLaxies and their Environments (EAGLE) simulations of galaxy formation. EAGLE's feedback parameters were calibrated to reproduce the stellar mass function and galaxy sizes at z = 0.1, and we assess whether this calibration also yields realistic H I properties. We estimate the self-shielding density with a fitting function calibrated using radiation transport simulations, and correct for molecular hydrogen with empirical or theoretical relations. The `standard-resolution' simulations systematically underestimate H I column densities, leading to an H I deficiency in low-mass (M⋆ < 1010 M⊙) galaxies and poor reproduction of the observed H I mass function. These shortcomings are largely absent from EAGLE simulations featuring a factor of 8 (2) better mass (spatial) resolution, within which the H I mass of galaxies evolves more mildly from z = 1 to 0 than in the standard-resolution simulations. The largest volume simulation reproduces the observed clustering of H I systems, and its dependence on H I richness. At fixed M⋆, galaxies acquire more H I in simulations with stronger feedback, as they become associated with more massive haloes and higher infall rates. They acquire less H I in simulations with a greater star formation efficiency, since the star formation and feedback necessary to balance the infall rate is produced by smaller gas reservoirs. The simulations indicate that the H I of present-day galaxies was acquired primarily by the smooth accretion of ionized, intergalactic gas at z ≃ 1, which later self-shields, and that only a small fraction is contributed by the reincorporation of gas previously heated strongly by feedback. H I reservoirs are highly dynamic: over 40 per cent of H I associated with z = 0.1 galaxies is converted to stars or ejected by z = 0.

  10. The dark matter distribution of M87 and NGC 1399

    NASA Technical Reports Server (NTRS)

    Tsai, John C.

    1993-01-01

    Recent X-ray observations of clusters of galaxies indicate that, outside the innermost about 100 kpc region, the ratio of dark matter density to baryonic matter density declines with radius. We show that this result is consistent with a cold dark matter simulation, suggesting the presence of dissipationless dark matter in the observed clusters. This is contrary to previous suggestions that dissipational baryonic dark matter is required to explain the decline in the density ratio. The simulation further shows that, in the inner 100 kpc region, the density ratio should rise with radius. We confirm this property in M87 and NGC 1399, which are close enough to allow the determination of the density ratio in the required inner region. X-ray mappings of the dark matter distribution in clusters of galaxies are therefore consistent with the presence of dissipationless dark matter.

  11. The comptonization parameter from simulations of single-frequency, single-dish, dual-beam, cm-wave observations of galaxy clusters and mitigating CMB confusion using the Planck sky survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lew, Bartosz; Roukema, Boudewijn F., E-mail: blew@astro.uni.torun.pl, E-mail: boud@astro.uni.torun.pl

    2016-11-01

    Systematic effects in dual-beam, differential, radio observations of extended objects are discussed in the context of the One Centimeter Receiver Array (OCRA). We use simulated samples of Sunyaev-Zel'dovich (SZ) galaxy clusters at low ( z < 0.4) and intermediate (0.4 < z < 1.0) redshifts to study the implications of operating at a single frequency (30 GHz) on the accuracy of extracting SZ flux densities and of reconstructing comptonization parameters with OCRA. We analyze dependences on cluster mass, redshift, observation strategy, and telescope pointing accuracy. Using Planck data to make primary cosmic microwave background (CMB) templates, we test the feasibilitymore » of mitigating CMB confusion effects in observations of SZ profiles at angular scales larger than the separation of the receiver beams.« less

  12. A web portal for hydrodynamical, cosmological simulations

    NASA Astrophysics Data System (ADS)

    Ragagnin, A.; Dolag, K.; Biffi, V.; Cadolle Bel, M.; Hammer, N. J.; Krukau, A.; Petkova, M.; Steinborn, D.

    2017-07-01

    This article describes a data centre hosting a web portal for accessing and sharing the output of large, cosmological, hydro-dynamical simulations with a broad scientific community. It also allows users to receive related scientific data products by directly processing the raw simulation data on a remote computing cluster. The data centre has a multi-layer structure: a web portal, a job control layer, a computing cluster and a HPC storage system. The outer layer enables users to choose an object from the simulations. Objects can be selected by visually inspecting 2D maps of the simulation data, by performing highly compounded and elaborated queries or graphically by plotting arbitrary combinations of properties. The user can run analysis tools on a chosen object. These services allow users to run analysis tools on the raw simulation data. The job control layer is responsible for handling and performing the analysis jobs, which are executed on a computing cluster. The innermost layer is formed by a HPC storage system which hosts the large, raw simulation data. The following services are available for the users: (I) CLUSTERINSPECT visualizes properties of member galaxies of a selected galaxy cluster; (II) SIMCUT returns the raw data of a sub-volume around a selected object from a simulation, containing all the original, hydro-dynamical quantities; (III) SMAC creates idealized 2D maps of various, physical quantities and observables of a selected object; (IV) PHOX generates virtual X-ray observations with specifications of various current and upcoming instruments.

  13. Hubble tracks down a galaxy cluster's dark matter

    NASA Astrophysics Data System (ADS)

    2003-07-01

    Unique mass map hi-res Size hi-res: 495 kb Credits: European Space Agency, NASA and Jean-Paul Kneib (Observatoire Midi-Pyrénées, France/Caltech, USA) Unique mass map This is a mass map of galaxy cluster Cl0024+1654 derived from an extensive Hubble Space Telescope campaign. The colour image is made from two images: a dark-matter map (the blue part of the image) and a 'luminous-matter' map determined from the galaxies in the cluster (the red part of the image). They were constructed by feeding Hubble and ground-based observations into advanced mathematical mass-mapping models. The map shows that dark matter is present where the galaxies clump together. The mass of the galaxies is shown in red, the mass of the dark matter in blue. The dark matter behaves like a 'glue', holding the cluster together. The dark-matter distribution in the cluster is not spherical. A secondary concentration of dark-matter mass is shown in blue to the upper right of the main concentration. Sky around galaxy cluster Cl0024+1654 hi-res Size hi-res: 3742 kb Credits: European Space Agency, NASA and Jean-Paul Kneib (Observatoire Midi-Pyrénées, France/Caltech, USA) Sky around galaxy cluster Cl0024+1654 This is a 2.5-degree field around galaxy cluster Cl0024+1654. The cluster galaxies are visible in the centre of the image in yellow. The image is a colour composite constructed from three Digitized Sky Survey 2 images: Blue (shown in blue), Red (shown in green), and Infrared (shown in red). HST observes shapes of more than 7000 faint background galaxies hi-res Size hi-res: 5593 kb Credits: European Space Agency, NASA and Jean-Paul Kneib (Observatoire Midi-Pyrénées, France/Caltech, USA) Hubble observes shapes of more than 7000 faint background galaxies Five days of observations produced the altogether 39 Hubble Wide Field and Planetary Camera 2 (WFPC2) images required to map the mass of the galaxy cluster Cl0024+1654. Each WFPC2 image has a size of about 1/150 the diameter of the full Moon. In total, the image measures 27 arc-minutes across, slightly smaller than the diameter of the Moon. The observed warped shapes of more than 7000 faint background galaxies have been converted into a unique map of the dark matter in the cluster. The images were taken through a red filter and have been reduced a factor of two in size. Ground-based image of the galaxy cluster C10024+1654 hi-res Size hi-res: 4699 kb Credits: European Space Agency, NASA and Jean-Paul Kneib (Observatoire Midi-Pyrénées, France/Caltech, USA) Ground-based image of the galaxy cluster C10024+1654 This is a colour image of the galaxy cluster C10024+1654 obtained with the CFHT12k camera at the Canada France Hawaii Telescope on Mauna Kea (Hawaii). The cluster clearly appears as a concentration of yellow galaxies in the centre of this image although cluster galaxies actually extend at least to the edge of this image. This image measures 21 x 21 arc-minutes. Clusters of galaxies are the largest stable systems in the Universe. They are like laboratories for studying the relationship between the distributions of dark and visible matter. In 1937, Fritz Zwicky realised that the visible component of a cluster (the thousands of millions of stars in each of the thousands of galaxies) represents only a tiny fraction of the total mass. About 80-85% of the matter is invisible, the so-called 'dark matter'. Although astronomers have known about the presence of dark matter for many decades, finding a technique to view its distribution is a much more recent development. Led by Drs Jean-Paul Kneib (from the Observatoire Midi-Pyrénées, France/Caltech, United States), Richard Ellis and Tommaso Treu (both Caltech, United States), the team used the NASA/ESA Hubble Space Telescope to reconstruct a unique 'mass map' of the galaxy cluster CL0024+1654. It enabled them to see for the first time on such large scales how mysterious dark matter is distributed with respect to galaxies. This comparison gives new clues on how such large clusters assemble and which role dark matter plays in cosmic evolution. Tracing dark matter is not an easy task because it does not shine. To make a map, astronomers must focus on much fainter, more distant galaxies behind the cluster. The shapes of these distant systems are distorted by the gravity of the foreground cluster. This distortion provides a measure of the cluster mass, a phenomenon known as 'weak gravitational lensing'. To map the dark matter of CL0024+1654, more than 120 hours observing time was dedicated to the team. This is the largest amount of Hubble time ever devoted to studying a galaxy cluster. Despite its distance of 4.5 thousand million light-years (about one third of the look-back time to the Big Bang) from Earth, this massive cluster is wide enough to equal the angular size of the full Moon. To make a mass map that covers the entire cluster required observations that probed 39 regions of the galaxy cluster. The investigation has resulted in the most comprehensive study of the distribution of dark matter in a galaxy cluster so far and extends more than 20 million light-years from its centre, much further than previous investigations. Many groups of researchers have tried to perform these types of measurements with ground-based telescopes. However, the technique relies heavily on finding the exact shapes of distant galaxies behind the cluster. The sharp vision of a space telescope such as NASA-ESA's Hubble is superior. The study reveals that the density of dark matter on large scales drops sharply with distance from the cluster centre. This confirms a picture that has emerged from recent detailed computer simulations. As Richard Ellis says: "Although theorists have predicted the form of dark matter in galaxy clusters from numerical simulations based on the effects of gravity alone, this is the first time we have convincing observations to back them up. Some astronomers had speculated clusters might contain large reservoirs of dark matter in their outermost regions. Assuming our cluster is representative, this is not the case." The team noticed that dark matter appears to clump together in their map. For example, they found concentrations of dark matter associated with galaxies known to be slowly falling into the system. Generally, the researchers found that the dark matter traces the cluster galaxies remarkably well and over an unprecedented range of physical scales. "When a cluster is being assembled, the dark matter will be smeared out between the galaxies where it acts like a glue," says Jean-Paul Kneib."The overall association of dark matter and 'glowing matter' is very convincing evidence that structures like CL0024+1654 grow by merging of smaller groups of galaxies that were already bound by their own dark matter components." Future investigations using Hubble's new camera, the Advanced Camera for Surveys (ACS), will extend this work when Hubble is trained on a second galaxy cluster later this year. ACS is 10 times more efficient than the Wide Field and Planetary Camera 2 used for this investigation, making it possible to study finer mass clumps in galaxy clusters and help work out how the clusters are assembled. Notes for editors The team is composed of Jean-Paul Kneib (Observatoire Midi-Pyrénées, France/Caltech, United States), Patrick Hudelot (Observatoire Midi-Pyrénées, France),Richard S. Ellis (Caltech, United States), Tommaso Treu (Caltech, United States), Graham P. Smith (Caltech, United States), Phil Marshall (MRAO, United Kingdom), Oliver Czoske (Institut für Astrophysik und Extraterrestrische Forschung, Germany), Ian Smail (University of Durham, United Kingdom) and Priya Natarajan (Yale University, United States). The ground-based observations were done with the Canada-France-Hawaii Telescope (CFHT) using the CFHT12k camera, the Keck telescopes, and the Hale 5-metre telescope at Palomar, United States, using the WIRC camera. The team will present their study at the General Assembly of the International Astronomical Union. They will also publish their results in a forthcoming issue of Astrophysical Journal. For broadcasters, animations of the discovery and general Hubble Space Telescope background footage is available from http://www.spacetelescope.org/video/releases.html Image credit: European Space Agency, NASA and Jean-Paul Kneib (Observatoire Midi-Pyrénées, France/Caltech, United States)

  14. Simulations of galaxy cluster collisions with a dark plasma component

    NASA Astrophysics Data System (ADS)

    Spethmann, Christian; Veermäe, Hardi; Sepp, Tiit; Heikinheimo, Matti; Deshev, Boris; Hektor, Andi; Raidal, Martti

    2017-12-01

    Context. Dark plasma is an intriguing form of self-interacting dark matter with an effective fluid-like behavior, which is well motivated by various theoretical particle physics models. Aims: We aim to find an explanation for an isolated mass clump in the Abell 520 system, which cannot be explained by traditional models of dark matter, but has been detected in weak lensing observations. Methods: We performed N-body smoothed particle hydrodynamics simulations of galaxy cluster collisions with a two component model of dark matter, which is assumed to consist of a predominant non-interacting dark matter component and a 10-40% mass fraction of dark plasma. Results: The mass of a possible dark clump was calculated for each simulation in a parameter scan over the underlying model parameters. In two higher resolution simulations shock-waves and Mach cones were observed to form in the dark plasma halos. Conclusions: By choosing suitable simulation parameters, the observed distributions of dark matter in both the Bullet cluster (1E 0657-558) and Abell 520 (MS 0451.5+0250) can be qualitatively reproduced. Movies associated to Figs. A.1 and A.2 are available at http://www.aanda.org

  15. Big Bangs in Galaxy Clusters: Using X-ray Temperature Maps to Trace Merger Histories in Clusters with Radio Halos/Relics

    NASA Astrophysics Data System (ADS)

    Burns, Jack O.; Datta, Abhirup; Hallman, Eric J.

    2016-06-01

    Galaxy clusters are assembled through large and small mergers which are the most energetic events ("bangs") since the Big Bang. Cluster mergers "stir" the intracluster medium (ICM) creating shocks and turbulence which are illuminated by ~Mpc-sized radio features called relics and halos. These shocks heat the ICM and are detected in x-rays via thermal emission. Disturbed morphologies in x-ray surface brightness and temperatures are direct evidence for cluster mergers. In the radio, relics (in the outskirts of the clusters) and halos (located near the cluster core) are also clear signposts of recent mergers. Our recent ENZO cosmological simulations suggest that around a merger event, radio emission peaks very sharply (and briefly) while the x-ray emission rises and decays slowly. Hence, a sample of galaxy clusters that shows both luminous x-ray emission and radio relics/halos are good candidates for very recent mergers. We are in the early stages of analyzing a unique sample of 48 galaxy clusters with (i) known radio relics and/or halos and (ii) significant archival x-ray observations (>50 ksec) from Chandra and/or XMM. We have developed a new x-ray data analysis pipeline, implemented on parallel processor supercomputers, to create x-ray surface brightness, high fidelity temperature, and pressure maps of these clusters in order to study merging activity. The temperature maps are made using three different map-making techniques: Weighted Voronoi Tessellation, Adaptive Circular Binning, and Contour Binning. In this talk, we will show preliminary results for several clusters, including Abell 2744 and the Bullet cluster. This work is supported by NASA ADAP grant NNX15AE17G.

  16. A VLT/MUSE galaxy survey towards QSO Q1410: looking for a WHIM traced by BLAs in inter-cluster filaments

    NASA Astrophysics Data System (ADS)

    Pessa, Ismael; Tejos, Nicolas; Barrientos, L. Felipe; Werk, Jessica; Bielby, Richard; Padilla, Nelson; Morris, Simon L.; Prochaska, J. Xavier; Lopez, Sebastian; Hummels, Cameron

    2018-07-01

    Cosmological simulations predict that a significant fraction of the low-z baryon budget resides in large-scale filaments in the form of a diffuse plasma at temperatures T ˜ 105 - 107 K. However, direct observation of this so-called warm-hot intergalactic medium (WHIM) has been elusive. In the Λcold dark matter paradigm, galaxy clusters correspond to the nodes of the cosmic web at the intersection of several large-scale filamentary threads. In previous work, we used HST/COS data to conduct the first survey of broad H I Lyα absorbers (BLAs) potentially produced by WHIM in inter-cluster filaments. We targeted a single QSO, namely Q1410, whose sightline intersects seven independent inter-cluster axes at impact parameters <3 Mpc (comoving), and found a tentative excess of a factor of ˜4 with respect to the field. Here, we further investigate the origin of these BLAs by performing a blind galaxy survey within the Q1410 field using VLT/MUSE. We identified 77 sources and obtained the redshifts for 52 of them. Out of the total sample of seven BLAs in inter-cluster axes, we found three without any galaxy counterpart to stringent luminosity limits (˜4 × 108 L⊙ ˜0.01 L*), providing further evidence that these BLAs may represent genuine WHIM detections. We combined this sample with other suitable BLAs from the literature and inferred the corresponding baryon mean density for these filaments in the range Ω ^fil_bar= 0.02-0.04. Our rough estimates are consistent with the predictions from numerical simulations but still subject to large systematic uncertainties, mostly from the adopted geometry, ionization corrections, and density profile.

  17. Probabilistic Inference of Dark Matter Properties in Galaxy Clusters and the Cosmic Web

    NASA Astrophysics Data System (ADS)

    Ng, Yin-Yee

    2016-03-01

    "Mass tells spacetime how to curve, spacetime tells mass how to move". This famous quote by physicist John Archibald Wheeler succinctly summarizes General Relativity, the most successful theory that describes our universe at large scale. However, most of the mass that General Relativity describes, namely dark matter (DM), remains a mystery. We have solid evidence of the existence of DM from various observations, but we know little or nothing about the particle nature of DM and how DM particles interact with different particles. Completing this knowledge gap would improve or revolutionize our established cosmological model, the Lambda Cold-Dark Matter (CDM) model, and give directions to theories beyond the standard particle physics model. This work attempts to study DM by examining and extending existing modeling approaches of DM and its visible tracers in a probabilistic way. The single verified form of DM interaction is gravitational. Currently, the only way to infer the properties of DM is through visible tracers. Most of these indirect detections either have low signal-to-noise, sparse coverage, or missing variables. These limitations introduce additional modeling choices and uncertainties. A probabilistic approach allows us to propagate the uncertainties appropriately and marginalize any missing variables. There are two recurring types of visible tracers that my work uses. The first type of tracers are galaxies and observables in the overdense regions of DM. These tracers allow us to infer the macroscopic dynamical properties of DM distribution that we want to study. The second type of tracers, on the hand, are in the background, i.e. further away than the foreground dark matter, from us observers. The gravity of DM can bend spacetime such that the path of light traveling in the vicinity would also curve, leaving distortions in the galaxy images. In the introduction (first chapter) of this thesis, I will lay out the technical history, terminology and the reasons behind choosing the various data sets and give an overview of the analysis methods for my thesis work. In chapter two, I will present the study based on the observational data of El Gordo, one of the most massive, most ancient, merging galaxy clusters. Under the extreme collision speeds during a merger of a galaxy cluster, it is more probable for DM particles in the cluster to manifest effects of self-interaction. Thus, if DM particles can interact with one another, some preliminary simulations have shown that large-scale spatial distribution of DM can show discrepancies from its galaxy-counterparts. This discrepancy is also known as the galaxy-DM offset, with a caveat. The long duration (millions of years) of a merger means that we cannot detect the direction of motions of the components directly to confirm the offset as a lag. My work on El Gordo was the first to show a quantitative method of estimating how likely the DM components of El Gordo are to be moving in a certain direction. To address my concerns from the study of El Gordo, I conducted a second investigation of galaxy clusters in a cosmological simulation, which is described in chapter 3. The dataset I chose was from the Illustris simulation. As this simulation assumes a Cold-Dark-Matter model (CDM) without requiring an SIDM model, any offset between DM and the member galaxies in a galaxy cluster provides an estimate of the variability of the galaxy-DM o. My study shows that the variability in this setting is non-negligible compared to the small observed offsets, it is likely that random variation can account for the galaxy-DM offsets in observations. The result weakens our belief that SIDM is the cause of the offsets. The fourth chapter of my dissertation builds on top of my previous experience with analyzing the weak lensing data for El Gordo. This time, I performed the weak lensing study for a dataset of a much larger spatial scale, such that, galaxy clusters look like parts of a homogeneous and isotropic DM web. At this scale, it is possible to compare the spatial distribution of DM to simulations to give competitive constraints on cosmological parameters. Using weak lensing signals for estimating cosmological parameters is also known as cosmic shear inference. While I used a parametric technique to estimate the mass of El Gordo in chapter 2, my work in chapter 4 introduces a new non-parametric model using a Gaussian Process. As I have built the lensing physics into the very core of the covariance kernel matrix, we can also simultaneously infer the several important lensing observables, such as shear and convergence, given some lensed galaxy shapes. More importantly, this technique relies on fewer assumptions about the photometric redshift than traditional cosmic shear analysis technique. This may reduce the bias towards a ducial cosmology and lead to interesting discoveries. I conclude my work in Chapter 5 and discuss the implications of my work. This includes some future directions for analyzing DM by using simulations with different underlying DM models and real data. (Abstract shortened by ProQuest.).

  18. Increasing Black Hole Feedback-induced Quenching with Anisotropic Thermal Conduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kannan, Rahul; Vogelsberger, Mark; Pfrommer, Christoph

    Feedback from central supermassive black holes is often invoked to explain the low star formation rates (SFRs) in the massive galaxies at the centers of galaxy clusters. However, the detailed physics of the coupling of the injected feedback energy with the intracluster medium (ICM) is still unclear. Using high-resolution magnetohydrodynamic cosmological simulations of galaxy cluster formation, we investigate the role of anisotropic thermal conduction in shaping the thermodynamic structure of clusters, and in particular, in modifying the impact of black hole feedback. Stratified anisotropically conducting plasmas are formally always unstable, and thus more prone to mixing, an expectation borne outmore » by our results. The increased mixing efficiently isotropizes the injected feedback energy, which in turn significantly improves the coupling between the feedback energy and the ICM. This facilitates an earlier disruption of the cool-core, reduces the SFR by more than an order of magnitude, and results in earlier quenching despite an overall lower amount of feedback energy injected into the cluster core. With conduction, the metallicity gradients and dispersions are lowered, aligning them better with observational constraints. These results highlight the important role of thermal conduction in establishing and maintaining the quiescence of massive galaxies.« less

  19. SUZAKU OBSERVATIONS OF THE X-RAY BRIGHTEST FOSSIL GROUP ESO 3060170

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Yuanyuan; White, Raymond E. III; Miller, Eric D., E-mail: ysu@crimson.ua.edu

    2013-10-01

    'Fossil' galaxy groups, each dominated by a relatively isolated giant elliptical galaxy, have many properties intermediate between groups and clusters of galaxies. We used the Suzaku X-ray observatory to observe the X-ray brightest fossil group, ESO 3060170, out to R{sub 200}, in order to better elucidate the relation between fossil groups, normal groups, and clusters. We determined the intragroup gas temperature, density, and metal abundance distributions and derived the entropy, pressure, and mass profiles for this group. The entropy and pressure profiles in the outer regions are flatter than in simulated clusters, similar to what is seen in observations ofmore » massive clusters. This may indicate that the gas is clumpy and/or the gas has been redistributed. Assuming hydrostatic equilibrium, the total mass is estimated to be ∼1.7 × 10{sup 14} M{sub ☉} within a radius R{sub 200} of ∼1.15 Mpc, with an enclosed baryon mass fraction of 0.13. The integrated iron mass-to-light ratio of this fossil group is larger than in most groups and comparable to those of clusters, indicating that this fossil group has retained the bulk of its metals. A galaxy luminosity density map on a scale of 25 Mpc shows that this fossil group resides in a relatively isolated environment, unlike the filamentary structures in which typical groups and clusters are embedded.« less

  20. On the coherent rotation of diffuse matter in numerical simulations of clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Baldi, Anna Silvia; De Petris, Marco; Sembolini, Federico; Yepes, Gustavo; Lamagna, Luca; Rasia, Elena

    2017-03-01

    We present a study on the coherent rotation of the intracluster medium and dark matter components of simulated galaxy clusters extracted from a volume-limited sample of the MUSIC project. The set is re-simulated with three different recipes for the gas physics: (I) non-radiative, (II) radiative without active galactic nuclei (AGN) feedback and (III) radiative with AGN feedback. Our analysis is based on the 146 most massive clusters identified as relaxed, 57 per cent of the total sample. We classify these objects as rotating and non-rotating according to the gas spin parameter, a quantity that can be related to cluster observations. We find that 4 per cent of the relaxed sample is rotating according to our criterion. By looking at the radial profiles of their specific angular momentum vector, we find that the solid body model is not a suitable description of rotational motions. The radial profiles of the velocity of the dark matter show a prevalence of the random velocity dispersion. Instead, the intracluster medium profiles are characterized by a comparable contribution from the tangential velocity and the dispersion. In general, the dark matter component dominates the dynamics of the clusters, as suggested by the correlation between its angular momentum and the gas one, and by the lack of relevant differences among the three sets of simulations.

  1. Infalling groups and galaxy transformations in the cluster A2142

    NASA Astrophysics Data System (ADS)

    Einasto, Maret; Deshev, Boris; Lietzen, Heidi; Kipper, Rain; Tempel, Elmo; Park, Changbom; Gramann, Mirt; Heinämäki, Pekka; Saar, Enn; Einasto, Jaan

    2018-03-01

    Context. Superclusters of galaxies provide dynamical environments for the study of the formation and evolution of structures in the cosmic web from galaxies, to the richest galaxy clusters, and superclusters themselves. Aims: We study galaxy populations and search for possible merging substructures in the rich galaxy cluster A2142 in the collapsing core of the supercluster SCl A2142, which may give rise to radio and X-ray structures in the cluster, and affect galaxy properties of this cluster. Methods: We used normal mixture modelling to select substructure of the cluster A2142. We compared alignments of the cluster, its brightest galaxies (hereafter BCGs), subclusters, and supercluster axes. The projected phase space (PPS) diagram and clustercentric distributions are used to analyse the dynamics of the cluster and study the distribution of various galaxy populations in the cluster and subclusters. Results: We find several infalling galaxy groups and subclusters. The cluster, supercluster, BCGs, and one infalling subcluster are all aligned. Their orientation is correlated with the alignment of the radio and X-ray haloes of the cluster. Galaxy populations in the main cluster and in the outskirts subclusters are different. Galaxies in the centre of the main cluster at the clustercentric distances 0.5 h-1 Mpc (Dc/Rvir < 0.5, Rvir = 0.9 h-1 Mpc) have older stellar populations (with the median age of 10-11 Gyr) than galaxies at larger clustercentric distances. Star-forming and recently quenched galaxies are located mostly at the clustercentric distances Dc ≈ 1.8 h-1 Mpc, where subclusters fall into the cluster and the properties of galaxies change rapidly. In this region the median age of stellar populations of galaxies is about 2 Gyr. Galaxies in A2142 on average have higher stellar masses, lower star formation rates, and redder colours than galaxies in rich groups. The total mass in infalling groups and subclusters is M ≈ 6 × 1014 h-1 M⊙, that is approximately half of the mass of the cluster. This mass is sufficient for the mass growth of the cluster from redshift z = 0.5 (half-mass epoch) to the present. Conclusions: Our analysis suggests that the cluster A2142 has formed as a result of past and present mergers and infallen groups, predominantly along the supercluster axis. Mergers cause complex radio and X-ray structure of the cluster and affect the properties of galaxies in the cluster, especially at the boundaries of the cluster in the infall region. Explaining the differences between galaxy populations, mass, and richness of A2142, and other groups and clusters may lead to better insight about the formation and evolution of rich galaxy clusters.

  2. Dark matter self-interactions and small scale structure

    NASA Astrophysics Data System (ADS)

    Tulin, Sean; Yu, Hai-Bo

    2018-02-01

    We review theories of dark matter (DM) beyond the collisionless paradigm, known as self-interacting dark matter (SIDM), and their observable implications for astrophysical structure in the Universe. Self-interactions are motivated, in part, due to the potential to explain long-standing (and more recent) small scale structure observations that are in tension with collisionless cold DM (CDM) predictions. Simple particle physics models for SIDM can provide a universal explanation for these observations across a wide range of mass scales spanning dwarf galaxies, low and high surface brightness spiral galaxies, and clusters of galaxies. At the same time, SIDM leaves intact the success of ΛCDM cosmology on large scales. This report covers the following topics: (1) small scale structure issues, including the core-cusp problem, the diversity problem for rotation curves, the missing satellites problem, and the too-big-to-fail problem, as well as recent progress in hydrodynamical simulations of galaxy formation; (2) N-body simulations for SIDM, including implications for density profiles, halo shapes, substructure, and the interplay between baryons and self-interactions; (3) semi-analytic Jeans-based methods that provide a complementary approach for connecting particle models with observations; (4) merging systems, such as cluster mergers (e.g., the Bullet Cluster) and minor infalls, along with recent simulation results for mergers; (5) particle physics models, including light mediator models and composite DM models; and (6) complementary probes for SIDM, including indirect and direct detection experiments, particle collider searches, and cosmological observations. We provide a summary and critical look for all current constraints on DM self-interactions and an outline for future directions.

  3. FIRST RESULTS FROM Z -FOURGE : DISCOVERY OF A CANDIDATE CLUSTER AT z = 2.2 IN COSMOS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spitler, Lee R.; Glazebrook, Karl; Poole, Gregory B.

    2012-04-01

    We report the first results from the Z -FOURGE survey: the discovery of a candidate galaxy cluster at z = 2.2 consisting of two compact overdensities with red galaxies detected at {approx}> 20{sigma} above the mean surface density. The discovery was made possible by a new deep (K{sub s} {approx}< 24.8 AB 5{sigma}) Magellan/FOURSTAR near-IR imaging survey with five custom medium-bandwidth filters. The filters pinpoint the location of the Balmer/4000 A break in evolved stellar populations at 1.5 < z < 3.5, yielding significantly more accurate photometric redshifts than possible with broadband imaging alone. The overdensities are within 1' ofmore » each other in the COSMOS field and appear to be embedded in a larger structure that contains at least one additional overdensity ({approx}10{sigma}). Considering the global properties of the overdensities, the z = 2.2 system appears to be the most distant example of a galaxy cluster with a population of red galaxies. A comparison to a large {Lambda}CDM simulation suggests that the system may consist of merging subclusters, with properties in between those of z > 2 protoclusters with more diffuse distributions of blue galaxies and the lower-redshift galaxy clusters with prominent red sequences. The structure is completely absent in public optical catalogs in COSMOS and only weakly visible in a shallower near-IR survey. The discovery showcases the potential of deep near-IR surveys with medium-band filters to advance the understanding of environment and galaxy evolution at z > 1.5.« less

  4. Probing the shape and internal structure of dark matter haloes with the halo-shear-shear three-point correlation function

    NASA Astrophysics Data System (ADS)

    Shirasaki, Masato; Yoshida, Naoki

    2018-04-01

    Weak lensing three-point statistics are powerful probes of the structure of dark matter haloes. We propose to use the correlation of the positions of galaxies with the shapes of background galaxy pairs, known as the halo-shear-shear correlation (HSSC), to measure the mean halo ellipticity and the abundance of subhaloes in a statistical manner. We run high-resolution cosmological N-body simulations and use the outputs to measure the HSSC for galaxy haloes and cluster haloes. Non-spherical haloes cause a characteristic azimuthal variation of the HSSC, and massive subhaloes in the outer region near the virial radius contribute to ˜ 10 per cent of the HSSC amplitude. Using the HSSC and its covariance estimated from our N-body simulations, we make forecast for constraining the internal structure of dark matter haloes with future galaxy surveys. With 1000 galaxy groups with mass greater than 1013.5 h-1M⊙, the average halo ellipticity can be measured with an accuracy of 10 percent. A spherical, smooth mass distribution can be ruled out at a ˜5σ significance level. The existence of subhaloes whose masses are in 1-10 percent of the main halo mass can be detected with ˜104 galaxies/clusters. We conclude that the HSSC provides valuable information on the structure of dark haloes and hence on the nature of dark matter.

