Science.gov

Sample records for simulating structural collapse

  1. Formation of a protocluster: A virialized structure from gravoturbulent collapse. I. Simulation of cluster formation in a collapsing molecular cloud

    NASA Astrophysics Data System (ADS)

    Lee, Yueh-Ning; Hennebelle, Patrick

    2016-06-01

    Context. Stars are often observed to form in clusters and it is therefore important to understand how such a region of concentrated mass is assembled out of the diffuse medium. The properties of such a region eventually prescribe the important physical mechanisms and determine the characteristics of the stellar cluster. Aims: We study the formation of a gaseous protocluster inside a molecular cloud and associate its internal properties with those of the parent cloud by varying the level of the initial turbulence of the cloud with a view to better characterize the subsequent stellar cluster formation. Methods: We performed high resolution magnetohydrodynamic (MHD) simulations of gaseous protoclusters forming in molecular clouds collapsing under self-gravity. We determined ellipsoidal cluster regions via gas kinematics and sink particle distribution, permitting us to determine the mass, size, and aspect ratio of the cluster. We studied the cluster properties, such as kinetic and gravitational energy, and made links to the parent cloud. Results: The gaseous protocluster is formed out of global collapse of a molecular cloud and has non-negligible rotation owing to angular momentum conservation during the collapse of the object. Most of the star formation occurs in this region, which occupies only a small volume fraction of the whole cloud. This dense entity is a result of the interplay between turbulence and gravity. We identify such regions in simulations and compare the gas and sink particles to observed star-forming clumps and embedded clusters, respectively. The gaseous protocluster inferred from simulation results presents a mass-size relation that is compatible with observations. We stress that the stellar cluster radius, although clearly correlated with the gas cluster radius, depends sensitively on its definition. Energy analysis is performed to confirm that the gaseous protocluster is a product of gravoturbulent reprocessing and that the support of turbulent

  2. 1. UPPER NOTTINGHAM MINE. COLLAPSED ADIT AND COLLAPSED WOODEN STRUCTURE. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. UPPER NOTTINGHAM MINE. COLLAPSED ADIT AND COLLAPSED WOODEN STRUCTURE. CAMERA IS POINTED EAST. - Florida Mountain Mining Sites, Upper Nottingham Mine, West face of Florida Mountain, head of Jacobs Gulch, Silver City, Owyhee County, ID

  3. Core-collapse supernova explosion simulations

    SciTech Connect

    Cardall, Christian Y

    2011-01-01

    Neutrinos play important roles in the pre-collapse evolution, explosion, and aftermath of core-collapse supernovae. Detected neutrino signals from core-collapse supernovae would provide insight into the explosion mechanism and unknown neutrino mixing parameters. Achieving these goals requires large-scale, multiphysics simulations. For many years, several groups have performed such simulations with increasing realism. Current simulations and plans for future work of the Oak Ridge group are described.

  4. Core-collapse supernova simulations

    NASA Astrophysics Data System (ADS)

    Mueller, Bernhard

    2017-01-01

    Core-collapse supernovae, the deaths of massive stars, are among the most spectacular phenomena in astrophysics: Not only can supernovae outshine their host galaxy for weeks; they are also laboratories for the behavior of matter at supranuclear densities, and one of the few environments where collective neutrino effects can become important. Moreover, supernovae play a central role in the cosmic matter cycle, e.g., as the dominant producers of oxygen in the Universe. Yet the mechanism by which massive stars explode has eluded us for decades, partly because classical astronomical observations across the electromagnetic spectrum cannot directly probe the supernovae ``engine''. Numerical simulations are thus our primary tool for understanding the explosion mechanism(s) of massive stars. Rigorous modeling needs to take a host of important physical ingredients into account, such as the emission and partial reabsorption of neutrinos from the young proto-neutron star, multi-dimensional fluid motions, general relativistic gravity, the equation of state of nuclear matter, and magnetic fields. This is a challenging multi-physics problem that has not been fully solved yet. Nonetheless, as I shall argue in this talk, recent first-principle 3D simulations have gone a long way towards demonstrating the viability of the most popular explosion scenario, the ``neutrino-driven mechanism''. Focusing on successful explosion models of the MPA-QUB-Monash collaboration, I will discuss possible requirements for robust explosions across a wide range of progenitors, such as accurate neutrino opacities, stellar rotation, and seed asymmetries from convective shell burning. With the advent of successful explosion models, supernova theory can also be confronted with astronomical observations. I will show that recent 3D models come closer to matching observed explosion parameters (explosion energies, neutron star kicks) than older 2D models, although there are still discrepancies. This work has

  5. Collapse Mechanisms Of Masonry Structures

    SciTech Connect

    Zuccaro, G.; Rauci, M.

    2008-07-08

    The paper outlines a possible approach to typology recognition, safety check analyses and/or damage measuring taking advantage by a multimedia tool (MEDEA), tracing a guided procedure useful for seismic safety check evaluation and post event macroseismic assessment. A list of the possible collapse mechanisms observed in the post event surveys on masonry structures and a complete abacus of the damages are provided in MEDEA. In this tool a possible combination between a set of damage typologies and each collapse mechanism is supplied in order to improve the homogeneity of the damages interpretation. On the other hand recent researches of one of the author have selected a number of possible typological vulnerability factors of masonry buildings, these are listed in the paper and combined with potential collapse mechanisms to be activated under seismic excitation. The procedure takes place from simple structural behavior models, derived from the Umbria-Marche earthquake observations, and tested after the San Giuliano di Puglia event; it provides the basis either for safety check analyses of the existing buildings or for post-event structural safety assessment and economic damage evaluation. In the paper taking advantage of MEDEA mechanisms analysis, mainly developed for the post event safety check surveyors training, a simple logic path is traced in order to approach the evaluation of the masonry building safety check. The procedure starts from the identification of the typological vulnerability factors to derive the potential collapse mechanisms and their collapse multipliers and finally addresses the simplest and cheapest strengthening techniques to reduce the original vulnerability. The procedure has been introduced in the Guide Lines of the Regione Campania for the professionals in charge of the safety check analyses and the buildings strengthening in application of the national mitigation campaign introduced by the Ordinance of the Central Government n. 3362

  6. (Extreme) Core-collapse Supernova Simulations

    NASA Astrophysics Data System (ADS)

    Mösta, Philipp

    2017-01-01

    In this talk I will present recent progress on modeling core-collapse supernovae with massively parallel simulations on the largest supercomputers available. I will discuss the unique challenges in both input physics and computational modeling that come with a problem involving all four fundamental forces and relativistic effects and will highlight recent breakthroughs overcoming these challenges in full 3D simulations. I will pay particular attention to how these simulations can be used to reveal the engines driving some of the most extreme explosions and conclude by discussing what remains to be done in simulation work to maximize what we can learn from current and future time-domain astronomy transient surveys.

  7. Simulating the Entropic Collapse of Coarse-Grained Chromosomes

    PubMed Central

    Shendruk, Tyler N.; Bertrand, Martin; de Haan, Hendrick W.; Harden, James L.; Slater, Gary W.

    2015-01-01

    Depletion forces play a role in the compaction and decompaction of chromosomal material in simple cells, but it has remained debatable whether they are sufficient to account for chromosomal collapse. We present coarse-grained molecular dynamics simulations, which reveal that depletion-induced attraction is sufficient to cause the collapse of a flexible chain of large structural monomers immersed in a bath of smaller depletants. These simulations use an explicit coarse-grained computational model that treats both the supercoiled DNA structural monomers and the smaller protein crowding agents as combinatorial, truncated Lennard-Jones spheres. By presenting a simple theoretical model, we quantitatively cast the action of depletants on supercoiled bacterial DNA as an effective solvent quality. The rapid collapse of the simulated flexible chromosome at the predicted volume fraction of depletants is a continuous phase transition. Additional physical effects to such simple chromosome models, such as enthalpic interactions between structural monomers or chain rigidity, are required if the collapse is to be a first-order phase transition. PMID:25692586

  8. Simulating the Entropic Collapse of Coarse-Grained Chromosomes

    NASA Astrophysics Data System (ADS)

    Shendruk, Tyler N.; Bertrand, Martin; de Haan, Hendrick W.; Harden, James L.; Slater, Gary W.

    2015-02-01

    Depletion forces play a role in the compaction and de-compation of chromosomal material in simple cells but it remains debatable whether they are sufficient to account for chromosomal collapse. We present coarse-grained molecular dynamics simulations, which reveal that depletion-induced attraction is sufficient to cause the collapse of a flexible chain of large structural monomers immersed in a bath of smaller depletants. These simulations use an explicit coarse-grained computational model that treats both the supercoiled DNA structural monomers and the smaller protein crowding agents as combinatorial, truncated Lennard-Jones spheres. By presenting a simple theoretical model, we quantitatively cast the action of depletants on supercoiled bacterial DNA as an effective solvent quality. The rapid collapse of the simulated flexible chromosome at the predicted volume fraction of depletants is a continous phase transition. Additional physical effects to such simple chromosome models, such as enthalpic interactions between structural monomers or chain rigidity, are required if the collapse is to be a first-order phase transition.

  9. Petascale Core-Collapse Supernova Simulation

    NASA Astrophysics Data System (ADS)

    Messer, Bronson

    2009-11-01

    The advent of petascale computing brings with it the promise of substantial increases in physical fidelity for a host of scientific problems. However, the realities of computing on these resources are daunting, and the architectural features of petascale machines will require considerable innovation for effective use. Nevertheless, there exists a class of scientific problems whose ultimate answer requires the application of petascale (and beyond) computing. One example is ascertaining the core-collapse supernova mechanism and explaining the rich phenomenology associated with these events. These stellar explosions produce and disseminate a dominant fraction of the elements in the Universe; are prodigious sources of neutrinos, gravitational waves, and photons across the electromagnetic spectrum; and lead to the formation of neutron stars and black holes. I will describe our recent multidimensional supernova simulations performed on petascale platforms fielded by the DOE and NSF.

  10. Modelling Technique for Demonstrating Gravity Collapse Structures in Jointed Rock.

    ERIC Educational Resources Information Center

    Stimpson, B.

    1979-01-01

    Described is a base-friction modeling technique for studying the development of collapse structures in jointed rocks. A moving belt beneath weak material is designed to simulate gravity. A description is given of the model frame construction. (Author/SA)

  11. Flux-driven simulations of turbulence collapse

    SciTech Connect

    Park, G. Y.; Kim, S. S.; Jhang, Hogun; Rhee, T.; Diamond, P. H.; Xu, X. Q.

    2015-03-15

    Using three-dimensional nonlinear simulations of tokamak turbulence, we show that an edge transport barrier (ETB) forms naturally once input power exceeds a threshold value. Profiles, turbulence-driven flows, and neoclassical coefficients are evolved self-consistently. A slow power ramp-up simulation shows that ETB transition is triggered by the turbulence-driven flows via an intermediate phase which involves coherent oscillation of turbulence intensity and E×B flow shear. A novel observation of the evolution is that the turbulence collapses and the ETB transition begins when R{sub T} > 1 at t = t{sub R} (R{sub T}: normalized Reynolds power), while the conventional transition criterion (ω{sub E×B}>γ{sub lin} where ω{sub E×B} denotes mean flow shear) is satisfied only after t = t{sub C} ( >t{sub R}), when the mean flow shear grows due to positive feedback.

  12. INTERPLAY OF NEUTRINO OPACITIES IN CORE-COLLAPSE SUPERNOVA SIMULATIONS

    SciTech Connect

    Lentz, Eric J.; Mezzacappa, Anthony; Hix, W. Raphael; Messer, O. E. Bronson; Bruenn, Stephen W.

    2012-11-20

    We have conducted a series of numerical experiments using spherically symmetric, general relativistic, neutrino radiation hydrodynamics with the code Agile-BOLTZTRAN to examine the effects of modern neutrino opacities on the development of supernova simulations. We test the effects of opacities by removing opacities or by undoing opacity improvements for individual opacities and groups of opacities. We find that improvements to electron capture (EC) on nuclei, namely EC on an ensemble of nuclei using modern nuclear structure models rather than the simpler independent-particle approximation (IPA) for EC on a mean nucleus, plays the most important role during core collapse of all tested neutrino opacities. Low-energy neutrinos emitted by modern nuclear EC preferentially escape during collapse without the energy downscattering on electrons required to enhance neutrino escape and deleptonization for the models with IPA nuclear EC. During shock breakout the primary influence on the emergent neutrinos arises from non-isoenergetic scattering (NIS) on electrons. For the accretion phase, NIS on free nucleons and pair emission by e {sup +} e {sup -} annihilation have the largest impact on the neutrino emission and shock evolution. Other opacities evaluated, including nucleon-nucleon bremsstrahlung and especially neutrino-positron scattering, have little measurable impact on neutrino emission or shock dynamics. Modern treatments of nuclear EC, e {sup +} e {sup -}-annihilation pair emission, and NIS on electrons and free nucleons are critical elements of core-collapse simulations of all dimensionality.

  13. Interplay of Neutrino Opacities in Core-collapse Supernova Simulations

    NASA Astrophysics Data System (ADS)

    Lentz, Eric J.; Mezzacappa, Anthony; Messer, O. E. Bronson; Hix, W. Raphael; Bruenn, Stephen W.

    2012-11-01

    We have conducted a series of numerical experiments using spherically symmetric, general relativistic, neutrino radiation hydrodynamics with the code Agile-BOLTZTRAN to examine the effects of modern neutrino opacities on the development of supernova simulations. We test the effects of opacities by removing opacities or by undoing opacity improvements for individual opacities and groups of opacities. We find that improvements to electron capture (EC) on nuclei, namely EC on an ensemble of nuclei using modern nuclear structure models rather than the simpler independent-particle approximation (IPA) for EC on a mean nucleus, plays the most important role during core collapse of all tested neutrino opacities. Low-energy neutrinos emitted by modern nuclear EC preferentially escape during collapse without the energy downscattering on electrons required to enhance neutrino escape and deleptonization for the models with IPA nuclear EC. During shock breakout the primary influence on the emergent neutrinos arises from non-isoenergetic scattering (NIS) on electrons. For the accretion phase, NIS on free nucleons and pair emission by e + e - annihilation have the largest impact on the neutrino emission and shock evolution. Other opacities evaluated, including nucleon-nucleon bremsstrahlung and especially neutrino-positron scattering, have little measurable impact on neutrino emission or shock dynamics. Modern treatments of nuclear EC, e + e --annihilation pair emission, and NIS on electrons and free nucleons are critical elements of core-collapse simulations of all dimensionality.

  14. Parametric initial conditions for core-collapse supernova simulations

    NASA Astrophysics Data System (ADS)

    Suwa, Yudai; Müller, Ewald

    2016-08-01

    We investigate a method to construct parametrized progenitor models for core-collapse supernova simulations. Different from all modern core-collapse supernova studies, which rely on progenitor models from stellar evolution calculations, we follow the methodology of Baron & Cooperstein to construct initial models. Choosing parametrized spatial distributions of entropy and electron fraction as a function of mass coordinate and solving the equation of hydrostatic equilibrium, we obtain the initial density structures of our progenitor models. First, we calculate structures with parameters fitting broadly the evolutionary model s11.2 of Woosley et al. (2002). We then demonstrate the reliability of our method by performing general relativistic hydrodynamic simulations in spherical symmetry with the isotropic diffusion source approximation to solve the neutrino transport. Our comprehensive parameter study shows that initial models with a small central entropy (≲0.4 kB nucleon-1) can explode even in spherically symmetric simulations. Models with a large entropy (≳6 kB nucleon-1) in the Si/O layer have a rather large explosion energy (˜4 × 1050 erg) at the end of the simulations, which is still rapidly increasing.

  15. Numerical simulations of non-spherical bubble collapse

    PubMed Central

    JOHNSEN, ERIC; COLONIUS, TIM

    2009-01-01

    A high-order accurate shock- and interface-capturing scheme is used to simulate the collapse of a gas bubble in water. In order to better understand the damage caused by collapsing bubbles, the dynamics of the shock-induced and Rayleigh collapse of a bubble near a planar rigid surface and in a free field are analysed. Collapse times, bubble displacements, interfacial velocities and surface pressures are quantified as a function of the pressure ratio driving the collapse and of the initial bubble stand-off distance from the wall; these quantities are compared to the available theory and experiments and show good agreement with the data for both the bubble dynamics and the propagation of the shock emitted upon the collapse. Non-spherical collapse involves the formation of a re-entrant jet directed towards the wall or in the direction of propagation of the incoming shock. In shock-induced collapse, very high jet velocities can be achieved, and the finite time for shock propagation through the bubble may be non-negligible compared to the collapse time for the pressure ratios of interest. Several types of shock waves are generated during the collapse, including precursor and water-hammer shocks that arise from the re-entrant jet formation and its impact upon the distal side of the bubble, respectively. The water-hammer shock can generate very high pressures on the wall, far exceeding those from the incident shock. The potential damage to the neighbouring surface is quantified by measuring the wall pressure. The range of stand-off distances and the surface area for which amplification of the incident shock due to bubble collapse occurs is determined. PMID:19756233

  16. Plasticity-mediated collapse and recrystallization in hollow copper nanowires: a molecular dynamics simulation.

    PubMed

    Dutta, Amlan; Raychaudhuri, Arup Kumar; Saha-Dasgupta, Tanusri

    2016-01-01

    We study the thermal stability of hollow copper nanowires using molecular dynamics simulation. We find that the plasticity-mediated structural evolution leads to transformation of the initial hollow structure to a solid wire. The process involves three distinct stages, namely, collapse, recrystallization and slow recovery. We calculate the time scales associated with different stages of the evolution process. Our findings suggest a plasticity-mediated mechanism of collapse and recrystallization. This contradicts the prevailing notion of diffusion driven transport of vacancies from the interior to outer surface being responsible for collapse, which would involve much longer time scales as compared to the plasticity-based mechanism.

  17. Plasticity-mediated collapse and recrystallization in hollow copper nanowires: a molecular dynamics simulation

    PubMed Central

    Raychaudhuri, Arup Kumar; Saha-Dasgupta, Tanusri

    2016-01-01

    Summary We study the thermal stability of hollow copper nanowires using molecular dynamics simulation. We find that the plasticity-mediated structural evolution leads to transformation of the initial hollow structure to a solid wire. The process involves three distinct stages, namely, collapse, recrystallization and slow recovery. We calculate the time scales associated with different stages of the evolution process. Our findings suggest a plasticity-mediated mechanism of collapse and recrystallization. This contradicts the prevailing notion of diffusion driven transport of vacancies from the interior to outer surface being responsible for collapse, which would involve much longer time scales as compared to the plasticity-based mechanism. PMID:26977380

  18. Numerical Simulations of Silverpit Crater Collapse

    NASA Technical Reports Server (NTRS)

    Collins, G. S.; Ivanov, B. A.; Turtle, E. P.; Melosh, H. J.

    2003-01-01

    The Silverpit crater is a recently discovered, 60-65 Myr old complex crater, which lies buried beneath the North Sea, about 150 km east of Britain. High-resolution images of Silverpit's subsurface structure, provided by three-dimensional seismic reflection data, reveal an inner-crater morphology similar to that expected for a 5-8 km diameter terrestrial crater. The crater walls show evidence of terrace-style slumping and there is a distinct central uplift, which may have produced a central peak in the pristine crater morphology. However, Silverpit is not a typical 5-km diameter terrestrial crater, because it exhibits multiple, concentric rings outside the main cavity. External concentric rings are normally associated with much larger impact structures, for example Chicxulub on Earth, or Orientale on the Moon. Furthermore, external rings associated with large impacts on the terrestrial planets and moons are widely-spaced, predominantly inwardly-facing, asymmetric scarps. However, the seismic data show that the external rings at Silverpit represent closely-spaced, concentric faultbound graben, with both inwardly and outwardly facing fault-scarps. This type of multi-ring structure directly analogous to the Valhalla-type multi-ring basins found on the icy satellites. Thus, the presence and style of the multiple rings at Silverpit is surprising given both the size of the crater and its planetary setting. A further curiosity of the Silverpit structure is that the external concentric rings appear to be extensional features on the West side of the crater and compressional features on the East side. The crater also lies in a local depression, thought to be created by postimpact movement of a salt layer buried beneath the crater.

  19. Numerical Simulations of Silverpit Crater Collapse

    NASA Technical Reports Server (NTRS)

    Collins, G. S.; Turtle, E. P.; Melosh, H. J.

    2003-01-01

    The Silverpit crater is a recently discovered, 60-65 Myr old complex crater, which lies buried beneath the North Sea, about 150 km east of Britain. High-resolution images of Silverpit's subsurface structure, provided by three-dimensional seismic reflection data, reveal an inner-crater morphology similar to that expected for a 5-8 km diameter terrestrial crater. The crater walls show evidence of terracestyle slumping and there is a distinct central uplift, which may have produced a central peak in the pristine crater morphology. However, Silverpit is not a typical 5-km diameter terrestrial crater, because it exhibits multiple, concentric rings outside the main cavity. External concentric rings are normally associated with much larger impact structures, for example Chicxulub on Earth, or Orientale on the Moon. Furthermore, external rings associated with large impacts on the terrestrial planets and moons are widely-spaced, predominantly inwardly-facing, asymmetric scarps. However, the seismic data show that the external rings at Silverpit represent closely-spaced, concentric fault-bound graben, with both inwardly and outwardly facing faults-carps. This type of multi-ring structure is directly analogous to the Valhalla-type multi-ring basins found on the icy satellites. Thus, the presence and style of the multiple rings at Silverpit is surprising given both the size of the crater and its planetary setting.

  20. 3. View of collapsed structure (type A) next to type ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. View of collapsed structure (type A) next to type B structure, facing east-northeast - Nevada Test Site, Japanese Village, Area 4, Yucca Flat, 4-04 Road near Rainier Mesa Road, Mercury, Nye County, NV

  1. Featured Image: The Simulated Collapse of a Core

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-11-01

    This stunning snapshot (click for a closer look!) is from a simulation of a core-collapse supernova. Despite having been studied for many decades, the mechanism driving the explosions of core-collapse supernovae is still an area of active research. Extremely complex simulations such as this one represent best efforts to include as many realistic physical processes as is currently computationally feasible. In this study led by Luke Roberts (a NASA Einstein Postdoctoral Fellow at Caltech at the time), a core-collapse supernova is modeled long-term in fully 3D simulations that include the effects of general relativity, radiation hydrodynamics, and even neutrino physics. The authors use these simulations to examine the evolution of a supernova after its core bounce. To read more about the teams findings (and see more awesome images from their simulations), check out the paper below!CitationLuke F. Roberts et al 2016 ApJ 831 98. doi:10.3847/0004-637X/831/1/98

  2. Interplay of Neutrino Opacities in Core-collapse Supernova Simulations

    SciTech Connect

    Lentz, Eric J; Mezzacappa, Anthony; Messer, Bronson; Hix, William Raphael; Bruenn, S. W.

    2012-01-01

    We have conducted a series of numerical experiments using spherically symmetric, general relativistic, neutrino radiation hydrodynamics with the code Agile-BOLTZTRAN to examine the effects of including, and improving, the calculation of neutrino opacities on the development of supernova simulations by removing, or replacing, each opacity individually, or removing opacities in groups. We find that during core collapse improvements to electron capture (EC) on nuclei, namely EC on an ensemble of nuclei based on the hybrid model, relative to the simpler independent-particle approximation (IPA) for a mean nucleus, plays the most important role of all tested neutrino opacities. Low-energy neutrinos emitted by nuclear EC preferentially escape during collapse leading to larger deleptonization of the collapsing core, without the energy downscattering via non-isoenergetic scattering (NIS) on electrons required for the models with IPA nuclear EC. During shock breakout the primary influence on the emergent neutrinos arises from NIS on electrons. For the accretion phase NIS on free nucleons and pair emission by $e^+e^-$-annihilation have the largest impact on the neutrino emission and shock evolution. Other opacities evaluated including nucleon-nucleon bremsstrahlung and especially neutrino-positron scattering have little measurable impact on neutrino emission or shock dynamics. Modern treatments of nuclear electron capture, $e^+e^-$-annihilation pair emission, and non-isoenergetic scattering on electrons and free nucleons are critical elements of core-collapse simulations of all dimensionality.

  3. PROBABILISTIC STRUCTURAL RESPONSE OF STRUCTURE UNDER COLLAPSE LOADING

    SciTech Connect

    J. PEPIN; E. RODRIGUEZ; ET AL

    2001-01-05

    Engineers at Los Alamos National Laboratory (LANL) are currently developing the capability to provide a reliability-based structural evaluation technique for performing weapon reliability assessments. To enhance the analyst's confidence with these new methods, an integrated experiment and analysis project has been developed. The uncertainty associated with the collapse response of commercially available spherical marine float is evaluated with the aid of the non-linear explicit dynamics code DYNA3D (Whirley and Engelmann 1988) coupled with the probabilistic code NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) (Thacker et al. 1998). Variations in geometric shape parameters and uncertainties in material parameters are characterized and included in the probabilistic model.

  4. Computational Astrophysics at the Bleeding Edge: Simulating Core Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Mezzacappa, Anthony

    2013-04-01

    Core collapse supernovae are the single most important source of elements in the Universe, dominating the production of elements between oxygen and iron and likely responsible for half the elements heavier than iron. They result from the death throes of massive stars, beginning with stellar core collapse and the formation of a supernova shock wave that must ultimately disrupt such stars. Past, first-principles models most often led to the frustrating conclusion the shock wave stalls and is not revived, at least given the physics included in the models. However, recent progress in the context of two-dimensional, first-principles supernova models is reversing this trend, giving us hope we are on the right track toward a solution of one of the most important problems in astrophysics. Core collapse supernovae are multi-physics events, involving general relativity, hydrodynamics and magnetohydrodynamics, nuclear burning, and radiation transport in the form of neutrinos, along with a detailed nuclear physics equation of state and neutrino weak interactions. Computationally, simulating these catastrophic stellar events presents an exascale computing challenge. I will discuss past models and milestones in core collapse supernova theory, the state of the art, and future requirements. In this context, I will present the results and plans of the collaboration led by ORNL and the University of Tennessee.

  5. Temperature considerations in numerical simulations of collapsing bubbles

    NASA Astrophysics Data System (ADS)

    Johnsen, Eric; Alahyari Beig, Shahaboddin

    2014-11-01

    In naval and biomedical engineering applications, the inertial collapse of cavitation bubbles is known to damage its surroundings. While significant attention has been dedicated to investigating the pressures produced by this process, less is known about heating of the surrounding medium, which may be important when collapse occurs near objects whose properties strongly depend on temperature (e.g., polymers). Euler simulations are capable of predicting the high pressures thereby generated. However, numerical errors can occur when solving the Navier-Stokes equations for compressible interface problems. Using a newly developed computational approach that prevents such errors, we investigate the dynamics of shock-induced and Rayleigh collapse of individual and collections of gas bubbles, in a free field and near rigid surfaces. We characterize the temperature rises based on the relevant non-dimensional parameters entering the problem. In particular, we show that the temperature of a neighboring object rises due to two mechanisms: the shock produced at collapse and heat diffusion from the hot bubble as it moves toward the object. This work was supported by ONR Grant N00014-12-1-0751.

  6. 30. DETAIL OF COLLAPSED BRIDGE NO. 14 SUSPENSION STRUCTURE. LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. DETAIL OF COLLAPSED BRIDGE NO. 14 SUSPENSION STRUCTURE. LOOKING SOUTHWEST. - Greenville Yard, Transfer Bridge System, Port of New York/New Jersey, Upper New York Bay, Jersey City, Hudson County, NJ

  7. 5. TIP TOP MINE. EAST SIDE OF STRUCTURE WITH COLLAPSED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. TIP TOP MINE. EAST SIDE OF STRUCTURE WITH COLLAPSED ADIT. CAMERA POINTED WEST. - Florida Mountain Mining Sites, Tip Top Mine, West face Florida Mountain, approximately 150 feet below summit, Silver City, Owyhee County, ID

  8. Consistent SPH Simulations of Protostellar Collapse and Fragmentation

    NASA Astrophysics Data System (ADS)

    Gabbasov, Ruslan; Sigalotti, Leonardo Di G.; Cruz, Fidel; Klapp, Jaime; Ramírez-Velasquez, José M.

    2017-02-01

    We study the consistency and convergence of smoothed particle hydrodynamics (SPH) as a function of the interpolation parameters, namely the number of particles N, the number of neighbors n, and the smoothing length h, using simulations of the collapse and fragmentation of protostellar rotating cores. The calculations are made using a modified version of the GADGET-2 code that employs an improved scheme for the artificial viscosity and power-law dependences of n and h on N, as was recently proposed by Zhu et al., which comply with the combined limit N\\to ∞ , h\\to 0, and n\\to ∞ with n/N\\to 0 for full SPH consistency as the domain resolution is increased. We apply this realization to the “standard isothermal test case” in the variant calculated by Burkert & Bodenheimer and the Gaussian cloud model of Boss to investigate the response of the method to adaptive smoothing lengths in the presence of large density and pressure gradients. The degree of consistency is measured by tracking how well the estimates of the consistency integral relations reproduce their continuous counterparts. In particular, C 0 and C 1 particle consistency is demonstrated, meaning that the calculations are close to second-order accuracy. As long as n is increased with N, mass resolution also improves as the minimum resolvable mass {M}\\min ∼ {n}-1. This aspect allows proper calculation of small-scale structures in the flow associated with the formation and instability of protostellar disks around the growing fragments, which are seen to develop a spiral structure and fragment into close binary/multiple systems as supported by recent observations.

  9. A validated approach for modeling collapse of steel structures

    NASA Astrophysics Data System (ADS)

    Saykin, Vitaliy Victorovich

    A civil engineering structure is faced with many hazardous conditions such as blasts, earthquakes, hurricanes, tornadoes, floods, and fires during its lifetime. Even though structures are designed for credible events that can happen during a lifetime of the structure, extreme events do happen and cause catastrophic failures. Understanding the causes and effects of structural collapse is now at the core of critical areas of national need. One factor that makes studying structural collapse difficult is the lack of full-scale structural collapse experimental test results against which researchers could validate their proposed collapse modeling approaches. The goal of this work is the creation of an element deletion strategy based on fracture models for use in validated prediction of collapse of steel structures. The current work reviews the state-of-the-art of finite element deletion strategies for use in collapse modeling of structures. It is shown that current approaches to element deletion in collapse modeling do not take into account stress triaxiality in vulnerable areas of the structure, which is important for proper fracture and element deletion modeling. The report then reviews triaxiality and its role in fracture prediction. It is shown that fracture in ductile materials is a function of triaxiality. It is also shown that, depending on the triaxiality range, different fracture mechanisms are active and should be accounted for. An approach using semi-empirical fracture models as a function of triaxiality are employed. The models to determine fracture initiation, softening and subsequent finite element deletion are outlined. This procedure allows for stress-displacement softening at an integration point of a finite element in order to subsequently remove the element. This approach avoids abrupt changes in the stress that would create dynamic instabilities, thus making the results more reliable and accurate. The calibration and validation of these models are

  10. Gravitational wave extraction in simulations of rotating stellar core collapse

    SciTech Connect

    Reisswig, C.; Ott, C. D.; Sperhake, U.; Schnetter, E.

    2011-03-15

    We perform simulations of general relativistic rotating stellar core collapse and compute the gravitational waves (GWs) emitted in the core-bounce phase of three representative models via multiple techniques. The simplest technique, the quadrupole formula (QF), estimates the GW content in the spacetime from the mass-quadrupole tensor only. It is strictly valid only in the weak-field and slow-motion approximation. For the first time, we apply GW extraction methods in core collapse that are fully curvature based and valid for strongly radiating and highly relativistic sources. These techniques are not restricted to weak-field and slow-motion assumptions. We employ three extraction methods computing (i) the Newman-Penrose (NP) scalar {Psi}{sub 4}, (ii) Regge-Wheeler-Zerilli-Moncrief master functions, and (iii) Cauchy-characteristic extraction (CCE) allowing for the extraction of GWs at future null infinity, where the spacetime is asymptotically flat and the GW content is unambiguously defined. The latter technique is the only one not suffering from residual gauge and finite-radius effects. All curvature-based methods suffer from strong nonlinear drifts. We employ the fixed-frequency integration technique as a high-pass waveform filter. Using the CCE results as a benchmark, we find that finite-radius NP extraction yields results that agree nearly perfectly in phase, but differ in amplitude by {approx}1%-7% at core bounce, depending on the model. Regge-Wheeler-Zerilli-Moncrief waveforms, while, in general, agreeing in phase, contain spurious high-frequency noise of comparable amplitudes to those of the relatively weak GWs emitted in core collapse. We also find remarkably good agreement of the waveforms obtained from the QF with those obtained from CCE. The results from QF agree very well in phase and systematically underpredict peak amplitudes by {approx}5%-11%, which is comparable to the NP results and is certainly within the uncertainties associated with core collapse

  11. The collapsing bubble in a liquid by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Xiao, C.; Heyes, D. M.; Powles, J. G.

    Molecular dynamics simulations have been made of a collapsing bubble or cavity in a simple liquid. Simulations of a Lennard-Jones liquid reveal that the collapsing process takes place in a series of stages. First, the 'hottest' molecules from the high kinetic energy tail in the Maxwell-Boltzmann distribution diffuse into the empty cavity. This is followed by a gradual filling in of the cavity until the density in the centre is a little lower than that of the bulk liquid. The system eventually reaches a final new equilibrium liquid state through a subsequent slower equilibration phase. The bubble fills in an oscillatory manner, by partly filling in, and then partially emptying, and so on, with ever decreasing amplitude towards the final uniform liquid state. These density oscillations are more obvious in systems with a larger bubble. Similar oscillations are observed in the kinetic energy of the molecules at selected radii from the centre of the initial bubble. The maximum temperature occurs typically at the end of the initial fillingin stage during which the density of the core undergoes a vapour-to-liquid phase transition, the released latent heat probably contributing to the temperatures achieved in this region. The average maximum temperature found in the smallest system examined is about nine times the critical temperature, which is about 6000K for water, thus suggesting a simple mechanism for producing molecules with the sorts of kinetic energies and lifetimes required for sonoluminescence.

  12. Structure and dynamics of shock-induced nanobubble collapse in water.

    PubMed

    Vedadi, M; Choubey, A; Nomura, K; Kalia, R K; Nakano, A; Vashishta, P; van Duin, A C T

    2010-07-02

    Shock-induced collapse of nanobubbles in water is investigated with molecular dynamics simulations based on a reactive force field. We observe a focused jet at the onset of bubble shrinkage and a secondary shock wave upon bubble collapse. The jet length scales linearly with the nanobubble radius, as observed in experiments on micron-to-millimeter size bubbles. Shock induces dramatic structural changes, including an ice-VII-like structural motif at a particle velocity of 1  km/s. The incipient ice VII formation and the calculated Hugoniot curve are in good agreement with experimental results.

  13. 26. DETAIL OF STRUCTURAL COLLAPSE OF TOP FLOOR OF MILL, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. DETAIL OF STRUCTURAL COLLAPSE OF TOP FLOOR OF MILL, ABOVE ORE BIN, LOOKING WEST FROM TOP OF STAIRWAY IN CA-290-25. THE PIPE AT CENTER WAS USED TO SPREAD CRUSHED ORE COMING FROM THE JAW CRUSHER EVENLY TO ALL AREA OF THE ORE BIN BELOW. - Skidoo Mine, Park Route 38 (Skidoo Road), Death Valley Junction, Inyo County, CA

  14. Collapse of a Liquid Column: Numerical Simulation and Experimental Validation

    NASA Astrophysics Data System (ADS)

    Cruchaga, Marcela A.; Celentano, Diego J.; Tezduyar, Tayfun E.

    2007-03-01

    This paper is focused on the numerical and experimental analyses of the collapse of a liquid column. The measurements of the interface position in a set of experiments carried out with shampoo and water for two different initial column aspect ratios are presented together with the corresponding numerical predictions. The experimental procedure was found to provide acceptable recurrence in the observation of the interface evolution. Basic models describing some of the relevant physical aspects, e.g. wall friction and turbulence, are included in the simulations. Numerical experiments are conducted to evaluate the influence of the parameters involved in the modeling by comparing the results with the data from the measurements. The numerical predictions reasonably describe the physical trends.

  15. Multidimensional Simulations of Core Collapse Supernovae Using Multigroup Neutrino Transport

    NASA Astrophysics Data System (ADS)

    Calder, Alan Clark

    We couple two-dimensional hydrodynamics to realistic one-dimensional multigroup flux-limited diffusion neutrino transport to investigate the role of two types of convection in core collapse supernovae. The types are protoneutron star convection and neutrino-driven convection. Initial conditions, time-dependent boundary conditions, and neutrino distributions for computing neutrino heating, cooling, and deleptonization rates are obtained from one-dimensional simulations that implement multigroup flux-limited diffusion and one-dimensional hydrodynamics. We find that in the presence of neutrino transport, protoneutron star convection velocities are too small relative to bulk inflow velocities to result in any significant convective transport of entropy and leptons. This is evident in our two-dimensional entropy snapshots, which in this case appear spherically symmetric. The peak angle-averaged radial and angular convection velocities are orders of magnitude smaller than they are in the corresponding 'hydrodynamics only' models. A simple analytical model that supports our numerical results is given. We also investigate neutrino-driven convection in core collapse supernovae and its ramifications for the explosion mechanism. We begin with an 'optimistic' 15 M⊙ precollapse model, which is representative of the class of stars with compact iron cores. We find that neutrino-driven convection develops, but our simulations fail to produce explosions. Failure of this 'optimistic' 15 M⊙ Newtonian model leads us to conclude that it is unlikely, at least in our approximation, that neutrino-driven convection will lead to explosions for more massive stars with fatter iron cores or in cases in which general relativity is included.

  16. Multiparticle simulation of collapsing volcanic columns and pyroclastic flow

    NASA Astrophysics Data System (ADS)

    Neri, Augusto; Esposti Ongaro, Tomaso; Macedonio, Giovanni; Gidaspow, Dimitri

    2003-04-01

    A multiparticle thermofluid dynamic model was developed to assess the effect of a range of particle size on the transient two-dimensional behavior of collapsing columns and associated pyroclastic flows. The model accounts for full mechanical and thermal nonequilibrium conditions between a continuous gas phase and N solid particulate phases, each characterized by specific physical parameters and properties. The dynamics of the process were simulated by adopting a large eddy simulation approach able to resolve the large-scale features of the flow and by parametrizing the subgrid gas turbulence. Viscous and interphase effects were expressed in terms of Newtonian stress tensors and gas-particle and particle-particle coefficients, respectively. Numerical simulations were carried out by using different grain-size distributions of the mixture at the vent, constitutive equations, and numerical resolutions. Dispersal dynamics describe the formation of the vertical jet, the column collapse and the building of the pyroclastic fountain, the generation of radially spreading pyroclastic flows, and the development of thermal convective instabilities from the fountain and the flow. The results highlight the importance of the multiparticle formulation of the model and describe several mechanical and thermal nonequilibrium effects. Finer particles tend to follow the hot ascending gas, mainly in the phoenix column and, secondarily, in the convective plume above the fountain. Coarser particles tend to segregate mainly along the ground both in the proximal area close to the crater rim because of the recycling of material from the fountain and in the distal area, because of the loss of radial momentum. As a result, pyroclastic flows were described as formed by a dilute fine-rich suspension current overlying a dense underflow rich in coarse particles from the proximal region of the flow. Nonequilibrium effects between particles of different sizes appear to be controlled by particle

  17. Simulation of bubble expansion and collapse in the vicinity of a free surface

    NASA Astrophysics Data System (ADS)

    Koukouvinis, P.; Gavaises, M.; Supponen, O.; Farhat, M.

    2016-05-01

    The present paper focuses on the numerical simulation of the interaction of laser-generated bubbles with a free surface, including comparison of the results with instances from high-speed videos of the experiment. The Volume Of Fluid method was employed for tracking liquid and gas phases while compressibility effects were introduced with appropriate equations of state for each phase. Initial conditions of the bubble pressure were estimated through the traditional Rayleigh Plesset equation. The simulated bubble expands in a non-spherically symmetric way due to the interference of the free surface, obtaining an oval shape at the maximum size. During collapse, a jet with mushroom cap is formed at the axis of symmetry with the same direction as the gravity vector, which splits the initial bubble to an agglomeration of toroidal structures. Overall, the simulation results are in agreement with the experimental images, both quantitatively and qualitatively, while pressure waves are predicted both during the expansion and the collapse of the bubble. Minor discrepancies in the jet velocity and collapse rate are found and are attributed to the thermodynamic closure of the gas inside the bubble.

  18. Investigation of structural collapse in unidirectionally freeze cast collagen scaffolds.

    PubMed

    Clearfield, Drew; Wei, Mei

    2016-01-01

    Though unidirectional freeze casting is a facile method for the production of structurally anisotropic biomedical scaffolds, challenges exist in optimizing the drying process that are often overlooked. In particular, structural collapse may occur if the material's frozen-state glass transition temperature (Tg') is exceeded. It was discovered that unidirectionally freeze cast collagen matrices were highly deformed following lyophilization, rendering them incapable of further use. In this study, modulated differential scanning calorimetry was performed to identify Tg's of unidirectionally freeze cast collagen scaffolds, and product temperatures during sublimation were recorded. It was observed that cast matrices from 0.5 to 0.05 M acetic acid (HAc) sublimed at a lyophilizer shelf temperature of -25 °C underwent structural collapse and exceeded their Tg's for the majority of the drying cycle. The use of a low pH suspension (0.5 M HAc) promoted the formation of a non-porous surface, which in turn contributed to the increase of the product temperature above its Tg' during drying. This study has revealed that use of a low shelf temperature (-40 °C) and a low HAc concentration (0.05 M) is effective in maintaining product temperatures under Tg' thereby preventing collapse in unidirectionally freeze cast collagen scaffolds.

  19. Simulation of thick-walled submarine pipeline collapse under bending and hydrostatic pressure

    SciTech Connect

    Al-Sharif, A.M.; Preston, R.

    1996-12-31

    The problem of submarine pipeline buckling or collapse as a result of bending and external pressure is investigated by numerical modeling using finite element analysis. The model takes into account the initial variability of material properties, the effect of cold-work on the pipe material properties and initial geometric imperfections. It is capable of simulating the nonlinear behavior, and structural instability due to the combined effects of bending and pressure. The solution algorithm and verification against experimental results are presented. In addition, a deterministic model for collapse under combined pressure and bending based on measured stress-strain behavior and pipe geometry is derived. Results from both finite element and deterministic models for different parameter sensitivities are examined.

  20. Relativistic structure, stability, and gravitational collapse of charged neutron stars

    SciTech Connect

    Ghezzi, Cristian R.

    2005-11-15

    Charged stars have the potential of becoming charged black holes or even naked singularities. We present a set of numerical solutions of the Tolman-Oppenheimer-Volkov equations that represents spherical charged compact stars in hydrostatic equilibrium. The stellar models obtained are evolved forward in time integrating the Einstein-Maxwell field equations. We assume an equation of state of a neutron gas at zero temperature. The charge distribution is taken as being proportional to the rest mass density distribution. The set of solutions present an unstable branch, even with charge-to-mass ratios arbitrarily close to the extremum case. We perform a direct check of the stability of the solutions under strong perturbations and for different values of the charge-to-mass ratio. The stars that are in the stable branch oscillate and do not collapse, while models in the unstable branch collapse directly to form black holes. Stars with a charge greater than or equal to the extreme value explode. When a charged star is suddenly discharged, it does not necessarily collapse to form a black hole. A nonlinear effect that gives rise to the formation of a shell of matter (in supermassive stars), is negligible in the present simulations. The results are in agreement with the third law of black hole thermodynamics and with the cosmic censorship conjecture.

  1. Evolution of deep collapse caldera: from structural to gravitational process

    NASA Astrophysics Data System (ADS)

    Geshi, N.; Acocella, V.; Ruch, J.

    2012-04-01

    We discuss the evolution of deep-subsiding caldera mainly controlled by gravitational process. Progress of caldera subsidence increases its subsidence/diameter ratio (S/D ratio). We investigate the surface features of calderas undergoing significant subsidence with regard to their diameter. First, we consider the evolution of the 2000 Miyakejima caldera, from double-concentric ring faults at earlier collapsing stages, to a gravitational-erosion dominant stage at a mature stage. When the topographic S/D approaches 0.33, the topographic S/D (hereafter S/Dt) becomes significantly different from the structural S/D (hereafter S/Ds), owing to the gravitational erosion on the caldera wall and accumulation of the debris on the floor. As collapse progresses, the peripheral block bounded by the inner reverse fault and outer normal fault extends and tilts towards the caldera center; it finally collapses towards the caldera floor and the double-ring faults disappeares. Subsidence of the caldera floor induces the gravitational erosion of the wall. This process increases the topographic diameter and the filling of the floor decreases the topographic depth. Consequently, the S/Dt decreases, while the continuous caldera subsidence increases the S/Ds. This evolution finds close similarities with the caldera collapses of Krakatau (1883), Katmai (1912), Fernandina (1968), Tolbachik (1975-76), Pinatubo (1991) and Dolomieu (2007). Analogue experiments mimic the observed variation, evolving from a depression controlled by the activity of the double-ring faults to that controlled by the gravitational slumping of the wall and sedimentation at the floor. The transition occurs for S/Dt ~0.34. These results show that the control on the shape of mature calderas (S/Ds>0.07) and approaching S/Dt=0.3 passes from a mainly structural to a mainly gravitational type. Both S/Dt and S/Ds are needed to describe the evolution of a collapse and the processes accompanying it. Evaluating the S/Dt and S

  2. Collapse of Insect Gut Symbiosis under Simulated Climate Change

    PubMed Central

    Kikuchi, Yoshitomo; Tada, Akiyo; Musolin, Dmitry L.; Hari, Nobuhiro; Hosokawa, Takahiro; Fujisaki, Kenji

    2016-01-01

    ABSTRACT Global warming impacts diverse organisms not only directly but also indirectly via other organisms with which they interact. Recently, the possibility that elevated temperatures resulting from global warming may substantially affect biodiversity through disrupting mutualistic/parasitic associations has been highlighted. Here we report an experimental demonstration that global warming can affect a pest insect via suppression of its obligate bacterial symbiont. The southern green stinkbug Nezara viridula depends on a specific gut bacterium for its normal growth and survival. When the insects were reared inside or outside a simulated warming incubator wherein temperature was controlled at 2.5°C higher than outside, the insects reared in the incubator exhibited severe fitness defects (i.e., retarded growth, reduced size, yellowish body color, etc.) and significant reduction of symbiont population, particularly in the midsummer season, whereas the insects reared outside did not. Rearing at 30°C or 32.5°C resulted in similar defective phenotypes of the insects, whereas no adult insects emerged at 35°C. Notably, experimental symbiont suppression by an antibiotic treatment also induced similar defective phenotypes of the insects, indicating that the host’s defective phenotypes are attributable not to the heat stress itself but to the suppression of the symbiont population induced by elevated temperature. These results strongly suggest that high temperature in the midsummer season negatively affects the insects not directly but indirectly via the heat-vulnerable obligate bacterial symbiont, which highlights the practical relevance of mutualism collapse in this warming world. PMID:27703075

  3. Collapse of Insect Gut Symbiosis under Simulated Climate Change.

    PubMed

    Kikuchi, Yoshitomo; Tada, Akiyo; Musolin, Dmitry L; Hari, Nobuhiro; Hosokawa, Takahiro; Fujisaki, Kenji; Fukatsu, Takema

    2016-10-04

    Global warming impacts diverse organisms not only directly but also indirectly via other organisms with which they interact. Recently, the possibility that elevated temperatures resulting from global warming may substantially affect biodiversity through disrupting mutualistic/parasitic associations has been highlighted. Here we report an experimental demonstration that global warming can affect a pest insect via suppression of its obligate bacterial symbiont. The southern green stinkbug Nezara viridula depends on a specific gut bacterium for its normal growth and survival. When the insects were reared inside or outside a simulated warming incubator wherein temperature was controlled at 2.5°C higher than outside, the insects reared in the incubator exhibited severe fitness defects (i.e., retarded growth, reduced size, yellowish body color, etc.) and significant reduction of symbiont population, particularly in the midsummer season, whereas the insects reared outside did not. Rearing at 30°C or 32.5°C resulted in similar defective phenotypes of the insects, whereas no adult insects emerged at 35°C. Notably, experimental symbiont suppression by an antibiotic treatment also induced similar defective phenotypes of the insects, indicating that the host's defective phenotypes are attributable not to the heat stress itself but to the suppression of the symbiont population induced by elevated temperature. These results strongly suggest that high temperature in the midsummer season negatively affects the insects not directly but indirectly via the heat-vulnerable obligate bacterial symbiont, which highlights the practical relevance of mutualism collapse in this warming world.

  4. Search and rescue in collapsed structures: engineering and social science aspects.

    PubMed

    El-Tawil, Sherif; Aguirre, Benigno

    2010-10-01

    This paper discusses the social science and engineering dimensions of search and rescue (SAR) in collapsed buildings. First, existing information is presented on factors that influence the behaviour of trapped victims, particularly human, physical, socioeconomic and circumstantial factors. Trapped victims are most often discussed in the context of structural collapse and injuries sustained. Most studies in this area focus on earthquakes as the type of disaster that produces the most extensive structural damage. Second, information is set out on the engineering aspects of urban search and rescue (USAR) in the United States, including the role of structural engineers in USAR operations, training and certification of structural specialists, and safety and general procedures. The use of computational simulation to link the engineering and social science aspects of USAR is discussed. This could supplement training of local SAR groups and USAR teams, allowing them to understand better the collapse process and how voids form in a rubble pile. A preliminary simulation tool developed for this purpose is described.

  5. Simulations of stripped core-collapse supernovae in close binaries

    NASA Astrophysics Data System (ADS)

    Rimoldi, Alex; Portegies Zwart, Simon; Rossi, Elena Maria

    2016-03-01

    We perform smoothed-particle hydrodynamical simulations of the explosion of a helium star in a close binary system, and study the effects of the explosion on the companion star as well as the effect of the presence of the companion on the supernova remnant. By simulating the mechanism of the supernova from just after core bounce until the remnant shell passes the stellar companion, we are able to separate the various phenomena leading to the final system parameters. In the final system, we measure the mass stripping and ablation from, and the additional velocity imparted to, the companion stars. Our results agree with recent work showing smaller values for these quantities compared to earlier estimates. We do find some differences, however, particularly in the velocity gained by the companion, which can be explained by the different ejecta structure that naturally results from the explosion in our simulations. These results indicate that predictions based on extrapolated Type Ia simulations should be revised. We also examine the structure of the supernova ejecta shell. The presence of the companion star produces a conical cavity in the expanding supernova remnant, and loss of material from the companion causes the supernova remnant to be more metal-rich on one side and more hydrogen-rich (from the companion material) around the cavity. Following the impact of the shell, we examine the state of the companion after being heated by the shock.

  6. Molecular dynamics simulation of hollow thick-walled cylinder collapse

    SciTech Connect

    Nikonov, A. Yu.

    2015-10-27

    The generation and evolution of plastic deformation in a hollow single-crystal cylinder under high-rate axisymmetric loading were studied. An advantage of the proposed loading scheme is that all loading modes are applied simultaneously within the chosen crystallographic plane of the cylinder base and different strain degrees are achieved along the specimen cross section. Molecular dynamics simulation was performed to show that the achievement of a certain strain causes the formation of structural defects on the inner surface of the specimen. The obtained results can be used to explain the main plastic deformation mechanisms of crystalline solids.

  7. Simulating society transitions: standstill, collapse and growth in an evolving network model.

    PubMed

    Xu, Guanghua; Yang, Junjie; Li, Guoqing

    2013-01-01

    We developed a model society composed of various occupations that interact with each other and the environment, with the capability of simulating three widely recognized societal transition patterns: standstill, collapse and growth, which are important compositions of society evolving dynamics. Each occupation is equipped with a number of inhabitants that may randomly flow to other occupations, during which process new occupations may be created and then interact with existing ones. Total population of society is associated with productivity, which is determined by the structure and volume of the society. We ran the model under scenarios such as parasitism, environment fluctuation and invasion, which correspond to different driving forces of societal transition, and obtained reasonable simulation results. This work adds to our understanding of societal evolving dynamics as well as provides theoretical clues to sustainable development.

  8. Simulating Society Transitions: Standstill, Collapse and Growth in an Evolving Network Model

    PubMed Central

    Xu, Guanghua; Yang, Junjie; Li, Guoqing

    2013-01-01

    We developed a model society composed of various occupations that interact with each other and the environment, with the capability of simulating three widely recognized societal transition patterns: standstill, collapse and growth, which are important compositions of society evolving dynamics. Each occupation is equipped with a number of inhabitants that may randomly flow to other occupations, during which process new occupations may be created and then interact with existing ones. Total population of society is associated with productivity, which is determined by the structure and volume of the society. We ran the model under scenarios such as parasitism, environment fluctuation and invasion, which correspond to different driving forces of societal transition, and obtained reasonable simulation results. This work adds to our understanding of societal evolving dynamics as well as provides theoretical clues to sustainable development. PMID:24086530

  9. Multidimensional, multiphysics simulations of core-collapse supernovae

    SciTech Connect

    Messer, Bronson; Mezzacappa, Anthony; Blondin, J. M.; Bruenn, S. W.; Hix, William Raphael

    2008-01-01

    CHIMERA is a multi-dimensional radiation hydrodynamics code designed to study core-collapse supernovae. The code is made up of three essentially independent parts: a hydrodynamics module, a nuclear burning module, and a neutrino transport solver combined within an operator-split approach. We review the code s architecture and some recently improved implementations used in the code. We also briefly discuss preliminary results obtained with the code in three spatial dimensions.

  10. Multidimensional, multiphysics simulations of core-collapse supernovae

    SciTech Connect

    Messer, Bronson; Mezzacappa, Anthony; Blondin, J. M.; Bruenn, S. W.; Hix, William Raphael

    2008-01-01

    CHIMERA is a multi-dimensional radiation hydrodynamics code designed to study core-collapse supernovae. The code is made up of three essentially independent parts: a hydrodynamics module, a nuclear burning module, and a neutrino transport solver combined within an operator-split approach. We review the code's architecture and some recently improved implementations used in the code. We also briefly discuss preliminary results obtained with the code in three spatial dimensions.

  11. Three-Dimensional Hydrodynamic Simulations of Collapsing Prolate Clouds

    NASA Astrophysics Data System (ADS)

    Nelson, R. P.; Papaloizou, J. C. B.

    1993-12-01

    We present the results of collapse calculations for elongated clouds performed using the numerical method of smoothed particle hydrodynamics (SPH). The clouds considered are isothermal, prolate spheroids with different axial ratios (a/b). Results are obtained for different values of a/b and mbarL, the mean mass per unit length. It is found that initially uniform clouds undergo fragmentation when the collapse is preferentially down on to the major axis, due to the intrinsic instability of a linear configuration. This occurs when the value of mbarL is sufficiently large. A criterion for elongated clouds to undergo linear collapse is derived using the tensor virial theorem, and it is found that the numerically obtained value of mbarL for which fragmentation occurs corresponds closely to that expected from analytical considerations. The addition of small density perturbations simply results in clouds that fragment more easily, particularly for cases in which a/b is close to unity. Previous calculations, presented by other authors for the case of finite cylinders, show that clouds with cylindrical geometries are highly unstable to the formation of two fragments that occur at the ends of the cylinder. We find that collapsing, prolate spheroids show qualitatively different behaviour, with no preferred tendency to form fragments at the ends of the cloud. Instead fragmentation appears to occur more readily towards the centre of the cloud where the local mass per unit length is greatest. Our implementation of SPH employs spatially variable smoothing lengths, h. In order to obtain a Hamiltonian system, we incorporate terms involving the spatial variability of h in the particle equations of motion, not included in previous implementations. We find that inclusion of these ∇h terms results in much improved energy conservation, but has little effect on the qualitative outcome of the calculations presented here. (fset 'queer "∇")

  12. Unfolding of collapsed polymers in shear flow: effects of colloid banding structures in confining channels.

    PubMed

    Chen, Hsieh; Alexander-Katz, Alfredo

    2014-03-01

    Using hydrodynamic simulations, we demonstrate that confined colloidal suspensions can greatly enhance the unfolding of collapsed single polymers in flow. When colloids come in direct contact with the polymers due to the flow, the collapsed chains become flattened or elongated on the surface of the colloids, increasing the probability of forming large chain protrusions that the flow can pull out to unfold the polymers. This phenomenon may be suppressed if the colloid size is commensurate with the confining channels, where the colloids form well-defined banding structures. Here, we analyze the colloid banding structures in detail and their relation to the chain unfolding. We find that for colloid volume fractions up to 30%, the confined colloids form simple cubic (sc), hexagonal (hex), or a mixture of sc + hex structures. By directly changing the heights of the confining channels, we show that the collapsed polymers unfold the most in the mixed sc + hex structures. The diffuse (not well-defined) bands in the mixed sc + hex structures provide the highest collision probability for the colloids and the polymers, thus enhancing unfolding the most. Without colloidal suspensions, we show that the confining channels alone do not have an observable effect on the unfolding of collapsed polymers. The well-defined colloid bands also suppress the unfolding of noncollapsed polymers. In fact, the average size for noncollapsed chains is even smaller in the well-defined bands than in a channel without any colloids. The appearance of well-defined bands in this case also indicates that lift forces experienced by the polymers in confinement are negligible compared to those exerted by the colloidal band structures. Our results may be important for understanding the dynamics of mixed colloid polymer solutions.

  13. Confrontation of top-hat spherical collapse against dark halos from cosmological N-body simulations

    NASA Astrophysics Data System (ADS)

    Suto, Daichi; Kitayama, Tetsu; Osato, Ken; Sasaki, Shin; Suto, Yasushi

    2016-02-01

    The top-hat spherical collapse model (TSC) is one of the most fundamental analytical frameworks to describe the non-linear growth of cosmic structure. TSC has motivated, and been widely applied in, various investigations even in the current era of precision cosmology. While numerous studies exist to examine its validity against numerical simulations in a statistical fashion, there are few analyses which compare the TSC dynamics in an individual object-wise basis, which is what we attempt in the present paper. We extract 100 halos at z = 0 from a cosmological N-body simulation according to the conventional TSC criterion for the spherical over-density. Then we trace back their spherical counterparts at earlier epochs. Just prior to the turn-around epoch of the halos, their dynamics are well approximated by TSC, but their turn-around epochs are systematically delayed and the virial radii are larger by ˜20% on average relative to the TSC predictions. We find that this systematic deviation can mainly be ascribed to the non-uniformity/inhomogeneity of dark matter density profiles and the non-zero velocity dispersions, both of which are neglected in TSC. In particular, the inside-out collapse and shell-crossing of dark matter halos play an important role in generating the significant velocity dispersion. The implications of the present result are briefly discussed.

  14. Structure and Dynamics of Shock-Induced Nanobubble Collapse in Water

    NASA Astrophysics Data System (ADS)

    Vedadi, Mohammad; Choubey, Amit; Nomura, Ken-Ichi; Kalia, Rajiv; Nakano, Aiichiro; Vashishta, Priya; van Duin, Adri

    2011-03-01

    Structure of water under shock and shock-induced collapse of nanobubbles in water are investigated with molecular dynamics simulations based on a reactive force field. Shock induces dramatic structural changes, including an ice-VII-like structural motif at a particle velocity of 1 km/s. The incipient ice VII formation and the calculated Hugoniot curve are in good agreement with experimental results. In the presence of a nanobubble, we observe a focused nanojet at the onset of nanobubble shrinkage and a secondary shock wave upon nanobubble collapse. The secondary shock wave propagates spherically backwards and induces high pressure as it propagates. Both the propagation velocity and the induced pressure are larger than those of the primary shock. We explored effects of nanobubble radius and shock amplitude on nanojet formation. The nanojet size increases by increasing particle velocity but the effect of increasing radius is more significant. The jet length scales linearly with the nanobubble radius, as observed in experiments on micron-to-millimeter size bubbles. Shock-induced collapse of a nanobubble in the vicinity of a cell membrane creates a transient nanopore when the nanojet impacts the membrane. Transient cell poration has potential applications in drug delivery.

  15. Simple model of the Rayleigh-Taylor instability, collapse, and structural elements.

    PubMed

    Goncharov, V P; Pavlov, V I

    2013-08-01

    The mechanisms and structural elements of the Rayleigh-Taylor instability whose evolution results in the occurrence of the collapse have been studied in the scope of the rotating shallow water model with horizontal density gradient. Analysis of the instability mechanism shows that two collapse scenarios are possible. One scenario implies anisotropic collapse during which the contact area of a collapsing fragment with the bottom contracts into a spinning segment. The other implies isotropic contracting of the area into a point. The rigorous integral criteria and power laws of collapses are found.

  16. Platinum-induced structural collapse in layered oxide polycrystalline films

    SciTech Connect

    Wang, Jianlin; Liu, Changhui; Huang, Haoliang; Fu, Zhengping; Peng, Ranran E-mail: yllu@ustc.edu.cn; Zhai, Xiaofang; Lu, Yalin E-mail: yllu@ustc.edu.cn

    2015-03-30

    Effect of a platinum bottom electrode on the SrBi{sub 5}Fe{sub 1−x}Co{sub x}Ti{sub 4}O{sub 18} layered oxide polycrystalline films was systematically studied. The doped cobalt ions react with the platinum to form a secondary phase of PtCoO{sub 2}, which has a typical Delafossite structure with a weak antiferromagnetism and an exceptionally high in-plane electrical conductivity. Formation of PtCoO{sub 2} at the interface partially consumes the cobalt dopant and leads to the structural collapsing from 5 to 4 layers, which was confirmed by X-ray diffraction and high resolution transmission electron microscopy measurements. Considering the weak magnetic contribution from PtCoO{sub 2}, the observed ferromagnetism should be intrinsic of the Aurivillius compounds. Ferroelectric properties were also indicated by the piezoresponse force microscopy. In this work, the platinum induced secondary phase at the interface was observed, which has a strong impact on Aurivillius structural configuration and thus the ferromagnetic and ferroelectric properties.

  17. Multi-Hazard Risk Assessment of Structures Subjected to Seismic Excitation and Blast for the Limit State of Collapse

    SciTech Connect

    Asprone, D.; Jalayer, F.; Prota, A.; Manfredi, G.

    2008-07-08

    Multi-hazard approach represents a convenient way to address structural reliability of a critical infrastructure. Objective of the present paper is to present a multi-hazard methodology for evaluation of the risk associated with the limit state of collapse for a reinforced concrete (RC) structure subject to both seismic and blast threats. Blast fragility can be defined as the probability of progressive collapse given a blast event has taken place and its evaluation is here suggested via a Monte Carlo procedure, generating different possible blast configurations. For each blast scenario, the consequent damages occurring to the investigated structure are identified and an updating of the structure is then performed. The structural stability under gravity loading is then verified by employing a kinematic plastic limit analysis. The conditional probability of collapse or the blast fragility is then calculated as the mean value of the collapse indicator variable over the number of cases generated by the simulation procedure. Therefore, the seismic fragility is also determined via classical methods described elsewhere and the total risk of collapse is evaluated as the sum of blast and seismic contributions.

  18. Numerical simulation of the last flank-collapse event of Montagne Pelée, Martinique, Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Le Friant, Anne; Heinrich, Philippe; Deplus, Christine; Boudon, Georges

    2003-01-01

    We model the submarine emplacement of a debris avalanche generated by the last flank-collapse event of Montagne Pelée volcano. We estimate the collapsed volume (1.7 km3) using both the volume of the missing material in the horseshoe-shaped structure and the volume of submarine deposits. This avalanche is treated as the gravitational flow of a homogeneous continuum. It is simulated by a finite-difference model, solving mass and momentum conservation equations, that are depth-averaged over the slide thickness. Numerical simulations show that the emplacement of this debris-avalanche can be suitably modeled by a Coulomb-type friction law with a variable friction angle below 10°. We propose that variations of the friction angle are mainly influenced by the thickness of the flowing mass.

  19. GENERAL RELATIVISTIC SIMULATIONS OF ACCRETION INDUCED COLLAPSE OF NEUTRON STARS TO BLACK HOLES

    SciTech Connect

    Giacomazzo, Bruno; Perna, Rosalba

    2012-10-10

    Neutron stars (NSs) in the astrophysical universe are often surrounded by accretion disks. Accretion of matter onto an NS may increase its mass above the maximum value allowed by its equation of state, inducing its collapse to a black hole (BH). Here we study this process for the first time, in three-dimensions, and in full general relativity. By considering three initial NS configurations, each with and without a surrounding disk (of mass {approx}7% M{sub NS}), we investigate the effect of the accretion disk on the dynamics of the collapse and its imprint on both the gravitational wave (GW) and electromagnetic (EM) signals that can be emitted by these sources. We show in particular that, even if the GW signal is similar for the accretion induced collapse (AIC) and the collapse of an NS in vacuum (and detectable only for Galactic sources), the EM counterpart could allow us to discriminate between these two types of events. In fact, our simulations show that, while the collapse of an NS in vacuum leaves no appreciable baryonic matter outside the event horizon, an AIC is followed by a phase of rapid accretion of the surviving disk onto the newly formed BH. The post-collapse accretion rates, on the order of {approx}10{sup -2} M{sub Sun} s{sup -1}, make these events tantalizing candidates as engines of short gamma-ray bursts.

  20. Transient 3D numerical simulations of column collapse and pyroclastic density current scenarios at Vesuvius

    NASA Astrophysics Data System (ADS)

    Esposti Ongaro, T.; Neri, A.; Menconi, G.; de'Michieli Vitturi, M.; Marianelli, P.; Cavazzoni, C.; Erbacci, G.; Baxter, P. J.

    2008-12-01

    Numerical simulations of column collapse and pyroclastic density current (PDC) scenarios at Vesuvius were carried out using a transient 3D flow model based on multiphase transport laws. The model describes the dynamics of the collapse as well as the effects of the 3D topography of the volcano on PDC propagation. Source conditions refer to a medium-scale sub-Plinian event and consider a pressure-balanced jet. Simulation results provide new insights into the complex dynamics of these phenomena. In particular: 1) column collapse can be characterized by different regimes, from incipient collapse to partial or nearly total collapse, thus confirming the possibility of a transitional field of behaviour of the column characterized by the contemporaneous and/or intermittent occurrence of ash fallout and PDCs; 2) the collapse regime can be characterized by its fraction of eruptive mass reaching the ground and generating PDCs; 3) within the range of the investigated source conditions, the propagation and hazard potential of PDCs appear to be directly correlated with the flow-rate of the mass collapsing to the ground, rather than to the collapse height of the column (this finding is in contrast with predictions based on the energy-line concept, which simply correlates the PDC runout and kinetic energy with the collapse height of the column); 4) first-order values of hazard variables associated with PDCs (i.e., dynamic pressure, temperature, airborne ash concentration) can be derived from simulation results, thereby providing initial estimates for the quantification of damage scenarios; 5) for scenarios assuming a location of the central vent coinciding with that of the present Gran Cono, Mount Somma significantly influences the propagation of PDCs, largely reducing their propagation in the northern sector, and diverting mass toward the west and southeast, accentuating runouts and hazard variables for these sectors; 6) the 2D modelling approximation can force an artificial

  1. Recruitment collapse and population structure of the European eel shaped by local ocean current dynamics.

    PubMed

    Baltazar-Soares, Miguel; Biastoch, Arne; Harrod, Chris; Hanel, Reinhold; Marohn, Lasse; Prigge, Enno; Evans, Derek; Bodles, Kenneth; Behrens, Erik; Böning, Claus W; Eizaguirre, Christophe

    2014-01-06

    Worldwide, exploited marine fish stocks are under threat of collapse [1]. Although the drivers behind such collapses are diverse, it is becoming evident that failure to consider evolutionary processes in fisheries management can have drastic consequences on a species' long-term viability [2]. The European eel (Anguilla anguilla; Linnaeus, 1758) is no exception: not only does the steep decline in recruitment observed in the 1980s [3, 4] remain largely unexplained, the punctual detection of genetic structure also raises questions regarding the existence of a single panmictic population [5-7]. With its extended Transatlantic dispersal, pinpointing the role of ocean dynamics is crucial to understand both the population structure and the widespread decline of this species. Hence, we combined dispersal simulations using a half century of high-resolution ocean model data with population genetics tools. We show that regional atmospherically driven ocean current variations in the Sargasso Sea were the major driver of the onset of the sharp decline in eel recruitment in the beginning of the 1980s. The simulations combined with genotyping of natural coastal eel populations furthermore suggest that unexpected evidence of coastal genetic differentiation is consistent with cryptic female philopatric behavior within the Sargasso Sea. Such results demonstrate the key constraint of the variable oceanic environment on the European eel population.

  2. Sector collapse at Kick 'em Jenny submarine volcano (Lesser Antilles): numerical simulation and landslide behaviour

    NASA Astrophysics Data System (ADS)

    Dondin, Frédéric; Lebrun, Jean-Frédéric; Kelfoun, Karim; Fournier, Nicolas; Randrianasolo, Auran

    2012-03-01

    Kick 'em Jenny volcano is the only known active submarine volcano in the Lesser Antilles. It lies within a horseshoe-shaped structure open to the west northwest, toward the deep Grenada Basin. A detailed bathymetric survey of the basin slope at Kick 'em Jenny and resulting high-resolution digital elevation model allowed the identification of a major submarine landslide deposit. This deposit is thought to result from a single sector collapse event at Kick 'em Jenny and to be linked to the formation of the horseshoe-shaped structure. We estimated the volume and the leading-edge runout of the landslide to be ca. 4.4 km3 and 14 km, respectively. We modelled a sector collapse event of a proto Kick 'em Jenny volcano using VolcFlow, a finite difference code based on depth-integrated mass and momentum equations. Our models show that the landslide can be simulated by either a Coulomb-type rheology with low basal friction angles (5.5°-6.5°) and a significant internal friction angle (above 17.5°) or, with better results, by a Bingham rheology with low Bingham kinematic viscosity (0 < ν B < 30 m2/s) and high shear strength (130 < γ ≤ 180 m2/s2). The models and the short runout distance suggest that the landslide travelled as a stiff cohesive flow affected by minimal granular disaggregation and slumping on a non-lubricated surface. The main submarine landslide deposit can therefore be considered as a submarine mass slide deposit that behaved like a slump.

