Jason M. Forthofer; Bret W. Butler; Charles W. McHugh; Mark A. Finney; Larry S. Bradshaw; Richard D. Stratton; Kyle S. Shannon; Natalie S. Wagenbrenner
2014-01-01
The effect of fine-resolution wind simulations on fire growth simulations is explored. The wind models are (1) a wind field consisting of constant speed and direction applied everywhere over the area of interest; (2) a tool based on the solution of the conservation of mass only (termed mass-conserving model) and (3) a tool based on a solution of conservation of mass...
Using Reconstructed POD Modes as Turbulent Inflow for LES Wind Turbine Simulations
NASA Astrophysics Data System (ADS)
Nielson, Jordan; Bhaganagar, Kiran; Juttijudata, Vejapong; Sirisup, Sirod
2016-11-01
Currently, in order to get realistic atmospheric effects of turbulence, wind turbine LES simulations require computationally expensive precursor simulations. At times, the precursor simulation is more computationally expensive than the wind turbine simulation. The precursor simulations are important because they capture turbulence in the atmosphere and as stated above, turbulence impacts the power production estimation. On the other hand, POD analysis has been shown to be capable of capturing turbulent structures. The current study was performed to determine the plausibility of using lower dimension models from POD analysis of LES simulations as turbulent inflow to wind turbine LES simulations. The study will aid the wind energy community by lowering the computational cost of full scale wind turbine LES simulations, while maintaining a high level of turbulent information and being able to quickly apply the turbulent inflow to multi turbine wind farms. This will be done by comparing a pure LES precursor wind turbine simulation with simulations that use reduced POD mod inflow conditions. The study shows the feasibility of using lower dimension models as turbulent inflow of LES wind turbine simulations. Overall the power production estimation and velocity field of the wind turbine wake are well captured with small errors.
Atmospheric stability effects on wind farm performance using large-eddy simulation
NASA Astrophysics Data System (ADS)
Archer, C. L.; Ghaisas, N.; Xie, S.
2014-12-01
Atmospheric stability has been recently found to have significant impacts on wind farm performance, especially since offshore and onshore wind farms are known to operate often under non-neutral conditions. Recent field observations have revealed that changes in stability are accompanied by changes in wind speed, direction, and turbulent kinetic energy (TKE). In order to isolate the effects of stability, large-eddy simulations (LES) are performed under neutral, stable, and unstable conditions, keeping the wind speed and direction unchanged at a fixed height. The Lillgrund wind farm, comprising of 48 turbines, is studied in this research with the Simulator for Offshore/Onshore Wind Farm Applications (SOWFA) developed by the National Renewable Energy Laboratory. Unlike most previous numerical simulations, this study does not impose periodic boundary conditions and therefore is ideal for evaluating the effects of stability in large, but finite, wind farms. Changes in power generation, velocity deficit, rate of wake recovery, TKE, and surface temperature are quantified as a function of atmospheric stability. The sensitivity of these results to wind direction is also discussed.
Optimal design of wind barriers using 3D computational fluid dynamics simulations
NASA Astrophysics Data System (ADS)
Fang, H.; Wu, X.; Yang, X.
2017-12-01
Desertification is a significant global environmental and ecological problem that requires human-regulated control and management. Wind barriers are commonly used to reduce wind velocity or trap drifting sand in arid or semi-arid areas. Therefore, optimal design of wind barriers becomes critical in Aeolian engineering. In the current study, we perform 3D computational fluid dynamics (CFD) simulations for flow passing through wind barriers with different structural parameters. To validate the simulation results, we first inter-compare the simulated flow field results with those from both wind-tunnel experiments and field measurements. Quantitative analyses of the shelter effect are then conducted based on a series of simulations with different structural parameters (such as wind barrier porosity, row numbers, inter-row spacing and belt schemes). The results show that wind barriers with porosity of 0.35 could provide the longest shelter distance (i.e., where the wind velocity reduction is more than 50%) thus are recommended in engineering designs. To determine the optimal row number and belt scheme, we introduce a cost function that takes both wind-velocity reduction effects and economical expense into account. The calculated cost function show that a 3-row-belt scheme with inter-row spacing of 6h (h as the height of wind barriers) and inter-belt spacing of 12h is the most effective.
NASA Astrophysics Data System (ADS)
Toshimitsu, Kazuhiko; Narihara, Takahiko; Kikugawa, Hironori; Akiyoshi, Arata; Kawazu, Yuuya
2017-04-01
The effects of turbulent intensity and vortex scale of simulated natural wind on performance of a horizontal axis wind turbine (HAWT) are mainly investigated in this paper. In particular, the unsteadiness and turbulence of wind in Japan are stronger than ones in Europe and North America in general. Hence, Japanese engineers should take account of the velocity unsteadiness of natural wind at installed open-air location to design a higher performance wind turbine. Using the originally designed five wind turbines on the basis of NACA and MEL blades, the dependencies of the wind frequency and vortex scale of the simulated natural wind are presented. As the results, the power coefficient of the newly designed MEL3-type rotor in the simulated natural wind is 130% larger than one in steady wind.
A wind turbine hybrid simulation framework considering aeroelastic effects
NASA Astrophysics Data System (ADS)
Song, Wei; Su, Weihua
2015-04-01
In performing an effective structural analysis for wind turbine, the simulation of turbine aerodynamic loads is of great importance. The interaction between the wake flow and the blades may impact turbine blades loading condition, energy yield and operational behavior. Direct experimental measurement of wind flow field and wind profiles around wind turbines is very helpful to support the wind turbine design. However, with the growth of the size of wind turbines for higher energy output, it is not convenient to obtain all the desired data in wind-tunnel and field tests. In this paper, firstly the modeling of dynamic responses of large-span wind turbine blades will consider nonlinear aeroelastic effects. A strain-based geometrically nonlinear beam formulation will be used for the basic structural dynamic modeling, which will be coupled with unsteady aerodynamic equations and rigid-body rotations of the rotor. Full wind turbines can be modeled by using the multi-connected beams. Then, a hybrid simulation experimental framework is proposed to potentially address this issue. The aerodynamic-dominant components, such as the turbine blades and rotor, are simulated as numerical components using the nonlinear aeroelastic model; while the turbine tower, where the collapse of failure may occur under high level of wind load, is simulated separately as the physical component. With the proposed framework, dynamic behavior of NREL's 5MW wind turbine blades will be studied and correlated with available numerical data. The current work will be the basis of the authors' further studies on flow control and hazard mitigation on wind turbine blades and towers.
Expertise effects in cutaneous wind perception.
Pluijms, Joost P; Cañal-Bruland, Rouwen; Bergmann Tiest, Wouter M; Mulder, Fabian A; Savelsbergh, Geert J P
2015-08-01
We examined whether expertise effects are present in cutaneous wind perception. To this end, we presented wind stimuli consisting of different wind directions and speeds in a wind simulator. The wind simulator generated wind stimuli from 16 directions and with three speeds by means of eight automotive wind fans. Participants were asked to judge cutaneously perceived wind directions and speeds without having access to any visual or auditory information. Expert sailors (n = 6), trained to make the most effective use of wind characteristics, were compared to less-skilled sailors (n = 6) and to a group of nonsailors (n = 6). The results indicated that expert sailors outperformed nonsailors in perceiving wind direction (i.e., smaller mean signed errors) when presented with low wind speeds. This suggests that expert sailors are more sensitive in picking up differences in wind direction, particularly when confronted with low wind speeds that demand higher sensitivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wei; Lu, Jian; Leung, Lai-Yung R.
2015-02-22
This paper investigates the changes of the Southern Westerly Winds (SWW) and Southern Ocean (SO) upwelling between the Last Glacial Maximum (LGM) and preindustrial (PI) in the PMIP3/CMIP5 simulations, highlighting the role of the Antarctic sea ice in modulating the wind stress effect on the ocean. Particularly, a discrepancy may occur between the changes in SWW and westerly wind stress, caused primarily by an equatorward expansion of winter Antarctic sea ice that undermines the wind stress in driving the liquid ocean. Such discrepancy may reflect the LGM condition in reality, in view of that the model simulates this condition hasmore » most credible simulation of modern SWW and Antarctic sea ice. The effect of wind stress on the SO upwelling is further explored via the wind-induced Ekman pumping, which is reduced under the LGM condition in all models, in part by the sea-ice “capping” effect present in the models.« less
LES/RANS Modeling of Aero-Optical Effects in a Supersonic Cavity Flow
2016-06-13
the wind tunnel is not modeled in the cavity simulation, a separate turbulent boundary layer simulation with identical free-stream conditions was...the wind tunnel experiments were provided by Dr. Donald J. Wittich and the testbed geometries were modeled by Mr. Jeremy Stanford. Dr. Maziar Hemati...and an auxiliary flat plate simulation is performed to replicate the effects of the wind - tunnel boundary layer on the computed optical path
Wind load effects on high rise buildings in Peninsular Malaysia
NASA Astrophysics Data System (ADS)
Nizamani, Z.; Thang, K. C.; Haider, B.; Shariff, M.
2018-04-01
Wind is a randomly varying dynamic phenomenon composed of a multitude of eddies of varying sizes and rotational characteristics along a general stream of air moving relative to the ground. These eddies give wind its gustiness, creating fluctuation and results in a complex flow characteristics. The wind vector at any point can be regarded as the sum of mean wind vector and the fluctuation components. These components not only vary with height but also dependant on the approach terrain and topography. Prevailing wind exerts pressure onto the structural surfaces. The effects of wind pressure in the form of shear and bending moments are found to be a major problem in structural failure. This study aims to study the effects of wind load on a fifteen-storey high rise building using EN 1991-1-4 code and MS1553:2002. The simulation results showed that by increasing the wind speed, the storey resultant forces, namely storey shear and storey moment increases significantly. Furthermore, simulation results according to EN 1991-1-4 yield higher values compared to the simulation results according to MS1553:2002.
Miller, Lee M; Kleidon, Axel
2016-11-29
Wind turbines generate electricity by removing kinetic energy from the atmosphere. Large numbers of wind turbines are likely to reduce wind speeds, which lowers estimates of electricity generation from what would be presumed from unaffected conditions. Here, we test how well wind power limits that account for this effect can be estimated without explicitly simulating atmospheric dynamics. We first use simulations with an atmospheric general circulation model (GCM) that explicitly simulates the effects of wind turbines to derive wind power limits (GCM estimate), and compare them to a simple approach derived from the climatological conditions without turbines [vertical kinetic energy (VKE) estimate]. On land, we find strong agreement between the VKE and GCM estimates with respect to electricity generation rates (0.32 and 0.37 W e m -2 ) and wind speed reductions by 42 and 44%. Over ocean, the GCM estimate is about twice the VKE estimate (0.59 and 0.29 W e m -2 ) and yet with comparable wind speed reductions (50 and 42%). We then show that this bias can be corrected by modifying the downward momentum flux to the surface. Thus, large-scale limits to wind power use can be derived from climatological conditions without explicitly simulating atmospheric dynamics. Consistent with the GCM simulations, the approach estimates that only comparatively few land areas are suitable to generate more than 1 W e m -2 of electricity and that larger deployment scales are likely to reduce the expected electricity generation rate of each turbine. We conclude that these atmospheric effects are relevant for planning the future expansion of wind power.
Miller, Lee M.; Kleidon, Axel
2016-01-01
Wind turbines generate electricity by removing kinetic energy from the atmosphere. Large numbers of wind turbines are likely to reduce wind speeds, which lowers estimates of electricity generation from what would be presumed from unaffected conditions. Here, we test how well wind power limits that account for this effect can be estimated without explicitly simulating atmospheric dynamics. We first use simulations with an atmospheric general circulation model (GCM) that explicitly simulates the effects of wind turbines to derive wind power limits (GCM estimate), and compare them to a simple approach derived from the climatological conditions without turbines [vertical kinetic energy (VKE) estimate]. On land, we find strong agreement between the VKE and GCM estimates with respect to electricity generation rates (0.32 and 0.37 We m−2) and wind speed reductions by 42 and 44%. Over ocean, the GCM estimate is about twice the VKE estimate (0.59 and 0.29 We m−2) and yet with comparable wind speed reductions (50 and 42%). We then show that this bias can be corrected by modifying the downward momentum flux to the surface. Thus, large-scale limits to wind power use can be derived from climatological conditions without explicitly simulating atmospheric dynamics. Consistent with the GCM simulations, the approach estimates that only comparatively few land areas are suitable to generate more than 1 We m−2 of electricity and that larger deployment scales are likely to reduce the expected electricity generation rate of each turbine. We conclude that these atmospheric effects are relevant for planning the future expansion of wind power. PMID:27849587
System Identification for the Clipper Liberty C96 Wind Turbine
NASA Astrophysics Data System (ADS)
Showers, Daniel
System identification techniques are powerful tools that help improve modeling capabilities of real world dynamic systems. These techniques are well established and have been successfully used on countless systems in many areas. However, wind turbines provide a unique challenge for system identification because of the difficulty in measuring its primary input: wind. This thesis first motivates the problem by demonstrating the challenges with wind turbine system identification using both simulations and real data. It then suggests techniques toward successfully identifying a dynamic wind turbine model including the notion of an effective wind speed and how it might be measured. Various levels of simulation complexity are explored for insights into calculating an effective wind speed. In addition, measurements taken from the University of Minnesota's Clipper Liberty C96 research wind turbine are used for a preliminary investigation into the effective wind speed calculation and system identification of a real world wind turbine.
Analysis of wind-blown sand movement over transverse dunes.
Jiang, Hong; Huang, Ning; Zhu, Yuanjian
2014-12-01
Wind-blown sand movement often occurs in a very complicated desert environment where sand dunes and ripples are the basic forms. However, most current studies on the theoretic and numerical models of wind-blown sand movement only consider ideal conditions such as steady wind velocity, flat sand surface, etc. In fact, the windward slope gradient plays a great role in the lift-off and sand particle saltation. In this paper, we propose a numerical model for the coupling effect between wind flow and saltating sand particles to simulate wind-blown sand movement over the slope surface and use the SIMPLE algorithm to calculate wind flow and simulate sands transport by tracking sand particle trajectories. We furthermore compare the result of numerical simulation with wind tunnel experiments. These results prove that sand particles have obvious effect on wind flow, especially that over the leeward slope. This study is a preliminary study on windblown sand movement in a complex terrain, and is of significance in the control of dust storms and land desertification.
Analysis of Wind-blown Sand Movement over Transverse Dunes
Jiang, Hong; Huang, Ning; Zhu, Yuanjian
2014-01-01
Wind-blown sand movement often occurs in a very complicated desert environment where sand dunes and ripples are the basic forms. However, most current studies on the theoretic and numerical models of wind-blown sand movement only consider ideal conditions such as steady wind velocity, flat sand surface, etc. In fact, the windward slope gradient plays a great role in the lift-off and sand particle saltation. In this paper, we propose a numerical model for the coupling effect between wind flow and saltating sand particles to simulate wind-blown sand movement over the slope surface and use the SIMPLE algorithm to calculate wind flow and simulate sands transport by tracking sand particle trajectories. We furthermore compare the result of numerical simulation with wind tunnel experiments. These results prove that sand particles have obvious effect on wind flow, especially that over the leeward slope. This study is a preliminary study on windblown sand movement in a complex terrain, and is of significance in the control of dust storms and land desertification. PMID:25434372
Analysis of vehicle dynamics under sadden cross wind
NASA Astrophysics Data System (ADS)
Walczak, S.
2016-09-01
In this paper, the way of calculating aerodynamic forces acting on a vehicle passing in the region of sadden cross wind was presented. The CarDyn, a vehicle dynamics simulation program, developed by the author was used. The effects of the cross wind were studied with a fixed steering wheel simulation. On the base of computer simulations the car cross wind sensitivity were determined, and vehicle responses such as lateral offset, side acceleration and yaw angular velocity are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Do, Phuong T.; Moreland, John R.; Delgado, Catherine
Our research provides an innovative solution for optimizing learning effectiveness and improving postsecondary education through the development of virtual simulators that can be easily used and integrated into existing wind energy curriculum. Two 3D virtual simulators are developed in our laboratory for use in an immersive 3D virtual reality (VR) system or for 3D display on a 2D screen. Our goal is to apply these prototypical simulators to train postsecondary students and professionals in wind energy education; and to offer experiential learning opportunities in 3D modeling, simulation, and visualization. The issue of transferring learned concepts to practical applications is amore » widespread problem in postsecondary education. Related to this issue is a critical demand to educate and train a generation of professionals for the wind energy industry. With initiatives such as the U.S. Department of Energy's “20% Wind Energy by 2030” outlining an exponential increase of wind energy capacity over the coming years, revolutionary educational reform is needed to meet the demand for education in the field of wind energy. These developments and implementation of Virtual Simulators and accompanying curriculum will propel national reforms, meeting the needs of the wind energy industrial movement and addressing broader educational issues that affect a number of disciplines.« less
Do, Phuong T.; Moreland, John R.; Delgado, Catherine; ...
2013-01-01
Our research provides an innovative solution for optimizing learning effectiveness and improving postsecondary education through the development of virtual simulators that can be easily used and integrated into existing wind energy curriculum. Two 3D virtual simulators are developed in our laboratory for use in an immersive 3D virtual reality (VR) system or for 3D display on a 2D screen. Our goal is to apply these prototypical simulators to train postsecondary students and professionals in wind energy education; and to offer experiential learning opportunities in 3D modeling, simulation, and visualization. The issue of transferring learned concepts to practical applications is amore » widespread problem in postsecondary education. Related to this issue is a critical demand to educate and train a generation of professionals for the wind energy industry. With initiatives such as the U.S. Department of Energy's “20% Wind Energy by 2030” outlining an exponential increase of wind energy capacity over the coming years, revolutionary educational reform is needed to meet the demand for education in the field of wind energy. These developments and implementation of Virtual Simulators and accompanying curriculum will propel national reforms, meeting the needs of the wind energy industrial movement and addressing broader educational issues that affect a number of disciplines.« less
Large-Eddy Simulation of Waked Turbines in a Scaled Wind Farm Facility
NASA Astrophysics Data System (ADS)
Wang, J.; McLean, D.; Campagnolo, F.; Yu, T.; Bottasso, C. L.
2017-05-01
The aim of this paper is to present the numerical simulation of waked scaled wind turbines operating in a boundary layer wind tunnel. The simulation uses a LES-lifting-line numerical model. An immersed boundary method in conjunction with an adequate wall model is used to represent the effects of both the wind turbine nacelle and tower, which are shown to have a considerable effect on the wake behavior. Multi-airfoil data calibrated at different Reynolds numbers are used to account for the lift and drag characteristics at the low and varying Reynolds conditions encountered in the experiments. The present study focuses on low turbulence inflow conditions and inflow non-uniformity due to wind tunnel characteristics, while higher turbulence conditions are considered in a separate study. The numerical model is validated by using experimental data obtained during test campaigns conducted with the scaled wind farm facility. The simulation and experimental results are compared in terms of power capture, rotor thrust, downstream velocity profiles and turbulence intensity.
Jet transport performance in thunderstorm wind shear conditions
NASA Technical Reports Server (NTRS)
Mccarthy, J.; Blick, E. F.; Bensch, R. R.
1979-01-01
Several hours of three dimensional wind data were collected in the thunderstorm approach-to-landing environment, using an instrumented Queen Air airplane. These data were used as input to a numerical simulation of aircraft response, concentrating on fixed-stick assumptions, while the aircraft simulated an instrument landing systems approach. Output included airspeed, vertical displacement, pitch angle, and a special approach deterioration parameter. Theory and the results of approximately 1000 simulations indicated that about 20 percent of the cases contained serious wind shear conditions capable of causing a critical deterioration of the approach. In particular, the presence of high energy at the airplane's phugoid frequency was found to have a deleterious effect on approach quality. Oscillations of the horizontal wind at the phugoid frequency were found to have a more serious effect than vertical wind. A simulation of Eastern flight 66, which crashed at JFK in 1975, served to illustrate the points of the research. A concept of a real-time wind shear detector was outlined utilizing these results.
Evaluation of the Inertial Response of Variable-Speed Wind Turbines Using Advanced Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scholbrock, Andrew K; Muljadi, Eduard; Gevorgian, Vahan
In this paper, we focus on the temporary frequency support effect provided by wind turbine generators (WTGs) through the inertial response. With the implemented inertial control methods, the WTG is capable of increasing its active power output by releasing parts of the stored kinetic energy when the frequency excursion occurs. The active power can be boosted temporarily above the maximum power points, but the rotor speed deceleration follows and an active power output deficiency occurs during the restoration of rotor kinetic energy. We evaluate and compare the inertial response induced by two distinct inertial control methods using advanced simulation. Inmore » the first stage, the proposed inertial control methods are analyzed in offline simulation. Using an advanced wind turbine simulation program, FAST with TurbSim, the response of the researched wind turbine is comprehensively evaluated under turbulent wind conditions, and the impact on the turbine mechanical components are assessed. In the second stage, the inertial control is deployed on a real 600kW wind turbine - Controls Advanced Research Turbine, 3-bladed (CART3), which further verifies the inertial control through a hardware-in-the-loop (HIL) simulation. Various inertial control methods can be effectively evaluated based on the proposed two-stage simulation platform, which combines the offline simulation and real-time HIL simulation. The simulation results also provide insights in designing inertial control for WTGs.« less
NASA Technical Reports Server (NTRS)
Iversen, J. D.
1991-01-01
The aeolian wind tunnel is a special case of a larger subset of the wind tunnel family which is designed to simulate the atmospheric surface layer winds to small scale (a member of this larger subset is usually called an atmospheric boundary layer wind tunnel or environmental wind tunnel). The atmospheric boundary layer wind tunnel is designed to simulate, as closely as possible, the mean velocity and turbulence that occur naturally in the atmospheric boundary layer (defined as the lowest portion of the atmosphere, of the order of 500 m, in which the winds are most greatly affected by surface roughness and topography). The aeolian wind tunnel is used for two purposes: to simulate the physics of the saltation process and to model at small scale the erosional and depositional processes associated with topographic surface features. For purposes of studying aeolian effects on the surface of Mars and Venus as well as on Earth, the aeolian wind tunnel continues to prove to be a useful tool for estimating wind speeds necessary to move small particles on the three planets as well as to determine the effects of topography on the evolution of aeolian features such as wind streaks and dune patterns.
Introducing CGOLS: The Cholla Galactic Outflow Simulation Suite
NASA Astrophysics Data System (ADS)
Schneider, Evan E.; Robertson, Brant E.
2018-06-01
We present the Cholla Galactic OutfLow Simulations (CGOLS) suite, a set of extremely high resolution global simulations of isolated disk galaxies designed to clarify the nature of multiphase structure in galactic winds. Using the GPU-based code Cholla, we achieve unprecedented resolution in these simulations, modeling galaxies over a 20 kpc region at a constant resolution of 5 pc. The simulations include a feedback model designed to test the effects of different mass- and energy-loading factors on galactic outflows over kiloparsec scales. In addition to describing the simulation methodology in detail, we also present the results from an adiabatic simulation that tests the frequently adopted analytic galactic wind model of Chevalier & Clegg. Our results indicate that the Chevalier & Clegg model is a good fit to nuclear starburst winds in the nonradiative region of parameter space. Finally, we investigate the role of resolution and convergence in large-scale simulations of multiphase galactic winds. While our largest-scale simulations show convergence of observable features like soft X-ray emission, our tests demonstrate that simulations of this kind with resolutions greater than 10 pc are not yet converged, confirming the need for extreme resolution in order to study the structure of winds and their effects on the circumgalactic medium.
The effect of wind direction and building surroundings on a marina bay in the Black Sea
NASA Astrophysics Data System (ADS)
Katona, Cosmin; Safta, Carmen Anca
2017-01-01
The wind effect has usually a major importance in the marina bay. These environmental sites are an interplay between tourist and commercial activities, requiring a high-detailed and definition studies of the dynamic fluid in the harbor. Computational Fluid Dynamics (CFD) has been used elaborately in urban surroundings research. However, most CFD studies were performed for harbors for only a confined number of wind directions and/or without considering the building surroundings effects. This paper presents the results of different simulations based on various wind flows and the CFD simulation of coupled urban wind flow and general wind directions upon a semi-closed area. Thus the importance of wind effects on the evaluation of the marina bay will be pointed out to achieve a safe and secure mooring at the berth and eventually a good potential of renewable energy for an impending green harbor.
NASA Astrophysics Data System (ADS)
Zhang, Yun-Wei; Gu, Zhao-Lin; Cheng, Yan; Lee, Shun-Cheng
2011-07-01
Air flow and pollutant dispersion characteristics in an urban street canyon are studied under the real-time boundary conditions. A new scheme for realizing real-time boundary conditions in simulations is proposed, to keep the upper boundary wind conditions consistent with the measured time series of wind data. The air flow structure and its evolution under real-time boundary wind conditions are simulated by using this new scheme. The induced effect of time series of ambient wind conditions on the flow structures inside and above the street canyon is investigated. The flow shows an obvious intermittent feature in the street canyon and the flapping of the shear layer forms near the roof layer under real-time wind conditions, resulting in the expansion or compression of the air mass in the canyon. The simulations of pollutant dispersion show that the pollutants inside and above the street canyon are transported by different dispersion mechanisms, relying on the time series of air flow structures. Large scale air movements in the processes of the air mass expansion or compression in the canyon exhibit obvious effects on pollutant dispersion. The simulations of pollutant dispersion also show that the transport of pollutants from the canyon to the upper air flow is dominated by the shear layer turbulence near the roof level and the expansion or compression of the air mass in street canyon under real-time boundary wind conditions. Especially, the expansion of the air mass, which features the large scale air movement of the air mass, makes more contribution to the pollutant dispersion in this study. Comparisons of simulated results under different boundary wind conditions indicate that real-time boundary wind conditions produces better condition for pollutant dispersion than the artificially-designed steady boundary wind conditions.
Vautard, Robert; Thais, Françoise; Tobin, Isabelle; Bréon, François-Marie; Devezeaux de Lavergne, Jean-Guy; Colette, Augustin; Yiou, Pascal; Ruti, Paolo Michele
2014-01-01
The rapid development of wind energy has raised concerns about environmental impacts. Temperature changes are found in the vicinity of wind farms and previous simulations have suggested that large-scale wind farms could alter regional climate. However, assessments of the effects of realistic wind power development scenarios at the scale of a continent are missing. Here we simulate the impacts of current and near-future wind energy production according to European Union energy and climate policies. We use a regional climate model describing the interactions between turbines and the atmosphere, and find limited impacts. A statistically significant signal is only found in winter, with changes within ±0.3 °C and within 0-5% for precipitation. It results from the combination of local wind farm effects and changes due to a weak, but robust, anticyclonic-induced circulation over Europe. However, the impacts remain much weaker than the natural climate interannual variability and changes expected from greenhouse gas emissions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scholbrock, Andrew K; Muljadi, Eduard; Gevorgian, Vahan
In this paper, we focus on the temporary frequency support effect provided by wind turbine generators (WTGs) through the inertial response. With the implemented inertial control methods, the WTG is capable of increasing its active power output by releasing parts of the stored kinetic energy when the frequency excursion occurs. The active power can be boosted temporarily above the maximum power points, but the rotor speed deceleration follows and an active power output deficiency occurs during the restoration of rotor kinetic energy. In this paper, we evaluate and compare the inertial response induced by two distinct inertial control methods usingmore » advanced simulation. In the first stage, the proposed inertial control methods are analyzed in offline simulation. Using an advanced wind turbine simulation program, FAST with TurbSim, the response of the researched wind turbine is comprehensively evaluated under turbulent wind conditions, and the impact on the turbine mechanical components are assessed. In the second stage, the inertial control is deployed on a real 600-kW wind turbine, the three-bladed Controls Advanced Research Turbine, which further verifies the inertial control through a hardware-in-the-loop simulation. Various inertial control methods can be effectively evaluated based on the proposed two-stage simulation platform, which combines the offline simulation and real-time hardware-in-the-loop simulation. The simulation results also provide insights in designing inertial control for WTGs.« less
NASA Technical Reports Server (NTRS)
Wiehle, S.; Plaschke, F.; Motschmann, U.; Glassmeier, K. H.; Auster, H. U.; Angelopoulos, V.; Mueller, J.; Kriegel, H.; Georgescu, E.; Halekas, J.;
2011-01-01
The spacecraft P1 of the new ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun) mission passed the lunar wake for the first time on February 13, 2010. We present magnetic field and plasma data of this event and results of 3D hybrid simulations. As the solar wind magnetic field was highly dynamic during the passage, a simulation with stationary solar wind input cannot distinguish whether distortions were caused by these solar wind variations or by the lunar wake; therefore, a dynamic real-time simulation of the flyby has been performed. The input values of this simulation are taken from NASA OMNI data and adapted to the P1 data, resulting in a good agreement between simulation and measurements. Combined with the stationary simulation showing non-transient lunar wake structures, a separation of solar wind and wake effects is achieved. An anisotropy in the magnitude of the plasma bulk flow velocity caused by a non-vanishing magnetic field component parallel to the solar wind flow and perturbations created by counterstreaming ions in the lunar wake are observed in data and simulations. The simulations help to interpret the data granting us the opportunity to examine the entire lunar plasma environment and, thus, extending the possibilities of measurements alone: A comparison of a simulation cross section to theoretical predictions of MHD wave propagation shows that all three basic MHD modes are present in the lunar wake and that their expansion governs the lunar wake refilling process.
NASA Technical Reports Server (NTRS)
Miller, G. K., Jr.
1981-01-01
The effect of reduced control authority, both in symmetric spoiler travel and thrust level, on the effectiveness of a decoupled longitudinal control system was examined during the approach and landing of the NASA terminal configured vehicle (TCV) aft flight deck simulator in the presence of wind shear. The evaluation was conducted in a fixed-base simulator that represented the TCV aft cockpit. There were no statistically significant effects of reduced spoiler and thrust authority on pilot performance during approach and landing. Increased wind severity degraded approach and landing performance by an amount that was often significant. However, every attempted landing was completed safely regardless of the wind severity. There were statistically significant differences in performance between subjects, but the differences were generally restricted to the control wheel and control-column activity during the approach.
Modelling and observing the role of wind in Anopheles population dynamics around a reservoir.
Endo, Noriko; Eltahir, Elfatih A B
2018-01-25
Wind conditions, as well as other environmental conditions, are likely to influence malaria transmission through the behaviours of Anopheles mosquitoes, especially around water-resource reservoirs. Wind-induced waves in a reservoir impose mortality on aquatic-stage mosquitoes. Mosquitoes' host-seeking activity is also influenced by wind through dispersion of [Formula: see text]. However, no malaria transmission model exists to date that simulated those impacts of wind mechanistically. A modelling framework for simulating the three important effects of wind on the behaviours of mosquito is developed: attraction of adult mosquitoes through dispersion of [Formula: see text] ([Formula: see text] attraction), advection of adult mosquitoes (advection), and aquatic-stage mortality due to wind-induced surface waves (waves). The framework was incorporated in a mechanistic malaria transmission simulator, HYDREMATS. The performance of the extended simulator was compared with the observed population dynamics of the Anopheles mosquitoes at a village adjacent to the Koka Reservoir in Ethiopia. The observed population dynamics of the Anopheles mosquitoes were reproduced with some reasonable accuracy in HYDREMATS that includes the representation of the wind effects. HYDREMATS without the wind model failed to do so. Offshore wind explained the increase in Anopheles population that cannot be expected from other environmental conditions alone. Around large water bodies such as reservoirs, the role of wind in the dynamics of Anopheles population, hence in malaria transmission, can be significant. Modelling the impacts of wind on the behaviours of Anopheles mosquitoes aids in reproducing the seasonality of malaria transmission and in estimation of the risk of malaria around reservoirs.
Effect of atmospheric turbulence on wind turbine wakes: An LES study
NASA Astrophysics Data System (ADS)
Wu, Y. T.; Porté-Agel, F.
2012-04-01
A comprehensive numerical study of atmospheric turbulence effect on wind-turbine wakes is presented. Large-eddy simulations of neutrally-stratified boundary layers developed over different flat surfaces (forest, farmland, grass, and snow) are performed to investigate the structure of turbine wakes in cases where the incident flows to the wind turbine have the same mean velocity at the hub height but different mean wind shears and turbulence intensity levels. The simulation results show that the different wind shears and turbulence intensity levels of the incoming flow lead to considerable influence on the spatial distribution of the mean velocity deficit, turbulence intensity, and turbulent shear stress in the wake region downstream of the turbine. In general, the recovery of the turbine-induced wake (velocity deficit) is faster and the turbulence intensity level is higher and has its maximum closer to the turbine for wakes of turbines over rougher terrain. In order to isolate the effect of turbulence intensity from that of wind shear, simulations have also been performed with synthetic inflow velocity fields that have the same mean wind shear but different turbulence intensity levels. We find that the effect of the inflow turbulence intensity on the wake recovery and turbulence levels is stronger than that of the mean shear.
A survey of modelling methods for high-fidelity wind farm simulations using large eddy simulation.
Breton, S-P; Sumner, J; Sørensen, J N; Hansen, K S; Sarmast, S; Ivanell, S
2017-04-13
Large eddy simulations (LES) of wind farms have the capability to provide valuable and detailed information about the dynamics of wind turbine wakes. For this reason, their use within the wind energy research community is on the rise, spurring the development of new models and methods. This review surveys the most common schemes available to model the rotor, atmospheric conditions and terrain effects within current state-of-the-art LES codes, of which an overview is provided. A summary of the experimental research data available for validation of LES codes within the context of single and multiple wake situations is also supplied. Some typical results for wind turbine and wind farm flows are presented to illustrate best practices for carrying out high-fidelity LES of wind farms under various atmospheric and terrain conditions.This article is part of the themed issue 'Wind energy in complex terrains'. © 2017 The Author(s).
A survey of modelling methods for high-fidelity wind farm simulations using large eddy simulation
Sumner, J.; Sørensen, J. N.; Hansen, K. S.; Sarmast, S.; Ivanell, S.
2017-01-01
Large eddy simulations (LES) of wind farms have the capability to provide valuable and detailed information about the dynamics of wind turbine wakes. For this reason, their use within the wind energy research community is on the rise, spurring the development of new models and methods. This review surveys the most common schemes available to model the rotor, atmospheric conditions and terrain effects within current state-of-the-art LES codes, of which an overview is provided. A summary of the experimental research data available for validation of LES codes within the context of single and multiple wake situations is also supplied. Some typical results for wind turbine and wind farm flows are presented to illustrate best practices for carrying out high-fidelity LES of wind farms under various atmospheric and terrain conditions. This article is part of the themed issue ‘Wind energy in complex terrains’. PMID:28265021
Hydrodynamic Interaction between the Be Star and the Pulsar in the TeV Binary PSR B1259-63/LS 2883
NASA Astrophysics Data System (ADS)
Okazaki, Atsuo T.; Nagataki, Shigehiro; Naito, Tsuguya; Kawachi, Akiko; Hayasaki, Kimitake; Owocki, Stanley P.; Takata, Jumpei
2011-08-01
We have been studying the interaction between the Be star and the pulsar in the TeV binary PSR B1259-63/LS 2883, using 3-D SPH simulations of the tidal and wind interactions in this Be-pulsar system. We first ran a simulation without pulsar wind nor Be wind, while taking into account only the gravitational effect of the pulsar on the Be disk. In this simulation, the gas particles are ejected at a constant rate from the equatorial surface of the Be star, which is tilted in a direction consistent with multi-waveband observations. We ran the simulation until the Be disk was fully developed and started to repeat a regular tidal interaction with the pulsar. Then, we turned on the pulsar wind and the Be wind. We ran two simulations with different wind mass-loss rates for the Be star, one for a B2 V type and the other for a significantly earlier spectral type. Although the global shape of the interaction surface between the pulsar wind and the Be wind agrees with the analytical solution, the effect of the pulsar wind on the Be disk is profound. The pulsar wind strips off an outer part of the Be disk, truncating the disk at a radius significantly smaller than the pulsar orbit. Our results, therefore, rule out the idea that the pulsar passes through the Be disk around periastron, which has been assumed in previous studies. It also turns out that the location of the contact discontinuity can be significantly different between phases when the pulsar wind directly hits the Be disk and those when the pulsar wind collides with the Be wind. It is thus important to adequately take into account the circumstellar environment of the Be star, in order to construct a satisfactory model for this prototypical TeV binary.
Simulating Sources of Superstorm Plasmas
NASA Technical Reports Server (NTRS)
Fok, Mei-Ching
2008-01-01
We evaluated the contributions to magnetospheric pressure (ring current) of the solar wind, polar wind, auroral wind, and plasmaspheric wind, with the surprising result that the main phase pressure is dominated by plasmaspheric protons. We used global simulation fields from the LFM single fluid ideal MHD model. We embedded the Comprehensive Ring Current Model within it, driven by the LFM transpolar potential, and supplied with plasmas at its boundary including solar wind protons, polar wind protons, auroral wind O+, and plasmaspheric protons. We included auroral outflows and acceleration driven by the LFM ionospheric boundary condition, including parallel ion acceleration driven by upward currents. Our plasmasphere model runs within the CRCM and is driven by it. Ionospheric sources were treated using our Global Ion Kinetics code based on full equations of motion. This treatment neglects inertial loading and pressure exerted by the ionospheric plasmas, and will be superceded by multifluid simulations that include those effects. However, these simulations provide new insights into the respective role of ionospheric sources in storm-time magnetospheric dynamics.
Gebraad, P. M. O.; Teeuwisse, F. W.; van Wingerden, J. W.; ...
2016-01-01
This article presents a wind plant control strategy that optimizes the yaw settings of wind turbines for improved energy production of the whole wind plant by taking into account wake effects. The optimization controller is based on a novel internal parametric model for wake effects, called the FLOw Redirection and Induction in Steady-state (FLORIS) model. The FLORIS model predicts the steady-state wake locations and the effective flow velocities at each turbine, and the resulting turbine electrical energy production levels, as a function of the axial induction and the yaw angle of the different rotors. The FLORIS model has a limitedmore » number of parameters that are estimated based on turbine electrical power production data. In high-fidelity computational fluid dynamics simulations of a small wind plant, we demonstrate that the optimization control based on the FLORIS model increases the energy production of the wind plant, with a reduction of loads on the turbines as an additional effect.« less
The effects of wind and altitude in the 400-m sprint.
Quinn, Mike D
2004-01-01
In this paper I use a mathematical model to simulate the effect of wind and altitude on men's and women's 4400-m race performances. Both wind speed and direction were altered to calculate the effect on the velocity profile and the final time of the sprinter. The simulation shows that for a constant wind velocity, changing the wind direction can produce a large variation in the race time and velocity profile. A wind of velocity 2 m x s(-1) is generally a disadvantage to the 400-m runner but this is not so for all wind directions. Constant winds blowing from some directions can provide favourable conditions for the one-lap runner. Differences between the running lanes can be reduced or exaggerated depending on the wind direction. For example, a wind blowing behind the runner in the back straight increases the advantage of lane 8 over lane 1. Wind conditions can change the velocity profile and in some circumstances produce a maximum velocity much later than is evident in windless conditions. Lower air density at altitude produces a time advantage of around 0.06 s for men (0.07 s for women) for each 500-m increase in elevation.
Simulation of Ground Winds Time Series for the NASA Crew Launch Vehicle (CLV)
NASA Technical Reports Server (NTRS)
Adelfang, Stanley I.
2008-01-01
Simulation of wind time series based on power spectrum density (PSD) and spectral coherence models for ground wind turbulence is described. The wind models, originally developed for the Shuttle program, are based on wind measurements at the NASA 150-m meteorological tower at Cape Canaveral, FL. The current application is for the design and/or protection of the CLV from wind effects during on-pad exposure during periods from as long as days prior to launch, to seconds or minutes just prior to launch and seconds after launch. The evaluation of vehicle response to wind will influence the design and operation of constraint systems for support of the on-pad vehicle. Longitudinal and lateral wind component time series are simulated at critical vehicle locations. The PSD model for wind turbulence is a function of mean wind speed, elevation and temporal frequency. Integration of the PSD equation over a selected frequency range yields the variance of the time series to be simulated. The square root of the PSD defines a low-pass filter that is applied to adjust the components of the Fast Fourier Transform (FFT) of Gaussian white noise. The first simulated time series near the top of the launch vehicle is the inverse transform of the adjusted FFT. Simulation of the wind component time series at the nearest adjacent location (and all other succeeding next nearest locations) is based on a model for the coherence between winds at two locations as a function of frequency and separation distance, where the adjacent locations are separated vertically and/or horizontally. The coherence function is used to calculate a coherence weighted FFT of the wind at the next nearest location, given the FFT of the simulated time series at the previous location and the essentially incoherent FFT of the wind at the selected location derived a priori from the PSD model. The simulated time series at each adjacent location is the inverse Fourier transform of the coherence weighted FFT. For a selected design case, the equations, the process and the simulated time series at multiple vehicle stations are presented.
Scale effects in wind tunnel modeling of an urban atmospheric boundary layer
NASA Astrophysics Data System (ADS)
Kozmar, Hrvoje
2010-03-01
Precise urban atmospheric boundary layer (ABL) wind tunnel simulations are essential for a wide variety of atmospheric studies in built-up environments including wind loading of structures and air pollutant dispersion. One of key issues in addressing these problems is a proper choice of simulation length scale. In this study, an urban ABL was reproduced in a boundary layer wind tunnel at different scales to study possible scale effects. Two full-depth simulations and one part-depth simulation were carried out using castellated barrier wall, vortex generators, and a fetch of roughness elements. Redesigned “Counihan” vortex generators were employed in the part-depth ABL simulation. A hot-wire anemometry system was used to measure mean velocity and velocity fluctuations. Experimental results are presented as mean velocity, turbulence intensity, Reynolds stress, integral length scale of turbulence, and power spectral density of velocity fluctuations. Results suggest that variations in length-scale factor do not influence the generated ABL models when using similarity criteria applied in this study. Part-depth ABL simulation compares well with two full-depth ABL simulations indicating the truncated vortex generators developed for this study can be successfully employed in urban ABL part-depth simulations.
Turbulent kinetics of a large wind farm and their impact in the neutral boundary layer
Na, Ji Sung; Koo, Eunmo; Munoz-Esparza, Domingo; ...
2015-12-28
High-resolution large-eddy simulation of the flow over a large wind farm (64 wind turbines) is performed using the HIGRAD/FIRETEC-WindBlade model, which is a high-performance computing wind turbine–atmosphere interaction model that uses the Lagrangian actuator line method to represent rotating turbine blades. These high-resolution large-eddy simulation results are used to parameterize the thrust and power coefficients that contain information about turbine interference effects within the wind farm. Those coefficients are then incorporated into the WRF (Weather Research and Forecasting) model in order to evaluate interference effects in larger-scale models. In the high-resolution WindBlade wind farm simulation, insufficient distance between turbines createsmore » the interference between turbines, including significant vertical variations in momentum and turbulent intensity. The characteristics of the wake are further investigated by analyzing the distribution of the vorticity and turbulent intensity. Quadrant analysis in the turbine and post-turbine areas reveals that the ejection motion induced by the presence of the wind turbines is dominant compared to that in the other quadrants, indicating that the sweep motion is increased at the location where strong wake recovery occurs. Regional-scale WRF simulations reveal that although the turbulent mixing induced by the wind farm is partly diffused to the upper region, there is no significant change in the boundary layer depth. The velocity deficit does not appear to be very sensitive to the local distribution of turbine coefficients. However, differences of about 5% on parameterized turbulent kinetic energy were found depending on the turbine coefficient distribution. Furthermore, turbine coefficients that consider interference in the wind farm should be used in wind farm parameterization for larger-scale models to better describe sub-grid scale turbulent processes.« less
Research on the winding losses based on finite element method for transformer
NASA Astrophysics Data System (ADS)
Li, Wenpeng; Lai, Wenqing; Ye, Ligang; Luo, Hanwu; Luo, Changjiang; Cui, Shigang; Wang, Yongqiang
2018-04-01
Transformer loss can cause the transformer to overheat. Under the action of high frequency current, the loss of transformer windings will be aggravated due to proximity effect and skin effect. In this paper, a three-dimensional model of high frequency transformer windings is established. Considering of the proximity effect and skin effect, the eddy current effects loss in the transformer windings are simulated based on finite element method. And the winding losses of the transformer windings are obtained under different arrangements. The influence of the winding layout on the winding losses is given. Finally, the trend of winding loss with current frequency, winding thickness and inter layer spacing is obtained through calculation. The winding loss initially decreases as the thickness of the winding increases, but when it reaches a certain level, this reduction becomes insignificant.
Simulation of the Atmospheric Boundary Layer for Wind Energy Applications
NASA Astrophysics Data System (ADS)
Marjanovic, Nikola
Energy production from wind is an increasingly important component of overall global power generation, and will likely continue to gain an even greater share of electricity production as world governments attempt to mitigate climate change and wind energy production costs decrease. Wind energy generation depends on wind speed, which is greatly influenced by local and synoptic environmental forcings. Synoptic forcing, such as a cold frontal passage, exists on a large spatial scale while local forcing manifests itself on a much smaller scale and could result from topographic effects or land-surface heat fluxes. Synoptic forcing, if strong enough, may suppress the effects of generally weaker local forcing. At the even smaller scale of a wind farm, upstream turbines generate wakes that decrease the wind speed and increase the atmospheric turbulence at the downwind turbines, thereby reducing power production and increasing fatigue loading that may damage turbine components, respectively. Simulation of atmospheric processes that span a considerable range of spatial and temporal scales is essential to improve wind energy forecasting, wind turbine siting, turbine maintenance scheduling, and wind turbine design. Mesoscale atmospheric models predict atmospheric conditions using observed data, for a wide range of meteorological applications across scales from thousands of kilometers to hundreds of meters. Mesoscale models include parameterizations for the major atmospheric physical processes that modulate wind speed and turbulence dynamics, such as cloud evolution and surface-atmosphere interactions. The Weather Research and Forecasting (WRF) model is used in this dissertation to investigate the effects of model parameters on wind energy forecasting. WRF is used for case study simulations at two West Coast North American wind farms, one with simple and one with complex terrain, during both synoptically and locally-driven weather events. The model's performance with different grid nesting configurations, turbulence closures, and grid resolutions is evaluated by comparison to observation data. Improvement to simulation results from the use of more computationally expensive high resolution simulations is only found for the complex terrain simulation during the locally-driven event. Physical parameters, such as soil moisture, have a large effect on locally-forced events, and prognostic turbulence kinetic energy (TKE) schemes are found to perform better than non-local eddy viscosity turbulence closure schemes. Mesoscale models, however, do not resolve turbulence directly, which is important at finer grid resolutions capable of resolving wind turbine components and their interactions with atmospheric turbulence. Large-eddy simulation (LES) is a numerical approach that resolves the largest scales of turbulence directly by separating large-scale, energetically important eddies from smaller scales with the application of a spatial filter. LES allows higher fidelity representation of the wind speed and turbulence intensity at the scale of a wind turbine which parameterizations have difficulty representing. Use of high-resolution LES enables the implementation of more sophisticated wind turbine parameterizations to create a robust model for wind energy applications using grid spacing small enough to resolve individual elements of a turbine such as its rotor blades or rotation area. Generalized actuator disk (GAD) and line (GAL) parameterizations are integrated into WRF to complement its real-world weather modeling capabilities and better represent wind turbine airflow interactions, including wake effects. The GAD parameterization represents the wind turbine as a two-dimensional disk resulting from the rotation of the turbine blades. Forces on the atmosphere are computed along each blade and distributed over rotating, annular rings intersecting the disk. While typical LES resolution (10-20 m) is normally sufficient to resolve the GAD, the GAL parameterization requires significantly higher resolution (1-3 m) as it does not distribute the forces from the blades over annular elements, but applies them along lines representing individual blades. In this dissertation, the GAL is implemented into WRF and evaluated against the GAD parameterization from two field campaigns that measured the inflow and near-wake regions of a single turbine. The data-sets are chosen to allow validation under the weakly convective and weakly stable conditions characterizing most turbine operations. The parameterizations are evaluated with respect to their ability to represent wake wind speed, variance, and vorticity by comparing fine-resolution GAD and GAL simulations along with coarse-resolution GAD simulations. Coarse-resolution GAD simulations produce aggregated wake characteristics similar to both GAD and GAL simulations (saving on computational cost), while the GAL parameterization enables resolution of near wake physics (such as vorticity shedding and wake expansion) for high fidelity applications. (Abstract shortened by ProQuest.).
Nelson, Matthew A.; Brown, Michael J.; Halverson, Scot A.; ...
2016-07-28
Here, the Quick Urban & Industrial Complex (QUIC) atmospheric transport, and dispersion modelling, system was evaluated against the Joint Urban 2003 tracer-gas measurements. This was done using the wind and turbulence fields computed by the Weather Research and Forecasting (WRF) model. We compare the simulated and observed plume transport when using WRF-model-simulated wind fields, and local on-site wind measurements. Degradation of the WRF-model-based plume simulations was cased by errors in the simulated wind direction, and limitations in reproducing the small-scale wind-field variability. We explore two methods for importing turbulence from the WRF model simulations into the QUIC system. The firstmore » method uses parametrized turbulence profiles computed from WRF-model-computed boundary-layer similarity parameters; and the second method directly imports turbulent kinetic energy from the WRF model. Using the WRF model’s Mellor-Yamada-Janjic boundary-layer scheme, the parametrized turbulence profiles and the direct import of turbulent kinetic energy were found to overpredict and underpredict the observed turbulence quantities, respectively. Near-source building effects were found to propagate several km downwind. These building effects and the temporal/spatial variations in the observed wind field were often found to have a stronger influence over the lateral and vertical plume spread than the intensity of turbulence. Correcting the WRF model wind directions using a single observational location improved the performance of the WRF-model-based simulations, but using the spatially-varying flow fields generated from multiple observation profiles generally provided the best performance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Matthew A.; Brown, Michael J.; Halverson, Scot A.
Here, the Quick Urban & Industrial Complex (QUIC) atmospheric transport, and dispersion modelling, system was evaluated against the Joint Urban 2003 tracer-gas measurements. This was done using the wind and turbulence fields computed by the Weather Research and Forecasting (WRF) model. We compare the simulated and observed plume transport when using WRF-model-simulated wind fields, and local on-site wind measurements. Degradation of the WRF-model-based plume simulations was cased by errors in the simulated wind direction, and limitations in reproducing the small-scale wind-field variability. We explore two methods for importing turbulence from the WRF model simulations into the QUIC system. The firstmore » method uses parametrized turbulence profiles computed from WRF-model-computed boundary-layer similarity parameters; and the second method directly imports turbulent kinetic energy from the WRF model. Using the WRF model’s Mellor-Yamada-Janjic boundary-layer scheme, the parametrized turbulence profiles and the direct import of turbulent kinetic energy were found to overpredict and underpredict the observed turbulence quantities, respectively. Near-source building effects were found to propagate several km downwind. These building effects and the temporal/spatial variations in the observed wind field were often found to have a stronger influence over the lateral and vertical plume spread than the intensity of turbulence. Correcting the WRF model wind directions using a single observational location improved the performance of the WRF-model-based simulations, but using the spatially-varying flow fields generated from multiple observation profiles generally provided the best performance.« less
Flight in low-level wind shear
NASA Technical Reports Server (NTRS)
Frost, W.
1983-01-01
Results of studies of wind shear hazard to aircraft operation are summarized. Existing wind shear profiles currently used in computer and flight simulator studies are reviewed. The governing equations of motion for an aircraft are derived incorporating the variable wind effects. Quantitative discussions of the effects of wind shear on aircraft performance are presented. These are followed by a review of mathematical solutions to both the linear and nonlinear forms of the governing equations. Solutions with and without control laws are presented. The application of detailed analysis to develop warning and detection systems based on Doppler radar measuring wind speed along the flight path is given. A number of flight path deterioration parameters are defined and evaluated. Comparison of computer-predicted flight paths with those measured in a manned flight simulator is made. Some proposed airborne and ground-based wind shear hazard warning and detection systems are reviewed. The advantages and disadvantages of both types of systems are discussed.
Investigation of aircraft landing in variable wind fields
NASA Technical Reports Server (NTRS)
Frost, W.; Reddy, K. R.
1978-01-01
A digital simulation study is reported of the effects of gusts and wind shear on the approach and landing of aircraft. The gusts and wind shear are primarily those associated with wind fields created by surface wind passing around bluff geometries characteristic of buildings. Also, flight through a simple model of a thunderstorm is investigated. A two-dimensional model of aircraft motion was represented by a set of nonlinear equations which accounted for both spatial and temporal variations of winds. The landings of aircraft with the characteristics of a DC-8 and a DHC-6 were digitally simulated under different wind conditions with fixed and automatic controls. The resulting deviations in touchdown points and the controls that are required to maintain the desired flight path are presented. The presence of large bluff objects, such as buildings in the flight path is shown to have considerable effect on aircraft landings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelley, Christopher Lee; Maniaci, David Charles; Resor, Brian R.
2015-10-01
The total energy produced by a wind farm depends on the complex interaction of many wind turbines operating in proximity with the turbulent atmosphere. Sometimes, the unsteady forces associated with wind negatively influence power production, causing damage and increasing the cost of producing energy associated with wind power. Wakes and the motion of air generated by rotating blades need to be better understood. Predicting wakes and other wind forces could lead to more effective wind turbine designs and farm layouts, thereby reducing the cost of energy, allowing the United States to increase the installed capacity of wind energy. The Windmore » Energy Technologies Department at Sandia has collaborated with the University of Minnesota to simulate the interaction of multiple wind turbines. By combining the validated, large-eddy simulation code with Sandia’s HPC capability, this consortium has improved its ability to predict unsteady forces and the electrical power generated by an array of wind turbines. The array of wind turbines simulated were specifically those at the Sandia Scaled Wind Farm Testbed (SWiFT) site which aided the design of new wind turbine blades being manufactured as part of the National Rotor Testbed project with the Department of Energy.« less
The Formation of Filamentary Structures in Radiative Cluster Winds
NASA Astrophysics Data System (ADS)
Rodríguez-González, Ary; Esquivel, Alejandro; Raga, Alejandro C.; Cantó, Jorge
We explore the dynamics of a "cluster wind" flow in the regime in which the shocks resulting from the interaction of winds from nearby stars are radiative. We show that for a cluster with low-intermedia mass stars, the wind interactions are indeed likely to be radiative. We then compute three dimensional, radiative simulations of a cluster of 75 young stars, exploring the effects of varying the wind parameters and the density of the initial ISM that permeates the volume of the cluster. These simulations show that the ISM is compressed by the action of the winds into a structure of dense knots and filaments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Na, Ji Sung; Koo, Eunmo; Munoz-Esparza, Domingo
High-resolution large-eddy simulation of the flow over a large wind farm (64 wind turbines) is performed using the HIGRAD/FIRETEC-WindBlade model, which is a high-performance computing wind turbine–atmosphere interaction model that uses the Lagrangian actuator line method to represent rotating turbine blades. These high-resolution large-eddy simulation results are used to parameterize the thrust and power coefficients that contain information about turbine interference effects within the wind farm. Those coefficients are then incorporated into the WRF (Weather Research and Forecasting) model in order to evaluate interference effects in larger-scale models. In the high-resolution WindBlade wind farm simulation, insufficient distance between turbines createsmore » the interference between turbines, including significant vertical variations in momentum and turbulent intensity. The characteristics of the wake are further investigated by analyzing the distribution of the vorticity and turbulent intensity. Quadrant analysis in the turbine and post-turbine areas reveals that the ejection motion induced by the presence of the wind turbines is dominant compared to that in the other quadrants, indicating that the sweep motion is increased at the location where strong wake recovery occurs. Regional-scale WRF simulations reveal that although the turbulent mixing induced by the wind farm is partly diffused to the upper region, there is no significant change in the boundary layer depth. The velocity deficit does not appear to be very sensitive to the local distribution of turbine coefficients. However, differences of about 5% on parameterized turbulent kinetic energy were found depending on the turbine coefficient distribution. Furthermore, turbine coefficients that consider interference in the wind farm should be used in wind farm parameterization for larger-scale models to better describe sub-grid scale turbulent processes.« less
Integrating Multiple Approaches to Solving Solar Wind Turbulence Problems (Invited)
NASA Astrophysics Data System (ADS)
Karimabadi, H.; Roytershteyn, V.
2013-12-01
The ultimate understanding of the solar wind turbulence must explain the physical process and their connection at all scales ranging from the largest down to electron kinetic scales. This is a daunting task and as a result a more piecemeal approach to the problem has been followed. For example, the role of each wave has been explored in isolation and in simulations with scales limited to those of the underlying waves. In this talk, we present several issues with this approach and offer an alternative with an eye towards more realistic simulations of solar wind turbulence. The main simulation techniques used have been MHD, Hall MHD, hybrid, fully kinetic, and gyrokinetic. We examine the limitations of each approach and their viability for studies of solar wind turbulence. Finally, the effect of initial conditions on the resulting turbulence and their comparison with solar wind are demonstrated through several kinetic simulations.
Kim, Tae-Ho; Yang, Chan-Su; Oh, Jeong-Hwan; Ouchi, Kazuo
2014-01-01
The purpose of this study is to investigate the effects of the wind drift factor under strong tidal conditions in the western coastal area of Korea on the movement of oil slicks caused by the Hebei Spirit oil spill accident in 2007. The movement of oil slicks was computed using a simple simulation model based on the empirical formula as a function of surface current, wind speed, and the wind drift factor. For the simulation, the Environmental Fluid Dynamics Code (EFDC) model and Automatic Weather System (AWS) were used to generate tidal and wind fields respectively. Simulation results were then compared with 5 sets of spaceborne optical and synthetic aperture radar (SAR) data. From the present study, it was found that highest matching rate between the simulation results and satellite imagery was obtained with different values of the wind drift factor, and to first order, this factor was linearly proportional to the wind speed. Based on the results, a new modified empirical formula was proposed for forecasting the movement of oil slicks on the coastal area. PMID:24498094
NASA Astrophysics Data System (ADS)
Creech, Angus; Früh, Wolf-Gerrit; Maguire, A. Eoghan
2015-05-01
We present here a computational fluid dynamics (CFD) simulation of Lillgrund offshore wind farm, which is located in the Øresund Strait between Sweden and Denmark. The simulation combines a dynamic representation of wind turbines embedded within a large-eddy simulation CFD solver and uses hr-adaptive meshing to increase or decrease mesh resolution where required. This allows the resolution of both large-scale flow structures around the wind farm, and the local flow conditions at individual turbines; consequently, the response of each turbine to local conditions can be modelled, as well as the resulting evolution of the turbine wakes. This paper provides a detailed description of the turbine model which simulates the interaction between the wind, the turbine rotors, and the turbine generators by calculating the forces on the rotor, the body forces on the air, and instantaneous power output. This model was used to investigate a selection of key wind speeds and directions, investigating cases where a row of turbines would be fully aligned with the wind or at specific angles to the wind. Results shown here include presentations of the spin-up of turbines, the observation of eddies moving through the turbine array, meandering turbine wakes, and an extensive wind farm wake several kilometres in length. The key measurement available for cross-validation with operational wind farm data is the power output from the individual turbines, where the effect of unsteady turbine wakes on the performance of downstream turbines was a main point of interest. The results from the simulations were compared to the performance measurements from the real wind farm to provide a firm quantitative validation of this methodology. Having achieved good agreement between the model results and actual wind farm measurements, the potential of the methodology to provide a tool for further investigations of engineering and atmospheric science problems is outlined.
NASA Astrophysics Data System (ADS)
Deng, Bo; Shi, Yaoyao
2017-11-01
The tape winding technology is an effective way to fabricate rotationally composite materials. Nevertheless, some inevitable defects will seriously influence the performance of winding products. One of the crucial ways to identify the quality of fiber-reinforced composite material products is examining its void content. Significant improvement in products' mechanical properties can be achieved by minimizing the void defect. Two methods were applied in this study, finite element analysis and experimental testing, respectively, to investigate the mechanism of how void forming in composite tape winding processing. Based on the theories of interlayer intimate contact and Domain Superposition Technique (DST), a three-dimensional model of prepreg tape void with SolidWorks has been modeled in this paper. Whereafter, ABAQUS simulation software was used to simulate the void content change with pressure and temperature. Finally, a series of experiments were performed to determine the accuracy of the model-based predictions. The results showed that the model is effective for predicting the void content in the composite tape winding process.
Effects of the Solar Wind Pressure on Mercury's Exosphere: Hybrid Simulations
NASA Astrophysics Data System (ADS)
Travnicek, P. M.; Schriver, D.; Orlando, T. M.; Hellinger, P.
2017-12-01
We study effects of the changed solar wind pressure on the precipitation of hydrogen on the Mercury's surface and on the formation of Mercury's magnetosphere. We carry out a set of global hybrid simulations of the Mercury's magnetosphere with the interplanetary magnetic field oriented in the equatorial plane. We change the solar wind pressure by changing the velocity of injected solar wind plasma (vsw = 2 vA,sw; vsw = 4 vA,sw; vsw = 6 vA,sw). For each of the cases we examine proton and electron precipitation on Mercury's surface and calculate yields of heavy ions released from Mercury's surface via various processes (namely: Photo-Stimulated Desorption, Solar Wind Sputtering, and Electron Stimulated Desorption). We study circulation of the released ions within the Mercury's magnetosphere for the three cases.
Simulation of wake effects between two wind farms
NASA Astrophysics Data System (ADS)
Hansen, K. S.; Réthoré, P.-E.; Palma, J.; Hevia, B. G.; Prospathopoulos, J.; Peña, A.; Ott, S.; Schepers, G.; Palomares, A.; van der Laan, M. P.; Volker, P.
2015-06-01
SCADA data, recorded on the downstream wind farm, has been used to identify flow cases with visible clustering effects. The inflow condition is derived from a partly undisturbed wind turbine, due to lack of mast measurements. The SCADA data analysis concludes that centre of the deficit for the downstream wind farm with disturbed inflow has a distinct visible maximum deficit zone located only 5-10D downstream from the entrance. This zone, representing 20-30% speed reduction, increases and moves downstream for increasing cluster effect and is not visible outside a flow sector of 20-30°. The eight flow models represented in this benchmark include both RANS models, mesoscale models and engineering models. The flow cases, identified according to the wind speed level and inflow sector, have been simulated and validated with the SCADA results. The model validation concludes that all models more or less are able to predict the location and size of the deficit zone inside the downwind wind farm.
Lattice Boltzmann simulations of flapping wings: The flock effect and the lateral wind effect
NASA Astrophysics Data System (ADS)
de Rosis, Alessandro
2014-02-01
In this paper, numerical analysis aiming at simulating biological organisms immersed in a fluid are carried out. The fluid domain is modeled through the lattice Boltzmann (LB) method, while the immersed boundary method is used to account for the position of the organisms idealized as rigid bodies. The time discontinuous Galerkin method is employed to compute body motion. An explicit coupling strategy to combine the adopted numerical methods is proposed. The vertical take-off of a couple of butterflies is numerically simulated in different scenarios, showing the mutual interaction that a butterfly exerts on the other one. Moreover, the effect of lateral wind is investigated. A critical threshold value of the lateral wind is defined, thus corresponding to an increasing arduous take-off.
Hybrid simulations of Venus' ionospheric magnetization states
NASA Astrophysics Data System (ADS)
Wiehle, Stefan; Motschmann, Uwe; Fränz, Markus
2013-04-01
The solar wind interaction with the plasma environment of Venus is studied with focus on ionospheric magnetization states using a 3D hybrid simulation code. The plasma environment of Venus was investigated mainly by Pioneer Venus Orbiter (PVO) and the still ongoing Venus Express (VEX) mission. Unlike many other planets, Venus' ionosphere is not shielded by a strong magnetosphere. Hence, data measured by spacecraft like PVO and VEX close to the planet are highly sensitive to solar wind and IMF upstream conditions, which cannot be measured while the spacecraft is inside the magnetosheath region about one hour before and after the closest approach. However, solar wind and IMF are known to change within minutes; ionospheric magnetization states, found by PVO and VEX, are highly dependent on the solar wind upstream pressure and also the magnetic field direction may change rapidly in case of a magnetic sector boundary crossing. When these solar wind induced transition effects occur, the causal change in the solar wind cannot be determined from ionospheric in-situ data. Additionally, with an orbital period of 24 hours, measuring transition timescales of solar wind triggered events is not possible. Our self-consistent simulations aim to provide a global picture of the solar wind interaction with Venus focusing on the effects of upstream fluctuations to the magnetic field in the vicinity of the planet. We use the A.I.K.E.F. (Adaptive Ion Kinetic Electron Fluid) 3D hybrid simulation code to model the entire Venus plasma environment. The simulation grid is refined within the ionosphere in order to resolve strong small-scale gradients of the magnetic field and ion density, a necessity to describe the magnetic field depletion inside the Venus' ionosphere. In contrast to other simulation studies, we apply no boundary conditions for the magnetic field at the planetary surface. Furthermore, we include varying upstream conditions like solar wind velocity and density as well as IMF strength and direction by adjusting these parameters after a first, quasi-stationary state has been reached. This allows for a simulation of dynamic processes like the transition between the magnetized and unmagnetized ionospheric state and fossil fields.
Large-Eddy Simulation of Atmospheric Boundary-Layer Flow Through a Wind Farm Sited on Topography
NASA Astrophysics Data System (ADS)
Shamsoddin, Sina; Porté-Agel, Fernando
2017-04-01
Large-eddy simulation (LES) has recently been well validated and applied in the context of wind turbines over flat terrain; however, to date its accuracy has not been tested systematically in the case of turbine-wake flows over topography. Here, we investigate the wake flow in a wind farm situated on hilly terrain using LES for a case where wind-tunnel experimental data are available. To this end, first boundary-layer flow is simulated over a two-dimensional hill in order to characterize the spatial distribution of the mean velocity and the turbulence statistics. A flow simulation is then performed through a wind farm consisting of five horizontal-axis wind turbines sited over the same hill in an aligned layout. The resulting flow characteristics are compared with the former case, i.e., without wind turbines. To assess the validity of the simulations, the results are compared with the wind-tunnel measurements. It is found that LES can reproduce the flow field effectively, and, specifically, the speed-up over the hilltop and the velocity deficit and turbulence intensity enhancement induced by the turbines are well captured by the simulations. Besides, the vertical profiles of the mean velocity and turbulence intensity at different streamwise positions match well those for the experiment. In addition, another numerical experiment is carried out to show how higher (and more realistic) thrust coefficients of the turbines lead to stronger wakes and, at the same time, higher turbulence intensities.