  5. An Open-Source Galaxy Redshift Survey Simulator for next-generation Large Scale Structure Surveys

    NASA Astrophysics Data System (ADS)

    Seijak, Uros

    Galaxy redshift surveys produce three-dimensional maps of the galaxy distribution. On large scales these maps trace the underlying matter fluctuations in a relatively simple manner, so that the properties of the primordial fluctuations along with the overall expansion history and growth of perturbations can be extracted. The BAO standard ruler method to measure the expansion history of the universe using galaxy redshift surveys is thought to be robust to observational artifacts and understood theoretically with high precision. These same surveys can offer a host of additional information, including a measurement of the growth rate of large scale structure through redshift space distortions, the possibility of measuring the sum of neutrino masses, tighter constraints on the expansion history through the Alcock-Paczynski effect, and constraints on the scale-dependence and non-Gaussianity of the primordial fluctuations. Extracting this broadband clustering information hinges on both our ability to minimize and subtract observational systematics to the observed galaxy power spectrum, and our ability to model the broadband behavior of the observed galaxy power spectrum with exquisite precision. Rapid development on both fronts is required to capitalize on WFIRST's data set. We propose to develop an open-source computational toolbox that will propel development in both areas by connecting large scale structure modeling and instrument and survey modeling with the statistical inference process. We will use the proposed simulator to both tailor perturbation theory and fully non-linear models of the broadband clustering of WFIRST galaxies and discover novel observables in the non-linear regime that are robust to observational systematics and able to distinguish between a wide range of spatial and dynamic biasing models for the WFIRST galaxy redshift survey sources. We have demonstrated the utility of this approach in a pilot study of the SDSS-III BOSS galaxies, in which we improved the redshift space distortion growth rate measurement precision by a factor of 2.5 using customized clustering statistics in the non-linear regime that were immunized against observational systematics. We look forward to addressing the unique challenges of modeling and empirically characterizing the WFIRST galaxies and observational systematics.

  6. Constraints on the optical depth of galaxy groups and clusters

    DOE PAGES

    Flender, Samuel; Nagai, Daisuke; McDonald, Michael

    2017-03-10

    Here, future data from galaxy redshift surveys, combined with high-resolutions maps of the cosmic microwave background, will enable measurements of the pairwise kinematic Sunyaev–Zel'dovich (kSZ) signal with unprecedented statistical significance. This signal probes the matter-velocity correlation function, scaled by the average optical depth (τ) of the galaxy groups and clusters in the sample, and is thus of fundamental importance for cosmology. However, in order to translate pairwise kSZ measurements into cosmological constraints, external constraints on τ are necessary. In this work, we present a new model for the intracluster medium, which takes into account star formation, feedback, non-thermal pressure, and gas cooling. Our semi-analytic model is computationally efficient and can reproduce results of recent hydrodynamical simulations of galaxy cluster formation. We calibrate the free parameters in the model using recent X-ray measurements of gas density profiles of clusters, and gas masses of groups and clusters. Our observationally calibrated model predicts the averagemore » $${\\tau }_{500}$$ (i.e., the integrated τ within a disk of size R 500) to better than 6% modeling uncertainty (at 95% confidence level). If the remaining uncertainties associated with other astrophysical uncertainties and X-ray selection effects can be better understood, our model for the optical depth should break the degeneracy between optical depth and cluster velocity in the analysis of future pairwise kSZ measurements and improve cosmological constraints with the combination of upcoming galaxy and CMB surveys, including the nature of dark energy, modified gravity, and neutrino mass.« less

  7. Constraints on the optical depth of galaxy groups and clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flender, Samuel; Nagai, Daisuke; McDonald, Michael

    Here, future data from galaxy redshift surveys, combined with high-resolutions maps of the cosmic microwave background, will enable measurements of the pairwise kinematic Sunyaev–Zel'dovich (kSZ) signal with unprecedented statistical significance. This signal probes the matter-velocity correlation function, scaled by the average optical depth (τ) of the galaxy groups and clusters in the sample, and is thus of fundamental importance for cosmology. However, in order to translate pairwise kSZ measurements into cosmological constraints, external constraints on τ are necessary. In this work, we present a new model for the intracluster medium, which takes into account star formation, feedback, non-thermal pressure, and gas cooling. Our semi-analytic model is computationally efficient and can reproduce results of recent hydrodynamical simulations of galaxy cluster formation. We calibrate the free parameters in the model using recent X-ray measurements of gas density profiles of clusters, and gas masses of groups and clusters. Our observationally calibrated model predicts the averagemore » $${\\tau }_{500}$$ (i.e., the integrated τ within a disk of size R 500) to better than 6% modeling uncertainty (at 95% confidence level). If the remaining uncertainties associated with other astrophysical uncertainties and X-ray selection effects can be better understood, our model for the optical depth should break the degeneracy between optical depth and cluster velocity in the analysis of future pairwise kSZ measurements and improve cosmological constraints with the combination of upcoming galaxy and CMB surveys, including the nature of dark energy, modified gravity, and neutrino mass.« less

  8. Globular cluster formation and evolution in the context of cosmological galaxy assembly: open questions

    NASA Astrophysics Data System (ADS)

    Forbes, Duncan A.; Bastian, Nate; Gieles, Mark; Crain, Robert A.; Kruijssen, J. M. Diederik; Larsen, Søren S.; Ploeckinger, Sylvia; Agertz, Oscar; Trenti, Michele; Ferguson, Annette M. N.; Pfeffer, Joel; Gnedin, Oleg Y.

    2018-02-01

    We discuss some of the key open questions regarding the formation and evolution of globular clusters (GCs) during galaxy formation and assembly within a cosmological framework. The current state of the art for both observations and simulations is described, and we briefly mention directions for future research. The oldest GCs have ages greater than or equal to 12.5 Gyr and formed around the time of reionization. Resolved colour-magnitude diagrams of Milky Way GCs and direct imaging of lensed proto-GCs at z˜6 with the James Webb Space Telescope (JWST) promise further insight. GCs are known to host multiple populations of stars with variations in their chemical abundances. Recently, such multiple populations have been detected in ˜2 Gyr old compact, massive star clusters. This suggests a common, single pathway for the formation of GCs at high and low redshift. The shape of the initial mass function for GCs remains unknown; however, for massive galaxies a power-law mass function is favoured. Significant progress has been made recently modelling GC formation in the context of galaxy formation, with success in reproducing many of the observed GC-galaxy scaling relations.

  9. Globular cluster formation and evolution in the context of cosmological galaxy assembly: open questions.

    PubMed

    Forbes, Duncan A; Bastian, Nate; Gieles, Mark; Crain, Robert A; Kruijssen, J M Diederik; Larsen, Søren S; Ploeckinger, Sylvia; Agertz, Oscar; Trenti, Michele; Ferguson, Annette M N; Pfeffer, Joel; Gnedin, Oleg Y

    2018-02-01

    We discuss some of the key open questions regarding the formation and evolution of globular clusters (GCs) during galaxy formation and assembly within a cosmological framework. The current state of the art for both observations and simulations is described, and we briefly mention directions for future research. The oldest GCs have ages greater than or equal to 12.5 Gyr and formed around the time of reionization. Resolved colour-magnitude diagrams of Milky Way GCs and direct imaging of lensed proto-GCs at z ∼6 with the James Webb Space Telescope (JWST) promise further insight. GCs are known to host multiple populations of stars with variations in their chemical abundances. Recently, such multiple populations have been detected in ∼2 Gyr old compact, massive star clusters. This suggests a common, single pathway for the formation of GCs at high and low redshift. The shape of the initial mass function for GCs remains unknown; however, for massive galaxies a power-law mass function is favoured. Significant progress has been made recently modelling GC formation in the context of galaxy formation, with success in reproducing many of the observed GC-galaxy scaling relations.

  10. Globular cluster formation and evolution in the context of cosmological galaxy assembly: open questions

    PubMed Central

    Bastian, Nate; Gieles, Mark; Crain, Robert A.; Kruijssen, J. M. Diederik; Larsen, Søren S.; Ploeckinger, Sylvia; Agertz, Oscar; Trenti, Michele; Ferguson, Annette M. N.; Pfeffer, Joel; Gnedin, Oleg Y.

    2018-01-01

    We discuss some of the key open questions regarding the formation and evolution of globular clusters (GCs) during galaxy formation and assembly within a cosmological framework. The current state of the art for both observations and simulations is described, and we briefly mention directions for future research. The oldest GCs have ages greater than or equal to 12.5 Gyr and formed around the time of reionization. Resolved colour-magnitude diagrams of Milky Way GCs and direct imaging of lensed proto-GCs at z∼6 with the James Webb Space Telescope (JWST) promise further insight. GCs are known to host multiple populations of stars with variations in their chemical abundances. Recently, such multiple populations have been detected in ∼2 Gyr old compact, massive star clusters. This suggests a common, single pathway for the formation of GCs at high and low redshift. The shape of the initial mass function for GCs remains unknown; however, for massive galaxies a power-law mass function is favoured. Significant progress has been made recently modelling GC formation in the context of galaxy formation, with success in reproducing many of the observed GC-galaxy scaling relations. PMID:29507511

  11. Precise weak lensing constraints from deep high-resolution Ks images: VLT/HAWK-I analysis of the super-massive galaxy cluster RCS2 J 232727.7-020437 at z = 0.70

    NASA Astrophysics Data System (ADS)

    Schrabback, Tim; Schirmer, Mischa; van der Burg, Remco F. J.; Hoekstra, Henk; Buddendiek, Axel; Applegate, Douglas; Bradač, Maruša; Eifler, Tim; Erben, Thomas; Gladders, Michael D.; Hernández-Martín, Beatriz; Hildebrandt, Hendrik; Hoag, Austin; Klaes, Dominik; von der Linden, Anja; Marchesini, Danilo; Muzzin, Adam; Sharon, Keren; Stefanon, Mauro

    2018-03-01

    We demonstrate that deep good-seeing VLT/HAWK-I Ks images complemented with g + z-band photometry can yield a sensitivity for weak lensing studies of massive galaxy clusters at redshifts 0.7 ≲ z ≲ 1.1, which is almost identical to the sensitivity of HST/ACS mosaics of single-orbit depth. Key reasons for this good performance are the excellent image quality frequently achievable for Ks imaging from the ground, a highly effective photometric selection of background galaxies, and a galaxy ellipticity dispersion that is noticeably lower than for optically observed high-redshift galaxy samples. Incorporating results from the 3D-HST and UltraVISTA surveys we also obtained a more accurate calibration of the source redshift distribution than previously achieved for similar optical weak lensing data sets. Here we studied the extremely massive galaxy cluster RCS2 J232727.7-020437 (z = 0.699), combining deep VLT/HAWK-I Ks images (point spread function with a 0.''35 full width at half maximum) with LBT/LBC photometry. The resulting weak lensing mass reconstruction suggests that the cluster consists of a single overdensity, which is detected with a peak significance of 10.1σ. We constrained the cluster mass to M200c/(1015 M⊙) = 2.06-0.26+0.28(stat.) ± 0.12(sys.) assuming a spherical Navarro, Frenk & White model and simulation-based priors on the concentration, making it one of the most massive galaxy clusters known in the z ≳ 0.7 Universe. We also cross-checked the HAWK-I measurements through an analysis of overlapping HST/ACS images, yielding fully consistent estimates of the lensing signal. Based on observations conducted with the ESO Very Large Telescope, the Large Binocular Telescope, and the NASA/ESA Hubble Space Telescope, as detailed in the acknowledgements.

  12. GASP. IV. A Muse View of Extreme Ram-pressure-stripping in the Plane of the Sky: The Case of Jellyfish Galaxy JO204

    NASA Astrophysics Data System (ADS)

    Gullieuszik, Marco; Poggianti, Bianca M.; Moretti, Alessia; Fritz, Jacopo; Jaffé, Yara L.; Hau, George; Bischko, Jan C.; Bellhouse, Callum; Bettoni, Daniela; Fasano, Giovanni; Vulcani, Benedetta; D’Onofrio, Mauro; Biviano, Andrea

    2017-09-01

    In the context of the GAs Stripping Phenomena in galaxies with Muse (GASP) survey, we present the characterization of JO204, a jellyfish galaxy in A957, a relatively low-mass cluster with M=4.4× {10}14 {M}ȯ . This galaxy shows a tail of ionized gas that extends up to 30 kpc from the main body in the opposite direction of the cluster center. No gas emission is detected in the galaxy outer disk, suggesting that gas-stripping is proceeding outside-in. The stellar component is distributed as a regular disk galaxy; the stellar kinematics shows a symmetric rotation curve with a maximum radial velocity of 200 km s‑1 out to 20 kpc from the galaxy center. The radial velocity of the gas component in the central part of the disk follows the distribution of the stellar component; the gas kinematics in the tail retains the rotation of the galaxy disk, indicating that JO204 is moving at high speed in the intracluster medium. Both the emission and radial-velocity maps of the gas and stellar components indicate ram-pressure as the most likely primary mechanism for gas-stripping, as expected given that JO204 is close to the cluster center and it is likely at the first infall in the cluster. The spatially resolved star formation history of JO204 provides evidence that the onset of ram-pressure-stripping occurred in the last 500 Myr, quenching the star formation activity in the outer disk, where the gas has been already completely stripped. Our conclusions are supported by a set of hydrodynamic simulations.

  13. Unbiased methods for removing systematics from galaxy clustering measurements

    NASA Astrophysics Data System (ADS)

    Elsner, Franz; Leistedt, Boris; Peiris, Hiranya V.

    2016-02-01

    Measuring the angular clustering of galaxies as a function of redshift is a powerful method for extracting information from the three-dimensional galaxy distribution. The precision of such measurements will dramatically increase with ongoing and future wide-field galaxy surveys. However, these are also increasingly sensitive to observational and astrophysical contaminants. Here, we study the statistical properties of three methods proposed for controlling such systematics - template subtraction, basic mode projection, and extended mode projection - all of which make use of externally supplied template maps, designed to characterize and capture the spatial variations of potential systematic effects. Based on a detailed mathematical analysis, and in agreement with simulations, we find that the template subtraction method in its original formulation returns biased estimates of the galaxy angular clustering. We derive closed-form expressions that should be used to correct results for this shortcoming. Turning to the basic mode projection algorithm, we prove it to be free of any bias, whereas we conclude that results computed with extended mode projection are biased. Within a simplified setup, we derive analytical expressions for the bias and discuss the options for correcting it in more realistic configurations. Common to all three methods is an increased estimator variance induced by the cleaning process, albeit at different levels. These results enable unbiased high-precision clustering measurements in the presence of spatially varying systematics, an essential step towards realizing the full potential of current and planned galaxy surveys.

  14. The abundance of galaxy clusters in modified Newtonian dynamics: cosmological simulations with massive neutrinos

    NASA Astrophysics Data System (ADS)

    Angus, G. W.; Diaferio, Antonaldo

    2011-10-01

    We present a new particle mesh cosmological N-body code for accurately solving the modified Poisson equation of the quasi-linear formulation of modified Newtonian dynamics (MOND). We generate initial conditions for the Angus cosmological model, which is identical to Λ cold dark matter (ΛCDM) except that the CDM is switched for a single species of thermal sterile neutrinos. We set the initial conditions at z= 250 for a (512 Mpc h-1)3 box with 2563 particles, and we evolve them down to z= 0. We clearly demonstrate the ability of MOND to develop the large-scale structure in a hot dark matter cosmology and contradict the naive expectation that MOND cannot form galaxy clusters. We find that the correct order of magnitude of X-ray clusters (with TX > 4.5 keV) can be formed, but that we overpredict the number of very rich clusters and seriously underpredict the number of lower mass clusters. We present evidence that suggests the density profiles of our simulated clusters are compatible with those of the observed X-ray clusters in MOND. As a last test, we computed the relative velocity between pairs of haloes within 10 Mpc and find that pairs with velocities larger than 3000 km s-1, like the bullet cluster, can form without difficulty.

  15. Counts of galaxy clusters as cosmological probes: the impact of baryonic physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balaguera-Antolínez, Andrés; Porciani, Cristiano, E-mail: abalan@astro.uni-bonn.de, E-mail: porciani@astro.uni-bonn.de

    2013-04-01

    The halo mass function from N-body simulations of collisionless matter is generally used to retrieve cosmological parameters from observed counts of galaxy clusters. This neglects the observational fact that the baryonic mass fraction in clusters is a random variable that, on average, increases with the total mass (within an overdensity of 500). Considering a mock catalog that includes tens of thousands of galaxy clusters, as expected from the forthcoming generation of surveys, we show that the effect of a varying baryonic mass fraction will be observable with high statistical significance. The net effect is a change in the overall normalizationmore » of the cluster mass function and a milder modification of its shape. Our results indicate the necessity of taking into account baryonic corrections to the mass function if one wants to obtain unbiased estimates of the cosmological parameters from data of this quality. We introduce the formalism necessary to accomplish this goal. Our discussion is based on the conditional probability of finding a given value of the baryonic mass fraction for clusters of fixed total mass. Finally, we show that combining information from the cluster counts with measurements of the baryonic mass fraction in a small subsample of clusters (including only a few tens of objects) will nearly optimally constrain the cosmological parameters.« less

  16. Cosmic Ray Streaming in Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Wiener, Joshua; Gould Zweibel, Ellen; Oh, Siang P.

    2017-08-01

    The origin of diffuse radio emission in galaxy clusters remains an open question in astrophysics. This emission indicates the presence of cluster-wide magnetic fields and high energy cosmic ray (CR) electrons. I will discuss how the properties of the observed radio emission in clusters are shaped by different CR transport processes, namely CR streaming. Recent work has shown that fast streaming may turn off radio emission on relatively short time scales - a full treatment of magnetohydrodynamic (MHD) wave damping shows that streaming may be even faster than previously thought in high β environments. I will briefly introduce the physics behind CR transport, and present simple numerical simulations of the Coma cluster that predict radio emission, as well as other observable signatures such as gamma radiation that can differentiate between models for the source of the CR electrons.

  17. Spatial and kinematic distributions of transition populations in intermediate redshift galaxy clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, Steven M.; Wirth, Gregory D.; Bershady, Matthew A., E-mail: crawford@saao.ac.za, E-mail: wirth@keck.hawaii.edu, E-mail: mab@astro.wisc.edu

    2014-05-01

    We analyze the spatial and velocity distributions of confirmed members in five massive clusters of galaxies at intermediate redshift (0.5 < z < 0.9) to investigate the physical processes driving galaxy evolution. Based on spectral classifications derived from broad- and narrow-band photometry, we define four distinct galaxy populations representing different evolutionary stages: red sequence (RS) galaxies, blue cloud (BC) galaxies, green valley (GV) galaxies, and luminous compact blue galaxies (LCBGs). For each galaxy class, we derive the projected spatial and velocity distribution and characterize the degree of subclustering. We find that RS, BC, and GV galaxies in these clusters havemore » similar velocity distributions, but that BC and GV galaxies tend to avoid the core of the two z ≈ 0.55 clusters. GV galaxies exhibit subclustering properties similar to RS galaxies, but their radial velocity distribution is significantly platykurtic compared to the RS galaxies. The absence of GV galaxies in the cluster cores may explain their somewhat prolonged star-formation history. The LCBGs appear to have recently fallen into the cluster based on their larger velocity dispersion, absence from the cores of the clusters, and different radial velocity distribution than the RS galaxies. Both LCBG and BC galaxies show a high degree of subclustering on the smallest scales, leading us to conclude that star formation is likely triggered by galaxy-galaxy interactions during infall into the cluster.« less

  18. Beyond Hydrodynamic Modeling of AGN Heating in Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Yang, Hsiang-Yi Karen

    Clusters of galaxies hold a unique position in hierarchical structure formation - they are both powerful cosmological probes and excellent astrophysical laboratories. Accurate modeling of the cluster properties is crucial for reducing systematic uncertainties in cluster cosmology. However, theoretical modeling of the intracluster medium (ICM) has long suffered from the "cooling-flow problem" - clusters with short central times or cool cores (CCs) are predicted to host massive inflows of gas that are not observed. Feedback from active galactic nuclei (AGN) is by far the most promising heating mechanism to counteract radiative cooling. Recent hydrodynamic simulations have made remarkable progress reproducing properties of the CCs. However, there remain two major questions that cannot be probed using purely hydrodynamic models: (1) what are the roles of cosmic rays (CRs)? (2) how is the existing picture altered when the ICM is modeled as weakly collisional plasma? We propose to move beyond limitations of pure hydrodynamics and progress toward a complete understanding of how AGN jet-inflated bubbles interact with their surroundings and provide heat to the ICM. Our objectives include: (1) understand how CR-dominated bubbles heat the ICM; (2) understand bubble evolution and sound-wave dissipation in the ICM with different assumptions of plasma properties, e.g., collisionality of the ICM, with or without anisotropic transport processes; (3) Develop a subgrid model of AGN heating that can be adopted in cosmological simulations based on state-of-the-art isolated simulations. We will use a combination of analytical calculations and idealized simulations to advance our understanding of each individual physical process. We will then perform the first three-dimensional (3D) magnetohydrodynamic (MHD) simulations of self-regulated AGN feedback with relevant CR and anisotropic transport processes in order to quantify the amount and distribution of heating from the AGN. Our proposed work will elucidate the poorly understood CR and anisotropic transport processes in the weakly collisional ICM and shed light on the long-standing mystery of AGN heating in CC clusters. Our investigation, which incorporates plasma effects into fluid models and provides physical foundation for cosmological simulations, will serve as an important bridge between physics on both micro and macro scales. This study will enable robust modeling of the radio-mode feedback of AGN in cosmological simulations of cluster and galaxy formation. It will also directly impact observational studies of clusters including NASA missions such as Chandra, XMM-Newton, Astro-H/Hitomi, Fermi, HST, and Planck.

  19. DO NOT FORGET THE FOREST FOR THE TREES: THE STELLAR-MASS HALO-MASS RELATION IN DIFFERENT ENVIRONMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonnesen, Stephanie; Cen, Renyue, E-mail: stonnes@gmail.com, E-mail: cen@astro.princeton.edu

    2015-10-20

    The connection between dark matter halos and galactic baryons is often not well constrained nor well resolved in cosmological hydrodynamical simulations. Thus, halo occupation distribution models that assign galaxies to halos based on halo mass are frequently used to interpret clustering observations, even though it is well known that the assembly history of dark matter halos is related to their clustering. In this paper we use high-resolution hydrodynamical cosmological simulations to compare the halo and stellar mass growth of galaxies in a large-scale overdensity to those in a large-scale underdensity (on scales of about 20 Mpc). The simulation reproduces assemblymore » bias, in which halos have earlier formation times in overdense environments than in underdense regions. We find that the ratio of stellar mass to halo mass is larger in overdense regions in central galaxies residing in halos with masses between 10{sup 11} and 10{sup 12.9} M{sub ⊙}. When we force the local density (within 2 Mpc) at z = 0 to be the same for galaxies in the large-scale over- and underdensities, we find the same results. We posit that this difference can be explained by a combination of earlier formation times, more interactions at early times with neighbors, and more filaments feeding galaxies in overdense regions. This result puts the standard practice of assigning stellar mass to halos based only on their mass, rather than considering their larger environment, into question.« less

  20. The Munich Near-Infrared Cluster Survey - IV. Biases in the completeness of near-infrared imaging data

    NASA Astrophysics Data System (ADS)

    Snigula, J.; Drory, N.; Bender, R.; Botzler, C. S.; Feulner, G.; Hopp, U.

    2002-11-01

    We present the results of completeness simulations for the detection of point sources as well as redshifted elliptical and spiral galaxies in the K'-band images of the Munich Near-Infrared Cluster Survey (MUNICS). The main focus of this work is to quantify the selection effects introduced by threshold-based object detection algorithms used in deep imaging surveys. Therefore, we simulate objects obeying the well-known scaling relations between effective radius and central surface brightness, for both de Vaucouleurs and exponential profiles. The results of these simulations, while presented for the MUNICS project, are applicable in a much wider context to deep optical and near-infrared selected samples. We investigate the detection probability as well as the reliability for recovering the true total magnitude with Kron-like (adaptive) aperture photometry. The results are compared with the predictions of the visibility theory of Disney and Phillipps in terms of the detection rate and the lost-light fraction. Additionally, the effects attributable to seeing are explored. The results show a bias against detecting high-redshifted massive elliptical galaxies in comparison to disc galaxies with exponential profiles, and that the measurements of the total magnitudes for intrinsically bright elliptical galaxies are systematically too faint. Disc galaxies, in contrast, show no significant offset in the magnitude measurement of luminous objects. Finally, we present an analytic formula to predict the completeness of point sources using only basic image parameters.

  1. Radial distribution of metals in the hot intra-cluster medium as observed by XMM-Newton

    NASA Astrophysics Data System (ADS)

    Mernier, F.; de Plaa, J.; Kaastra, J.; Zhang, Y.; Akamatsu, H.; Gu, L.; Mao, J.; Pinto, C.; Reiprich, T.; Sanders, J.

    2017-10-01

    The hot intra-cluster medium (ICM), which accounts for ˜80% of the baryonic content in galaxy clusters, is rich in heavy elements. Since these metals have been produced by stars and supernovae before enriching the ICM, measuring metal abundance distributions in galaxy clusters and groups provides essential clues to determine the main astrophysical source(s) and epoch(s) of the ICM enrichment. In this work, we present radial abundance profiles averaged over 44 nearby cool-core galaxy clusters, groups, and massive ellipticals (the CHEERS sample) measured with XMM-Newton EPIC. While most of the Fe of the Universe is thought to be synthesised by Type Ia supernovae (SNIa), lighter elements, such as O, Mg, Si or S, are mostly produced by core-collapse supernovae (SNcc). The derived average radial profiles of the O, Mg, Si, S, Ar, Ca, Fe, and Ni abundances out to ˜ 0.5 r_{500} allows us to accurately compare the distributions of SNIa and SNcc products in clusters and groups. By comparing our results with recent chemo-dynamical simulations, we discuss the interpretation of the profiles in the context of early and late ICM enrichments.

  2. The impact of baryons on massive galaxy clusters: halo structure and cluster mass estimates

    NASA Astrophysics Data System (ADS)

    Henson, Monique A.; Barnes, David J.; Kay, Scott T.; McCarthy, Ian G.; Schaye, Joop

    2017-03-01

    We use the BAHAMAS (BAryons and HAloes of MAssive Systems) and MACSIS (MAssive ClusterS and Intercluster Structures) hydrodynamic simulations to quantify the impact of baryons on the mass distribution and dynamics of massive galaxy clusters, as well as the bias in X-ray and weak lensing mass estimates. These simulations use the subgrid physics models calibrated in the BAHAMAS project, which include feedback from both supernovae and active galactic nuclei. They form a cluster population covering almost two orders of magnitude in mass, with more than 3500 clusters with masses greater than 1014 M⊙ at z = 0. We start by characterizing the clusters in terms of their spin, shape and density profile, before considering the bias in both weak lensing and hydrostatic mass estimates. Whilst including baryonic effects leads to more spherical, centrally concentrated clusters, the median weak lensing mass bias is unaffected by the presence of baryons. In both the dark matter only and hydrodynamic simulations, the weak lensing measurements underestimate cluster masses by ≈10 per cent for clusters with M200 ≤ 1015 M⊙ and this bias tends to zero at higher masses. We also consider the hydrostatic bias when using both the true density and temperature profiles, and those derived from X-ray spectroscopy. When using spectroscopic temperatures and densities, the hydrostatic bias decreases as a function of mass, leading to a bias of ≈40 per cent for clusters with M500 ≥ 1015 M⊙. This is due to the presence of cooler gas in the cluster outskirts. Using mass weighted temperatures and the true density profile reduces this bias to 5-15 per cent.

  3. Wide-Field Lensing Mass Maps from Dark Energy Survey Science Verification Data

    DOE PAGES

    Chang, C.

    2015-07-29

    We present a mass map reconstructed from weak gravitational lensing shear measurements over 139 deg 2 from the Dark Energy Survey science verification data. The mass map probes both luminous and dark matter, thus providing a tool for studying cosmology. We also find good agreement between the mass map and the distribution of massive galaxy clusters identified using a red-sequence cluster finder. Potential candidates for superclusters and voids are identified using these maps. We measure the cross-correlation between the mass map and a magnitude-limited foreground galaxy sample and find a detection at the 6.8σ level with 20 arc min smoothing.more » These measurements are consistent with simulated galaxy catalogs based on N-body simulations from a cold dark matter model with a cosmological constant. This suggests low systematics uncertainties in the map. Finally, we summarize our key findings in this Letter; the detailed methodology and tests for systematics are presented in a companion paper.« less

  4. Modified Baryonic Dynamics: two-component cosmological simulations with light sterile neutrinos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angus, G.W.; Gentile, G.; Diaferio, A.

    2014-10-01

    In this article we continue to test cosmological models centred on Modified Newtonian Dynamics (MOND) with light sterile neutrinos, which could in principle be a way to solve the fine-tuning problems of the standard model on galaxy scales while preserving successful predictions on larger scales. Due to previous failures of the simple MOND cosmological model, here we test a speculative model where the modified gravitational field is produced only by the baryons and the sterile neutrinos produce a purely Newtonian field (hence Modified Baryonic Dynamics). We use two-component cosmological simulations to separate the baryonic N-body particles from the sterile neutrinomore » ones. The premise is to attenuate the over-production of massive galaxy cluster halos which were prevalent in the original MOND plus light sterile neutrinos scenario. Theoretical issues with such a formulation notwithstanding, the Modified Baryonic Dynamics model fails to produce the correct amplitude for the galaxy cluster mass function for any reasonable value of the primordial power spectrum normalisation.« less

  5. Wide-Field Lensing Mass Maps from Dark Energy Survey Science Verification Data.

    PubMed

    Chang, C; Vikram, V; Jain, B; Bacon, D; Amara, A; Becker, M R; Bernstein, G; Bonnett, C; Bridle, S; Brout, D; Busha, M; Frieman, J; Gaztanaga, E; Hartley, W; Jarvis, M; Kacprzak, T; Kovács, A; Lahav, O; Lin, H; Melchior, P; Peiris, H; Rozo, E; Rykoff, E; Sánchez, C; Sheldon, E; Troxel, M A; Wechsler, R; Zuntz, J; Abbott, T; Abdalla, F B; Allam, S; Annis, J; Bauer, A H; Benoit-Lévy, A; Brooks, D; Buckley-Geer, E; Burke, D L; Capozzi, D; Carnero Rosell, A; Carrasco Kind, M; Castander, F J; Crocce, M; D'Andrea, C B; Desai, S; Diehl, H T; Dietrich, J P; Doel, P; Eifler, T F; Evrard, A E; Fausti Neto, A; Flaugher, B; Fosalba, P; Gruen, D; Gruendl, R A; Gutierrez, G; Honscheid, K; James, D; Kent, S; Kuehn, K; Kuropatkin, N; Maia, M A G; March, M; Martini, P; Merritt, K W; Miller, C J; Miquel, R; Neilsen, E; Nichol, R C; Ogando, R; Plazas, A A; Romer, A K; Roodman, A; Sako, M; Sanchez, E; Sevilla, I; Smith, R C; Soares-Santos, M; Sobreira, F; Suchyta, E; Tarle, G; Thaler, J; Thomas, D; Tucker, D; Walker, A R

    2015-07-31

    We present a mass map reconstructed from weak gravitational lensing shear measurements over 139  deg2 from the Dark Energy Survey science verification data. The mass map probes both luminous and dark matter, thus providing a tool for studying cosmology. We find good agreement between the mass map and the distribution of massive galaxy clusters identified using a red-sequence cluster finder. Potential candidates for superclusters and voids are identified using these maps. We measure the cross-correlation between the mass map and a magnitude-limited foreground galaxy sample and find a detection at the 6.8σ level with 20 arc min smoothing. These measurements are consistent with simulated galaxy catalogs based on N-body simulations from a cold dark matter model with a cosmological constant. This suggests low systematics uncertainties in the map. We summarize our key findings in this Letter; the detailed methodology and tests for systematics are presented in a companion paper.