  3. Numerical simulations of the aspherical collapse of laser and acoustically generated bubbles.

    PubMed

    Tsiglifis, Kostas; Pelekasis, Nikos A

    2007-04-01

    The details of nonlinear axisymmetric oscillations and collapse of bubbles subject to large internal or external pressure disturbances, are studied via a boundary integral method. Weak viscous effects on the liquid side are accounted for by integrating the equations of motion across the boundary layer that is formed adjacent to the interface. Simulations of single-cavitation bubble luminescence (SCBL) and single-bubble sonoluminescence (SBSL) are performed under conditions similar to reported experimental observations, aiming at capturing the details of bubble collapse. It is shown that any small initial deviation from sphericity, modeled through a small initial elongation along the axis of symmetry, may result in the formation and impact of two counter-propagating jets during collapse of the bubble, provided the amplitude of the initial disturbance is large enough and the viscosity of the surrounding fluid is small enough. Comparison between simulations and experimental observations show that this is the case for bubbles induced via a nano-second laser pulse (SCBL) during a luminescence event. In a similar fashion, simulations show that loss of sphericity accompanied with jet formation and impact during collapse is also possible with acoustically trapped bubbles in a standing pressure wave (SBSL), due to the many afterbounces of the bubble during its collapse phase. In both cases jet impact occurs as a result of P(2) growth in the form of an afterbounce instability. When the sound amplitude is decreased or liquid viscosity is increased the intensity of the afterbounce is decreased and jet impact is suppressed. When the sound amplitude is increased jet formation is superceded by Rayleigh-Taylor instability. In the same context stable luminescence is quenched in experimental observations. In both SCBL and SBSL simulations the severity of jet impact during collapse is quite large, and its local nature quite distinct. This attests to the fact that it is an energy

  4. Catastrophic Collapse Can Occur without Early Warning: Examples of Silent Catastrophes in Structured Ecological Models

    PubMed Central

    Boerlijst, Maarten C.; Oudman, Thomas; de Roos, André M.

    2013-01-01

    Catastrophic and sudden collapses of ecosystems are sometimes preceded by early warning signals that potentially could be used to predict and prevent a forthcoming catastrophe. Universality of these early warning signals has been proposed, but no formal proof has been provided. Here, we show that in relatively simple ecological models the most commonly used early warning signals for a catastrophic collapse can be silent. We underpin the mathematical reason for this phenomenon, which involves the direction of the eigenvectors of the system. Our results demonstrate that claims on the universality of early warning signals are not correct, and that catastrophic collapses can occur without prior warning. In order to correctly predict a collapse and determine whether early warning signals precede the collapse, detailed knowledge of the mathematical structure of the approaching bifurcation is necessary. Unfortunately, such knowledge is often only obtained after the collapse has already occurred. PMID:23593506

  5. Multidimensional neutrino-transport simulations of the core-collapse supernova central engine

    NASA Astrophysics Data System (ADS)

    O'Connor, Evan; Couch, Sean

    2017-01-01

    Core-collapse supernovae (CCSNe) mark the explosive death of a massive star. The explosion itself is triggered by the collapse of the iron core that forms near the end of a massive star's life. The core collapses to nuclear densities where the stiff nuclear equation of state halts the collapse and leads to the formation of the supernova shock. In many cases, this shock will eventually propagate throughout the entire star and produces a bright optical display. However, the path from shock formation to explosion has proven difficult to recreate in simulations. Soon after the shock forms, its outward propagation is stagnated and must be revived in order for the CCSNe to be successful. The leading theory for the mechanism that reenergizes the shock is the deposition of energy by neutrinos. In 1D simulations this mechanism fails. However, there is growing evidence that in 2D and 3D, hydrodynamic instabilities can assist the neutrino heating in reviving the shock. In this talk, I will present new multi-D neutrino-radiation-hydrodynamic simulations of CCSNe performed with the FLASH hydrodynamics package. I will discuss the efficacy of neutrino heating in our simulations and show the impact of the multi-D hydrodynamic instabilities.

  6. 3D Seismic Imaging over a Potential Collapse Structure

    NASA Astrophysics Data System (ADS)

    Gritto, Roland; O'Connell, Daniel; Elobaid Elnaiem, Ali; Mohamed, Fathelrahman; Sadooni, Fadhil

    2016-04-01

    The Middle-East has seen a recent boom in construction including the planning and development of complete new sub-sections of metropolitan areas. Before planning and construction can commence, however, the development areas need to be investigated to determine their suitability for the planned project. Subsurface parameters such as the type of material (soil/rock), thickness of top soil or rock layers, depth and elastic parameters of basement, for example, comprise important information needed before a decision concerning the suitability of the site for construction can be made. A similar problem arises in environmental impact studies, when subsurface parameters are needed to assess the geological heterogeneity of the subsurface. Environmental impact studies are typically required for each construction project, particularly for the scale of the aforementioned building boom in the Middle East. The current study was conducted in Qatar at the location of a future highway interchange to evaluate a suite of 3D seismic techniques in their effectiveness to interrogate the subsurface for the presence of karst-like collapse structures. The survey comprised an area of approximately 10,000 m2 and consisted of 550 source- and 192 receiver locations. The seismic source was an accelerated weight drop while the geophones consisted of 3-component 10 Hz velocity sensors. At present, we analyzed over 100,000 P-wave phase arrivals and performed high-resolution 3-D tomographic imaging of the shallow subsurface. Furthermore, dispersion analysis of recorded surface waves will be performed to obtain S-wave velocity profiles of the subsurface. Both results, in conjunction with density estimates, will be utilized to determine the elastic moduli of the subsurface rock layers.

  7. 1. LOWER NOTTINGHAM MINE. COLLAPSED ADIT/WOOD STRUCTURE AND BUILDING 'A' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. LOWER NOTTINGHAM MINE. COLLAPSED ADIT/WOOD STRUCTURE AND BUILDING 'A' ON THE RIGHT EDGE OF THE IMAGE. COLLAPSED CABIN 'B' AND BUILDING 'C' IS ON THE LEFT SIDE. CAMERA IS POINTED SOUTHWEST. - Florida Mountain Mining Sites, Lower Nottingham Mine, Western slope of Florida Mountain, Silver City, Owyhee County, ID

  8. FULLY GENERAL RELATIVISTIC SIMULATIONS OF CORE-COLLAPSE SUPERNOVAE WITH AN APPROXIMATE NEUTRINO TRANSPORT

    SciTech Connect

    Kuroda, Takami; Kotake, Kei; Takiwaki, Tomoya

    2012-08-10

    We present results from the first generation of multi-dimensional hydrodynamic core-collapse simulations in full general relativity (GR) that include an approximate treatment of neutrino transport. Using an M1 closure scheme with an analytic variable Eddington factor, we solve the energy-independent set of radiation energy and momentum based on the Thorne's momentum formalism. Our newly developed code is designed to evolve the Einstein field equation together with the GR radiation hydrodynamic equations. We follow the dynamics starting from the onset of gravitational core collapse of a 15 M{sub Sun} star, through bounce, up to about 100 ms postbounce in this study. By computing four models that differ according to 1D to 3D and by switching from special relativistic (SR) to GR hydrodynamics, we study how the spacial multi-dimensionality and GR would affect the dynamics in the early postbounce phase. Our 3D results support the anticipation in previous 1D results that the neutrino luminosity and average neutrino energy of any neutrino flavor in the postbounce phase increase when switching from SR to GR hydrodynamics. This is because the deeper gravitational well of GR produces more compact core structures, and thus hotter neutrino spheres at smaller radii. By analyzing the residency timescale to the neutrino-heating timescale in the gain region, we show that the criterion to initiate neutrino-driven explosions can be most easily satisfied in 3D models, irrespective of SR or GR hydrodynamics. Our results suggest that the combination of GR and 3D hydrodynamics provides the most favorable condition to drive a robust neutrino-driven explosion.

  9. Free-Lagrange simulations of the expansion and jetting collapse of air bubbles in water

    NASA Astrophysics Data System (ADS)

    Turangan, C. K.; Jamaluddin, A. R.; Ball, G. J.; Leighton, T. G.

    A free-Lagrange numerical method is implemented to simulate the axisymmetric jetting collapse of air bubbles in water. This is performed for both lithotripter shock-induced collapses of initially stable bubbles, and for free-running cases where the bubble initially contains an overpressure. The code is validated using two test problems (shock-induced bubble collapse using a step shock, and shock10 MPa tensile waves, interacts with a bubble of initial radius 0.04 mm located in a free field (case 1) and near a rigid boundary (case 2). The interaction of the shock with the bubble causes it to involute and a liquid jet is formed that achieves a velocity exceeding 1.2 km s1 for case 2. The impact of the jet on the downstream wall of the bubble generates a blast wave with peak overpressure exceeding 1 GPa and 1.75 GPa for cases 1 and 2, respectively. The results show that the simulation technique retains sharply resolved gas/liquid interfaces regardless of the degree of geometric deformation, and reveal details of the dynamics of bubble collapse. The effects of compressibility are included for both liquid and gas phases, whereas stress distributions can be predicted within elastic-plastic solid surfaces (both planar and notched) in proximity to cavitation events. There is a movie with the online version of the paper.

  10. Geological constraints of a structural model of sector collapse at Stromboli volcano, Italy

    NASA Astrophysics Data System (ADS)

    Vezzoli, L.; Corazzato, C.

    2016-09-01

    This study is focused on the reconstruction of the structure and dynamics of the first lateral collapse that occurred at Stromboli during the Holocene, which represents the structure inherited by all the following collapses that formed the present Sciara del Fuoco depression. The first lateral collapse of Stromboli occurred at the end of the Vancori volcano activity, at about 13 ka ago. The Neostromboli lava cone grew within this collapse amphitheater. Based on a comprehensive geologic and structural analysis of both Vancori and Neostromboli products, we propose an innovative interpretation of the sliding surface. Once considered to be a homogeneous landslide along a deep-seated sliding surface, we demonstrate that the Upper Vancori failure was accommodated by a more complex deformation regime comprising an upper (proximal) domain of tilted megablocks (toreva) and a lower (distal) domain of fragmental landslide transport and deposition.

  11. Two- and three-dimensional simulations of core-collapse supernovae with CHIMERA

    SciTech Connect

    Lentz, Eric J; Bruenn, S. W.; Harris, James A; Chertkow, Merek A; Hix, William Raphael; Mezzacappa, Anthony; Messer, Bronson; Blondin, J. M.; Marronetti, Pedro; Mauney, Christopher M; Yakunin, Konstantin

    2012-01-01

    Ascertaining the core-collapse supernova mechanism is a complex, and yet unsolved, problem dependent on the interaction of general relativity, hydrodynamics, neutrino transport, neutrino-matter interactions, and nuclear equations of state and reaction kinetics. Ab initio modeling of core-collapse supernovae and their nucleosynthetic outcomes requires care in the coupling and approximations of the physical components. We have built our multi-physics CHIMERA code for supernova modeling in 1-, 2-, and 3-D, using ray-by-ray neutrino transport, approximate general relativity, and detailed neutrino and nuclear physics. We discuss some early results from our current series of exploding 2D simulations and our work to perform computationally tractable simulations in 3D using the ``Yin--Yang'' grid.

  12. Numerical simulation of cavitation erosion on a NACA0015 hydrofoil based on bubble collapse strength

    NASA Astrophysics Data System (ADS)

    Hidalgo, V.; Luo, X.; Escaler, X.; Huang, R.; Valencia, E.

    2015-12-01

    The prediction of erosion under unsteady cavitation is crucial to prevent damage in hydraulic machinery. The present investigation deals with the numerical simulation of erosive partial cavitation around a NACA0015 hydrofoil. The study presents the calculation of the bubble collapse strength, Sb, based on the bubble potential energy to identify the surface areas with highest risk of damage. The results are obtained with a numerical scheme assuming homogeneous mixture flow, implicit LES and Zwart cavitation model. The 3D unsteady flow simulation has been solved using OpenFOAM. Python language and OpenFOAM calculator (foamCalcEx) have been used to obtain and represent Sb. The obtained results clearly show the instants of erosive bubble collapse and the affected surface areas.

  13. Bayesian reconstruction of gravitational wave burst signals from simulations of rotating stellar core collapse and bounce

    SciTech Connect

    Roever, Christian; Bizouard, Marie-Anne; Christensen, Nelson; Dimmelmeier, Harald; Heng, Ik Siong; Meyer, Renate

    2009-11-15

    Presented in this paper is a technique that we propose for extracting the physical parameters of a rotating stellar core collapse from the observation of the associated gravitational wave signal from the collapse and core bounce. Data from interferometric gravitational wave detectors can be used to provide information on the mass of the progenitor model, precollapse rotation, and the nuclear equation of state. We use waveform libraries provided by the latest numerical simulations of rotating stellar core collapse models in general relativity, and from them create an orthogonal set of eigenvectors using principal component analysis. Bayesian inference techniques are then used to reconstruct the associated gravitational wave signal that is assumed to be detected by an interferometric detector. Posterior probability distribution functions are derived for the amplitudes of the principal component analysis eigenvectors, and the pulse arrival time. We show how the reconstructed signal and the principal component analysis eigenvector amplitude estimates may provide information on the physical parameters associated with the core collapse event.

  14. GLOBAL SIMULATIONS OF MAGNETOROTATIONAL INSTABILITY IN THE COLLAPSED CORE OF A MASSIVE STAR

    SciTech Connect

    Sawai, H.; Yamada, S.; Suzuki, H.

    2013-06-20

    We performed the first global numerical simulations of magnetorotational instability from a sub-magnetar-class seed magnetic field in core-collapse supernovae. As a result of axisymmetric ideal MHD simulations, we found that the magnetic field is greatly amplified to magnetar-class strength. In the saturation phase, a substantial part of the core is dominated by turbulence, and the magnetic field possesses dominant large-scale components, comparable to the size of a proto-neutron star. A pattern of coherent channel flows, which generally appears during the exponential growth phase in previous local simulations, is not observed in our global simulations. While the approximate convergence in the exponential growth rate is attained by increasing spatial resolution, that of the saturation magnetic field is not achieved due to still large numerical diffusion. Although the effect of the magnetic field on the dynamics is found to be mild, a simulation with a high enough resolution might result in a larger impact.

  15. Three-dimensional Magnetohydrodynamical Simulations of a Core-Collapse Supernova

    NASA Astrophysics Data System (ADS)

    Mikami, Hayato; Sato, Yuji; Matsumoto, Tomoaki; Hanawa, Tomoyuki

    2008-08-01

    We show three-dimensional magnetohydrodynamical simulations of a core-collapse supernova in which the progenitor has magnetic fields inclined to the rotation axis. The simulations employed a simple empirical equation of state in which the pressure of degenerate gas is approximated by piecewise polytropes for simplicity. Energy loss due to neutrinos is not taken into account for simplicity as well. The simulations start from the stage of dynamical collapse of an iron core. The dynamical collapse halts at t = 189 ms by the pressure of high-density gas, and a proto-neutron star (PNS) forms. The evolution of the PNS was followed for about 40 ms in typical models. When the initial rotation is mildly fast and the initial magnetic fields are mildly strong, bipolar jets are launched from the upper atmosphere (r ~ 60 km ) of the PNS. The jets are accelerated to ~3 × 104 km s-1, which is comparable to the escape velocity at the footpoint. The jets are parallel to the initial rotation axis. Before the launch of the jets, magnetic fields are twisted by rotation of the PNS. The twisted magnetic fields form torus-shaped multilayers in which the azimuthal component changes alternately. The formation of magnetic multilayers is due to the initial condition in which the magnetic fields are inclined with respect to the rotation axis. The energy of the jet depends only weakly on the initial magnetic field assumed. When the initial magnetic fields are weaker, the time lag is longer between the PNS formation and jet ejection. It is also shown that the time lag is related to the Alfvén transit time. Although the nearly spherical prompt shock propagates outward in our simulations, it is an artifact due to our simplified equation of state and neglect of neutrino loss. The morphology of twisted magnetic field and associate jet ejection are, however, not affected by the simplification.

  16. Thermal-Structural Analysis of the MacArthur Maze Freeway Collapse

    SciTech Connect

    Noble, C R; Wemhoff, A P; McMichael, L D

    2008-02-26

    At approximately 3:41 AM on the morning of April 29, 2007, a tractor-trailer rig carrying 8,600 gallons (32.6 m{sup 3}) of fuel overturned on Interstate 880 in Oakland, CA. The resultant fire weakened the surrounding steel superstructure and caused a 50-yard (45.7 m) long section of the above connecting ramp from Interstate 80 to Interstate 580 to fail in approximately 18 minutes. In this study, we performed a loosely-coupled thermal-structural finite element analysis of the freeway using the LLNL Engineering codes NIKE3D, DYNA3D and TOPAZ3D. First, we applied an implicit structural code to statically initialize the stresses and displacements in the roadway at ambient conditions due to gravity loading. Next, we performed a thermal analysis by approximating the tanker fire as a moving box region of uniform temperature. This approach allowed for feasible calculation of the fire-to-structure radiative view factors and convective heat transport. We used a mass scaling methodology in the thermal analysis to reduce the overall simulation time so an explicit structural analysis could be used, which provided a more computationally efficient simulation of structural failure. Our approach showed structural failure of both spans due to thermal softening under gravity loading at approximately 20 minutes for a fixed fire temperature of 1200 C and fixed thermal properties. When temperature-dependent thermal properties were applied, the south and north spans collapsed at approximately 10 minutes and 16 minutes, respectively. Finally, we performed a preliminary fully-coupled analysis of the system using the new LLNL implicit multi-mechanics code Diablo. Our investigation shows that our approach provides a reasonable first-order analysis of the system, but improved modeling of the transport properties and the girder-box beam connections is required for more accurate predictions.

  17. The influence of inelastic neutrino interactions with light clusters on core-collapse supernova simulations

    NASA Astrophysics Data System (ADS)

    Furusawa, Shun; Nagakura, Hiroki; Sumiyoshi, Kohsuke; Yamada, Shoichi

    2014-12-01

    We perform numerical experiments to investigate the influence of inelastic neutrino reactions with light clusters in hot nuclear matter on core-collapse supernova simulations. These interactions have been neglected in most hydrodynamical supernova simulations. The neutrino absorptions and inelastic interactions with deuterons, tritons, helions and alpha particles are taken into account in the hydrodynamical simulations in addition to the ordinary charged- current interactions with nucleons. Axial symmetry is assumed but no equatorial symmetry is imposed. The time evolutions of shock waves are calculated with a simple light-bulb approximation for the neutrino transport and a multi-nuclei equation of state. We show that the heating rates of deuterons reach as high as ~ 10% of those of nucleons around the bottom of the gain region. On the other hand, alpha particles heat the matter near the shock wave, which is important when the shock wave expands and density and temperature of matter become low. It is also found that the models with heating by light clusters have different evolutions from those without it in non-linear evolution phase. The matter in the gain region has various densities and temperatures and there appear regions that are locally rich in deuterons and alpha particles. These results indicate that the inelastic reactions of light clusters, especially deuterons, should be incorporated in the simulations of core-collapse supernovae.

  18. RADIATION MAGNETOHYDRODYNAMIC SIMULATIONS OF PROTOSTELLAR COLLAPSE: NONIDEAL MAGNETOHYDRODYNAMIC EFFECTS AND EARLY FORMATION OF CIRCUMSTELLAR DISKS

    SciTech Connect

    Tomida, Kengo; Okuzumi, Satoshi; Machida, Masahiro N. E-mail: okuzumi@geo.titech.ac.jp

    2015-03-10

    The transport of angular momentum by magnetic fields is a crucial physical process in the formation and evolution of stars and disks. Because the ionization degree in star-forming clouds is extremely low, nonideal magnetohydrodynamic (MHD) effects such as ambipolar diffusion and ohmic dissipation work strongly during protostellar collapse. These effects have significant impacts in the early phase of star formation as they redistribute magnetic flux and suppress angular momentum transport by magnetic fields. We perform three-dimensional nested-grid radiation magnetohydrodynamic simulations including ohmic dissipation and ambipolar diffusion. Without these effects, magnetic fields transport angular momentum so efficiently that no rotationally supported disk is formed even after the second collapse. Ohmic dissipation works only in a relatively high density region within the first core and suppresses angular momentum transport, enabling formation of a very small rotationally supported disk after the second collapse. With both ohmic dissipation and ambipolar diffusion, these effects work effectively in almost the entire region within the first core and significant magnetic flux loss occurs. As a result, a rotationally supported disk is formed even before a protostellar core forms. The size of the disk is still small, about 5 AU at the end of the first core phase, but this disk will grow later as gas accretion continues. Thus, the nonideal MHD effects can resolve the so-called magnetic braking catastrophe while keeping the disk size small in the early phase, which is implied from recent interferometric observations.

  19. Simulation of shock-induced bubble collapse with application to vascular injury in shockwave lithotripsy

    NASA Astrophysics Data System (ADS)

    Coralic, Vedran

    Shockwave lithotripsy is a noninvasive medical procedure wherein shockwaves are repeatedly focused at the location of kidney stones in order to pulverize them. Stone comminution is thought to be the product of two mechanisms: the propagation of stress waves within the stone and cavitation erosion. However, the latter mechanism has also been implicated in vascular injury. In the present work, shock-induced bubble collapse is studied in order to understand the role that it might play in inducing vascular injury. A high-order accurate, shock- and interface-capturing numerical scheme is developed to simulate the three-dimensional collapse of the bubble in both the free-field and inside a vessel phantom. The primary contributions of the numerical study are the characterization of the shock-bubble and shock-bubble-vessel interactions across a large parameter space that includes clinical shockwave lithotripsy pressure amplitudes, problem geometry and tissue viscoelasticity, and the subsequent correlation of these interactions to vascular injury. Specifically, measurements of the vessel wall pressures and displacements, as well as the finite strains in the fluid surrounding the bubble, are utilized with available experiments in tissue to evaluate damage potential. Estimates are made of the smallest injurious bubbles in the microvasculature during both the collapse and jetting phases of the bubble's life cycle. The present results suggest that bubbles larger than one micrometer in diameter could rupture blood vessels under clinical SWL conditions.

  20. Quantum collapse as a source of the seeds of cosmic structure during the radiation era

    NASA Astrophysics Data System (ADS)

    León, Gabriel; Landau, Susana J.; Piccirilli, María Pía

    2014-10-01

    The emergence of the seeds of cosmic structure, from a perfect isotropic and homogeneous Universe, has not been clearly explained by the standard version of inflationary models as the dynamics involved preserve the homogeneity and isotropy at all times. A proposal that attempts to deal with this problem, by introducing "the self-induced collapse hypothesis," has been introduced by D. Sudarsky and collaborators in previous papers. In all these works, the collapse of the wave function of the inflaton mode is restricted to occur during the inflationary period. In this paper, we analyze the possibility that the collapse happens during the radiation era. A viable model can be constructed under the condition that the inflaton field variable must be affected by the collapse while the momentum variable can or cannot be affected. Another condition to be fulfilled is that the time of collapse must be independent of k . However, when comparing with recent observational data, the predictions of the model cannot be distinguished from the ones provided by the standard inflationary scenario. The main reason for this arises from the requirement that primordial power spectrum obtained for the radiation era matches the amplitude of scalar fluctuations consistent with the latest cosmic microwave background observations. This latter constraint results in a limit on the possible times of collapse and ensures that the contribution of the inflaton field to the energy-momentum tensor is negligible compared to the contribution of the radiation fields.

  1. Direct Numerical Simulation of Turbulence Collapse and Rebirth in Stably Stratified Ekman Flow

    NASA Astrophysics Data System (ADS)

    Gohari, S. M. Iman; Sarkar, Sutanu

    2017-03-01

    Direct numerical simulations of an Ekman layer are performed to study flow evolution during the response of an initially neutral boundary layer to stable stratification. The Obukhov length, L, is varied among cases by imposing a range of stable buoyancy fluxes at the surface to mimic ground cooling. The imposition of constant surface buoyancy flux , i.e. constant-flux stability, leads to a buoyancy difference between the ground and background that tends to increase with time, unlike the constant-temperature stability case where a constant surface temperature is imposed. The initial collapse of turbulence in the surface layer owing to surface cooling that occurs over a time scale proportional to L/u_*, where u_* is the friction velocity, is followed by turbulence recovery. The flow accelerates, and a "low-level jet" (LLJ) with inertial oscillations forms during the turbulence collapse. Turbulence statistics and budgets are examined to understand the recovery of turbulence. Vertical turbulence exchange, primarily by pressure transport, is found to initiate fluctuations in the surface layer and there is rebirth of turbulence through enhanced turbulence production as the LLJ shear increases. The turbulence recovery is not monotonic and exhibits temporal intermittency with several collapse/rebirth episodes. The boundary layer adjusts to an increase in the surface buoyancy flux by increased super-geostrophic velocity and surface stress such that the Obukhov length becomes similar among the cases and sufficiently large to allow fluctuations with sustained momentum and heat fluxes. The eventual state of fluctuations, achieved after about two inertial periods (ft ≈ 4π ), corresponds to global intermittency with turbulent patches in an otherwise quiescent background. Our simplified configuration is sufficient to identify turbulence collapse and rebirth, global and temporal intermittency, as well as formation of low-level jets, as in observations of the stratified

  2. NEW EQUATIONS OF STATE IN SIMULATIONS OF CORE-COLLAPSE SUPERNOVAE

    SciTech Connect

    Hempel, M.; Liebendoerfer, M.; Fischer, T.; Schaffner-Bielich, J.

    2012-03-20

    We discuss three new equations of state (EOS) in core-collapse supernova simulations. The new EOS are based on the nuclear statistical equilibrium model of Hempel and Schaffner-Bielich (HS), which includes excluded volume effects and relativistic mean-field (RMF) interactions. We consider the RMF parameterizations TM1, TMA, and FSUgold. These EOS are implemented into our spherically symmetric core-collapse supernova model, which is based on general relativistic radiation hydrodynamics and three-flavor Boltzmann neutrino transport. The results obtained for the new EOS are compared with the widely used EOS of H. Shen et al. and Lattimer and Swesty. The systematic comparison shows that the model description of inhomogeneous nuclear matter is as important as the parameterization of the nuclear interactions for the supernova dynamics and the neutrino signal. Furthermore, several new aspects of nuclear physics are investigated: the HS EOS contains distributions of nuclei, including nuclear shell effects. The appearance of light nuclei, e.g., deuterium and tritium, is also explored, which can become as abundant as alphas and free protons. In addition, we investigate the black hole formation in failed core-collapse supernovae, which is mainly determined by the high-density EOS. We find that temperature effects lead to a systematically faster collapse for the non-relativistic LS EOS in comparison with the RMF EOS. We deduce a new correlation for the time until black hole formation, which allows the determination of the maximum mass of proto-neutron stars, if the neutrino signal from such a failed supernova would be measured in the future. This would give a constraint for the nuclear EOS at finite entropy, complementary to observations of cold neutron stars.

  3. Partially collapsed cristobalite structure in the non molecular phase V in CO2

    PubMed Central

    Santoro, Mario; Gorelli, Federico A.; Bini, Roberto; Haines, Julien; Cambon, Olivier; Levelut, Claire; Montoya, Javier A.; Scandolo, Sandro

    2012-01-01

    Non molecular CO2 has been an important subject of study in high pressure physics and chemistry for the past decade opening up a unique area of carbon chemistry. The phase diagram of CO2 includes several non molecular phases above 30 GPa. Among these, the first discovered was CO2-V which appeared silica-like. Theoretical studies suggested that the structure of CO2-V is related to that of β-cristobalite with tetrahedral carbon coordination similar to silicon in SiO2, but reported experimental structural studies have been controversial. We have investigated CO2-V obtained from molecular CO2 at 40–50 GPa and T > 1500 K using synchrotron X-ray diffraction, optical spectroscopy, and computer simulations. The structure refined by the Rietveld method is a partially collapsed variant of SiO2 β-cristobalite, space group , in which the CO4 tetrahedra are tilted by 38.4° about the c-axis. The existence of CO4 tetrahedra (average O-C-O angle of 109.5°) is thus confirmed. The results add to the knowledge of carbon chemistry with mineral phases similar to SiO2 and potential implications for Earth and planetary interiors. PMID:22431594

  4. Multi-dimensional Core-Collapse Supernova Simulations with Neutrino Transport

    NASA Astrophysics Data System (ADS)

    Pan, Kuo-Chuan; Liebendörfer, Matthias; Hempel, Matthias; Thielemann, Friedrich-Karl

    We present multi-dimensional core-collapse supernova simulations using the Isotropic Diffusion Source Approximation (IDSA) for the neutrino transport and a modified potential for general relativity in two different supernova codes: FLASH and ELEPHANT. Due to the complexity of the core-collapse supernova explosion mechanism, simulations require not only high-performance computers and the exploitation of GPUs, but also sophisticated approximations to capture the essential microphysics. We demonstrate that the IDSA is an elegant and efficient neutrino radiation transfer scheme, which is portable to multiple hydrodynamics codes and fast enough to investigate long-term evolutions in two and three dimensions. Simulations with a 40 solar mass progenitor are presented in both FLASH (1D and 2D) and ELEPHANT (3D) as an extreme test condition. It is found that the black hole formation time is delayed in multiple dimensions and we argue that the strong standing accretion shock instability before black hole formation will lead to strong gravitational waves.

  5. Core-Collapse Supernovae Explored by Multi-D Boltzmann Hydrodynamic Simulations

    NASA Astrophysics Data System (ADS)

    Sumiyoshi, Kohsuke; Nagakura, Hiroki; Iwakami, Wakana; Furusawa, Shun; Matsufuru, Hideo; Imakura, Akira; Yamada, Shoichi

    We report the latest results of numerical simulations of core-collapse supernovae by solving multi-D neutrino-radiation hydrodynamics with Boltzmann equations. One of the longstanding issues of the explosion mechanism of supernovae has been uncertainty in the approximations of the neutrino transfer in multi-D such as the diffusion approximation and ray-by-ray method. The neutrino transfer is essential, together with 2D/3D hydrodynamical instabilities, to evaluate the neutrino heating behind the shock wave for successful explosions and to predict the neutrino burst signals. We tackled this difficult problem by utilizing our solver of the 6D Boltzmann equation for neutrinos in 3D space and 3D neutrino momentum space coupled with multi-D hydrodynamics adding special and general relativistic extensions. We have performed a set of 2D core-collapse simulations from 11M ȯ and 15M ȯ stars on K-computer in Japan by following long-term evolution over 400 ms after bounce to reveal the outcome from the full Boltzmann hydrodynamic simulations with a sophisticated equation of state with multi-nuclear species and updated rates for electron captures on nuclei.

  6. Mechanisms of Core-Collapse Supernovae & Simulation Results from the CHIMERA Code

    NASA Astrophysics Data System (ADS)

    Bruenn, S. W.; Mezzacappa, A.; Hix, W. R.; Blondin, J. M.; Marronetti, P.; Messer, O. E. B.; Dirk, C. J.; Yoshida, S.

    2009-05-01

    Unraveling the mechanism for core-collapse supernova explosions is an outstanding computational challenge and the problem remains essentially unsolved despite more than four decades of effort. However, much progress in realistic modeling has occurred recently through the availability of multi-teraflop machines and the increasing sophistication of supernova codes. These improvements have led to some key insights which may clarify the picture in the not too distant future. Here we briefly review the current status of the three explosion mechanisms (acoustic, MHD, and neutrino heating) that are currently under active investigation, concentrating on the neutrino heating mechanism as the one most likely responsible for producing explosions from progenitors in the mass range ~10 to ~25Msolar. We then briefly describe the CHIMERA code, a supernova code we have developed to simulate core-collapse supernovae in 1, 2, and 3 spatial dimensions. We finally describe the results of an ongoing suite of 2D simulations initiated from a 12, 15, 20, and 25Msolar progenitor. These have all exhibited explosions and are currently in the expanding phase with the shock at between 5,000 and 10,000 km. We finally very briefly describe an ongoing simulation in 3 spatial dimensions initiated from the 15Msolar progenitor.

  7. Octupolar out-of-plane magnetic field structure generation during collisionless magnetic reconnection in a stressed X-point collapse

    SciTech Connect

    Graf von der Pahlen, J.; Tsiklauri, D.

    2014-06-15

    The out-of-plane magnetic field, generated by fast magnetic reconnection, during collisionless, stressed X-point collapse, was studied with a kinetic, 2.5D, fully electromagnetic, relativistic particle-in-cell numerical code, using both closed (flux conserving) and open boundary conditions on a square grid. It was discovered that the well known quadrupolar structure in the out-of-plane magnetic field gains four additional regions of opposite magnetic polarity, emerging near the corners of the simulation box, moving towards the X-point. The emerging, outer, magnetic field structure has opposite polarity to the inner quadrupolar structure, leading to an overall octupolar structure. Using Ampere's law and integrating electron and ion currents, defined at grid cells, over the simulation domain, contributions to the out-of-plane magnetic field from electron and ion currents were determined. The emerging regions of opposite magnetic polarity were shown to be the result of ion currents. Magnetic octupolar structure is found to be a signature of X-point collapse, rather than tearing mode, and factors relating to potential discoveries in experimental scenarios or space-craft observations are discussed.

  8. Simulations of Shock-induced Bubble Collapse near Hard and Soft Objects

    NASA Astrophysics Data System (ADS)

    Rodriguez, Mauro; Johnsen, Eric

    2016-11-01

    Understanding the dynamics of cavitation bubbles and shock waves in and near hard and soft objects is important particularly in various naval and medical applications. Two examples are therapeutic ultrasound procedures, which utilize this phenomenon for breaking kidney stones (lithotripsy) and ablation of pathogenic tissue (histotripsy), and erosion to elastomeric coatings on propellers. Although not fully understood, the damage mechanism combines the effect of the incoming pulses and cavitation produced by the high tension of the pulses. To understand the damage mechanism, it is of key interest to quantifying the influence of the shock waves on the material and the response of the material to the shock waves. A novel Eulerian numerical approach for simulating shock and acoustic wave propagation in viscoelastic media is leveraged to understand this influence. High-fidelity simulations of the bubble collapse dynamics for various experimental configurations (i.e. the viscous or viscoelastic material surrounding the bubble and neighboring object's rigidity are varied) will be conducted. In particular, we will discuss the shock emission from collapse and its propagation in the neighboring object, including stresses thereby produced. This research was supported in part by ONR Grant N00014-12-1-0751 under Dr. Ki-Han Kim and by NSF Grant Number CBET 1253157.

  9. Pressure-induced volume collapse and structural phase transitions in SrRuO{sub 3}

    SciTech Connect

    Zhernenkov, Mikhail; Fabbris, Gilberto; Chmaissem, Omar; Mitchell, J.F.; Zheng, H.; Haskel, Daniel

    2013-09-15

    We report on the low temperature (6 K) structural properties of SrRuO{sub 3} under quasi-hydrostatic pressure studied by synchrotron X-ray powder diffraction in a diamond anvil cell. First principle calculations predict a first-order perovskite (Pv) to post-perovskite (pPv) phase transition at ∼40 GPa accompanied by a 1.9% volume collapse. Our results rule out the occurrence of a pPv phase to 54 GPa. Instead, we find a Pv to monoclinic to triclinic sequence of phase transitions. The monoclinic to triclinic phase transition at ∼38 GPa is accompanied by a 3.5% volume collapse. X-ray absorption spectroscopy indicates that this volume collapse is not accompanied by a change in Ru valence state. Our results should help guide improvements to theoretical treatments of this and other correlated d-electron systems based on density functional theory. - Graphical abstract: Unit cell volume as a function of pressure (T=6 K). Black squares and red circles correspond to Ne and He pressure media, respectively. Blue dashed lines are fit to the data before the volume collapse using a second-order Birch–Murnaghan equation of state excluding (lower curve) and including (upper curve) neutron diffraction data for the low temperature, ambient pressure volume. Dashed lines denote structural phase boundaries. Display Omitted - Highlights: • Crystal structure of SrRuO3 was studied under high pressure up to 54 GPa. • Pv to monoclinic to triclinic sequence of phase transitions was observed. • Transition to triclinic phase at ∼38 GPa is accompanied by a 3.5% volume collapse. • Volume collapse in SrRuO3 is not driven by a change in Ru valence state. • Pv-to-pPv phase transition predicted by DFT at 40 Gpa is not observed up to 54 GPa.

  10. Quantifying Earthquake Collapse Risk of Tall Steel Braced Frame Buildings Using Rupture-to-Rafters Simulations

    NASA Astrophysics Data System (ADS)

    Mourhatch, Ramses

    This thesis examines collapse risk of tall steel braced frame buildings using rupture-to-rafters simulations due to suite of San Andreas earthquakes. Two key advancements in this work are the development of (i) a rational methodology for assigning scenario earthquake probabilities and (ii) an artificial correction-free approach to broadband ground motion simulation. The work can be divided into the following sections: earthquake source modeling, earthquake probability calculations, ground motion simulations, building response, and performance analysis. As a first step the kinematic source inversions of past earthquakes in the magnitude range of 6-8 are used to simulate 60 scenario earthquakes on the San Andreas fault. For each scenario earthquake a 30-year occurrence probability is calculated and we present a rational method to redistribute the forecast earthquake probabilities from UCERF to the simulated scenario earthquake. We illustrate the inner workings of the method through an example involving earthquakes on the San Andreas fault in southern California. Next, three-component broadband ground motion histories are computed at 636 sites in the greater Los Angeles metropolitan area by superposing short-period (0.2s-2.0s) empirical Green's function synthetics on top of long-period (> 2.0s) spectral element synthetics. We superimpose these seismograms on low-frequency seismograms, computed from kinematic source models using the spectral element method, to produce broadband seismograms. Using the ground motions at 636 sites for the 60 scenario earthquakes, 3-D nonlinear analysis of several variants of an 18-story steel braced frame building, designed for three soil types using the 1994 and 1997 Uniform Building Code provisions and subjected to these ground motions, are conducted. Model performance is classified into one of five performance levels: Immediate Occupancy, Life Safety, Collapse Prevention, Red-Tagged, and Model Collapse. The results are combined with

  11. Flow-induced oscillation of collapsed tubes and airway structures.

    PubMed

    Bertram, Christopher D

    2008-11-30

    The self-excited oscillation of airway structures and flexible tubes in response to flow is reviewed. The structures range from tiny airways deep in the lung causing wheezing at the end of a forced expiration, to the pursed lips of a brass musical instrument player. Other airway structures that vibrate include the vocal cords (and their avian equivalent, the syrinx) and the soft palate of a snorer. These biological cases are compared with experiments on and theories for the self-excited oscillation of flexible tubes conveying a flow on the laboratory bench, with particular reference to those observations dealing with the situation where the inertia of the tube wall is dominant. In each case an attempt is made to summarise the current state of understanding. Finally, some outstanding challenges are identified.

  12. On the Requirements for Realistic Modeling of Neutrino Transport in Simulations of Core-collapse Supernovae

    SciTech Connect

    Lentz, Eric J; Mezzacappa, Anthony; Messer, Bronson; Liebendoerfer, Matthias; Hix, William Raphael; Bruenn, S. W.

    2012-01-01

    We have conducted a series of numerical experiments with the spherically-symmetric, general-relativistic neutrino radiation hydrodynamics code Agile-BOLTZTRAN to examine the effects of several approximations used in multidimensional core-collapse supernova simulations. Our code permits us to examine the effects of these approximations quantitatively by removing, or substituting for, the pieces of supernova physics of interest. These approximations include: (1) using Newtonian versus general-relativistic gravity, hydrodynamics, and transport; (2) using older weak interactions, including the omission of non-isoenergetic neutrino scattering, versus up-to-date weak interactions; and (3) omitting the velocity-dependent terms, or observer corrections, from the neutrino Boltzmann kinetic equation. We demonstrate that each of these changes has non-negligible effects on the outcomes of our simulations. Finally, we discuss the impact these results have for current, and future, multidimensional models.

  13. Three-dimensional simulations of core-collapse supernovae: from shock revival to shock breakout

    NASA Astrophysics Data System (ADS)

    Wongwathanarat, A.; Müller, E.; Janka, H.-Th.

    2015-05-01

    We present three-dimensional hydrodynamic simulations of the evolution of core-collapse supernovae (SN) from blast-wave initiation by the neutrino-driven mechanism to shock breakout from the stellar surface, using an axis-free Yin-Yang grid and considering two 15 M⊙ red supergiants (RSG) and two blue supergiants (BSG) of 15 M⊙ and 20 M⊙. We demonstrate that the metal-rich ejecta in homologous expansion still carry fingerprints of asymmetries at the beginning of the explosion, but the final metal distribution is massively affected by the detailed progenitor structure. The most extended and fastest metal fingers and clumps are correlated with the biggest and fastest-rising plumes of neutrino-heated matter, because these plumes most effectively seed the growth of Rayleigh-Taylor (RT) instabilities at the C+O/He and He/H composition-shell interfaces after the passage of the SN shock. The extent of radial mixing, global asymmetry of the metal-rich ejecta, RT-induced fragmentation of initial plumes to smaller-scale fingers, and maximum Ni and minimum H velocities depend not only on the initial asphericity and explosion energy (which determine the shock and initial Ni velocities), but also on the density profiles and widths of C+O core and He shell and on the density gradient at the He/H transition, which leads to unsteady shock propagation and the formation of reverse shocks. Both RSG explosions retain a large global metal asymmetry with pronounced clumpiness and substructure, deep penetration of Ni fingers into the H-envelope (with maximum velocities of 4000-5000 km s-1 for an explosion energy around 1.5 bethe) and efficient inward H-mixing. While the 15 M⊙ BSG shares these properties (maximum Ni speeds up to ~3500 km s-1), the 20 M⊙ BSG develops a much more roundish geometry without pronounced metal fingers (maximum Ni velocities only ~2200 km s-1) because of reverse-shock deceleration and insufficient time for strong RT growth and fragmentation at the He

  14. Computer simulations of tsunamis due to sector collapse at Stromboli, Italy

    NASA Astrophysics Data System (ADS)

    Tinti, Stefano; Bortolucci, Elisabetta; Romagnoli, Claudia

    2000-02-01

    Stromboli is an island volcano of the Aeolian Volcanic Arc, characterised by persistent activity. The cone rises about 2500-3000 m from its submarine base with very steep slopes; its summit at 924 m above the sea level. The subaerial growth of Stromboli, occurred in the last 100 ka, has been marked by repeated episodes of large gravitational collapses especially affecting the NW flank of the island in the last 13 ka. The last one occurred less than 5000 years ago forming the deep depression on the NW seaward flank, named Sciara del Fuoco (SdF), and it produced very likely large water waves. This paper envisages a scenario where a huge mass of volcanic material collapses into the sea in the same sector in which the SdF collapse took place in Holocenic times and it computes possible tsunami evolutions assuming the present-day bathymetry. Numerical simulations are performed by means of two distinct models; one for the mass collapse and one for the tsunami. Slope failure dynamics are calculated with the aid of a Lagrangian model: the landslide is subdivided into blocks, and the motion of each constituent block is calculated by applying the basic principle of mechanical momentum conservation, with block-block and block-ambient interactions being taken into account. Water waves are computed by solving a system of shallow-water equations including a forcing term dependent on the sliding mass motion. The finite-element (FE) technique is employed since it permits the use of non-uniform grids, which are adequate to account for marine basins with irregular coastlines. In addition to the sensitivity analysis concerning the main parameters governing the slide motion, two main cases are explored, differing in the slide path followed by the mass. The resulting tsunami is very large, with giant waves as high as several meters (tens of meters in the worst cases) impinging the coast. Due to the strong wave refraction induced by bathymetry, waves travel around the island, affecting

  15. Axisymmetric general relativistic simulations of the accretion-induced collapse of white dwarfs

    SciTech Connect

    Abdikamalov, E. B.; Ott, C. D.; Rezzolla, L.; Dessart, L.; Dimmelmeier, H.; Marek, A.; Janka, H.-T.

    2010-02-15

    The accretion-induced collapse (AIC) of a white dwarf may lead to the formation of a protoneutron star and a collapse-driven supernova explosion. This process represents a path alternative to thermonuclear disruption of accreting white dwarfs in type Ia supernovae. In the AIC scenario, the supernova explosion energy is expected to be small and the resulting transient short-lived, making it hard to detect by electromagnetic means alone. Neutrino and gravitational-wave (GW) observations may provide crucial information necessary to reveal a potential AIC. Motivated by the need for systematic predictions of the GW signature of AIC, we present results from an extensive set of general-relativistic AIC simulations using a microphysical finite-temperature equation of state and an approximate treatment of deleptonization during collapse. Investigating a set of 114 progenitor models in axisymmetric rotational equilibrium, with a wide range of rotational configurations, temperatures and central densities, and resulting white dwarf masses, we extend previous Newtonian studies and find that the GW signal has a generic shape akin to what is known as a 'type III' signal in the literature. Despite this reduction to a single type of waveform, we show that the emitted GWs carry information that can be used to constrain the progenitor and the postbounce rotation. We discuss the detectability of the emitted GWs, showing that the signal-to-noise ratio for current or next-generation interferometer detectors could be high enough to detect such events in our Galaxy. Furthermore, we contrast the GW signals of AIC and rotating massive star iron core collapse and find that they can be distinguished, but only if the distance to the source is known and a detailed reconstruction of the GW time series from detector data is possible. Some of our AIC models form massive quasi-Keplerian accretion disks after bounce. The disk mass is very sensitive to progenitor mass and angular momentum

  16. Estimating the collapse of aggregated fine soil structure in a mountainous forested catchment.

    PubMed

    Mouri, Goro; Shinoda, Seirou; Golosov, Valentin; Chalov, Sergey; Shiiba, Michiharu; Hori, Tomoharu; Oki, Taikan

    2014-06-01

    This paper describes the relationship of forest soil dryness and antecedent rainfall with suspended sediment (SS) yield due to extreme rainfall events and how this relationship affects the survival of forest plants. Several phenomena contribute to this relationship: increasing evaporation (amount of water vapour discharged from soil) due to increasing air temperature, decreasing moisture content in the soil, the collapse of aggregates of fine soil particles, and the resulting effects on forest plants. To clarify the relationships among climate variation, the collapse of soil particle aggregates, and rainfall-runoff processes, a numerical model was developed to reproduce such aggregate collapse in detail. The validity of the numerical model was confirmed by its application to the granitic mountainous catchment of the Nagara River basin in Japan and by comparison with observational data. The simulation suggests that important problems, such as the collapse of forest plants in response to decreases in soil moisture content and antecedent rainfall, will arise if air temperature continues to increase.

  17. Probabilistic Modeling of Landfill Subsidence Introduced by Buried Structure Collapse - 13229

    SciTech Connect

    Foye, Kevin; Soong, Te-Yang

    2013-07-01

    The long-term reliability of land disposal facility final cover systems - and therefore the overall waste containment - depends on the distortions imposed on these systems by differential settlement/subsidence. The evaluation of differential settlement is challenging because of the heterogeneity of the waste mass and buried structure placement. Deterministic approaches to long-term final cover settlement prediction are not able to capture the spatial variability in the waste mass and sub-grade properties, especially discontinuous inclusions, which control differential settlement. An alternative is to use a probabilistic model to capture the non-uniform collapse of cover soils and buried structures and the subsequent effect of that collapse on the final cover system. Both techniques are applied to the problem of two side-by-side waste trenches with collapsible voids. The results show how this analytical technique can be used to connect a metric of final cover performance (inundation area) to the susceptibility of the sub-grade to collapse and the effective thickness of the cover soils. This approach allows designers to specify cover thickness, reinforcement, and slope to meet the demands imposed by the settlement of the underlying waste trenches. (authors)

  18. THREE-DIMENSIONAL CORE-COLLAPSE SUPERNOVA SIMULATED USING A 15 M{sub ⊙} PROGENITOR

    SciTech Connect

    Lentz, Eric J.; Mezzacappa, Anthony; Harris, J. Austin; Yakunin, Konstantin N.; Bruenn, Stephen W.; Hix, W. Raphael; Messer, O. E. Bronson; Endeve, Eirik; Blondin, John M.; Marronetti, Pedro

    2015-07-10

    We have performed ab initio neutrino radiation hydrodynamics simulations in three and two spatial dimensions (3D and 2D) of core-collapse supernovae from the same 15 M{sub ☉} progenitor through 440 ms after core bounce. Both 3D and 2D models achieve explosions; however, the onset of explosion (shock revival) is delayed by ∼100 ms in 3D relative to the 2D counterpart and the growth of the diagnostic explosion energy is slower. This is consistent with previously reported 3D simulations utilizing iron-core progenitors with dense mantles. In the ∼100 ms before the onset of explosion, diagnostics of neutrino heating and turbulent kinetic energy favor earlier explosion in 2D. During the delay, the angular scale of convective plumes reaching the shock surface grows and explosion in 3D is ultimately lead by a single, large-angle plume, giving the expanding shock a directional orientation not dissimilar from those imposed by axial symmetry in 2D simulations. We posit that shock revival and explosion in the 3D simulation may be delayed until sufficiently large plumes form, whereas such plumes form more rapidly in 2D, permitting earlier explosions.

  19. 3D simulations of young core-collapse supernova remnants undergoing efficient particle acceleration

    NASA Astrophysics Data System (ADS)

    Ferrand, Gilles; Safi-Harb, Samar

    2016-06-01

    Within our Galaxy, supernova remnants are believed to be the major sources of cosmic rays up to the 'knee'. However important questions remain regarding the share of the hadronic and leptonic components, and the fraction of the supernova energy channelled into these components. We address such question by the means of numerical simulations that combine a hydrodynamic treatment of the shock wave with a kinetic treatment of particle acceleration. Performing 3D simulations allows us to produce synthetic projected maps and spectra of the thermal and non-thermal emission, that can be compared with multi-wavelength observations (in radio, X-rays, and γ-rays). Supernovae come in different types, and although their energy budget is of the same order, their remnants have different properties, and so may contribute in different ways to the pool of Galactic cosmic-rays. Our first simulations were focused on thermonuclear supernovae, like Tycho's SNR, that usually occur in a mostly undisturbed medium. Here we present our 3D simulations of core-collapse supernovae, like the Cas A SNR, that occur in a more complex medium bearing the imprint of the wind of the progenitor star.

  20. Three dimensional core-collapse supernova simulated using a 15 M⊙ progenitor

    DOE PAGES

    Lentz, Eric J.; Bruenn, Stephen W.; Hix, W. Raphael; ...

    2015-07-10

    We have performed ab initio neutrino radiation hydrodynamics simulations in three and two spatial dimensions (3D and 2D) of core-collapse supernovae from the same 15 M⊙ progenitor through 440 ms after core bounce. Both 3D and 2D models achieve explosions; however, the onset of explosion (shock revival) is delayed by ~100 ms in 3D relative to the 2D counterpart and the growth of the diagnostic explosion energy is slower. This is consistent with previously reported 3D simulations utilizing iron-core progenitors with dense mantles. In the ~100 ms before the onset of explosion, diagnostics of neutrino heating and turbulent kinetic energymore » favor earlier explosion in 2D. During the delay, the angular scale of convective plumes reaching the shock surface grows and explosion in 3D is ultimately lead by a single, large-angle plume, giving the expanding shock a directional orientation not dissimilar from those imposed by axial symmetry in 2D simulations. Finally, we posit that shock revival and explosion in the 3D simulation may be delayed until sufficiently large plumes form, whereas such plumes form more rapidly in 2D, permitting earlier explosions.« less

  1. Near Real-time Data Analysis of Core-Collapse Supernova Simulations With Bellerophon

    SciTech Connect

    Lingerfelt, Eric J; Messer, Bronson; Desai, Sharvari S; Holt, Chastity A; Lentz, Eric J

    2014-01-01

    We present an overview of a software system, Bellerophon, built to support a production-level HPC application called CHIMERA, which simulates core-collapse supernova events at the petascale. Developed over the last four years, Bellerophon enables CHIMERA s geographically dispersed team of collaborators to perform data analysis in near real-time. Its n-tier architecture provides an encapsulated, end-to-end software solution that enables the CHIMERA team to quickly and easily access highly customizable animated and static views of results from anywhere in the world via a web-deliverable, cross-platform desktop application. In addition, Bellerophon addresses software engineering tasks for the CHIMERA team by providing an automated mechanism for performing regression testing on a variety of supercomputing platforms. Elements of the team s workflow management needs are met with software tools that dynamically generate code repository statistics, access important online resources, and monitor the current status of several supercomputing resources.

  2. Structural mechanics simulations

    NASA Technical Reports Server (NTRS)

    Biffle, Johnny H.

    1992-01-01

    Sandia National Laboratory has a very broad structural capability. Work has been performed in support of reentry vehicles, nuclear reactor safety, weapons systems and components, nuclear waste transport, strategic petroleum reserve, nuclear waste storage, wind and solar energy, drilling technology, and submarine programs. The analysis environment contains both commercial and internally developed software. Included are mesh generation capabilities, structural simulation codes, and visual codes for examining simulation results. To effectively simulate a wide variety of physical phenomena, a large number of constitutive models have been developed.

  3. Campaign 2 Level 2 Milestone Review 2009: Milestone # 3131 Grain Scale Simulation of Pore Collapse

    SciTech Connect

    Schwartz, A J

    2009-09-28

    The milestone reviewed on Sept. 16, 2009 was 'High-fidelity simulation of shock initiation of high explosives at the grain scale using coupled hydrodynamics, thermal transport and chemistry'. It is the opinion of the committee that the team has satisfied the milestone. A detailed description of how the goals were met is provided. The milestone leveraged capabilities from ASC Physics and Engineering Materials program combined with experimental input from Campaign 2. A combined experimental-multiscale simulation approach was used to create and validate the various TATB model components. At the lowest length scale, quantum chemical calculations were used to determine equations of state, thermal transport properties and reaction rates for TATB as it is decomposing. High-pressure experiments conducted in diamond anvil cells, gas guns and the Z machine were used to validate the EOS, thermal conductivity, specific heat and predictions of water formation. The predicted reaction networks and chemical kinetic equations were implemented in Cheetah and validated against the lower length scale data. Cheetah was then used within the ASC code ALE3D for high-resolution, thermo-mechanically coupled simulations of pore collapse at the micron size scale to predict conditions for detonation initiation.

  4. High-resolution three-dimensional simulations of core-collapse supernovae in multiple progenitors

    SciTech Connect

    Couch, Sean M.; O'Connor, Evan P.

    2014-04-20

    Three-dimensional (3D) simulations of core-collapse supernovae (CCSNe) are granting new insight into the as-yet-uncertain mechanism that drives successful explosions. While there is still debate about whether explosions are obtained more easily in 3D than in 2D, it is undeniable that there exist qualitative and quantitative differences between the results of 3D and 2D simulations. We present an extensive set of high-resolution 1D, 2D, and 3D CCSN simulations with multispecies neutrino leakage carried out in two different progenitors. Our simulations confirm the results of Couch indicating that 2D explodes more readily than 3D. We argue that this is due to the inadequacies of 2D to accurately capture important aspects of the 3D dynamics. We find that without artificially enhancing the neutrino heating rate, we do not obtain explosions in 3D. We examine the development of neutrino-driven convection and the standing accretion shock instability (SASI) and find that, in separate regimes, either instability can dominate. We find evidence for growth of the SASI for both 15 M {sub ☉} and 27 M {sub ☉} progenitors; however, it is weaker in 3D exploding models. The growth rate of both instabilities is artificially enhanced along the symmetry axis in 2D as compared with our axis-free 3D Cartesian simulations. Our work highlights the growing consensus that CCSNe must be studied in 3D if we hope to solve the mystery of how the explosions are powered.

  5. Advancing Nucleosynthesis in Core-Collapse Supernovae Models Using 2D CHIMERA Simulations

    NASA Astrophysics Data System (ADS)

    Harris, J. A.; Hix, W. R.; Chertkow, M. A.; Bruenn, S. W.; Lentz, E. J.; Messer, O. B.; Mezzacappa, A.; Blondin, J. M.; Marronetti, P.; Yakunin, K.

    2014-01-01

    The deaths of massive stars as core-collapse supernovae (CCSN) serve as a crucial link in understanding galactic chemical evolution since the birth of the universe via the Big Bang. We investigate CCSN in polar axisymmetric simulations using the multidimensional radiation hydrodynamics code CHIMERA. Computational costs have traditionally constrained the evolution of the nuclear composition in CCSN models to, at best, a 14-species α-network. However, the limited capacity of the α-network to accurately evolve detailed composition, the neutronization and the nuclear energy generation rate has fettered the ability of prior CCSN simulations to accurately reproduce the chemical abundances and energy distributions as known from observations. These deficits can be partially ameliorated by "post-processing" with a more realistic network. Lagrangian tracer particles placed throughout the star record the temporal evolution of the initial simulation and enable the extension of the nuclear network evolution by incorporating larger systems in post-processing nucleosynthesis calculations. We present post-processing results of the four ab initio axisymmetric CCSN 2D models of Bruenn et al. (2013) evolved with the smaller α-network, and initiated from stellar metallicity, non-rotating progenitors of mass 12, 15, 20, and 25 M⊙ from Woosley & Heger (2007). As a test of the limitations of post-processing, we provide preliminary results from an ongoing simulation of the 15 M⊙ model evolved with a realistic 150 species nuclear reaction network in situ. With more accurate energy generation rates and an improved determination of the thermodynamic trajectories of the tracer particles, we can better unravel the complicated multidimensional "mass-cut" in CCSN simulations and probe for less energetically significant nuclear processes like the νp-process and the r-process, which require still larger networks.

  6. 4. UPPER NOTTINGHAM MINE LOOKING UP TOWARD COLLAPSED ADIT/WOODEN STRUCTURE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. UPPER NOTTINGHAM MINE LOOKING UP TOWARD COLLAPSED ADIT/WOODEN STRUCTURE AND BOXES IN TREES FAR RIGHT. WOOD, METAL FLUME AND WASTE ROCK ARE VISIBLE ON THE LEFT. STREAM BED IS IN MID-RIGHT. UPPER TAILINGS IN LOWER RIGHT. CAMERA POINTED NORTH-NORTHEAST. - Florida Mountain Mining Sites, Upper Nottingham Mine, West face of Florida Mountain, head of Jacobs Gulch, Silver City, Owyhee County, ID

  7. LOCAL SIMULATIONS OF THE MAGNETOROTATIONAL INSTABILITY IN CORE-COLLAPSE SUPERNOVAE

    SciTech Connect

    Masada, Youhei; Takiwaki, Tomoya; Kotake, Kei; Sano, Takayoshi E-mail: kkotake@th.nao.ac.jp

    2012-11-10

    Bearing in mind the application of core-collapse supernovae, we study the nonlinear properties of the magnetorotational instability (MRI) by means of three-dimensional simulations in the framework of a local shearing box approximation. By systematically changing the shear rates that symbolize the degree of differential rotation in nascent proto-neutron stars (PNSs), we derive a scaling relation between the turbulent stress sustained by the MRI and the shear-vorticity ratio. Our parametric survey shows a power-law scaling between the turbulent stress (((w {sub tot}))) and the shear-vorticity ratio (g{sub q} ) as ((w {sub tot})){proportional_to}g {sup {delta}} {sub q} with an index of {delta} {approx} 0.5. The MRI-amplified magnetic energy has a similar scaling relative to the turbulent stress, while the Maxwell stress has a slightly smaller power-law index ({approx}0.36). By modeling the effect of viscous heating rates from MRI turbulence, we show that the stronger magnetic fields, or the larger shear rates initially imposed, lead to higher dissipation rates. For a rapidly rotating PNS with a spin period in milliseconds and with strong magnetic fields of 10{sup 15} G, the energy dissipation rate is estimated to exceed 10{sup 51} erg s{sup -1}. Our results suggest that the conventional magnetohydrodynamic (MHD) mechanism of core-collapse supernovae is likely to be affected by MRI-driven turbulence, which we speculate, on the one hand, could harm the MHD-driven explosions due to the dissipation of the shear rotational energy at the PNS surface; or, on the other hand, its energy deposition might be potentially favorable for the working of the neutrino-heating mechanism.

  8. Should One Use the Ray-by-Ray Approximation in Core-Collapse Supernova Simulations?

    SciTech Connect

    Skinner, M. Aaron; Burrows, Adam; Dolence, Joshua C.

    2016-10-28

    We perform the first self-consistent, time-dependent, multi-group calculations in two dimensions (2D) to address the consequences of using the ray-by-ray+ transport simplification in core-collapse supernova simulations. Such a dimensional reduction is employed by many researchers to facilitate their resource-intensive calculations. Our new code (Fornax) implements multi-D transport, and can, by zeroing out transverse flux terms, emulate the ray-by-ray+ scheme. Using the same microphysics, initial models, resolution, and code, we compare the results of simulating 12-, 15-, 20-, and 25-M⊙ progenitor models using these two transport methods. Our findings call into question the wisdom of the pervasive use of the ray-by-ray+ approach. Employing it leads to maximum post-bounce/preexplosion shock radii that are almost universally larger by tens of kilometers than those derived using the more accurate scheme, typically leaving the post-bounce matter less bound and artificially more “explodable.” In fact, for our 25-M⊙ progenitor, the ray-by-ray+ model explodes, while the corresponding multi-D transport model does not. Therefore, in two dimensions the combination of ray-by-ray+ with the axial sloshing hydrodynamics that is a feature of 2D supernova dynamics can result in quantitatively, and perhaps qualitatively, incorrect results.

  9. ON THE REQUIREMENTS FOR REALISTIC MODELING OF NEUTRINO TRANSPORT IN SIMULATIONS OF CORE-COLLAPSE SUPERNOVAE

    SciTech Connect

    Lentz, Eric J.; Mezzacappa, Anthony; Hix, W. Raphael; Messer, O. E. Bronson; Liebendoerfer, Matthias; Bruenn, Stephen W. E-mail: mezzacappaa@ornl.gov

    2012-03-01

    We have conducted a series of numerical experiments with the spherically symmetric, general relativistic, neutrino radiation hydrodynamics code AGILE-BOLTZTRAN to examine the effects of several approximations used in multidimensional core-collapse supernova simulations. Our code permits us to examine the effects of these approximations quantitatively by removing, or substituting for, the pieces of supernova physics of interest. These approximations include: (1) using Newtonian versus general relativistic gravity, hydrodynamics, and transport; (2) using a reduced set of weak interactions, including the omission of non-isoenergetic neutrino scattering, versus the current state-of-the-art; and (3) omitting the velocity-dependent terms, or observer corrections, from the neutrino Boltzmann kinetic equation. We demonstrate that each of these changes has noticeable effects on the outcomes of our simulations. Of these, we find that the omission of observer corrections is particularly detrimental to the potential for neutrino-driven explosions and exhibits a failure to conserve lepton number. Finally, we discuss the impact of these results on our understanding of current, and the requirements for future, multidimensional models.

  10. Ion acoustic wave collapse via two-ion wave decay: 2D Vlasov simulation and theory

    NASA Astrophysics Data System (ADS)

    Chapman, Thomas; Berger, Richard; Banks, Jeffrey; Brunner, Stephan

    2015-11-01

    The decay of ion acoustic waves (IAWs) via two-ion wave decay may transfer energy from the electric field of the IAWs to the particles, resulting in a significant heating of resonant particles. This process has previously been shown in numerical simulations to decrease the plasma reflectivity due to stimulated Brillouin scattering. Two-ion wave decay is a fundamental property of ion acoustic waves that occurs over most if not all of the parameter space of relevance to inertial confinement fusion experiments, and can lead to a sudden collapse of IAWs. The treatment of all species kinetically, and in particular the electrons, is required to describe the decay process correctly. We present fully kinetic 2D+2V Vlasov simulations of IAWs undergoing decay to a highly nonlinear turbulent state using the code LOKI. The scaling of the decay rate with characteristic plasma parameters and wave amplitude is shown. A new theory describing two-ion wave decay in 2D, that incorporates key kinetic properties of the electrons, is presented and used to explain quantitatively for the first time the observed decay of IAWs. Work performed under auspices of U.S. DoE by LLNL, Contract DE-AC52-07NA2734. Funded by LDRD 15-ERD-038 and supported by LLNL Grand Challenge allocation.

  11. Should One Use the Ray-by-Ray Approximation in Core-collapse Supernova Simulations?

    NASA Astrophysics Data System (ADS)

    Skinner, M. Aaron; Burrows, Adam; Dolence, Joshua C.

    2016-11-01

    We perform the first self-consistent, time-dependent, multi-group calculations in two dimensions (2D) to address the consequences of using the ray-by-ray+ transport simplification in core-collapse supernova simulations. Such a dimensional reduction is employed by many researchers to facilitate their resource-intensive calculations. Our new code (Fornax) implements multi-D transport, and can, by zeroing out transverse flux terms, emulate the ray-by-ray+ scheme. Using the same microphysics, initial models, resolution, and code, we compare the results of simulating 12, 15, 20, and 25 M ⊙ progenitor models using these two transport methods. Our findings call into question the wisdom of the pervasive use of the ray-by-ray+ approach. Employing it leads to maximum post-bounce/pre-explosion shock radii that are almost universally larger by tens of kilometers than those derived using the more accurate scheme, typically leaving the post-bounce matter less bound and artificially more “explodable.” In fact, for our 25 M ⊙ progenitor, the ray-by-ray+ model explodes, while the corresponding multi-D transport model does not. Therefore, in two dimensions, the combination of ray-by-ray+ with the axial sloshing hydrodynamics that is a feature of 2D supernova dynamics can result in quantitatively, and perhaps qualitatively, incorrect results.

  12. Should One Use the Ray-by-Ray Approximation in Core-Collapse Supernova Simulations?

    DOE PAGES

    Skinner, M. Aaron; Burrows, Adam; Dolence, Joshua C.

    2016-10-28

    We perform the first self-consistent, time-dependent, multi-group calculations in two dimensions (2D) to address the consequences of using the ray-by-ray+ transport simplification in core-collapse supernova simulations. Such a dimensional reduction is employed by many researchers to facilitate their resource-intensive calculations. Our new code (Fornax) implements multi-D transport, and can, by zeroing out transverse flux terms, emulate the ray-by-ray+ scheme. Using the same microphysics, initial models, resolution, and code, we compare the results of simulating 12-, 15-, 20-, and 25-M⊙ progenitor models using these two transport methods. Our findings call into question the wisdom of the pervasive use of the ray-by-ray+more » approach. Employing it leads to maximum post-bounce/preexplosion shock radii that are almost universally larger by tens of kilometers than those derived using the more accurate scheme, typically leaving the post-bounce matter less bound and artificially more “explodable.” In fact, for our 25-M⊙ progenitor, the ray-by-ray+ model explodes, while the corresponding multi-D transport model does not. Therefore, in two dimensions the combination of ray-by-ray+ with the axial sloshing hydrodynamics that is a feature of 2D supernova dynamics can result in quantitatively, and perhaps qualitatively, incorrect results.« less

  13. GENERAL-RELATIVISTIC SIMULATIONS OF THREE-DIMENSIONAL CORE-COLLAPSE SUPERNOVAE

    SciTech Connect

    Ott, Christian D.; Abdikamalov, Ernazar; Moesta, Philipp; Haas, Roland; Drasco, Steve; O'Connor, Evan P.; Reisswig, Christian; Meakin, Casey A.; Schnetter, Erik

    2013-05-10

    We study the three-dimensional (3D) hydrodynamics of the post-core-bounce phase of the collapse of a 27 M{sub Sun} star and pay special attention to the development of the standing accretion shock instability (SASI) and neutrino-driven convection. To this end, we perform 3D general-relativistic simulations with a three-species neutrino leakage scheme. The leakage scheme captures the essential aspects of neutrino cooling, heating, and lepton number exchange as predicted by radiation-hydrodynamics simulations. The 27 M{sub Sun} progenitor was studied in 2D by Mueller et al., who observed strong growth of the SASI while neutrino-driven convection was suppressed. In our 3D simulations, neutrino-driven convection grows from numerical perturbations imposed by our Cartesian grid. It becomes the dominant instability and leads to large-scale non-oscillatory deformations of the shock front. These will result in strongly aspherical explosions without the need for large-scale SASI shock oscillations. Low-l-mode SASI oscillations are present in our models, but saturate at small amplitudes that decrease with increasing neutrino heating and vigor of convection. Our results, in agreement with simpler 3D Newtonian simulations, suggest that once neutrino-driven convection is started, it is likely to become the dominant instability in 3D. Whether it is the primary instability after bounce will ultimately depend on the physical seed perturbations present in the cores of massive stars. The gravitational wave signal, which we extract and analyze for the first time from 3D general-relativistic models, will serve as an observational probe of the postbounce dynamics and, in combination with neutrinos, may allow us to determine the primary hydrodynamic instability.

  14. Estimating structural collapse fragility of generic building typologies using expert judgment

    USGS Publications Warehouse

    Jaiswal, Kishor; Wald, David J.; Perkins, David M.; Aspinall, Willy P.; Kiremidjian, Anne S.

    2014-01-01

    The structured expert elicitation process proposed by Cooke (1991), hereafter referred to as Cooke's approach, is applied for the first time in the realm of structural collapse-fragility assessment for selected generic construction types. Cooke's approach works on the principle of objective calibration scoring of judgments couple with hypothesis testing used in classical statistics. The performance-based scoring system reflects the combined measure of an expert's informativeness about variables in the problem are under consideration, and their ability to enumerate, in a statistically accurate way through expressing their true beliefs, the quantitative uncertainties associated with their assessments. We summarize the findings of an expert elicitation workshop in which a dozen earthquake-engineering professionals from around the world were engaged to estimate seismic collapse fragility for generic construction types. Development of seismic collapse fragility-functions was accomplished by combining their judgments using weights derived from Cooke's method. Although substantial effort was needed to elicit the inputs of these experts successfully, we anticipate that the elicitation strategy described here will gain momentum in a wide variety of earthquake seismology and engineering hazard and risk analyses where physical model and data limitations are inherent and objective professional judgment can fill gaps.

  15. Nuclear structure and the fate of core collapse (Type II) supernova

    NASA Astrophysics Data System (ADS)

    Gai, Moshe

    2014-08-01

    For a long time Gerry Brown and his collaborator Hans Bethe considered the question of the final fate of a core collapse (Type II) supernova. Recalling ideas from nuclear structure on Kaon condensate and a soft equation of state of the dense nuclear matter they concluded that progenitor stars with mass as low as 17-18M⊙ (including supernova 1987A) could collapse to a small mass black hole with a mass just beyond 1.5M⊙, the upper bound they derive for a neutron star. We discuss another nuclear structure effect that determines the carbon to oxygen ratio (C/O) at the end of helium burning. This ratio also determines the fate of a Type II supernova with a carbon rich progenitor star producing a neutron star and oxygen rich collapsing to a black hole. While the C/O ratio is one of the most important nuclear inputs to stellar evolution it is still not known with sufficient accuracy. We discuss future efforts to measure with gamma-beam and TPC detector of the C12(α,γ)O16 reaction that determines the C/O ratio in stellar helium burning.

  16. Simulation of phase structures

    SciTech Connect

    Lawson, J.

    1995-04-20

    This memo outlines a procedure developed by the author to extract information from phase measurements and produce a simulated phase structure for use in modeling optical systems, including characteristic optics for the Beamlet and NIF laser systems. The report includes an IDL program listing.