Security and Stability Analysis of Wind Farms Integration into Distribution Network
NASA Astrophysics Data System (ADS)
Guan-yang, Li; Hongzhao, Wang; Guanglei, Li; Yamei, Cheng; Hong-zheng, Liu; Yi, Sun
2017-05-01
With the increasing share of the wind power in the power system, wind power fluctuations will cause obvious negative impacts on weak local grid. This paper firstly establish electromechanical transient simulation model for doubly fed induction wind turbine, then use Matlab/Simulink to achieve power flow calculation and transient simulation of power system including wind farms, the local synchronous generator, load, etc, finally analyze wind power on the impact of the local power grid under typical circumstances. The actual calculated results indicate that wind mutation causes little effect on the power grid, but when the three-phase short circuit fault happens, active power of wind power decreases sharply and the voltage of location of wind power into the grid also drop sharply, finally wind farm split from power system. This situation is not conducive to security and stability of the local power grid. It is necessary to develop security and stability measures in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Eungsoo; Manuel, Lance; Curcic, Milan
In the United States, potential offshore wind plant sites have been identified along the Atlantic seaboard and in the Gulf of Mexico. It is imperative that we define external conditions associated with hurricanes and severe winter storms and consider load cases for which wind turbines may need to be designed. We selected two hurricanes, Ike (2008) and Sandy (2012), and investigated the effect these tropical storms would have on bottom-supported offshore wind turbines that were hypothetically in or close to their path as they made landfall. For realistic turbine loads assessment, it is important that the coupled influences of themore » changing wind, wave, and current fields are simulated throughout the evolution of the hurricanes. We employed a coupled model--specifically, the University of Miami Coupled Model (UMCM)--that integrates atmospheric, wave, and ocean components to produce needed wind, wave, and current data. The wind data are used to generate appropriate vertical wind profiles and full wind velocity fields including turbulence; the current field over the water column is obtained by interpolated discrete output current data; and short-crested irregular second-order waves are simulated using output directional wave spectra from the coupled model. We studied two monopile-supported offshore wind turbines sited in 20 meters of water in the Gulf of Mexico to estimate loads during Hurricane Ike, and a jacket space-frame platform-supported offshore wind turbine sited in 50 meters of water in the mid-Atlantic region to estimate loads during Hurricane Sandy. In this report we discuss in detail how the simulated hurricane wind, wave, and current output data are used in turbine loads studies. In addition, important characteristics of the external conditions are studied, including the relative importance of swell versus wind seas, aerodynamic versus hydrodynamic forces, current velocity effects, yaw control options for the turbine, hydrodynamic drag versus inertia forces, and soil-structure interaction effects. A detailed framework is presented that explains how coupled inputs can be included in turbine loads studies during a hurricane. This framework can aid in future efforts aimed at developing offshore wind turbine design criteria and load cases related to hurricanes.« less
NASA Astrophysics Data System (ADS)
Zhang, B.; Wang, W.; Wu, Q.; Knipp, D.; Kilcommons, L.; Brambles, O. J.; Liu, J.; Wiltberger, M.; Lyon, J. G.; Häggström, I.
2016-08-01
This paper investigates a possible physical mechanism of the observed dayside high-latitude upper thermospheric wind using numerical simulations from the coupled magnetosphere-ionosphere-thermosphere (CMIT) model. Results show that the CMIT model is capable of reproducing the unexpected afternoon equatorward winds in the upper thermosphere observed by the High altitude Interferometer WIND observation (HIWIND) balloon. Models that lack adequate coupling produce poleward winds. The modeling study suggests that ion drag driven by magnetospheric lobe cell convection is another possible mechanism for turning the climatologically expected dayside poleward winds to the observed equatorward direction. The simulation results are validated by HIWIND, European Incoherent Scatter, and Defense Meteorological Satellite Program. The results suggest a strong momentum coupling between high-latitude ionospheric plasma circulation and thermospheric neutral winds in the summer hemisphere during positive IMF Bz periods, through the formation of magnetospheric lobe cell convection driven by persistent positive IMF By. The CMIT simulation adds important insight into the role of dayside coupling during intervals of otherwise quiet geomagnetic activity
NASA Astrophysics Data System (ADS)
Hauptmann, S.; Bülk, M.; Schön, L.; Erbslöh, S.; Boorsma, K.; Grasso, F.; Kühn, M.; Cheng, P. W.
2014-12-01
Design load simulations for wind turbines are traditionally based on the blade- element-momentum theory (BEM). The BEM approach is derived from a simplified representation of the rotor aerodynamics and several semi-empirical correction models. A more sophisticated approach to account for the complex flow phenomena on wind turbine rotors can be found in the lifting-line free vortex wake method. This approach is based on a more physics based representation, especially for global flow effects. This theory relies on empirical correction models only for the local flow effects, which are associated with the boundary layer of the rotor blades. In this paper the lifting-line free vortex wake method is compared to a state- of-the-art BEM formulation with regard to aerodynamic and aeroelastic load simulations of the 5MW UpWind reference wind turbine. Different aerodynamic load situations as well as standardised design load cases that are sensitive to the aeroelastic modelling are evaluated in detail. This benchmark makes use of the AeroModule developed by ECN, which has been coupled to the multibody simulation code SIMPACK.
A Numerical Study of Wind-Turbine Wakes for Three Atmospheric Stability Conditions
NASA Astrophysics Data System (ADS)
Xie, Shengbai; Archer, Cristina L.
2017-10-01
The effects of atmospheric stability on wind-turbine wakes are studied via large-eddy simulations. Three stability conditions are considered: stable, neutral, and unstable, with the same geostrophic wind speed aloft and the same Coriolis frequency. Both a single 5-MW turbine and a wind farm of five turbines are studied. The single-turbine wake is strongly correlated with stability, in terms of velocity deficit, turbulence kinetic energy (TKE) and temperature distribution. Because of the Coriolis effect, the wake shape deviates from a Gaussian distribution. For the wind-farm simulations, the separation of the core region and outer region is clear for the stable and neutral cases, but less distinct for the unstable case. The unstable case exhibits strong horizontal variations in wind speed. Local accelerations such as related to aisle jets are also observed, whose features depend on stability. The added TKE in the wind farm increases with stability. The highest power extraction and lowest power deficit are observed for the unstable case.
Optimal control of energy extraction in LES of large wind farms
NASA Astrophysics Data System (ADS)
Meyers, Johan; Goit, Jay; Munters, Wim
2014-11-01
We investigate the use of optimal control combined with Large-Eddy Simulations (LES) of wind-farm boundary layer interaction for the increase of total energy extraction in very large ``infinite'' wind farms and in finite farms. We consider the individual wind turbines as flow actuators, whose energy extraction can be dynamically regulated in time so as to optimally influence the turbulent flow field, maximizing the wind farm power. For the simulation of wind-farm boundary layers we use large-eddy simulations in combination with an actuator-disk representation of wind turbines. Simulations are performed in our in-house pseudo-spectral code SP-Wind. For the optimal control study, we consider the dynamic control of turbine-thrust coefficients in the actuator-disk model. They represent the effect of turbine blades that can actively pitch in time, changing the lift- and drag coefficients of the turbine blades. In a first infinite wind-farm case, we find that farm power is increases by approximately 16% over one hour of operation. This comes at the cost of a deceleration of the outer layer of the boundary layer. A detailed analysis of energy balances is presented, and a comparison is made between infinite and finite farm cases, for which boundary layer entrainment plays an import role. The authors acknowledge support from the European Research Council (FP7-Ideas, Grant No. 306471). Simulations were performed on the computing infrastructure of the VSC Flemish Supercomputer Center, funded by the Hercules Foundation and the Flemish Govern.
NASA Astrophysics Data System (ADS)
Simley, Eric; Y Pao, Lucy; Gebraad, Pieter; Churchfield, Matthew
2014-06-01
Several sources of error exist in lidar measurements for feedforward control of wind turbines including the ability to detect only radial velocities, spatial averaging, and wind evolution. This paper investigates another potential source of error: the upstream induction zone. The induction zone can directly affect lidar measurements and presents an opportunity for further decorrelation between upstream wind and the wind that interacts with the rotor. The impact of the induction zone is investigated using the combined CFD and aeroelastic code SOWFA. Lidar measurements are simulated upstream of a 5 MW turbine rotor and the true wind disturbances are found using a wind speed estimator and turbine outputs. Lidar performance in the absence of an induction zone is determined by simulating lidar measurements and the turbine response using the aeroelastic code FAST with wind inputs taken far upstream of the original turbine location in the SOWFA wind field. Results indicate that while measurement quality strongly depends on the amount of wind evolution, the induction zone has little effect. However, the optimal lidar preview distance and circular scan radius change slightly due to the presence of the induction zone.
Kendrick, Paul; von Hünerbein, Sabine; Cox, Trevor J
2016-07-01
Microphone wind noise can corrupt outdoor recordings even when wind shields are used. When monitoring wind turbine noise, microphone wind noise is almost inevitable because measurements cannot be made in still conditions. The effect of microphone wind noise on two amplitude modulation (AM) metrics is quantified in a simulation, showing that even at low wind speeds of 2.5 m/s errors of over 4 dBA can result. As microphone wind noise is intermittent, a wind noise detection algorithm is used to automatically find uncorrupted sections of the recording, and so recover the true AM metrics to within ±2/±0.5 dBA.
Application of the WEPS and SWEEP models to non-agricultural disturbed lands.
Tatarko, J; van Donk, S J; Ascough, J C; Walker, D G
2016-12-01
Wind erosion not only affects agricultural productivity but also soil, air, and water quality. Dust and specifically particulate matter ≤10 μm (PM-10) has adverse effects on respiratory health and also reduces visibility along roadways, resulting in auto accidents. The Wind Erosion Prediction System (WEPS) was developed by the USDA-Agricultural Research Service to simulate wind erosion and provide for conservation planning on cultivated agricultural lands. A companion product, known as the Single-Event Wind Erosion Evaluation Program (SWEEP), has also been developed which consists of the stand-alone WEPS erosion submodel combined with a graphical interface to simulate soil loss from single (i.e., daily) wind storm events. In addition to agricultural lands, wind driven dust emissions also occur from other anthropogenic sources such as construction sites, mined and reclaimed areas, landfills, and other disturbed lands. Although developed for agricultural fields, WEPS and SWEEP are useful tools for simulating erosion by wind for non-agricultural lands where typical agricultural practices are not employed. On disturbed lands, WEPS can be applied for simulating long-term (i.e., multi-year) erosion control strategies. SWEEP on the other hand was developed specifically for disturbed lands and can simulate potential soil loss for site- and date-specific planned surface conditions and control practices. This paper presents novel applications of WEPS and SWEEP for developing erosion control strategies on non-agricultural disturbed lands. Erosion control planning with WEPS and SWEEP using water and other dust suppressants, wind barriers, straw mulch, re-vegetation, and other management practices is demonstrated herein through the use of comparative simulation scenarios. The scenarios confirm the efficacy of the WEPS and SWEEP models as valuable tools for supporting the design of erosion control plans for disturbed lands that are not only cost-effective but also incorporate a science-based approach to risk assessment.
Wind-farm simulation over moderately complex terrain
NASA Astrophysics Data System (ADS)
Segalini, Antonio; Castellani, Francesco
2017-05-01
A comparison between three independent software to estimate the power production and the flow field in a wind farm is conducted, validating them against SCADA (Supervisory, Control And Data Acquisition) data. The three software were ORFEUS, WindSim and WAsP: ORFEUS and WAsP are linearised solvers, while WindSim is fully nonlinear. A wake model (namely a prescribed velocity deficit associated to the turbines) is used by WAsP, while ORFEUS and WindSim use the actuator-disc method to account for the turbines presence. The comparison indicates that ORFEUS and WAsP perform slightly better than WindSim in the assessment of the polar efficiency. The wakes simulated with ORFEUS appear more persistent than the ones of WindSim, which uses a two-equation closure model for the turbulence effects.
Simulation and study of power quality issues in a fixed speed wind farm substation.
Magesh, T; Chellamuthu, C
2015-01-01
Power quality issues associated with the fixed speed wind farm substation located at Coimbatore district are investigated as the wind generators are tripping frequently. The investigations are carried out using two power quality analyzers, Fluke 435 and Dranetz PX5.8, with one of them connected at group control breaker of the 110 kV feeder and the other at the selected 0.69 kV generator busbar during the period of maximum power generation. From the analysis of the recorded data it is found that sag, swell, and transients are the major events which are responsible for the tripping of the generators. In the present study, simulation models for wind, turbine, shaft, pitch mechanism, induction generator, and grid are developed using DIgSILENT. Using the turbine characteristics, a two-dimensional lookup table is designed to generate a reference pitch angle necessary to simulate the power curve of the passive stall controlled wind turbine. Various scenarios and their effects on the performance of the wind farm are studied and validated with the recorded data and waveforms. The simulation model will be useful for the designers for planning and development of the wind farm before implementation.
Simulation and Study of Power Quality Issues in a Fixed Speed Wind Farm Substation
Magesh, T.; Chellamuthu, C.
2015-01-01
Power quality issues associated with the fixed speed wind farm substation located at Coimbatore district are investigated as the wind generators are tripping frequently. The investigations are carried out using two power quality analyzers, Fluke 435 and Dranetz PX5.8, with one of them connected at group control breaker of the 110 kV feeder and the other at the selected 0.69 kV generator busbar during the period of maximum power generation. From the analysis of the recorded data it is found that sag, swell, and transients are the major events which are responsible for the tripping of the generators. In the present study, simulation models for wind, turbine, shaft, pitch mechanism, induction generator, and grid are developed using DIgSILENT. Using the turbine characteristics, a two-dimensional lookup table is designed to generate a reference pitch angle necessary to simulate the power curve of the passive stall controlled wind turbine. Various scenarios and their effects on the performance of the wind farm are studied and validated with the recorded data and waveforms. The simulation model will be useful for the designers for planning and development of the wind farm before implementation. PMID:25950016
A tilting wind tunnel for fire behavior studies
David R. Weise
1994-01-01
The combined effects of wind velocity and slope on wildland fire behavior can be studied in the laboratory using a tilting wind tunnel. The tilting wind tunnel requires a commercially available fan to induce wind and can be positioned to simulate heading and backing fires spreading up and down slope. The tunnel is portable and can be disassembled for transport using a...
Characteristics of Wind Generated Waves in the Delaware Estuary
NASA Astrophysics Data System (ADS)
Chen, J. L.; Ralston, D. K.; Geyer, W. R.; Chant, R. J.; Sommerfield, C. K.
2016-02-01
Coastal marshes provide important services for human uses such as fishery industry, recreation, ports and marine operations. Bombay Hook Wildlife Refuge, located along the western shore of the Delaware Estuary, has experienced substantial loss of salt marsh in recent decades. To evaluate the importance of different mechanisms which cause observed shoreline retreat, wave gauges were deployed along the dredged navigation channel and shoreline in the Delaware Estuary. A coupled wave and circulation modeling system (SWAN/ROMS) based on the most recent bathymetry (last updated 2013) is validated with waves observed during both calm and energetic conditions in November 2015. Simulation results based on different model parameterizations of whitecapping, bottom friction and the wind input source are compared. The tendency of observed wave steepness is more similar to a revised whitecapping source term [Westhuysen, 2007] than the default in SWAN model. Both model results and field data show that the generation/dissipation of waves in the Delaware estuary is determined by the local wind speed and channel depth. Whitecapping-induced energy dissipation is dominant in the channel, while dissipation due to bottom friction and depth-induced breaking become important on lateral shoals. To characterize the effects of wind fetch on waves in estuaries more generally, simulations with an idealized domain and varying wind conditions are compared and the results are expressed in terms of non-dimensional parameters. The simulations based on a 10m-depth uniform idealized channel show that the dissipation of waves is mainly controlled by whitecapping in all wind conditions. Under strong wind conditions (wind speed >10m/s) the effect of bottom friction becomes important so the simulated wave heights are no longer linearly correlated with wind speed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Y.Q.; Huber, A.H.; Arya, S.P.S.
The effects of incident shear and turbulence on flow around a cubical building are being investigated by a turbulent kinetic energy/dissipation model (TEMPEST). The numerical simulations demonstrate significant effects due to the differences in the incident flow. The addition of upstream turbulence and shear results in a reduced size of the cavity directly behind the building. The accuracy of numerical simulations is verified by comparing the predicted mean flow fields with the available wind-tunnel measurements of Castro and Robins (1977). Comparing the authors' results with experimental data, the authors show that the TEMPEST model can reasonably simulate the mean flow.
The problem of the second wind turbine - a note on a common but flawed wind power estimation method
NASA Astrophysics Data System (ADS)
Gans, F.; Miller, L. M.; Kleidon, A.
2012-06-01
Several recent wind power estimates suggest that this renewable energy resource can meet all of the current and future global energy demand with little impact on the atmosphere. These estimates are calculated using observed wind speeds in combination with specifications of wind turbine size and density to quantify the extractable wind power. However, this approach neglects the effects of momentum extraction by the turbines on the atmospheric flow that would have effects outside the turbine wake. Here we show with a simple momentum balance model of the atmospheric boundary layer that this common methodology to derive wind power potentials requires unrealistically high increases in the generation of kinetic energy by the atmosphere. This increase by an order of magnitude is needed to ensure momentum conservation in the atmospheric boundary layer. In the context of this simple model, we then compare the effect of three different assumptions regarding the boundary conditions at the top of the boundary layer, with prescribed hub height velocity, momentum transport, or kinetic energy transfer into the boundary layer. We then use simulations with an atmospheric general circulation model that explicitly simulate generation of kinetic energy with momentum conservation. These simulations show that the assumption of prescribed momentum import into the atmospheric boundary layer yields the most realistic behavior of the simple model, while the assumption of prescribed hub height velocity can clearly be disregarded. We also show that the assumptions yield similar estimates for extracted wind power when less than 10% of the kinetic energy flux in the boundary layer is extracted by the turbines. We conclude that the common method significantly overestimates wind power potentials by an order of magnitude in the limit of high wind power extraction. Ultimately, environmental constraints set the upper limit on wind power potential at larger scales rather than detailed engineering specifications of wind turbine design and placement.
NASA Astrophysics Data System (ADS)
Tenerani, Anna; Velli, Marco
2017-07-01
Alfvénic fluctuations in the solar wind display many properties reflecting an ongoing nonlinear cascade, e.g., a well-defined spectrum in frequency, together with some characteristics more commonly associated with the linear propagation of waves from the Sun, such as the variation of fluctuation amplitude with distance, dominated by solar wind expansion effects. Therefore, both nonlinearities and expansion must be included simultaneously in any successful model of solar wind turbulence evolution. Because of the disparate spatial scales involved, direct numerical simulations of turbulence in the solar wind represent an arduous task, especially if one wants to go beyond the incompressible approximation. Indeed, most simulations neglect solar wind expansion effects entirely. Here we develop a numerical model to simulate turbulent fluctuations from the outer corona to 1 au and beyond, including the sub-Alfvénic corona. The accelerating expanding box (AEB) extends the validity of previous expanding box models by taking into account both the acceleration of the solar wind and the inhomogeneity of background density and magnetic field. Our method incorporates a background accelerating wind within a magnetic field that naturally follows the Parker spiral evolution using a two-scale analysis in which the macroscopic spatial effect coupling fluctuations with background gradients becomes a time-dependent coupling term in a homogeneous box. In this paper we describe the AEB model in detail and discuss its main properties, illustrating its validity by studying Alfvén wave propagation across the Alfvén critical point.
Multifluid Simulations of the Global Solar Wind Including Pickup Ions and Turbulence Modeling
NASA Technical Reports Server (NTRS)
Goldstein, Melvyn L.; Usmanov, A. V.
2011-01-01
I will describe a three-dimensional magnetohydrodynamic model of the solar wind that takes into account turbulent heating of the wind by velocity and magnetic fluctuations as well as a variety of effects produced by interstellar pickup protons. The interstellar pickup protons are treated in the model as one fluid and the protons and electrons are treated together as a second fluid. The model equations include a Reynolds decomposition of the plasma velocity and magnetic field into mean and fluctuating quantities, as well as energy transfer from interstellar pickup protons to solar wind protons that results in the deceleration of the solar wind. The model is used to simulate the global steady-state structure of the solar wind in the region from 0.3 to 100 AU. The simulation assumes that the background magnetic field on the Sun is either a dipole (aligned or tilted with respect to the solar rotation axis) or one that is deduced from solar magnetograms.
Wake Numerical Simulation Based on the Park-Gauss Model and Considering Atmospheric Stability
NASA Astrophysics Data System (ADS)
Yang, Xiangsheng; Zhao, Ning; Tian, Linlin; Zhu, Jun
2016-06-01
In this paper, a new Park-Gauss model based on the assumption of the Park model and the Eddy-viscosity model is investigated to conduct the wake numerical simulation for solving a single wind turbine problem. The initial wake radius has been modified to improve the model’s numerical accuracy. Then the impact of the atmospheric stability based on the Park-Gauss model has been studied in the wake region. By the comparisons and the analyses of the test results, it turns out that the new Park-Gauss model could achieve better effects of the wind velocity simulation in the wake region. The wind velocity in the wake region recovers quickly under the unstable atmospheric condition provided the wind velocity is closest to the test result, and recovers slowly under stable atmospheric condition in case of the wind velocity is lower than the test result. Meanwhile, the wind velocity recovery falls in between the unstable and stable neutral atmospheric conditions.
Coherent Lidar Design and Performance Verification
NASA Technical Reports Server (NTRS)
Frehlich, Rod
1996-01-01
This final report summarizes the investigative results from the 3 complete years of funding and corresponding publications are listed. The first year saw the verification of beam alignment for coherent Doppler lidar in space by using the surface return. The second year saw the analysis and computerized simulation of using heterodyne efficiency as an absolute measure of performance of coherent Doppler lidar. A new method was proposed to determine the estimation error for Doppler lidar wind measurements without the need for an independent wind measurement. Coherent Doppler lidar signal covariance, including wind shear and turbulence, was derived and calculated for typical atmospheric conditions. The effects of wind turbulence defined by Kolmogorov spatial statistics were investigated theoretically and with simulations. The third year saw the performance of coherent Doppler lidar in the weak signal regime determined by computer simulations using the best velocity estimators. Improved algorithms for extracting the performance of velocity estimators with wind turbulence included were also produced.
NASA Technical Reports Server (NTRS)
Emmitt, G. D.; Wood, S. A.; Morris, M.
1990-01-01
Lidar Atmospheric Wind Sounder (LAWS) Simulation Models (LSM) were developed to evaluate the potential impact of global wind observations on the basic understanding of the Earth's atmosphere and on the predictive skills of current forecast models (GCM and regional scale). Fully integrated top to bottom LAWS Simulation Models for global and regional scale simulations were developed. The algorithm development incorporated the effects of aerosols, water vapor, clouds, terrain, and atmospheric turbulence into the models. Other additions include a new satellite orbiter, signal processor, line of sight uncertainty model, new Multi-Paired Algorithm and wind error analysis code. An atmospheric wind field library containing control fields, meteorological fields, phenomena fields, and new European Center for Medium Range Weather Forecasting (ECMWF) data was also added. The LSM was used to address some key LAWS issues and trades such as accuracy and interpretation of LAWS information, data density, signal strength, cloud obscuration, and temporal data resolution.
Dynamics of Magnetopause Reconnection in Response to Variable Solar Wind Conditions
NASA Astrophysics Data System (ADS)
Berchem, J.; Richard, R. L.; Escoubet, C. P.; Pitout, F.
2017-12-01
Quantifying the dynamics of magnetopause reconnection in response to variable solar wind driving is essential to advancing our predictive understanding of the interaction of the solar wind/IMF with the magnetosphere. To this end we have carried out numerical studies that combine global magnetohydrodynamic (MHD) and Large-Scale Kinetic (LSK) simulations to identify and understand the effects of solar wind/IMF variations. The use of the low dissipation, high resolution UCLA MHD code incorporating a non-linear local resistivity allows the representation of the global configuration of the dayside magnetosphere while the use of LSK ion test particle codes with distributed particle detectors allows us to compare the simulation results with spacecraft observations such as ion dispersion signatures observed by the Cluster spacecraft. We present the results of simulations that focus on the impacts of relatively simple solar wind discontinuities on the magnetopause and examine how the recent history of the interaction of the magnetospheric boundary with solar wind discontinuities can modify the dynamics of magnetopause reconnection in response to the solar wind input.
Flight evaluation of pneumatic forebody vortex control in post-stall flight
NASA Technical Reports Server (NTRS)
Walchli, Lawrence A.
1994-01-01
The following topics are discussed: (1) X-29 description; Vortex Flow Control (VFC) technology description; (3) X-29 VFC wind tunnel results (forebody only); (4) X-29 VFC wind tunnel results (full configuration yawing moment); (5) X-29 VFC wind tunnel results (full configuration C(sub n) with sideslip); (6) X-29VFC wind tunnel results (full configuration pitching moment); (7) VFC optimized nozzle details; (8) X-29 forebody nozzle configuration; (9) X-29 VFC system stored gas schematic; (10) X-29 VFC system stored gas installation; (11) VFC effectiveness at zero sideslip; (12) VFC effectiveness at 35 AOA with sideslip; (13) 'VFC Roll' at 40 AOA; (14) Effects of VFC on wing rock; (15) Integrated controls C(sub n) prediction; (16) Proposed F-15 with lateral control laws with active VFC; (17) Simulated F-15 roll performance with active VFC; (18) Simulated F-15 spin recovery with active VFC; (19) Test team restructuring; (20) testbed selection; (21) Simulation for risk reduction; (22) Benefits of high pressure system; and (23) Advanced weapon system integration.
Potential of neuro-fuzzy methodology to estimate noise level of wind turbines
NASA Astrophysics Data System (ADS)
Nikolić, Vlastimir; Petković, Dalibor; Por, Lip Yee; Shamshirband, Shahaboddin; Zamani, Mazdak; Ćojbašić, Žarko; Motamedi, Shervin
2016-01-01
Wind turbines noise effect became large problem because of increasing of wind farms numbers since renewable energy becomes the most influential energy sources. However, wind turbine noise generation and propagation is not understandable in all aspects. Mechanical noise of wind turbines can be ignored since aerodynamic noise of wind turbine blades is the main source of the noise generation. Numerical simulations of the noise effects of the wind turbine can be very challenging task. Therefore in this article soft computing method is used to evaluate noise level of wind turbines. The main goal of the study is to estimate wind turbine noise in regard of wind speed at different heights and for different sound frequency. Adaptive neuro-fuzzy inference system (ANFIS) is used to estimate the wind turbine noise levels.
A rotor-aerodynamics-based wind estimation method using a quadrotor
NASA Astrophysics Data System (ADS)
Song, Yao; Luo, Bing; Meng, Qing-Hao
2018-02-01
Attempts to estimate horizontal wind by the quadrotor are reviewed. Wind estimations are realized by utilizing the quadrotor’s thrust change, which is caused by the wind’s effect on the rotors. The basis of the wind estimation method is the aerodynamic formula for the rotor’s thrust, which is verified and calibrated by experiments. A hardware-in-the-loop simulation (HILS) system was built as a testbed; its dynamic model and control structure are demonstrated. Verification experiments on the HILS system proved that the wind estimation method was effective.
On the Effects of Wind Turbine Wake Skew Caused by Wind Veer: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Churchfield, Matthew J; Sirnivas, Senu
Because of Coriolis forces caused by the Earth's rotation, the structure of the atmospheric boundary layer often contains wind-direction change with height, also known as wind-direction veer. Under low turbulence conditions, such as in stably stratified atmospheric conditions, this veer can be significant, even across the vertical extent of a wind turbine's rotor disk. The veer then causes the wind turbine wake to skew as it advects downstream. This wake skew has been observed both experimentally and numerically. In this work, we attempt to examine the wake skewing process in some detail, and quantify how differently a skewed wake versusmore » a non skewed wake affects a downstream turbine. We do this by performing atmospheric large-eddy simulations to create turbulent inflow winds with and without veer. In the veer case, there is a roughly 8 degree wind direction change across the turbine rotor. We then perform subsequent large-eddy simulations using these inflow data with an actuator line rotor model to create wakes. The turbine modeled is a large, modern, offshore, multimegawatt turbine. We examine the unsteady wake data in detail and show that the skewed wake recovers faster than the non skewed wake. We also show that the wake deficit does not skew to the same degree that a passive tracer would if subject to veered inflow. Last, we use the wake data to place a hypothetical turbine 9 rotor diameters downstream by running aeroelastic simulations with the simulated wake data. We see differences in power and loads if this downstream turbine is subject to a skewed or non skewed wake. We feel that the differences observed between the skewed and nonskewed wake are important enough that the skewing effect should be included in engineering wake models.« less
On the Effects of Wind Turbine Wake Skew Caused by Wind Veer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Churchfield, Matthew J; Sirnivas, Senu
Because of Coriolis forces caused by the Earth's rotation, the structure of the atmospheric boundary layer often contains wind-direction change with height, also known as wind-direction veer. Under low turbulence conditions, such as in stably stratified atmospheric conditions, this veer can be significant, even across the vertical extent of a wind turbine's rotor disk. The veer then causes the wind turbine wake to skew as it advects downstream. This wake skew has been observed both experimentally and numerically. In this work, we attempt to examine the wake skewing process in some detail, and quantify how differently a skewed wake versusmore » a non skewed wake affects a downstream turbine. We do this by performing atmospheric large-eddy simulations to create turbulent inflow winds with and without veer. In the veer case, there is a roughly 8 degree wind direction change across the turbine rotor. We then perform subsequent large-eddy simulations using these inflow data with an actuator line rotor model to create wakes. The turbine modeled is a large, modern, offshore, multimegawatt turbine. We examine the unsteady wake data in detail and show that the skewed wake recovers faster than the non skewed wake. We also show that the wake deficit does not skew to the same degree that a passive tracer would if subject to veered inflow. Last, we use the wake data to place a hypothetical turbine 9 rotor diameters downstream by running aeroelastic simulations with the simulated wake data. We see differences in power and loads if this downstream turbine is subject to a skewed or non skewed wake. We feel that the differences observed between the skewed and nonskewed wake are important enough that the skewing effect should be included in engineering wake models.« less
Potential climatic impacts and reliability of very large-scale wind farms
NASA Astrophysics Data System (ADS)
Wang, C.; Prinn, R. G.
2010-02-01
Meeting future world energy needs while addressing climate change requires large-scale deployment of low or zero greenhouse gas (GHG) emission technologies such as wind energy. The widespread availability of wind power has fueled substantial interest in this renewable energy source as one of the needed technologies. For very large-scale utilization of this resource, there are however potential environmental impacts, and also problems arising from its inherent intermittency, in addition to the present need to lower unit costs. To explore some of these issues, we use a three-dimensional climate model to simulate the potential climate effects associated with installation of wind-powered generators over vast areas of land or coastal ocean. Using wind turbines to meet 10% or more of global energy demand in 2100, could cause surface warming exceeding 1 °C over land installations. In contrast, surface cooling exceeding 1 °C is computed over ocean installations, but the validity of simulating the impacts of wind turbines by simply increasing the ocean surface drag needs further study. Significant warming or cooling remote from both the land and ocean installations, and alterations of the global distributions of rainfall and clouds also occur. These results are influenced by the competing effects of increases in roughness and decreases in wind speed on near-surface turbulent heat fluxes, the differing nature of land and ocean surface friction, and the dimensions of the installations parallel and perpendicular to the prevailing winds. These results are also dependent on the accuracy of the model used, and the realism of the methods applied to simulate wind turbines. Additional theory and new field observations will be required for their ultimate validation. Intermittency of wind power on daily, monthly and longer time scales as computed in these simulations and inferred from meteorological observations, poses a demand for one or more options to ensure reliability, including backup generation capacity, very long distance power transmission lines, and onsite energy storage, each with specific economic and/or technological challenges.
Potential climatic impacts and reliability of very large-scale wind farms
NASA Astrophysics Data System (ADS)
Wang, C.; Prinn, R. G.
2009-09-01
Meeting future world energy needs while addressing climate change requires large-scale deployment of low or zero greenhouse gas (GHG) emission technologies such as wind energy. The widespread availability of wind power has fueled legitimate interest in this renewable energy source as one of the needed technologies. For very large-scale utilization of this resource, there are however potential environmental impacts, and also problems arising from its inherent intermittency, in addition to the present need to lower unit costs. To explore some of these issues, we use a three-dimensional climate model to simulate the potential climate effects associated with installation of wind-powered generators over vast areas of land or coastal ocean. Using wind turbines to meet 10% or more of global energy demand in 2100, could cause surface warming exceeding 1°C over land installations. In contrast, surface cooling exceeding 1°C is computed over ocean installations, but the validity of simulating the impacts of wind turbines by simply increasing the ocean surface drag needs further study. Significant warming or cooling remote from both the land and ocean installations, and alterations of the global distributions of rainfall and clouds also occur. These results are influenced by the competing effects of increases in roughness and decreases in wind speed on near-surface turbulent heat fluxes, the differing nature of land and ocean surface friction, and the dimensions of the installations parallel and perpendicular to the prevailing winds. These results are also dependent on the accuracy of the model used, and the realism of the methods applied to simulate wind turbines. Additional theory and new field observations will be required for their ultimate validation. Intermittency of wind power on daily, monthly and longer time scales as computed in these simulations and inferred from meteorological observations, poses a demand for one or more options to ensure reliability, including backup generation capacity, very long distance power transmission lines, and onsite energy storage, each with specific economic and/or technological challenges.
Wind Energy Modeling and Simulation | Wind | NREL
Wind Energy Modeling and Simulation Wind Turbine Modeling and Simulation Wind turbines are unique wind turbines. It enables the analysis of a range of wind turbine configurations, including: Two- or (SOWFA) employs computational fluid dynamics to allow users to investigate wind turbine and wind power
Impact of tropical cyclones on modeled extreme wind-wave climate
Timmermans, Ben; Stone, Daithi; Wehner, Michael; ...
2017-02-16
Here, the effect of forcing wind resolution on the extremes of global wind-wave climate are investigated in numerical simulations. Forcing winds from the Community Atmosphere Model at horizontal resolutions of ~1.0° and ~0.25° are used to drive Wavewatch III. Differences in extreme wave height are found to manifest most strongly in tropical cyclone (TC) regions, emphasizing the need for high-resolution forcing in those areas. Comparison with observations typically show improvement in performance with increased forcing resolution, with a strong influence in the tail of the distribution, although simulated extremes can exceed observations. A simulation for the end of the 21stmore » century under a RCP 8.5 type emission scenario suggests further increases in extreme wave height in TC regions.« less
Impact of tropical cyclones on modeled extreme wind-wave climate
NASA Astrophysics Data System (ADS)
Timmermans, Ben; Stone, Dáithí; Wehner, Michael; Krishnan, Harinarayan
2017-02-01
The effect of forcing wind resolution on the extremes of global wind-wave climate are investigated in numerical simulations. Forcing winds from the Community Atmosphere Model at horizontal resolutions of ˜1.0° and ˜0.25° are used to drive Wavewatch III. Differences in extreme wave height are found to manifest most strongly in tropical cyclone (TC) regions, emphasizing the need for high-resolution forcing in those areas. Comparison with observations typically show improvement in performance with increased forcing resolution, with a strong influence in the tail of the distribution, although simulated extremes can exceed observations. A simulation for the end of the 21st century under a RCP 8.5 type emission scenario suggests further increases in extreme wave height in TC regions.
NASA Astrophysics Data System (ADS)
Jin, Zhe-Yan; Dong, Qiao-Tian; Yang, Zhi-Gang
2015-02-01
The present study experimentally investigated the effect of a simulated single-horn glaze ice accreted on rotor blades on the vortex structures in the wake of a horizontal axis wind turbine by using the stereoscopic particle image velocimetry (Stereo-PIV) technique. During the experiments, four horizontal axis wind turbine models were tested, and both "free-run" and "phase-locked" Stereo-PIV measurements were carried out. Based on the "free-run" measurements, it was found that because of the simulated single-horn glaze ice, the shape, vorticity, and trajectory of tip vortices were changed significantly, and less kinetic energy of the airflow could be harvested by the wind turbine. In addition, the "phase-locked" results indicated that the presence of simulated single-horn glaze ice resulted in a dramatic reduction of the vorticity peak of the tip vortices. Moreover, as the length of the glaze ice increased, both root and tip vortex gaps were found to increase accordingly.
Modeling of Driver Steering Operations in Lateral Wind Disturbances toward Driver Assistance System
NASA Astrophysics Data System (ADS)
Kurata, Yoshinori; Wada, Takahiro; Kamiji, Norimasa; Doi, Shun'ichi
Disturbances decrease vehicle stability and increase driver's mental and physical workload. Especially unexpected disturbances such as lateral winds have severe effect on vehicle stability and driver's workload. This study aims at building a driver model of steering operations in lateral wind toward developing effective driver assistance system. First, the relationship between the driver's lateral motion and its reactive quick steering behavior is investigated using driving simulator with lateral 1dof motion. In the experiments, four different wind patterns are displayed by the simulator. As the results, strong correlation was found between the driver's head lateral jerk by the lateral disturbance and the angular acceleration of the steering wheel. Then, we build a mathematical model of driver's steering model from lateral disturbance input to steering torque of the reactive quick feed-forward steering based on the experimental results. Finally, validity of the proposed model is shown by comparing the steering torque of experimental results and that of simulation results.
Wang, Erda; Harman, Wyatte L; Williams, Jimmy R; Xu, Cheng
2002-01-01
For decades, wind erosion has triggered dust and sand storms, buffeting Beijing and areas of northwestern China to the point of being hazardous to human health while rapidly eroding crop and livestock productivity. The EPIC (Environmental Policy Integrated Climate) field-scale simulation model was used to assess long-term effects of improved crop rotations and crop residue management practices on wind erosion in Wuchuan County in Inner Mongolia. Simulation results indicate that preserving crop stalks until land is prepared by zone tillage for the next year's crop in lieu of using them as a source of heating fuel or livestock fodder significantly reduces wind erosion by 60%. At the same time, grain and potato (Solanum tuberosum L.) yields were maintained or improved. Significant reductions in erosion, 35 to 46%, also resulted from delaying stalk removal until late January through late April. Yearly wind erosion was concentrated in April and May, the windiest months. Additionally, the use of alternative crop rotations resulted in differences in wind erosion, largely due to a difference in residue stature and quality and differences in biomass produced. As a result, altering current crop rotation systems by expanding corn (Zea mays L.), wheat (Triticum aestivum L.), and millet [Sorghum bicolor (L.) Moench] and reducing potato and pea (Pisum sativum L.) production significantly reduced simulated wind erosion, thus diminishing the severity of dust and sand storms in northwestern China. Saving and protecting topsoil over time will sustain land productivity and have long-term implications for improving conditions of rural poverty in the region.
NASA Astrophysics Data System (ADS)
Hong, Sinpyo; Lee, Inwon; Park, Seong Hyeon; Lee, Cheolmin; Chun, Ho-Hwan; Lim, Hee Chang
2015-09-01
An experimental study of the effect of mooring systems on the dynamics of a SPAR buoy-type floating offshore wind turbine is presented. The effects of the Center of Gravity (COG), mooring line spring constant, and fair-lead location on the turbine's motion in response to regular waves are investigated. Experimental results show that for a typical mooring system of a SPAR buoy-type Floating Offshore Wind Turbine (FOWT), the effect of mooring systems on the dynamics of the turbine can be considered negligible. However, the pitch decreases notably as the COG increases. The COG and spring constant of the mooring line have a negligible effect on the fairlead displacement. Numerical simulation and sensitivity analysis show that the wind turbine motion and its sensitivity to changes in the mooring system and COG are very large near resonant frequencies. The test results can be used to validate numerical simulation tools for FOWTs.
Effects of setting angle and chord length on performance of four blades bionic wind turbine
NASA Astrophysics Data System (ADS)
Yang, Z. X.; Li, G. S.; Song, L.; Bai, Y. F.
2017-11-01
With the energy crisis and the increasing environmental pollution, more and more efforts have been made about wind power development. In this paper, a four blades bionic wind turbine was proposed, and the outline of wind turbine was constructed by the fitted curve. This paper attempted to research the effects of setting angle and chord length on performance of four blades bionic wind turbine by computational fluid dynamics (CFD) simulation. The results showed that the setting angle and chord length of the bionic wind turbine has some significant effects on the efficiency of the wind turbine, and within the range of wind speed from 7 m/s to 15 m/s, the wind turbine achieved maximum efficiency when the setting angle is 31 degree and the chord length is 125 mm. The conclusion will work as a guideline for the improvement of wind turbine design
NASA Astrophysics Data System (ADS)
Oerder, V.; Colas, F.; Echevin, V.; Masson, S.; Lemarié, F.
2018-02-01
The ocean dynamical responses to the surface current-wind stress interaction at the oceanic mesoscale are investigated in the South-East Pacific using a high-resolution regional ocean-atmosphere coupled model. Two simulations are compared: one includes the surface current in the wind stress computation while the other does not. In the coastal region, absolute wind velocities are different between the two simulations but the wind stress remains very similar. As a consequence, the mean regional oceanic circulation is almost unchanged. On the contrary, the mesoscale activity is strongly reduced when taking into account the effect of the surface current on the wind stress. This is caused by a weakening of the eddy kinetic energy generation near the coast by the wind work and to intensified offshore eddy damping. We show that, above coherent eddies, the current-stress interaction generates eddy damping through Ekman pumping and eddy kinetic energy dissipation through wind work. This alters significantly the coherent eddy vertical structures compared with the control simulation, weakening the temperature and vorticity anomalies and increasing strongly the vertical velocity anomalies associated to eddies.
Effects of Offshore Wind Turbines on Ocean Waves
NASA Astrophysics Data System (ADS)
Wimer, Nicholas; Churchfield, Matthew; Hamlington, Peter
2014-11-01
Wakes from horizontal axis wind turbines create large downstream velocity deficits, thus reducing the available energy for downstream turbines while simultaneously increasing turbulent loading. Along with this deficit, however, comes a local increase in the velocity around the turbine rotor, resulting in increased surface wind speeds. For offshore turbines, these increased speeds can result in changes to the properties of wind-induced waves at the ocean surface. In this study, the characteristics and implications of such waves are explored by coupling a wave simulation code to the Simulator for Offshore Wind Farm Applications (SOWFA) developed by the National Renewable Energy Laboratory. The wave simulator and SOWFA are bi-directionally coupled using the surface wind field produced by an offshore wind farm to drive an ocean wave field, which is used to calculate a wave-dependent surface roughness that is fed back into SOWFA. The details of this combined framework are outlined. The potential for using the wave field created at offshore wind farms as an additional energy resource through the installation of on-site wave converters is discussed. Potential negative impacts of the turbine-induced wave field are also discussed, including increased oscillation of floating turbines.
The T-REX valley wind intercomparison project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidli, J; Billings, B J; Burton, R
2008-08-07
An accurate simulation of the evolution of the atmospheric boundary layer is very important, as the evolution of the boundary layer sets the stage for many weather phenomena, such as deep convection. Over mountain areas the evolution of the boundary layer is particularly complex, due to the nonlinear interaction between boundary layer turbulence and thermally-induced mesoscale wind systems, such as the slope and valley winds. As the horizontal resolution of operational forecasts progresses to finer and finer resolution, more and more of the thermally-induced mesoscale wind systems can be explicitly resolved, and it is very timely to document the currentmore » state-of-the-art of mesoscale models at simulating the coupled evolution of the mountain boundary layer and the valley wind system. In this paper we present an intercomparison of valley wind simulations for an idealized valley-plain configuration using eight state-of-the-art mesoscale models with a grid spacing of 1 km. Different sets of three-dimensional simulations are used to explore the effects of varying model dynamical cores and physical parameterizations. This intercomparison project was conducted as part of the Terrain-induced Rotor Experiment (T-REX; Grubisic et al., 2008).« less
Modelling Wind Effects on Subtidal Salinity in Apalachicola Bay, Florida
NASA Astrophysics Data System (ADS)
Huang, W.; Jones, W. K.; Wu, T. S.
2002-07-01
Salinity is an important factor for oyster and estuarine productivity in Apalachicola Bay. Observations of salinity at oyster reefs have indicated a high correlation between subtidal salinity variations and the surface winds along the bay axis in an approximately east-west direction. In this paper, we applied a calibrated hydrodynamic model to examine the surface wind effects on the volume fluxes in the tidal inlets and the subtidal salinity variations in the bay. Model simulations show that, due to the large size of inlets located at the east and west ends of this long estuary, surface winds have significant effects on the volume fluxes in the estuary inlets for the water exchanges between the estuary and ocean. In general, eastward winds cause the inflow from the inlets at the western end and the outflow from inlets at the eastern end of the bay. Winds at 15 mph speed in the east-west direction can induce a 2000 m3 s-1 inflow of saline seawater into the bay from the inlets, a rate which is about 2·6 times that of the annual average freshwater inflow from the river. Due to the varied wind-induced volume fluxes in the inlets and the circulation in the bay, the time series of subtidal salinity at oyster reefs considerably increases during strong east-west wind conditions in comparison to salinity during windless conditions. In order to have a better understanding of the characteristics of the wind-induced subtidal circulation and salinity variations, the researchers also connected model simulations under constant east-west wind conditions. Results show that the volume fluxes are linearly proportional to the east-west wind stresses. Spatial distributions of daily average salinity and currents clearly show the significant effects of winds on the bay.
Grid Integration Research | Wind | NREL
-generated simulation of a wind turbine. Wind Power Plant Modeling and Simulation Engineers at the National computer-aided engineering tool, FAST, as well as their wind power plant simulation tool, Wind-Plant
Ice Load Project Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCoy, Timothy J.; Brown, Thomas; Byrne, Alex
As interest and investment in offshore wind projects increase worldwide, some turbines will be installed in locations where ice of significant thickness forms on the water surface. This ice moves under the driving forces of wind, current, and thermal effects and may result in substantial forces on bottom-fixed support structures. The North and Baltic Seas in Europe have begun to see significant wind energy development and the Great Lakes of the United States and Canada may host wind energy development in the near future. Design of the support structures for these projects is best performed through the use of anmore » integrated tool that can calculate the cumulative effects of forces due to turbine operations, wind, waves, and floating ice. The dynamic nature of ice forces requires that these forces be included in the design simulations, rather than added as static forces to simulation results. The International Electrotechnical Commission (IEC) standard[2] for offshore wind turbine design and the International Organization for Standardization (ISO) standard[3] for offshore structures provide requirements and algorithms for the calculation of forces induced by surface ice; however, currently none of the major wind turbine dynamic simulation codes provides the ability to model ice loads. The scope of work of the project described in this report includes the development of a suite of subroutines, collectively named IceFloe, that meet the requirements of the IEC and ISO standards and couples with four of the major wind turbine dynamic simulation codes. The mechanisms by which ice forces impinge on offshore structures generally include the forces required for crushing of the ice against vertical-sided structures and the forces required to fracture the ice as it rides up on conical-sided structures. Within these two broad categories, the dynamic character of the forces with respect to time is also dependent on other factors such as the velocity and thickness of the moving ice and the response of the structure. In some cases, the dynamic effects are random and in other cases they are deterministic, such as the effect of structural resonance and coupling of the ice forces with the defection of the support structure. The initial versions of the IceFloe routines incorporate modules that address these varied force and dynamic phenomena with seven alternative algorithms that can be specified by the user. The IceFloe routines have been linked and tested with four major wind turbine aeroelastic simulation codes: FAST, a tool developed under the management of the National Renewable Energy Laboratory (NREL) and available free of charge from its web site; Bladed[4], a widely-used commercial package available from DNV GL; ADAMS[5], a general purpose multi-body simulation code used in the wind industry and available from MSC Software; and HAWC2[6], a code developed by and available for purchase from Danmarks Tekniske Universitet (DTU). Interface routines have been developed and tested with full wind turbine simulations for each of these codes and the source code and example inputs and outputs are available from the NREL website.« less
Simulation and optimal control of wind-farm boundary layers
NASA Astrophysics Data System (ADS)
Meyers, Johan; Goit, Jay
2014-05-01
In large wind farms, the effect of turbine wakes, and their interaction leads to a reduction in farm efficiency, with power generated by turbines in a farm being lower than that of a lone-standing turbine by up to 50%. In very large wind farms or `deep arrays', this efficiency loss is related to interaction of the wind farms with the planetary boundary layer, leading to lower wind speeds at turbine level. Moreover, for these cases it has been demonstrated both in simulations and wind-tunnel experiments that the wind-farm energy extraction is dominated by the vertical turbulent transport of kinetic energy from higher regions in the boundary layer towards the turbine level. In the current study, we investigate the use of optimal control techniques combined with Large-Eddy Simulations (LES) of wind-farm boundary layer interaction for the increase of total energy extraction in very large `infinite' wind farms. We consider the individual wind turbines as flow actuators, whose energy extraction can be dynamically regulated in time so as to optimally influence the turbulent flow field, maximizing the wind farm power. For the simulation of wind-farm boundary layers we use large-eddy simulations in combination with actuator-disk and actuator-line representations of wind turbines. Simulations are performed in our in-house pseudo-spectral code SP-Wind that combines Fourier-spectral discretization in horizontal directions with a fourth-order finite-volume approach in the vertical direction. For the optimal control study, we consider the dynamic control of turbine-thrust coefficients in an actuator-disk model. They represent the effect of turbine blades that can actively pitch in time, changing the lift- and drag coefficients of the turbine blades. Optimal model-predictive control (or optimal receding horizon control) is used, where the model simply consists of the full LES equations, and the time horizon is approximately 280 seconds. The optimization is performed using a nonlinear conjugate gradient method, and the gradients are calculated by solving the adjoint LES equations. We find that the extracted farm power increases by approximately 20% when using optimal model-predictive control. However, the increased power output is also responsible for an increase in turbulent dissipation, and a deceleration of the boundary layer. Further investigating the energy balances in the boundary layer, it is observed that this deceleration is mainly occurring in the outer layer as a result of higher turbulent energy fluxes towards the turbines. In a second optimization case, we penalize boundary-layer deceleration, and find an increase of energy extraction of approximately 10%. In this case, increased energy extraction is balanced by a reduction in of turbulent dissipation in the boundary layer. J.M. acknowledges support from the European Research Council (FP7-Ideas, grant no. 306471). Simulations were performed on the computing infrastructure of the VSC Flemish Supercomputer Center, funded by the Hercules Foundation and the Flemish Government.
Acceleration of the Fast Solar Wind by Solitary Waves in Coronal Holes
NASA Technical Reports Server (NTRS)
Ofman, Leon
2001-01-01
The purpose of this investigation is to develop a new model for the acceleration of the fast solar wind by nonlinear. time-dependent multidimensional MHD simulations of waves in solar coronal holes. Preliminary computational studies indicate that nonlinear waves are generated in coronal holes by torsional Alfv\\'{e}n waves. These waves in addition to thermal conduction may contribute considerably to the accelerate the solar wind. Specific goals of this proposal are to investigate the generation of nonlinear solitary-like waves and their effect on solar wind acceleration by numerical 2.5D MHD simulation of coronal holes with a broad range of plasma and wave parameters; to study the effect of random disturbances at the base of a solar coronal hole on the fast solar wind acceleration with a more advanced 2.5D MHD model and to compare the results with the available observations; to extend the study to a full 3D MHD simulation of fast solar wind acceleration with a more realistic model of a coronal hole and solar boundary conditions. The ultimate goal of the three year study is to model the, fast solar wind in a coronal hole, based on realistic boundary conditions in a coronal hole near the Sun, and the coronal hole structure (i.e., density, temperature. and magnetic field geometry,) that will become available from the recently launched SOHO spacecraft.
Acceleration of the Fast Solar Wind by Solitary Waves in Coronal Holes
NASA Technical Reports Server (NTRS)
Ofman, Leon
2000-01-01
The purpose of this investigation is to develop a new model for the acceleration of the fast solar wind by nonlinear, time-dependent multidimensional MHD simulations of waves in solar coronal holes. Preliminary computational studies indicate that solitary-like waves are generated in coronal holes nonlinearly by torsional Alfven waves. These waves in addition to thermal conduction may contribute considerably to the accelerate the solar wind. Specific goals of this proposal are to investigate the generation of nonlinear solitary-like waves and their effect on solar wind acceleration by numerical 2.5D MHD simulation of coronal holes with a broad range of plasma and wave parameters; to study the effect of random disturbances at the base of a solar coronal hole on the fast solar wind acceleration with a more advanced 2.5D MHD model and to compare the results with the available observations; to extend the study to a full 3D MHD simulation of fast solar wind acceleration with a more realistic model of a coronal hole and solar boundary conditions. The ultimate goal of the three year study is to model the fast solar wind in a coronal hole, based on realistic boundary conditions in a coronal hole near the Sun, and the coronal hole structure (i.e., density, temperature, and magnetic field geometry) that will become available from the recently launched SOHO spacecraft.
Rodriguez, Jose M; Codjoe, Julius; Osman, Osama; Ishak, Sherif; Wolshon, Brian
2015-01-01
While traffic planning is important for developing a hurricane evacuation plan, vehicle performance on the roads during extreme weather conditions is critical to the success of the planning process. This novel study investigates the effect of gusty hurricane wind forces on the driving behavior and vehicle performance. The study explores how the parameters of a driving simulator could be modified to reproduce wind loadings experienced by three vehicle types (passenger car, ambulance, and bus) during gusty hurricane winds, through manipulation of appropriate software. Thirty participants were then tested on the modified driving simulator under five wind conditions (ranging from normal to hurricane category 4). The driving performance measures used were heading error and lateral displacement. The results showed that higher wind forces resulted in more varied and greater heading error and lateral displacement. The ambulance had the greatest heading errors and lateral displacements, which were attributed to its large lateral surface area and light weight. Two mathematical models were developed to estimate the heading error and lateral displacements for each of the vehicle types for a given change in lateral wind force. Through a questionnaire, participants felt the different characteristics while driving each vehicle type. The findings of this study demonstrate the valuable use of a driving simulator to model the behavior of different vehicle types and to develop mathematical models to estimate and quantify driving behavior and vehicle performance under hurricane wind conditions.
Dynamics modeling and loads analysis of an offshore floating wind turbine
NASA Astrophysics Data System (ADS)
Jonkman, Jason Mark
The vast deepwater wind resource represents a potential to use offshore floating wind turbines to power much of the world with renewable energy. Many floating wind turbine concepts have been proposed, but dynamics models, which account for the wind inflow, aerodynamics, elasticity, and controls of the wind turbine, along with the incident waves, sea current, hydrodynamics, and platform and mooring dynamics of the floater, were needed to determine their technical and economic feasibility. This work presents the development of a comprehensive simulation tool for modeling the coupled dynamic response of offshore floating wind turbines, the verification of the simulation tool through model-to-model comparisons, and the application of the simulation tool to an integrated loads analysis for one of the promising system concepts. A fully coupled aero-hydro-servo-elastic simulation tool was developed with enough sophistication to address the limitations of previous frequency- and time-domain studies and to have the features required to perform loads analyses for a variety of wind turbine, support platform, and mooring system configurations. The simulation capability was tested using model-to-model comparisons. The favorable results of all of the verification exercises provided confidence to perform more thorough analyses. The simulation tool was then applied in a preliminary loads analysis of a wind turbine supported by a barge with catenary moorings. A barge platform was chosen because of its simplicity in design, fabrication, and installation. The loads analysis aimed to characterize the dynamic response and to identify potential loads and instabilities resulting from the dynamic couplings between the turbine and the floating barge in the presence of combined wind and wave excitation. The coupling between the wind turbine response and the barge-pitch motion, in particular, produced larger extreme loads in the floating turbine than experienced by an equivalent land-based turbine. Instabilities were also found in the system. The influence of conventional wind turbine blade-pitch control actions on the pitch damping of the floating turbine was also assessed. Design modifications for reducing the platform motions, improving the turbine response, and eliminating the instabilities are suggested. These suggestions are aimed at obtaining cost-effective designs that achieve favorable performance while maintaining structural integrity.
Effect of hurricane paths on storm surge response at Tianjin, China
NASA Astrophysics Data System (ADS)
Feng, Xingru; Yin, Baoshu; Yang, Dezhou
2012-06-01
A hurricane induced storm surge simulation system was developed for Tianjin coast, which consists of a hurricane model and a storm surge model. The peak storm surge result of the simulation agreed well with that of the observation. Three observed paths (Rita, Mimie and WINNIE) and a hypothetical path (Rita2) were chosen as the selective hurricane paths according to their positions relative to Tianjin. The sensitivity of Tianjin storm surge to the four paths was investigated using the validated storm surge simulation system. Three groups of experiments were done. In group one, the models were forced by the wind field and air pressure; in group two and three the models were forced by the wind only and the air pressure only respectively. In the experiments, the hurricane moved with a fixed speed and an intensity of 50 year return period. The simulation results show that path of the type Rita2 is the easiest to cause storm surge disaster in Tianjin, and the effect of air pressure forcing is most evident for path of the type Rita in Tianjin storm surge process. The above conclusions were analyzed through the evolution of the wind fields and the air pressure distributions. Comparing the experiment results of Group one, two and three, it can be seen that the storm surge is mainly induced by the wind forcing and the nonlinear interaction between the effect of wind forcing and air pressure forcing on the storm surge tends to weaken the storm surge.
NASA Astrophysics Data System (ADS)
Chen, M.; Lemon, C.; Walterscheid, R. L.; Hecht, J. H.; Sazykin, S. Y.; Wolf, R.
2017-12-01
We investigate how neutral winds and particle precipitation affect the simulated development of electric fields including Sub-Auroral Polarization Streams (SAPS) during the 17 March 2013 storm. Our approach is to use the magnetically and electrically self-consistent Rice Convection Model - Equilibrium (RCM-E) to simulate the inner magnetospheric electric field. We use parameterized rates of whistler-generated electron pitch-angle scattering from Orlova and Shprits [JGR, 2014] that depend on equatorial radial distance, magnetic activity (Kp), and magnetic local time (MLT) outside the simulated plasmasphere. Inside the plasmasphere, parameterized scattering rates due to hiss [Orlova et al., GRL, 2014] are used. Ions are scattered at a fraction of strong pitch-angle scattering where the fraction is scaled by epsilon, the ratio of the gyroradius to the field-line radius of curvature, when epsilon is greater than 0.1. The electron and proton contributions to the auroral conductance in the RCM-E are calculated using the empirical Robinson et al. [JGR, 1987] and Galand and Richmond [JGR, 2001] equations, respectively. The "background" ionospheric conductance is based on parameters from the International Reference Ionosphere [Bilitza and Reinisch, JASR, 2008] but modified to include the effect of specified ionospheric troughs. Neutral winds are modeled by the empirical Horizontal Wind Model (HWM07) in the RCM-E. We compare simulated precipitating particle energy flux, E x B velocities with DMSP observations during the 17 March 2013 storm with and without the inclusion of neutral winds. Discrepancies between the simulations and observations will aid us in assessing needed improvements in the model.
Far-Field Simulation of the Hawaiian Wake: Sea Surface Temperature and Orographic Effects(.
NASA Astrophysics Data System (ADS)
Hafner, Jan; Xie, Shang-Ping
2003-12-01
Recent satellite observations reveal far-reaching effects of the Hawaiian Islands on surface wind, cloud, ocean current, and sea surface temperature (SST) that extend leeward over an unusually long distance (>1000 km). A three-dimensional regional atmospheric model with full physics is used to investigate the cause of this long wake. While previous wind wake studies tend to focus on regions near the islands, the emphasis here is the far-field effects of SST and orography well away from the Hawaiian Islands. In response to an island-induced SST pattern, the model produces surface wind and cloud anomaly patterns that resemble those observed by satellites. In particular, anomalous surface winds are found to converge onto a zonal band of warmer water, with cloud liquid water content enhanced over it but reduced on the northern and southern sides. In the vertical, a two-cell meridional circulation develops of a baroclinic structure with the rising motion and thicker clouds over the warm water band. The model response in the wind and cloud fields supports the hypothesis that ocean atmosphere interaction is crucial for sustaining the island effects over a few thousand kilometers.Near Hawaii, mountains generate separate wind wakes in the model lee of individual islands as observed by satellites. Under orographic forcing, the model simulates the windward cloud line and the southwest-tilted cloud band leeward of the Big Island. In the far field, orographically induced wind perturbations are found to be in geostrophic balance with pressure anomalies, indicative of quasigeostrophic Rossby wave propagation. A shallow-water model is developed for disturbances trapped in the inversion-capped planetary boundary layer. The westward propagation of Rossby waves is found to increase the wake length significantly, consistent with the three-dimensional simulation.
Characterization of pollutant dispersion near elongated buildings based on wind tunnel simulations
This paper presents a wind tunnel study of the effects of elongated rectangular buildings on the dispersion of pollutants from nearby stacks. The study examines the influence of source location, building aspect ratio, and wind direction on pollutant dispersion with the goal of de...
NASA Technical Reports Server (NTRS)
Frost, A. L.; Dill, C. C.
1986-01-01
An investigation to determine the sensitivity of the space shuttle base and forebody aerodynamics to the size and shape of various solid plume simulators was conducted. Families of cones of varying angle and base diameter, at various axial positions behind a Space Shuttle launch vehicle model, were wind tunnel tested. This parametric evaluation yielded base pressure and force coefficient data which indicated that solid plume simulators are an inexpensive, quick method of approximating the effect of engine exhaust plumes on the base and forebody aerodynamics of future, complex multibody launch vehicles.
Numerical simulation of wind loads on solar panels
NASA Astrophysics Data System (ADS)
Su, Kao-Chun; Chung, Kung-Ming; Hsu, Shu-Tsung
2018-05-01
Solar panels mounted on the roof of a building or ground are often vulnerable to strong wind loads. This study aims to investigate wind loads on solar panels using computational fluid dynamic (CFD). The results show good agreement with wind tunnel data, e.g. the streamwise distribution of mean surface pressure coefficient of a solar panel. Wind uplift for solar panels with four aspect ratios is evaluated. The effect of inclined angle and clearance (or height) of a solar panel is addressed. It is found that wind uplift of a solar panel increases when there is an increase in inclined angle and the clearance above ground shows an opposite effect.
Jason Forthofer; Bret Butler
2007-01-01
A computational fluid dynamics (CFD) model and a mass-consistent model were used to simulate winds on simulated fire spread over a simple, low hill. The results suggest that the CFD wind field could significantly change simulated fire spread compared to traditional uniform winds. The CFD fire spread case may match reality better because the winds used in the fire...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tenerani, Anna; Velli, Marco
Alfvénic fluctuations in the solar wind display many properties reflecting an ongoing nonlinear cascade, e.g., a well-defined spectrum in frequency, together with some characteristics more commonly associated with the linear propagation of waves from the Sun, such as the variation of fluctuation amplitude with distance, dominated by solar wind expansion effects. Therefore, both nonlinearities and expansion must be included simultaneously in any successful model of solar wind turbulence evolution. Because of the disparate spatial scales involved, direct numerical simulations of turbulence in the solar wind represent an arduous task, especially if one wants to go beyond the incompressible approximation. Indeed,more » most simulations neglect solar wind expansion effects entirely. Here we develop a numerical model to simulate turbulent fluctuations from the outer corona to 1 au and beyond, including the sub-Alfvénic corona. The accelerating expanding box (AEB) extends the validity of previous expanding box models by taking into account both the acceleration of the solar wind and the inhomogeneity of background density and magnetic field. Our method incorporates a background accelerating wind within a magnetic field that naturally follows the Parker spiral evolution using a two-scale analysis in which the macroscopic spatial effect coupling fluctuations with background gradients becomes a time-dependent coupling term in a homogeneous box. In this paper we describe the AEB model in detail and discuss its main properties, illustrating its validity by studying Alfvén wave propagation across the Alfvén critical point.« less
Numerical simulation of a mistral wind event occuring
NASA Astrophysics Data System (ADS)
Guenard, V.; Caccia, J. L.; Tedeschi, G.
2003-04-01
The experimental network of the ESCOMPTE field experiment (june-july 2001) is turned into account to investigate the Mistral wind affecting the Marseille area (South of France). Mistral wind is a northerly flow blowing across the Rhône valley and toward the Mediterranean sea resulting from the dynamical low pressure generated in the wake of the Alps ridge. It brings cold, dry air masses and clear sky conditions over the south-eastern part of France. Up to now, few scientific studies have been carried out on the Mistral wind especially the evolution of its 3-D structure so that its mesoscale numerical simulation is still relevant. Non-hydrostatic RAMS model is performed to better investigate this mesoscale phenomena. Simulations at a 12 km horizontal resolution are compared to boundary layer wind profilers and ground measurements. Preliminary results suit quite well with the Mistral statistical studies carried out by the operational service of Météo-France and observed wind profiles are correctly reproduced by the numerical model RAMS which appears to be an efficient tool for its understanding of Mistral. Owing to the absence of diabatic effect in Mistral events which complicates numerical simulations, the present work is the first step for the validation of RAMS model in that area. Further works will consist on the study of the interaction of Mistral wind with land-sea breeze. Also, RAMS simulations will be combined with aerosol production and ocean circulation models to supply chemists and oceanographers with some answers for their studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanderwende, Brian J.; Kosović, Branko; Lundquist, Julie K.
2016-08-27
Growth in wind power production has motivated investigation of wind-farm impacts on in situ flow fields and downstream interactions with agriculture and other wind farms. These impacts can be simulated with both large-eddy simulations (LES) and mesoscale wind-farm parameterizations (WFP). The Weather Research and Forecasting (WRF) model offers both approaches. We used the validated generalized actuator disk (GAD) parameterization in WRF-LES to assess WFP performance. A 12-turbine array was simulated using the GAD model and the WFP in WRF. We examined the performance of each scheme in both convective and stable conditions. The GAD model and WFP produced qualitatively similarmore » wind speed deficits and turbulent kinetic energy (TKE) production across the array in both stability regimes, though the magnitudes of velocity deficits and TKE production levels were underestimated and overestimated, respectively. While wake growth slowed in the latter half of the WFP array as expected, wakes did not approach steady state by the end of the array as simulated by the GAD model. A sensitivity test involving the deactivation of explicit TKE production by the WFP resulted in turbulence levels within the array well that were below those produced by the GAD in both stable and unstable conditions. Finally, the WFP overestimated downwind power production deficits in stable conditions because of the lack of wake stabilization in the latter half of the array.« less
NASA Astrophysics Data System (ADS)
Safaei Pirooz, Amir A.; Flay, Richard G. J.
2018-03-01
We evaluate the accuracy of the speed-up provided in several wind-loading standards by comparison with wind-tunnel measurements and numerical predictions, which are carried out at a nominal scale of 1:500 and full-scale, respectively. Airflow over two- and three-dimensional bell-shaped hills is numerically modelled using the Reynolds-averaged Navier-Stokes method with a pressure-driven atmospheric boundary layer and three different turbulence models. Investigated in detail are the effects of grid size on the speed-up and flow separation, as well as the resulting uncertainties in the numerical simulations. Good agreement is obtained between the numerical prediction of speed-up, as well as the wake region size and location, with that according to large-eddy simulations and the wind-tunnel results. The numerical results demonstrate the ability to predict the airflow over a hill with good accuracy with considerably less computational time than for large-eddy simulation. Numerical simulations for a three-dimensional hill show that the speed-up and the wake region decrease significantly when compared with the flow over two-dimensional hills due to the secondary flow around three-dimensional hills. Different hill slopes and shapes are simulated numerically to investigate the effect of hill profile on the speed-up. In comparison with more peaked hill crests, flat-topped hills have a lower speed-up at the crest up to heights of about half the hill height, for which none of the standards gives entirely satisfactory values of speed-up. Overall, the latest versions of the National Building Code of Canada and the Australian and New Zealand Standard give the best predictions of wind speed over isolated hills.