  6. Modelling galaxy clustering: halo occupation distribution versus subhalo matching.

    PubMed

    Guo, Hong; Zheng, Zheng; Behroozi, Peter S; Zehavi, Idit; Chuang, Chia-Hsun; Comparat, Johan; Favole, Ginevra; Gottloeber, Stefan; Klypin, Anatoly; Prada, Francisco; Rodríguez-Torres, Sergio A; Weinberg, David H; Yepes, Gustavo

    2016-07-01

    We model the luminosity-dependent projected and redshift-space two-point correlation functions (2PCFs) of the Sloan Digital Sky Survey (SDSS) Data Release 7 Main galaxy sample, using the halo occupation distribution (HOD) model and the subhalo abundance matching (SHAM) model and its extension. All the models are built on the same high-resolution N -body simulations. We find that the HOD model generally provides the best performance in reproducing the clustering measurements in both projected and redshift spaces. The SHAM model with the same halo-galaxy relation for central and satellite galaxies (or distinct haloes and subhaloes), when including scatters, has a best-fitting χ 2 /dof around 2-3. We therefore extend the SHAM model to the subhalo clustering and abundance matching (SCAM) by allowing the central and satellite galaxies to have different galaxy-halo relations. We infer the corresponding halo/subhalo parameters by jointly fitting the galaxy 2PCFs and abundances and consider subhaloes selected based on three properties, the mass M acc at the time of accretion, the maximum circular velocity V acc at the time of accretion, and the peak maximum circular velocity V peak over the history of the subhaloes. The three subhalo models work well for luminous galaxy samples (with luminosity above L * ). For low-luminosity samples, the V acc model stands out in reproducing the data, with the V peak model slightly worse, while the M acc model fails to fit the data. We discuss the implications of the modelling results.

  7. SEMI-ANALYTIC GALAXY EVOLUTION (SAGE): MODEL CALIBRATION AND BASIC RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croton, Darren J.; Stevens, Adam R. H.; Tonini, Chiara

    2016-02-15

    This paper describes a new publicly available codebase for modeling galaxy formation in a cosmological context, the “Semi-Analytic Galaxy Evolution” model, or sage for short.{sup 5} sage is a significant update to the 2006 model of Croton et al. and has been rebuilt to be modular and customizable. The model will run on any N-body simulation whose trees are organized in a supported format and contain a minimum set of basic halo properties. In this work, we present the baryonic prescriptions implemented in sage to describe the formation and evolution of galaxies, and their calibration for three N-body simulations: Millennium,more » Bolshoi, and GiggleZ. Updated physics include the following: gas accretion, ejection due to feedback, and reincorporation via the galactic fountain; a new gas cooling–radio mode active galactic nucleus (AGN) heating cycle; AGN feedback in the quasar mode; a new treatment of gas in satellite galaxies; and galaxy mergers, disruption, and the build-up of intra-cluster stars. Throughout, we show the results of a common default parameterization on each simulation, with a focus on the local galaxy population.« less

  8. Populating dark matter haloes with galaxies: comparing the 2dFGRS with mock galaxy redshift surveys

    NASA Astrophysics Data System (ADS)

    Yang, Xiaohu; Mo, H. J.; Jing, Y. P.; van den Bosch, Frank C.; Chu, YaoQuan

    2004-06-01

    In two recent papers, we developed a powerful technique to link the distribution of galaxies to that of dark matter haloes by considering halo occupation numbers as a function of galaxy luminosity and type. In this paper we use these distribution functions to populate dark matter haloes in high-resolution N-body simulations of the standard ΛCDM cosmology with Ωm= 0.3, ΩΛ= 0.7 and σ8= 0.9. Stacking simulation boxes of 100 h-1 Mpc and 300 h-1 Mpc with 5123 particles each we construct mock galaxy redshift surveys out to a redshift of z= 0.2 with a numerical resolution that guarantees completeness down to 0.01L*. We use these mock surveys to investigate various clustering statistics. The predicted two-dimensional correlation function ξ(rp, π) reveals clear signatures of redshift space distortions. The projected correlation functions for galaxies with different luminosities and types, derived from ξ(rp, π), match the observations well on scales larger than ~3 h-1 Mpc. On smaller scales, however, the model overpredicts the clustering power by about a factor two. Modelling the `finger-of-God' effect on small scales reveals that the standard ΛCDM model predicts pairwise velocity dispersions (PVD) that are ~400 km s-1 too high at projected pair separations of ~1 h-1 Mpc. A strong velocity bias in massive haloes, with bvel≡σgal/σdm~ 0.6 (where σgal and σdm are the velocity dispersions of galaxies and dark matter particles, respectively) can reduce the predicted PVD to the observed level, but does not help to resolve the overprediction of clustering power on small scales. Consistent results can be obtained within the standard ΛCDM model only when the average mass-to-light ratio of clusters is of the order of 1000 (M/L)solar in the B-band. Alternatively, as we show by a simple approximation, a ΛCDM model with σ8~= 0.75 may also reproduce the observational results. We discuss our results in light of the recent WMAP results and the constraints on σ8 obtained independently from other observations.

  9. Mass distribution in galaxy clusters: the role of Active Galactic Nuclei feedback

    NASA Astrophysics Data System (ADS)

    Teyssier, Romain; Moore, Ben; Martizzi, Davide; Dubois, Yohan; Mayer, Lucio

    2011-06-01

    We use 1-kpc resolution cosmological Adaptive Mesh Refinement (AMR) simulations of a Virgo-like galaxy cluster to investigate the effect of feedback from supermassive black holes on the mass distribution of dark matter, gas and stars. We compared three different models: (i) a standard galaxy formation model featuring gas cooling, star formation and supernovae feedback, (ii) a 'quenching' model for which star formation is artificially suppressed in massive haloes and finally (iii) the recently proposed active galactic nucleus (AGN) feedback model of Booth and Schaye. Without AGN feedback (even in the quenching case), our simulated cluster suffers from a strong overcooling problem, with a stellar mass fraction significantly above observed values in M87. The baryon distribution is highly concentrated, resulting in a strong adiabatic contraction (AC) of dark matter. With AGN feedback, on the contrary, the stellar mass in the brightest cluster galaxy (BCG) lies below observational estimates and the overcooling problem disappears. The stellar mass of the BCG is seen to increase with increasing mass resolution, suggesting that our stellar masses converge to the correct value from below. The gas and total mass distributions are in better agreement with observations. We also find a slight deficit (˜10 per cent) of baryons at the virial radius, due to the combined effect of AGN-driven convective motions in the inner parts and shock waves in the outer regions, pushing gas to Mpc scales and beyond. This baryon deficit results in a slight adiabatic expansion of the dark matter distribution that can be explained quantitatively by AC theory.

  10. Looking Wider and Further: The Evolution of Galaxies Inside Galaxy Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yuanyuan

    2016-01-01

    Galaxy clusters are rare objects in the universe, but on-going wide field optical surveys are identifying many thousands of them to redshift 1.0 and beyond. Using early data from the Dark Energy Survey (DES) and publicly released data from the Sloan Digital Sky Survey (SDSS), this dissertation explores the evolution of cluster galaxies in the redshift range from 0 to 1.0. As it is common for deep wide field sky surveys like DES to struggle with galaxy detection efficiency at cluster core, the first component of this dissertation describes an efficient package that helps resolving the issue. The second partmore » focuses on the formation of cluster galaxies. The study quantifies the growth of cluster bright central galaxies (BCGs), and argues for the importance of merging and intra-cluster light production during BCG evolution. An analysis of cluster red sequence galaxy luminosity function is also performed, demonstrating that the abundance of these galaxies is mildly dependent on cluster mass and redshift. The last component of the dissertation characterizes the properties of galaxy filaments to help understanding cluster environments« less

  11. A Census of Baryons in Galaxy Clusters and Groups

    NASA Astrophysics Data System (ADS)

    Gonzalez, Anthony H.; Zaritsky, Dennis; Zabludoff, Ann I.

    2007-09-01

    We determine the contribution of stars in galaxies, intracluster stars, and the intracluster medium to the total baryon budget in nearby galaxy clusters and groups. We find that the baryon mass fraction (fb≡Ωb/Ωm) within r500 is constant for systems with M500 between 6×1013 and 1×1015 Msolar. Although fb is lower than the WMAP value, the shortfall is on the order of both the observational systematic uncertainties and the depletion of baryons within r500 that is predicted by simulations. The data therefore provide no compelling evidence for undetected baryonic components, particularly any that would be expected to vary in importance with cluster mass. A unique feature of the current analysis is direct inclusion of the contribution of intracluster light (ICL) in the baryon budget. With the addition of the ICL to the stellar mass in galaxies, the increase in X-ray gas mass fraction with increasing total mass is entirely accounted for by a decrease in the total stellar mass fraction, supporting the argument that the behavior of both the stellar and X-ray gas components is dominated by a decrease in star formation efficiency in more massive environments. Within just the stellar component, the fraction of the total stellar luminosity in the central, giant brightest cluster galaxy (BCG) and ICL (hereafter the BCG+ICL component) decreases as velocity dispersion (σ) increases for systems with 145 km s-1<=σ<=1026 km s-1, suggesting that the BCG+ICL component, and in particular the dominant ICL component, grows less efficiently in higher mass environments. The degree to which this behavior arises from our sample selection, which favored systems with central, giant elliptical galaxies, remains unclear. A more robust result is the identification of low-mass groups with large BCG+ICL components, demonstrating that the creation of ``intracluster'' stars does not require a massive cluster environment. Within r500 and r200, the BCG+ICL contributes on average 40% and 33% of the total stellar light, respectively, for the clusters and groups in our sample. Because these fractions are functions of both enclosed radius and system mass, care should be exercised when comparing these values with other studies and simulations.

  12. Deep Galex Observations of the Coma Cluster: Source Catalog and Galaxy Counts

    NASA Technical Reports Server (NTRS)

    Hammer, D.; Hornschemeier, A. E.; Mobasher, B.; Miller, N.; Smith, R.; Arnouts, S.; Milliard, B.; Jenkins, L.

    2010-01-01

    We present a source catalog from deep 26 ks GALEX observations of the Coma cluster in the far-UV (FUV; 1530 Angstroms) and near-UV (NUV; 2310 Angstroms) wavebands. The observed field is centered 0.9 deg. (1.6 Mpc) south-west of the Coma core, and has full optical photometric coverage by SDSS and spectroscopic coverage to r-21. The catalog consists of 9700 galaxies with GALEX and SDSS photometry, including 242 spectroscopically-confirmed Coma member galaxies that range from giant spirals and elliptical galaxies to dwarf irregular and early-type galaxies. The full multi-wavelength catalog (cluster plus background galaxies) is 80% complete to NUV=23 and FUV=23.5, and has a limiting depth at NUV=24.5 and FUV=25.0 which corresponds to a star formation rate of 10(exp -3) solar mass yr(sup -1) at the distance of Coma. The GALEX images presented here are very deep and include detections of many resolved cluster members superposed on a dense field of unresolved background galaxies. This required a two-fold approach to generating a source catalog: we used a Bayesian deblending algorithm to measure faint and compact sources (using SDSS coordinates as a position prior), and used the GALEX pipeline catalog for bright and/or extended objects. We performed simulations to assess the importance of systematic effects (e.g. object blends, source confusion, Eddington Bias) that influence source detection and photometry when using both methods. The Bayesian deblending method roughly doubles the number of source detections and provides reliable photometry to a few magnitudes deeper than the GALEX pipeline catalog. This method is also free from source confusion over the UV magnitude range studied here: conversely, we estimate that the GALEX pipeline catalogs are confusion limited at NUV approximately 23 and FUV approximately 24. We have measured the total UV galaxy counts using our catalog and report a 50% excess of counts across FUV=22-23.5 and NUV=21.5-23 relative to previous GALEX measurements, which is not attributed to cluster member galaxies. Our galaxy counts are a better match to deeper UV counts measured with HST.

  13. Structure and substructure analysis of DAFT/FADA galaxy clusters in the [0.4-0.9] redshift range

    NASA Astrophysics Data System (ADS)

    Guennou, L.; Adami, C.; Durret, F.; Lima Neto, G. B.; Ulmer, M. P.; Clowe, D.; LeBrun, V.; Martinet, N.; Allam, S.; Annis, J.; Basa, S.; Benoist, C.; Biviano, A.; Cappi, A.; Cypriano, E. S.; Gavazzi, R.; Halliday, C.; Ilbert, O.; Jullo, E.; Just, D.; Limousin, M.; Márquez, I.; Mazure, A.; Murphy, K. J.; Plana, H.; Rostagni, F.; Russeil, D.; Schirmer, M.; Slezak, E.; Tucker, D.; Zaritsky, D.; Ziegler, B.

    2014-01-01

    Context. The DAFT/FADA survey is based on the study of ~90 rich (masses found in the literature >2 × 1014 M⊙) and moderately distant clusters (redshifts 0.4 < z < 0.9), all with HST imaging data available. This survey has two main objectives: to constrain dark energy (DE) using weak lensing tomography on galaxy clusters and to build a database (deep multi-band imaging allowing photometric redshift estimates, spectroscopic data, X-ray data) of rich distant clusters to study their properties. Aims: We analyse the structures of all the clusters in the DAFT/FADA survey for which XMM-Newton and/or a sufficient number of galaxy redshifts in the cluster range are available, with the aim of detecting substructures and evidence for merging events. These properties are discussed in the framework of standard cold dark matter (ΛCDM) cosmology. Methods: In X-rays, we analysed the XMM-Newton data available, fit a β-model, and subtracted it to identify residuals. We used Chandra data, when available, to identify point sources. In the optical, we applied a Serna & Gerbal (SG) analysis to clusters with at least 15 spectroscopic galaxy redshifts available in the cluster range. We discuss the substructure detection efficiencies of both methods. Results: XMM-Newton data were available for 32 clusters, for which we derive the X-ray luminosity and a global X-ray temperature for 25 of them. For 23 clusters we were able to fit the X-ray emissivity with a β-model and subtract it to detect substructures in the X-ray gas. A dynamical analysis based on the SG method was applied to the clusters having at least 15 spectroscopic galaxy redshifts in the cluster range: 18 X-ray clusters and 11 clusters with no X-ray data. The choice of a minimum number of 15 redshifts implies that only major substructures will be detected. Ten substructures were detected both in X-rays and by the SG method. Most of the substructures detected both in X-rays and with the SG method are probably at their first cluster pericentre approach and are relatively recent infalls. We also find hints of a decreasing X-ray gas density profile core radius with redshift. Conclusions: The percentage of mass included in substructures was found to be roughly constant with redshift values of 5-15%, in agreement both with the general CDM framework and with the results of numerical simulations. Galaxies in substructures show the same general behaviour as regular cluster galaxies; however, in substructures, there is a deficiency of both late type and old stellar population galaxies. Late type galaxies with recent bursts of star formation seem to be missing in the substructures close to the bottom of the host cluster potential well. However, our sample would need to be increased to allow a more robust analysis. Tables 1, 2, 4 and Appendices A-C are available in electronic form at http://www.aanda.org

  14. Best Phd thesis Prize: Statistical analysis of ALFALFA galaxies: insights in galaxy

    NASA Astrophysics Data System (ADS)

    Papastergis, E.

    2013-09-01

    We use the rich dataset of local universe galaxies detected by the ALFALFA 21cm survey to study the statistical properties of gas-bearing galaxies. In particular, we measure the number density of galaxies as a function of their baryonic mass ("baryonic mass function") and rotational velocity ("velocity width function"), and we characterize their clustering properties ("two-point correlation function"). These statistical distributions are determined by both the properties of dark matter on small scales, as well as by the complex baryonic processes through which galaxies form over cosmic time. We interpret the ALFALFA measurements with the aid of publicly available cosmological N-body simulations and we present some key results related to galaxy formation and small-scale cosmology.

  15. The role of penetrating gas streams in setting the dynamical state of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Zinger, E.; Dekel, A.; Birnboim, Y.; Kravtsov, A.; Nagai, D.

    2016-09-01

    We utilize cosmological simulations of 16 galaxy clusters at redshifts z = 0 and z = 0.6 to study the effect of inflowing streams on the properties of the X-ray emitting intracluster medium. We find that the mass accretion occurs predominantly along streams that originate from the cosmic web and consist of heated gas. Clusters that are unrelaxed in terms of their X-ray morphology are characterized by higher mass inflow rates and deeper penetration of the streams, typically into the inner third of the virial radius. The penetrating streams generate elevated random motions, bulk flows and cold fronts. The degree of penetration of the streams may change over time such that clusters can switch from being unrelaxed to relaxed over a time-scale of several giga years.

  16. Stripped Elliptical Galaxies as Probes of ICM Physics. III. Deep Chandra Observations of NGC 4552: Measuring the Viscosity of the Intracluster Medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraft, R. P.; Roediger, E.; Machacek, M.

    We present results from a deep (200 ks) Chandra observation of the early-type galaxy NGC 4552 (M89), which is falling into the Virgo cluster. Previous shallower X-ray observations of this galaxy showed a remnant gas core, a tail to the South of the galaxy, and twin “horns” attached to the northern edge of the gas core. In our deeper data, we detect a diffuse, low surface brightness extension to the previously known tail, and measure the temperature structure within the tail. We combine the deep Chandra data with archival XMM-Newton observations to put a strong upper limit on the diffusemore » emission of the tail out to a large distance (10× the radius of the remnant core) from the galaxy center. In our two previous papers, we presented the results of hydrodynamical simulations of ram pressure stripping specifically for M89 falling into the Virgo cluster and investigated the effect of intracluster medium (ICM) viscosity. In this paper, we compare our deep data with our specifically tailored simulations and conclude that the observed morphology of the stripped tail in NGC 4552 is most similar to the inviscid models. We conclude that, to the extent the transport processes can be simply modeled as a hydrodynamic viscosity, the ICM viscosity is negligible. More generally, any micro-scale description of the transport processes in the high- β plasma of the cluster ICM must be consistent with the efficient mixing observed in the stripped tail on macroscopic scales.« less

  17. Stripped Elliptical Galaxies as Probes of ICM Physics. III. Deep Chandra Observations of NGC 4552: Measuring the Viscosity of the Intracluster Medium

    NASA Astrophysics Data System (ADS)

    Kraft, R. P.; Roediger, E.; Machacek, M.; Forman, W. R.; Nulsen, P. E. J.; Jones, C.; Churazov, E.; Randall, S.; Su, Y.; Sheardown, A.

    2017-10-01

    We present results from a deep (200 ks) Chandra observation of the early-type galaxy NGC 4552 (M89), which is falling into the Virgo cluster. Previous shallower X-ray observations of this galaxy showed a remnant gas core, a tail to the South of the galaxy, and twin “horns” attached to the northern edge of the gas core. In our deeper data, we detect a diffuse, low surface brightness extension to the previously known tail, and measure the temperature structure within the tail. We combine the deep Chandra data with archival XMM-Newton observations to put a strong upper limit on the diffuse emission of the tail out to a large distance (10× the radius of the remnant core) from the galaxy center. In our two previous papers, we presented the results of hydrodynamical simulations of ram pressure stripping specifically for M89 falling into the Virgo cluster and investigated the effect of intracluster medium (ICM) viscosity. In this paper, we compare our deep data with our specifically tailored simulations and conclude that the observed morphology of the stripped tail in NGC 4552 is most similar to the inviscid models. We conclude that, to the extent the transport processes can be simply modeled as a hydrodynamic viscosity, the ICM viscosity is negligible. More generally, any micro-scale description of the transport processes in the high-β plasma of the cluster ICM must be consistent with the efficient mixing observed in the stripped tail on macroscopic scales.

  18. Evolution of the early-type galaxy fraction in clusters since z = 0.8

    NASA Astrophysics Data System (ADS)

    Simard, L.; Clowe, D.; Desai, V.; Dalcanton, J. J.; von der Linden, A.; Poggianti, B. M.; White, S. D. M.; Aragón-Salamanca, A.; De Lucia, G.; Halliday, C.; Jablonka, P.; Milvang-Jensen, B.; Saglia, R. P.; Pelló, R.; Rudnick, G. H.; Zaritsky, D.

    2009-12-01

    We study the morphological content of a large sample of high-redshift clusters to determine its dependence on cluster mass and redshift. Quantitative morphologies are based on PSF-convolved, 2D bulge+disk decompositions of cluster and field galaxies on deep Very Large Telescope FORS2 images of eighteen, optically-selected galaxy clusters at 0.45 < z < 0.80 observed as part of the ESO Distant Cluster Survey (“EDisCS”). Morphological content is characterized by the early-type galaxy fraction f_et, and early-type galaxies are objectively selected based on their bulge fraction and image smoothness. This quantitative selection is equivalent to selecting galaxies visually classified as E or S0. Changes in early-type fractions as a function of cluster velocity dispersion, redshift and star-formation activity are studied. A set of 158 clusters extracted from the Sloan Digital Sky Survey is analyzed exactly as the distant EDisCS sample to provide a robust local comparison. We also compare our results to a set of clusters from the Millennium Simulation. Our main results are: (1) the early-type fractions of the SDSS and EDisCS clusters exhibit no clear trend as a function of cluster velocity dispersion. (2) Mid-z EDisCS clusters around σ = 500 km s-1 have f_et ≃ 0.5 whereas high-z EDisCS clusters have f_et ≃ 0.4. This represents a ~25% increase over a time interval of 2 Gyr. (3) There is a marked difference in the morphological content of EDisCS and SDSS clusters. None of the EDisCS clusters have early-type galaxy fractions greater than 0.6 whereas half of the SDSS clusters lie above this value. This difference is seen in clusters of all velocity dispersions. (4) There is a strong and clear correlation between morphology and star formation activity in SDSS and EDisCS clusters in the sense that decreasing fractions of [OII] emitters are tracked by increasing early-type fractions. This correlation holds independent of cluster velocity dispersion and redshift even though the fraction of [OII] emitters decreases from z ˜0.8 to z ˜ 0.06 in all environments. Our results pose an interesting challenge to structural transformation and star formation quenching processes that strongly depend on the global cluster environment (e.g., a dense ICM) and suggest that cluster membership may be of lesser importance than other variables in determining galaxy properties. Based on observations obtained in visitor and service modes at the ESO Very Large Telescope (VLT) as part of the Large Programme 166.A-0162 (the ESO Distant Cluster Survey). Also based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with proposal 9476. Support for this proposal was provided by NASA through a grant from the Space Telescope Science Institute. Table [see full textsee full textsee full textsee full textsee full text] is only available in electronic form at http://www.aanda.org

  19. The Nature of LSB galaxies revealed by their Globular Clusters

    NASA Astrophysics Data System (ADS)

    Kissler-Patig, Markus

    2005-07-01

    Low Surface Brightness {LSB} galaxies encompass many of the extremes in galaxy properties. Their understanding is essential to complete our picture of galaxy formation and evolution. Due to their historical under-representation on galaxy surveys, their importance to many areas of astronomy has only recently began to be realized. Globular clusters are superb tracers of the formation histories of galaxies and have been extensively used as such in high surface brightness galaxies. We propose to investigate the nature of massive LSB galaxies by studying their globular cluster systems. No globular cluster study has been reported for LSB galaxies to date. Yet, both the presence or absence of globular clusters set very strong constraints on the conditions prevailing during LSB galaxy formation and evolution. Both in dwarf and giant high surface brightness {HSB} galaxies, globular clusters are known to form as a constant fraction of baryonic mass. Their presence/absence immediately indicates similarities or discrepancies in the formation and evolution conditions of LSB and HSB galaxies. In particular, the presence/absence of metal-poor halo globular clusters infers similarities/differences in the halo formation and assembly processes of LSB vs. HSB galaxies, while the presence/absence of metal-rich globular clusters can be used to derive the occurrence and frequency of violent events {such as mergers} in the LSB galaxy assembly history. Two band imaging with ACS will allow us to identify the globular clusters {just resolved at the selected distance} and to determine their metallicity {potentially their rough age}. The composition of the systems will be compared to the extensive census built up on HSB galaxies. Our representative sample of six LSB galaxies {cz < 2700 km/s} are selected such, that a large system of globular clusters is expected. Globular clusters will constrain phases of LSB galaxy formation and evolution that can currently not be probed by other means. HST/ACS imaging is the only facility capable of studying the globular cluster systems of LSB galaxies given their distance and relative scarcity.

  20. The Million-Body Problem: Particle Simulations in Astrophysics

    ScienceCinema

    Rasio, Fred

    2018-05-21

    Computer simulations using particles play a key role in astrophysics. They are widely used to study problems across the entire range of astrophysical scales, from the dynamics of stars, gaseous nebulae, and galaxies, to the formation of the largest-scale structures in the universe. The 'particles' can be anything from elementary particles to macroscopic fluid elements, entire stars, or even entire galaxies. Using particle simulations as a common thread, this talk will present an overview of computational astrophysics research currently done in our theory group at Northwestern. Topics will include stellar collisions and the gravothermal catastrophe in dense star clusters.

  1. Lopsidedness of Self-consistent Galaxies Caused by the External Field Effect of Clusters

    NASA Astrophysics Data System (ADS)

    Wu, Xufen; Wang, Yougang; Feix, Martin; Zhao, HongSheng

    2017-08-01

    Adopting Schwarzschild’s orbit-superposition technique, we construct a series of self-consistent galaxy models, embedded in the external field of galaxy clusters in the framework of Milgrom’s MOdified Newtonian Dynamics (MOND). These models represent relatively massive ellipticals with a Hernquist radial profile at various distances from the cluster center. Using N-body simulations, we perform a first analysis of these models and their evolution. We find that self-gravitating axisymmetric density models, even under a weak external field, lose their symmetry by instability and generally evolve to triaxial configurations. A kinematic analysis suggests that the instability originates from both box and nonclassified orbits with low angular momentum. We also consider a self-consistent isolated system that is then placed in a strong external field and allowed to evolve freely. This model, just like the corresponding equilibrium model in the same external field, eventually settles to a triaxial equilibrium as well, but has a higher velocity radial anisotropy and is rounder. The presence of an external field in the MOND universe generically predicts some lopsidedness of galaxy shapes.

  2. Lopsidedness of Self-consistent Galaxies Caused by the External Field Effect of Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Xufen; Wang, Yougang; Feix, Martin

    2017-08-01

    Adopting Schwarzschild’s orbit-superposition technique, we construct a series of self-consistent galaxy models, embedded in the external field of galaxy clusters in the framework of Milgrom’s MOdified Newtonian Dynamics (MOND). These models represent relatively massive ellipticals with a Hernquist radial profile at various distances from the cluster center. Using N -body simulations, we perform a first analysis of these models and their evolution. We find that self-gravitating axisymmetric density models, even under a weak external field, lose their symmetry by instability and generally evolve to triaxial configurations. A kinematic analysis suggests that the instability originates from both box and nonclassified orbitsmore » with low angular momentum. We also consider a self-consistent isolated system that is then placed in a strong external field and allowed to evolve freely. This model, just like the corresponding equilibrium model in the same external field, eventually settles to a triaxial equilibrium as well, but has a higher velocity radial anisotropy and is rounder. The presence of an external field in the MOND universe generically predicts some lopsidedness of galaxy shapes.« less

  3. Researchers Resolve Intermediate Mass Black Hole Mystery

    NASA Astrophysics Data System (ADS)

    2004-04-01

    New research, funded by the Royal Netherlands Academy of Sciences, the Institute of Advanced Physical and Chemical Research, NASA and the University of Tokyo, solved the mystery of how a black hole, with the mass more than several hundreds times larger than that of our Sun, could be formed in the nearby starburst galaxy, M82. Recent observations of the Chandra X-ray observatory (Matsumoto et al., 2001 ApJ 547, L25) indicate the presence of an unusually bright source in the star cluster MGG11 in the starburst galaxy M82. The properties of the X-ray source are best explained by a black hole with a mass of about a thousand times the mass of the Sun, placing it intermediate between the relatively small (stellar mass) black holes in the Milky way Galaxy and the supermassive black holes found in the nuclei of galaxies. For comparison, stellar-mass black holes are only a few times more massive than the Sun, whereas the black hole in the center of the Milky-way Galaxy is more than a few million times more massive than the Sun. An international team of researchers, using the world's fastest computer, the GRAPE-6 system in Japan, were engaged in a series of simulations of star clusters that resembled MGG11. They used the GRAPE-6 to perform simulations with two independently developed computer programs (Starlab and NBODY4 developed by Sverre Aarseth in Cambridge), both of which give the same qualitative result. The simulations ware initiated by high resolution observations of the star cluster MGG11 by McCrady et al (2003, ApJ 596, 240) using the Hubble Space Telescope and Keck, and by Harashima et al (2001) using the giant Subaru telescope. M82 Chandra X-ray image of the central region of the starburst galaxy M82. The GRAPE's detailed, star-by-star simulations represent the state of the art in cluster modeling. For the first time using the GRAPE, researchers perform simulations of the evolution of young and dense star clusters with up to 600000 stars; they calculate the orbital trajectory and the evolution of each star individually. Using this unique tool, the team found they could reproduce the observed characteristics of the star cluster MGG11. As a bonus, however, the star cluster produces a black hole with a mass between 800 and 3000 times the mass of the Sun. The black hole is produced within 4 million years which is in an early phase in the evolution of the star cluster. During this phase the stellar density in the center becomes so high that physical collisions between the stars become frequent. If the stellar densities exceed a million times the density in the neighborhood of the Sun, collision start to dominate the further evolution of the star cluster. In this over-dense cluster center, stars experience repeated collisions with each other, resulting in a collision runaway in which a single stars grows to enormous mass. After the central fuel of this star is exhausted, it collapses to a black hole of about 1000 times the mass of the Sun. New results of these detailed computer simulations, published in Nature show that the star cluster in which the X-ray source resides has characteristics such that a black hole of 800-3000 times the mass of the Sun can form within a very short time. The calculations therewith provide compelling evidence for the process which produces intermediate mass black holes and at the same time provide an explanation for the bright X-ray source observed in the cluster. The GRAPE team's members are Simon Portegies Zwart, from the University of Amsterdam in the Netherlands; Holger Baumgardt, from RIKEN in Tokyo; Piet Hut, of the Institute for Advanced Study in Princeton, N.J.; Jun Makino from Tokyo University; Steve McMillan, from Drexel University in Philadelphia. The GRAPE group's results appear in the April 15, 2004, issue of Nature. Relevant internet addresses: http://carol.wins.uva.nl/~spz/act/press/Nature2004/index.html http://www.astrogrape.org http://www.manybody.org http://www.manybody.org/manybody/starlab.html

  4. The MICE Grand Challenge lightcone simulation - II. Halo and galaxy catalogues

    NASA Astrophysics Data System (ADS)

    Crocce, M.; Castander, F. J.; Gaztañaga, E.; Fosalba, P.; Carretero, J.

    2015-10-01

    This is the second in a series of three papers in which we present an end-to-end simulation from the MICE collaboration, the MICE Grand Challenge (MICE-GC) run. The N-body contains about 70 billion dark-matter particles in a (3 h-1 Gpc)3 comoving volume spanning five orders of magnitude in dynamical range. Here, we introduce the halo and galaxy catalogues built upon it, both in a wide (5000 deg2) and deep (z < 1.4) lightcone and in several comoving snapshots. Haloes were resolved down to few 1011 h-1 M⊙. This allowed us to model galaxies down to absolute magnitude Mr < -18.9. We used a new hybrid halo occupation distribution and abundance matching technique for galaxy assignment. The catalogue includes the spectral energy distributions of all galaxies. We describe a variety of halo and galaxy clustering applications. We discuss how mass resolution effects can bias the large-scale two-pt clustering amplitude of poorly resolved haloes at the ≲5 per cent level, and their three-pt correlation function. We find a characteristic scale-dependent bias of ≲6 per cent across the BAO feature for haloes well above M⋆ ˜ 1012 h-1 M⊙ and for luminous red galaxy like galaxies. For haloes well below M⋆ the scale dependence at 100 h-1 Mpc is ≲2 per cent. Lastly, we discuss the validity of the large-scale Kaiser limit across redshift and departures from it towards non-linear scales. We make the current version of the lightcone halo and galaxy catalogue (MICECATv1.0) publicly available through a dedicated web portal to help develop and exploit the new generation of astronomical surveys.