  17. Structure of tracheae and the functional implications for collapse in the American cockroach.

    PubMed

    Webster, Matthew R; Socha, John J; Teresi, Luciano; Nardinocchi, Paola; De Vita, Raffaella

    2015-11-19

    The tracheal tubes of insects are complex and heterogeneous composites with a microstructural organization that affects their function as pumps, valves, or static conduits within the respiratory system. In this study, we examined the microstructure of the primary thoracic tracheae of the American cockroach (Periplaneta americana) using a combination of scanning electron microscopy and light microscopy. The organization of the taenidia, which represents the primary source of structural reinforcement of the tracheae, was analyzed. We found that the taenidia were more disorganized in the regions of highest curvature of the tracheal tube. We also used a simple finite element model to explore the effect of cross-sectional shape and distribution of taenidia on the collapsibility of the tracheae. The eccentricity of the tracheal cross-section had a stronger effect on the collapse properties than did the distribution of taenidia. The combination of the macro-scale geometry, meso-scale heterogeneity, and microscale organization likely enables rhythmic tracheal compression during respiration, ultimately driving oxygen-rich air to cells and tissues throughout the insect body. The material design principles of these natural composites could potentially aid in the development of new bio-inspired microfluidic systems based on the differential collapse of tracheae-like networks.

  18. NEUTRINO-DRIVEN CONVECTION IN CORE-COLLAPSE SUPERNOVAE: HIGH-RESOLUTION SIMULATIONS

    SciTech Connect

    Radice, David; Ott, Christian D.; Abdikamalov, Ernazar; Couch, Sean M.; Haas, Roland; Schnetter, Erik

    2016-03-20

    We present results from high-resolution semiglobal simulations of neutrino-driven convection in core-collapse supernovae. We employ an idealized setup with parameterized neutrino heating/cooling and nuclear dissociation at the shock front. We study the internal dynamics of neutrino-driven convection and its role in redistributing energy and momentum through the gain region. We find that even if buoyant plumes are able to locally transfer heat up to the shock, convection is not able to create a net positive energy flux and overcome the downward transport of energy from the accretion flow. Turbulent convection does, however, provide a significant effective pressure support to the accretion flow as it favors the accumulation of energy, mass, and momentum in the gain region. We derive an approximate equation that is able to explain and predict the shock evolution in terms of integrals of quantities such as the turbulent pressure in the gain region or the effects of nonradial motion of the fluid. We use this relation as a way to quantify the role of turbulence in the dynamics of the accretion shock. Finally, we investigate the effects of grid resolution, which we change by a factor of 20 between the lowest and highest resolution. Our results show that the shallow slopes of the turbulent kinetic energy spectra reported in previous studies are a numerical artifact. Kolmogorov scaling is progressively recovered as the resolution is increased.

  19. Bayesian parameter estimation of core collapse supernovae using gravitational wave simulations

    NASA Astrophysics Data System (ADS)

    Edwards, Matthew C.; Meyer, Renate; Christensen, Nelson

    2014-11-01

    Using the latest numerical simulations of rotating stellar core collapse, we present a Bayesian framework to extract the physical information encoded in noisy gravitational wave signals. We fit Bayesian principal component regression models with known and unknown signal arrival times to reconstruct gravitational wave signals, and subsequently fit known astrophysical parameters on the posterior means of the principal component coefficients using a linear model. We predict the ratio of rotational kinetic energy to gravitational energy of the inner core at bounce by sampling from the posterior predictive distribution, and find that these predictions are generally very close to the true parameter values, with 90% credible intervals ˜ 0.06 wide for the known and unknown arrival time models respectively. Two supervised machine learning methods are implemented to classify precollapse differential rotation, and we find that these methods discriminate rapidly rotating progenitors particularly well. We also introduce a constrained optimization approach to model selection to find an optimal number of principal components in the signal reconstruction step. Using this approach, we select 14 principal components as the most parsimonious model.

  20. Computer simulation of trails on a square lattice. II. Finite temperatures and the collapse transition

    NASA Astrophysics Data System (ADS)

    Meirovitch, H.; Lim, H. A.

    1989-04-01

    We study by the scanning simulation method trails on a square lattice at finite temperatures. This method constitutes a very efficient tool since it enables one to obtain results at many temperatures from a single sample generated at any given temperature. The tricritical temperature at which the collapse transition occurs is -ɛ/kBTt=1.086+/-0.002. The tricritical exponents of the trail shape and its free energy are, respectively, νt=0.569+/-0.008 and γt=1.133+/-0.024 (95% confidence limits). They are equal within the error bars to the exact values of self-attracting self-avoiding walks (SAW's). However, the crossover exponent φt=0.807+/-0.005 is significantly larger than the exact value 0.423 of SAW's. We also carry out a detailed scaling analysis near Tt and demonstrate that the various properties scale as predicted by theory. At sufficiently low temperatures (T<=Tt) the persistence length appears to be ~1.

  1. Energy Budget of Forming Clumps in Numerical Simulations of Collapsing Clouds

    NASA Astrophysics Data System (ADS)

    Camacho, Vianey; Vázquez-Semadeni, Enrique; Ballesteros-Paredes, Javier; Gómez, Gilberto C.; Fall, S. Michael; Mata-Chávez, M. Dolores

    2016-12-01

    We analyze the physical properties and energy balance of density enhancements in two SPH simulations of the formation, evolution, and collapse of giant molecular clouds. In the simulations, no feedback is included, so all motions are due either to the initial decaying turbulence or to gravitational contraction. We define clumps as connected regions above a series of density thresholds. The resulting full set of clumps follows the generalized energy equipartition relation, {σ }v/{R}1/2\\propto {{{Σ }}}1/2, where {σ }v is the velocity dispersion, R is the “radius,” and Σ is the column density. We interpret this as a natural consequence of gravitational contraction at all scales rather than virial equilibrium. Nevertheless, clumps with low Σ tend to show a large scatter around equipartition. In more than half of the cases, this scatter is dominated by external turbulent compressions that assemble the clumps rather than by small-scale random motions that would disperse them. The other half does actually disperse. Moreover, clump sub-samples selected by means of different criteria exhibit different scalings. Sub-samples with narrow Σ ranges follow Larson-like relations, although characterized by their respective values of Σ. Finally, we find that (i) clumps lying in filaments tend to appear sub-virial, (ii) high-density cores (n≥slant {10}5 cm3) that exhibit moderate kinetic energy excesses often contain sink (“stellar”) particles and the excess disappears when the stellar mass is taken into account in the energy balance, and (iii) cores with kinetic energy excess but no stellar particles are truly in a state of dispersal.

  2. Multi-dimensional Simulations of Core Collapse Supernovae employing Ray-by-Ray Neutrino Transport

    NASA Astrophysics Data System (ADS)

    Hix, W. R.; Mezzacappa, A.; Liebendoerfer, M.; Messer, O. E. B.; Blondin, J. M.; Bruenn, S. W.

    2001-12-01

    Decades of research on the mechanism which causes core collapse supernovae has evolved a paradigm wherein the shock that results from the formation of the proto-neutron star stalls, failing to produce an explosion. Only when the shock is re-energized by the tremendous neutrino flux that is carrying off the binding energy of this proto-neutron star can it drive off the star's envelope, creating a supernova. Work in recent years has demonstrated the importance of multi-dimensional hydrodynamic effects like convection to successful simulation of an explosion. Further work has established the necessity of accurately characterizing the distribution of neutrinos in energy and direction. This requires discretizing the neutrino distribution into multiple groups, adding greatly to the computational cost. However, no supernova simulations to date have combined self-consistent multi-group neutrino transport with multi-dimensional hydrodynamics. We present preliminary results of our efforts to combine these important facets of the supernova mechanism by coupling self-consistent ray-by-ray multi-group Boltzmann and flux-limited diffusion neutrino transport schemes to multi-dimensional hydrodynamics. This research is supported by NASA under contract NAG5-8405, by the NSF under contract AST-9877130, and under a SciDAC grant from the DoE Office of Science High Energy and Nuclear Physics Program. Work at Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725.

  3. Cosmological Simulations of Early Black Hole Formation: Halo Mergers, Tidal Disruption, and the Conditions for Direct Collapse

    NASA Astrophysics Data System (ADS)

    Chon, Sunmyon; Hirano, Shingo; Hosokawa, Takashi; Yoshida, Naoki

    2016-12-01

    Gravitational collapse of a massive primordial gas cloud is thought to be a promising path for the formation of supermassive black holes in the early universe. We study conditions for the so-called direct collapse (DC) black hole formation in a fully cosmological context. We combine a semianalytic model of early galaxy formation with halo merger trees constructed from dark matter N-body simulations. We locate a total of 68 possible DC sites in a volume of 20 {h}-1 {Mpc} on a side. We then perform hydrodynamics simulations for 42 selected halos to study in detail the evolution of the massive clouds within them. We find only two successful cases where the gas clouds rapidly collapse to form stars. In the other cases, gravitational collapse is prevented by the tidal force exerted by a nearby massive halo, which otherwise should serve as a radiation source necessary for DC. Ram pressure stripping disturbs the cloud approaching the source. In many cases, a DC halo and its nearby light source halo merge before the onset of cloud collapse. When the DC halo is assembled through major mergers, the gas density increases rapidly to trigger gravitational instability. Based on our cosmological simulations, we conclude that the event rate of DC is an order of magnitude smaller than reported in previous studies, although the absolute rate is still poorly constrained. It is necessary to follow the dynamical evolution of a DC cloud and its nearby halo(s) in order to determine the critical radiation flux for DC.

  4. Evaluation of collapse resistance of RC frame structures for Chinese schools in seismic design categories B and C

    NASA Astrophysics Data System (ADS)

    Tang, Baoxin; Lu, Xinzheng; Ye, Lieping; Shi, Wei

    2011-09-01

    According to the Code for Seismic Design of Buildings (GB50011-2001), ten typical reinforced concrete (RC) frame structures, used as school classroom buildings, are designed with different seismic fortification intensities (SFIs) (SFI=6 to 8.5) and different seismic design categories (SDCs) (SDC=B and C). The collapse resistance of the frames with SDC=B and C in terms of collapse fragility curves are quantitatively evaluated and compared via incremental dynamic analysis (IDA). The results show that the collapse resistance of structures should be evaluated based on both the absolute seismic resistance and the corresponding design seismic intensity. For the frames with SFI from 6 to 7.5, because they have relatively low absolute seismic resistance, their collapse resistance is insufficient even when their corresponding SDCs are upgraded from B to C. Thus, further measures are needed to enhance these structures, and some suggestions are proposed.

  5. Triplex structures induce DNA double strand breaks via replication fork collapse in NER deficient cells

    PubMed Central

    Kaushik Tiwari, Meetu; Adaku, Nneoma; Peart, Natoya; Rogers, Faye A.

    2016-01-01

    Structural alterations in DNA can serve as natural impediments to replication fork stability and progression, resulting in DNA damage and genomic instability. Naturally occurring polypurine mirror repeat sequences in the human genome can create endogenous triplex structures evoking a robust DNA damage response. Failures to recognize or adequately process these genomic lesions can result in loss of genomic integrity. Nucleotide excision repair (NER) proteins have been found to play a prominent role in the recognition and repair of triplex structures. We demonstrate using triplex-forming oligonucleotides that chromosomal triplexes perturb DNA replication fork progression, eventually resulting in fork collapse and the induction of double strand breaks (DSBs). We find that cells deficient in the NER damage recognition proteins, XPA and XPC, accumulate more DSBs in response to chromosomal triplex formation than NER-proficient cells. Furthermore, we demonstrate that XPC-deficient cells are particularly prone to replication-associated DSBs in the presence of triplexes. In the absence of XPA or XPC, deleterious consequences of triplex-induced genomic instability may be averted by activating apoptosis via dual phosphorylation of the H2AX protein. Our results reveal that damage recognition by XPC and XPA is critical to maintaining replication fork integrity and preventing replication fork collapse in the presence of triplex structures. PMID:27298253

  6. Subsurface architecture of a strike-slip collapse structure: insights from Ilopango caldera, El Salvador

    NASA Astrophysics Data System (ADS)

    Saxby, Jennifer; Gottsmann, Joachim; Cashman, Katherine; Gutierrez, Eduardo

    2016-04-01

    While most calderas are created by roof collapse along ring-like faults into an emptying magma reservoir during a large and violent explosive eruption, an additional condition for caldera formation may be tectonically induced extensional stresses. Here we provide geophysical insights into the shallow sub-volcanic plumbing system of a collapse caldera in a major strike-slip tectonic setting by inverting Bouguer gravity data from the Ilopango caldera in El Salvador. Despite a long history of catastrophic eruptions with the most recent in 500 A.D., the internal architecture of the caldera has not been investigated, although studies of the most recent eruption have not identified the ring faults commonly associated with caldera collapse. The gravity data show that low-density material aligned along the principal stress orientations of the El Salvador Fault Zone (ESFZ) forms a pronounced gravity low beneath the caldera. Extending to around 6 km depth, the low density structure likely maps a complex stacked shallow plumbing system composed of magmatic and fractured hydrothermal reservoirs. A substantial volume of the plumbing system must be composed of a vapour phase to explain the modeled negative density contrasts. We use these constraints to map the possible multi-phase parameter space contributing to the subsurface architecture of the caldera and propose that the local extension along the complex ESFZ controls accumulation, ascent and eruption of magma at Ilopango. The data further suggest that future eruptions at Ilopango could be facilitated by rapid rise of magma along conjugate fault damage zones through a mechanically weak crust under tension. This may explain the absence of clear ring fault structures at the caldera.

  7. Numerical Methods for 3D Magneto-Rotational Core-Collapse Supernova Simulation with Jet Formation

    NASA Astrophysics Data System (ADS)

    Käppeli, R. Y.

    2013-12-01

    The work presented in this thesis is devoted to the development of a numerical model for the three dimensional simulation of magneto-rotational core-collapse supernovae (MHD-CCSNe) with jet formation. The numerical model then suggests that MHD-CCSNe naturally provide a possible site for the strong rapid neutron capture process in agreement with observations of the early Galactic chemical evolution. In the first part of this thesis, we develop several numerical methods and describe thoroughly their efficient implementations on current high-performance computer architectures. We develop a fast and simple computer code texttt{FISH} that solves the equations of magnetohydrodynamics. The code is parallelized with an optimal combination of shared and distributed memory paradigms and scales to several thousands processes on high-performance computer clusters. We develop a novel well-balanced numerical scheme for the Euler equations with gravitational source terms to preserve a discrete hydrostatic equilibrium exactly. Being able to accurately represent hydrostatic equilibria is of particular interest for the simulation of CCSN, because a large part of the newly forming neutron star evolves in a quasi-hydrostatic manner. We include an approximate and computationally efficient treatment of neutrino physics in the form of a spectral leakage scheme. It enables us to capture approximately the most important neutrino cooling effects, which are responsible for the shock stall and for the neutronisation of matter behind the shock. The latter is crucial for the nucleosynthesis yields. To fit into our multidimensional MHD-CCSN model, the spectral leakage scheme is implemented in a ray-by-ray approach. In the second part of this thesis, we apply our three-dimensional numerical model to the study of the MHD-CCSN explosion mechanism. We investigate a series of models with poloidal magnetic field and varying initial angular momentum distribution through the collapse, bounce and jet

  8. Infilled masonry walls contribution in mitigating progressive collapse of multistory reinforced concrete structures according to UFC guidelines

    NASA Astrophysics Data System (ADS)

    Helmy, Huda; Hadhoud, Hamed; Mourad, Sherif

    2015-09-01

    A structure is subjected to progressive collapse when an element fails, resulting in failure of adjoining structural elements which, in their turn, cause further structural failure leading eventually to partial or total collapse. The failure of a primary vertical support might occur due to extreme loadings such as bomb explosion in a terrorist attack, gas explosion and huge impact of a car in the parking area. Different guidelines such as the General Services Administration (GSA 2003) and the Unified Facilities Criteria (UFC 2009) addressed the structural progressive collapse due to the sudden loss of a main vertical support. In the current study, a progressive collapse assessment according to the UFC guidelines is carried out for a typical ten-story reinforced concrete framed structure designed according to codes [(ACI 318-08) and (ASCE 7-10)] for minimum design loads for buildings and other structures. Fully nonlinear dynamic analysis for the structure was carried out using Applied Element Method (AEM). The investigated cases included the removal of a corner column, an edge column, an edge shear wall, internal columns and internal shear wall. The numerical analysis showed that simplification of the problem into 3D bare frames would lead to uneconomical design. It was found for the studied case that, the infilled masonry walls have a valuable contribution in mitigating progressive collapse of the reinforced concrete framed structures. Neglecting these walls would lead to uneconomical design.

  9. Axisymmetric Ab Initio Core-Collapse Supernova Simulations of 12--25 Solar Mass Stars

    SciTech Connect

    Bruenn, S. W.; Mezzacappa, Anthony; Hix, William Raphael; Lentz, E. J.; Messer, Bronson; Lingerfelt, Eric J; Blondin, J. M.; Endeve, Eirik; Marronetti, Pedro; Yakunin, Konstantin

    2013-01-01

    We present an overview of four ab initio axisymmetric core-collapse supernova simulations employing detailed spectral neutrino transport computed with our CHIMERA code and initiated from Woosley & Heger (2007) progenitors of mass 12, 15, 20, and 25 M_sun. All four models exhibit shock revival over ~ 200 ms (leading to the possibility of explosion), driven by neutrino energy deposition. Hydrodynamic instabilities that impart substantial asymmetries to the shock aid these revivals, with convection appearing first in the 12 solar mass model and the standing accretion shock instability (SASI) appearing first in the 25 solar mass model. Three of the models have developed pronounced prolate morphologies (the 20 solar mass model has remained approximately spherical). By 500 ms after bounce the mean shock radii in all four models exceed 3,000 km and the diagnostic explosion energies are 0.33, 0.66, 0.65, and 0.70 Bethe (B=10^{51} ergs) for the 12, 15, 20, and 25 solar mass models, respectively, and are increasing. The three least massive of our models are already sufficiently energetic to completely unbind the envelopes of their progenitors (i.e., to explode), as evidenced by our best estimate of their explosion energies, which first become positive at 320, 380, and 440 ms after bounce. By 850 ms the 12 solar mass diagnostic explosion energy has saturated at 0.38 B, and our estimate for the final kinetic energy of the ejecta is ~ 0.3 B, which is comparable to observations for lower-mass progenitors.

  10. Relativistic MHD simulations of core-collapse GRB jets: 3D instabilities and magnetic dissipation

    NASA Astrophysics Data System (ADS)

    Bromberg, Omer; Tchekhovskoy, Alexander

    2016-02-01

    Relativistic jets are associated with extreme astrophysical phenomena, like the core collapse of massive stars in gamma-ray bursts (GRBs) and the accretion on to supermassive black holes in active galactic nuclei. It is generally accepted that these jets are powered electromagnetically, by the magnetized rotation of a central compact object (black hole or neutron star). However, how the jets produce the observed emission and survive the propagation for many orders of magnitude in distance without being disrupted by current-driven instabilities is the subject of active debate. We carry out time-dependent 3D relativistic magnetohydrodynamic (MHD) simulations of relativistic, Poynting-flux-dominated jets. The jets are launched self-consistently by the rotation of a strongly magnetized central object. This determines the natural degree of azimuthal magnetic field winding, a crucial factor that controls jet stability. We find that the jets are susceptible to two types of instability: (i) a global, external kink mode that grows on long time-scales. It bodily twists the jet, reducing its propagation velocity. We show analytically that in flat density profiles, like the ones associated with galactic cores, the external mode grows and may stall the jet. In the steep profiles of stellar envelopes the external kink weakens as the jet propagates outward. (ii) a local, internal kink mode that grows over short time-scales and causes small-angle magnetic reconnection and conversion of about half of the jet electromagnetic energy flux into heat. We suggest that internal kink instability is the main dissipation mechanism responsible for powering GRB prompt emission.

  11. TWO-DIMENSIONAL CORE-COLLAPSE SUPERNOVA SIMULATIONS WITH THE ISOTROPIC DIFFUSION SOURCE APPROXIMATION FOR NEUTRINO TRANSPORT

    SciTech Connect

    Pan, Kuo-Chuan; Liebendörfer, Matthias; Hempel, Matthias; Thielemann, Friedrich-Karl

    2016-01-20

    The neutrino mechanism of core-collapse supernova is investigated via non-relativistic, two-dimensional (2D), neutrino radiation–hydrodynamic simulations. For the transport of electron flavor neutrinos, we use the interaction rates defined by Bruenn and the isotropic diffusion source approximation (IDSA) scheme, which decomposes the transported particles into trapped-particle and streaming-particle components. Heavy neutrinos are described by a leakage scheme. Unlike the “ray-by-ray” approach in some other multidimensional supernova models, we use cylindrical coordinates and solve the trapped-particle component in multiple dimensions, improving the proto-neutron star resolution and the neutrino transport in angular and temporal directions. We provide an IDSA verification by performing one-dimensional (1D) and 2D simulations with 15 and 20 M{sub ⊙} progenitors from Woosley et al. and discuss the difference between our IDSA results and those existing in the literature. Additionally, we perform Newtonian 1D and 2D simulations from prebounce core collapse to several hundred milliseconds postbounce with 11, 15, 21, and 27 M{sub ⊙} progenitors from Woosley et al. with the HS(DD2) equation of state. General-relativistic effects are neglected. We obtain robust explosions with diagnostic energies E{sub dia} ≳ 0.1–0.5 B (1 B ≡ 10{sup 51} erg) for all considered 2D models within approximately 100–300 ms after bounce and find that explosions are mostly dominated by the neutrino-driven convection, although standing accretion shock instabilities are observed as well. We also find that the level of electron deleptonization during collapse dramatically affects the postbounce evolution, e.g., the neglect of neutrino–electron scattering during collapse will lead to a stronger explosion.

  12. Two-dimensional Core-collapse Supernova Simulations with the Isotropic Diffusion Source Approximation for Neutrino Transport

    NASA Astrophysics Data System (ADS)

    Pan, Kuo-Chuan; Liebendörfer, Matthias; Hempel, Matthias; Thielemann, Friedrich-Karl

    2016-01-01

    The neutrino mechanism of core-collapse supernova is investigated via non-relativistic, two-dimensional (2D), neutrino radiation-hydrodynamic simulations. For the transport of electron flavor neutrinos, we use the interaction rates defined by Bruenn and the isotropic diffusion source approximation (IDSA) scheme, which decomposes the transported particles into trapped-particle and streaming-particle components. Heavy neutrinos are described by a leakage scheme. Unlike the “ray-by-ray” approach in some other multidimensional supernova models, we use cylindrical coordinates and solve the trapped-particle component in multiple dimensions, improving the proto-neutron star resolution and the neutrino transport in angular and temporal directions. We provide an IDSA verification by performing one-dimensional (1D) and 2D simulations with 15 and 20 M⊙ progenitors from Woosley et al. and discuss the difference between our IDSA results and those existing in the literature. Additionally, we perform Newtonian 1D and 2D simulations from prebounce core collapse to several hundred milliseconds postbounce with 11, 15, 21, and 27 M⊙ progenitors from Woosley et al. with the HS(DD2) equation of state. General-relativistic effects are neglected. We obtain robust explosions with diagnostic energies Edia ≳ 0.1-0.5 B (1 B ≡ 1051 erg) for all considered 2D models within approximately 100-300 ms after bounce and find that explosions are mostly dominated by the neutrino-driven convection, although standing accretion shock instabilities are observed as well. We also find that the level of electron deleptonization during collapse dramatically affects the postbounce evolution, e.g., the neglect of neutrino-electron scattering during collapse will lead to a stronger explosion.

  13. I35W collapse, rebuild, and structural health monitoring - challenges associated with structural health monitoring of bridge systems

    SciTech Connect

    French, C. E.; Hedegaard, B.; Shield, C. K.; Stolarski, H.

    2011-06-23

    During evening rush hour traffic on August 1, 2007, the major interstate highway bridge carrying I35W over the Mississippi River in Minneapolis catastrophically failed, tragically taking the lives of thirteen people and injuring many more. The steel truss bridge, constructed in 1967, was undergoing deck reconstruction during the collapse, and was estimated to carry more than 140,000 vehicles daily. This tragedy generated great interest in employment of structural health monitoring systems. The I35W St. Anthony Falls Bridge, a post-tensioned concrete box bridge constructed to replace the collapsed steel truss bridge, contains over 500 instruments to monitor the structural behavior. Numerical models of the bridge are being developed and calibrated to the collected data obtained from truck load tests and thermal effects. The data obtained over the first few years of monitoring are being correlated with the calibrated models and used to develop the baseline bridge behavior. This information is being used to develop a system to monitor and interpret the long-term behavior of the bridge. This paper describes the instrumentation, preliminary results from the data and model calibration, the plan for developing long-term monitoring capabilities, and the challenges associated with structural health monitoring of bridge systems. In addition, opportunities and directions for future research required to fully realize the objectives of structural health monitoring are described.

  14. I35W Collapse, Rebuild, and Structural Health MONITORING—CHALLENGES Associated with Structural Health Monitoring of Bridge Systems

    NASA Astrophysics Data System (ADS)

    French, C. E.; Hedegaard, B.; Shield, C. K.; Stolarski, H.

    2011-06-01

    During evening rush hour traffic on August 1, 2007, the major interstate highway bridge carrying I35W over the Mississippi River in Minneapolis catastrophically failed, tragically taking the lives of thirteen people and injuring many more. The steel truss bridge, constructed in 1967, was undergoing deck reconstruction during the collapse, and was estimated to carry more than 140,000 vehicles daily. This tragedy generated great interest in employment of structural health monitoring systems. The I35W St. Anthony Falls Bridge, a post-tensioned concrete box bridge constructed to replace the collapsed steel truss bridge, contains over 500 instruments to monitor the structural behavior. Numerical models of the bridge are being developed and calibrated to the collected data obtained from truck load tests and thermal effects. The data obtained over the first few years of monitoring are being correlated with the calibrated models and used to develop the baseline bridge behavior. This information is being used to develop a system to monitor and interpret the long-term behavior of the bridge. This paper describes the instrumentation, preliminary results from the data and model calibration, the plan for developing long-term monitoring capabilities, and the challenges associated with structural health monitoring of bridge systems. In addition, opportunities and directions for future research required to fully realize the objectives of structural health monitoring are described.

  15. On the solution of elastic-plastic static and dynamic postbuckling collapse of general structure

    NASA Technical Reports Server (NTRS)

    Padovan, J.; Tovichakchaikul, S.

    1983-01-01

    Many investigations have considered structural collapse from strictly the transient point of view. While such an approach is ideally correct, certain difficulties have to be overcome in its implementation. The present investigation is concerned with the development of self-adaptive algorithms which make it possible to conduct the analysis of both static elastic and elastic-plastic postbuckling, as well as static loading to the onset of buckling followed by subsequent dynamic postbuckling. The approach employed to solve the static portion of loading is to extend the constrained Incremental Newton-Raphson (INR) algorithm by incorporating elastic-plastic constitutive characterizations. Large deformation moderate strain theory is adopted to establish the overall strategy. Attention is given to governing field equations, aspects of algorithmic development, and numerical experiments conducted to illustrate the efficiency and stability of the developed schemes.

  16. High Structural Stability of Textile Implants Prevents Pore Collapse and Preserves Effective Porosity at Strain

    PubMed Central

    Klinge, Uwe; Otto, Jens; Mühl, Thomas

    2015-01-01

    Reinforcement of tissues by use of textiles is encouraged by the reduced rate of recurrent tissue dehiscence but for the price of an inflammatory and fibrotic tissue reaction to the implant. The latter mainly is affected by the size of the pores, whereas only sufficiently large pores are effective in preventing a complete scar entrapment. Comparing two different sling implants (TVT and SIS), which are used for the treatment of urinary incontinence, we can demonstrate that the measurement of the effective porosity reveals considerable differences in the textile construction. Furthermore the changes of porosity after application of a tensile load can indicate a structural instability, favouring pore collapse at stress and questioning the use for purposes that are not “tension-free.” PMID:25973427

  17. Progenitor-dependent Explosion Dynamics in Self-consistent, Axisymmetric Simulations of Neutrino-driven Core-collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Summa, Alexander; Hanke, Florian; Janka, Hans-Thomas; Melson, Tobias; Marek, Andreas; Müller, Bernhard

    2016-07-01

    We present self-consistent, axisymmetric core-collapse supernova simulations performed with the Prometheus-Vertex code for 18 pre-supernova models in the range of 11-28 M ⊙, including progenitors recently investigated by other groups. All models develop explosions, but depending on the progenitor structure, they can be divided into two classes. With a steep density decline at the Si/Si-O interface, the arrival of this interface at the shock front leads to a sudden drop of the mass-accretion rate, triggering a rapid approach to explosion. With a more gradually decreasing accretion rate, it takes longer for the neutrino heating to overcome the accretion ram pressure and explosions set in later. Early explosions are facilitated by high mass-accretion rates after bounce and correspondingly high neutrino luminosities combined with a pronounced drop of the accretion rate and ram pressure at the Si/Si-O interface. Because of rapidly shrinking neutron star radii and receding shock fronts after the passage through their maxima, our models exhibit short advection timescales, which favor the efficient growth of the standing accretion-shock instability. The latter plays a supportive role at least for the initiation of the re-expansion of the stalled shock before runaway. Taking into account the effects of turbulent pressure in the gain layer, we derive a generalized condition for the critical neutrino luminosity that captures the explosion behavior of all models very well. We validate the robustness of our findings by testing the influence of stochasticity, numerical resolution, and approximations in some aspects of the microphysics.

  18. Sowing Black Hole Seeds: Forming Direct Collapse Black Holes With Realistic Lyman-Werner Radiation Fields in Cosmological Simulations

    NASA Astrophysics Data System (ADS)

    Holley-Bockelmann, Kelly; Dunn, Glenna; Bellovary, Jillian M.; Christensen, Charlotte

    2016-01-01

    Luminous quasars detected at redshifts z > 6 require that the first black holes form early and grow to ~109 solar masses within one Gyr. Our work uses cosmological simulations to study the formation and early growth of direct collapse black holes. In the pre-reionization epoch, molecular hydrogen (H2) causes gas to fragment and form Population III stars, but Lyman-Werner radiation can suppress H2 formation and allow gas to collapse directly into a massive black hole. The critical flux required to inhibit H2 formation, Jcrit, is hotly debated, largely due to the uncertainties in the source radiation spectrum, H2 self-shielding, and collisional dissociation rates. Here, we test the power of the direct collapse model in a non-uniform Lyman-Werner radiation field, using an updated version of the SPH+N-body tree code Gasoline with H2 non-equilibrium abundance tracking, H2 cooling, and a modern SPH implementation. We vary Jcrit from 30 to 104 J21 to study the effect on seed black holes, focusing on black hole formation as a function of environment, halo mass, metallicity, and proximity of the Lyman-Werner source. We discuss the constraints on massive black hole occupation fraction in the quasar epoch, and implications for reionization, high-redshift X-ray background radiation, and gravitational waves.

  19. THREE-DIMENSIONAL SIMULATIONS OF RAYLEIGH-TAYLOR MIXING IN CORE-COLLAPSE SUPERNOVAE

    SciTech Connect

    Joggerst, C. C.; Woosley, S. E.; Almgren, A.

    2010-11-01

    We present multidimensional simulations of the post-explosion hydrodynamics in three different 15 M{sub sun} supernova models with zero, 10{sup -4} Z{sub sun}, and Z{sub sun} metallicities. We follow the growth of the Rayleigh-Taylor (RT) instability that mixes together the stellar layers in the wake of the explosion. Models are initialized with spherically symmetric explosions and perturbations are seeded by the grid. Calculations are performed in two-dimensional (2D) axisymmetric and three-dimensional (3D) Cartesian coordinates using the new Eulerian hydrodynamics code, CASTRO. We find as in previous work that RT perturbations initially grow faster in 3D than in 2D. As the RT fingers interact with one another, mixing proceeds to a greater degree in 3D than in 2D, reducing the local Atwood number and slowing the growth rate of the instability in 3D relative to 2D. By the time mixing has stopped, the width of the mixed region is similar in the 2D and 3D simulations provided the RT fingers show significant interaction. Our results imply that 2D simulations of light curves and nucleosynthesis in supernovae that die as red giants may capture the features of an initially spherically symmetric explosion in far less computational time than required by a full 3D simulation. However, capturing large departures from spherical symmetry requires a significantly perturbed explosion. Large-scale asymmetries cannot develop through an inverse cascade of merging RT structures; they must arise from asymmetries in the initial explosion.

  20. Convection, nucleosynthesis, and core collapse

    NASA Technical Reports Server (NTRS)

    Bazan, Grant; Arnett, David

    1994-01-01

    We use a piecewise parabolic method hydrodynamics code (PROMETHEUS) to study convective burning in two dimensions in an oxygen shell prior to core collapse. Significant mixing beyond convective boundaries determined by mixing-length theory brings fuel (C-12) into the convective regon, causing hot spots of nuclear burning. Plumes dominate the velocity structure. Finite perturbations arise in a region in which O-16 will be explosively burned to Ni-56 when the star explodes; the resulting instabilities and mixing are likely to distribute Ni-56 throughout the supernova envelope. Inhomogeneities in Y(sub e) may be large enough to affect core collapse and will affect explosive nucleosynthesis. The nature of convective burning is dramatically different from that assumed in one-dimensional simulations; quantitative estimates of nucleosynthetic yields, core masses, and the approach to core collapse will be affected.

  1. An improved multipole approximation for self-gravity and its importance for core-collapse supernova simulations

    SciTech Connect

    Couch, Sean M.; Graziani, Carlo; Flocke, Norbert

    2013-12-01

    Self-gravity computation by multipole expansion is a common approach in problems such as core-collapse and Type Ia supernovae, where single large condensations of mass must be treated. The standard formulation of multipole self-gravity in arbitrary coordinate systems suffers from two significant sources of error, which we correct in the formulation presented in this article. The first source of error is due to the numerical approximation that effectively places grid cell mass at the central point of the cell, then computes the gravitational potential at that point, resulting in a convergence failure of the multipole expansion. We describe a new scheme that avoids this problem by computing gravitational potential at cell faces. The second source of error is due to sub-optimal choice of location for the expansion center, which results in angular power at high multipole l values in the gravitational field, requiring a high—and expensive—value of multipole cutoff l {sub max}. By introducing a global measure of angular power in the gravitational field, we show that the optimal coordinate for the expansion is the square-density-weighted mean location. We subject our new multipole self-gravity algorithm, implemented in the FLASH simulation framework, to two rigorous test problems: MacLaurin spheroids for which exact analytic solutions are known, and core-collapse supernovae. We show that key observables of the core-collapse simulations, particularly shock expansion, proto-neutron star motion, and momentum conservation, are extremely sensitive to the accuracy of the multipole gravity, and the accuracy of their computation is greatly improved by our reformulated solver.

  2. An Improved Multipole Approximation for Self-gravity and Its Importance for Core-collapse Supernova Simulations

    NASA Astrophysics Data System (ADS)

    Couch, Sean M.; Graziani, Carlo; Flocke, Norbert

    2013-12-01

    Self-gravity computation by multipole expansion is a common approach in problems such as core-collapse and Type Ia supernovae, where single large condensations of mass must be treated. The standard formulation of multipole self-gravity in arbitrary coordinate systems suffers from two significant sources of error, which we correct in the formulation presented in this article. The first source of error is due to the numerical approximation that effectively places grid cell mass at the central point of the cell, then computes the gravitational potential at that point, resulting in a convergence failure of the multipole expansion. We describe a new scheme that avoids this problem by computing gravitational potential at cell faces. The second source of error is due to sub-optimal choice of location for the expansion center, which results in angular power at high multipole l values in the gravitational field, requiring a high—and expensive—value of multipole cutoff l max. By introducing a global measure of angular power in the gravitational field, we show that the optimal coordinate for the expansion is the square-density-weighted mean location. We subject our new multipole self-gravity algorithm, implemented in the FLASH simulation framework, to two rigorous test problems: MacLaurin spheroids for which exact analytic solutions are known, and core-collapse supernovae. We show that key observables of the core-collapse simulations, particularly shock expansion, proto-neutron star motion, and momentum conservation, are extremely sensitive to the accuracy of the multipole gravity, and the accuracy of their computation is greatly improved by our reformulated solver.

  3. Voltage collapse in complex power grids

    PubMed Central

    Simpson-Porco, John W.; Dörfler, Florian; Bullo, Francesco

    2016-01-01

    A large-scale power grid's ability to transfer energy from producers to consumers is constrained by both the network structure and the nonlinear physics of power flow. Violations of these constraints have been observed to result in voltage collapse blackouts, where nodal voltages slowly decline before precipitously falling. However, methods to test for voltage collapse are dominantly simulation-based, offering little theoretical insight into how grid structure influences stability margins. For a simplified power flow model, here we derive a closed-form condition under which a power network is safe from voltage collapse. The condition combines the complex structure of the network with the reactive power demands of loads to produce a node-by-node measure of grid stress, a prediction of the largest nodal voltage deviation, and an estimate of the distance to collapse. We extensively test our predictions on large-scale systems, highlighting how our condition can be leveraged to increase grid stability margins. PMID:26887284

  4. Voltage collapse in complex power grids.

    PubMed

    Simpson-Porco, John W; Dörfler, Florian; Bullo, Francesco

    2016-02-18

    A large-scale power grid's ability to transfer energy from producers to consumers is constrained by both the network structure and the nonlinear physics of power flow. Violations of these constraints have been observed to result in voltage collapse blackouts, where nodal voltages slowly decline before precipitously falling. However, methods to test for voltage collapse are dominantly simulation-based, offering little theoretical insight into how grid structure influences stability margins. For a simplified power flow model, here we derive a closed-form condition under which a power network is safe from voltage collapse. The condition combines the complex structure of the network with the reactive power demands of loads to produce a node-by-node measure of grid stress, a prediction of the largest nodal voltage deviation, and an estimate of the distance to collapse. We extensively test our predictions on large-scale systems, highlighting how our condition can be leveraged to increase grid stability margins.

  5. Collapsing bacterial cylinders

    NASA Astrophysics Data System (ADS)

    Betterton, M. D.; Brenner, Michael P.

    2001-12-01

    Under special conditions bacteria excrete an attractant and aggregate. The high density regions initially collapse into cylindrical structures, which subsequently destabilize and break up into spherical aggregates. This paper presents a theoretical description of the process, from the structure of the collapsing cylinder to the spacing of the final aggregates. We show that cylindrical collapse involves a delicate balance in which bacterial attraction and diffusion nearly cancel, leading to corrections to the collapse laws expected from dimensional analysis. The instability of a collapsing cylinder is composed of two distinct stages: Initially, slow modulations to the cylinder develop, which correspond to a variation of the collapse time along the cylinder axis. Ultimately, one point on the cylinder pinches off. At this final stage of the instability, a front propagates from the pinch into the remainder of the cylinder. The spacing of the resulting spherical aggregates is determined by the front propagation.

  6. Fluid-Structure Analysis of Opening Phenomena in a Collapsible Airway

    NASA Astrophysics Data System (ADS)

    Ghadiali, Samir N.; Banks, Julie; Swarts, J. Douglas

    2003-11-01

    Several physiological functions require the opening of collapsed respiratory airways. For example, the Eustachian tube (ET), which connects the nasopharynx with the middle ear (ME), must be periodically opened to maintain ambient ME pressures. These openings normally occur during swallowing when muscle contraction deforms the surrounding soft tissue. The inability to open the ET results in the most common and costly ear disease in children, Otitis Media. Although tissue-based treatments have been purposed, the influence of the various tissue mechanical properties on flow phenomena has not been investigated. A computational model of ET opening was developed using in-vivo structural data to investigate these fluid-structure interactions. This model accounts for both tissue deformation and the resulting airflow in a non-circular conduit. Results indicate that ET opening is more sensitive to the applied muscle forces than elastic tissue properties. These models have therefore identified how different tissue elements alter ET opening phenomena, which elements should be targeted for treatment and the optimal mechanical properties of these tissue constructs. Research supported by NIH grant DC005345.

  7. Hydrothermal Vents in Yellowstone Lake: Chemical Fluxes, Siliceous Deposits, and Collapse Structures

    NASA Astrophysics Data System (ADS)

    Shanks, W. P.; Morgan, L. A.; Balistrieri, L.; Alt, J.; Meeker, G.

    2002-12-01

    The geochemistry of Yellowstone Lake is strongly influenced by sublacustrine hydrothermal vent activity. The hydrothermal source fluid is identified using Cl and dD data on water column and sublacustrine hydrothermal vent fluid samples. Silica-rich hydrothermal deposits occur on the lake bottom near active and presently inactive hydrothermal vents. Pipe- and flange-like deposits contain cemented and recrystallized diatoms and represent pathways for hydrothermal fluid migration. Another major type of hydrothermal deposit comprises hard, porous siliceous spires up to 7 m tall that occur in 15 m of water in Bridge Bay. Bridge Bay spires are hydrothermal silica deposits formed in place by growth of chimney-like features from lake-bottom hydrothermal vents. The Cl concentrations indicate that Yellowstone Lake water is about 1 percent hydrothermal source fluid and 99 percent inflowing stream water and that the flux is about 10 percent of the total hydrothermal water flux in Yellowstone National Park. With recent swath-sonar mapping studies that show numerous new hydrothermal features, Yellowstone Lake should now be considered one of the most significant hydrothermal basins in the Park. Many lake-bottom hydrothermal vents occur in small depressions that are clearly imaged on multibeam sonar, some of which are interpreted as collapse structures based on seismic reflection data. Sediments collected from such vents show chemical evidence of leaching of 60-70 wt. percent SiO2, which may result in volume reductions up to 80 percent and provides a mechanism for vent structure formation.

  8. Photometric Identification of Population III Core-Collapse Supernovae: Multicolor Light Curve Simulations

    NASA Astrophysics Data System (ADS)

    Tolstov, Alexey; Nomoto, Ken'ichi; Tominaga, Nozomu; Ishigaki, Miho N.; Blinnikov, Sergey; Suzuki, Tomoharu

    We study the multicolor light curves for a number of metal-free core-collapse supernova (SN) models (25-100 ȯ ) to determine the indicators for the detection and identification of first generation SNe. We use mixing-fallback supernova explosion models that explain the observed abundance patterns of metal-poor stars. Numerical calculations of the multicolor light curves are performed using the multigroup radiation hydrodynamic code STELLA. The calculated light curves of metal-free SNe are compared with solar-metallicity models and observed SNe. We conclude that the multicolor light curves could be used to identify first-generation SNe in current (Subaru/HSC) and future transient surveys (LSST, James Webb Space Telescope). They are also suitable for identifying low-metallicity SNe in the nearby universe (PTF, Pan-STARRS, Gaia).

  9. Constraining the supersaturation density equation of state from core-collapse supernova simulations?. Excluded volume extension of the baryons

    NASA Astrophysics Data System (ADS)

    Fischer, Tobias

    2016-03-01

    In this article the role of the supersaturation density equation of state (EOS) is explored in simulations of failed core-collapse supernova explosions. Therefore the nuclear EOS is extended via a one-parameter excluded-volume description for baryons, taking into account their finite and increasing volume with increasing density in excess of saturation density. Parameters are selected such that the resulting supernova EOS represent extreme cases, with high pressure variations at supersaturation density which feature extreme stiff and soft EOS variants of the reference case, i.e. without excluded-volume corrections. Unlike in the interior of neutron stars with central densities in excess of several times saturation density, central densities of core-collapse supernovae reach only slightly above saturation density. Hence, the impact of the supersaturation density EOS on the supernova dynamics as well as the neutrino signal is found to be negligible. It is mainly determined from the low- and intermediate-density domain, which is left unmodified within this generalized excluded volume approach.

  10. Three dimensional core-collapse supernova simulated using a 15 M progenitor

    SciTech Connect

    Lentz, Eric J.; Bruenn, Stephen W.; Hix, W. Raphael; Mezzacappa, Anthony; Messer, O. E. Bronson; Endeve, Eirik; Blondin, John M.; Harris, J. Austin; Marronetti, Pedro; Yakunin, Konstantin N.

    2015-07-10

    We have performed ab initio neutrino radiation hydrodynamics simulations in three and two spatial dimensions (3D and 2D) of core-collapse supernovae from the same 15 M⊙ progenitor through 440 ms after core bounce. Both 3D and 2D models achieve explosions; however, the onset of explosion (shock revival) is delayed by ~100 ms in 3D relative to the 2D counterpart and the growth of the diagnostic explosion energy is slower. This is consistent with previously reported 3D simulations utilizing iron-core progenitors with dense mantles. In the ~100 ms before the onset of explosion, diagnostics of neutrino heating and turbulent kinetic energy favor earlier explosion in 2D. During the delay, the angular scale of convective plumes reaching the shock surface grows and explosion in 3D is ultimately lead by a single, large-angle plume, giving the expanding shock a directional orientation not dissimilar from those imposed by axial symmetry in 2D simulations. Finally, we posit that shock revival and explosion in the 3D simulation may be delayed until sufficiently large plumes form, whereas such plumes form more rapidly in 2D, permitting earlier explosions.

  11. Volcano electrical tomography unveils edifice collapse hazard linked to hydrothermal system structure and dynamics.

    PubMed

    Rosas-Carbajal, Marina; Komorowski, Jean-Christophe; Nicollin, Florence; Gibert, Dominique

    2016-07-26

    Catastrophic collapses of the flanks of stratovolcanoes constitute a major hazard threatening numerous lives in many countries. Although many such collapses occurred following the ascent of magma to the surface, many are not associated with magmatic reawakening but are triggered by a combination of forcing agents such as pore-fluid pressurization and/or mechanical weakening of the volcanic edifice often located above a low-strength detachment plane. The volume of altered rock available for collapse, the dynamics of the hydrothermal fluid reservoir and the geometry of incipient collapse failure planes are key parameters for edifice stability analysis and modelling that remain essentially hidden to current volcano monitoring techniques. Here we derive a high-resolution, three-dimensional electrical conductivity model of the La Soufrière de Guadeloupe volcano from extensive electrical tomography data. We identify several highly conductive regions in the lava dome that are associated to fluid saturated host-rock and preferential flow of highly acid hot fluids within the dome. We interpret this model together with the existing wealth of geological and geochemical data on the volcano to demonstrate the influence of the hydrothermal system dynamics on the hazards associated to collapse-prone altered volcanic edifices.

  12. Volcano electrical tomography unveils edifice collapse hazard linked to hydrothermal system structure and dynamics

    PubMed Central

    Rosas-Carbajal, Marina; Komorowski, Jean-Christophe; Nicollin, Florence; Gibert, Dominique

    2016-01-01

    Catastrophic collapses of the flanks of stratovolcanoes constitute a major hazard threatening numerous lives in many countries. Although many such collapses occurred following the ascent of magma to the surface, many are not associated with magmatic reawakening but are triggered by a combination of forcing agents such as pore-fluid pressurization and/or mechanical weakening of the volcanic edifice often located above a low-strength detachment plane. The volume of altered rock available for collapse, the dynamics of the hydrothermal fluid reservoir and the geometry of incipient collapse failure planes are key parameters for edifice stability analysis and modelling that remain essentially hidden to current volcano monitoring techniques. Here we derive a high-resolution, three-dimensional electrical conductivity model of the La Soufrière de Guadeloupe volcano from extensive electrical tomography data. We identify several highly conductive regions in the lava dome that are associated to fluid saturated host-rock and preferential flow of highly acid hot fluids within the dome. We interpret this model together with the existing wealth of geological and geochemical data on the volcano to demonstrate the influence of the hydrothermal system dynamics on the hazards associated to collapse-prone altered volcanic edifices. PMID:27457494

  13. Volcano electrical tomography unveils edifice collapse hazard linked to hydrothermal system structure and dynamics

    NASA Astrophysics Data System (ADS)

    Rosas-Carbajal, Marina; Komorowski, Jean-Christophe; Nicollin, Florence; Gibert, Dominique

    2016-07-01

    Catastrophic collapses of the flanks of stratovolcanoes constitute a major hazard threatening numerous lives in many countries. Although many such collapses occurred following the ascent of magma to the surface, many are not associated with magmatic reawakening but are triggered by a combination of forcing agents such as pore-fluid pressurization and/or mechanical weakening of the volcanic edifice often located above a low-strength detachment plane. The volume of altered rock available for collapse, the dynamics of the hydrothermal fluid reservoir and the geometry of incipient collapse failure planes are key parameters for edifice stability analysis and modelling that remain essentially hidden to current volcano monitoring techniques. Here we derive a high-resolution, three-dimensional electrical conductivity model of the La Soufrière de Guadeloupe volcano from extensive electrical tomography data. We identify several highly conductive regions in the lava dome that are associated to fluid saturated host-rock and preferential flow of highly acid hot fluids within the dome. We interpret this model together with the existing wealth of geological and geochemical data on the volcano to demonstrate the influence of the hydrothermal system dynamics on the hazards associated to collapse-prone altered volcanic edifices.

  14. ON THE IMPACT OF THREE DIMENSIONS IN SIMULATIONS OF NEUTRINO-DRIVEN CORE-COLLAPSE SUPERNOVA EXPLOSIONS

    SciTech Connect

    Couch, Sean M.

    2013-09-20

    We present one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) hydrodynamical simulations of core-collapse supernovae including a parameterized neutrino heating and cooling scheme in order to investigate the critical core neutrino luminosity (L{sub crit}) required for explosion. In contrast to some previous works, we find that 3D simulations explode later than 2D simulations, and that L{sub crit} at fixed mass accretion rate is somewhat higher in three dimensions than in two dimensions. We find, however, that in two dimensions L{sub crit} increases as the numerical resolution of the simulation increases. In contrast to some previous works, we argue that the average entropy of the gain region is in fact not a good indicator of explosion but is rather a reflection of the greater mass in the gain region in two dimensions. We compare our simulations to semi-analytic explosion criteria and examine the nature of the convective motions in two dimensions and three dimensions. We discuss the balance between neutrino-driven buoyancy and drag forces. In particular, we show that the drag force will be proportional to a buoyant plume's surface area while the buoyant force is proportional to a plume's volume and, therefore, plumes with greater volume-to-surface-area ratios will rise more quickly. We show that buoyant plumes in two dimensions are inherently larger, with greater volume-to-surface-area ratios, than plumes in three dimensions. In the scenario that the supernova shock expansion is dominated by neutrino-driven buoyancy, this balance between buoyancy and drag forces may explain why 3D simulations explode later than 2D simulations and why L{sub crit} increases with resolution. Finally, we provide a comparison of our results with other calculations in the literature.

  15. Structural transformations, composition anomalies and a dramatic collapse of linear polymer chains in dilute ethanol-water mixtures.

    PubMed

    Banerjee, Saikat; Ghosh, Rikhia; Bagchi, Biman

    2012-03-29

    Water-ethanol mixtures exhibit many interesting anomalies, such as negative excess partial molar volume of ethanol, excess sound absorption coefficient at low concentrations, and positive deviation from Raoult's law for vapor pressure, to mention a few. These anomalies have been attributed to different, often contradictory origins, but a quantitative understanding is still lacking. We show by computer simulation and theoretical analyses that these anomalies arise from the sudden emergence of a bicontinuous phase that occurs at a relatively low ethanol concentration of x(eth) ≈ 0.06-0.10 (that amounts to a volume fraction of 0.17-0.26, which is a significant range!). The bicontinuous phase is formed by aggregation of ethanol molecules, resulting in a weak phase transition whose nature is elucidated. We find that the microheterogeneous structure of the mixture gives rise to a pronounced nonmonotonic composition dependence of local compressibility and nonmonotonic dependence in the peak value of the radial distribution function of ethyl groups. A multidimensional free energy surface of pair association is shown to provide a molecular explanation of the known negative excess partial volume of ethanol in terms of parallel orientation and hence better packing of the ethyl groups in the mixture due to hydrophobic interactions. The energy distribution of the ethanol molecules indicates additional energy decay channels that explain the excess sound attenuation coefficient in aqueous alcohol mixtures. We studied the dependence of the solvation of a linear polymer chain on the composition of the water-ethanol solvent. We find that there is a sudden collapse of the polymer at x(eth) ≈ 0.05-a phenomenon which we attribute to the formation of the microheterogeneous structures in the binary mixture at low ethanol concentrations. Together with recent single molecule pulling experiments, these results provide new insight into the behavior of polymer chain and foreign solutes

  16. The structure and dynamics of Nano Particles encapsulated by the SDS monolayer collapse at the water/TCE interface

    PubMed Central

    Shi, Wenxiong

    2016-01-01

    The super-saturated surfactant monolayer collapses with the nanoparticles (NPs) at the water/trichloroethylene (TCE) interface are investigated using molecular dynamics (MD) simulations. The results show that sodium alkyl sulfate (SDS) monolayer collapse is initiated by buckling and followed primarily by budding and the bud encapsulating the NPs and oil molecules. The developed bud detaches from the monolayer into a water phase and forms the swollen micelle emulsion with NPs and oil molecules. We investigate the wavelength of the initial budding and the theoretical description of the budding process. The wavelength of the monolayer increases with bending modulus. The energy barrier of the budding can be easily overcome by thermal fluctuation energy, which indicates that budding process proceeds rapidly. PMID:27853312

  17. The structure and dynamics of Nano Particles encapsulated by the SDS monolayer collapse at the water/TCE interface

    NASA Astrophysics Data System (ADS)

    Shi, Wenxiong

    2016-11-01

    The super-saturated surfactant monolayer collapses with the nanoparticles (NPs) at the water/trichloroethylene (TCE) interface are investigated using molecular dynamics (MD) simulations. The results show that sodium alkyl sulfate (SDS) monolayer collapse is initiated by buckling and followed primarily by budding and the bud encapsulating the NPs and oil molecules. The developed bud detaches from the monolayer into a water phase and forms the swollen micelle emulsion with NPs and oil molecules. We investigate the wavelength of the initial budding and the theoretical description of the budding process. The wavelength of the monolayer increases with bending modulus. The energy barrier of the budding can be easily overcome by thermal fluctuation energy, which indicates that budding process proceeds rapidly.

  18. Oxygen limitations on marine animal distributions and the collapse of epibenthic community structure during shoaling hypoxia.

    PubMed

    Chu, Jackson W F; Tunnicliffe, Verena

    2015-08-01

    Deoxygenation in the global ocean is predicted to induce ecosystem-wide changes. Analysis of multidecadal oxygen time-series projects the northeast Pacific to be a current and future hot spot of oxygen loss. However, the response of marine communities to deoxygenation is unresolved due to the lack of applicable data on component species. We repeated the same benthic transect (n = 10, between 45 and 190 m depths) over 8 years in a seasonally hypoxic fjord using remotely operated vehicles equipped with oxygen sensors to establish the lower oxygen levels at which 26 common epibenthic species can occur in the wild. By timing our surveys to shoaling hypoxia events, we show that fish and crustacean populations persist even in severe hypoxia (<0.5 mL L(-1) ) with no mortality effects but that migration of mobile species occurs. Consequently, the immediate response to hypoxia expansion is the collapse of community structure; normally partitioned distributions of resident species coalesced and localized densities increased. After oxygen renewal and formation of steep oxygen gradients, former ranges re-established. High frequency data from the nearby VENUS subsea observatory show the average oxygen level at our site declined by ~0.05 mL L(-1) year(-1) over the period of our study. The increased annual duration of the hypoxic (<1.4 mL L(-1) ) and severely hypoxic periods appears to reflect the oxygen dynamics demonstrated in offshore source waters and the adjacent Strait of Georgia. Should the current trajectory of oxygen loss continue, community homogenization and reduced suitable habitat may become the dominant state of epibenthic systems in the northeast Pacific. In situ oxygen occurrences were not congruent with lethal and sublethal hypoxia thresholds calculated across the literature for major taxonomic groups indicating that research biases toward laboratory studies on Atlantic species are not globally applicable. Region-specific hypoxia thresholds are necessary to

  19. Isotropic sources and attenuation structure: Nuclear tests, mine collapses, and Q

    NASA Astrophysics Data System (ADS)

    Ford, Sean Ricardo

    This dissertation investigates two different, but related, topics: isotropic sources and attenuation structure. The first section reports the analysis of explosions, earthquakes, and collapses in the western US using a regional time-domain full waveform inversion for the complete moment tensor. The events separate into specific populations according to their deviation from a pure double-couple and ratio of isotropic to deviatoric energy. We find that in the band of interest (0.02-0.10 Hz) the source-type is insensitive to small velocity model perturbations and several kilometers of incorrect depth when the signal-to-noise ratio (SNR) is greater than 5. However, error in the isotropic moment grows from 50% to 200% as the source depth decreases from 1 km to 200 m. We add an analysis of the Crandall Canyon Mine collapse that occurred on 6 August 2007 in Utah to our dataset. The results show that most of the recorded seismic wave energy is consistent with an underground collapse in the mine. We contrast the waveforms and moment tensor results of the Crandall Canyon Mine seismic event to a similar sized tectonic earthquake about 200 km away near Tremonton, Utah, that occurred on September 1, 2007 demonstrating the low frequency regional waveforms carry sufficient information to distinguish the source-type. Finally, confidence in the regional full moment tensor inversion solution is described via the introduction of the network sensitivity solution (NSS), which takes into account the unique station distribution, frequency band, and signal-to-noise ratio of a given event scenario. The method is tested for the well-recorded nuclear test, JUNCTION, at the Nevada Test Site and the October 2006 North Korea test, where the station coverage is poor and the event magnitude is small. Both events contain large isotropic components that are 60% of the total moment, though the NTS event is much better constrained than the North Korea test. The network solutions illustrate the effect

  20. General-Relativistic Three-Dimensional Multi-group Neutrino Radiation-Hydrodynamics Simulations of Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Roberts, Luke F.; Ott, Christian D.; Haas, Roland; O'Connor, Evan P.; Diener, Peter; Schnetter, Erik

    2016-11-01

    We report on a set of long-term general-relativistic three-dimensional (3D) multi-group (energy-dependent) neutrino radiation-hydrodynamics simulations of core-collapse supernovae. We employ a full 3D two-moment scheme with the local M1 closure, three neutrino species, and 12 energy groups per species. With this, we follow the post-core-bounce evolution of the core of a nonrotating 27 - {M}⊙ progenitor in full unconstrained 3D and in octant symmetry for ≳380 ms. We find the development of an asymmetric runaway explosion in our unconstrained simulation. We test the resolution dependence of our results and, in agreement with previous work, find that low resolution artificially aids explosion and leads to an earlier runaway expansion of the shock. At low resolution, the octant and full 3D dynamics are qualitatively very similar, but at high resolution, only the full 3D simulation exhibits the onset of explosion.

  1. On the interaction between shear dusty currents and buildings in vertical collapse: Theoretical aspects, experimental observations, and 3D numerical simulation

    NASA Astrophysics Data System (ADS)

    Doronzo, Domenico M.; de Tullio, Marco D.; Pascazio, Giuseppe; Dellino, Pierfrancesco; Liu, Guilin

    2015-09-01

    We investigate the behavior of vertical building collapses that, at impact on the ground, can generate shear dusty currents. These currents macroscopically resemble natural currents like dust storms and pyroclastic density currents, which may heavily interact with the surroundings while propagating. In particular, shear dusty currents are generated because of building collapse after pulverization, whereas pyroclastic density currents can be generated because of eruptive column or volcano collapse after fragmentation. Pyroclastic density currents can move for kilometers, and then load the surroundings by flow dynamic pressure; a similar dynamical behavior occurs in shear dusty currents that load buildings. We employed 3D engineering fluid dynamics to simulate the generation (by vertical collapse), and the propagation and building interaction of shear dusty currents. We used an Eulerian-Lagrangian multiphase approach to model the gas-particle flow, and an immersed boundary technique to mesh the domain, in order to account for sedimentary processes and complex 3D urban geometry in the computation. Results show that the local dynamic pressure of the shear current is amplified up to a factor ~ 10 because of flow-building interaction. Also, the surroundings consisting of multiple buildings and empty spaces make walls and streets as surfaces of particle accumulation, which from the collapse zone on can get thinner by exponential law. These results can help better assessing the intricate interaction between pyroclastic density currents and urban surroundings, as well as better link fragmentation, collapse and density current to each other.

  2. CFD simulation of reverse water-hammer induced by collapse of draft-tube cavity in a model pump-turbine during runaway process

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoxi; Cheng, Yongguang; Xia, Linsheng; Yang, Jiandong

    2016-11-01

    This paper reports the preliminary progress in the CFD simulation of the reverse water-hammer induced by the collapse of a draft-tube cavity in a model pump-turbine during the runaway process. Firstly, the Fluent customized 1D-3D coupling model for hydraulic transients and the Schnerr & Sauer cavitation model for cavity development are introduced. Then, the methods are validated by simulating the benchmark reverse water-hammer in a long pipe caused by a valve instant closure. The simulated head history at the valve agrees well with the measured data in literature. After that, the more complicated reverse water-hammer in the draft-tube of a runaway model pump-turbine, which is installed in a model pumped-storage power plant, is simulated. The dynamic processes of a vapor cavity, from generation, expansion, shrink to collapse, are shown. After the cavity collapsed, a sudden increase of pressure can be evidently observed. The process is featured by a locally expending and collapsing vapor cavity that is around the runner cone, which is different from the conventional recognition of violent water- column separation. This work reveals the possibility for simulating the reverse water-hammer phenomenon in turbines by 3D CFD.

  3. Quantitative Simulation of Granular Collapse Experiments with Visco-Plastic Models

    NASA Astrophysics Data System (ADS)

    Mangeney, A.; Ionescu, I. R.; Bouchut, F.; Roche, O.

    2014-12-01

    One of the key issues in landslide modeling is to define the appropriate rheological behavior of these natural granular flows. In particular the description of the static and of the flowing states of granular media is still an open issue. This plays a crucial role in erosion/deposition processes. A first step to address this issue is to derive models able to reproduce laboratory experiments of granular flows. We propose here a mechanical and numerical model of dry granular flows that quantitatively well reproduces granular column collapse over inclined planes, with rheological parameters directly derived from the laboratory experiments. We reformulate the so-called μ(I) rheology proposed by Jop et al. (2006) where I is the so-called inertial number in the framework of Drucker-Prager plasticity with yield stress and a viscosity η(||D||, p) depending on both the pressure p and the norm of the strain rate tensor ||D||. The resulting dynamic viscosity varies from very small values near the free surface and near the front to 1.5 Pa.s within the quasi-static zone. We show that taking into account a constant mean viscosity during the flow (η = 1 Pa.s here) provides results very similar to those obtained with the variable viscosity deduced from the μ(I) rheology, while significantly reducing the computational cost. This has important implication for application to real landslides and rock avalanches. The numerical results show that the flow is essentially located in a surface layer behind the front, while the whole granular material is flowing near the front where basal sliding occurs. The static/flowing interface changes as a function of space and time, in good agreement with experimental observations. Heterogeneities are observed within the flow with low and high pressure zones, localized small upward velocity zones and vortices near the transition between the flowing and static grains. These instabilities create 'sucking zones' and have some characteristics similar

  4. Continuum viscoplastic simulation of a granular column collapse on large slopes: μ(I) rheology and lateral wall effects

    NASA Astrophysics Data System (ADS)

    Martin, N.; Ionescu, I. R.; Mangeney, A.; Bouchut, F.; Farin, M.

    2017-01-01

    We simulate here dry granular flows resulting from the collapse of granular columns on an inclined channel (up to 22°) and compare precisely the results with laboratory experiments. Incompressibility is assumed despite the dilatancy observed in the experiments (up to 10%). The 2-D model is based on the so-called μ (I ) rheology that induces a Drucker-Prager yield stress and a variable viscosity. A nonlinear Coulomb friction term, representing the friction on the lateral walls of the channel, is added to the model. We demonstrate that this term is crucial to accurately reproduce granular collapses on slopes ≳10°, whereas it remains of little effect on the horizontal slope. Quantitative comparison between the experimental and numerical changes with time of the thickness profiles and front velocity makes it possible to strongly constrain the rheology. In particular, we show that the use of a variable or a constant viscosity does not change significantly the results provided that these viscosities are of the same order. However, only a fine tuning of the constant viscosity (η =1 Pa s) makes it possible to predict the slow propagation phase observed experimentally at large slopes. Finally, we observed that small-scale instabilities develop when refining the mesh (also called ill-posed behavior, characterized in the work of Barker et al. ["Well-posed and ill-posed behaviour of the μ (I ) -rheology for granular flow," J. Fluid Mech. 779, 794-818 (2015)] and in the present work) associated with the mechanical model. The velocity field becomes stratified and the bands of high velocity gradient appear. These model instabilities are not avoided by using variable viscosity models such as the μ (I ) rheology. However we show that the velocity range, the static-flowing transition, and the thickness profiles are almost not affected by them.

  5. Global force-torque phase diagram for the DNA double helix: Structural transitions, triple points, and collapsed plectonemes

    NASA Astrophysics Data System (ADS)

    Marko, John F.; Neukirch, Sébastien

    2013-12-01

    We present a free energy model for structural transitions of the DNA double helix driven by tensile and torsional stress. Our model is coarse grained and is based on semiflexible polymer descriptions of B-DNA, underwound L-DNA, and highly overwound P-DNA. The statistical-mechanical model of plectonemic supercoiling previously developed for B-DNA is applied to semiflexible polymer models of P- and L-DNA to obtain a model of DNA structural transitions in quantitative accord with experiment. We identify two distinct plectonemic states, one "inflated" by electrostatic repulsion and thermal fluctuations and the other "collapsed," with the two double helices inside the supercoils driven to close contact. We find that supercoiled B and L are stable only in the inflated form, while supercoiled P is always collapsed. We also predict the behavior and experimental signatures of highly underwound "Q"-DNA, the left-handed analog of P-DNA; as for P, supercoiled Q is always collapsed. Overstretched "S"-DNA and strand-separated "stress-melted" DNA are also included in our model, allowing prediction of a global phase diagram for forces up to 1000 pN and torques between ±60 pN nm, or, in terms of linking number density, from σ =-5 to +3.

  6. Global force-torque phase diagram for the DNA double helix: structural transitions, triple points, and collapsed plectonemes.

    PubMed

    Marko, John F; Neukirch, Sébastien

    2013-12-01

    We present a free energy model for structural transitions of the DNA double helix driven by tensile and torsional stress. Our model is coarse grained and is based on semiflexible polymer descriptions of B-DNA, underwound L-DNA, and highly overwound P-DNA. The statistical-mechanical model of plectonemic supercoiling previously developed for B-DNA is applied to semiflexible polymer models of P- and L-DNA to obtain a model of DNA structural transitions in quantitative accord with experiment. We identify two distinct plectonemic states, one "inflated" by electrostatic repulsion and thermal fluctuations and the other "collapsed," with the two double helices inside the supercoils driven to close contact. We find that supercoiled B and L are stable only in the inflated form, while supercoiled P is always collapsed. We also predict the behavior and experimental signatures of highly underwound "Q"-DNA, the left-handed analog of P-DNA; as for P, supercoiled Q is always collapsed. Overstretched "S"-DNA and strand-separated "stress-melted" DNA are also included in our model, allowing prediction of a global phase diagram for forces up to 1000 pN and torques between ±60 pN nm, or, in terms of linking number density, from σ=-5 to +3.

  7. A new equation of state with light nuclei and their weak interactions in core-collapse supernova simulations

    SciTech Connect

    Furusawa, Shun; Yamada, Shoichi; Nagakura, Hiroki; Sumiyoshi, Kohsuke; Suzuki, Hideyuki

    2014-05-02

    We perform numerical experiments to investigate the influence of inelastic neutrino reactions with light nuclei on the standing accretion shock instability. The time evolutions of shock waves are calculated with a simple light-bulb approximation for the neutrino transport and a multi-nuclei equation of state. The neutrino absorptions and inelastic interactions with deuterons, tritons, helions and alpha particles are taken into account in the hydrodynamical simulations in addition to the ordinary charged-current interactions with nucleons. Axial symmetry is assumed but no equatorial symmetry is imposed. We show that the heating rates of deuterons reach as high as ∼ 10% of those of nucleons around the bottom of the gain region. On the other hands, alpha particles heat the matter near the shock wave, which is important when the shock wave expands and density and temperature of matter become low. It is also found that the models with heating by light nuclei have different evolutions from those without it in non-linear evolution phase. The matter in the gain region has various densities and temperatures and there appear regions that are locally rich in deuterons and alpha particles. These results indicate that the inelastic reactions of light nuclei, especially deuterons, should be incorporated in the simulations of core-collapse supernovae.

  8. A new equation of state with light nuclei and their weak interactions in core-collapse supernova simulations

    NASA Astrophysics Data System (ADS)

    Furusawa, Shun; Nagakura, Hiroki; Sumiyoshi, Kohsuke; Yamada, Shoichi; Suzuki, Hideyuki

    2014-05-01

    We perform numerical experiments to investigate the influence of inelastic neutrino reactions with light nuclei on the standing accretion shock instability. The time evolutions of shock waves are calculated with a simple light-bulb approximation for the neutrino transport and a multi-nuclei equation of state. The neutrino absorptions and inelastic interactions with deuterons, tritons, helions and alpha particles are taken into account in the hydrodynamical simulations in addition to the ordinary charged-current interactions with nucleons. Axial symmetry is assumed but no equatorial symmetry is imposed. We show that the heating rates of deuterons reach as high as ˜ 10% of those of nucleons around the bottom of the gain region. On the other hands, alpha particles heat the matter near the shock wave, which is important when the shock wave expands and density and temperature of matter become low. It is also found that the models with heating by light nuclei have different evolutions from those without it in non-linear evolution phase. The matter in the gain region has various densities and temperatures and there appear regions that are locally rich in deuterons and alpha particles. These results indicate that the inelastic reactions of light nuclei, especially deuterons, should be incorporated in the simulations of core-collapse supernovae.

  9. Shallow seismic imaging of flank collapse structures in oceanic island volcanoes: Application to the Western Canary Islands

    NASA Astrophysics Data System (ADS)

    Sanchez, L.; González, P.; Tiampo, K. F.

    2013-12-01

    Volcanic flank collapse counts among the many hazards associated with volcanic activity. This type of event involves the mobilization of large volumes, producing debris avalanches. It affects mostly oceanic island volcanoes, involving the potential for tsunami occurrence. Geophysical imaging can illuminate subvolcanic features such as volcano-tectonic structures, magmatic plumbing systems or differences in rock type. The most commonly used geophysical methods are gravity, electromagnetics and seismics. In particular, seismic measurements quantify anomalies in seismic waves propagation velocities and can be used to obtain information on the subsurface arrangement of different materials. In the Western Canary Islands, the Cumbre Vieja volcano in La Palma (Canary Islands) has been proposed to be near the collapse stage. Previous geophysical studies that have been carried out on the flank of the volcano comprise gravity and electromagnetic methods. These types of surveys gather information on the deep structures of the volcano (1-2 km). In this project, we complement previous studies by using seismic methods to investigate the near-surface seismic structure of the Cumbre Vieja fault system (La Palma Island) and the structure of the well-developed San Andres fault system (El Hierro Island). We aim to compare the Cumbre Vieja and San Andres fault systems to infer the degree of maturity of collapse structures. We carried out reflection and refraction seismic surveys in order to image approximately the first 10 meters of the subsurface. We used 24 low frequency (4,5 Hz) geophones as receivers and a sledge hammer as the seismic source. The survey lines were located across visible parts of the fault systems at the Cumbre Vieja volcano and the San Andres fault in El Hierro. Here, we present the survey setup and results from the preliminary analysis of the data.