Simulation of Turbulent Flow Inside and Above Wind Farms: Model Validation and Layout Effects
NASA Astrophysics Data System (ADS)
Wu, Yu-Ting; Porté-Agel, Fernando
2013-02-01
A recently-developed large-eddy simulation framework is validated and used to investigate turbulent flow within and above wind farms under neutral conditions. Two different layouts are considered, consisting of thirty wind turbines occupying the same total area and arranged in aligned and staggered configurations, respectively. The subgrid-scale (SGS) turbulent stress is parametrized using a tuning-free Lagrangian scale-dependent dynamic SGS model. The turbine-induced forces are modelled using two types of actuator-disk models: (a) the `standard' actuator-disk model (ADM-NR), which calculates only the thrust force based on one-dimensional momentum theory and distributes it uniformly over the rotor area; and (b) the actuator-disk model with rotation (ADM-R), which uses blade-element momentum theory to calculate the lift and drag forces (that produce both thrust and rotation), and distributes them over the rotor disk based on the local blade and flow characteristics. Validation is performed by comparing simulation results with turbulence measurements collected with hot-wire anemometry inside and above an aligned model wind farm placed in a boundary-layer wind tunnel. In general, the ADM-R model yields improved predictions compared with the ADM-NR in the wakes of all the wind turbines, where including turbine-induced flow rotation and accounting for the non-uniformity of the turbine-induced forces in the ADM-R appear to be important. Another advantage of the ADM-R model is that, unlike the ADM-NR, it does not require a priori specification of the thrust coefficient (which varies within a wind farm). Finally, comparison of simulations of flow through both aligned and staggered wind farms shows important effects of farm layout on the flow structure and wind-turbine performance. For the limited-size wind farms considered in this study, the lateral interaction between cumulated wakes is stronger in the staggered case, which results in a farm wake that is more homogeneous in the spanwise direction, thus resembling more an internal boundary layer. Inside the staggered farm, the relatively longer separation between consecutive downwind turbines allows the wakes to recover more, exposing the turbines to higher local wind speeds (leading to higher turbine efficiency) and lower turbulence intensity levels (leading to lower fatigue loads), compared with the aligned farm. Above the wind farms, the area-averaged velocity profile is found to be logarithmic, with an effective wind-farm aerodynamic roughness that is larger for the staggered case.
NASA Technical Reports Server (NTRS)
Lee, Henry C.; Klopfer, Goetz H.; Onufer, Jeff T.
2011-01-01
Investigation of the non-uniform flow angularity effects on the Ares I DAC-1 in the Langley Unitary Plan Wind Tunnel are explored through simulations by OVERFLOW. Verification of the wind tunnel results are needed to ensure that the standard wind tunnel calibration procedures for large models are valid. The expectation is that the systematic error can be quantified, and thus be used to correct the wind tunnel data. The corrected wind tunnel data can then be used to quantify the CFD uncertainties.
A Flight Dynamics Model for a Small Glider in Ambient Winds
NASA Technical Reports Server (NTRS)
Beeler, Scott C.; Moerder, Daniel D.; Cox, David E.
2003-01-01
In this paper we describe the equations of motion developed for a point-mass zero-thrust (gliding) aircraft model operating in an environment of spatially varying atmospheric winds. The wind effects are included as an integral part of the flight dynamics equations, and the model is controlled through the three aerodynamic control angles. Formulas for the aerodynamic coefficients for this model are constructed to include the effects of several different aspects contributing to the aerodynamic performance of the vehicle. Characteristic parameter values of the model are compared with those found in a different set of small glider simulations. We execute a set of example problems which solve the glider dynamics equations to find the aircraft trajectory given specified control inputs. The ambient wind conditions and glider characteristics are varied to compare the simulation results under these different circumstances.
A Flight Dynamics Model for a Small Glider in Ambient Winds
NASA Technical Reports Server (NTRS)
Beeler, Scott C.; Moerder, Daniel D.; Cox, David E.
2003-01-01
In this paper we describe the equations of motion developed for a point-mass zero-thrust (gliding) aircraft model operating in an environment of spatially varying atmospheric winds. The wind effects are included as an integral part of the flight dynamics equations, and the model is controlled through the three aerodynamic control angles. Formulas for the aerodynamic coefficients for this model are constructed to include the effects of several different aspects contributing to the aerodynamic performance of the vehicle. Characteristic parameter values of the model are compared with those found in a different set of small glider simulations. We execute a set of example problems which solve the glider dynamics equations to find aircraft trajectory given specified control inputs. The ambient wind conditions and glider characteristics are varied to compare the simulation results under these different circumstances.
Martinez-Tossas, Luis A.; Churchfield, Matthew J.; Yilmaz, Ali Emre; ...
2018-05-16
Here, large-eddy simulation (LES) of a wind turbine under uniform inflow is performed using an actuator line model (ALM). Predictions from four LES research codes from the wind energy community are compared. The implementation of the ALM in all codes is similar and quantities along the blades are shown to match closely for all codes. The value of the Smagorinsky coefficient in the subgrid-scale turbulence model is shown to have a negligible effect on the time-averaged loads along the blades. Conversely, the breakdown location of the wake is strongly dependent on the Smagorinsky coefficient in uniform laminar inflow. Simulations aremore » also performed using uniform mean velocity inflow with added homogeneous isotropic turbulence from a public database. The time-averaged loads along the blade do not depend on the inflow turbulence. Moreover, and in contrast to the uniform inflow cases, the Smagorinsky coefficient has a negligible effect on the wake profiles. It is concluded that for LES of wind turbines and wind farms using ALM, careful implementation and extensive cross-verification among codes can result in highly reproducible predictions. Moreover, the characteristics of the inflow turbulence appear to be more important than the details of the subgrid-scale modeling employed in the wake, at least for LES of wind energy applications at the resolutions tested in this work.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez-Tossas, Luis A.; Churchfield, Matthew J.; Yilmaz, Ali Emre
Here, large-eddy simulation (LES) of a wind turbine under uniform inflow is performed using an actuator line model (ALM). Predictions from four LES research codes from the wind energy community are compared. The implementation of the ALM in all codes is similar and quantities along the blades are shown to match closely for all codes. The value of the Smagorinsky coefficient in the subgrid-scale turbulence model is shown to have a negligible effect on the time-averaged loads along the blades. Conversely, the breakdown location of the wake is strongly dependent on the Smagorinsky coefficient in uniform laminar inflow. Simulations aremore » also performed using uniform mean velocity inflow with added homogeneous isotropic turbulence from a public database. The time-averaged loads along the blade do not depend on the inflow turbulence. Moreover, and in contrast to the uniform inflow cases, the Smagorinsky coefficient has a negligible effect on the wake profiles. It is concluded that for LES of wind turbines and wind farms using ALM, careful implementation and extensive cross-verification among codes can result in highly reproducible predictions. Moreover, the characteristics of the inflow turbulence appear to be more important than the details of the subgrid-scale modeling employed in the wake, at least for LES of wind energy applications at the resolutions tested in this work.« less
Effects of setting angle on performance of fish-bionic wind wheel
NASA Astrophysics Data System (ADS)
Li, G. S.; Yang, Z. X.; Song, L.; Chen, Q.; Li, Y. B.; Chen, W.
2016-08-01
With the energy crisis and the increasing environmental pollutionmore and more efforts have been made about wind power development. In this paper, a new type of vertical axis named the fish-bionic wind wheel was proposed, and the outline of wind wheel was constructed by curve of Fourier fitting and polynomial equations. This paper attempted to research the relationship between the setting angle and the wind turbine characteristics by computational fluid dynamics (CFD) simulation. The results showed that the setting angle of the fish-bionic wind wheel has some significant effects on the efficiency of the wind turbine, Within the range of wind speed from 13m/s to 15m/s, wind wheel achieves the maximum efficiency when the setting angle is at 37 degree. The conclusion will work as a guideline for the improvement of wind turbine design.
Hu, L H; Xu, Y; Zhu, W; Wu, L; Tang, F; Lu, K H
2011-09-15
The dispersion of buoyancy driven smoke soot and carbon monoxide (CO) gas, which was ejected out from side building into an urban street canyon with aspect ratio of 1 was investigated by large eddy simulation (LES) under a perpendicular wind flow. Strong buoyancy effect, which has not been revealed before, on such pollution dispersion in the street canyon was studied. The buoyancy release rate was 5 MW. The wind speed concerned ranged from 1 to 7.5m/s. The characteristics of flow pattern, distribution of smoke soot and temperature, CO concentration were revealed by the LES simulation. Dimensionless Froude number (Fr) was firstly introduced here to characterize the pollutant dispersion with buoyancy effect counteracting the wind. It was found that the flow pattern can be well categorized into three regimes. A regular characteristic large vortex was shown for the CO concentration contour when the wind velocity was higher than the critical re-entrainment value. A new formula was theoretically developed to show quantitatively that the critical re-entrainment wind velocities, u(c), for buoyancy source at different floors, were proportional to -1/3 power of the characteristic height. LES simulation results agreed well with theoretical analysis. The critical Froude number was found to be constant of 0.7. Copyright © 2010 Elsevier B.V. All rights reserved.
The consideration of atmospheric stability within wind farm AEP calculations
NASA Astrophysics Data System (ADS)
Schmidt, Jonas; Chang, Chi-Yao; Dörenkämper, Martin; Salimi, Milad; Teichmann, Tim; Stoevesandt, Bernhard
2016-09-01
The annual energy production of an existing wind farm including thermal stratification is calculated with two different methods and compared to the average of three years of SCADA data. The first method is based on steady state computational fluid dynamics simulations and the assumption of Reynolds-similarity at hub height. The second method is a wake modelling calculation, where a new stratification transformation model was imposed on the Jensen an Ainslie wake models. The inflow states for both approaches were obtained from one year WRF simulation data of the site. Although all models underestimate the mean wind speed and wake effects, the results from the phenomenological wake transformation are compatible with high-fidelity simulation results.
NASA Astrophysics Data System (ADS)
Allaerts, Dries; Meyers, Johan
2014-05-01
Atmospheric boundary layers (ABL) are frequently capped by an inversion layer limiting the entrainment rate and boundary layer growth. Commonly used analytical models state that the entrainment rate is inversely proportional to the inversion strength. The height of the inversion turns out to be a second important parameter. Conventionally neutral atmospheric boundary layers (CNBL) are ABLs with zero surface heat flux developing against a stratified free atmosphere. In this regime the inversion-filling process is merely driven by the downward heat flux at the inversion base. As a result, CNBLs are strongly dependent on the heating history of the boundary layer and strong inversions will fail to erode during the course of the day. In case of large wind farms, the power output of the farm inside a CNBL will depend on the height and strength of the inversion above the boundary layer. On the other hand, increased turbulence levels induced by wind farms may partially undermine the rigid lid effect of the capping inversion, enhance vertical entrainment of air into the farm, and increase boundary layer growth. A suite of large eddy simulations (LES) is performed to investigate the effect of the capping inversion on the conventionally neutral atmospheric boundary layer and on the wind farm performance under varying initial conditions. For these simulations our in-house pseudo-spectral LES code SP-Wind is used. The wind turbines are modelled using a non-rotating actuator disk method. In the absence of wind farms, we find that a decrease in inversion strength corresponds to a decrease in the geostrophic angle and an increase in entrainment rate and geostrophic drag. Placing the initial inversion base at higher altitudes further reduces the effect of the capping inversion on the boundary layer. The inversion can be fully neglected once it is situated above the equilibrium height that a truly neutral boundary layer would attain under the same external conditions such as geostrophic wind speed and surface roughness. Wind farm simulations show the expected increase in boundary layer height and growth rate with respect to the case without wind farms. Raising the initial strength of the capping inversion in these simulations dampens the turbulent growth of the boundary layer above the farm, decreasing the farms energy extraction. The authors acknowledge support from the European Research Council (FP7-Ideas, grant no. 306471). Simulations were performed on the computing infrastructure of the VSC Flemish Supercomputer Center, funded by the Hercules Foundation and the Flemish Government.
A multiple-fan active control wind tunnel for outdoor wind speed and direction simulation
NASA Astrophysics Data System (ADS)
Wang, Jia-Ying; Meng, Qing-Hao; Luo, Bing; Zeng, Ming
2018-03-01
This article presents a new type of active controlled multiple-fan wind tunnel. The wind tunnel consists of swivel plates and arrays of direct current fans, and the rotation speed of each fan and the shaft angle of each swivel plate can be controlled independently for simulating different kinds of outdoor wind fields. To measure the similarity between the simulated wind field and the outdoor wind field, wind speed and direction time series of two kinds of wind fields are recorded by nine two-dimensional ultrasonic anemometers, and then statistical properties of the wind signals in different time scales are analyzed based on the empirical mode decomposition. In addition, the complexity of wind speed and direction time series is also investigated using multiscale entropy and multivariate multiscale entropy. Results suggest that the simulated wind field in the multiple-fan wind tunnel has a high degree of similarity with the outdoor wind field.
Effect of Wind Turbine Wakes on the Performance of a Real Case WRF-LES Simulation
NASA Astrophysics Data System (ADS)
Doubrawa, P.; Montornès, A.; Barthelmie, R. J.; Pryor, S. C.; Giroux, G.; Casso, P.
2017-05-01
The main objective of this work is to estimate how much of the discrepancy between measured and modeled flow parameters can be attributed to wake effects. The real case simulations were performed for a period of 15 days with the Weather Research and Forecasting (WRF) model and nested down to a Large-Eddy Simulation (LES) scale of ∼ 100 m. Beyond the coastal escarpment, the site is flat and homogeneous and the study focuses on a meteorological mast and a northern turbine subjected to the wake of a southern turbine. The observational data set collected during the Prince Edward Island Wind Energy Experiment (PEIWEE) includes a sonic anemometer at 60 m mounted onto the mast, and measurements from the two turbines. Wake versus free stream conditions are distinguished based on measured wind direction while assuming constant expansion for the wake of the southern turbine. During the period considered the mast and northern turbine were under the southern turbine wake ∼ 16% and ∼ 11% of the time, respectively. Under these conditions, the model overestimates the wind speed and underestimates the turbulence intensity at the mast but not at the northern turbine, where the effect of wakes on the model error is unclear and other model limitations are likely more important. The wind direction difference between the southern and northern turbines is slightly underestimated by the model regardless of whether free stream or wake conditions are observed, indicating that it may be due to factors unrelated to the wake development such as surface forcings. Finally, coupling an inexpensive wake model to the high-fidelity simulation as a post-processing tool drives the simulated wind speeds at the mast significantly closer to the observed values, but the opposite is true at the coastal turbine which is in the far wake. This indicates that the application of a post-processing wake correction should be performed with caution and may increase the wind speed errors when other important sources of uncertainty in the model and data are not considered.
NASA Astrophysics Data System (ADS)
Hart, E. K.; Jacobson, M. Z.; Dvorak, M. J.
2008-12-01
Time series power flow analyses of the California electricity grid are performed with extensive addition of intermittent renewable power. The study focuses on the effects of replacing non-renewable and imported (out-of-state) electricity with wind and solar power on the reliability of the transmission grid. Simulations are performed for specific days chosen throughout the year to capture seasonal fluctuations in load, wind, and insolation. Wind farm expansions and new wind farms are proposed based on regional wind resources and time-dependent wind power output is calculated using a meteorological model and the power curves of specific wind turbines. Solar power is incorporated both as centralized and distributed generation. Concentrating solar thermal plants are modeled using local insolation data and the efficiencies of pre-existing plants. Distributed generation from rooftop PV systems is included using regional insolation data, efficiencies of common PV systems, and census data. The additional power output of these technologies offsets power from large natural gas plants and is balanced for the purposes of load matching largely with hydroelectric power and by curtailment when necessary. A quantitative analysis of the effects of this significant shift in the electricity portfolio of the state of California on power availability and transmission line congestion, using a transmission load-flow model, is presented. A sensitivity analysis is also performed to determine the effects of forecasting errors in wind and insolation on load-matching and transmission line congestion.
Numerical simulation of flows around deformed aircraft model in a wind tunnel
NASA Astrophysics Data System (ADS)
Lysenkov, A. V.; Bosnyakov, S. M.; Glazkov, S. A.; Gorbushin, A. R.; Kuzmina, S. I.; Kursakov, I. A.; Matyash, S. V.; Ishmuratov, F. Z.
2016-10-01
To obtain accurate data of calculation method error requires detailed simulation of the experiment in wind tunnel with keeping all features of the model, installation and gas flow. Two examples of such detailed data comparison are described in this paper. The experimental characteristics of NASA CRM model obtained in the ETW wind tunnel (Cologne, Germany), and CFD characteristics of this model obtained with the use of EWT-TsAGI application package are compared. Following comparison is carried out for an airplane model in the T-128 wind tunnel (TsAGI, Russia). It is seen that deformation influence on integral characteristics grows with increasing Re number and, accordingly, the dynamic pressure. CFD methods application for problems of experimental research in the wind tunnel allows to separate viscosity and elasticity effects.
Numerical simulations of flow fields through conventionally controlled wind turbines & wind farms
NASA Astrophysics Data System (ADS)
Emre Yilmaz, Ali; Meyers, Johan
2014-06-01
In the current study, an Actuator-Line Model (ALM) is implemented in our in-house pseudo-spectral LES solver SP-WIND, including a turbine controller. Below rated wind speed, turbines are controlled by a standard-torque-controller aiming at maximum power extraction from the wind. Above rated wind speed, the extracted power is limited by a blade pitch controller which is based on a proportional-integral type control algorithm. This model is used to perform a series of single turbine and wind farm simulations using the NREL 5MW turbine. First of all, we focus on below-rated wind speed, and investigate the effect of the farm layout on the controller calibration curves. These calibration curves are expressed in terms of nondimensional torque and rotational speed, using the mean turbine-disk velocity as reference. We show that this normalization leads to calibration curves that are independent of wind speed, but the calibration curves do depend on the farm layout, in particular for tightly spaced farms. Compared to turbines in a lone-standing set-up, turbines in a farm experience a different wind distribution over the rotor due to the farm boundary-layer interaction. We demonstrate this for fully developed wind-farm boundary layers with aligned turbine arrangements at different spacings (5D, 7D, 9D). Further we also compare calibration curves obtained from full farm simulations with calibration curves that can be obtained at a much lower cost using a minimal flow unit.
Numerical Simulations of Mass Loading in the Solar Wind Interaction with Venus
NASA Technical Reports Server (NTRS)
Murawski, K.; Steinolfson, R. S.
1996-01-01
Numerical simulations are performed in the framework of nonlinear two-dimensional magnetohydrodynamics to investigate the influence of mass loading on the solar wind interaction with Venus. The principal physical features of the interaction of the solar wind with the atmosphere of Venus are presented. The formation of the bow shock, the magnetic barrier, and the magnetotail are some typical features of the interaction. The deceleration of the solar wind due to the mass loading near Venus is an additional feature. The effect of the mass loading is to push the shock farther outward from the planet. The influence of different values of the magnetic field strength on plasma evolution is considered.
NASA Technical Reports Server (NTRS)
Krauspe, P.
1985-01-01
The effect of downburst-type wind shears on the longitudinal dynamic behavior of an unguided aircraft is simulated numerically on the basis of published meteorological data and the flight characteristics of an A300-B passenger jet. The nonlinear differential equations of the aircraft motion are linearized by conventional methods, and the wind effects are introduced via the linear derivatives of the wind components referred to the wind gradients to obtain simplified technical models of the longitudinal response to all possible types of constant-gradient wind shears during the first 20-60 sec. Graphs, maps, and diagrams are provided, and a number of accidents presumed to have involved wind shears are analyzed in detail.
NASA Astrophysics Data System (ADS)
hassanpour Adeh, E.; Higgins, C. W.
2014-12-01
Wind turbines have been introduced as an energy source that does not require a large expenditure of water. However, recent simulation results indicate that wind turbines increase evaporation rates from the nearby land. In this research the effect of wind energy on irrigated agriculture is determined using a Surface Energy Balance Algorithm (SEBAL) on Landsat data spanning a 30 year interval. The analysis allows the characterization of evapotranspiration (ET) before and after wind turbine installations. The time history of ET from Landsat data will be presented for several major wind farms across the US. These data will be used to determine the impact on water demand due to presence of wind turbines.
Propulsion simulation for magnetically suspended wind tunnel models
NASA Technical Reports Server (NTRS)
Joshi, Prakash B.; Beerman, Henry P.; Chen, James; Krech, Robert H.; Lintz, Andrew L.; Rosen, David I.
1990-01-01
The feasibility of simulating propulsion-induced aerodynamic effects on scaled aircraft models in wind tunnels employing Magnetic Suspension and Balance Systems. The investigation concerned itself with techniques of generating exhaust jets of appropriate characteristics. The objectives were to: (1) define thrust and mass flow requirements of jets; (2) evaluate techniques for generating propulsive gas within volume limitations imposed by magnetically-suspended models; (3) conduct simple diagnostic experiments for techniques involving new concepts; and (4) recommend experiments for demonstration of propulsion simulation techniques. Various techniques of generating exhaust jets of appropriate characteristics were evaluated on scaled aircraft models in wind tunnels with MSBS. Four concepts of remotely-operated propulsion simulators were examined. Three conceptual designs involving innovative adaptation of convenient technologies (compressed gas cylinders, liquid, and solid propellants) were developed. The fourth innovative concept, namely, the laser-assisted thruster, which can potentially simulate both inlet and exhaust flows, was found to require very high power levels for small thrust levels.
NASA Astrophysics Data System (ADS)
Shin, D.; Chiu, L. S.; Clemente-Colon, P.
2006-05-01
The atmospheric effects on the retrieval of sea ice concentration from passive microwave sensors are examined using simulated data typical for the Arctic summer. The simulation includes atmospheric contributions of cloud liquid water, water vapor and surface wind on the microwave signatures. A plane parallel radiative transfer model is used to compute brightness temperatures at SSM/I frequencies over surfaces that contain open water, first-year (FY) ice and multi-year (MY) ice and their combinations. Synthetic retrievals in this study use the NASA Team (NT) algorithm for the estimation of sea ice concentrations. This study shows that if the satellite sensor's field of view is filled with only FY ice the retrieval is not much affected by the atmospheric conditions due to the high contrast between emission signals from FY ice surface and the signals from the atmosphere. Pure MY ice concentration is generally underestimated due to the low MY ice surface emissivity that results in the enhancement of emission signals from the atmospheric parameters. Simulation results in marginal ice areas also show that the atmospheric effects from cloud liquid water, water vapor and surface wind tend to degrade the accuracy at low sea ice concentration. FY ice concentration is overestimated and MY ice concentration is underestimated in the presence of atmospheric water and surface wind at low ice concentration. This compensating effect reduces the retrieval uncertainties of total (FY and MY) ice concentration. Over marginal ice zones, our results suggest that strong surface wind is more important than atmospheric water in contributing to the retrieval errors of total ice concentrations in the normal ranges of these variables.
NASA Technical Reports Server (NTRS)
Comstock, James R., Jr.; Ghatas, Rania W.; Consiglio, Maria C.; Chamberlain, James P.; Hoffler, Keith D.
2016-01-01
This study evaluated the effects of Communications Delays and Winds on Air Traffic Controller ratings of acceptability of horizontal miss distances (HMDs) for encounters between UAS and manned aircraft in a simulation of the Dallas-Ft. Worth East-side airspace. Fourteen encounters per hour were staged in the presence of moderate background traffic. Seven recently retired controllers with experience at DFW served as subjects. Guidance provided to the UAS pilots for maintaining a given HMD was provided by information from self-separation algorithms displayed on the Multi-Aircraft Simulation System. Winds tested did not affect the acceptability ratings. Communications delays tested included 0, 400, 1200, and 1800 msec. For longer communications delays, there were changes in strategy and communications flow that were observed and reported by the controllers. The aim of this work is to provide useful information for guiding future rules and regulations applicable to flying UAS in the NAS.
Wind tunnel tests of a free yawing downwind wind turbine
NASA Astrophysics Data System (ADS)
Verelst, D. R. S.; Larsen, T. J.; van Wingerden, J. W.
2014-12-01
This research paper presents preliminary results on a behavioural study of a free yawing downwind wind turbine. A series of wind tunnel tests was performed at the TU Delft Open Jet Facility with a three bladed downwind wind turbine and a rotor radius of 0.8 meters. The setup includes an off the shelf three bladed hub, nacelle and generator on which relatively flexible blades are mounted. The tower support structure has free yawing capabilities provided at the base. A short overview on the technical details of the experiment is given as well as a brief summary of the design process. The discussed test cases show that the turbine is stable while operating in free yawing conditions. Further, the effect of the tower shadow passage on the blade flapwise strain measurement is evaluated. Finally, data from the experiment is compared with preliminary simulations using DTU Wind Energy's aeroelastic simulation program HAWC2.
Hardware-in-the-Loop Testing of Utility-Scale Wind Turbine Generators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schkoda, Ryan; Fox, Curtiss; Hadidi, Ramtin
2016-01-26
Historically, wind turbine prototypes were tested in the field, which was--and continues to be--a slow and expensive process. As a result, wind turbine dynamometer facilities were developed to provide a more cost-effective alternative to field testing. New turbine designs were tested and the design models were validated using dynamometers to drive the turbines in a controlled environment. Over the years, both wind turbine dynamometer testing and computer technology have matured and improved, and the two are now being joined to provide hardware-in-the-loop (HIL) testing. This type of testing uses a computer to simulate the items that are missing from amore » dynamometer test, such as grid stiffness, voltage, frequency, rotor, and hub. Furthermore, wind input and changing electric grid conditions can now be simulated in real time. This recent advance has greatly increased the utility of dynamometer testing for the development of wind turbine systems.« less
Magnetofluid Simulations of the Global Solar Wind Including Pickup Ions and Turbulence Modeling
NASA Technical Reports Server (NTRS)
Goldstein, Melvyn L.; Usmanov, Arcadi V.; Matthaeus, William H.
2011-01-01
I will describe a three-dimensional magnetohydrodynamic model of the solar wind that takes into account turbulent heating of the wind by velocity and magnetic fluctuations as well as a variety of effects produced by interstellar pickup protons. In this report, the interstellar pickup protons are treated as one fluid and the protons and electrons are treated together as a second fluid. The model equations include a Reynolds decomposition of the plasma velocity and magnetic field into mean and fluctuating quantities, as well as energy transfer from interstellar pickup protons to solar wind protons that results in the deceleration of the solar wind. The model is used to simulate the global steady-state structure of the solar wind in the region from 0.3 to 100 AU. Where possible, the model is compared with Voyager data. Initial results from generalization to a three-fluid model is described elsewhere in this session.
Using wind setdown and storm surge on Lake Erie to calibrate the air-sea drag coefficient.
Drews, Carl
2013-01-01
The air-sea drag coefficient controls the transfer of momentum from wind to water. In modeling storm surge, this coefficient is a crucial parameter for estimating the surge height. This study uses two strong wind events on Lake Erie to calibrate the drag coefficient using the Coupled Ocean Atmosphere Wave Sediment Transport (COAWST) modeling system and the the Regional Ocean Modeling System (ROMS). Simulated waves are generated on the lake with Simulating WAves Nearshore (SWAN). Wind setdown provides the opportunity to eliminate wave setup as a contributing factor, since waves are minimal at the upwind shore. The study finds that model results significantly underestimate wind setdown and storm surge when a typical open-ocean formulation without waves is used for the drag coefficient. The contribution of waves to wind setdown and storm surge is 34.7%. Scattered lake ice also increases the effective drag coefficient by a factor of 1.1.
Wind Tunnel Tests Conducted to Develop an Icing Flight Simulator
NASA Technical Reports Server (NTRS)
Ratvasky, Thomas P.
2001-01-01
As part of NASA's Aviation Safety Program goals to reduce aviation accidents due to icing, NASA Glenn Research Center is leading a flight simulator development activity to improve pilot training for the adverse flying characteristics due to icing. Developing flight simulators that incorporate the aerodynamic effects of icing will provide a critical element in pilot training programs by giving pilots a pre-exposure of icing-related hazards, such as ice-contaminated roll upset or tailplane stall. Integrating these effects into training flight simulators will provide an accurate representation of scenarios to develop pilot skills in unusual attitudes and loss-of-control events that may result from airframe icing. In order to achieve a high level of fidelity in the flight simulation, a series of wind tunnel tests have been conducted on a 6.5-percent-scale Twin Otter aircraft model. These wind tunnel tests were conducted at the Wichita State University 7- by 10-ft wind tunnel and Bihrle Applied Research's Large Amplitude Multiple Purpose Facility in Neuburg, Germany. The Twin Otter model was tested without ice (baseline), and with two ice configurations: 1) Ice on the horizontal tail only; 2) Ice on the wing, horizontal tail, and vertical tail. These wind tunnel tests resulted in data bases of aerodynamic forces and moments as functions of angle of attack; sideslip; control surface deflections; forced oscillations in the pitch, roll, and yaw axes; and various rotational speeds. A limited amount of wing and tail surface pressure data were also measured for comparison with data taken at Wichita State and with flight data. The data bases from these tests will be the foundation for a PC-based Icing Flight Simulator to be delivered to Glenn in fiscal year 2001.
Adaptive Control of a Utility-Scale Wind Turbine Operating in Region 3
NASA Technical Reports Server (NTRS)
Frost, Susan A.; Balas, Mark J.; Wright, Alan D.
2009-01-01
Adaptive control techniques are well suited to nonlinear applications, such as wind turbines, which are difficult to accurately model and which have effects from poorly known operating environments. The turbulent and unpredictable conditions in which wind turbines operate create many challenges for their operation. In this paper, we design an adaptive collective pitch controller for a high-fidelity simulation of a utility scale, variable-speed horizontal axis wind turbine. The objective of the adaptive pitch controller in Region 3 is to regulate generator speed and reject step disturbances. The control objective is accomplished by collectively pitching the turbine blades. We use an extension of the Direct Model Reference Adaptive Control (DMRAC) approach to track a reference point and to reject persistent disturbances. The turbine simulation models the Controls Advanced Research Turbine (CART) of the National Renewable Energy Laboratory in Golden, Colorado. The CART is a utility-scale wind turbine which has a well-developed and extensively verified simulator. The adaptive collective pitch controller for Region 3 was compared in simulations with a bas celliansesical Proportional Integrator (PI) collective pitch controller. In the simulations, the adaptive pitch controller showed improved speed regulation in Region 3 when compared with the baseline PI pitch controller and it demonstrated robustness to modeling errors.
Effect of Free Jet on Refraction and Noise
NASA Technical Reports Server (NTRS)
Khavaran, Abbas; Georgiadis, Nicholas J.; Bridges, James E.; Dippold, Vance F., III
2005-01-01
This article investigates the role of a free jet on the sound radiated from a jet. In particular, the role of an infinite wind tunnel, which simulates the forward flight condition, is compared to that of a finite wind tunnel. The second configuration is usually used in experiments, where the microphones are located in a static ambient medium far outside the free jet. To study the effect of the free jet on noise, both propagation and source strength need to be addressed. In this work, the exact Green's function in a locally parallel flow is derived for a simulated flight case. Numerical examples are presented that show a reduction in the magnitude of the Green's function in the aft arc and an increase in the forward arc for the simulated flight condition. The effect of finite wind tunnel on refraction is sensitive to the source location and is most pronounced in the aft arc. A Reynolds-averaged Navier-Stokes solution (RANS) yields the required mean flow and turbulence scales that are used in the jet mixing noise spectrum calculations. In addition to the sound/flow interaction, the separate effect of source strength and elongation of the noise-generating region of the jet in a forward flight is studied. Comparisons are made with experiments for the static and finite tunnel cases. Finally, the standard free-jet shear corrections that convert the finite wind tunnel measurements to an ideal wind tunnel arrangement are evaluated.
Quantifying array losses due to spacing and staggering in offshore wind farms (Invited)
NASA Astrophysics Data System (ADS)
Archer, C. L.; Mirzaeisefat, S.; Lee, S.; Xie, S.
2013-12-01
The layout of wind turbines can have an impact on the power production of a wind farm. Design variables that define the layout of wind turbines within a wind farm include: orientation of the rows with respect to the prevailing wind direction, size and shape of the wind farm, spacing between turbines, and alignment of the turbines (i.e., whether in-line or staggered with one another). There are no universal layout recommendations for offshore wind farms, partly because isolating the contribution of each individual design variable is impossible at existing offshore wind farms, where multiple effects overlap non-linearly on one another, and partly because analyzing the sensitivity to design variables requires sophisticated and computer-intensive numerical codes, such as large-eddy simulations (LES), that can simulate the small-scale turbulent features of turbine wakes. The National Renewable Energy Laboratory (NREL) developed the only publicly available and open-source LES code that is capable of resolving wind turbine blades as rotating actuator lines (not fixed disks), includes both neutral and unstable atmospheric conditions (stable case is currently under development), and does not rely on periodic boundary conditions. This code, named Simulator for Offshore/Onshore Wind Farm Applications (SOWFA), is based on OpenFOAM and has been used successfully in the past for turbulent wake simulations. Here we address the issue of quantifying two design variables: turbine spacing (both along and across the prevailing wind direction) and alignment (in-line or staggered for consecutive rows). SOWFA is used to simulate an existing offshore wind farm in Lillgrund (Sweden), consisting of 48 Siemens 2.3 MW turbines with spacing of 3.2D across and 4.3D along the prevailing wind direction and without staggering, where D is the turbine diameter (93 m). This spacing is exceptionally tight, to our knowledge the tightest of all modern wind farms. While keeping the area and the shape of the farm constant, we design several new Lillgrund farm layouts with and without staggering, with increased spacing in each direction individually and in both directions together, and with various wind directions and atmospheric stabilities. We found that the average wind power generated per turbine is increased by ~32% (from 696 kW to 922 kW) if both staggering and doubling of the across-spacing are implemented simultaneously in a neutral stability case. Wake losses are quantified in terms of average power in the first (upwind) row of wind turbines in the control case, representative of the power that could be generated if there were no wakes, over the average power of all the wind turbines in the farm. Wake losses at Lillgrund are relatively high due to the tight packing, of the order of 35%, but smart combinations of staggering and doubling of turbine spacing can reduce them to 15%-26%. In summary, we provide estimates of the losses/gains associated with individual and combined changes in two design variables, spacing and staggering, under various atmospheric stabilities, wind directions, and wind speeds. These estimates will be useful to the wind industry to optimize a wind project because the effects of alternative layouts can be quantified quickly with respect to total power, capacity factor, and number of wind turbines, all of which can ultimately be converted to actual costs or savings.
Quantifying array losses due to spacing and staggering in offshore wind farms (Invited)
NASA Astrophysics Data System (ADS)
Archer, C. L.; Mirzaeisefat, S.; Lee, S.; Xie, S.
2011-12-01
The layout of wind turbines can have an impact on the power production of a wind farm. Design variables that define the layout of wind turbines within a wind farm include: orientation of the rows with respect to the prevailing wind direction, size and shape of the wind farm, spacing between turbines, and alignment of the turbines (i.e., whether in-line or staggered with one another). There are no universal layout recommendations for offshore wind farms, partly because isolating the contribution of each individual design variable is impossible at existing offshore wind farms, where multiple effects overlap non-linearly on one another, and partly because analyzing the sensitivity to design variables requires sophisticated and computer-intensive numerical codes, such as large-eddy simulations (LES), that can simulate the small-scale turbulent features of turbine wakes. The National Renewable Energy Laboratory (NREL) developed the only publicly available and open-source LES code that is capable of resolving wind turbine blades as rotating actuator lines (not fixed disks), includes both neutral and unstable atmospheric conditions (stable case is currently under development), and does not rely on periodic boundary conditions. This code, named Simulator for Offshore/Onshore Wind Farm Applications (SOWFA), is based on OpenFOAM and has been used successfully in the past for turbulent wake simulations. Here we address the issue of quantifying two design variables: turbine spacing (both along and across the prevailing wind direction) and alignment (in-line or staggered for consecutive rows). SOWFA is used to simulate an existing offshore wind farm in Lillgrund (Sweden), consisting of 48 Siemens 2.3 MW turbines with spacing of 3.2D across and 4.3D along the prevailing wind direction and without staggering, where D is the turbine diameter (93 m). This spacing is exceptionally tight, to our knowledge the tightest of all modern wind farms. While keeping the area and the shape of the farm constant, we design several new Lillgrund farm layouts with and without staggering, with increased spacing in each direction individually and in both directions together, and with various wind directions and atmospheric stabilities. We found that the average wind power generated per turbine is increased by ~32% (from 696 kW to 922 kW) if both staggering and doubling of the across-spacing are implemented simultaneously in a neutral stability case. Wake losses are quantified in terms of average power in the first (upwind) row of wind turbines in the control case, representative of the power that could be generated if there were no wakes, over the average power of all the wind turbines in the farm. Wake losses at Lillgrund are relatively high due to the tight packing, of the order of 35%, but smart combinations of staggering and doubling of turbine spacing can reduce them to 15%-26%. In summary, we provide estimates of the losses/gains associated with individual and combined changes in two design variables, spacing and staggering, under various atmospheric stabilities, wind directions, and wind speeds. These estimates will be useful to the wind industry to optimize a wind project because the effects of alternative layouts can be quantified quickly with respect to total power, capacity factor, and number of wind turbines, all of which can ultimately be converted to actual costs or savings.
Storm-driven sediment transport in Massachusetts Bay
Warner, J.C.; Butman, B.; Dalyander, P.S.
2008-01-01
Massachusetts Bay is a semi-enclosed embayment in the western Gulf of Maine about 50 km wide and 100 km long. Bottom sediment resuspension is controlled predominately by storm-induced surface waves and transport by the tidal- and wind-driven circulation. Because the Bay is open to the northeast, winds from the northeast ('Northeasters') generate the largest surface waves and are thus the most effective in resuspending sediments. The three-dimensional oceanographic circulation model Regional Ocean Modeling System (ROMS) is used to explore the resuspension, transport, and deposition of sediment caused by Northeasters. The model transports multiple sediment classes and tracks the evolution of a multilevel sediment bed. The surficial sediment characteristics of the bed are coupled to one of several bottom-boundary layer modules that calculate enhanced bottom roughness due to wave-current interaction. The wave field is calculated from the model Simulating WAves Nearshore (SWAN). Two idealized simulations were carried out to explore the effects of Northeasters on the transport and fate of sediments. In one simulation, an initially spatially uniform bed of mixed sediments exposed to a series of Northeasters evolved to a pattern similar to the existing surficial sediment distribution. A second set of simulations explored sediment-transport pathways caused by storms with winds from the northeast quadrant by simulating release of sediment at selected locations. Storms with winds from the north cause transport southward along the western shore of Massachusetts Bay, while storms with winds from the east and southeast drive northerly nearshore flow. The simulations show that Northeasters can effectively transport sediments from Boston Harbor and the area offshore of the harbor to the southeast into Cape Cod Bay and offshore into Stellwagen Basin. This transport pattern is consistent with Boston Harbor as the source of silver found in the surficial sediments of Cape Cod Bay and Stellwagen Basin.
NASA Astrophysics Data System (ADS)
Zeng, Xin-Min; Wang, Ming; Wang, Ning; Yi, Xiang; Chen, Chaohui; Zhou, Zugang; Wang, Guiling; Zheng, Yiqun
2018-06-01
We assessed the sensitivity of 10-m wind speed to land surface schemes (LSSs) and the processes affecting wind speed in China during the summer of 2003 using the ARWv3 mesoscale model. The derived hydrodynamic equation, which directly reflects the effects of the processes that drive changes in the full wind speed, shows that the convection term CON (the advection effect) plays the smallest role; thus, the summer 10-m wind speed is largely dominated by the pressure gradient (PRE) and the diffusion (DFN) terms, and the equation shows that both terms are highly sensitive to the choice of LSS within the studied subareas (i.e., Northwest China, East China, and the Tibetan Plateau). For example, Northwest China had the largest DFN, with a PRE four times that of CON and the highest sensitivity of PRE to the choice of LSS, as indicated by a difference index value of 63%. Moreover, we suggest that two types of mechanisms, direct and indirect effects, affect the 10-m wind speed. Through their simulated surface fluxes (mainly the sensible heat flux), the different LSSs directly provide different amounts of heat to the surface air at local scales, which influences atmospheric stratification and the characteristics of downward momentum transport. Meanwhile, through the indirect effect, the LSS-induced changes in surface fluxes can significantly modify the distributions of the temperature and pressure fields in the lower atmosphere over larger scales. These changes alter the thermal and geostrophic winds, respectively, as well as the 10-m wind speed. Due to the differences in land properties and climates, the indirect effect (e.g., PRE) can be greater than the direct effect (e.g., DFN).
NASA Astrophysics Data System (ADS)
Ferdousi, B.; Nishimura, Y.; Maruyama, N.; Lyons, L. R.
2017-12-01
Subauroral Polarization Streams (SAPS), which can be identified as intense northward electric field driving sunward plasma convection, are mostly observed at the dusk-premidnight subauroral region. Their existence is associated with the closure of region 2 field-aligned current (R2 FAC) through the low conductivity region equatorward of the electron equatorward boundary. Observations suggest that SAPS flow speed increases with geomagnetic activity. So far, most studies have focused on the magnetosphere-ionosphere (M-I) coupling process of SAPS. However, recent observation of subauroral neutral wind suggest that there is a strong interaction between SAPS and the thermosphere (T). In this study, we focus on the effect of thermospheric wind on the ionosphere plasma drift associated with SAPS during the March 17, 2013 "St. Patrick's day" geomagnetic storm. We use both observations and the self-consistent magnetosphere-ionosphere-thermosphere (M-I-T) numerical "RCM-CTIPe" model to study such a relation. Observation results from DMSP-18 and GOCE satellites show that as the storm progresses, sunward ion flows intensify and move equatorward, and are accompanied by strengthening of subauroral neutral winds with a 2-hour delay. Our model successfully reproduces time evolution of the sunward ion drift and neutral wind. However, the simulated ion drift spreads considerably wider in latitude than the observations. To seek for better agreement between the observation and simulation results, we adopt a conductance distribution more consistent with input from the magnetosphere based on RCM aurora precipitation. We also perform a force term analysis to investigate the rate of momentum transfer from the neutral wind to ion flow. We then compare simulation runs with and without thermosphere coupling to study the effect of the feedback from neutral winds to SAPS.
Simulation of an offshore wind farm using fluid power for centralized electricity generation
NASA Astrophysics Data System (ADS)
Jarquin-Laguna, A.
2016-09-01
A centralized approach for electricity generation within a wind farm is explored through the use of fluid power technology. This concept considers a new way of generation, collection and transmission of wind energy inside a wind farm, in which electrical conversion does not occur during any intermediate conversion step before the energy has reached the offshore central platform. A numerical model was developed to capture the relevant physics from the dynamic interaction between different turbines coupled to a common hydraulic network and controller. This paper presents two examples of the time-domain simulation results for an hypothetical hydraulic wind farm subject to turbulent wind conditions. The performance and operational parameters of individual turbines are compared with those of a reference wind farm with conventional technology turbines, using the same wind farm layout and environmental conditions. For the presented case study, results indicate that the individual wind turbines are able to operate within operational limits with the current pressure control concept. Despite the stochastic turbulent wind input and wake effects, the hydraulic wind farm is able to produce electricity with reasonable performance in both below and above rated conditions.
NASA Astrophysics Data System (ADS)
Rahimi, H.; Hartvelt, M.; Peinke, J.; Schepers, J. G.
2016-09-01
The aim of this work is to investigate the capabilities of current engineering tools based on Blade Element Momentum (BEM) and free vortex wake codes for the prediction of key aerodynamic parameters of wind turbines in yawed flow. Axial induction factor and aerodynamic loads of three wind turbines (NREL VI, AVATAR and INNWIND.EU) were investigated using wind tunnel measurements and numerical simulations for 0 and 30 degrees of yaw. Results indicated that for axial conditions there is a good agreement between all codes in terms of mean values of aerodynamic parameters, however in yawed flow significant deviations were observed. This was due to unsteady phenomena such as advancing & retreating and skewed wake effect. These deviations were more visible in aerodynamic parameters in comparison to the rotor azimuthal angle for the sections at the root and tip where the skewed wake effect plays a major role.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Weiguo; Shaw, William J.
This paper compares the wind field from a diagnostic model (CALMET) over complex terrain in the Phoenix region in the USA with observations that are gridded by a state-of-the-art Four-Dimensional Data Assimilation (FDDA) system. The wind difference between the CALMET and FDDA wind fields is larger at night than in the day. The magnitude of the wind difference can be smaller than 5% of the mean wind speed at low levels in areas with dense observational stations, while it can be larger than 80% in areas without observational stations or at high altitudes. The vector-mean wind direction difference over themore » domain is 15 deg on the surface level and 25 deg between 10 and 1500 m. To evaluate the effects of the wind difference on dispersion calculations, dispersion of a hypothetical passive tracer released from surface point sources is simulated by the second-order closure integrated puff (SCIPUFF) model driven by the CALMET and FDDA wind fields, respectively. Differences in the two simulated tracer concentration fields increase with time due to accumulation of effects of the wind differences both near the surface and at higher altitudes. Even for the release in the area with the densest distribution of surface stations, the relative difference in the peak surface concentration from CALMET-SCIPUFF and from FDDA-SCIPUFF is less than 10% only within 0.5 hr after the release in the afternoon, and increases to 70% at 1.5 hr; this is because of large differences in wind above the surface. For the release in the area with few stations, the difference can be larger than 100% or even larger after 1.5 hr from the release. To improve dispersion simulations driven by the CALMET wind in the region, observations at upper-air stations are needed and the current surface observation network needs to be reorganized or more stations are needed to account for the influence of terrain.« less
Rocket Plume Scaling for Orion Wind Tunnel Testing
NASA Technical Reports Server (NTRS)
Brauckmann, Gregory J.; Greathouse, James S.; White, Molly E.
2011-01-01
A wind tunnel test program was undertaken to assess the jet interaction effects caused by the various solid rocket motors used on the Orion Launch Abort Vehicle (LAV). These interactions of the external flowfield and the various rocket plumes can cause localized aerodynamic disturbances yielding significant and highly non-linear control amplifications and attenuations. This paper discusses the scaling methodologies used to model the flight plumes in the wind tunnel using cold air as the simulant gas. Comparisons of predicted flight, predicted wind tunnel, and measured wind tunnel forces-and-moments and plume flowfields are made to assess the effectiveness of the selected scaling methodologies.
Simulating Turbulent Wind Fields for Offshore Turbines in Hurricane-Prone Regions (Poster)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Y.; Damiani, R.; Musial, W.
Extreme wind load cases are one of the most important external conditions in the design of offshore wind turbines in hurricane prone regions. Furthermore, in these areas, the increase in load with storm return-period is higher than in extra-tropical regions. However, current standards have limited information on the appropriate models to simulate wind loads from hurricanes. This study investigates turbulent wind models for load analysis of offshore wind turbines subjected to hurricane conditions. Suggested extreme wind models in IEC 61400-3 and API/ABS (a widely-used standard in oil and gas industry) are investigated. The present study further examines the wind turbinemore » response subjected to Hurricane wind loads. Three-dimensional wind simulator, TurbSim, is modified to include the API wind model. Wind fields simulated using IEC and API wind models are used for an offshore wind turbine model established in FAST to calculate turbine loads and response.« less
Global MHD simulations driven by idealized Alfvenic fluctuations in the solar wind
NASA Astrophysics Data System (ADS)
Claudepierre, S. G.
2017-12-01
High speed solar wind streams (HSSs) and corotating interaction regions (CIRs) often lead to MeV electron flux enhancements the Earth's outer radiation belt. The relevant physical processes responsible for these enhancements are not entirely understood. We investigate the potential role that solar wind Alfvenic fluctuations, intrinsic structures embedded in the HSS/CIRs, play in radiation belt dynamics. In particular, we explore the hypothesis that magnetospheric ultra-low frequency (ULF) pulsations driven by interplanetary magnetic field fluctuations are the intermediary mechanism responsible for the pronounced effect that HSS/CIRs have on the outer electron radiation belt. We examine these effects using global, three-dimensional magnetohydrodynamic (MHD) simulations driven by idealized interplanetary Alfvenic fluctuations, both monochromatic and broadband noise (Kolmogorov turbulence).
Employing static excitation control and tie line reactance to stabilize wind turbine generators
NASA Technical Reports Server (NTRS)
Hwang, H. H.; Mozeico, H. V.; Guo, T.
1978-01-01
An analytical representation of a wind turbine generator is presented which employs blade pitch angle feedback control. A mathematical model was formulated. With the functioning MOD-0 wind turbine serving as a practical case study, results of computer simulations of the model as applied to the problem of dynamic stability at rated load are also presented. The effect of the tower shadow was included in the input to the system. Different configurations of the drive train, and optimal values of the tie line reactance were used in the simulations. Computer results revealed that a static excitation control system coupled with optimal values of the tie line reactance would effectively reduce oscillations of the power output, without the use of a slip clutch.
Technical Note: On the use of nudging for aerosol–climate model intercomparison studies
Zhang, K.; Wan, H.; Liu, X.; ...
2014-08-26
Nudging as an assimilation technique has seen increased use in recent years in the development and evaluation of climate models. Constraining the simulated wind and temperature fields using global weather reanalysis facilitates more straightforward comparison between simulation and observation, and reduces uncertainties associated with natural variabilities of the large-scale circulation. On the other hand, the forcing introduced by nudging can be strong enough to change the basic characteristics of the model climate. In the paper we show that for the Community Atmosphere Model version 5 (CAM5), due to the systematic temperature bias in the standard model and the sensitivity ofmore » simulated ice formation to anthropogenic aerosol concentration, nudging towards reanalysis results in substantial reductions in the ice cloud amount and the impact of anthropogenic aerosols on long-wave cloud forcing. In order to reduce discrepancies between the nudged and unconstrained simulations, and meanwhile take the advantages of nudging, two alternative experimentation methods are evaluated. The first one constrains only the horizontal winds. The second method nudges both winds and temperature, but replaces the long-term climatology of the reanalysis by that of the model. Results show that both methods lead to substantially improved agreement with the free-running model in terms of the top-of-atmosphere radiation budget and cloud ice amount. The wind-only nudging is more convenient to apply, and provides higher correlations of the wind fields, geopotential height and specific humidity between simulation and reanalysis. Results from both CAM5 and a second aerosol–climate model ECHAM6-HAM2 also indicate that compared to the wind-and-temperature nudging, constraining only winds leads to better agreement with the free-running model in terms of the estimated shortwave cloud forcing and the simulated convective activities. This suggests nudging the horizontal winds but not temperature is a good strategy for the investigation of aerosol indirect effects since it provides well-constrained meteorology without strongly perturbing the model's mean climate.« less
Technical Note: On the use of nudging for aerosol-climate model intercomparison studies
NASA Astrophysics Data System (ADS)
Zhang, K.; Wan, H.; Liu, X.; Ghan, S. J.; Kooperman, G. J.; Ma, P.-L.; Rasch, P. J.; Neubauer, D.; Lohmann, U.
2014-08-01
Nudging as an assimilation technique has seen increased use in recent years in the development and evaluation of climate models. Constraining the simulated wind and temperature fields using global weather reanalysis facilitates more straightforward comparison between simulation and observation, and reduces uncertainties associated with natural variabilities of the large-scale circulation. On the other hand, the forcing introduced by nudging can be strong enough to change the basic characteristics of the model climate. In the paper we show that for the Community Atmosphere Model version 5 (CAM5), due to the systematic temperature bias in the standard model and the sensitivity of simulated ice formation to anthropogenic aerosol concentration, nudging towards reanalysis results in substantial reductions in the ice cloud amount and the impact of anthropogenic aerosols on long-wave cloud forcing. In order to reduce discrepancies between the nudged and unconstrained simulations, and meanwhile take the advantages of nudging, two alternative experimentation methods are evaluated. The first one constrains only the horizontal winds. The second method nudges both winds and temperature, but replaces the long-term climatology of the reanalysis by that of the model. Results show that both methods lead to substantially improved agreement with the free-running model in terms of the top-of-atmosphere radiation budget and cloud ice amount. The wind-only nudging is more convenient to apply, and provides higher correlations of the wind fields, geopotential height and specific humidity between simulation and reanalysis. Results from both CAM5 and a second aerosol-climate model ECHAM6-HAM2 also indicate that compared to the wind-and-temperature nudging, constraining only winds leads to better agreement with the free-running model in terms of the estimated shortwave cloud forcing and the simulated convective activities. This suggests nudging the horizontal winds but not temperature is a good strategy for the investigation of aerosol indirect effects since it provides well-constrained meteorology without strongly perturbing the model's mean climate.
NASA Technical Reports Server (NTRS)
Hoydysh, W. G.
1974-01-01
A wind tunnel simulation of the diffusion patterns in a sea breeze was attempted. The results indicate that the low level onshore flow was well simulated for neutral, stable, unstable, and elevated inversion conditions. Velocity, turbulence, shear stress, and temperature data were taken, and the spread of emissions from ground level sources was investigated. Comparison is made with theoretical predictions by E. Inoue and with the open, homogeneous plane field results of Pasquill. Agreement with the predictions by Inoue is good, and the comparison with Pasquill's results shows that the wind tunnel flows are shifted two categories towards more stable. The discrepancy may be explained as a matter of averaging time.
Motion performance and mooring system of a floating offshore wind turbine
NASA Astrophysics Data System (ADS)
Zhao, Jing; Zhang, Liang; Wu, Haitao
2012-09-01
The development of offshore wind farms was originally carried out in shallow water areas with fixed (seabed mounted) structures. However, countries with limited shallow water areas require innovative floating platforms to deploy wind turbines offshore in order to harness wind energy to generate electricity in deep seas. The performances of motion and mooring system dynamics are vital to designing a cost effective and durable floating platform. This paper describes a numerical model to simulate dynamic behavior of a new semi-submersible type floating offshore wind turbine (FOWT) system. The wind turbine was modeled as a wind block with a certain thrust coefficient, and the hydrodynamics and mooring system dynamics of the platform were calculated by SESAM software. The effect of change in environmental conditions on the dynamic response of the system under wave and wind loading was examined. The results indicate that the semi-submersible concept has excellent performance and SESAM could be an effective tool for floating wind turbine design and analysis.
Simulation numerique de l'accretion de glace sur une pale d'eolienne
NASA Astrophysics Data System (ADS)
Fernando, Villalpando
The wind energy industry is growing steadily, and an excellent place for the construction of wind farms is northern Quebec. This region has huge wind energy production potential, as the cold temperatures increase air density and with it the available wind energy. However, some issues associated with arctic climates cause production losses on wind farms. Icing conditions occur frequently, as high air humidity and freezing temperatures cause ice to build up on the blades, resulting in wind turbines operating suboptimally. One of the negative consequences of ice accretion is degradation of the blade's aerodynamics, in the form of a decrease in lift and an increase in drag. Also, the ice grows unevenly, which unbalances the blades and induces vibration. This reduces the expected life of some of the turbine components. If the ice accretion continues, the ice can reach a mass that endangers the wind turbine structure, and operation must be suspended in order to prevent mechanical failure. To evaluate the impact of ice on the profits of wind farms, it is important to understand how ice builds up and how much it can affect blade aerodynamics. In response, researchers in the wind energy field have attempted to simulate ice accretion on airfoils in refrigerated wind tunnels. Unfortunately, this is an expensive endeavor, and researchers' budgets are limited. However, ice accretion can be simulated more cost-effectively and with fewer limitations on airfoil size and air speed using numerical methods. Numerical simulation is an approach that can help researchers acquire knowledge in the field of wind energy more quickly. For years, the aviation industry has invested time and money developing computer codes to simulate ice accretion on aircraft wings. Nearly all these codes are restricted to use by aircraft developers, and so they are not accessible to researchers in the wind engineering field. Moreover, these codes have been developed to meet aeronautical industry specifications, which are different from those that must be met in the wind energy industry. Among these differences are the following: wind turbines operate at subsonic speeds; the cords and angles of attack of wind turbine blades are smaller than those of aircraft wings; and a wind turbine can operate with a larger ice mass on its blades than an aircraft can. So, it is important to provide wind energy researchers with tools specifically validated with the operations parameters of a wind turbine. The main goal of this work is to develop a methodology to simulate ice accretion in 2D using Fluent and Matlab, commercial software programs that are available at nearly all research institutions. In this study, we used Gambit, previously the companion tool of Fluent, for mesh generation, and which has now been replaced by ICEM. We decided to stay with Gambit, because we were already deeply involved with the meshing procedure for our simulation of ice accretion at the time Gambit was removed from the market. We validate the methodology with experimental data consisting of iced airfoil contours obtained in a refrigerated wind tunnel using the parameters of actual ice conditions recorded in northern Quebec. This methodology consists of four steps: airfoil meshing, droplet trajectory calculation, thermodynamic model application, and airfoil contour updating. The total simulation time is divided into several time steps, for each of which the four steps are performed until the total time has elapsed. The time step length depends on the icing conditions. (Abstract shortened by UMI.).
Cometary jets in interaction with the solar wind: a hybrid simulation study
NASA Astrophysics Data System (ADS)
Wiehle, Stefan; Motschmann, Uwe; Gortsas, Nikolaos; Mueller, Joachim; Kriegel, Hendrik; Koenders, Christoph; Glassmeier, Karl-Heinz
The effect of a cometary jet on the solar wind interaction is studied using comet 67P/Churyumov-Gerasimenko as case study. This comet is the target of the Rosetta-mission which will arrive in 2014. Observations suggest that cometary outgassing is confined to only a few percent of the cometary surface; thus, the measurement of jets is expected. Most former comet simulations did not attend to this fact and used an isotropic outgassing scheme or simplified outgassing patterns. Here, a single sun-facing jet is set to be the only source of cometary gas produc-tion. Using an analytic profile, this outgassing jet was implemented in a hybrid simulation code which treats protons and cometary heavy ions as particles and electrons as massless fluid. In a simulation series, the geometric parameters of the jet were varied to study the effect of different opening angles while the integrated outgassing rate remained constant. It was shown that the resulting solar wind interaction is highly dependent on the geometry of the jet. The plasma-structures like the solar wind pile-up found in the situation with isotropic outgassing are moved more and more sunward as the opening angle of the jet decreases. Furthermore, the cometary ion tail shows some kind of splitting which is not known from isotropic models.
NASA Astrophysics Data System (ADS)
Guo, J.; Deng, Y.; Zhang, D.; Lu, Y.; Sheng, C.
2017-12-01
Sub-Auroral Polarization Streams (SAPS) are incorporated into the non-hydrostatic Global Ionosphere-Thermosphere Model (GITM), revealing the complex effects on neutral dynamics and ion-neutral coupling processes. The intense westward ion stream could enhance the neutral zonal wind within the SAPS channel. Through neutral dynamics the neutrals then divide into two streams, one turns poleward and the other turns equatorward, forming a two-cell pattern in the SAPS-changed wind. The significant Joule heating induced by SAPS also leads to traveling atmospheric disturbances (TAD) accompanied by traveling ionospheric disturbances (TID), increasing the total electron content (TEC) by 2-8 TECu in the mid-latitude ionosphere. We investigate the potential causes of the reported poleward wind surge during the St. Patrick's Day storm in 2015. It is confirmed that Coriolis force on the westward zonal wind can contribute the poleward wind during post-SAPS interval. In addition, the simulations imply that the sudden decrease of heating rate within auroral oval could result in a TAD propagating equatorward, which could also be responsible for the sudden poleward wind surge. This study highlights the complicated effects of SAPS on ion-neutral coupling and neutral dynamics.
NASA Astrophysics Data System (ADS)
Yuan, Feng; Yoon, DooSoo; Li, Ya-Ping; Gan, Zhao-Ming; Ho, Luis C.; Guo, Fulai
2018-04-01
We investigate the effects of AGN feedback on the cosmological evolution of an isolated elliptical galaxy by performing two-dimensional high-resolution hydrodynamical numerical simulations. The inner boundary of the simulation is chosen so that the Bondi radius is resolved. Compared to previous works, the two accretion modes—namely, hot and cold, which correspond to different accretion rates and have different radiation and wind outputs—are carefully discriminated, and the feedback effects by radiation and wind in each mode are taken into account. The most updated AGN physics, including the descriptions of radiation and wind from the hot accretion flows and wind from cold accretion disks, are adopted. Physical processes like star formation and SNe Ia and II are taken into account. We study the AGN light curve, typical AGN lifetime, growth of the black hole mass, AGN duty cycle, star formation, and X-ray surface brightness of the galaxy. We compare our simulation results with observations and find general consistency. Comparisons with previous simulation works find significant differences, indicating the importance of AGN physics. The respective roles of radiation and wind feedback are examined, and it is found that they are different for different problems of interest, such as AGN luminosity and star formation. We find that it is hard to neglect any of them, so we suggest using the names “cold feedback mode” and “hot feedback mode” to replace the currently used ones.
Wind driven saltation: a hitherto overlooked challenge for life on Mars
NASA Astrophysics Data System (ADS)
Bak, Ebbe; Goul, Michael; Rasmussen, Martin; Moeller, Ralf; Nørnberg, Per; Knak Jensen, Svend; Finster, Kai
2017-04-01
The Martian surface is a hostile environment characterized by low water availability, low atmospheric pressure and high UV and ionizing radiation. Furthermore, wind-driven saltation leads to abrasion of silicates with a production of reactive surface sites and, through triboelectric charging, a release of electrical discharges with a concomitant production of reactive oxygen species. While the effects of low water availability, low pressure and radiation have been extensively studied in relation to the habitability of the Martian surface and the preservation of organic biosignatures, the effects of wind-driven saltation have hitherto been ignored. In this study, we have investigated the effect of exposing bacteria to wind-abraded silicates and directly to wind-driven saltation on Mars in controlled laboratory simulation experiments. Wind-driven saltation was simulated by tumbling mineral samples in a Mars-like atmosphere in sealed quartz ampoules. The effects on bacterial survival and structure were evaluated by colony forming unit counts in combination with scanning electron microscopy, quantitative polymerase chain reaction and life/dead-staining with flow cytometry. The viability of vegetative cells of P. putida, B. subtilis and D. radiodurans in aqueous suspensions was reduced by more than 99% by exposure to abraded basalt, while the viability of B. subtilis endospores was unaffected. B. subtilis mutants lacking different spore components were likewise highly resistant to the exposure to abraded basalt, which indicates that the resistance of spores is not associated with any specific spore component. We found a significant but reduced effect of abraded quartz and we suggest that the stress effect of abraded silicates is induced by a production of reactive oxygen species and hydroxyl radicals produced by Fenton-like reactions in the presence of transition metals. Direct exposure to simulated saltation had a dramatic effect on both D. radiodurans cells and B. subtilis spore with a more than 99.9% decrease in survival after 17 days. The high susceptibility of the usually multi-resistant D. radiodurans cells and B. sublitis spores to the effects of wind-driven saltation indicates that wind abraded silicates as well as direct exposure to saltation represent a considerable stress for microorganisms at the Martian surface, which may have limited the chance of indigenous life, could limit the risk of forward contamination and may have degraded potential organic biosignatures.
NASA Astrophysics Data System (ADS)
Wagenbrenner, N. S.; Forthofer, J.; Gibson, C.; Lamb, B. K.
2017-12-01
Frequent strong gap winds were measured in a deep, steep, wildfire-prone river canyon of central Idaho, USA during July-September 2013. Analysis of archived surface pressure data indicate that the gap wind events were driven by regional scale surface pressure gradients. The events always occurred between 0400 and 1200 LT and typically lasted 3-4 hours. The timing makes these events particularly hazardous for wildland firefighting applications since the morning is typically a period of reduced fire activity and unsuspecting firefighters could be easily endangered by the onset of strong downcanyon winds. The gap wind events were not explicitly forecast by operational numerical weather prediction (NWP) models due to the small spatial scale of the canyon ( 1-2 km wide) compared to the horizontal resolution of operational NWP models (3 km or greater). Custom WRF simulations initialized with NARR data were run at 1 km horizontal resolution to assess whether higher resolution NWP could accurately simulate the observed gap winds. Here, we show that the 1 km WRF simulations captured many of the observed gap wind events, although the strength of the events was underpredicted. We also present evidence from these WRF simulations which suggests that the Salmon River Canyon is near the threshold of WRF-resolvable terrain features when the standard WRF coordinate system and discretization schemes are used. Finally, we show that the strength of the gap wind events can be predicted reasonably well as a function of the surface pressure gradient across the gap, which could be useful in the absence of high-resolution NWP. These are important findings for wildland firefighting applications in narrow gaps where routine forecasts may not provide warning for wind effects induced by high-resolution terrain features.
Monitoring, modeling and mitigating impacts of wind farms on local meteorology
NASA Astrophysics Data System (ADS)
Baidya Roy, Somnath; Traiteur, Justin; Kelley, Neil
2010-05-01
Wind power is one of the fastest growing sources of energy. Most of the growth is in the industrial sector comprising of large utility-scale wind farms. Recent modeling studies have suggested that such wind farms can significantly affect local and regional weather and climate. In this work, we present observational evidence of the impact of wind farms on near-surface air temperatures. Data from perhaps the only meteorological field campaign in an operational wind farm shows that downwind temperatures are lower during the daytime and higher at night compared to the upwind environment. Corresponding radiosonde profiles at the nearby Edwards Air Force Base WMO meteorological station show that the diurnal environment is unstable while the nocturnal environment is stable during the field campaign. This behavior is consistent with the hypothesis proposed by Baidya Roy et al. (JGR 2004) that states that turbulence generated in the wake of rotors enhance vertical mixing leading to a warming/cooling under positive/negative potential temperature lapse rates. We conducted a set of 306 simulations with the Regional Atmospheric Modeling System (RAMS) to test if regional climate models can capture the thermal effects of wind farms. We represented wind turbines with a subgrid parameterization that assumes rotors to be sinks of momentum and sources of turbulence. The simulated wind farms consistently generated a localized warming/cooling under positive/negative lapse rates as hypothesized. We found that these impacts are inversely correlated with background atmospheric boundary layer turbulence. Thus, if the background turbulence is high due to natural processes, the effects of additional turbulence generated by wind turbine rotors are likely to be small. We propose the following strategies to minimize impacts of wind farms: • Engineering solution: design rotors that generate less turbulence in their wakes. Sensitivity simulations show that these turbines also increase the productivity of wind farms and reduce damages to downwind rotors. • Siting solution: develop wind farms in regions where ABL turbulence is naturally high. Since, turbulence data is not widely recorded, we use surface KE dissipation rate as a proxy for ABL turbulence. Indeed, in our simulations, these 2 parameters are strongly positively correlated (P<0.99). Using the JRA25 dataset, comprising of 25-year long 6-hourly global meteorological data, we identify such regions in the world. These regions that include the Midwest and Great Plains as well as large parts of northern Europe and western China are appropriate sites for low-impact wind farms.
Unsteady aerodynamic analysis for offshore floating wind turbines under different wind conditions.
Xu, B F; Wang, T G; Yuan, Y; Cao, J F
2015-02-28
A free-vortex wake (FVW) model is developed in this paper to analyse the unsteady aerodynamic performance of offshore floating wind turbines. A time-marching algorithm of third-order accuracy is applied in the FVW model. Owing to the complex floating platform motions, the blade inflow conditions and the positions of initial points of vortex filaments, which are different from the fixed wind turbine, are modified in the implemented model. A three-dimensional rotational effect model and a dynamic stall model are coupled into the FVW model to improve the aerodynamic performance prediction in the unsteady conditions. The effects of floating platform motions in the simulation model are validated by comparison between calculation and experiment for a small-scale rigid test wind turbine coupled with a floating tension leg platform (TLP). The dynamic inflow effect carried by the FVW method itself is confirmed and the results agree well with the experimental data of a pitching transient on another test turbine. Also, the flapping moment at the blade root in yaw on the same test turbine is calculated and compares well with the experimental data. Then, the aerodynamic performance is simulated in a yawed condition of steady wind and in an unyawed condition of turbulent wind, respectively, for a large-scale wind turbine coupled with the floating TLP motions, demonstrating obvious differences in rotor performance and blade loading from the fixed wind turbine. The non-dimensional magnitudes of loading changes due to the floating platform motions decrease from the blade root to the blade tip. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Unsteady aerodynamic analysis for offshore floating wind turbines under different wind conditions
Xu, B. F.; Wang, T. G.; Yuan, Y.; Cao, J. F.