  5. VALIDITY OF HYDROSTATIC EQUILIBRIUM IN GALAXY CLUSTERS FROM COSMOLOGICAL HYDRODYNAMICAL SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suto, Daichi; Suto, Yasushi; Kawahara, Hajime

    2013-04-10

    We examine the validity of the hydrostatic equilibrium (HSE) assumption for galaxy clusters using one of the highest-resolution cosmological hydrodynamical simulations. We define and evaluate several effective mass terms corresponding to the Euler equations of gas dynamics, and quantify the degree of the validity of HSE in terms of the mass estimate. We find that the mass estimated under the HSE assumption (the HSE mass) deviates from the true mass by up to {approx}30%. This level of departure from HSE is consistent with the previous claims, but our physical interpretation is rather different. We demonstrate that the inertial term inmore » the Euler equations makes a negligible contribution to the total mass, and the overall gravity of the cluster is balanced by the thermal gas pressure gradient and the gas acceleration term. Indeed, the deviation from the HSE mass is well explained by the acceleration term at almost all radii. We also clarify the confusion of previous work due to the inappropriate application of the Jeans equations in considering the validity of HSE from the gas dynamics extracted from cosmological hydrodynamical simulations.« less

  6. Physical Origins of Gas Motions in Galaxy Cluster Cores: Interpreting Hitomi Observations of the Perseus Cluster

    NASA Astrophysics Data System (ADS)

    Lau, Erwin T.; Gaspari, Massimo; Nagai, Daisuke; Coppi, Paolo

    2017-11-01

    The Hitomi X-ray satellite has provided the first direct measurements of the plasma velocity dispersion in a galaxy cluster. It finds a relatively “quiescent” gas with a line-of-sight velocity dispersion {σ }v,{los}≃ 160 {km} {{{s}}}-1, at 30-60 kpc from the cluster center. This is surprising given the presence of jets and X-ray cavities that indicates on-going activity and feedback from the active galactic nucleus (AGN) at the cluster center. Using a set of mock Hitomi observations generated from a suite of state-of-the-art cosmological cluster simulations, and an isolated but higher resolution simulation of gas physics in the cluster core, including the effects of cooling and AGN feedback, we examine the likelihood of Hitomi detecting a cluster with the observed velocities. As long as the Perseus has not experienced a major merger in the last few gigayears, and AGN feedback is operating in a “‘gentle” mode, we reproduce the level of gas motions observed by Hitomi. The frequent mechanical AGN feedback generates net line-of-sight velocity dispersions ˜ 100{--}200 {km} {{{s}}}-1, bracketing the values measured in the Perseus core. The large-scale velocity shear observed across the core, on the other hand, is generated mainly by cosmic accretion such as mergers. We discuss the implications of these results for AGN feedback physics and cluster cosmology and progress that needs to be made in both simulations and observations, including a Hitomi re-flight and calorimeter-based instruments with higher spatial resolution.

  7. Clustering of galaxies in a hierarchical universe - I. Methods and results at z=0

    NASA Astrophysics Data System (ADS)

    Kauffmann, Guinevere; Colberg, Jorg M.; Diaferio, Antonaldo; White, Simon D. M.

    1999-02-01

    We introduce a new technique for following the formation and evolution of galaxies in cosmological N-body simulations. Dissipationless simulations are used to track the formation and merging of dark matter haloes as a function of redshift. Simple prescriptions, taken directly from semi-analytic models of galaxy formation, are adopted for gas cooling, star formation, supernova feedback and the merging of galaxies within the haloes. This scheme enables us to explore the clustering properties of galaxies, and to investigate how selection by luminosity, colour or type influences the results. In this paper we study the properties of the galaxy distribution at z=0. These include B- and K-band luminosity functions, two-point correlation functions, pairwise peculiar velocities, cluster mass-to-light ratios, B-V colours, and star formation rates. We focus on two variants of a cold dark matter (CDM) cosmology: a high-density (Omega =1) model with shape-parameter Gamma =0.21 (tau CDM), and a low-density model with Omega =0.3 and Lambda =0.7 (Lambda CDM). Both models are normalized to reproduce the I-band Tully-Fisher relation of Giovanelli et al. near a circular velocity of 220 km s^-1. Our results depend strongly both on this normalization and on the adopted prescriptions for star formation and feedback. Very different assumptions are required to obtain an acceptable model in the two cases. For tau CDM, efficient feedback is required to suppress the growth of galaxies, particularly in low-mass field haloes. Without it, there are too many galaxies and the correlation function exhibits a strong turnover on scales below 1 Mpc. For Lambda CDM, feedback must be weaker, otherwise too few L_* galaxies are produced and the correlation function is too steep. Although neither model is perfect, both come close to reproducing most of the data. Given the uncertainties in modelling some of the critical physical processes, we conclude that it is not yet possible to draw firm conclusions about the values of cosmological parameters from studies of this kind. Further observational work on global star formation and feedback effects is required to narrow the range of possibilities.

  8. Luminosity segregation in galaxy clusters as an indication of dynamical evolution

    NASA Technical Reports Server (NTRS)

    Baier, F. W.; Schmidt, K.-H.

    1993-01-01

    Theoretical models describing the dynamical evolution of self-gravitating systems predict a spatial mass segregation for more evolved systems, with the more massive objects concentrated toward the center of the configuration. From the observational point of view, however, the existence of mass segregation in galaxy clusters seems to be a matter of controversy. A special problem in this connection is the formation of cD galaxies in the centers of galaxy clusters. The most promising scenarios of their formation are galaxy cannibalism (merger scenario) and growing by cooling flows. It seems to be plausible to consider the swallowing of smaller systems by a dominant galaxy as an important process in the evolution of a cD galaxy. The stage of the evolution of the dominant galaxy should be reflected by the surrounding galaxy population, especially by possible mass segregation effects. Assuming that mass segregation is tantamount to luminosity segregation we analyzed luminosity segregation in roughly 40 cD galaxy clusters. Obviously there are three different groups of clusters: (1) clusters with luminosity segregation, (2) clusters without luminosity segregation, and (3) such objects exhibiting a phenomenon which we call antisegregation in luminosity, i.e. a deficiency of bright galaxies in the central regions of clusters. This result is interpreted in the sense of different degrees of mass segregation and as an indication for different evolution stages of these clusters. The clusters are arranged in the three segregation classes 2, 1, and 0 (S2 = strong mass segregation, S1 = moderate mass segregation, S0 = weak or absent mass segregation). We assume that a galaxy cluster starts its dynamical evolution after virialization without any radial mass segregation. Energy exchange during encounters of cluster members as well as merger processes between cluster galaxies lead to an increasing radial mass segregation in the cluster (S1). If a certain degree of segregation (S2) has been established, an essential number of slow-moving and relative massive cluster members in the center will be cannibalized by the initial brightest cluster galaxy. This process should lead to the growing of the predominate galaxy, which is accompanied by a diminution of the mass segregation (transition to S1 and S0, respectively) in the neighborhood of the central very massive galaxy. An increase of the areal density of brighter galaxies towards the outer cluster regions (antisegregation of luminosity), i.e. an extreme low degree of mass segregation was estimated for a substantial percentage of cD clusters. This result favors the cannibalism scenario for the formation of cD galaxies.

  9. MACS: The impact of environment on galaxy evolution at z>0.5

    NASA Astrophysics Data System (ADS)

    Ma, Cheng-Jiun

    2010-08-01

    In order to investigate galaxy evolution in environments of greatly varying density, we conduct an extensive spectroscopic survey of galaxies in eight X-ray luminous clusters at redshift higher than 0.5. Unlike most spectroscopic surveys of cluster galaxies, we sample the galaxy population beyond the virial radius of each cluster (out to ˜6 Mpc), thereby probing regions that differ by typically two orders of magnitude in galaxy density. Galaxies are classified by spectroscopic type into emission-line, absorption-line, post starburst (E+A), and starburst (e(a) and e(b)) galaxies, and the spatial distribution of each type is used as a diagnostic of the presence and efficiency of different physical mechanisms of galaxy evolution. Our analysis yields the perhaps strongest confirmation so far of the morphology-density relation for emission- and absorption-line galaxies. In addition, we find E+A galaxies to be exclusively located within the ram-pressure stripping radius of each cluster. Taking advantage of this largest sample of E+A galaxies in clusters compiled to date, the spatial profile of the distribution of E+A galaxies can be studied for the first time. We show that ram-pressure stripping is the dominant, and possibly only, physical mechanism to cause the post-starburst phase of cluster galaxies. In addition, two particular interesting clusters are studied individually. For MACS J0717.5+3745, a clear morphology-density correlation is observed for lenticular (S0) galaxies around this cluster, but becomes insignificant toward the center of cluster. We interpret this finding as evidence of the creation of S0s being triggered primarily in environments of low to intermediate density. In MACS J0025.4-1225, a cluster undergoing a major merger, all faint E+A galaxies are observed to lie near the peak of the X-ray surface brightness, strongly suggesting that starbursts are enhanced as well as terminated during cluster mergers. We conclude that ram-pressure stripping and/or tidal destruction are central to the evolution of galaxies clusters, and that wide-field spectroscopic surveys around clusters are essential to distinguish between competing physical effects driving galaxy evolution in different environments.

  10. The Impact of Non-Thermal Processes in the Intracluster Medium on Cosmological Cluster Observables

    NASA Astrophysics Data System (ADS)

    Battaglia, Nicholas Ambrose

    In this thesis we describe the generation and analysis of hydrodynamical simulations of galaxy clusters and their intracluster medium (ICM), using large cosmological boxes to generate large samples, in conjunction with individual cluster computations. The main focus is the exploration of the non-thermal processes in the ICM and the effect they have on the interpretation of observations used for cosmological constraints. We provide an introduction to the cosmological structure formation framework for our computations and an overview of the numerical simulations and observations of galaxy clusters. We explore the cluster magnetic field observables through radio relics, extended entities in the ICM characterized by their of diffuse radio emission. We show that statistical quantities such as radio relic luminosity functions and rotation measure power spectra are sensitive to magnetic field models. The spectral index of the radio relic emission provides information on structure formation shocks, e.g., on their Mach number. We develop a coarse grained stochastic model of active galaxy nucleus (AGN) feed-back in clusters and show the impact of such inhomogeneous feedback on the thermal pressure profile. We explore variations in the pressure profile as a function of cluster mass, redshift, and radius and provide a constrained fitting function for this profile. We measure the degree of the non-thermal pressure in the gas from internal cluster bulk motions and show it has an impact on the slope and scatter of the Sunyaev-Zel'dovich (SZ) scaling relation. We also find that the gross shape of the ICM, as characterized by scaled moment of inertia tensors, affects the SZ scaling relation. We demonstrate that the shape and the amplitude of the SZ angular power spectrum is sensitive to AGN feedback, and this affects the cosmological parameters determined from high resolution ACT and SPT cosmic microwave background data. We compare analytic, semi-analytic, and simulation-based methods for calculating the SZ power spectrum, and characterize their differences. All the methods must rely, one way or another, on high resolution large-scale hydrodynamical simulations with varying assumptions for modelling the gas of the sort presented here. We show how our results can be used to interpret the latest ACT and SPT power spectrum results. We provide an outlook for the future, describing follow-up work we are undertaking to further advance the theory of cluster science.

  11. Properties and spatial distribution of galaxy superclusters

    NASA Astrophysics Data System (ADS)

    Liivamägi, Lauri Juhan

    2017-01-01

    Astronomy is a science that can offer plenty of unforgettable imagery, and the large-scale distribution of galaxies is no exception. Among the first features the viewer's eye is likely to be drawn to, are large concentrations of galaxies - galaxy superclusters, contrasting to the seemingly empty regions beside them. Superclusters can extend from tens to over hundred megaparsecs, they contain from hundreds to thousands of galaxies, and many galaxy groups and clusters. Unlike galaxy clusters, superclusters are clearly unrelaxed systems, not gravitationally bound as crossing times exceed the age of the universe, and show little to no radial symmetry. Superclusters, as part of the large-scale structure, are sensitive to the initial power spectrum and the following evolution. They are massive enough to leave an imprint on the cosmic microwave background radiation. Superclusters can also provide an unique environment for their constituent galaxies and galaxy clusters. In this study we used two different observational and one simulated galaxy samples to create several catalogues of structures that, we think, correspond to what are generally considered galaxy superclusters. Superclusters were delineated as continuous over-dense regions in galaxy luminosity density fields. When calculating density fields several corrections were applied to remove small-scale redshift distortions and distance-dependent selection effects. Resulting catalogues of objects display robust statistical properties, showing that flux-limited galaxy samples can be used to create nearly volume-limited catalogues of superstructures. Generally, large superclusters can be regarded as massive, often branching filamentary structures, that are mainly characterised by their length. Smaller superclusters, on the other hand, can display a variety of shapes. Spatial distribution of superclusters shows large-scale variations, with high-density concentrations often found in semi-regularly spaced groups. Future studies are needed to quantify the relations between superclusters and finer details of the galaxy distribution. Supercluster catalogues from this thesis have already been used in numerous other studies.

  12. A hydrodynamic approach to cosmology - Texture-seeded cold dark matter and hot dark matter cosmogonies

    NASA Technical Reports Server (NTRS)

    Cen, R. Y.; Ostriker, J. P.; Spergel, D. N.; Turok, N.

    1991-01-01

    Hydrodynamical simulations of galaxy formation in a texture-seeded cosmology are presented, with attention given to Omega = 1 galaxies dominated by both hot dark matter (HDM) and cold dark matter (CDM). The simulations include both gravitational and hydrodynamical physics with a detailed treatment of collisional and radiative thermal processes, and use a cooling criterion to estimate galaxy formation. Background radiation fields and Zel'dovich-Sunyaev fluctuations are explicitly computed. The derived galaxy mass function is well fitted by the observed Schechter luminosity function for a baryonic M/L of 3 and total M/L of 60 in galaxies. In both HDM and CDM texture scenarios, the 'galaxies' and 'clusters' are significantly more strongly correlated than the dark matter due to physical bias processes. The slope of the correlation function in both cases is consistent with observations. In contrast to Gaussian models, peaks in the dark matter density distributrion are less correlated than average.

  13. GASP. IX. Jellyfish galaxies in phase-space: an orbital study of intense ram-pressure stripping in clusters

    NASA Astrophysics Data System (ADS)

    Jaffé, Yara L.; Poggianti, Bianca M.; Moretti, Alessia; Gullieuszik, Marco; Smith, Rory; Vulcani, Benedetta; Fasano, Giovanni; Fritz, Jacopo; Tonnesen, Stephanie; Bettoni, Daniela; Hau, George; Biviano, Andrea; Bellhouse, Callum; McGee, Sean

    2018-06-01

    It is well known that galaxies falling into clusters can experience gas stripping due to ram pressure by the intra-cluster medium. The most spectacular examples are galaxies with extended tails of optically bright stripped material known as `jellyfish'. We use the first large homogeneous compilation of jellyfish galaxies in clusters from the WINGS and OmegaWINGS surveys, and follow-up MUSE observations from the GASP MUSE programme to investigate the orbital histories of jellyfish galaxies in clusters and reconstruct their stripping history through position versus velocity phase-space diagrams. We construct analytic models to define the regions in phase-space where ram-pressure stripping is at play. We then study the distribution of cluster galaxies in phase-space and find that jellyfish galaxies have on average higher peculiar velocities (and higher cluster velocity dispersion) than the overall population of cluster galaxies at all cluster-centric radii, which is indicative of recent infall into the cluster and radial orbits. In particular, the jellyfish galaxies with the longest gas tails reside very near the cluster cores (in projection) and are moving at very high speeds, which coincides with the conditions of the most intense ram pressure. We conclude that many of the jellyfish galaxies seen in clusters likely formed via fast (˜1-2 Gyr), incremental, outside-in ram-pressure stripping during first infall into the cluster in highly radial orbits.

  14. Gigantic Wave Discovered in Perseus Galaxy Cluster

    NASA Image and Video Library

    2017-12-08

    Combining data from NASA's Chandra X-ray Observatory with radio observations and computer simulations, an international team of scientists has discovered a vast wave of hot gas in the nearby Perseus galaxy cluster. Spanning some 200,000 light-years, the wave is about twice the size of our own Milky Way galaxy. The researchers say the wave formed billions of years ago, after a small galaxy cluster grazed Perseus and caused its vast supply of gas to slosh around an enormous volume of space. "Perseus is one of the most massive nearby clusters and the brightest one in X-rays, so Chandra data provide us with unparalleled detail," said lead scientist Stephen Walker at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "The wave we've identified is associated with the flyby of a smaller cluster, which shows that the merger activity that produced these giant structures is still ongoing." Read more at nasa.gov Credit: NASA's Goddard Space Flight Center/Stephen Walker href="http://www.nasa.gov/audience/formedia/features/MP_Photo_Guidelines.html" rel="nofollow">NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  15. Simulations of extragalactic magnetic fields and of their observables

    NASA Astrophysics Data System (ADS)

    Vazza, F.; Brüggen, M.; Gheller, C.; Hackstein, S.; Wittor, D.; Hinz, P. M.

    2017-12-01

    The origin of extragalactic magnetic fields is still poorly understood. Based on a dedicated suite of cosmological magneto-hydrodynamical simulations with the ENZO code we have performed a survey of different models that may have caused present-day magnetic fields in galaxies and galaxy clusters. The outcomes of these models differ in cluster outskirts, filaments, sheets and voids and we use these simulations to find observational signatures of magnetogenesis. With these simulations, we predict the signal of extragalactic magnetic fields in radio observations of synchrotron emission from the cosmic web, in Faraday rotation, in the propagation of ultra high energy cosmic rays, in the polarized signal from fast radio bursts at cosmological distance and in spectra of distant blazars. In general, primordial scenarios in which present-day magnetic fields originate from the amplification of weak (⩽nG ) uniform seed fields result in more homogeneous and relatively easier to observe magnetic fields than astrophysical scenarios, in which present-day fields are the product of feedback processes triggered by stars and active galaxies. In the near future the best evidence for the origin of cosmic magnetic fields will most likely come from a combination of synchrotron emission and Faraday rotation observed at the periphery of large-scale structures.

  16. The MUSIC of galaxy clusters - I. Baryon properties and scaling relations of the thermal Sunyaev-Zel'dovich effect

    NASA Astrophysics Data System (ADS)

    Sembolini, Federico; Yepes, Gustavo; De Petris, Marco; Gottlöber, Stefan; Lamagna, Luca; Comis, Barbara

    2013-02-01

    We introduce the Marenostrum-MultiDark SImulations of galaxy Clusters (MUSIC) data set. It constitutes one of the largest samples of hydrodynamically simulated galaxy clusters with more than 500 clusters and 2000 groups. The objects have been selected from two large N-body simulations and have been resimulated at high resolution using smoothed particle hydrodynamics (SPH) together with relevant physical processes that include cooling, UV photoionization, star formation and different feedback processes associated with supernovae explosions. In this first paper we focus on the analysis of the baryon content (gas and star) of clusters in the MUSIC data set as a function of both aperture radius and redshift. The results from our simulations are compared with a compilation of the most recent observational estimates of the gas fraction in galaxy clusters at different overdensity radii. We confirm, as in previous simulations, that the gas fraction is overestimated if radiative physics are not properly taken into account. On the other hand, when the effects of cooling and stellar feedbacks are included, the MUSIC clusters show a good agreement with the most recent observed gas fractions quoted in the literature. A clear dependence of the gas fractions with the total cluster mass is also evident. However, we do not find a significant evolution with redshift of the gas fractions at aperture radius corresponding to overdensities smaller than 1500 with respect to critical density. At smaller radii, the gas fraction does exhibit a decrease with redshift that is related to the gas depletion due to star formation in the central region of the clusters. The impact of the aperture radius choice, when comparing integrated quantities at different redshifts, is tested. The standard, widely used definition of radius at a fixed overdensity with respect to critical density is compared with a definition of aperture radius based on the redshift dependent overdensity with respect to background matter density: we show that the latter definition is more successful in probing the same fraction of the virial radius at different redshifts, providing a more reliable derivation of the time evolution of integrated quantities. We also present in this paper a detailed analysis of the scaling relations of the thermal Sunyaev-Zel'dovich (SZ) effect derived from MUSIC clusters. The integrated SZ brightness, Y, is related to the cluster total mass, M, as well as, the M - Y counterpart which is more suitable for observational applications. Both laws are consistent with predictions from the self-similar model, showing a very low scatter which is σlog Y ≃ 0.04 and even a smaller one (σlog M ≃ 0.03) for the inverse M-Y relation. The effects of the gas fraction on the Y-M scaling relation are also studied. At high overdensities, the dispersion of the gas fractions introduces non-negligible deviation from self-similarity, which is directly related to the fgas-M relation. The presence of a possible redshift dependence on the Y-M scaling relation is also explored. No significant evolution of the SZ relations is found at lower overdensities, regardless of the definition of overdensity used.

  17. Percolation galaxy groups and clusters in the sdss redshift survey: identification, catalogs, and the multiplicity function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berlind, Andreas A.; Frieman, Joshua A.; Weinberg, David H.

    2006-01-01

    We identify galaxy groups and clusters in volume-limited samples of the SDSS redshift survey, using a redshift-space friends-of-friends algorithm. We optimize the friends-of-friends linking lengths to recover galaxy systems that occupy the same dark matter halos, using a set of mock catalogs created by populating halos of N-body simulations with galaxies. Extensive tests with these mock catalogs show that no combination of perpendicular and line-of-sight linking lengths is able to yield groups and clusters that simultaneously recover the true halo multiplicity function, projected size distribution, and velocity dispersion. We adopt a linking length combination that yields, for galaxy groups withmore » ten or more members: a group multiplicity function that is unbiased with respect to the true halo multiplicity function; an unbiased median relation between the multiplicities of groups and their associated halos; a spurious group fraction of less than {approx}1%; a halo completeness of more than {approx}97%; the correct projected size distribution as a function of multiplicity; and a velocity dispersion distribution that is {approx}20% too low at all multiplicities. These results hold over a range of mock catalogs that use different input recipes of populating halos with galaxies. We apply our group-finding algorithm to the SDSS data and obtain three group and cluster catalogs for three volume-limited samples that cover 3495.1 square degrees on the sky. We correct for incompleteness caused by fiber collisions and survey edges, and obtain measurements of the group multiplicity function, with errors calculated from realistic mock catalogs. These multiplicity function measurements provide a key constraint on the relation between galaxy populations and dark matter halos.« less

  18. Star-Forming Galaxies in the Hercules Cluster: Hα Imaging of A2151

    NASA Astrophysics Data System (ADS)

    Cedrés, Bernabé; Iglesias-Páramo, Jorge; Vílchez, José Manuel; Reverte, Daniel; Petropoulou, Vasiliki; Hernández-Fernández, Jonathan

    2009-09-01

    This paper presents the first results of an Hα imaging survey of galaxies in the central regions of the A2151 cluster. A total of 50 sources were detected in Hα, from which 41 were classified as secure members of the cluster and 2 as likely members based on spectroscopic and photometric redshift considerations. The remaining seven galaxies were classified as background contaminants and thus excluded from our study on the Hα properties of the cluster. The morphologies of the 43 Hα selected galaxies range from grand design spirals and interacting galaxies to blue compacts and tidal dwarfs or isolated extragalactic H II regions, spanning a range of magnitudes of -21 <= MB <= -12.5 mag. From these 43 galaxies, 7 have been classified as active galactic nucleus (AGN) candidates. These AGN candidates follow the L(Hα) versus MB relationship of the normal galaxies, implying that the emission associated with the nuclear engine has a rather secondary impact on the total Hα emission of these galaxies. A comparison with the clusters Coma and A1367 and a sample of field galaxies has shown the presence of cluster galaxies with L(Hα) lower than expected for their MB , a consequence of the cluster environment. This fact results in differences in the L(Hα) versus EW(Hα) and L(Hα) distributions of the clusters with respect to the field, and in cluster-to-cluster variations of these quantities, which we propose are driven by a global cluster property as the total mass. In addition, the cluster Hα emitting galaxies tend to avoid the central regions of the clusters, again with different intensity depending on the cluster total mass. For the particular case of A2151, we find that most Hα emitting galaxies are located close to the regions with the higher galaxy density, offset from the main X-ray peak. Overall, we conclude that both the global cluster environment and the cluster merging history play a non-negligible role in the integral star formation properties of clusters of galaxies.

  19. STAR-FORMING GALAXIES IN THE HERCULES CLUSTER: H{alpha} IMAGING OF A2151

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cedres, Bernabe; Iglesias-Paramo, Jorge; VIlchez, Jose Manuel

    2009-09-15

    This paper presents the first results of an H{alpha} imaging survey of galaxies in the central regions of the A2151 cluster. A total of 50 sources were detected in H{alpha}, from which 41 were classified as secure members of the cluster and 2 as likely members based on spectroscopic and photometric redshift considerations. The remaining seven galaxies were classified as background contaminants and thus excluded from our study on the H{alpha} properties of the cluster. The morphologies of the 43 H{alpha} selected galaxies range from grand design spirals and interacting galaxies to blue compacts and tidal dwarfs or isolated extragalacticmore » H II regions, spanning a range of magnitudes of -21 {<=} M{sub B} {<=} -12.5 mag. From these 43 galaxies, 7 have been classified as active galactic nucleus (AGN) candidates. These AGN candidates follow the L(H{alpha}) versus M{sub B} relationship of the normal galaxies, implying that the emission associated with the nuclear engine has a rather secondary impact on the total H{alpha} emission of these galaxies. A comparison with the clusters Coma and A1367 and a sample of field galaxies has shown the presence of cluster galaxies with L(H{alpha}) lower than expected for their M{sub B} , a consequence of the cluster environment. This fact results in differences in the L(H{alpha}) versus EW(H{alpha}) and L(H{alpha}) distributions of the clusters with respect to the field, and in cluster-to-cluster variations of these quantities, which we propose are driven by a global cluster property as the total mass. In addition, the cluster H{alpha} emitting galaxies tend to avoid the central regions of the clusters, again with different intensity depending on the cluster total mass. For the particular case of A2151, we find that most H{alpha} emitting galaxies are located close to the regions with the higher galaxy density, offset from the main X-ray peak. Overall, we conclude that both the global cluster environment and the cluster merging history play a non-negligible role in the integral star formation properties of clusters of galaxies.« less

  20. A catalogue of clusters of galaxies identified from all sky surveys of 2MASS, WISE, and SuperCOSMOS

    NASA Astrophysics Data System (ADS)

    Wen, Z. L.; Han, J. L.; Yang, F.

    2018-03-01

    We identify 47 600 clusters of galaxies from photometric data of Two Micron All Sky Survey (2MASS), Wide-field Infrared Survey Explorer (WISE), and SuperCOSMOS, among which 26 125 clusters are recognized for the first time and mostly in the sky outside the Sloan Digital Sky Survey (SDSS) area. About 90 per cent of massive clusters of M500 > 3 × 1014 M⊙ in the redshift range of 0.025 < z < 0.3 have been detected from such survey data, and the detection rate drops down to 50 per cent for clusters with a mass of M500 ˜ 1 × 1014 M⊙. Monte Carlo simulations show that the false detection rate for the whole cluster sample is less than 5 per cent. By cross-matching with ROSAT and XMM-Newton sources, we get 779 new X-ray cluster candidates which have X-ray counterparts within a projected offset of 0.2 Mpc.

  1. Statistical Issues in Galaxy Cluster Cosmology

    NASA Technical Reports Server (NTRS)

    Mantz, Adam

    2013-01-01

    The number and growth of massive galaxy clusters are sensitive probes of cosmological structure formation. Surveys at various wavelengths can detect clusters to high redshift, but the fact that cluster mass is not directly observable complicates matters, requiring us to simultaneously constrain scaling relations of observable signals with mass. The problem can be cast as one of regression, in which the data set is truncated, the (cosmology-dependent) underlying population must be modeled, and strong, complex correlations between measurements often exist. Simulations of cosmological structure formation provide a robust prediction for the number of clusters in the Universe as a function of mass and redshift (the mass function), but they cannot reliably predict the observables used to detect clusters in sky surveys (e.g. X-ray luminosity). Consequently, observers must constrain observable-mass scaling relations using additional data, and use the scaling relation model in conjunction with the mass function to predict the number of clusters as a function of redshift and luminosity.

  2. Comparing Simulations and Observations of Galaxy Evolution: Methods for Constraining the Nature of Stellar Feedback

    NASA Astrophysics Data System (ADS)

    Hummels, Cameron

    Computational hydrodynamical simulations are a very useful tool for understanding how galaxies form and evolve over cosmological timescales not easily revealed through observations. However, they are only useful if they reproduce the sorts of galaxies that we see in the real universe. One of the ways in which simulations of this sort tend to fail is in the prescription of stellar feedback, the process by which nascent stars return material and energy to their immediate environments. Careful treatment of this interaction in subgrid models, so-called because they operate on scales below the resolution of the simulation, is crucial for the development of realistic galaxy models. Equally important is developing effective methods for comparing simulation data against observations to ensure galaxy models which mimic reality and inform us about natural phenomena. This thesis examines the formation and evolution of galaxies and the observable characteristics of the resulting systems. We employ extensive use of cosmological hydrodynamical simulations in order to simulate and interpret the evolution of massive spiral galaxies like our own Milky Way. First, we create a method for producing synthetic photometric images of grid-based hydrodynamical models for use in a direct comparison against observations in a variety of filter bands. We apply this method to a simulation of a cluster of galaxies to investigate the nature of the red-sequence/blue-cloud dichotomy in the galaxy color-magnitude diagram. Second, we implement several subgrid models governing the complex behavior of gas and stars on small scales in our galaxy models. Several numerical simulations are conducted with similar initial conditions, where we systematically vary the subgrid models, afterward assessing their efficacy through comparisons of their internal kinematics with observed systems. Third, we generate an additional method to compare observations with simulations, focusing on the tenuous circumgalactic medium. Informed by our previous studies, we investigate the sensitivity of this new mode of comparison to hydrodynamical subgrid prescription. Finally, we synthesize the results of these studies and identify future avenues of research.

  3. Field spheroid-dominated galaxies in a Λ-CDM Universe

    NASA Astrophysics Data System (ADS)

    Rosito, M. S.; Pedrosa, S. E.; Tissera, P. B.; Avila-Reese, V.; Lacerna, I.; Bignone, L. A.; Ibarra-Medel, H. J.; Varela, S.

    2018-06-01

    Context. Understanding the formation and evolution of early-type, spheroid-dominated galaxies is an open question within the context of the hierarchical clustering scenario, particularly in low-density environments. Aims: Our goal is to study the main structural, dynamical, and stellar population properties and assembly histories of field spheroid-dominated galaxies formed in a Λ-cold dark matter (Λ-CDM) scenario to assess to what extent they are consistent with observations. Methods: We selected spheroid-dominated systems from a Λ-CDM simulation that includes star formation (SF), chemical evolution, and supernova feedback. The sample is made up of 18 field systems with MStar ≲ 6 × 1010M⊙ that are dominated by the spheroid component. For this sample we estimated the fundamental relations of ellipticals and compared them with current observations. Results: The simulated spheroid galaxies have sizes that are in good agreement with observations. The bulges follow a Sersic law with Sersic indexes that correlate with the bulge-to-total mass ratios. The structural-dynamical properties of the simulated galaxies are consistent with observed Faber-Jackson, fundamental plane, and Tully-Fisher relations. However, the simulated galaxies are bluer and with higher star formation rates (SFRs) than the observed isolated early-type galaxies. The archaeological mass growth histories show a slightly delayed formation and more prominent inside-out growth mode than observational inferences based on the fossil record method. Conclusions: The main structural and dynamical properties of the simulated spheroid-dominated galaxies are consistent with observations. This is remarkable since our simulation has not been calibrated to match them. However, the simulated galaxies are blue and star-forming, and with later stellar mass growth histories compared to observational inferences. This is mainly due to the persistence of extended discs in the simulations. The need for more efficient quenching mechanisms able to avoid further disc growth and SF is required in order to reproduce current observational trends.

  4. PICS: SIMULATIONS OF STRONG GRAVITATIONAL LENSING IN GALAXY CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Nan; Gladders, Michael D.; Florian, Michael K.