  10. The Campi Flegrei Deep Drilling Project: understanding the structure and mechanisms of large collapse calderas

    NASA Astrophysics Data System (ADS)

    de Natale, Giuseppe; Troise, Claudia

    2010-05-01

    Large calderas are the most dangerous volcanoes on the Earth. They are produced by collapse during explosive super-eruptions, which are capable of triggering global catastrophes comparable to large meteorite impacts. The mechanisms of unrest and eruption at calderas are at a large extent unknown and, as demonstrated by volcanological research in the last decades, they may be very different from those characterizing more commonly studied stratovolcanoes. Campi Flegrei caldera (Italy) represents an ideal natural laboratory to fully understand mechanisms of caldera dynamics and to develop techniques for eruption forecast and effective risk mitigation. It is an active volcanic area marked by a quasi-circular caldera depression, formed by huge ignimbritic eruptions. The caldera has recently experienced intense deformation, originating uplift phenomena of more than 3.5 m in 15 years, with maximum rates of 1 m/year in the period 1982-1984, which caused the temporary evacuation of 30,000 people from the centre of Pozzuoli and exposed more than 500,000 to impending eruption risk (several millions in case of an ignimbritic eruption). This area will be the target of a leading International project, the ‘Campi Flegrei Deep Drilling Project', sponsored by ICDP, aimed to study in detail, by a crustal deviated drilling reaching the depth of about 4 km, the deep structure of the caldera. The role of deep drilling at this area is crucial. It could give a fundamental, precise insight into the substructure, the geometry and character of the geothermal systems and their role in the unrest episodes, as well as to explain magma chemistry and the mechanisms of magma-water interaction. One of the main goal will be giving a precise determination of the magma depth, based on the extrapolation of the geothermal gradient in purely conductive conditions, occurring below the maximum aquifer depth. The choice of Campi Flegrei as a target for the deep study of large calderas is justified by the

  11. The development of explosions in axisymmetric ab initio core-collapse supernova simulations of 12–25 M⊙ stars

    DOE PAGES

    Bruenn, Stephen W.; Lentz, Eric J.; Hix, William Raphael; ...

    2016-02-16

    We present four ab initio axisymmetric core-collapse supernova simulations initiated from 12, 15, 20, and 25 M⊙ zero-age main sequence progenitors. All of the simulations yield explosions and have been evolved for at least 1.2 s after core bounce and 1 s after material first becomes unbound. These simulations were computed with our Chimera code employing RbR spectral neutrino transport, special and general relativistic transport effects, and state-of-the-art neutrino interactions. Continuing the evolution beyond 1 s after core bounce allows the explosions to develop more fully and the processes involved in powering the explosions to become more clearly evident. Wemore » compute explosion energy estimates, including the negative gravitational binding energy of the stellar envelope outside the expanding shock, of 0.34, 0.88, 0.38, and 0.70 Bethe (B ≡ 1051 erg) and increasing at 0.03, 0.15, 0.19, and 0.52 BS–1, respectively, for the 12, 15, 20, and 25 M⊙ models at the endpoint of this report. We examine the growth of the explosion energy in our models through detailed analyses of the energy sources and flows. We discuss how the explosion energies may be subject to stochastic variations as exemplfied by the effect of the explosion geometry of the 20 M⊙ model in reducing its explosion energy. We compute the proto-neutron star masses and kick velocities. In conclusion, we compare our results for the explosion energies and ejected 56Ni masses against some observational standards despite the large error bars in both models and observations.« less

  12. A comparison of two- and three-dimensional neutrino-hydrodynamics simulations of core-collapse supernovae

    SciTech Connect

    Takiwaki, Tomoya; Kotake, Kei; Suwa, Yudai

    2014-05-10

    We present numerical results on two- (2D) and three-dimensional (3D) hydrodynamic core-collapse simulations of an 11.2 M {sub ☉} star. By changing numerical resolutions and seed perturbations systematically, we study how the postbounce dynamics are different in 2D and 3D. The calculations were performed with an energy-dependent treatment of the neutrino transport based on the isotropic diffusion source approximation scheme, which we have updated to achieve a very high computational efficiency. All of the computed models in this work, including nine 3D models and fifteen 2D models, exhibit the revival of the stalled bounce shock, leading to the possibility of explosion. All of them are driven by the neutrino-heating mechanism, which is fostered by neutrino-driven convection and the standing-accretion-shock instability. Reflecting the stochastic nature of multi-dimensional (multi-D) neutrino-driven explosions, the blast morphology changes from model to model. However, we find that the final fate of the multi-D models, whether an explosion is obtained or not, is little affected by the explosion stochasticity. In agreement with some previous studies, higher numerical resolutions lead to slower onset of the shock revival in both 2D and 3D. Based on the self-consistent supernova models leading to the possibility of explosions, our results systematically show that the revived shock expands more energetically in 2D than in 3D.

  13. Multi-D Full Boltzmann Neutrino Hydrodynamic Simulations in Core Collapse Supernovae and their detailed comparison with Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Nagakura, Hiroki; Richers, Sherwood; Ott, Christian; Iwakami, Wakana; Furusawa, Shun; Sumiyoshi, Kohsuke; Yamada, Shoichi

    2017-01-01

    We have developed a multi-d radiation-hydrodynamic code which solves first-principles Boltzmann equation for neutrino transport. It is currently applicable specifically for core-collapse supernovae (CCSNe), but we will extend their applicability to further extreme phenomena such as black hole formation and coalescence of double neutron stars. In this meeting, I will discuss about two things; (1) detailed comparison with a Monte-Carlo neutrino transport (2) axisymmetric CCSNe simulations. The project (1) gives us confidence of our code. The Monte-Carlo code has been developed by Caltech group and it is specialized to obtain a steady state. Among CCSNe community, this is the first attempt to compare two different methods for multi-d neutrino transport. I will show the result of these comparison. For the project (2), I particularly focus on the property of neutrino distribution function in the semi-transparent region where only first-principle Boltzmann solver can appropriately handle the neutrino transport. In addition to these analyses, I will also discuss the ``explodability'' by neutrino heating mechanism.

  14. A simulation of the collapse and fragmentation of cooling molecular clouds

    NASA Technical Reports Server (NTRS)

    Monaghan, Joe J.; Lattanzio, John C.

    1991-01-01

    The application of the Smoothed Particle Hydrodynamics method to the fragmentation of rotating cloud and disk systems is described, allowing for molecular cooling due to H2 and CO. A novel approach to solving Poisson's equation for disklike structures which exploits the multigrid algorithm is also described. Numerical studies are presented which investigate the evolution of both rotating clouds and Maclaurin disks, in each case with both an isothermal equation of state and with molecular cooling. The results establish the influence of molecular cooling on the fragmentation of molecular clouds. The isothermal sequences, if they fragment at all, do so into far fewer lumps than the cooling sequences. This is not due to a cooling instability as such, but rather to the reduced thermal support. One of the sequences shows a remarkable similarity to the W49A star-forming region.

  15. Gravitational Waves from Gravitational Collapse.

    PubMed

    Fryer, Chris L; New, Kimberly C B

    2003-01-01

    Gravitational wave emission from stellar collapse has been studied for more than three decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.

  16. Gravitational Waves from Gravitational Collapse.

    PubMed

    Fryer, Chris L; New, Kimberly C B

    2011-01-01

    Gravitational-wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion-induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.

  17. Gravitational waves from gravitational collapse

    SciTech Connect

    Fryer, Christopher L; New, Kimberly C

    2008-01-01

    Gravitational wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.

  18. Multiple genetic variant association testing by collapsing and kernel methods with pedigree or population structured data.

    PubMed

    Schaid, Daniel J; McDonnell, Shannon K; Sinnwell, Jason P; Thibodeau, Stephen N

    2013-07-01

    Searching for rare genetic variants associated with complex diseases can be facilitated by enriching for diseased carriers of rare variants by sampling cases from pedigrees enriched for disease, possibly with related or unrelated controls. This strategy, however, complicates analyses because of shared genetic ancestry, as well as linkage disequilibrium among genetic markers. To overcome these problems, we developed broad classes of "burden" statistics and kernel statistics, extending commonly used methods for unrelated case-control data to allow for known pedigree relationships, for autosomes and the X chromosome. Furthermore, by replacing pedigree-based genetic correlation matrices with estimates of genetic relationships based on large-scale genomic data, our methods can be used to account for population-structured data. By simulations, we show that the type I error rates of our developed methods are near the asymptotic nominal levels, allowing rapid computation of P-values. Our simulations also show that a linear weighted kernel statistic is generally more powerful than a weighted "burden" statistic. Because the proposed statistics are rapid to compute, they can be readily used for large-scale screening of the association of genomic sequence data with disease status.

  19. Characterization of the structural collapse undergone by an unstable system of ultrasoft particles

    NASA Astrophysics Data System (ADS)

    Prestipino, Santi; Malescio, Gianpietro

    2016-09-01

    The effective repulsion between macromolecules such as polymer chains or dendrimers is everywhere finite, implying that interaction centers can even coincide. If, in addition, the large-distance attraction is sufficiently strong, then the system is driven unstable. An unstable system lacks a conventional thermodynamics since, in the infinite-size limit, it eventually collapses to a finite-size cluster (for instance, a polymer dispersion undergoes irreversible coagulation when increasing the amount of dissolved salt beyond a certain limit). Using a double-Gaussian (DG) potential for demonstration, we study the phase behavior of a system of ultrasoft particles as a function of the attraction strength η. Above a critical threshold ηc, the DG system is unstable but its collective behavior is far from trivial since two separate regions of the thermodynamic plane can be identified, based on the value taken by the average waiting time for collapse: this is finite and small on one side of the boundary, while presumably infinite in the other region. In order to make sense of this evidence, we consider a stable system of particles interacting through a DG potential augmented with a hard core (stabilized DG, or SDG potential). We provide arguments supporting the view that the boundary line of the unstable DG model is the remnant of the spinodal line of a fluid-fluid phase transition occurring in the SDG model when the hard-core diameter is sent to zero.

  20. Global force-torque phase diagram for the DNA double helix: structural transitions, triple points and collapsed plectonemes

    PubMed Central

    Marko, John F.; Neukirch, Sébastien

    2014-01-01

    We present a free energy model for structural transitions of the DNA double helix driven by tensile and torsional stress. Our model is coarse grained, and is based on semiflexible polymer descriptions of B-DNA, underwound L-DNA, and highly overwound P-DNA. The statistical-mechanical model of plectonemic supercoiling previously developed for B-DNA is applied to semiflexible polymer models of P and L-DNA, to obtain a model of DNA structural transitions in quantitative accord with experiment. We identify two distinct plectonemic states, one “inflated” by electrostatic repulsion and thermal fluctuations, and the other “collapsed”, with the two double helices inside the supercoils driven to close contact. We find that supercoiled B and L are stable only in inflated form, while supercoiled P is always collapsed. We also predict the behavior and experimental signatures of highly underwound “Q”-DNA, the left-handed analog of P-DNA; as for P, supercoiled Q is always collapsed. Overstretched “S”-DNA and strand-separated “stress-melted” DNA are also included in our model, allowing prediction of a global phase diagram for forces up to 1000 pN and torques between ±60 pN nm, or in terms of linking number density, from σ = −5 to +3. PMID:24483501

  1. Architecture of collapse: regime shift and recovery in an hierarchically structured marine ecosystem.

    PubMed

    Daskalov, Georgi M; Boicenco, Laura; Grishin, Alexandre N; Lazar, Luminita; Mihneva, Vesselina; Shlyakhov, Vladislav A; Zengin, Mustafa

    2017-04-01

    By the late 20th century, a series of events or 'natural experiments', for example the depletion of apex predators, extreme eutrophication and blooms of invasive species, had suggested that the Black Sea could be considered as a large ecosystem 'laboratory'. The events resulted in regime shifts cascading through all trophic levels, disturbing ecosystem functioning and damaging the water environment. Causal pathways by which the external (hydroclimate, overfishing) and internal (food web interactions) drivers provoke regime shifts are investigated. Statistical data analyses supported by an interpretative framework based on hierarchical ecosystem theory revealed mechanisms of hierarchical incorporation of environmental factors into the ecosystem. Evidence links Atlantic teleconnections to Black Sea hydroclimate, which together with fishing shapes variability in fish stocks. The hydroclimatic signal is conveyed through the food web via changes in productivity at all levels, to planktivorous fish. Fluctuating fish abundance is believed to induce a lagged change in competitor jelly plankton that cascades down to phytoplankton and influences water quality. Deprived of the stabilising role of apex predators, the Black Sea's hierarchical ecosystem organisation is susceptible to both environmental and anthropogenic stresses, and increased fishing makes fish stock collapses highly probable. When declining stocks are confronted with burgeoning fishing effort associated with the inability of fishery managers and decision-makers to adapt rapidly to changes in fish abundance, there is overfishing and stock collapse. Management procedures are ineffective at handling complex phenomena such as ecosystem regime shifts because of the shortage of suitable explanatory models. The proposed concepts and models reported here relate the hydroclimate, overfishing and invasive species to shifts in ecosystem functioning and water quality, unravelling issues such as the causality of ecosystem

  2. 3-cm Fine Structure Masers: A Unique Signature of Supermassive Black Hole Formation via Direct Collapse in the Early Universe

    NASA Astrophysics Data System (ADS)

    Dijkstra, Mark; Sethi, Shiv; Loeb, Abraham

    2016-03-01

    The direct collapse black hole (DCBH) scenario describes the isothermal collapse of a pristine gas cloud directly into a massive, {M}{BH} = 104-106{M}⊙ black hole. In this paper we show that large H i column densities of primordial gas at T˜ {10}4 K with low molecular abundance—which represent key aspects of the DCBH scenario—provide optimal conditions for the pumping of the 2p-level of atomic hydrogen by trapped Lyα photons. This Lyα pumping mechanism gives rise to an inverted level population of the 2{s}1/2-2{p}3/2 transition, and therefore also gives rise to stimulated fine structure emission at λ =3.04 {cm} (rest-frame). We show that simplified models of the DCBH scenario amplify the CMB by up to a factor of ˜ {10}5, above which the maser saturates. Hyperfine splitting of the 3 cm transition gives rise to a characteristic broad (FWHM ˜ tens of MHz in the observers frame) asymmetric line profile. This signal subtends an angular scale of ˜1-10 mas, which translates to a flux of ˜0.3-3 μJy, which is detectable with ultra-deep surveys being planned with SKA1-MID. While challenging, as the signal is visible for a fraction of the collapse time of the cloud, the matching required physical conditions imply that a detection of the redshifted 3-cm emission line could provide direct evidence for the DCBH scenario.

  3. AXISYMMETRIC AB INITIO CORE-COLLAPSE SUPERNOVA SIMULATIONS OF 12-25 M{sub Sun} STARS

    SciTech Connect

    Bruenn, Stephen W.; Yakunin, Konstantin N.; Mezzacappa, Anthony; Hix, W. Raphael; Lingerfelt, Eric J.; Lentz, Eric J.; Messer, O. E. Bronson; Blondin, John M.; Endeve, Eirik; Marronetti, Pedro

    2013-04-10

    We present an overview of four ab initio axisymmetric core-collapse supernova simulations employing detailed spectral neutrino transport computed with our CHIMERA code and initiated from Woosley and Heger progenitors of mass 12, 15, 20, and 25 M{sub Sun }. All four models exhibit shock revival over {approx}200 ms (leading to the possibility of explosion), driven by neutrino energy deposition. Hydrodynamic instabilities that impart substantial asymmetries to the shock aid these revivals, with convection appearing first in the 12 M{sub Sun} model and the standing accretion shock instability appearing first in the 25 M{sub Sun} model. Three of the models have developed pronounced prolate morphologies (the 20 M{sub Sun} model has remained approximately spherical). By 500 ms after bounce the mean shock radii in all four models exceed 3000 km and the diagnostic explosion energies are 0.33, 0.66, 0.65, and 0.70 Bethe (B = 10{sup 51} erg) for the 12, 15, 20, and 25 M{sub Sun} models, respectively, and are increasing. The three least massive of our models are already sufficiently energetic to completely unbind the envelopes of their progenitors (i.e., to explode), as evidenced by our best estimate of their explosion energies, which first become positive at 320, 380, and 440 ms after bounce. By 850 ms the 12 M{sub Sun} diagnostic explosion energy has saturated at 0.38 B, and our estimate for the final kinetic energy of the ejecta is {approx}0.3 B, which is comparable to observations for lower mass progenitors.

  4. Alba Patera Collapse Pits

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    We will be looking at collapse pits for the next two weeks. Collapse pits on Mars are formed in several ways. In volcanic areas, channelized lava flows can form roofs which insulate the flowing lava. These features are termed lava tubes on Earth and are common features in basaltic flows. After the lava has drained, parts of the roof of the tube will collapse under its own weight. These collapse pits will only be as deep as the bottom of the original lava tube. Another type of collapse feature associated with volcanic areas arises when very large eruptions completely evacuate the magma chamber beneath the volcano. The weight of the volcano will cause the entire edifice to subside into the void space below it. Structural features including fractures and graben will form during the subsidence. Many times collapse pits will form within the graben. In addition to volcanic collapse pits, Mars has many collapse pits formed when volatiles (such as subsurface ice) are released from the surface layers. As the volatiles leave, the weight of the surrounding rock causes collapse pits to form.

    This image of the Alba Patera region has both lava tube collapse pits (running generally east/west) and subsidence related collapse within structural grabens.

    Image information: IR instrument. Latitude 26.9, Longitude 256.5 East (103.5 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA

  5. Formation of a protocluster: A virialized structure from gravoturbulent collapse. II. A two-dimensional analytical model for a rotating and accreting system

    NASA Astrophysics Data System (ADS)

    Lee, Yueh-Ning; Hennebelle, Patrick

    2016-06-01

    Context. Most stars are born in the gaseous protocluster environment where the gas is reprocessed after the global collapse from the diffuse molecular cloud. The knowledge of this intermediate step gives more accurate constraints on star formation characteristics. Aims: We demonstrate that a virialized globally supported structure, in which star formation happens, is formed out of a collapsing molecular cloud, and we derive a mapping from the parent cloud parameters to the protocluster to predict its properties with a view to confront analytical calculations with observations and simulations. Methods: We decomposed the virial theorem into two dimensions to account for the rotation and the flattened geometry. Equilibrium was found by balancing rotation, turbulence, and self-gravity, while turbulence was maintained through accretion driving and it dissipates in one crossing time. We estimated the angular momentum and the accretion rate of the protocluster from the parent cloud properties. Results: The two-dimensional virial model predicts the size and velocity dispersion given the mass of the protocluster and that of the parent cloud. The gaseous protoclusters lie on a sequence of equilibrium with the trend R ~ M0.5 with limited variations, depending on the evolutionary stage, parent cloud, and parameters that are not well known, such as turbulence driving efficiency by accretion and turbulence anisotropy. The model reproduces observations and simulation results successfully. Conclusions: The properties of protoclusters follow universal relations and they can be derived from that of the parent cloud. The gaseous protocluster is an important primary stage of stellar cluster formation, and should be taken into account when studying star formation. Using simple estimates to infer the peak position of the core mass function (CMF) we find a weak dependence on the cluster mass, suggesting that the physical conditions inside protoclusters may contribute to set a CMF, and by

  6. Dramatic changes in the electronic structure upon transition to the collapsed tetragonal phase in CaFe2As2

    NASA Astrophysics Data System (ADS)

    Dhaka, R. S.; Jiang, Rui; Ran, S.; Bud'ko, S. L.; Canfield, P. C.; Harmon, B. N.; Kaminski, Adam; Tomić, Milan; Valentí, Roser; Lee, Yongbin

    2014-01-01

    We use angle-resolved photoemission spectroscopy and density functional theory calculations to study the electronic structure of CaFe2As2 in the collapsed tetragonal (CT) phase. This unusual phase of iron arsenic high-temperature superconductors was hard to measure as it exists only under pressure. By inducing internal strain, via the postgrowth thermal treatment of single crystals, we were able to stabilize the CT phase at ambient pressure. We find significant differences in the Fermi surface topology and band dispersion data from the more common orthorhombic-antiferromagnetic or tetragonal-paramagnetic phases, consistent with electronic structure calculations. The top of the hole bands sinks below the Fermi level, which destroys the nesting present in parent phases. The absence of nesting in this phase, along with an apparent loss of Fe magnetic moment, are now clearly experimentally correlated with the lack of superconductivity in this phase.

  7. Collapsing Containers.

    ERIC Educational Resources Information Center

    Brown, Justina L.; Battino, Rubin

    1994-01-01

    Describes variations on atmospheric pressure demonstrations and some systematic studies. Demonstrations use steam, generated either externally or internally to the container, to sweep out residual air. Preferred vessels collapsed slowly. Demonstrations use plastic milk jugs set in layers of aluminum foil, pop bottles immersed in 4-L beakers…

  8. Lava Tube Collapse Pits

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    We will be looking at collapse pits for the next two weeks. Collapse pits on Mars are formed in several ways. In volcanic areas, channelized lava flows can form roofs which insulate the flowing lava. These features are termed lava tubes on Earth and are common features in basaltic flows. After the lava has drained, parts of the roof of the tube will collapse under its own weight. These collapse pits will only be as deep as the bottom of the original lava tube. Another type of collapse feature associated with volcanic areas arises when very large eruptions completely evacuate the magma chamber beneath the volcano. The weight of the volcano will cause the entire edifice to subside into the void space below it. Structural features including fractures and graben will form during the subsidence. Many times collapse pits will form within the graben. In addition to volcanic collapse pits, Mars has many collapse pits formed when volatiles (such as subsurface ice) are released from the surface layers. As the volatiles leave, the weight of the surrounding rock causes collapse pits to form.

    These collapse pits are found in the southern hemisphere of Mars. They are likely lava tube collapse pits related to flows from Hadriaca Patera.

    Image information: VIS instrument. Latitude -36.8, Longitude 89.6 East (270.4 West). 19 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space

  9. Sulci Collapse Pits

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    We will be looking at collapse pits for the next two weeks. Collapse pits on Mars are formed in several ways. In volcanic areas, channelized lava flows can form roofs which insulate the flowing lava. These features are termed lava tubes on Earth and are common features in basaltic flows. After the lava has drained, parts of the roof of the tube will collapse under its own weight. These collapse pits will only be as deep as the bottom of the original lava tube. Another type of collapse feature associated with volcanic areas arises when very large eruptions completely evacuate the magma chamber beneath the volcano. The weight of the volcano will cause the entire edifice to subside into the void space below it. Structural features including fractures and graben will form during the subsidence. Many times collapse pits will form within the graben. In addition to volcanic collapse pits, Mars has many collapse pits formed when volatiles (such as subsurface ice) are released from the surface layers. As the volatiles leave, the weight of the surrounding rock causes collapse pits to form.

    This is the Noctis Labyrinthus region of Mars. These collapse pits are forming along structural fractures that are allowing the release of volatiles from the subsurface. This is believed to be the way that chaos terrain forms on Mars. This area represents the early stage of chaos formation.

    Image information: VIS instrument. Latitude -12.6, Longitude 264 East (96 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in

  10. Simulations of the nonlinear Helmholtz equation: arrest of beam collapse, nonparaxial solitons and counter-propagating beams.

    PubMed

    Baruch, G; Fibich, G; Tsynkov, Semyon

    2008-08-18

    We solve the (2+1)D nonlinear Helmholtz equation (NLH) for input beams that collapse in the simpler NLS model. Thereby, we provide the first ever numerical evidence that nonparaxiality and backscattering can arrest the collapse. We also solve the (1+1)D NLH and show that solitons with radius of only half the wavelength can propagate over forty diffraction lengths with no distortions. In both cases we calculate the backscattered field, which has not been done previously. Finally, we compute the dynamics of counter-propagating solitons using the NLH model, which is more comprehensive than the previously used coupled NLS model.

  11. Peer review of the National Transportation Safety Board structural analysis of the I-35W bridge collapse.

    SciTech Connect

    Gwinn, Kenneth West; Redmond, James Michael; Wellman, Gerald William

    2008-10-01

    The Engineering Sciences Center at Sandia National Laboratories provided an independent peer review of the structural analysis supporting the National Transportation Safety Board investigation of the August 1, 2007 collapse of the I-35W Bridge in Minneapolis. The purpose of the review was to provide an impartial critique of the analysis approach, assumptions, solution techniques, and conclusions. Subsequent to reviewing numerous supporting documents, a SNL team of staff and management visited NTSB to participate in analysis briefings, discussions with investigators, and examination of critical elements of the bridge wreckage. This report summarizes the opinion of the review team that the NTSB analysis effort was appropriate and provides compelling supporting evidence for the NTSB probable cause conclusion.

  12. Alba Patera Collapse Pits

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    We will be looking at collapse pits for the next two weeks. Collapse pits on Mars are formed in several ways. In volcanic areas, channelized lava flows can form roofs which insulate the flowing lava. These features are termed lava tubes on Earth and are common features in basaltic flows. After the lava has drained, parts of the roof of the tube will collapse under its own weight. These collapse pits will only be as deep as the bottom of the original lava tube. Another type of collapse feature associated with volcanic areas arises when very large eruptions completely evacuate the magma chamber beneath the volcano. The weight of the volcano will cause the entire edifice to subside into the void space below it. Structural features including fractures and graben will form during the subsidence. Many times collapse pits will form within the graben. In addition to volcanic collapse pits, Mars has many collapse pits formed when volatiles (such as subsurface ice) are released from the surface layers. As the volatiles leave, the weight of the surrounding rock causes collapse pits to form.

    These collapse pits are found within graben surrounding Alba Patera. Alba Patera is an old volcano that has subsided after it's magma chamber was evacuated.

    Image information: VIS instrument. Latitude 43.1, Longitude 259.4 East (100.6 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA

  13. Tractus Catena Collapse Pits

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    We will be looking at collapse pits for the next two weeks. Collapse pits on Mars are formed in several ways. In volcanic areas, channelized lava flows can form roofs which insulate the flowing lava. These features are termed lava tubes on Earth and are common features in basaltic flows. After the lava has drained, parts of the roof of the tube will collapse under its own weight. These collapse pits will only be as deep as the bottom of the original lava tube. Another type of collapse feature associated with volcanic areas arises when very large eruptions completely evacuate the magma chamber beneath the volcano. The weight of the volcano will cause the entire edifice to subside into the void space below it. Structural features including fractures and graben will form during the subsidence. Many times collapse pits will form within the graben. In addition to volcanic collapse pits, Mars has many collapse pits formed when volatiles (such as subsurface ice) are released from the surface layers. As the volatiles leave, the weight of the surrounding rock causes collapse pits to form.

    These collapse pits are found in graben located in Tractus Catena. These features are related to subsidence after magma chamber evacuation of Alba Patera.

    Image information: VIS instrument. Latitude 35.8, Longitude 241.7 East (118.3 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA

  14. Tharsis Collapse Pits

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    We will be looking at collapse pits for the next two weeks. Collapse pits on Mars are formed in several ways. In volcanic areas, channelized lava flows can form roofs which insulate the flowing lava. These features are termed lava tubes on Earth and are common features in basaltic flows. After the lava has drained, parts of the roof of the tube will collapse under its own weight. These collapse pits will only be as deep as the bottom of the original lava tube. Another type of collapse feature associated with volcanic areas arises when very large eruptions completely evacuate the magma chamber beneath the volcano. The weight of the volcano will cause the entire edifice to subside into the void space below it. Structural features including fractures and graben will form during the subsidence. Many times collapse pits will form within the graben. In addition to volcanic collapse pits, Mars has many collapse pits formed when volatiles (such as subsurface ice) are released from the surface layers. As the volatiles leave, the weight of the surrounding rock causes collapse pits to form.

    These collapse pits are found within the extensive lava flows of the Tharsis region. They are related to lava tubes, likely coming from Ascraeus Mons.

    Image information: VIS instrument. Latitude 22.8, Longitude 266.8 East (93.2 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office

  15. Ascraeus Mons Collapse Pits

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    We will be looking at collapse pits for the next two weeks. Collapse pits on Mars are formed in several ways. In volcanic areas, channelized lava flows can form roofs which insulate the flowing lava. These features are termed lava tubes on Earth and are common features in basaltic flows. After the lava has drained, parts of the roof of the tube will collapse under its own weight. These collapse pits will only be as deep as the bottom of the original lava tube. Another type of collapse feature associated with volcanic areas arises when very large eruptions completely evacuate the magma chamber beneath the volcano. The weight of the volcano will cause the entire edifice to subside into the void space below it. Structural features including fractures and graben will form during the subsidence. Many times collapse pits will form within the graben. In addition to volcanic collapse pits, Mars has many collapse pits formed when volatiles (such as subsurface ice) are released from the surface layers. As the volatiles leave, the weight of the surrounding rock causes collapse pits to form.

    These collapse pits are found on the flank of Ascraeus Mons. The pits and channels are all related to lava tube formation and emptying.

    Image information: IR instrument. Latitude 8, Longitude 253.9 East (106.1 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science

  16. Structure and Asymmetry in Simulations of Supernova Explosions

    NASA Astrophysics Data System (ADS)

    Ellinger, Carola I.

    There are many lines of evidence for anisotropy at all scales in the explosions of core collapse supernovae, e.g. visual inspection of the images of resolved supernova remnants, polarization measurements, velocity profiles, "natal kicks" of neutron stars, or spectroscopic observations of different regions of remnants. Theoretical stability considerations and detailed numerical simulations have shown that Rayleigh-Taylor (RT) instabilities arise in the star after the explosion, which leads to the early fragmentation of parts of the ejecta. The clumps thus created are of interest to a variety of topics, one of them being the formation environment of the solar system. There is a high probability that the solar system formed in the vicinity of a massive star that, shortly after its formation, exploded as a core collapse supernova. As argued in this thesis as well as other works, a core collapse supernova generally is a good candidate for chemically enriching the forming solar system with material. As forming proto-planetary systems in general have a high probability of being contaminated with supernova material, a method was developed for detecting tracer elements indicative supernova contamination in proto-planetary systems.The degree of the anisotropy of the supernova explosion can have dramatic effects on the mode of delivery of that material to the solar system, or proto-planetary systems in general. Thus it is of particular interest to be able to predict the structure of the supernova ejecta. Numerical simulations of the explosions of core collapse supernovae were done in 3 dimensions in order to study the formation of structure. It is found that RT instabilities result in clumps in the He- and C+O rich regions in the exploding star that are overdense by 1-2 orders of magnitude. These clumps are potential candidates for enriching the solar system with material. In the course of the further evolution of the supernova remnant, these RT clumps are likely to evolve

  17. Modeling Core Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Mezzacappa, Anthony

    2017-01-01

    Core collapse supernovae, or the death throes of massive stars, are general relativistic, neutrino-magneto-hydrodynamic events. The core collapse supernova mechanism is still not in hand, though key components have been illuminated, and the potential for multiple mechanisms for different progenitors exists. Core collapse supernovae are the single most important source of elements in the Universe, and serve other critical roles in galactic chemical and thermal evolution, the birth of neutron stars, pulsars, and stellar mass black holes, the production of a subclass of gamma-ray bursts, and as potential cosmic laboratories for fundamental nuclear and particle physics. Given this, the so called ``supernova problem'' is one of the most important unsolved problems in astrophysics. It has been fifty years since the first numerical simulations of core collapse supernovae were performed. Progress in the past decade, and especially within the past five years, has been exponential, yet much work remains. Spherically symmetric simulations over nearly four decades laid the foundation for this progress. Two-dimensional modeling that assumes axial symmetry is maturing. And three-dimensional modeling, while in its infancy, has begun in earnest. I will present some of the recent work from the ``Oak Ridge'' group, and will discuss this work in the context of the broader work by other researchers in the field. I will then point to future requirements and challenges. Connections with other experimental, observational, and theoretical efforts will be discussed, as well.

  18. Structure and evolution of collapse sinkholes: Combined interpretation from physico-chemical modelling and geophysical field work

    NASA Astrophysics Data System (ADS)

    Kaufmann, Georg; Romanov, Douchko

    2016-09-01

    In karst rocks (limestone, anhydrite, gypsum, etc.), water flowing through fissures and bedding partings can enlarge voids either by physical or chemical dissolution. Within a geologically short period of time, the increase in void space creates a large secondary porosity typical for soluble rocks, which is responsible for preferential flow through the karst rock, often through cave systems with passages reaching the meter-scale and more. This large-scale voids in the sub-surface can initiate collapse of the overburden, either through wall or roof breakdown, and the initial void created by dissolution can migrate upwards and finally cause a surface collapse and create a collapse sinkhole. While the dissolution part of this evolution is in the order of 10,000-100,000 years, the final mechanical collapse can occur on time scales of days. We have studied a typical collapse sinkhole site in the southern Harz Mountains in Germany, with anhydrite (partly converted to gypsum) as soluble rock in the sub-surface. We discuss geophysical measurements (gravity, electrical resistivity tomography, self potential, magnetics) from the location to identify the local collapse sinkhole signal and the possibility to separate the collapse sinkhole signal from the broader geological signal of the study site. We model the initiation of sub-surface voids with our numerical tool KARSTAQUIFER, a 3D karst evolution model describing flow and dissolution in karst rocks. We apply this numerical model to predict collapse sinkholes in a locality in the Harz Mountains.

  19. Super-resolution microscopy reveals a preformed NEMO lattice structure that is collapsed in incontinentia pigmenti

    PubMed Central

    Scholefield, Janine; Henriques, Ricardo; Savulescu, Anca F.; Fontan, Elisabeth; Boucharlat, Alix; Laplantine, Emmanuel; Smahi, Asma; Israël, Alain; Agou, Fabrice; Mhlanga, Musa M.

    2016-01-01

    The NF-κB pathway has critical roles in cancer, immunity and inflammatory responses. Understanding the mechanism(s) by which mutations in genes involved in the pathway cause disease has provided valuable insight into its regulation, yet many aspects remain unexplained. Several lines of evidence have led to the hypothesis that the regulatory/sensor protein NEMO acts as a biological binary switch. This hypothesis depends on the formation of a higher-order structure, which has yet to be identified using traditional molecular techniques. Here we use super-resolution microscopy to reveal the existence of higher-order NEMO lattice structures dependent on the presence of polyubiquitin chains before NF-κB activation. Such structures may permit proximity-based trans-autophosphorylation, leading to cooperative activation of the signalling cascade. We further show that NF-κB activation results in modification of these structures. Finally, we demonstrate that these structures are abrogated in cells derived from incontinentia pigmenti patients. PMID:27586688

  20. CCD photometry of globular cluster core structure. 2: U-band profiles for 15 candidate collapsed-core clusters

    NASA Technical Reports Server (NTRS)

    Lugger, Phyllis M.; Cohn, Haldan N.; Grindlay, Jonathan E.

    1995-01-01

    We present U-band CCD surface brightness profiles for 15 of the 21 globular clusters that have been identified as having collapsed cores by Djorgovski & King (1986). Fourteen of the clusters were observed with the Cerro Tololo 4 m telescope; NGC 7078 was observed with the Canada-France-Hawaii 3.6 m telescope (CFHT). We have fitted the profiles with seeing-convolved power laws, both with and without cores, to assess the evidence for central power-law structure and to place upper limits on core radius r(sub c). We find nine of the clusters (NGC 5946, NGC 6284, NGC 6293, NGC 6325, NGC 6342, NGC 6558, NGC 6624, NGC 6681, and NGC 7078) to have unresolved cores, with upper limits r(sub c) less than or = 1.9 arcsecs. Three of the clusters (NGC 6453, NGC 6522, and NGC 7099) have marginally resolved cores, with upper limits in the range 2.7 arcsecs less than or = r(sub c) less than or = 3.4 arcsecs. The remaining three clusters (NGC 6355, NGC 6397, and NGC 6752) have resolved cores. Of the latter three clusters, NGC 6355 and NGC 6752 are consistent with single-mass King model structure. The median cluster distances are 9.2 kpc for those with unresolved cores, 7.2 kpc for those with marginally resolved cores, and 4.1 kpc for those with resolved cores. The 13 clusters that do not resemble single-mass King models have central power-law structure with surface brightness slopes in the range of d ln S/d ln r = -0.6 to -0.8. These slopes are consistent with the models of Grabhorn et al. (1992) for clusters evolving beyond core collapse. The models include a centrally concentrated population of nonluminous remnants with masses in the range 1.2-1.4 solar mass, thus providing evidence for significant neutron star populations in most of our cluster sample. This finding is consistent with the observation of centrally concentrated low-mass X-ray binary and millisecond pulsar populations in several clusters.

  1. Shock induced cavity collapse

    NASA Astrophysics Data System (ADS)

    Skidmore, Jonathan; Doyle, Hugo; Tully, Brett; Betney, Matthew; Foster, Peta; Ringrose, Tim; Ramasamy, Rohan; Parkin, James; Edwards, Tom; Hawker, Nicholas

    2016-10-01

    Results from the experimental investigation of cavity collapse driven by a strong planar shock (>6km/s) are presented. Data from high speed framing cameras, laser backlit diagnostics and time-resolved pyromety are used to validate the results of hydrodynamic front-tracking simulations. As a code validation exercise, a 2-stage light gas gun was used to accelerate a 1g Polycarbonate projectile to velocities exceeding 6km/s; impact with a PMMA target containing a gas filled void results in the formation of a strong shockwave with pressures exceeding 1Mbar. The subsequent phenomena associated with the collapse of the void and excitation of the inert gas fill are recorded and compared to simulated data. Variation of the mass density and atomic number of the gas fill is used to alter the plasma parameters furthering the extent of the code validation.

  2. Relationship between tissue structural collapse and disappearance of flesh transparency during postmortem changes in squid mantles.

    PubMed

    Kugino, Mutsuko; Kugino, Kenji; Tamura, Tomoko; Asakura, Tomiko

    2009-01-01

    This study evaluated the relationship between squid flesh transparency and muscle tissue microstructure. Squid mantle muscle was stored at 4 degrees C after being transported for 2 h by 4 different transportation methods used commonly in Japan (Group 1: live squid packed in ice-cold seawater; Group 2: live squid packed at 4 degrees C; Group 3: squid killed immediately after harvest and packed at 4 degrees C; Group 4: live squid packed in a fish tank containing seawater). Parameters of muscle tissue transparency were measured by an image analysis of digital images of squid muscle tissue. The mantle muscle tissue was observed under a transmission electron microscope to determine the postmortem structural changes at the cellular level. The ATP content of muscle tissue and rupture energy of squid flesh were also measured. As a result, the transparency of squid flesh and the ATP content of the muscles showed the same pattern of change in degree as time passed. The values of these parameters were highest in the group of squid killed immediately followed in order by those transported live, the refrigerated squid, and squid stored in ice-cold seawater. The mantle muscle tissue started to lose its transparency when the ATP in the muscle tissue started to decline. Disintegration of squid muscle tissue structure at the cellular level during storage under refrigeration for 24 h (4 degrees C) was observed in all methods of transportation. This suggested that destruction of the squid muscle tissue structure by autolysis is remarkably fast. The muscle tissue structure disintegrates due to decomposition of the muscle proteins, and muscle transparency is lost because the entire muscle develops a mixed coarse-minute structure.

  3. Precise computations of chemotactic collapse using moving mesh methods

    NASA Astrophysics Data System (ADS)

    Budd, C. J.; Carretero-González, R.; Russell, R. D.

    2005-01-01

    We consider the problem of computing blow-up solutions of chemotaxis systems, or the so-called chemotactic collapse. In two spatial dimensions, such solutions can have approximate self-similar behaviour, which can be very challenging to verify in numerical simulations [cf. Betterton and Brenner, Collapsing bacterial cylinders, Phys. Rev. E 64 (2001) 061904]. We analyse a dynamic (scale-invariant) remeshing method which performs spatial mesh movement based upon equidistribution. Using a suitably chosen monitor function, the numerical solution resolves the fine detail in the asymptotic solution structure, such that the computations are seen to be fully consistent with the asymptotic description of the collapse phenomenon given by Herrero and Velázquez [Singularity patterns in a chemotaxis model, Math. Ann. 306 (1996) 583-623]. We believe that the methods we construct are ideally suited to a large number of problems in mathematical biology for which collapse phenomena are expected.

  4. Collapsible Cryogenic Storage Vessel Project

    NASA Technical Reports Server (NTRS)

    Fleming, David C.

    2002-01-01

    Collapsible cryogenic storage vessels may be useful for future space exploration missions by providing long-term storage capability using a lightweight system that can be compactly packaged for launch. Previous development efforts have identified an 'inflatable' concept as most promising. In the inflatable tank concept, the cryogen is contained within a flexible pressure wall comprised of a flexible bladder to contain the cryogen and a fabric reinforcement layer for structural strength. A flexible, high-performance insulation jacket surrounds the vessel. The weight of the tank and the cryogen is supported by rigid support structures. This design concept is developed through physical testing of a scaled pressure wall, and through development of tests for a flexible Layered Composite Insulation (LCI) insulation jacket. A demonstration pressure wall is fabricated using Spectra fabric for reinforcement, and burst tested under noncryogenic conditions. An insulation test specimens is prepared to demonstrate the effectiveness of the insulation when subject to folding effects, and to examine the effect of compression of the insulation under compressive loading to simulate the pressure effect in a nonrigid insulation blanket under the action atmospheric pressure, such as would be seen in application on the surface of Mars. Although pressure testing did not meet the design goals, the concept shows promise for the design. The testing program provides direction for future development of the collapsible cryogenic vessel concept.

  5. Nuclear actin depolymerization in transcriptionally active avian and amphibian oocytes leads to collapse of intranuclear structures

    PubMed Central

    Maslova, Antonina; Krasikova, Alla

    2012-01-01

    Actin, which is normally depleted in the nuclei of somatic cells, accumulates in high amounts in giant nuclei of amphibian oocytes. The supramolecular organization and functions of this nuclear pool of actin in growing vertebrate oocyte are controversial. Here, we investigated the role of nuclear actin in the maintenance of the spatial architecture of intranuclear structures in avian and amphibian growing oocytes. A meshwork of filamentous actin was not detected in freshly isolated or fixed oocyte nuclei of Xenopus, chicken or quail. We found that the actin meshwork inside the oocyte nucleus could be induced by phalloidin treatment. Actin polymerization is demonstrated to be required to stabilize the specific spatial organization of nuclear structures in avian and amphibian growing oocytes. In experiments with the actin depolymerizing drugs cytochalasin D and latrunculin A, we showed that disassembly of nuclear actin polymers led to chromosome condensation and their transportation to a limited space within the oocyte nucleus. Experimentally induced “collapsing” of chromosomes and nuclear bodies, together with global inhibition of transcription, strongly resembled the process of karyosphere formation during oocyte growth. PMID:22572951

  6. Mariage des maillages: A new 3D general relativistic hydro code for simulation of gravitational waves from core-collapses.

    NASA Astrophysics Data System (ADS)

    Novak, Jerome; Dimmelmeier, Harrald; Font-Roda, Jose A.

    2004-12-01

    We present a new three-dimensional general relativistic hydrodynamics code which can be applied to study stellar core collapses and the resulting gravitational radiation. This code uses two different numerical techniques to solve partial differential equations arising in the model: high-resolution shock capturing (HRSC) schemes for the evolution of hydrodynamic quantities and spectral methods for the solution of Einstein equations. The equations are written and solved using spherical polar coordinates, best suited to stellar topology. Einstein equations are formulated within the 3+1 formalism and conformal flat condition (CFC) for the 3-metric and gravitational radiation is extracted using Newtonian quadrupole formulation.

  7. HIERARCHICAL GRAVITATIONAL FRAGMENTATION. I. COLLAPSING CORES WITHIN COLLAPSING CLOUDS

    SciTech Connect

    Naranjo-Romero, Raúl; Vázquez-Semadeni, Enrique; Loughnane, Robert M.

    2015-11-20

    We investigate the Hierarchical Gravitational Fragmentation scenario through numerical simulations of the prestellar stages of the collapse of a marginally gravitationally unstable isothermal sphere immersed in a strongly gravitationally unstable, uniform background medium. The core developes a Bonnor–Ebert (BE)-like density profile, while at the time of singularity (the protostar) formation the envelope approaches a singular-isothermal-sphere (SIS)-like r{sup −2} density profile. However, these structures are never hydrostatic. In this case, the central flat region is characterized by an infall speed, while the envelope is characterized by a uniform speed. This implies that the hydrostatic SIS initial condition leading to Shu's classical inside-out solution is not expected to occur, and therefore neither should the inside-out solution. Instead, the solution collapses from the outside-in, naturally explaining the observation of extended infall velocities. The core, defined by the radius at which it merges with the background, has a time-variable mass, and evolves along the locus of the ensemble of observed prestellar cores in a plot of M/M{sub BE} versus M, where M is the core's mass and M{sub BE} is the critical BE mass, spanning the range from the “stable” to the “unstable” regimes, even though it is collapsing at all times. We conclude that the presence of an unstable background allows a core to evolve dynamically from the time when it first appears, even when it resembles a pressure-confined, stable BE-sphere. The core can be thought of as a ram-pressure confined BE-sphere, with an increasing mass due to the accretion from the unstable background.

  8. Structured building model reduction toward parallel simulation

    SciTech Connect

    Dobbs, Justin R.; Hencey, Brondon M.

    2013-08-26

    Building energy model reduction exchanges accuracy for improved simulation speed by reducing the number of dynamical equations. Parallel computing aims to improve simulation times without loss of accuracy but is poorly utilized by contemporary simulators and is inherently limited by inter-processor communication. This paper bridges these disparate techniques to implement efficient parallel building thermal simulation. We begin with a survey of three structured reduction approaches that compares their performance to a leading unstructured method. We then use structured model reduction to find thermal clusters in the building energy model and allocate processing resources. Experimental results demonstrate faster simulation and low error without any interprocessor communication.

  9. Fluid-structure Interaction Simulations of Deformable Soft Tissue

    NASA Astrophysics Data System (ADS)

    Borazjani, Iman

    2011-11-01

    Soft tissue interacts with the surrounding fluid environment in many biological and biomedical applications. Simulating such an interaction is quite challenging due to the large non-linear deformations of tissue, flow pulsatility, transition to turbulence, and non-linear fluid-structure interaction. We have extended our previous three-dimensional fluid-structure interaction (FSI) framework for rigid bodies (Borazjani, Ge, and Sotiropoulos, Journal of Computational Physics, 2008) to deformable soft tissue by coupling our incompressible Navier-Stokes solver for fluids with a non-linear large deformation finite element method for soft tissue. We use Fung-type constitutive law for the soft tissue that can capture the stress-strain behavior of the tissue. The FSI solver adopts a strongly-coupled partitioned approach that is stabilized with under-relaxation and Aitken acceleration technique. We validate our solvers against the experimental data for tissue valves and elastic tubes. We show the capabilities of our solver by simulating the fluid-structure interaction of tissue valves implanted in the aortic positions and elastic collapsible tubes. This work was partly supported by the Center for Computational Research at the University at Buffalo.

  10. Towards a formal description of the collapse approach to the inflationary origin of the seeds of cosmic structure

    SciTech Connect

    Diez-Tejedor, Alberto; Sudarsky, Daniel E-mail: sudarsky@nucleares.unam.mx

    2012-07-01

    Inflation plays a central role in our current understanding of the universe. According to the standard viewpoint, the homogeneous and isotropic mode of the inflaton field drove an early phase of nearly exponential expansion of the universe, while the quantum fluctuations (uncertainties) of the other modes gave rise to the seeds of cosmic structure. However, if we accept that the accelerated expansion led the universe into an essentially homogeneous and isotropic space-time, with the state of all the matter fields in their vacuum (except for the zero mode of the inflaton field), we can not escape the conclusion that the state of the universe as a whole would remain always homogeneous and isotropic. It was recently proposed in [A. Perez, H. Sahlmann and D. Sudarsky, {sup O}n the quantum origin of the seeds of cosmic structure{sup ,} Class. Quant. Grav. 23 (2006) 2317–2354] that a collapse (representing physics beyond the established paradigm, and presumably associated with a quantum-gravity effect à la Penrose) of the state function of the inflaton field might be the missing element, and thus would be responsible for the emergence of the primordial inhomogeneities. Here we will discuss a formalism that relies strongly on quantum field theory on curved space-times, and within which we can implement a detailed description of such a process. The picture that emerges clarifies many aspects of the problem, and is conceptually quite transparent. Nonetheless, we will find that the results lead us to argue that the resulting picture is not fully compatible with a purely geometric description of space-time.

  11. Two-dimensional simulation by regularization of free surface viscoplastic flows with Drucker-Prager yield stress and application to granular collapse

    NASA Astrophysics Data System (ADS)

    Lusso, Christelle; Ern, Alexandre; Bouchut, François; Mangeney, Anne; Farin, Maxime; Roche, Olivier

    2017-03-01

    This work is devoted to numerical modeling and simulation of granular flows relevant to geophysical flows such as avalanches and debris flows. We consider an incompressible viscoplastic fluid, described by a rheology with pressure-dependent yield stress, in a 2D setting with a free surface. We implement a regularization method to deal with the singularity of the rheological law, using a mixed finite element approximation of the momentum and incompressibility equations, and an arbitrary Lagrangian Eulerian (ALE) formulation for the displacement of the domain. The free surface is evolved by taking care of its deposition onto the bottom and of preventing it from folding over itself. Several tests are performed to assess the efficiency of our method. The first test is dedicated to verify its accuracy and cost on a one-dimensional simple shear plug flow. On this configuration we setup rules for the choice of the numerical parameters. The second test aims to compare the results of our numerical method to those predicted by an augmented Lagrangian formulation in the case of the collapse and spreading of a granular column over a horizontal rigid bed. Finally we show the reliability of our method by comparing numerical predictions to data from experiments of granular collapse of both trapezoidal and rectangular columns over horizontal rigid or erodible granular bed made of the same material. We compare the evolution of the free surface, the velocity profiles, and the static-flowing interface. The results show the ability of our method to deal numerically with the front behavior of granular collapses over an erodible bed.

  12. Predators, Prey and Habitat Structure: Can Key Conservation Areas and Early Signs of Population Collapse Be Detected in Neotropical Forests?

    PubMed Central

    de Thoisy, Benoit; Fayad, Ibrahim; Clément, Luc; Barrioz, Sébastien; Poirier, Eddy; Gond, Valéry

    2016-01-01

    Tropical forests with a low human population and absence of large-scale deforestation provide unique opportunities to study successful conservation strategies, which should be based on adequate monitoring tools. This study explored the conservation status of a large predator, the jaguar, considered an indicator of the maintenance of how well ecological processes are maintained. We implemented an original integrative approach, exploring successive ecosystem status proxies, from habitats and responses to threats of predators and their prey, to canopy structure and forest biomass. Niche modeling allowed identification of more suitable habitats, significantly related to canopy height and forest biomass. Capture/recapture methods showed that jaguar density was higher in habitats identified as more suitable by the niche model. Surveys of ungulates, large rodents and birds also showed higher density where jaguars were more abundant. Although jaguar density does not allow early detection of overall vertebrate community collapse, a decrease in the abundance of large terrestrial birds was noted as good first evidence of disturbance. The most promising tool comes from easily acquired LiDAR data and radar images: a decrease in canopy roughness was closely associated with the disturbance of forests and associated decreasing vertebrate biomass. This mixed approach, focusing on an apex predator, ecological modeling and remote-sensing information, not only helps detect early population declines in large mammals, but is also useful to discuss the relevance of large predators as indicators and the efficiency of conservation measures. It can also be easily extrapolated and adapted in a timely manner, since important open-source data are increasingly available and relevant for large-scale and real-time monitoring of biodiversity. PMID:27828993

  13. Predators, Prey and Habitat Structure: Can Key Conservation Areas and Early Signs of Population Collapse Be Detected in Neotropical Forests?

    PubMed

    de Thoisy, Benoit; Fayad, Ibrahim; Clément, Luc; Barrioz, Sébastien; Poirier, Eddy; Gond, Valéry

    2016-01-01

    Tropical forests with a low human population and absence of large-scale deforestation provide unique opportunities to study successful conservation strategies, which should be based on adequate monitoring tools. This study explored the conservation status of a large predator, the jaguar, considered an indicator of the maintenance of how well ecological processes are maintained. We implemented an original integrative approach, exploring successive ecosystem status proxies, from habitats and responses to threats of predators and their prey, to canopy structure and forest biomass. Niche modeling allowed identification of more suitable habitats, significantly related to canopy height and forest biomass. Capture/recapture methods showed that jaguar density was higher in habitats identified as more suitable by the niche model. Surveys of ungulates, large rodents and birds also showed higher density where jaguars were more abundant. Although jaguar density does not allow early detection of overall vertebrate community collapse, a decrease in the abundance of large terrestrial birds was noted as good first evidence of disturbance. The most promising tool comes from easily acquired LiDAR data and radar images: a decrease in canopy roughness was closely associated with the disturbance of forests and associated decreasing vertebrate biomass. This mixed approach, focusing on an apex predator, ecological modeling and remote-sensing information, not only helps detect early population declines in large mammals, but is also useful to discuss the relevance of large predators as indicators and the efficiency of conservation measures. It can also be easily extrapolated and adapted in a timely manner, since important open-source data are increasingly available and relevant for large-scale and real-time monitoring of biodiversity.

  14. Finite-Element Modeling of the Vredefort Impact Structure with Implications for the Collapse and Modification Stage of Large Crater Formation

    NASA Astrophysics Data System (ADS)

    Turtle, E. P.; Melosh, H. J.

    1996-03-01

    While the morphology of large impact craters has been studied in some detail, the processes which generate structures such as central peaks, peak rings, and multiple external rings are still poorly understood. We are using finite-element modeling to investigate the collapse and relaxation phase of impact crater formation with the specific intention of determining the mechanisms necessary to reproduce the subsurface structure observed at Vredefort in South Africa. We have incorporated the rheologic parameters for a simplified stratigraphy into a mesh which has been modified to reflect the displacements that occur during the crater excavation phase. The modeling of the subsequent relaxation of this transient crater has generated up-turning of layers at stratigraphic boundaries similar to that observed at Vredefort. In addition, the stresses produced are consistent with the collapse of the transient crater wall in the formation of a complex crater.

  15. Core-collapse Supernovae

    SciTech Connect

    Hix, William Raphael; Lentz, E. J.; Baird, Mark L; Chertkow, Merek A; Lee, Ching-Tsai; Blondin, J. M.; Bruenn, S. W.; Messer, Bronson; Mezzacappa, Anthony

    2013-01-01

    Marking the inevitable death of a massive star, and the birth of a neutron star or black hole, core-collapse supernovae bring together physics at a wide range in spatial scales, from kilometer-sized hydrodynamic motions (growing to gigameter scale) down to femtometer scale nuclear reactions. Carrying 10$^{51}$ ergs of kinetic energy and a rich-mix of newly synthesized atomic nuclei, core-collapse supernovae are the preeminent foundries of the nuclear species which make up ourselves and our solar system. We will discuss our emerging understanding of the convectively unstable, neutrino-driven explosion mechanism, based on increasingly realistic neutrino-radiation hydrodynamic simulations that include progressively better nuclear and particle physics. Recent multi-dimensional models with spectral neutrino transport from several research groups, which slowly develop successful explosions for a range of progenitors, have motivated changes in our understanding of the neutrino reheating mechanism. In a similar fashion, improvements in nuclear physics, most notably explorations of weak interactions on nuclei and the nuclear equation of state, continue to refine our understanding of how supernovae explode. Recent progress on both the macroscopic and microscopic effects that affect core-collapse supernovae are discussed.

  16. Structural Reliability and Monte Carlo Simulation.

    ERIC Educational Resources Information Center

    Laumakis, P. J.; Harlow, G.

    2002-01-01

    Analyzes a simple boom structure and assesses its reliability using elementary engineering mechanics. Demonstrates the power and utility of Monte-Carlo simulation by showing that such a simulation can be implemented more readily with results that compare favorably to the theoretical calculations. (Author/MM)

  17. Elements of Regolith Simulant's Cost Structure

    NASA Technical Reports Server (NTRS)

    Rickman, Douglas L.

    2009-01-01

    The cost of lunar regolith simulants is much higher than many users anticipate. After all, it is nothing more than broken rock. This class will discuss the elements which make up the cost structure for simulants. It will also consider which elements can be avoided under certain circumstances and which elements might be altered by the application of additional research and development.

  18. Systematic Features and Progenitor Dependence of Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Nakamura, Ko; Takiwaki, Tomoya; Kuroda, Takami; Kotake, Kei

    We present our latest results of two-dimensional core-collapse supernova simulations for about 400 progenitors. Our self-consistent supernova models reveal the systematic features of core-collapse supernova properties such as neutrino luminosity and energy spectrum, explosion energy, remnant mass, and yield of radioactive 56Ni. We find that these explosion characteristics tend to show a monotonic increase as a function of mass accretion rate onto a shock. The accretion rate depends on the structure of the progenitor core and its envelope, which is well described by the compactness parameter.

  19. Collapse, environment, and society

    PubMed Central

    2012-01-01

    Historical collapse of ancient states poses intriguing social-ecological questions, as well as potential applications to global change and contemporary strategies for sustainability. Five Old World case studies are developed to identify interactive inputs, triggers, and feedbacks in devolution. Collapse is multicausal and rarely abrupt. Political simplification undermines traditional structures of authority to favor militarization, whereas disintegration is preconditioned or triggered by acute stress (insecurity, environmental or economic crises, famine), with breakdown accompanied or followed by demographic decline. Undue attention to stressors risks underestimating the intricate interplay of environmental, political, and sociocultural resilience in limiting the damages of collapse or in facilitating reconstruction. The conceptual model emphasizes resilience, as well as the historical roles of leaders, elites, and ideology. However, a historical model cannot simply be applied to contemporary problems of sustainability without adjustment for cumulative information and increasing possibilities for popular participation. Between the 14th and 18th centuries, Western Europe responded to environmental crises by innovation and intensification; such modernization was decentralized, protracted, flexible, and broadly based. Much of the current alarmist literature that claims to draw from historical experience is poorly focused, simplistic, and unhelpful. It fails to appreciate that resilience and readaptation depend on identified options, improved understanding, cultural solidarity, enlightened leadership, and opportunities for participation and fresh ideas. PMID:22371579

  20. Photonic band gap structure simulator

    DOEpatents

    Chen, Chiping; Shapiro, Michael A.; Smirnova, Evgenya I.; Temkin, Richard J.; Sirigiri, Jagadishwar R.

    2006-10-03

    A system and method for designing photonic band gap structures. The system and method provide a user with the capability to produce a model of a two-dimensional array of conductors corresponding to a unit cell. The model involves a linear equation. Boundary conditions representative of conditions at the boundary of the unit cell are applied to a solution of the Helmholtz equation defined for the unit cell. The linear equation can be approximated by a Hermitian matrix. An eigenvalue of the Helmholtz equation is calculated. One computation approach involves calculating finite differences. The model can include a symmetry element, such as a center of inversion, a rotation axis, and a mirror plane. A graphical user interface is provided for the user's convenience. A display is provided to display to a user the calculated eigenvalue, corresponding to a photonic energy level in the Brilloin zone of the unit cell.

  1. Track-Structure Simulations for Charged Particles

    PubMed Central

    Dingfelder, Michael

    2013-01-01

    Monte-Carlo track-structure simulations provide a detailed and accurate picture of radiation transport of charged particles through condensed matter of biological interest. Liquid water serves as surrogate for soft tissue and is used in most Monte-Carlo track-structure codes. Basic theories of radiation transport and track-structure simulations are discussed and differences to condensed history codes highlighted. Interaction cross sections for electrons, protons, alpha particles, light and heavy ions are required input data for track-structure simulations. Different calculation methods, including the plane-wave Born approximation, the dielectric theory, and semi-empirical approaches are presented using liquid water as a target. Low-energy electron transport and light ion transport are discussed as areas of special interest. PMID:23032889

  2. Signatures of Star Cluster Formation by Cold Collapse

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Aleksandra; Hartmann, Lee; Ballesteros-Paredes, Javier

    2015-12-01

    Subvirial gravitational collapse is one mechanism by which star clusters may form. Here we investigate whether this mechanism can be inferred from observations of young clusters. To address this question, we have computed smoothed particle hydrodynamics simulations of the initial formation and evolution of a dynamically young star cluster through cold (subvirial) collapse, starting with an ellipsoidal, turbulently seeded distribution of gas, and forming sink particles representing (proto)stars. While the initial density distributions of the clouds do not have large initial mass concentrations, gravitational focusing due to the global morphology leads to cluster formation. We use the resulting structures to extract observable morphological and kinematic signatures for the case of subvirial collapse. We find that the signatures of the initial conditions can be erased rapidly as the gas and stars collapse, suggesting that kinematic observations need to be made early in cluster formation and/or at larger scales, away from the growing cluster core. Our results emphasize that a dynamically young system is inherently evolving on short timescales, so that it can be highly misleading to use current-epoch conditions to study aspects such as star formation rates as a function of local density. Our simulations serve as a starting point for further studies of collapse including other factors such as magnetic fields and stellar feedback.

  3. SIGNATURES OF STAR CLUSTER FORMATION BY COLD COLLAPSE

    SciTech Connect

    Kuznetsova, Aleksandra; Hartmann, Lee; Ballesteros-Paredes, Javier

    2015-12-10

    Subvirial gravitational collapse is one mechanism by which star clusters may form. Here we investigate whether this mechanism can be inferred from observations of young clusters. To address this question, we have computed smoothed particle hydrodynamics simulations of the initial formation and evolution of a dynamically young star cluster through cold (subvirial) collapse, starting with an ellipsoidal, turbulently seeded distribution of gas, and forming sink particles representing (proto)stars. While the initial density distributions of the clouds do not have large initial mass concentrations, gravitational focusing due to the global morphology leads to cluster formation. We use the resulting structures to extract observable morphological and kinematic signatures for the case of subvirial collapse. We find that the signatures of the initial conditions can be erased rapidly as the gas and stars collapse, suggesting that kinematic observations need to be made early in cluster formation and/or at larger scales, away from the growing cluster core. Our results emphasize that a dynamically young system is inherently evolving on short timescales, so that it can be highly misleading to use current-epoch conditions to study aspects such as star formation rates as a function of local density. Our simulations serve as a starting point for further studies of collapse including other factors such as magnetic fields and stellar feedback.

  4. Analysis of fluid instabilities in core collapse supernova progenitors by a semi-analytical methodology and by two dimensional radiation-hydrodynamical simulations

    NASA Astrophysics Data System (ADS)

    Raley, Elizabeth

    2004-12-01

    We have performed an analysis of fluid instabilities below the neutrinospheres of the collapsed cores of supernova progenitors using a methodology introduced by Bruenn and Dineva [28, 29, 31]. In an extensive survey we found that the rate of lepton diffusion always exceeds the rate of thermal diffusion and as a result we do not anywhere see the neutron finger instability as described by the Livermore group [16, 17]. A new instability, lepto-entropy fingers, extending from a radius of 10 15 km out to the vicinity of the neutrinosphere, driven by the cross-response functions (i.e. the dependence of lepton transport on entropy perturbations and vice versa) was discovered. This instability has a maximum growth rate of the order of 100 s-1 with a scale of approximately 1/20 the distance of a perturbed fluid element from the core center [18]. This instability has probably already been seen in some multi-dimensional core collapse calculations. To test our results predicting the presence of doubly diffusive instabilities below the neutrinosphere of a proto-supernova, we have performed two dimensional hydrodynamic simulations with radial ray neutrino transport. This entailed rewriting RadHyd, which is the merger of EVH-1 hydrodynamics and MGFLD neutrino transport developed by Bruenn and DiNisco [43], for two dimensions. In particular, hydrodynamic evolution along angular arrays was included, as was MPI message passing capabilities, in order to utilize massively parallel computer platform such as FAU's BOCA4 Beowulf cluster. This work was partially funded by a grant from the DOE Office of Science, Scientific Discovery through Advanced Computing Program.

  5. Prediction of seismic collapse risk of steel moment frame mid-rise structures by meta-heuristic algorithms

    NASA Astrophysics Data System (ADS)

    Jough, Fooad Karimi Ghaleh; Şensoy, Serhan

    2016-12-01

    Different performance levels may be obtained for sideway collapse evaluation of steel moment frames depending on the evaluation procedure used to handle uncertainties. In this article, the process of representing modelling uncertainties, record to record (RTR) variations and cognitive uncertainties for moment resisting steel frames of various heights is discussed in detail. RTR uncertainty is used by incremental dynamic analysis (IDA), modelling uncertainties are considered through backbone curves and hysteresis loops of component, and cognitive uncertainty is presented in three levels of material quality. IDA is used to evaluate RTR uncertainty based on strong ground motion records selected by the k-means algorithm, which is favoured over Monte Carlo selection due to its time saving appeal. Analytical equations of the Response Surface Method are obtained through IDA results by the Cuckoo algorithm, which predicts the mean and standard deviation of the collapse fragility curve. The Takagi-Sugeno-Kang model is used to represent material quality based on the response surface coefficients. Finally, collapse fragility curves with the various sources of uncertainties mentioned are derived through a large number of material quality values and meta variables inferred by the Takagi-Sugeno-Kang fuzzy model based on response surface method coefficients. It is concluded that a better risk management strategy in countries where material quality control is weak, is to account for cognitive uncertainties in fragility curves and the mean annual frequency.

  6. Simulating Vibrations in a Complex Loaded Structure

    NASA Technical Reports Server (NTRS)

    Cao, Tim T.

    2005-01-01

    The Dynamic Response Computation (DIRECT) computer program simulates vibrations induced in a complex structure by applied dynamic loads. Developed to enable rapid analysis of launch- and landing- induced vibrations and stresses in a space shuttle, DIRECT also can be used to analyze dynamic responses of other structures - for example, the response of a building to an earthquake, or the response of an oil-drilling platform and attached tanks to large ocean waves. For a space-shuttle simulation, the required input to DIRECT includes mathematical models of the space shuttle and its payloads, and a set of forcing functions that simulates launch and landing loads. DIRECT can accommodate multiple levels of payload attachment and substructure as well as nonlinear dynamic responses of structural interfaces. DIRECT combines the shuttle and payload models into a single structural model, to which the forcing functions are then applied. The resulting equations of motion are reduced to an optimum set and decoupled into a unique format for simulating dynamics. During the simulation, maximum vibrations, loads, and stresses are monitored and recorded for subsequent analysis to identify structural deficiencies in the shuttle and/or payloads.

  7. Towards numerical simulations of fluid-structure interactions for investigation of obstructive sleep apnea

    NASA Astrophysics Data System (ADS)

    Huang, Chien-Jung; White, Susan M.; Huang, Shao-Ching; Mallya, Sanjay; Eldredge, Jeff D.

    2014-11-01

    Obstructive sleep apnea(OSA) is a medical condition characterized by repetitive partial or complete occlusion of the airway during sleep. The soft tissues in the airway of OSA patients are prone to collapse under the low pressure loads incurred during breathing. The numerical simulation with patient-specific upper airway model can provide assistance for diagnosis and treatment assessment. The eventual goal of this research is the development of numerical tool for air-tissue interactions in the upper airway of patients with OSA. This tool is expected to capture collapse of the airway in respiratory flow conditions, as well as the effects of various treatment protocols. Here, we present our ongoing progress toward this goal. A sharp-interface embedded boundary method is used on Cartesian grids for resolving the air-tissue interface in the complex patient-specific airway geometries. For the structure simulation, a cut-cell FEM is used. Non-linear Green strains are used for properly resolving the large tissue displacements in the soft palate structures. The fluid and structure solvers are strongly coupled. Preliminary results will be shown, including flow simulation inside the 3D rigid upper airway of patients with OSA, and several validation problem for the fluid-structure coupling.

  8. Numerically simulating the sandwich plate system structures

    NASA Astrophysics Data System (ADS)

    Feng, Guo-Qing; Li, Gang; Liu, Zhi-Hui; Niu, Huai-Lei; Li, Chen-Feng

    2010-09-01

    Sandwich plate systems (SPS) are advanced materials that have begun to receive extensive attention in naval architecture and ocean engineering. At present, according to the rules of classification societies, a mixture of shell and solid elements are required to simulate an SPS. Based on the principle of stiffness decomposition, a new numerical simulation method for shell elements was proposed. In accordance with the principle of stiffness decomposition, the total stiffness can be decomposed into the bending stiffness and shear stiffness. Displacement and stress response related to bending stiffness was calculated with the laminated shell element. Displacement and stress response due to shear was calculated by use of a computational code write by FORTRAN language. Then the total displacement and stress response for the SPS was obtained by adding together these two parts of total displacement and stress. Finally, a rectangular SPS plate and a double-bottom structure were used for a simulation. The results show that the deflection simulated by the elements proposed in the paper is larger than the same simulated by solid elements and the analytical solution according to Hoff theory and approximate to the same simulated by the mixture of shell-solid elements, and the stress simulated by the elements proposed in the paper is approximate to the other simulating methods. So compared with calculations based on a mixture of shell and solid elements, the numerical simulation method given in the paper is more efficient and easier to do.

  9. Simulating Dark Current in NLC Structures

    SciTech Connect

    Ng, C.K.; Folwell, N.; Guetz, A.; Ivanov, V.; Lee, L.Q.; Li, Z.H.; Schussman, G.; Ko, K.; /SLAC

    2007-10-11

    Dark current generation and capture are of great importance in high gradient accelerating structure R&D especially for the NLC which aims to operate at 65 MV/m with specific limits on dark current and RF breakdown rates. Although considerable effort has been devoted to building and testing various types of structures to meet these requirements, few theoretical studies have been done to understand these effects in actual structures. This paper focuses on the simulation of dark current in a NLC test structure for which experimental data are available. The parallel time-domain field solver Tau3P and the parallel particle tracking code Track3P are used together to simulate, for the first time, a dark current pulse to compare with the data measured downstream. Results from SLAC X-band 30-cell constant impedance structure for RF drive pulses with different rise times are presented and discussed.