2015-01-01
A free-vortex wake (FVW) model is developed in this paper to analyse the unsteady aerodynamic performance of offshore floating wind turbines. A time-marching algorithm of third-order accuracy is applied in the FVW model. Owing to the complex floating platform motions, the blade inflow conditions and the positions of initial points of vortex filaments, which are different from the fixed wind turbine, are modified in the implemented model. A three-dimensional rotational effect model and a dynamic stall model are coupled into the FVW model to improve the aerodynamic performance prediction in the unsteady conditions. The effects of floating platform motions in the simulation model are validated by comparison between calculation and experiment for a small-scale rigid test wind turbine coupled with a floating tension leg platform (TLP). The dynamic inflow effect carried by the FVW method itself is confirmed and the results agree well with the experimental data of a pitching transient on another test turbine. Also, the flapping moment at the blade root in yaw on the same test turbine is calculated and compares well with the experimental data. Then, the aerodynamic performance is simulated in a yawed condition of steady wind and in an unyawed condition of turbulent wind, respectively, for a large-scale wind turbine coupled with the floating TLP motions, demonstrating obvious differences in rotor performance and blade loading from the fixed wind turbine. The non-dimensional magnitudes of loading changes due to the floating platform motions decrease from the blade root to the blade tip. PMID:25583859
Analysis of Change in the Wind Speed Ratio according to Apartment Layout and Solutions
Hyung, Won-gil; Kim, Young-Moon; You, Ki-Pyo
2014-01-01
Apartment complexes in various forms are built in downtown areas. The arrangement of an apartment complex has great influence on the wind flow inside it. There are issues of residents' walking due to gust occurrence within apartment complexes, problems with pollutant emission due to airflow congestion, and heat island and cool island phenomena in apartment complexes. Currently, the forms of internal arrangements of apartment complexes are divided into the flat type and the tower type. In the present study, a wind tunnel experiment and computational fluid dynamics (CFD) simulation were performed with respect to internal wind flows in different apartment arrangement forms. Findings of the wind tunnel experiment showed that the internal form and arrangement of an apartment complex had significant influence on its internal airflow. The wind velocity of the buildings increased by 80% at maximum due to the proximity effects between the buildings. The CFD simulation for relaxing such wind flows indicated that the wind velocity reduced by 40% or more at maximum when the paths between the lateral sides of the buildings were extended. PMID:24688430
Analysis of change in the wind speed ratio according to apartment layout and solutions.
Hyung, Won-gil; Kim, Young-Moon; You, Ki-Pyo
2014-01-01
Apartment complexes in various forms are built in downtown areas. The arrangement of an apartment complex has great influence on the wind flow inside it. There are issues of residents' walking due to gust occurrence within apartment complexes, problems with pollutant emission due to airflow congestion, and heat island and cool island phenomena in apartment complexes. Currently, the forms of internal arrangements of apartment complexes are divided into the flat type and the tower type. In the present study, a wind tunnel experiment and computational fluid dynamics (CFD) simulation were performed with respect to internal wind flows in different apartment arrangement forms. Findings of the wind tunnel experiment showed that the internal form and arrangement of an apartment complex had significant influence on its internal airflow. The wind velocity of the buildings increased by 80% at maximum due to the proximity effects between the buildings. The CFD simulation for relaxing such wind flows indicated that the wind velocity reduced by 40% or more at maximum when the paths between the lateral sides of the buildings were extended.
A peaking-regulation-balance-based method for wind & PV power integrated accommodation
NASA Astrophysics Data System (ADS)
Zhang, Jinfang; Li, Nan; Liu, Jun
2018-02-01
Rapid development of China’s new energy in current and future should be focused on cooperation of wind and PV power. Based on the analysis of system peaking balance, combined with the statistical features of wind and PV power output characteristics, a method of comprehensive integrated accommodation analysis of wind and PV power is put forward. By the electric power balance during night peaking load period in typical day, wind power installed capacity is determined firstly; then PV power installed capacity could be figured out by midday peak load hours, which effectively solves the problem of uncertainty when traditional method hard determines the combination of the wind and solar power simultaneously. The simulation results have validated the effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Kang, G.; Kim, J.
2017-12-01
This study investigated the tree's effect on wind comfort at pedestrian height in an urban area using a computational fluid dynamics (CFD) model. We implemented the tree's drag parameterization scheme to the CFD model and validated the simulated results against the wind-tunnel measurement data as well as LES data via several statistical methods. The CFD model underestimated (overestimated) the concentrations on the leeward (windward) walls inside the street canyon in the presence of trees, because the CFD model can't resolve the latticed cage and can't reflect the concentration increase and decrease caused by the latticed cage in the simulations. However, the scalar pollutants' dispersion simulated by the CFD model was quite similar to that in the wind-tunnel measurement in pattern and magnitude, on the whole. The CFD model overall satisfied the statistical validation indices (root normalized mean square error, geometric mean variance, correlation coefficient, and FAC2) but failed to satisfy the fractional bias and geometric mean bias due to the underestimation on the leeward wall and overestimation on the windward wall, showing that its performance was comparable to the LES's performance. We applied the CFD model to evaluation of the trees' effect on the pedestrian's wind-comfort in an urban area. To investigate sensory levels for human activities, the wind-comfort criteria based on Beaufort wind-force scales (BWSs) were used. In the tree-free scenario, BWS 4 and 5 (unpleasant condition for sitting long and sitting short, respectively) appeared in the narrow spaces between buildings, in the upwind side of buildings, and the unobstructed areas. In the tree scenario, BWSs decreased by 1 3 grade inside the campus of Pukyong National University located in the target area, which indicated that trees planted in the campus effectively improved pedestrian's wind comfort.
Wind Shear/Turbulence Inputs to Flight Simulation and Systems Certification
NASA Technical Reports Server (NTRS)
Bowles, Roland L. (Editor); Frost, Walter (Editor)
1987-01-01
The purpose of the workshop was to provide a forum for industry, universities, and government to assess current status and likely future requirements for application of flight simulators to aviation safety concerns and system certification issues associated with wind shear and atmospheric turbulence. Research findings presented included characterization of wind shear and turbulence hazards based on modeling efforts and quantitative results obtained from field measurement programs. Future research thrusts needed to maximally exploit flight simulators for aviation safety application involving wind shear and turbulence were identified. The conference contained sessions on: Existing wind shear data and simulator implementation initiatives; Invited papers regarding wind shear and turbulence simulation requirements; and Committee working session reports.
Empirical models of wind conditions on Upper Klamath Lake, Oregon
Buccola, Norman L.; Wood, Tamara M.
2010-01-01
Upper Klamath Lake is a large (230 square kilometers), shallow (mean depth 2.8 meters at full pool) lake in southern Oregon. Lake circulation patterns are driven largely by wind, and the resulting currents affect the water quality and ecology of the lake. To support hydrodynamic modeling of the lake and statistical investigations of the relation between wind and lake water-quality measurements, the U.S. Geological Survey has monitored wind conditions along the lakeshore and at floating raft sites in the middle of the lake since 2005. In order to make the existing wind archive more useful, this report summarizes the development of empirical wind models that serve two purposes: (1) to fill short (on the order of hours or days) wind data gaps at raft sites in the middle of the lake, and (2) to reconstruct, on a daily basis, over periods of months to years, historical wind conditions at U.S. Geological Survey sites prior to 2005. Empirical wind models based on Artificial Neural Network (ANN) and Multivariate-Adaptive Regressive Splines (MARS) algorithms were compared. ANNs were better suited to simulating the 10-minute wind data that are the dependent variables of the gap-filling models, but the simpler MARS algorithm may be adequate to accurately simulate the daily wind data that are the dependent variables of the historical wind models. To further test the accuracy of the gap-filling models, the resulting simulated winds were used to force the hydrodynamic model of the lake, and the resulting simulated currents were compared to measurements from an acoustic Doppler current profiler. The error statistics indicated that the simulation of currents was degraded as compared to when the model was forced with observed winds, but probably is adequate for short gaps in the data of a few days or less. Transport seems to be less affected by the use of the simulated winds in place of observed winds. The simulated tracer concentration was similar between model results when simulated winds were used to force the model, and when observed winds were used to force the model, and differences between the two results did not accumulate over time.
Impact of red giant/AGB winds on active galactic nucleus jet propagation
NASA Astrophysics Data System (ADS)
Perucho, M.; Bosch-Ramon, V.; Barkov, M. V.
2017-10-01
Context. Dense stellar winds may mass-load the jets of active galactic nuclei, although it is unclear on what time and spatial scales the mixing takes place. Aims: Our aim is to study the first steps of the interaction between jets and stellar winds, and also the scales on which the stellar wind mixes with the jet and mass-loads it. Methods: We present a detailed 2D simulation - including thermal cooling - of a bubble formed by the wind of a star designed to study the initial stages of jet-star interaction. We also study the first interaction of the wind bubble with the jet using a 3D simulation in which the star enters the jet. Stability analysis is carried out for the shocked wind structure to evaluate the distances over which the jet-dragged wind, which forms a tail, can propagate without mixing with the jet flow. Results.The 2D simulations point to quick wind bubble expansion and fragmentation after about one bubble shock crossing time. Three-dimensional simulations and stability analysis point to local mixing in the case of strong perturbations and relatively low density ratios between the jet and the jet dragged-wind, and to a possibly more stable shocked wind structure at the phase of maximum tail mass flux. Analytical estimates also indicate that very early stages of the star jet-penetration time may be also relevant for mass-loading. The combination of these and previous results from the literature suggests highly unstable interaction structures and efficient wind-jet flow mixing on the scale of the jet interaction height. Conclusions: The winds of stars with strong mass loss can efficiently mix with jets from active galactic nuclei. In addition, the initial wind bubble shocked by the jet leads to a transient, large interaction surface. The interaction between jets and stars can produce strong inhomogeneities within the jet. As mixing is expected to be effective on large scales, even individual asymptotic giant branch stars can significantly contribute to the mass-load of the jet and thus affect its dynamics. Shear layer mass-entrainment could be important. The interaction structure can be a source of significant non-thermal emission.
NASA Astrophysics Data System (ADS)
Roy, Mathieu
Natural inflow is an important data for a water resource manager. In fact, Hydro-Quebec uses historical natural inflow data to perform a daily prediction of the amount of water that will be received in each of its hydroelectric reservoirs. This prediction allows the establishment of reservoir operating rules in order to optimize hydropower without compromising the safety of hydraulic structures. To obtain an accurate prediction, it follows that the system's input needs to be very well known. However, it can be very difficult to accurately measure the natural supply of a set of regulated reservoirs. Therefore, Hydro-Quebec uses an indirect method of calculation. This method consists of evaluating the reservoir's inflow using the water balance equation. Yet, this equation is not immune to errors and uncertainties. Water level measurement is an important input in order to compute the water balance equation. However, several sources of uncertainty including the effect of wind and hydraulic maneuvers can affect the readings of limnimetric gages. Fluctuations in water level caused by these effects carry over in the water balance equation. Consequently, natural inflow's signal may become noisy and affected by external errors. The main objective of this report is to evaluate the uncertainty caused by the effects of wind and hydraulic maneuvers on water balance equation. To this end, hydrodynamic models of reservoirs Outardes 4 and Gouin were prepared. According to the literature review, wind effects can be studied either by an unsteady state approach or by assuming steady state approach. Unsteady state simulation of wind effects on reservoir Gouin and Outardes 4 were performed by hydrodynamic modelling. Consideration of an unsteady state implies that the wind conditions vary throughout the simulation. This feature allows taking into account temporal effect of wind duration. In addition, it also allows the consideration of inertial forces such as seiches which are caused by wind conditions that can vary abruptly. Once the models were calibrated, unsteady state simulations were conducted in closed system where unsteady observed winds were the only forces included. From the simulated water levels obtained at each gage, water balance equation was calculated to determine the daily uncertainty of natural inflow in unsteady conditions. At Outardes 4, a maximum uncertainty of 20 m3/s was estimated during the month of October 2010. On the other hand, at the Gouin reservoir, a maximum uncertainty of 340m3/s was estimated during the month of July 2012. Steady state modelling is another approach to evaluate wind effect uncertainty in the water balance equation. This type of approach consists of assuming that the water level is instantly tilted under the influence of wind. Hence, temporal effect of wind duration and seiches cannot be taken into account. However, the advantage of steady state modelling is that it's better suited than unsteady state modelling to evaluate wind uncertainty in real time. Two steady state modelling methods were experimented to estimate water level difference between gages in function of wind characteristics: hydrodynamic modelling and non-parametric regression. It has been found that non-parametric models are more efficient when it comes to estimate water level differences between gages. However, the use of hydrodynamic model demonstrated that to study wind uncertainty in the water balance equation, it is preferable to assess wind responses individually at each gage instead of using water level differences. Finally, a combination method of water level gages observations has been developed. It allows reducing wind/hydraulic maneuvers impacts on the water balance equation. This method, which is applicable in real time, consists of assigning a variable weight at each limnimetric gages. In other words, the weights automatically adjust in order to minimize steady state modeled wind responses. The estimation of hydraulic maneuvers has also been included in the gage weight adjustment. It has been found that this new combination method allows the correction of noisy natural inflow signal under wind and hydraulic maneuvers effects. However, some fluctuations persist which reflects the complexity of correcting these effects on a real time based daily water balance equation. (Abstract shortened by UMI.).
Impact of Neutral Boundary-Layer Turbulence on Wind-Turbine Wakes: A Numerical Modelling Study
NASA Astrophysics Data System (ADS)
Englberger, Antonia; Dörnbrack, Andreas
2017-03-01
The wake characteristics of a wind turbine in a turbulent boundary layer under neutral stratification are investigated systematically by means of large-eddy simulations. A methodology to maintain the turbulence of the background flow for simulations with open horizontal boundaries, without the necessity of the permanent import of turbulence data from a precursor simulation, was implemented in the geophysical flow solver EULAG. These requirements are fulfilled by applying the spectral energy distribution of a neutral boundary layer in the wind-turbine simulations. A detailed analysis of the wake response towards different turbulence levels of the background flow results in a more rapid recovery of the wake for a higher level of turbulence. A modified version of the Rankine-Froude actuator disc model and the blade element momentum method are tested as wind-turbine parametrizations resulting in a strong dependence of the near-wake wind field on the parametrization, whereas the far-wake flow is fairly insensitive to it. The wake characteristics are influenced by the two considered airfoils in the blade element momentum method up to a streamwise distance of 14 D ( D = rotor diameter). In addition, the swirl induced by the rotation has an impact on the velocity field of the wind turbine even in the far wake. Further, a wake response study reveals a considerable effect of different subgrid-scale closure models on the streamwise turbulent intensity.
An investigation of the effect of wind cooling on photovoltaic arrays
NASA Technical Reports Server (NTRS)
Wen, L.
1982-01-01
Convective cooling of photovoltaic modules for different wind conditions, including steady state controlled testing in a solar simulator and natural test environments in a field was investigated. Analytical thermal models of different module designs were used to correlate experimental data. The applicability of existing heat transfer correlations is confirmed. Reasonable agreement is obtained by applying a power law wind profile.
Numerical and Experimental Methods for Wake Flow Analysis in Complex Terrain
NASA Astrophysics Data System (ADS)
Castellani, Francesco; Astolfi, Davide; Piccioni, Emanuele; Terzi, Ludovico
2015-06-01
Assessment and interpretation of the quality of wind farms power output is a non-trivial task, which poses at least three main challenges: reliable comprehension of free wind flow, which is stretched to the limit on very complex terrains, realistic model of how wake interactions resemble on the wind flow, awareness of the consequences on turbine control systems, including alignment patterns to the wind and, consequently, power output. The present work deals with an onshore wind farm in southern Italy, which has been a test case of IEA- Task 31 Wakebench project: 17 turbines, with 2.3 MW of rated power each, are sited on a very complex terrain. A cluster of machines is investigated through numerical and experimental methods: CFD is employed for simulating wind fields and power extraction, as well as wakes, are estimated through the Actuator Disc model. SCADA data mining techniques are employed for comparison between models and actual performances. The simulations are performed both on the real terrain and on flat terrain, in order to disentangle the effects of complex flow and wake effects. Attention is devoted to comparison between actual alignment patterns of the cluster of turbines and predicted flow deviation.
Assessment of Wind Parameter Sensitivity on Ultimate and Fatigue Wind Turbine Loads: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, Amy N; Sethuraman, Latha; Jonkman, Jason
Wind turbines are designed using a set of simulations to ascertain the structural loads that the turbine could encounter. While mean hub-height wind speed is considered to vary, other wind parameters such as turbulence spectra, sheer, veer, spatial coherence, and component correlation are fixed or conditional values that, in reality, could have different characteristics at different sites and have a significant effect on the resulting loads. This paper therefore seeks to assess the sensitivity of different wind parameters on the resulting ultimate and fatigue loads on the turbine during normal operational conditions. Eighteen different wind parameters are screened using anmore » Elementary Effects approach with radial points. As expected, the results show a high sensitivity of the loads to the turbulence standard deviation in the primary wind direction, but the sensitivity to wind shear is often much greater. To a lesser extent, other wind parameters that drive loads include the coherence in the primary wind direction and veer.« less
Assessment of Wind Parameter Sensitivity on Extreme and Fatigue Wind Turbine Loads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, Amy N; Sethuraman, Latha; Jonkman, Jason
Wind turbines are designed using a set of simulations to ascertain the structural loads that the turbine could encounter. While mean hub-height wind speed is considered to vary, other wind parameters such as turbulence spectra, sheer, veer, spatial coherence, and component correlation are fixed or conditional values that, in reality, could have different characteristics at different sites and have a significant effect on the resulting loads. This paper therefore seeks to assess the sensitivity of different wind parameters on the resulting ultimate and fatigue loads on the turbine during normal operational conditions. Eighteen different wind parameters are screened using anmore » Elementary Effects approach with radial points. As expected, the results show a high sensitivity of the loads to the turbulence standard deviation in the primary wind direction, but the sensitivity to wind shear is often much greater. To a lesser extent, other wind parameters that drive loads include the coherence in the primary wind direction and veer.« less
Analysis of the Flicker Level Produced by a Fixed-Speed Wind Turbine
NASA Astrophysics Data System (ADS)
Suppioni, Vinicius; P. Grilo, Ahda
2013-10-01
In this article, the analysis of the flicker emission during continuous operation of a mid-scale fixed-speed wind turbine connected to a distribution system is presented. Flicker emission is investigated based on simulation results, and the dependence of flicker emission on short-circuit capacity, grid impedance angle, mean wind speed, and wind turbulence is analyzed. The simulations were conducted in different programs in order to provide a more realistic wind emulation and detailed model of mechanical and electrical components of the wind turbine. Such aim is accomplished by using FAST (Fatigue, Aerodynamics, Structures, and Turbulence) to simulate the mechanical parts of the wind turbine, Simulink/MatLab to simulate the electrical system, and TurbSim to obtain the wind model. The results show that, even for a small wind generator, the flicker level can limit the wind power capacity installed in a distribution system.
Wind Tunnel Model Design for Sonic Boom Studies of Nozzle Jet with Shock Interactions
NASA Technical Reports Server (NTRS)
Cliff, Susan E.; Denison, Marie; Sozer, Emre; Moini-Yekta, Shayan
2016-01-01
NASA and Industry are performing vehicle studies of configurations with low sonic boom pressure signatures. The computational analyses of modern configuration designs have matured to the point where there is confidence in the prediction of the pressure signature from the front of the vehicle, but uncertainty in the aft signatures with often greater boundary layer effects and nozzle jet pressures. Wind tunnel testing at significantly lower Reynolds numbers than in flight and without inlet and nozzle jet pressures make it difficult to accurately assess the computational solutions of flight vehicles. A wind tunnel test in the NASA Ames 9- by 7-Foot Supersonic Wind Tunnel from Mach 1.6 to 2.0 will be used to assess the effects of shocks from components passing through nozzle jet plumes on the sonic boom pressure signature and provide datasets for comparison with CFD codes. A large number of high-fidelity numerical simulations of wind tunnel test models with a variety of shock generators that simulate horizontal tails and aft decks have been studied to provide suitable models for sonic boom pressure measurements using a minimally intrusive pressure rail in the wind tunnel. The computational results are presented and the evolution of candidate wind tunnel models is summarized and discussed in this paper.
Plasma Sheet Circulation Pathways
NASA Technical Reports Server (NTRS)
Moore, Thomas E.; Delcourt, D. C.; Slinker, S. P.; Fedder, J. A.; Damiano, P.; Lotko, W.
2008-01-01
Global simulations of Earth's magnetosphere in the solar wind compute the pathways of plasma circulation through the plasma sheet. We address the pathways that supply and drain the plasma sheet, by coupling single fluid simulations with Global Ion Kinetic simulations of the outer magnetosphere and the Comprehensive Ring Current Model of the inner magnetosphere, including plasmaspheric plasmas. We find that the plasma sheet is supplied with solar wind plasmas via the magnetospheric flanks, and that this supply is most effective for northward IMF. For southward IMF, the innermost plasma sheet and ring current region are directly supplied from the flanks, with an asymmetry of single particle entry favoring the dawn flank. The central plasma sheet (near midnight) is supplied, as expected, from the lobes and polar cusps, but the near-Earth supply consists mainly of slowly moving ionospheric outflows for typical conditions. Work with the recently developed multi-fluid LFM simulation shows transport via plasma "fingers" extending Earthward from the flanks, suggestive of an interchange instability. We investigate this with solar wind ion trajectories, seeking to understand the fingering mechanisms and effects on transport rates.
NASA Astrophysics Data System (ADS)
Boakye-Boateng, Nasir Abdulai
The growing demand for wind power integration into the generation mix prompts the need to subject these systems to stringent performance requirements. This study sought to identify the required tools and procedures needed to perform real-time simulation studies of Doubly-Fed Induction Generator (DFIG) based wind generation systems as basis for performing more practical tests of reliability and performance for both grid-connected and islanded wind generation systems. The author focused on developing a platform for wind generation studies and in addition, the author tested the performance of two DFIG models on the platform real-time simulation model; an average SimpowerSystemsRTM DFIG wind turbine, and a detailed DFIG based wind turbine using ARTEMiSRTM components. The platform model implemented here consists of a high voltage transmission system with four integrated wind farm models consisting in total of 65 DFIG based wind turbines and it was developed and tested on OPAL-RT's eMEGASimRTM Real-Time Digital Simulator.
NREL Software Aids Offshore Wind Turbine Designs (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2013-10-01
NREL researchers are supporting offshore wind power development with computer models that allow detailed analyses of both fixed and floating offshore wind turbines. While existing computer-aided engineering (CAE) models can simulate the conditions and stresses that a land-based wind turbine experiences over its lifetime, offshore turbines require the additional considerations of variations in water depth, soil type, and wind and wave severity, which also necessitate the use of a variety of support-structure types. NREL's core wind CAE tool, FAST, models the additional effects of incident waves, sea currents, and the foundation dynamics of the support structures.
Radar Cross Section (RCS) Simulation for Wind Turbines
2013-06-01
SECTION (RCS) SIMULATION FOR WIND TURBINES by Cuong Ton June 2013 Thesis Advisor: David C. Jenn Second Reader: Ric Romero THIS PAGE...TITLE AND SUBTITLE RADAR CROSS SECTION (RCS) SIMULATION FOR WIND TURBINES 5. FUNDING NUMBERS 6. AUTHOR(S) Cuong Ton 7. PERFORMING ORGANIZATION...ABSTRACT (maximum 200 words) Wind - turbine power provides energy-independence and greenhouse-gas reduction benefits, but if wind turbines are built
Performance of wind turbines in a turbulent atmosphere
NASA Technical Reports Server (NTRS)
Sundar, R. M.; Sullivan, J. P.
1981-01-01
The effect of atmospheric turbulence on the power fluctuations of large wind turbines was studied. The significance of spatial non-uniformities of the wind is emphasized. The turbulent wind with correlation in time and space is simulated on the computer by Shinozukas method. The wind turbulence is modelled according to the Davenport spectrum with an exponential spatial correlation function. The rotor aerodynamics is modelled by simple blade element theory. Comparison of the spectrum of power output signal between 1-D and 3-D turbulence, shows the significant power fluctuations centered around the blade passage frequency.
Simulation of the fixed optical path difference of near infrared wind imaging interferometer
NASA Astrophysics Data System (ADS)
Rong, Piao; Zhang, Chunmin; Yan, Tingyu; Liu, Dongdong; Li, Yanfen
2017-02-01
As an important part of the earth, atmosphere plays a vital role in filtering the solar radiation, adjusting the temperature and organizing the water circulation and keeping human survival. The passive atmospheric wind measurement is based on the imaging interferometer technology and Doppler effect of electromagnetic wave. By using the wind imaging interferometer to get four interferograms of airglow emission lines, the atmospheric wind velocity, temperature, pressure and emission rate can be derived. Exploring the multi-functional and integrated innovation of detecting wind temperature, wind velocity and trace gas has become a research focus in the field. In the present paper, the impact factors of the fixed optical path difference(OPD) of near infrared wind imaging interferometer(NIWII) are analyzed and the optimum value of the fixed optical path difference is simulated, yielding the optimal results of the fixed optical path difference is 20 cm in near infrared wave band (the O2(a1Δg) airglow emission at 1.27 microns). This study aims at providing theoretical basis and technical support for the detection of stratosphere near infrared wind field and giving guidance for the design and development of near infrared wind imaging interferometer.
Simulations of surface winds at the Viking Lander sites using a one-level model
NASA Technical Reports Server (NTRS)
Bridger, Alison F. C.; Haberle, Robert M.
1992-01-01
The one-level model developed by Mass and Dempsey for use in predicting surface flows in regions of complex terrain was adapted to simulate surface flows at the Viking lander sites on Mars. In the one-level model, prediction equations for surface winds and temperatures are formulated and solved. Surface temperatures change with time in response to diabatic heating, horizontal advection, adiabatic heating and cooling effects, and horizontal diffusion. Surface winds can change in response to horizontal advection, pressure gradient forces, Coriolis forces, surface drag, and horizontal diffusion. Surface pressures are determined by integration of the hydrostatic equation from the surface to some reference level. The model has successfully simulated surface flows under a variety of conditions in complex-terrain regions on Earth.
The influence of large-scale wind power on global climate.
Keith, David W; Decarolis, Joseph F; Denkenberger, David C; Lenschow, Donald H; Malyshev, Sergey L; Pacala, Stephen; Rasch, Philip J
2004-11-16
Large-scale use of wind power can alter local and global climate by extracting kinetic energy and altering turbulent transport in the atmospheric boundary layer. We report climate-model simulations that address the possible climatic impacts of wind power at regional to global scales by using two general circulation models and several parameterizations of the interaction of wind turbines with the boundary layer. We find that very large amounts of wind power can produce nonnegligible climatic change at continental scales. Although large-scale effects are observed, wind power has a negligible effect on global-mean surface temperature, and it would deliver enormous global benefits by reducing emissions of CO(2) and air pollutants. Our results may enable a comparison between the climate impacts due to wind power and the reduction in climatic impacts achieved by the substitution of wind for fossil fuels.
NASA Astrophysics Data System (ADS)
Ángel Prósper Fernández, Miguel; Casal, Carlos Otero; Canoura Fernández, Felipe; Miguez-Macho, Gonzalo
2017-04-01
Regional meteorological models are becoming a generalized tool for forecasting wind resource, due to their capacity to simulate local flow dynamics impacting wind farm production. This study focuses on the production forecast and validation of a real onshore wind farm using high horizontal and vertical resolution WRF (Weather Research and Forecasting) model simulations. The wind farm is located in Galicia, in the northwest of Spain, in a complex terrain region with high wind resource. Utilizing the Fitch scheme, specific for wind farms, a period of one year is simulated with a daily operational forecasting set-up. Power and wind predictions are obtained and compared with real data provided by the management company. Results show that WRF is able to yield good wind power operational predictions for this kind of wind farms, due to a good representation of the planetary boundary layer behaviour of the region and the good performance of the Fitch scheme under these conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Churchfield, M. J.; Moriarty, P. J.; Hao, Y.
The focus of this work is the comparison of the dynamic wake meandering model and large-eddy simulation with field data from the Egmond aan Zee offshore wind plant composed of 36 3-MW turbines. The field data includes meteorological mast measurements, SCADA information from all turbines, and strain-gauge data from two turbines. The dynamic wake meandering model and large-eddy simulation are means of computing unsteady wind plant aerodynamics, including the important unsteady meandering of wakes as they convect downstream and interact with other turbines and wakes. Both of these models are coupled to a turbine model such that power and mechanicalmore » loads of each turbine in the wind plant are computed. We are interested in how accurately different types of waking (e.g., direct versus partial waking), can be modeled, and how background turbulence level affects these loads. We show that both the dynamic wake meandering model and large-eddy simulation appear to underpredict power and overpredict fatigue loads because of wake effects, but it is unclear that they are really in error. This discrepancy may be caused by wind-direction uncertainty in the field data, which tends to make wake effects appear less pronounced.« less
NASA Technical Reports Server (NTRS)
Madura, T. I.; Gull, T. R.; Okazaki, A. T.; Russell, C. M. P.; Owocki, S. P.; Groh, J. H.; Corcoran, M. F.; Hamaguchi, K.; Teodoro, M.
2013-01-01
Recent work suggests that the mass-loss rate of the primary star Eta-A in the massive colliding wind binary Eta Carinae dropped by a factor of 2-3 between 1999 and 2010. We present result from large- (+/- 1545 au) and small- (+/- 155 au) domain, 3D smoothed particle hydrodynamics (SPH) simulations of Eta Car's colliding winds for three Eta-A mass-loss rates ( (dot-M(sub Eta-A) = 2.4, 4.8 and 8.5 × 10(exp -4) M(solar)/ yr), investigating the effects on the dynamics of the binary wind-wind collision (WWC). These simulations include orbital motion, optically thin radiative cooling and radiative forces. We find that dot-M Eta-A greatly affects the time-dependent hydrodynamics at all spatial scales investigated. The simulations also show that the post-shock wind of the companion star Eta-B switches from the adiabatic to the radiative-cooling regime during periastron passage (Phi approx.= 0.985-1.02). This switchover starts later and ends earlier the lower the value of dot-M Eta-A and is caused by the encroachment of the wind of Eta-A into the acceleration zone of Eta-B's wind, plus radiative inhibition of Eta-B's wind by Eta-A. The SPH simulations together with 1D radiative transfer models of Eta-A's spectra reveal that a factor of 2 or more drop in dot-M EtaA should lead to substantial changes in numerous multiwavelength observables. Recent observations are not fully consistent with the model predictions, indicating that any drop in dot- M Eta-A was likely by a factor of approx. < 2 and occurred after 2004. We speculate that most of the recent observed changes in Eta Car are due to a small increase in the WWC opening angle that produces significant effects because our line of sight to the system lies close to the dense walls of the WWC zone. A modest decrease in dot-M Eta-A may be responsible, but changes in the wind/stellar parameter of Eta-B, while less likely, cannot yet be fully ruled out. We suggest observations during Eta-Car's next periastron in 2014 to further test for decreases in dot-M Eta-A. If dot-M Eta-A is declining and continues to do so, the 2014 X-ray minimum should be even shorter than that of 2009.
Using Wind Setdown and Storm Surge on Lake Erie to Calibrate the Air-Sea Drag Coefficient
Drews, Carl
2013-01-01
The air-sea drag coefficient controls the transfer of momentum from wind to water. In modeling storm surge, this coefficient is a crucial parameter for estimating the surge height. This study uses two strong wind events on Lake Erie to calibrate the drag coefficient using the Coupled Ocean Atmosphere Wave Sediment Transport (COAWST) modeling system and the the Regional Ocean Modeling System (ROMS). Simulated waves are generated on the lake with Simulating WAves Nearshore (SWAN). Wind setdown provides the opportunity to eliminate wave setup as a contributing factor, since waves are minimal at the upwind shore. The study finds that model results significantly underestimate wind setdown and storm surge when a typical open-ocean formulation without waves is used for the drag coefficient. The contribution of waves to wind setdown and storm surge is 34.7%. Scattered lake ice also increases the effective drag coefficient by a factor of 1.1. PMID:23977309
Alert generation and cockpit presentation for an integrated microburst alerting system
NASA Technical Reports Server (NTRS)
Wanke, Craig; Hansman, R. John, Jr.
1991-01-01
Alert generation and cockpit presentation issues for low level wind shear (microburst) alerts are investigated. Alert generation issues center on the development of a hazard criterion which allows integration of both ground based and airborne wind shear detection systems to form an accurate picture of the aviation hazard posed by a particular wind shear situation. A methodology for the testing of a hazard criteria through flight simulation has been developed, and has been used to examine the effectiveness and feasibility of several possible criteria. Also, an experiment to evaluate candidate graphical cockpit displays for microburst alerts using a piloted simulator has been designed.
A Technique for Measuring Rotocraft Dynamic Stability in the 40 by 80 Foot Wind Tunnel
NASA Technical Reports Server (NTRS)
Gupta, N. K.; Bohn, J. G.
1977-01-01
An on-line technique is described for the measurement of tilt rotor aircraft dynamic stability in the Ames 40- by 80-Foot Wind Tunnel. The technique is based on advanced system identification methodology and uses the instrumental variables approach. It is particulary applicable to real time estimation problems with limited amounts of noise-contaminated data. Several simulations are used to evaluate the algorithm. Estimated natural frequencies and damping ratios are compared with simulation values. The algorithm is also applied to wind tunnel data in an off-line mode. The results are used to develop preliminary guidelines for effective use of the algorithm.
Research on large-scale wind farm modeling
NASA Astrophysics Data System (ADS)
Ma, Longfei; Zhang, Baoqun; Gong, Cheng; Jiao, Ran; Shi, Rui; Chi, Zhongjun; Ding, Yifeng
2017-01-01
Due to intermittent and adulatory properties of wind energy, when large-scale wind farm connected to the grid, it will have much impact on the power system, which is different from traditional power plants. Therefore it is necessary to establish an effective wind farm model to simulate and analyze the influence wind farms have on the grid as well as the transient characteristics of the wind turbines when the grid is at fault. However we must first establish an effective WTGs model. As the doubly-fed VSCF wind turbine has become the mainstream wind turbine model currently, this article first investigates the research progress of doubly-fed VSCF wind turbine, and then describes the detailed building process of the model. After that investigating the common wind farm modeling methods and pointing out the problems encountered. As WAMS is widely used in the power system, which makes online parameter identification of the wind farm model based on off-output characteristics of wind farm be possible, with a focus on interpretation of the new idea of identification-based modeling of large wind farms, which can be realized by two concrete methods.
NASA Astrophysics Data System (ADS)
Magee, Madeline R.; Wu, Chin H.
2017-12-01
Water temperatures and stratification are important drivers for ecological and water quality processes within lake systems, and changes in these with increases in air temperature and changes to wind speeds may have significant ecological consequences. To properly manage these systems under changing climate, it is important to understand the effects of increasing air temperatures and wind speed changes in lakes of different depths and surface areas. In this study, we simulate three lakes that vary in depth and surface area to elucidate the effects of the observed increasing air temperatures and decreasing wind speeds on lake thermal variables (water temperature, stratification dates, strength of stratification, and surface heat fluxes) over a century (1911-2014). For all three lakes, simulations showed that epilimnetic temperatures increased, hypolimnetic temperatures decreased, the length of the stratified season increased due to earlier stratification onset and later fall overturn, stability increased, and longwave and sensible heat fluxes at the surface increased. Overall, lake depth influences the presence of stratification, Schmidt stability, and differences in surface heat flux, while lake surface area influences differences in hypolimnion temperature, hypolimnetic heating, variability of Schmidt stability, and stratification onset and fall overturn dates. Larger surface area lakes have greater wind mixing due to increased surface momentum. Climate perturbations indicate that our larger study lakes have more variability in temperature and stratification variables than the smaller lakes, and this variability increases with larger wind speeds. For all study lakes, Pearson correlations and climate perturbation scenarios indicate that wind speed has a large effect on temperature and stratification variables, sometimes greater than changes in air temperature, and wind can act to either amplify or mitigate the effect of warmer air temperatures on lake thermal structure depending on the direction of local wind speed changes.
NASA Astrophysics Data System (ADS)
Gohari, Iman; Korobenko, Artem; Yan, Jinhui; Bazilevs, Yuri; Sarkar, Sutanu
2016-11-01
Wind is a renewable energy resource that offers several advantages including low pollutant emission and inexpensive construction. Wind turbines operate in conditions dictated by the Atmospheric Boundary Layer (ABL) and that motivates the study of coupling ABL simulations with wind turbine dynamics. The ABL simulations can be used for realistic modeling of the environment which, with the use of fluid-structure interaction, can give realistic predictions of extracted power, rotor loading, and blade structural response. The ABL simulations provide inflow boundary conditions to the wind-turbine simulator which uses arbitrary Lagrangian-Eulerian variational multiscale formulation. In the present work, ABL simulations are performed to examine two different scenarios: (i) A neutral ABL with zero heat-flux and inversion layer at 350m, in which the wind turbine experiences maximum mean shear; (2) A shallow ABL with the surface cooling-rate of -1 K/hr, in which the wind turbine experiences maximum mean velocity at the low-level-jet nose height. We will discuss differences in the unsteady flow between the two different ABL conditions and their impact on the performance of the wind turbine cluster in the coupled ABL-wind turbine simulations.
The role of turbulent mixing in wind turbine wake recovery and wind array performance
NASA Astrophysics Data System (ADS)
Fruh, Wolf-Gerrit; Creech, Angus; Maguire, Eoghan
2014-05-01
The effect of wind turbine wakes in large offshore wind energy arrays can be a substantial factor in affecting the performance of turbines inside the array. Turbulent mixing plays a key role in the wake recovery, having a significant effect on the length over which the wake is strong enough to affect the performance other turbines significantly. We aim to highlight how turbulence affects wind turbine wakes, first by examining a high resolution CFD model of a single turbine wake validated by LIDAR measurements [1], and secondly with a much larger CFD simulation of Lillgrund offshore wind farm, validated with SCADA data [2]. By comparing the decay rates behind single turbines in environments of different surrounding surface features, ranging from ideal free-slip wind tunnels to mixed-vegetation hills, we suggest that the decay rate of turbine wakes are enhanced by free-stream turbulence, created by topography and ground features. In the context of Lillgrund wind farm, observations and computational results suggest that the wakes created by the turbines in the leading row facing the wind decay much slower than those in second row, or further into the turbine array. This observation can be explained by the diffusive action of upwind turbulence breaking up the wake generated by a turbine rotor. Angus CW Creech, Wolf-Gerrit Früh, Peter Clive (2012). Actuator volumes and hradaptive methods for threedimensional simulation of wind turbine wakes and performance. Wind Energy Vol.15, 847 - 863. Angus C.W. Creech, Wolf-Gerrit Früh, A. Eoghan Maguire (2013). High-resolution CFD modelling of Lillgrund Wind farm. Renewable Energies and Power Quality Journal, Vol. 11
NASA Astrophysics Data System (ADS)
Finocchio, Peter M.
The vertical wind shear measured between 200 and 850 hPa is commonly used to diagnose environmental interactions with a tropical cyclone (TC) and to forecast the storm's intensity and structural evolution. More often than not, stronger vertical shear within this deep layer prohibits the intensification of TCs and leads to predictable asymmetries in precipitation. But such bulk measures of vertical wind shear can occasionally mislead the forecaster. In the first part of this dissertation, we use a series of idealized numerical simulations to examine how a TC responds to changing the structure of unidirectional vertical wind shear while fixing the 200-850-hPa shear magnitude. These simulations demonstrate a significant intensity response, in which shear concentrated in shallow layers of the lower troposphere prevents vortex intensification. We attribute the arrested development of TCs in lower-level shear to the intrusion of mid-level environmental air over the surface vortex early in the simulations. Convection developing on the downshear side of the storm interacts with the intruding air so as to enhance the downward flux of low-entropy air into the boundary layer. We also construct a two-dimensional intensity response surface from a set of simulations that sparsely sample the joint shear height-depth parameter space. This surface reveals regions of the two-parameter space for which TC intensity is particularly sensitive. We interpret these parameter ranges as those which lead to reduced intensity predictability. Despite the robust response to changing the shape of a sheared wind profile in idealized simulations, we do not encounter such sensitivity within a large set of reanalyzed TCs in the Northern Hemisphere. Instead, there is remarkable consistency in the structure of reanalyzed wind profiles around TCs. This is evident in the distributions of two new parameters describing the height and depth of vertical wind shear, which highlight a clear preference for shallow layers of upper-level shear. Many of the wind profiles tested in the idealized simulations have shear height or depth values on the tails of these distributions, suggesting that the environmental wind profiles around real TCs do not exhibit enough structural variability to have the clear statistical relationship to intensity change that we expected. In the final part of this dissertation, we use the reanalyzed TC environments to initialize ensembles of idealized simulations. Using a new modeling technique that allows for time-varying environments, these simulations examine the predictability implications of exposing a TC to different structures and magnitudes of vertical wind shear during its life cycle. We find that TCs in more deeply distributed vertical wind shear environments have a more uncertain intensity evolution than TCs exposed to shallower layers of upper-level shear. This higher uncertainty arises from a more marginal boundary layer environment that the deeply distributed shear establishes, which enhances the TC sensitivity to the magnitude of deep-layer shear. Simulated radar reflectivity also appears to evolve in a more uncertain fashion in environments with deeply distributed vertical shear. However, structural predictability timescales, computed as the time it takes for errors in the amplitude or phase of azimuthal asymmetries of reflectivity to saturate, are similar for wind profiles with shallow upper-level shear and deeply distributed shear. Both ensembles demonstrate predictability timescales of two to three days for the lowest azimuthal wavenumbers of amplitude and phase. As the magnitude of vertical wind shear increases to universally destructive levels, structural and intensity errors begin to decrease. Shallow upper-level shear primes the TC for a more pronounced recovery in the predictability of the wavenumber-one precipitation structure in stronger shear. The recovered low-wavenumber predictability of TC precipitation structure and the collapse in intensity spread in strong shear suggests that vertical wind shear is most effective at reducing TC predictability when its magnitude is near the threshold between favorable and unfavorable values and when it is deeply distributed through the troposphere. By isolating the effect of the environmental flow, the simulations and analyses in this dissertation offer a unique understanding of how vertical wind shear affects TCs. In particular, the results have important implications for designing and implementing future environmental observing strategies that will be critical for improving forecasts of these destructive storms.
Fluid Aspects of Solar Wind Disturbances Driven by Coronal Mass Ejections. Appendix 3
NASA Technical Reports Server (NTRS)
Gosling, J. T.; Riley, Pete
2001-01-01
Transient disturbances in the solar wind initiated by coronal eruptions have been modeled for many years, beginning with the self-similar analytical models of Parker and Simon and Axford. The first numerical computer code (one-dimensional, gas dynamic) to study disturbance propagation in the solar wind was developed in the late 1960s, and a variety of other codes ranging from simple one-dimensional gas dynamic codes through three-dimensional gas dynamic and magnetohydrodynamic codes have been developed in subsequent years. For the most part, these codes have been applied to the problem of disturbances driven by fast CMEs propagating into a structureless solar wind. Pizzo provided an excellent summary of the level of understanding achieved from such simulation studies through about 1984, and other reviews have subsequently become available. More recently, some attention has been focused on disturbances generated by slow CMEs, on disturbances driven by CMEs having high internal pressures, and disturbance propagation effects associated with a structured ambient solar wind. Our purpose here is to provide a brief tutorial on fluid aspects of solar wind disturbances derived from numerical gas dynamic simulations. For the most part we illustrate disturbance evolution by propagating idealized perturbations, mimicking different types of CMEs, into a structureless solar wind using a simple one-dimensional, adiabatic (except at shocks), gas dynamic code. The simulations begin outside the critical point where the solar wind becomes supersonic and thus do not address questions of how the CMEs themselves are initiated. Limited to one dimension (the radial direction), the simulation code predicts too strong an interaction between newly ejected solar material and the ambient wind because it neglects azimuthal and meridional motions of the plasma that help relieve pressure stresses. Moreover, the code ignores magnetic forces and thus also underestimates the speed with which pressure disturbances propagate in the wind.
Visualization and analysis of vortex-turbine intersections in wind farms.
Shafii, Sohail; Obermaier, Herald; Linn, Rodman; Koo, Eunmo; Hlawitschka, Mario; Garth, Christoph; Hamann, Bernd; Joy, Kenneth I
2013-09-01
Characterizing the interplay between the vortices and forces acting on a wind turbine's blades in a qualitative and quantitative way holds the potential for significantly improving large wind turbine design. This paper introduces an integrated pipeline for highly effective wind and force field analysis and visualization. We extract vortices induced by a turbine's rotation in a wind field, and characterize vortices in conjunction with numerically simulated forces on the blade surfaces as these vortices strike another turbine's blades downstream. The scientifically relevant issue to be studied is the relationship between the extracted, approximate locations on the blades where vortices strike the blades and the forces that exist in those locations. This integrated approach is used to detect and analyze turbulent flow that causes local impact on the wind turbine blade structure. The results that we present are based on analyzing the wind and force field data sets generated by numerical simulations, and allow domain scientists to relate vortex-blade interactions with power output loss in turbines and turbine life expectancy. Our methods have the potential to improve turbine design to save costs related to turbine operation and maintenance.
NASA Astrophysics Data System (ADS)
Maneva, Y. G.; Poedts, S.; Araneda, J. A.
2016-02-01
We compare the results from 1.5D and 2.5D hybrid simulations (with fluid electrons, and kinetic/particle-in-cell protons and α particles) to investigate the effect of the solar wind expansion on the evolution of ion relative drifts in collisionless fast wind streams. We initialize the system with initial relative drifts and follow its evolution in time within and without the expanding box model, which takes into account the gradual solar wind expansion in the interplanetary medium. The decay of the differential streaming follows similar pattern in the 1.5D and 2.5D non-expanding cases. For the 1.5D studies we find no difference in the evolution of the initial relative drift speed with and without expansion, whereas in the two-dimensional case the differential streaming is further suppressed once the solar wind expansion is taken into account. This implies that a stronger acceleration source is required to compensate for the effect of the expansion and produce the observed solar wind acceleration rate. The 1.5D case shows stronger oscillations in all plasma properties with higher temperature anisotropies for the minor ions in the first few hundred gyro-periods of the simulations. Yet the preferential perpendicular heating for the minor ions is stronger in the 2.5D case with higher temperature anisotropies at the final stage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Draxl, C.; Hodge, B. M.; Orwig, K.
2013-10-01
Regional wind integration studies in the United States require detailed wind power output data at many locations to perform simulations of how the power system will operate under high-penetration scenarios. The wind data sets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as be time synchronized with available load profiles. The Wind Integration National Dataset (WIND) Toolkit described in this paper fulfills these requirements. A wind resource dataset, wind power production time series, and simulated forecasts from a numerical weather predictionmore » model run on a nationwide 2-km grid at 5-min resolution will be made publicly available for more than 110,000 onshore and offshore wind power production sites.« less
Filament winding technique, experiment and simulation analysis on tubular structure
NASA Astrophysics Data System (ADS)
Quanjin, Ma; Rejab, M. R. M.; Kaige, Jiang; Idris, M. S.; Harith, M. N.
2018-04-01
Filament winding process has emerged as one of the potential composite fabrication processes with lower costs. Filament wound products involve classic axisymmetric parts (pipes, rings, driveshafts, high-pressure vessels and storage tanks), non-axisymmetric parts (prismatic nonround sections and pipe fittings). Based on the 3-axis filament winding machine has been designed with the inexpensive control system, it is completely necessary to make a relative comparison between experiment and simulation on tubular structure. In this technical paper, the aim of this paper is to perform a dry winding experiment using the 3-axis filament winding machine and simulate winding process on the tubular structure using CADWIND software with 30°, 45°, 60° winding angle. The main result indicates that the 3-axis filament winding machine can produce tubular structure with high winding pattern performance with different winding angle. This developed 3-axis winding machine still has weakness compared to CAWIND software simulation results with high axes winding machine about winding pattern, turnaround impact, process error, thickness, friction impact etc. In conclusion, the 3-axis filament winding machine improvements and recommendations come up with its comparison results, which can intuitively understand its limitations and characteristics.
Spatiotemporal structure of wind farm-atmospheric boundary layer interactions
NASA Astrophysics Data System (ADS)
Cervarich, Matthew; Baidya Roy, Somnath; Zhou, Liming
2013-04-01
Wind power is currently one of the fastest growing energy sources in the world. Most of the growth is in the utility sector consisting of large wind farms with numerous industrial-scale wind turbines. Wind turbines act as a sink of mean kinetic energy and a source of turbulent kinetic energy in the atmospheric boundary layer (ABL). In doing so, they modify the ABL profiles and land-atmosphere exchanges of energy, momentum, mass and moisture. This project explores theses interactions using remote sensing data and numerical model simulations. The domain is central Texas where 4 of the world's largest wind farms are located. A companion study of seasonally-averaged Land Surface Temperature data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on TERRA and AQUA satellites shows a warming signal at night and a mixed cooling/warming signal during the daytime within the wind farms. In the present study, wind farm-ABL interactions are simulated with the Weather Research and Forecasting (WRF) model. The simulations show that the model is capable of replicating the observed signal in land surface temperature. Moreover, similar warming/cooling effect, up to 1C, was observed in seasonal mean 2m air temperature as well. Further analysis show that enhanced turbulent mixing in the rotor wakes is responsible for the impacts on 2m and surface air temperatures. The mixing is due to 2 reasons: (i) turbulent momentum transport to compensate the momentum deficit in the wakes of the turbines and (ii) turbulence generated due to motion of turbine rotors. Turbulent mixing also alters vertical profiles of moisture. Changes in land-atmosphere temperature and moisture gradient and increase in turbulent mixing leads to more than 10% change in seasonal mean surface sensible and latent heat flux. Given the current installed capacity and the projected installation across the world, wind farms are likely becoming a major driver of anthropogenic land use change on Earth. Hence, understanding WF-ABL interactions and its effects is of significant scientific and societal importance.
2007-09-01
also relatively easy to change the wind tunnel model to allow detailed parametric effects to be investigated. The main disadvantage of wind tunnel...as Magnus force and moment coefficients are difficult to obtain in a wind tunnel and require a complex physical wind tunnel model. Over the past...7) The terms containing YPAC constitute the Magnus air load acting at the Magnus center of pressure while the terms containing 0 2, ,X X NAC C C
Scattering by Artificial Wind and Rain Roughened Water Surfaces at Oblique Incidences
NASA Technical Reports Server (NTRS)
Craeye, C.; Sobieski, P. W.; Bliven, L. F.
1997-01-01
Rain affects wind retrievals from scatterometric measurements of the sea surface. To depict the additional roughness caused by rain on a wind driven surface, we use a ring-wave spectral model. This enables us to analyse the rain effect on K(u) band scatterometric observations from two laboratory experiments. Calculations based on the small perturbation method provide good simulation of scattering measurements for the rain-only case, whereas for combined wind and rain cases, the boundary perturbation method is appropriate.
NASA Astrophysics Data System (ADS)
Bernhardt, M.; Strasser, U.; Zängl, G.; Mauser, W.; Liston, G.; Pohl, S.
2008-12-01
Wind-induced snow transport processes lead to a significant variability of the snow cover. Knowledge about this variability is important for e.g. determining the temporal dynamics of the snowmelt runoff. For predicting the correct amount of transported snow knowledge of the local wind-field is an essential. In high-alpine rugged relief wind fields can hardly be provided by a simple interpolation of station recordings. In this work we use a modified version of the PSU/NCAR Mesoscale Model MM5 to derive wind fields for a 450 km² area at a target resolution of 200 m, accounting for topography and related dynamic effects. We have modelled 220 wind fields representing the most characteristic wind situations within the test-area. The criteria for the extraction of the wind field for the current snowmodel (SNOWTRAND-3D) time step are mean wind speeds and directions in the 700 hPa level derived from DWD (German Weather Service) Local Model reanalysis data with a temporal resolution of one hour. These data are then compared with the corresponding mean wind speeds and directions from the appropriate MM5 nesting area indicating which one of the library files represents the best fit. Verification is conducted by comparison of historical station measurements with corresponding downscaled simulation results. For this downscaling a semi-empirical approach is utilized which accounts for topographic effects. Results for the winter seasons 2003/04 and 2004/05 showing that the presented scheme is able to improve the quality of SNOWTRAN-3D runs with respect to the snow height.
Hot-bench simulation of the active flexible wing wind-tunnel model
NASA Technical Reports Server (NTRS)
Buttrill, Carey S.; Houck, Jacob A.
1990-01-01
Two simulations, one batch and one real-time, of an aeroelastically-scaled wind-tunnel model were developed. The wind-tunnel model was a full-span, free-to-roll model of an advanced fighter concept. The batch simulation was used to generate and verify the real-time simulation and to test candidate control laws prior to implementation. The real-time simulation supported hot-bench testing of a digital controller, which was developed to actively control the elastic deformation of the wind-tunnel model. Time scaling was required for hot-bench testing. The wind-tunnel model, the mathematical models for the simulations, the techniques employed to reduce the hot-bench time-scale factors, and the verification procedures are described.
2014-07-14
Air Force Environmental conditions simulation equipment Equipment that simulates conditions such as waves, wind, rain, thunder , lightning , and...Environmental conditions simulation equipment Equipment that simulates conditions such as waves, wind, rain, thunder , lightning , and combat sounds...items such as wave generators, heavy-duty fans to simulate high winds, strobe lights to simulate lightning , water spray and injection systems to
Adaptive neuro-fuzzy methodology for noise assessment of wind turbine.
Shamshirband, Shahaboddin; Petković, Dalibor; Hashim, Roslan; Motamedi, Shervin
2014-01-01
Wind turbine noise is one of the major obstacles for the widespread use of wind energy. Noise tone can greatly increase the annoyance factor and the negative impact on human health. Noise annoyance caused by wind turbines has become an emerging problem in recent years, due to the rapid increase in number of wind turbines, triggered by sustainable energy goals set forward at the national and international level. Up to now, not all aspects of the generation, propagation and perception of wind turbine noise are well understood. For a modern large wind turbine, aerodynamic noise from the blades is generally considered to be the dominant noise source, provided that mechanical noise is adequately eliminated. The sources of aerodynamic noise can be divided into tonal noise, inflow turbulence noise, and airfoil self-noise. Many analytical and experimental acoustical studies performed the wind turbines. Since the wind turbine noise level analyzing by numerical methods or computational fluid dynamics (CFD) could be very challenging and time consuming, soft computing techniques are preferred. To estimate noise level of wind turbine, this paper constructed a process which simulates the wind turbine noise levels in regard to wind speed and sound frequency with adaptive neuro-fuzzy inference system (ANFIS). This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method.
Adaptive Neuro-Fuzzy Methodology for Noise Assessment of Wind Turbine
Shamshirband, Shahaboddin; Petković, Dalibor; Hashim, Roslan; Motamedi, Shervin
2014-01-01
Wind turbine noise is one of the major obstacles for the widespread use of wind energy. Noise tone can greatly increase the annoyance factor and the negative impact on human health. Noise annoyance caused by wind turbines has become an emerging problem in recent years, due to the rapid increase in number of wind turbines, triggered by sustainable energy goals set forward at the national and international level. Up to now, not all aspects of the generation, propagation and perception of wind turbine noise are well understood. For a modern large wind turbine, aerodynamic noise from the blades is generally considered to be the dominant noise source, provided that mechanical noise is adequately eliminated. The sources of aerodynamic noise can be divided into tonal noise, inflow turbulence noise, and airfoil self-noise. Many analytical and experimental acoustical studies performed the wind turbines. Since the wind turbine noise level analyzing by numerical methods or computational fluid dynamics (CFD) could be very challenging and time consuming, soft computing techniques are preferred. To estimate noise level of wind turbine, this paper constructed a process which simulates the wind turbine noise levels in regard to wind speed and sound frequency with adaptive neuro-fuzzy inference system (ANFIS). This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method. PMID:25075621
Wake Flow Simulation of a Vertical Axis Wind Turbine Under the Influence of Wind Shear
NASA Astrophysics Data System (ADS)
Mendoza, Victor; Goude, Anders
2017-05-01
The current trend of the wind energy industry aims for large scale turbines installed in wind farms. This brings a renewed interest in vertical axis wind turbines (VAWTs) since they have several advantages over the traditional Horizontal Axis Wind Tubines (HAWTs) for mitigating the new challenges. However, operating VAWTs are characterized by complex aerodynamics phenomena, presenting considerable challenges for modeling tools. An accurate and reliable simulation tool for predicting the interaction between the obtained wake of an operating VAWT and the flow in atmospheric open sites is fundamental for optimizing the design and location of wind energy facility projects. The present work studies the wake produced by a VAWT and how it is affected by the surface roughness of the terrain, without considering the effects of the ambient turbulence intensity. This study was carried out using an actuator line model (ALM), and it was implemented using the open-source CFD library OpenFOAM to solve the governing equations and to compute the resulting flow fields. An operational H-shaped VAWT model was tested, for which experimental activity has been performed at an open site north of Uppsala-Sweden. Different terrains with similar inflow velocities have been evaluated. Simulated velocity and vorticity of representative sections have been analyzed. Numerical results were validated using normal forces measurements, showing reasonable agreement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, G.; Lackner, M.; Haid, L.
2013-07-01
With the push towards siting wind turbines farther offshore due to higher wind quality and less visibility, floating offshore wind turbines, which can be located in deep water, are becoming an economically attractive option. The International Electrotechnical Commission's (IEC) 61400-3 design standard covers fixed-bottom offshore wind turbines, but there are a number of new research questions that need to be answered to modify these standards so that they are applicable to floating wind turbines. One issue is the appropriate simulation length needed for floating turbines. This paper will discuss the results from a study assessing the impact of simulation lengthmore » on the ultimate and fatigue loads of the structure, and will address uncertainties associated with changing the simulation length for the analyzed floating platform. Recommendations of required simulation length based on load uncertainty will be made and compared to current simulation length requirements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Wenzhong; Wang, Xiao; Muljadi, Eduard
With increasing penetrations of wind power on electric grids, the stability and reliability of interconnected power systems may be impacted. In some countries that have developed renewable energy sources and systems, grid codes have been revised to require wind power plants (WPPs) to provide ancillary services to support the power system frequency in case of severe grid events. To do this, wind turbine generators (WTGs) should be deloaded to reserve a certain amount of active power for primary frequency response; however, deloading curtails annual energy production, and the market for this type of service needs to be further developed. Inmore » this report, we focus on the temporary frequency support provided by WTGs through inertial response. WTGs have potential to provide inertial response, but appropriate control methods should be implemented. With the implemented inertial control methods, wind turbines are capable of increasing their active power output by releasing some of their stored kinetic energy when a frequency excursion occurs. Active power can be temporarily boosted above the maximum power points, after which the rotor speed decelerates, and subsequently an active power output reduction restores the kinetic energy. In this report, we develop two types of models for wind power systems: the first is common, based on the wind power aerodynamic equation, and the power coefficient can be regressed using nonlinear functions; the second is much more complicated, wherein the wind turbine system is modeled using the Fatigue, Aerodynamics, Structures, and Turbulence Modeling (FAST) tool with several degrees of freedoms. A nine-bus test power system is built in Simulink and the Real-Time Digital Simulator, respectively, which are used to evaluate the frequency support performance of the WPPs. We implement two distinct types of inertial control methods in the modeled wind turbines: frequency-based inertial control (FBIC) and stepwise inertial control (SIC). We compare the performances of the two methods in terms of their frequency nadirs, rates of change of frequency, and recovery times. We conclude the results under various wind speeds and penetration cases, which provide insight into designing the inertial response of WTGs. Further, we discuss the impact of the parameters on the performance of the inertial control methods. We evaluate both the scaling factors for the FBIC method and the slope values for the TLIC methods. The simulation work shows the characteristics of different inertial responses compared to conventional synchronous generators. Based on the simulation results, we modify, improve, and test the inertial control methods under a more realistic wind turbine model based on FAST. We then validate the inertial responses under highly turbulent wind conditions generated by TurbSim, and we examine their influences on the turbine mechanical components. The extensive simulation proves the effectiveness of the proposed inertial control methods as well as the nine-bus test power system. We then reconsider the parameters. We rebuild the same test power system using Real time Simulator Computer Aided Design (RSCAD), and we implement the inertial control methods in the real Controls Advanced Research Turbine (CART3), which is prepared for the hardware-in-the-loop field-test simulation. After the setups for the hardware and software hybrid simulation platform are complete, the inertial response is further tested on a real wind turbine for the first time, in which CART3 release the controlled inertial response against the emulated frequency excursion, provided by the real-time simulated power system test bed in RTDS.« less
NASA Astrophysics Data System (ADS)
Hong, Xiaodong; Peng, Melinda; Wang, Shouping; Wang, Qing
2018-06-01
Tehuantepecer is a strong mountain gap wind traveling through Chivela Pass into eastern Pacific coast in southern Mexico, most commonly between October and February and brings huge impacts on local and surrounding meteorology and oceanography. Gulf of Tehuantepec EXperiment (GOTEX) was conducted in February 2004 to enhance the understanding of the strong offshore gap wind, ocean cooling, vertical circulations and interactions among them. The gap wind event during GOTEX was simulated using the U.S. Navy Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS®). The simulations are compared and validated with the observations retrieved from several satellites (GOES 10-12, MODIS/Aqua/Terra, TMI, and QuikSCAT) and Airborne EXpendable BathyThermograph (AXBT). The study shows that the gap wind outflow has a fanlike pattern expending from the coast and with a strong diurnal variability. The surface wind stress and cooling along the axis of the gap wind outflow caused intense upwelling and vertical mixing in the upper ocean; both contributed to the cooling of the ocean mixed layer under the gap wind. The cooling pattern of sea surface temperature (SST) also reflects temperature advection by the nearby ocean eddies to have a crescent shape. Two sensitivity experiments were conducted to understand the relative roles of the wind stress and heat flux on the ocean cooling. The control has more cooling right under the gap flow region than either the wind-stress-only or the heat-flux-only experiment. Overall, the wind stress has a slightly larger effect in bringing down the ocean temperature near the surface and plays a more important role in local ocean circulations beneath the mixed layer. The impact of surface heat flux on the ocean is more limited to the top 30 m within the mixed layer and is symmetric to the gap flow region by cooling the ocean under the gap flow region and reducing the warming on both sides. The effect of surface wind stress is to induce more cooling in the mixed layer under the gap wind through upwelling associated with Ekman divergence at the surface. Its effect deeper down is antisymmetric related to the nearby thermocline dome by inducing more upwelling to the east side of the gap flow region and more downwelling on the west side. Diagnostics from the mixed layer heat budget for the control and sensitivity experiments confirm that the surface heat flux has more influence on the broader area and the wind stress has more influence in a deeper region.
NASA Astrophysics Data System (ADS)
Agafonova, Oxana; Avramenko, Anna; Chaudhari, Ashvinkumar; Hellsten, Antti
2016-09-01
Large Eddy Simulations (LES) are carried out using OpenFOAM to investigate the canopy created velocity inflection in the wake development of a large wind turbine array. Simulations are performed for two cases with and without forest separately. Results of the simulations are further compared to clearly show the changes in the wake and turbulence structure due to the forest. Moreover, the actual mechanical shaft power produced by a single turbine in the array is calculated for both cases. Aerodynamic efficiency and power losses due to the forest are discussed as well.
Aerodynamic Characteristics, Database Development and Flight Simulation of the X-34 Vehicle
NASA Technical Reports Server (NTRS)
Pamadi, Bandu N.; Brauckmann, Gregory J.; Ruth, Michael J.; Fuhrmann, Henri D.
2000-01-01
An overview of the aerodynamic characteristics, development of the preflight aerodynamic database and flight simulation of the NASA/Orbital X-34 vehicle is presented in this paper. To develop the aerodynamic database, wind tunnel tests from subsonic to hypersonic Mach numbers including ground effect tests at low subsonic speeds were conducted in various facilities at the NASA Langley Research Center. Where wind tunnel test data was not available, engineering level analysis is used to fill the gaps in the database. Using this aerodynamic data, simulations have been performed for typical design reference missions of the X-34 vehicle.
Simulation of fundamental atomization mechanisms in fuel sprays
NASA Technical Reports Server (NTRS)
Childs, Robert, E.; Mansour, Nagi N.
1988-01-01
Growth of instabilities on the liquid/gas interface in the initial region of fuel sprays is studied by means of numerical simulations. The simulations are based on solutions of the variable-density incompressible Navier-Stokes equations, which are obtained with a new numerical algorithm. The simulations give good agreement with analytical results for the instabilities on a liquid cylinder induced by surface tension and wind-induced instabilities. The effects of boundary layers on the wind-induced instabilities are investigated. It is found that a boundary layer reduces the growth rate for a single interface, and a comparison with inviscid theory suggests that boundary layer effects may be significantly more important than surface tension effects. The results yield a better estimate than inviscid theory for the drop sizes as reported for diesel sprays. Results for the planar jet show that boundary layer effects hasten the growth of Squire's 'symmetric' mode, which is responsible for jet disintegration. This result helps explain the rapid atomization which occurs in swirl and air-blast atomizers.
NASA Astrophysics Data System (ADS)
Li, J.-L. F.; Suhas, E.; Richardson, Mark; Lee, Wei-Liang; Wang, Yi-Hui; Yu, Jia-Yuh; Lee, Tong; Fetzer, Eric; Stephens, Graeme; Shen, Min-Hua
2018-02-01
Most of the global climate models (GCMs) in the Coupled Model Intercomparison Project, phase 5 do not include precipitating ice (aka falling snow) in their radiation calculations. We examine the importance of the radiative effects of precipitating ice on simulated surface wind stress and sea surface temperatures (SSTs) in terms of seasonal variation and in the evolution of central Pacific El Niño (CP-El Niño) events. Using controlled simulations with the CESM1 model, we show that the exclusion of precipitating ice radiative effects generates a persistent excessive upper-level radiative cooling and an increasingly unstable atmosphere over convective regions such as the western Pacific and tropical convergence zones. The invigorated convection leads to persistent anomalous low-level outflows which weaken the easterly trade winds, reducing upper-ocean mixing and leading to a positive SST bias in the model mean state. In CP-El Niño events, this means that outflow from the modeled convection in the central Pacific reduces winds to the east, allowing unrealistic eastward propagation of warm SST anomalies following the peak in CP-El Niño activity. Including the radiative effects of precipitating ice reduces these model biases and improves the simulated life cycle of the CP-El Niño. Improved simulations of present-day tropical seasonal variations and CP-El Niño events would increase the confidence in simulating their future behavior.
Maximum wind energy extraction strategies using power electronic converters
NASA Astrophysics Data System (ADS)
Wang, Quincy Qing
2003-10-01
This thesis focuses on maximum wind energy extraction strategies for achieving the highest energy output of variable speed wind turbine power generation systems. Power electronic converters and controls provide the basic platform to accomplish the research of this thesis in both hardware and software aspects. In order to send wind energy to a utility grid, a variable speed wind turbine requires a power electronic converter to convert a variable voltage variable frequency source into a fixed voltage fixed frequency supply. Generic single-phase and three-phase converter topologies, converter control methods for wind power generation, as well as the developed direct drive generator, are introduced in the thesis for establishing variable-speed wind energy conversion systems. Variable speed wind power generation system modeling and simulation are essential methods both for understanding the system behavior and for developing advanced system control strategies. Wind generation system components, including wind turbine, 1-phase IGBT inverter, 3-phase IGBT inverter, synchronous generator, and rectifier, are modeled in this thesis using MATLAB/SIMULINK. The simulation results have been verified by a commercial simulation software package, PSIM, and confirmed by field test results. Since the dynamic time constants for these individual models are much different, a creative approach has also been developed in this thesis to combine these models for entire wind power generation system simulation. An advanced maximum wind energy extraction strategy relies not only on proper system hardware design, but also on sophisticated software control algorithms. Based on literature review and computer simulation on wind turbine control algorithms, an intelligent maximum wind energy extraction control algorithm is proposed in this thesis. This algorithm has a unique on-line adaptation and optimization capability, which is able to achieve maximum wind energy conversion efficiency through continuously improving the performance of wind power generation systems. This algorithm is independent of wind power generation system characteristics, and does not need wind speed and turbine speed measurements. Therefore, it can be easily implemented into various wind energy generation systems with different turbine inertia and diverse system hardware environments. In addition to the detailed description of the proposed algorithm, computer simulation results are presented in the thesis to demonstrate the advantage of this algorithm. As a final confirmation of the algorithm feasibility, the algorithm has been implemented inside a single-phase IGBT inverter, and tested with a wind simulator system in research laboratory. Test results were found consistent with the simulation results. (Abstract shortened by UMI.)