    2016-09-01

    Gravitational lensing has become one of the most powerful tools available for investigating the “dark side” of the universe. Cosmological strong gravitational lensing, in particular, probes the properties of the dense cores of dark matter halos over decades in mass and offers the opportunity to study the distant universe at flux levels and spatial resolutions otherwise unavailable. Studies of strongly lensed variable sources offer even further scientific opportunities. One of the challenges in realizing the potential of strong lensing is to understand the statistical context of both the individual systems that receive extensive follow-up study, as well as that ofmore » the larger samples of strong lenses that are now emerging from survey efforts. Motivated by these challenges, we have developed an image simulation pipeline, Pipeline for Images of Cosmological Strong lensing (PICS), to generate realistic strong gravitational lensing signals from group- and cluster-scale lenses. PICS uses a low-noise and unbiased density estimator based on (resampled) Delaunay Tessellations to calculate the density field; lensed images are produced by ray-tracing images of actual galaxies from deep Hubble Space Telescope observations. Other galaxies, similarly sampled, are added to fill in the light cone. The pipeline further adds cluster member galaxies and foreground stars into the lensed images. The entire image ensemble is then observed using a realistic point-spread function that includes appropriate detector artifacts for bright stars. Noise is further added, including such non-Gaussian elements as noise window-paning from mosaiced observations, residual bad pixels, and cosmic rays. The aim is to produce simulated images that appear identical—to the eye (expert or otherwise)—to real observations in various imaging surveys.« less

  5. PICS: SIMULATIONS OF STRONG GRAVITATIONAL LENSING IN GALAXY CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Nan; Gladders, Michael D.; Rangel, Esteban M.

    2016-08-29

    Gravitational lensing has become one of the most powerful tools available for investigating the “dark side” of the universe. Cosmological strong gravitational lensing, in particular, probes the properties of the dense cores of dark matter halos over decades in mass and offers the opportunity to study the distant universe at flux levels and spatial resolutions otherwise unavailable. Studies of strongly lensed variable sources offer even further scientific opportunities. One of the challenges in realizing the potential of strong lensing is to understand the statistical context of both the individual systems that receive extensive follow-up study, as well as that ofmore » the larger samples of strong lenses that are now emerging from survey efforts. Motivated by these challenges, we have developed an image simulation pipeline, Pipeline for Images of Cosmological Strong lensing (PICS), to generate realistic strong gravitational lensing signals from group- and cluster-scale lenses. PICS uses a low-noise and unbiased density estimator based on (resampled) Delaunay Tessellations to calculate the density field; lensed images are produced by ray-tracing images of actual galaxies from deep Hubble Space Telescope observations. Other galaxies, similarly sampled, are added to fill in the light cone. The pipeline further adds cluster member galaxies and foreground stars into the lensed images. The entire image ensemble is then observed using a realistic point-spread function that includes appropriate detector artifacts for bright stars. Noise is further added, including such non-Gaussian elements as noise window-paning from mosaiced observations, residual bad pixels, and cosmic rays. The aim is to produce simulated images that appear identical—to the eye (expert or otherwise)—to real observations in various imaging surveys.« less

  6. Nonlinear dynamo in the intracluster medium

    NASA Astrophysics Data System (ADS)

    Beresnyak, Andrey; Miniati, Francesco

    2018-05-01

    Hot plasma in galaxy clusters, the intracluster medium is observed to be magnetized with magnetic fields of around a μG and the correlation scales of tens of kiloparsecs, the largest scales of the magnetic field so far observed in the Universe. Can this magnetic field be used as a test of the primordial magnetic field in the early Universe? In this paper, we argue that if the cluster field was created by the nonlinear dynamo, the process would be insensitive to the value of the initial field. Our model combines state of the art hydrodynamic simulations of galaxy cluster formation in a fully cosmological context with nonlinear dynamo theory. Initial field is not a parameter in this model, yet it predicts magnetic scale and strength compatible with observations.

  7. Extended halos and intracluster light using Planetary Nebulae as tracers in nearby clusters

    NASA Astrophysics Data System (ADS)

    Arnaboldi, Magda

    Since the first detection of intracluster planetary nebulae in 1996, imaging and spectroscopic surveys identified such stars to trace the radial extent and the kinematics of diffuse light in clusters. This topic of research is tightly linked with the studies of galaxy formation and evolution in dense environment, as the spatial distribution and kinematics of planetary nebulae in the outermost regions of galaxies and in the cluster cores is relevant for setting constraints on cosmological simulations. In this sense, extragalactic planetary nebulae play a very important role in the near-field cosmology, in order to measure the integrated mass as function of radius and the orbital distribution of stars in structures placed in the densest regions of the nearby universe.

  8. Enviromental Effects on Internal Color Gradients of Early-Type Galaxies

    NASA Astrophysics Data System (ADS)

    La Barbera, F.; de Carvalho, R. R.; Gal, R. R.; Busarello, G.; Haines, C. P.; Mercurio, A.; Merluzzi, P.; Capaccioli, M.; Djorgovski, S. G.

    2007-05-01

    One of the most debated issues of observational and theoretical cosmology is that of how the environment affects the formation and evolution of galaxies. To gain new insight into this subject, we have derived surface photometry for a sample of 3,000 early-type galaxies belonging to 163 clusters with different richness, spanning a redshift range of 0.05 to 0.25. This large data-set is used to analyze how the color distribution inside galaxies depends on several parameters, such as cluster richness, local galaxy density, galaxy luminosity and redshift. We find that the internal color profile of galaxies strongly depends on the environment where galaxies reside. Galaxies in poor and rich clusters are found to follow two distinct trends in the color gradient vs. redshift diagram, with color gradients beeing less steep in rich rather than in poor clusters. No dependence of color gradients on galaxy luminosity is detected both for poor and rich clusters. We find that color gradients strongly depend on local galaxy density, with more shallow gradients in high density regions. Interestingly, this result holds only for low richness clusters, with color gradients of galaxies in rich clusters showing no dependence on local galaxy density. Our results support a reasonable picture whereby young early-type galaxies form in a dissipative collapse process, and then undergo increased (either major or minor) merging activity in richer rather than in poor clusters.

  9. Investigations of Galaxy Clusters Using Gravitational Lensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiesner, Matthew P.

    2014-08-01

    In this dissertation, we discuss the properties of galaxy clusters that have been determined using strong and weak gravitational lensing. A galaxy cluster is a collection of galaxies that are bound together by the force of gravity, while gravitational lensing is the bending of light by gravity. Strong lensing is the formation of arcs or rings of light surrounding clusters and weak lensing is a change in the apparent shapes of many galaxies. In this work we examine the properties of several samples of galaxy clusters using gravitational lensing. In Chapter 1 we introduce astrophysical theory of galaxy clusters andmore » gravitational lensing. In Chapter 2 we examine evidence from our data that galaxy clusters are more concentrated than cosmology would predict. In Chapter 3 we investigate whether our assumptions about the number of galaxies in our clusters was valid by examining new data. In Chapter 4 we describe a determination of a relationship between mass and number of galaxies in a cluster at higher redshift than has been found before. In Chapter 5 we describe a model of the mass distribution in one of the ten lensing systems discovered by our group at Fermilab. Finally in Chapter 6 we summarize our conclusions.« less

  10. A class of compact dwarf galaxies from disruptive processes in galaxy clusters.

    PubMed

    Drinkwater, M J; Gregg, M D; Hilker, M; Bekki, K; Couch, W J; Ferguson, H C; Jones, J B; Phillipps, S

    2003-05-29

    Dwarf galaxies have attracted increased attention in recent years, because of their susceptibility to galaxy transformation processes within rich galaxy clusters. Direct evidence for these processes, however, has been difficult to obtain, with a small number of diffuse light trails and intra-cluster stars being the only signs of galaxy disruption. Furthermore, our current knowledge of dwarf galaxy populations may be very incomplete, because traditional galaxy surveys are insensitive to extremely diffuse or compact galaxies. Aware of these concerns, we recently undertook an all-object survey of the Fornax galaxy cluster. This revealed a new population of compact members, overlooked in previous conventional surveys. Here we demonstrate that these 'ultra-compact' dwarf galaxies are structurally and dynamically distinct from both globular star clusters and known types of dwarf galaxy, and thus represent a new class of dwarf galaxy. Our data are consistent with the interpretation that these are the remnant nuclei of disrupted dwarf galaxies, making them an easily observed tracer of galaxy disruption.

  11. Cosmological constraints from galaxy clustering in the presence of massive neutrinos

    NASA Astrophysics Data System (ADS)

    Zennaro, M.; Bel, J.; Dossett, J.; Carbone, C.; Guzzo, L.

    2018-06-01

    The clustering ratio is defined as the ratio between the correlation function and the variance of the smoothed overdensity field. In Λ cold dark matter (ΛCDM) cosmologies without massive neutrinos, it has already been proven to be independent of bias and redshift space distortions on a range of linear scales. It therefore can provide us with a direct comparison of predictions (for matter in real space) against measurements (from galaxies in redshift space). In this paper we first extend the applicability of such properties to cosmologies that account for massive neutrinos, by performing tests against simulated data. We then investigate the constraining power of the clustering ratio on cosmological parameters such as the total neutrino mass and the equation of state of dark energy. We analyse the joint posterior distribution of the parameters that satisfy both measurements of the galaxy clustering ratio in the SDSS-DR12, and the angular power spectra of cosmic microwave background temperature and polarization anisotropies measured by the Planck satellite. We find the clustering ratio to be very sensitive to the CDM density parameter, but less sensitive to the total neutrino mass. We also forecast the constraining power the clustering ratio will achieve, predicting the amplitude of its errors with a Euclid-like galaxy survey. First we compute parameter forecasts using the Planck covariance matrix alone, then we add information from the clustering ratio. We find a significant improvement on the constraint of all considered parameters, and in particular an improvement of 40 per cent for the CDM density and 14 per cent for the total neutrino mass.

  12. LoCuSS: pre-processing in galaxy groups falling into massive galaxy clusters at z = 0.2

    NASA Astrophysics Data System (ADS)

    Bianconi, M.; Smith, G. P.; Haines, C. P.; McGee, S. L.; Finoguenov, A.; Egami, E.

    2018-01-01

    We report direct evidence of pre-processing of the galaxies residing in galaxy groups falling into galaxy clusters drawn from the Local Cluster Substructure Survey (LoCuSS). 34 groups have been identified via their X-ray emission in the infall regions of 23 massive ( = 1015 M⊙) clusters at 0.15 < z < 0.3. Highly complete spectroscopic coverage combined with 24 μm imaging from Spitzer allows us to make a consistent and robust selection of cluster and group members including star-forming galaxies down to a stellar mass limit of M⋆ = 2 × 1010 M⊙. The fraction fSF of star-forming galaxies in infalling groups is lower and with a flatter trend with respect to clustercentric radius when compared to the rest of the cluster galaxy population. At R ≈ 1.3 r200, the fraction of star-forming galaxies in infalling groups is half that in the cluster galaxy population. This is direct evidence that star-formation quenching is effective in galaxies already prior to them settling in the cluster potential, and that groups are favourable locations for this process.

  13. Offsets between the X-ray and the Sunyaev-Zel'Dovich-effect peaks in merging galaxy clusters and their cosmological implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Congyao; Yu, Qingjuan; Lu, Youjun, E-mail: yuqj@pku.edu.cn

    2014-12-01

    Observations reveal that the peaks of the X-ray map and the Sunyaev-Zel'dovich (SZ) effect map of some galaxy clusters are offset from each other. In this paper, we perform a set of hydrodynamical simulations of mergers of two galaxy clusters to investigate the spatial offset between the maxima of the X-ray and the SZ surface brightness of the merging clusters. We find that significantly large SZ-X-ray offsets (>100 kpc) can be produced during the major mergers of galaxy clusters (with mass > 1 × 10{sup 14} M {sub ☉}). The significantly large offsets are mainly caused by a 'jump effect'more » that occurs between the primary and secondary pericentric passages of the two merging clusters, during which the X-ray peak may jump to the densest gas region located near the center of the small cluster, but the SZ peak remains near the center of the large one. Our simulations show that merging systems with higher masses and larger initial relative velocities may result in larger offset sizes and longer offset time durations; and only nearly head-on mergers are likely to produce significantly large offsets. We further investigate the statistical distribution of the SZ-X-ray offset sizes and find that (1) the number distribution of the offset sizes is bimodal with one peak located at low offsets ∼0 and the other at large offsets ∼350-450 h {sup –1} kpc, but the objects with intermediate offsets are scarce; and (2) the probabilities of the clusters in the mass range higher than 2 × 10{sup 14} h {sup –1} M {sub ☉} that have offsets larger than 20, 50, 200, 300, and 500 h {sup –1} kpc are 34.0%, 11.1%, 8.0%, 6.5%, and 2.0%, respectively, at z = 0.7. The probability is sensitive to the underlying pairwise velocity distribution and the merger rate of clusters. We suggest that the SZ-X-ray offsets provide a probe to the cosmic velocity fields on the cluster scale and the cluster merger rate, and future observations on the SZ-X-ray offsets for a large number of clusters may put strong constraints on them. Our simulation results suggest that the SZ-X-ray offset in the Bullet Cluster, together with the mass ratio of the two merging clusters, requires a relative velocity larger than 3000 km s{sup –1} at an initial separation 5 Mpc. The cosmic velocity distribution at the high-velocity end is expected to be crucial in determining whether there exists an incompatibility between the existence of the Bullet Cluster and the prediction of a ΛCDM model.« less

  14. The topology of the cosmic web in terms of persistent Betti numbers

    NASA Astrophysics Data System (ADS)

    Pranav, Pratyush; Edelsbrunner, Herbert; van de Weygaert, Rien; Vegter, Gert; Kerber, Michael; Jones, Bernard J. T.; Wintraecken, Mathijs

    2017-03-01

    We introduce a multiscale topological description of the Megaparsec web-like cosmic matter distribution. Betti numbers and topological persistence offer a powerful means of describing the rich connectivity structure of the cosmic web and of its multiscale arrangement of matter and galaxies. Emanating from algebraic topology and Morse theory, Betti numbers and persistence diagrams represent an extension and deepening of the cosmologically familiar topological genus measure and the related geometric Minkowski functionals. In addition to a description of the mathematical background, this study presents the computational procedure for computing Betti numbers and persistence diagrams for density field filtrations. The field may be computed starting from a discrete spatial distribution of galaxies or simulation particles. The main emphasis of this study concerns an extensive and systematic exploration of the imprint of different web-like morphologies and different levels of multiscale clustering in the corresponding computed Betti numbers and persistence diagrams. To this end, we use Voronoi clustering models as templates for a rich variety of web-like configurations and the fractal-like Soneira-Peebles models exemplify a range of multiscale configurations. We have identified the clear imprint of cluster nodes, filaments, walls, and voids in persistence diagrams, along with that of the nested hierarchy of structures in multiscale point distributions. We conclude by outlining the potential of persistent topology for understanding the connectivity structure of the cosmic web, in large simulations of cosmic structure formation and in the challenging context of the observed galaxy distribution in large galaxy surveys.

  15. Uncovering mass segregation with galaxy analogues in dark-matter simulations

    NASA Astrophysics Data System (ADS)

    Joshi, Gandhali D.; Parker, Laura C.; Wadsley, James

    2016-10-01

    We investigate mass segregation in group and cluster environments by identifying galaxy analogues in high-resolution dark-matter simulations. Subhaloes identified by the Amiga's Halo Finder (AHF) and ROCKSTAR halo finders have similar mass functions, independent of resolution, but different radial distributions due to significantly different subhalo hierarchies. We propose a simple way to classify subhaloes as galaxy analogues. The radial distributions of galaxy analogues agree well at large halocentric radii for both AHF and ROCKSTAR but disagree near parent halo centres where the phase-space information used by ROCKSTAR is essential. We see clear mass segregation at small radii (within 0.5 rvir) with average galaxy analogue mass decreasing with radius. Beyond the virial radius, we find a mild trend where the average galaxy analogue mass increases with radius. These mass segregation trends are strongest in small groups and dominated by the segregation of low-mass analogues. The lack of mass segregation in massive galaxy analogues suggests that the observed trends are driven by the complex accretion histories of the parent haloes rather than dynamical friction.

  16. Dark Energy Survey Year 1 Results: Multi-Probe Methodology and Simulated Likelihood Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krause, E.; et al.

    We present the methodology for and detail the implementation of the Dark Energy Survey (DES) 3x2pt DES Year 1 (Y1) analysis, which combines configuration-space two-point statistics from three different cosmological probes: cosmic shear, galaxy-galaxy lensing, and galaxy clustering, using data from the first year of DES observations. We have developed two independent modeling pipelines and describe the code validation process. We derive expressions for analytical real-space multi-probe covariances, and describe their validation with numerical simulations. We stress-test the inference pipelines in simulated likelihood analyses that vary 6-7 cosmology parameters plus 20 nuisance parameters and precisely resemble the analysis to be presented in the DES 3x2pt analysis paper, using a variety of simulated input data vectors with varying assumptions. We find that any disagreement between pipelines leads to changes in assigned likelihoodmore » $$\\Delta \\chi^2 \\le 0.045$$ with respect to the statistical error of the DES Y1 data vector. We also find that angular binning and survey mask do not impact our analytic covariance at a significant level. We determine lower bounds on scales used for analysis of galaxy clustering (8 Mpc$$~h^{-1}$$) and galaxy-galaxy lensing (12 Mpc$$~h^{-1}$$) such that the impact of modeling uncertainties in the non-linear regime is well below statistical errors, and show that our analysis choices are robust against a variety of systematics. These tests demonstrate that we have a robust analysis pipeline that yields unbiased cosmological parameter inferences for the flagship 3x2pt DES Y1 analysis. We emphasize that the level of independent code development and subsequent code comparison as demonstrated in this paper is necessary to produce credible constraints from increasingly complex multi-probe analyses of current data.« less

  17. SPECTROSCOPY OF LUMINOUS COMPACT BLUE GALAXIES IN DISTANT CLUSTERS. II. PHYSICAL PROPERTIES OF dE PROGENITOR CANDIDATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, S. M.; Wirth, Gregory D.; Bershady, M. A.

    2016-02-01

    Luminous Compact Blue Galaxies (LCBGs) are an extreme star-bursting population of galaxies that were far more common at earlier epochs than today. Based on spectroscopic and photometric measurements of LCBGs in massive (M > 10{sup 15} M{sub ⊙}), intermediate redshift (0.5 < z < 0.9) galaxy clusters, we present their rest-frame properties including star formation rate, dynamical mass, size, luminosity, and metallicity. The appearance of these small, compact galaxies in clusters at intermediate redshift helps explain the observed redshift evolution in the size–luminosity relationship among cluster galaxies. In addition, we find the rest-frame properties of LCBGs appearing in galaxy clusters are indistinguishable from field LCBGs atmore » the same redshift. Up to 35% of the LCBGs show significant discrepancies between optical and infrared indicators of star formation, suggesting that star formation occurs in obscured regions. Nonetheless, the star formation for LCBGs shows a decrease toward the center of the galaxy clusters. Based on their position and velocity, we estimate that up to 10% of cluster LCBGs are likely to merge with another cluster galaxy. Finally, the observed properties and distributions of the LCBGs in these clusters lead us to conclude that we are witnessing the quenching of the progenitors of dwarf elliptical galaxies that dominate the number density of present-epoch galaxy clusters.« less

  18. Progress and Challenges in SPH Simulations of Disk Galaxy Formation: The Combined Role of Resolution and the Star Formation Density Threshold

    NASA Astrophysics Data System (ADS)

    Mayer, L.

    2012-07-01

    We review progress in cosmological SPH simulations of disk galaxy formation. We discuss the role of numerical resolution and sub-grid recipes of star formation and feedback from supernovae, higlighting the important role of a high star formation density threshold comparable to that of star forming molecular gas phase. Two recent succesfull examples, in simulations of the formation of gas-rich bulgeless dwarf galaxies and in simulations of late-type spirals (the ERIS simulations), are presented and discussed. In the ERIS simulations, already in the progenitors at z = 3 the resolution is above the threshold indicated by previous idealized numerical experiments as necessary to minimize numerical angular momentum loss (Kaufmann et al. 2007). A high star formation density threshold maintains an inhomogeneous interstellar medium, where star formation is clustered, and thus the local effect of supernovae feedback is enhanced. As a result, outflows are naturally generated removing 2/3 of the baryons in galaxies with Vvir˜50 km/s and ˜ 30% of the baryons in galaxies with (Vvir ˜ 150 km/s). Low angular momentum baryons are preferentially removed since the strongest bursts of star formation occur predominantly near the center, especially after a merger event. This produces pure exponential disks or small bulges depending on galaxy mass, and, correspondingly, slowly rising or nearly flat rotation curves that match those of observed disk galaxies. In dwarfs the rapid mass removal by outflows generates a core-like distribution in the dark matter. Furthermore, contrary to the common picture, in the ERIS spiral galaxies a bar/pseudobulge forms rapidly, and not secularly, as a result of mergers and interactions at high-z.

  19. The HST/ACS Coma Cluster Survey. II. Data Description and Source Catalogs

    NASA Technical Reports Server (NTRS)

    Hammer, Derek; Kleijn, Gijs Verdoes; Hoyos, Carlos; Den Brok, Mark; Balcells, Marc; Ferguson, Henry C.; Goudfrooij, Paul; Carter, David; Guzman, Rafael; Peletier, Reynier F.; hide

    2010-01-01

    The Coma cluster, Abell 1656, was the target of a HST-ACS Treasury program designed for deep imaging in the F475W and F814W passbands. Although our survey was interrupted by the ACS instrument failure in early 2007, the partially-completed survey still covers approximately 50% of the core high density region in Coma. Observations were performed for twenty-five fields with a total coverage area of 274 aremin(sup 2), and extend over a wide range of cluster-centric radii (approximately 1.75 Mpe or 1 deg). The majority of the fields are located near the core region of Coma (19/25 pointings) with six additional fields in the south-west region of the cluster. In this paper we present SEXTRACTOR source catalogs generated from the processed images, including a detailed description of the methodology used for object detection and photometry, the subtraction of bright galaxies to measure faint underlying objects, and the use of simulations to assess the photometric accuracy and completeness of our catalogs. We also use simulations to perform aperture corrections for the SEXTRACTOR Kron magnitudes based only on the measured source flux and its half-light radius. We have performed photometry for 76,000 objects that consist of roughly equal numbers of extended galaxies and unresolved objects. Approximately two-thirds of all detections are brighter than F814W=26.5 mag (AB), which corresponds to the 10sigma, point-source detection limit. We estimate that Coma members are 5-10% of the source detections, including a large population of compact objects (primarily GCs, but also cEs and UCDs), and a wide variety of extended galaxies from cD galaxies to dwarf low surface brightness galaxies. The initial data release for the HST-ACS Coma Treasury program was made available to the public in August 2008. The images and catalogs described in this study relate to our second data release.

  20. The X-ray emitting gas in poor clusters with central dominant galaxies

    NASA Technical Reports Server (NTRS)

    Kriss, G. A.; Cioffi, D. F.; Canizares, C. R.

    1983-01-01

    The 12 clusters detected in the present study by the Einstein Observatory's X-ray imaging proportional counter show X-ray emission centered on the dominant galaxy in all cases. Comparison of the deduced distribution of binding mass with the light distribution of the central galaxies of four clusters indicates that the mass/luminosity ratio rises to over 200 solar masses/solar luminosity in the galaxy halos. These halos must therefore, like the clusters themselves, posses dark matter. The X-ray data clearly show that the dominant galaxies sit at the bottoms of the poor cluster gravitational potential wells, suggesting a similar origin for dominant galaxies in poor and rich clusters, perhaps through the merger and cannibalism of cluster galaxies. It is the luminosity of the distended cD envelope that reflects the relative wealth of the cluster environment.

  1. Measuring the scatter in the cluster optical richness-mass relation with machine learning

    NASA Astrophysics Data System (ADS)

    Boada, Steven Alvaro

    The distribution of massive clusters of galaxies depends strongly on the total cosmic mass density, the mass variance, and the dark energy equation of state. As such, measures of galaxy clusters can provide constraints on these parameters and even test models of gravity, but only if observations of clusters can lead to accurate estimates of their total masses. Here, we carry out a study to investigate the ability of a blind spectroscopic survey to recover accurate galaxy cluster masses through their line-of- sight velocity dispersions (LOSVD) using probability based and machine learning methods. We focus on the Hobby Eberly Telescope Dark Energy Experiment (HETDEX), which will employ new Visible Integral-Field Replicable Unit Spectrographs (VIRUS), over 420 degree2 on the sky with a 1/4.5 fill factor. VIRUS covers the blue/optical portion of the spectrum (3500 - 5500 A), allowing surveys to measure redshifts for a large sample of galaxies out to z < 0.5 based on their absorption or emission (e.g., [O II], Mg II, Ne V) features. We use a detailed mock galaxy catalog from a semi-analytic model to simulate surveys observed with VIRUS, including: (1) Survey, a blind, HETDEX-like survey with an incomplete but uniform spectroscopic selection function; and (2) Targeted, a survey which targets clusters directly, obtaining spectra of all galaxies in a VIRUS-sized field. For both surveys, we include realistic uncertainties from galaxy magnitude and line-flux limits. We benchmark both surveys against spectroscopic observations with perfect" knowledge of galaxy line-of-sight velocities. With Survey observations, we can recover cluster masses to ˜ 0.1 dex which can be further improved to < 0.1 dex with Targeted observations. This level of cluster mass recovery provides important measurements of the intrinsic scatter in the optical richness-cluster mass relation, and enables constraints on the key cosmological parameter, sigma 8, to < 20%. As a demonstration of the methods developed previously, we present a pilot survey with integral field spectroscopy of ten galaxy clusters optically selected from the Sloan Digital Sky Survey's DR8 at z = 0.2 - 0.3. Eight of the clusters are rich (lambda > 60) systems with total inferred masses (1.58 -17.37) x1014 M (M 200c), and two are poor (lambda < 15) systems with inferred total masses ˜ 0.5 x 1014 M? (M200c ). We use the Mitchell Spectrograph, (formerly the VIRUS-P spectrograph, a prototype of the HETDEX VIRUS instrument) located on the McDonald Observatory 2.7m telescope, to measure spectroscopic redshifts and line-of-sight velocities of the galaxies in and around each cluster, determine cluster membership and derive LOSVDs. We test both a LOSVD-cluster mass scaling relation and a machine learning based approach to infer total cluster mass. After comparing the cluster mass estimates to the literature, we use these independent cluster mass measurements to estimate the absolute cluster mass scale, and intrinsic scatter in the optical richness-mass relationship. We measure the intrinsic scatter in richness at fixed cluster mass to be sigmaM/lambda = 0.27 +/- 0.07 dex in excellent agreement with previous estimates of sigmaM/lambda ˜ 0.2 - 0.3 dex. We discuss the importance of the data used to train the machine learning methods and suggest various strategies to import the accuracy of the bias (offset) and scatter in the optical richness-cluster mass relation. This demonstrates the power of blind spectroscopic surveys such as HETDEX to provide robust cluster mass estimates which can aid in the determination of cosmological parameters and help to calibrate the observable-mass relation for future photometric large area-sky surveys.

  2. A Massive Cluster in its Youth: the Fundamental Plane, Kinematics, and Ages for Cluster Galaxies at z = 1.80 in JKCS 041

    NASA Astrophysics Data System (ADS)

    Prichard, Laura Jane; Davies, Roger L.; Beifiori, Alessandra; Chan, Jeffrey C. C.; Cappellari, Michele; Houghton, Ryan C. W.; Mendel, Trevor; Bender, Ralf; Galametz, Audrey; Saglia, Roberto P.; Smith, Russell; Stott, John P.; Wilman, David J.; Lewis, Ian J.; Sharples, Ray; Wegner, Michael

    2018-01-01

    Galaxy clusters are the largest gravitationally bound structures in the Universe, and we know that early type galaxies (ETGs) are more common towards their centers. Clusters of galaxies are increasingly rare at early times, but are essential for understanding the formation of these massive structures and how they alter the fate of their member galaxies. However, long integration times are required to constrain the stellar properties of these distant cluster ETGs. Now with the advent of the multiplexed near-infrared integral field instrument, the K-band Multi-Object Spectrograph (KMOS) on the Very Large Telescope, we can target the ETGs in these valuable high-redshift clusters more efficiently than ever. The KMOS guaranteed observing program, the KMOS Cluster Survey (KCS; P.I.s Bender & Davies), has enabled a study of cluster galaxies in overdensities spanning z=1-2 through absorption-line spectroscopy obtained from 20-hour integrations. We will present spectra for 16 galaxies in the furthest KCS overdensity, JKCS 041, an ETG-rich cluster at z=1.80. We measured seven velocity dispersions from the quiescent galaxy spectra, expanding the sample of like measurements in the literature at or above z=1.80 by more than 40%. Through the analysis of Hubble Space Telescope photometry and deep absorption-line spectroscopy, we were able to construct the highest redshift fundamental plane (FP) within a single system for galaxies in JKCS 041. From the redshift evolution of the FP zero-point, we derived a mean age of the galaxies in this cluster of 1.4 +/- 0.2 Gyrs. We determined relative velocities of the galaxies to study the three-dimensional structure of this overdensity. We noticed from the dynamics of JKCS 041 that a group of galaxies was infalling towards the cluster center. When measuring FP ages for the infalling group, we found these galaxies had significantly younger mean ages (0.3 +/- 0.2 Gyrs) than the other galaxies in the cluster (2.0 +0.3/-0.1 Gyrs). Based on the galaxy dynamics, cluster morphology, and galaxy stellar age results, we concluded that JKCS 041 is in formation and consists of two merging groups of galaxies. This could link galaxy ages to large-scale structure for the first time at this redshift.

  3. SPT-GMOS: A GEMINI/GMOS-SOUTH SPECTROSCOPIC SURVEY OF GALAXY CLUSTERS IN THE SPT-SZ SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayliss, M. B.; Ruel, J.; Stubbs, C. W.

    We present the results of SPT-GMOS, a spectroscopic survey with the Gemini Multi-Object Spectrograph (GMOS) on Gemini South. The targets of SPT-GMOS are galaxy clusters identified in the SPT-SZ survey, a millimeter-wave survey of 2500 deg{sup 2} of the southern sky using the South Pole Telescope (SPT). Multi-object spectroscopic observations of 62 SPT-selected galaxy clusters were performed between 2011 January and 2015 December, yielding spectra with radial velocity measurements for 2595 sources. We identify 2243 of these sources as galaxies, and 352 as stars. Of the galaxies, we identify 1579 as members of SPT-SZ galaxy clusters. The primary goal ofmore » these observations was to obtain spectra of cluster member galaxies to estimate cluster redshifts and velocity dispersions. We describe the full spectroscopic data set and resulting data products, including galaxy redshifts, cluster redshifts, and velocity dispersions, and measurements of several well-known spectral indices for each galaxy: the equivalent width, W , of [O ii] λλ 3727, 3729 and H- δ , and the 4000 Å break strength, D4000. We use the spectral indices to classify galaxies by spectral type (i.e., passive, post-starburst, star-forming), and we match the spectra against photometric catalogs to characterize spectroscopically observed cluster members as a function of brightness (relative to m {sup ⋆}). Finally, we report several new measurements of redshifts for ten bright, strongly lensed background galaxies in the cores of eight galaxy clusters. Combining the SPT-GMOS data set with previous spectroscopic follow-up of SPT-SZ galaxy clusters results in spectroscopic measurements for >100 clusters, or ∼20% of the full SPT-SZ sample.« less

  4. SPT-GMOS: A Gemini/GMOS-South Spectroscopic survey of galaxy clusters in the SPT-SZ survey

    DOE PAGES

    Bayliss, M. B.; Ruel, J.; Stubbs, C. W.; ...