  10. Vibrational Collapse of Hexapod Packings

    NASA Astrophysics Data System (ADS)

    Zhao, Yuchen; Ding, Jingqiu; Barés, Jonathan; Dierichs, Karola; Behringer, Robert

    2016-11-01

    Columns made of convex noncohesive grains like sand collapse after being released from a confining container. However, structures built from concave grains can be stable without external support. Previous research show that the stability of the columns depends on column diameter and height, by observing column stability after carefully lifting their confinement tubes. Thinner and taller columns collapse with higher probability. While the column stability weakly depends on packing density, it strongly depends on inter-particle friction. Experiments that cause the column to collapse also reveal similar trends, as more effort (such as heavier loading or shearing) is required to destabilize columns that are intrinsically more stable. In the current experiments, we invesitage the effect of vibration on destructing a column. Short columns collapse following the relaxation dynamics of disorder systems, which coincides with similar experiments on staple packings. However, tall columns collapse faster at the beginning, in addition to the relaxation process coming after. Using high-speed imaging, we analyze column collapse data from different column geometries. Ongoing work is focusing on characterizing the stability of hexapod packings to vibration. We thanks NSF-DMR-1206351 and the William M. Keck Foundation.

  11. The development of explosions in axisymmetric ab initio core-collapse supernova simulations of 12–25 M stars

    SciTech Connect

    Bruenn, Stephen W.; Lentz, Eric J.; Hix, William Raphael; Mezzacappa, Anthony; Harris, James Austin; Messer, O. E. Bronson; Endeve, Eirik; Blondin, John M.; Chertkow, Merek Austin; Lingerfelt, Eric J.; Marronetti, Pedro; Yakunin, Konstantin N.

    2016-02-16

    We present four ab initio axisymmetric core-collapse supernova simulations initiated from 12, 15, 20, and 25 M zero-age main sequence progenitors. All of the simulations yield explosions and have been evolved for at least 1.2 s after core bounce and 1 s after material first becomes unbound. These simulations were computed with our Chimera code employing RbR spectral neutrino transport, special and general relativistic transport effects, and state-of-the-art neutrino interactions. Continuing the evolution beyond 1 s after core bounce allows the explosions to develop more fully and the processes involved in powering the explosions to become more clearly evident. We compute explosion energy estimates, including the negative gravitational binding energy of the stellar envelope outside the expanding shock, of 0.34, 0.88, 0.38, and 0.70 Bethe (B ≡ 1051 erg) and increasing at 0.03, 0.15, 0.19, and 0.52 BS–1, respectively, for the 12, 15, 20, and 25 M models at the endpoint of this report. We examine the growth of the explosion energy in our models through detailed analyses of the energy sources and flows. We discuss how the explosion energies may be subject to stochastic variations as exemplfied by the effect of the explosion geometry of the 20 M model in reducing its explosion energy. We compute the proto-neutron star masses and kick velocities. In conclusion, we compare our results for the explosion energies and ejected 56Ni masses against some observational standards despite the large error bars in both models and observations.

  12. Numerical Simulation of Downstream Flooding due to a Flexible-Dam Collapse. The case of "La Esperanza" dam, Hidalgo-México: Implication on Hazard Assessment.

    NASA Astrophysics Data System (ADS)

    Areu Rangel, O. S., Sr.; Mendoza-Sanchez, I.; Bonasia, R.

    2015-12-01

    The risk of flooding of settlements located downstream of a dam is high due to the large number of people living on natural waterways. Risk assessment of flooding could help in projecting containment and protection in case of a dam-break. For projecting containment and protection works, the assessment should take into account velocities, densities and impact pressure of the water on the villages in risk. Therefore, it is appealing to conduct a series of numerical simulations of downstream flooding including velocity and pressure fields, and their temporal and spatial fluctuations. The present work focuses on the real case of "La Esperanza" dam, located in the state of Hidalgo (Mexico). The dam was built 70 years ago and currently two thirds of its capacity is covered with silt, which implies a very high horizontal thrust. The simulation of the flood due to failure of the dam was carried on using the DualSPHysics code, a new implementation of the mesh-free Lagrangian Smoothed Particle Hydrodynamic (SPH) method. For the boundary conditions, a Digital Elevation Model of the potentially affected area was built using satellite images, the actual bathymetry of the dam and cross sections of the channel. In order to evaluate the hazard posed to the villages located downstream of the dam, different collapse scenarios were simulated, with particular focus on the consequences of the temporal variation of rainfall. Preliminary results show acceleration and dynamic pressure values of water in especially selected areas that are subjected to high risk for the elevated number of inhabitant.

  13. Proline puckering parameters for collagen structure simulations

    SciTech Connect

    Wu, Di

    2015-03-15

    Collagen is made of triple helices rich in proline residues, and hence is influenced by the conformational motions of prolines. Because the backbone motions of prolines are restricted by the helical structures, the only side chain motion—proline puckering—becomes an influential factor that may affect the stability of collagen structures. In molecular simulations, a proper proline puckering population is desired so to yield valid results of the collagen properties. Here we design the proline puckering parameters in order to yield suitable proline puckering populations as demonstrated in the experimental results. We test these parameters in collagen and the proline dipeptide simulations. Compared with the results of the PDB and the quantum calculations, we propose the proline puckering parameters for the selected collagen model simulations.

  14. Hierarchical Simulation of Hot Composite Structures

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Murthy, P. L. N.; Singhal, S. N.

    1993-01-01

    Computational procedures are described to simulate the thermal and mechanical behavior of high temperature metal matrix composites (HT-MMC) in the following three broad areas: (1) Behavior of HT-MMC's from micromechanics to laminate via Metal Matrix Composite Analyzer (METCAN), (2) tailoring of HT-MMC behavior for optimum specific performance via Metal Matrix Laminate Tailoring (MMLT), and (3) HT-MMC structural response for hot structural components via High Temperature Composite Analyzer (HITCAN). Representative results from each area are presented to illustrate the effectiveness of computational simulation procedures. The sample case results show that METCAN can be used to simulate material behavior such as strength, stress-strain response, and cyclic life in HTMMC's; MMLT can be used to tailor the fabrication process for optimum performance such as that for in-service load carrying capacity of HT-MMC's; and HITCAN can be used to evaluate static fracture and fatigue life of hot pressurized metal matrix composite rings.

  15. Computational Simulation of Composite Structural Fatigue

    NASA Technical Reports Server (NTRS)

    Minnetyan, Levon; Chamis, Christos C. (Technical Monitor)

    2005-01-01

    Progressive damage and fracture of composite structures subjected to monotonically increasing static, tension-tension cyclic, pressurization, and flexural cyclic loading are evaluated via computational simulation. Constituent material properties, stress and strain limits are scaled up to the structure level to evaluate the overall damage and fracture propagation for composites. Damage initiation, growth, accumulation, and propagation to fracture due to monotonically increasing static and cyclic loads are included in the simulations. Results show the number of cycles to failure at different temperatures and the damage progression sequence during different degradation stages. A procedure is outlined for use of computational simulation data in the assessment of damage tolerance, determination of sensitive parameters affecting fracture, and interpretation of results with insight for design decisions.

  16. Proline puckering parameters for collagen structure simulations

    NASA Astrophysics Data System (ADS)

    Wu, Di

    2015-03-01

    Collagen is made of triple helices rich in proline residues, and hence is influenced by the conformational motions of prolines. Because the backbone motions of prolines are restricted by the helical structures, the only side chain motion—proline puckering—becomes an influential factor that may affect the stability of collagen structures. In molecular simulations, a proper proline puckering population is desired so to yield valid results of the collagen properties. Here we design the proline puckering parameters in order to yield suitable proline puckering populations as demonstrated in the experimental results. We test these parameters in collagen and the proline dipeptide simulations. Compared with the results of the PDB and the quantum calculations, we propose the proline puckering parameters for the selected collagen model simulations.

  17. Computational Simulation of Composite Structural Fatigue

    NASA Technical Reports Server (NTRS)

    Minnetyan, Levon

    2004-01-01

    Progressive damage and fracture of composite structures subjected to monotonically increasing static, tension-tension cyclic, pressurization, and flexural cyclic loading are evaluated via computational simulation. Constituent material properties, stress and strain limits are scaled up to the structure level to evaluate the overall damage and fracture propagation for composites. Damage initiation, growth, accumulation, and propagation to fracture due to monotonically increasing static and cyclic loads are included in the simulations. Results show the number of cycles to failure at different temperatures and the damage progression sequence during different degradation stages. A procedure is outlined for use of computational simulation data in the assessment of damage tolerance, determination of sensitive parameters affecting fracture, and interpretation of results with insight for design decisions.

  18. Simulating the formation of cosmic structure.

    PubMed

    Frenk, C S

    2002-06-15

    A timely combination of new theoretical ideas and observational discoveries has brought about significant advances in our understanding of cosmic evolution. Computer simulations have played a key role in these developments by providing the means to interpret astronomical data in the context of physical and cosmological theory. In the current paradigm, our Universe has a flat geometry, is undergoing accelerated expansion and is gravitationally dominated by elementary particles that make up cold dark matter. Within this framework, it is possible to simulate in a computer the emergence of galaxies and other structures from small quantum fluctuations imprinted during an epoch of inflationary expansion shortly after the Big Bang. The simulations must take into account the evolution of the dark matter as well as the gaseous processes involved in the formation of stars and other visible components. Although many unresolved questions remain, a coherent picture for the formation of cosmic structure is now beginning to emerge.

  19. Gravitational collapse of colloidal gels: Origins of the tipping point

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Poornima; Zia, Roseanna

    2016-11-01

    Reversible colloidal gels are soft viscoelastic solids in which durable but reversible bonds permit on-demand transition from solidlike to liquidlike behavior; these O(kT) bonds also lead to ongoing coarsening and age stiffening, making their rheology inherently time dependent. To wit, such gels may remain stable for an extended time, but then suddenly collapse, sedimenting to the bottom of the container (or creaming to the top) and eliminating any intended functionality of the material. Although this phenomenon has been studied extensively in the experimental literature, the microscopic mechanism underlying the collapse is not well understood. Effects of gel age, interparticle attraction strength, and wall effects all have been shown to affect collapse behavior, but the microstructural transformations underlying the 'tipping point' remain murky. To study this behavior, we conduct large-scale dynamic simulation to model the structural and rheological evolution of colloidal gels subjected to various gravitational stresses, examining the detailed micromechanics in three temporal regimes: slow sedimentation prior to collapse; the tipping point leading to the onset of rapid collapse; and the subsequent compaction of the material as it approaches its final bed height. Acknowledgment for funding and support from the Office of Naval Research; the National Science Foundation; and NSF XSEDE.

  20. Stochastic Simulation Tool for Aerospace Structural Analysis

    NASA Technical Reports Server (NTRS)

    Knight, Norman F.; Moore, David F.

    2006-01-01

    Stochastic simulation refers to incorporating the effects of design tolerances and uncertainties into the design analysis model and then determining their influence on the design. A high-level evaluation of one such stochastic simulation tool, the MSC.Robust Design tool by MSC.Software Corporation, has been conducted. This stochastic simulation tool provides structural analysts with a tool to interrogate their structural design based on their mathematical description of the design problem using finite element analysis methods. This tool leverages the analyst's prior investment in finite element model development of a particular design. The original finite element model is treated as the baseline structural analysis model for the stochastic simulations that are to be performed. A Monte Carlo approach is used by MSC.Robust Design to determine the effects of scatter in design input variables on response output parameters. The tool was not designed to provide a probabilistic assessment, but to assist engineers in understanding cause and effect. It is driven by a graphical-user interface and retains the engineer-in-the-loop strategy for design evaluation and improvement. The application problem for the evaluation is chosen to be a two-dimensional shell finite element model of a Space Shuttle wing leading-edge panel under re-entry aerodynamic loading. MSC.Robust Design adds value to the analysis effort by rapidly being able to identify design input variables whose variability causes the most influence in response output parameters.

  1. Collapsing granular suspensions.

    PubMed

    Kadau, D; Andrade, J S; Herrmann, H J

    2009-11-01

    A 2D contact dynamics model is proposed as a microscopic description of a collapsing suspension/soil to capture the essential physical processes underlying the dynamics of generation and collapse of the system. Our physical model is compared with real data obtained from in situ measurements performed with a natural collapsing/suspension soil. We show that the shear strength behavior of our collapsing suspension/soil model is very similar to the behavior of this collapsing suspension soil, for both the unperturbed and the perturbed phases of the material.

  2. Probabilistic simulation of uncertainties in thermal structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Shiao, Michael

    1990-01-01

    Development of probabilistic structural analysis methods for hot structures is a major activity at Lewis Research Center. It consists of five program elements: (1) probabilistic loads; (2) probabilistic finite element analysis; (3) probabilistic material behavior; (4) assessment of reliability and risk; and (5) probabilistic structural performance evaluation. Recent progress includes: (1) quantification of the effects of uncertainties for several variables on high pressure fuel turbopump (HPFT) blade temperature, pressure, and torque of the Space Shuttle Main Engine (SSME); (2) the evaluation of the cumulative distribution function for various structural response variables based on assumed uncertainties in primitive structural variables; (3) evaluation of the failure probability; (4) reliability and risk-cost assessment, and (5) an outline of an emerging approach for eventual hot structures certification. Collectively, the results demonstrate that the structural durability/reliability of hot structural components can be effectively evaluated in a formal probabilistic framework. In addition, the approach can be readily extended to computationally simulate certification of hot structures for aerospace environments.

  3. Simulation of plasma double-layer structures

    NASA Technical Reports Server (NTRS)

    Borovsky, J. E.; Joyce, G.

    1982-01-01

    Electrostatic plasma double layers are numerically simulated by means of a magnetized 2 1/2 dimensional particle in cell method. The investigation of planar double layers indicates that these one dimensional potential structures are susceptible to periodic disruption by instabilities in the low potential plasmas. Only a slight increase in the double layer thickness with an increase in its obliqueness to the magnetic field is observed. Weak magnetization results in the double layer electric field alignment of accelerated particles and strong magnetization results in their magnetic field alignment. The numerical simulations of spatially periodic two dimensional double layers also exhibit cyclical instability. A morphological invariance in two dimensional double layers with respect to the degree of magnetization implies that the potential structures scale with Debye lengths rather than with gyroradii. Electron beam excited electrostatic electron cyclotron waves and (ion beam driven) solitary waves are present in the plasmas adjacent to the double layers.

  4. Dynamic Deployment Simulations of Inflatable Space Structures

    NASA Technical Reports Server (NTRS)

    Wang, John T.

    2005-01-01

    The feasibility of using Control Volume (CV) method and the Arbitrary Lagrangian Eulerian (ALE) method in LSDYNA to simulate the dynamic deployment of inflatable space structures is investigated. The CV and ALE methods were used to predict the inflation deployments of three folded tube configurations. The CV method was found to be a simple and computationally efficient method that may be adequate for modeling slow inflation deployment sine the inertia of the inflation gas can be neglected. The ALE method was found to be very computationally intensive since it involves the solving of three conservative equations of fluid as well as dealing with complex fluid structure interactions.

  5. Optimal design against collapse after buckling. [of beams

    NASA Technical Reports Server (NTRS)

    Masur, E. F.

    1976-01-01

    After buckling, statically indeterminate trusses, beams, and other strictly symmetric structures may collapse under loads which reach limiting magnitudes. Optimal design is discussed for prescribed values of these collapse loads.

  6. Dramatic changes in the electronic structure upon transition to the collapsed tetragonal phase in CaFe2As2

    SciTech Connect

    Dhaka, R. S.; Jiang, Rui; Ran, S.; Budko, Sergey L.; Canfield, Paul C.; Harmon, Bruce N.; Kaminski, Adam; Tomic, Milan; Valenti, Roser; Lee, Yongbin

    2014-01-31

    We use angle-resolved photoemission spectroscopy and density functional theory calculations to study the electronic structure of CaFe2As2 in the collapsed tetragonal (CT) phase. This unusual phase of iron arsenic high-temperature superconductors was hard to measure as it exists only under pressure. By inducing internal strain, via the postgrowth thermal treatment of single crystals, we were able to stabilize the CT phase at ambient pressure. We find significant differences in the Fermi surface topology and band dispersion data from the more common orthorhombic-antiferromagnetic or tetragonal-paramagnetic phases, consistent with electronic structure calculations. The top of the hole bands sinks below the Fermi level, which destroys the nesting present in parent phases. The absence of nesting in this phase, along with an apparent loss of Fe magnetic moment, are now clearly experimentally correlated with the lack of superconductivity in this phase.

  7. Consequences of nuclear electron capture in core collapse supernovae.

    PubMed

    Hix, W R; Messer, O E B; Mezzacappa, A; Liebendörfer, M; Sampaio, J; Langanke, K; Dean, D J; Martínez-Pinedo, G

    2003-11-14

    The most important weak nuclear interaction to the dynamics of stellar core collapse is electron capture, primarily on nuclei with masses larger than 60. In prior simulations of core collapse, electron capture on these nuclei has been treated in a highly parametrized fashion, if not ignored. With realistic treatment of electron capture on heavy nuclei come significant changes in the hydrodynamics of core collapse and bounce. We discuss these as well as the ramifications for the postbounce evolution in core collapse supernovae.

  8. Asymmetric collapse by dissolution or melting in a uniform flow

    PubMed Central

    Bazant, Martin Z.

    2016-01-01

    An advection–diffusion-limited dissolution model of an object being eroded by a two-dimensional potential flow is presented. By taking advantage of the conformal invariance of the model, a numerical method is introduced that tracks the evolution of the object boundary in terms of a time-dependent Laurent series. Simulations of a variety of dissolving objects are shown, which shrink and collapse to a single point in finite time. The simulations reveal a surprising exact relationship, whereby the collapse point is the root of a non-analytic function given in terms of the flow velocity and the Laurent series coefficients describing the initial shape. This result is subsequently derived using residue calculus. The structure of the non-analytic function is examined for three different test cases, and a practical approach to determine the collapse point using a generalized Newton–Raphson root-finding algorithm is outlined. These examples also illustrate the possibility that the model breaks down in finite time prior to complete collapse, due to a topological singularity, as the dissolving boundary overlaps itself rather than breaking up into multiple domains (analogous to droplet pinch-off in fluid mechanics). The model raises fundamental mathematical questions about broken symmetries in finite-time singularities of both continuous and stochastic dynamical systems. PMID:26997890

  9. Collapse of Surface Nanobubbles

    NASA Astrophysics Data System (ADS)

    Chan, Chon U.; Chen, Longquan; Arora, Manish; Ohl, Claus-Dieter

    2015-03-01

    Surface attached nanobubbles populate surfaces submerged in water. These nanobubbles have a much larger contact angle and longer lifetime than predicted by classical theory. Moreover, it is difficult to distinguish them from hydrophobic droplets, e.g., polymeric contamination, using standard atomic force microscopy. Here, we report fast dynamics of a three phase contact line moving over surface nanobubbles, polymeric droplets, and hydrophobic particles. The dynamics is distinct: across polymeric droplets the contact line quickly jumps and hydrophobic particles pin the contact line, while surface nanobubbles rapidly shrink once merging with the contact line, suggesting a method to differentiate nanoscopic gaseous, liquid, and solid structures. Although the collapse process of surface nanobubbles occurs within a few milliseconds, we show that it is dominated by microscopic dynamics rather than bulk hydrodynamics.

  10. PREFACE: Collapse Calderas Workshop

    NASA Astrophysics Data System (ADS)

    Gottsmann, Jo; Aguirre-Diaz, Gerardo

    2008-10-01

    Caldera-formation is one of the most awe-inspiring and powerful displays of nature's force. Resultant deposits may cover vast areas and significantly alter the immediate topography. Post-collapse activity may include resurgence, unrest, intra-caldera volcanism and potentially the start of a new magmatic cycle, perhaps eventually leading to renewed collapse. Since volcanoes and their eruptions are the surface manifestation of magmatic processes, calderas provide key insights into the generation and evolution of large-volume silicic magma bodies in the Earth's crust. Despite their potentially ferocious nature, calderas play a crucial role in modern society's life. Collapse calderas host essential economic deposits and supply power for many via the exploitation of geothermal reservoirs, and thus receive considerable scientific, economic and industrial attention. Calderas also attract millions of visitors world-wide with their spectacular scenic displays. To build on the outcomes of the 2005 calderas workshop in Tenerife (Spain) and to assess the most recent advances on caldera research, a follow-up meeting was proposed to be held in Mexico in 2008. This abstract volume presents contributions to the 2nd Calderas Workshop held at Hotel Misión La Muralla, Querétaro, Mexico, 19-25 October 2008. The title of the workshop `Reconstructing the evolution of collapse calderas: Magma storage, mobilisation and eruption' set the theme for five days of presentations and discussions, both at the venue as well as during visits to the surrounding calderas of Amealco, Amazcala and Huichapan. The multi-disciplinary workshop was attended by more than 40 scientist from North, Central and South America, Europe, Australia and Asia. Contributions covered five thematic topics: geology, geochemistry/petrology, structural analysis/modelling, geophysics, and hazards. The workshop was generously supported by the International Association of Volcanology and the Chemistry of The Earth's Interior

  11. Caribbean-Wide, Long-Term Study of Seagrass Beds Reveals Local Variations, Shifts in Community Structure and Occasional Collapse

    PubMed Central

    van Tussenbroek, Brigitta I.; Cortés, Jorge; Collin, Rachel; Fonseca, Ana C.; Gayle, Peter M. H.; Guzmán, Hector M.; Jácome, Gabriel E.; Juman, Rahanna; Koltes, Karen H.; Oxenford, Hazel A.; Rodríguez-Ramirez, Alberto; Samper-Villarreal, Jimena; Smith, Struan R.; Tschirky, John J.; Weil, Ernesto

    2014-01-01

    The CARICOMP monitoring network gathered standardized data from 52 seagrass sampling stations at 22 sites (mostly Thalassia testudinum-dominated beds in reef systems) across the Wider Caribbean twice a year over the period 1993 to 2007 (and in some cases up to 2012). Wide variations in community total biomass (285 to >2000 g dry m−2) and annual foliar productivity of the dominant seagrass T. testudinum (<200 and >2000 g dry m−2) were found among sites. Solar-cycle related intra-annual variations in T. testudinum leaf productivity were detected at latitudes > 16°N. Hurricanes had little to no long-term effects on these well-developed seagrass communities, except for 1 station, where the vegetation was lost by burial below ∼1 m sand. At two sites (5 stations), the seagrass beds collapsed due to excessive grazing by turtles or sea-urchins (the latter in combination with human impact and storms). The low-cost methods of this regional-scale monitoring program were sufficient to detect long-term shifts in the communities, and fifteen (43%) out of 35 long-term monitoring stations (at 17 sites) showed trends in seagrass communities consistent with expected changes under environmental deterioration. PMID:24594732

  12. Toward Metal-Organic Framework-Based Solar Cells: Enhancing Directional Exciton Transport by Collapsing Three-Dimensional Film Structures.

    PubMed

    Goswami, Subhadip; Ma, Lin; Martinson, Alex B F; Wasielewski, Michael R; Farha, Omar K; Hupp, Joseph T

    2016-11-16

    Owing to their ability to act as light-harvesting scaffolds, porphyrin-containing metal-organic frameworks (MOFs) are in the forefront of research on the application of highly ordered molecular materials to problems in solar-energy conversion. In this work, solvent-assisted linker exchange (SALE) is performed on a pillared paddlewheel porphyrin containing MOF thin film to collapse a 3D framework to a 2D framework. The change in dimensionality of the framework is confirmed by a decrease in the film thickness, the magnitude of which is in agreement with crystallographic parameters for related bulk materials. Furthermore, NMR spectroscopy performed on the digested sample suggests a similar change in geometry is achieved in bulk MOF samples. The decreased distance between the porphyrin chromophores in the 2D MOF film compared to the 3D film results in enhanced energy transfer through the film. The extent of energy transport was probed by assembling MOF thin film where the outermost layers are palladium porphyrin (P2) units, which act as energy traps and fluorescence quenchers. Steady-state emission spectroscopy together with time-resolved emission spectroscopy indicates that excitons can travel through about 9-11 layers (porphyrin layers) in 2D films, whereas in 3D films energy transfer occurs through no more than about 6-8 layers. The results are difficult to understand if only changes in MOF interlayer spacing are considered but become much more understandable if dipole-dipole coupling distances are considered.

  13. Caribbean-wide, long-term study of seagrass beds reveals local variations, shifts in community structure and occasional collapse.

    PubMed

    van Tussenbroek, Brigitta I; Cortés, Jorge; Collin, Rachel; Fonseca, Ana C; Gayle, Peter M H; Guzmán, Hector M; Jácome, Gabriel E; Juman, Rahanna; Koltes, Karen H; Oxenford, Hazel A; Rodríguez-Ramirez, Alberto; Samper-Villarreal, Jimena; Smith, Struan R; Tschirky, John J; Weil, Ernesto

    2014-01-01

    The CARICOMP monitoring network gathered standardized data from 52 seagrass sampling stations at 22 sites (mostly Thalassia testudinum-dominated beds in reef systems) across the Wider Caribbean twice a year over the period 1993 to 2007 (and in some cases up to 2012). Wide variations in community total biomass (285 to >2000 g dry m(-2)) and annual foliar productivity of the dominant seagrass T. testudinum (<200 and >2000 g dry m(-2)) were found among sites. Solar-cycle related intra-annual variations in T. testudinum leaf productivity were detected at latitudes > 16°N. Hurricanes had little to no long-term effects on these well-developed seagrass communities, except for 1 station, where the vegetation was lost by burial below ∼1 m sand. At two sites (5 stations), the seagrass beds collapsed due to excessive grazing by turtles or sea-urchins (the latter in combination with human impact and storms). The low-cost methods of this regional-scale monitoring program were sufficient to detect long-term shifts in the communities, and fifteen (43%) out of 35 long-term monitoring stations (at 17 sites) showed trends in seagrass communities consistent with expected changes under environmental deterioration.

  14. Online Simulation of Radiation Track Structure Project

    NASA Technical Reports Server (NTRS)

    Plante, Ianik

    2015-01-01

    Space radiation comprises protons, helium and high charged and energy (HZE) particles. High-energy particles are a concern for human space flight, because they are no known options for shielding astronauts from them. When these ions interact with matter, they damage molecules and create radiolytic species. The pattern of energy deposition and positions of the radiolytic species, called radiation track structure, is highly dependent on the charge and energy of the ion. The radiolytic species damage biological molecules, which may lead to several long-term health effects such as cancer. Because of the importance of heavy ions, the radiation community is very interested in the interaction of HZE particles with DNA, notably with regards to the track structure. A desktop program named RITRACKS was developed to simulate radiation track structure. The goal of this project is to create a web interface to allow registered internal users to use RITRACKS remotely.

  15. Digital system for structural dynamics simulation

    NASA Technical Reports Server (NTRS)

    Krauter, A. I.; Lagace, L. J.; Wojnar, M. K.; Glor, C.

    1982-01-01

    State-of-the-art digital hardware and software for the simulation of complex structural dynamic interactions, such as those which occur in rotating structures (engine systems). System were incorporated in a designed to use an array of processors in which the computation for each physical subelement or functional subsystem would be assigned to a single specific processor in the simulator. These node processors are microprogrammed bit-slice microcomputers which function autonomously and can communicate with each other and a central control minicomputer over parallel digital lines. Inter-processor nearest neighbor communications busses pass the constants which represent physical constraints and boundary conditions. The node processors are connected to the six nearest neighbor node processors to simulate the actual physical interface of real substructures. Computer generated finite element mesh and force models can be developed with the aid of the central control minicomputer. The control computer also oversees the animation of a graphics display system, disk-based mass storage along with the individual processing elements.

  16. THE THREE-DIMENSIONAL EVOLUTION TO CORE COLLAPSE OF A MASSIVE STAR

    SciTech Connect

    Couch, Sean M.; Chatzopoulos, Emmanouil; Arnett, W. David; Timmes, F. X.

    2015-07-20

    We present the first three-dimensional (3D) simulation of the final minutes of iron core growth in a massive star, up to and including the point of core gravitational instability and collapse. We capture the development of strong convection driven by violent Si burning in the shell surrounding the iron core. This convective burning builds the iron core to its critical mass and collapse ensues, driven by electron capture and photodisintegration. The non-spherical structure and motion generated by 3D convection is substantial at the point of collapse, with convective speeds of several hundreds of km s{sup −1}. We examine the impact of such physically realistic 3D initial conditions on the core-collapse supernova mechanism using 3D simulations including multispecies neutrino leakage and find that the enhanced post-shock turbulence resulting from 3D progenitor structure aids successful explosions. We conclude that non-spherical progenitor structure should not be ignored, and should have a significant and favorable impact on the likelihood for neutrino-driven explosions. In order to make simulating the 3D collapse of an iron core feasible, we were forced to make approximations to the nuclear network making this effort only a first step toward accurate, self-consistent 3D stellar evolution models of the end states of massive stars.

  17. A new mechanism for gravitational-wave emission in core-collapse supernovae.

    PubMed

    Ott, Christian D; Burrows, Adam; Dessart, Luc; Livne, Eli

    2006-05-26

    We present a new theory for the gravitational-wave signatures of core-collapse supernovae. Previous studies identified axisymmetric rotating core collapse, core bounce, postbounce convection, and anisotropic neutrino emission as the primary processes and phases for the radiation of gravitational waves. Our results, which are based on axisymmetric Newtonian supernova simulations, indicate that the dominant emission process of gravitational waves in core-collapse supernovae may be the oscillations of the protoneutron star core. The oscillations are predominantly of mode character, are excited hundreds of milliseconds after bounce, and typically last for several hundred milliseconds. Our results suggest that even nonrotating core-collapse supernovae should be visible to current LIGO-class detectors throughout the Galaxy, and depending on progenitor structure, possibly out to megaparsec distances.

  18. A monolithic collapse origin for the thin and thick disc structure of the S0 galaxy ESO 243-49

    NASA Astrophysics Data System (ADS)

    Comerón, S.; Salo, H.; Peletier, R. F.; Mentz, J.

    2016-09-01

    ESO 243-49 is a high-mass (circular velocity vc ≈ 200 km s-1), edge-on S0 galaxy in the Abell 2877 cluster at a distance of ~95 Mpc. To elucidate the origin of the thick disc of this S0 galaxy, we use Multi Unit Spectroscopic Explorer (MUSE) science verification data to study its kinematics and stellar populations. The thick disc emits ~80% of the light at heights in excess of 3.5 arcsec (1.6 kpc). The rotation velocities of its stars lag by 30-40 km s-1 compared to those in the thin disc, which is compatible with the asymmetric drift. The thick disc is found to be more metal-poor than the thin disc, but both discs have old ages. We suggest an internal origin for the thick disc stars in high-mass galaxies. We propose that the thick disc formed either a) first in a turbulent phase with a high star formation rate and that a thin disc formed shortly afterwards, or b) because of the dynamical heating of a thin pre-existing component. Either way, the star formation in ESO 243-49 was quenched just a few Gyr after the galaxy was born and the formation of a thin and a thick disc must have occurred before the galaxy stopped forming stars. The formation of the discs was so fast that it could be described as a monolithic collapse where several generations of stars formed in rapid succession. Based on observations made at the European Southern Observatory using the Very Large Telescope under programme 60.A-9328(A).

  19. Revealing the Detailed Structure of the Galactic Core-Collapse Supernova Remnant G292.0+1.8 with X-Ray Mapping

    NASA Astrophysics Data System (ADS)

    Bhalerao, Jayant; Park, Sangwook; Schenck, Andrew

    2017-01-01

    We present our results on the adaptive-mesh mapping of the chemical composition and thermodynamic parameters of the Galactic core-collapse supernova remnant G292.0+1.8 using our deep Chandra observation. Our maps cover the entire supernova remnant and show the detailed spatial distributions of the metal-rich ejecta, circumstellar medium, and the X-ray pulsar wind nebula-dominated regions. Our results suggest radial and azimuthal variations in the ejecta composition and the thermodynamic parameters, underscoring the rich and complex nature of this text book type supernova remnant. Combining our results from this study and our previous work on the ejecta radial velocity distribution (derived from our Chandra HETG data), we discuss the three dimensional structure of the remnant. Some implications on the nature of the progenitor star and explosion scenarios are discussed.

  20. From chain collapse to new structures: spectroscopic properties of poly(3-thiophene acetic acid) upon binding by alkyl trimethylammonium bromide surfactants.

    PubMed

    Franco, I Echavarri; Lorchat, P; Lamps, J-P; Schmutz, M; Schröder, A; Catala, J-M; Combet, J; Schosseler, F

    2012-03-13

    The binding of cationic surfactants with varying alkyl chain length to a regiorandom conjugated polyanion, poly(3-thiophene acetic acid) (PTAA), is studied in an aqueous buffer by using absorption and emission spectroscopies, photon correlation spectroscopy, isothermal titration calorimetry, and cryogenic transmission electron microscopy. We study the mixed solutions as a function of composition ratio R of surfactant molecules to monomer units molar concentrations, at low polymer concentration and in a very wide composition range (10(-6) < R < 10(2)) below the critical micellar concentration. Upon surfactant binding, the molecularly dispersed chains first collapse progressively and then form new structures as the mixed aggregates get enriched in surfactant. The collapse leads to a strong decrease of the conjugation length and to a blue shift of the absorption spectra by 30 to 50 nm. The new structures are responsible for a new intense emission band at about 600 nm, red-shifted by nearly 130 nm from the initial emission maximum of the polymer (~472 nm). As the surfactant tail becomes shorter, the blue shift of the absorption spectra and the intensity raise of the new emission are delayed to larger composition ratios while their variations become smoother functions of the surfactant concentration. These particular spectroscopic properties of PTAA seem related to its unique combination of a strongly hydrophobic backbone, a large ratio of contour length to persistence length, and an overall good aqueous solubility. Our results show that such features are well suited to design a colorimetric biosensor at small composition ratio, and a fluorescent biomarker at large composition ratio.

  1. Surface binding of alamethicin stabilizes its helical structure: molecular dynamics simulations.

    PubMed Central

    Tieleman, D P; Berendsen, H J; Sansom, M S

    1999-01-01

    Alamethicin is an amphipathic alpha-helical peptide that forms ion channels. An early event in channel formation is believed to be the binding of alamethicin to the surface of a lipid bilayer. Molecular dynamics simulations are used to compare the structural and dynamic properties of alamethicin in water and alamethicin bound to the surface of a phosphatidylcholine bilayer. The bilayer surface simulation corresponded to a loosely bound alamethicin molecule that interacted with lipid headgroups but did not penetrate the hydrophobic core of the bilayer. Both simulations started with the peptide molecule in an alpha-helical conformation and lasted 2 ns. In water, the helix started to unfold after approximately 300 ps and by the end of the simulation only the N-terminal region of the peptide remained alpha-helical and the molecule had collapsed into a more compact form. At the surface of the bilayer, loss of helicity was restricted to the C-terminal third of the molecule and the rod-shaped structure of the peptide was retained. In the surface simulation about 10% of the peptide/water H-bonds were replaced by peptide/lipid H-bonds. These simulations suggest that some degree of stabilization of an amphipathic alpha-helix occurs at a bilayer surface even without interactions between hydrophobic side chains and the acyl chain core of the bilayer. PMID:10354443

  2. Collapsable seal member

    DOEpatents

    Sherrell, Dennis L.

    1990-01-01

    A hollow, collapsable seal member normally disposed in a natural expanded state offering fail-safe pressure sealing against a seating surface and adapted to be evacuated by a vacuum force for collapsing the seal member to disengage the same from said seating surface.

  3. Scaling and universality of inherent structure simulations.

    PubMed

    Witkoskie, James B; Cao, Jianshu

    2004-06-01

    In this paper we explore the inherent structures (IS) approach to the dynamics of the East constrained kinetic Ising model. The inherent structures do not capture the nature of the dynamics of many quantities, including the spin autocorrelation function. Simply monitoring the quenched energy fluctuations, i.e., IS energy, results in an oversimplified single order-parameter description of the system's dynamics, but examining other features, such as domain dynamics or normal modes, may give a more complete and useful picture of the dynamics. The universality in the behavior of the IS energy of this model does not reveal nonuniversal features of the kinetics that determine long-time relaxation of the system. As a result, popular functional forms, such as the stretched exponential relaxation or Gaussian distribution of energies, may be a numerical fit to data with little physical justification. Filtering data can be shown to erase features of the system and the resulting quantities resemble more universal functional forms that lack physical insight. These results for the East model have implications for IS simulations of realistic systems and suggest careful analysis including the examination of other potential order parameters is necessary to evaluate the validity of applications of universal and scaling arguments to IS simulations.

  4. Simulations of kinetically irreversible protein aggregate structure.

    PubMed Central

    Patro, S Y; Przybycien, T M

    1994-01-01

    We have simulated the structure of kinetically irreversible protein aggregates in two-dimensional space using a lattice-based Monte-Carlo routine. Our model specifically accounts for the intermolecular interactions between hydrophobic and hydrophilic protein surfaces and a polar solvent. The simulations provide information about the aggregate density, the types of inter-monomer contacts and solvent content within the aggregates, the type and extent of solvent exposed perimeter, and the short- and long-range order all as a function of (i) the extent of monomer hydrophobic surface area and its distribution on the model protein surface and (ii) the magnitude of the hydrophobic-hydrophobic contact energy. An increase in the extent of monomer hydrophobic surface area resulted in increased aggregate densities with concomitant decreased system free energies. These effects are accompanied by increases in the number of hydrophobic-hydrophobic contacts and decreases in the solvent-exposed hydrophobic surface area of the aggregates. Grouping monomer hydrophobic surfaces in a single contiguous stretch resulted in lower aggregate densities and lower short range order. More favorable hydrophobic-hydrophobic contact energies produced structures with higher densities but the number of unfavorable protein-protein contacts was also observed to increase; greater configurational entropy produced the opposite effect. Properties predicted by our model are in good qualitative agreement with available experimental observations. Images FIGURE 6 FIGURE 13 PMID:8061184

  5. Critical chemotactic collapse

    NASA Astrophysics Data System (ADS)

    Lushnikov, Pavel M.

    2010-04-01

    A Keller-Segel model describes macroscopic dynamics of bacterial colonies and biological cells as well as dynamics of a gas of self-gravitating Brownian particles. Bacteria secret chemical which attracts other bacteria so that they move towards chemical gradient creating nonlocal attraction between bacteria. If bacterial (or Brownian particle) density exceeds a critical value then the density collapses (blows up) in a finite time which corresponds to bacterial aggregation or gravitational collapse. Collapse in the Keller-Segel model has striking qualitative similarities with a nonlinear Schrödinger equation including critical collapse in two dimensions and supercritical collapse in three dimensions. A self-similar solution near blow up point is studied in the critical two-dimensional case and it has a form of a rescaled steady state solution which contains a critical number of bacteria. Time dependence of scaling of that solution has square root scaling law with logarithmic modification.

  6. Evaluation of seismic reflection data in the Davis and Lavender Canyons study area, Paradox Basin, Utah. [Faults, folds, joints, and collapse structures

    SciTech Connect

    Kitcho, C.A.; Wong, I.G.; Turcotte, F.T.

    1986-08-01

    Seismic reflection data purchased from petroleum industry brokers and acquired through group speculative surveys were interpreted for information on the regional subsurface geologic structure and stratigraphy within and surrounding the Davis and Lavender Canyons study area in the Paradox Basin of southeastern Utah. Structures of interest were faults, folds, joints, and collapse structures related to salt dissolution. The seismic reflection data were used to interpret stratigraphy by identifying continuous and discontinuous reflectors on the seismic profiles. Thickening and thinning of strata and possible areas of salt flowage or dissolution could be identified from the seismic data. Identifiable reflectors included the tops of the Precambrian and Mississippian, a distinctive interbed close to the middle of the Pennsylvanian Paradox salt formation (probably the interval between Salt Cycles 10 and 13), and near the top of the Paradox salt. Of the 56 faults identified from the seismic reflection interpretation, 33 trend northwest, west-northwest, or west, and most affect only the deeper part of the stratigraphic section. These faults are part of the deep structural system found throughout the Paradox Basin, including the fold and fault belt in the northeast part of the basin. The faults bound basement Precambrian blocks that experienced minor activity during Mississippian and early Pennsylvanian deposition, and showed major displacement during early Paradox salt deposition as the Paradox Basin subsided. Based on the seismic data, most of these faults appear to have an upward terminus between the top of the Mississippian and the salt interbed reflector.

  7. Multiscale Simulation of Microbe Structure and Dynamics

    PubMed Central

    Joshi, Harshad; Singharoy, Abhishek; Sereda, Yuriy V.; Cheluvaraja, Srinath C.; Ortoleva, Peter J.

    2012-01-01

    A multiscale mathematical and computational approach is developed that captures the hierarchical organization of a microbe. It is found that a natural perspective for understanding a microbe is in terms of a hierarchy of variables at various levels of resolution. This hierarchy starts with the N -atom description and terminates with order parameters characterizing a whole microbe. This conceptual framework is used to guide the analysis of the Liouville equation for the probability density of the positions and momenta of the N atoms constituting the microbe and its environment. Using multiscale mathematical techniques, we derive equations for the co-evolution of the order parameters and the probability density of the N-atom state. This approach yields a rigorous way to transfer information between variables on different space-time scales. It elucidates the interplay between equilibrium and far-from-equilibrium processes underlying microbial behavior. It also provides framework for using coarse-grained nanocharacterization data to guide microbial simulation. It enables a methodical search for free-energy minimizing structures, many of which are typically supported by the set of macromolecules and membranes constituting a given microbe. This suite of capabilities provides a natural framework for arriving at a fundamental understanding of microbial behavior, the analysis of nanocharacterization data, and the computer-aided design of nanostructures for biotechnical and medical purposes. Selected features of the methodology are demonstrated using our multiscale bionanosystem simulator DeductiveMultiscaleSimulator. Systems used to demonstrate the approach are structural transitions in the cowpea chlorotic mosaic virus, RNA of satellite tobacco mosaic virus, virus-like particles related to human papillomavirus, and iron-binding protein lactoferrin. PMID:21802438

  8. Multiscale simulation of microbe structure and dynamics.

    PubMed

    Joshi, Harshad; Singharoy, Abhishek; Sereda, Yuriy V; Cheluvaraja, Srinath C; Ortoleva, Peter J

    2011-10-01

    A multiscale mathematical and computational approach is developed that captures the hierarchical organization of a microbe. It is found that a natural perspective for understanding a microbe is in terms of a hierarchy of variables at various levels of resolution. This hierarchy starts with the N -atom description and terminates with order parameters characterizing a whole microbe. This conceptual framework is used to guide the analysis of the Liouville equation for the probability density of the positions and momenta of the N atoms constituting the microbe and its environment. Using multiscale mathematical techniques, we derive equations for the co-evolution of the order parameters and the probability density of the N-atom state. This approach yields a rigorous way to transfer information between variables on different space-time scales. It elucidates the interplay between equilibrium and far-from-equilibrium processes underlying microbial behavior. It also provides framework for using coarse-grained nanocharacterization data to guide microbial simulation. It enables a methodical search for free-energy minimizing structures, many of which are typically supported by the set of macromolecules and membranes constituting a given microbe. This suite of capabilities provides a natural framework for arriving at a fundamental understanding of microbial behavior, the analysis of nanocharacterization data, and the computer-aided design of nanostructures for biotechnical and medical purposes. Selected features of the methodology are demonstrated using our multiscale bionanosystem simulator DeductiveMultiscaleSimulator. Systems used to demonstrate the approach are structural transitions in the cowpea chlorotic mosaic virus, RNA of satellite tobacco mosaic virus, virus-like particles related to human papillomavirus, and iron-binding protein lactoferrin.

  9. Atomistic modeling of shock-induced void collapse in copper

    SciTech Connect

    Davila, L P; Erhart, P; Bringa, E M; Meyers, M A; Lubarda, V A; Schneider, M S; Becker, R; Kumar, M

    2005-03-09

    Nonequilibrium molecular dynamics (MD) simulations show that shock-induced void collapse in copper occurs by emission of shear loops. These loops carry away the vacancies which comprise the void. The growth of the loops continues even after they collide and form sessile junctions, creating a hardened region around the collapsing void. The scenario seen in our simulations differs from current models that assume that prismatic loop emission is responsible for void collapse. We propose a new dislocation-based model that gives excellent agreement with the stress threshold found in the MD simulations for void collapse as a function of void radius.

  10. Resolving the Formation of Protogalaxies. II.Central Gravitational Collapse

    SciTech Connect

    Wise, John H.; Turk, Matthew J.; Abel, Tom

    2007-10-15

    Numerous cosmological hydrodynamic studies have addressed the formation of galaxies. Here we choose to study the first stages of galaxy formation, including non-equilibrium atomic primordial gas cooling, gravity and hydrodynamics. Using initial conditions appropriate for the concordance cosmological model of structure formation, we perform two adaptive mesh refinement simulations of {approx} 10{sup 8} M{sub {circle_dot}} galaxies at high redshift. The calculations resolve the Jeans length at all times with more than 16 cells and capture over 14 orders of magnitude in length scales. In both cases, the dense, 10{sup 5} solar mass, one parsec central regions are found to contract rapidly and have turbulent Mach numbers up to 4. Despite the ever decreasing Jeans length of the isothermal gas, we only find one site of fragmentation during the collapse. However, rotational secular bar instabilities transport angular momentum outwards in the central parsec as the gas continues to collapse and lead to multiple nested unstable fragments with decreasing masses down to sub-Jupiter mass scales. Although these numerical experiments neglect star formation and feedback, they clearly highlight the physics of turbulence in gravitationally collapsing gas. The angular momentum segregation seen in our calculations plays an important role in theories that form supermassive black holes from gaseous collapse.

  11. Spherical collapse, formation hysteresis and the deeply non-linear cosmological power spectrum

    NASA Astrophysics Data System (ADS)

    Mead, A. J.

    2017-01-01

    I examine differences in non-linear structure formation between cosmological models that share a z = 0 linear power spectrum in both shape and amplitude, but that differ via their growth history. N-body simulations of these models display an approximately identical large-scale-structure skeleton, but reveal deeply non-linear differences in the demographics and properties of haloes. I investigate to what extent the spherical-collapse model can help in understanding these differences, in both real and redshift space. I discuss how this is difficult to do if one attempts to identify haloes directly, because in that case one is subject to the vagaries of halo-finding algorithms. However, I demonstrate that the halo model of structure formation provides an accurate non-linear response in the power spectrum, but only if results from spherical collapse that include formation hysteresis are properly incorporated. I comment on how this fact can be used to provide per cent level accurate matter power-spectrum predictions for dark energy models for k ≤ 5 h Mpc-1 by using the halo model as a correction to accurate ΛCDM simulations. In the Appendix, I provide some fitting functions for the linear-collapse threshold (δc) and virialized overdensity (Δv) that are valid for a wide range of dark energy models. I also make my spherical-collapse code available at https://github.com/alexander-mead/collapse.

  12. Numerical simulation of condensation on structured surfaces.

    PubMed

    Fu, Xiaowu; Yao, Zhaohui; Hao, Pengfei

    2014-11-25

    Condensation of liquid droplets on solid surfaces happens widely in nature and industrial processes. This phase-change phenomenon has great effect on the performance of some microfluidic devices. On the basis of micro- and nanotechnology, superhydrophobic structured surfaces can be well-fabricated. In this work, the nucleating and growth of droplets on different structured surfaces are investigated numerically. The dynamic behavior of droplets during the condensation is simulated by the multiphase lattice Boltzmann method (LBM), which has the ability to incorporate the microscopic interactions, including fluid-fluid interaction and fluid-surface interaction. The results by the LBM show that, besides the chemical properties of surfaces, the topography of structures on solid surfaces influences the condensation process. For superhydrophobic surfaces, the spacing and height of microridges have significant influence on the nucleation sites. This mechanism provides an effective way for prevention of wetting on surfaces in engineering applications. Moreover, it suggests a way to prevent ice formation on surfaces caused by the condensation of subcooled water. For hydrophilic surfaces, however, microstructures may be submerged by the liquid films adhering to the surfaces. In this case, microstructures will fail to control the condensation process. Our research provides an optimized way for designing surfaces for condensation in engineering systems.

  13. Multiscale Analysis of a Collapsible Respiratory Airway

    NASA Astrophysics Data System (ADS)

    Ghadiali, Samir; Bell, E. David; Swarts, J. Douglas

    2006-11-01

    The Eustachian tube (ET) is a collapsible respiratory airway that connects the nasopharynx with the middle ear (ME). The ET normally exists in a collapsed state and must be periodically opened to maintain a healthy and sterile ME. Although the inability to open the ET (i.e. ET dysfunction) is the primary etiology responsible for several common ME diseases (i.e. Otitis Media), the mechanisms responsible for ET dysfunction are not well established. To investigate these mechanisms, we developed a multi-scale model of airflow in the ET and correlated model results with experimental data obtained in healthy and diseased subjects. The computational models utilized finite-element methods to simulate fluid-structure interactions and molecular dynamics techniques to quantify the adhesive properties of mucus glycoproteins. Results indicate that airflow in the ET is highly sensitive to both the dynamics of muscle contraction and molecular adhesion forces within the ET lumen. In addition, correlation of model results with experimental data obtained in diseased subjects was used to identify the biomechanical mechanisms responsible for ET dysfunction.

  14. Crashworthiness simulation of composite automotive structures

    SciTech Connect

    Botkin, M E; Johnson, N L; Simunovic, S; Zywicz, E

    1998-06-01

    In 1990 the Automotive Composites Consortium (ACC) began the investigation of crash worthiness simulation methods for composite materials. A contract was given to Livermore Software Technology Corporation (LSTC) to implement a new damage model in LS-DYNA3DTM specifically for composite structures. This model is in LS-DYNA3DTM and is in use by the ACC partners. In 1994 USCAR, a partnership of American auto companies, entered into a partnership called SCAAP (Super Computing Automotive Applications Partnership) for the express purpose of working with the National Labs on computational oriented research. A CRADA (Cooperative Research and Development Agreement) was signed with Lawrence Livermore National Laboratory, Oak Ridge National Laboratory, Sandia National Laboratory, Argonne National Laboratory, and Los Alamos National Laboratory to work in three distinctly different technical areas, one of which was composites material modeling for crash worthiness. Each Laboratory was assigned a specific modeling task. The ACC was responsible for the technical direction of the composites project and provided all test data for code verification. All new models were to be implemented in DYNA3D and periodically distributed to all partners for testing. Several new models have been developed and implemented. Excellent agreement has been shown between tube crush simulation and experiments.

  15. Magnetorotational iron core collapse

    NASA Technical Reports Server (NTRS)

    Symbalisty, E. M. D.

    1984-01-01

    During its final evolutionary stages, a massive star, as considered in current astrophysical theory, undergoes rapid collapse, thereby triggering a sequence of a catastrophic event which results in a Type II supernova explosion. A remnant neutron star or a black hole is left after the explosion. Stellar collapse occurs, when thermonuclear fusion has consumed the lighter elements present. At this stage, the core consists of iron. Difficulties arise regarding an appropriate model with respect to the core collapse. The present investigation is concerned with the evolution of a Type II supernova core including the effects of rotation and magnetic fields. A simple neutrino model is developed which reproduced the spherically symmetric results of Bowers and Wilson (1982). Several two-dimensional computational models of stellar collapse are studied, taking into account a case in which a 15 solar masses iron core was artificially given rotational and magnetic energy.

  16. Countdown to Systems Collapse.

    ERIC Educational Resources Information Center

    Tysseling, John C.; Easton, Jeff; Weaks, Julie

    2002-01-01

    Describes how the University of New Mexico Albuquerque developed a strategic business plan for renewing its utility systems when faced with the imminent collapse of its entire energy infrastructure and a $75-100 million price tag for upgrades. (EV)

  17. Direct collapse to supermassive black hole seeds: comparing the AMR and SPH approaches.

    PubMed

    Luo, Yang; Nagamine, Kentaro; Shlosman, Isaac

    2016-07-01

    We provide detailed comparison between the adaptive mesh refinement (AMR) code enzo-2.4 and the smoothed particle hydrodynamics (SPH)/N-body code gadget-3 in the context of isolated or cosmological direct baryonic collapse within dark matter (DM) haloes to form supermassive black holes. Gas flow is examined by following evolution of basic parameters of accretion flows. Both codes show an overall agreement in the general features of the collapse; however, many subtle differences exist. For isolated models, the codes increase their spatial and mass resolutions at different pace, which leads to substantially earlier collapse in SPH than in AMR cases due to higher gravitational resolution in gadget-3. In cosmological runs, the AMR develops a slightly higher baryonic resolution than SPH during halo growth via cold accretion permeated by mergers. Still, both codes agree in the build-up of DM and baryonic structures. However, with the onset of collapse, this difference in mass and spatial resolution is amplified, so evolution of SPH models begins to lag behind. Such a delay can have effect on formation/destruction rate of H2 due to UV background, and on basic properties of host haloes. Finally, isolated non-cosmological models in spinning haloes, with spin parameter λ ∼ 0.01-0.07, show delayed collapse for greater λ, but pace of this increase is faster for AMR. Within our simulation set-up, gadget-3 requires significantly larger computational resources than enzo-2.4 during collapse, and needs similar resources, during the pre-collapse, cosmological structure formation phase. Yet it benefits from substantially higher gravitational force and hydrodynamic resolutions, except at the end of collapse.

  18. Direct collapse to supermassive black hole seeds: comparing the AMR and SPH approaches

    NASA Astrophysics Data System (ADS)

    Luo, Yang; Nagamine, Kentaro; Shlosman, Isaac

    2016-07-01

    We provide detailed comparison between the adaptive mesh refinement (AMR) code ENZO-2.4 and the smoothed particle hydrodynamics (SPH)/N-body code GADGET-3 in the context of isolated or cosmological direct baryonic collapse within dark matter (DM) haloes to form supermassive black holes. Gas flow is examined by following evolution of basic parameters of accretion flows. Both codes show an overall agreement in the general features of the collapse; however, many subtle differences exist. For isolated models, the codes increase their spatial and mass resolutions at different pace, which leads to substantially earlier collapse in SPH than in AMR cases due to higher gravitational resolution in GADGET-3. In cosmological runs, the AMR develops a slightly higher baryonic resolution than SPH during halo growth via cold accretion permeated by mergers. Still, both codes agree in the build-up of DM and baryonic structures. However, with the onset of collapse, this difference in mass and spatial resolution is amplified, so evolution of SPH models begins to lag behind. Such a delay can have effect on formation/destruction rate of H2 due to UV background, and on basic properties of host haloes. Finally, isolated non-cosmological models in spinning haloes, with spin parameter λ ˜ 0.01-0.07, show delayed collapse for greater λ, but pace of this increase is faster for AMR. Within our simulation set-up, GADGET-3 requires significantly larger computational resources than ENZO-2.4 during collapse, and needs similar resources, during the pre-collapse, cosmological structure formation phase. Yet it benefits from substantially higher gravitational force and hydrodynamic resolutions, except at the end of collapse.

  19. Costa Rica's Chain of laterally collapsed volcanoes.

    NASA Astrophysics Data System (ADS)

    Duarte, E.; Fernandez, E.

    2007-05-01

    From the NW extreme to the SW end of Costa Rica's volcanic backbone, a number of laterally collapsed volcanoes can be observed. Due to several factors, attention has been given to active volcanoes disregarding the importance of collapsed features in terms of assessing volcanic hazards for future generations around inhabited volcanoes. In several cases the typical horseshoe shape amphitheater-like depression can be easily observed. In other cases due to erosion, vegetation, topography, seismic activity or drastic weather such characteristics are not easily recognized. In the order mentioned above appear: Orosi-Cacao, Miravalles, Platanar, Congo, Von Frantzius, Cacho Negro and Turrialba volcanoes. Due to limited studies on these structures it is unknown if sector collapse occurred in one or several phases. Furthermore, in the few studied cases no evidence has been found to relate collapses to actual eruptive episodes. Detailed studies on the deposits and materials composing dome-like shapes will shed light on unsolved questions about petrological and chemical composition. Volume, form and distance traveled by deposits are part of the questions surrounding most of these collapsed volcanoes. Although most of these mentioned structures are extinct, at least Irazú volcano (active volcano) has faced partial lateral collapses recently. It did presented strombolian activity in the early 60s. Collapse scars show on the NW flank show important mass removal in historic and prehistoric times. Moreover, in 1994 a minor hydrothermal explosion provoked the weakening of a deeply altered wall that holds a crater lake (150m diameter, 2.6x106 ). A poster will depict images of the collapsed volcanoes named above with mayor descriptive characteristics. It will also focus on the importance of deeper studies to assess the collapse potential of Irazú volcano with related consequences. Finally, this initiative will invite researchers interested in such topic to join future studies in

  20. Simulation of the spherically symmetric stellar core collapse, bounce, and postbounce evolution of a star of 13 solar masses with boltzmann neutrino transport, and its implications for the supernova mechanism.

    PubMed

    Mezzacappa, A; Liebendörfer, M; Messer, O E; Hix, W R; Thielemann, F K; Bruenn, S W

    2001-03-05

    With exact three-flavor Boltzmann neutrino transport, we simulate the stellar core collapse, bounce, and postbounce evolution of a 13M star in spherical symmetry, the Newtonian limit, without invoking convection. In the absence of convection, prior spherically symmetric models, which implemented approximations to Boltzmann transport, failed to produce explosions. We consider exact transport to determine if these failures were due to the transport approximations made and to answer remaining fundamental questions in supernova theory. The model presented here is the first in a sequence of models beginning with different progenitors. In this model, a supernova explosion is not obtained.

  1. Relativistic interpretation of Newtonian simulations for cosmic structure formation

    NASA Astrophysics Data System (ADS)

    Fidler, Christian; Tram, Thomas; Rampf, Cornelius; Crittenden, Robert; Koyama, Kazuya; Wands, David

    2016-09-01

    The standard numerical tools for studying non-linear collapse of matter are Newtonian N-body simulations. Previous work has shown that these simulations are in accordance with General Relativity (GR) up to first order in perturbation theory, provided that the effects from radiation can be neglected. In this paper we show that the present day matter density receives more than 1% corrections from radiation on large scales if Newtonian simulations are initialised before z=50. We provide a relativistic framework in which unmodified Newtonian simulations are compatible with linear GR even in the presence of radiation. Our idea is to use GR perturbation theory to keep track of the evolution of relativistic species and the relativistic space-time consistent with the Newtonian trajectories computed in N-body simulations. If metric potentials are sufficiently small, they can be computed using a first-order Einstein-Boltzmann code such as CLASS. We make this idea rigorous by defining a class of GR gauges, the Newtonian motion gauges, which are defined such that matter particles follow Newtonian trajectories. We construct a simple example of a relativistic space-time within which unmodified Newtonian simulations can be interpreted.

  2. A Structured Debriefing Process for International Business Culture Simulations.

    ERIC Educational Resources Information Center

    McGraw, Peter; Palmer, Ian

    1999-01-01

    Outlines a nine-step structure for debriefing an international business culture simulation. Stresses the need to address three stages in the experiential learning cycle: reflection, processing, and transfer. Appendices include the specific simulation used and a debriefing note. (DB)

  3. GRAVITATIONAL COLLAPSE AND FILAMENT FORMATION: COMPARISON WITH THE PIPE NEBULA

    SciTech Connect

    Heitsch, Fabian; Ballesteros-Paredes, Javier; Hartmann, Lee

    2009-10-20

    Recent models of molecular cloud formation and evolution suggest that such clouds are dynamic and generally exhibit gravitational collapse. We present a simple analytic model of global collapse onto a filament and compare this with our numerical simulations of the flow-driven formation of an isolated molecular cloud to illustrate the supersonic motions and infall ram pressures expected in models of gravity-driven cloud evolution. We compare our results with observations of the Pipe Nebula, an especially suitable object for our purposes as its low star formation activity implies insignificant perturbations from stellar feedback. We show that our collapsing cloud model can explain the magnitude of the velocity dispersions seen in the {sup 13}CO filamentary structure by Onishi et al. and the ram pressures required by Lada et al. to confine the lower-mass cores in the Pipe Nebula. We further conjecture that higher-resolution simulations will show small velocity dispersions in the densest core gas, as observed, but which are infall motions and not supporting turbulence. Our results point out the inevitability of ram pressures as boundary conditions for molecular cloud filaments, and the possibility that especially lower-mass cores still can be accreting mass at significant rates, as suggested by observations.

  4. Simulation analysis of the temperature dependence of lignin structure and dynamics

    SciTech Connect

    Petridis, Loukas; Schulz, Roland; Smith, Jeremy C

    2011-01-01

    Lignins are hydrophobic, branched polymers that regulate water conduction and provide protection against chemical and biological degradation in plant cell walls. Lignins also form a residual barrier to effective hydrolysis of plant biomass pretreated at elevated temperatures in cellulosic ethanol production. Here, the temperature-dependent structure and dynamics of individual softwood lignin polymers in aqueous solution are examined using extensive (17ms) molecular dynamics simulations. With decreasing temperature the lignins are found to transition from mobile, extended to glassy, compact states. The polymers are comprised of blobs, inside which the radius of gyration of a polymer segment is a power-law function of the number of monomers comprising it. In the low temperature states the blobs are inter-permeable, the polymer does not conform to Zimm/Stockmayer theory, and branching does not lead to reduction of the polymer size, the radius of gyration being instead determined by shape anisotropy. At high temperatures the blobs become spatially separated leading to a fractal crumpled globule form. The low-temperature collapse is thermodynamically driven by the increase of the translational entropy and density fluctuations of water molecules removed from the hydration shell , thus distinguishing lignin collapse from enthalpically driven coil-globule polymer transitions and providing a thermodynamic role of hydration water density fluctuations in driving hydrophobic polymer collapse. Although hydrophobic, lignin is wetted, leading to locallyenhanced chain dynamics of solvent-exposed monomers. The detailed characterization obtained here provides insight at atomic detail into processes relevant to biomass pretreatment for cellulosic ethanol production and general polymer coil-globule transition phenomena.

  5. Simulation Analysis of the Temperature Dependence of Lignin Structure and Dynamics

    SciTech Connect

    Petridis, Loukas; Schulz, Roland; Smith, Jeremy C

    2011-01-01

    Lignins are hydrophobic, branched polymers that regulate water conduction and provide protection against chemical and biological degradation in plant cell walls. Lignins also form a residual barrier to effective hydrolysis of plant biomass pretreated at elevated temperatures in cellulosic ethanol production. Here, the temperature-dependent structure and dynamics of individual softwood lignin polymers in aqueous solution are examined using extensive (17 s) molecular dynamics simulations. With decreasing temperature the lignins are found to transition from mobile, extended to glassy, compact states. The polymers are composed of blobs, inside which the radius of gyration of a polymer segment is a power-law function of the number of monomers comprising it. In the low temperature states the blobs are interpermeable, the polymer does not conform to Zimm/Stockmayer theory, and branching does not lead to reduction of the polymer size, the radius of gyration being instead determined by shape anisotropy. At high temperatures the blobs become spatially separated leading to a fractal crumpled globule form. The low-temperature collapse is thermodynamically driven by the increase of the translational entropy and density fluctuations of water molecules removed from the hydration shell, thus distinguishing lignin collapse from enthalpically driven coil globule polymer transitions and providing a thermodynamic role of hydration water density fluctuations in driving hydrophobic polymer collapse. Although hydrophobic, lignin is wetted, leading to locally enhanced chain dynamics of solvent-exposed monomers. The detailed characterization obtained here provides insight at atomic detail into processes relevant to biomass pretreatment for cellulosic ethanol production and general polymer coil globule transition phenomena.

  6. Toward numerical simulations of fluid-structure interactions for investigation of obstructive sleep apnea

    NASA Astrophysics Data System (ADS)

    Huang, Chien-Jung; Huang, Shao-Ching; White, Susan M.; Mallya, Sanjay M.; Eldredge, Jeff D.

    2016-04-01

    Obstructive sleep apnea (OSA) is a medical condition characterized by repetitive partial or complete occlusion of the airway during sleep. The soft tissues in the airway of OSA patients are prone to collapse under the low-pressure loads incurred during breathing. This paper describes efforts toward the development of a numerical tool for simulation of air-tissue interactions in the upper airway of patients with sleep apnea. A procedure by which patient-specific airway geometries are segmented and processed from dental cone-beam CT scans into signed distance fields is presented. A sharp-interface embedded boundary method based on the signed distance field is used on Cartesian grids for resolving the airflow in the airway geometries. For simulation of structure mechanics with large expected displacements, a cut-cell finite element method with nonlinear Green strains is used. The fluid and structure solvers are strongly coupled with a partitioned iterative algorithm. Preliminary results are shown for flow simulation inside the three-dimensional rigid upper airway of patients with obstructive sleep apnea. Two validation cases for the fluid-structure coupling problem are also presented.

  7. Geometric simulation of structures containing rigid units

    NASA Astrophysics Data System (ADS)

    Wells, Stephen

    2005-03-01

    Much insight into the behaviour of the framework silicates can be obtained from the Rigid Unit model. I review results from geometric analyses [1] of framework structures, quantifying the significance of rigid unit motion in thermal disorder and in defect accomodation, and from a method of simulation [2,3] based on a whole-body `geometric potential' rather than on interatomic potentials. I show the application of the geometric potential to the symmetry-constrained generation of hypothetical zeolite frameworks [4], and to the rapid generation of protein conformations using insights from rigid cluster decomposition [5]. 1. Wells, Dove and Tucker, Journal of Applied Crystallography, 37:536--544 (2004). 2. G.D. Gatta and S.A. Wells, Phys. Chem. Min. 31:1--10 (2004). 3. A. Sartbaeva, S. A. Wells, S. A. T. Redfern, J. Phys.: Condens. Matter 16, 8173 (2004) 4. M. M. J. Treacy, I. Rivin, E. Balkovsky, K. H. Randall and M. D. Foster, Micropor. Mesopor. Mater. 74, 121-132 (2004). 5. M.F. Thorpe, Ming Lei, A.J. Rader, Donald J. Jacobs, and Leslie A. Kuhn, Journal of Molecular Graphics and Modelling 19, 1:60 - 69, (2001).

  8. Nanomaterials under extreme environments: A study of structural and dynamic properties using reactive molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Shekhar, Adarsh

    Nanotechnology is becoming increasingly important with the continuing advances in experimental techniques. As researchers around the world are trying to expand the current understanding of the behavior of materials at the atomistic scale, the limited resolution of equipment, both in terms of time and space, act as roadblocks to a comprehensive study. Numerical methods, in general and molecular dynamics, in particular act as able compliment to the experiments in our quest for understanding material behavior. In this research work, large scale molecular dynamics simulations to gain insight into the mechano-chemical behavior under extreme conditions of a variety of systems with many real world applications. The body of this work is divided into three parts, each covering a particular system: 1) Aggregates of aluminum nanoparticles are good solid fuel due to high flame propagation rates. Multi-million atom molecular dynamics simulations reveal the mechanism underlying higher reaction rate in a chain of aluminum nanoparticles as compared to an isolated nanoparticle. This is due to the penetration of hot atoms from reacting nanoparticles to an adjacent, unreacted nanoparticle, which brings in external heat and initiates exothermic oxidation reactions. 2) Cavitation bubbles readily occur in fluids subjected to rapid changes in pressure. We use billion-atom reactive molecular dynamics simulations on a 163,840-processor BlueGene/P supercomputer to investigate chemical and mechanical damages caused by shock-induced collapse of nanobubbles in water near amorphous silica. Collapse of an empty nanobubble generates high-speed nanojet, resulting in the formation of a pit on the surface. The pit contains a large number of silanol groups and its volume is found to be directly proportional to the volume of the nanobubble. The gas-filled bubbles undergo partial collapse and consequently the damage on the silica surface is mitigated. 3) The structure and dynamics of water confined in

  9. Fundamental emission via wave advection from a collapsing wave packet in electromagnetic strong plasma turbulence

    SciTech Connect

    Jenet, F. A.; Melatos, A.; Robinson, P. A.

    2007-10-15

    Zakharov simulations of nonlinear wave collapse in continuously driven two-dimensional, electromagnetic strong plasma turbulence with electron thermal speeds v{>=}0.01c show that for v < or approx. 0.1c, dipole radiation occurs near the plasma frequency, mainly near arrest, but for v > or approx. 0.1c, a new mechanism applies in which energy oscillates between trapped Langmuir and transverse modes until collapse is arrested, after which trapped transverse waves are advected into incoherent interpacket turbulence by an expanding annular density well, where they detrap. The multipole structure, Poynting flux, source current, and radiation angular momentum are computed.

  10. MAGNETOROTATIONAL CORE-COLLAPSE SUPERNOVAE IN THREE DIMENSIONS

    SciTech Connect

    Mösta, Philipp; Richers, Sherwood; Ott, Christian D.; Haas, Roland; Piro, Anthony L.; Boydstun, Kristen; Abdikamalov, Ernazar; Reisswig, Christian; Schnetter, Erik

    2014-04-20

    We present results of new three-dimensional (3D) general-relativistic magnetohydrodynamic simulations of rapidly rotating strongly magnetized core collapse. These simulations are the first of their kind and include a microphysical finite-temperature equation of state and a leakage scheme that captures the overall energetics and lepton number exchange due to postbounce neutrino emission. Our results show that the 3D dynamics of magnetorotational core-collapse supernovae are fundamentally different from what was anticipated on the basis of previous simulations in axisymmetry (2D). A strong bipolar jet that develops in a simulation constrained to 2D is crippled by a spiral instability and fizzles in full 3D. While multiple (magneto-)hydrodynamic instabilities may be present, our analysis suggests that the jet is disrupted by an m = 1 kink instability of the ultra-strong toroidal field near the rotation axis. Instead of an axially symmetric jet, a completely new, previously unreported flow structure develops. Highly magnetized spiral plasma funnels expelled from the core push out the shock in polar regions, creating wide secularly expanding lobes. We observe no runaway explosion by the end of the full 3D simulation 185 ms after bounce. At this time, the lobes have reached maximum radii of ∼900 km.

  11. Bubble-induced cave collapse.

    PubMed

    Girihagama, Lakshika; Nof, Doron; Hancock, Cathrine

    2015-01-01

    Conventional wisdom among cave divers is that submerged caves in aquifers, such as in Florida or the Yucatan, are unstable due to their ever-growing size from limestone dissolution in water. Cave divers occasionally noted partial cave collapses occurring while they were in the cave, attributing this to their unintentional (and frowned upon) physical contact with the cave walls or the aforementioned "natural" instability of the cave. Here, we suggest that these cave collapses do not necessarily result from cave instability or contacts with walls, but rather from divers bubbles rising to the ceiling and reducing the buoyancy acting on isolated ceiling rocks. Using familiar theories for the strength of flat and arched (un-cracked) beams, we first show that the flat ceiling of a submerged limestone cave can have a horizontal expanse of 63 meters. This is much broader than that of most submerged Florida caves (~ 10 m). Similarly, we show that an arched cave roof can have a still larger expanse of 240 meters, again implying that Florida caves are structurally stable. Using familiar bubble dynamics, fluid dynamics of bubble-induced flows, and accustomed diving practices, we show that a group of 1-3 divers submerged below a loosely connected ceiling rock will quickly trigger it to fall causing a "collapse". We then present a set of qualitative laboratory experiments illustrating such a collapse in a circular laboratory cave (i.e., a cave with a circular cross section), with concave and convex ceilings. In these experiments, a metal ball represented the rock (attached to the cave ceiling with a magnet), and the bubbles were produced using a syringe located at the cave floor.