Aurbach, Annika; Schmid, Baptiste; Liechti, Felix; Chokani, Ndaona; Abhari, Reza
2018-06-03
Crossing of large ecological barriers, such as mountains, is in terms of energy considered to be a demanding and critical step during bird migration. Besides forming a geographical barrier, mountains have a profound impact on the resulting wind flow. We use a novel framework of mathematical models to investigate the influences of wind and topography on nocturnal passerine bird behaviour, and to assess the energy costs for different flight strategies for crossing the Jura Mountains. The mathematical models include three biological models of bird behaviour: i) wind drift compensation; ii) adaptation of flight height for favourable winds; and, iii) avoidance of obstacles (cross over and/or circumvention of an obstacle following a minimum energy expenditure strategy), which are assessed separately and in combination. Further, we use a mesoscale weather model for high-resolution predictions of the wind fields. We simulate the broad front nocturnal passerine migration for autumn nights with peak migration intensities. The bird densities retrieved from a weather radar are used as the initial intensities and to specify the vertical distributions of the simulated birds. It is shown that migration over complex terrain represents the most expensive flight option in terms of energy expenditure, and wind is seen to be the main factor that influences the energy expenditure in the bird's preferred flight direction. Further, the combined effects of wind and orography lead to a high concentration of migratory birds within the favourable wind conditions of the Swiss lowlands and north of the Jura Mountains. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ventilation of Animal Shelters in Wildland Fire Scenarios
NASA Astrophysics Data System (ADS)
Bova, A. S.; Bohrer, G.; Dickinson, M. B.
2009-12-01
The effects of wildland fires on cavity-nesting birds and bats, as well as fossorial mammals and burrow-using reptiles, are of considerable interest to the fire management community. However, relatively little is known about the degree of protection afforded by various animal shelters in wildland fire events. We present results from our ongoing investigation, utilizing NIST’s Fire Dynamics Simulator (FDS) and experimental data, of the effectiveness of common shelter configurations in protecting animals from combustion products. We compare two sets of simulations with observed experimental results. In the first set, wind tunnel experiments on single-entry room ventilation by Larsen and Heiselberg (2008) were simulated in a large domain resolved into 10 cm cubic cells. The set of 24 simulations comprised all combinations of incident wind speeds of 1,3 and 5 m/s; angles of attack of 0, 45, 90 and 180 degrees from the horizontal normal to the entrance; and temperature differences of 0 and 10 degrees C between the building interior and exterior. Simulation results were in good agreement with experimental data, thus providing a validation of FDS code for further ventilation experiments. In the second set, a cubic simulation domain of ~1m on edge and resolved into 1 cm cubic cells, was set up to represent the experiments by Ar et al. (2004) of wind-induced ventilation of woodpecker cavities. As in the experiments, we simulated wind parallel and perpendicular to the cavity entrance with different mean forcing velocities, and monitored the rates of evacuation of a neutral-buoyancy tracer from the cavity. Simulated ventilation rates in many, though not all, cases fell within the range of experimental data. Reasons for these differences, which include vagueness in the experimental setup, will be discussed. Our simulations provide a tool to estimate the viability of an animal in a shelter as a function of the shelter geometry and the fire intensity. In addition to the above, we explore the role of turbulence and its effect on ventilation rates, especially in single-entrance shelters. The goal of this work is to provide engineering formulas to estimate the probable levels of harmful or irritating combustion products in animal shelters during wildland fires.
CFD Analysis of a Finite Linear Array of Savonius Wind Turbines
NASA Astrophysics Data System (ADS)
Belkacem, Belabes; Paraschivoiu, Marius
2016-09-01
Vertical axis wind turbines such as Savonius rotors have been shown to be suitable for low wind speeds normally associated with wind resources in all corners of the world. However, the efficiency of the rotor is low. This paper presents results of Computational Fluid Dynamics (CFD) simulations for an array of Savonius rotors that show a significant increase in efficiency. It looks at identifying the effect on the energy yield of a number of turbines placed in a linear array. Results from this investigation suggest that an increase in the energy yield could be achieved which can reach almost two times than the conventional Savonius wind turbine in the case of an array of 11turbines with a distance of 1.4R in between them. The effect of different TSR values and different wind inlet speeds on the farm has been studied for both a synchronous and asynchronous wind farm.
Wall modeled LES of wind turbine wakes with geometrical effects
NASA Astrophysics Data System (ADS)
Bricteux, Laurent; Benard, Pierre; Zeoli, Stephanie; Moureau, Vincent; Lartigue, Ghislain; Vire, Axelle
2017-11-01
This study focuses on prediction of wind turbine wakes when geometrical effects such as nacelle, tower, and built environment, are taken into account. The aim is to demonstrate the ability of a high order unstructured solver called YALES2 to perform wall modeled LES of wind turbine wake turbulence. The wind turbine rotor is modeled using an Actuator Line Model (ALM) while the geometrical details are explicitly meshed thanks to the use of an unstructured grid. As high Reynolds number flows are considered, sub-grid scale models as well as wall modeling are required. The first test case investigated concerns a wind turbine flow located in a wind tunnel that allows to validate the proposed methodology using experimental data. The second test case concerns the simulation of a wind turbine wake in a complex environment (e.g. a Building) using realistic turbulent inflow conditions.
On the influence of ocean waves on simulated GNSS-R delay-doppler maps
NASA Astrophysics Data System (ADS)
Clarizia, M. P.; di Bisceglie, M.; Galdi, C.; Gommenginger, C.; Srokosz, M.
2012-04-01
Global Navigation Satellite System-Reflectometry (GNSS-R), is an established technique that exploits GNSS signals of opportunity reflected from the surface of the ocean, to look primarily at the ocean surface roughness. The strength of this technique, and the primary motivation to carry it forward, is in the fact that GNSS signals are available globally, all the time and over the long term, and could help dramatically improve the monitoring of ocean wind and waves. GNSS-R offers the prospect of high density global measurements of directional sea surface roughness, which are essential for scientific purposes (i.e. quantifying the air-sea exchanges of gases), operational weather and ocean forecasting (i.e. prediction of high winds, dangerous sea states, risk of flooding and storm surges) and to support important climate-relevant Earth Observation techniques (IR SST, or surface salinity retrieval). The retrieval of ocean roughness from GNSS-R data has now been demonstrated with a reasonable level of accuracy from both airborne [1] and spaceborne [2] platforms. In both cases, Directional Mean Square Slopes (DMSS) of the ocean surface have been retrieved from GNSS-R data, in the form of Delay-Doppler Maps (DDMs), using an established theoretical scattering model by Zavorotny and Voronovich (Z-V) [3]. The need for a better assessment of the way the ocean waves influence the scattering of GPS signals has recently led to a different approach, consisting of simulating the scattering of such signals, using a more sophisticated large-scale scattering model than Z-V, and explicit simulations of realistic seas. Initial results produced from these simulations have been recently published in [4], where the emphasis has been put on the effects of different sea states on Radar Cross Section (RCS) and Polarization Ratio (PR) in space domain. Linear wind wave surfaces have been simulated using the Elfouhaily wind wave spectrum [5], for different wind speeds and directions, and with or without a superimposed swell. Then, the scattering from such surfaces has been computed using the innovative Facet Approach (FA), which approximates the surface through a number of rectangular facets, differently oriented, and calculates the surface scattering as the ensemble of the signals scattered from all the facets. Here we proceed with the next step of the GPS-Reflectometry simulator, through investigation of the results in Delay- Doppler (DD) domain. Changes and variations of the DDMs, computed using the FA scattering model, are investigated for a variety of wind and wave conditions of the underlying sea surfaces simulated. Results are analysed for changing wind speed and direction of the waves, presence of a swell component superimposed on wind waves, and changing parameters (wavelength, amplitude, direction) of the swell, revealing some degree of sensitivity of these maps to different sea states. The effect of polarization is also taken into account, through an analysis of PR in DD domain. Finally, an initial investigation into the effect of nonlinearities on the sea surface in DD domain is carried out, by looking at DDMs of the signal scattered from non linear non gaussian sea surfaces explicitly simulated.
NASA Astrophysics Data System (ADS)
Parkin, E. R.; Pittard, J. M.; Corcoran, M. F.; Hamaguchi, K.
2011-01-01
Three-dimensional adaptive mesh refinement hydrodynamical simulations of the wind-wind collision between the enigmatic supermassive star η Car and its mysterious companion star are presented which include radiative driving of the stellar winds, gravity, optically thin radiative cooling, and orbital motion. Simulations with static stars with a periastron passage separation reveal that the preshock companion star's wind speed is sufficiently reduced so that radiative cooling in the postshock gas becomes important, permitting the runaway growth of nonlinear thin-shell instabilities (NTSIs) which massively distort the wind-wind collision region (WCR). However, large-scale simulations, which include the orbital motion of the stars, show that orbital motion reduces the impact of radiative inhibition and thus increases the acquired preshock velocities. As such, the postshock gas temperature and cooling time see a commensurate increase, and sufficient gas pressure is preserved to stabilize the WCR against catastrophic instability growth. We then compute synthetic X-ray spectra and light curves and find that, compared to previous models, the X-ray spectra agree much better with XMM-Newton observations just prior to periastron. The narrow width of the 2009 X-ray minimum can also be reproduced. However, the models fail to reproduce the extended X-ray minimum from previous cycles. We conclude that the key to explaining the extended X-ray minimum is the rate of cooling of the companion star's postshock wind. If cooling is rapid then powerful NTSIs will heavily disrupt the WCR. Radiative inhibition of the companion star's preshock wind, albeit with a stronger radiation-wind coupling than explored in this work, could be an effective trigger.
Reynolds-Averaged Navier-Stokes Simulation of a 2D Circulation Control Wind Tunnel Experiment
NASA Technical Reports Server (NTRS)
Allan, Brian G.; Jones, Greg; Lin, John C.
2011-01-01
Numerical simulations are performed using a Reynolds-averaged Navier-Stokes (RANS) flow solver for a circulation control airfoil. 2D and 3D simulation results are compared to a circulation control wind tunnel test conducted at the NASA Langley Basic Aerodynamics Research Tunnel (BART). The RANS simulations are compared to a low blowing case with a jet momentum coefficient, C(sub u), of 0:047 and a higher blowing case of 0.115. Three dimensional simulations of the model and tunnel walls show wall effects on the lift and airfoil surface pressures. These wall effects include a 4% decrease of the midspan sectional lift for the C(sub u) 0.115 blowing condition. Simulations comparing the performance of the Spalart Allmaras (SA) and Shear Stress Transport (SST) turbulence models are also made, showing the SST model compares best to the experimental data. A Rotational/Curvature Correction (RCC) to the turbulence model is also evaluated demonstrating an improvement in the CFD predictions.
Evaluation of lightning accommodation systems for wind-driven turbine rotors
NASA Technical Reports Server (NTRS)
Bankaitis, H.
1982-01-01
Wind-driven turbine generators are being evaluated as an alternative source of electric energy. Areas of favorable location for the wind-driven turbines (high wind density) coincide with areas of high incidence of thunderstorm activity. These locations, coupled with the 30-m or larger diameter rotor blades, make the wind-driven turbine blades probable terminations for lightning strikes. Several candidate systems of lightning accommodation for composite-structural-material blades were designed and their effectiveness evaluated by submitting the systems to simulated lightning strikes. The test data were analyzed and system design were reviewed on the basis of the analysis.
Operation and Equivalent Loads of Wind Turbines in Large Wind Farms
NASA Astrophysics Data System (ADS)
Andersen, Soren Juhl; Sorensen, Jens Norkaer; Mikkelsen, Robert Flemming
2017-11-01
Wind farms continue to grow in size and as the technology matures, the design of wind farms move towards including dynamic effects besides merely annual power production estimates. The unsteady operation of wind turbines in large wind farms has been modelled with EllipSys3D(Michelsen, 1992, and Sørensen, 1995) for a number of different scenarios using a fully coupled large eddy simulations(LES) and aero-elastic framework. The turbines are represented in the flow fields using the actuator line method(Sørensen and Shen, 2002), where the aerodynamic forces and deflections are derived from an aero-elastic code, Flex5(Øye, 1996). The simulations constitute a database of full turbine operation in terms of both production and loads for various wind speeds, turbulence intensities, and turbine spacings. The operating conditions are examined in terms of averaged power production and thrust force, as well as 10min equivalent flapwise bending, yaw, and tilt moment loads. The analyses focus on how the performance and loads change throughout a given farm as well as comparing how various input parameters affect the operation and loads of the wind turbines during different scenarios. COMWIND(Grant 2104-09- 067216/DSF), Nordic Consortium on Optimization and Control of Wind Farms, Eurotech Greentech Wind project, Winds2Loads, and CCA LES. Ressources Granted on SNIC and JESS. The Vestas NM80 turbine has been used.
Effect of winds and waves on salt intrusion in the Pearl River estuary
NASA Astrophysics Data System (ADS)
Gong, Wenping; Lin, Zhongyuan; Chen, Yunzhen; Chen, Zhaoyun; Zhang, Heng
2018-02-01
Salt intrusion in the Pearl River estuary (PRE) is a dynamic process that is influenced by a range of factors and to date, few studies have examined the effects of winds and waves on salt intrusion in the PRE. We investigate these effects using the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system applied to the PRE. After careful validation, the model is used for a series of diagnostic simulations. It is revealed that the local wind considerably strengthens the salt intrusion by lowering the water level in the eastern part of the estuary and increasing the bottom landward flow. The remote wind increases the water mixing on the continental shelf, elevates the water level on the shelf and in the PRE and pumps saltier shelf water into the estuary by Ekman transport. Enhancement of the salt intrusion is comparable between the remote and local winds. Waves decrease the salt intrusion by increasing the water mixing. Sensitivity analysis shows that the axial down-estuary wind, is most efficient in driving increases in salt intrusion via wind straining effect.
Ski jumping takeoff in a wind tunnel with skis.
Virmavirta, Mikko; Kivekäs, Juha; Komi, Paavo
2011-11-01
The effect of skis on the force-time characteristics of the simulated ski jumping takeoff was examined in a wind tunnel. Takeoff forces were recorded with a force plate installed under the tunnel floor. Signals from the front and rear parts of the force plate were collected separately to examine the anteroposterior balance of the jumpers during the takeoff. Two ski jumpers performed simulated takeoffs, first without skis in nonwind conditions and in various wind conditions. Thereafter, the same experiments were repeated with skis. The jumpers were able to perform very natural takeoff actions (similar to the actual takeoff) with skis in wind tunnel. According to the subjective feeling of the jumpers, the simulated ski jumping takeoff with skis was even easier to perform than the earlier trials without skis. Skis did not much influence the force levels produced during the takeoff but they still changed the force distribution under the feet. Contribution of the forces produced under the rear part of the feet was emphasized probably because the strong dorsiflexion is needed for lifting the skis to the proper flight position. The results presented in this experiment emphasize that research on ski jumping takeoff can be advanced by using wind tunnels.
The effects of incident shear and turbulence on flow around a cubical building are being investigated by a turbulent kinetic energy dissipation (k-e) model (TEMPEST). he numerical simulations demonstrate significant effects due to the differences in the incident flow. he addition...
Ocean Wave Simulation Based on Wind Field
2016-01-01
Ocean wave simulation has a wide range of applications in movies, video games and training systems. Wind force is the main energy resource for generating ocean waves, which are the result of the interaction between wind and the ocean surface. While numerous methods to handle simulating oceans and other fluid phenomena have undergone rapid development during the past years in the field of computer graphic, few of them consider to construct ocean surface height field from the perspective of wind force driving ocean waves. We introduce wind force to the construction of the ocean surface height field through applying wind field data and wind-driven wave particles. Continual and realistic ocean waves result from the overlap of wind-driven wave particles, and a strategy was proposed to control these discrete wave particles and simulate an endless ocean surface. The results showed that the new method is capable of obtaining a realistic ocean scene under the influence of wind fields at real time rates. PMID:26808718
Ocean Wave Simulation Based on Wind Field.
Li, Zhongyi; Wang, Hao
2016-01-01
Ocean wave simulation has a wide range of applications in movies, video games and training systems. Wind force is the main energy resource for generating ocean waves, which are the result of the interaction between wind and the ocean surface. While numerous methods to handle simulating oceans and other fluid phenomena have undergone rapid development during the past years in the field of computer graphic, few of them consider to construct ocean surface height field from the perspective of wind force driving ocean waves. We introduce wind force to the construction of the ocean surface height field through applying wind field data and wind-driven wave particles. Continual and realistic ocean waves result from the overlap of wind-driven wave particles, and a strategy was proposed to control these discrete wave particles and simulate an endless ocean surface. The results showed that the new method is capable of obtaining a realistic ocean scene under the influence of wind fields at real time rates.
Lidar configurations for wind turbine control
NASA Astrophysics Data System (ADS)
Mirzaei, Mahmood; Mann, Jakob
2016-09-01
Lidar sensors have proved to be very beneficial in the wind energy industry. They can be used for yaw correction, feed-forward pitch control and load verification. However, the current lidars are expensive. One way to reduce the price is to use lidars with few measurement points. Finding the best configuration of an inexpensive lidar in terms of number of measurement points, the measurement distance and the opening angle is the subject of this study. In order to solve the problem, a lidar model is developed and used to measure wind speed in a turbulence box. The effective wind speed measured by the lidar is compared against the effective wind speed on a wind turbine rotor both theoretically and through simulations. The study provides some results to choose the best configuration of the lidar with few measurement points.
The Sensitivity of Numerical Simulations of Cloud-Topped Boundary Layers to Cross-Grid Flow
NASA Astrophysics Data System (ADS)
Wyant, Matthew C.; Bretherton, Christopher S.; Blossey, Peter N.
2018-02-01
In mesoscale and global atmospheric simulations with large horizontal domains, strong horizontal flow across the grid is often unavoidable, but its effects on cloud-topped boundary layers have received comparatively little study. Here the effects of cross-grid flow on large-eddy simulations of stratocumulus and trade-cumulus marine boundary layers are studied across a range of grid resolutions (horizontal × vertical) between 500 m × 20 m and 35 m × 5 m. Three cases are simulated: DYCOMS nocturnal stratocumulus, BOMEX trade cumulus, and a GCSS stratocumulus-to-trade cumulus case. Simulations are performed with a stationary grid (with 4-8 m s-1 horizontal winds blowing through the cyclic domain) and a moving grid (equivalent to subtracting off a fixed vertically uniform horizontal wind) approximately matching the mean boundary-layer wind speed. For stratocumulus clouds, cross-grid flow produces two primary effects on stratocumulus clouds: a filtering of fine-scale resolved turbulent eddies, which reduces stratocumulus cloud-top entrainment, and a vertical broadening of the stratocumulus-top inversion which enhances cloud-top entrainment. With a coarse (20 m) vertical grid, the former effect dominates and leads to strong increases in cloud cover and LWP, especially as horizontal resolution is coarsened. With a finer (5 m) vertical grid, the latter effect is stronger and leads to small reductions in cloud cover and LWP. For the BOMEX trade cumulus case, cross-grid flow tends to produce fewer and larger clouds with higher LWP, especially for coarser vertical grid spacing. The results presented are robust to choice of scalar advection scheme and Courant number.
Effects of anisotropic thermal conduction on wind properties in hot accretion flow
NASA Astrophysics Data System (ADS)
Bu, De-Fu; Wu, Mao-Chun; Yuan, Ye-Fei
2016-06-01
Previous works have clearly shown the existence of winds from black hole hot accretion flow and investigated their detailed properties. In extremely low accretion rate systems, the collisional mean-free path of electrons is large compared with the length-scale of the system, thus thermal conduction is dynamically important. When the magnetic field is present, the thermal conduction is anisotropic and energy transport is along magnetic field lines. In this paper, we study the effects of anisotropic thermal conduction on the wind production in hot accretion flows by performing two-dimensional magnetohydrodynamic simulations. We find that thermal conduction has only moderate effects on the mass flux of wind. But the energy flux of wind can be increased by a factor of ˜10 due to the increase of wind velocity when thermal conduction is included. The increase of wind velocity is because of the increase of driving forces (e.g. gas pressure gradient force and centrifugal force) when thermal conduction is included. This result demonstrates that thermal conduction plays an important role in determining the properties of wind.
NASA Astrophysics Data System (ADS)
Letizia, Stefano; Puccioni, Matteo; Zhan, Lu; Viola, Francesco; Camarri, Simone; Iungo, Giacomo Valerio
2017-11-01
Numerical simulations of wakes produced by utility-scale wind turbines still present challenges related to the variability of the atmospheric conditions and, in the most of the cases, the lack of information about the geometry and aerodynamic performance of the wind turbine blades. In order to overcome the mentioned difficulties, we propose a RANS solver for which turbine aerodynamic forcing and turbulence closure are calibrated through LiDAR and SCADA data acquired for an onshore wind farm. The wind farm under examination is located in North Texas over a relatively flat terrain. The experimental data are leveraged to maximize accuracy of the RANS predictions in terms of wake velocity field and power capture for different atmospheric stability conditions and settings of the wind turbines. The optimization of the RANS parameters is performed through an adjoint-RANS formulation and a gradient-based procedure. The optimally-tuned aerodynamic forcing and turbulence closure are then analyzed in order to investigate effects of the atmospheric stability on the evolution of wind turbine wakes and power performance. The proposed RANS solver has low computational costs comparable to those of wake engineering models, which make it a compelling tool for wind farm control and optimization. Acknowledgments: NSF I/UCRC WindSTAR IIP 1362033 and TACC.
Finite element methods in a simulation code for offshore wind turbines
NASA Astrophysics Data System (ADS)
Kurz, Wolfgang
1994-06-01
Offshore installation of wind turbines will become important for electricity supply in future. Wind conditions above sea are more favorable than on land and appropriate locations on land are limited and restricted. The dynamic behavior of advanced wind turbines is investigated with digital simulations to reduce time and cost in development and design phase. A wind turbine can be described and simulated as a multi-body system containing rigid and flexible bodies. Simulation of the non-linear motion of such a mechanical system using a multi-body system code is much faster than using a finite element code. However, a modal representation of the deformation field has to be incorporated in the multi-body system approach. The equations of motion of flexible bodies due to deformation are generated by finite element calculations. At Delft University of Technology the simulation code DUWECS has been developed which simulates the non-linear behavior of wind turbines in time domain. The wind turbine is divided in subcomponents which are represented by modules (e.g. rotor, tower etc.).
Numerical investigation of wind loads on an operating heliostat
NASA Astrophysics Data System (ADS)
Ghanadi, Farzin; Yu, Jeremy; Emes, Matthew; Arjomandi, Maziar; Kelso, Richard
2017-06-01
The velocity fluctuations within the atmospheric boundary layer (ABL) and the wind direction are two important parameters which affect the resulting loads on the heliostats. In this study, the drag force on a square heliostat within the ABL at different turbulence intensities is simulated. To this end, numerical analysis of the wind loads have been conducted by implementing the three-dimensional Embedded Large Eddy Simulation (ELES). The results prove that in contrast with other models which are too dissipative for highly turbulent flow, the present model can accurately predict boundary effects and calculate the peak loads on heliostat at different elevation angles and turbulence intensities. Therefore, it is recommended that the model is used as a tool to provide new information about the relationship between wind loads and turbulence structures within ABL such as vortex length scale.
The Altitude Wind Tunnel (AWT): A unique facility for propulsion system and adverse weather testing
NASA Technical Reports Server (NTRS)
Chamberlin, R.
1985-01-01
A need has arisen for a new wind tunnel facility with unique capabilities for testing propulsion systems and for conducting research in adverse weather conditions. New propulsion system concepts, new aircraft configurations with an unprecedented degree of propulsion system/aircraft integration, and requirements for aircraft operation in adverse weather dictate the need for a new test facility. Required capabilities include simulation of both altitude pressure and temperature, large size, full subsonic speed range, propulsion system operation, and weather simulation (i.e., icing, heavy rain). A cost effective rehabilitation of the NASA Lewis Research Center's Altitude Wind Tunnel (AWT) will provide a facility with all these capabilities.
Technical Note: On the use of nudging for aerosol-climate model intercomparison studies
Zhang, K.; Wan, H.; Liu, X.; ...
2014-04-24
Nudging is an assimilation technique widely used in the development and evaluation of climate models. Constraining the simulated wind and temperature fields using global weather reanalysis facilitates more straightforward comparison between simulation and observation, and reduces uncertainties associated with natural variabilities of the large-scale circulation. On the other hand, the forcing introduced by nudging can be strong enough to change the basic characteristics of the model climate. In the paper we show that for the Community Atmosphere Model version 5, due to the systematic temperature bias in the standard model and the sensitivity of simulated ice formation to anthropogenic aerosolmore » concentration, nudging towards reanalysis results in substantial reductions in the ice cloud amount and the impact of anthropogenic aerosols on longwave cloud forcing. In order to reduce discrepancies between the nudged and unconstrained simulations and meanwhile take the advantages of nudging, two alternative experimentation methods are evaluated. The first one constrains only the horizontal winds. The second method nudges both winds and temperature, but replaces the long-term climatology of the reanalysis by that of the model. Results show that both methods lead to substantially improved agreement with the free-running model in terms of the top-of-atmosphere radiation budget and cloud ice amount. The wind-only nudging is more convenient to apply, and provides higher correlations of the wind fields, geopotential height and specific humidity between simulation and reanalysis. This suggests nudging the horizontal winds but not temperature is a good strategy for the investigation of aerosol indirect effects through ice clouds, since it provides well-constrained meteorology without strongly perturbing the model's mean climate.« less
Technical Note: On the use of nudging for aerosol-climate model intercomparison studies
NASA Astrophysics Data System (ADS)
Zhang, K.; Wan, H.; Liu, X.; Ghan, S. J.; Kooperman, G. J.; Ma, P.-L.; Rasch, P. J.
2014-04-01
Nudging is an assimilation technique widely used in the development and evaluation of climate models. Constraining the simulated wind and temperature fields using global weather reanalysis facilitates more straightforward comparison between simulation and observation, and reduces uncertainties associated with natural variabilities of the large-scale circulation. On the other hand, the forcing introduced by nudging can be strong enough to change the basic characteristics of the model climate. In the paper we show that for the Community Atmosphere Model version 5, due to the systematic temperature bias in the standard model and the sensitivity of simulated ice formation to anthropogenic aerosol concentration, nudging towards reanalysis results in substantial reductions in the ice cloud amount and the impact of anthropogenic aerosols on longwave cloud forcing. In order to reduce discrepancies between the nudged and unconstrained simulations and meanwhile take the advantages of nudging, two alternative experimentation methods are evaluated. The first one constrains only the horizontal winds. The second method nudges both winds and temperature, but replaces the long-term climatology of the reanalysis by that of the model. Results show that both methods lead to substantially improved agreement with the free-running model in terms of the top-of-atmosphere radiation budget and cloud ice amount. The wind-only nudging is more convenient to apply, and provides higher correlations of the wind fields, geopotential height and specific humidity between simulation and reanalysis. This suggests nudging the horizontal winds but not temperature is a good strategy for the investigation of aerosol indirect effects through ice clouds, since it provides well-constrained meteorology without strongly perturbing the model's mean climate.
Fluid-structure interaction modeling of wind turbines: simulating the full machine
NASA Astrophysics Data System (ADS)
Hsu, Ming-Chen; Bazilevs, Yuri
2012-12-01
In this paper we present our aerodynamics and fluid-structure interaction (FSI) computational techniques that enable dynamic, fully coupled, 3D FSI simulation of wind turbines at full scale, and in the presence of the nacelle and tower (i.e., simulation of the "full machine"). For the interaction of wind and flexible blades we employ a nonmatching interface discretization approach, where the aerodynamics is computed using a low-order finite-element-based ALE-VMS technique, while the rotor blades are modeled as thin composite shells discretized using NURBS-based isogeometric analysis (IGA). We find that coupling FEM and IGA in this manner gives a good combination of efficiency, accuracy, and flexibility of the computational procedures for wind turbine FSI. The interaction between the rotor and tower is handled using a non-overlapping sliding-interface approach, where both moving- and stationary-domain formulations of aerodynamics are employed. At the fluid-structure and sliding interfaces, the kinematic and traction continuity is enforced weakly, which is a key ingredient of the proposed numerical methodology. We present several simulations of a three-blade 5~MW wind turbine, with and without the tower. We find that, in the case of no tower, the presence of the sliding interface has no effect on the prediction of aerodynamic loads on the rotor. From this we conclude that weak enforcement of the kinematics gives just as accurate results as the strong enforcement, and thus enables the simulation of rotor-tower interaction (as well as other applications involving mechanical components in relative motion). We also find that the blade passing the tower produces a 10-12 % drop (per blade) in the aerodynamic torque. We feel this finding may be important when it comes to the fatigue-life analysis and prediction for wind turbine blades.
Simulation for Grid Connected Wind Turbines with Fluctuating
NASA Astrophysics Data System (ADS)
Ye, Ying; Fu, Yang; Wei, Shurong
This paper establishes the whole dynamic model of wind turbine generator system which contains the wind speed model and DFIG wind turbines model .A simulation sample based on the mathematical models is built by using MATLAB in this paper. Research are did on the performance characteristics of doubly-fed wind generators (DFIG) which connected to power grid with three-phase ground fault and the disturbance by gust and mixed wind. The capacity of the wind farm is 9MW which consists of doubly-fed wind generators (DFIG). Simulation results demonstrate that the three-phase ground fault occurs on grid side runs less affected on the stability of doubly-fed wind generators. However, as a power source, fluctuations of the wind speed will run a large impact on stability of double-fed wind generators. The results also show that if the two disturbances occur in the meantime, the situation will be very serious.
Large-Eddy Simulation of Wind-Plant Aerodynamics: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Churchfield, M. J.; Lee, S.; Moriarty, P. J.
In this work, we present results of a large-eddy simulation of the 48 multi-megawatt turbines composing the Lillgrund wind plant. Turbulent inflow wind is created by performing an atmospheric boundary layer precursor simulation and turbines are modeled using a rotating, variable-speed actuator line representation. The motivation for this work is that few others have done wind plant large-eddy simulations with a substantial number of turbines, and the methods for carrying out the simulations are varied. We wish to draw upon the strengths of the existing simulations and our growing atmospheric large-eddy simulation capability to create a sound methodology for performingmore » this type of simulation. We have used the OpenFOAM CFD toolbox to create our solver.« less
EFFECTS OF WIND SHEAR ON POLLUTION DISPERSION. (R827929)
Using an accurate numerical method for simulating the advection and diffusion of pollution puffs, it is demonstrated that point releases of pollution grow into a shape reflecting the vertical wind shear profile experienced by the puff within a time scale less than 4 h. Fo...
NASA Astrophysics Data System (ADS)
Zhang, Rong-Hua
2016-10-01
Tropical Instability Waves (TIWs) and the El Niño-Southern Oscillation (ENSO) are two air-sea coupling phenomena that are prominent in the tropical Pacific, occurring at vastly different space-time scales. It has been challenging to adequately represent both of these processes within a large-scale coupled climate model, which has led to a poor understanding of the interactions between TIW-induced feedback and ENSO. In this study, a novel modeling system was developed that allows representation of TIW-scale air-sea coupling and its interaction with ENSO. Satellite data were first used to derive an empirical model for TIW-induced sea surface wind stress perturbations (τTIW). The model was then embedded in a basin-wide hybrid-coupled model (HCM) of the tropical Pacific. Because τTIW were internally determined from TIW-scale sea surface temperatures (SSTTIW) simulated in the ocean model, the wind-SST coupling at TIW scales was interactively represented within the large-scale coupled model. Because the τTIW-SSTTIW coupling part of the model can be turned on or off in the HCM simulations, the related TIW wind feedback effects can be isolated and examined in a straightforward way. Then, the TIW-scale wind feedback effects on the large-scale mean ocean state and interannual variability in the tropical Pacific were investigated based on this embedded system. The interactively represented TIW-scale wind forcing exerted an asymmetric influence on SSTs in the HCM, characterized by a mean-state cooling and by a positive feedback on interannual variability, acting to enhance ENSO amplitude. Roughly speaking, the feedback tends to increase interannual SST variability by approximately 9%. Additionally, there is a tendency for TIW wind to have an effect on the phase transition during ENSO evolution, with slightly shortened interannual oscillation periods. Additional sensitivity experiments were performed to elucidate the details of TIW wind effects on SST evolution during ENSO cycles.
NASA Astrophysics Data System (ADS)
Yuan, Feng; Gan, Zhaoming; Narayan, Ramesh; Sadowski, Aleksander; Bu, Defu; Bai, Xue-Ning
2015-05-01
Previous MHD simulations have shown that wind must exist in black hole hot accretion flows. In this paper, we continue our study by investigating the detailed properties of wind and the mechanism of wind production. For this aim, we make use of a 3D general relativistic MHD simulation of hot accretion flows around a Schwarzschild black hole. To distinguish real wind from turbulent outflows, we track the trajectories of the virtual Lagrangian particles from simulation data. We find two types of real outflows, i.e., a jet and a wind. The mass flux of wind is very significant, and its radial profile can be described by {{\\dot{M}}wind}≈ {{\\dot{M}}BH}≤ft( r/20 {{r}s} \\right), with {{\\dot{M}}BH} being the mass accretion rate at the black hole horizon and rs being the Schwarzschild radius. The poloidal wind speed almost remains constant once they are produced, but the flux-weighted wind speed roughly follows {{v}p,wind}(r)≈ 0.25{{v}k}(r), with vk(r) being the Keplerian speed at radius r. The mass flux of the jet is much lower, but the speed is much higher, {{v}p,jet} ˜ (0.3-0.4)c. Consequently, both the energy and momentum fluxes of the wind are much larger than those of the jet. The wind is produced and accelerated primarily by the combination of centrifugal force and magnetic pressure gradient, while the jet is mainly accelerated by the magnetic pressure gradient. Finally, we find that the wind production efficiency {{ɛ }wind}\\equiv {{\\dot{E}}wind}/{{\\dot{M}}BH}{{c}2}˜ 1/1000 is in good agreement with the value required from large-scale galaxy simulations with active galactic nucleus feedback.
Impact of Cosmic-Ray Transport on Galactic Winds
NASA Astrophysics Data System (ADS)
Farber, R.; Ruszkowski, M.; Yang, H.-Y. K.; Zweibel, E. G.
2018-04-01
The role of cosmic rays generated by supernovae and young stars has very recently begun to receive significant attention in studies of galaxy formation and evolution due to the realization that cosmic rays can efficiently accelerate galactic winds. Microscopic cosmic-ray transport processes are fundamental for determining the efficiency of cosmic-ray wind driving. Previous studies modeled cosmic-ray transport either via a constant diffusion coefficient or via streaming proportional to the Alfvén speed. However, in predominantly cold, neutral gas, cosmic rays can propagate faster than in the ionized medium, and the effective transport can be substantially larger; i.e., cosmic rays can decouple from the gas. We perform three-dimensional magnetohydrodynamical simulations of patches of galactic disks including the effects of cosmic rays. Our simulations include the decoupling of cosmic rays in the cold, neutral interstellar medium. We find that, compared to the ordinary diffusive cosmic-ray transport case, accounting for the decoupling leads to significantly different wind properties, such as the gas density and temperature, significantly broader spatial distribution of cosmic rays, and higher wind speed. These results have implications for X-ray, γ-ray, and radio emission, and for the magnetization and pollution of the circumgalactic medium by cosmic rays.
A Hybrid Wind-Farm Parametrization for Mesoscale and Climate Models
NASA Astrophysics Data System (ADS)
Pan, Yang; Archer, Cristina L.
2018-04-01
To better understand the potential impact of wind farms on weather and climate at the regional to global scales, a new hybrid wind-farm parametrization is proposed for mesoscale and climate models. The proposed parametrization is a hybrid model because it is not based on physical processes or conservation laws, but on the multiple linear regression of the results of large-eddy simulations (LES) with the geometric properties of the wind-farm layout (e.g., the blockage ratio and blockage distance). The innovative aspect is that each wind turbine is treated individually based on its position in the farm and on the wind direction by predicting the velocity upstream of each turbine. The turbine-induced forces and added turbulence kinetic energy (TKE) are first derived analytically and then implemented in the Weather Research and Forecasting model. Idealized simulations of the offshore Lillgrund wind farm are conducted. The wind-speed deficit and TKE predicted with the hybrid model are in excellent agreement with those from the LES results, while the wind-power production estimated with the hybrid model is within 10% of that observed. Three additional wind farms with larger inter-turbine spacing than at Lillgrund are also considered, and a similar agreement with LES results is found, proving that the hybrid parametrization works well with any wind farm regardless of the spacing between turbines. These results indicate the wind-turbine position, wind direction, and added TKE are essential in accounting for the wind-farm effects on the surroundings, for which the hybrid wind-farm parametrization is a promising tool.
Dynamical downscaling of wind fields for wind power applications
NASA Astrophysics Data System (ADS)
Mengelkamp, H.-T.; Huneke, S.; Geyer, J.
2010-09-01
Dynamical downscaling of wind fields for wind power applications H.-T. Mengelkamp*,**, S. Huneke**, J, Geyer** *GKSS Research Center Geesthacht GmbH **anemos Gesellschaft für Umweltmeteorologie mbH Investments in wind power require information on the long-term mean wind potential and its temporal variations on daily to annual and decadal time scales. This information is rarely available at specific wind farm sites. Short-term on-site measurements usually are only performed over a 12 months period. These data have to be set into the long-term perspective through correlation to long-term consistent wind data sets. Preliminary wind information is often asked for to select favourable wind sites over regional and country wide scales. Lack of high-quality wind measurements at weather stations was the motivation to start high resolution wind field simulations The simulations are basically a refinement of global scale reanalysis data by means of high resolution simulations with an atmospheric mesoscale model using high-resolution terrain and land-use data. The 3-dimensional representation of the atmospheric state available every six hours at 2.5 degree resolution over the globe, known as NCAR/NCEP reanalysis data, forms the boundary conditions for continuous simulations with the non-hydrostatic atmospheric mesoscale model MM5. MM5 is nested in itself down to a horizontal resolution of 5 x 5 km². The simulation is performed for different European countries and covers the period 2000 to present and is continuously updated. Model variables are stored every 10 minutes for various heights. We have analysed the wind field primarily. The wind data set is consistent in space and time and provides information on the regional distribution of the long-term mean wind potential, the temporal variability of the wind potential, the vertical variation of the wind potential, and the temperature, and pressure distribution (air density). In the context of wind power these data are used • as an initial estimate of wind and energy potential • for the long-term correlation of wind measurements and turbine production data • to provide wind potential maps on a regional to country wide scale • to provide input data sets for simulation models • to determine the spatial correlation of the wind field in portfolio calculations • to calculate the wind turbine energy loss during prescribed downtimes • to provide information on the temporal variations of the wind and wind turbine energy production The time series of wind speed and wind direction are compared to measurements at offshore and onshore locations.
Vlasov Simulations of Multi-ion Plasma Turbulence in the Solar Wind
NASA Astrophysics Data System (ADS)
Perrone, D.; Valentini, F.; Servidio, S.; Dalena, S.; Veltri, P.
2013-01-01
Hybrid Vlasov-Maxwell simulations are employed to investigate the role of kinetic effects in a two-dimensional turbulent multi-ion plasma, composed of protons, alpha particles, and fluid electrons. In the typical conditions of the solar-wind environment, and in situations of decaying turbulence, the numerical results show that the velocity distribution functions of both ion species depart from the typical configuration of thermal equilibrium. These non-Maxwellian features are quantified through the statistical analysis of the temperature anisotropy, for both protons and alpha particles, in the reference frame given by the local magnetic field. Anisotropy is found to be higher in regions of high magnetic stress. Both ion species manifest a preferentially perpendicular heating, although the anisotropy is more pronounced for the alpha particles, according to solar wind observations. The anisotropy of the alpha particle, moreover, is correlated to the proton anisotropy and also depends on the local differential flow between the two species. Evident distortions of the particle distribution functions are present, with the production of bumps along the direction of the local magnetic field. The physical phenomenology recovered in these numerical simulations reproduces very common measurements in the turbulent solar wind, suggesting that the multi-ion Vlasov model constitutes a valid approach to understanding the nature of complex kinetic effects in astrophysical plasmas.
Laboratory Study of Topographic Effects on the Near-surface Tornado Flow Field
NASA Astrophysics Data System (ADS)
Razavi, Alireza; Sarkar, Partha P.
2018-03-01
To study topographic effects on the near-surface tornado flow field, the Iowa State University tornado simulator was used to simulate a translating tornado passing over three different two-dimensional topographies: a ridge, an escarpment and a valley. The effect of the translation speed on maximum horizontal wind speeds is observed for translation speeds of 0.15 and 0.50 m s^{-1} , with the lower value resulting in a larger maximum horizontal wind speed. The tornado translation over the three topographies with respect to flat terrain is assessed for changes in: (a) the maximum horizontal wind speeds in terms of the flow-amplification factor; (b) the maximum aerodynamic drag in terms of the tornado speed-up ratio; (c) the maximum duration of exposure at any location to high wind speeds of a specific range in terms of the exposure amplification factor. Results show that both the maximum wind amplification factor of 14%, as well as the maximum speed-up ratio of 14%, occur on the ridge. For all topographies, the increase in aerodynamic drag is observed to be maximized for low-rise buildings, which illustrates the importance of the vertical profiles of the horizontal wind speed near the ground. The maximum exposure amplification factors, estimated for the range of wind speeds corresponding to the EF2 (50-60 m s^{-1} ) and EF3 (61-75 m s^{-1}) scales, are 86 and 110% for the ridge, 4 and 60% for the escarpment and - 6 and 47% for the valley, respectively.
NASA Astrophysics Data System (ADS)
Sherriff-Tadano, Sam; Abe-Ouchi, Ayako; Yoshimori, Masakazu; Oka, Akira; Chan, Wing-Le
2018-04-01
Coupled modeling studies have recently shown that the existence of the glacial ice sheets intensifies the Atlantic meridional overturning circulation (AMOC). However, most models show a strong AMOC in their simulations of the Last Glacial Maximum (LGM), which is biased compared to reconstructions that indicate both a weaker and stronger AMOC during the LGM. Therefore, a detailed investigation of the mechanism behind this intensification of the AMOC is important for a better understanding of the glacial climate and the LGM AMOC. Here, various numerical simulations are conducted to focus on the effect of wind changes due to glacial ice sheets on the AMOC and the crucial region where the wind modifies the AMOC. First, from atmospheric general circulation model experiments, the effect of glacial ice sheets on the surface wind is evaluated. Second, from ocean general circulation model experiments, the influence of the wind stress change on the AMOC is evaluated by applying wind stress anomalies regionally or at different magnitudes as a boundary condition. These experiments demonstrate that glacial ice sheets intensify the AMOC through an increase in the wind stress at the North Atlantic mid-latitudes, which is induced by the North American ice sheet. This intensification of the AMOC is caused by the increased oceanic horizontal and vertical transport of salt, while the change in sea ice transport has an opposite, though minor, effect. Experiments further show that the Eurasian ice sheet intensifies the AMOC by directly affecting the deep-water formation in the Norwegian Sea.
First International Workshop on Grid Simulator Testing of Wind Turbine
of Wind Turbine Drivetrains First International Workshop on Grid Simulator Testing of Wind Turbine Wind Turbine Drivetrains June 13-14, 2013, at the National Wind Technology Center near Boulder apparatuses involved in grid compliance testing of utility-scale wind turbine generators. This includes both
Lewis Research Center studies of multiple large wind turbine generators on a utility network
NASA Technical Reports Server (NTRS)
Gilbert, L. J.; Triezenberg, D. M.
1979-01-01
A NASA-Lewis program to study the anticipated performance of a wind turbine generator farm on an electric utility network is surveyed. The paper describes the approach of the Lewis Wind Energy Project Office to developing analysis capabilities in the area of wind turbine generator-utility network computer simulations. Attention is given to areas such as, the Lewis Purdue hybrid simulation, an independent stability study, DOE multiunit plant study, and the WEST simulator. Also covered are the Lewis mod-2 simulation including analog simulation of a two wind turbine system and comparison with Boeing simulation results, and gust response of a two machine model. Finally future work to be done is noted and it is concluded that the study shows little interaction between the generators and between the generators and the bus.
Propulsion simulator for magnetically-suspended wind tunnel models
NASA Technical Reports Server (NTRS)
Joshi, P. B.; Malonson, M. R.; Sacco, G. P.; Goldey, C. L.; Garbutt, Keith; Goodyer, M.
1992-01-01
In order to demonstrate the measurement of aerodynamic forces/moments, including the effects of exhaust jets in Magnetic Suspension and Balance System (MSBS) wind tunnels, two propulsion simulator models were developed at Physical Sciences Inc. (PSI). Both the small-scale model (1 in. diameter X 8 in. long) and the large-scale model (2.5 in. diameter X 15 in. long) employed compressed, liquefied carbon dioxide as a propellant. The small-scale simulator, made from a highly magnetizable iron alloy, was demonstrated in the 7 in. MSBS wind tunnel at the University of Southampton. It developed a maximum thrust of approximate 1.3 lbf with a 0.098 in. diameter nozzle and 0.7 lbf with a 0.295 in. diameter nozzle. The Southampton MSBS was able to control the simulator at angles-of attack up to 20 deg. The large-scale simulator was demonstrated to operate in both a steady-state and a pulse mode via a miniaturized solinoid valve. It developed a stable and repeatable thrust of 2.75 lbf over a period of 4s and a nozzle pressure ratio (NPR) of 5.
Modeling of sediment transport in a saltwater lake with supplemental sandy freshwater.
Liang, Li; Deng, Yun; Li, Ran; Li, Jia
2018-06-22
Considering the highly complex flow structure of saltwater lakes during freshwater supplementation, a three-dimensional numerical model was developed to simulate suspended sediment transport in saltwater lakes. The model was validated using measurements of the salinity and sediment concentration during a pumping test at Yamdrok Lake. The simulation results were in quantitative agreement with the measured data. The observed and simulated results also indicated that the wind stress and vertical salinity gradient have a significant influence on salinity and sediment transport in a saltwater lake. The validated model was then used to predict and analyze the contributions of wind, the supplement flow rate and salinity stratification to the sediment transport process in Yamdrok Lake during continuous river water supplementation. The simulation results showed that after the sandy river water was continuously discharged into the saltwater lake, the lateral diffusion trends of the sediment exhibited three stages: linear growth in the inflow direction, logarithmic growth in the wind direction, and stabilization. Furthermore, wind was the dominant factor in driving the lake flow pattern and sediment transport. Specifically, wind can effectively reduce the area of the sediment diffusion zone by increasing the lateral sediment carrying and dilution capacities. The effect of inflow on the lake current is negligible, but the extent of the sediment turbidity zone mainly depends on the inflow. Reducing the inflow discharge can decrease the area of the sediment turbidity zone to proportions that far exceed the proportions of inflow discharge reductions. In addition, the high-salinity lake water can support the supplemented freshwater via buoyancy forces, which weaken vertical mixing and sediment settlement and increase lake currents and sediment diffusion near the surface.
Comparison study between wind turbine and power kite wakes
NASA Astrophysics Data System (ADS)
Haas, T.; Meyers, J.
2017-05-01
Airborne Wind Energy (AWE) is an emerging technology in the field of renewable energy that uses kites to harvest wind energy. However, unlike for conventional wind turbines, the wind environment in AWE systems has not yet been studied in much detail. We propose a simulation framework using Large Eddy Simulation to model the wakes of such kite systems and offer a comparison with turbine-like wakes. In order to model the kite effects on the flow, a lifting line technique is used. We investigate different wake configurations related to the operation modes of wind turbines and airborne systems in drag mode. In the turbine mode, the aerodynamic torque of the blades is directly added to the flow. In the kite drag mode, the aerodynamic torque of the wings is directly balanced by an opposite torque induced by on-board generators; this results in a total torque on the flow that is zero. We present the main differences in wake characteristics, especially flow induction and vorticity fields, for the depicted operation modes both with laminar and turbulent inflows.
How supernovae launch galactic winds?
NASA Astrophysics Data System (ADS)
Fielding, Drummond; Quataert, Eliot; Martizzi, Davide; Faucher-Giguère, Claude-André
2017-09-01
We use idealized three-dimensional hydrodynamic simulations of global galactic discs to study the launching of galactic winds by supernovae (SNe). The simulations resolve the cooling radii of the majority of supernova remnants (SNRs) and thus self-consistently capture how SNe drive galactic winds. We find that SNe launch highly supersonic winds with properties that agree reasonably well with expectations from analytic models. The energy loading (η _E= \\dot{E}_wind/ \\dot{E}_SN) of the winds in our simulations are well converged with spatial resolution while the wind mass loading (η _M= \\dot{M}_wind/\\dot{M}_\\star) decreases with resolution at the resolutions we achieve. We present a simple analytic model based on the concept that SNRs with cooling radii greater than the local scaleheight break out of the disc and power the wind. This model successfully explains the dependence (or lack thereof) of ηE (and by extension ηM) on the gas surface density, star formation efficiency, disc radius and the clustering of SNe. The winds our simulations are weaker than expected in reality, likely due to the fact that we seed SNe preferentially at density peaks. Clustering SNe in time and space substantially increases the wind power.
Voltage oriented control of self-excited induction generator for wind energy system with MPPT
NASA Astrophysics Data System (ADS)
Amieur, Toufik; Taibi, Djamel; Amieur, Oualid
2018-05-01
This paper presents the study and simulation of the self-excited induction generator in the wind power production in isolated sites. With this intention, a model of the wind turbine was established. Extremum-seeking control algorithm method by using Maximum Power Point Tracking (MPPT) is proposed control solution aims at driving the average position of the operating point near to optimality. The reference of turbine rotor speed is adjusted such that the turbine operates around maximum power for the current wind speed value. After a brief review of the concepts of converting wind energy into electrical energy. The proposed modeling tools were developed to study the performance of standalone induction generators connected to capacitor bank. The purpose of this technique is to maintain a constant voltage at the output of the rectifier whatever the loads and speeds. The system studied in this work is developed and tested in MATLAB/Simulink environment. Simulation results validate the performance and effectiveness of the proposed control methods.
NASA Astrophysics Data System (ADS)
Majidian, Hamed; Azarsina, Farhood
2018-04-01
Fuel consumption has always been a matter of concern for ships propulsion. In this research we aim to develop computer models of several containership cargo stacking configurations and discuss an optimal configuration at a constant front wind speed. The paper presents the simulation results by using ANSYS CFX for a 1:4 scale Post- Panamax 9000 TEU containership. The ship is modelled in a cubic domain that contains unstructured mesh with details, in such a way that can demonstrate the influence of the container configuration on wind force. Also the numerical results are verified versus wind tunnel test data. An optimal stack configuration led to about 25% reduction in air resistance. It is proposed that in order to reduce the wind drag force and consequently reduce the fuel consumption and pollutant emissions, empty spaces between the cargo containers and unbalanced cargo distribution over the deck should be inhibited. Also, it is advised to make the cargo distribution on the most forward and aftward deck areas more streamlined.
NASA Astrophysics Data System (ADS)
Mekanik, Abolghasem; Soleimani, Mohsen
2007-11-01
Wind effect on natural draught cooling towers has a very complex physics. The fluid flow and temperature distribution around and in a single and two adjacent (tandem and side by side) dry-cooling towers under cross wind are studied numerically in the present work. Cross-wind can significantly reduce cooling efficiency of natural-draft dry-cooling towers, and the adjacent towers can affect the cooling efficiency of both. In this paper we will present a complex computational model involving more than 750,000 finite volume cells under precisely defined boundary condition. Since the flow is turbulent, the standard k-ɛ turbulence model is used. The numerical results are used to estimate the heat transfer between radiators of the tower and air surrounding it. The numerical simulation explained the main reason for decline of the thermo-dynamical performance of dry-cooling tower under cross wind. In this paper, the incompressible fluid flow is simulated, and the flow is assumed steady and three-dimensional.
Wind tunnel simulation of Martian sand storms
NASA Technical Reports Server (NTRS)
Greeley, R.
1980-01-01
The physics and geological relationships of particles driven by the wind under near Martian conditions were examined in the Martian Surface Wind Tunnel. Emphasis was placed on aeolian activity as a planetary process. Threshold speeds, rates of erosion, trajectories of windblown particles, and flow fields over various landforms were among the factors considered. Results of experiments on particles thresholds, rates of erosion, and the effects of electrostatics on particles in the aeolian environment are presented.
Multiple and variable speed electrical generator systems for large wind turbines
NASA Technical Reports Server (NTRS)
Andersen, T. S.; Hughes, P. S.; Kirschbaum, H. S.; Mutone, G. A.
1982-01-01
A cost effective method to achieve increased wind turbine generator energy conversion and other operational benefits through variable speed operation is presented. Earlier studies of multiple and variable speed generators in wind turbines were extended for evaluation in the context of a specific large sized conceptual design. System design and simulation have defined the costs and performance benefits which can be expected from both two speed and variable speed configurations.
NASA Astrophysics Data System (ADS)
Dang, Tong; Zhang, Binzheng; Wiltberge, Michael; Wang, Wenbin; Varney, Roger; Dou, Xiankang; Wan, Weixing; Lei, Jiuhou
2018-01-01
In this study, the correlations between the fluxes of precipitating soft electrons in the cusp region and solar wind coupling functions are investigated utilizing the Lyon-Fedder-Mobarry global magnetosphere model simulations. We conduct two simulation runs during periods from 20 March 2008 to 16 April 2008 and from 15 to 24 December 2014, which are referred as "Equinox Case" and "Solstice Case," respectively. The simulation results of Equinox Case show that the plasma number density in the high-latitude cusp region scales well with the solar wind number density (ncusp/nsw=0.78), which agrees well with the statistical results from the Polar spacecraft measurements. For the Solstice Case, the plasma number density of high-latitude cusp in both hemispheres increases approximately linearly with upstream solar wind number density with prominent hemispheric asymmetry. Due to the dipole tilt effect, the average number density ratio ncusp/nsw in the Southern (summer) Hemisphere is nearly 3 times that in the Northern (winter) Hemisphere. In addition to the solar wind number density, 20 solar wind coupling functions are tested for the linear correlation with the fluxes of precipitating cusp soft electrons. The statistical results indicate that the solar wind dynamic pressure p exhibits the highest linear correlation with the cusp electron fluxes for both equinox and solstice conditions, with correlation coefficients greater than 0.75. The linear regression relations for equinox and solstice cases may provide an empirical calculation for the fluxes of cusp soft electron precipitation based on the upstream solar wind driving conditions.
NASA Technical Reports Server (NTRS)
Schultz, Howard
1990-01-01
The retrieval algorithm for spaceborne scatterometry proposed by Schultz (1985) is extended. A circular median filter (CMF) method is presented, which operates on wind directions independently of wind speed, removing any implicit wind speed dependence. A cell weighting scheme is included in the algorithm, permitting greater weights to be assigned to more reliable data. The mathematical properties of the ambiguous solutions to the wind retrieval problem are reviewed. The CMF algorithm is tested on twelve simulated data sets. The effects of spatially correlated likelihood assignment errors on the performance of the CMF algorithm are examined. Also, consideration is given to a wind field smoothing technique that uses a CMF.
Impact of Offshore Wind Power Integrated by VSC-HVDC on Power Angle Stability of Power Systems
NASA Astrophysics Data System (ADS)
Lu, Haiyang; Tang, Xisheng
2017-05-01
Offshore wind farm connected to grid by VSC-HVDC loses frequency support for power system, so adding frequency control in wind farm and VSC-HVDC system is an effective measure, but it will change wind farm VSC-HVDC’s transient stability on power system. Through theoretical analysis, concluding the relationship between equivalent mechanical power and electromagnetic power of two-machine system with the active power of wind farm VSC-HVDC, then analyzing the impact of wind farm VSC-HVDC with or without frequency control and different frequency control parameters on angle stability of synchronous machine by EEAC. The validity of theoretical analysis has been demonstrated through simulation in PSCAD/EMTDC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, Amy N.; Wendt, Fabian; Jonkman, Jason M.
This paper summarizes the findings from Phase Ib of the Offshore Code Comparison, Collaboration, Continued with Correlation (OC5) project. OC5 is a project run under the International Energy Agency (IEA) Wind Research Task 30, and is focused on validating the tools used for modelling offshore wind systems through the comparison of simulated responses of select offshore wind systems (and components) to physical test data. For Phase Ib of the project, simulated hydrodynamic loads on a flexible cylinder fixed to a sloped bed were validated against test measurements made in the shallow water basin at the Danish Hydraulic Institute (DHI) withmore » support from the Technical University of Denmark (DTU). The first phase of OC5 examined two simple cylinder structures (Phase Ia and Ib) to focus on validation of hydrodynamic models used in the various tools before moving on to more complex offshore wind systems and the associated coupled physics. As a result, verification and validation activities such as these lead to improvement of offshore wind modelling tools, which will enable the development of more innovative and cost-effective offshore wind designs.« less
Robertson, Amy N.; Wendt, Fabian; Jonkman, Jason M.; ...
2016-10-13
This paper summarizes the findings from Phase Ib of the Offshore Code Comparison, Collaboration, Continued with Correlation (OC5) project. OC5 is a project run under the International Energy Agency (IEA) Wind Research Task 30, and is focused on validating the tools used for modelling offshore wind systems through the comparison of simulated responses of select offshore wind systems (and components) to physical test data. For Phase Ib of the project, simulated hydrodynamic loads on a flexible cylinder fixed to a sloped bed were validated against test measurements made in the shallow water basin at the Danish Hydraulic Institute (DHI) withmore » support from the Technical University of Denmark (DTU). The first phase of OC5 examined two simple cylinder structures (Phase Ia and Ib) to focus on validation of hydrodynamic models used in the various tools before moving on to more complex offshore wind systems and the associated coupled physics. As a result, verification and validation activities such as these lead to improvement of offshore wind modelling tools, which will enable the development of more innovative and cost-effective offshore wind designs.« less
Visualization and Analysis of Vortex-Turbine Intersections in Wind Farms.
Shafii, Sohail; Obermaier, Harald; Linn, Rodman; Koo, Eunmo; Hlawitschka, Mario; Garth, Christoph; Hamann, Bernd; Joy, Kenneth
2013-02-13
Characterizing the interplay between the vortices and forces acting on a wind turbine's blades in a qualitative and quantitative way holds the potential for significantly improving large wind turbine design. The paper introduces an integrated pipeline for highly effective wind and force field analysis and visualization. We extract vortices induced by a turbine's rotation in a wind field, and characterize vortices in conjunction with numerically simulated forces on the blade surfaces as these vortices strike another turbine's blades downstream. The scientifically relevant issue to be studied is the relationship between the extracted, approximate locations on the blades where vortices strike the blades and the forces that exist in those locations. This integrated approach is used to detect and analyze turbulent flow that causes local impact on the wind turbine blade structure. The results that we present are based on analyzing the wind and force field data sets generated by numerical simulations, and allow domain scientists to relate vortex-blade interactions with power output loss in turbines and turbine life-expectancy. Our methods have the potential to improve turbine design in order to save costs related to turbine operation and maintenance.
Effect of topography on wind turbine power and load fluctuations
NASA Astrophysics Data System (ADS)
Santoni, Christian; Ciri, Umberto; Leonardi, Stefano
2015-11-01
Onshore wind turbines produce more than 17 GW in the US, which constitutes 4 . 4 % of all the energy produced. Sites selection is mostly determined by the atmospheric conditions and the topographical characteristics of the region. While the effect of the atmospheric boundary layer had been widely studied, less attention has been given to the effect of the topography on the wind turbine aerodynamics. To address how the topography affects the flow, Large Eddy Simulations of the flow over a wind turbine placed over wavy wall are performed. The wavelength of the wavy terrain, λ, is 1 . 7 D where D is the turbine rotor diameter. Two different values of the height of the wavy wall, a / D = 0 . 05 and a / D = 0 . 10 have been considered. In addition, two positions of the turbine with respect to the wavy wall had been studied, on the crest and trough of the wavy wall and compared with a wind turbine over a flat wall. For the turbine located at the crest, the pressure gradient due to the wavy wall caused a recirculation behind the wind tower 2 . 5 D larger than that of the smooth wall. When placed at the trough of the wavy terrain, the favorable pressure gradient increases the wake velocity near the wall and promotes entrainment into the turbine wake. Numerical simulations were performed on XSEDE TACC, Grant CTS070066. This work was supported by the NSF, grant IIA-1243482 (WINDINSPIRE).
NASA Technical Reports Server (NTRS)
Garbutt, K. S.; Goodyer, M. J.
1994-01-01
Models featuring the simulation of exhaust jets were developed for magnetic levitation in a wind tunnel. The exhaust gas was stored internally producing a discharge of sufficient duration to allow nominal steady state to be reached. The gas was stored in the form of compressed gas or a solid rocket propellant. Testing was performed with the levitated models although deficiencies prevented the detection of jet-induced aerodynamic effects. Difficulties with data reduction led to the development of a new force calibration technique, used in conjunction with an exhaust simulator and also in separate high incidence aerodynamic tests.
Effects of simulated rain acidified with sulfuric acid on host-parasite interactions
D. S. Shriner
1976-01-01
Wind-blown rain, rain splash, and films of free moisture play important roles in the epidemiology of many plant diseases. The effects of simulated rain acidified with sulfuric acid were studied on several host-parasite systems. Plants were exposed, in greenhouse or field, to simulated rain of pH 3.2 ? 0.1 or pH 6.0 ? 0.2. Simulated "rain" of pH 3.2 resulted...
Simulation of a 7.7 MW onshore wind farm with the Actuator Line Model
NASA Astrophysics Data System (ADS)
Guggeri, A.; Draper, M.; Usera, G.
2017-05-01
Recently, the Actuator Line Model (ALM) has been evaluated with coarser resolution and larger time steps than what is generally recommended, taking into account an atmospheric sheared and turbulent inflow condition. The aim of the present paper is to continue these studies, assessing the capability of the ALM to represent the wind turbines’ interactions in an onshore wind farm. The ‘Libertad’ wind farm, which consists of four 1.9MW Vestas V100 wind turbines, was simulated considering different wind directions, and the results were compared with the wind farm SCADA data, finding good agreement between them. A sensitivity analysis was performed to evaluate the influence of the spatial resolution, finding acceptable agreement, although some differences were found. It is believed that these differences are due to the characteristics of the different Atmospheric Boundary Layer (ABL) simulations taken as inflow condition (precursor simulations).
NASA Technical Reports Server (NTRS)
Streeter, Barry G.
1986-01-01
A preliminary study of the exhaust flow from the Ames Research Center 80 by 120 Foot Wind Tunnel indicated that the flow might pose a hazard to low-flying light aircraft operating in the Moffett Field traffic pattern. A more extensive evaluation of the potential hazard was undertaken using a fixed-base, piloted simulation of a light, twin-engine, general-aviation aircraft. The simulated aircraft was flown through a model of the wind tunnel exhaust by pilots of varying experience levels to develop a data base of aircraft and pilot reactions. It is shown that a light aircraft would be subjected to a severe disturbance which, depending upon entry condition and pilot reaction, could result in a low-altitude stall or cause damage to the aircraft tail structure.
NASA Astrophysics Data System (ADS)
Stefanello, M. B.; Degrazia, G. A.; Mortarini, L.; Buligon, L.; Maldaner, S.; Carvalho, J. C.; Acevedo, O. C.; Martins, L. G. N.; Anfossi, D.; Buriol, C.; Roberti, D.
2018-02-01
Describing the effects of wind meandering motions on the dispersion of scalars is a challenging task, since this type of flow represents a physical state characterized by multiple scales. In this study, a Lagrangian stochastic diffusion model is derived to describe scalar transport during the horizontal wind meandering phenomenon that occurs within a planetary boundary layer. The model is derived from the linearization of the Langevin equation, and it employs a heuristic functional form that represents the autocorrelation function of meandering motion. The new solutions, which describe the longitudinal and lateral wind components, were used to simulate tracer experiments that were performed in low-wind speed conditions. The results of the comparison indicate that the new model can effectively reproduce the observed concentrations of the contaminants, and therefore, it can satisfactorily describe enhanced dispersion effects due to the presence of meandering.
Turbulence Modelling in Wind Turbine Wakes =
NASA Astrophysics Data System (ADS)
Olivares Espinosa, Hugo
With the expansion of the wind energy industry, wind parks have become a common appearance in our landscapes. Owing to restrictions of space or to economic reasons, wind turbines are located close to each other in wind farms. This causes interference problems which reduce the efficiency of the array. In particular, the wind turbine wakes increase the level of turbulence and cause a momentum defect that may lead to an increase of mechanical loads and to a reduction of power output. Thus, it is important for the wind energy industry to predict the characteristics of the turbulence field in the wakes with the purpose of increasing the efficiency of the power extraction. Since this is a phenomenon of intrinsically non-linear nature, it can only be accurately described by the full set of the Navier-Stokes equations. Furthermore, a proper characterization of turbulence cannot be made without resolving the turbulent motions, so neither linearized models nor the widely used Reynolds-Averaged Navier-Stokes model can be employed. Instead, Large-Eddy Simulations (LES) provide a feasible alternative, where the energy containing fluctuations of the velocity field are resolved and the effects of the smaller eddies are modelled through a sub-grid scale component. The objective of this work is the modelling of turbulence in wind turbine wakes in a homogeneous turbulence inflow. A methodology has been developed to fulfill this objective. Firstly, a synthetic turbulence field is introduced into a computational domain where LES are performed to simulate a decaying turbulence flow. Secondly, the Actuator Disk (AD) technique is employed to simulate the effect of a rotor in the incoming flow and produce a turbulent wake. The implementation is carried out in OpenFOAM, an open-source CFD platform, resembling a well documented procedure previously used for wake flow simulations. Results obtained with the proposed methodology are validated by comparing with values obtained from wind tunnel experiments. In addition, simulations are also carried out with EllipSys3D, a code widely used and tested for computations of wind turbine wakes, the results of which provide a useful reference. Despite a limited grid resolution with respect to the size of the inflow turbulence structures, the results show that the turbulence characteristics in both the decaying turbulence and in the wake field are aptly reproduced. These observations are accompanied by an assessment of the LES modelling, which is found to be adequate in the simulations. An analysis of the longitudinal evolution of the turbulence lengthscales shows that within the wake, they develop mostly as in the free decaying turbulence. Furthermore, both codes predict that the lengthscales of the ambience turbulence dominate across the wake, with little effect caused by the shear layer at the wake envelope. These remarks are supported by an examination of features in the energy spectra along the wake. Also in this thesis, the wake turbulence fields produced by two different AD models are compared: a uniformly loaded disk and a model that includes the effects of tangential velocities and considers airfoil blade properties. The latter includes a rotational velocity controller to simulate the real conditions of variable speed turbines. Results show that the differences observed between the models in the near wake field are reduced further downstream. Also, it is seen that these disparities decrease when a turbulent inflow is employed, in comparison with the non-turbulent case. These observations confirm the assumption that uniformly loaded disks are adequate to model the far wake. In addition, the control method is shown to adjust to the local inflow conditions, regulating the rotational speed accordingly, while the computed performance proves that the implementation represents well the modelled rotor design. The results obtained in this work show that the presented methodology can succesfuly be used in the modelling and analysis of turbulence in wake flows. None None None
Simulated star formation rate functions at z ˜ 4-7, and the role of feedback in high-z galaxies
NASA Astrophysics Data System (ADS)
Tescari, E.; Katsianis, A.; Wyithe, J. S. B.; Dolag, K.; Tornatore, L.; Barai, P.; Viel, M.; Borgani, S.