    2016-11-01

    Here, we present the results of SPT-GMOS, a spectroscopic survey with the Gemini Multi-Object Spectrograph (GMOS) on Gemini South. The targets of SPT-GMOS are galaxy clusters identified in the SPT-SZ survey, a millimeter-wave survey of 2500 deg 2 of the southern sky using the South Pole Telescope (SPT). Multi-object spectroscopic observations of 62 SPT-selected galaxy clusters were performed between 2011 January and 2015 December, yielding spectra with radial velocity measurements for 2595 sources. We identify 2243 of these sources as galaxies, and 352 as stars. Of the galaxies, we identify 1579 as members of SPT-SZ galaxy clusters. The primary goalmore » of these observations was to obtain spectra of cluster member galaxies to estimate cluster redshifts and velocity dispersions. We describe the full spectroscopic data set and resulting data products, including galaxy redshifts, cluster redshifts, and velocity dispersions, and measurements of several well-known spectral indices for each galaxy: the equivalent width, W, of [O II] λλ3727, 3729 and H-δ, and the 4000 Å break strength, D4000. We use the spectral indices to classify galaxies by spectral type (i.e., passive, post-starburst, star-forming), and we match the spectra against photometric catalogs to characterize spectroscopically observed cluster members as a function of brightness (relative to m*). Lastly, we report several new measurements of redshifts for ten bright, strongly lensed background galaxies in the cores of eight galaxy clusters. Combining the SPT-GMOS data set with previous spectroscopic follow-up of SPT-SZ galaxy clusters results in spectroscopic measurements for >100 clusters, or ~20% of the full SPT-SZ sample.« less

  5. SPT-GMOS: A Gemini/GMOS-South Spectroscopic survey of galaxy clusters in the SPT-SZ survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayliss, M. B.; Ruel, J.; Stubbs, C. W.

    Here, we present the results of SPT-GMOS, a spectroscopic survey with the Gemini Multi-Object Spectrograph (GMOS) on Gemini South. The targets of SPT-GMOS are galaxy clusters identified in the SPT-SZ survey, a millimeter-wave survey of 2500 deg 2 of the southern sky using the South Pole Telescope (SPT). Multi-object spectroscopic observations of 62 SPT-selected galaxy clusters were performed between 2011 January and 2015 December, yielding spectra with radial velocity measurements for 2595 sources. We identify 2243 of these sources as galaxies, and 352 as stars. Of the galaxies, we identify 1579 as members of SPT-SZ galaxy clusters. The primary goalmore » of these observations was to obtain spectra of cluster member galaxies to estimate cluster redshifts and velocity dispersions. We describe the full spectroscopic data set and resulting data products, including galaxy redshifts, cluster redshifts, and velocity dispersions, and measurements of several well-known spectral indices for each galaxy: the equivalent width, W, of [O II] λλ3727, 3729 and H-δ, and the 4000 Å break strength, D4000. We use the spectral indices to classify galaxies by spectral type (i.e., passive, post-starburst, star-forming), and we match the spectra against photometric catalogs to characterize spectroscopically observed cluster members as a function of brightness (relative to m*). Lastly, we report several new measurements of redshifts for ten bright, strongly lensed background galaxies in the cores of eight galaxy clusters. Combining the SPT-GMOS data set with previous spectroscopic follow-up of SPT-SZ galaxy clusters results in spectroscopic measurements for >100 clusters, or ~20% of the full SPT-SZ sample.« less

  6. SPT-GMOS: A Gemini/GMOS-South Spectroscopic Survey of Galaxy Clusters in the SPT-SZ Survey

    NASA Astrophysics Data System (ADS)

    Bayliss, M. B.; Ruel, J.; Stubbs, C. W.; Allen, S. W.; Applegate, D. E.; Ashby, M. L. N.; Bautz, M.; Benson, B. A.; Bleem, L. E.; Bocquet, S.; Brodwin, M.; Capasso, R.; Carlstrom, J. E.; Chang, C. L.; Chiu, I.; Cho, H.-M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; de Haan, T.; Desai, S.; Dietrich, J. P.; Dobbs, M. A.; Doucouliagos, A. N.; Foley, R. J.; Forman, W. R.; Garmire, G. P.; George, E. M.; Gladders, M. D.; Gonzalez, A. H.; Gupta, N.; Halverson, N. W.; Hlavacek-Larrondo, J.; Hoekstra, H.; Holder, G. P.; Holzapfel, W. L.; Hou, Z.; Hrubes, J. D.; Huang, N.; Jones, C.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; von der Linden, A.; Luong-Van, D.; Mantz, A.; Marrone, D. P.; McDonald, M.; McMahon, J. J.; Meyer, S. S.; Mocanu, L. M.; Mohr, J. J.; Murray, S. S.; Padin, S.; Pryke, C.; Rapetti, D.; Reichardt, C. L.; Rest, A.; Ruhl, J. E.; Saliwanchik, B. R.; Saro, A.; Sayre, J. T.; Schaffer, K. K.; Schrabback, T.; Shirokoff, E.; Song, J.; Spieler, H. G.; Stalder, B.; Stanford, S. A.; Staniszewski, Z.; Stark, A. A.; Story, K. T.; Vanderlinde, K.; Vieira, J. D.; Vikhlinin, A.; Williamson, R.; Zenteno, A.

    2016-11-01

    We present the results of SPT-GMOS, a spectroscopic survey with the Gemini Multi-Object Spectrograph (GMOS) on Gemini South. The targets of SPT-GMOS are galaxy clusters identified in the SPT-SZ survey, a millimeter-wave survey of 2500 deg2 of the southern sky using the South Pole Telescope (SPT). Multi-object spectroscopic observations of 62 SPT-selected galaxy clusters were performed between 2011 January and 2015 December, yielding spectra with radial velocity measurements for 2595 sources. We identify 2243 of these sources as galaxies, and 352 as stars. Of the galaxies, we identify 1579 as members of SPT-SZ galaxy clusters. The primary goal of these observations was to obtain spectra of cluster member galaxies to estimate cluster redshifts and velocity dispersions. We describe the full spectroscopic data set and resulting data products, including galaxy redshifts, cluster redshifts, and velocity dispersions, and measurements of several well-known spectral indices for each galaxy: the equivalent width, W, of [O II] λλ3727, 3729 and H-δ, and the 4000 Å break strength, D4000. We use the spectral indices to classify galaxies by spectral type (i.e., passive, post-starburst, star-forming), and we match the spectra against photometric catalogs to characterize spectroscopically observed cluster members as a function of brightness (relative to m⋆). Finally, we report several new measurements of redshifts for ten bright, strongly lensed background galaxies in the cores of eight galaxy clusters. Combining the SPT-GMOS data set with previous spectroscopic follow-up of SPT-SZ galaxy clusters results in spectroscopic measurements for >100 clusters, or ∼20% of the full SPT-SZ sample.

  7. Morphological estimators on Sunyaev-Zel'dovich maps of MUSIC clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Cialone, Giammarco; De Petris, Marco; Sembolini, Federico; Yepes, Gustavo; Baldi, Anna Silvia; Rasia, Elena

    2018-06-01

    The determination of the morphology of galaxy clusters has important repercussions for cosmological and astrophysical studies of them. In this paper, we address the morphological characterization of synthetic maps of the Sunyaev-Zel'dovich (SZ) effect for a sample of 258 massive clusters (Mvir > 5 × 1014 h-1 M⊙ at z = 0), extracted from the MUSIC hydrodynamical simulations. Specifically, we use five known morphological parameters (which are already used in X-ray) and two newly introduced ones, and we combine them in a single parameter. We analyse two sets of simulations obtained with different prescriptions of the gas physics (non-radiative and with cooling, star formation and stellar feedback) at four red shifts between 0.43 and 0.82. For each parameter, we test its stability and efficiency in discriminating the true cluster dynamical state, measured by theoretical indicators. The combined parameter is more efficient at discriminating between relaxed and disturbed clusters. This parameter had a mild correlation with the hydrostatic mass (˜0.3) and a strong correlation (˜0.8) with the offset between the SZ centroid and the cluster centre of mass. The latter quantity is, thus, the most accessible and efficient indicator of the dynamical state for SZ studies.

  8. Dark Matter Mystery Deepens in Cosmic "Train Wreck"

    NASA Astrophysics Data System (ADS)

    2007-08-01

    Astronomers have discovered a chaotic scene unlike any witnessed before in a cosmic "train wreck" between giant galaxy clusters. NASA's Chandra X-ray Observatory and optical telescopes revealed a dark matter core that was mostly devoid of galaxies, which may pose problems for current theories of dark matter behavior. "These results challenge our understanding of the way clusters merge," said Dr. Andisheh Mahdavi of the University of Victoria, British Columbia. "Or, they possibly make us even reexamine the nature of dark matter itself." There are three main components to galaxy clusters: individual galaxies composed of billions of stars, hot gas in between the galaxies, and dark matter, a mysterious substance that dominates the cluster mass and can be detected only through its gravitational effects. Illustration of Abell 520 System Illustration of Abell 520 System Optical telescopes can observe the starlight from the individual galaxies, and can infer the location of dark matter by its subtle light-bending effects on distant galaxies. X-ray telescopes like Chandra detect the multimillion-degree gas. A popular theory of dark matter predicts that dark matter and galaxies should stay together, even during a violent collision, as observed in the case of the so-called Bullet Cluster. However, when the Chandra data of the galaxy cluster system known as Abell 520 was mapped along with the optical data from the Canada-France-Hawaii Telescope and Subaru Telescope atop Mauna Kea, HI, a puzzling picture emerged. A dark matter core was found, which also contained hot gas but no bright galaxies. "It blew us away that it looks like the galaxies are removed from the densest core of dark matter," said Dr. Hendrik Hoekstra, also of University of Victoria. "This would be the first time we've seen such a thing and could be a huge test of our knowledge of how dark matter behaves." Animation of Galaxy Cluster Animation of Galaxy Cluster In addition to the dark matter core, a corresponding "light region" containing a group of galaxies with little or no dark matter was also detected. The dark matter appears to have separated from the galaxies. "The observation of this group of galaxies that is almost devoid of dark matter flies in the face of our current understanding of the cosmos," said Dr. Arif Babul, University of Victoria. "Our standard model is that a bound group of galaxies like this should have a lot of dark matter. What does it mean that this one doesn't?" In the Bullet Cluster, known as 1E 0657-56, the hot gas is slowed down during the collision but the galaxies and dark matter appear to continue on unimpeded. In Abell 520, it appears that the galaxies were unimpeded by the collision, as expected, while a significant amount of dark matter has remained in the middle of the cluster along with the hot gas. Mahdavi and his colleagues have two possible explanations for their findings, both of which are uncomfortable for prevailing theories. The first option is that the galaxies were separated from the dark matter through a complex set of gravitational "slingshots." This explanation is problematic because computer simulations have not been able to produce slingshots that are nearly powerful enough to cause such a separation. The second option is that dark matter is affected not only by gravity, but also by an as-yet-unknown interaction between dark matter particles. This exciting alternative would require new physics and could be difficult to reconcile with observations of other galaxies and galaxy clusters, such as the aforementioned Bullet Cluster. In order to confirm and fully untangle the evidence for the Abell 520 dark matter core, the researchers have secured time for new data from Chandra plus the Hubble Space Telescope. With the additional observations, the team hopes to resolve the mystery surrounding this system. These results are scheduled to appear in the October 20th issue of The Astrophysical Journal. Other members of the research team included David Balam (University of Victoria) and Peter Capak (California Institute of Technology). NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. CFHT is a joint facility of National Research Council of Canada, Centre National de la Recherche Scientifique of France, and University of Hawaii.

  9. Probing the galaxy-halo connection in UltraVISTA to z ˜ 2

    NASA Astrophysics Data System (ADS)

    McCracken, H. J.; Wolk, M.; Colombi, S.; Kilbinger, M.; Ilbert, O.; Peirani, S.; Coupon, J.; Dunlop, J.; Milvang-Jensen, B.; Caputi, K.; Aussel, H.; Béthermin, M.; Le Fèvre, O.

    2015-05-01

    We use percent-level precision photometric redshifts in the UltraVISTA-DR1 near-infrared survey to investigate the changing relationship between galaxy stellar mass and the dark matter haloes hosting them to z ˜ 2. We achieve this by measuring the clustering properties and abundances of a series of volume-limited galaxy samples selected by stellar mass and star formation activity. We interpret these results in the framework of a phenomenological halo model and numerical simulations. Our measurements span a uniquely large range in stellar mass and redshift and reach below the characteristic stellar mass to z ˜ 2. Our results are: (1) at fixed redshift and scale, clustering amplitude depends monotonically on sample stellar mass threshold; (2) at fixed angular scale, the projected clustering amplitude decreases with redshift but the comoving correlation length remains constant; (3) characteristic halo masses and galaxy bias increase with increasing median stellar mass of the sample; (4) the slope of these relationships is modified in lower mass haloes; (5) concerning the passive galaxy population, characteristic halo masses are consistent with a simply less-abundant version of the full galaxy sample, but at lower redshifts the fraction of satellite galaxies in the passive population is very different from the full galaxy sample; (6) finally, we find that the ratio between the characteristic halo mass and median stellar mass at each redshift bin reaches a peak at log (Mh/M⊙) ˜ 12.2 and the position of this peak remains constant out to z ˜ 2. The behaviour of the full and passively evolving galaxy samples can be understood qualitatively by considering the slow evolution of the characteristic stellar mass in the redshift range probed by our survey.

  10. Simulations of cm-wavelength Sunyaev-Zel'dovich galaxy cluster and point source blind sky surveys and predictions for the RT32/OCRA-f and the Hevelius 100-m radio telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lew, Bartosz; Kus, Andrzej; Birkinshaw, Mark

    We investigate the effectiveness of blind surveys for radio sources and galaxy cluster thermal Sunyaev-Zel'dovich effects (TSZEs) using the four-pair, beam-switched OCRA-f radiometer on the 32-m radio telescope in Poland. The predictions are based on mock maps that include the cosmic microwave background, TSZEs from hydrodynamical simulations of large scale structure formation, and unresolved radio sources. We validate the mock maps against observational data, and examine the limitations imposed by simplified physics. We estimate the effects of source clustering towards galaxy clusters from NVSS source counts around Planck-selected cluster candidates, and include appropriate correlations in our mock maps. The studymore » allows us to quantify the effects of halo line-of-sight alignments, source confusion, and telescope angular resolution on the detections of TSZEs. We perform a similar analysis for the planned 100-m Hevelius radio telescope (RTH) equipped with a 49-beam radio camera and operating at frequencies up to 22 GHz.We find that RT32/OCRA-f will be suitable for small-field blind radio source surveys, and will detect 33{sup +17}{sub −11} new radio sources brighter than 0.87 mJy at 30 GHz in a 1 deg{sup 2} field at > 5σ CL during a one-year, non-continuous, observing campaign, taking account of Polish weather conditions. It is unlikely that any galaxy cluster will be detected at 3σ CL in such a survey. A 60-deg{sup 2} survey, with field coverage of 2{sup 2} beams per pixel, at 15 GHz with the RTH, would find <1.5 galaxy clusters per year brighter than 60 μJy (at 3σ CL), and would detect about 3.4 × 10{sup 4} point sources brighter than 1 mJy at 5σ CL, with confusion causing flux density errors ∼< 2% (20%) in 68% (95%) of the detected sources.A primary goal of the planned RTH will be a wide-area (π sr) radio source survey at 15 GHz. This survey will detect nearly 3 × 10{sup 5} radio sources at 5σ CL down to 1.3 mJy, and tens of galaxy clusters, in one year of operation with typical weather conditions. Confusion will affect the measured flux densities by ∼< 1.5% (16%) for 68% (95%) of the point sources. We also gauge the impact of the RTH by investigating its performance if equipped with the existing RT32 receivers, and the performance of the RT32 equipped with the RTH radio camera.« less

  11. SANTA BARBARA CLUSTER COMPARISON TEST WITH DISPH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saitoh, Takayuki R.; Makino, Junichiro, E-mail: saitoh@elsi.jp

    2016-06-01

    The Santa Barbara cluster comparison project revealed that there is a systematic difference between entropy profiles of clusters of galaxies obtained by Eulerian mesh and Lagrangian smoothed particle hydrodynamics (SPH) codes: mesh codes gave a core with a constant entropy, whereas SPH codes did not. One possible reason for this difference is that mesh codes are not Galilean invariant. Another possible reason is the problem of the SPH method, which might give too much “protection” to cold clumps because of the unphysical surface tension induced at contact discontinuities. In this paper, we apply the density-independent formulation of SPH (DISPH), whichmore » can handle contact discontinuities accurately, to simulations of a cluster of galaxies and compare the results with those with the standard SPH. We obtained the entropy core when we adopt DISPH. The size of the core is, however, significantly smaller than those obtained with mesh simulations and is comparable to those obtained with quasi-Lagrangian schemes such as “moving mesh” and “mesh free” schemes. We conclude that both the standard SPH without artificial conductivity and Eulerian mesh codes have serious problems even with such an idealized simulation, while DISPH, SPH with artificial conductivity, and quasi-Lagrangian schemes have sufficient capability to deal with it.« less

  12. The Atacama Cosmology Telescope: Detection or Sunyaev-Zel'Dovich Decrement in Groups and Clusters Associated with Luminous Red Galaxies

    NASA Technical Reports Server (NTRS)

    Hand, Nick; Appel, John William; Battaglia, Nick; Bond, J. Richard; Das, Sudeep; Devlin, Mark J.; Dunkley, Joanna; Dunner, Rolando; Essinger-Hileman, Thomas; Fowler, Joseph W.; hide

    2010-01-01

    We present a detection of the Sunyaev-Zel'dovich (SZ) decrement associated with the Luminous Red Galaxy (LRG) sample of the Sloan Digital Sky Survey. The SZ data come from 148 GHz maps of the equatorial region made by the Atacama Cosmology Telescope (ACT). The LRG sample is divided by luminosity into four bins, and estimates for the central Sunyaev-Zel'dovich temperature decrement are calculated through a stacking process. We detect and account for a bias of the SZ signal due to weak radio sources. We use numerical simulations to relate the observed decrement to Y(sub 200) and clustering properties to relate the galaxy luminosity bins to mass. We also use a relation between BCG luminosity and cluster mass based on stacked gravitational lensing measurements to estimate the characteristic halo masses. The masses are found to be in the range approx.10(exp 13) - 10(exp 14)/h Stellar Mass, a lower range than has been previously probed.

  13. Detection of CO emission in Hydra 1 cluster galaxies

    NASA Technical Reports Server (NTRS)

    Huchtmeier, W. K.

    1990-01-01

    A survey of bright Hydra cluster spiral galaxies for the CO(1-0) transition at 115 GHz was performed with the 15m Swedish-ESO submillimeter telescope (SEST). Five out of 15 galaxies observed have been detected in the CO(1-0) line. The largest spiral galaxy in the cluster, NGC 3312, got more CO than any spiral of the Virgo cluster. This Sa-type galaxy is optically largely distorted and disrupted on one side. It is a good candidate for ram pressure stripping while passing through the cluster's central region. A comparison with global CO properties of Virgo cluster spirals shows a relatively good agreement with the detected Hydra cluster galaxies.

  14. The evolution of the metallicity gradient and the star formation efficiency in disc galaxies

    NASA Astrophysics Data System (ADS)

    Sillero, Emanuel; Tissera, Patricia B.; Lambas, Diego G.; Michel-Dansac, Leo

    2017-12-01

    We study the oxygen abundance profiles of the gas-phase components in hydrodynamical simulations of pre-prepared disc galaxies including major mergers, close encounters and isolated configurations. We analyse the evolution of the slope of oxygen abundance profiles and the specific star formation rate (sSFR) along their evolution. We find that galaxy-galaxy interactions could generate either positive or negative gas-phase oxygen profiles, depending on the state of evolution. Along the interaction, galaxies are found to have metallicity gradients and sSFR consistent with observations, on average. Strong gas inflows produced during galaxy-galaxy interactions or as a result of strong local instabilities in gas-rich discs are able to produce both a quick dilution of the central gas-phase metallicity and a sudden increase of the sSFR. Our simulations show that, during these events, a correlation between the metallicity gradients and the sSFR can be set up if strong gas inflows are triggered in the central regions in short time-scales. Simulated galaxies without experiencing strong disturbances evolve smoothly without modifying the metallicity gradients. Gas-rich systems show large dispersion along the correlation. The dispersion in the observed relation could be interpreted as produced by the combination of galaxies with different gas-richness and/or experiencing different types of interactions. Hence, our findings suggest that the observed relation might be the smoking gun of galaxies forming in a hierarchical clustering scenario.

  15. Full-sky Gravitational Lensing Simulation for Large-area Galaxy Surveys and Cosmic Microwave Background Experiments

    NASA Astrophysics Data System (ADS)

    Takahashi, Ryuichi; Hamana, Takashi; Shirasaki, Masato; Namikawa, Toshiya; Nishimichi, Takahiro; Osato, Ken; Shiroyama, Kosei

    2017-11-01

    We present 108 full-sky gravitational lensing simulation data sets generated by performing multiple-lens plane ray-tracing through high-resolution cosmological N-body simulations. The data sets include full-sky convergence and shear maps from redshifts z = 0.05 to 5.3 at intervals of 150 {h}-1{Mpc} comoving radial distance (corresponding to a redshift interval of {{Δ }}z≃ 0.05 at the nearby universe), enabling the construction of a mock shear catalog for an arbitrary source distribution up to z = 5.3. The dark matter halos are identified from the same N-body simulations with enough mass resolution to resolve the host halos of the Sloan Digital Sky Survey (SDSS) CMASS and luminous red galaxies (LRGs). Angular positions and redshifts of the halos are provided by a ray-tracing calculation, enabling the creation of a mock halo catalog to be used for galaxy-galaxy and cluster-galaxy lensing. The simulation also yields maps of gravitational lensing deflections for a source redshift at the last scattering surface, and we provide 108 realizations of lensed cosmic microwave background (CMB) maps in which the post-Born corrections caused by multiple light scattering are included. We present basic statistics of the simulation data, including the angular power spectra of cosmic shear, CMB temperature and polarization anisotropies, galaxy-galaxy lensing signals for halos, and their covariances. The angular power spectra of the cosmic shear and CMB anisotropies agree with theoretical predictions within 5% up to {\\ell }=3000 (or at an angular scale θ > 0.5 arcmin). The simulation data sets are generated primarily for the ongoing Subaru Hyper Suprime-Cam survey, but are freely available for download at http://cosmo.phys.hirosaki-u.ac.jp/takahasi/allsky_raytracing/.

  16. From Cosmic Dusk till Dawn with RELICS

    NASA Astrophysics Data System (ADS)

    Bradac, Marusa

    When did galaxies start forming stars? What is the role of distant galaxies in galaxy formation models and the epoch of reionization? What are the conditions in typical lowmass, star-forming galaxies at z 4? Why is galaxy evolution dependent on environment? Recent observations indicate several critical puzzles in studies that address these questions. Chief among these, galaxies might have started forming stars earlier than previously thought (<400Myr after the Big Bang) and their star formation history differs from what is predicted from simulations. Furthermore, the details of the mechanisms that regulate star formation and morphological transformation in dense environments are still unknown. To solve these puzzles of galaxy evolution, we will use 41 galaxy clusters from the RELICS program (Reionization Lensing Cluster Survey) that are among the most powerful cosmic telescopes. Their magnification will allow us to study stellar properties of a large number of galaxies all the way to the reionization era. Accurate knowledge of stellar masses, ages, and star formation rates (SFRs) requires measuring both rest-frame UV and optical light, which only Spitzer can probe at z>0.5-11 for a sufficiently large sample of typical galaxies. This program will combine Spitzer imaging from two large programs, Director Discretionary Time (DDT) and the SRELICS program led by the PI.The main challenge in a study such as this is the capability to perform reliable photometry in crowded fields. Our team recently helped develop TPHOT, which is a much improved and much faster version of previously available codes. TPHOT is specifically designed to extract fluxes in crowded fields with very different PSFs. We will combine Spitzer photometry with ground based imaging and spectroscopy to obtain robust measurements of galaxy star formation rates, stellar masses, and stellar ages. This program will be a crucial legacy complement to previous Spitzer/IRAC deep blank field surveys and cluster studies, and will open up new parameter space by probing intrinsically fainter objects than most current surveys with a significantly improved sample variance over deep field surveys. It will allow us to study the properties (e.g. SFRs and stellar masses) of a large number of galaxies (200 at z=6-10), thus meeting our goal of reconstructing the cosmic SFR density with sufficient precision to better understand the role of galaxies in the reionization process. We will measure the presence (or absence) of established stellar populations with Spitzer for the largest sample to date. Furthermore this proposal will allow us to study the SFRs of the intrinsically faint (and magnified) intermediate redshift (z 4) galaxies, as well as the stellar mass function of z=0.3-0.7 galaxy members of our cluster sample, thereby expanding our understanding of star formation from reionization to the epoch of galaxy formation and dense environments. Many of the science goals of this proposal are main science drivers for JWST. Due to magnification our effective depth and resolution match those of the JWST blank fields and affords us a sneak preview of JWST sources with Spitzer now. This program will thus provide a valuable test-bed for simulations, observation planning and source selection just in time for JWST Cycle 1.

  17. Galaxy properties in clusters. II. Backsplash galaxies

    NASA Astrophysics Data System (ADS)

    Muriel, H.; Coenda, V.

    2014-04-01

    Aims: We explore the properties of galaxies on the outskirts of clusters and their dependence on recent dynamical history in order to understand the real impact that the cluster core has on the evolution of galaxies. Methods: We analyse the properties of more than 1000 galaxies brighter than M0.1r = - 19.6 on the outskirts of 90 clusters (1 < r/rvir < 2) in the redshift range 0.05 < z < 0.10. Using the line of sight velocity of galaxies relative to the cluster's mean, we selected low and high velocity subsamples. Theoretical predictions indicate that a significant fraction of the first subsample should be backsplash galaxies, that is, objects that have already orbited near the cluster centre. A significant proportion of the sample of high relative velocity (HV) galaxies seems to be composed of infalling objects. Results: Our results suggest that, at fixed stellar mass, late-type galaxies in the low-velocity (LV) sample are systematically older, redder, and have formed fewer stars during the last 3 Gyrs than galaxies in the HV sample. This result is consistent with models that assume that the central regions of clusters are effective in quenching the star formation by means of processes such as ram pressure stripping or strangulation. At fixed stellar mass, LV galaxies show some evidence of having higher surface brightness and smaller size than HV galaxies. These results are consistent with the scenario where galaxies that have orbited the central regions of clusters are more likely to suffer tidal effects, producing loss of mass as well as a re-distribution of matter towards more compact configurations. Finally, we found a higher fraction of ET galaxies in the LV sample, supporting the idea that the central region of clusters of galaxies may contribute to the transformation of morphological types towards earlier types.

  18. A comprehensive study of large-scale structures in the GOODS-SOUTH field up to z ˜ 2.5

    NASA Astrophysics Data System (ADS)

    Salimbeni, S.; Castellano, M.; Pentericci, L.; Trevese, D.; Fiore, F.; Grazian, A.; Fontana, A.; Giallongo, E.; Boutsia, K.; Cristiani, S.; de Santis, C.; Gallozzi, S.; Menci, N.; Nonino, M.; Paris, D.; Santini, P.; Vanzella, E.

    2009-07-01

    Aims: The aim of the present paper is to identify and study the properties and galactic content of groups and clusters in the GOODS-South field up to z˜ 2.5, and to analyse the physical properties of galaxies as a continuous function of environmental density up to high redshift. Methods: We used the deep (z850˜ 26), multi-wavelength GOODS-MUSIC catalogue, which has a 15% of spectroscopic redshifts and accurate photometric redshifts for the remaining fraction. On these data, we applied a (2+1)D algorithm, previously developed by our group, that provides an adaptive estimate of the 3D density field. We supported our analysis with simulations to evaluate the purity and the completeness of the cluster catalogue produced by our algorithm. Results: We find several high-density peaks embedded in larger structures in the redshift range 0.4-2.5. From the analysis of their physical properties (mass profile, M200, σ_v, L_X, U-B vs. B diagram), we find that most of them are groups of galaxies, while two are poor clusters with masses a few times 1014~M_⊙. For these two clusters we find from the Chandra 2Ms data an X-ray emission significantly lower than expected from their optical properties, suggesting that the two clusters are either not virialised or are gas poor. We find that the slope of the colour magnitude relation, for these groups and clusters, is constant at least up to z ˜ 1. We also analyse the dependence on environment of galaxy colours, luminosities, stellar masses, ages, and star formations. We find that galaxies in high-density regions are, on average, more luminous and massive than field galaxies up to z ˜ 2. The fraction of red galaxies increases with luminosity and with density up to z˜ 1.2. At higher z this dependence on density disappears. The variation of galaxy properties as a function of redshift and density suggests that a significant change occurs at z ˜ 1.5-2.

  19. The magnetic universe through vector potential SPMHD simulations

    NASA Astrophysics Data System (ADS)

    Stasyszyn, F. A.

    2017-10-01

    The use of Smoothed Particle Magneto Hydrodynamics (SPMHD) is getting nowadays more and more common in Astrophysics. From galaxy clusters to neutron starts, there are multiple applications already existing in the literature. I will review some of the common methods used and highlight the successful approach of using vector potentials to describe the evolution of the magnetic fields. The latter have some interesting advantages, and their results challenge previous findings, being the magnetic divergence problem naturally vanished. We select a few examples to discuss some areas of interest. First, we show some Galaxy Clusters from the MUSIC project. These cosmological simulations are done with the usual sub-grid recipes, as radiative cooling and star formation, being the first ones obtained with an SPH code in a self consistent way. This demonstrates the robustness of the new method in a variety of astrophysical scenarios.

  20. THE XMM CLUSTER SURVEY: THE STELLAR MASS ASSEMBLY OF FOSSIL GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, Craig D.; Miller, Christopher J.; Richards, Joseph W.

    This paper presents both the result of a search for fossil systems (FSs) within the XMM Cluster Survey and the Sloan Digital Sky Survey and the results of a study of the stellar mass assembly and stellar populations of their fossil galaxies. In total, 17 groups and clusters are identified at z < 0.25 with large magnitude gaps between the first and fourth brightest galaxies. All the information necessary to classify these systems as fossils is provided. For both groups and clusters, the total and fractional luminosity of the brightest galaxy is positively correlated with the magnitude gap. The brightestmore » galaxies in FSs (called fossil galaxies) have stellar populations and star formation histories which are similar to normal brightest cluster galaxies (BCGs). However, at fixed group/cluster mass, the stellar masses of the fossil galaxies are larger compared to normal BCGs, a fact that holds true over a wide range of group/cluster masses. Moreover, the fossil galaxies are found to contain a significant fraction of the total optical luminosity of the group/cluster within 0.5 R{sub 200}, as much as 85%, compared to the non-fossils, which can have as little as 10%. Our results suggest that FSs formed early and in the highest density regions of the universe and that fossil galaxies represent the end products of galaxy mergers in groups and clusters.« less

  1. The MassiveBlack-II simulation: The evolution of haloes and galaxies to z ~ 0

    DOE PAGES

    Khandai, Nishikanta; Di Matteo, Tiziana; Croft, Rupert; ...

    2015-04-24

    We investigate the properties and clustering of halos, galaxies and blackholes to z = 0 in the high resolution hydrodynamical simulation MassiveBlack-II (MBII). MBII evolves a ΛCDM cosmology in a cubical comoving volume V box = (100Mpc/h)³. It is the highest resolution simulation of this size which includes a self-consistent model for star formation, black hole accretion and associated feedback. We provide a simulation browser web application which enables interactive search and tagging of the halos, subhalos and their properties and publicly release our galaxy catalogs to the scientific community. Our analysis of the halo mass function in MBII revealsmore » that baryons have strong effects with changes in the halo abundance of 20–35% below the knee of the mass function (M halo 10 13.2 M ⊙ h at z = 0) when compared to dark-matter-only simulations. We provide a fitting function for the halo MF out to redshift z = 11 and discuss its limitations.« less

  2. Rotation curves of spiral galaxies in clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitmore, B.C.

    1990-06-01

    Recent observations of rotation curves of spiral galaxies in clusters made by Rubin et al. (1988), Whitmore et al. (1988) and Forbes and Whitmore (1988) are analyzed. It is found that spiral galaxies in the inner region of clusters appear to have falling rotation curves and M/L gradients which are flatter than for galaxies in the outer regions of clusters. Problems encountered in attempts to construct mass models for cluster galaxies are briefly discussed. 18 refs.

  3. A History of H I Stripping in Virgo: A Phase-space View of VIVA Galaxies

    NASA Astrophysics Data System (ADS)

    Yoon, Hyein; Chung, Aeree; Smith, Rory; Jaffé, Yara L.