  12. BLACK HOLE FORMATION IN FAILING CORE-COLLAPSE SUPERNOVAE

    SciTech Connect

    O'Connor, Evan; Ott, Christian D. E-mail: cott@tapir.caltech.edu

    2011-04-01

    We present results of a systematic study of failing core-collapse supernovae and the formation of stellar-mass black holes (BHs). Using our open-source general-relativistic 1.5D code GR1D equipped with a three-species neutrino leakage/heating scheme and over 100 presupernova models, we study the effects of the choice of nuclear equation of state (EOS), zero-age main sequence (ZAMS) mass and metallicity, rotation, and mass-loss prescription on BH formation. We find that the outcome, for a given EOS, can be estimated, to first order, by a single parameter, the compactness of the stellar core at bounce. By comparing protoneutron star (PNS) structure at the onset of gravitational instability with solutions of the Tolman-Oppenheimer-Volkof equations, we find that thermal pressure support in the outer PNS core is responsible for raising the maximum PNS mass by up to 25% above the cold NS value. By artificially increasing neutrino heating, we find the critical neutrino heating efficiency required for exploding a given progenitor structure and connect these findings with ZAMS conditions, establishing, albeit approximately, for the first time based on actual collapse simulations, the mapping between ZAMS parameters and the outcome of core collapse. We also study the effect of progenitor rotation and find that the dimensionless spin of nascent BHs may be robustly limited below a* = Jc/GM{sup 2} = 1 by the appearance of nonaxisymmetric rotational instabilities.

  13. Collapse Mechanism Analysis in the Design of Superstructure Vehicle

    NASA Astrophysics Data System (ADS)

    Mohd Nor, M. K.

    2016-11-01

    The EU directive 2001/85/EC is an official European text which describes the specifications for “single deck class II and III vehicles” required to be approved by the regulation UN/ECE no.66 (R66). To prevent the catastrophic consequences by occupant during an accident, the Malaysian government has reinforced the same regulation upon superstructure construction. This paper discusses collapse mechanism analysis of a superstructure vehicle using a Crash D nonlinear analysis computer program based on this regulation. The analysis starts by hand calculation to define the required energy absorption by the chosen structure. Simple calculations were then performed to define the weakest collapse mechanism after undesirable collapse modes are eliminated. There are few factors highlighted in this work to pass the regulation. Using the selected cross section, Crash D simulation showed a good result. Generally, the deformation is linearly correlates to the energy absorption for the structure with low stiffness. Failure of critical members such as vertical lower side wall must be avoided to sustain safety of the passenger compartment and prevent from severe and fatal injuries to the trapped occupant.

  14. Collapse in self-gravitating turbulent fluids

    NASA Astrophysics Data System (ADS)

    Murray, Daniel W.; Chang, Philip; Murray, Norman W.; Pittman, John

    2017-02-01

    Motivated by the non-linear star formation efficiency found in recent numerical simulations by a number of workers, we perform high-resolution adaptive mesh refinement simulations of star formation in self-gravitating turbulently driven gas. As we follow the collapse of this gas, we find that the character of the flow changes at two radii, the disc radius rd and the radius r*, where the enclosed gas mass exceeds the stellar mass. Accretion starts at large scales and works inwards. In line with recent analytical work, we find that the density evolves to a fixed attractor, ρ(r, t) → ρ(r), for rd < r < r*; mass flows through this structure on to a sporadically gravitationally unstable disc and from thence on to the star. In the bulk of the simulation box, we find that the random motions vT ∼ rp with p ∼ 0.5 are in agreement with Larson's size-linewidth relation. In the vicinity of massive star-forming regions, we find p ∼ 0.2-0.3, as seen in observations. For r < r*, vT increases inwards, with p = -1/2. Finally, we find that the total stellar mass M*(t) ∼ t2 is in line with previous numerical and analytic work that suggests a non-linear rate of star formation.

  15. The Explosion Mechanism of Core-Collapse Supernovae: Progress in Supernova Theory and Experiments

    DOE PAGES

    Foglizzo, Thierry; Kazeroni, Rémi; Guilet, Jérôme; ...

    2015-01-01

    The explosion of core-collapse supernova depends on a sequence of events taking place in less than a second in a region of a few hundred kilometers at the center of a supergiant star, after the stellar core approaches the Chandrasekhar mass and collapses into a proto-neutron star, and before a shock wave is launched across the stellar envelope. Theoretical efforts to understand stellar death focus on the mechanism which transforms the collapse into an explosion. Progress in understanding this mechanism is reviewed with particular attention to its asymmetric character. We highlight a series of successful studies connecting observations of supernovamore » remnants and pulsars properties to the theory of core-collapse using numerical simulations. The encouraging results from first principles models in axisymmetric simulations is tempered by new puzzles in 3D. The diversity of explosion paths and the dependence on the pre-collapse stellar structure is stressed, as well as the need to gain a better understanding of hydrodynamical and MHD instabilities such as SASI and neutrino-driven convection. The shallow water analogy of shock dynamics is presented as a comparative system where buoyancy effects are absent. This dynamical system can be studied numerically and also experimentally with a water fountain. Lastly, we analyse the potential of this complementary research tool for supernova theory. We also review its potential for public outreach in science museums.« less

  16. The Explosion Mechanism of Core-Collapse Supernovae: Progress in Supernova Theory and Experiments

    SciTech Connect

    Foglizzo, Thierry; Kazeroni, Rémi; Guilet, Jérôme; Masset, Frédéric; González, Matthias; Krueger, Brendan K.; Novak, Jérôme; Faure, Julien; Martin, Noël; Blottiau, Patrick; Peres, Bruno; Durand, Gilles

    2015-01-01

    The explosion of core-collapse supernova depends on a sequence of events taking place in less than a second in a region of a few hundred kilometers at the center of a supergiant star, after the stellar core approaches the Chandrasekhar mass and collapses into a proto-neutron star, and before a shock wave is launched across the stellar envelope. Theoretical efforts to understand stellar death focus on the mechanism which transforms the collapse into an explosion. Progress in understanding this mechanism is reviewed with particular attention to its asymmetric character. We highlight a series of successful studies connecting observations of supernova remnants and pulsars properties to the theory of core-collapse using numerical simulations. The encouraging results from first principles models in axisymmetric simulations is tempered by new puzzles in 3D. The diversity of explosion paths and the dependence on the pre-collapse stellar structure is stressed, as well as the need to gain a better understanding of hydrodynamical and MHD instabilities such as SASI and neutrino-driven convection. The shallow water analogy of shock dynamics is presented as a comparative system where buoyancy effects are absent. This dynamical system can be studied numerically and also experimentally with a water fountain. Lastly, we analyse the potential of this complementary research tool for supernova theory. We also review its potential for public outreach in science museums.

  17. Growth cone collapse assay.

    PubMed

    Cook, Geoffrey M W; Jareonsettasin, Prem; Keynes, Roger J

    2014-01-01

    The growth cone collapse assay has proved invaluable in detecting and purifying axonal repellents. Glycoproteins/proteins present in detergent extracts of biological tissues are incorporated into liposomes, added to growth cones in culture and changes in morphology are then assessed. Alternatively purified or recombinant molecules in aqueous solution may be added directly to the cultures. In both cases after a defined period of time (up to 1 h), the cultures are fixed and then assessed by inverted phase contrast microscopy for the percentage of growth cones showing a collapsed profile with loss of flattened morphology, filopodia, and lamellipodia.

  18. Systematic and simulation-free coarse graining of homopolymer melts: A structure-based study

    SciTech Connect

    Yang, Delian; Wang, Qiang

    2015-02-07

    We propose a systematic and simulation-free strategy for coarse graining of homopolymer melts, where each chain of N{sub m} monomers is uniformly divided into N segments, with the spatial position of each segment corresponding to the center-of-mass of its monomers. We use integral-equation theories suitable for the study of equilibrium properties of polymers, instead of many-chain molecular simulations, to obtain the structural and thermodynamic properties of both original and coarse-grained (CG) systems, and quantitatively examine how the effective pair potentials between CG segments and the thermodynamic properties of CG systems vary with N. Our systematic and simulation-free strategy is much faster than those using many-chain simulations, thus effectively solving the transferability problem in coarse graining, and provides the quantitative basis for choosing the appropriate N-values. It also avoids the problems caused by finite-size effects and statistical uncertainties in many-chain simulations. Taking the simple hard-core Gaussian thread model [K. S. Schweizer and J. G. Curro, Chem. Phys. 149, 105 (1990)] as the original system, we demonstrate our strategy applied to structure-based coarse graining, which is quite general and versatile, and compare in detail the various integral-equation theories and closures for coarse graining. Our numerical results show that the effective CG potentials for various N and closures can be collapsed approximately onto the same curve, and that structure-based coarse graining cannot give thermodynamic consistency between original and CG systems at any N < N{sub m}.

  19. Collapse of the EPR fine structure of a one-dimensional array of weakly interacting binuclear units: A dimensional quantum phase transition

    NASA Astrophysics Data System (ADS)

    Calvo, Rafael; Abud, Julián E.; Sartoris, Rosana P.; Santana, Ricardo C.

    2011-09-01

    coupling between units, we observe in single-crystal samples sudden merges of the fine structure peaks, accompanied by a large narrowing, when the inter-binuclear coupling becomes larger than the splitting of the triplet state. In addition, and because of this collapse of the fine structure peaks, the spectra of powder samples display a strong and unexpected central peak that decreases in intensity with decreasing temperature, as it occurs with the binuclear signals. We first discuss the dimensional quantum phase transition indicated by the spectral changes using Anderson-Kubo's theory of exchange narrowing. The data allow evaluation of the binuclear exchange coupling J0 = (-74 ± 3) cm-1, and the interactions between neighbor binuclear units |J'| = (0.04 ± 0.01) cm-1. We also consider the magnetic excitations (triplet excitons or triplons) arising from the inter-binuclear couplings, and introduce a model explaining qualitatively the observed collapse and narrowing of the EPR spectra in terms of these excitons. We analyze the role of temperature in the inter-binuclear interactions and the exchange correlation times of the binuclear systems and compare our results with those in binuclear compounds in which Bose-Einstein condensation occurs.

  20. Impact Crater Collapse

    NASA Astrophysics Data System (ADS)

    Melosh, H. J.; Ivanov, B. A.

    The detailed morphology of impact craters is now believed to be mainly caused by the collapse of a geometrically simple, bowl-shaped "transient crater." The transient crater forms immediately after the impact. In small craters, those less than approximately 15 km diameter on the Moon, the steepest part of the rim collapses into the crater bowl to produce a lens of broken rock in an otherwise unmodified transient crater. Such craters are called "simple" and have a depth-to-diameter ratio near 1:5. Large craters collapse more spectacularly, giving rise to central peaks, wall terraces, and internal rings in still larger craters. These are called "complex" craters. The transition between simple and complex craters depends on 1/g, suggesting that the collapse occurs when a strength threshold is exceeded. The apparent strength, however, is very low: only a few bars, and with little or no internal friction. This behavior requires a mechanism for temporary strength degradation in the rocks surrounding the impact site. Several models for this process, including acoustic fluidization and shock weakening, have been considered by recent investigations. Acoustic fluidization, in particular, appears to produce results in good agreement with observations, although better understanding is still needed.

  1. Structural Composites Corrosive Management by Computational Simulation

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Minnetyan, Levon

    2006-01-01

    A simulation of corrosive management on polymer composites durability is presented. The corrosive environment is assumed to manage the polymer composite degradation on a ply-by-ply basis. The degradation is correlated with a measured Ph factor and is represented by voids, temperature, and moisture which vary parabolically for voids and linearly for temperature and moisture through the laminate thickness. The simulation is performed by a computational composite mechanics computer code which includes micro, macro, combined stress failure, and laminate theories. This accounts for starting the simulation from constitutive material properties and up to the laminate scale which exposes the laminate to the corrosive environment. Results obtained for one laminate indicate that the ply-by-ply managed degradation degrades the laminate to the last one or the last several plies. Results also demonstrate that the simulation is applicable to other polymer composite systems as well.

  2. Four tails problems for dynamical collapse theories

    NASA Astrophysics Data System (ADS)

    McQueen, Kelvin J.

    2015-02-01

    The primary quantum mechanical equation of motion entails that measurements typically do not have determinate outcomes, but result in superpositions of all possible outcomes. Dynamical collapse theories (e.g. GRW) supplement this equation with a stochastic Gaussian collapse function, intended to collapse the superposition of outcomes into one outcome. But the Gaussian collapses are imperfect in a way that leaves the superpositions intact. This is the tails problem. There are several ways of making this problem more precise. But many authors dismiss the problem without considering the more severe formulations. Here I distinguish four distinct tails problems. The first (bare tails problem) and second (structured tails problem) exist in the literature. I argue that while the first is a pseudo-problem, the second has not been adequately addressed. The third (multiverse tails problem) reformulates the second to account for recently discovered dynamical consequences of collapse. Finally the fourth (tails problem dilemma) shows that solving the third by replacing the Gaussian with a non-Gaussian collapse function introduces new conflict with relativity theory.

  3. Computer Simulation Methods for Defect Configurations and Nanoscale Structures

    SciTech Connect

    Gao, Fei

    2010-01-01

    This chapter will describe general computer simulation methods, including ab initio calculations, molecular dynamics and kinetic Monte-Carlo method, and their applications to the calculations of defect configurations in various materials (metals, ceramics and oxides) and the simulations of nanoscale structures due to ion-solid interactions. The multiscale theory, modeling, and simulation techniques (both time scale and space scale) will be emphasized, and the comparisons between computer simulation results and exprimental observations will be made.

  4. Collapsing Enormous Stars

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-09-01

    One of the big puzzles in astrophysics is how supermassive black holes (SMBHs) managed to grow to the large sizes weve observed in the very early universe. In a recent study, a team of researchers examines the possibility that they were formed by the direct collapse of supermassive stars.Formation MysterySMBHs billions of times as massive as the Sun have been observed at a time when the universe was less than a billion years old. But thats not enough time for a stellar-mass black hole to grow to SMBH-size by accreting material so another theory is needed to explain the presence of these monsters so early in the universes history. A new study, led by Tatsuya Matsumoto (Kyoto University, Japan), poses the following question: what if supermassive stars in the early universe collapsed directly into black holes?Previous studies of star formation in the early universe have suggested that, in the hot environment of these primordial times, stars might have been able to build up mass much faster than they can today. This could result in early supermassive stars roughly 100,000 times more massive than the Sun. But if these early stars end their lives by collapsing to become massive black holes in the same way that we believe massive stars can collapse to form stellar-mass black holes today this should result in enormously violent explosions. Matusmoto and collaborators set out to model this process, to determine what we would expect to see when it happens!Energetic BurstsThe authors modeled the supermassive stars prior to collapse and then calculated whether a jet, created as the black hole grows at the center of the collapsing star, would be able to punch out of the stellar envelope. They demonstrated that the process would work much like the widely-accepted collapsar model of massive-star death, in which a jet successfully punches out of a collapsing star, violently releasing energy in the form of a long gamma-ray burst (GRB).Because the length of a long GRB is thought to

  5. Silo Collapse under Granular Discharge

    NASA Astrophysics Data System (ADS)

    Gutiérrez, G.; Colonnello, C.; Boltenhagen, P.; Darias, J. R.; Peralta-Fabi, R.; Brau, F.; Clément, E.

    2015-01-01

    We investigate, at a laboratory scale, the collapse of cylindrical shells of radius R and thickness t induced by a granular discharge. We measure the critical filling height for which the structure fails upon discharge. We observe that the silos sustain filling heights significantly above an estimation obtained by coupling standard shell-buckling and granular stress distribution theories. Two effects contribute to stabilize the structure: (i) below the critical filling height, a dynamical stabilization due to granular wall friction prevents the localized shell-buckling modes to grow irreversibly; (ii) above the critical filling height, collapse occurs before the downward sliding motion of the whole granular column sets in, such that only a partial friction mobilization is at play. However, we notice also that the critical filling height is reduced as the grain size d increases. The importance of grain size contribution is controlled by the ratio d /√{R t }. We rationalize these antagonist effects with a novel fluid-structure theory both accounting for the actual status of granular friction at the wall and the inherent shell imperfections mediated by the grains. This theory yields new scaling predictions which are compared with the experimental results.

  6. Extensional orogenic collapse captured by strike-slip tectonics: Constraints from structural geology and Usbnd Pb geochronology of the Pinhel shear zone (Variscan orogen, Iberian Massif)

    NASA Astrophysics Data System (ADS)

    Fernández, Rubén Díez; Pereira, Manuel Francisco

    2016-11-01

    The late Paleozoic collision between Gondwana and Laurussia resulted in the polyphase deformation and magmatism that characterizes the Iberian Massif of the Variscan orogen. In the Central Iberian Zone, initial continental thickening (D1; folding and thrusting) was followed by extensional orogenic collapse (D2) responsible for the exhumation of high-grade rocks coeval to the emplacement of granitoids. This study presents a tectonometamorphic analysis of the Trancoso-Pinhel region (Central Iberian Zone) to explain the processes in place during the transition from an extension-dominated state (D2) to a compression-dominated one (D3). We reveal the existence of low-dipping D2 extensional structures later affected by several pulses of subhorizontal shortening, each of them typified by upright folds and strike-slip shearing (D3, D4 and D5, as identified by superimposition of structures). The D2 Pinhel extensional shear zone separates a low-grade domain from an underlying high-grade domain, and it contributed to the thermal reequilibration of the orogen by facilitating heat advection from lower parts of the crust, crustal thinning, decompression melting, and magma intrusion. Progressive lessening of the gravitational disequilibrium carried out by this D2 shear zone led to a switch from subhorizontal extension to compression and the eventual cessation and capture of the Pinhel shear zone by strike-slip tectonics during renewed crustal shortening. High-grade domains of the Pinhel shear zone were folded together with low-grade domains to define the current upright folded structure of the Trancoso-Pinhel region, the D3 Tamames-Marofa-Sátão synform. New dating of syn-orogenic granitoids (SHRIMP Usbnd Pb zircon dating) intruding the Pinhel shear zone, together with the already published ages of early extensional fabrics constrain the functioning of this shear zone to ca. 331-311 Ma, with maximum tectonomagmatic activity at ca. 321-317 Ma. The capture and apparent cessation

  7. Arsia Mons Collapse Pits in IR

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    We will be looking at collapse pits for the next two weeks. Collapse pits on Mars are formed in several ways. In volcanic areas, channelized lava flows can form roofs which insulate the flowing lava. These features are termed lava tubes on Earth and are common features in basaltic flows. After the lava has drained, parts of the roof of the tube will collapse under its own weight. These collapse pits will only be as deep as the bottom of the original lava tube. Another type of collapse feature associated with volcanic areas arises when very large eruptions completely evacuate the magma chamber beneath the volcano. The weight of the volcano will cause the entire edifice to subside into the void space below it. Structural features including fractures and graben will form during the subsidence. Many times collapse pits will form within the graben. In addition to volcanic collapse pits, Mars has many collapse pits formed when volatiles (such as subsurface ice) are released from the surface layers. As the volatiles leave, the weight of the surrounding rock causes collapse pits to form.

    These collapse pits are found on the flank of Arsia Mons and are related to lava tube collapse.

    Image information: IR instrument. Latitude -8.8, Longitude 240.4 East (119.6 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal

  8. Caldera collapse at near-ridge seamounts: an experimental investigation

    NASA Astrophysics Data System (ADS)

    Coumans, Jason P.; Stix, John

    2016-10-01

    Collapse calderas are sub-circular volcanic depressions caused by subsidence of the magma reservoir roof during an eruption. Scaled physical models of caldera collapse using flat topography have been instrumental in investigating the spatial and temporal development of calderas, in particular, two distinctive sets of concentric ring faults, one reverse and one normal. More recent analog studies have investigated the effect of non-flat topography which alters the principle stress trajectories and resulting collapse structure. This work provides the basis for investigating how naturally scaled topographic loads may affect caldera collapse in relation to shallow magma reservoirs. The objective of this study is to understand how a near-ridge seamount affects caldera collapse from both a central and offset position as the seamount migrates above the magma reservoir as a result of plate motion. We utilize scaled analog models of caldera collapse in conjunction with three-dimensional (3D) laser scanning and digital particle image velocimetry (DPIV) to investigate caldera collapse dynamics at near-ridge seamounts. Experiments using a seamount cone positioned centrally above the magma reservoir result in (1) increased subsidence along the interior outward-dipping faults and (2) a preference to more symmetric collapse patterns as indicated by the subsidence profile and structure of the caldera relative to experiments with an offset cone. When the cone is offset, the collapse is asymmetric and trapdoor in nature, with the center of greatest subsidence displaced away from the region of largest topographic load. For these latter experiments, subsidence is focused where the roof is thinnest along an initial reverse fault, followed by a transition to an antithetic graben structure. The asymmetric collapse in the experiments results in a caldera with a tilted profile. Offset calderas at near-ridge seamounts are tilted towards the ridge axis, suggesting that they may have collapsed

  9. Analysis of volatile organic compounds released from the decay of surrogate human models simulating victims of collapsed buildings by thermal desorption-comprehensive two-dimensional gas chromatography-time of flight mass spectrometry.

    PubMed

    Agapiou, A; Zorba, E; Mikedi, K; McGregor, L; Spiliopoulou, C; Statheropoulos, M

    2015-07-09

    Field experiments were devised to mimic the entrapment conditions under the rubble of collapsed buildings aiming to investigate the evolution of volatile organic compounds (VOCs) during the early dead body decomposition stage. Three pig carcasses were placed inside concrete tunnels of a search and rescue (SAR) operational field terrain for simulating the entrapment environment after a building collapse. The experimental campaign employed both laboratory and on-site analytical methods running in parallel. The current work focuses only on the results of the laboratory method using thermal desorption coupled to comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (TD-GC×GC-TOF MS). The flow-modulated TD-GC×GC-TOF MS provided enhanced separation of the VOC profile and served as a reference method for the evaluation of the on-site analytical methods in the current experimental campaign. Bespoke software was used to deconvolve the VOC profile to extract as much information as possible into peak lists. In total, 288 unique VOCs were identified (i.e., not found in blank samples). The majority were aliphatics (172), aromatics (25) and nitrogen compounds (19), followed by ketones (17), esters (13), alcohols (12), aldehydes (11), sulfur (9), miscellaneous (8) and acid compounds (2). The TD-GC×GC-TOF MS proved to be a sensitive and powerful system for resolving the chemical puzzle of above-ground "scent of death".

  10. Collapse analysis of a waffle plate strongback for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Monasa, Frank F.; Roche, Joseph M.

    1992-01-01

    The structural integrity was studied of the Integrated Equipment Assembly (IEA) Strongback of the SSF for the launch environment. The strongback structure supports the electrical power system for SSF. To achieve minimum launch mass, it is essential that flight structures are designed as light as possible. A nonlinear structural analysis was conducted to determine the collapse load of the structure and the associated factor of safety against the service loads. A modeling technique is provided for simulating the load conditions and the buckling and post buckling (collapse) load is evaluated of the IEA Strongback structure, using the finite element computer code MARC. Two of four strongback panels were modeled and analyzed. The effects were examined of the following factors on the global behavior of the strongback panels: (1) load simplification and simulation; (2) type of support boundary conditions; and (3) the possibility of weight reduction of the original structure. For this purpose, several models of the two panels of the strongback were considered. The stress level and distribution in the panels for launch condition, the Eigenvalue critical buckling load and/or the collapse load were determined.

  11. Visualizing Structure and Dynamics of Disaccharide Simulations

    SciTech Connect

    Matthews, J. F.; Beckham, G. T.; Himmel, M. E.; Crowley, M. F.

    2012-01-01

    We examine the effect of several solvent models on the conformational properties and dynamics of disaccharides such as cellobiose and lactose. Significant variation in timescale for large scale conformational transformations are observed. Molecular dynamics simulation provides enough detail to enable insight through visualization of multidimensional data sets. We present a new way to visualize conformational space for disaccharides with Ramachandran plots.

  12. Air flow in a collapsing cavity

    NASA Astrophysics Data System (ADS)

    Peters, Ivo R.; Gekle, Stephan; Lohse, Detlef; van der Meer, Devaraj

    2013-03-01

    We experimentally study the airflow in a collapsing cavity created by the impact of a circular disc on a water surface. We measure the air velocity in the collapsing neck in two ways: Directly, by means of employing particle image velocimetry of smoke injected into the cavity and indirectly, by determining the time rate of change of the volume of the cavity at pinch-off and deducing the air flow in the neck under the assumption that the air is incompressible. We compare our experiments to boundary integral simulations and show that close to the moment of pinch-off, compressibility of the air starts to play a crucial role in the behavior of the cavity. Finally, we measure how the air flow rate at pinch-off depends on the Froude number and explain the observed dependence using a theoretical model of the cavity collapse.

  13. The Theory of Dense Core Collapse

    NASA Astrophysics Data System (ADS)

    Li, Zhi-Yun

    2014-07-01

    I will review the theory of dense core collapse, with an emphasis on disk formation. Disk formation, once thought to be a simple consequence of the conservation of angular momentum during hydrodynamic core collapse, is far more subtle in magnetized gas. In this case, rotation can be strongly magnetically braked. Indeed, both analytic arguments and numerical simulations have shown that disk formation is suppressed in ideal MHD at the observed level of core magnetization. I will discuss the physical reason for this so-called “magnetic braking catastrophe,” and review possible resolutions to the problem that have been proposed so far, including non-ideal MHD effects, misalignment between the magnetic field and rotation axis, and turbulence. Other aspects of core collapse, such as fragmentation and outflow generation, will also be discussed.

  14. A New Ground Motion Intensity Measure, Peak Filtered Acceleration (PFA), to Estimate Collapse Vulnerability of Buildings in Earthquakes

    NASA Astrophysics Data System (ADS)

    Song, Shiyan

    In this thesis, we develop an efficient collapse prediction model, the PFA (Peak Filtered Acceleration) model, for buildings subjected to different types of ground motions. For the structural system, the PFA model covers modern steel and reinforced concrete moment-resisting frame buildings (potentially reinforced concrete shear wall buildings). For ground motions, the PFA model covers ramp-pulse-like ground motions, long-period ground motions, and short-period ground motions. To predict whether a building will collapse in response to a given ground motion, we first extract long-period components from the ground motion using a Butterworth low-pass filter with suggested order and cutoff frequency. The order depends on the type of ground motion, and the cutoff frequency depends on the building's natural frequency and ductility. We then compare the filtered acceleration time history with the capacity of the building. The capacity of the building is a constant for 2-dimentional buildings and a limit domain for 3-dimentional buildings. If the filtered acceleration exceeds the building's capacity, the building is predicted to collapse. Otherwise, it is expected to survive the ground motion. The parameters used in PFA model, which include fundamental period, global ductility and lateral capacity, can be obtained either from numerical analysis or interpolation based on the reference building system proposed in this thesis. The PFA collapse prediction model greatly reduces computational complexity while archiving good accuracy. It is verified by FEM simulations of 13 frame building models and 150 ground motion records. Based on the developed collapse prediction model, we propose to use PFA (Peak Filtered Acceleration) as a new ground motion intensity measure for collapse prediction. We compare PFA with traditional intensity measures PGA, PGV, PGD, and Sa in collapse prediction and find that PFA has the best performance among all the intensity measures. We also provide a

  15. Stellar core collapse. I - Infall epoch

    NASA Astrophysics Data System (ADS)

    van Riper, K. A.; Lattimer, J. M.

    1981-10-01

    Simulations of the collapse of the central iron core of a 15-solar-mass spherically symmetric star are reported. In this paper the infall epoch, between the onset of collapse and core bounce, is considered. The models use the recent equation of state of Lamb, Lattimer, Pethick, and Ravenhall and general-relativistic hydrodynamics. The electron capture rates on nuclei proceed rapidly for densities less than 10 to the 11th g/cu cm, but are suppressed at higher densities where the neutron number of the nucleus, N, exceeds 40 (Fuller, Fowler, and Newman). Neutrino transport is treated by a leakage scheme. The effects of changes in the neutrino trapping density and of qualitative changes in the electron capture reactions on the evolution are explored. Greater lepton loss during collapse leads to larger pressure deficits, more rapid collapse, and smaller inner homologous cores. The entropy change during the infall is small, the absolute value of delta s being less than 0.8. The mass of inner core is given, to about 20%, by the formula of Goldreich and Weber. Because the collapsing core is far from equilibrium, the effects of general relativity are small.

  16. Unfolding Dynamics of Single Collapsed DNA Molecules

    NASA Astrophysics Data System (ADS)

    Murayama, Y.; Wada, H.; Ishida, R.; Sano, M.

    We observed elastic responses of single DNA molecules and visualized them during the collapsing transition induced by trivalent cation, spermidine (SPD). The force-extension curves show worm-like behavior, force plateau, and stick-release responses depending on SPD concentration. The periodic stick-release responses may reflect the unraveling of toroidal condensates. At much higher SPD concentration, we observed re-elongation of a single collapsed DNA. For the visualization, a fluorescent dye, YOYO, was used. We observed bright spots in the fluorescence intensity profile of a collapsed DNA during stretching, which may correspond to the collapsed parts within the single DNA. The decrease of the intensity of the spots in stretching implies the mechanical unfolding of collapsed parts. Towards achieving a microscopic understanding of these experimental results, we also investigate the elastic properties of a highly charged polyelectrolyte (PE) chain by Brownian dynamics simulation method. In our dynamic simulation, a PE has a small intrinsic stiffness (i.e., the PE is semiflexible) to model the stiffness of DNA chain, and added multivalent counterions are explicitly taken into account. As the electrostatic coupling parameter (proportional to counterion valency) is increased, counterion condensation is observed, leading finally to the PE collapse through the discontinuous transition for a sufficiently large coupling parameter. Mechanical unfolding of a PE globule reveals its molecular elasticities including force plateau, in agreement with the experimental observations. A numerically deduced electrostatic condensation energy is compared to the experimental value. Charge ordering in the PE-counterion complex and its deformation by the external forcing are elucidated in conjunction with the PE elastic responses. Other dynamic effects such as the effect of a pulling speed are also discussed.

  17. Collapse of an antibubble.

    PubMed

    Zou, Jun; Ji, Chen; Yuan, BaoGang; Ruan, XiaoDong; Fu, Xin

    2013-06-01

    In contrast to a soap bubble, an antibubble is a liquid globule surrounded by a thin film of air. The collapse behavior of an antibubble is studied using a high-speed video camera. It is found that the retraction velocity of the thin air film of antibubbles depends on the thickness of the air film, e, the surface tension coefficient σ, etc., and varies linearly with (σ/ρe)(1/2), according to theoretical analysis and experimental observations. During the collapse of the antibubble, many tiny bubbles can be formed at the rim of the air film due to the Rayleigh instability. In most cases, a larger bubble will emerge finally, which holds most of the volume of the air film.

  18. Chapter 2: Simulations of the Structure of Cellulose

    SciTech Connect

    Matthews, J. F.; Himmel, M. E.; Brady, J. W.

    2010-01-01

    Cellulose is the homopolymer of (1 {yields} 4)-{beta}-D-glucose. The chemical composition of this polymer is simple, but understanding the conformation and packing of cellulose molecules is challenging. This chapter describes the structure of cellulose from the perspective of molecular mechanics simulations, including conformational analysis of cellobiose and simulations of hydrated cellulose I{beta} with CSFF and GLYCAM06, two sets of force field parameters developed specifically for carbohydrates. Many important features observed in these simulations are sensitive to differences in force field parameters, giving rise to dramatically different structures. The structures and properties of non-naturally occurring cellulose allomorphs (II, III, and IV) are also discussed.

  19. Bubble-Induced Cave Collapse

    PubMed Central

    Girihagama, Lakshika; Nof, Doron; Hancock, Cathrine

    2015-01-01

    Conventional wisdom among cave divers is that submerged caves in aquifers, such as in Florida or the Yucatan, are unstable due to their ever-growing size from limestone dissolution in water. Cave divers occasionally noted partial cave collapses occurring while they were in the cave, attributing this to their unintentional (and frowned upon) physical contact with the cave walls or the aforementioned “natural” instability of the cave. Here, we suggest that these cave collapses do not necessarily result from cave instability or contacts with walls, but rather from divers bubbles rising to the ceiling and reducing the buoyancy acting on isolated ceiling rocks. Using familiar theories for the strength of flat and arched (un-cracked) beams, we first show that the flat ceiling of a submerged limestone cave can have a horizontal expanse of 63 meters. This is much broader than that of most submerged Florida caves (~ 10 m). Similarly, we show that an arched cave roof can have a still larger expanse of 240 meters, again implying that Florida caves are structurally stable. Using familiar bubble dynamics, fluid dynamics of bubble-induced flows, and accustomed diving practices, we show that a group of 1-3 divers submerged below a loosely connected ceiling rock will quickly trigger it to fall causing a “collapse”. We then present a set of qualitative laboratory experiments illustrating such a collapse in a circular laboratory cave (i.e., a cave with a circular cross section), with concave and convex ceilings. In these experiments, a metal ball represented the rock (attached to the cave ceiling with a magnet), and the bubbles were produced using a syringe located at the cave floor. PMID:25849088

  20. Blind protein structure prediction using accelerated free-energy simulations

    PubMed Central

    Perez, Alberto; Morrone, Joseph A.; Brini, Emiliano; MacCallum, Justin L.; Dill, Ken A.

    2016-01-01

    We report a key proof of principle of a new acceleration method [Modeling Employing Limited Data (MELD)] for predicting protein structures by molecular dynamics simulation. It shows that such Boltzmann-satisfying techniques are now sufficiently fast and accurate to predict native protein structures in a limited test within the Critical Assessment of Structure Prediction (CASP) community-wide blind competition. PMID:27847872

  1. Simulation of upper airway occlusion without and with mandibular advancement in obstructive sleep apnea using fluid-structure interaction.

    PubMed

    Zhao, Moyin; Barber, Tracie; Cistulli, Peter A; Sutherland, Kate; Rosengarten, Gary

    2013-10-18

    Obstructive Sleep Apnea (OSA) is a common sleep disorder characterized by repetitive collapse of the upper airway (UA). One treatment option is a mandibular advancement splint (MAS) which protrudes the lower jaw, stabilizing the airway. However not all patients respond to MAS therapy and individual effects are not well understood. Simulations of airway behavior may represent a non-invasive means to understand OSA and individual treatment responses. Our aims were (1) to analyze UA occlusion and flow dynamics in OSA using the fluid structure interaction (FSI) method, and (2) to observe changes with MAS. Magnetic resonance imaging (MRI) scans were obtained at baseline and with MAS in a known treatment responder. Computational models of the patients' UA geometry were reconstructed for both conditions. The FSI model demonstrated full collapse of the UA (maximum 5.83mm) pre-treatment (without MAS). The UA collapse was located at the oropharynx with low oropharyngeal pressure (-51.18Pa to -39.08Pa) induced by velopharyngeal jet flow (maximum 10.0m/s). By comparison, simulation results from the UA with MAS, showed smaller deformation (maximum 2.03mm), matching the known clinical response. Our FSI modeling method was validated by physical experiment on a 1:1 flexible UA model fabricated using 3D steriolithography. This is the first study of airflow dynamics in a deformable UA structure and inspiratory flow. These results expand on previous UA models using computational fluid dynamics (CFD), and lay a platform for application of computational models to study biomechanical properties of the UA in the pathogenesis and treatment of OSA.

  2. Lack of coupling between secondary structure formation and collapse in a model polypeptide that mimics early folding intermediates, the F2 fragment of the Escherichia coli tryptophan-synthase beta chain.

    PubMed Central

    Gast, K.; Chaffotte, A. F.; Zirwer, D.; Guillou, Y.; Mueller-Frohne, M.; Cadieux, C.; Hodges, M.; Damaschun, G.; Goldberg, M. E.

    1997-01-01

    The isolated, 101-residue long C-terminal (so called F2) fragment of the beta chain from Escherichia coli tryptophan synthase was shown previously to fold into an ensemble of conformations that are condensed, to contain large amounts of highly dynamic secondary structures, and to behave as a good model of structured intermediates that form at the very early stages of protein folding. Here, solvent perturbations were used to investigate the forces that are involved in stabilizing the secondary structure (monitored by far-UV CD) and the condensation of the polypeptide chain (monitored by dynamic light scattering) in isolated F2. It was observed that neither the ionic strength, nor the pH (between 7 and 10), nor salts of the Hofmeister series affected the global secondary structure contents of F2, whereas some of these salts affected the collapse slightly. Addition of trifluoroethanol resulted in a large increase in both the amount of secondary structure and the Stokes radius of F2. Conversely, F2 became more condensed upon raising the temperature from 4 to 60 degrees C, whereas in this temperature range, the secondary structure undergoes significant melting. These observations lead to the conclusion that, in isolated F2, there is no coupling between the hydrophobic collapse and the secondary structure. This finding will be discussed in terms of early events in protein folding. PMID:9416607

  3. Molecular dynamics simulations of G-DNA and perspectives on the simulation of nucleic acid structures

    PubMed Central

    šponer, Jiří; Cang, Xiaohui; Cheatham, Thomas E.

    2013-01-01

    The article reviews the application of biomolecular simulation methods to understand the structure, dynamics and interactions of nucleic acids with a focus on explicit solvent molecular dynamics simulations of guanine quadruplex (G-DNA and G-RNA) molecules. While primarily dealing with these exciting and highly relevant four-stranded systems, where recent and past simulations have provided several interesting results and novel insight into G-DNA structure, the review provides some general perspectives on the applicability of the simulation techniques to nucleic acids. PMID:22525788

  4. Design of Accelerator Online Simulator Server Using Structured Data

    SciTech Connect

    Shen, Guobao; Chu, Chungming; Wu, Juhao; Kraimer, Martin; /Argonne

    2012-07-06

    Model based control plays an important role for a modern accelerator during beam commissioning, beam study, and even daily operation. With a realistic model, beam behaviour can be predicted and therefore effectively controlled. The approach used by most current high level application environments is to use a built-in simulation engine and feed a realistic model into that simulation engine. Instead of this traditional monolithic structure, a new approach using a client-server architecture is under development. An on-line simulator server is accessed via network accessible structured data. With this approach, a user can easily access multiple simulation codes. This paper describes the design, implementation, and current status of PVData, which defines the structured data, and PVAccess, which provides network access to the structured data.

  5. Protostellar collapse in a self-gravitating sheet

    NASA Technical Reports Server (NTRS)

    Hartmann, Lee; Boss, Alan; Calvet, Nuria; Whitney, Barbara

    1994-01-01

    We present preliminary calculations of protostellar cloud collapse starting from an isothermal, self-gravitating gaseous layer in hydrostatic equilibrium. This gravitationally unstable layer collapses into a flattened or toroidal density distribution, even in the absence of rotation or magnetic fields. We suggest that the flat infalling envelope recently observed in HL Tau by Hayashi et al.is the result of collapse from an initially nonspherical layer. We also speculate that the later evolution of such a flattened, collapsing envelope can produce a structure similar to the 'flared disk' invoked by Kenyon and Hartmann to explain the infrared excesses of many T Tauri stars.

  6. SPH simulations of structures in protoplanetary disks

    NASA Astrophysics Data System (ADS)

    Demidova, T. V.; Grinin, V. P.

    2017-02-01

    Using the GADGET-2 code modified by us, we have computed hydrodynamic models of a protoplanetary disk perturbed by a low-mass companion. We have considered the cases of circular and eccentric orbits coplanar with the disk and inclined relative to its midplane. During our simulations we computed the column density of test particles on the line of sight between the central star and observer. On this basis we computed the column density of circumstellar dust by assuming the dust and gas to be well mixed with a mass ratio of 1: 100. To study the influence of the disk orientation relative to the observer on the interstellar extinction, we performed our computations for four inclinations of the line of sight to the disk plane and eight azimuthal directions. The column densities in the circumstellar disk of the central star and the circumbinary disk were computed separately. Our computations have shown that periodic column density oscillations can arise in both inner and circumbinary disks. The amplitude and shape of these oscillations depend on the system's parameters (the orbital eccentricity and inclination, the component mass ratio) and its orientation in space. The results of our simulations can be used to explain the cyclic brightness variations of young UX Ori stars.

  7. Geophysical mapping of solution and collapse sinkholes

    NASA Astrophysics Data System (ADS)

    Kaufmann, Georg

    2014-12-01

    Karst rocks such as limestone, dolomite, anhydrite, gypsum, or salt can be dissolved physically by water or chemically by water enriched with carbon dioxide. The dissolution is driven by water flowing through the karst aquifer and either occurs along fractures and bedding partings in telogenetic rocks, or within the primary interconnected pore space in eogenetic rocks. The enlargement of either fractures or pores by dissolution creates a large secondary porosity typical of soluble rocks, which is often very heterogenously distributed and results in preferential flow paths in the sub-surface, with cavities as large-scale end members of the sub-surface voids. Once the sub-surface voids enlarged by dissolution grow to a certain size, the overburden rock can become unstable and voids and caves can collapse. Depending on the type of overburden, the collapse initiated at depth may propagate towards the surface and finally results at the surface as collapse sinkholes and tiangkengs on the very large scale. We present results from geophysical surveys over existing karst structures based on gravimetric, electrical, and geomagnetical methods. We have chosen two types of sinkholes, solution and collapse sinkholes, to capture and compare the geophysical signals resulting from these karst structures. We compare and discuss our geophysical survey results with simplified theoretical models describing the evolution of the karst structure, and we derive three-dimensional structural models of the current situation for the different locations with our numerical tool PREDICTOR.

  8. A Method of Simulating Fluid Structure Interactions for Deformable Decelerators

    NASA Astrophysics Data System (ADS)

    Gidzak, Vladimyr Mykhalo

    A method is developed for performing simulations that contain fluid-structure interactions between deployable decelerators and a high speed compressible flow. The problem of coupling together multiple physical systems is examined with discussion of the strength of coupling for various methods. A non-monolithic strongly coupled option is presented for fluid-structure systems based on grid deformation. A class of algebraic grid deformation methods is then presented with examples of increasing complexity. The strength of the fluid-structure coupling is validated against two analytic problems, chosen to test the time dependent behavior of structure on fluid interactions, and of fluid on structure interruptions. A one-dimentional material heating model is also validated against experimental data. Results are provided for simulations of a wind tunnel scale disk-gap-band parachute with comparison to experimental data. Finally, a simulation is performed on a flight scale tension cone decelerator, with examination of time-dependent material stress, and heating.

  9. Dynamics of adaptive structures: Design through simulations

    NASA Technical Reports Server (NTRS)

    Park, K. C.; Alexander, S.

    1993-01-01

    The use of a helical bi-morph actuator/sensor concept by mimicking the change of helical waveform in bacterial flagella is perhaps the first application of bacterial motions (living species) to longitudinal deployment of space structures. However, no dynamical considerations were analyzed to explain the waveform change mechanisms. The objective is to review various deployment concepts from the dynamics point of view and introduce the dynamical considerations from the outset as part of design considerations. Specifically, the impact of the incorporation of the combined static mechanisms and dynamic design considerations on the deployment performance during the reconfiguration stage is studied in terms of improved controllability, maneuvering duration, and joint singularity index. It is shown that intermediate configurations during articulations play an important role for improved joint mechanisms design and overall structural deployability.

  10. Avoiding bandwidth collapse in long chains of coupled optical microresonators.

    PubMed

    Mookherjea, Shayan; Schneider, Mark A

    2011-12-01

    Coupled photonic oscillators and resonators are sensitive to unavoidable nanoscale disorder, and localization in periodic structures induced by disorder leads eventually to a complete collapse of the bandwidth, which is generally considered problematic for device applications. Here, we investigate the dependence of bandwidth collapse on the interresonator coupling coefficient, a parameter controllable by lithography or device operation.

  11. Estimating Building Simulation Parameters via Bayesian Structure Learning

    SciTech Connect

    Edwards, Richard E; New, Joshua Ryan; Parker, Lynne Edwards

    2013-01-01

    Many key building design policies are made using sophisticated computer simulations such as EnergyPlus (E+), the DOE flagship whole-building energy simulation engine. E+ and other sophisticated computer simulations have several major problems. The two main issues are 1) gaps between the simulation model and the actual structure, and 2) limitations of the modeling engine's capabilities. Currently, these problems are addressed by having an engineer manually calibrate simulation parameters to real world data or using algorithmic optimization methods to adjust the building parameters. However, some simulations engines, like E+, are computationally expensive, which makes repeatedly evaluating the simulation engine costly. This work explores addressing this issue by automatically discovering the simulation's internal input and output dependencies from 20 Gigabytes of E+ simulation data, future extensions will use 200 Terabytes of E+ simulation data. The model is validated by inferring building parameters for E+ simulations with ground truth building parameters. Our results indicate that the model accurately represents parameter means with some deviation from the means, but does not support inferring parameter values that exist on the distribution's tail.

  12. Modeling and Simulation of Semiconductor Quantum Well Structures and Lasers

    NASA Technical Reports Server (NTRS)

    Ning, Cun-Zheng; Saini, Subbash (Technical Monitor)

    1998-01-01

    In this talk I will cover two aspects of modeling and simulation efforts at NASA Ames Research Center. In the quantum well structure simulation, we typically start from the quantum mechanical calculation of the quantum well structures for the confined/and unconfined eigen states and functions. A bandstructure calculation of the k*p type is then performed for the confined valence states. This information is then used to computer the optical gain and refractive index of the quantum well structures by solving the linearized multiband semiconductor Bloch equations with the many-body interactions included. In our laser simulation, we typically solve the envelope equations for the laser field in space-time domain, coupled with a reduced set of material equations using the microscopic calculation of the first step. Finally I will show some examples of both aspects of simulation and modeling.

  13. Aromatic Structure in Simulates Titan Aerosol

    NASA Technical Reports Server (NTRS)

    Trainer, Melissa G.; Loeffler, M. J.; Anderson, C. M.; Hudson, R. L.; Samuelson, R. E.; Moore, M. A.

    2011-01-01

    Observations of Titan by the Cassini Composite Infrared Spectrometer (CIRS) between 560 and 20 per centimeter (approximately 18 to 500 micrometers) have been used to infer the vertical variations of Titan's ice abundances, as well as those of the aerosol from the surface to an altitude of 300 km [1]. The aerosol has a broad emission feature centered approximately at 140 per centimeter (71 micrometers). As seen in Figure 1, this feature cannot be reproduced using currently available optical constants from laboratory-generated Titan aerosol analogs [2]. The far-IR is uniquely qualified for investigating low-energy vibrational motions within the lattice structures of COITIDlex aerosol. The feature observed by CIRS is broad, and does not likely arise from individual molecules, but rather is representative of the skeletal movements of macromolecules. Since Cassini's arrival at Titan, benzene (C6H6) has been detected in the atmosphere at ppm levels as well as ions that may be polycyclic aromatic hydrocarbons (PAHs) [3]. We speculate that the feature may be a blended composite that can be identified with low-energy vibrations of two-dimensional lattice structures of large molecules, such as PAHs or nitrogenated aromatics. Such structures do not dominate the composition of analog materials generated from CH4 and N2 irradiation. We are performing studies forming aerosol analog via UV irradiation of aromatic precursors - specifically C6H6 - to understand how the unique chemical architecture of the products will influence the observable aerosol characteristics. The optical and chemical properties of the aromatic analog will be compared to those formed from CH4/N2 mixtures, with a focus on the as-yet unidentified far-IR absorbance feature. Preliminary results indicate that the photochemically-formed aromatic aerosol has distinct chemical composition, and may incorporate nitrogen either into the ring structure or adjoined chemical groups. These compositional differences are

  14. Computer simulation of the scaled power bipolar SHF transistor structures

    NASA Astrophysics Data System (ADS)

    Nelayev, V. V.; Efremov, V. A.; Snitovsky, Yu. P.

    2007-04-01

    New advanced technology for creation of the npn power silicon bipolar SHF transistor structure is proposed. Preferences of the advanced technology in comparison with standard technology are demonstrated. Simulation of both technology flows was performed with emphasis on scaling of the discussed device structure.

  15. Transverse wake field simulations for the ILC acceleration structure

    SciTech Connect

    Solyak, N.; Lunin, A.; Yakovlev, V.; /Fermilab

    2008-06-01

    Details of wake potential simulation in the acceleration structure of ILC, including the RF cavities and input/HOM couplers are presented. Transverse wake potential dependence is described versus the bunch length. Beam emittance dilution caused by main and HOM couplers is estimated, followed by a discussion of possible structural modifications allowing a reduction of transverse wake potential.

  16. Geomechanical numerical simulations of complex geologic structures

    SciTech Connect

    Arguello, J.G.; Stone, C.M.; Lorenz, J.C.

    1996-05-01

    Ability to predict mechanical response of rock in three dimensions over the spatial and time scales of geologic interest would give the oil and gas industry the ability to reduce risk on prospects, improve pre-project initial reserve estimates, and lower operating costs. A program has recently been initiated, under the auspices of the Advanced Computational Technology Initiative (ACTI), to achieve such a computational technology breakthrough by adapting the unique advanced quasistatic finite element technology developed by Sandia to the mechanics applications important to exploration and production activities within the oil and gas industry. As a precursor to that program, in an effort to evaluate the feasibility of the approach, several complex geologic structures of interest were analyzed with the existing two-dimensional quasistatic finite element code, SANTOS, developed at Sandia. Examples are presented and discussed.

  17. Shearfree cylindrical gravitational collapse

    SciTech Connect

    Di Prisco, A.; Herrera, L.; MacCallum, M. A. H.; Santos, N. O.

    2009-09-15

    We consider diagonal cylindrically symmetric metrics, with an interior representing a general nonrotating fluid with anisotropic pressures. An exterior vacuum Einstein-Rosen spacetime is matched to this using Darmois matching conditions. We show that the matching conditions can be explicitly solved for the boundary values of metric components and their derivatives, either for the interior or exterior. Specializing to shearfree interiors, a static exterior can only be matched to a static interior, and the evolution in the nonstatic case is found to be given in general by an elliptic function of time. For a collapsing shearfree isotropic fluid, only a Robertson-Walker dust interior is possible, and we show that all such cases were included in Cocke's discussion. For these metrics, Nolan and Nolan have shown that the matching breaks down before collapse is complete, and Tod and Mena have shown that the spacetime is not asymptotically flat in the sense of Berger, Chrusciel, and Moncrief. The issues about energy that then arise are revisited, and it is shown that the exterior is not in an intrinsic gravitational or superenergy radiative state at the boundary.

  18. Shearfree cylindrical gravitational collapse

    NASA Astrophysics Data System (ADS)

    di Prisco, A.; Herrera, L.; MacCallum, M. A. H.; Santos, N. O.

    2009-09-01

    We consider diagonal cylindrically symmetric metrics, with an interior representing a general nonrotating fluid with anisotropic pressures. An exterior vacuum Einstein-Rosen spacetime is matched to this using Darmois matching conditions. We show that the matching conditions can be explicitly solved for the boundary values of metric components and their derivatives, either for the interior or exterior. Specializing to shearfree interiors, a static exterior can only be matched to a static interior, and the evolution in the nonstatic case is found to be given in general by an elliptic function of time. For a collapsing shearfree isotropic fluid, only a Robertson-Walker dust interior is possible, and we show that all such cases were included in Cocke’s discussion. For these metrics, Nolan and Nolan have shown that the matching breaks down before collapse is complete, and Tod and Mena have shown that the spacetime is not asymptotically flat in the sense of Berger, Chrusciel, and Moncrief. The issues about energy that then arise are revisited, and it is shown that the exterior is not in an intrinsic gravitational or superenergy radiative state at the boundary.

  19. Structure optimization and simulation analysis of the quartz micromachined gyroscope

    NASA Astrophysics Data System (ADS)

    Wu, Xuezhong; Wang, Haoxu; Xie, Liqiang; Dong, Peitao

    2014-03-01

    Structure optimization and simulation analysis of the quartz micromachined gyroscope are reported in this paper. The relationships between the structure parameters and the frequencies of work mode were analysed by finite element analysis. The structure parameters of the quartz micromachined gyroscope were optimized to reduce the difference between the frequencies of the drive mode and the sense mode. The simulation results were proved by testing the prototype gyroscope, which was fabricated by micro-electromechanical systems (MEMS) technology. Therefore, the frequencies of the drive mode and the sense mode can match each other by the structure optimization and simulation analysis of the quartz micromachined gyroscope, which is helpful in the design of the high sensitivity quartz micromachined gyroscope.

  20. Formation and evolution of cores in globally collapsing environments

    NASA Astrophysics Data System (ADS)

    Vazquez-Semadeni, Enrique

    2014-07-01

    I will present recent results on the hierarchical gravitational fragmentation (HGF) of molecular clouds (MCs) leading to the formation of dense cores. I will first discuss the scenario of HGF as an alternative to the standard scenario of turbulent support --> turbulent dissipation --> collapse. In it, clouds are multi-Jeans-mass object undergoing global, multi-scale collapse, and the cores are the local centers of collapse. The lapse between the onset of local collapse and the formation of a singularity constitutes the prestellar phase. I will present numerical simulations of core growth during this phase in the idealized case of spherical geometry, immersed in a globally collapsing environment, discussing the evolution of the density and velocity profiles. I will also present synthetic molecular line observations of such idealized cores, aimed at determining to what extent such an idealized setup recovers the basic observational features of the cores, and which features require additional physics such as background turbulence and non-spherical symmetry.

  1. Simulation of flexible structures with impact: Experimental validation

    NASA Technical Reports Server (NTRS)

    Ulsoy, A. Galip

    1989-01-01

    The simulation of the dynamic behavior of flexible structures with impact, is experimentally and numerically investigated. A radially rotating flexible beam attached to a rigid shaft is considered. Both experimental and numerical studies are undertaken. Experimental studies how excellent agreement with simulation studies using both the momentum balance (coefficient of friction), and spring-dashpot (impact pair) models. The simulation studies are even capable of predicting the high-speed multiple impacts which occur due to structural flexibility and which are experimentally observed using high-speed video photography. The results of the studies show that a simple momentum balance (coefficient of restitution) method for simulating the impact is sufficiently accurate in predicting the dynamic behavior of the system for most engineering applications. The momentum balance method cannot simulate the impact force which develops during the contact duration, but is computationally very efficient. The spring-dashpot model is more difficult to develop and requires significantly larger computation time, but can simulate impact forces and stresses due to impact. The momentum balance (coefficient of restitution) method, although strictly not applicable to flexible bodies, has been shown to provide an accurate and computationally efficient method for simulating the dynamic behavior of flexible structures with impact when contact stresses are not needed.

  2. Collapse of large vapor bubbles

    NASA Technical Reports Server (NTRS)

    Tegart, J.; Dominick, S.

    1982-01-01

    The refilling of propellant tanks while in a low-gravity environment requires that entrapped vapor bubbles be collapsed by increasing the system pressure. Tests were performed to verify the mechanism of collapse for these large vapor bubbles with the thermodynamic conditions, geometry, and boundary conditions being those applicable to propellant storage systems. For these conditions it was found that conduction heat transfer determined the collapse rate, with the specific bubble geometry having a significant influence.

  3. Graphene wrinkling: formation, evolution and collapse

    NASA Astrophysics Data System (ADS)

    Wang, Changguo; Liu, Yuanpeng; Lan, Lan; Tan, Huifeng

    2013-05-01

    In this paper we focus on the studies of graphene wrinkling, from its formation to collapse, and its dependence on aspect ratio and temperature using molecule dynamics simulation. Based on our results, the first wrinkle is not formed on the edge but in the interior of graphene. The fluctuations of edge slack warps drive the wrinkling evolution in graphene which is distinguished from the bifurcation in continuum film. There are several obvious stages in wrinkling progress, including incubation, infancy, youth, maturity and gerontism periods which are identified by the atomic displacement difference due to the occurrences of new wrinkles. The wrinkling progress is over when the C-C bonds in highly stretched corners are broken which contributes to the wrinkling collapse. The critical wrinkling strain, the wrinkling pattern and extent depend on the aspect ratio of graphene, the wrinkling level and collapsed strains do not. Only the collapsed strain is sensitive to the temperature, the other wrinkling parameters are independent of the temperature. Our results would benefit the understanding of the physics of graphene wrinkling and the design of nanomechanical devices by tuning the wrinkles.

  4. Neutrinos from Pre-Collapse Stars

    NASA Astrophysics Data System (ADS)

    Misch, G. Wendell; Fuller, George M.

    We show that in order to make realistic predictions of the nuclear neutrino spectra from pre-collapse stellar cores, one must properly account for nuclear structure effects; often, the dominant nuclear transitions involve excited states, sometimes in both parent and daughter nuclei. We show that the standard technique of producing a neutrino energy spectrum by using a single effective transition structured to fit published neutrino production rates and energy losses will not accurately capture important spectral features.

  5. Collapse of the G d3 + ESR fine structure throughout the coherent temperature of the Gd-doped Kondo Semiconductor CeF e4P12

    NASA Astrophysics Data System (ADS)

    Venegas, P. A.; Garcia, F. A.; Garcia, D. J.; Cabrera, G. G.; Avila, M. A.; Rettori, C.

    2016-12-01

    Recent experiments on G d3 + electron-spin resonance (ESR) in the filled skutterudite C e1 -xG dxF e4P12(x ≈0.001 ) , at temperatures where the host resistivity manifests a smooth insulator-metal crossover, provide evidence of the underlying Kondo physics associated with this system. At low temperatures (below T ≈160 K), C e1 -xG dxF e4P12 behaves as a Kondo insulator with a relatively large hybridization gap, and the G d3 + ESR spectra display a fine structure with Lorentzian line shape, typical of insulating media. In this work, based on previous experiments performed by the same group, we argue that the electronic gap may be attributed to the large hybridization present in the coherent regime of a Kondo lattice. Moreover, mean-field calculations suggest that the electron-phonon interaction is fundamental at explaining such hybridization. The resulting electronic structure is strongly temperature dependent, and at T*≈160 K the system undergoes an insulator-to-metal transition induced by the withdrawal of 4 f electrons from the Fermi volume, the system becoming metallic and nonmagnetic. The G d3 + ESR fine structure coalesces into a single Dysonian resonance, as in metals. Our simulations suggest that exchange narrowing via the usual Korringa mechanism is not enough to describe the thermal behavior of the G d3 + ESR spectra in the entire temperature region (4.2-300 K). We propose that the temperature activated fluctuating valence of the Ce ions is the key ingredient that fully describes this unique temperature dependence of the G d3 + ESR fine structure.

  6. Coagulation of grains in static and collapsing protostellar clouds

    NASA Technical Reports Server (NTRS)

    Weidenschilling, S. J.; Ruzmaikina, T. V.

    1994-01-01

    We simulate collisional evolution of grains in dense turbulent molecular cloud cores (or Bok globules) in static equilibrium and free-fall collapse, assuming spherical symmetry. Relative velocities are due to thermal motions, differential settling, and turbulence, with the latter dominant for sonic turbulence with an assumed Kolmogorov spectrum. Realistic criteria are used to determine outcomes of collisions (coagulation vs. destruction) as functions of particle size and velocity. Results are presented for a variety of cloud parameters (radial density profile, turbulent velocity) and particle properties (density, impact strength). Results are sensitive to the assumed mechanical properties (density and impact strength) of grain aggregates. Particle growth is enhanced if aggregates have low density or fractal structures. On a timescale of a few Myr, an initial population of 0.1 micrometers grains may produce dense compact particles approximately 1 micrometer in size, or fluffy aggregates approximately 100 micrometers. For impact strengths less than or equal to 10(exp 6) ergs/g, a steady state is reached between coagulation of small grains and collisional disruption of larger aggregates. Formation of macroscopic aggregates requires high mechanical strengths and low aggregate densities. We assume sonic turbulence during collapse, with varied eddy size scales determining the dissipation rate or turbulence strength. The degree of collisional evolution during collapse is sensitive to the assumed small-scale structure (inner sc ale) of the turbulence. Weak turbulence results in few collisions and preserves the precollapse particle size distribution with little change. Strong turbulence tends to produce net destruction, rather than particle growth, during infall, unless inpact strengths are greater than 10(exp 6)ergs/g.

  7. The Direct Collapse of Supermassive Black Hole Seeds

    NASA Astrophysics Data System (ADS)

    Regan, John A.; Johansson, Peter H.; Wise, John H.

    2016-10-01

    The direct collapse model of supermassive black hole seed formation requires that thegas cools predominantly via atomic hydrogen. To this end we simulate the effect of ananisotropic radiation source on the collapse of a halo at high redshift. The radiationsource is placed at a distance of 3 kpc (physical) from the collapsing object and is setto emit monochromatically in the center of the Lyman-Werner (LW) band. The LW radiationemitted from the high redshift source is followed self-consistently using ray tracingtechniques. Due to self-shielding, a small amount of H2 is able to form at the verycenter of the collapsing halo even under very strong LW radiation. Furthermore, we find thata radiation source, emitting < 1054 (~103 J21) photons per second isrequired to cause the collapse of a clump of M ~ 105 M⊙. The resultingaccretion rate onto the collapsing object is ~ 0.25 M⊙ yr-1.Our results display significant differences, compared to the isotropic radiation field case,in terms of H2 fraction at an equivalent radius. These differences will significantly effectthe dynamics of the collapse. With the inclusion of a strong anisotropic radiation source, thefinal mass of the collapsing object is found to be M ~ 105 M⊙. This is consistentwith predictions for the formation of a supermassive star or quasi-star leading to asupermassive black hole.

  8. Computational simulation for analysis and synthesis of impact resilient structure

    NASA Astrophysics Data System (ADS)

    Djojodihardjo, Harijono

    2013-10-01

    Impact resilient structures are of great interest in many engineering applications varying from civil, land vehicle, aircraft and space structures, to mention a few examples. To design such structure, one has to resort fundamental principles and take into account progress in analytical and computational approaches as well as in material science and technology. With such perspectives, this work looks at a generic beam and plate structure subject to impact loading and carry out analysis and numerical simulation. The first objective of the work is to develop a computational algorithm to analyze flat plate as a generic structure subjected to impact loading for numerical simulation and parametric study. The analysis will be based on dynamic response analysis. Consideration is given to the elastic-plastic region. The second objective is to utilize the computational algorithm for direct numerical simulation, and as a parallel scheme, commercial off-the shelf numerical code is utilized for parametric study, optimization and synthesis. Through such analysis and numerical simulation, effort is devoted to arrive at an optimum configuration in terms of loading, structural dimensions, material properties and composite lay-up, among others. Results will be discussed in view of practical applications.

  9. Controlled multibody dynamics simulation for large space structures

    NASA Technical Reports Server (NTRS)

    Housner, J. M.; Wu, S. C.; Chang, C. W.

    1989-01-01

    Multibody dynamics discipline, and dynamic simulation in control structure interaction (CSI) design are discussed. The use, capabilities, and architecture of the Large Angle Transient Dynamics (LATDYN) code as a simulation tool are explained. A generic joint body with various types of hinge connections; finite element and element coordinate systems; results of a flexible beam spin-up on a plane; mini-mast deployment; space crane and robotic slewing manipulations; a potential CSI test article; and multibody benchmark experiments are also described.

  10. Effects of Ni doping on the structural properties and collapse of magnetic ordering in NdFe1-xNixO3 (0.1 ≤ x ≤ 0.7) orthoferrites

    NASA Astrophysics Data System (ADS)

    I., Ahmad; J. Akhtar, M.; Siddique, M.

    2016-02-01

    NdFe1-x NixO3 (0.1 ≤ x ≤ 0.7) orthoferrites are synthesized by solid state reaction method, and the structural properties of these materials are investigated by employing x-ray diffraction (XRD), scanning electron microscopy (SEM) and Mössbauer spectroscopy. The orthorhombic structure is observed in all systems; however, with the increase in Ni doping, the increase in tolerance factor and the decrease in the cell volume are observed. Orthorhombic distortion decreases with Ni content increasing up to 50%, while above 50% Ni doping it increases. SEM examination indicates the increases in grain size and intermixing of grains with increase in Ni concentration. Comparison between bulk and theoretical densities shows that in each of all samples porosity is less than 2%. Mössbauer spectroscopic investigations are performed to explain local structure, Fe oxidation states and collapse of the magnetic ordering. In these samples the Fe oxidation state remains +3 and there is no considerable increase in hole states observed; however due to mismatch of the ionic radii between Fe3+ and Ni3+, octahedral distortions, sagging and distribution of hyperfine parameters increase with increase in Ni concentration. The major factors behind the collapse of magnetic ordering in the Ni-doped systems are the weakening of the super-exchange interactions, decrease in the Neel temperature, increase in spin-spin relaxation frequency and high spin to low spin transition.

  11. Collapse and Relativity

    SciTech Connect

    Tumulka, Roderich

    2006-06-27

    Ever since we have been in the possession of quantum theories without observers, such as Bohmian mechanics or the Ghirardi-Rimini-Weber (GRW) theory of spontaneous wave function collapse, a major challenge in the foundations of quantum mechanics is to devise a relativistic quantum theory without observers. One of the difficulties is to reconcile nonlocality with relativity. I report about recent progress in this direction based on the GRW model: A relativistic version of the model has been devised for the case of N noninteracting (but entangled) particles. A key ingredient was to focus not on the evolution of the wave function but rather on the evolution of the matter in space-time as determined by the wave function.

  12. Impact and Penetration Simulations for Composite Wing-like Structures

    NASA Technical Reports Server (NTRS)

    Knight, Norman F.

    1998-01-01

    The goal of this research project was to develop methodologies for the analysis of wing-like structures subjected to impact loadings. Low-speed impact causing either no damage or only minimal damage and high-speed impact causing severe laminate damage and possible penetration of the structure were to be considered during this research effort. To address this goal, an assessment of current analytical tools for impact analysis was performed. Assessment of the analytical tools for impact and penetration simulations with regard to accuracy, modeling, and damage modeling was considered as well as robustness, efficient, and usage in a wing design environment. Following a qualitative assessment, selected quantitative evaluations will be performed using the leading simulation tools. Based on this assessment, future research thrusts for impact and penetration simulation of composite wing-like structures were identified.

  13. Progressive collapse analysis using updated models for alternate path analysis after a blast

    NASA Astrophysics Data System (ADS)

    Eskew, Edward; Jang, Shinae; Bertolaccini, Kelly

    2016-04-01

    Progressive collapse is of rising importance within the structural engineering community due to several recent cases. The alternate path method is a design technique to determine the ability of a structure to sustain the loss of a critical element, or elements, and still resist progressive collapse. However, the alternate path method only considers the removal of the critical elements. In the event of a blast, significant damage may occur to nearby members not included in the alternate path design scenarios. To achieve an accurate assessment of the current condition of the structure after a blast or other extreme event, it may be necessary to reduce the strength or remove additional elements beyond the critical members designated in the alternate path design method. In this paper, a rapid model updating technique utilizing vibration measurements is used to update the structural model to represent the real-time condition of the structure after a blast occurs. Based upon the updated model, damaged elements will either have their strength reduced, or will be removed from the simulation. The alternate path analysis will then be performed, but only utilizing the updated structural model instead of numerous scenarios. After the analysis, the simulated response from the analysis will be compared to failure conditions to determine the buildings post-event condition. This method has the ability to incorporate damage to noncritical members into the analysis. This paper will utilize numerical simulations based upon a unified facilities criteria (UFC) example structure subjected to an equivalent blast to validate the methodology.

  14. Assessing inflow rates in atomic cooling haloes: implications for direct collapse black holes

    NASA Astrophysics Data System (ADS)

    Latif, M. A.; Volonteri, M.

    2015-09-01

    Supermassive black holes are not only common in the present-day galaxies, but billion solar masses black holes also powered z ≥ 6 quasars. One efficient way to form such black holes is the collapse of a massive primordial gas cloud into a so-called direct collapse black hole. The main requirement for this scenario is the presence of large accretion rates of ≥ 0.1 M⊙ yr- 1 to form a supermassive star. It is not yet clear how and under what conditions such accretion rates can be obtained. The prime aim of this work is to determine the mass accretion rates under non-isothermal collapse conditions. We perform high-resolution cosmological simulations for three primordial haloes of a few times 107 M⊙ illuminated by an external UV flux, J21 = 100-1000. We find that a rotationally supported structure of about parsec size is assembled, with an aspect ratio between 0.25 and 1 depending upon the thermodynamical properties. Rotational support, however, does not halt collapse, and mass inflow rates of ˜ 0.1 M⊙ yr- 1 can be obtained in the presence of even a moderate UV background flux of strength J21 ≥ 100. To assess whether such large accretion rates can be maintained over longer time-scales, we employed sink particles, confirming the persistence of accretion rates of ˜ 0.1 M⊙ yr- 1. We propose that complete isothermal collapse and molecular hydrogen suppression may not always be necessary to form supermassive stars, precursors of black hole seeds. Sufficiently high inflow rates can be obtained for UV flux J21 = 500-1000, at least for some cases. This value brings the estimate of the abundance of direct collapse black hole seeds closer to that high-redshift quasars.

  15. 31. VIEW OF COLLAPSED APRON OF BRIDGE NO. 10 AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. VIEW OF COLLAPSED APRON OF BRIDGE NO. 10 AND ELEMENTS OF SUSPENSION STRUCTURE. LOOKING SOUTH. - Greenville Yard, Transfer Bridge System, Port of New York/New Jersey, Upper New York Bay, Jersey City, Hudson County, NJ

  16. Towards the Core-Collapse Supernova Explosion Mechanism

    SciTech Connect

    Cardall, Christian Y; Endeve, Eirik; Budiardja, R. D.; Marronetti, Pedro; Mezzacappa, Anthony

    2012-01-01

    Core-collapse supernovae are amazing displays of astrohysical fireworks - and the optical emission is only a tiny part of the story. These events involve virtually all branches of physics and spawn phenomena observale by every kind of astronomical observation. This richness of theory and observation presents a formidable challenge to their understanding via computer simulations, but we are entering a new era of realism and maturity in modeling the key processes by collapse and explosion.

  17. Astrophysics of Collapsing Axion Stars

    NASA Astrophysics Data System (ADS)

    Eby, Joshua; Leembruggen, Madelyn; Suranyi, Peter; Wijewardhana, L. C. R.