2014-03-01
We study the role of feedback from supernovae (SN) and black holes in the evolution of the star formation rate function (SFRF) of z ˜ 4-7 galaxies. We use a new set of cosmological hydrodynamic simulations, ANGUS (AustraliaN GADGET-3 early Universe Simulations), run with a modified and improved version of the parallel TreePM-smoothed particle hydrodynamics code GADGET-3 called P-GADGET3(XXL), that includes a self-consistent implementation of stellar evolution and metal enrichment. In our simulations both SN-driven galactic winds and active galactic nuclei (AGN) act simultaneously in a complex interplay. The SFRF is insensitive to feedback prescription at z > 5, meaning that it cannot be used to discriminate between feedback models during reionization. However, the SFRF is sensitive to the details of feedback prescription at lower redshift. By exploring different SN-driven wind velocities and regimes for the AGN feedback, we find that the key factor for reproducing the observed SFRFs is a combination of `strong' SN winds and early AGN feedback in low-mass galaxies. Conversely, we show that the choice of initial mass function and inclusion of metal cooling have less impact on the evolution of the SFRF. When variable winds are considered, we find that a non-aggressive wind scaling is needed to reproduce the SFRFs at z ≳ 4. Otherwise, the amount of objects with low SFRs is greatly suppressed and at the same time winds are not effective enough in the most massive systems.
NASA Technical Reports Server (NTRS)
Baker, L. R.; Sulyma, P. R.; Tevepaugh, J. A.; Penny, M. M.
1976-01-01
Since exhaust plumes affect vehicle base environment (pressure and heat loads) and the orbiter vehicle aerodynamic control surface effectiveness, an intensive program involving detailed analytical and experimental investigations of the exhaust plume/vehicle interaction was undertaken as a pertinent part of the overall space shuttle development program. The program, called the Plume Technology program, has as its objective the determination of the criteria for simulating rocket engine (in particular, space shuttle propulsion system) plume-induced aerodynamic effects in a wind tunnel environment. The comprehensive experimental program was conducted using test facilities at NASA's Marshall Space Flight Center and Ames Research Center. A post-test examination of some of the experimental results obtained from NASA-MSFC's 14 x 14-inch trisonic wind tunnel is presented. A description is given of the test facility, simulant gas supply system, nozzle hardware, test procedure and test matrix. Analysis of exhaust plume flow fields and comparison of analytical and experimental exhaust plume data are presented.
SOWFA Super-Controller: A High-Fidelity Tool for Evaluating Wind Plant Control Approaches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleming, P.; Gebraad, P.; van Wingerden, J. W.
2013-01-01
This paper presents a new tool for testing wind plant controllers in the Simulator for Offshore Wind Farm Applications (SOWFA). SOWFA is a high-fidelity simulator for the interaction between wind turbine dynamics and the fluid flow in a wind plant. The new super-controller testing environment in SOWFA allows for the implementation of the majority of the wind plant control strategies proposed in the literature.
The Impact of Galactic Winds on the Angular Momentum of Disk Galaxies in the Illustris Simulation
NASA Astrophysics Data System (ADS)
DeFelippis, Daniel; Genel, Shy; Bryan, Greg L.; Fall, S. Michael
2017-05-01
Observed galactic disks have specific angular momenta similar to expectations for typical dark matter halos in ΛCDM. Cosmological hydrodynamical simulations have recently reproduced this similarity in large galaxy samples by including strong galactic winds, but the exact mechanism that achieves this is not yet clear. Here we present an analysis of key aspects contributing to this relation: angular momentum selection and evolution of Lagrangian mass elements as they accrete onto dark matter halos, condense into Milky-Way-scale galaxies, and join the z = 0 stellar phase. We contrast this evolution in the Illustris simulation with that in a simulation without galactic winds, where the z = 0 angular momentum is ≈ 0.6 {dex} lower. We find that winds induce differences between these simulations in several ways: increasing angular momentum, preventing angular momentum loss, and causing z = 0 stars to sample the accretion-time angular momentum distribution of baryons in a biased way. In both simulations, gas loses on average ≈ 0.4 {dex} between accreting onto halos and first accreting onto central galaxies. In Illustris, this is followed by ≈ 0.2 {dex} gains in the “galactic wind fountain” and no further net evolution past the final accretion onto the galaxy. Without feedback, further losses of ≈ 0.2 {dex} occur in the gas phase inside the galaxies. An additional ≈ 0.15 {dex} difference arises from feedback preferentially selecting higher angular momentum gas at accretion by expelling gas that is poorly aligned. These and additional effects of similar magnitude are discussed, suggesting a complex origin of the similarity between the specific angular momenta of galactic disks and typical halos.
Extreme storm surge and wind wave climate scenario simulations at the Venetian littoral
NASA Astrophysics Data System (ADS)
Lionello, P.; Galati, M. B.; Elvini, E.
Scenario climate projections for extreme marine storms producing storm surges and wind waves are very important for the northern flat coast of the Adriatic Sea, where the area at risk includes a unique cultural and environmental heritage, and important economic activities. This study uses a shallow water model and a spectral wave model for computing the storm surge and the wind wave field, respectively, from the sea level pressure and wind fields that have been computed by the RegCM regional climate model. Simulations cover the period 1961-1990 for the present climate (control simulations) and the period 2071-2100 for the A2 and B2 scenarios. Generalized Extreme Value analysis is used for estimating values for the 10 and 100 year return times. The adequacy of these modeling tools for a reliable estimation of the climate change signal, without needing further downscaling is shown. However, this study has mainly a methodological value, because issues such as interdecadal variability and intermodel variability cannot be addressed, since the analysis is based on single model 30-year long simulations. The control simulation looks reasonably accurate for extreme value analysis, though it overestimates/underestimates the frequency of high/low surge and wind wave events with respect to observations. Scenario simulations suggest higher frequency of intense storms for the B2 scenario, but not for the A2. Likely, these differences are not the effect of climate change, but of climate multidecadal variability. Extreme storms are stronger in future scenarios, but differences are not statistically significant. Therefore this study does not provide convincing evidence for more stormy conditions in future scenarios.
Kinetic structures of quasi-perpendicular shocks in global particle-in-cell simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Ivy Bo, E-mail: bopeng@kth.se; Markidis, Stefano; Laure, Erwin
2015-09-15
We carried out global Particle-in-Cell simulations of the interaction between the solar wind and a magnetosphere to study the kinetic collisionless physics in super-critical quasi-perpendicular shocks. After an initial simulation transient, a collisionless bow shock forms as a result of the interaction of the solar wind and a planet magnetic dipole. The shock ramp has a thickness of approximately one ion skin depth and is followed by a trailing wave train in the shock downstream. At the downstream edge of the bow shock, whistler waves propagate along the magnetic field lines and the presence of electron cyclotron waves has beenmore » identified. A small part of the solar wind ion population is specularly reflected by the shock while a larger part is deflected and heated by the shock. Solar wind ions and electrons are heated in the perpendicular directions. Ions are accelerated in the perpendicular direction in the trailing wave train region. This work is an initial effort to study the electron and ion kinetic effects developed near the bow shock in a realistic magnetic field configuration.« less
CFD simulation research on residential indoor air quality.
Yang, Li; Ye, Miao; He, Bao-Jie
2014-02-15
Nowadays people are excessively depending on air conditioning to create a comfortable indoor environment, but it could cause some health problems in a long run. In this paper, wind velocity field, temperature field and air age field in a bedroom with wall-hanging air conditioning running in summer are analyzed by CFD numerical simulation technology. The results show that wall-hanging air conditioning system can undertake indoor heat load and conduct good indoor thermal comfort. In terms of wind velocity, air speed in activity area where people sit and stand is moderate, most of which cannot feel wind flow and meet the summer indoor wind comfort requirement. However, for air quality, there are local areas without ventilation and toxic gases not discharged in time. Therefore it is necessary to take effective measures to improve air quality. Compared with the traditional measurement method, CFD software has many advantages in simulating indoor environment, so it is hopeful for humans to create a more comfortable, healthy living environment by CFD in the future. Copyright © 2013 Elsevier B.V. All rights reserved.
Flow adjustment inside large finite-size wind farms approaching the infinite wind farm regime
NASA Astrophysics Data System (ADS)
Wu, Ka Ling; Porté-Agel, Fernando
2017-04-01
Due to the increasing number and the growing size of wind farms, the distance among them continues to decrease. Thus, it is necessary to understand how these large finite-size wind farms and their wakes could interfere the atmospheric boundary layer (ABL) dynamics and adjacent wind farms. Fully-developed flow inside wind farms has been extensively studied through numerical simulations of infinite wind farms. The transportation of momentum and energy is only vertical and the advection of them is neglected in these infinite wind farms. However, less attention has been paid to examine the length of wind farms required to reach such asymptotic regime and the ABL dynamics in the leading and trailing edges of the large finite-size wind farms. Large eddy simulations are performed in this study to investigate the flow adjustment inside large finite-size wind farms in conventionally-neutral boundary layer with the effect of Coriolis force and free-atmosphere stratification from 1 to 5 K/km. For the large finite-size wind farms considered in the present work, when the potential temperature lapse rate is 5 K/km, the wind farms exceed the height of the ABL by two orders of magnitude for the incoming flow inside the farms to approach the fully-developed regime. An entrance fetch of approximately 40 times of the ABL height is also required for such flow adjustment. At the fully-developed flow regime of the large finite-size wind farms, the flow characteristics match those of infinite wind farms even though they have different adjustment length scales. The role of advection at the entrance and exit regions of the large finite-size wind farms is also examined. The interaction between the internal boundary layer developed above the large finite-size wind farms and the ABL under different potential temperature lapse rates are compared. It is shown that the potential temperature lapse rate plays a role in whether the flow inside the large finite-size wind farms adjusts to the fully-developed flow regime. The flow characteristics of the wake of these large finite-size wind farms are reported to forecast the effect of large finite-size wind farms on adjacent wind farms. A power deficit as large as 8% is found at a distance of 10 km downwind from the large finite-size wind farms.
NASA Technical Reports Server (NTRS)
Campbell, C. W.
1984-01-01
A three dimensional model which combines measurements of wind shear in the real atmosphere with three dimensional Monte Carlo simulated turbulence was developed. The wind field over the body of an aircraft can be simulated and all aerodynamic loads and moments calculated.
Wake flow control using a dynamically controlled wind turbine
NASA Astrophysics Data System (ADS)
Castillo, Ricardo; Wang, Yeqin; Pol, Suhas; Swift, Andy; Hussain, Fazle; Westergaard, Carsten; Texas Tech University Team
2016-11-01
A wind tunnel based "Hyper Accelerated Wind Farm Kinematic-Control Simulator" (HAWKS) is being built at Texas Tech University to emulate controlled wind turbine flow physics. The HAWKS model turbine has pitch, yaw and speed control which is operated in real model time, similar to that of an equivalent full scale turbine. Also, similar to that of a full scale wind turbine, the controls are developed in a Matlab Simulink environment. The current diagnostic system consists of power, rotor position, rotor speed measurements and PIV wake characterization with four cameras. The setup allows up to 7D downstream of the rotor to be mapped. The purpose of HAWKS is to simulate control strategies at turnaround times much faster than CFD and full scale testing. The fundamental building blocks of the simulator have been tested, and demonstrate wake steering for both static and dynamic turbine actuation. Parameters which have been studied are yaw, rotor speed and combinations hereof. The measured wake deflections for static yaw cases are in agreement with previously reported research implying general applicability of the HAWKS platform for the purpose of manipulating the wake. In this presentation the general results will be introduced followed by an analysis of the wake turbulence and coherent structures when comparing static and dynamic flow cases. The outcome of such studies could ultimately support effective wind farm wake flow control strategies. Texas Emerging Technology Fund (ETF).
Influence of atmospheric stability on wind-turbine wakes: A large-eddy simulation study
NASA Astrophysics Data System (ADS)
Abkar, Mahdi; Porté-Agel, Fernando
2014-05-01
In this study, large-eddy simulation is combined with a turbine model to investigate the influence of atmospheric stability on wind-turbine wakes. In the simulations, subgrid-scale turbulent fluxes are parameterized using tuning-free Lagrangian scale-dependent dynamic models. These models optimize the local value of the model coefficients based on the dynamics of the resolved scales. The turbine-induced forces are parameterized with an actuator-disk model with rotation. In this technique, blade-element theory is used to calculate the lift and drag forces acting on the blades. Emphasis is placed on the structure and characteristics of wind-turbine wakes in the cases where the incident flows to the turbine have the same mean velocity at the hub height but different stability conditions. The simulation results show that atmospheric stability has a significant effect on the spatial distribution of the mean velocity deficit and turbulent fluxes in the wake region. In particular, the magnitude of the velocity deficit increases with increasing stability in the atmosphere. In addition, the locations of the maximum turbulence intensity and turbulent stresses are closer to the turbine in convective boundary layer compared with neutral and stable ones. Detailed analysis of the resolved turbulent kinetic energy (TKE) budget inside the wake reveals also that the thermal stratification of the incoming wind considerably affects the magnitude and spatial distribution of the turbulent production, transport term and dissipation rate (transfer of energy to the subgrid scales). It is also shown that the near-wake region can be extended to a farther distance downstream in stable condition compared with neutral and unstable counterparts. In order to isolate the effect of atmospheric stability, additional simulations of neutrally-stratified atmospheric boundary layers are performed with the same turbulence intensity at hub height as convective and stable ones. The results show that the turbulence intensity alone is not sufficient to describe the impact of atmospheric stability on the wind-turbine wakes.
NASA Astrophysics Data System (ADS)
Carvalho, David Joao da Silva
The high dependence of Portugal from foreign energy sources (mainly fossil fuels), together with the international commitments assumed by Portugal and the national strategy in terms of energy policy, as well as resources sustainability and climate change issues, inevitably force Portugal to invest in its energetic self-sufficiency. The 20/20/20 Strategy defined by the European Union defines that in 2020 60% of the total electricity consumption must come from renewable energy sources. Wind energy is currently a major source of electricity generation in Portugal, producing about 23% of the national total electricity consumption in 2013. The National Energy Strategy 2020 (ENE2020), which aims to ensure the national compliance of the European Strategy 20/20/20, states that about half of this 60% target will be provided by wind energy. This work aims to implement and optimise a numerical weather prediction model in the simulation and modelling of the wind energy resource in Portugal, both in offshore and onshore areas. The numerical model optimisation consisted in the determination of which initial and boundary conditions and planetary boundary layer physical parameterizations options provide wind power flux (or energy density), wind speed and direction simulations closest to in situ measured wind data. Specifically for offshore areas, it is also intended to evaluate if the numerical model, once optimised, is able to produce power flux, wind speed and direction simulations more consistent with in situ measured data than wind measurements collected by satellites. This work also aims to study and analyse possible impacts that anthropogenic climate changes may have on the future wind energetic resource in Europe. The results show that the ECMWF reanalysis ERA-Interim are those that, among all the forcing databases currently available to drive numerical weather prediction models, allow wind power flux, wind speed and direction simulations more consistent with in situ wind measurements. It was also found that the Pleim-Xiu and ACM2 planetary boundary layer parameterizations are the ones that showed the best performance in terms of wind power flux, wind speed and direction simulations. This model optimisation allowed a significant reduction of the wind power flux, wind speed and direction simulations errors and, specifically for offshore areas, wind power flux, wind speed and direction simulations more consistent with in situ wind measurements than data obtained from satellites, which is a very valuable and interesting achievement. This work also revealed that future anthropogenic climate changes can negatively impact future European wind energy resource, due to tendencies towards a reduction in future wind speeds especially by the end of the current century and under stronger radiative forcing conditions.
NASA Astrophysics Data System (ADS)
Lee, Joseph C. Y.; Lundquist, Julie K.
2017-11-01
Forecasts of wind-power production are necessary to facilitate the integration of wind energy into power grids, and these forecasts should incorporate the impact of wind-turbine wakes. This paper focuses on a case study of four diurnal cycles with significant power production, and assesses the skill of the wind farm parameterization (WFP) distributed with the Weather Research and Forecasting (WRF) model version 3.8.1, as well as its sensitivity to model configuration. After validating the simulated ambient flow with observations, we quantify the value of the WFP as it accounts for wake impacts on power production of downwind turbines. We also illustrate with statistical significance that a vertical grid with approximately 12 m vertical resolution is necessary for reproducing the observed power production. Further, the WFP overestimates wake effects and hence underestimates downwind power production during high wind speed, highly stable, and low turbulence conditions. We also find the WFP performance is independent of the number of wind turbines per model grid cell and the upwind-downwind position of turbines. Rather, the ability of the WFP to predict power production is most dependent on the skill of the WRF model in simulating the ambient wind speed.
Lee, Joseph C. Y.; Lundquist, Julie K.
2017-11-23
Forecasts of wind-power production are necessary to facilitate the integration of wind energy into power grids, and these forecasts should incorporate the impact of wind-turbine wakes. Our paper focuses on a case study of four diurnal cycles with significant power production, and assesses the skill of the wind farm parameterization (WFP) distributed with the Weather Research and Forecasting (WRF) model version 3.8.1, as well as its sensitivity to model configuration. After validating the simulated ambient flow with observations, we quantify the value of the WFP as it accounts for wake impacts on power production of downwind turbines. We also illustratemore » with statistical significance that a vertical grid with approximately 12 m vertical resolution is necessary for reproducing the observed power production. Further, the WFP overestimates wake effects and hence underestimates downwind power production during high wind speed, highly stable, and low turbulence conditions. We also find the WFP performance is independent of the number of wind turbines per model grid cell and the upwind–downwind position of turbines. Rather, the ability of the WFP to predict power production is most dependent on the skill of the WRF model in simulating the ambient wind speed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Joseph C. Y.; Lundquist, Julie K.
Forecasts of wind-power production are necessary to facilitate the integration of wind energy into power grids, and these forecasts should incorporate the impact of wind-turbine wakes. Our paper focuses on a case study of four diurnal cycles with significant power production, and assesses the skill of the wind farm parameterization (WFP) distributed with the Weather Research and Forecasting (WRF) model version 3.8.1, as well as its sensitivity to model configuration. After validating the simulated ambient flow with observations, we quantify the value of the WFP as it accounts for wake impacts on power production of downwind turbines. We also illustratemore » with statistical significance that a vertical grid with approximately 12 m vertical resolution is necessary for reproducing the observed power production. Further, the WFP overestimates wake effects and hence underestimates downwind power production during high wind speed, highly stable, and low turbulence conditions. We also find the WFP performance is independent of the number of wind turbines per model grid cell and the upwind–downwind position of turbines. Rather, the ability of the WFP to predict power production is most dependent on the skill of the WRF model in simulating the ambient wind speed.« less
RANS Simulation (Actuator Disk Model[ADM]) of the NREL Phase VI wind turbine modeled as MHK Turbine
Javaherchi, Teymour
2016-06-08
Attached are the .cas and .dat files for the Reynolds Averaged Navier-Stokes (RANS) simulation of a single lab-scaled DOE RM1 turbine implemented in ANSYS FLUENT CFD-package. In this case study the flow field around and in the wake of the NREL Phase VI wind turbine, modeled is MHK turbine, is simulated using Actuator Disk Model (a.k.a Porous Media) by solving RANS equations coupled with a turbulence closure model. It should be highlighted that in this simulation the actual geometry of the rotor blade is not modeled. The effect of turbine rotating blades are modeled using the Actuator Disk Theory (see the stated section of attached M.Sc. thesis for more details).
Cornioley, Tina; Börger, Luca; Ozgul, Arpat; Weimerskirch, Henri
2016-09-01
Wind is an important climatic factor for flying animals as by affecting their locomotion, it can deeply impact their life-history characteristics. In the context of globally changing wind patterns, we investigated the mechanisms underlying recently reported increase in body mass of a population of wandering albatrosses (Diomedea exulans) with increasing wind speed over time. We built a foraging model detailing the effects of wind on movement statistics and ultimately on mass gained by the forager and mass lost by the incubating partner. We then simulated the body mass of incubating pairs under varying wind scenarios. We tracked the frequency at which critical mass leading to nest abandonment was reached to assess incubation success. We found that wandering albatrosses behave as time minimizers during incubation as mass gain was independent of any movement statistics but decreased with increasing mass at departure. Individuals forage until their energy requirements, which are determined by their body conditions, are fulfilled. This can come at the cost of their partner's condition as mass loss of the incubating partner depended on trip duration. This behaviour is consistent with strategies of long-lived species which favoured their own survival over their current reproductive attempt. In addition, wind speed increased ground speed which in turn reduced trip duration and males foraged further away than females at high ground speed. Contrasted against an independent data set, the simulation performed satisfactorily for males but less so for females under current wind conditions. The simulation predicted an increase in male body mass growth rate with increasing wind speed, whereas females' rate decreased. This trend may provide an explanation for the observed increase in mass of males but not of females. Conversely, the simulation predicted very few nest abandonments, which is in line with the high breeding success of this species and is contrary to the hypothesis that wind patterns impact incubation success by altering foraging movement. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.
Numerical modeling and preliminary validation of drag-based vertical axis wind turbine
NASA Astrophysics Data System (ADS)
Krysiński, Tomasz; Buliński, Zbigniew; Nowak, Andrzej J.
2015-03-01
The main purpose of this article is to verify and validate the mathematical description of the airflow around a wind turbine with vertical axis of rotation, which could be considered as representative for this type of devices. Mathematical modeling of the airflow around wind turbines in particular those with the vertical axis is a problematic matter due to the complex nature of this highly swirled flow. Moreover, it is turbulent flow accompanied by a rotation of the rotor and the dynamic boundary layer separation. In such conditions, the key aspects of the mathematical model are accurate turbulence description, definition of circular motion as well as accompanying effects like centrifugal force or the Coriolis force and parameters of spatial and temporal discretization. The paper presents the impact of the different simulation parameters on the obtained results of the wind turbine simulation. Analysed models have been validated against experimental data published in the literature.
NASA Technical Reports Server (NTRS)
Pegg, Robert J.; Connor, Andrew B.
1960-01-01
An investigation with a variable-stability helicopter was undertaken to ascertain the steadiness and ability to "hold on" to the target of a helicopter employed as a gun platform. Simulated tasks were per formed under differing flight conditions with the control-response characteristics of the helicopter varied for each task. The simulated gun-platform mission included: Variations of headings with respect to wind, constant altitude and "swing around" to a wind heading of 0 deg, and increases in altitude while performing a swing around to a wind heading of 0 deg. The results showed that increases in control power and damping increased pilot ability to hold on to the target with fewer yawing oscillations and in a shorter time. The results also indicated that wind direction must be considered in accuracy assessment. Greatest accuracy throughout these tests was achieved by aiming upwind.
Galactic wind shells and high redshift radio galaxies. On the nature of associated absorbers
NASA Astrophysics Data System (ADS)
Krause, M.
2005-06-01
A jet is simulated on the background of a galactic wind headed by a radiative bow shock. The wind shell, which is due to the radiative bow shock, is effectively destroyed by the impact of the jet cocoon, thanks to Rayleigh-Taylor instabilities. Associated strong HI absorption, and possibly also molecular emission, in high redshift radio galaxies which is observed preferentially in the smaller ones may be explained by that model, which is an improvement of an earlier radiative bow shock model. The model requires temperatures of ≈106 K in the proto-clusters hosting these objects, and may be tested by high resolution spectroscopy of the Lyα line. The simulations show that - before destruction - the jet cocoon fills the wind shell entirely for a considerable time with intact absorption system. Therefore, radio imaging of sources smaller than the critical size should reveal the round central bubbles, if the model is correct.
Numerical Simulations of Laminar Air-Water Flow of a Non-linear Progressive Wave at Low Wind Speed
NASA Astrophysics Data System (ADS)
Wen, X.; Mobbs, S.
2014-03-01
A numerical simulation for two-dimensional laminar air-water flow of a non-linear progressive water wave with large steepness is performed when the background wind speed varies from zero to the wave phase speed. It is revealed that in the water the difference between the analytical solution of potential flow and numerical solution of viscous flow is very small, indicating that both solutions of the potential flow and viscous flow describe the water wave very accurately. In the air the solutions of potential and viscous flows are very different due to the effects of viscosity. The velocity distribution in the airflow is strongly influenced by the background wind speed and it is found that three wind speeds, , (the maximum orbital velocity of a water wave), and (the wave phase speed), are important in distinguishing different features of the flow patterns.
On the violation of gradient wind balance at the top of tropical cyclones
NASA Astrophysics Data System (ADS)
Cohen, Yair; Harnik, Nili; Heifetz, Eyal; Nolan, David S.; Tao, Dandan; Zhang, Fuqing
2017-08-01
The existence of physical solutions for the gradient wind balance is examined at the top of 12 simulated tropical cyclones. The pressure field at the top of these storms, which depends on the vertically integrated effect of the warm core and the near surface low, is found to violate the gradient wind balance—termed here as a state of nonbalance. Using a toy model, it is shown that slight changes in the relative location and relative widths of the warm core drastically increase the isobaric curvature at the upper level pressure maps leading to nonbalance. While idealized storms return to balance within several days, simulations of real-world tropical cyclones retain a considerable degree of nonbalance throughout the model integration. Comparing mean and maximum values of different storms shows that peak nonbalance correlates with either peak intensity or intensification, implying the possible importance of nonbalance at upper levels for the near surface winds.
NASA Astrophysics Data System (ADS)
Wharton, S.; Simpson, M.; Osuna, J. L.; Newman, J. F.; Biraud, S.
2013-12-01
Wind power forecasting is plagued with difficulties in accurately predicting the occurrence and intensity of atmospheric conditions at the heights spanned by industrial-scale turbines (~ 40 to 200 m above ground level). Better simulation of the relevant physics would enable operational practices such as integration of large fractions of wind power into power grids, scheduling maintenance on wind energy facilities, and deciding design criteria based on complex loads for next-generation turbines and siting. Accurately simulating the surface energy processes in numerical models may be critically important for wind energy forecasting as energy exchange at the surface strongly drives atmospheric mixing (i.e., stability) in the lower layers of the planetary boundary layer (PBL), which in turn largely determines wind shear and turbulence at heights found in the turbine rotor-disk. We hypothesize that simulating accurate a surface-atmosphere energy coupling should lead to more accurate predictions of wind speed and turbulence at heights within the turbine rotor-disk. Here, we tested 10 different land surface model configurations in the Weather Research and Forecasting (WRF) model including Noah, Noah-MP, SSiB, Pleim-Xiu, RUC, and others to evaluate (1) the accuracy of simulated surface energy fluxes to flux tower measurements, (2) the accuracy of forecasted wind speeds to observations at rotor-disk heights, and (3) the sensitivity of forecasting hub-height rotor disk wind speed to the choice of land surface model. WRF was run for four, two-week periods covering both summer and winter periods over the Southern Great Plains ARM site in Oklahoma. Continuous measurements of surface energy fluxes and lidar-based wind speed, direction and turbulence were also available. The SGP ARM site provided an ideal location for this evaluation as it centrally located in the wind-rich Great Plains and multi-MW wind farms are rapidly expanding in the area. We found significant differences in simulated wind speeds at rotor-disk heights from WRF which indicated, in part, the sensitivity of lower PBL winds to surface energy exchange. We also found significant differences in energy partitioning between sensible heat and latent energy depending on choice of land surface model. Overall, the most consistent, accurate model results were produced using Noah-MP. Noah-MP was most accurate at simulating energy fluxes and wind shear. Hub-height wind speed, however, was predicted with most accuracy with Pleim-Xiu. This suggests that simulating wind shear in the surface layer is consistent with accurately simulating surface energy exchange while the exact magnitudes of wind speed may be more strongly influenced by the PBL dynamics. As the nation is working towards a 20% wind energy goal by 2030, increasing the accuracy of wind forecasting at rotor-disk heights becomes more important considering that utilities require wind farms to estimate their power generation 24 to 36 hours ahead and face penalties for inaccuracies in those forecasts.
Determining effects of turbine blades on fluid motion
Linn, Rodman Ray [Los Alamos, NM; Koo, Eunmo [Los Alamos, NM
2012-05-01
Disclosed is a technique for simulating wind interaction with wind turbines. A turbine blade is divided into radial sections. The effect that each of these radial sections has on the velocities in Eulerian computational cells they overlap is determined. The effect is determined using Lagrangian techniques such that the calculations need not include wind components in the radial direction. A force on each radial section of turbine blade is determined. This force depends on the axial and azimuthal components of the fluid flow in the computational cell and the geometric properties of the turbine blade. The force on the turbine blade is fed back to effect the fluid flow in the computational cell for the next time step.
Determining effects of turbine blades on fluid motion
Linn, Rodman Ray [Los Alamos, NM; Koo, Eunmo [Los Alamos, NM
2011-05-31
Disclosed is a technique for simulating wind interaction with wind turbines. A turbine blade is divided into radial sections. The effect that each of these radial sections has on the velocities in Eulerian computational cells they overlap is determined. The effect is determined using Lagrangian techniques such that the calculations need not include wind components in the radial direction. A force on each radial section of turbine blade is determined. This force depends on the axial and azimuthal components of the fluid flow in the computational cell and the geometric properties of the turbine blade. The force on the turbine blade is fed back to effect the fluid flow in the computational cell for the next time step.
Liftoff and Transition Aerodynamics of the Ares I (A106) Launch Vehicle
NASA Technical Reports Server (NTRS)
Capone, Francis J.; Paulson, John W., Jr.; Erickson, Gary E.
2011-01-01
An investigation has been conducted in the NASA Langley Research Center 14- by 22- Foot Subsonic Wind Tunnel to obtain the liftoff and transition aerodynamics of the Ares I (A106) Crew Launch Vehicle. Data were obtained in free-air at angles of attack from 10 to 90 at various roll angles and at roll angles of 0 to 360 at various angles of attack. In addition, tower effects were assessed by testing with and without a mobile launcher/tower at all wind azimuth angles and at various model heights to simulate the rise of the vehicle as it clears the tower on launch. The free-air data will be used for low speed high angle of attack flight simulation and as a bridge to the low angle of attack ascent database (0.5 < Mach < 5.0) being developed with data from the Langley Unitary Plan Wind Tunnel and Boeing Polysonic Wind Tunnel. The Ares I Database Development Team will add incremental tower effects data to the free-air data to develop the database for tower clearance.
NASA Astrophysics Data System (ADS)
Harbach, Laura Marshall; Drake, Jeremy J.; Garraffo, Cecilia; Alvarado-Gomez, Julian D.; Moschou, Sofia P.; Cohen, Ofer
2018-01-01
Recently, three rocky planets were discovered in the habitable zone of the nearby planetary system TRAPPIST-1. The increasing number of exoplanet detections has led to further research into the planetary requirements for sustaining life. Habitable zone occupants have, in principle, the capacity to retain liquid water, whereas actual habitability might depend on atmospheric retention. However, stellar winds and photon radiation interactions with the planet can lead to severe atmospheric depletion and have a catastrophic impact on a planet’s habitability. While the implications of photoevaporation on atmospheric erosion have been researched to some degree, the influence of stellar winds and Coronal Mass Ejections (CMEs) has yet to be analyzed in detail. Here, we model the effect of the stellar wind and CMEs on the atmospheric envelope of a planet situated in the orbit of TRAPPIST-1e using 3D magnetohydrodynamic (MHD) simulations. In particular, we discuss the atmospheric loss due to the effect of a CME, and the relevance of the stellar and planetary magnetic fields on the sustainability of M-dwarf exoplanetary atmospheres.
The Wind Integration National Dataset (WIND) toolkit (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caroline Draxl: NREL
2014-01-01
Regional wind integration studies require detailed wind power output data at many locations to perform simulations of how the power system will operate under high penetration scenarios. The wind datasets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as being time synchronized with available load profiles.As described in this presentation, the WIND Toolkit fulfills these requirements by providing a state-of-the-art national (US) wind resource, power production and forecast dataset.
Hot planetary winds near a star: dynamics, wind-wind interactions, and observational signatures
NASA Astrophysics Data System (ADS)
Carroll-Nellenback, Jonathan; Frank, Adam; Liu, Baowei; Quillen, Alice C.; Blackman, Eric G.; Dobbs-Dixon, Ian
2017-04-01
Signatures of 'evaporative' winds from exoplanets on short (hot) orbits around their host star have been observed in a number of systems. In this paper, we present global adaptive mesh refinement simulations that track the launching of the winds, their expansion through the circumstellar environment, and their interaction with a stellar wind. We focus on purely hydrodynamic flows including the anisotropy of the wind launching and explore the orbital/fluid dynamics of the resulting flows in detail. In particular, we find that a combination of the tidal and Coriolis forces strongly distorts the planetary 'Parker' wind creating 'up-orbit' and 'down-orbit' streams. We characterize the flows in terms of their orbital elements that change depending on their launch position on the planet. We find that the anisotropy in the atmospheric temperature leads to significant backflow on to the planet. The planetary wind interacts strongly with the stellar wind creating instabilities that may cause eventual deposition of planetary gas on to the star. We present synthetic observations of both transit and absorption line-structure for our simulations. For our initial conditions, we find that the orbiting wind material produces absorption signatures at significant distances from the planet and substantial orbit-to-orbit variability. Lyα absorption shows red- and blueshifted features out to 70 km s-1. Finally, using semi-analytic models we constrain the effect of radiation pressure, given the approximation of uniform stellar absorption.
NASA Astrophysics Data System (ADS)
Sharma, V.; Parlange, M. B.; Calaf, M.
2017-02-01
The effect of extensive terrestrial wind farms on the spatio-temporal structure of the diurnally-evolving atmospheric boundary layer is explored. High-resolution large-eddy simulations of a realistic diurnal cycle with an embedded wind farm are performed. Simulations are forced by a constant geostrophic velocity with time-varying surface boundary conditions derived from a selected period of the CASES-99 field campaign. Through analysis of the bulk statistics of the flow as a function of height and time, it is shown that extensive wind farms shift the inertial oscillations and the associated nocturnal low-level jet vertically upwards by approximately 200 m; cause a three times stronger stratification between the surface and the rotor-disk region, and as a consequence, delay the formation and growth of the convective boundary layer (CBL) by approximately 2 h. These perturbations are shown to have a direct impact on the potential power output of an extensive wind farm with the displacement of the low-level jet causing lower power output during the night as compared to the day. The low-power regime at night is shown to persist for almost 2 h beyond the morning transition due to the reduced growth of the CBL. It is shown that the wind farm induces a deeper entrainment region with greater entrainment fluxes. Finally, it is found that the diurnally-averaged effective roughness length for wind farms is much lower than the reference value computed theoretically for neutral conditions.
The Azimuthally Averaged Boundary Layer Structure of a Numerically Simulated Major Hurricane
2015-08-14
layer in which the effects of sur- face friction are associated with significant departures from gradient wind balance. The boundary layer in the... effects of surface friction are associated with significant departures from gradient wind balance. More specifically, we follow Key Points: The...comprises a balance between three horizontal forces: Coriolis , pressure gradient, and friction. The boundary layer flow is characterized by a large Reynolds
Effect of Blade Roughness on Transition and Wind Turbine Performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ehrmann, Robert S.; White, E. B.
The real-world effect of accumulated surface roughness on wind-turbine power production is not well understood. To isolate specific blade roughness features and test their effect, field measurements of turbine-blade roughness were made and simulated on a NACA 633-418 airfoil in a wind tunnel. Insect roughness, paint chips, and erosion were characterized then manufactured. In the tests, these roughness configurations were recreated as distributed roughness, a forward-facing step, and an eroded leading edge. Distributed roughness was tested in three heights and five densities. Chord Reynolds number was varied between 0:8 to 4:8 × 10 6. Measurements included lift, drag, pitching moment,more » and boundary-layer transition location. Results indicate minimal effect from paint-chip roughness. As distributed roughness height and density increase, the lift-curve slope, maximum lift, and lift-to-drag ratio decrease. As Reynolds number increases, natural transition is replaced by bypass transition. The critical roughness Reynolds number varies between 178 to 318, within the historical range. At a chord Reynolds number of 3:2 × 10 6, the maximum lift-to-drag ratio decreases 40% for 140 μm roughness, corresponding to a 2.3% loss in annual energy production. Simulated performance loss compares well to measured performance loss of an in-service wind turbine.« less
NASA Technical Reports Server (NTRS)
Wang, Yansen; Tao, W.-K.; Lau, K.-M.; Wetzel, Peter J.
2004-01-01
The onset of the southeast Asian monsoon during 1997 and 1998 was simulated by coupling a mesoscale atmospheric model (MM5) and a detailed, land surface model, PLACE (the Parameterization for Land-Atmosphere-Cloud Exchange). The rainfall results from the simulations were compared with observed satellite data from the TRMM (Tropical Rainfall Measuring Mission) TMI (TRMM Microwave Imager) and GPCP (Global Precipitation Climatology Project). The control simulation with the PLACE land surface model and variable sea surface temperature captured the basic signatures of the monsoon onset processes and associated rainfall statistics. Sensitivity tests indicated that simulations were sigmficantly improved by including the PLACE land surface model. The mechanism by which the land surface processes affect the moisture transport and the convection during the onset of the southeast Asian monsoon were analyzed. The results indicated that land surface processes played an important role in modifying the low-level wind field over two major branches of the circulation: the southwest low-level flow over the Indo-china peninsula and the northern, cold frontal intrusion from southern China. The surface sensible and latent heat fluxes modified the low-level temperature distribution and gradient, and therefore the low-level wind due to the thermal wind effect. The more realistic forcing of the sensible and latent heat fluxes from the detailed, land surface model improved the low-level wind simulation apd associated moisture transport and convection.
NASA Technical Reports Server (NTRS)
Wang, Yansen; Tao, W.-K.; Lau, K.-M.; Wetzel, Peter J.
2004-01-01
The onset of the southeast Asian monsoon during 1997 and 1998 was simulated by coupling a mesoscale atmospheric model (MM5) and a detailed, land surface model, PLACE (the Parameterization for Land-Atmosphere-Cloud Exchange). The rainfall results from the simulations were compared with observed satellite data from the TRMM (Tropical Rainfall Measuring Mission) TMI (TRMM Microwave Imager) and GPCP (Global Precipitation Climatology Project). The control simulation with the PLACE land surface model and variable sea surface temperature captured the basic signatures of the monsoon onset processes and associated rainfall statistics. Sensitivity tests indicated that simulations were significantly improved by including the PLACE land surface model. The mechanism by which the land surface processes affect the moisture transport and the convection during the onset of the southeast Asian monsoon were analyzed. The results indicated that land surface processes played an important role in modifying the low-level wind field over two major branches of the circulation: the southwest low-level flow over the Indo-China peninsula and the northern, cold frontal intrusion from southern China. The surface sensible and latent heat fluxes modified the low-level temperature distribution and merit, and therefore the low-level wind due to the thermal wind effect. The more realistic forcing of the sensible and latent heat fluxes from the detailed, land surface model improved the low-level wind simulation and associated moisture transport and convection.
Wind Shear Effects on the Structure and Dynamics of the Daytime Atmospheric Boundary Layer
NASA Astrophysics Data System (ADS)
Haghshenas, Armin; Mellado, Juan Pedro
2017-04-01
The daytime atmospheric boundary layer (ABL), in which the positive buoyancy flux at the surface creates convective instability and generates turbulence, has been a subject of extensive research during the last century. However, fewer studies have considered wind shear in detail and most of them are single-case studies. So most of the available theories and parameterizations have not been sufficiently tested over a wide range of atmospheric conditions. Moreover, since previous numerical studies were mostly carried out by large eddy simulation, a complete understanding of the physics of the problem is still missing due to the lack of information about the small-scale dynamics. Specifically, despite the consensus in the community that wind shear enhances the entrainment process, the amount of enhancement is still matter of contention. In order to investigate the effects of wind shear on the structure and dynamics of the ABL in detail, direct numerical simulations are used in this study. Shear is prescribed by a height-constant velocity in the troposphere and the simulation runs until a fully turbulent, quasi-equilibrium regime is observed. Despite the simplification of neglecting the Coriolis force, our configuration reproduces the main features observed in the previous studies, which had taken the Coriolis force into account. As a novelty compared to previous single-case studies, we introduce a dimensionless parameter that allows us to study systematically any combination of surface buoyancy flux, buoyancy stratification, and wind shear; We refer to this dimensionless number as shear number. Seven simulations with shear numbers ranging from 0 (no wind) to 20 (moderate wind) are conducted; this range of shear numbers corresponds to wind strength from 0 to 15 m/s in the free troposphere for typical midday atmospheric conditions. In general, we find that shear effects are negligibly small when the shear number is below 10, and for larger values the effects remain constrained inside the entrainment zone and surface layer. This critical shear number is justified by scrutinizing the turbulence regimes (convective and mechanical) within the entrainment zone in the sense that, for this shear number, the turbulence transport of turbulence kinetic energy inside the entrainment zone equals the shear-production rate. Following this analysis a critical flux Richardson number of 0.6 inside the entrainment zone is found. In particular, we observe the following: First, the mean buoyancy and total buoyancy flux inside the mixed layer remain invariant under a change of shear number and they follow the free-convection scaling laws. Second, the height of minimum buoyancy flux increases due to shear effects, but just moderately (less than 5%). Nevertheless, this increment represents a growth of entrainment zone's thickness by 50% for shear numbers of the order of 20. Third, we observe that for shear numbers larger than 10, the entrainment flux ratio grows by up to 50% in an early state of ABL development. We provide explicit parameterizations of all these shear effects.
Browning, J. R.; Jonkman, J.; Robertson, A.; ...
2014-12-16
In this study, high-quality computer simulations are required when designing floating wind turbines because of the complex dynamic responses that are inherent with a high number of degrees of freedom and variable metocean conditions. In 2007, the FAST wind turbine simulation tool, developed and maintained by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL), was expanded to include capabilities that are suitable for modeling floating offshore wind turbines. In an effort to validate FAST and other offshore wind energy modeling tools, DOE funded the DeepCwind project that tested three prototype floating wind turbines at 1/50 th scalemore » in a wave basin, including a semisubmersible, a tension-leg platform, and a spar buoy. This paper describes the use of the results of the spar wave basin tests to calibrate and validate the FAST offshore floating simulation tool, and presents some initial results of simulated dynamic responses of the spar to several combinations of wind and sea states. Wave basin tests with the spar attached to a scale model of the NREL 5-megawatt reference wind turbine were performed at the Maritime Research Institute Netherlands under the DeepCwind project. This project included free-decay tests, tests with steady or turbulent wind and still water (both periodic and irregular waves with no wind), and combined wind/wave tests. The resulting data from the 1/50th model was scaled using Froude scaling to full size and used to calibrate and validate a full-size simulated model in FAST. Results of the model calibration and validation include successes, subtleties, and limitations of both wave basin testing and FAST modeling capabilities.« less
NASA Astrophysics Data System (ADS)
Belušić, Andreina; Prtenjak, Maja Telišman; Güttler, Ivan; Ban, Nikolina; Leutwyler, David; Schär, Christoph
2018-06-01
Over the past few decades the horizontal resolution of regional climate models (RCMs) has steadily increased, leading to a better representation of small-scale topographic features and more details in simulating dynamical aspects, especially in coastal regions and over complex terrain. Due to its complex terrain, the broader Adriatic region represents a major challenge to state-of-the-art RCMs in simulating local wind systems realistically. The objective of this study is to identify the added value in near-surface wind due to the refined grid spacing of RCMs. For this purpose, we use a multi-model ensemble composed of CORDEX regional climate simulations at 0.11° and 0.44° grid spacing, forced by the ERA-Interim reanalysis, a COSMO convection-parameterizing simulation at 0.11° and a COSMO convection-resolving simulation at 0.02° grid spacing. Surface station observations from this region and satellite QuikSCAT data over the Adriatic Sea have been compared against daily output obtained from the available simulations. Both day-to-day wind and its frequency distribution are examined. The results indicate that the 0.44° RCMs rarely outperform ERA-Interim reanalysis, while the performance of the high-resolution simulations surpasses that of ERA-Interim. We also disclose that refining the grid spacing to a few km is needed to properly capture the small-scale wind systems. Finally, we show that the simulations frequently yield the accurate angle of local wind regimes, such as for the Bora flow, but overestimate the associated wind magnitude. Finally, spectral analysis shows good agreement between measurements and simulations, indicating the correct temporal variability of the wind speed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calderer, Antoni; Yang, Xiaolei; Angelidis, Dionysios
2015-10-30
The present project involves the development of modeling and analysis design tools for assessing offshore wind turbine technologies. The computational tools developed herein are able to resolve the effects of the coupled interaction of atmospheric turbulence and ocean waves on aerodynamic performance and structural stability and reliability of offshore wind turbines and farms. Laboratory scale experiments have been carried out to derive data sets for validating the computational models.
Explaining CO2 fluctuations observed in snowpacks
NASA Astrophysics Data System (ADS)
Graham, Laura; Risk, David
2018-02-01
Winter soil carbon dioxide (CO2) respiration is a significant and understudied component of the global carbon (C) cycle. Winter soil CO2 fluxes can be surprisingly variable, owing to physical factors such as snowpack properties and wind. This study aimed to quantify the effects of advective transport of CO2 in soil-snow systems on the subdiurnal to diurnal (hours to days) timescale, use an enhanced diffusion model to replicate the effects of CO2 concentration depletions from persistent winds, and use a model-measure pairing to effectively explore what is happening in the field. We took continuous measurements of CO2 concentration gradients and meteorological data at a site in the Cape Breton Highlands of Nova Scotia, Canada, to determine the relationship between wind speeds and CO2 levels in snowpacks. We adapted a soil CO2 diffusion model for the soil-snow system and simulated stepwise changes in transport rate over a broad range of plausible synthetic cases. The goal was to mimic the changes we observed in CO2 snowpack concentration to help elucidate the mechanisms (diffusion, advection) responsible for observed variations. On subdiurnal to diurnal timescales with varying winds and constant snow levels, a strong negative relationship between wind speed and CO2 concentration within the snowpack was often identified. Modelling clearly demonstrated that diffusion alone was unable to replicate the high-frequency CO2 fluctuations, but simulations using above-atmospheric snowpack diffusivities (simulating advective transport within the snowpack) reproduced snow CO2 changes of the observed magnitude and speed. This confirmed that wind-induced ventilation contributed to episodic pulsed emissions from the snow surface and to suppressed snowpack concentrations. This study improves our understanding of winter CO2 dynamics to aid in continued quantification of the annual global C cycle and demonstrates a preference for continuous wintertime CO2 flux measurement systems.
Real-time simulator for helicopter rotor wind-tunnel operations
NASA Technical Reports Server (NTRS)
Talbot, P. D.; Peterson, R. L.; Graham, D. R.
1986-01-01
This paper describes the elements and operation of a simulator that is being used to train operators of the Rotor Test Apparatus (RTA) in the large-scale 40- by 80-Foot Wind Tunnel at Ames Research Center. The simulator, named TUTOR (for Tunnel Utilization Trainer with Operating Rotor) duplicates the controls of the rotor and its dynamic behavior, as well as the wind-tunnel controls. The simulation software uses a preexisting blade-element model of a four-bladed rotor with flapping and lead-lag degrees of freedom. Equations were developed for all hardware and controls of the RTA and of the wind tunnel that are normally required to perform a wind-tunnel test of a helicopter rotor. The simulator hardware consists of consoles designed to have the same appearance and functions as those in the control room of the 40- by 80-Foot Wind Tunnel, allowing input from three operators who normally establish the required operating conditions during a test run. Normal operating procedures can be practiced, as well as simulated emergencies such as rotor power failure.
Performance of Trajectory Models with Wind Uncertainty
NASA Technical Reports Server (NTRS)
Lee, Alan G.; Weygandt, Stephen S.; Schwartz, Barry; Murphy, James R.
2009-01-01
Typical aircraft trajectory predictors use wind forecasts but do not account for the forecast uncertainty. A method for generating estimates of wind prediction uncertainty is described and its effect on aircraft trajectory prediction uncertainty is investigated. The procedure for estimating the wind prediction uncertainty relies uses a time-lagged ensemble of weather model forecasts from the hourly updated Rapid Update Cycle (RUC) weather prediction system. Forecast uncertainty is estimated using measures of the spread amongst various RUC time-lagged ensemble forecasts. This proof of concept study illustrates the estimated uncertainty and the actual wind errors, and documents the validity of the assumed ensemble-forecast accuracy relationship. Aircraft trajectory predictions are made using RUC winds with provision for the estimated uncertainty. Results for a set of simulated flights indicate this simple approach effectively translates the wind uncertainty estimate into an aircraft trajectory uncertainty. A key strength of the method is the ability to relate uncertainty to specific weather phenomena (contained in the various ensemble members) allowing identification of regional variations in uncertainty.
1982-08-01
experienced nearly the same wind shear problems as arose with the accident at JFK airport . The measurements are probably quite significant for Australia as...is between -4 and +4. (The accident at JFK airport occurred with a - +4). Roland produced z table showing that as a increased over the positive range...Eastern Airlines accident at JFK airport . He also mentioned that NSSL had a contract with MIT to use a flight simulator with a simulated convective wind
Dynamic Hybrid Simulation of the Lunar Wake During ARTEMIS Crossing
NASA Astrophysics Data System (ADS)
Wiehle, S.; Plaschke, F.; Angelopoulos, V.; Auster, H.; Glassmeier, K.; Kriegel, H.; Motschmann, U. M.; Mueller, J.
2010-12-01
The interaction of the highly dynamic solar wind with the Moon is simulated with the A.I.K.E.F. (Adaptive Ion Kinetic Electron Fluid) code for the ARTEMIS P1 flyby on February 13, 2010. The A.I.K.E.F. hybrid plasma simulation code is the improved version of the Braunschweig code. It is able to automatically increase simulation grid resolution in areas of interest during runtime, which greatly increases resolution as well as performance. As the Moon has no intrinsic magnetic field and no ionosphere, the solar wind particles are absorbed at its surface, resulting in the formation of the lunar wake at the nightside. The solar wind magnetic field is basically convected through the Moon and the wake is slowly filled up with solar wind particles. However, this interaction is strongly influenced by the highly dynamic solar wind during the flyby. This is considered by a dynamic variation of the upstream conditions in the simulation using OMNI solar wind measurement data. By this method, a very good agreement between simulation and observations is achieved. The simulations show that the stationary structure of the lunar wake constitutes a tableau vivant in space representing the well-known Friedrichs diagram for MHD waves.
REGIONAL-SCALE WIND FIELD CLASSIFICATION EMPLOYING CLUSTER ANALYSIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glascoe, L G; Glaser, R E; Chin, H S
2004-06-17
The classification of time-varying multivariate regional-scale wind fields at a specific location can assist event planning as well as consequence and risk analysis. Further, wind field classification involves data transformation and inference techniques that effectively characterize stochastic wind field variation. Such a classification scheme is potentially useful for addressing overall atmospheric transport uncertainty and meteorological parameter sensitivity issues. Different methods to classify wind fields over a location include the principal component analysis of wind data (e.g., Hardy and Walton, 1978) and the use of cluster analysis for wind data (e.g., Green et al., 1992; Kaufmann and Weber, 1996). The goalmore » of this study is to use a clustering method to classify the winds of a gridded data set, i.e, from meteorological simulations generated by a forecast model.« less
A predictive control framework for optimal energy extraction of wind farms
NASA Astrophysics Data System (ADS)
Vali, M.; van Wingerden, J. W.; Boersma, S.; Petrović, V.; Kühn, M.
2016-09-01
This paper proposes an adjoint-based model predictive control for optimal energy extraction of wind farms. It employs the axial induction factor of wind turbines to influence their aerodynamic interactions through the wake. The performance index is defined here as the total power production of the wind farm over a finite prediction horizon. A medium-fidelity wind farm model is utilized to predict the inflow propagation in advance. The adjoint method is employed to solve the formulated optimization problem in a cost effective way and the first part of the optimal solution is implemented over the control horizon. This procedure is repeated at the next controller sample time providing the feedback into the optimization. The effectiveness and some key features of the proposed approach are studied for a two turbine test case through simulations.
NASA Astrophysics Data System (ADS)
Ma, Wei-Ming
1997-06-01
An analytical two-flow model is derived from the radiative transfer equation to simulate the distribution of irradiance in coastal waters with a wind-roughed surface and bottom reflectance. The model utilizes unique boundary conditions, including the surface slope of the downwelling and upwelling irradiance as well as the influence of wind and bottom reflectance on simulated surface reflectance. The developed model provides a simple mathematical concept for understanding the irradiant light flux and associated processes in coastal or fresh water as well as turbid estuarine waters. The model is applied to data from the Banana River and coastal Atlantic Ocean water off the east coast of central Florida, USA. The two-flow irradiance model is capable of simulating realistic above-surface reflectance signatures under wind-roughened air-water surface given realistic input parameters including a specular flux conversion coefficient, absorption coefficient, backscattering coefficient, atmospheric visibility, bottom reflectance, and water depth. The root-mean-squared error of the calculated above-surface reflectances is approximately 3% in the Banana River and is less than 15% in coastal Atlantic Ocean off the east of Florida. Result of the subsurface reflectance sensitivity analysis indicates that the specular conversion coefficient is the most sensitive parameter in the model, followed by the beam attenuation coefficient, absorption coefficient, water depth, backscattering coefficient, specular irradiance, diffuse irradiance, bottom reflectance, and wind speed. On the other hand, result of the above-surface reflectance sensitivity analysis indicates that the wind speed is the most important parameter, followed by bottom reflectance, attenuation coefficient, water depth, conversion coefficient, specular irradiance, downwelling irradiance, absorption coefficient, and backscattering coefficient. Model results depend on the accuracy of these parameters to a large degree and more important the water depth and value of the bottom reflectance. The results of this work indicates little change of subsurface or in-water reflectances, due to variations of wind speed and observation angle. Simulations of the wind effect on the total downwelling irradiance from the two- flow model indicates that the total downwelling irradiance just below a wind-roughened water surface increases to about 1% of the total downwelling irradiance on a calm water surface when the sun is near zenith and increases to about 3% when the sun is near the horizon. This analytically based model, solved or developed utilizing the unique boundary conditions, can be applied to remote sensing of oceanic upper mixed layer dynamics, plant canopies, primary production, and shallow water environments with different bottom type reflectances. Future applications may include determining effects of sediment resuspension of bottom sediments in the bottom boundary layer on remotely sensed data.
Can we understand the turbulent solar wind via turbulent simulations?
NASA Technical Reports Server (NTRS)
Grappin, R.; Mangeney, A.
1995-01-01
We attempt to assess the present understanding of the turbulent solar wind using numerical simulations. The solar wind may be considered as a kind of wind tunnel with peculiar properties: the tunnel is spherical; the source of the wind is rotating; and the medium is a plasma containing a large-scale magnetic field. These constraints lead to anisotropic dynamics of the fluctuations on the one hand, and to non-standard (turbulent?) transport properties of the global plasma on the other hand. How much of this rich physics can we approach today via numerical simulations?
NASA Astrophysics Data System (ADS)
Lyu, Pin; Chen, Wenli; Li, Hui; Shen, Lian
2017-11-01
In recent studies, Yang, Meneveau & Shen (Physics of Fluids, 2014; Renewable Energy, 2014) developed a hybrid numerical framework for simulation of offshore wind farm. The framework consists of simulation of nonlinear surface waves using a high-order spectral method, large-eddy simulation of wind turbulence on a wave-surface-fitted curvilinear grid, and an actuator disk model for wind turbines. In the present study, several more precise wind turbine models, including the actuator line model, actuator disk model with rotation, and nacelle model, are introduced into the computation. Besides offshore wind turbines on fixed piles, the new computational framework has the capability to investigate the interaction among wind, waves, and floating wind turbines. In this study, onshore, offshore fixed pile, and offshore floating wind farms are compared in terms of flow field statistics and wind turbine power extraction rate. The authors gratefully acknowledge financial support from China Scholarship Council (No. 201606120186) and the Institute on the Environment of University of Minnesota.
Low altitude wind shear statistics derived from measured and FAA proposed standard wind profiles
NASA Technical Reports Server (NTRS)
Dunham, R. E., Jr.; Usry, J. W.
1984-01-01
Wind shear statistics were calculated for a simulated data set using wind profiles proposed as a standard and compared to statistics derived from measured wind profile data. Wind shear values were grouped in altitude bands of 100 ft between 100 and 1400 ft, and in wind shear increments of 0.025 kt/ft between + or - 0.600 kt/ft for the simulated data set and between + or - 0.200 kt/ft for the measured set. No values existed outside the + or - 0.200 kt/ft boundaries for the measured data. Frequency distributions, means, and standard deviations were derived for each altitude band for both data sets, and compared. Also, frequency distributions were derived for the total sample for both data sets and compared. Frequency of occurrence of a given wind shear was about the same for both data sets for wind shears, but less than + or 0.10 kt/ft, but the simulated data set had larger values outside these boundaries. Neglecting the vertical wind component did not significantly affect the statistics for these data sets. The frequency of occurrence of wind shears for the flight measured data was essentially the same for each altitude band and the total sample, but the simulated data distributions were different for each altitude band. The larger wind shears for the flight measured data were found to have short durations.
NASA Technical Reports Server (NTRS)
Dayman, B., Jr.; Fiore, A. W.
1974-01-01
The present work discusses in general terms the various kinds of ground facilities, in particular, wind tunnels, which support aerodynamic testing. Since not all flight parameters can be simulated simultaneously, an important problem consists in matching parameters. It is pointed out that there is a lack of wind tunnels for a complete Reynolds-number simulation. Using a computer to simulate flow fields can result in considerable reduction of wind-tunnel hours required to develop a given flight vehicle.
NASA Astrophysics Data System (ADS)
Lentz, C. L.; Baker, D. N.; Jaynes, A. N.; Dewey, R. M.; Lee, C. O.; Halekas, J. S.; Brain, D. A.
2018-02-01
Normal solar wind flows and intense solar transient events interact directly with the upper Martian atmosphere due to the absence of an intrinsic global planetary magnetic field. Since the launch of the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, there are now new means to directly observe solar wind parameters at the planet's orbital location for limited time spans. Due to MAVEN's highly elliptical orbit, in situ measurements cannot be taken while MAVEN is inside Mars' magnetosheath. To model solar wind conditions during these atmospheric and magnetospheric passages, this research project utilized the solar wind forecasting capabilities of the WSA-ENLIL+Cone model. The model was used to simulate solar wind parameters that included magnetic field magnitude, plasma particle density, dynamic pressure, proton temperature, and velocity during a four Carrington rotation-long segment. An additional simulation that lasted 18 Carrington rotations was then conducted. The precision of each simulation was examined for intervals when MAVEN was in the upstream solar wind, that is, with no exospheric or magnetospheric phenomena altering in situ measurements. It was determined that generalized, extensive simulations have comparable prediction capabilities as shorter, more comprehensive simulations. Generally, this study aimed to quantify the loss of detail in long-term simulations and to determine if extended simulations can provide accurate, continuous upstream solar wind conditions when there is a lack of in situ measurements.
An integrated modeling method for wind turbines
NASA Astrophysics Data System (ADS)
Fadaeinedjad, Roohollah
To study the interaction of the electrical, mechanical, and aerodynamic aspects of a wind turbine, a detailed model that considers all these aspects must be used. A drawback of many studies in the area of wind turbine simulation is that either a very simple mechanical model is used with a detailed electrical model, or vice versa. Hence the interactions between electrical and mechanical aspects of wind turbine operation are not accurately taken into account. In this research, it will be shown that a combination of different simulation packages, namely TurbSim, FAST, and Simulink can be used to model the aerodynamic, mechanical, and electrical aspects of a wind turbine in detail. In this thesis, after a review of some wind turbine concepts and software tools, a simulation structure is proposed for studying wind turbines that integrates the mechanical and electrical components of a wind energy conversion device. Based on the simulation structure, a comprehensive model for a three-bladed variable speed wind turbine with doubly-fed induction generator is developed. Using the model, the impact of a voltage sag on the wind turbine tower vibration is investigated under various operating conditions such as power system short circuit level, mechanical parameters, and wind turbine operating conditions. It is shown how an electrical disturbance can cause more sustainable tower vibrations under high speed and turbulent wind conditions, which may disrupt the operation of pitch control system. A similar simulation structure is used to model a two-bladed fixed speed wind turbine with an induction generator. An extension of the concept is introduced by adding a diesel generator system. The model is utilized to study the impact of the aeroelastic aspects of wind turbine (i.e. tower shadow, wind shears, yaw error, turbulence, and mechanical vibrations) on the power quality of a stand-alone wind-diesel system. Furthermore, an IEEE standard flickermeter model is implemented in a Simulink environment to study the flicker contribution of the wind turbine in the wind-diesel system. By using a new wind power plant representation method, a large wind farm (consisting of 96 fixed speed wind turbines) is modelled to study the power quality of wind power system. The flicker contribution of wind farm is also studied with different wind turbine numbers, using the flickermeter model. Keywords. Simulink, FAST, TurbSim, AreoDyn, wind energy, doubly-fed induction generator, variable speed wind turbine, voltage sag, tower vibration, power quality, flicker, fixed speed wind turbine, wind shear, tower shadow, and yaw error.
Fuzzy regulator design for wind turbine yaw control.
Theodoropoulos, Stefanos; Kandris, Dionisis; Samarakou, Maria; Koulouras, Grigorios
2014-01-01
This paper proposes the development of an advanced fuzzy logic controller which aims to perform intelligent automatic control of the yaw movement of wind turbines. The specific fuzzy controller takes into account both the wind velocity and the acceptable yaw error correlation in order to achieve maximum performance efficacy. In this way, the proposed yaw control system is remarkably adaptive to the existing conditions. In this way, the wind turbine is enabled to retain its power output close to its nominal value and at the same time preserve its yaw system from pointless movement. Thorough simulation tests evaluate the proposed system effectiveness.
A simple, analytical, axisymmetric microburst model for downdraft estimation
NASA Technical Reports Server (NTRS)
Vicroy, Dan D.
1991-01-01
A simple analytical microburst model was developed for use in estimating vertical winds from horizontal wind measurements. It is an axisymmetric, steady state model that uses shaping functions to satisfy the mass continuity equation and simulate boundary layer effects. The model is defined through four model variables: the radius and altitude of the maximum horizontal wind, a shaping function variable, and a scale factor. The model closely agrees with a high fidelity analytical model and measured data, particularily in the radial direction and at lower altitudes. At higher altitudes, the model tends to overestimate the wind magnitude relative to the measured data.
Linearized simulation of flow over wind farms and complex terrains.
Segalini, Antonio
2017-04-13
The flow over complex terrains and wind farms is estimated here by numerically solving the linearized Navier-Stokes equations. The equations are linearized around the unperturbed incoming wind profile, here assumed logarithmic. The Boussinesq approximation is used to model the Reynolds stress with a prescribed turbulent eddy viscosity profile. Without requiring the boundary-layer approximation, two new linear equations are obtained for the vertical velocity and the wall-normal vorticity, with a reduction in the computational cost by a factor of 8 when compared with a primitive-variables formulation. The presence of terrain elevation is introduced as a vertical coordinate shift, while forestry or wind turbines are included as body forces, without any assumption about the wake structure for the turbines. The model is first validated against some available experiments and simulations, and then a simulation of a wind farm over a Gaussian hill is performed. The speed-up effect of the hill is clearly beneficial in terms of the available momentum upstream of the crest, while downstream of it the opposite can be said as the turbines face a decreased wind speed. Also, the presence of the hill introduces an additional spanwise velocity component that may also affect the turbines' operations. The linear superposition of the flow over the hill and the flow over the farm alone provided a first estimation of the wind speed along the farm, with discrepancies of the same order of magnitude for the spanwise velocity. Finally, the possibility of using a parabolic set of equations to obtain the turbulent kinetic energy after the linearized model is investigated with promising results.This article is part of the themed issue 'Wind energy in complex terrains'. © 2017 The Author(s).
Linearized simulation of flow over wind farms and complex terrains
NASA Astrophysics Data System (ADS)
Segalini, Antonio
2017-03-01
The flow over complex terrains and wind farms is estimated here by numerically solving the linearized Navier-Stokes equations. The equations are linearized around the unperturbed incoming wind profile, here assumed logarithmic. The Boussinesq approximation is used to model the Reynolds stress with a prescribed turbulent eddy viscosity profile. Without requiring the boundary-layer approximation, two new linear equations are obtained for the vertical velocity and the wall-normal vorticity, with a reduction in the computational cost by a factor of 8 when compared with a primitive-variables formulation. The presence of terrain elevation is introduced as a vertical coordinate shift, while forestry or wind turbines are included as body forces, without any assumption about the wake structure for the turbines. The model is first validated against some available experiments and simulations, and then a simulation of a wind farm over a Gaussian hill is performed. The speed-up effect of the hill is clearly beneficial in terms of the available momentum upstream of the crest, while downstream of it the opposite can be said as the turbines face a decreased wind speed. Also, the presence of the hill introduces an additional spanwise velocity component that may also affect the turbines' operations. The linear superposition of the flow over the hill and the flow over the farm alone provided a first estimation of the wind speed along the farm, with discrepancies of the same order of magnitude for the spanwise velocity. Finally, the possibility of using a parabolic set of equations to obtain the turbulent kinetic energy after the linearized model is investigated with promising results. This article is part of the themed issue 'Wind energy in complex terrains'.
NASA Astrophysics Data System (ADS)
Coudou, Nicolas; Buckingham, Sophia; Bricteux, Laurent; van Beeck, Jeroen
2017-12-01
The phenomenon of meandering of the wind-turbine wake comprises the motion of the wake as a whole in both horizontal and vertical directions as it is advected downstream. The oscillatory motion of the wake is a crucial factor in wind farms, because it increases the fatigue loads, and, in particular, the yaw loads on downstream turbines. To address this phenomenon, experimental investigations are carried out in a wind-tunnel flow simulating an atmospheric boundary layer with the Coriolis effect neglected. A 3 × 3 scaled wind farm composed of three-bladed rotating wind-turbine models is subject to a neutral boundary layer over a slightly-rough surface, i.e. corresponding to offshore conditions. Particle-image-velocimetry measurements are performed in a horizontal plane at hub height in the wakes of the three wind turbines occupying the wind-farm centreline. These measurements allow determination of the wake centrelines, with spectral analysis indicating the characteristic wavelength of the wake-meandering phenomenon. In addition, measurements with hot-wire anemometry are performed along a vertical line in the wakes of the same wind turbines, with both techniques revealing the presence of wake meandering behind all three turbines. The spectral analysis performed with the spatial and temporal signals obtained from these two measurement techniques indicates a Strouhal number of ≈ 0.20 - 0.22 based on the characteristic wake-meandering frequency, the rotor diameter and the flow speed at hub height.