    2017-04-01

    We investigate the orbital histories of Virgo galaxies at various stages of H I gas stripping. In particular, we compare the location of galaxies with different H I morphology in phase space. This method is a great tool for tracing the gas stripping histories of galaxies as they fall into the cluster. Most galaxies at the early stage of H I stripping are found in the first infall region of Virgo, while galaxies undergoing active H I stripping mostly appear to be falling in or moving out near the cluster core for the first time. Galaxies with severely stripped, yet symmetric, H I disks are found in one of two locations. Some are deep inside the cluster, but others are found in the cluster outskirts with low orbital velocities. We suggest that the latter group of galaxies belong to a “backsplash” population. These present the clearest candidates for backsplashed galaxies observationally identified to date. We further investigate the distribution of a large sample of H I-detected galaxies toward Virgo in phase space, confirming that most galaxies are stripped of their gas as they settle into the gravitational potential of the cluster. In addition, we discuss the impact of tidal interactions between galaxies and group preprocessing on the H I properties of the cluster galaxies, and link the associated star formation evolution to the stripping sequence of cluster galaxies.

  4. Nature of multiple-nucleus cluster galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merritt, D.

    1984-05-01

    In models for the evolution of galaxy clusters which include dynamical friction with the dark binding matter, the distribution of galaxies becomes more concentrated to the cluster center with time. In a cluster like Coma, this evolution could increase by a factor of approximately 3 the probability of finding a galaxy very close to the cluster center, without decreasing the typical velocity of such a galaxy significantly below the cluster mean. Such an enhancement is roughly what is needed to explain the large number of first-ranked cluster galaxies which are observed to have extra ''nuclei''; it is also consistent withmore » the high velocities typically measured for these ''nuclei.'' Unlike the cannibalism model, this model predicts that the majority of multiple-nucleus systems are transient phenomena, and not galaxies in the process of merging.« less

  5. Strong Lens Models for Massive Galaxy Clusters in the Reionization Lensing Cluster Survey

    NASA Astrophysics Data System (ADS)

    Cerny, Catherine; Sharon, Keren; Coe, Dan A.; Paterno-Mahler, Rachel; Jones, Christine; Czakon, Nicole G.; Umetsu, Keiichi; Stark, Daniel; Bradley, Larry D.; Trenti, Michele; Johnson, Traci; Bradac, Marusa; Dawson, William; Rodney, Steven A.; Strolger, Louis-Gregory; RELICS Team

    2017-01-01

    We present strong lensing models for five galaxy clusters from the Planck SZ cluster catalog as a part of the Reionization Lensing Cluster Survey (RELICS), a program that seeks to constrain the galaxy luminosity function past z~9 by conducting a wide field survey of massive galaxy clusters with HST (GO-14096, PI: Coe). The strong gravitational lensing effects of these clusters significantly magnify background galaxies, which enhances our ability to discover the large numbers of high redshift galaxies at z~9-12 needed to create a representative sample. We use strong lensing models for these clusters to study their mass distribution and magnification, which allows us to quantify the lensing effect on the background galaxies. These models can then be utilized in the RELICS survey in order to identify high redshift galaxy candidates that may be lensed by the clusters. The intrinsic properties of these galaxy candidates can be derived by removing the lensing effect as predicted by our models, which will meet the science goals of the RELICS survey. We use HST WFC3 and ACS imaging to create lensing models for the clusters RXC J0142.9+4438, ACO-2537, ACO-2163, RXCJ2211.7-0349, and ACT-CLJ0102-49151.

  6. Reconstruction of the mass distribution of galaxy clusters from the inversion of the thermal Sunyaev-Zel'dovich effect

    NASA Astrophysics Data System (ADS)

    Majer, C. L.; Meyer, S.; Konrad, S.; Sarli, E.; Bartelmann, M.

    2016-07-01

    This paper continues a series in which we intend to show how all observables of galaxy clusters can be combined to recover the two-dimensional, projected gravitational potential of individual clusters. Our goal is to develop a non-parametric algorithm for joint cluster reconstruction taking all cluster observables into account. For this reason we focus on the line-of-sight projected gravitational potential, proportional to the lensing potential, in order to extend existing reconstruction algorithms. In this paper, we begin with the relation between the Compton-y parameter and the Newtonian gravitational potential, assuming hydrostatic equilibrium and a polytropic stratification of the intracluster gas. Extending our first publication we now consider a spheroidal rather than a spherical cluster symmetry. We show how a Richardson-Lucy deconvolution can be used to convert the intensity change of the CMB due to the thermal Sunyaev-Zel'dovich effect into an estimate for the two-dimensional gravitational potential. We apply our reconstruction method to a cluster based on an N-body/hydrodynamical simulation processed with the characteristics (resolution and noise) of the ALMA interferometer for which we achieve a relative error of ≲20 per cent for a large fraction of the virial radius. We further apply our method to an observation of the galaxy cluster RXJ1347 for which we can reconstruct the potential with a relative error of ≲20 per cent for the observable cluster range.

  7. Exponential Potential versus Dark Matter

    DTIC Science & Technology

    1993-10-15

    scale of the solar system. Galaxy, Dark matter , Galaxy cluster, Gravitation, Quantum gravity...A two parameter exponential potential explains the anomalous kinematics of galaxies and galaxy clusters without need for the myriad ad hoc dark ... matter models currently in vogue. It also explains much about the scales and structures of galaxies and galaxy clusters while being quite negligible on the

  8. Cosmic Heavyweights in Free-for-all

    NASA Astrophysics Data System (ADS)

    2009-04-01

    The most crowded collision of galaxy clusters has been identified by combining information from three different telescopes. This result gives scientists a chance to learn what happens when some of the largest objects in the Universe go at each other in a cosmic free-for-all. Using data from NASA's Chandra X-ray Observatory, Hubble Space Telescope and the Keck Observatory on Mauna Kea, Hawaii, astronomers were able to determine the three-dimensional geometry and motion in the system MACSJ0717.5+3745 (or MACSJ0717 for short) located about 5.4 billion light years from Earth. The researchers found that four separate galaxy clusters are involved in a triple merger, the first time such a phenomenon has been documented. Galaxy clusters are the largest objects bound by gravity in the Universe. In MACSJ0717, a 13-million-light-year-long stream of galaxies, gas and dark matter - known as a filament - is pouring into a region already full of matter. Like a freeway of cars emptying into a full parking lot, this flow of galaxies has caused one collision after another. "In addition to this enormous pileup, MACSJ0717 is also remarkable because of its temperature," said Cheng-Jiun Ma of the University of Hawaii and lead author of the study. "Since each of these collisions releases energy in the form of heat, MACS0717 has one of the highest temperatures ever seen in such a system." While the filament leading into MACJ0717 had been previously discovered, these results show for the first time that it was the source of this galactic pummeling. The evidence is two-fold. First, by comparing the position of the gas and clusters of galaxies, the researchers tracked the direction of clusters' motions, which matched the orientation of the filament in most cases. Secondly, the largest hot region in MACSJ0717 is where the filament intersects the cluster, suggesting ongoing impacts. MACSJ0717 A Larger Scale Chandra View of MACSJ0717 "MACSJ0717 shows how giant galaxy clusters interact with their environment on scales of many millions of light years," said team member Harald Ebeling, also from University of Hawaii. "This is a wonderful system for studying how clusters grow as material falls into them along filaments." Computer simulations show that the most massive galaxy clusters should grow in regions where large-scale filaments of intergalactic gas, galaxies, and dark matter intersect, and material falls inward along the filaments. "It's exciting that the data we get from MACSJ0717 appear to beautifully match the scenario depicted in the simulations," said Ma. Multiwavelength data were crucial for this work. The optical data from Hubble and Keck give information about the motion and density of galaxies along the line of sight, but not about their course perpendicular to that direction. By combining the X-ray and optical data, scientists were able to determine the three-dimensional geometry and motion in the system. People Who Read This Also Read... Milky Way's Super-efficient Particle Accelerators Caught in The Act NASA Announces 2009 Astronomy and Astrophysics Fellows Galaxies Coming of Age in Cosmic Blobs Celebrate the International Year of Astronomy In the future, Ma and his team hope to use even deeper X-ray data to measure the temperature of gas over the full 13-million-light-year extent of the filament. Much remains to be learned about the properties of hot gas in filaments and whether its infall along these structures can significantly heat the gas in clusters over large scales. "This is the most spectacular and most disturbed cluster I have ever seen," says Ma, "and we think that we can learn a whole lot more from it about how structure in our Universe grows and evolves." The paper describing these results appeared in the March 10th issue of the Astrophysical Journal Letters. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass.

  9. Studies of the Virgo Cluster. II - A catalog of 2096 galaxies in the Virgo Cluster area. V - Luminosity functions of Virgo Cluster galaxies

    NASA Technical Reports Server (NTRS)

    Binggeli, B.; Tammann, G. A.; Sandage, A.

    1985-01-01

    The present catalog of 2096 galaxies within an area of about 140 sq deg approximately centered on the Virgo cluster should be an essentially complete listing of all certain and possible cluster members, independent of morphological type. Cluster membership is essentially decided by galaxy morphology; for giants and the rare class of high surface brightness dwarfs, membership rests on velocity data. While 1277 of the catalog entries are considered members of the Virgo cluster, 574 are possible members and 245 appear to be background Zwicky galaxies. Major-to-minor axis ratios are given for all galaxies brighter than B(T) = 18, as well as for many fainter ones.

  10. A new giant luminous arc gravitational lens associated with a z = 0.62 galaxy cluster, and the environments of distant radio galaxies

    NASA Technical Reports Server (NTRS)

    Dickinson, Mark

    1993-01-01

    In the course of a survey investigating the cluster environments of distant 3CR radio galaxies, I have identified a previously unknown 'giant luminous arc' gravitational lens. The lensing cluster is associated with the radio galaxy 3C 220.1 at z = 0.62 and is the most distant cluster now known to produce such arcs. I present imaging and spectroscopic observations of the cluster and the arc, and discuss the implications for the cluster mass. At z greater than 0.6 the cluster velocity dispersions implied by such giant arcs may provide an interesting constraint on theories of large scale structure formation. The parent investigation in which this arc was identified concerns galaxy clusters and radio galaxy environments at 0.35 less than z less than 0.8. At the present epoch, powerful FR 2 radio galaxies tend to be found in environments of poor or average galaxy density. In contrast, at the higher redshifts investigated here, richer group and cluster environments are common. I present additional data on other clusters from this survey, and discuss its extension to z greater than 1 through a program of near-infrared and optical imaging.

  11. Galaxy Merger Candidates in High-redshift Cluster Environments

    NASA Astrophysics Data System (ADS)

    Delahaye, A. G.; Webb, T. M. A.; Nantais, J.; DeGroot, A.; Wilson, G.; Muzzin, A.; Yee, H. K. C.; Foltz, R.; Noble, A. G.; Demarco, R.; Tudorica, A.; Cooper, M. C.; Lidman, C.; Perlmutter, S.; Hayden, B.; Boone, K.; Surace, J.

    2017-07-01

    We compile a sample of spectroscopically and photometrically selected cluster galaxies from four high-redshift galaxy clusters (1.59< z< 1.71) from the Spitzer Adaptation of the Red-Sequence Cluster Survey (SpARCS), and a comparison field sample selected from the UKIDSS Deep Survey. Using near-infrared imaging from the Hubble Space Telescope, we classify potential mergers involving massive ({M}* ≥slant 3× {10}10 {M}⊙ ) cluster members by eye, based on morphological properties such as tidal distortions, double nuclei, and projected near neighbors within 20 kpc. With a catalog of 23 spectroscopic and 32 photometric massive cluster members across the four clusters and 65 spectroscopic and 26 photometric comparable field galaxies, we find that after taking into account contamination from interlopers, {11.0}-5.6+7.0 % of the cluster members are involved in potential mergers, compared to {24.7}-4.6+5.3 % of the field galaxies. We see no evidence of merger enhancement in the central cluster environment with respect to the field, suggesting that galaxy-galaxy merging is not a stronger source of galaxy evolution in cluster environments compared to the field at these redshifts.

  12. The Cool Stellar Populations of Early-Type Galaxies and the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Houdashelt, Mark Lee

    1995-01-01

    Red (6800-9200 A) and near-infrared (K-band) spectra have been obtained for 34 early-type galaxies in the Virgo cluster, the Coma cluster and the field. The strengths of the Ca II triplet (lambdalambda 8498, 8542, 8662 A), the Na I doublet ( lambdalambda8183, 8195 A), the Mg I lambda8807 A line, and molecular bands of TiO and VO were measured from the red spectra. Absorption due to the CO band with bandhead at 2.29 mu m was measured from the near-infrared spectra. The behavior of the spectral indices was examined for the Virgo galaxy nuclei as functions of luminosity and color. Overall, the CO, TiO and Na I indices were found to be stronger in redder and brighter galaxies. The Mg I and the Ca II triplet lines did not vary significantly among galaxies of different color or brightness. These trends are consistent with a change in chemical composition producing the well-known color-magnitude relation for early -type galaxies. No significant differences were detected among galaxies of similar luminosity in the Virgo cluster, the Coma cluster and the field. To simulate the stellar population changes implied by the radial color gradients observed in early-type galaxies, models were constructed to represent the integrated light of the Galactic bulge as a function of latitude. A field in Baade's Window (BW) was studied first and the stellar population there was found to be quite inhomogeneous. The BW model indicated that the integrated light of BW is giant -dominated, and the BW spectral energy distribution is very similar to that of the nucleus of a low-luminosity early -type galaxy. From models of BW and a field at b = -8^circ, radial gradients were estimated for the Galactic bulge and compared to the changes which occur along a luminosity sequence of early -type galaxies in the Virgo cluster. This comparison showed that: (1) the Na I and I(8197) indices increase steeply with redder colors in the Virgo galaxies but appear to decrease with color in the Galactic bulge; this effect is not understood but may be caused by some deficiency in the modelling; and (2) differences in the slopes of the TiO-color trends in E/S0 galaxies and in the Galactic bulge may indicate that the (Ti/Fe) ratio is changing differently in these two instances.

  13. Constraining Lyman continuum escape using Machine Learning

    NASA Astrophysics Data System (ADS)

    Giri, Sambit K.; Zackrisson, Erik; Binggeli, Christian; Pelckmans, Kristiaan; Cubo, Rubén; Mellema, Garrelt

    2018-05-01

    The James Webb Space Telescope (JWST) will observe the rest-frame ultraviolet/optical spectra of galaxies from the epoch of reionization (EoR) in unprecedented detail. While escaping into the intergalactic medium, hydrogen-ionizing (Lyman continuum; LyC) photons from the galaxies will contribute to the bluer end of the UV slope and make nebular emission lines less prominent. We present a method to constrain leakage of the LyC photons using the spectra of high redshift (z >~ 6) galaxies. We simulate JWST/NIRSpec observations of galaxies at z =6-9 by matching the fluxes of galaxies observed in the Frontier Fields observations of galaxy cluster MACS-J0416. Our method predicts the escape fraction fesc with a mean absolute error Δfesc ~ 0.14. The method also predicts the redshifts of the galaxies with an error .

  14. Galaxy evolution. Isolated compact elliptical galaxies: stellar systems that ran away.

    PubMed

    Chilingarian, Igor; Zolotukhin, Ivan

    2015-04-24

    Compact elliptical galaxies form a rare class of stellar system (~30 presently known) characterized by high stellar densities and small sizes and often harboring metal-rich stars. They were thought to form through tidal stripping of massive progenitors, until two isolated objects were discovered where massive galaxies performing the stripping could not be identified. By mining astronomical survey data, we have now found 195 compact elliptical galaxies in all types of environment. They all share similar dynamical and stellar population properties. Dynamical analysis for nonisolated galaxies demonstrates the feasibility of their ejection from host clusters and groups by three-body encounters, which is in agreement with numerical simulations. Hence, isolated compact elliptical and isolated quiescent dwarf galaxies are tidally stripped systems that ran away from their hosts. Copyright © 2015, American Association for the Advancement of Science.

  15. Early-type Galaxy Spin Evolution in the Horizon-AGN Simulation

    NASA Astrophysics Data System (ADS)

    Choi, Hoseung; Yi, Sukyoung K.; Dubois, Yohan; Kimm, Taysun; Devriendt, Julien. E. G.; Pichon, Christophe

    2018-04-01

    Using the Horizon-AGN simulation data, we study the relative role of mergers and environmental effects in shaping the spin of early-type galaxies (ETGs) after z ≃ 1. We follow the spin evolution of 10,037 color-selected ETGs more massive than {10}10 {M}ȯ that are divided into four groups: cluster centrals (3%), cluster satellites (33%), group centrals (5%), and field ETGs (59%). We find a strong mass dependence of the slow rotator fraction, f SR, and the mean spin of massive ETGs. Although we do not find a clear environmental dependence of f SR, a weak trend is seen in the mean value of the spin parameter driven by the satellite ETGs as they gradually lose their spin as their environment becomes denser. Galaxy mergers appear to be the main cause of total spin changes in 94% of the central ETGs of halos with {M}vir}> {10}12.5 {M}ȯ , but only 22% of satellite and field ETGs. We find that non-merger-induced tidal perturbations better correlate with the galaxy spin down in satellite ETGs than in mergers. Given that the majority of ETGs are not central in dense environments, we conclude that non-merger tidal perturbation effects played a key role in the spin evolution of ETGs observed in the local (z < 1) universe.

  16. Simulations of the formation, evolution and clustering of galaxies and quasars.

    PubMed

    Springel, Volker; White, Simon D M; Jenkins, Adrian; Frenk, Carlos S; Yoshida, Naoki; Gao, Liang; Navarro, Julio; Thacker, Robert; Croton, Darren; Helly, John; Peacock, John A; Cole, Shaun; Thomas, Peter; Couchman, Hugh; Evrard, August; Colberg, Jörg; Pearce, Frazer

    2005-06-02

    The cold dark matter model has become the leading theoretical picture for the formation of structure in the Universe. This model, together with the theory of cosmic inflation, makes a clear prediction for the initial conditions for structure formation and predicts that structures grow hierarchically through gravitational instability. Testing this model requires that the precise measurements delivered by galaxy surveys can be compared to robust and equally precise theoretical calculations. Here we present a simulation of the growth of dark matter structure using 2,160(3) particles, following them from redshift z = 127 to the present in a cube-shaped region 2.230 billion lightyears on a side. In postprocessing, we also follow the formation and evolution of the galaxies and quasars. We show that baryon-induced features in the initial conditions of the Universe are reflected in distorted form in the low-redshift galaxy distribution, an effect that can be used to constrain the nature of dark energy with future generations of observational surveys of galaxies.

  17. Resolving the problem of galaxy clustering on small scales: any new physics needed?

    NASA Astrophysics Data System (ADS)

    Kang, X.

    2014-02-01

    Galaxy clustering sets strong constraints on the physics governing galaxy formation and evolution. However, most current models fail to reproduce the clustering of low-mass galaxies on small scales (r < 1 Mpc h-1). In this paper, we study the galaxy clusterings predicted from a few semi-analytical models. We first compare two Munich versions, Guo et al. and De Lucia & Blaizot. The Guo11 model well reproduces the galaxy stellar mass function, but overpredicts the clustering of low-mass galaxies on small scales. The DLB07 model provides a better fit to the clustering on small scales, but overpredicts the stellar mass function. These seem to be puzzling. The clustering on small scales is dominated by galaxies in the same dark matter halo, and there is slightly more fraction of satellite galaxies residing in massive haloes in the Guo11 model, which is the dominant contribution to the clustering discrepancy between the two models. However, both models still overpredict the clustering at 0.1 < r < 10 Mpc h-1 for low-mass galaxies. This is because both models overpredict the number of satellites by 30 per cent in massive haloes than the data. We show that the Guo11 model could be slightly modified to simultaneously fit the stellar mass function and clusterings, but that cannot be easily achieved in the DLB07 model. The better agreement of DLB07 model with the data actually comes as a coincidence as it predicts too many low-mass central galaxies which are less clustered and thus brings down the total clustering. Finally, we show the predictions from the semi-analytical models of Kang et al. We find that this model can simultaneously fit the stellar mass function and galaxy clustering if the supernova feedback in satellite galaxies is stronger. We conclude that semi-analytical models are now able to solve the small-scales clustering problem, without invoking of any other new physics or changing the dark matter properties, such as the recent favoured warm dark matter.

  18. Stacked Star Formation Rate Profiles of Bursty Galaxies Exhibit “Coherent” Star Formation

    NASA Astrophysics Data System (ADS)

    Orr, Matthew E.; Hayward, Christopher C.; Nelson, Erica J.; Hopkins, Philip F.; Faucher-Giguère, Claude-André; Kereš, Dušan; Chan, T. K.; Schmitz, Denise M.; Miller, Tim B.

    2017-11-01

    In a recent work based on 3200 stacked Hα maps of galaxies at z˜ 1, Nelson et al. find evidence for “coherent star formation”: the stacked star formation rate (SFR) profiles of galaxies above (below) the “star formation main sequence” (MS) are above (below) that of galaxies on the MS at all radii. One might interpret this result as inconsistent with highly bursty star formation and evidence that galaxies evolve smoothly along the MS rather than crossing it many times. We analyze six simulated galaxies at z˜ 1 from the Feedback in Realistic Environments (FIRE) project in a manner analogous to the observations to test whether the above interpretations are correct. The trends in stacked SFR profiles are qualitatively consistent with those observed. However, SFR profiles of individual galaxies are much more complex than the stacked profiles: the former can be flat or even peak at large radii because of the highly clustered nature of star formation in the simulations. Moreover, the SFR profiles of individual galaxies above (below) the MS are not systematically above (below) those of MS galaxies at all radii. We conclude that the time-averaged coherent star formation evident stacks of observed galaxies is consistent with highly bursty, clumpy star formation of individual galaxies and is not evidence that galaxies evolve smoothly along the MS.

  19. Dynamical effects of dark matter in systems of galaxies

    NASA Astrophysics Data System (ADS)

    Navarro, J. F.; Garcia Lambas, D.; Sersic, J. L.

    1986-06-01

    Several N-body experiments were performed in order to simulate the dynamical behavior of systems of galaxies gravitationally dominated by a massive dark background. Mass estimates from the dynamics of the luminous component under the influence of such a background are discussed, assuming a constant dark/luminous mass ratio and plausible physical conditions. Previous studies (Smith, 1980, 1984) about the dependence of the virial theorem mass on the relative distributions of dark and luminous matter (Limber, 1959) are extended. It is found that the observed ratio of the virial theorem mass to luminosity in systems of galaxies of different sizes could be the result of different stages of their postvirialisation evolution as previously suggested by White and Rees (1978) and Barnes (1983). This evolution is mainly the result of the dynamical friction that dark matter exerts on the luminous component. Thus the results give support to the idea that compact groups of galaxies are dynamically more evolved than large clusters, which is expected from the 'hierarchical cluster' picture for the formation of such structures.

  20. The Richness Dependence of Galaxy Cluster Correlations: Results From A Redshift Survey Of Rich APM Clusters

    NASA Technical Reports Server (NTRS)

    Croft, R. A. C.; Dalton, G. B.; Efstathiou, G.; Sutherland, W. J.; Maddox, S. J.

    1997-01-01

    We analyze the spatial clustering properties of a new catalog of very rich galaxy clusters selected from the APM Galaxy Survey. These clusters are of comparable richness and space density to Abell Richness Class greater than or equal to 1 clusters, but selected using an objective algorithm from a catalog demonstrably free of artificial inhomogeneities. Evaluation of the two-point correlation function xi(sub cc)(r) for the full sample and for richer subsamples reveals that the correlation amplitude is consistent with that measured for lower richness APM clusters and X-ray selected clusters. We apply a maximum likelihood estimator to find the best fitting slope and amplitude of a power law fit to x(sub cc)(r), and to estimate the correlation length r(sub 0) (the value of r at which xi(sub cc)(r) is equal to unity). For clusters with a mean space density of 1.6 x 10(exp -6) h(exp 3) MpC(exp -3) (equivalent to the space density of Abell Richness greater than or equal to 2 clusters), we find r(sub 0) = 21.3(+11.1/-9.3) h(exp -1) Mpc (95% confidence limits). This is consistent with the weak richness dependence of xi(sub cc)(r) expected in Gaussian models of structure formation. In particular, the amplitude of xi(sub cc)(r) at all richnesses matches that of xi(sub cc)(r) for clusters selected in N-Body simulations of a low density Cold Dark Matter model.

  1. A cooling flow in a high-redshift, X-ray-selected cluster of galaxies

    NASA Astrophysics Data System (ADS)

    Nesci, Roberto; Gioia, Isabella M.; Maccacaro, Tommaso; Morris, Simon L.; Perola, Giuseppe C.; Schild, Rudolph E.; Wolter, Anna

    1989-09-01

    The X-ray cluster of galaxies IE 0839.9 + 2938 was serendipitously discovered with the Einstein Observatory. CCD imaging at R and V wavelengths show that the color of the dominant elliptical galaxy of this cluster is significantly bluer than the colors of the next brightest cluster galaxies. Strong emission lines, typical of cD galaxies with cooling flows, are present in the spectrum of the dominant galaxy, from which a redshift of 0.193 is derived. The emitting line region is spatially resolved with an extension of about 13 kpc. All the collected data suggest that this cluster is one of the most distant cooling flow clusters known to date.

  2. A cooling flow in a high-redshift, X-ray-selected cluster of galaxies

    NASA Technical Reports Server (NTRS)

    Nesci, Roberto; Perola, Giuseppe C.; Gioia, Isabella M.; Maccacaro, Tommaso; Morris, Simon L.

    1989-01-01

    The X-ray cluster of galaxies IE 0839.9 + 2938 was serendipitously discovered with the Einstein Observatory. CCD imaging at R and V wavelengths show that the color of the dominant elliptical galaxy of this cluster is significantly bluer than the colors of the next brightest cluster galaxies. Strong emission lines, typical of cD galaxies with cooling flows, are present in the spectrum of the dominant galaxy, from which a redshift of 0.193 is derived. The emitting line region is spatially resolved with an extension of about 13 kpc. All the collected data suggest that this cluster is one of the most distant cooling flow clusters known to date.

  3. RR Lyrae in Sagittarius Dwarf Globular Clusters (Poster abstract)

    NASA Astrophysics Data System (ADS)

    Pritzl, B. J.; Gehrman, T. J.; Bell, E.; Salinas, R.; Smith, H. A.; Catelan, M.

    2016-12-01

    (Abstract only) The Milky Way Galaxy was built up in part by the cannibalization of smaller dwarf galaxies. Some of them likely contained globular clusters. The Sagittarius dwarf galaxy provides a unique opportunity to study a system of globular clusters that originated outside the Milky Way. We have investigated the RR Lyrae populations in two Sagittarius globular clusters, Arp 2 and Terzan 8. The RR Lyrae are used to study the properties of the clusters and to compare this system to Milky Way globular clusters. We will discuss whether or not dwarf galaxies similar to the Sagittarius dwarf galaxy could have played a role in the formation of the Milky Way Galaxy.

  4. A novel mechanism for creating double pulsars

    NASA Technical Reports Server (NTRS)

    Sigurdsson, Steinn; Hernquist, Lars

    1992-01-01

    Simulations of encounters between pairs of hard binaries, each containing a neutron star and a main-sequence star, reveal a new formation mechanism for double pulsars in dense cores of globular clusters. In many cases, the two normal stars are disrupted to form a common envelope around the pair of neutron stars, both of which will be spun up to become millisecond pulsars. We predict that a new class of pulsars, double millisecond pulsars, will be discovered in the cores of dense globular clusters. The genesis proceeds through a short-lived double-core common envelope phase, with the envelope ejected in a fast wind. It is possible that the progenitor may also undergo a double X-ray binary phase. Any circular, short-period double pulsar found in the galaxy would necessarily come from disrupted disk clusters, unlike Hulse-Taylor class pulsars or low-mass X-ray binaries which may be ejected from clusters or formed in the galaxy.