    2017-01-01

    Axion stars are condensed states of large numbers of axion particles, bound by self-gravitation and quantum self-interactions. The mass of weakly bound axion stars is limited by gravitational stability, with condensates exceeding the maximum mass subject to collapse. During the collapse process, the axion density increases and higher-order self-interactions become increasingly relevant. By taking these terms into account, we provide evidence that in spite of a leading attractive interaction, collapsing axion stars stabilize in a dense state which is larger than its Schwarzschild radius, and so do not form black holes. During the last moments of collapse, number changing processes take place in the axion star with a very large rate, leading to emission of many highly energetic axions which escape from galaxies and galaxy clusters. Finally, if axion stars are a significant fraction of cold dark matter, then frequent collisions with each other or with ordinary stars could catalyze this collapse process as well.

  18. Spherical collapse in chameleon models

    SciTech Connect

    Brax, Ph.; Steer, D.A. E-mail: rosenfel@ift.unesp.br

    2010-08-01

    We study the gravitational collapse of an overdensity of nonrelativistic matter under the action of gravity and a chameleon scalar field. We show that the spherical collapse model is modified by the presence of a chameleon field. In particular, we find that even though the chameleon effects can be potentially large at small scales, for a large enough initial size of the inhomogeneity the collapsing region possesses a thin shell that shields the modification of gravity induced by the chameleon field, recovering the standard gravity results. We analyse the behaviour of a collapsing shell in a cosmological setting in the presence of a thin shell and find that, in contrast to the usual case, the critical density for collapse in principle depends on the initial comoving size of the inhomogeneity.

  19. Structure of overheated metal clusters: MD simulation study

    SciTech Connect

    Vorontsov, Alexander

    2015-08-17

    The structure of overheated metal clusters appeared in condensation process was studied by computer simulation techniques. It was found that clusters with size larger than several tens of atoms have three layers: core part, intermediate dense packing layer and a gas- like shell with low density. The change of the size and structure of these layers with the variation of internal energy and the size of cluster is discussed.

  20. Information diversity in structure and dynamics of simulated neuronal networks.

    PubMed

    Mäki-Marttunen, Tuomo; Aćimović, Jugoslava; Nykter, Matti; Kesseli, Juha; Ruohonen, Keijo; Yli-Harja, Olli; Linne, Marja-Leena

    2011-01-01

    Neuronal networks exhibit a wide diversity of structures, which contributes to the diversity of the dynamics therein. The presented work applies an information theoretic framework to simultaneously analyze structure and dynamics in neuronal networks. Information diversity within the structure and dynamics of a neuronal network is studied using the normalized compression distance. To describe the structure, a scheme for generating distance-dependent networks with identical in-degree distribution but variable strength of dependence on distance is presented. The resulting network structure classes possess differing path length and clustering coefficient distributions. In parallel, comparable realistic neuronal networks are generated with NETMORPH simulator and similar analysis is done on them. To describe the dynamics, network spike trains are simulated using different network structures and their bursting behaviors are analyzed. For the simulation of the network activity the Izhikevich model of spiking neurons is used together with the Tsodyks model of dynamical synapses. We show that the structure of the simulated neuronal networks affects the spontaneous bursting activity when measured with bursting frequency and a set of intraburst measures: the more locally connected networks produce more and longer bursts than the more random networks. The information diversity of the structure of a network is greatest in the most locally connected networks, smallest in random networks, and somewhere in between in the networks between order and disorder. As for the dynamics, the most locally connected networks and some of the in-between networks produce the most complex intraburst spike trains. The same result also holds for sparser of the two considered network densities in the case of full spike trains.

  1. Numerical simulations of drop impact on superhydrophobic structured surfaces

    NASA Astrophysics Data System (ADS)

    Guzzetti, Davide; Larentis, Stefano; Pugno, Nicola

    2011-11-01

    During the last decade drop impact dynamics on superhydrophobic surfaces has been intensively investigated because of the incredible properties of water repellency exhibited by this kind of surfaces, mostly inspired by biological examples such as Lotus leave. Thanks to the recent progress in micro-fabrication technology is possible to tailor surfaces wettability defining specific pillar-like structured surfaces. In this work, the behavior of impinging drops on these pillar-like surfaces is simulated, characterizing temporal evolution of droplets contact radius and drop maximal deformation dependence on Weber number. Numerical simulations results are compared with theoretical and experimental results guaranteeing simulation reliability. Fingering patterns obtained from drop impact has been studied obtaining a correlation between number of fingers and Weber number. Drop fragmentation pattern obtained from simulations supports the proposed correlation. Different drop impact outcomes (e.g. rebound, fragmentation) on structured superhydrophobic surfaces are simulated, focusing on the influence of micro-structured surface geometrical pattern. This investigation is relevant in order to define design rules for possible reliable non wettable surfaces. Financial support by Alta Scuola Politecnica.

  2. Vortical structures in pool fires: Observation, speculation, and simulation

    SciTech Connect

    Tieszen, S.R.; Nicolette, V.F.; Gritzo, L.A.; Moya, J.L.; Holen, J.K.

    1996-11-01

    While all fires are complex and involve many phenomena, this report is limited to large, turbulent liquid-hydrocarbon pool fires. Large, liquid-hydrocarbon pool fires present a risk in petrochemical storage and processing facilities and transportation systems that contain large amounts of liquid hydrocarbons. This report describes observations, speculations, and numerical simulations of vortical structures in pool fires. Vortical structures are observed in fires with length scales ranging from those that bend millimeter-thick flame zones to those that entrain air many meters from the edge of the fire to its centerline. The authors propose that baroclinic vorticity generation is primarily responsible for production of rotational motion at small scale and that amalgamation is responsible for the production of large-scale rotational structures from the myriad of small-scale structures. Numerical simulations show that vortical structures having time-mean definitions can be resolved with a Reynolds-Average Navier-Stokes (RANS) approach. However, for vortical structures without time-mean definition, RANS is inappropriate, and another technique, such as Large Eddy Simulation (LES), should be employed. 39 refs., 52 figs., 3 tabs.

  3. C60 fullerene promotes lung monolayer collapse

    PubMed Central

    Barnoud, Jonathan; Urbini, Laura; Monticelli, Luca

    2015-01-01

    Airborne nanometre-sized pollutants are responsible for various respiratory diseases. Such pollutants can reach the gas-exchange surface in the alveoli, which is lined with a monolayer of lung surfactant. The relationship between physiological effects of pollutants and molecular-level interactions is largely unknown. Here, we determine the effects of carbon nanoparticles on the properties of a model of lung monolayer using molecular simulations. We simulate phase-separated lipid monolayers in the presence of a model pollutant nanoparticle, C60 fullerene. In the absence of nanoparticles, the monolayers collapse only at very low surface tensions (around 0 mN m−1). In the presence of nanoparticles, instead, monolayer collapse is observed at significantly higher surface tensions (up to ca 10 mN m−1). Collapse at higher tensions is related to lower mechanical rigidity of the monolayer. It is possible that similar mechanisms operate on lung surfactant in vivo, which suggests that health effects of airborne carbon nanoparticles may be mediated by alterations of the mechanical properties of lung surfactant. PMID:25589571

  4. Parametric nonlinear lumped element model for circular CMUTs in collapsed mode.

    PubMed

    Aydoğdu, Elif; Ozgurluk, Alper; Atalar, Abdullah; Köymen, Hayrettin

    2014-01-01

    We present a parametric equivalent circuit model for a circular CMUT in collapsed mode. First, we calculate the collapsed membrane deflection, utilizing the exact electrical force distribution in the analytical formulation of membrane deflection. Then we develop a lumped element model of collapsed membrane operation. The radiation impedance for collapsed mode is also included in the model. The model is merged with the uncollapsed mode model to obtain a simulation tool that handles all CMUT behavior, in transmit or receive. Large- and small-signal operation of a single CMUT can be fully simulated for any excitation regime. The results are in good agreement with FEM simulations.

  5. Global MHD Simulation of Mesoscale Structures at the Magnetospheric Boundary

    NASA Technical Reports Server (NTRS)

    Berchem, Jean

    1998-01-01

    The research carried out for this protocol was focused on the study of mesoscales structures at the magnetospheric boundary. We investigated three areas: (1) the structure of the magnetospheric boundary for steady solar wind conditions; (2) the dynamics of the dayside magnetospheric boundary and (3) the dynamics of the distant tail magnetospheric boundary. Our approach was to use high resolution three-dimensional global magnetohydrodynamic (MHD) simulations of the interaction of the solar wind with the Earth's magnetosphere. We first considered simple variations of the interplanetary conditions to obtain generic cases that helped us in establishing the basic cause and effect relationships for steady solar wind conditions. Subsequently, we used actual solar wind plasma and magnetic field parameters measured by an upstream spacecraft as input to the simulations and compared the simulation results with sequences of events observed by another or several other spacecraft located downstream the bow shock. In particular we compared results with observations made when spacecraft crossed the magnetospheric boundary.

  6. A performance comparison of integration algorithms in simulating flexible structures

    NASA Technical Reports Server (NTRS)

    Howe, R. M.

    1989-01-01

    Asymptotic formulas for the characteristic root errors as well as transfer function gain and phase errors are presented for a number of traditional and new integration methods. Normalized stability regions in the lambda h plane are compared for the various methods. In particular, it is shown that a modified form of Euler integration with root matching is an especially efficient method for simulating lightly-damped structural modes. The method has been used successfully for structural bending modes in the real-time simulation of missiles. Performance of this algorithm is compared with other special algorithms, including the state-transition method. A predictor-corrector version of the modified Euler algorithm permits it to be extended to the simulation of nonlinear models of the type likely to be obtained when using the discretized structure approach. Performance of the different integration methods is also compared for integration step sizes larger than those for which the asymptotic formulas are valid. It is concluded that many traditional integration methods, such as RD-4, are not competitive in the simulation of lightly damped structures.

  7. Structural materials from lunar simulants through thermal liquefaction

    NASA Technical Reports Server (NTRS)

    Desai, Chandra S.; Girdner, Kirsten

    1992-01-01

    Thermal liquefaction that allows development of intermediate ceramic composites from a lunar simulant with various admixtures is used to develop structural materials for construction on the moon. Bending and compressive properties of resulting composites are obtained from laboratory tests and evaluated with respect to the use of three different types and fibers.

  8. Simulation of Material and Structural Instability Phenomena During the Flaring Process of Cylindrical Shells

    NASA Astrophysics Data System (ADS)

    Daxner, T.; Rammerstorfer, F. G.; Fischer, F. D.

    2004-06-01

    Pushing a conical die into a pipe, a forming process also known as `flaring', is a way of changing the shape of a thin cylindrical tube into that of a conical shell. Interest in predicting the forming limits for this specific process motivated the present study, in which experiments and Finite Element simulations were employed for the identification of two limiting mechanisms: (a) diffuse necking caused by local loss of material stability at the free, expanding end of the pipe, and (b) loss of global stability due to elasto-plastic `Concertina' buckling of the straight pipe part. The former mechanism leads to the formation of periodic necks and subsequent failure by strain localization and rupture, while the latter mechanism is characterized by a periodic buckling pattern that is similar to the one observed in typical crash elements. Whether collapse or rupture is the limiting factor depends on geometrical parameters and material parameters, such as, for example, the hardening exponent in the Ludwik law. There are some publications of analytical considerations of the flaring process, describing the load displacement behavior of the stamp and the development of plastic deformations in the tube. However, the aspect of material and structural instability requires a deeper insight into the problem, which is provided by the experimental results and the numerical studies presented here. It appears to be important to take the tridimensionality of the stress and strain states into account when reliable predictions of necking and rupture limits are to be made.

  9. Perturbing turbulence beyond collapse

    NASA Astrophysics Data System (ADS)

    Kühnen, Jakob; Scarselli, Davide; Hof, Björn; Nonlinear Dynamics; Turbulence Group Team

    2016-11-01

    Wall-bounded turbulent flows are considered to be in principle stable against perturbations and persist as long as the Reynolds number is sufficiently high. We show for the example of pipe flow that a specific perturbation of the turbulent flow field disrupts the genesis of new turbulence at the wall. This leads to an immediate collapse of the turbulent flow and causes complete relaminarisation further downstream. The annihilation of turbulence is effected by a steady manipulation of the streamwise velocity component only, greatly simplifying control efforts which usually require knowledge of the highly complex three dimensional and time dependent velocity fields. We present several different control schemes from laboratory experiments which achieve the required perturbation of the flow for total relaminarisation. Transient growth, a linear amplification mechanism measuring the efficiency of eddies in redistributing shear that quantifies the maximum perturbation energy amplification achievable over a finite time in a linearized framework, is shown to set a clear-cut threshold below which turbulence is impeded in its formation and thus permanently annihilated.

  10. Kinetic and Structural Evolution of Self-gravitating, Magnetized Clouds: 2.5-dimensional Simulations of Decaying Turbulence

    NASA Astrophysics Data System (ADS)

    Ostriker, Eve C.; Gammie, Charles F.; Stone, James M.

    1999-03-01

    The molecular component of the Galaxy is comprised of turbulent, magnetized clouds, many of which are self-gravitating and form stars. To develop an understanding of how these clouds' kinetic and structural evolution may depend on their level of turbulence, mean magnetization, and degree of self-gravity, we perform a survey of direct numerical MHD simulations in which three parameters are independently varied. Our simulations consist of solutions to the time-dependent MHD equations on a two-dimensional grid with periodic boundary conditions; an additional ``half'' dimension is also incorporated as dependent variables in the third Cartesian direction. Two of our survey parameters, the mean magnetization parameter β≡c2sound/v2Alfven and the Jeans number nJ≡Lcloud/LJeans, allow us to model clouds that either meet or fail conditions for magneto-Jeans stability and magnetic criticality. Our third survey parameter, the sonic Mach number M≡σvelocity/csound, allows us to initiate turbulence of either sub- or super-Alfvénic amplitude; we employ an isothermal equation of state throughout. We evaluate the times for each cloud model to become gravitationally bound and measure each model's kinetic energy loss over the fluid-flow crossing time. We compare the evolution of density and magnetic field structural morphology and quantify the differences in the density contrast generated by internal stresses for models of differing mean magnetization. We find that the values of β and nJ, but not the initial Mach number M, determine the time for cloud gravitational binding and collapse: for mean cloud density nH2=100 cm-3, unmagnetized models collapse after ~5 Myr, and magnetically supercritical models generally collapse after 5-10 Myr (although the smallest magneto-Jeans stable clouds survive gravitational collapse until t~15 Myr), while magnetically subcritical clouds remain uncollapsed over the entire simulations; these cloud collapse times scale with the mean density as

  11. Prediction of RNA secondary structure, including pseudoknotting, by computer simulation.

    PubMed Central

    Abrahams, J P; van den Berg, M; van Batenburg, E; Pleij, C

    1990-01-01

    A computer program is presented which determines the secondary structure of linear RNA molecules by simulating a hypothetical process of folding. This process implies the concept of 'nucleation centres', regions in RNA which locally trigger the folding. During the simulation, the RNA is allowed to fold into pseudoknotted structures, unlike all other programs predicting RNA secondary structure. The simulation uses published, experimentally determined free energy values for nearest neighbour base pair stackings and loop regions, except for new extrapolated values for loops larger than seven nucleotides. The free energy value for a loop arising from pseudoknot formation is set to a single, estimated value of 4.2 kcal/mole. Especially in the case of long RNA sequences, our program appears superior to other secondary structure predicting programs described so far, as tests on tRNAs, the LSU intron of Tetrahymena thermophila and a number of plant viral RNAs show. In addition, pseudoknotted structures are often predicted successfully. The program is written in mainframe APL and is adapted to run on IBM compatible PCs, Atari ST and Macintosh personal computers. On an 8 MHz 8088 standard PC without coprocessor, using STSC APL, it folds a sequence of 700 nucleotides in one and a half hour. PMID:1693421

  12. Superlarge-scale structure in N-body simulations

    NASA Astrophysics Data System (ADS)

    Doroshkevich, A. G.; Müller, V.; Retzlaff, J.; Turchaninov, V.

    1999-07-01

    The simulated matter distribution on large scales is studied using core-sampling, cluster analysis, inertia tensor analysis and minimal spanning tree techniques. Seven simulations in large boxes for five cosmological models with COBE-normalized CDM-like power spectra are studied. A wall-like superlarge-scale structure with parameters similar to the observed one is found for the OCDM and ΛCDM models with Οmh = 0.2-0.3. In these simulations, the rich structure elements with a typical value for the largest extension of ~(30 - 50) h-1 Mpc incorporate ~40 per cent of matter with overdensity of about 10 above the mean. These rich elements are formed by the anisotropic non-linear compression of sheets with an original size of ~(15-25) h-1 Mpc. They surround low-density regions with a typical diameter ~(50-70) h-1 Mpc. The statistical characteristics of these structures are found to be approximately consistent with observations and theoretical expectations. The cosmological models with higher matter density Ωm=1 in CDM with Harrison-Zeldovich or tilted power spectra cannot reproduce the characteristics of the observed galaxy distribution because of the very strong disruption of the rich structure elements. Another model with a broken scale-invariant initial power spectrum (BCDM) does not show enough matter concentration in the rich structure elements.

  13. Finite element simulation of adaptive aerospace structures with SMA actuators

    NASA Astrophysics Data System (ADS)

    Frautschi, Jason; Seelecke, Stefan

    2003-07-01

    The particular demands of aerospace engineering have spawned many of the developments in the field of adaptive structures. Shape memory alloys are particularly attractive as actuators in these types of structures due to their large strains, high specific work output and potential for structural integration. However, the requisite extensive physical testing has slowed development of potential applications and highlighted the need for a simulation tool for feasibility studies. In this paper we present an implementation of an extended version of the M'ller-Achenbach SMA model into a commercial finite element code suitable for such studies. Interaction between the SMA model and the solution algorithm for the global FE equations is thoroughly investigated with respect to the effect of tolerances and time step size on convergence, computational cost and accuracy. Finally, a simulation of a SMA-actuated flexible trailing edge of an aircraft wing modeled with beam elements is presented.

  14. Collapse pressure of coiled tubing

    SciTech Connect

    Yang, Y.S.

    1996-09-01

    The collapse pressure is a measure of an external force required to collapse a tube in the absence of internal pressure. It is defined as the minimum pressure required to yield the tube in the absence of internal pressure. Coiled tubing is sometimes used in high-pressure wells. If the external pressure becomes too high, the coiled tubing will collapse. This could not only lead to serious well-control problems, but may result in extensive fishing operations. A reliable safety criterion of collapse pressure for the coiled tubing is needed by the coiled tubing operators. Theoretical models of collapse pressure are well developed for perfectly round coiled tubing but not for oval coiled tubing. Coiled tubing is initially manufactured with nearly perfect roundness, sometimes having a small ovality (typically {le} 0.5%). Perfectly round CT becomes oval owing to the plastic mechanical deformation of the coiled tubing as it spooled on and off the reel and over the gooseneck. As the cycling continues, the ovality usually increases. This ovality significantly decreases the collapse failure pressure as compared to perfectly round tubing. In this paper, an analytical model of collapse pressure for oval tubing under axial tension or compression is developed based on elastic instability theory and the von Mises criterion. The theoretical model shows satisfactory agreement with experimental data.

  15. Structure of Alzheimer's 10-35 β peptide from replica-exchange molecular dynamics simulations in explicit water

    NASA Astrophysics Data System (ADS)

    Baumketner, Andriy; Shea, Joan-Emma

    2006-03-01

    We report a replica-exchange molecular dynamics study of the 10-35 fragment of Alzheimer's disease amyloid β peptide, Aβ10-35, in aqueous solution. This fragment was previously seen [J. Str. Biol. 130 (2000) 130] to possess all the most important amyloidogenic properties characteristic of full-length Aβ peptides. Our simulations attempted to fold Aβ10-35 from first principles. The peptide was modeled using all-atom OPLS/AA force field in conjunction with the TIP3P explicit solvent model. A total of 72 replicas were considered and simulated over 40 ns of total time, including 5 ns of initial equilibration. We find that Aβ10-35 does not possess any unique folded state, a 3D structure of predominant population, under normal temperature and pressure. Rather, this peptide exists as a mixture of collapsed globular states that remain in rapid dynamic equilibrium with each other. This conformational ensemble is seen to be dominated by random coil and bend structures with insignificant presence of α-helical or β-sheet structure. We find that, overall, the 3D structure of Aβ10-35 is shaped by salt bridges formed between oppositely charged residues.Of all possible salt bridges, K28-D23 was seen to have the highest formation probability, totaling more than 60% of the time.

  16. Simulation of Rutherford backscattering spectrometry from arbitrary atom structures

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Nordlund, K.; Djurabekova, F.; Zhang, Y.; Velisa, G.; Wang, T. S.

    2016-10-01

    Rutherford backscattering spectrometry in a channeling direction (RBS/C) is a powerful tool for analysis of the fraction of atoms displaced from their lattice positions. However, it is in many cases not straightforward to analyze what is the actual defect structure underlying the RBS/C signal. To reveal insights of RBS/C signals from arbitrarily complex defective atomic structures, we develop here a method for simulating the RBS/C spectrum from a set of arbitrary read-in atom coordinates (obtained, e.g., from molecular dynamics simulations). We apply the developed method to simulate the RBS/C signals from Ni crystal structures containing randomly displaced atoms, Frenkel point defects, and extended defects, respectively. The RBS/C simulations show that, even for the same number of atoms in defects, the RBS/C signal is much stronger for the extended defects. Comparison with experimental results shows that the disorder profile obtained from RBS/C signals in ion-irradiated Ni is due to a small fraction of extended defects rather than a large number of individual random atoms.

  17. Simulation of Rutherford backscattering spectrometry from arbitrary atom structures

    DOE PAGES

    Zhang, S.; Univ. of Helsinki; Nordlund, Kai; ...

    2016-10-25

    Rutherford backscattering spectrometry in a channeling direction (RBS/C) is a powerful tool for analysis of the fraction of atoms displaced from their lattice positions. However, it is in many cases not straightforward to analyze what is the actual defect structure underlying the RBS/C signal. To reveal insights of RBS/C signals from arbitrarily complex defective atomic structures, we develop in this paper a method for simulating the RBS/C spectrum from a set of arbitrary read-in atom coordinates (obtained, e.g., from molecular dynamics simulations). We apply the developed method to simulate the RBS/C signals from Ni crystal structures containing randomly displaced atoms,more » Frenkel point defects, and extended defects, respectively. The RBS/C simulations show that, even for the same number of atoms in defects, the RBS/C signal is much stronger for the extended defects. Finally, comparison with experimental results shows that the disorder profile obtained from RBS/C signals in ion-irradiated Ni is due to a small fraction of extended defects rather than a large number of individual random atoms.« less

  18. Simulation of Rutherford backscattering spectrometry from arbitrary atom structures

    SciTech Connect

    Zhang, S.; Nordlund, Kai; Djurabekova, Flyura; Zhang, Yanwen; Velisa, Gihan; Wang, T. S.

    2016-10-25

    Rutherford backscattering spectrometry in a channeling direction (RBS/C) is a powerful tool for analysis of the fraction of atoms displaced from their lattice positions. However, it is in many cases not straightforward to analyze what is the actual defect structure underlying the RBS/C signal. To reveal insights of RBS/C signals from arbitrarily complex defective atomic structures, we develop in this paper a method for simulating the RBS/C spectrum from a set of arbitrary read-in atom coordinates (obtained, e.g., from molecular dynamics simulations). We apply the developed method to simulate the RBS/C signals from Ni crystal structures containing randomly displaced atoms, Frenkel point defects, and extended defects, respectively. The RBS/C simulations show that, even for the same number of atoms in defects, the RBS/C signal is much stronger for the extended defects. Finally, comparison with experimental results shows that the disorder profile obtained from RBS/C signals in ion-irradiated Ni is due to a small fraction of extended defects rather than a large number of individual random atoms.

  19. Simulation of the photogrammetric appendage structural dynamics experiment

    NASA Technical Reports Server (NTRS)

    Pappa, Richard S.; Gilbert, Michael G.; Welch, Sharon S.

    1995-01-01

    The Photogrammetric Appendage Structural Dynamics Experiment (PASDE) uses six video cameras in the Space Shuttle cargo bay to measure vibration of the Russian Mir space station Kvant-ll solar array. It occurs on Shuttle/Mir docking mission STS-74 scheduled for launch in November 1995. The objective of PASDE is to demonstrate photogrammetric technology for measuring 'untargeted' spacecraft appendage structural dynamics. This paper discusses a pre-flight simulation test conducted in July 1995, focusing on the image processing aspects. The flight camera system recorded vibrations of a full-scale structural test article having grids of white lines on black background, similar in appearance to the Mir solar array. Using image correlation analysis, line intersections on the structure are tracked in the video recordings to resolutions of less than 0.1 pixel. Calibration and merging of multiple camera views generated 3-dimensional displacements from which structural modal parameters are then obtained.

  20. Research of TREETOPS Structural Dynamics Controls Simulation Upgrade

    NASA Technical Reports Server (NTRS)

    Yates, Rose M.

    1996-01-01

    Under the provisions of contract number NAS8-40194, which was entitled 'TREETOPS Structural Dynamics and Controls Simulation System Upgrade', Oakwood College contracted to produce an upgrade to the existing TREETOPS suite of analysis tools. This suite includes the main simulation program, TREETOPS, two interactive preprocessors, TREESET and TREEFLX, an interactive post processor, TREEPLOT, and an adjunct program, TREESEL. A 'Software Design Document', which provides descriptions of the argument lists and internal variables for each subroutine in the TREETOPS suite, was established. Additionally, installation guides for both DOS and UNIX platforms were developed. Finally, updated User's Manuals, as well as a Theory Manual, were generated.

  1. Simulation of blast action on civil structures using ANSYS Autodyn

    NASA Astrophysics Data System (ADS)

    Fedorova, N. N.; Valger, S. A.; Fedorov, A. V.

    2016-10-01

    The paper presents the results of 3D numerical simulations of shock wave spreading in cityscape area. ANSYS Autodyne software is used for the computations. Different test cases are investigated numerically. On the basis of the computations, the complex transient flowfield structure formed in the vicinity of prismatic bodies was obtained and analyzed. The simulation results have been compared to the experimental data. The ability of two numerical schemes is studied to correctly predict the pressure history in several gauges placed on walls of the obstacles.

  2. Hydrodynamic Simulations of the Growth of Cosmological Structure: Summary and Comparisons among Scenarios

    NASA Astrophysics Data System (ADS)

    Ostriker, Jeremiah P.; Cen, Renyue

    1996-06-01

    We compute, including a current state-of-the-art treatment of hydrodynamical processes, heating, and cooling, a variety of cosmological models into the extreme nonlinear phase to enable comparisons with observations. First, we note the common, model-independent results. All have a mean (z = 0) temperature of 104.5 - 105.5 K, set essentially by photoheating processes. Most gas is in one of two components: either at the photoheating floor 104.5 K and primarily in low-density regions, or else shock heated to 105-106 K and in regions of moderate overdensity (in caustics and near groups and clusters). It presents a major challenge to observationally detect this second, abundant component, since it is neither an efficient radiator nor an efficient absorber. About 2%-1O% of the baryons cool and collapse into galaxies forming on caustics and migrating to clusters. About 1%-2% of baryons are in the very hot X-ray-emitting gas near cluster cores, in good agreement with observations. These correspondences between the simulations and the real world imply that there is some significant truth to the underlying standard scenarios for the growth of structure. The differences among model predictions may help us find the path to the correct model. For COBE-normalized models, the most relevant differences concern epoch of structure formation. In the open variants having Ω = 0.3, with or without a cosmological constant, structure formation on galactic scales is well advanced at redshift z = 5, and reionization occurs early. But if observations require models for which most galaxy formation occurs more recently than z = 2, then the flat Ω = 1 models are to be preferred. The velocity dispersion on the 1 h-1 Mpc scale also provides a strong discriminant with, as expected, the ω = 1 models giving a much higher (perhaps too high) value for that statistic.

  3. Discrete element simulations of gravitational volcanic deformation. 1; Deformation structures and geometries

    NASA Technical Reports Server (NTRS)

    Morgan, Julia K.; McGovern, Patrick J.

    2005-01-01

    We have carried out two-dimensional particle dynamics simulations of granular piles subject to frictional Coulomb failure criteria to gain a first-order understanding of different modes of gravitational deformation within volcanoes. Under uniform basal and internal strength conditions, granular piles grow self-similarly, developing distinctive stratigraphies, morphologies, and structures. Piles constructed upon cohesive substrates exhibit particle avalanching, forming outward dipping strata and angle of repose slopes. Systematic decreases in basal strength lead to progressively deeper and steeper internal detachment faults and slip along a basal decollement; landslide forms grade from shallow slumps to deep-seated landslide and, finally, to axial subsidence and outward flank displacements, or volcanic spreading. Surface slopes decrease and develop concave up morphologies with decreasing decollement strength; depositional layers tilt progressively inward. Spatial variations in basal strength cause lateral transitions in pile structure, stratigraphy, and morphology. This approximation of volcanoes as Coulomb granular piles reproduces the richness of deformational structures and surface morphologies in many volcanic settings. The gentle slopes of Hawaiian volcanoes and Olympus Mons on Mars suggest weak basal decollements that enable volcanic spreading. High-angle normal faults, favored above weak decollements, are interpreted in both settings and may explain catastrophic sector collapse in Hawaii and broad aureole deposits surrounding Olympus Mons. In contrast, steeper slopes and shallow detachment faults predominate in the Canary Islands, thought to lack a weak decollement, favoring smaller, more frequent slope failures than predicted for Hawaii. The numerical results provide a useful predictive tool for interpreting dynamic behavior and associated geologic hazards of active volcanoes.

  4. Simulation of Aircraft Engine Blade-Out Structural Dynamics. Revised

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles; Carney, Kelly; Gallardo, Vicente

    2001-01-01

    A primary concern of aircraft structure designers is the accurate simulation of the blade-out event and the subsequent windmilling of the engine. Reliable simulations of the blade-out event are required to insure structural integrity during flight as well as to guarantee successful blade-out certification testing. The system simulation includes the lost blade loadings and the interactions between the rotating turbomachinery and the remaining aircraft structural components. General-purpose finite element structural analysis codes such as MSC NASTRAN are typically used and special provisions are made to include transient effects from the blade loss and rotational effects resulting from the engine's turbomachinery. The present study provides the equations of motion for rotordynamic response including the effect of spooldown speed and rotor unbalance and examines the effects of these terms on a cantilevered rotor. The effect of spooldown speed is found to be greater with increasing spooldown rate. The parametric term resulting from the mass unbalance has a more significant effect on the rotordynamic response than does the spooldown term. The parametric term affects both the peak amplitudes as well as the resonant frequencies of the rotor.

  5. Simulation of Aircraft Engine Blade-Out Structural Dynamics

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles; Carney, Kelly; Gallardo, Vicente

    2001-01-01

    A primary concern of aircraft structure designers is the accurate simulation of the blade-out event and the subsequent windmilling of the engine. Reliable simulations of the blade-out event are required to insure structural integrity during flight as well as to guarantee successful blade-out certification testing. The system simulation includes the lost blade loadings and the interactions between the rotating turbomachinery and the remaining aircraft structural components. General-purpose finite element structural analysis codes such as MSC NASTRAN are typically used and special provisions are made to include transient effects from the blade loss and rotational effects resulting from the engine's turbomachinery. The present study provides the equations of motion for rotordynamic response including the effect of spooldown speed and rotor unbalance and examines the effects of these terms on a cantilevered rotor. The effect of spooldown speed is found to be greater with increasing spooldown rate. The parametric term resulting from the mass unbalance has a more significant effect on the rotordynamic response than does the spooldown term. The parametric term affects both the peak amplitudes as well as the resonant frequencies of the rotor.

  6. Superlarge-Scale Structure in N-Body Simulations

    NASA Astrophysics Data System (ADS)

    Doroshkevich, A. G.; Muller, V.; Retzlaff, J.; Turchaninov, V.

    The simulated matter distribution on large scales is studied using core-sampling, cluster analysis, inertia tensor analysis, and minimal spanning tree techniques. Seven simulations in large boxes for five cosmological models with COBE normalized CDM-like power spectra are studied. The wall-like Super Large Scale Structure with parameters similar to the observed one is found for the OCDM and LambdaCDM models with Omega_mh = 0.2 -- 0.3. In these simulations, the rich structure elements with typical diameters geq 20h^{-1}Mpc incorporate ~40% of matter at an overdensity of about 10 above the mean. These rich elements are formed due to the nonlinear matter compression within sheet-like structures with a typical thickness ~(15 - 20) h^{-1}Mpc. They surround underdense regions with a typical diameter ~(50 - 70)h^{-1}Mpc. The statistical characteristics of these elements are found to be approximately consistent with observations and theoretical expectations. The cosmological models with higher matter density Omega_m = 1 in CDM and tilted or break power spectra cannot reproduce the characteristics of the observed galaxy distribution due to the very strong disruption of the rich structure elements. School of Physics, University of New South Wales, Sydney 2052, Australia

  7. Effect of confinement on the collapsing mechanism of a flexible polymer chain.

    PubMed

    Das, Siddhartha; Chakraborty, Suman

    2010-11-07

    In this paper, Brownian dynamics simulation (BDS) studies are executed to demonstrate the distinctive influences of the extent of confinement on the collapsing mechanism and kinetics of a flexible hydrophobic polymer chain in a poor solvent. The collapsing behavior is quantified by the time of collapse, which below a critical dimension of the confinement (h(c)), encounters a drastic reduction with a further strengthening in the degree of confinement. For dimensions greater than this critical one, the collapse occurs through the well-known hydrodynamic interaction (HI) controlled multiple-globule-mediated mechanisms. However, for channel dimensions less than this critical one, the collapse mechanism is drastically altered. Under such circumstances, the collapse gets predominantly controlled by the confinement effects (with negligible contribution of the HIs) and occurs via the formation of a single central globule. This central globule rapidly engulfs the noncondensed polymer segments, and in the process largely hastens up the collapsing event. Under such circumstances, the collapse time is found to decrease linearly with decrements in the channel height. On the contrary, for channel heights greater than h(c), the multiple-globule-mediated collapse is characterized by a collapse time that shows an exponential dependence on the channel height, rapidly attaining a state in which the confinement effect becomes inconsequential and HIs dictate the entire collapsing behavior. We further propose detailed arguments based on physical reasoning as well as free energy estimations to conclusively support the qualitative and quantitative nature of influences of the confinement on the polymer collapse.

  8. A simulated force generator with an adaptive command structure

    NASA Astrophysics Data System (ADS)

    Hanes, P. Jeff

    2006-05-01

    The Force Laydown Automated Generator (FLAG) is a script-driven behavior model that automatically creates military formations from the platoon level up to division level for use in simulations built on the FLAMES simulation framework. The script allows users to define formation command structure, command relationships, vehicle type and equipment, and behaviors. We have used it to automatically generate more than 3000 units in a single simulation. Currently, FLAG is used in the Air Force Research Laboratory Munitions Directorate (AFRL/MN) to assist their Comprehensive Analysis Process (CAP). It produces a reasonable threat laydown of red forces for testing their blue concept weapons. Our success in the application of FLAG leads us to believe that it offers an invaluable potential for use in training environments and other applications that need a large number of reactive, adaptive forces - red or blue.

  9. SAR image simulation and verification for urban structures

    NASA Astrophysics Data System (ADS)

    Weijie, Xia; Xiaojie, Wei

    2016-02-01

    The application of high-resolution space-borne Synthetic Aperture Radar (SAR) becomes more and more popular because of its all-weather and all-time data acquisition capability. However, the interpretation of SAR image can be rather difficult since there are tremendous differences between SAR images and optical images. SAR image simulation is helpful for interpreting SAR images. In this article, a practical approach of SAR image simulation is proposed for urban structures based on Incremental Length Diffraction Coefficients and Shooting and Bouncing Rays (SBR). SBR adopts both GO (Geometrical Optics) and PO (Physical Optics) to calculate the scattered field of targets. Models of buildings with slope roof and flat roof are simulated and inversed. Inversion results coincide well with models and verify the high precision of our approach.

  10. On the number density of `direct collapse' black hole seeds

    NASA Astrophysics Data System (ADS)

    Habouzit, Mélanie; Volonteri, Marta; Latif, Muhammad; Dubois, Yohan; Peirani, Sébastien

    2016-11-01

    Supermassive black holes (BHs) reside in the centre of most local galaxies, but they also power active galactic nuclei and quasars, detected up to z = 7. These quasars put constraints on early BH growth and the mass of BH seeds. The scenario of `direct collapse' is appealing as it leads to the formation of large mass BH seeds, 104-106 M⊙, which eases explaining how quasars at z = 6-7 are powered by BHs with masses >109 M⊙. Direct collapse, however, appears to be rare, as the conditions required by the scenario are that gas is metal-free, the presence of a strong photodissociating Lyman-Werner flux, and large inflows of gas at the centre of the halo, sustained for 10-100 Myr. We performed several cosmological hydrodynamical simulations that cover a large range of box sizes and resolutions, thus allowing us to understand the impact of several physical processes on the distribution of direct collapse BHs. We identify haloes where direct collapse can happen, and derive the number density of BHs. We also investigate the discrepancies between hydrodynamical simulations, direct or post-processed, and semi-analytical studies. Under optimistic assumptions, we find that for direct collapse to account for BHs in normal galaxies, the critical Lyman-Werner flux required for direct collapse must be about two orders of magnitude lower than predicted by 3D simulations that include detailed chemical models. However, when supernova feedback is relatively weak, enough direct collapse BHs to explain z = 6-7 quasars can be obtained for Lyman-Werner fluxes about one order of magnitude lower than found in 3D simulations.

  11. Essential ingredients in core-collapse supernovae

    SciTech Connect

    Hix, W. Raphael; Lentz, Eric J.; Chertkow, M. Austin; Harris, J. Austin; Endeve, Eirik; Baird, Mark; Messer, O. E. Bronson; Mezzacappa, Anthony; Bruenn, Stephen; Blondin, John

    2014-04-15

    Carrying 10{sup 44} joules of kinetic energy and a rich mix of newly synthesized atomic nuclei, core-collapse supernovae are the preeminent foundries of the nuclear species which make up our solar system and ourselves. Signaling the inevitable death of a massive star, and the birth of a neutron star or black hole, core-collapse supernovae combine physics over a wide range in spatial scales, from kilometer-sized hydrodynamic motions (eventually growing to gigameter scale) down to femtometer-scale nuclear reactions. We will discuss our emerging understanding of the convectively-unstable, neutrino-driven explosion mechanism, based on increasingly realistic neutrino radiation hydrodynamic simulations that include progressively better nuclear and particle physics. Multi-dimensional models with spectral neutrino transport from several research groups, which slowly develop successful explosions for a range of progenitors, have recently motivated changes in our understanding of the neutrino reheating mechanism. In a similar fashion, improvements in nuclear physics, most notably explorations of weak interactions on nuclei and the nuclear equation of state, continue to refine our understanding of the births of neutron stars and the supernovae that result. Recent progress on both the macroscopic and microscopic effects that affect core-collapse supernovae are discussed.

  12. Essential Ingredients in Core-collapse Supernovae

    DOE PAGES

    Hix, William Raphael; Lentz, E. J.; Endeve, Eirik; ...

    2014-03-27

    Marking the inevitable death of a massive star, and the birth of a neutron star or black hole, core-collapse supernovae bring together physics at a wide range in spatial scales, from kilometer-sized hydrodynamic motions (eventually growing to gigameter scale) down to femtometer scale nuclear reactions. Carrying 10more » $$^{44}$$ joules of kinetic energy and a rich-mix of newly synthesized atomic nuclei, core-collapse supernovae are the preeminent foundries of the nuclear species which make up ourselves and our solar system. We will discuss our emerging understanding of the convectively unstable, neutrino-driven explosion mechanism, based on increasingly realistic neutrino-radiation hydrodynamic simulations that include progressively better nuclear and particle physics. Recent multi-dimensional models with spectral neutrino transport from several research groups, which slowly develop successful explosions for a range of progenitors, have motivated changes in our understanding of the neutrino reheating mechanism. In a similar fashion, improvements in nuclear physics, most notably explorations of weak interactions on nuclei and the nuclear equation of state, continue to refine our understanding of how supernovae explode. Recent progress on both the macroscopic and microscopic effects that affect core-collapse supernovae are discussed.« less

  13. Essential Ingredients in Core-collapse Supernovae

    SciTech Connect

    Hix, William Raphael; Lentz, E. J.; Endeve, Eirik; Baird, Mark L.; Chertkow, Merek A.; Harris, James A.; Messer, Bronson; Mezzacappa, Anthony; Bruenn, S. W.; Blondin, J. M.

    2014-03-27

    Marking the inevitable death of a massive star, and the birth of a neutron star or black hole, core-collapse supernovae bring together physics at a wide range in spatial scales, from kilometer-sized hydrodynamic motions (eventually growing to gigameter scale) down to femtometer scale nuclear reactions. Carrying 10$^{44}$ joules of kinetic energy and a rich-mix of newly synthesized atomic nuclei, core-collapse supernovae are the preeminent foundries of the nuclear species which make up ourselves and our solar system. We will discuss our emerging understanding of the convectively unstable, neutrino-driven explosion mechanism, based on increasingly realistic neutrino-radiation hydrodynamic simulations that include progressively better nuclear and particle physics. Recent multi-dimensional models with spectral neutrino transport from several research groups, which slowly develop successful explosions for a range of progenitors, have motivated changes in our understanding of the neutrino reheating mechanism. In a similar fashion, improvements in nuclear physics, most notably explorations of weak interactions on nuclei and the nuclear equation of state, continue to refine our understanding of how supernovae explode. Recent progress on both the macroscopic and microscopic effects that affect core-collapse supernovae are discussed.

  14. Essential ingredients in core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Hix, W. Raphael; Lentz, Eric J.; Endeve, Eirik; Baird, Mark; Chertkow, M. Austin; Harris, J. Austin; Messer, O. E. Bronson; Mezzacappa, Anthony; Bruenn, Stephen; Blondin, John

    2014-04-01

    Carrying 1044 joules of kinetic energy and a rich mix of newly synthesized atomic nuclei, core-collapse supernovae are the preeminent foundries of the nuclear species which make up our solar system and ourselves. Signaling the inevitable death of a massive star, and the birth of a neutron star or black hole, core-collapse supernovae combine physics over a wide range in spatial scales, from kilometer-sized hydrodynamic motions (eventually growing to gigameter scale) down to femtometer-scale nuclear reactions. We will discuss our emerging understanding of the convectively-unstable, neutrino-driven explosion mechanism, based on increasingly realistic neutrino radiation hydrodynamic simulations that include progressively better nuclear and particle physics. Multi-dimensional models with spectral neutrino transport from several research groups, which slowly develop successful explosions for a range of progenitors, have recently motivated changes in our understanding of the neutrino reheating mechanism. In a similar fashion, improvements in nuclear physics, most notably explorations of weak interactions on nuclei and the nuclear equation of state, continue to refine our understanding of the births of neutron stars and the supernovae that result. Recent progress on both the macroscopic and microscopic effects that affect core-collapse supernovae are discussed.

  15. Magnetorotatioal Collapse of Supermassive Stars: Black Hole Formation and Jets

    NASA Astrophysics Data System (ADS)

    Sun, Lunan; Paschalidis, Vasileios; Ruiz, Milton; Shapiro, Stuart

    2017-01-01

    We perform magnetohydrodynamic simulations in full general relativity of the collapse of radially unstable, uniformly rotating, massive stars to black holes. The stars spin at the mass-shedding limit, account for magnetic fields and obey a Γ = 4/3 EOS. The calculations lift the restriction of axisymmetry imposed in previous simulations. Our simulations model the direct collapse of supermassive stars to supermassive BHs (>=104M⊙) at high cosmological redshifts, which may explain the appearance of supermassive BHs and quasars by z 7. They also crudely model the collapse of massive Pop III stars to massive BHs, which could power some of the long gamma-ray bursts observed by FERMI and SWIFT at z 6-8. We analyze the properties of the electromagnetic and gravitational wave signatures of these events and discuss the detectability of such multimessenger sources.

  16. Concentration, ellipsoidal collapse, and the densest dark matter haloes

    NASA Astrophysics Data System (ADS)

    Okoli, Chiamaka; Afshordi, Niayesh

    2016-03-01

    The smallest dark matter haloes are the first objects to form in the hierarchical structure formation of cold dark matter (CDM) cosmology and are expected to be the densest and most fundamental building blocks of CDM structures in our Universe. Nevertheless, the physical characteristics of these haloes have stayed illusive, as they remain well beyond the current resolution of N-body simulations (at redshift zero). However, they dominate the predictions (and uncertainty) in expected dark matter annihilation signal, amongst other astrophysical observables. Using the conservation of total energy and the ellipsoidal collapse framework, we can analytically find the mean and scatter of concentration c and 1D velocity dispersion σ1d for haloes of different virial mass M200. Both c and σ _1d/M_{200}^{1/3} are in good agreement with numerical results within the regime probed by simulations - slowly decreasing functions of mass that approach constant values at large masses. In particular, the predictions for the 1D velocity dispersion of cluster mass haloes are surprisingly robust as the inverse heat capacity of cosmological haloes crosses zero at M200 ˜ 1014 M⊙. However, we find that current extrapolations from simulations to smallest CDM haloes dramatically depend on the assumed profile (e.g. NFW versus Einasto) and fitting function, which is why theoretical considerations, such as the one presented here, can significantly constrain the range of feasible predictions.

  17. Structure and diffusion in simulated liquid GaAs

    NASA Astrophysics Data System (ADS)

    Hanh, T. T. T.; Hoang, V. V.

    2010-03-01

    Structure and diffusion of Ga and As ions in simulated liquid GaAs have been studied in a model containing 3000 ions under periodic boundary conditions via molecular dynamics simulation (MD). The microstructure of systems has been analyzed through partial radial distribution functions (PRDFs), coordination number distributions, bond-angle distributions and interatomic distances. We found that calculated data agree well with the experimental ones. Temperature dependence of these distributions was obtained. Caculations show that liquid GaAs model with a real density at 5.3176 g cm-3 has a distorted tetrahedral network structure with the mean coordination number ZAs-Ga ≈ 4. Diffusion constant D in system has been calculated over temperatures ranged from 5000 K down to 1500 K. Calculations show that the temperature dependence of the diffusion constant D shows an Arrhenius law at relatively low temperatures above the melting point and it shows a power law, D˜ (T - Tc)γ, at higher temperatures.

  18. A Modal Model to Simulate Typical Structural Dynamic Nonlinearity

    SciTech Connect

    Pacini, Benjamin Robert; Mayes, Randall L.; Roettgen, Daniel R

    2015-10-01

    Some initial investigations have been published which simulate nonlinear response with almost traditional modal models: instead of connecting the modal mass to ground through the traditional spring and damper, a nonlinear Iwan element was added. This assumes that the mode shapes do not change with amplitude and there are no interactions between modal degrees of freedom. This work expands on these previous studies. An impact experiment is performed on a structure which exhibits typical structural dynamic nonlinear response, i.e. weak frequency dependence and strong damping dependence on the amplitude of vibration. Use of low level modal test results in combination with high level impacts are processed using various combinations of modal filtering, the Hilbert Transform and band-pass filtering to develop response data that are then fit with various nonlinear elements to create a nonlinear pseudo-modal model. Simulations of forced response are compared with high level experimental data for various nonlinear element assumptions.

  19. Field-theoretic simulations of random copolymers with structural rigidity.

    PubMed

    Mao, Shifan; MacPherson, Quinn; Qin, Jian; Spakowitz, Andrew J

    2017-04-12

    Copolymers play an important role in a range of soft-materials applications and biological phenomena. Prevalent works on block copolymer phase behavior use flexible chain models and incorporate interactions using a mean-field approximation. However, when phase separation takes place on length scales comparable to a few monomers, the structural rigidity of the monomers becomes important. In addition, concentration fluctuations become significant at short length scales, rendering the mean-field approximation invalid. In this work, we use simulation to address the role of finite monomer rigidity and concentration fluctuations in microphase segregation of random copolymers. Using a field-theoretic Monte-Carlo simulation of semiflexible polymers with random chemical sequences, we generate phase diagrams for random copolymers. We find that the melt morphology of random copolymers strongly depends on chain flexibility and chemical sequence correlation. Chemically anti-correlated copolymers undergo first-order phase transitions to local lamellar structures. With increasing degree of chemical correlation, this first-order phase transition is softened, and melts form microphases with irregular shaped domains. Our simulations in the homogeneous phase exhibit agreement with the density-density correlation from mean-field theory. However, conditions near a phase transition result in deviations between simulation and mean-field theory for the density-density correlation and the critical wavemode. Chain rigidity and sequence randomness lead to frustration in the segregated phase, introducing heterogeneity in the resulting morphologies.

  20. Fluid Structure Interaction Simulations of Pediatric Ventricular Assist Device Operation

    NASA Astrophysics Data System (ADS)

    Long, Chris; Marsden, Alison; Bazilevs, Yuri

    2011-11-01

    Pediatric ventricular assist devices (PVADs) are used for mechanical circulatory support in children with failing hearts. They can be used to allow the heart to heal naturally or to extend the life of the patient until transplant. A PVAD has two chambers, blood and air, separated by a flexible membrane. The air chamber is pressurized, which drives the membrane and pumps the blood. The primary risk associated with these devices is stroke or embolism from thrombogenesis. Simulation of these devices is difficult due to a complex coupling of two fluid domains and a thin membrane, requiring fluid-structure interaction modeling. The goal of this work is to accurately simulate the hemodynamics of a PVAD. We perform FSI simulations using an Arbitrary Lagrangian-Eulerian (ALE) finite element framework to account for large motions of the membrane and the fluid domains. The air, blood, and membrane are meshed as distinct subdomains, and a method for non-matched discretizations at the fluid-structure interface is presented. The use of isogeometric analysis to model the membrane mechanics is also discussed, and the results of simulations are presented.

  1. Dark Current Simulation for Linear Collider Accelerator Structures

    SciTech Connect

    Ng, C.K.; Li, Z.; Zhan, X.; Srinivas, V.; Wang, J.; Ko, K.; /SLAC

    2011-08-25

    The dynamics of field-emitted electrons in the traveling wave fields of a constant gradient (tapered) disk-loaded waveguide is followed numerically. Previous simulations have been limited to constant impedance (uniform) structures for sake of simplicity since only the fields in a unit cell is needed. Using a finite element field solver on a parallel computer, the fields in the tapered structure can now be readily generated. We will obtain the characteristics of the dark current emitted from both structure types and compare the two results with and without the effect of secondary electrons. The NLC and JLC detuned structures are considered to study if dark current may pose a problem for high gradient acceleration in the next generation of Linear Colliders.

  2. Stability of Flow Through Collapsible Tubes

    NASA Astrophysics Data System (ADS)

    Hamadiche, M.; Gad-El-Hak, M.

    2000-11-01

    The stability of the Hagen--Poiseuille flow of a Newtonian fluid in an incompressible, collapsible, viscoelastic tube is determined using linear stability analysis. The temporal stability of the system subjected to infinitesimal axisymmetric or non-axisymmetric disturbances is considered. A novel numerical strategy is introduced to study the stability of the coupled fluid--structure system. The strategy alleviates the need for an initial guess and thus ensuring that all the unstable modes within a given closed region in the complex eigenvalue plane will be found. The parameters of the system are chosen such that it is stable if the duct is not allowed to collapse, in this way the unstable modes found are expected to be unique to collapsible tubes. Three different unstable modes are found and the present results are in excellent agreement with the experiments of Bertram and Godbole (J. Fluids & Structures 9, pp. 257--277,1995). Two of the unstable modes have approximately the same frequency which is about a third of the frequency of the third mode. Moreover, the high-frequency mode is non-axisymmetric while one of the low-frequency modes is axisymmetric and the other one non-axisymmetric. The variation of all three unstable modes with the pliability of the duct and the other control parameters of the system will be discussed.

  3. Tracking Non-rigid Structures in Computer Simulations

    SciTech Connect

    Gezahegne, A; Kamath, C

    2008-01-10

    A key challenge in tracking moving objects is the correspondence problem, that is, the correct propagation of object labels from one time step to another. This is especially true when the objects are non-rigid structures, changing shape, and merging and splitting over time. In this work, we describe a general approach to tracking thousands of non-rigid structures in an image sequence. We show how we can minimize memory requirements and generate accurate results while working with only two frames of the sequence at a time. We demonstrate our results using data from computer simulations of a fluimix problem.

  4. Structure identification methods for atomistic simulations of crystalline materials

    DOE PAGES

    Stukowski, Alexander

    2012-05-28

    Here, we discuss existing and new computational analysis techniques to classify local atomic arrangements in large-scale atomistic computer simulations of crystalline solids. This article includes a performance comparison of typical analysis algorithms such as common neighbor analysis (CNA), centrosymmetry analysis, bond angle analysis, bond order analysis and Voronoi analysis. In addition we propose a simple extension to the CNA method that makes it suitable for multi-phase systems. Finally, we introduce a new structure identification algorithm, the neighbor distance analysis, which is designed to identify atomic structure units in grain boundaries.

  5. Environmental consequences of the Retsof Salt Mine roof collapse

    USGS Publications Warehouse

    Yager, Richard M.

    2013-01-01

    In 1994, the largest salt mine in North America, which had been in operation for more than 100 years, catastrophically flooded when the mine ceiling collapsed. In addition to causing the loss of the mine and the mineral resources it provided, this event formed sinkholes, caused widespread subsidence to land, caused structures to crack and subside, and changed stream flow and erosion patterns. Subsequent flooding of the mine drained overlying aquifers, changed the groundwater salinity distribution (rendering domestic wells unusable), and allowed locally present natural gas to enter dwellings through water wells. Investigations including exploratory drilling, hydrologic and water-quality monitoring, geologic and geophysical studies, and numerical simulation of groundwater flow, salinity, and subsidence have been effective tools in understanding the environmental consequences of the mine collapse and informing decisions about management of those consequences for the future. Salt mines are generally dry, but are susceptible to leaks and can become flooded if groundwater from overlying aquifers or surface water finds a way downward into the mined cavity through hundreds of feet of rock. With its potential to flood the entire mine cavity, groundwater is a constant source of concern for mine operators. The problem is compounded by the viscous nature of salt and the fact that salt mines commonly lie beneath water-bearing aquifers. Salt (for example halite or potash) deforms and “creeps” into the mined openings over time spans that range from years to centuries. This movement of salt can destabilize the overlying rock layers and lead to their eventual sagging and collapse, creating permeable pathways for leakage of water and depressions or openings at land surface, such as sinkholes. Salt is also highly soluble in water; therefore, whenever water begins to flow into a salt mine, the channels through which it flows increase in diameter as the surrounding salt dissolves

  6. Simulations of glass surfaces structure, water adsorption, and bond rupture

    NASA Astrophysics Data System (ADS)

    Garofalini, Stephen H.

    1990-12-01

    Molecular dynamics simulations of the structure of silica glass surfaces formed in a perfect vacuum as well as in the presence of a water vapor show the type, location, and concentration of specific features formed in the surface. A bond rupture mechanism which causes silanol formation far removed from the original reaction site is observed. The 3-membered ring is proposed as a site for H adsorption in the glass.

  7. Structural Analysis of Welded Connections Using Creo Simulate (trademark)

    DTIC Science & Technology

    2014-04-07

    structures presents specific difficulties not encountered when simulating solid parts (billet, castings, and forgings ) or bolted assemblies. This report will...preferred welding process is manual GTAW with a filler metal that produces 70 ksi ultimate strength weld metal . Fillers of this classification... metal can’t exceed 40% of the material’s yield strength (16.8 ksi). Several stress measurements can be taken over the geometry of interest using the

  8. Simulation of interdigitated back contact solar cell with trench structure

    NASA Astrophysics Data System (ADS)

    Kim, Soo Min; Chun, Seungju; Kang, Min Gu; Song, Hee-Eun; Lee, Jong-Han; Boo, Hyunpil; Bae, Soohyun; Kang, Yoonmook; Lee, Hae-Seok; Kim, Donghwan

    2015-02-01

    We performed two-dimensional technology computer-aided design simulations for interdigitated back contact (IBC) solar cells with rear trench structures (TS), denoted here as TS-IBC solar cells. First, we calculated a reference simulation model for conventional IBC solar cells. We then assumed a trench structure at the rear surface of the IBC solar cell. For this structure, we analyzed solar cell performance as a function of various trench depths and type. It was found that emitter trench formation affects minority carrier collection, such that the short-circuit current density increases with increasing trench depth. However, the back-surface field (BSF) trench exhibited poor minority carrier collection, which reduced the conversion efficiency of the TS-IBC solar cells. It was also found that for the same trench depth (30 μm), the difference in conversion efficiencies of an IBC solar cell with an emitter trench and that with a BSF trench was 0.6%. We are thus convinced that the emitter trench structure is more important than the BSF trench structure.

  9. Energy balance in the WTC collapse

    NASA Astrophysics Data System (ADS)

    Zhu, Kaiqi; Xu, Kang; Ansourian, Peter; Tahmasebinia, Faham; Alonso-Marroquin, Fernando

    2016-08-01

    The main aim of this report is to provide an analysis of Twin Towers of the New York City's World Trade Centre collapsed after attacked by two jet aircrafts. The approach mainly focused on the effect of temperature on mechanical properties of the building, by modelling heat energy in the south tower. Energy balance during the collapse between the energy inputs by aircraft petrol and the transient heat to the towers was conducted. Both the overall structure between 80 to 83 stories and individual elements was modelled. The main elements contributed to the heat transition includes external and internal columns. Heat applied in 2D and 3D models for single elements was through convection and conduction. Analysis of transient heat was done using Strand7.

  10. Deployment Simulation Methods for Ultra-Lightweight Inflatable Structures

    NASA Technical Reports Server (NTRS)

    Wang, John T.; Johnson, Arthur R.

    2003-01-01

    Two dynamic inflation simulation methods are employed for modeling the deployment of folded thin-membrane tubes. The simulations are necessary because ground tests include gravity effects and may poorly represent deployment in space. The two simulation methods are referred to as the Control Volume (CV) method and the Arbitrary Lagrangian Eulerian (ALE) method. They are available in the LS-DYNA nonlinear dynamic finite element code. Both methods are suitable for modeling the interactions between the inflation gas and the thin-membrane tube structures. The CV method only considers the pressure induced by the inflation gas in the simulation, while the ALE method models the actual flow of the inflation gas. Thus, the transient fluid properties at any location within the tube can be predicted by the ALE method. Deployment simulations of three packaged tube models; namely coiled, Z-folded, and telescopically-folded configurations, are performed. Results predicted by both methods for the telescopically-folded configuration are correlated and computational efficiency issues are discussed.

  11. Interaction of light with hematite hierarchical structures: Experiments and simulations

    NASA Astrophysics Data System (ADS)

    Distaso, Monica; Zhuromskyy, Oleksander; Seemann, Benjamin; Pflug, Lukas; Mačković, Mirza; Encina, Ezequiel; Taylor, Robin Klupp; Müller, Rolf; Leugering, Günter; Spiecker, Erdmann; Peschel, Ulf; Peukert, Wolfgang

    2017-03-01

    Mesocrystalline particles have been recognized as a class of multifunctional materials with potential applications in different fields. However, the internal organization of nanocomposite mesocrystals and its influence on the final properties have not yet been investigated. In this paper, a novel strategy based on electrodynamic simulations is developed to shed light on how the internal structure of mesocrystals influences their optical properties. In a first instance, a unified design protocol is reported for the fabrication of hematite/PVP particles with different morphologies such as pseudo-cubes, rods-like and apple-like structures and controlled particle size distributions. The optical properties of hematite/PVP mesocrystals are effectively simulated by taking their aggregate and nanocomposite structure into consideration. The superposition T-Matrix approach accounts for the aggregate nature of mesocrystalline particles and validate the effective medium approximation used in the framework of the Mie theory and electromagnetic simulation such as Finite Element Method. The approach described in our paper provides the framework to understand and predict the optical properties of mesocrystals and more general, of hierarchical nanostructured particles.

  12. Structure and Properties of HELICAL CARBON NANOTUBES through MD Simulations

    NASA Astrophysics Data System (ADS)

    Dahiya, Akshay; Verma, Deepti; Gupta, Shakti S.

    Helical Carbon Nanotubes (HCNTs) are coiled 3-valent carbon networks which represent pure carbon helix. Here we study the geometries of two classes: hexagonal helix containing purely polyhex networks and the second class with 5-and 7-membered rings besides hexagons. We followed a model of hexagonal, single wall HCNTs, and determined their relaxed configuration using MD simulations based on Tersoff potential. A race-track like structure is observed in the cross-section of HCNTs upon minimization. For generating class two helix, the adjacency matrix eigenvector's (AME) method is applied which utilizes 3-coordinated tiling of the plane by 5-,6-,and 7-membered ring for the construction of helical structures. The application of the AME method to torusenes is crucial for class two helix generation as it is based on an appropriate choice of bi-lobial eigenvectors triplet which can be selected on the basis of their nodal properties as verified here. After 3-D transformations the final structure was obtained with the help of MM3-potential based MD simulations on Tinker commercial code. The spring constants of HCNTs are computed through MD simulations.

  13. Simulating the large-scale structure of HI intensity maps

    SciTech Connect

    Seehars, Sebastian; Paranjape, Aseem; Witzemann, Amadeus; Refregier, Alexandre; Amara, Adam; Akeret, Joel E-mail: aseem@iucaa.in E-mail: alexandre.refregier@phys.ethz.ch E-mail: joel.akeret@phys.ethz.ch

    2016-03-01

    Intensity mapping of neutral hydrogen (HI) is a promising observational probe of cosmology and large-scale structure. We present wide field simulations of HI intensity maps based on N-body simulations of a 2.6 Gpc / h box with 2048{sup 3} particles (particle mass 1.6 × 10{sup 11} M{sub ⊙} / h). Using a conditional mass function to populate the simulated dark matter density field with halos below the mass resolution of the simulation (10{sup 8} M{sub ⊙} / h < M{sub halo} < 10{sup 13} M{sub ⊙} / h), we assign HI to those halos according to a phenomenological halo to HI mass relation. The simulations span a redshift range of 0.35 ∼< z ∼< 0.9 in redshift bins of width Δ z ≈ 0.05 and cover a quarter of the sky at an angular resolution of about 7'. We use the simulated intensity maps to study the impact of non-linear effects and redshift space distortions on the angular clustering of HI. Focusing on the autocorrelations of the maps, we apply and compare several estimators for the angular power spectrum and its covariance. We verify that these estimators agree with analytic predictions on large scales and study the validity of approximations based on Gaussian random fields, particularly in the context of the covariance. We discuss how our results and the simulated maps can be useful for planning and interpreting future HI intensity mapping surveys.

  14. Critical slowing down as early warning for the onset of collapse in mutualistic communities.

    PubMed

    Dakos, Vasilis; Bascompte, Jordi

    2014-12-09

    Tipping points are crossed when small changes in external conditions cause abrupt unexpected responses in the current state of a system. In the case of ecological communities under stress, the risk of approaching a tipping point is unknown, but its stakes are high. Here, we test recently developed critical slowing-down indicators as early-warning signals for detecting the proximity to a potential tipping point in structurally complex ecological communities. We use the structure of 79 empirical mutualistic networks to simulate a scenario of gradual environmental change that leads to an abrupt first extinction event followed by a sequence of species losses until the point of complete community collapse. We find that critical slowing-down indicators derived from time series of biomasses measured at the species and community level signal the proximity to the onset of community collapse. In particular, we identify specialist species as likely the best-indicator species for monitoring the proximity of a community to collapse. In addition, trends in slowing-down indicators are strongly correlated to the timing of species extinctions. This correlation offers a promising way for mapping species resilience and ranking species risk to extinction in a given community. Our findings pave the road for combining theory on tipping points with patterns of network structure that might prove useful for the management of a broad class of ecological networks under global environmental change.

  15. Fabrication, characterization, and simulation of photonic bandgap structures

    NASA Astrophysics Data System (ADS)

    Wang, Hao

    properties of PBG structures and develop functional devices, a 2-D electrically tunable PBG device was designed using the PWE method. After the designing the structure materials and the structural parameters, the behavior of the tunable PBG device is simulated with the FDTD method. To explore the optical properties of 3-D PBG structures, a method of analyzing the optical refraction in 3-D PBG structures is proposed, with which it is possible to calculate the refraction light path in an arbitrary 3-D PBG structure using a personal computer.

  16. Diverse structural evolution at z > 1 in cosmologically simulated galaxies

    NASA Astrophysics Data System (ADS)

    Snyder, Gregory F.; Lotz, Jennifer; Moody, Christopher; Peth, Michael; Freeman, Peter; Ceverino, Daniel; Primack, Joel; Dekel, Avishai

    2015-08-01

    From mock Hubble Space Telescope images, we quantify non-parametric statistics of galaxy morphology, thereby predicting the emergence of relationships among stellar mass, star formation, and observed rest-frame optical structure at 1 < z < 3. We measure automated diagnostics of galaxy morphology in cosmological simulations of the formation of 22 central galaxies with 9.3 < log10M*/M⊙ < 10.7. These high-spatial-resolution zoom-in calculations enable accurate modelling of the rest-frame UV and optical morphology. Even with small numbers of galaxies, we find that structural evolution is neither universal nor monotonic: galaxy interactions can trigger either bulge or disc formation, and optically bulge-dominated galaxies at this mass may not remain so forever. Simulated galaxies with M* > 1010M⊙ contain relatively more disc-dominated light profiles than those with lower mass, reflecting significant disc brightening in some haloes at 1 < z < 2. By this epoch, simulated galaxies with specific star formation rates below 10- 9.7 yr- 1 are more likely than normal star-formers to have a broader mix of structural types, especially at M* > 1010 M⊙. We analyse a cosmological major merger at z ˜ 1.5 and find that the newly proposed Multimode-Intensity-Deviation (MID) morphology diagnostics trace later merger stages while Gini-M20 trace earlier ones. MID is sensitive also to clumpy star-forming discs. The observability time of typical MID-enhanced events in our simulation sample is <100 Myr. A larger sample of cosmological assembly histories may be required to calibrate such diagnostics in the face of their sensitivity to viewing angle, segmentation algorithm, and various phenomena such as clumpy star formation and minor mergers.

  17. Amyloid oligomer structure characterization from simulations: A general method

    SciTech Connect

    Nguyen, Phuong H.; Li, Mai Suan

    2014-03-07

    Amyloid oligomers and plaques are composed of multiple chemically identical proteins. Therefore, one of the first fundamental problems in the characterization of structures from simulations is the treatment of the degeneracy, i.e., the permutation of the molecules. Second, the intramolecular and intermolecular degrees of freedom of the various molecules must be taken into account. Currently, the well-known dihedral principal component analysis method only considers the intramolecular degrees of freedom, and other methods employing collective variables can only describe intermolecular degrees of freedom at the global level. With this in mind, we propose a general method that identifies all the structures accurately. The basis idea is that the intramolecular and intermolecular states are described in terms of combinations of single-molecule and double-molecule states, respectively, and the overall structures of oligomers are the product basis of the intramolecular and intermolecular states. This way, the degeneracy is automatically avoided. The method is illustrated on the conformational ensemble of the tetramer of the Alzheimer's peptide Aβ{sub 9−40}, resulting from two atomistic molecular dynamics simulations in explicit solvent, each of 200 ns, starting from two distinct structures.

  18. Amyloid oligomer structure characterization from simulations: A general method

    NASA Astrophysics Data System (ADS)

    Nguyen, Phuong H.; Li, Mai Suan; Derreumaux, Philippe

    2014-03-01

    Amyloid oligomers and plaques are composed of multiple chemically identical proteins. Therefore, one of the first fundamental problems in the characterization of structures from simulations is the treatment of the degeneracy, i.e., the permutation of the molecules. Second, the intramolecular and intermolecular degrees of freedom of the various molecules must be taken into account. Currently, the well-known dihedral principal component analysis method only considers the intramolecular degrees of freedom, and other methods employing collective variables can only describe intermolecular degrees of freedom at the global level. With this in mind, we propose a general method that identifies all the structures accurately. The basis idea is that the intramolecular and intermolecular states are described in terms of combinations of single-molecule and double-molecule states, respectively, and the overall structures of oligomers are the product basis of the intramolecular and intermolecular states. This way, the degeneracy is automatically avoided. The method is illustrated on the conformational ensemble of the tetramer of the Alzheimer's peptide Aβ9-40, resulting from two atomistic molecular dynamics simulations in explicit solvent, each of 200 ns, starting from two distinct structures.

  19. Amyloid oligomer structure characterization from simulations: a general method.

    PubMed

    Nguyen, Phuong H; Li, Mai Suan; Derreumaux, Philippe

    2014-03-07

    Amyloid oligomers and plaques are composed of multiple chemically identical proteins. Therefore, one of the first fundamental problems in the characterization of structures from simulations is the treatment of the degeneracy, i.e., the permutation of the molecules. Second, the intramolecular and intermolecular degrees of freedom of the various molecules must be taken into account. Currently, the well-known dihedral principal component analysis method only considers the intramolecular degrees of freedom, and other methods employing collective variables can only describe intermolecular degrees of freedom at the global level. With this in mind, we propose a general method that identifies all the structures accurately. The basis idea is that the intramolecular and intermolecular states are described in terms of combinations of single-molecule and double-molecule states, respectively, and the overall structures of oligomers are the product basis of the intramolecular and intermolecular states. This way, the degeneracy is automatically avoided. The method is illustrated on the conformational ensemble of the tetramer of the Alzheimer's peptide Aβ9-40, resulting from two atomistic molecular dynamics simulations in explicit solvent, each of 200 ns, starting from two distinct structures.

  20. Geophysical observations at cavity collapse

    NASA Astrophysics Data System (ADS)

    Jousset, Philippe; Bazargan-Sabet, Behrooz; Lebert, François; Bernardie, Séverine; Gourry, Jean-Christophe

    2010-05-01

    In Lorraine region (France) salt layers at about 200 meters depth are exploited by Solvay using solution mining methodology which consists in extracting the salt by dissolution, collapsing the cavern overburden during the exploitation phase and finally reclaiming the landscape by creating a water area. In this process, one of the main challenges for the exploiting company is to control the initial 120-m diameter collapse so as to minimize possible damages. In order to detect potential precursors and understand processes associated with such collapses, a wide series of monitoring techniques including micro seismics, broad-band seismology, hydro-acoustic, electromagnetism, gas probing, automatic leveling, continuous GPS, continuous gravity and borehole extensometry was set-up in the frame of an in-situ study carried out by the "Research Group for the Impact and Safety of Underground Works" (GISOS, France). Equipments were set-up well before the final collapse, giving a unique opportunity to analyze a great deal of information prior to and during the collapse process which has been successfully achieved on February the 13th, 2009 by controlling the cavity internal pressure. In this work, we present the results of data recorded by a network of 3 broadband seismometers, 2 accelerometers, 2 tilt-meters and a continuously gravity meter. We relate the variations of the brine pumping rate with the evolutions of the induced geophysical signals and finally we propose a first mechanical model for describing the controlled collapse. Beyond the studied case, extrapolation of the results obtained might contribute to the understanding of uncontrolled cavity collapses, such as pit-craters or calderas at volcanoes.