NASA Astrophysics Data System (ADS)
Coudou, Nicolas; Buckingham, Sophia; Bricteux, Laurent; van Beeck, Jeroen
2018-04-01
The phenomenon of meandering of the wind-turbine wake comprises the motion of the wake as a whole in both horizontal and vertical directions as it is advected downstream. The oscillatory motion of the wake is a crucial factor in wind farms, because it increases the fatigue loads, and, in particular, the yaw loads on downstream turbines. To address this phenomenon, experimental investigations are carried out in a wind-tunnel flow simulating an atmospheric boundary layer with the Coriolis effect neglected. A 3 × 3 scaled wind farm composed of three-bladed rotating wind-turbine models is subject to a neutral boundary layer over a slightly-rough surface, i.e. corresponding to offshore conditions. Particle-image-velocimetry measurements are performed in a horizontal plane at hub height in the wakes of the three wind turbines occupying the wind-farm centreline. These measurements allow determination of the wake centrelines, with spectral analysis indicating the characteristic wavelength of the wake-meandering phenomenon. In addition, measurements with hot-wire anemometry are performed along a vertical line in the wakes of the same wind turbines, with both techniques revealing the presence of wake meandering behind all three turbines. The spectral analysis performed with the spatial and temporal signals obtained from these two measurement techniques indicates a Strouhal number of ≈ 0.20 - 0.22 based on the characteristic wake-meandering frequency, the rotor diameter and the flow speed at hub height.
Clumpy wind accretion in Supergiant X-ray Binaries
NASA Astrophysics Data System (ADS)
El Mellah, I.; Sundqvist, J. O.; Keppens, R.
2017-12-01
Supergiant X-ray binaries (\\sgx) contain a neutron star (NS) orbiting a Supergiant O/B star. The fraction of the dense and fast line-driven wind from the stellar companion which is accreted by the NS is responsible for most of the X-ray emission from those system. Classic \\sgx display photometric variability of their hard X-ray emission, typically from a few 10^{35} to a few 10^{37}erg\\cdots^{-1}. Inhomogeneities (\\aka clumps) in the wind from the star are expected to play a role in this time variability. We run 3D hydrodynamical (HD) finite volume simulations to follow the accretion of the inhomogeneous stellar wind by the NS over almost 3 orders of magnitude. To model the unperturbed wind far upstream the NS, we use recent simulations which managed to resolve its micro-structure. We observe the formation of a Bondi-Hoyle-Lyttleton (BHL) like bow shock around the accretor and follow the clumps as they cross it, down to the NS magnetosphere. Compared to previous estimations discarding the HD effects, we measure lower time variability due to both the damping effect of the shock and the necessity to evacuate angular momentum to enable accretion. We also compute the associated time-variable column density and compare it to recent observations in Vela X-1.
NASA Astrophysics Data System (ADS)
Garcia Cartagena, Edgardo Javier; Santoni, Christian; Ciri, Umberto; Iungo, Giacomo Valerio; Leonardi, Stefano
2015-11-01
A large-scale wind farm operating under realistic atmospheric conditions is studied by coupling a meso-scale and micro-scale models. For this purpose, the Weather Research and Forecasting model (WRF) is coupled with an in-house LES solver for wind farms. The code is based on a finite difference scheme, with a Runge-Kutta, fractional step and the Actuator Disk Model. The WRF model has been configured using seven one-way nested domains where the child domain has a mesh size one third of its parent domain. A horizontal resolution of 70 m is used in the innermost domain. A section from the smallest and finest nested domain, 7.5 diameters upwind of the wind farm is used as inlet boundary condition for the LES code. The wind farm consists in six-turbines aligned with the mean wind direction and streamwise spacing of 10 rotor diameters, (D), and 2.75D in the spanwise direction. Three simulations were performed by varying the velocity fluctuations at the inlet: random perturbations, precursor simulation, and recycling perturbation method. Results are compared with a simulation on the same wind farm with an ideal uniform wind speed to assess the importance of the time varying incoming wind velocity. Numerical simulations were performed at TACC (Grant CTS070066). This work was supported by NSF, (Grant IIA-1243482 WINDINSPIRE).
NASA Astrophysics Data System (ADS)
Goldsmith, K. J. A.; Pittard, J. M.
2018-05-01
The similarities, or otherwise, of a shock or wind interacting with a cloud of density contrast χ = 10 were explored in a previous paper. Here, we investigate such interactions with clouds of higher density contrast. We compare the adiabatic hydrodynamic interaction of a Mach 10 shock with a spherical cloud of χ = 103 with that of a cloud embedded in a wind with identical parameters to the post-shock flow. We find that initially there are only minor morphological differences between the shock-cloud and wind-cloud interactions, compared to when χ = 10. However, once the transmitted shock exits the cloud, the development of a turbulent wake and fragmentation of the cloud differs between the two simulations. On increasing the wind Mach number, we note the development of a thin, smooth tail of cloud material, which is then disrupted by the fragmentation of the cloud core and subsequent `mass-loading' of the flow. We find that the normalized cloud mixing time (tmix) is shorter at higher χ. However, a strong Mach number dependence on tmix and the normalized cloud drag time, t_{drag}^' }, is not observed. Mach-number-dependent values of tmix and t_{drag}^' } from comparable shock-cloud interactions converge towards the Mach-number-independent time-scales of the wind-cloud simulations. We find that high χ clouds can be accelerated up to 80-90 per cent of the wind velocity and travel large distances before being significantly mixed. However, complete mixing is not achieved in our simulations and at late times the flow remains perturbed.
NASA Astrophysics Data System (ADS)
Wareing, C. J.; Pittard, J. M.; Falle, S. A. E. G.
2017-09-01
We have used the AMR hydrodynamic code, mg, to perform 3D hydrodynamic simulations with self-gravity of stellar feedback in a spherical clumpy molecular cloud formed through the action of thermal instability. We simulate the interaction of the mechanical energy input from 15, 40, 60 and 120 M⊙ stars into a 100 pc diameter 16 500 M⊙ cloud with a roughly spherical morphology with randomly distributed high-density condensations. The stellar winds are introduced using appropriate non-rotating Geneva stellar evolution models. In the 15 M⊙ star case, the wind has very little effect, spreading around a few neighbouring clumps before becoming overwhelmed by the cloud collapse. In contrast, in the 40, 60 and 120 M⊙ star cases, the more powerful stellar winds create large cavities and carve channels through the cloud, breaking out into the surrounding tenuous medium during the wind phase and considerably altering the cloud structure. After 4.97, 3.97 and 3.01 Myr, respectively, the massive stars explode as supernovae (SNe). The wind-sculpted surroundings considerably affect the evolution of these SN events as they both escape the cloud along wind-carved channels and sweep up remaining clumps of cloud/wind material. The 'cloud' as a coherent structure does not survive the SN from any of these stars, but only in the 120 M⊙ case is the cold molecular material completely destabilized and returned to the unstable thermal phase. In the 40 and 60 M⊙ cases, coherent clumps of cold material are ejected from the cloud by the SN, potentially capable of further star formation.
Crop residue harvest impacts wind erodibility and simulated loss in the Central Great Plains
USDA-ARS?s Scientific Manuscript database
Crop residue removal can affect the susceptibility of soil loss on wind erosion-prone soils such as those of the central Great Plains, US. Six on-farm trials conducted from 2011 to 2013 in Kansas determined the effects of winter wheat (Triticum aestivum L.), corn (Zea mays L.), and grain sorghum (So...
Evaluation of reanalysis near-surface winds over northern Africa in Boreal summer
NASA Astrophysics Data System (ADS)
Engelstaedter, Sebastian; Washington, Richard
2014-05-01
The emission of dust from desert surfaces depends on the combined effects of surface properties such as surface roughness, soil moisture, soil texture and particle size (erodibility) and wind speed (erosivity). In order for dust cycle models to realistically simulate dust emissions for the right reasons, it is essential that erosivity and erodibility controlling factors are represented correctly. There has been a focus on improving dust emission schemes or input fields of soil distribution and texture even though it has been shown that the use of wind fields from different reanalysis datasets to drive the same model can result in significant differences in the dust emissions. Here we evaluate the representation of near-surface wind speed from three different reanalysis datasets (ERA-Interim, CFSR and MERRA) over the North African domain. Reanalysis 10m wind speeds are compared with observations from SYNOP and METAR reports available from the UK Meteorological Office Integrated Data Archive System (MIDAS) Land and Marine Surface Stations Dataset. We compare 6-hourly observations of 10m wind speed between 1 January 1989 and 31 December 2009 from more the 500 surface stations with the corresponding reanalysis values. A station data based mean wind speed climatology for North Africa is presented. Overall, the representation of 10m winds is relatively poor in all three reanalysis datasets with stations in the northern parts of the Sahara still being better simulated (correlation coefficients ~ 0.5) than stations in the Sahel (correlation coefficients < 0.3) which points at the reanalyses not being able to realistically capture the Sahel dynamics systems. All three reanalyses have a systematic bias towards overestimating wind speed below 3-4 m/s and underestimating wind speed above 4 m/s. This bias becomes larger with increasing wind speed but is independent of the time of day. For instance, 14 m/s observed wind speeds are underestimated on average by 6 m/s in the ERA-Interim reanalysis. Given the cubic relationship between wind speed and dust emission this large underestimation is expected to significantly impact the simulation of dust emissions. A negative relationship between observed and ERA-Interim wind speed is found for winds above 14 m/s indicating that high wind speed generating processes are not well (if at all) represented in the model.
Simulation and experiment of a fuzzy logic based MPPT controller for a small wind turbine system
NASA Astrophysics Data System (ADS)
Petrila, Diana; Muntean, Nicolae
2012-09-01
This paper describes the development of a fuzzy logic based maximum power point tracking (MPPT) strategy for a variable speed wind turbine system (VSWT). For this scope, a fuzzy logic controller (FLC) was described, simulated and tested on a real time "hardware in the loop" wind turbine emulator. Simulation and experimental results show that the controller is able to track the maximum power point for various wind conditions and validate the proposed control strategy.
Numerical simulation of tornado wind loading on structures
NASA Technical Reports Server (NTRS)
Maiden, D. E.
1976-01-01
A numerical simulation of a tornado interacting with a building was undertaken in order to compare the pressures due to a rotational unsteady wind with that due to steady straight winds used in design of nuclear facilities. The numerical simulations were performed on a two-dimensional compressible hydrodynamics code. Calculated pressure profiles for a typical building were then subjected to a tornado wind field and the results were compared with current quasisteady design calculations. The analysis indicates that current design practices are conservative.
NASA Astrophysics Data System (ADS)
Archer, Cristina; Ghaisas, Niranjan
2015-04-01
The energy generation at a wind farm is controlled primarily by the average wind speed at hub height. However, two other factors impact wind farm performance: 1) the layout of the wind turbines, in terms of spacing between turbines along and across the prevailing wind direction; staggering or aligning consecutive rows; angles between rows, columns, and prevailing wind direction); and 2) atmospheric stability, which is a measure of whether vertical motion is enhanced (unstable), suppressed (stable), or neither (neutral). Studying both factors and their complex interplay with Large-Eddy Simulation (LES) is a valid approach because it produces high-resolution, 3D, turbulent fields, such as wind velocity, temperature, and momentum and heat fluxes, and it properly accounts for the interactions between wind turbine blades and the surrounding atmospheric and near-surface properties. However, LES are computationally expensive and simulating all the possible combinations of wind directions, atmospheric stabilities, and turbine layouts to identify the optimal wind farm configuration is practically unfeasible today. A new, geometry-based method is proposed that is computationally inexpensive and that combines simple geometric quantities with a minimal number of LES simulations to identify the optimal wind turbine layout, taking into account not only the actual frequency distribution of wind directions (i.e., wind rose) at the site of interest, but also atmospheric stability. The geometry-based method is calibrated with LES of the Lillgrund wind farm conducted with the Software for Offshore/onshore Wind Farm Applications (SOWFA), based on the open-access OpenFOAM libraries. The geometric quantities that offer the best correlations (>0.93) with the LES results are the blockage ratio, defined as the fraction of the swept area of a wind turbine that is blocked by an upstream turbine, and the blockage distance, the weighted distance from a given turbine to all upstream turbines that can potentially block it. Based on blockage ratio and distance, an optimization procedure is proposed that explores many different layout variables and identifies, given actual wind direction and stability distributions, the optimal wind farm layout, i.e., the one with the highest wind energy production. The optimization procedure is applied to both the calibration wind farm (Lillgrund) and a test wind farm (Horns Rev) and a number of layouts more efficient than the existing ones are identified. The optimization procedure based on geometric models proposed here can be applied very quickly (within a few hours) to any proposed wind farm, once enough information on wind direction frequency and, if available, atmospheric stability frequency has been gathered and once the number of turbines and/or the areal extent of the wind farm have been identified.
Full Capability Formation Flight Control
2005-02-01
and ≤ 5 feet during thunderstorm level turbulence. Next, the 4 vortex wake of the lead aircraft will be modeled and the controller will be...be used to simulate the random effects of wind turbulence on the system. This model allows for the input of wind turbulence at three different ...Formation Vortex Interactions The other significant disturbance to be included in the two aircraft dynamic model is the effect of lead’s vortex wake on
NASA Technical Reports Server (NTRS)
Goembel, L.; Herrero, F. A.
1995-01-01
The work described here makes it possible to identify anomalous wind behavior such as the nighttime meridional wind abatements that occur at F-region heights. A new analysis technique uses a simple empirical wind model to simulate measurements of 'normal' winds (as measured by the Neutral Atmosphere and Temperature Experiment (NATE) that flew on the Atmosphere Explorer-E (AE-E)) to highlight anomalous wind measurements made by the satellite while in circular orbits at 270-290 km altitude. Our approach is based on the recognition that the 'in orbit' wind variation must show the combined effects of the diurnal wind variation as seen from the ground with the latitude variation of the satellite orbit. For the data period 77250-78035 examined thus far, the wind abatement always occurred with a corresponding pressure or temperature maximum, and was detected on 12 out of the 36 nights with data. This study has revealed that the wind abatement occur only during or shortly after increases in solar extreme ultraviolet (EUV) flux, as indicated by daily radio flux measurements. In the past, nighttime wind reversals at mid-latitudes have been associated with increased geomagnetic activity. This study indicates that intensified solar EUV heating may be responsible for anomalous thermospheric nighttime winds at mid-latitudes.
NASA Astrophysics Data System (ADS)
Guo, Jia-Peng; Deng, Yue; Zhang, Dong-He; Lu, Yang; Sheng, Cheng; Zhang, Shun-Rong
2018-03-01
Using the Millstone Hill incoherent scatter radar observations during 2015 St. Patrick's Day storm, subauroral polarization streams (SAPSs) have been specified in the nonhydrostatic Global Ionosphere-Thermosphere Model simulations. The results reveal that the effect of SAPS on the coupled thermosphere-ionosphere system includes the following: (1) Sudden frictional heating of SAPS results in acoustic-gravity waves in the thermosphere. The vertical oscillation is localized, while the meridional disturbance propagates poleward and equatorward. (2) The SAPS-associated horizontal wind field includes an enhanced westward wind within SAPS channel and a twin of vortex-like winds north (clockwise) and south (anticlockwise) of subauroral latitudes. (3) Due to the neutral-ion drag, ions in the vicinity of SAPS channel oscillate vertically with neutrals, resulting in a perturbation of 0.3 TECu in ionospheric total electron content. The SAPS-induced traveling atmospheric disturbances can elevate the plasma and increase the total electron content in midlatitude ionosphere. (4) It is confirmed that the Coriolis force can contribute to the poleward turning of the neutral wind during the post-SAPS interval. In addition, the traveling atmospheric disturbance induced by the variation of auroral input and high-latitude convection is possibly the primary cause of the poleward neutral wind surge during the magnetic storm on 17-18 March 2015. The combination of the two factors can make the northward meridional wind surge reach a magnitude of 100 m/s. This study improves our understanding of the SAPS's effect on neutral dynamics and ion-neutral coupling processes during geomagnetically disturbed intervals.
NASA Technical Reports Server (NTRS)
Miller, TImothy L.; Atlas, R. M.; Black, P. G.; Case, J. L.; Chen, S. S.; Hood, R. E.; Johnson, J. W.; Jones, L.; Ruf, C. S.; Uhlborn, E. W.
2008-01-01
Accurate observations of surface ocean vector winds (OVW) with high spatial and temporal resolution are required for understanding and predicting tropical cyclones. As NASA's QuikSCAT and Navy's WindSat operate beyond their design life, many members of the weather and climate science communities recognize the importance of developing new observational technologies and strategies to meet the essential need for OVW information to improve hurricane intensity and location forecasts. The Hurricane Imaging Radiometer (HIRAD) is an innovative technology development which offers new and unique remotely sensed satellite observations of both extreme oceanic wind events and strong precipitation. It is based on the airborne Stepped Frequency Microwave Radiometer (SFMR), which is the only proven remote sensing technique for observing tropical cyclone (TC) ocean surface wind speeds and rain rates. The proposed HIRAD instrument advances beyond the current nadir viewing SFMR to an equivalent wide-swath SFMR imager using passive microwave synthetic thinned aperture radiometer (STAR) technology. This sensor will operate over 4-7 GHz (C-band frequencies) where the required TC remote sensing physics has been validated by both SFMR and WindSat radiometers. The instrument is described in more detail in a paper by Jones et al. presented to the Tropical Meteorology Special Symposium at this AMS Annual Meeting. Simulated HIRAD passes through a simulation of hurricane Frances are being developed to demonstrate HIRAD estimation of surface wind speed over a wide swath in the presence of heavy rain. These are currently being used in "quick" OSSEs (Observing System Simulation Experiments) with H'Wind analyses as the discriminating tool. The H'Wind analysis, a product of the Hurricane Research Division of NOAA's Atlantic , Oceanographic and Meteorological Laboratory, brings together wind measurements from a variety of observation platforms into an objective analysis of the distribution of wind speeds in a tropical cyclone. This product is designed to improve understanding of the extent and strength of the wind field, and to improve the assessment of hurricane intensity. See http://www.aoml.noaa._ov/hrd/data sub/wind.html. Observations have been simulated from both aircraft altitudes and space. The simulated flight patterns for the aircraft platform cases have been designed to duplicate the timing and flight patterns used in routine NOAA and USAF hurricane surveillance flights, and the spaceborne case simulates a TRMM orbit and altitude.
Effects of Solar Wind Conditions on the Plasma Wake Within a Polar Crater: Preliminary Results
NASA Technical Reports Server (NTRS)
Zimmerman, M. I.; Farrell, W. M.; Stubbs, T. J.
2011-01-01
As the solar wind sweeps horizontally past a shadowed lunar crater it simultaneously diffuses toward the surface through an ambipolar process, forming a plasma wake (e.g., Figure 1). Importantly, the resulting electric field structure diverts solar wind protons toward the cold crater floor where they may represent a source of surficial hydrogen. We present a handful of two-dimensional kinetic simulations exploring the range of wake structures and surface particle fluxes possible under various background plasma conditions.
Hybrid simulation of the shock wave formation behind the Moon
NASA Astrophysics Data System (ADS)
Israelevich, P.; Ofman, L.
2012-09-01
A standing shock wave behind the Moon was predicted by Michel (1967) but never observed nor simulated. We use 1D hybrid code in order to simulate the collapse of the plasma-free cavity behind the Moon and for the first time to model the formation of this shock. Starting immediately downstream of the obstacle we consider the evolution of plasma expansion into the cavity in the frame of reference moving along with the solar wind. Wellknown effects as electric charging of the cavity affecting the plasma flow and counter streaming ion beams in the wake are reproduced. Near the apex of the inner Mach cone where the plasma flows from the opposite sides of the obstacle meet, a shock wave arises. The shock is produced by the interaction of oppositely directed proton beams in the plane containing solar wind velocity and interplanetary magnetic field vectors. In the direction across the magnetic field and the solar wind velocity, the shock results from the interaction of the plasma flow with the region of the enhanced magnetic field inside the cavity that plays the role of the magnetic barrier. Simulations with lower electron temperatures (Te~20eV) show weakened shock formation behind the moon at much greater distances. The shock disappears for typical solar wind conditions (Ti ~ Te) Therefore, in order to observe the trailing shock, a satellite should have a trajectory passing very close to the wake axis during the period of hot solar wind streams. We expect the shock to be produced at periods of high electron temperature solar wind streams (Ti<
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Zhaoqing; Taraphdar, Sourav; Wang, Taiping
This paper presents a modeling study conducted to evaluate the uncertainty of a regional model in simulating hurricane wind and pressure fields, and the feasibility of driving coastal storm surge simulation using an ensemble of region model outputs produced by 18 combinations of three convection schemes and six microphysics parameterizations, using Hurricane Katrina as a test case. Simulated wind and pressure fields were compared to observed H*Wind data for Hurricane Katrina and simulated storm surge was compared to observed high-water marks on the northern coast of the Gulf of Mexico. The ensemble modeling analysis demonstrated that the regional model wasmore » able to reproduce the characteristics of Hurricane Katrina with reasonable accuracy and can be used to drive the coastal ocean model for simulating coastal storm surge. Results indicated that the regional model is sensitive to both convection and microphysics parameterizations that simulate moist processes closely linked to the tropical cyclone dynamics that influence hurricane development and intensification. The Zhang and McFarlane (ZM) convection scheme and the Lim and Hong (WDM6) microphysics parameterization are the most skillful in simulating Hurricane Katrina maximum wind speed and central pressure, among the three convection and the six microphysics parameterizations. Error statistics of simulated maximum water levels were calculated for a baseline simulation with H*Wind forcing and the 18 ensemble simulations driven by the regional model outputs. The storm surge model produced the overall best results in simulating the maximum water levels using wind and pressure fields generated with the ZM convection scheme and the WDM6 microphysics parameterization.« less
Simulation of Wind Profile Perturbations for Launch Vehicle Design
NASA Technical Reports Server (NTRS)
Adelfang, S. I.
2004-01-01
Ideally, a statistically representative sample of measured high-resolution wind profiles with wavelengths as small as tens of meters is required in design studies to establish aerodynamic load indicator dispersions and vehicle control system capability. At most potential launch sites, high- resolution wind profiles may not exist. Representative samples of Rawinsonde wind profiles to altitudes of 30 km are more likely to be available from the extensive network of measurement sites established for routine sampling in support of weather observing and forecasting activity. Such a sample, large enough to be statistically representative of relatively large wavelength perturbations, would be inadequate for launch vehicle design assessments because the Rawinsonde system accurately measures wind perturbations with wavelengths no smaller than 2000 m (1000 m altitude increment). The Kennedy Space Center (KSC) Jimsphere wind profiles (150/month and seasonal 2 and 3.5-hr pairs) are the only adequate samples of high resolution profiles approx. 150 to 300 m effective resolution, but over-sampled at 25 m intervals) that have been used extensively for launch vehicle design assessments. Therefore, a simulation process has been developed for enhancement of measured low-resolution Rawinsonde profiles that would be applicable in preliminary launch vehicle design studies at launch sites other than KSC.
Simulations of snow distribution and hydrology in a mountain basin
Hartman, Melannie D.; Baron, Jill S.; Lammers, Richard B.; Cline, Donald W.; Band, Larry E.; Liston, Glen E.; Tague, Christina L.
1999-01-01
We applied a version of the Regional Hydro-Ecologic Simulation System (RHESSys) that implements snow redistribution, elevation partitioning, and wind-driven sublimation to Loch Vale Watershed (LVWS), an alpine-subalpine Rocky Mountain catchment where snow accumulation and ablation dominate the hydrologic cycle. We compared simulated discharge to measured discharge and the simulated snow distribution to photogrammetrically rectified aerial (remotely sensed) images. Snow redistribution was governed by a topographic similarity index. We subdivided each hillslope into elevation bands that had homogeneous climate extrapolated from observed climate. We created a distributed wind speed field that was used in conjunction with daily measured wind speeds to estimate sublimation. Modeling snow redistribution was critical to estimating the timing and magnitude of discharge. Incorporating elevation partitioning improved estimated timing of discharge but did not improve patterns of snow cover since wind was the dominant controller of areal snow patterns. Simulating wind-driven sublimation was necessary to predict moisture losses.
Large Eddy Simulation of Vertical Axis Wind Turbine wakes; Part II: effects of inflow turbulence
NASA Astrophysics Data System (ADS)
Duponcheel, Matthieu; Chatelain, Philippe; Caprace, Denis-Gabriel; Winckelmans, Gregoire
2017-11-01
The aerodynamics of Vertical Axis Wind Turbines (VAWTs) is inherently unsteady, which leads to vorticity shedding mechanisms due to both the lift distribution along the blade and its time evolution. Large-scale, fine-resolution Large Eddy Simulations of the flow past Vertical Axis Wind Turbines have been performed using a state-of-the-art Vortex Particle-Mesh (VPM) method combined with immersed lifting lines. Inflow turbulence with a prescribed turbulence intensity (TI) is injected at the inlet of the simulation from a precomputed synthetic turbulence field obtained using the Mann algorithm. The wake of a standard, medium-solidity, H-shaped machine is simulated for several TI levels. The complex wake development is captured in details and over long distances: from the blades to the near wake coherent vortices, then through the transitional ones to the fully developed turbulent far wake. Mean flow and turbulence statistics are computed over more than 10 diameters downstream of the machine. The sensitivity of the wake topology and decay to the TI level is assessed.
Large-Eddy Simulation of Wind-Plant Aerodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Churchfield, M. J.; Lee, S.; Moriarty, P. J.
In this work, we present results of a large-eddy simulation of the 48 multi-megawatt turbines composing the Lillgrund wind plant. Turbulent inflow wind is created by performing an atmospheric boundary layer precursor simulation, and turbines are modeled using a rotating, variable-speed actuator line representation. The motivation for this work is that few others have done large-eddy simulations of wind plants with a substantial number of turbines, and the methods for carrying out the simulations are varied. We wish to draw upon the strengths of the existing simulations and our growing atmospheric large-eddy simulation capability to create a sound methodology formore » performing this type of simulation. We used the OpenFOAM CFD toolbox to create our solver. The simulated time-averaged power production of the turbines in the plant agrees well with field observations, except with the sixth turbine and beyond in each wind-aligned. The power produced by each of those turbines is overpredicted by 25-40%. A direct comparison between simulated and field data is difficult because we simulate one wind direction with a speed and turbulence intensity characteristic of Lillgrund, but the field observations were taken over a year of varying conditions. The simulation shows the significant 60-70% decrease in the performance of the turbines behind the front row in this plant that has a spacing of 4.3 rotor diameters in this direction. The overall plant efficiency is well predicted. This work shows the importance of using local grid refinement to simultaneously capture the meter-scale details of the turbine wake and the kilometer-scale turbulent atmospheric structures. Although this work illustrates the power of large-eddy simulation in producing a time-accurate solution, it required about one million processor-hours, showing the significant cost of large-eddy simulation.« less
focuses on high-fidelity simulation of wind plant aerodynamics using large-eddy simulation. Particularly Applications (SOWFA), a coupled fluid-structure-controls simulation tool specifically for wind plants. Matt's
Taylor, Diane M; Chow, Fotini K; Delkash, Madjid; Imhoff, Paul T
2016-10-01
Landfills are a significant contributor to anthropogenic methane emissions, but measuring these emissions can be challenging. This work uses numerical simulations to assess the accuracy of the tracer dilution method, which is used to estimate landfill emissions. Atmospheric dispersion simulations with the Weather Research and Forecast model (WRF) are run over Sandtown Landfill in Delaware, USA, using observation data to validate the meteorological model output. A steady landfill methane emissions rate is used in the model, and methane and tracer gas concentrations are collected along various transects downwind from the landfill for use in the tracer dilution method. The calculated methane emissions are compared to the methane emissions rate used in the model to find the percent error of the tracer dilution method for each simulation. The roles of different factors are examined: measurement distance from the landfill, transect angle relative to the wind direction, speed of the transect vehicle, tracer placement relative to the hot spot of methane emissions, complexity of topography, and wind direction. Results show that percent error generally decreases with distance from the landfill, where the tracer and methane plumes become well mixed. Tracer placement has the largest effect on percent error, and topography and wind direction both have significant effects, with measurement errors ranging from -12% to 42% over all simulations. Transect angle and transect speed have small to negligible effects on the accuracy of the tracer dilution method. These tracer dilution method simulations provide insight into measurement errors that might occur in the field, enhance understanding of the method's limitations, and aid interpretation of field data. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Alari, Victor; Staneva, Joanna; Breivik, Øyvind; Bidlot, Jean-Raymond; Mogensen, Kristian; Janssen, Peter
2016-04-01
The effects of wind waves on the Baltic Sea water temperature has been studied by coupling the hydrodynamical model NEMO with the wave model WAM. The wave forcing terms that have been taken into consideration are: Stokes-Coriolis force, seastate dependent energy flux and sea-state dependent momentum flux. The combined role of these processes as well as their individual contributions on simulated temperature is analysed. The results indicate a pronounced effect of waves on surface temperature, on the distribution of vertical temperature and on upwellinǵs. In northern parts of the Baltic Sea a warming of the surface layer occurs in the wave included simulations. This in turn reduces the cold bias between simulated and measured data. The warming is primarily caused by sea-state dependent energy flux. Wave induced cooling is mostly observed in near coastal areas and is mainly due to Stokes-Coriolis forcing. The latter triggers effect of intensifying upwellings near the coasts, depending on the direction of the wind. The effect of sea-state dependent momentum flux is predominantly to warm the surface layer. During the summer the wave induced water temperature changes were up to 1 °C.
The Effect on the Lunar Exosphere of a Coroual Mass Ejection Passage
NASA Technical Reports Server (NTRS)
Killen, R. M.; Hurley, D. M.; Farrell, W. M.
2011-01-01
Solar wind bombardment onto exposed surfaces in the solar system produces an energetic component to the exospheres about those bodies. The solar wind energy and composition are highly dependent on the origin of the plasma. Using the measured composition of the slow wind, fast wind, solar energetic particle (SEP) population, and coronal mass ejection (CME), broken down into their various components, we have estimated the total sputter yield for each type of solar wind. We show that the heavy ion component, especially the He++ and 0+7 can greatly enhance the total sputter yield during times when the heavy ion population is enhanced. Folding in the flux, we compute the source rate for several species during different types of solar wind. Finally, we use a Monte Carlo model developed to simulate the time-dependent evolution of the lunar exosphere to study the sputtering component of the exosphere under the influence of a CME passage. We simulate the background exosphere of Na, K, Ca, and Mg. Simulations indicate that sputtering increases the mass of those constituents in the exosphere a few to a few tens times the background values. The escalation of atmospheric density occurs within an hour of onset The decrease in atmospheric density after the CME passage is also rapid, although takes longer than the increase, Sputtered neutral particles have a high probability of escaping the moon,by both Jeans escape and photo ionization. Density and spatial distribution of the exosphere can be tested with the LADEE mission.
NASA Astrophysics Data System (ADS)
Wang, Hui; Zhang, Kedeng; Zheng, Zhichao; Ridley, Aaron James
2018-03-01
The temporal and spatial variations in thermospheric neutral winds at an altitude of 400 km in response to subauroral polarization streams (SAPS) are investigated using global ionosphere and thermosphere model simulations under the southward interplanetary magnetic field (IMF) condition. During SAPS periods the westward neutral winds in the subauroral latitudes are greatly strengthened at dusk. This is due to the ion drag effect, through which SAPS can accelerate neutral winds in the westward direction. The new findings are that for SAPS commencing at different universal times, the strongest westward neutral winds exhibit large variations in amplitudes. The ion drag and Joule heating effects are dependent on the solar illumination, which exhibit UT variations due to the displacement of the geomagnetic and geographic poles. With more sunlight, stronger westward neutral winds can be generated, and the center of these neutral winds shifts to a later magnetic local time than neutral winds with less solar illumination. In the Northern Hemisphere and Southern Hemisphere, the disturbance neutral wind reaches a maximum at 18:00 and 04:00 UT, and a minimum at 04:00 and 16:00 UT, respectively. There is a good correlation between the neutral wind velocity and cos0.5(SZA) (solar zenith angle). The reduction in the electron density and enhancement in the air mass density at an altitude of 400 km are strongest when the maximum solar illumination collocates with the SAPS. The correlation between the neutral wind velocity and cos0.5(SZA) is also good during the northward IMF period. The effect of a sine-wave oscillation of SAPS on the neutral wind also exhibits UT variations in association with the solar illumination.
Interaction between a pulsating jet and a surrounding disk wind. A hydrodynamical perspective
NASA Astrophysics Data System (ADS)
Tabone, B.; Raga, A.; Cabrit, S.; Pineau des Forêts, G.
2018-06-01
Context. The molecular richness of fast protostellar jets within 20-100 au of their source, despite strong ultraviolet irradiation, remains a challenge for the models investigated so far. Aim.We aim to investigate the effect of interaction between a time-variable jet and a surrounding steady disk wind, to assess the possibility of jet chemical enrichement by the wind, and the characteristic signatures of such a configuration. Methods: We have constructed an analytic model of a jet bow shock driven into a surrounding slower disk wind in the thin shell approximation. The refilling of the post bow shock cavity from below by the disk wind is also studied. An extension of the model to the case of two or more successive internal working surfaces (IWS) is made. We then compared this analytic model with numerical simulations with and without a surrounding disk wind. Results: We find that at early times (of order the variability period), jet bow shocks travel in refilled pristine disk wind material, before interacting with the cocoon of older bow shocks. This opens the possibility of bow shock chemical enrichment (if the disk wind is molecular and dusty) and of probing the unperturbed disk wind structure near the jet base. Several distinctive signatures of the presence of a surrounding disk wind are identified, in the bow shock morphology and kinematics. Numerical simulations validate our analytical approach and further show that at large scale, the passage of many jet IWS inside a disk wind produces a stationary V-shaped cavity, closing down onto the axis at a finite distance from the source.
Effects of wind energy generation and white-nose syndrome on the viability of the Indiana bat
Erickson, Richard A.; Thogmartin, Wayne E.; Diffendorfer, James E.; Russell, Robin E.; Szymanski, Jennifer A.
2016-01-01
Wind energy generation holds the potential to adversely affect wildlife populations. Species-wide effects are difficult to study and few, if any, studies examine effects of wind energy generation on any species across its entire range. One species that may be affected by wind energy generation is the endangered Indiana bat (Myotis sodalis), which is found in the eastern and midwestern United States. In addition to mortality from wind energy generation, the species also faces range-wide threats from the emerging infectious fungal disease, white-nose syndrome (WNS). White-nose syndrome, caused by Pseudogymnoascus destructans, disturbs hibernating bats leading to high levels of mortality. We used a spatially explicit full-annual-cycle model to investigate how wind turbine mortality and WNS may singly and then together affect population dynamics of this species. In the simulation, wind turbine mortality impacted the metapopulation dynamics of the species by causing extirpation of some of the smaller winter colonies. In general, effects of wind turbines were localized and focused on specific spatial subpopulations. Conversely, WNS had a depressive effect on the species across its range. Wind turbine mortality interacted with WNS and together these stressors had a larger impact than would be expected from either alone, principally because these stressors together act to reduce species abundance across the spectrum of population sizes. Our findings illustrate the importance of not only prioritizing the protection of large winter colonies as is currently done, but also of protecting metapopulation dynamics and migratory connectivity.
Effects of wind energy generation and white-nose syndrome on the viability of the Indiana bat.
Erickson, Richard A; Thogmartin, Wayne E; Diffendorfer, Jay E; Russell, Robin E; Szymanski, Jennifer A
2016-01-01
Wind energy generation holds the potential to adversely affect wildlife populations. Species-wide effects are difficult to study and few, if any, studies examine effects of wind energy generation on any species across its entire range. One species that may be affected by wind energy generation is the endangered Indiana bat ( Myotis sodalis ), which is found in the eastern and midwestern United States. In addition to mortality from wind energy generation, the species also faces range-wide threats from the emerging infectious fungal disease, white-nose syndrome (WNS). White-nose syndrome, caused by Pseudogymnoascus destructans , disturbs hibernating bats leading to high levels of mortality. We used a spatially explicit full-annual-cycle model to investigate how wind turbine mortality and WNS may singly and then together affect population dynamics of this species. In the simulation, wind turbine mortality impacted the metapopulation dynamics of the species by causing extirpation of some of the smaller winter colonies. In general, effects of wind turbines were localized and focused on specific spatial subpopulations. Conversely, WNS had a depressive effect on the species across its range. Wind turbine mortality interacted with WNS and together these stressors had a larger impact than would be expected from either alone, principally because these stressors together act to reduce species abundance across the spectrum of population sizes. Our findings illustrate the importance of not only prioritizing the protection of large winter colonies as is currently done, but also of protecting metapopulation dynamics and migratory connectivity.
NASA Astrophysics Data System (ADS)
Nasir, Rizal E. M.; Ali, Zurriati; Kuntjoro, Wahyu; Wisnoe, Wirachman
2012-06-01
Previous wind tunnel test has proven the improved aerodynamic charasteristics of Baseline-II E-2 Blended Wing-Body (BWB) aircraft studied in Universiti Teknologi Mara. The E-2 is a version of Baseline-II BWB with modified outer wing and larger canard, solely-designed to gain favourable longitudinal static stability during flight. This paper highlights some results from current investigation on the said aircraft via computational fluid dynamics simulation as a mean to validate the wind tunnel test results. The simulation is conducted based on standard one-equation turbulence, Spalart-Allmaras model with polyhedral mesh. The ambience of the flight simulation is made based on similar ambience of wind tunnel test. The simulation shows lift, drag and moment results to be near the values found in wind tunnel test but only within angles of attack where the lift change is linear. Beyond the linear region, clear differences between computational simulation and wind tunnel test results are observed. It is recommended that different type of mathematical model be used to simulate flight conditions beyond linear lift region.
NASA Technical Reports Server (NTRS)
Usry, J. W.
1983-01-01
Wind shear statistics were calculated for a simulated set of wind profiles based on a proposed standard wind field data base. Wind shears were grouped in altitude in altitude bands of 100 ft between 100 and 1400 ft and in wind shear increments of 0.025 knot/ft. Frequency distributions, means, and standard deviations for each altitude band were derived for the total sample were derived for both sets. It was found that frequency distributions in each altitude band for the simulated data set were more dispersed below 800 ft and less dispersed above 900 ft than those for the measured data set. Total sample frequency of occurrence for the two data sets was about equal for wind shear values between +0.075 knot/ft, but the simulated data set had significantly larger values for all wind shears outside these boundaries. It is shown that normal distribution in both data sets neither data set was normally distributed; similar results are observed from the cumulative frequency distributions.
Computational examination of utility scale wind turbine wake interactions
Okosun, Tyamo; Zhou, Chenn Q.
2015-07-14
We performed numerical simulations of small, utility scale wind turbine groupings to determine how wakes generated by upstream turbines affect the performance of the small turbine group as a whole. Specifically, various wind turbine arrangements were simulated to better understand how turbine location influences small group wake interactions. The minimization of power losses due to wake interactions certainly plays a significant role in the optimization of wind farms. Since wind turbines extract kinetic energy from the wind, the air passing through a wind turbine decreases in velocity, and turbines downstream of the initial turbine experience flows of lower energy, resultingmore » in reduced power output. Our study proposes two arrangements of turbines that could generate more power by exploiting the momentum of the wind to increase velocity at downstream turbines, while maintaining low wake interactions at the same time. Furthermore, simulations using Computational Fluid Dynamics are used to obtain results much more quickly than methods requiring wind tunnel models or a large scale experimental test.« less
Winds from Luminous Late-Type Stars: II. Broadband Frequency Distribution of Alfven Waves
NASA Technical Reports Server (NTRS)
Airapetian, V.; Carpenter, K. G.; Ofman, L.
2010-01-01
We present the numerical simulations of winds from evolved giant stars using a fully non-linear, time dependent 2.5-dimensional magnetohydrodynamic (MHD) code. This study extends our previous fully non-linear MHD wind simulations to include a broadband frequency spectrum of Alfven waves that drive winds from red giant stars. We calculated four Alfven wind models that cover the whole range of Alfven wave frequency spectrum to characterize the role of freely propagated and reflected Alfven waves in the gravitationally stratified atmosphere of a late-type giant star. Our simulations demonstrate that, unlike linear Alfven wave-driven wind models, a stellar wind model based on plasma acceleration due to broadband non-linear Alfven waves, can consistently reproduce the wide range of observed radial velocity profiles of the winds, their terminal velocities and the observed mass loss rates. Comparison of the calculated mass loss rates with the empirically determined mass loss rate for alpha Tau suggests an anisotropic and time-dependent nature of stellar winds from evolved giants.
Ouari, Kamel; Rekioua, Toufik; Ouhrouche, Mohand
2014-01-01
In order to make a wind power generation truly cost-effective and reliable, an advanced control techniques must be used. In this paper, we develop a new control strategy, using nonlinear generalized predictive control (NGPC) approach, for DFIG-based wind turbine. The proposed control law is based on two points: NGPC-based torque-current control loop generating the rotor reference voltage and NGPC-based speed control loop that provides the torque reference. In order to enhance the robustness of the controller, a disturbance observer is designed to estimate the aerodynamic torque which is considered as an unknown perturbation. Finally, a real-time simulation is carried out to illustrate the performance of the proposed controller. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Huebner, Lawrence D.; Tatum, Kenneth E.
1991-01-01
Computational results are presented for three issues pertinent to hypersonic, airbreathing vehicles employing scramjet exhaust flow simulation. The first issue consists of a comparison of schlieren photographs obtained on the aftbody of a cruise missile configuration under powered conditions with two-dimensional computational solutions. The second issue presents the powered aftbody effects of modeling the inlet with a fairing to divert the external flow as compared to an operating flow-through inlet on a generic hypersonic vehicle. Finally, a comparison of solutions examining the potential of testing powered configurations in a wind-off, instead of a wind-on, environment, indicate that, depending on the extent of the three-dimensional plume, it may be possible to test aftbody powered hypersonic, airbreathing configurations in a wind-off environment.
Automated Boundary Conditions for Wind Tunnel Simulations
NASA Technical Reports Server (NTRS)
Carlson, Jan-Renee
2018-01-01
Computational fluid dynamic (CFD) simulations of models tested in wind tunnels require a high level of fidelity and accuracy particularly for the purposes of CFD validation efforts. Considerable effort is required to ensure the proper characterization of both the physical geometry of the wind tunnel and recreating the correct flow conditions inside the wind tunnel. The typical trial-and-error effort used for determining the boundary condition values for a particular tunnel configuration are time and computer resource intensive. This paper describes a method for calculating and updating the back pressure boundary condition in wind tunnel simulations by using a proportional-integral-derivative controller. The controller methodology and equations are discussed, and simulations using the controller to set a tunnel Mach number in the NASA Langley 14- by 22-Foot Subsonic Tunnel are demonstrated.
Analysis of wind-resistant and stability for cable tower in cable-stayed bridge with four towers
NASA Astrophysics Data System (ADS)
Meng, Yangjun; Li, Can
2017-06-01
Wind speed time history simulation methods have been introduced first, especially the harmonic synthesis method introduced in detail. Second, taking Chishi bridge for example, choosing the particular sections, and combined with the design wind speed, three-component coefficient simulate analysis between -4°and 4°has been carry out with the Fluent software. The results show that drag coefficient reaches maximum when the attack Angle is 1°. According to measured wind speed samples,time history curves of wind speed at bridge deck and tower roof have been obtained,and wind-resistant time history analysis for No.5 tower has been carry out. Their results show that the dynamic coefficients are different with different calculation standard, especially transverse bending moment, pulsating crosswind load does not show a dynamic amplification effect.Under pulsating wind loads at bridge deck or tower roof, the maximum displacement at the top of the tower and the maximum stress at the bottom of the tower are within the allowable range. The transverse stiffness of tower is greater than that of the longitudinal stiffness, therefore wind-resistant analysis should give priority to the longitudinal direction. Dynamic coefficients are different with different standard, the maximum dynamic coefficient should be used for the pseudo-static analysis.Finally, the static stability of tower is analyzed with different load combinations, and the galloping stabilities of cable tower is proved.
NASA Technical Reports Server (NTRS)
Carvalho, David; McCarty, Will; Errico, Ron; Prive, Nikki
2018-01-01
An atmospheric wind vectors (AMVs) simulator was developed by NASA's GMAO to simulate observations from future satellite constellation concepts. The synthetic AMVs can then be used in OSSEs to estimate and quantify the potential added value of new observations to the present Earth observing system and, ultimately, the expected impact on the current weather forecasting skill. The GMAO AMV simulator is a tunable and flexible computer code that is able to simulate AMVs expected to be derived from different instruments and satellite orbit configurations. As a case study and example of the usefulness of this tool, the GMAO AMV simulator was used to simulate AMVs envisioned to be provided by the MISTiC Winds, a NASA mission concept consisting of a constellation of satellites equipped with infrared spectral midwave spectrometers, expected to provide high spatial and temporal resolution temperature and humidity soundings of the troposphere that can be used to derive AMVs from the tracking of clouds and water vapor features. The GMAO AMV simulator identifies trackable clouds and water vapor features in the G5NR and employs a probabilistic function to draw a subset of the identified trackable features. Before the simulator is applied to the MISTiC Winds concept, the simulator was calibrated to yield realistic observations counts and spatial distributions and validated considering as a proxy instrument to the MISTiC Winds the Himawari-8 Advanced Imager (AHI). The simulated AHI AMVs showed a close match with the real AHI AMVs in terms of observation counts and spatial distributions, showing that the GMAO AMVs simulator synthesizes AMVs observations with enough quality and realism to produce a response from the DAS equivalent to the one produced with real observations. When applied to the MISTiC Winds scanning points, it can be expected that the MISTiC Winds will be able to collect approximately 60,000 wind observations every 6 hours, if considering a constellation composed of 12 satellites (4 orbital planes). In addition, one of the main expected impacts of the MISTiC Winds concept is the ability to derive water vapor feature tracking AMVs below 500-400 hPa, an unique feature among the water vapor AMVs derived from the current Earth observing system.
A method for three-dimensional modeling of wind-shear environments for flight simulator applications
NASA Technical Reports Server (NTRS)
Bray, R. S.
1984-01-01
A computational method for modeling severe wind shears of the type that have been documented during severe convective atmospheric conditions is offered for use in research and training flight simulation. The procedure was developed with the objectives of operational flexibility and minimum computer load. From one to five, simple down burst wind models can be configured and located to produce the wind field desired for specific simulated flight scenarios. A definition of related turbulence parameters is offered as an additional product of the computations. The use of the method to model several documented examples of severe wind shear is demonstrated.
Initialization of high resolution surface wind simulations using NWS gridded data
J. Forthofer; K. Shannon; Bret Butler
2010-01-01
WindNinja is a standalone computer model designed to provide the user with simulations of surface wind flow. It is deterministic and steady state. It is currently being modified to allow the user to initialize the flow calculation using National Digital Forecast Database. It essentially allows the user to downscale the coarse scale simulations from meso-scale models to...
LAWS simulation: Sampling strategies and wind computation algorithms
NASA Technical Reports Server (NTRS)
Emmitt, G. D. A.; Wood, S. A.; Houston, S. H.
1989-01-01
In general, work has continued on developing and evaluating algorithms designed to manage the Laser Atmospheric Wind Sounder (LAWS) lidar pulses and to compute the horizontal wind vectors from the line-of-sight (LOS) measurements. These efforts fall into three categories: Improvements to the shot management and multi-pair algorithms (SMA/MPA); observing system simulation experiments; and ground-based simulations of LAWS.
NASA Astrophysics Data System (ADS)
Shishido, Seiji; Takahashi, Rion; Murata, Toshiaki; Tamura, Junji; Sugimasa, Masatoshi; Komura, Akiyoshi; Futami, Motoo; Ichinose, Masaya; Ide, Kazumasa
The spread of wind power generation is progressed hugely in recent years from a viewpoint of environmental problems including global warming. Though wind power is considered as a very prospective energy source, wind power fluctuation due to the random fluctuation of wind speed has still created some problems. Therefore, research has been performed how to smooth the wind power fluctuation. This paper proposes Energy Capacitor System (ECS) for the smoothing of wind power which consists of Electric Double-Layer Capacitor (EDLC) and power electronics devices and works as an electric power storage system. Moreover, hydrogen has received much attention in recent years from a viewpoint of exhaustion problem of fossil fuel. Therefore it is also proposed that a hydrogen generator is installed at the wind farm to generate hydrogen. In this paper, the effectiveness of the proposed system is verified by the simulation analyses using PSCAD/EMTDC.
Gaussian vs non-Gaussian turbulence: impact on wind turbine loads
NASA Astrophysics Data System (ADS)
Berg, J.; Mann, J.; Natarajan, A.; Patton, E. G.
2014-12-01
In wind energy applications the turbulent velocity field of the Atmospheric Boundary Layer (ABL) is often characterised by Gaussian probability density functions. When estimating the dynamical loads on wind turbines this has been the rule more than anything else. From numerous studies in the laboratory, in Direct Numerical Simulations, and from in-situ measurements of the ABL we know, however, that turbulence is not purely Gaussian: the smallest and fastest scales often exhibit extreme behaviour characterised by strong non-Gaussian statistics. In this contribution we want to investigate whether these non-Gaussian effects are important when determining wind turbine loads, and hence of utmost importance to the design criteria and lifetime of a wind turbine. We devise a method based on Principal Orthogonal Decomposition where non-Gaussian velocity fields generated by high-resolution pseudo-spectral Large-Eddy Simulation (LES) of the ABL are transformed so that they maintain the exact same second-order statistics including variations of the statistics with height, but are otherwise Gaussian. In that way we can investigate in isolation the question whether it is important for wind turbine loads to include non-Gaussian properties of atmospheric turbulence. As an illustration the Figure show both a non-Gaussian velocity field (left) from our LES, and its transformed Gaussian Counterpart (right). Whereas the horizontal velocity components (top) look close to identical, the vertical components (bottom) are not: the non-Gaussian case is much more fluid-like (like in a sketch by Michelangelo). The question is then: Does the wind turbine see this? Using the load simulation software HAWC2 with both the non-Gaussian and newly constructed Gaussian fields, respectively, we show that the Fatigue loads and most of the Extreme loads are unaltered when using non-Gaussian velocity fields. The turbine thus acts like a low-pass filter which average out the non-Gaussian behaviour on time scales close to and faster than the revolution time of the turbine. For a few of the Extreme load estimations there is, on the other hand, a tendency that non-Gaussian effects increase the overall dynamical load, and hence can be of importance in wind energy load estimations.
NASA Astrophysics Data System (ADS)
Dube, B.; Lefebvre, S.; Perocheau, A.; Nakra, H. L.
1988-01-01
This paper describes the comparative results obtained from digital and hybrid simulation studies on a variable speed wind generator interconnected to the utility grid. The wind generator is a vertical-axis Darrieus type coupled to a synchronous machine by a gear-box; the synchronous machine is connected to the AC utility grid through a static frequency converter. Digital simulation results have been obtained using CSMP software; these results are compared with those obtained from a real-time hybrid simulator that in turn uses a part of the IREQ HVDC simulator. The agreement between hybrid and digital simulation results is generally good. The results demonstrate that the digital simulation reproduces the dynamic behavior of the system in a satisfactory manner and thus constitutes a valid tool for the design of the control systems of the wind generator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asahina, Yuta; Ohsuga, Ken; Nomura, Mariko, E-mail: asahina@cfca.jp
By performing three-dimensional magnetohydrodynamics simulations of subrelativistic jets and disk winds propagating into the magnetized inhomogeneous interstellar medium (ISM), we investigate the magnetic effects on the active galactic nucleus feedback. Our simulations reveal that the magnetic tension force promotes the acceleration of the dense gas clouds, since the magnetic field lines, which are initially straight, bend around the gas clouds. In the jet models, the velocity dispersion of the clouds increases with an increase in the initial magnetic fields. The increment of the kinetic energy of the clouds is proportional to the initial magnetic fields, implying that the magnetic tensionmore » force increases the energy conversion efficiency from the jet to the gas clouds. Through simulations of the mildly collimated disk wind and the funnel-shaped disk wind, we confirm that such an enhancement of the energy conversion efficiency via the magnetic fields appears even if the energy is injected via the disk winds. The enhancement of the acceleration of the dense part of the magnetized ISM via the magnetic tension force will occur wherever the magnetized inhomogeneous matter is blown away.« less
Lunar Swirls: Plasma Magnetic Field Interaction and Dust Transport
NASA Astrophysics Data System (ADS)
Dropmann, Michael; Laufer, Rene; Herdrich, Georg; Matthews, Lorin; Hyde, Truell
2013-10-01
In close collaboration between the Center for Astrophysics, Space Physics and Engineering Research (CASPER) at Baylor University, Texas, and the Institute of Space Systems (IRS) at the University of Stuttgart, Germany, two plasma facilities have been established using the Inductively heated Plasma Generator 6 (IPG6), based on proven IRS designs. A wide range of applications is currently under consideration for both test and research facilities. Basic investigations in the area of plasma radiation and catalysis, simulation of certain parameters of fusion divertors and space applications are planned. In this paper, the facility at Baylor University (IPG6-B) will be used for simulation of mini-magnetospheres on the Moon. The interaction of the solar wind with magnetic fields leads to the formation of electric fields, which can influence the incoming solar wind ion flux and affect dust transport processes on the lunar surface. Both effects may be partially responsible for the occurrence of lunar swirls. Interactions of the solar wind with such mini-magnetospheres will be simulated in the IPG6-B by observing the interaction between a plasma jet and a permanent magnet. The resulting data should lead to better models of dust transport processes and solar wind deflection on the moon.
Evaluation of iconic versus F-map microburst displays
NASA Technical Reports Server (NTRS)
Salzberger, Mark; Hansman, R. John; Wanke, Craig
1994-01-01
Previous studies have shown graphical presentation methods of hazardous wind shear to be superior to textual or audible warnings alone. Positional information and the strength of the hazard were observed to be and were cited by pilots as the most important factors in a display. In this experiment the use of the three different graphical presentations of hazardous wind shear are examined. Airborne predictive detectors of wind shear enable the dissemination of varying levels of information. The effectiveness of iconic and mapping display modes of different complexities are addressed through simulation and analysis. Different positional and time-varying situations are presented in a 'part-task' Boeing 767 simulator using data from actual microburst events. Experienced airline pilots fly approach profiles using both iconic and F-map wind shear alerting displays. Microburst accompanied each event is also shown to the pilot. Mapping display types are expected to be found exceptionally efficient at conveying location comparison information while iconic displays simplify the threat recognition process. Preliminary results from the simulator study are presented. Recommendations concerning the suitability of multilevel iconic and mapping displays are made. Situational problems with current display prototypes are also addressed.
Noise levels from a model turbofan engine with simulated noise control measures applied
NASA Technical Reports Server (NTRS)
Hall, David G.; Woodward, Richard P.
1993-01-01
A study of estimated full-scale noise levels based on measured levels from the Advanced Ducted Propeller (ADP) sub-scale model is presented. Testing of this model was performed in the NASA Lewis Low Speed Anechoic Wind Tunnel at a simulated takeoff condition of Mach 0.2. Effective Perceived Noise Level (EPNL) estimates for the baseline configuration are documented, and also used as the control case in a study of the potential benefits of two categories of noise control. The effect of active noise control is evaluated by artificially removing various rotor-stator interaction tones. Passive noise control is simulated by applying a notch filter to the wind tunnel data. Cases with both techniques are included to evaluate hybrid active-passive noise control. The results for EPNL values are approximate because the original source data was limited in bandwidth and in sideline angular coverage. The main emphasis is on comparisons between the baseline and configurations with simulated noise control measures.
Cheng, Jian-jun; Xin, Guo-Wei; Zhi, Ling-yan; Jiang, Fu-qiang
2017-01-01
Wind-shield walls decrease the velocity of wind-drift sand flow in transit. This results in sand accumulating in the wind-shadow zone of both windshield wall and track line, causing severe sand sediment hazard. This study reveals the characteristics of sand accumulation and the laws of wind-blown sand removal in the wind-shadow areas of three different types of windshield walls, utilizing three-dimensional numerical simulations and wind tunnel experiments and on-site sand sediment tests. The results revealed the formation of apparent vortex and acceleration zones on the leeward side of solid windshield walls. For uniform openings, the vortex area moved back and narrowed. When bottom-opening windshield walls were adopted, the track-supporting layer at the step became a conflux acceleration zone, forming a low velocity vortex zone near the track line. At high wind speeds, windshield walls with bottom-openings achieved improved sand dredging. Considering hydrodynamic mechanisms, the flow field structure on the leeward side of different types of windshield structures is a result of convergence and diffusion of fluids caused by an obstacle. This convergence and diffusion effect of air fluid is more apparent at high wind velocities, but not obvious at low wind velocities. PMID:28120915
NASA Astrophysics Data System (ADS)
Xie, S.; Archer, C. L.
2013-12-01
In this study, a new large-eddy simulation code, the Wind Turbine and Turbulence Simulator (WiTTS), is developed to study the wake generated from a single wind turbine in the neutral ABL. The WiTTS formulation is based on a scale-dependent Lagrangian dynamical model of the sub-grid shear stress and uses actuator lines to simulate the effects of the rotating blades. WiTTS is first tested against wind tunnel experiments and then used to study the commonly-used assumptions of self-similarity and axis-symmetry of the wake under neutral conditions for a variety of wind speeds and turbine properties. The mean velocity deficit shows good self-similarity properties following a normal distribution in the horizontal plane at the hub-height level. Self-similarity is a less valid approximation in the vertical near the ground, due to strong wind shear and ground effects. The mean velocity deficit is strongly dependent on the thrust coefficient or induction factor. A new relationship is proposed to model the mean velocity deficit along the centerline at the hub-height level to fit the LES results piecewise throughout the wake. A logarithmic function is used in the near and intermediate wake regions whereas a power function is used in the far-wake. These two functions provide a better fit to both simulated and observed wind velocity deficits than other functions previously used in wake models such as WAsP. The wind shear and impact with the ground cause an anisotropy in the expansion of the wake such that the wake grows faster horizontally than vertically. The wake deforms upon impact with the ground and spreads laterally. WiTTS is also used to study the turbulence characteristics in the wake. Aligning with the mean wind direction, the streamwise component of turbulence intensity is the dominant among the three components and thus it is further studied. The highest turbulence intensity occurs near the top-tip level. The added turbulence intensity increases fast in the near-wake and reaches its maximum at about x/D ~ 5, then it gradually decreases further downstream. In the far-wake, the added turbulence intensity is primarily dependent on the induction factor and the ambient turbulence: it increases with the induction factor and ambient turbulence and it decays exponentially downstream. An analysis of the added TKE budget shows that production by shear and advection by the mean flow dominate throughout the wake, whereas dissipation and turbulent transport are less important. In the near-wake, TKE is entrained from the upper regions of the annular shear layer into the center of the wake. The nacelle causes a significant increase of production, advection, and dissipation in the near-wake. Wind shear and momentum fluxes are reduced in the lower part of the wake, thus TKE production is reduced at the bottom-tip level. In summary, we find that the WiTTS model, although applied to a simplified case of neutral stability with a single wind turbine, was able to offer new insights into wake properties, including non-symmetric wake growth and reduced vertical mixing near the ground.
NASA Astrophysics Data System (ADS)
Shinohara, Leilei; Pham Tran, Tuan Anh; Beuth, Thorsten; Umesh Babu, Harsha; Heussner, Nico; Bogatscher, Siegwart; Danilova, Svetlana; Stork, Wilhelm
2013-05-01
In order to assist a system design of laser coherent Doppler wind sensor for active pitch control of wind turbine systems (WTS), we developed a numerical simulation environment for modeling and simulation of the sensor system. In this paper we present this simulation concept. In previous works, we have shown the general idea and the possibility of using a low cost coherent laser Doppler wind sensing system for an active pitch control of WTS in order to achieve a reduced mechanical stress, increase the WTS lifetime and therefore reduce the electricity price from wind energy. Such a system is based on a 1.55μm Continuous-Wave (CW) laser plus an erbium-doped fiber amplifier (EDFA) with an output power of 1W. Within this system, an optical coherent detection method is chosen for the Doppler frequency measurement in megahertz range. A comparatively low cost short coherent length laser with a fiber delay line is used for achieving a multiple range measurement. In this paper, we show the current results on the improvement of our simulation by applying a Monte Carlo random generation method for positioning the random particles in atmosphere and extend the simulation to the entire beam penetrated space by introducing a cylindrical co-ordinate concept and meshing the entire volume into small elements in order to achieve a faster calculation and gain more realistic simulation result. In addition, by applying different atmospheric parameters, such as particle sizes and distributions, we can simulate different weather and wind situations.
NASA Technical Reports Server (NTRS)
Houbolt, J. C.
1973-01-01
A survey of the effect of environmental surface winds and gusts on aircraft design and operation is presented. A listing of the very large number of problems that are encountered is given. Attention is called to the many studies that have been made on surface winds and gusts, but development in the engineering application of these results to aeronautical problems is pointed out to be still in the embryonic stage. Control of the aircraft is of paramount concern. Mathematical models and their application in simulation studies of airplane operation and control are discussed, and an attempt is made to identify their main gaps or deficiencies. Key reference material is cited. The need for better exchange between the meteorologist and the aeronautical engineer is discussed. Suggestions for improvements in the wind and gust models are made.
Evaluation of CMIP5 and CORDEX Derived Wind Wave Climate in Arabian Sea and Bay of Bengal
NASA Astrophysics Data System (ADS)
Chowdhury, P.; Behera, M. R.
2017-12-01
Climate change impact on surface ocean wave parameters need robust assessment for effective coastal zone management. Climate model skill to simulate dynamical General Circulation Models (GCMs) and Regional Circulation Models (RCMs) forced wind-wave climate over northern Indian Ocean is assessed in the present work. The historical dynamical wave climate is simulated using surface winds derived from four GCMs and four RCMs, participating in the Coupled Model Inter-comparison Project (CMIP5) and Coordinated Regional Climate Downscaling Experiment (CORDEX-South Asia), respectively, and their ensemble are used to force a spectral wave model. The surface winds derived from GCMs and RCMs are corrected for bias, using Quantile Mapping method, before being forced to the spectral wave model. The climatological properties of wave parameters (significant wave height (Hs), mean wave period (Tp) and direction (θm)) are evaluated relative to ERA-Interim historical wave reanalysis datasets over Arabian Sea (AS) and Bay of Bengal (BoB) regions of the northern Indian Ocean for a period of 27 years. We identify that the nearshore wave climate of AS is better predicted than the BoB by both GCMs and RCMs. Ensemble GCM simulated Hs in AS has a better correlation with ERA-Interim ( 90%) than in BoB ( 80%), whereas ensemble RCM simulated Hs has a low correlation in both regions ( 50% in AS and 45% in BoB). In AS, ensemble GCM simulated Tp has better predictability ( 80%) compared to ensemble RCM ( 65%). However, neither GCM nor RCM could satisfactorily predict Tp in nearshore BoB. Wave direction is poorly simulated by GCMs and RCMs in both AS and BoB, with correlation around 50% with GCMs and 60% with RCMs wind derived simulations. However, upon comparing individual RCMs with their parent GCMs, it is found that few of the RCMs predict wave properties better than their parent GCMs. It may be concluded that there is no consistent added value by RCMs over GCMs forced wind-wave climate over northern Indian Ocean. We also identify that there is little to no significance of choosing a finer resolution GCM ( 1.4°) over a coarse GCM ( 2.8°) in improving skill of GCM forced dynamical wave simulations.
Hybrid RANS-LES using high order numerical methods
NASA Astrophysics Data System (ADS)
Henry de Frahan, Marc; Yellapantula, Shashank; Vijayakumar, Ganesh; Knaus, Robert; Sprague, Michael
2017-11-01
Understanding the impact of wind turbine wake dynamics on downstream turbines is particularly important for the design of efficient wind farms. Due to their tractable computational cost, hybrid RANS/LES models are an attractive framework for simulating separation flows such as the wake dynamics behind a wind turbine. High-order numerical methods can be computationally efficient and provide increased accuracy in simulating complex flows. In the context of LES, high-order numerical methods have shown some success in predictions of turbulent flows. However, the specifics of hybrid RANS-LES models, including the transition region between both modeling frameworks, pose unique challenges for high-order numerical methods. In this work, we study the effect of increasing the order of accuracy of the numerical scheme in simulations of canonical turbulent flows using RANS, LES, and hybrid RANS-LES models. We describe the interactions between filtering, model transition, and order of accuracy and their effect on turbulence quantities such as kinetic energy spectra, boundary layer evolution, and dissipation rate. This work was funded by the U.S. Department of Energy, Exascale Computing Project, under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory.
NASA Astrophysics Data System (ADS)
Steele, C. J.; Dorling, S. R.; von Glasow, R.; Bacon, J.
2013-01-01
The behaviour and characteristics of the marine component of sea breeze cells have received little attention relative to their onshore counterparts. Yet there is a growing interest and dependence on the offshore wind climate from, for example, a wind energy perspective. Using idealized model experiments, we investigate the sea breeze circulation at scales which approximate to those of the southern North Sea, a region of major ongoing offshore wind farm development. We also contrast the scales and characteristics of the pure and the little known corkscrew and backdoor sea breeze types, where the type is pre-defined by the orientation of the synoptic scale flow relative to the shoreline. We find, crucially, that pure sea breezes, in contrast to corkscrew and backdoor types, can lead to substantial wind speed reductions offshore and that the addition of a second eastern coastline emphasises this effect through generation of offshore "calm zones". The offshore extent of all sea breeze types is found to be sensitive to both the influence of Coriolis acceleration and to the boundary layer scheme selected. These extents range, for example for a pure sea breeze produced in a 2 m s-1 offshore gradient wind, from 0 km to 21 km between the Mellor-Yamada-Nakanishi-Niino and the Yonsei State University schemes respectively. The corkscrew type restricts the development of a backdoor sea breeze on the opposite coast and is also capable of traversing a 100 km offshore domain even under high along-shore gradient wind speed (>15 m s-1) conditions. Realistic variations in sea surface skin temperature and initializing vertical thermodynamic profile do not significantly alter the resulting circulation, though the strengths of the simulated sea breezes are modulated if the effective land-sea thermal contrast is altered. We highlight how sea breeze impacts on circulation need to be considered in order to improve the accuracy of both assessments of the offshore wind energy climate and forecasts of wind energy output.
Semi-active control of monopile offshore wind turbines under multi-hazards
NASA Astrophysics Data System (ADS)
Sun, C.
2018-01-01
The present paper studies the control of monopile offshore wind turbines subjected to multi-hazards consisting of wind, wave and earthquake. A Semi-active tuned mass damper (STMD) with tunable natural frequency and damping ratio is introduced to control the dynamic response. A new fully coupled analytical model of the monopile offshore wind turbine with an STMD is established. The aerodynamic, hydrodynamic and seismic loading models are derived. Soil effects and damage are considered. The National Renewable Energy Lab monopile 5 MW baseline wind turbine model is employed to examine the performance of the STMD. A passive tuned mass damper (TMD) is utilized for comparison. Through numerical simulation, it is found that before damage occurs, the wind and wave induced response is more dominant than the earthquake induced response. With damage presence in the tower and the foundation, the nacelle and the tower response is increased dramatically and the natural frequency is decreased considerably. As a result, the passive TMD with fixed parameters becomes off-tuned and loses its effectiveness. In comparison, the STMD retuned in real-time demonstrates consistent effectiveness in controlling the dynamic response of the monopile offshore wind turbines under multi-hazards and damage with a smaller stroke.
On the Origins of the Intercorrelations Between Solar Wind Variables
NASA Astrophysics Data System (ADS)
Borovsky, Joseph E.