  5. Record-breaking ancient galaxy clusters

    NASA Astrophysics Data System (ADS)

    2003-12-01

    A tale of two record-breaking clusters hi-res Size hi-res: 768 kb Credits: for RDCS1252: NASA, ESA, J.Blakeslee (Johns Hopkins Univ.), M.Postman (Space Telescope Science Inst.) and P.Rosati, Chris Lidman & Ricardo Demarco (European Southern Observ.) for TNJ1338: NASA, ESA, G.Miley (Leiden Observ.) and R.Overzier (Leiden Obs) A tale of two record-breaking clusters Looking back in time to when the universe was in its formative youth, the Advanced Camera for Surveys (ACS) aboard the NASA/ESA Hubble Space Telescope captured these revealing images of two galaxy clusters. The image at left, which is made with an additional infrared exposure taken with the European Southern Observatory’s Very Large Telescope, shows mature galaxies in a massive cluster that existed when the cosmos was 5000 million years old. The cluster, called RDCS1252.9-2927, is as massive as ‘300 trillion’ suns and is the most massive known cluster for its epoch. The image reveals the core of the cluster and is part of a much larger mosaic of the entire cluster. Dominating the core are a pair of large, reddish elliptical galaxies [near centre of image]. Their red colour indicates an older population of stars. Most of the stars are at least 1000 million years old. The two galaxies appear to be interacting and may eventually merge to form a larger galaxy that is comparable to the brightest galaxies seen in present-day clusters. The red galaxies surrounding the central pair are also cluster members. The cluster probably contains many thousands of galaxies, but only about 50 can be seen in this image. The full mosaic (heic0313d) reveals several hundred cluster members. Many of the other galaxies in the image, including several of the blue galaxies, are foreground or background galaxies. The colour-composite image was assembled from two observations (through i and z filters) taken between May and June 2002 by the ACS Wide Field Camera, and one image with the ISAAC instrument on the VLT taken in 2002 (combined from a J filter exposure and a K filter exposure). In the image at right, astronomers are seeing an embryonic cluster as it was when the universe was 1500 million years old. The young system, called TNJ1338-1942, is the most distant known developing cluster, or proto-cluster. It is dominated by a massive ‘baby galaxy’ - the green object. The cluster RDCS1252.9-2927 hi-res Size hi-res: 2611 kb Credits: NASA, ESA, J. Blakeslee (Johns Hopkins University), M. Postman (Space Telescope Science Institute) and P. Rosati, Chris Lidman & Ricardo Demarco (European Southern Observatory) The cluster RDCS1252.9-2927 Looking back in time to when the Universe was in its formative youth, the Advanced Camera for Surveys (ACS) aboard the NASA/ESA Hubble Space Telescope captured this revealing image of the galaxy cluster RDCS1252.9-2927. The image shows the entire cluster (1/15 of a degree, corresponding to about 7 million light-years, across). The cluster probably contains many thousands of galaxies. Most of the other galaxies in the image, including most of the blue galaxies, are foreground or background galaxies. The image, which is made with an additional infrared exposure taken with the European Southern Observatory’s Very Large Telescope, shows mature galaxies in a massive cluster that existed when the cosmos was 5000 million years old. The cluster, called RDCS1252.9-2927, is as massive as ‘300 trillion’ suns and is the most massive known cluster for its epoch. Dominating the core are a pair of large, reddish elliptical galaxies [near centre of image]. Their red colour indicates an older population of stars. Most of the stars are at least 1000 million years old. The two galaxies appear to be interacting and may eventually merge to form a larger galaxy that is comparable to the brightest galaxies seen in present-day clusters. The red galaxies surrounding the central pair are also cluster members. The colour-composite image was assembled from two observations (through i and z filters) taken between May and June 2002 by the ACS Wide Field Camera, and one image with the ISAAC instrument on the VLT taken in 2002 (combined from a J filter exposure and a K filter exposure). The embryonic cluster TNJ1338-1942 hi-res Size hi-res: 154 kb Credits: NASA, ESA, G. Miley (Leiden Observatory) and R. Overzier (Leiden Observatory) The embryonic cluster TNJ1338-1942 In this image astronomers are seeing an embryonic cluster as it was when the universe was 1500 million years old. The young system, called TNJ1338-1942, is the most distant known developing cluster, or proto-cluster. It is dominated by a massive ‘baby galaxy’ - the green object in the centre. The galaxy is producing powerful radio emissions, and is the brightest galaxy in the proto-cluster. The green colour indicates that the galaxy is emitting glowing hydrogen gas. Its clumpy appearance suggests that it is still in the process of forming. Smaller developing galaxies are scattered around the massive galaxy. The galaxy on the left of the massive galaxy is a foreground galaxy. The bright object in the upper half of the image is a foreground star. This colour-composite image was assembled from observations taken between July 8 and 12, 2002 by the ACS Wide Field Camera. The cluster RDCS1252.9-2927 hi-res Size hi-res: 259 kb Credits: NASA, ESA, J. Blakeslee (Johns Hopkins University), M. Postman (Space Telescope Science Institute) and P. Rosati, Chris Lidman & Ricardo Demarco (European Southern Observatory) The cluster RDCS1252.9-2927 Looking back in time to when the universe was in its formative youth, the Advanced Camera for Surveys (ACS) aboard the NASA/ESA Hubble Space Telescope captured this revealing image of the galaxy cluster RDCS1252.9-2927. This image is made with an additional infrared exposure taken with the European Southern Observatory’s Very Large Telescope, shows mature galaxies in a massive cluster that existed when the cosmos was 5000 million years old. The cluster, called RDCS1252.9-2927, is as massive as ‘300 trillion’ suns and is the most massive known cluster for its epoch. The image reveals the core of the cluster and is part of a much larger mosaic of the entire cluster. Dominating the core are a pair of large, reddish elliptical galaxies [near centre of image]. Their red colour indicates an older population of stars. Most of the stars are at least 1 000 million years old. The two galaxies appear to be interacting and may eventually merge to form a larger galaxy that is comparable to the brightest galaxies seen in present-day clusters. The red galaxies surrounding the central pair are also cluster members. The cluster probably contains many thousands of galaxies, but only about 50 can be seen in this image. The full mosaic reveals several hundred cluster members. Many of the other galaxies in the image, including several of the blue galaxies, are foreground or background galaxies. The colour-composite image was assembled from two observations (through i and z filters) taken between May and June 2002 by the ACS Wide Field Camera, and one image with the ISAAC instrument on the VLT taken in 2002 (combined from a J filter exposure and a K filter exposure). Looking back in time nearly 9000 million years, an international team of astronomers found mature galaxies in a young Universe. The galaxies are members of a cluster of galaxies that existed when the Universe was only 5000 million years old, or about 35 percent of its present age. This is compelling evidence that galaxies must have started forming just after the Big Bang and is bolstered by observations made by the same team of astronomers when they peered even farther back in time. The team found embryonic galaxies a mere 1500 million years after the birth of the cosmos, or 10 percent of the Universe's present age. The ‘baby galaxies’ reside in a still developing cluster, the most distant proto-cluster ever found. The Advanced Camera for Surveys (ACS) aboard the NASA/ESA Hubble Space Telescope was used to make the observations of the massive cluster, RDCS1252.9-2927, and the proto-cluster, TNJ1338-1942. Observations by NASA’s Chandra X-ray Observatory yielded the mass and heavy element content of RDCS1252.9-2927, the most massive known cluster for that epoch. These observations are part of a co-ordinated effort by the ACS science team to track the formation and evolution of clusters of galaxies over a broad span of cosmic time. The ACS was specially built for such studies of very distant objects. These findings support the theory that galaxies formed relatively early in the history of the cosmos. The existence of such massive clusters in the early Universe agrees with a cosmological model wherein clusters form by the merger of many sub-clusters in a Universe dominated by cold dark matter. The precise nature of cold dark matter, however, is still not known. The first Hubble study estimated that the galaxies in RCDS1252 formed the bulk of their stars more than 11 000 million years ago (redshifts greater than 3). The results were published in the 20 October 2003, issue of the Astrophysical Journal. The paper's lead author is John Blakeslee of the Johns Hopkins University in Baltimore, USA. The second Hubble study uncovered, for the first time, a proto-cluster of ‘infant galaxies’ that existed more than 12 000 million years ago (redshift 4.1). These galaxies are so young that astronomers can still see a flurry of stars forming within them. The galaxies are grouped around one large galaxy. These results will be published in the January 1, 2004 issue of Nature. The paper's lead author is George Miley of Leiden Observatory in the Netherlands. "Until recently people didn't think that clusters existed when the Universe was only about 5000 million years old," Blakeslee explained. "Even if there were such clusters," Miley added, "until recently astronomers thought it was almost impossible to find clusters that existed 8000 million years ago. In fact, no one really knew when clustering began. Now we can witness it." Both studies led the astronomers to conclude that these systems are the progenitors of the galaxy clusters seen today. "The cluster RDCS1252 looks like a present-day cluster," said Marc Postman of the Space Telescope Science Institute in Baltimore, USA, and co-author of both research papers. "In fact, if you were to put it next to a present-day cluster you wouldn't know which is which." ‘A tale of two clusters’ How can galaxies grow so fast after the Big Bang? "It is a case of the rich getting richer," Blakeslee said. "These clusters grew quickly because they are located in very dense regions, so there is enough material to build up the member galaxies very fast." This idea is bolstered by X-ray observations of the massive cluster RDCS1252. Chandra and the European Space Agency's XMM-Newton provided astronomers with the most accurate measurements to date of the properties of an enormous cloud of hot gas that pervades the massive cluster. This 70 million °C gas is a reservoir of most of the heavy elements in the cluster, and an accurate tracer of its total mass. A paper by Piero Rosati of the European Southern Observatory (ESO) and colleagues that presents the X-ray observations of RDCS1252 will be published in January 2004 in the Astronomical Journal. "Chandra's sharp vision resolved the shape of the hot gas halo and showed that RDCS1252 is very mature for its age," said Rosati, who discovered the cluster with the ROSAT X-ray telescope. RDCS1252 may contain many thousands of galaxies. Most of those galaxies, however, are too faint to detect, although the powerful ‘eyes’ of the ACS pinpointed several hundred of them. Observations using ESO's Very Large Telescope (VLT) provided a precise measurement of the distance to the cluster. The ACS enabled the researchers to determine the shapes and the colours of the 100 galaxies accurately, providing information on the ages of the stars residing in them. The ACS team estimated that most of the stars in the cluster were already formed by the time the Universe was about 2000 million years old. In addition X-ray observations showed that 5 000 million years after the Big Bang the surrounding hot gas had been enriched with heavy elements from these stars and swept away from the galaxies. If most of the galaxies in RDCS1252 have reached maturity and are settling into a quiet adulthood, the galaxies forming in the distant proto-cluster are in their energetic, unruly youth. The proto-cluster TN J1338 contains a massive embryonic galaxy surrounded by smaller developing galaxies, which look like dots in the Hubble image. The dominant galaxy is producing spectacular radio-emitting jets, fuelled by a supermassive black hole deep within the galaxy's nucleus. Interaction between these jets and the gas can stimulate a torrent of star birth. The discovery of the energetic radio galaxy by radio telescopes prompted astronomers to hunt for the smaller galaxies that make up the bulk of the cluster. "Massive clusters are the cities of the Universe, and the radio galaxies within them are the smokestacks we can use for finding them when they are just beginning to form," Miley said. The two findings underscore the power of combining observations from many different telescopes to provide views of the distant Universe over a range of wavelengths. Hubble’s advanced camera provided critical information on the structure of both distant galaxy clusters. Chandra's and XMM-Newton’s X-ray vision furnished the essential measurements of the primordial gas in which the galaxies in RDCS1252 are embedded, and accurate estimates of the total mass contained within that cluster. Large ground-based telescopes, like the VLT, provided precise measurements of the distance of both clusters as well as the chemical composition of the galaxies in them. The ACS team is conducting further observations of distant clusters to solidify our understanding of how these young clusters and their galaxies evolve into the shape of things seen today. Their planned observations include using near-infrared observations to analyse the star-formation rates in some of their clusters, including RDCS1252, in order to measure the cosmic history of star formation in these massive structures. The team is also searching the regions around several ultra-distant radio galaxies for additional examples of proto-clusters. The team's ultimate scientific goal is to establish a complete picture of cluster evolution beginning with their formation at the earliest epochs and detailing their evolution up to the present time.

  6. IPC two-color analysis of x ray galaxy clusters

    NASA Technical Reports Server (NTRS)

    White, Raymond E., III

    1990-01-01

    The mass distributions were determined of several clusters of galaxies by using X ray surface brightness data from the Einstein Observatory Imaging Proportional Counter (IPC). Determining cluster mass distributions is important for constraining the nature of the dark matter which dominates the mass of galaxies, galaxy clusters, and the Universe. Galaxy clusters are permeated with hot gas in hydrostatic equilibrium with the gravitational potentials of the clusters. Cluster mass distributions can be determined from x ray observations of cluster gas by using the equation of hydrostatic equilibrium and knowledge of the density and temperature structure of the gas. The x ray surface brightness at some distance from the cluster is the result of the volume x ray emissivity being integrated along the line of sight in the cluster.

  7. The distribution of early- and late-type galaxies in the Coma cluster

    NASA Technical Reports Server (NTRS)

    Doi, M.; Fukugita, M.; Okamura, S.; Turner, E. L.

    1995-01-01

    The spatial distribution and the morohology-density relation of Coma cluster galaxies are studied using a new homogeneous photmetric sample of 450 galaxies down to B = 16.0 mag with quantitative morphology classification. The sample covers a wide area (10 deg X 10 deg), extending well beyond the Coma cluster. Morphological classifications into early- (E+SO) and late-(S) type galaxies are made by an automated algorithm using simple photometric parameters, with which the misclassification rate is expected to be approximately 10% with respect to early and late types given in the Third Reference Catalogue of Bright Galaxies. The flattened distribution of Coma cluster galaxies, as noted in previous studies, is most conspicuously seen if the early-type galaxies are selected. Early-type galaxies are distributed in a thick filament extended from the NE to the WSW direction that delineates a part of large-scale structure. Spiral galaxies show a distribution with a modest density gradient toward the cluster center; at least bright spiral galaxies are present close to the center of the Coma cluster. We also examine the morphology-density relation for the Coma cluster including its surrounding regions.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muzzin, Adam; Van der Burg, R. F. J.; McGee, Sean L.

    We investigate the velocity versus position phase space of z ∼ 1 cluster galaxies using a set of 424 spectroscopic redshifts in nine clusters drawn from the GCLASS survey. Dividing the galaxy population into three categories, that is, quiescent, star-forming, and poststarburst, we find that these populations have distinct distributions in phase space. Most striking are the poststarburst galaxies, which are commonly found at small clustercentric radii with high clustercentric velocities, and appear to trace a coherent 'ring' in phase space. Using several zoom simulations of clusters, we show that the coherent distribution of the poststarbursts can be reasonably wellmore » reproduced using a simple quenching scenario. Specifically, the phase space is best reproduced if these galaxies are quenched with a rapid timescale (0.1 0.5 Gyr) or by quenching galaxies at larger radii (R ∼ R {sub 200}). We compare this quenching timescale to the timescale implied by the stellar populations of the poststarburst galaxies and find that the poststarburst spectra are well-fit by a rapid quenching (τ {sub Q} = 0.4{sub −0.4}{sup +0.3} Gyr) of a typical star-forming galaxy. The similarity between the quenching timescales derived from these independent indicators is a strong consistency check of the quenching model. Given that the model implies satellite quenching is rapid and occurs well within R {sub 200}, this would suggest that ram-pressure stripping of either the hot or cold gas component of galaxies are the most plausible candidates for the physical mechanism. The high cold gas consumption rates at z ∼ 1 make it difficult to determine whether hot or cold gas stripping is dominant; however, measurements of the redshift evolution of the satellite quenching timescale and location may be capable of distinguishing between the two.« less

  9. The early phases of galaxy clusters formation in IR: coupling hydrodynamical simulations with GRASIL-3D

    NASA Astrophysics Data System (ADS)

    Granato, Gian Luigi; Ragone-Figueroa, Cinthia; Domínguez-Tenreiro, Rosa; Obreja, Aura; Borgani, Stefano; De Lucia, Gabriella; Murante, Giuseppe

    2015-06-01

    We compute and study the infrared and sub-mm properties of high-redshift (z ≳ 1) simulated clusters and protoclusters. The results of a large set of hydrodynamical zoom-in simulations including active galactic nuclei (AGN) feedback, have been treated with the recently developed radiative transfer code GRASIL-3D, which accounts for the effect of dust reprocessing in an arbitrary geometry. Here, we have slightly generalized the code to adapt it to the present purpose. Then we have post-processed boxes of physical size 2 Mpc encompassing each of the 24 most massive clusters identified at z = 0, at several redshifts between 0.5 and 3, producing IR and sub-mm mock images of these regions and spectral energy distributions (SEDs) of the radiation coming out from them. While this field is in its infancy from the observational point of view, rapid development is expected in the near future thanks to observations performed in the far-IR and sub-mm bands. Notably, we find that in this spectral regime our prediction are little affected by the assumption required by this post-processing, and the emission is mostly powered by star formation (SF) rather than accretion on to super massive black hole (SMBH). The comparison with the little observational information currently available, highlights that the simulated cluster regions never attain the impressive star formation rates suggested by these observations. This problem becomes more intriguing taking into account that the brightest cluster galaxies (BCGs) in the same simulations turn out to be too massive. It seems that the interplay between the feedback schemes and the star formation model should be revised, possibly incorporating a positive feedback mode.

  10. Competition of supermassive black holes and galactic spheroids in the destruction of globular clusters

    NASA Technical Reports Server (NTRS)

    Charlton, Jane C.; Laguna, Pablo

    1995-01-01

    The globular clusters that we observe in galaxies may be only a fraction of the initial population. Among the evolutionary influences on the population is the destruction of globular clusters by tidal forces as the cluster moves through the field of influence of a disk, a bulge, and/or a putative nuclear component (black hole). We have conducted a series of N-body simulations of globular clusters on bound and marginally bound orbits through poetentials that include black hole and speroidal components. The degree of concentration of the spheroidal component can have a considerable impact on the extent to which a globular cluster is disrupted. If half the mass of a 10(exp 10) solar mass spheroid is concentrated within 800 pc, then only black holes with masses greater than 10(exp 9) solar mass can have a significant tidal influence over that already exerted by the bulge. However, if the matter in the spheroidal component is not so strongly concentrated toward the center of the galaxy, a more modest central black hole (down to 10(exp 8) solar mass) could have a dominant influence on the globular cluster distribution, particularly if many of the clusters were initially on highly radial orbits. Our simulations show that the stars that are stripped from a globular cluster follow orbits with roughly the same eccentricity as the initial cluster orbit, spreading out along the orbit like a 'string of pearls.' Since only clusters on close to radial orbits will suffer substantial disruption, the population of stripped stars will be on orbits of high eccentricity.

  11. LoCuSS: A COMPARISON OF SUNYAEV-ZEL'DOVICH EFFECT AND GRAVITATIONAL-LENSING MEASUREMENTS OF GALAXY CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marrone, Daniel P.; Culverhouse, Thomas; Carlstrom, John E.

    2009-08-20

    We present the first measurement of the relationship between the Sunyaev-Zel'dovich effect (SZE) signal and the mass of galaxy clusters that uses gravitational lensing to measure cluster mass, based on 14 X-ray luminous clusters at z {approx_equal} 0.2 from the Local Cluster Substructure Survey. We measure the integrated Compton y-parameter, Y, and total projected mass of the clusters (M {sub GL}) within a projected clustercentric radius of 350 kpc, corresponding to mean overdensities of 4000-8000 relative to the critical density. We find self-similar scaling between M {sub GL} and Y, with a scatter in mass at fixed Y of 32%.more » This scatter exceeds that predicted from numerical cluster simulations, however, it is smaller than comparable measurements of the scatter in mass at fixed T{sub X} . We also find no evidence of segregation in Y between disturbed and undisturbed clusters, as had been seen with T{sub X} on the same physical scales. We compare our scaling relation to the Bonamente et al. relation based on mass measurements that assume hydrostatic equilibrium, finding no evidence for a hydrostatic mass bias in cluster cores (M {sub GL} = 0.98 {+-} 0.13 M {sub HSE}), consistent with both predictions from numerical simulations and lensing/X-ray-based measurements of mass-observable scaling relations at larger radii. Overall our results suggest that the SZE may be less sensitive than X-ray observations to the details of cluster physics in cluster cores.« less

  12. Keck/LRIS Spectroscopy of the Distant Cluster Cl0016+16

    NASA Astrophysics Data System (ADS)

    Wirth, Gregory D.; Koo, David C.

    1994-12-01

    The rich galaxy cluster Cl0016+16 at z=0.55 initially achieved visibility (Koo 1981) for being the original ``anti Butcher-Oemler effect'' cluster: its galaxy population was found to be almost entirely red, indistinguishable in rest-frame color from local E/S0 galaxies, despite the expectation that higher redshift clusters should have a greater proportion of blue galaxies (Butcher & Oemler 1978, 1984). Interest in this cluster has heightened over the last decade as: X-ray observations found it to be among the most luminous clusters known (Henry et al. 1992); radio observations showed it to be among only a handful of clusters exhibiting a Sunyaev-Zel'dovich microwave decrement, useful for measuring the Hubble Constant (Lasenby 1992); optical spectroscopy revealed a significant population of ``E+A'' galaxies, enigmatic objects with spectra suggesting a recently-concluded episode of star formation (Dressler & Gunn 1992). Further observations by ROSAT, ASCA, and HST have established Cl0016+16 as among the best-studied clusters beyond Coma. The red nature of its galaxy population makes Cl0016+16 a prime candidate for the study of cluster galaxy evolution. As part of an ongoing effort to study the early-type galaxies in this cluster, we recently used the Keck Telescope and Low-Resolution Imaging Spectrograph to obtain high quality spectra of 19 cluster members at 6 Angstroms (FWHM) resolution. This poster describes the preliminary results from these data, which will allow us to investigate galaxy age and metallicity at lookback times nearly halfway to the Big Bang, probe the internal kinematics of galaxies at z=0.55, and thus perhaps trace the evolution of the ``fundamental plane'' for E/S0 galaxies.

  13. Neutral hydrogen gas, past and future star formation in galaxies in and around the ‘Sausage’ merging galaxy cluster

    DOE PAGES

    Stroe, Andra; Oosterloo, Tom; Rottgering, Huub J. A.; ...

    2015-07-25

    CIZA J2242.8+5301 (z = 0.188, nicknamed ‘Sausage’) is an extremely massive (M 200 ~2.0 × 10 15 M ⊙), merging cluster with shock waves towards its outskirts, which was found to host numerous emission line galaxies. We performed extremely deep Westerbork Synthesis Radio Telescope H i observations of the ‘Sausage’ cluster to investigate the effect of the merger and the shocks on the gas reservoirs fuelling present and future star formation (SF) in cluster members. By using spectral stacking, we find that the emission line galaxies in the ‘Sausage’ cluster have, on average, as much H i gas as fieldmore » galaxies (when accounting for the fact cluster galaxies are more massive than the field galaxies), contrary to previous studies. Since the cluster galaxies are more massive than the field spirals, they may have been able to retain their gas during the cluster merger. The large H i reservoirs are expected to be consumed within ~0.75–1.0 Gyr by the vigorous SF and active galactic nuclei activity and/or driven out by the outflows we observe. We find that the star formation rate (SFR) in a large fraction of H α emission line cluster galaxies correlates well with the radio broad-band emission, tracing supernova remnant emission. This suggests that the cluster galaxies, all located in post-shock regions, may have been undergoing sustained SFR for at least 100 Myr. In conclusion, this fully supports the interpretation proposed by Stroe et al. and Sobral et al. that gas-rich cluster galaxies have been triggered to form stars by the passage of the shock.« less

  14. A History of H i Stripping in Virgo: A Phase-space View of VIVA Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Hyein; Chung, Aeree; Smith, Rory

    We investigate the orbital histories of Virgo galaxies at various stages of H i gas stripping. In particular, we compare the location of galaxies with different H i morphology in phase space. This method is a great tool for tracing the gas stripping histories of galaxies as they fall into the cluster. Most galaxies at the early stage of H i stripping are found in the first infall region of Virgo, while galaxies undergoing active H i stripping mostly appear to be falling in or moving out near the cluster core for the first time. Galaxies with severely stripped, yetmore » symmetric, H i disks are found in one of two locations. Some are deep inside the cluster, but others are found in the cluster outskirts with low orbital velocities. We suggest that the latter group of galaxies belong to a “backsplash” population. These present the clearest candidates for backsplashed galaxies observationally identified to date. We further investigate the distribution of a large sample of H i-detected galaxies toward Virgo in phase space, confirming that most galaxies are stripped of their gas as they settle into the gravitational potential of the cluster. In addition, we discuss the impact of tidal interactions between galaxies and group preprocessing on the H i properties of the cluster galaxies, and link the associated star formation evolution to the stripping sequence of cluster galaxies.« less

  15. Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Miller, Christopher J. Miller

    2012-03-01

    There are many examples of clustering in astronomy. Stars in our own galaxy are often seen as being gravitationally bound into tight globular or open clusters. The Solar System's Trojan asteroids cluster at the gravitational Langrangian in front of Jupiter’s orbit. On the largest of scales, we find gravitationally bound clusters of galaxies, the Virgo cluster (in the constellation of Virgo at a distance of ˜50 million light years) being a prime nearby example. The Virgo cluster subtends an angle of nearly 8◦ on the sky and is known to contain over a thousand member galaxies. Galaxy clusters play an important role in our understanding of theUniverse. Clusters exist at peaks in the three-dimensional large-scale matter density field. Their sky (2D) locations are easy to detect in astronomical imaging data and their mean galaxy redshifts (redshift is related to the third spatial dimension: distance) are often better (spectroscopically) and cheaper (photometrically) when compared with the entire galaxy population in large sky surveys. Photometric redshift (z) [Photometric techniques use the broad band filter magnitudes of a galaxy to estimate the redshift. Spectroscopic techniques use the galaxy spectra and emission/absorption line features to measure the redshift] determinations of galaxies within clusters are accurate to better than delta_z = 0.05 [7] and when studied as a cluster population, the central galaxies form a line in color-magnitude space (called the the E/S0 ridgeline and visible in Figure 16.3) that contains galaxies with similar stellar populations [15]. The shape of this E/S0 ridgeline enables astronomers to measure the cluster redshift to within delta_z = 0.01 [23]. The most accurate cluster redshift determinations come from spectroscopy of the member galaxies, where only a fraction of the members need to be spectroscopically observed [25,42] to get an accurate redshift to the whole system. If light traces mass in the Universe, then the locations of galaxy clusters will be at locations of the peaks in the true underlying (mostly) dark matter density field. Kaiser (1984) [19] called this the high-peak model, which we demonstrate in Figure 16.1. We show a two-dimensional representation of a density field created by summing plane-waves with a predetermined power and with random wave-vector directions. In the left panel, we plot only the largest modes, where we see the density peaks (black) and valleys (white) in the combined field. In the right panel, we allow for smaller modes. You can see that the highest density peaks in the left panel contain smaller-scale, but still high-density peaks. These are the locations of future galaxy clusters. The bottom panel shows just these cluster-scale peaks. As you can see, the peaks themselves are clustered, and instead of just one large high-density peak in the original density field (see the left panel), the smaller modes show that six peaks are "born" within the broader, underlying large-scale density modes. This exemplifies the "bias" or amplified structure that is traced by galaxy clusters [19]. Clusters are rare, easy to find, and their member galaxies provide good distance estimates. In combination with their amplified clustering signal described above, galaxy clusters are considered an efficient and precise tracer of the large-scale matter density field in the Universe. Galaxy clusters can also be used to measure the baryon content of the Universe [43]. They can be used to identify gravitational lenses [38] and map the distribution of matter in clusters. The number and spatial distribution of galaxy clusters can be used to constrain cosmological parameters, like the fraction of the energy density in the Universe due to matter (Omega_matter) or the variation in the density field on fixed physical scales (sigma_8) [26,33]. The individual clusters act as “Island Universes” and as such are laboratories here we can study the evolution of the properties of the cluster, like the hot, gaseous intra-cluster medium or shapes, colors, and star-formation histories of the member galaxies [17].

  16. Star formation in galaxy mergers with realistic models of stellar feedback and the interstellar medium

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.; Cox, Thomas J.; Hernquist, Lars; Narayanan, Desika; Hayward, Christopher C.; Murray, Norman

    2013-04-01

    We use hydrodynamic simulations with detailed, explicit models for stellar feedback to study galaxy mergers. These high-resolution (˜1 pc) simulations follow the formation and destruction of individual giant molecular clouds (GMC) and star clusters. We find that the final starburst is dominated by in situ star formation, fuelled by gas which flows inwards due to global torques. The resulting high gas density results in rapid star formation. The gas is self-gravitating, and forms massive (≲1010 M⊙) GMC and subsequently super star clusters (with masses up to 108 M⊙). However, in contrast to some recent simulations, the bulk of new stars which eventually form the central bulge are not born in super-clusters which then sink to the centre of the galaxy. This is because feedback efficiently disperses GMC after they turn several per cent of their mass into stars. In other words, most of the mass that reaches the nucleus does so in the form of gas. The Kennicutt-Schmidt law emerges naturally as a consequence of feedback balancing gravitational collapse, independent of the small-scale star formation microphysics. The same mechanisms that drive this relation in isolated galaxies, in particular radiation pressure from infrared photons, extend, with no fine-tuning, over seven decades in star formation rate (SFR) to regulate star formation in the most extreme starburst systems with densities ≳104 M⊙ pc-2. This feedback also drives super-winds with large mass-loss rates; however, a significant fraction of the wind material falls back on to the discs at later times, leading to higher post-starburst SFRs in the presence of stellar feedback. This suggests that strong active galactic nucleus feedback may be required to explain the sharp cut-offs in SFR that are observed in post-merger galaxies. We compare the results to those from simulations with no explicit resolution of GMC or feedback [`effective equation-of-state' (EOS) models]. We find that global galaxy properties are similar between EOS and resolved-feedback models. The relic structure and mass profile, and the total mass of stars formed in the nuclear starburst are quite similar, as is the morphological structure during and after mergers (tails, bridges, etc.). Disc survival in sufficiently gas rich mergers is similar in the two cases, and the new models follow the same scalings as derived for the efficiency of disc re-formation after a merger as derived from previous work with the simplified EOS models. While the global galaxy properties are similar between EOS and feedback models, subgalaxy-scale properties and the SFRs can be quite different: the more detailed models exhibit significantly higher star formation in tails and bridges (especially in shocks), and allow us to resolve the formation of super star clusters. In the new models, the star formation is more strongly time-variable and drops more sharply between close passages. The instantaneous burst enhancement can be higher or lower, depending on the details of the orbit and initial structural properties of the galaxies; first-passage bursts are more sensitive to these details than those at the final coalescence.

  17. Dynamics of the baryonic component in hierarchical clustering universes

    NASA Technical Reports Server (NTRS)

    Navarro, Julio

    1993-01-01

    I present self-consistent 3-D simulations of the formation of virialized systems containing both gas and dark matter in a flat universe. A fully Lagrangian code based on the Smoothed Particle Hydrodynamics technique and a tree data structure has been used to evolve regions of comoving radius 2-3 Mpc. Tidal effects are included by coarse-sampling the density of the outer regions up to a radius approx. 20 Mpc. Initial conditions are set at high redshift (z greater than 7) using a standard Cold Dark Matter perturbation spectrum and a baryon mass fraction of 10 percent (omega(sub b) = 0.1). Simulations in which the gas evolves either adiabatically or radiates energy at a rate determined locally by its cooling function were performed. This allows us to investigate with the same set of simulations the importance of radiative losses in the formation of galaxies and the equilibrium structure of virialized systems where cooling is very inefficient. In the absence of radiative losses, the simulations can be rescaled to the density and radius typical of galaxy clusters. A summary of the main results is presented.

  18. Continuum and Line Emission Simulation of Star-Forming Galaxies and Development of a New Sub-mm Inte

    NASA Astrophysics Data System (ADS)

    Lagache, Guilaine

    2018-01-01

    Nowadays, most of the constraints on the dusty star formation at high z comes from deep continuum surveys. We developed a new simulation of the dusty extragalactic sky with a realistic clustering. The comparison between single-dish and interferometric data showed that the clustering inside the beam of a single-dish instrument can seriously bias their measurements. Fortunately, these simulations also show that the beam of a >30-meter dish in the mm should not be affected by serious multiplicity effects. We will give predictions for important characteristics of future AtLAST surveys (as confusion limit, number of detections, properties of detected galaxies). These simulations can also include line emission to prepare a future sub-mm low-resolution spectroscopic survey at high z with AtLAST. Such a survey could be built on the legacy of the CONCERTO survey, that will map the fluctuations of the CII line intensity in the reionisation and post-reionisation epoch. A "super-CONCERTO" instrument on AtLAST would be a perfect first-light instrument to unveil the gigantic potential of this telescope.

  19. Next Generation Virgo Cluster Survey. XXI. The Weak Lensing Masses of the CFHTLS and NGVS RedGOLD Galaxy Clusters and Calibration of the Optical Richness

    NASA Astrophysics Data System (ADS)

    Parroni, Carolina; Mei, Simona; Erben, Thomas; Van Waerbeke, Ludovic; Raichoor, Anand; Ford, Jes; Licitra, Rossella; Meneghetti, Massimo; Hildebrandt, Hendrik; Miller, Lance; Côté, Patrick; Covone, Giovanni; Cuillandre, Jean-Charles; Duc, Pierre-Alain; Ferrarese, Laura; Gwyn, Stephen D. J.; Puzia, Thomas H.

    2017-10-01

    We measured stacked weak lensing cluster masses for a sample of 1323 galaxy clusters detected by the RedGOLD algorithm in the Canada-France-Hawaii Telescope Legacy Survey W1 and the Next Generation Virgo Cluster Survey at 0.2< z< 0.5, in the optical richness range 10< λ < 70. This is the most comprehensive lensing study of a ˜ 100 % complete and ˜ 80 % pure optical cluster catalog in this redshift range. We test different mass models, and our final model includes a basic halo model with a Navarro Frenk and White profile, as well as correction terms that take into account cluster miscentering, non-weak shear, the two-halo term, the contribution of the Brightest Cluster Galaxy, and an a posteriori correction for the intrinsic scatter in the mass-richness relation. With this model, we obtain a mass-richness relation of {log}{M}200/{M}⊙ =(14.46+/- 0.02)+(1.04+/- 0.09){log}(λ /40) (statistical uncertainties). This result is consistent with other published lensing mass-richness relations. We give the coefficients of the scaling relations between the lensing mass and X-ray mass proxies, L X and T X, and compare them with previous results. When compared to X-ray masses and mass proxies, our results are in agreement with most previous results and simulations, and consistent with the expected deviations from self-similarity.

  20. Intrinsic alignments in redMaPPer clusters - I. Central galaxy alignments and angular segregation of satellites

    NASA Astrophysics Data System (ADS)

    Huang, Hung-Jin; Mandelbaum, Rachel; Freeman, Peter E.; Chen, Yen-Chi; Rozo, Eduardo; Rykoff, Eli; Baxter, Eric J.

    2016-11-01

    The shapes of cluster central galaxies are not randomly oriented, but rather exhibit coherent alignments with the shapes of their parent clusters as well as with the surrounding large-scale structures. In this work, we aim to identify the galaxy and cluster quantities that most strongly predict the central galaxy alignment phenomenon among a large parameter space with a sample of 8237 clusters and 94 817 members within 0.1 < z < 0.35, based on the red-sequence Matched-filter Probabilistic Percolation cluster catalogue constructed from the Sloan Digital Sky Survey. We first quantify the alignment between the projected central galaxy shapes and the distribution of member satellites, to understand what central galaxy and cluster properties most strongly correlate with these alignments. Next, we investigate the angular segregation of satellites with respect to their central galaxy major axis directions, to identify the satellite properties that most strongly predict their angular segregation. We find that central galaxies are more aligned with their member galaxy distributions in clusters that are more elongated and have higher richness, and for central galaxies with larger physical size, higher luminosity and centring probability, and redder colour. Satellites with redder colour, higher luminosity, located closer to the central galaxy, and with smaller ellipticity show a stronger angular segregation towards their central galaxy major axes. Finally, we provide physical explanations for some of the identified correlations, and discuss the connection to theories of central galaxy alignments, the impact of primordial alignments with tidal fields, and the importance of anisotropic accretion.

Top