  1. Unconstrained Structure Formation in Coarse-Grained Protein Simulations

    NASA Astrophysics Data System (ADS)

    Bereau, Tristan

    The ability of proteins to fold into well-defined structures forms the basis of a wide variety of biochemical functions in and out of the cell membrane. Many of these processes, however, operate at time- and length-scales that are currently unattainable by all-atom computer simulations. To cope with this difficulty, increasingly more accurate and sophisticated coarse-grained models are currently being developed. In the present thesis, we introduce a solvent-free coarse-grained model for proteins. Proteins are modeled by four beads per amino acid, providing enough backbone resolution to allow for accurate sampling of local conformations. It relies on simple interactions that emphasize structure, such as hydrogen bonds and hydrophobicity. Realistic alpha/beta content is achieved by including an effective nearest-neighbor dipolar interaction. Parameters are tuned to reproduce both local conformations and tertiary structures. By studying both helical and extended conformations we make sure the force field is not biased towards any particular secondary structure. Without any further adjustments or bias a realistic oligopeptide aggregation scenario is observed. The model is subsequently applied to various biophysical problems: (i) kinetics of folding of two model peptides, (ii) large-scale amyloid-beta oligomerization, and (iii) protein folding cooperativity. The last topic---defined by the nature of the finite-size thermodynamic transition exhibited upon folding---was investigated from a microcanonical perspective: the accurate evaluation of the density of states can unambiguously characterize the nature of the transition, unlike its corresponding canonical analysis. Extending the results of lattice simulations and theoretical models, we find that it is the interplay between secondary structure and the loss of non-native tertiary contacts which determines the nature of the transition. Finally, we combine the peptide model with a high-resolution, solvent-free, lipid

  2. Effect of doping of graphene structure: A Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Masrour, R.; Jabar, A.

    2016-10-01

    In this work, we have studied the effect of magnetic atom doping of graphene structure using Monte Carlo simulation. The reduced critical temperature with the magnetic atom doping x has been deduced from the thermal variation of magnetization and magnetic susceptibility. The variation of magnetization versus the crystal field of grapheme structure for different x and for different reduced temperatures has been established. We also have measured the coercive field (hC) as a function x in grapheme structure, finding that hC increases with increasing x concentration as predicted experimentally. The doping-induced magnetism in graphene. Magnetically atom doping in graphene systems are potential candidates for application in future spintronic devices, magnetometry requires macroscopic quantities of graphene to detect magnetic moments directly.

  3. Analysis of forest structure using thematic mapper simulator data

    NASA Technical Reports Server (NTRS)

    Peterson, D. L.; Westman, W. E.; Brass, J. A.; Stephenson, N. J.; Ambrosia, V. G.; Spanner, M. A.

    1986-01-01

    The potential of Thematic Mapper Simulator (TMS) data for sensing forest structure information has been explored by principal components and feature selection techniques. In a survey of forest structural properties conducted for 123 field sites of the Sequoia National Park, the canopy closure could be well estimated (r = 0.62 to 0.69) by a variety of channel bands and band ratios, without reference to the forest type. Estimation of the basal area was less successful (r = 0.51 or less) on the average, but could be improved for certain forest types when data were stratified by floristic composition. To achieve such a stratification, individual sites were ordinated by a detrended correspondence analysis based on the canopy of dominant species. The analysis of forest structure in the Sequoia data suggests that total basal area can be best predicted in stands of lower density, and in younger even-aged managed stands.

  4. Modeling bistable behaviors in morphing structures through finite element simulations.

    PubMed

    Guo, Qiaohang; Zheng, Huang; Chen, Wenzhe; Chen, Zi

    2014-01-01

    Bistable structures, exemplified by the Venus flytrap and slap bracelets, can transit between different configurations upon certain external stimulation. Here we study, through three-dimensional finite element simulations, the bistable behaviors in elastic plates in the absence of terminate loads, but with pre-strains in one (or both) of the two composite layers. Both the scenarios with and without a given geometric mis-orientation angle are investigated, the results of which are consistent with recent theoretical and experimental studies. This work can open ample venues for programmable designs of plant/shell structures with large deformations, with applications in designing bio-inspired robotics for biomedical research and morphing/deployable structures in aerospace engineering.

  5. Structural Simulations and Conservation Analysis -Historic Building Information Model (HBIM)

    NASA Astrophysics Data System (ADS)

    Dore, C.; Murphy, M.; McCarthy, S.; Brechin, F.; Casidy, C.; Dirix, E.

    2015-02-01

    In this paper the current findings to date of the Historic Building Information Model (HBIM) of the Four Courts in Dublin are presented. The Historic Building Information Model (HBIM) forms the basis for both structural and conservation analysis to measure the impact of war damage which still impacts on the building. The laser scan survey was carried out in the summer of 2014 of the internal and external structure. After registration and processing of the laser scan survey, the HBIM was created of the damaged section of the building and is presented as two separate workflows in this paper. The first is the model created from historic data, the second a procedural and segmented model developed from laser scan survey of the war damaged drum and dome. From both models structural damage and decay simulations will be developed for documentation and conservation analysis.

  6. Correlating simulated surface marks with near-surface tornado structure

    NASA Astrophysics Data System (ADS)

    Zimmerman, Michael I.

    Tornadoes often leave behind patterns of debris deposition, or "surface marks", which provide a direct signature of their near surface winds. The intent of this thesis is to investigate what can be learned about near-surface tornado structure and intensity through the properties of surface marks generated by simulated, debris-laden tornadoes. Earlier work showed through numerical simulations that the tornado's structure and intensity is highly sensitive to properties of the near-surface flow and can change rapidly in time for some conditions. The strongest winds often occur within tens of meters of the surface where the threat to human life and property is highest, and factors such as massive debris loadings and asymmetry of the main vortex have proven to be critical complications in some regimes. However, studying this portion of the flow in the field is problematic; while Doppler radar provides the best tornado wind field measurements, it cannot probe below about 20 m, and interpretation of Doppler data requires assumptions about tornado symmetry, steadiness in time, and correlation between scatterer and air velocities that are more uncertain near the surface. As early as 1967, Fujita proposed estimating tornado wind speeds from analysis of aerial photography and ground documentation of surface marks. A handful of studies followed but were limited by difficulties in interpreting physical origins of the marks, and little scientific attention has been paid to them since. Here, Fujita's original idea is revisited in the context of three-dimensional, large-eddy simulations of tornadoes with fully-coupled debris. In this thesis, the origins of the most prominent simulated marks are determined and compared with historical interpretations of real marks. The earlier hypothesis that cycloidal surface marks were directly correlated with the paths of individual vortices (either the main vortex or its secondary vortices, when present) is unsupported by the simulation results

  7. Detection of Coherent Structures in Extreme-Scale Simulations

    SciTech Connect

    Kamath, C; Iverson, J; Kirk, R; Karypis, G

    2012-03-24

    The analysis of coherent structures is a common problem in many scientific domains ranging from astrophysics to combustion, fusion, and materials science. The data from three-dimensional simulations are analyzed to detect the structures, extract statistics on them, and track them over time to gain insights into the phenomenon being modeled. This analysis is typically done off-line, using data that have been written out by the simulations. However, the move towards extreme scale architectures, with multi-core processors and graphical processing units, will affect how such analysis is done as it is unlikely that the systems will support the I/O bandwidth required for off-line analysis. Moving the analysis in-situ is a solution only if we know a priori what analysis will be done, as well as the algorithms used and their parameter settings. Even then, we need to ensure that this will not substantially increase the memory requirements or the data movement as the former will be limited and the latter will be expensive. In the Exa-DM project, a collaboration between Lawrence Livermore National Laboratory and University of Minnesota, we are exploring ways in which we can address the conflicting demands of coherent structure analysis of simulation data and the architecture of modern parallel systems, while enabling scientific discovery at the exascale. In this paper, we describe our work in two areas: the in situ implementation of an existing algorithm for coherent structure analysis and the use of graph-based techniques to efficiently compress the data.

  8. Brownian Dynamics Simulation of Protein Solutions: Structural and Dynamical Properties

    PubMed Central

    Mereghetti, Paolo; Gabdoulline, Razif R.; Wade, Rebecca C.

    2010-01-01

    The study of solutions of biomacromolecules provides an important basis for understanding the behavior of many fundamental cellular processes, such as protein folding, self-assembly, biochemical reactions, and signal transduction. Here, we describe a Brownian dynamics simulation procedure and its validation for the study of the dynamic and structural properties of protein solutions. In the model used, the proteins are treated as atomically detailed rigid bodies moving in a continuum solvent. The protein-protein interaction forces are described by the sum of electrostatic interaction, electrostatic desolvation, nonpolar desolvation, and soft-core repulsion terms. The linearized Poisson-Boltzmann equation is solved to compute electrostatic terms. Simulations of homogeneous solutions of three different proteins with varying concentrations, pH, and ionic strength were performed. The results were compared to experimental data and theoretical values in terms of long-time self-diffusion coefficients, second virial coefficients, and structure factors. The results agree with the experimental trends and, in many cases, experimental values are reproduced quantitatively. There are no parameters specific to certain protein types in the interaction model, and hence the model should be applicable to the simulation of the behavior of mixtures of macromolecules in cell-like crowded environments. PMID:21112303

  9. Gopherus agassizii (desert tortoise). Burrow collapse

    USGS Publications Warehouse

    Loughran, Caleb L.; Ennen, Joshua; Lovich, Jeffrey E.

    2011-01-01

    In the deserts of the southwestern U.S., burrows are utilized by the Desert Tortoise to escape environmental extremes (reviewed by Ernst and Lovich 2009. Turtles of the United States and Canada. 2nd ed. Johns Hopkins Univ. Press, Baltimore, Maryland. 827 pp.). However, the potential for mortality through burrow collapse and entrapment is poorly documented. Nicholson and Humphreys (1981. Proceedings of the Desert Tortoise Council, pp. 163−194) suggested that collapse due to livestock trampling may cause mortality. In addition, Lovich et al. (2011. Chelon. Cons. Biol. 10[1]:124–129) documented a Desert Tortoise that used a steel culvert as a burrow surrogate. The culvert filled completely with sediment following a significant rain event, entombing the animal and ultimately resulting in its death. We note that this mortality was associated with an anthropogenic structure; because tortoises are prodigious diggers, one might hypothesize that they have the ability to dig out of collapsed natural burrows in most situations. Circumstances described here presented us with an opportunity to test this hypothesis.

  10. Formation of satellites from cold collapse

    NASA Astrophysics Data System (ADS)

    Benhaiem, David; Sylos Labini, Francesco

    2017-02-01

    We study the collapse of an isolated, initially cold, irregular (but almost spherical) and slightly inhomogeneous cloud of self-gravitating particles.The cloud is driven towards a virialized quasi-equilibrium state by a fast relaxation mechanism, occurring in a typical time τc, whose signature is a large change in the particle energy distribution. Post-collapse particles are divided into two main species: bound and free, the latter being ejected from the system. Because of the initial system's anisotropy, the time varying gravitational field breaks spherical symmetry so that the ejected mass can carry away angular momentum and the bound system can gain a non-zero angular momentum. In addition, while strongly bound particles form a compact core, weakly bound ones may form, in a time scale of the order of τc, several satellite sub-structures. These satellites have a finite lifetime that can be longer than τc and generally form a flattened distribution. Their origin and their abundance are related to the amplitude and nature ofinitial density fluctuations and to the initial cloud deviations from spherical symmetry, which are both amplified during the collapse phase. Satellites show a time dependent virial ratio that can be different from the equilibrium value b ≈ -1: although they are bound to the main virialized object, they are not necessarily virially relaxed.

  11. 3D Ultrasonic Wave Simulations for Structural Health Monitoring

    NASA Technical Reports Server (NTRS)

    Campbell, Leckey Cara A/; Miler, Corey A.; Hinders, Mark K.

    2011-01-01

    Structural health monitoring (SHM) for the detection of damage in aerospace materials is an important area of research at NASA. Ultrasonic guided Lamb waves are a promising SHM damage detection technique since the waves can propagate long distances. For complicated flaw geometries experimental signals can be difficult to interpret. High performance computing can now handle full 3-dimensional (3D) simulations of elastic wave propagation in materials. We have developed and implemented parallel 3D elastodynamic finite integration technique (3D EFIT) code to investigate ultrasound scattering from flaws in materials. EFIT results have been compared to experimental data and the simulations provide unique insight into details of the wave behavior. This type of insight is useful for developing optimized experimental SHM techniques. 3D EFIT can also be expanded to model wave propagation and scattering in anisotropic composite materials.

  12. Development and mechanical properties of structural materials from lunar simulants

    NASA Technical Reports Server (NTRS)

    Desai, Chandra S.; Girdner, K.; Saadatmanesh, H.; Allen, T.

    1991-01-01

    Development of the technologies for manufacture of structural and construction materials on the Moon, utilizing local lunar soil (regolith), without the use of water, is an important element for habitats and explorations in space. Here, it is vital that the mechanical behavior such as strength and flexural properties, fracture toughness, ductility and deformation characteristics be defined toward establishment of the ranges of engineering applications of the materials developed. The objective is to describe the research results in two areas for the above goal: (1) liquefaction of lunar simulant (at about 100 C) with different additives (fibers, powders, etc.); and (2) development and use of a new triaxial test device in which lunar simulants are first compressed under cycles of loading, and then tested with different vacuums and initial confining or in situ stress.

  13. Thermal and Chemical Evolution of Collapsing Filaments

    SciTech Connect

    Gray, William J.; Scannapieco, Evan

    2013-01-15

    Intergalactic filaments form the foundation of the cosmic web that connect galaxies together, and provide an important reservoir of gas for galaxy growth and accretion. Here we present very high resolution two-dimensional simulations of the thermal and chemical evolution of such filaments, making use of a 32 species chemistry network that tracks the evolution of key molecules formed from hydrogen, oxygen, and carbon. We study the evolution of filaments over a wide range of parameters including the initial density, initial temperature, strength of the dissociating UV background, and metallicity. In low-redshift, Z ≈ 0.1Z filaments, the evolution is determined completely by the initial cooling time. If this is sufficiently short, the center of the filament always collapses to form dense, cold core containing a substantial fraction of molecules. In high-redshift, Z = 10-3Z filaments, the collapse proceeds much more slowly. This is due mostly to the lower initial temperatures, which leads to a much more modest increase in density before the atomic cooling limit is reached, making subsequent molecular cooling much less efficient. Finally, we study how the gravitational potential from a nearby dwarf galaxy affects the collapse of the filament and compare this to NGC 5253, a nearby starbusting dwarf galaxy thought to be fueled by the accretion of filament gas. In contrast to our fiducial case, a substantial density peak forms at the center of the potential. This peak evolves faster than the rest of the filament due to the increased rate at which chemical species form and cooling occur. We find that we achieve similar accretion rates as NGC 5253, but our two-dimensional simulations do not recover the formation of the giant molecular clouds that are seen in radio observations.

  14. Instability of black hole formation in gravitational collapse

    SciTech Connect

    Joshi, Pankaj S.; Malafarina, Daniele

    2011-01-15

    We consider here the classic scenario given by Oppenheimer, Snyder, and Datt, for the gravitational collapse of a massive matter cloud, and examine its stability under the introduction of small tangential stresses. We show, by offering an explicit class of physically valid tangential stress perturbations, that an introduction of tangential pressure, however small, can qualitatively change the final fate of collapse from a black hole final state to a naked singularity. This shows instability of black hole formation in collapse and sheds important light on the nature of cosmic censorship hypothesis and its possible formulations. The key effect of these perturbations is to alter the trapped surface formation pattern within the collapsing cloud and the apparent horizon structure. This allows the singularity to be visible, and implications are discussed.

  15. Late Cenozoic regional collapse due to evaporite flow and Dissolution in the Carbondale Collapse Center, West-Central Colorado

    USGS Publications Warehouse

    Kirkham, R.M.; Streufert, R.K.; Budahn, J.R.; Kunk, M.J.; Perry, W.J.

    2001-01-01

    Dissolution and flow of Pennsylvanian evaporitic rocks in west-central Colorado created the Carbondale Collapse Center, a 450 mi2 structural depression with about 4,000 ft of vertical collapse during the late Cenozoic. This paper describes evidence of collapse in the lower Roaring Fork River valley. Both the lateral extent and amount of vertical collapse is constrained by deformed upper Cenozoic volcanic rocks that have been correlated using field mapping, 40Ar/39Ar geochronology, geochemistry, and paleomagnetism. The Carbondale Collapse Center is one of at least two contiguous areas that have experienced major evaporite tectonism during the late Cenozoic. Historic sinkholes, deformed Holocene deposits, and modern high-salinity loads in the rivers and thermal springs indicate the collapse process continues today. Flow of evaporitic rocks is an important element in the collapse process, and during initial stages of collapse it was probably the primary causative mechanism. Dissolution, however, is the ultimate means by which evaporite is removed from the collapse area. As the Roaring Fork River began to rapidly down-cut through a broad volcanic plateau during the late Miocene, the underlying evaporite beds were subjected to differential overburden pressures. The evaporitic rocks flowed from beneath the upland areas where overburden pressures remained high, toward the Roaring Fork River Valley where the pressures were much lower. Along the valley the evaporitic rocks rose upward, sometimes as diapirs, forming or enhancing a valley anticline in bedrock and locally upwarping Pleistocene terraces. Wherever the evaporites encountered relatively fresh ground water, they were dissolved, forming underground voids into which overlying bedrock and surficial deposits subsided. The saline ground water eventually discharged to streams and rivers through thermal springs and by seepage into alluvial aquifers.

  16. HYPERCRITICAL ACCRETION, INDUCED GRAVITATIONAL COLLAPSE, AND BINARY-DRIVEN HYPERNOVAE

    SciTech Connect

    Fryer, Chris L.; Rueda, Jorge A.; Ruffini, Remo

    2014-09-16

    We successfully, applied the induced gravitational collapse (IGC) paradigm to the explanation of GRB-SNe. The progenitor is a tight binary system composed of a CO core and a NS companion. Furthermore, the explosion of the SN leads to hypercritical accretion onto the NS companion, which reaches the critical mass, gravitationally collapsing to a BH with consequent emission of the GRB. The first estimates of this process were based on a simplified model of the binary parameters and the Bondi-Hoyle-Lyttleton accretion rate. We present the first full numerical simulations of the IGC process. We simulate the core-collapse, the SN explosion, and the hydrodynamic evolution of the accreting material falling into the Bondi-Hoyle surface of the NS. For appropriate binary parameters, the IGC occurs in short timescale 102–103 s due to the combined action of photon trapping and neutrino cooling near the NS surface. We also address the observational features of this process.

  17. Cellular Model Simulations of Solidification Structures in Ternary Alloys

    NASA Astrophysics Data System (ADS)

    Alsoruji, Ghazi H.

    Solidification processes are an important part of many modem manufacturing processes. They can be found in different casting and welding processes. The solidification structure is very important for the quality of any product manufactured by such processes. This is so because the casting or weldment microstructure determines their mechanical properties. For welding processes, solidification theories can explain the evolution of the fusion zone microstructure and how this microstructure is influenced by the solidification parameters such as the temperature gradient and the solidification rate. In order to investigate the solidification parameters' effect on the microstructure, a numerical model based on Cellular Automaton combined with the finite difference method (CA-FD) is presented in this thesis. The simulation is conducted on a finite three dimensional control volume of the fusion zone. The model takes into account the solute-, curvature-, and kinetic undercooling. The temperatures are assumed to be distributed linearly within the control volume. The model predicts the morphology and density of the microstructure according to different values of the cooling rate and initial temperatures. It is demonstrated that the solidification structure has a columnar morphology at high temperature gradients and low cooling rates. The morphology changes to dendritic as the temperature gradient decreases and/or the cooling rate increases. It is also shown that an increase in the cooling rate results in the densification of the solidification structure. The results demonstrate that an increase in the initial substrate roughness can result in the increase in the density of the solidification structure. The simulation results show an agreement with the constitutional undercooling theory of solidification structures.

  18. Robust simulation of buckled structures using reduced order modeling

    NASA Astrophysics Data System (ADS)

    Wiebe, R.; Perez, R. A.; Spottswood, S. M.

    2016-09-01

    Lightweight metallic structures are a mainstay in aerospace engineering. For these structures, stability, rather than strength, is often the critical limit state in design. For example, buckling of panels and stiffeners may occur during emergency high-g maneuvers, while in supersonic and hypersonic aircraft, it may be induced by thermal stresses. The longstanding solution to such challenges was to increase the sizing of the structural members, which is counter to the ever present need to minimize weight for reasons of efficiency and performance. In this work we present some recent results in the area of reduced order modeling of post- buckled thin beams. A thorough parametric study of the response of a beam to changing harmonic loading parameters, which is useful in exposing complex phenomena and exercising numerical models, is presented. Two error metrics that use but require no time stepping of a (computationally expensive) truth model are also introduced. The error metrics are applied to several interesting forcing parameter cases identified from the parametric study and are shown to yield useful information about the quality of a candidate reduced order model. Parametric studies, especially when considering forcing and structural geometry parameters, coupled environments, and uncertainties would be computationally intractable with finite element models. The goal is to make rapid simulation of complex nonlinear dynamic behavior possible for distributed systems via fast and accurate reduced order models. This ability is crucial in allowing designers to rigorously probe the robustness of their designs to account for variations in loading, structural imperfections, and other uncertainties.

  19. Phase structure of a single urban intersection: a simulation study

    NASA Astrophysics Data System (ADS)

    Ebrahim Foulaadvand, M.; Fukui, M.; Belbasi, S.

    2010-07-01

    We study the phase structure of a cellular automata model proposed by Belbasi and Foulaadvand to describe the vehicular traffic flow at the intersection of two perpendicular streets. A set of traffic lights operating in a fixed-time scheme controls the traffic flow. A closed boundary condition is applied to the streets, each of which conducts a unidirectional flow. Streets are single-lane and cars cannot turn upon reaching the intersection. Via extensive Monte Carlo simulations it is shown that the model phase diagram consists of ten phases. The flow characteristics in each phase are investigated and the types of phase transitions between phases are specified.

  20. Simulation analysis for ion assisted fast ignition using structured targets

    NASA Astrophysics Data System (ADS)

    Sakagami, H.; Johzaki, T.; Sunahara, A.; Nagatomo, H.

    2016-05-01

    As the heating efficiency by fast electrons in the fast ignition scheme is estimated to be very low due to their large divergence angle and high energy. To mitigate this problem, low-density plastic foam, which can generate not only proton (H+) but also carbon (C6+) beams, can be introduced to currently used cone-guided targets and additional core heating by ions is expected. According to 2D PIC simulations, it is found that the ion beams also diverge by the static electric field and concave surface deformation. Thus structured targets are suggested to optimize ion beam characteristics, and their improvement and core heating enhancement by ion beams are confirmed.

  1. Probabilistic Simulation of the Human Factor in Structural Reliability

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Singhal, Surendra N.

    1994-01-01

    The formal approach described herein computationally simulates the probable ranges of uncertainties for the human factor in probabilistic assessments of structural reliability. Human factors such as marital status, professional status, home life, job satisfaction, work load, and health are studied by using a multifactor interaction equation (MFIE) model to demonstrate the approach. Parametric studies in conjunction with judgment are used to select reasonable values for the participating factors (primitive variables). Subsequently performed probabilistic sensitivity studies assess the suitability of the MFIE as well as the validity of the whole approach. Results show that uncertainties range from 5 to 30 percent for the most optimistic case, assuming 100 percent for no error (perfect performance).

  2. Protostellar Collapse with a Shock

    NASA Technical Reports Server (NTRS)

    Tsai, John C.; Hsu, Juliana J.

    1995-01-01

    We reexamine both numerically and analytically the collapse of the singular isothermal sphere in the context of low-mass star formation. We consider the case where the onset of collapse is initiated by some arbitrary process which is accompanied by a central output of either heat or kinetic energy. We find two classes of numerical solutions describing this manner of collapse. The first approaches in time the expansion wave solution of Shu, while the second class is characterized by an ever-decreasing central accretion rate and the presence of an outwardly propagating weak shock. The collapse solution which represents the dividing case between these two classes is determined analytically by a similarity analysis. This solution shares with the expansion wave solution the properties that the gas remains stationary with an r(exp -2) density profile at large radius and that, at small radius, the gas free-falls onto a nascent core at a constant rate which depends only on the isothermal sound speed. This accretion rate is a factor of approx. 0.1 that predicted by the expansion wave solution. This reduction is due in part to the presence of a weak shock which propagates outward at 1.26 times the sound speed. Gas in the postshock region first moves out subsonically but is then decelerated and begins to collapse. The existence of two classes of numerical collapse solutions is explained in terms of the instability to radial perturbations of the analytic solution. Collapse occurring in the manner described by some of our solutions would eventually unbind a finite-sized core. However, this does not constitute a violation of the instability properties of the singular isothermal sphere which is unstable both to collapse and to expansion. To emphasize this, we consider a purely expanding solution for isothermal spheres. This solution is found to be self-similar and results in a uniform density core in the central regions of the gas. Our solutions may be relevant to the 'luminosity

  3. GRAVITATIONAL WAVES FROM STELLAR COLLAPSE

    SciTech Connect

    C. L. FRYER

    2001-01-01

    Stellar core-collapse plays an important role in nearly all facets of astronomy: cosmology (as standard candles), formation of compact objects, nucleosynthesis and energy deposition in galaxies. In addition, they release energy in powerful explosions of light over a range of energies, neutrinos, and the subject of this meeting, gravitational waves. Because of this broad range of importance, astronomers have discovered a number of constraints which can be used to help them understand the importance of stellar core-collapse as gravitational wave sources.

  4. Protostellar Collapse with a Shock

    NASA Technical Reports Server (NTRS)

    Tsai, John C.; Hsu, Juliana J. L.

    1995-01-01

    We reexamine both numerically and analytically the collapse of the singular isothermal sphere in the context of low-mass star formation. We consider the case where the onset of collapse is initiated by some arbitrary process which is accompanied by a central output of either heat or kinetic energy. We find two classes of numerical solutions describing this manner of collapse. The first approaches in time the expansion wave solution of Shu, while the second class is characterized by an ever-decreasing central accretion rate and the presence of an outwardly propagating weak shock. The collapse solution which represents the dividing case between these two classes is determined analytically by a similarity analysis. This solution shares with the expansion wave solution the properties that the gas remains stationary with an r(sup -2) density profile at large radius and that, at small radius, the gas free-falls onto a nascent core at a constant rate which depends only on the isothermal sound speed. This accretion rate is a factor of approx. 0.1 that predicted by the expansion wave solution. This reduction is due in part to the presence of a weak shock which propagates outward at 1.26 times the sound speed. Gas in the postshock region first moves out subsonically but is then decelerated and begins to collapse. The existence of two classes of numerical collapse solutions is explained in terms of the instability to radial perturbations of the analytic solution. Collapse occurring in the manner described by some of our solutions would eventually unbind a finite-sized core. However, this does not constitute a violation of the instability properties of the singular isothermal sphere which is unstable both to collapse and to expansion. To emphasize this, we consider a purely expanding solution for isothermal spheres. This solution is found to be self-similar and results in a uniform density core in the central regions of the gas. Our solutions may be relevant to the 'luminosity

  5. Probabilistic simulation of the human factor in structural reliability

    NASA Technical Reports Server (NTRS)

    Shah, Ashwin R.; Chamis, Christos C.

    1991-01-01

    Many structural failures have occasionally been attributed to human factors in engineering design, analyses maintenance, and fabrication processes. Every facet of the engineering process is heavily governed by human factors and the degree of uncertainty associated with them. Factors such as societal, physical, professional, psychological, and many others introduce uncertainties that significantly influence the reliability of human performance. Quantifying human factors and associated uncertainties in structural reliability require: (1) identification of the fundamental factors that influence human performance, and (2) models to describe the interaction of these factors. An approach is being developed to quantify the uncertainties associated with the human performance. This approach consists of a multi factor model in conjunction with direct Monte-Carlo simulation.

  6. The Structural Underpinnings of Policy Learning: A Classroom Policy Simulation

    NASA Astrophysics Data System (ADS)

    Bird, Stephen

    This paper investigates the relationship between the centrality of individual actors in a social network structure and their policy learning performance. In a dynamic comparable to real-world policy networks, results from a classroom simulation demonstrate a strong relationship between centrality in social learning networks and grade performance. Previous research indicates that social network centrality should have a positive effect on learning in other contexts and this link is tested in a policy learning context. Second, the distinction between collaborative learning versus information diffusion processes in policy learning is examined. Third, frequency of interaction is analyzed to determine whether consistent, frequent tics have a greater impact on the learning process. Finally, the data arc analyzed to determine if the benefits of centrality have limitations or thresholds when benefits no longer accrue. These results demonstrate the importance of network structure, and support a collaborative conceptualization of the policy learning process.

  7. Simulation of structural phase transitions in NiTi

    NASA Astrophysics Data System (ADS)

    Mutter, Daniel; Nielaba, Peter

    2010-12-01

    By means of molecular-dynamics simulations, temperature-driven diffusionless structural phase transitions in equiatomic and nearly equiatomic ordered nickel-titanium alloys were investigated. For this purpose, a model potential from the literature was adopted [W. S. Lai and B. X. Liu, J. Phys.: Condens. Matter 12, L53 (2000)10.1088/0953-8984/12/5/101], which is based on the tight-binding model in second moment approximation. The model predicts a stable B19' phase at low temperatures and a nearly cubic B2 phase at high temperatures. After an analysis of crystallography and energetics of the emerging structures, the experimentally known strong dependence of transition temperatures on composition is confirmed and related to lattice instability. Free-energy calculations finally give insight into the driving forces of the phase transitions and reveal free energy barriers inhibiting them below the transition temperatures.

  8. Modeling and Simulation of Variable Mass, Flexible Structures

    NASA Technical Reports Server (NTRS)

    Tobbe, Patrick A.; Matras, Alex L.; Wilson, Heath E.

    2009-01-01

    distribution of mass in the fuel tank or Solid Rocket Booster (SRB) case for various propellant levels. Based on the mass consumed by the liquid engine or SRB, the appropriate propellant model is coupled with the dry structure model for the stage. Then using vehicle configuration data, the integrated vehicle model is assembled and operated on by the constant system shape functions. The system mode shapes and frequencies can then be computed from the resulting generalized mass and stiffness matrices for that mass configuration. The rigid body mass properties of the vehicle are derived from the integrated vehicle model. The coupling terms between the vehicle rigid body motion and elastic deformation are also updated from the constant system shape functions and the integrated vehicle model. This approach was first used to analyze variable mass spinning beams and then prototyped into a generic dynamics simulation engine. The resulting code was tested against Crew Launch Vehicle (CLV-)class problems worked in the TREETOPS simulation package and by Wilson [2]. The Ares I System Integration Laboratory (SIL) is currently being developed at the Marshall Space Flight Center (MSFC) to test vehicle avionics hardware and software in a hardware-in-the-loop (HWIL) environment and certify that the integrated system is prepared for flight. The Ares I SIL utilizes the Ares Real-Time Environment for Modeling, Integration, and Simulation (ARTEMIS) tool to simulate the launch vehicle and stimulate avionics hardware. Due to the presence of vehicle control system filters and the thrust oscillation suppression system, which are tuned to the structural characteristics of the vehicle, ARTEMIS must incorporate accurate structural models of the Ares I launch vehicle. The ARTEMIS core dynamics simulation models the highly coupled nature of the vehicle flexible body dynamics, propellant slosh, and vehicle nozzle inertia effects combined with mass and flexible body properties that vary significant with time

  9. Analytic and Simulation Studies of Dust Grain Interaction and Structuring

    NASA Astrophysics Data System (ADS)

    Lampe, Martin; Joyce, Glenn; Ganguli, Gurudas

    For dust grains in stationary plasma, a quantitative assessment is made of the effect of centrifugal potential barriers on ion trajectories near a grain. It is shown that in most situations of interest the barriers are weak and only marginally affect the validity of the orbital-motion-limited (OML) theory. The OML theory is then used to show that the electrostatic interaction between grains is always repulsive. The ion-shadowing force is calculated, and it is shown that this force can lead to a weak net attraction between grains at long range, under certain conditions with large grains, dense plasma, and/or low gas pressure. For grains in streaming plasma at or near the sheath, it is shown that nonlinear effects are weak and the grains can be represented as dressed particles interacting via the dynamically shielded Coulomb interaction, which includes wakefields, Landau damping, and collisional damping. The Dynamically Shielded Dust (DSD) simulation code, which is based on this model, is described and a simulation is shown for strongly coupled grains in flowing plasma. The simulation shows ordering of the grains into rigid strings aligned with the ion flow, and looser glass-like organization of the strings in the transverse plane. The presence of strings with odd and even numbers of grains results in stratification of the grains into planes with an alternating structure.

  10. Structured light imaging system for structural and optical characterization of 3D tissue-simulating phantoms

    NASA Astrophysics Data System (ADS)

    Liu, Songde; Smith, Zach; Xu, Ronald X.

    2016-10-01

    There is a pressing need for a phantom standard to calibrate medical optical devices. However, 3D printing of tissue-simulating phantom standard is challenged by lacking of appropriate methods to characterize and reproduce surface topography and optical properties accurately. We have developed a structured light imaging system to characterize surface topography and optical properties (absorption coefficient and reduced scattering coefficient) of 3D tissue-simulating phantoms. The system consisted of a hyperspectral light source, a digital light projector (DLP), a CMOS camera, two polarizers, a rotational stage, a translation stage, a motion controller, and a personal computer. Tissue-simulating phantoms with different structural and optical properties were characterized by the proposed imaging system and validated by a standard integrating sphere system. The experimental results showed that the proposed system was able to achieve pixel-level optical properties with a percentage error of less than 11% for absorption coefficient and less than 7% for reduced scattering coefficient for phantoms without surface curvature. In the meanwhile, 3D topographic profile of the phantom can be effectively reconstructed with an accuracy of less than 1% deviation error. Our study demonstrated that the proposed structured light imaging system has the potential to characterize structural profile and optical properties of 3D tissue-simulating phantoms.

  11. Direct numerical simulations of structure and transport in dense plasmas

    NASA Astrophysics Data System (ADS)

    Whitley, Heather; Castor, John; Murillo, Michael; Graziani, Frank; Cimarron Collaboration

    2011-10-01

    In recent years, high power laser facilities, such as NIF, and advanced diagnostics have enabled the determination of detailed properties of dense plasmas over unprecedented regimes. Understanding such plasmas, which may be partially degenerate and/or moderately coupled, represents a major challenge to the plasma physics community. We examine the accuracy and applicability of approximate effective potentials in the study of structural and dynamic properties of one and two component systems in the partially and fully ionized regimes. The diffractive Coulomb potential is derived from an exact quantum solution for a pair of particles while the fermionic character of the electrons is handled via an effective Pauli potential. We utilize classical hypernetted chain and molecular dynamics (MD) simulations to calculate static structure factors that can be compared to recent x-ray Thompson scattering experiments. We also examine whether these approximate potentials can be used to simulate electronic transport properties, such as thermal conductivity, and compare to recent quantum molecular dynamics calculations for hydrogen plasmas. Prepared by LLNL under Contract DE-AC52-07NA27344. LLNL-ABS-490775.

  12. LOOS: an extensible platform for the structural analysis of simulations.

    PubMed

    Romo, Tod D; Grossfield, Alan

    2009-01-01

    We have developed LOOS (Lightweight Object-Oriented Structure-analysis library) as an object-oriented library designed to facilitate the rapid development of tools for the structural analysis of simulations. LOOS supports the native file formats of most common simulation packages including AMBER, CHARMM, CNS, Gromacs, NAMD, Tinker, and X-PLOR. Encapsulation and polymorphism are used to simultaneously provide a stable interface to the programmer and make LOOS easily extensible. A rich atom selection language based on the C expression syntax is included as part of the library. LOOS enables students and casual programmer-scientists to rapidly write their own analytical tools in a compact and expressive manner resembling scripting. LOOS is written in C++ and makes extensive use of the Standard Template Library and Boost, and is freely available under the GNU General Public License (version 3) LOOS has been tested on Linux and MacOS X, but is written to be portable and should work on most Unix-based platforms.

  13. Phase space structures in gyrokinetic simulations of fusion plasma turbulence

    NASA Astrophysics Data System (ADS)

    Ghendrih, Philippe; Norscini, Claudia; Cartier-Michaud, Thomas; Dif-Pradalier, Guilhem; Abiteboul, Jérémie; Dong, Yue; Garbet, Xavier; Gürcan, Ozgür; Hennequin, Pascale; Grandgirard, Virginie; Latu, Guillaume; Morel, Pierre; Sarazin, Yanick; Storelli, Alexandre; Vermare, Laure

    2014-10-01

    Gyrokinetic simulations of fusion plasmas give extensive information in 5D on turbulence and transport. This paper highlights a few of these challenging physics in global, flux driven simulations using experimental inputs from Tore Supra shot TS45511. The electrostatic gyrokinetic code GYSELA is used for these simulations. The 3D structure of avalanches indicates that these structures propagate radially at localised toroidal angles and then expand along the field line at sound speed to form the filaments. Analysing the poloidal mode structure of the potential fluctuations (at a given toroidal location), one finds that the low modes m = 0 and m = 1 exhibit a global structure; the magnitude of the m = 0 mode is much larger than that of the m = 1 mode. The shear layers of the corrugation structures are thus found to be dominated by the m = 0 contribution, that are comparable to that of the zonal flows. This global mode seems to localise the m = 2 mode but has little effect on the localisation of the higher mode numbers. However when analysing the pulsation of the latter modes one finds that all modes exhibit a similar phase velocity, comparable to the local zonal flow velocity. The consequent dispersion like relation between the modes pulsation and the mode numbers provides a means to measure the zonal flow. Temperature fluctuations and the turbulent heat flux are localised between the corrugation structures. Temperature fluctuations are found to exhibit two scales, small fluctuations that are localised by the corrugation shear layers, and appear to bounce back and forth radially, and large fluctuations, also readily observed on the flux, which are associated to the disruption of the corrugations. The radial ballistic velocity of both avalanche events if of the order of 0.5ρ∗c0 where ρ∗ = ρ0/a, a being the tokamak minor radius and ρ0 being the characteristic Larmor radius, ρ0 = c0/Ω0. c0 is the reference ion thermal velocity and Ω0 = qiB0/mi the reference

  14. DISCOS- DYNAMIC INTERACTION SIMULATION OF CONTROLS AND STRUCTURES (IBM VERSION)

    NASA Technical Reports Server (NTRS)

    Frisch, H. P.

    1994-01-01

    The Dynamic Interaction Simulation of Controls and Structure (DISCOS) program was developed for the dynamic simulation and stability analysis of passive and actively controlled spacecraft. In the use of DISCOS, the physical system undergoing analysis may be generally described as a cluster of contiguous flexible structures (bodies) that comprise a mechanical system, such as a spacecraft. The entire system (spacecraft) or portions thereof may be either spinning or nonspinning. Member bodies of the system may undergo large relative excursions, such as those of appendage deployment or rotor/ stator motion. The general system of bodies is, by its inherent nature, a feedback system in which inertial forces (such as those due to centrifugal and Coriolis acceleration) and the restoring and damping forces are motion-dependent. The system may possess a control system in which certain position and rate errors are actively controlled through the use of reaction control jets, servomotors, or momentum wheels. Bodies of the system may be interconnected by linear or nonlinear springs and dampers, by a gimbal and slider block mechanism, or by any combination of these. The DISCOS program can be used to obtain nonlinear and linearized time response of the system, interaction constant forces in the system, total system resonance properties, and frequency domain response and stability information for the system. DISCOS is probably the most powerful computational tool to date for the computer simulation of actively controlled coupled multi-flexible-body systems. The program is not easy to understand and effectively apply, but is not intended for simple problems. The DISCOS user is expected to have extensive working knowledge of rigid-body and flexible-body dynamics, finite-element techniques, numerical methods, and frequency-domain analysis. Various applications of DISCOS include simulation of the Shuttle payload deployment/retrieval mechanism, solar panel array deployment, antenna

  15. Maintain rigid structures in Verlet based cartesian molecular dynamics simulations.

    PubMed

    Tao, Peng; Wu, Xiongwu; Brooks, Bernard R

    2012-10-07

    An algorithm is presented to maintain rigid structures in Verlet based cartesian molecular dynamics (MD) simulations. After each unconstrained MD step, the coordinates of selected particles are corrected to maintain rigid structures through an iterative procedure of rotation matrix computation. This algorithm, named as SHAPE and implemented in CHARMM program suite, avoids the calculations of Lagrange multipliers, so that the complexity of computation does not increase with the number of particles in a rigid structure. The implementation of this algorithm does not require significant modification of propagation integrator, and can be plugged into any cartesian based MD integration scheme. A unique feature of the SHAPE method is that it is interchangeable with SHAKE for any object that can be constrained as a rigid structure using multiple SHAKE constraints. Unlike SHAKE, the SHAPE method can be applied to large linear (with three or more centers) and planar (with four or more centers) rigid bodies. Numerical tests with four model systems including two proteins demonstrate that the accuracy and reliability of the SHAPE method are comparable to the SHAKE method, but with much more applicability and efficiency.

  16. Solution structures of rat amylin peptide: simulation, theory, and experiment.

    PubMed

    Reddy, Allam S; Wang, Lu; Lin, Yu-Shan; Ling, Yun; Chopra, Manan; Zanni, Martin T; Skinner, James L; De Pablo, Juan J

    2010-02-03

    Amyloid deposits of amylin in the pancreas are an important characteristic feature found in patients with Type-2 diabetes. The aggregate has been considered important in the disease pathology and has been studied extensively. However, the secondary structures of the individual peptide have not been clearly identified. In this work, we present detailed solution structures of rat amylin using a combination of Monte Carlo and molecular dynamics simulations. A new Monte Carlo method is presented to determine the free energy of distinct biomolecular conformations. Both folded and random-coil conformations of rat amylin are observed in water and their relative stability is examined in detail. The former contains an alpha-helical segment comprised of residues 7-17. We find that at room temperature the folded structure is more stable, whereas at higher temperatures the random-coil structure predominates. From the configurations and weights we calculate the alpha-carbon NMR chemical shifts, with results that are in reasonable agreement with experiments of others. We also calculate the infrared spectrum in the amide I stretch regime, and the results are in fair agreement with the experimental line shape presented herein.

  17. Concurrent Probabilistic Simulation of High Temperature Composite Structural Response

    NASA Technical Reports Server (NTRS)

    Abdi, Frank

    1996-01-01

    A computational structural/material analysis and design tool which would meet industry's future demand for expedience and reduced cost is presented. This unique software 'GENOA' is dedicated to parallel and high speed analysis to perform probabilistic evaluation of high temperature composite response of aerospace systems. The development is based on detailed integration and modification of diverse fields of specialized analysis techniques and mathematical models to combine their latest innovative capabilities into a commercially viable software package. The technique is specifically designed to exploit the availability of processors to perform computationally intense probabilistic analysis assessing uncertainties in structural reliability analysis and composite micromechanics. The primary objectives which were achieved in performing the development were: (1) Utilization of the power of parallel processing and static/dynamic load balancing optimization to make the complex simulation of structure, material and processing of high temperature composite affordable; (2) Computational integration and synchronization of probabilistic mathematics, structural/material mechanics and parallel computing; (3) Implementation of an innovative multi-level domain decomposition technique to identify the inherent parallelism, and increasing convergence rates through high- and low-level processor assignment; (4) Creating the framework for Portable Paralleled architecture for the machine independent Multi Instruction Multi Data, (MIMD), Single Instruction Multi Data (SIMD), hybrid and distributed workstation type of computers; and (5) Market evaluation. The results of Phase-2 effort provides a good basis for continuation and warrants Phase-3 government, and industry partnership.

  18. Computational simulation of acoustic fatigue for hot composite structures

    NASA Technical Reports Server (NTRS)

    Singhal, Surendra N.; Murthy, Pappu L. N.; Chamis, Christos C.; Nagpal, Vinod K.; Sutjahjo, Edhi

    1991-01-01

    Predictive methods/computer codes for the computational simulation of acoustic fatigue resistance of hot composite structures subjected to acoustic excitation emanating from an adjacent vibrating component are discussed. Select codes developed over the past two decades at the NASA Lewis Research Center are used. The codes include computation of acoustic noise generated from a vibrating component, degradation in material properties of a composite laminate at use temperature, dynamic response of acoustically excited hot multilayered composite structure, degradation in the first ply strength of the excited structure due to acoustic loading, and acoustic fatigue resistance of the excited structure, including the propulsion environment. Effects of the laminate lay-up and environment on the acoustic fatigue life are evaluated. The results show that, by keeping the angled plies on the outer surface of the laminate, a substantial increase in the acoustic fatigue life is obtained. The effect of environment (temperature and moisture) is to relieve the residual stresses leading to an increase in the acoustic fatigue life of the excited panel.

  19. Solution Structures of Rat Amylin Peptide: Simulation, Theory, and Experiment

    PubMed Central

    Reddy, Allam S.; Wang, Lu; Lin, Yu-Shan; Ling, Yun; Chopra, Manan; Zanni, Martin T.; Skinner, James L.; De Pablo, Juan J.

    2010-01-01

    Abstract Amyloid deposits of amylin in the pancreas are an important characteristic feature found in patients with Type-2 diabetes. The aggregate has been considered important in the disease pathology and has been studied extensively. However, the secondary structures of the individual peptide have not been clearly identified. In this work, we present detailed solution structures of rat amylin using a combination of Monte Carlo and molecular dynamics simulations. A new Monte Carlo method is presented to determine the free energy of distinct biomolecular conformations. Both folded and random-coil conformations of rat amylin are observed in water and their relative stability is examined in detail. The former contains an α-helical segment comprised of residues 7–17. We find that at room temperature the folded structure is more stable, whereas at higher temperatures the random-coil structure predominates. From the configurations and weights we calculate the α-carbon NMR chemical shifts, with results that are in reasonable agreement with experiments of others. We also calculate the infrared spectrum in the amide I stretch regime, and the results are in fair agreement with the experimental line shape presented herein. PMID:20141758

  20. Massively Parallel Simulations of Diffusion in Dense Polymeric Structures

    SciTech Connect

    Faulon, Jean-Loup, Wilcox, R.T. , Hobbs, J.D. , Ford, D.M.

    1997-11-01

    An original computational technique to generate close-to-equilibrium dense polymeric structures is proposed. Diffusion of small gases are studied on the equilibrated structures using massively parallel molecular dynamics simulations running on the Intel Teraflops (9216 Pentium Pro processors) and Intel Paragon(1840 processors). Compared to the current state-of-the-art equilibration methods this new technique appears to be faster by some orders of magnitude.The main advantage of the technique is that one can circumvent the bottlenecks in configuration space that inhibit relaxation in molecular dynamics simulations. The technique is based on the fact that tetravalent atoms (such as carbon and silicon) fit in the center of a regular tetrahedron and that regular tetrahedrons can be used to mesh the three-dimensional space. Thus, the problem of polymer equilibration described by continuous equations in molecular dynamics is reduced to a discrete problem where solutions are approximated by simple algorithms. Practical modeling applications include the constructing of butyl rubber and ethylene-propylene-dimer-monomer (EPDM) models for oxygen and water diffusion calculations. Butyl and EPDM are used in O-ring systems and serve as sealing joints in many manufactured objects. Diffusion coefficients of small gases have been measured experimentally on both polymeric systems, and in general the diffusion coefficients in EPDM are an order of magnitude larger than in butyl. In order to better understand the diffusion phenomena, 10, 000 atoms models were generated and equilibrated for butyl and EPDM. The models were submitted to a massively parallel molecular dynamics simulation to monitor the trajectories of the diffusing species.

  1. VALIDATION OF TRANSIENT STRUCTURAL DYNAMICS SIMULATIONS: AN EXAMPLE

    SciTech Connect

    J. SCHULTZ; F. HEMEZ; ET AL

    2001-03-01

    The field of computational structural dynamics is on the threshold of revolutionary change. The ever-increasing costs of physical experiments coupled with advances in massively parallel computer architecture are steering the engineering analyst to be more and more reliant on numerical calculations with little to no data available for experimental confirmation. New areas of research in engineering analysis have come about as a result of the changing roles of computations and experiments. Whereas in the past the primary function of physical experiments has been to confirm or ''prove'' the accuracy of a computational simulation, the new environment of engineering is forcing engineers to allocate precious experimental resources differently. Rather than trying to ''prove'' whether a calculation is correct, the focus is on learning how to use experimental data to ''improve'' the accuracy of computational simulations. This process of improving the accuracy of calculations through the use of experimental data is termed ''model validation.'' Model validation emphasizes the need for quantitative techniques of assessing the accuracy of a computational prediction with respect to experimental measurements, taking into account that both the prediction and the measurement have uncertainties associated with them. The ''vugraph norm,'' where one overlays transparencies of simulated data and experimental data in an attempt to show consistency, is no longer an adequate means of demonstrating validity of predictions. To approach this problem, a paradigm from the field of statistical pattern recognition has been adopted [1]. This paradigm generalizes the extraction of corresponding ''features'' from the experimental data and the simulated data, and treats the comparison of these sets of features as a statistical test. The parameters that influence the output of the simulation (such as equation parameters, initial and boundary conditions, etc.) can then be adjusted to minimize the

  2. Excision technique in constrained formulations of Einstein equations: collapse scenario

    NASA Astrophysics Data System (ADS)

    Cordero-Carrión, I.; Vasset, N.; Novak, J.; Jaramillo, J. L.

    2015-04-01

    We present a new excision technique used in constrained formulations of Einstein equations to deal with black hole in numerical simulations. We show the applicability of this scheme in several scenarios. In particular, we present the dynamical evolution of the collapse of a neutron star to a black hole, using the CoCoNuT code and this excision technique.

  3. A Structural Dynamics Approach to the Simulation of Spacecraft Control/Structure Interaction

    NASA Technical Reports Server (NTRS)

    Young, J. W.

    1985-01-01

    A relatively simple approach to the analysis of linear spacecraft control/structure interaction problems is presented. The approach uses a commercially available structural system dynamic analysis package for both controller and plant dynamics, thus obviating the need to transfer data between separate programs. The unilateral coupling between components in the control system block diagram is simulated using sparse matrix stiffness and damping elements available in the structural dynamic code. The approach is illustrated with a series of simple tutorial examples of a rigid spacecraft core with flexible appendages.

  4. Semiclassical environment of collapsing shells

    SciTech Connect

    Banerjee, Kinjal; Paranjape, Aseem

    2009-12-15

    We explore in detail the semiclassical environment of collapsing shells of matter, and determine the semiclassical flux measured by a variety of observers. This study is a preliminary step in a broader investigation of thermodynamic properties of the geometry of collapsing objects. Specifically, in this paper we consider spherically symmetric null and timelike collapsing shells which form an event horizon, and calculate the flux measured by observers both inside and outside the shell, and both inside and outside the event horizon, and find nontrivial results in most of the cases. Additionally, we also investigate the environment of a shell which collapses but does not form a horizon, halting at some radius larger than the Schwarzschild radius, and find that such an object generically gives rise to a pulse of radiation which is sharply peaked as it travels inwards and is reflected at the origin, and eventually emerges from the shell in a thermalized form. Our results have potential consequences in addressing questions pertaining, e.g. to black hole entropy and backreaction.

  5. Colony collapse disorder in Europe.

    PubMed

    Dainat, Benjamin; Vanengelsdorp, Dennis; Neumann, Peter

    2012-02-01

    Colony collapse disorder (CCD) is a condition of honey bees, which has contributed in part to the recent major losses of honey bee colonies in the USA. Here we report the first CCD case from outside of the USA. We suggest that more standardization is needed for the case definition to diagnose CCD and to compare data on a global scale.

  6. Chemotactic collapse and mesenchymal morphogenesis

    NASA Astrophysics Data System (ADS)

    Escudero, Carlos

    2005-08-01

    We study the effect of chemotactic signaling among mesenchymal cells. We show that the particular physiology of the mesenchymal cells allows one-dimensional collapse in contrast to the case of bacteria, and that the mesenchymal morphogenesis represents thus a more complex type of pattern formation than those found in bacterial colonies. We compare our theoretical predictions with recent in vitro experiments.

  7. Thermal duality and gravitational collapse

    NASA Astrophysics Data System (ADS)

    Hewitt, Michael

    2015-07-01

    Thermal duality is a relationship between the behaviour of heterotic string models of the E(8)×E(8) or SO(32) types at inversely related temperatures, a variant of T duality in the Euclidean regime. This duality would have consequences for the nature of the Hagedorn transition in these string models. We propose that the vacuum admits a family of deformations in situations where there are closed surfaces of constant area but high radial acceleration (a string regularized version of a Penrose trapped surface), such as would be formed in situations of extreme gravitational collapse. This would allow a radical resolution of the firewall paradox by allowing quantum effects to significantly modify the spacetime geometry around a collapsed object. A string bremsstrahlung process would convert the kinetic energy of infalling matter in extreme gravitational collapse to form a region of the deformed vacuum, which would be equivalent to forming a high temperature string phase. A heuristic criterion for the conversion process is presented, relating Newtonian gravity to the string tension, suggesting an upper limit to the strength of the gravitational interaction. This conversion process might have observable consequences for charged particles falling into a rotating collapsed object by producing high energy particles via a variant of the Penrose process.

  8. Inspection of collapse cause of Sampoong Department Store.

    PubMed

    Park, Tae Won

    2012-04-10

    On June 29, 1995, the Sampoong Department Store in Seoul, South Korea, completely collapsed. It was a five story reinforced concrete (RC) building with underground 4 floors and was built using a technique called "flat slab construction". The collapse is the largest peacetime disaster in South Korean history - 502 people died, 6 missing, and 937 sustained injuries. The Sampoong Department Store was completed in late 1989, and it opened to the public on July 7, 1990, attracting an estimated 40,000 people per day during the building's 5 years in service. After the collapse, intense investigation was conducted to find out the direct causes of the collapse through (1) survey on the present collapse situation and ground condition, (2) strength test of the concrete and steel collected at the site, (3) design documents and construction/management reports, and (4) structural analysis. The investigation revealed that the Sampoong Department Store collapsed because so many direct and indirect causes such as flaws in design phase and mistakes in construction and management process were overlapped.

  9. Parallel adaptive fluid-structure interaction simulation of explosions impacting on building structures

    SciTech Connect

    Deiterding, Ralf; Wood, Stephen L

    2013-01-01

    We pursue a level set approach to couple an Eulerian shock-capturing fluid solver with space-time refinement to an explicit solid dynamics solver for large deformations and fracture. The coupling algorithms considering recursively finer fluid time steps as well as overlapping solver updates are discussed in detail. Our ideas are implemented in the AMROC adaptive fluid solver framework and are used for effective fluid-structure coupling to the general purpose solid dynamics code DYNA3D. Beside simulations verifying the coupled fluid-structure solver and assessing its parallel scalability, the detailed structural analysis of a reinforced concrete column under blast loading and the simulation of a prototypical blast explosion in a realistic multistory building are presented.

  10. Construction of protocellular structures under simulated primitive earth conditions.

    PubMed

    Yanagawa, H; Ogawa, Y; Kojima, K; Ito, M

    1988-01-01

    We have developed experimental approaches for the construction of protocellular structures under simulated primitive earth conditions and studied their formation and characteristics. Three types of envelopes; protein envelopes, lipid envelopes, and lipid-protein envelopes are considered as candidates for protocellular structures. Simple protein envelopes and lipid envelopes are presumed to have originated at an early stage of chemical evolution, interaction mutually and then evolved into more complex envelopes composed of both lipids and proteins. Three kinds of protein envelopes were constructed in situ from amino acids under simulated primitive earth conditions such as a fresh water tide pool, a warm sea, and a submarine hydrothermal vent. One protein envelope was formed from a mixture of amino acid amides at 80 degrees C using multiple hydration-dehydration cycles. Marigranules, protein envelope structures, were produced from mixtures of glycine and acidic, basic and aromatic amino acids at 105 degrees C in a modified sea medium enriched with essential transition elements. Thermostable microspheres were also formed from a mixture of glycine, alanine, valine, and aspartic acid at 250 degrees C and above. The microspheres did not form at lower temperatures and consist of silicates and peptide-like polymers containing imide bonds and amino acid residues enriched in valine. Amphiphilic proteins with molecular weights of 2000 were necessary for the formation of the protein envelopes. Stable lipid envelopes were formed from different dialkyl phospholipids and fatty acids. Large, stable, lipid-protein envelopes were formed from egg lecithin and the solubilized marigranules. Polycations such as polylysine and polyhistidine, or basic proteins such as lysozyme and cytochrome c also stabilized lipid-protein envelopes.

  11. Exploring protein flexibility: incorporating structural ensembles from crystal structures and simulation into virtual screening protocols.

    PubMed

    Osguthorpe, David J; Sherman, Woody; Hagler, Arnold T

    2012-06-14

    The capacity of proteins to adapt their structure in response to various perturbations including covalent modifications, and interactions with ligands and other proteins plays a key role in biological processes. Here, we explore the ability of molecular dynamics (MD), replica exchange molecular dynamics (REMD), and a library of structures of crystal-ligand complexes, to sample the protein conformational landscape and especially the accessible ligand binding site geometry. The extent of conformational space sampled is measured by the diversity of the shapes of the ligand binding sites. Since our focus here is the effect of this plasticity on the ability to identify active compounds through virtual screening, we use the structures generated by these techniques to generate a small ensemble for further docking studies, using binding site shape hierarchical clustering to determine four structures for each ensemble. These are then assessed for their capacity to optimize enrichment and diversity in docking. We test these protocols on three different receptors: androgen receptor (AR), HIV protease, and CDK2. We show that REMD enhances structural sampling slightly as compared both to MD, and the distortions induced by ligand binding as reflected in the crystal structures. The improved sampling of the simulation methods does not translate directly into improved docking performance, however. The ensemble approach did improve enrichment and diversity, and the ensemble derived from the crystal structures performed somewhat better than those derived from the simulations.

  12. Sinkholes, collapse structures and large landslides in an active salt dome submerged by a reservoir: The unique case of the Ambal ridge in the Karun River, Zagros Mountains, Iran

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Francisco; Lizaga, Iván

    2016-02-01

    Ambal ridge, covering 4 km2, is a salt pillow of Gachsaran Formation with significant salt exposures in direct contact with the Karun River, Zagros Mountains. The highly cavernous salt dome is currently being flooded by the Gotvand Reservoir, second largest in Iran. Geomorphic evidence, including the sharp deflection of the Karun River and defeated streams indicate that Ambal is an active halokinetic structure, probably driven by erosional unloading. Around 30% of the salt dome is affected by large landslides up to ca. 50 × 106 m3 in volume. Slope oversteepening related to fluvial erosion and halokinetic rise seems to be the main controlling factor. A total of 693 sinkholes have been inventoried (170 sinkholes/km2), for which a scaling relationship has been produced. The depressions occur preferentially along a belt with a high degree of clustering. This spatial distribution is controlled by the proximity to the river, slope gradient and halite content in the bedrock. A large compound depression whose bottom lies below the normal maximum level of the reservoir will likely be flooded by water table rise forming a lake. The impoundment of the reservoir has induced peculiar collapse structures 220-280 m across, expressed by systems of arcuate fissures and scarps. Rapid subsurface salt dissolution is expected to generate and reactivate a large number of sinkholes and may reactivate landslides with a significant vertical component due to lack of basal support.

  13. Tyrosine aminotransferase: biochemical and structural properties and molecular dynamics simulations

    SciTech Connect

    Mehere, P.; Robinson, H.; Han, Q.; Lemkul, J. A.; Vavricka, C. J.; Bevan, D. R.; Li, J.

    2010-11-01

    Tyrosine aminotransferase (TAT) catalyzes the transamination of tyrosine and other aromatic amino acids. The enzyme is thought to play a role in tyrosinemia type II, hepatitis and hepatic carcinoma recovery. The objective of this study is to investigate its biochemical and structural characteristics and substrate specificity in order to provide insight regarding its involvement in these diseases. Mouse TAT (mTAT) was cloned from a mouse cDNA library, and its recombinant protein was produced using Escherichia coli cells and purified using various chromatographic techniques. The recombinant mTAT is able to catalyze the transamination of tyrosine using {alpha}-ketoglutaric acid as an amino group acceptor at neutral pH. The enzyme also can use glutamate and phenylalanine as amino group donors and p-hydroxy-phenylpyruvate, phenylpyruvate and alpha-ketocaproic acid as amino group acceptors. Through macromolecular crystallography we have determined the mTAT crystal structure at 2.9 {angstrom} resolution. The crystal structure revealed the interaction between the pyridoxal-5'-phosphate cofactor and the enzyme, as well as the formation of a disulphide bond. The detection of disulphide bond provides some rational explanation regarding previously observed TAT inactivation under oxidative conditions and reactivation of the inactive TAT in the presence of a reducing agent. Molecular dynamics simulations using the crystal structures of Trypanosoma cruzi TAT and human TAT provided further insight regarding the substrate-enzyme interactions and substrate specificity. The biochemical and structural properties of TAT and the binding of its cofactor and the substrate may help in elucidation of the mechanism of TAT inhibition and activation.

  14. Tyrosine Aminotransferase: Biochemical and Structural Properties and Molecular Dynamics Simulations

    SciTech Connect

    P Mehere; Q Han; J Lemkul; C Vavricka; H Robinson; D Bevan; J Li

    2011-12-31

    Tyrosine aminotransferase (TAT) catalyzes the transamination of tyrosine and other aromatic amino acids. The enzyme is thought to play a role in tyrosinemia type II, hepatitis and hepatic carcinoma recovery. The objective of this study is to investigate its biochemical and structural characteristics and substrate specificity in order to provide insight regarding its involvement in these diseases. Mouse TAT (mTAT) was cloned from a mouse cDNA library, and its recombinant protein was produced using Escherichia coli cells and purified using various chromatographic techniques. The recombinant mTAT is able to catalyze the transamination of tyrosine using {alpha}-ketoglutaric acid as an amino group acceptor at neutral pH. The enzyme also can use glutamate and phenylalanine as amino group donors and p-hydroxy-phenylpyruvate, phenylpyruvate and alpha-ketocaproic acid as amino group acceptors. Through macromolecular crystallography we have determined the mTAT crystal structure at 2.9 {angstrom} resolution. The crystal structure revealed the interaction between the pyridoxal-5'-phosphate cofactor and the enzyme, as well as the formation of a disulphide bond. The detection of disulphide bond provides some rational explanation regarding previously observed TAT inactivation under oxidative conditions and reactivation of the inactive TAT in the presence of a reducing agent. Molecular dynamics simulations using the crystal structures of Trypanosoma cruzi TAT and human TAT provided further insight regarding the substrate-enzyme interactions and substrate specificity. The biochemical and structural properties of TAT and the binding of its cofactor and the substrate may help in elucidation of the mechanism of TAT inhibition and activation.

  15. REVIVAL OF THE STALLED CORE-COLLAPSE SUPERNOVA SHOCK TRIGGERED BY PRECOLLAPSE ASPHERICITY IN THE PROGENITOR STAR

    SciTech Connect

    Couch, Sean M.; Ott, Christian D. E-mail: cott@tapir.caltech.edu

    2013-11-20

    Multi-dimensional simulations of advanced nuclear burning stages of massive stars suggest that the Si/O layers of presupernova stars harbor large deviations from the spherical symmetry typically assumed for presupernova stellar structure. We carry out three-dimensional core-collapse supernova simulations with and without aspherical velocity perturbations to assess their potential impact on the supernova hydrodynamics in the stalled-shock phase. Our results show that realistic perturbations can qualitatively alter the postbounce evolution, triggering an explosion in a model that fails to explode without them. This finding underlines the need for a multi-dimensional treatment of the presupernova stage of stellar evolution.

  16. Observing Atomic Collapse Resonances in Artificial Nuclei on Graphene

    DTIC Science & Technology

    2013-03-07

    from the vacuum, but these results remain ambiguous due to the enormously large Zc ~ 170 that is required (6, 7). Hopes to realize atomic collapse...threshold, the resulting strong Coulomb field causes an unusual “atomic collapse” state which exhibits an electron wave function component that falls...matching the quasi-bound state resonance energy between the simulation and experi- ment. The resulting simulated dI/dV spectra from the Dirac equation are

  17. Collapsing lattice animals and lattice trees in two dimensions

    NASA Astrophysics Data System (ADS)

    Hsu, Hsiao-Ping; Grassberger, Peter

    2005-06-01

    We present high statistics simulations of weighted lattice bond animals and lattice trees on the square lattice, with fugacities for each non-bonded contact and for each bond between two neighbouring monomers. The simulations are performed using a newly developed sequential sampling method with resampling, very similar to the pruned-enriched Rosenbluth method (PERM) used for linear chain polymers. We determine with high precision the line of second-order transitions from an extended to a collapsed phase in the resulting two-dimensional phase diagram. This line includes critical bond percolation as a multicritical point, and we verify that this point divides the line into different universality classes. One of them corresponds to the collapse driven by contacts and includes the collapse of (weakly embeddable) trees. There is some evidence that the other is subdivided again into two parts with different universality classes. One of these (at the far side from collapsing trees) is bond driven and is represented by the Derrida-Herrmann model of animals having bonds only (no contacts). Between the critical percolation point and this bond-driven collapse seems to be an intermediate regime, whose other end point is a multicritical point P* where a transition line between two collapsed phases (one bond driven and the other contact driven) sparks off. This point P* seems to be attractive (in the renormalization group sense) from the side of the intermediate regime, so there are four universality classes on the transition line (collapsing trees, critical percolation, intermediate regime, and Derrida-Herrmann). We obtain very precise estimates for all critical exponents for collapsing trees. It is already harder to estimate the critical exponents for the intermediate regime. Finally, it is very difficult to obtain with our method good estimates of the critical parameters of the Derrida-Herrmann universality class. As regards the bond-driven to contact-driven transition in the

  18. Alloy Surface Structure:. Computer Simulations Using the Bfs Method

    NASA Astrophysics Data System (ADS)

    Bozzolo, Guillermo; Ferrante, John

    The use of semiempirical methods for modeling alloy properties has proven to be difficult and limited. The two primary approaches to this modeling, the embedded atom method and the phenomenological method of Miedema, have serious limitations in the range of materials studied and the degree of success in predicting properties of such systems. Recently, a new method has been developed by Bozzolo, Ferrante and Smith (BFS) which has had considerable success in predicting a wide range of alloy properties. In this work, we reference previous BFS applications to surface alloy formation and alloy surface structure, leading to the analysis of binary and ternary Ni-based alloy surfaces. We present Monte Carlo simulation results of thin films of NiAl and Ni-Al-Ti alloys, for a wide range of concentration of the Ti alloying addition. The composition of planes close to the surface as well as bulk features are discussed.

  19. Diffusion and structure in silica liquid: a molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Hung, P. K.; Hong, N. V.; Vinh, L. T.

    2007-11-01

    Diffusion and structure in liquid silica under pressure have been investigated by a molecular dynamics model of 999 atoms with the inter-atomic potentials of van Beest, Kramer and van Santen. The simulation reveals that silica liquid is composed of the species SiO4, SiO5 and SiO6 with a fraction dependent on pressure. The density as well as volume of voids can be expressed as a linear function of the fraction of those species. Low-density liquid is mainly constructed of SiO4 and has a large number of O- and Si-voids and a large void tube. This tube contains most O-voids and is spread over the whole system. The anomalous diffusion behavior is observed and discussed.

  20. Probabilistic simulation of the human factor in structural reliability

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1993-01-01

    A formal approach is described in an attempt to computationally simulate the probable ranges of uncertainties of the human factor in structural probabilistic assessments. A multi-factor interaction equation (MFIE) model has been adopted for this purpose. Human factors such as marital status, professional status, home life, job satisfaction, work load and health, are considered to demonstrate the concept. Parametric studies in conjunction with judgment are used to select reasonable values for the participating factors (primitive variables). Suitability of the MFIE in the subsequently probabilistic sensitivity studies are performed to assess the validity of the whole approach. Results obtained show that the uncertainties for no error range from five to thirty percent for the most optimistic case.

  1. Linking Microbial Community Structure to Function in Representative Simulated Systems

    PubMed Central

    Marcus, Ian M.; Wilder, Hailey A.; Quazi, Shanin J.

    2013-01-01

    Pathogenic bacteria are generally studied as a single strain under ideal growing conditions, although these conditions are not the norm in the environments in which pathogens typically proliferate. In this investigation, a representative microbial community along with Escherichia coli O157:H7, a model pathogen, was studied in three environments in which such a pathogen could be found: a human colon, a septic tank, and groundwater. Each of these systems was built in the lab in order to retain the physical/chemical and microbial complexity of the environments while maintaining control of the feed into the models. The microbial community in the colon was found to have a high percentage of bacteriodetes and firmicutes, while the septic tank and groundwater systems were composed mostly of proteobacteria. The introduction of E. coli O157:H7 into the simulated systems elicited a shift in the structures and phenotypic cell characteristics of the microbial communities. The fate and transport of the microbial community with E. coli O157:H7 were found to be significantly different from those of E. coli O157:H7 studied as a single isolate, suggesting that the behavior of the organism in the environment was different from that previously conceived. The findings in this study clearly suggest that to gain insight into the fate of pathogens, cells should be grown and analyzed under conditions simulating those of the environment in which the pathogens are present. PMID:23396331

  2. Development and mechanical properties of structural materials from lunar simulant

    NASA Technical Reports Server (NTRS)

    Desai, Chandra S.

    1991-01-01

    Development of versatile engineering materials from locally available materials in space is an important step toward establishment of outposts such as on the moon and Mars. Here development of the technologies for manufacture of structural and construction materials on the moon, utilizing local lunar soil (regolith), without the use of water, is an important element for habitats and explorations in space. It is also vital that the mechanical behavior such as strength and flexural properties, fracture toughness, ductility, and deformation characteristics are defined toward establishment of the ranges of engineering applications of the materials developed. The objectives include two areas: (1) thermal liquefaction of lunar simulant (at about 1100 C) with different additives (fibers, powders, etc.); and (2) development and use of a traxial test device in which lunar simulants are first compacted under cycles of loading, and then tested with different vacuums and initial confining or insitu stress. The second area was described in previous progress reports and publications; since the presently available device allows vacuum levels up to only 10(exp -4) torr, it is recommended that a vacuum pump that can allow higher levels of vacuum is acquired.

  3. Simulated Patients vs. Standardized Patients in Objective Structured Clinical Examinations