2018-01-01
It is well known that the time variations of the diverse solar wind variables at 1 AU (e.g., solar wind speed, density, proton temperature, electron temperature, magnetic field strength, specific entropy, heavy-ion charge-state densities, and electron strahl intensity) are highly intercorrelated with each other. In correlation studies of the driving of the Earth's magnetosphere-ionosphere-thermosphere system by the solar wind, these solar wind intercorrelations make determining cause and effect very difficult. In this report analyses of solar wind spacecraft measurements and compressible-fluid computer simulations are used to study the origins of the solar wind intercorrelations. Two causes are found: (1) synchronized changes in the values of the solar wind variables as the plasma types of the solar wind are switched by solar rotation and (2) dynamic interactions (compressions and rarefactions) in the solar wind between the Sun and the Earth. These findings provide an incremental increase in the understanding of how the Sun-Earth system operates.
Development and application of incrementally complex tools for wind turbine aerodynamics
NASA Astrophysics Data System (ADS)
Gundling, Christopher H.
Advances and availability of computational resources have made wind farm design using simulation tools a reality. Wind farms are battling two issues, affecting the cost of energy, that will make or break many future investments in wind energy. The most significant issue is the power reduction of downstream turbines operating in the wake of upstream turbines. The loss of energy from wind turbine wakes is difficult to predict and the underestimation of energy losses due to wakes has been a common problem throughout the industry. The second issue is a shorter lifetime of blades and past failures of gearboxes due to increased fluctuations in the unsteady loading of waked turbines. The overall goal of this research is to address these problems by developing a platform for a multi-fidelity wind turbine aerodynamic performance and wake prediction tool. Full-scale experiments in the field have dramatically helped researchers understand the unique issues inside a large wind farm, but experimental methods can only be used to a limited extent due to the cost of such field studies and the size of wind farms. The uncertainty of the inflow is another inherent drawback of field experiments. Therefore, computational fluid dynamics (CFD) predictions, strategically validated using carefully performed wind farm field campaigns, are becoming a more standard design practice. The developed CFD models include a blade element model (BEM) code with a free-vortex wake, an actuator disk or line based method with large eddy simulations (LES) and a fully resolved rotor based method with detached eddy simulations (DES) and adaptive mesh refinement (AMR). To create more realistic simulations, performance of a one-way coupling between different mesoscale atmospheric boundary layer (ABL) models and the three microscale CFD solvers is tested. These methods are validated using data from incrementally complex test cases that include the NREL Phase VI wind tunnel test, the Sexbierum wind farm and the Lillgrund offshore wind farm. By cross-comparing the lowest complexity free-vortex method with the higher complexity methods, a fast and accurate simulation tool has been generated that can perform wind farm simulations in a few hours.
CFD Simulation of Turbulent Wind Effect on an Array of Ground-Mounted Solar PV Panels
NASA Astrophysics Data System (ADS)
Irtaza, Hassan; Agarwal, Ashish
2018-06-01
Aim of the present study is to determine the wind loads on the PV panels in a solar array since panels are vulnerable to high winds. Extensive damages of PV panels, arrays and mounting modules have been reported the world over due to high winds. Solar array of dimension 6 m × 4 m having 12 PV panels of size 1 m × 2 m on 3D 1:50 scaled models have been simulated using unsteady solver with Reynolds-Averaged Navier-Stokes equations of computational fluid dynamics techniques to study the turbulent wind effects on PV panels. A standalone solar array with 30° tilt angle in atmospheric surface layer with the Renormalized Group (RNG) turbulence closure subjected to incident wind varied from - 90° to 90°. The net pressure, drag and lift coefficients are found to be maximum when the wind is flowing normally to the PV panel either 90° or - 90°. The tilt angle of solar arrays the world over not vary on the latitude but also on the seasons. Keeping this in mind the ground mounted PV panels in array with varying tilt angle from 10° to 60° at an interval of 10° have been analyzed for normal wind incident i.e. 90° and - 90° using unsteady RNG turbulence model. Net pressure coefficients have been calculated and found to be increasing with increase in array tilting angle. Maximum net pressure coefficient was observed for the 60° tilted PV array for 90° and - 90° wind incident having value of 0.938 and 0.904 respectively. The results can be concluded that the PV panels are subjected to significant lift and drag forces under wind loading, which needs to be quantified with sufficient factor of safety to avoid damages.
Could Crop Roughness Impact the Wind Resource at Agriculturally Productive Wind Farm Sites?
NASA Astrophysics Data System (ADS)
Vanderwende, B. J.; Lundquist, J. K.
2014-12-01
The high concentration of both large-scale agriculture and wind power production in the United States Midwest region raises new questions concerning the interaction of the two activities. For instance, it is known from internal boundary layer theory that changes in the roughness of the land-surface resulting from crop choices could modify the momentum field aloft. Upward propagation of such an effect might impact the properties of the winds encountered by modern turbines, which typically span a layer from about 40 to 120 meters above the surface. As direct observation of such interaction would require impractical interference in the planting schedules of farmers, we use numerical modeling to quantify the magnitude of crop-roughness effects. To simulate a collocated farm and turbine array, we use version 3.4.1 of the Weather Research and Forecasting model (WRF). The hypothetical farm is inserted near the real location of the 2013 Crop Wind Energy Experiment (CWEX). Reanalyses provide representative initial and boundary conditions. A month-long period spanning August 2013 is used to evaluate the differences in flows above corn (maize) and soybean crops at the mature, reproductive stage. Simulations are performed comparing the flow above each surface regime, both in the absence and presence of a wind farm, which consists of a parameterized 11x11 array of 1.8 MW Vestas V90 turbines. Appreciable differences in rotor-layer wind speeds emerge. The use of soybeans results in an increase in wind speeds and a corresponding reduction in rotor-layer shear when compared to corn. Despite the turbulent nature of flow within a wind farm, high stability reduces the impact of crop roughness on the flow aloft, particularly in the upper portion of the rotor disk. We use these results to estimate the economic impact of crop selection on wind power producers.
CFD Simulation of Turbulent Wind Effect on an Array of Ground-Mounted Solar PV Panels
NASA Astrophysics Data System (ADS)
Irtaza, Hassan; Agarwal, Ashish
2018-02-01
Aim of the present study is to determine the wind loads on the PV panels in a solar array since panels are vulnerable to high winds. Extensive damages of PV panels, arrays and mounting modules have been reported the world over due to high winds. Solar array of dimension 6 m × 4 m having 12 PV panels of size 1 m × 2 m on 3D 1:50 scaled models have been simulated using unsteady solver with Reynolds-Averaged Navier-Stokes equations of computational fluid dynamics techniques to study the turbulent wind effects on PV panels. A standalone solar array with 30° tilt angle in atmospheric surface layer with the Renormalized Group (RNG) turbulence closure subjected to incident wind varied from - 90° to 90°. The net pressure, drag and lift coefficients are found to be maximum when the wind is flowing normally to the PV panel either 90° or - 90°. The tilt angle of solar arrays the world over not vary on the latitude but also on the seasons. Keeping this in mind the ground mounted PV panels in array with varying tilt angle from 10° to 60° at an interval of 10° have been analyzed for normal wind incident i.e. 90° and - 90° using unsteady RNG turbulence model. Net pressure coefficients have been calculated and found to be increasing with increase in array tilting angle. Maximum net pressure coefficient was observed for the 60° tilted PV array for 90° and - 90° wind incident having value of 0.938 and 0.904 respectively. The results can be concluded that the PV panels are subjected to significant lift and drag forces under wind loading, which needs to be quantified with sufficient factor of safety to avoid damages.
NASA Astrophysics Data System (ADS)
Zhou, W.; Qiu, G. Y.; Oodo, S. O.; He, H.
2013-03-01
An increasing interest in wind energy and the advance of related technologies have increased the connection of wind power generation into electrical grids. This paper proposes an optimization model for determining the maximum capacity of wind farms in a power system. In this model, generator power output limits, voltage limits and thermal limits of branches in the grid system were considered in order to limit the steady-state security influence of wind generators on the power system. The optimization model was solved by a nonlinear primal-dual interior-point method. An IEEE-30 bus system with two wind farms was tested through simulation studies, plus an analysis conducted to verify the effectiveness of the proposed model. The results indicated that the model is efficient and reasonable.
Numerical and flight simulator test of the flight deterioration concept
NASA Technical Reports Server (NTRS)
Mccarthy, J.; Norviel, V.
1982-01-01
Manned flight simulator response to theoretical wind shear profiles was studied in an effort to calibrate fixed-stick and pilot-in-the-loop numerical models of jet transport aircraft on approach to landing. Results of the study indicate that both fixed-stick and pilot-in-the-loop models overpredict the deleterious effects of aircraft approaches when compared to pilot performance in the manned simulator. Although the pilot-in-the-loop model does a better job than does the fixed-stick model, the study suggests that the pilot-in-the-loop model is suitable for use in meteorological predictions of adverse low-level wind shear along approach and departure courses to identify situations in which pilots may find difficulty. The model should not be used to predict the success or failure of a specific aircraft. It is suggested that the pilot model be used as part of a ground-based Doppler radar low-level wind shear detection and warning system.
Formation of Close-in Super-Earths in an Evolving Disk Due to Disk Winds
NASA Astrophysics Data System (ADS)
Ogihara, Masahiro; Kokubo, Eiichiro; Suzuki, Takeru; Morbidelli, Alessandro
2018-04-01
Planets with masses larger than Mars mass undergo rapid inward migration (type I migration) in a standard protoplanetary disk. Recent magnetohydrodynamical simulations revealed the presence of magnetically-driven disk winds, which would alter the disk profile and the type I migration in the close-in region (r<1 au). We investigate orbital evolution of planetary embryos in a disk that viscously evolves under effects of magnetically-driven disk winds. The aim is to examine whether observed distributions of close-in super-Earths can be reproduced by simulations. We find that the type I migration is significantly suppressed in a disk with flat surface density profile. After planetary embryos undergo slow inward migration, they are captured in a resonant chain. The resonant chain undergoes late orbital instability during the gas depletion, leading to a non-resonant configuration. We also find that observed distributions of close-in super-Earths (e.g., period ratio, mass ratio) can be reproduced by results of simulations.
Wake Dynamics in the Atmospheric Boundary Layer Over Complex Terrain
NASA Astrophysics Data System (ADS)
Markfort, Corey D.
The goal of this research is to advance our understanding of atmospheric boundary layer processes over heterogeneous landscapes and complex terrain. The atmospheric boundary layer (ABL) is a relatively thin (˜ 1 km) turbulent layer of air near the earth's surface, in which most human activities and engineered systems are concentrated. Its dynamics are crucially important for biosphere-atmosphere couplings and for global atmospheric dynamics, with significant implications on our ability to predict and mitigate adverse impacts of land use and climate change. In models of the ABL, land surface heterogeneity is typically represented, in the context of Monin-Obukhov similarity theory, as changes in aerodynamic roughness length and surface heat and moisture fluxes. However, many real landscapes are more complex, often leading to massive boundary layer separation and wake turbulence, for which standard models fail. Trees, building clusters, and steep topography produce extensive wake regions currently not accounted for in models of the ABL. Wind turbines and wind farms also generate wakes that combine in complex ways to modify the ABL. Wind farms are covering an increasingly significant area of the globe and the effects of large wind farms must be included in regional and global scale models. Research presented in this thesis demonstrates that wakes caused by landscape heterogeneity must be included in flux parameterizations for momentum, heat, and mass (water vapor and trace gases, e.g. CO2 and CH4) in ABL simulation and prediction models in order to accurately represent land-atmosphere interactions. Accurate representation of these processes is crucial for the predictions of weather, air quality, lake processes, and ecosystems response to climate change. Objectives of the research reported in this thesis are: 1) to investigate turbulent boundary layer adjustment, turbulent transport and scalar flux in wind farms of varying configurations and develop an improved modeling framework for wind farm - atmosphere interaction, 2) to determine how heterogeneous patches of forest affect the structure of the ABL and its interactions with clearings and water bodies, 3) to investigate how landscape heterogeneity, including wakes, may be parameterized in regional-scale weather and climate models to improve the representation of surface fluxes, e.g. from lakes/wetlands and forest clearings. To achieve these objectives, this research employs an interdisciplinary strategy, utilizing concepts and methods from fluid mechanics, micrometeorology, ecosystem ecology and environmental sciences, and combines laboratory and field experiments. In particular, a) wind tunnel experiments of flow through and over model wind farms and model forest canopies were used to improve our fundamental understanding of how wakes affect land-atmosphere coupling, including surface fluxes, after wind farm installation and for heterogeneous landscapes of canopies and clearings or lakes, and b) extensive field studies over lakes and wetlands were undertaken to study the effects of wakes downwind of forest canopies and the effect of wind sheltering on lake stratification dynamics and gas fluxes. These experiments were also used to improve and validate numerical simulation techniques for the atmospheric boundary layer, specifically the large eddy simulation technique, which is used to simulate flow in wind farms and flow over heterogeneous terrain.
Wind Resource Assessment of Gujarat (India)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Draxl, C.; Purkayastha, A.; Parker, Z.
India is one of the largest wind energy markets in the world. In 1986 Gujarat was the first Indian state to install a wind power project. In February 2013, the installed wind capacity in Gujarat was 3,093 MW. Due to the uncertainty around existing wind energy assessments in India, this analysis uses the Weather Research and Forecasting (WRF) model to simulate the wind at current hub heights for one year to provide more precise estimates of wind resources in Gujarat. The WRF model allows for accurate simulations of winds near the surface and at heights important for wind energy purposes.more » While previous resource assessments published wind power density, we focus on average wind speeds, which can be converted to wind power densities by the user with methods of their choice. The wind resource estimates in this study show regions with average annual wind speeds of more than 8 m/s.« less
Comparison of Tropical and Extratropical Gust Factors Using Observed and Simulated Data
NASA Astrophysics Data System (ADS)
Edwards, R. P.; Schroeder, J. L.
2011-12-01
Questions of whether differences exist between tropical cyclone (TC) and extratropical (ET) wind have been the subject of considerable debate. This study will focus on the behavior of the gust factor (GF), the ratio of a peak wind speed of a certain duration and a mean wind speed of a certain duration, for three types of data: TC, ET, and simulated. For this project, the Universal Spectrum, a normalized, averaged spectrum for wind, was un-normalized and used to create simulated wind speed time series at a variety of wind speeds. Additional time series were created after modifying the spectrum to simulate the additional low-frequency energy observed in the TC wind spectrum as well as the reduction of high-frequency energy caused by a mechanical anemometer. The T and ET data used for this study were collected by Texas Tech University's mobile towers as part of various field efforts since 1998. Before comparisons were made, the database was divided into four roughness regimes based on the roughness length to ensure that differences observed in the turbulence statistics are not caused by differences in upstream terrain. The mean GF for the TC data set (open roughness regime), 1.49, was slightly higher than the ET value of 1.44 (Table 1). The distributions of GFs from each data type show similarities in shape between the base-simulated and ET data sets and between the TC and modified-simulated data set (Figure 1). These similarities are expected given the spectral similarities between the TC and modified-simulated data sets, namely additional low-frequency energy relative to the ET and base-simulated data. These findings suggest that the higher amount of low-frequency energy present in the tropical wind spectrum is partially responsible for the resulting higher GF for the tropical cyclone data. However, the modest increase in GF from the base to the modified simulated data suggest that there are more factors at work.
Yuan, Xinzhe; Sun, Jian; Zhou, Wei; Zhang, Qingjun
2018-01-01
The purpose of our work is to determine the feasibility and effectiveness of retrieving sea surface wind speeds from C-band cross-polarization (herein vertical-horizontal, VH) Chinese Gaofen-3 (GF-3) SAR images in typhoons. In this study, we have collected three GF-3 SAR images acquired in Global Observation (GLO) and Wide ScanSAR (WSC) mode during the summer of 2017 from the China Sea, which includes the typhoons Noru, Doksuri and Talim. These images were collocated with wind simulations at 0.12° grids from a numeric model, called the Regional Assimilation and Prediction System-Typhoon model (GRAPES-TYM). Recent research shows that GRAPES-TYM has a good performance for typhoon simulation in the China Sea. Based on the dataset, the dependence of wind speed and of radar incidence angle on normalized radar cross (NRCS) of VH-polarization GF-3 SAR have been investigated, after which an empirical algorithm for wind speed retrieval from VH-polarization GF-3 SAR was tuned. An additional four VH-polarization GF-3 SAR images in three typhoons, Noru, Hato and Talim, were investigated in order to validate the proposed algorithm. SAR-derived winds were compared with measurements from Windsat winds at 0.25° grids with wind speeds up to 40 m/s, showing a 5.5 m/s root mean square error (RMSE) of wind speed and an improved RMSE of 5.1 m/s wind speed was achieved compared with the retrieval results validated against GRAPES-TYM winds. It is concluded that the proposed algorithm is a promising potential technique for strong wind retrieval from cross-polarization GF-3 SAR images without encountering a signal saturation problem. PMID:29385068
DOE Office of Scientific and Technical Information (OSTI.GOV)
Draxl, C.; Churchfield, M.; Mirocha, J.
Wind plant aerodynamics are influenced by a combination of microscale and mesoscale phenomena. Incorporating mesoscale atmospheric forcing (e.g., diurnal cycles and frontal passages) into wind plant simulations can lead to a more accurate representation of microscale flows, aerodynamics, and wind turbine/plant performance. Our goal is to couple a numerical weather prediction model that can represent mesoscale flow [specifically the Weather Research and Forecasting model] with a microscale LES model (OpenFOAM) that can predict microscale turbulence and wake losses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Honrubia-Escribano, A.; Jimenez-Buendia, F.; Molina-Garcia, A.
This paper presents the current status of simplified wind turbine models used for power system stability analysis. This work is based on the ongoing work being developed in IEC 61400-27. This international standard, for which a technical committee was convened in October 2009, is focused on defining generic (also known as simplified) simulation models for both wind turbines and wind power plants. The results of the paper provide an improved understanding of the usability of generic models to conduct power system simulations.
NASA Technical Reports Server (NTRS)
Andrews, C. D.; Cooper, C. E., Jr.
1974-01-01
An experimental aerodynamic investigation was conducted to provide data for studies to determine the criteria for simulating rocket engine plume induced aerodynamic effects in the wind tunnel using a simulated gaseous plume. Model surface and base pressure data were obtained in the presence of both a simulated and a prototype gaseous plume for a matrix of plume properties to enable investigators to determine the parameters that correlate the simulated and prototype plume-induced data. The test program was conducted in the Marshall Space Flight Center's 14 x 14-inch trisonic wind tunnel using two models, the first being a strut mounted cone-ogive-cylinder model with a fineness ratio of 9. Model exterior pressures, model plenum chamber and nozzle performance data were obtained at Mach numbers of 0.9, 1.2, 1.46, and 3.48. The exhaust plume was generated by using air as the simulant gas, or Freon-14 (CF4) as the prototype gas, over a chamber pressure range from 0 to 2,000 psia and a total temperature range from 50 to 600 F.
NASA Technical Reports Server (NTRS)
Al-Saadi, Jassim A.
1993-01-01
A computational simulation of a transonic wind tunnel test section with longitudinally slotted walls is developed and described herein. The nonlinear slot model includes dynamic pressure effects and a plenum pressure constraint, and each slot is treated individually. The solution is performed using a finite-difference method that solves an extended transonic small disturbance equation. The walls serve as the outer boundary conditions in the relaxation technique, and an interaction procedure is used at the slotted walls. Measured boundary pressures are not required to establish the wall conditions but are currently used to assess the accuracy of the simulation. This method can also calculate a free-air solution as well as solutions that employ the classical homogeneous wall conditions. The simulation is used to examine two commercial transport aircraft models at a supercritical Mach number for zero-lift and cruise conditions. Good agreement between measured and calculated wall pressures is obtained for the model geometries and flow conditions examined herein. Some localized disagreement is noted, which is attributed to improper simulation of viscous effects in the slots.
A digital strategy for manometer dynamic enhancement. [for wind tunnel monitoring
NASA Technical Reports Server (NTRS)
Stoughton, J. W.
1978-01-01
Application of digital signal processing techniques to improve the non-linear dynamic characteristics of a sonar-type mercury manometer is described. The dynamic enhancement strategy quasi-linearizes the manometer characteristics and improves the effective bandwidth in the context of a wind-tunnel pressure regulation system. Model identification data and real-time hybrid simulation data demonstrate feasibility of approach.
Contamination and Micropropulsion Technology
2012-07-01
23, 027101 (2011) Evaluation of active flow control applied to wind turbine blade section J. Renewable Sustainable Energy 2, 063101 (2010) Effect...field lines at high latitudes where solar wind electrons can readily access the upper atmosphere. The electron energy distribution in the auroral... slip behavior of n-hexadecane in large amplitude oscillatory shear flow via nonequilibrium molecular dynamic simulation J. Chem. Phys. 136, 104904
Reliability Estimation of Parameters of Helical Wind Turbine with Vertical Axis
Dumitrascu, Adela-Eliza; Lepadatescu, Badea; Dumitrascu, Dorin-Ion; Nedelcu, Anisor; Ciobanu, Doina Valentina
2015-01-01
Due to the prolonged use of wind turbines they must be characterized by high reliability. This can be achieved through a rigorous design, appropriate simulation and testing, and proper construction. The reliability prediction and analysis of these systems will lead to identifying the critical components, increasing the operating time, minimizing failure rate, and minimizing maintenance costs. To estimate the produced energy by the wind turbine, an evaluation approach based on the Monte Carlo simulation model is developed which enables us to estimate the probability of minimum and maximum parameters. In our simulation process we used triangular distributions. The analysis of simulation results has been focused on the interpretation of the relative frequency histograms and cumulative distribution curve (ogive diagram), which indicates the probability of obtaining the daily or annual energy output depending on wind speed. The experimental researches consist in estimation of the reliability and unreliability functions and hazard rate of the helical vertical axis wind turbine designed and patented to climatic conditions for Romanian regions. Also, the variation of power produced for different wind speeds, the Weibull distribution of wind probability, and the power generated were determined. The analysis of experimental results indicates that this type of wind turbine is efficient at low wind speed. PMID:26167524
Reliability Estimation of Parameters of Helical Wind Turbine with Vertical Axis.
Dumitrascu, Adela-Eliza; Lepadatescu, Badea; Dumitrascu, Dorin-Ion; Nedelcu, Anisor; Ciobanu, Doina Valentina
2015-01-01
Due to the prolonged use of wind turbines they must be characterized by high reliability. This can be achieved through a rigorous design, appropriate simulation and testing, and proper construction. The reliability prediction and analysis of these systems will lead to identifying the critical components, increasing the operating time, minimizing failure rate, and minimizing maintenance costs. To estimate the produced energy by the wind turbine, an evaluation approach based on the Monte Carlo simulation model is developed which enables us to estimate the probability of minimum and maximum parameters. In our simulation process we used triangular distributions. The analysis of simulation results has been focused on the interpretation of the relative frequency histograms and cumulative distribution curve (ogive diagram), which indicates the probability of obtaining the daily or annual energy output depending on wind speed. The experimental researches consist in estimation of the reliability and unreliability functions and hazard rate of the helical vertical axis wind turbine designed and patented to climatic conditions for Romanian regions. Also, the variation of power produced for different wind speeds, the Weibull distribution of wind probability, and the power generated were determined. The analysis of experimental results indicates that this type of wind turbine is efficient at low wind speed.
NASA Astrophysics Data System (ADS)
Zhang, Ning; Du, Yunsong; Miao, Shiguang; Fang, Xiaoyi
2016-08-01
The simulation performance over complex building clusters of a wind simulation model (Wind Information Field Fast Analysis model, WIFFA) in a micro-scale air pollutant dispersion model system (Urban Microscale Air Pollution dispersion Simulation model, UMAPS) is evaluated using various wind tunnel experimental data including the CEDVAL (Compilation of Experimental Data for Validation of Micro-Scale Dispersion Models) wind tunnel experiment data and the NJU-FZ experiment data (Nanjing University-Fang Zhuang neighborhood wind tunnel experiment data). The results show that the wind model can reproduce the vortexes triggered by urban buildings well, and the flow patterns in urban street canyons and building clusters can also be represented. Due to the complex shapes of buildings and their distributions, the simulation deviations/discrepancies from the measurements are usually caused by the simplification of the building shapes and the determination of the key zone sizes. The computational efficiencies of different cases are also discussed in this paper. The model has a high computational efficiency compared to traditional numerical models that solve the Navier-Stokes equations, and can produce very high-resolution (1-5 m) wind fields of a complex neighborhood scale urban building canopy (~ 1 km ×1 km) in less than 3 min when run on a personal computer.
NASA Technical Reports Server (NTRS)
Dziubala, T. J.; Marroquin, J.; Cleary, J. W.; Mellenthin, J. A.
1973-01-01
An experimental investigation was performed in the Ames Research Center 3.5-Foot Hypersonic Wind Tunnel to obtain detailed effects which interactions between the RCS jet flow field and the local orbiter flow field have on orbiter hypersonic stability and control characteristics. Six-component force data were obtained through an angle-of-attack range of 15 to 35 deg with 0 deg angle of sideslip. The test was conducted with yaw, pitch and roll jet simulation at a free-stream Mach number of 10.3. These data simulate two SSV reentry flight conditions at Mach numbers of 28.3 and 10.3. Fuselage base pressures and pressures on the nonmetric RCS pods were obtained in addition to the basic force measurements. Model 42-0 was used for these tests.
NASA Technical Reports Server (NTRS)
Daileda, J. J.; Marroquin, J.
1974-01-01
An experimental investigation was performed in the Langley Research Center Unitary Plan Wind Tunnel (Test 0A70) to obtain the detailed effects that RCS jet flow interactions with local orbiter flow field have on supersonic stability and control characteristics of the space shuttle orbiter. Six-component force data were obtained through an angle-of-attack range from 15 to 35 degrees at angles of sideslip of 0, +5, and -5 degrees. The test was conducted with yaw jet simulation at free-stream Mach numbers of 2.5 and 4.6, simulating SSV re-entry flight conditions at these Mach numbers. In addition to the basic force measurements, fuselage base pressures and pressures on the non-metric RCS pods were obtained.
One and two fluid numerical investigations of solar wind gas releases
NASA Astrophysics Data System (ADS)
Harold, James Benedict
1993-01-01
The dynamics of gas releases into high Mach number flowing plasmas are investigated. Emphasis is placed on systems of intermediate magnetization for which the scale size of the release lies between the ion and electron Larmor radii. The study is motivated by the December 1984 AMPTE (Active Magnetospheric Particle Tracer Explorer) solar wind barium release in which, contrary to the predictions of MHD theory, the barium cloud shifted transverse to the solar wind (in the uwind x B0 direction) before eventually turning downstream. Particular emphasis is given to identifying mechanisms responsible for this lateral motion. A modified MHD cold fluid approach that takes advantage of the supersonic nature of the problem forms the basis of this work. Two specific models are developed which incorporate large effective ion Larmor radius effects. The first is for a single ion species, the second for two ion species. Two physical effects are identified which are not present in the conventional MHD system: the Hall effect, based on a Hall magnetic drift wave, and a hybrid electrostatic ion cyclotron mode. Linear analysis shows that the effect of the Hall term is to propagate the upwind magnetic field compression azimuthally to the downwind side of the cloud, leading to a quasi-steady state field compression on the -uwind x BO side of the cloud. The cyclotron mode can lead to a similar compression through deflection of the solar wind ions into the uwind x BO direction. In each case the resulting compression leads to a transverse acceleration of the cloud. The relative importance of these two mechanisms is shown to depend on deltac / rc, the ratio of the collisionless skin depth to the cloud size. Nonlinear, two-dimensional simulations are performed for each model. These simulations produce the expected field compressions and the resultant lateral acceleration, in general qualitative agreement with the AMPTE experiment. The dependence of these mechanisms on the ratio deltac / rc is demonstrated. While no simulations are performed that precisely duplicate the parameters of the AMPTE release, the results suggest that the Hall effect, and possibly deflection of the solar wind by the cyclotron mode, constitute plausible mechanisms for the AMPTE shift.
Wind Tunnel Interference Effects on Tilt Rotor Testing Using Computational Fluid Dynamics
NASA Technical Reports Server (NTRS)
Koning, Witold J. F.
2016-01-01
Experimental techniques to measure rotorcraft aerodynamic performance are widely used. However, most of them are either unable to capture interference effects from bodies, or require an extremely large computational budget. The objective of the present research is to develop an XV-15 Tiltrotor Research Aircraft rotor model for investigation of wind tunnel wall interference using a novel Computational Fluid Dynamics (CFD) solver for rotorcraft, RotCFD. In RotCFD, a mid-fidelity Unsteady Reynolds Averaged Navier-Stokes (URANS) solver is used with an incompressible flow model and a realizable k-e turbulence model. The rotor is, however, not modeled using a computationally expensive, unsteady viscous body-fitted grid, but is instead modeled using a blade-element model (BEM) with a momentum source approach. Various flight modes of the XV-15 isolated rotor, including hover, tilt, and airplane mode, have been simulated and correlated to existing experimental and theoretical data. The rotor model is subsequently used for wind tunnel wall interference simulations in the National Full-Scale Aerodynamics Complex (NFAC) at Ames Research Center in California. The results from the validation of the isolated rotor performance showed good correlation with experimental and theoretical data. The results were on par with known theoretical analyses. In RotCFD the setup, grid generation, and running of cases is faster than many CFD codes, which makes it a useful engineering tool. Performance predictions need not be as accurate as high-fidelity CFD codes, as long as wall effects can be properly simulated. For both test sections of the NFAC wall, interference was examined by simulating the XV-15 rotor in the test section of the wind tunnel and with an identical grid but extended boundaries in free field. Both cases were also examined with an isolated rotor or with the rotor mounted on the modeled geometry of the Tiltrotor Test Rig (TTR). A "quasi linear trim" was used to trim the thrust for the rotor to compare the power as a unique variable. Power differences between free field and wind tunnel cases were found from -7 to 0 percent in the 80- by 120-Foot Wind Tunnel and -1.6 to 4.8 percent in the 40- by 80-Foot Wind Tunnel, depending on the TTR orientation, tunnel velocity, and blade setting. The TTR will be used in 2016 to test the Bell 609 rotor in a similar fashion to the research in this report.
Wind Tunnel Interference Effects on Tilt Rotor Testing Using Computational Fluid Dynamics
NASA Technical Reports Server (NTRS)
Koning, Witold J. F.
2015-01-01
Experimental techniques to measure rotorcraft aerodynamic performance are widely used. However, most of them are either unable to capture interference effects from bodies, or require an extremely large computational budget. The objective of the present research is to develop an XV-15 Tilt Rotor Research Aircraft rotor model for investigation of wind tunnel wall interference using a novel Computational Fluid Dynamics (CFD) solver for rotorcraft, RotCFD. In RotCFD, a mid-fidelity URANS solver is used with an incompressible flow model and a realizable k-e turbulence model. The rotor is, however, not modeled using a computationally expensive, unsteady viscous body-fitted grid, but is instead modeled using a blade element model with a momentum source approach. Various flight modes of the XV-15 isolated rotor, including hover, tilt and airplane mode, have been simulated and correlated to existing experimental and theoretical data. The rotor model is subsequently used for wind tunnel wall interference simulations in the National Full-Scale Aerodynamics Complex (NFAC) at NASA Ames Research Center in California. The results from the validation of the isolated rotor performance showed good correlation with experimental and theoretical data. The results were on par with known theoretical analyses. In RotCFD the setup, grid generation and running of cases is faster than many CFD codes, which makes it a useful engineering tool. Performance predictions need not be as accurate as high-fidelity CFD codes, as long as wall effects can be properly simulated. For both test sections of the NFAC wall interference was examined by simulating the XV-15 rotor in the test section of the wind tunnel and with an identical grid but extended boundaries in free field. Both cases were also examined with an isolated rotor or with the rotor mounted on the modeled geometry of the Tiltrotor Test Rig (TTR). A 'quasi linear trim' was used to trim the thrust for the rotor to compare the power as a unique variable. Power differences between free field and wind tunnel cases were found from -7 % to 0 % in the 80- by 120-Foot Wind Tunnel test section and -1.6 % to 4.8 % in the 40- by 80-Foot Wind Tunnel, depending on the TTR orientation, tunnel velocity and blade setting. The TTR will be used in 2016 to test the Bell 609 rotor in a similar fashion to the research in this report.
Design of water pumping system by wind turbine for using in coastal areas of Bangladesh
NASA Astrophysics Data System (ADS)
Alam, Muhammad Mahbubul; Tasnim, Tamanna; Doha, Umnia
2017-06-01
In this work, a theoretical analysis has been carried out to analyze the prospect of Wind Pumping System (WPS) for using in coastal areas of Bangladesh. Wind speed data of three coastal areas of Bangladesh-Kutubdia, Patenga and Sathkhira has been analyzed and an optimal wind turbine viable for this wind speed range has been designed using the simulation software Q-blade. The simulated turbine is then coupled with a rotodynamic pump. The output of the Wind Pumping System (WPS) for the three coastal areas has been studied.
FEM Simulation of Small Wind Power Generating System Using PMSG
NASA Astrophysics Data System (ADS)
Kesamaru, Katsumi; Ohno, Yoshihiro; Sonoda, Daisuke
The paper describes a new approach to simulate the small wind power generating systems using PMSG, in which the output is connected to constant resistive load, such as heaters, through the rectifier and the dc chopper. The dynamics of the wind power generating system is presented, and it is shown by simulation results that this approach is useful for system dynamics, such as starting phenomena.
Low-Energy Electron Effects on the Polar Wind Observed by the POLAR Spacecraft
NASA Technical Reports Server (NTRS)
Horwitz, J. L.; Su, Y.-J.; Dors, E. E.; Moore, Thomas E.; Giles, Barbara L.; Chandler, Michael O.; Craven, Paul D.; Chang, S.-W.; Scudder, J.
1998-01-01
Large ion outflow velocity variation at POLAR apogee have been observed. The observed H+ flow velocities were in the range of 23-110 km/s and 0+ flow velocities were in the range of 5-25 km/s. These velocity ranges lie between those predicted by simulations of the photoelectron-driven polar wind and "baseline" polar wind. The electric current contributions of the photoelectrons and polar rain are expected to control the size and altitude of an electric potential drop which accelerates the polar wind at relatively high altitudes. In this presentation, we compare polar wind characteristics observed near 5000 km and 8 RE altitudes by the Thermal Ion Dynamics Experiment (TIDE) with measurements of low-energy electrons sampled by HYDRA, both from the POLAR spacecraft, to examine possible effects of the polar rain and photoelectrons on the polar wind. Both correlations and anti-correlations are found between the polar wind velocities and the polar rain fluxes at POLAR apogee during different polar cap crossings. Also, the low-altitude upward/downward photoelectron spectra are used to estimates the potential drops above the spacecraft. We interpret these observations in terms of the effects that both photoelectrons and polar rain may have on the electric potential and polar wind acceleration along polar cap magnetic field lines.
Sensitivity of southern hemisphere westerly wind to boundary conditions for the last glacial maximum
NASA Astrophysics Data System (ADS)
Jun, S. Y.; Kim, S. J.; Kim, B. M.
2017-12-01
To examine the change in SH westerly wind in the LGM, we performed LGM simulation with sensitivity experiments by specifying the LGM sea ice in the Southern Ocean (SO), ice sheet over Antarctica, and tropical pacific sea surface temperature to CAM5 atmosphere general circulation model (GCM). The SH westerly response to LGM boundary conditions in the CAM5 was compared with those from CMIP5 LGM simulations. In the CAM5 LGM simulation, the SH westerly wind substantially increases between 40°S and 65°S, while the zonal-mean zonal wind decreases at latitudes higher than 65°S. The position of the SH maximum westerly wind moves poleward by about 8° in the LGM simulation. Sensitivity experiments suggest that the increase in SH westerly winds is mainly due to the increase in sea ice in the SO that accounts for 60% of total wind change. In the CMIP5-PMIP3 LGM experiments, most of the models show the slight increase and poleward shift of the SH westerly wind as in the CAM5 experiment. The increased and poleward shifted westerly wind in the LGM obtained in the current model result is consistent with previous model results and some lines of proxy evidence, though opposite model responses and proxy evidence exist for the SH westerly wind change.
A numerical study of the plume in Cape Fear River Estuary and adjacent coastal ocean
NASA Astrophysics Data System (ADS)
Xia, M.; Xia, L.; Pietrafesa, L. J.
2006-12-01
Cape Fear River Estuary (CFRE), located in southeast North Carolina, is the only river estuary system in the state which is directly connected to the Atlantic Ocean. It is also an important nursery for economically and ecologically important juvenile fish, crabs, shrimp, and other species because of the tidal influence and saline waters. In this study, Environmental Fluid Dynamic Code (EFDC) is used to simulate the salinity plume and trajectory distribution at the mouth of the CFRE and adjacent coastal ocean. Prescribed with the climatological freshwater discharge rates in the rivers, the modeling system was used to simulate the salinity plume and trajectory distribution distribution in the mouth of the CFRE under the influence of climatological wind conditions and tidal effect. We analyzed the plume formation processes and the strong relationship between the various plume distributions with respect to the wind and river discharge in the region. The simulations also indicate that strong winds tend to reduce the surface CFRE plume size and distorting the bulge region near the estuary mouth due to enhanced wind induced surface mixing. Even moderate wind speeds could fully reverse the buoyancy-driven plume structure in CFRE under normal river discharge conditions. Tide and the river discharge also are important factors to influence the plume structure. The comparions between the distribution of salinity plume and trajectory also are discussed in the study.
NASA ERA Integrated CFD for Wind Tunnel Testing of Hybrid Wing-Body Configuration
NASA Technical Reports Server (NTRS)
Garcia, Joseph A.; Melton, John E.; Schuh, Michael; James, Kevin D.; Long, Kurtis R.; Vicroy, Dan D.; Deere, Karen A.; Luckring, James M.; Carter, Melissa B.; Flamm, Jeffrey D.;
2016-01-01
The NASA Environmentally Responsible Aviation (ERA) Project explored enabling technologies to reduce impact of aviation on the environment. One project research challenge area was the study of advanced airframe and engine integration concepts to reduce community noise and fuel burn. To address this challenge, complex wind tunnel experiments at both the NASA Langley Research Center's (LaRC) 14'x22' and the Ames Research Center's 40'x80' low-speed wind tunnel facilities were conducted on a BOEING Hybrid Wing Body (HWB) configuration. These wind tunnel tests entailed various entries to evaluate the propulsion-airframe interference effects, including aerodynamic performance and aeroacoustics. In order to assist these tests in producing high quality data with minimal hardware interference, extensive Computational Fluid Dynamic (CFD) simulations were performed for everything from sting design and placement for both the wing body and powered ejector nacelle systems to the placement of aeroacoustic arrays to minimize its impact on vehicle aerodynamics. This paper presents a high-level summary of the CFD simulations that NASA performed in support of the model integration hardware design as well as the development of some CFD simulation guidelines based on post-test aerodynamic data. In addition, the paper includes details on how multiple CFD codes (OVERFLOW, STAR-CCM+, USM3D, and FUN3D) were efficiently used to provide timely insight into the wind tunnel experimental setup and execution.
NASA ERA Integrated CFD for Wind Tunnel Testing of Hybrid Wing-Body Configuration
NASA Technical Reports Server (NTRS)
Garcia, Joseph A.; Melton, John E.; Schuh, Michael; James, Kevin D.; Long, Kurt R.; Vicroy, Dan D.; Deere, Karen A.; Luckring, James M.; Carter, Melissa B.; Flamm, Jeffrey D.;
2016-01-01
NASAs Environmentally Responsible Aviation (ERA) Project explores enabling technologies to reduce aviations impact on the environment. One research challenge area for the project has been to study advanced airframe and engine integration concepts to reduce community noise and fuel burn. In order to achieve this, complex wind tunnel experiments at both the NASA Langley Research Centers (LaRC) 14x22 and the Ames Research Centers 40x80 low-speed wind tunnel facilities were conducted on a Boeing Hybrid Wing Body (HWB) configuration. These wind tunnel tests entailed various entries to evaluate the propulsion airframe interference effects including aerodynamic performance and aeroacoustics. In order to assist these tests in producing high quality data with minimal hardware interference, extensive Computational Fluid Dynamic (CFD) simulations were performed for everything from sting design and placement for both the wing body and powered ejector nacelle systems to the placement of aeroacoustic arrays to minimize its impact on the vehicles aerodynamics. This paper will provide a high level summary of the CFD simulations that NASA performed in support of the model integration hardware design as well as some simulation guideline development based on post-test aerodynamic data. In addition, the paper includes details on how multiple CFD codes (OVERFLOW, STAR-CCM+, USM3D, and FUN3D) were efficiently used to provide timely insight into the wind tunnel experimental setup and execution.
Numerical simulations of continuum-driven winds of super-Eddington stars
NASA Astrophysics Data System (ADS)
van Marle, A. J.; Owocki, S. P.; Shaviv, N. J.
2008-09-01
We present the results of numerical simulations of continuum-driven winds of stars that exceed the Eddington limit and compare these against predictions from earlier analytical solutions. Our models are based on the assumption that the stellar atmosphere consists of clumped matter, where the individual clumps have a much larger optical thickness than the matter between the clumps. This `porosity' of the stellar atmosphere reduces the coupling between radiation and matter, since photons tend to escape through the more tenuous gas between the clumps. This allows a star that formally exceeds the Eddington limit to remain stable, yet produce a steady outflow from the region where the clumps become optically thin. We have made a parameter study of wind models for a variety of input conditions in order to explore the properties of continuum-driven winds. The results show that the numerical simulations reproduce quite closely the analytical scalings. The mass-loss rates produced in our models are much larger than can be achieved by line driving. This makes continuum driving a good mechanism to explain the large mass-loss and flow speeds of giant outbursts, as observed in η Carinae and other luminous blue variable stars. Continuum driving may also be important in population III stars, since line driving becomes ineffective at low metallicities. We also explore the effect of photon tiring and the limits it places on the wind parameters.
NASA Astrophysics Data System (ADS)
Shen, Fahua; Wang, Bangxin; Shi, Wenjuan; Zhuang, Peng; Zhu, Chengyun; Xie, Chenbo
2018-04-01
A novel design of the 532 nm Rayleigh-Mie Doppler lidar receiving system is carried out. The use of polarization isolation technology to effectively improve the receiving system optical reception efficiency, suppress the background noise, not only improves the system wind field detection accuracy, while achieving a high-accuracy temperature measurement. The wind speed and temperature measurement principle of the system are discussed in detail, and the triple Fabry-Perot etalon parameters are optimized. Utilizing the overall design parameters of the system, the system detection performance is simulated. The simulation results show that from 5 to 50 km altitude with vertical resolution of 0.1 km@5 ∼20 km, 0.5 km@20 ∼40 km, 1 km@40 ∼50 km, by using the laser with single pulse energy of 600 mJ, repetition frequency of 50 Hz and the receiving telescope with aperture of 0.8 m, with 2min integration time and in ±50 m/s radial wind speed range, the radial wind speed measurement accuracies of our designed lidar in the day and night are better than 2.6 m/s and 0.9 m/s respectively, and its performance is obviously superior to that of traditional system 5.6 m/s and 1.4 m/s wind speed accuracies; with 10min integration time and in 210 ∼280 K temperature range, the temperature measurement accuracies of the system in the day and night are better than 3.4 K and 1.2 K respectively; since the wind speed sensitivities of the Mie and Rayleigh scattering signals are not exactly the same, in ±50 m/s radial wind speed range, the wind speed bias induced by Mie signal is less than 1 m/s in the temperature range of 210-290 K and in the backscatter ratio range of 1-1.5 for pair measurement.
NASA Astrophysics Data System (ADS)
Zhou, Xu; Yang, Kun; Wang, Yan
2018-04-01
Sub-grid-scale orographic variation (smaller than 5 km) exerts turbulent form drag on atmospheric flows and significantly retards the wind speed. The Weather Research and Forecasting model (WRF) includes a turbulent orographic form drag (TOFD) scheme that adds the drag to the surface layer. In this study, another TOFD scheme has been incorporated in WRF3.7, which exerts an exponentially decaying drag from the surface layer to upper layers. To investigate the effect of the new scheme, WRF with the old scheme and with the new one was used to simulate the climate over the complex terrain of the Tibetan Plateau from May to October 2010. The two schemes were evaluated in terms of the direct impact (on wind fields) and the indirect impact (on air temperature and precipitation). The new TOFD scheme alleviates the mean bias in the surface wind components, and clearly reduces the root mean square error (RMSEs) in seasonal mean wind speed (from 1.10 to 0.76 m s-1), when referring to the station observations. Furthermore, the new TOFD scheme also generally improves the simulation of wind profile, as characterized by smaller biases and RMSEs than the old one when referring to radio sounding data. Meanwhile, the simulated precipitation with the new scheme is improved, with reduced mean bias (from 1.34 to 1.12 mm day-1) and RMSEs, which is due to the weakening of water vapor flux at low-level atmosphere with the new scheme when crossing the Himalayan Mountains. However, the simulation of 2-m air temperature is little improved.
Global modeling of storm-time thermospheric dynamics and electrodynamics
NASA Astrophysics Data System (ADS)
Fuller-Rowell, T. J.; Richmond, A. D.; Maruyama, N.
Understanding the neutral dynamic and electrodynamic response of the upper atmosphere to geomagnetic storms, and quantifying the balance between prompt penetration and disturbance dynamo effects, are two of the significant challenges facing us today. This paper reviews our understanding of the dynamical and electrodynamic response of the upper atmosphere to storms from a modeling perspective. After injection of momentum and energy at high latitude during a geomagnetic storm, the neutral winds begin to respond almost immediately. The high-latitude wind system evolves quickly by the action of ion drag and the injection of kinetic energy; however, Joule dissipation provides the bulk of the energy source to change the dynamics and electrodynamics globally. Impulsive energy injection at high latitudes drives large-scale gravity waves that propagate globally. The waves transmit pressure gradients initiating a change in the global circulation. Numerical simulations of the coupled thermosphere, ionosphere, plasmasphere, and electrodynamic response to storms indicate that although the wind and waves are dynamic, with significant apparent "sloshing" between the hemispheres, the net effect is for an increased equatorward wind. The dynamic changes during a storm provide the conduit for many of the physical processes that ensue in the upper atmosphere. For instance, the increased meridional winds at mid latitudes push plasma parallel to the magnetic field to regions of different composition. The global circulation carries molecular rich air from the lower thermosphere upward and equatorward, changing the ratio of atomic and molecular neutral species, and changing loss rates for the ionosphere. The storm wind system also drives the disturbance dynamo, which through plasma transport modifies the strength and location of the equatorial ionization anomaly peaks. On a global scale, the increased equatorward meridional winds, and the generation of zonal winds at mid latitudes via the Coriolis effects, produce a current system opposing the normal quiet-time Sq current system. At the equator, the storm-time zonal electric fields reduce or reverse the normal upward and downward plasma drift on the dayside and nightside, respectively. In the numerical simulations, on the dayside, the disturbance dynamo appears fairly uniform, whereas at night a stronger local time dependence is apparent with increased upward drift between midnight and dawn. The simulations also indicate the possibility for a rapid dynamo response at the equator, within 2 h of storm onset, before the arrival of the large-scale gravity waves. All these wind-driven processes can result in dramatic ionospheric changes during storms. The disturbance dynamo can combine and interact with the prompt penetration of magnetospheric electric fields to the equator.
Predictive control of a chaotic permanent magnet synchronous generator in a wind turbine system
NASA Astrophysics Data System (ADS)
Manal, Messadi; Adel, Mellit; Karim, Kemih; Malek, Ghanes
2015-01-01
This paper investigates how to address the chaos problem in a permanent magnet synchronous generator (PMSG) in a wind turbine system. Predictive control approach is proposed to suppress chaotic behavior and make operating stable; the advantage of this method is that it can only be applied to one state of the wind turbine system. The use of the genetic algorithms to estimate the optimal parameter values of the wind turbine leads to maximization of the power generation. Moreover, some simulation results are included to visualize the effectiveness and robustness of the proposed method. Project supported by the CMEP-TASSILI Project (Grant No. 14MDU920).
Fuzzy Regulator Design for Wind Turbine Yaw Control
Koulouras, Grigorios
2014-01-01
This paper proposes the development of an advanced fuzzy logic controller which aims to perform intelligent automatic control of the yaw movement of wind turbines. The specific fuzzy controller takes into account both the wind velocity and the acceptable yaw error correlation in order to achieve maximum performance efficacy. In this way, the proposed yaw control system is remarkably adaptive to the existing conditions. In this way, the wind turbine is enabled to retain its power output close to its nominal value and at the same time preserve its yaw system from pointless movement. Thorough simulation tests evaluate the proposed system effectiveness. PMID:24693237
Significant Features Found in Simulated Tropical Climates Using a Cloud Resolving Model
NASA Technical Reports Server (NTRS)
Shie, C.-L.; Tao, W.-K.; Simpson, J.; Sui, C.-H.
2000-01-01
Cloud resolving model (CRM) has widely been used in recent years for simulations involving studies of radiative-convective systems and their role in determining the tropical regional climate. The growing popularity of CRMs usage can be credited for their inclusion of crucial and realistic features such like explicit cloud-scale dynamics, sophisticated microphysical processes, and explicit radiative-convective interaction. For example, by using a two-dimensional cloud model with radiative-convective interaction process, found a QBO-like (quasibiennial oscillation) oscillation of mean zonal wind that affected the convective system. Accordingly, the model-generated rain band corresponding to convective activity propagated in the direction of the low-level zonal mean winds; however, the precipitation became "localized" (limited within a small portion of the domain) as zonal mean winds were removed. Two other CRM simulations by S94 and Grabowski et al. (1996, hereafter G96), respectively that produced distinctive quasi-equilibrium ("climate") states on both tropical water and energy, i.e., a cold/dry state in S94 and a warm/wet state in G96, have later been investigated by T99. They found that the pattern of the imposed large-scale horizontal wind and the magnitude of the imposed surface fluxes were the two crucial mechanisms in determining the tropical climate states. The warm/wet climate was found associated with prescribed strong surface winds, or with maintained strong vertical wind shears that well-organized convective systems prevailed. On the other hand, the cold/dry climate was produced due to imposed weak surface winds and weak wind shears throughout a vertically mixing process by convection. In this study, considered as a sequel of T99, the model simulations to be presented are generally similar to those of T99 (where a detailed model setup can be found), except for a more detailed discussion along with few more simulated experiments. There are twelve major experiments chosen for presentations that are introduced in section two. Several significant feature analyses regarding the rainfall properties, CAPE (Convective Available Potential Energy), cloud-scale eddies, the stability issue, the convective system propagation, relative humidity, and the effect on the quasi-equilibrium state by the imposed constant. radiation or constant surface fluxes, and etc. will be presented in the meeting. However, only three of the subjects are discussed in section three. A brief summary is concluded in the end section.
NASA Astrophysics Data System (ADS)
Anber, Usama; Wang, Shuguang; Sobel, Adam
2017-03-01
The effect of coupling a slab ocean mixed layer to atmospheric convection is examined in cloud-resolving model (CRM) simulations in vertically sheared and unsheared environments without Coriolis force, with the large-scale circulation parameterized using the Weak Temperature Gradient (WTG) approximation. Surface fluxes of heat and moisture as well as radiative fluxes are fully interactive, and the vertical profile of domain-averaged horizontal wind is strongly relaxed toward specified profiles with vertical shear that varies from one simulation to the next. Vertical wind shear is found to play a critical role in the simulated behavior. There exists a threshold value of the shear strength above which the coupled system develops regular oscillations between deep convection and dry nonprecipitating states, similar to those found earlier in a much more idealized model which did not consider wind shear. The threshold value of the vertical shear found here varies with the depth of the ocean mixed layer. The time scale of the spontaneously generated oscillations also varies with mixed layer depth, from 10 days with a 1 m deep mixed layer to 50 days with a 10 m deep mixed layer. The results suggest the importance of the interplay between convection organized by vertical wind shear, radiative feedbacks, large-scale dynamics, and ocean mixed layer heat storage in real intraseasonal oscillations.
NASA Technical Reports Server (NTRS)
Segal, M.; Pielke, R. A.
1985-01-01
Simulations of the thermally induced breeze involved with a relatively narrow, elongated water body is presented in conjunction with evaluations of sensible heat fluxes in a stable marine atmospheric surface layer. The effect of the water surface temperature and of the large-scale synoptic winds on the development of surface flows over the water is examined. As implied by the sensible heat flux patterns, the simulation results reveal the following trends: (1) when the synoptic flow is absent or light, the induced surface breeze is not affected noticeably by a reduction of the water surface temperature; and (2) for stronger synoptic flow, the resultant surface flow may be significantly affected by the water surface temperature.
Parallel proton fire hose instability in the expanding solar wind: Hybrid simulations
NASA Astrophysics Data System (ADS)
Matteini, Lorenzo; Landi, Simone; Hellinger, Petr; Velli, Marco
2006-10-01
We report a study of the properties of the parallel proton fire hose instability comparing the results obtained by the linear analysis, from one-dimensional (1-D) standard hybrid simulations and 1-D hybrid expanding box simulations. The three different approaches converge toward the same instability threshold condition which is in good agreement with in situ observations, suggesting that such instability is relevant in the solar wind context. We investigate also the effect of the wave-particle interactions on shaping the proton distribution function and on the evolution of the spectrum of the magnetic fluctuations during the expansion. We find that the resonant interaction can provide the proton distribution function to depart from the bi-Maxwellian form.
Modulation of ENSO evolution by strong tropical volcanic eruptions
NASA Astrophysics Data System (ADS)
Wang, Tao; Guo, Dong; Gao, Yongqi; Wang, Huijun; Zheng, Fei; Zhu, Yali; Miao, Jiapeng; Hu, Yongyun
2017-11-01
The simulated responses of the El Niño-Southern Oscillation (ENSO) to volcanic forcings are controversial, and some mechanisms of these responses are not clear. We investigate the impacts of volcanic forcing on the ENSO using a long-term simulation covering 1400-1999 as simulated by the Bergen Climate Model (BCM) and a group of simulations performed with the Community Atmosphere Model version 4.0 (CAM4) and the BCM's ocean component Miami Isopycanic Coordinated Ocean Model (MICOM). The analysis of the long-term BCM simulation indicates that ENSO has a negative-positive-negative response to strong tropical volcanic eruptions (SVEs), which corresponds to the different stages of volcanic forcing. In the initial forcing stage, a brief and weak La Niña-like response is caused by the cooling along the west coast of the South American continent and associated enhancement of the trade winds. In the peak forcing stage, westerly wind anomalies are excited by both reduced east-west sea level pressure gradients and weakened and equatorward shifted tropical convergence zones. These westerly wind anomalies extend to the equatorial eastern Pacific, leading to an El Niño-like response. At the same time, easterly wind anomalies west of 120°E and strong cooling effects can promote a discharged thermocline state and excite an upwelling Kelvin wave in the western Pacific. In the declining forcing stage, forced by the recovered trade winds, the upwelling Kelvin wave propagates eastward and reaches the equatorial eastern Pacific. Through the Bjerknes feedback, a strong and temporally extended La Niña-like response forms. Additional CAM4 simulations suggest a more important role of the surface cooling over the Maritime Continent and surrounding ocean in shaping the westerly wind anomalies over the equatorial central-eastern Pacific and the easterly wind anomalies west of 120° E, which are key to causing the El Niño-like responses and subsequent La Niña-like responses, respectively. The MICOM sensitivity simulations confirm that SVE-induced tropical atmospheric circulation anomalies play a dominant role in regulating post-eruption ENSO evolution in the observation, while the influences of anomalous buoyance forcing (heat and freshwater fluxes) are secondary. Therefore, SVEs play an important role in modulating the ENSO evolution. Compared with proxy data, the simulated El Niño-like responses and subsequent La Niña-like responses are consistent with the reconstructed ENSO responses to SVEs. However, the simulated initial brief La Niña-like response, which is reproduced by most models, is seen in only one proxy dataset and is absent in most of the reconstructed ENSOs and those observed. The reason for this model-data mismatch will require further investigation.
Gap Winds in a Fjord: Howe Sound, British Columbia.
NASA Astrophysics Data System (ADS)
Jackson, Peter L.
1993-01-01
Gap, outflow, or Squamish wind, is the cold low level seaward flow of air through fjords which dissect the coastal mountain barrier of northwestern North America. These flows, occurring mainly during winter, can be strong, threatening safety, economic activity and comfort. Howe Sound gap winds were studied using a combination of observations and several types of models. Observations of winds in Howe Sound showed that gap wind strength varied considerably along the channel, across the channel and vertically. Generally, winds increase down the channel, are strongest along the eastern side, and are below 1000 m depth. Observations were unable to answer all questions about gap winds due to data sparseness, particularly in the vertical direction. Therefore, several modelling approaches were used. The modelling began with a complete 3-dimensional quasi-Boussinesq model (CSU RAMS) and ended with the creation and testing of models which are conceptually simpler, and more easily interpreted and manipulated. A gap wind simulation made using RAMS was shown to be mostly successful by statistical evaluation compared to other mesoscale simulations, and by visual inspection of the fields. The RAMS output, which has very high temporal and spatial resolution, provided much additional information about the details of gap flow. In particular, RAMS results suggested a close analogy between gap wind and hydraulic channel flow, with hydraulic features such as supercritical flow and hydraulic jumps apparent. These findings imply gap wind flow could potentially be represented by much simpler models. The simplest possible models containing pressure gradient, advection and friction but not incorporating hydraulic effects, were created, tested, and found lacking. A hydraulic model, which in addition incorporates varying gap wind height and channel geometry, was created and shown to successfully simulate gap winds. Force balance analysis from RAMS and the hydraulic model showed that pressure gradient and advection are the most important forces, followed by friction which becomes an important force in fast supercritical flow. The sensitivity of gap wind speed to various parameters was found from sensitivity tests using the hydraulic model. Results indicated that gap wind speed increases with increasing boundary layer height and speed at the head of channel, and increasing synoptic pressure gradient. Gap wind speed decreases with increasing friction, and increasing boundary layer height at the seaward channel end. Increasing temperature differences between the cold gap wind air and the warmer air aloft was found to increase the variability of the flow--higher maximum but lower mean wind speeds.
Propulsion simulator for magnetically-suspended wind tunnel models
NASA Technical Reports Server (NTRS)
Joshi, Prakash B.; Goldey, C. L.; Sacco, G. P.; Lawing, Pierce L.
1991-01-01
The objective of phase two of a current investigation sponsored by NASA Langley Research Center is to demonstrate the measurement of aerodynamic forces/moments, including the effects of exhaust gases, in magnetic suspension and balance system (MSBS) wind tunnels. Two propulsion simulator models are being developed: a small-scale and a large-scale unit, both employing compressed, liquified carbon dioxide as propellant. The small-scale unit was designed, fabricated, and statically-tested at Physical Sciences Inc. (PSI). The large-scale simulator is currently in the preliminary design stage. The small-scale simulator design/development is presented, and the data from its static firing on a thrust stand are discussed. The analysis of this data provides important information for the design of the large-scale unit. A description of the preliminary design of the device is also presented.
The role of external forcing and Pacific trade winds in recent changes of the global climate system
NASA Astrophysics Data System (ADS)
Friedman, Andrew; Gastineau, Guillaume; Khodri, Myriam
2017-04-01
The Pacific trade winds experienced an unprecedented strengthening since the mid 1990s. Several studies have proposed that the increased Pacific trade winds were associated with the reduced rate of global mean surface temperature warming in the first decade of the 21st century, as well as far-reaching atmospheric teleconnections. We designed a set of ensemble partial coupling experiments using the IPSL-CM5A-LR coupled model that allow us to cleanly distinguish the influence of Pacific trade wind variability from that of external forcing over the past few decades. In this study, we quantify the respective impacts of these processes on surface temperature, ocean heat content, and atmospheric teleconnections. We designed two ensembles of coupled simulations using partial coupling with the IPSL-CM5A-LR model to separate the Pacific internal variability and that of external radiative forcing. We prescribe surface wind stress in the tropical Pacific (20°S to 20°N) from 1979-2014 in two ensembles of 30 members each: (1) Prescribed climatological model wind stress, which allows us to estimate the influence of external radiative forcing in the absence of variability within the Pacific Ocean. (2) Wind stress anomalies from ERA-Interim reanalysis added to the model wind stress climatology, which accounts for the effects of both external radiative forcing and the wind stress variability. We find that the observed wind stress anomalies account for the pattern of eastern tropical Pacific cooling when compared to the climatology experiment, so that it resembles the observed trends from 1992-2011. The tropical Pacific shows dominant heat uptake in the western Pacific above the 20°C isotherm, which contributed to slow the warming of tropical SST during the 2000s. The trade wind increase is associated with a strengthening of the Pacific Walker circulation, and zonal shifts in tropical rainfall. Despite tropical SST biases which affect the response of tropical rainfall and the location of deep convection, the wind stress anomaly forcing effectively simulates the wave train pattern emanating from the tropical Pacific, and associated extratropical teleconnections such as a weakening of the Aleutian Low and drought in North America.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harvey, Kate; Field, Patrick; Fierman, Elizabeth
The project team consisting of the Consensus Building Institute, Inc., Raab Associates, Ltd., and the MIT-Harvard Program on Negotiation created a model and set of tools for building the capacity of state officials to effectively collaborate with diverse stakeholders in advancing wind development policy formation, wind facility siting, and transmission policy and siting. The model was used to enhance the ability of state officials to advance wind development in their states. Training was delivered in Cambridge, MA, in Spring 2011. The training and associated materials, including a Wind Energy Workbook, website, and simulations, is available for ongoing and widespread disseminationmore » throughout the US.« less
NASA Technical Reports Server (NTRS)
Koenig, D. G.
1984-01-01
Factors influencing effective program planning for V/STOL wind-tunnel testing are discussed. The planning sequence itself, which includes a short checklist of considerations that could enhance the value of the tests, is also described. Each of the considerations, choice of wind tunnel, type of model installation, model development and test operations, is discussed, and examples of appropriate past and current V/STOL test programs are provided. A short survey of the moderate to large subsonic wind tunnels is followed by a review of several model installations, from two-dimensional to large-scale models of complete aircraft configurations. Model sizing, power simulation, and planning are treated, including three areas is test operations: data-acquisition systems, acoustic measurements in wind tunnels, and flow surveying.
Active Power Control of Waked Wind Farms: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleming, Paul A; van Wingerden, Jan-Willem; Pao, Lucy
Active power control can be used to balance the total power generated by wind farms with the power consumed on the electricity grid. With the increasing penetration levels of wind energy, there is an increasing need for this ancillary service. In this paper, we show that the tracking of a certain power reference signal provided by the transmission system operator can be significantly improved by using feedback control at the wind farm level. We propose a simple feedback control law that significantly improves the tracking behavior of the total power output of the farm, resulting in higher performance scores. Themore » effectiveness of the proposed feedback controller is demonstrated using high-fidelity computational fluid dynamics simulations of a small wind farm.« less
NASA Astrophysics Data System (ADS)
Manninen, L. M.
1993-12-01
The document describes TKKMOD, a simulation model developed at Helsinki University of Technology for a specific wind-diesel system layout, with special emphasis on the battery submodel and its use in simulation. The model has been included into the European wind-diesel modeling software package WDLTOOLS under the CEC JOULE project 'Engineering Design Tools for Wind-Diesel Systems' (JOUR-0078). WDLTOOLS serves as the user interface and processes the input and output data of different logistic simulation models developed by the project participants. TKKMOD cannot be run without this shell. The report only describes the simulation principles and model specific parameters of TKKMOD and gives model specific user instructions. The input and output data processing performed outside this model is described in the documentation of the shell. The simulation model is utilized for calculation of long-term performance of the reference system configuration for given wind and load conditions. The main results are energy flows, losses in the system components, diesel fuel consumption, and the number of diesel engine starts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karr, Dale G.; Yu, Bingbin; Sirnivas, Senu
To create long-term solutions for offshore wind turbines in a variety of environmental conditions, CAE tools are needed to model the design-driving loads that interact with an offshore wind turbine system during operation. This report describes our efforts in augmenting existing CAE tools used for offshore wind turbine analysis with a new module that can provide simulation capabilities for ice loading on the system. This augmentation was accomplished by creating an ice-loading module coupled to FAST8, the CAE tool maintained by the NREL for simulating land-based and offshore wind turbine dynamics. The new module includes both static and dynamic icemore » loading that can be applied during a dynamic simulation of the response of an offshore wind turbine. The ice forces can be prescribed, or influenced by the structure’s compliant response, or by the dynamics of both the structure and the ice floe. The new module covers ice failure modes of spalling, buckling, crushing, splitting, and bending. The supporting structure of wind turbines can be modeled as a vertical or sloping form at the waterline. The Inward Battered Guide Structure (IBGS) foundation designed by Keystone Engineering for the Great Lakes was used to study the ice models coupled to FAST8. The IBGS foundation ice loading simulations in FAST8 were compared to the baseline simulation case without ice loading. The ice conditions reflecting those from Lake Huron at Port Huron and Lake Michigan at North Manitou were studied under near rated wind speed of 12 m/s for the NREL 5-MW reference turbine. Simulations were performed on ice loading models 1 through 4 and ice model 6 with their respective sub-models. The purpose of ice model 5 is to investigate ice loading on sloping structures such as ice-cones on a monopile and is not suitable for multi-membered jacketed structures like the IBGS foundation. The key response parameters from the simulations, shear forces and moments from the tower base and IBGS foundation base, were compared. Ice models 1 and 6 do not significantly affect the tower fore-aft shear and moment. However, ice model 2 (dynamic analyses), model 3 (random ice loading), and model 4 (multiple ice failure zone loading) show increased effect on the tower fore-aft shear and moment with significant effect from ice model 3.1. In general ice loading creates large reaction forces and moments at the base of the IBGS foundation; the largest occurred in model 1.1 (steady creep ice indentation loading) followed by model 3.1 (random creep ice indentation loading). In general the power production from the ice loading cases had little deviation from the baseline case without ice loading. For ultimate limit state (ULS), ice model 1.1 ice and 3.1 appear to be the ice most critical models to consider at an early stage of design. Ice model 4 is an important tool for assessing structural fatigue.« less
Golf in the Wind: Exploring the Effect of Wind on the Accuracy of Golf Shots
NASA Astrophysics Data System (ADS)
Yaghoobian, Neda; Mittal, Rajat
2015-11-01
Golf play is highly dependent on the weather conditions with wind being the most significant factor in the unpredictability of the ball landing position. The direction and strength of the wind alters the aerodynamic forces on a ball in flight, and consequently its speed, distance and direction of travel. The fact that local wind conditions on any particular hole change over times-scales ranging all the way from a few seconds to minutes, hours and days introduces an element of variability in the ball trajectory that is not understood. Any such analysis is complicated by the effect of the local terrestrial and vegetation topology, as well as the inherent complexity of golf-ball aerodynamics. In the current study, we use computational modeling to examine the unpredictability of the shots under different wind conditions over Hole-12 at the Augusta National Golf Club, where the Masters Golf Tournament takes place every year. Despite this being the shortest hole on the course, the presence of complex vegetation canopy around this hole introduces a spatial and temporal variability in wind conditions that evokes uncertainty and even fear among professional golfers. We use our model to examine the effect of wind direction and wind-speed on the accuracy of the golf shots at this hole and use the simulations to determine the key aerodynamic factors that affect the accuracy of the shot.
Effect of accuracy of wind power prediction on power system operator
NASA Technical Reports Server (NTRS)
Schlueter, R. A.; Sigari, G.; Costi, T.
1985-01-01
This research project proposed a modified unit commitment that schedules connection and disconnection of generating units in response to load. A modified generation control is also proposed that controls steam units under automatic generation control, fast responding diesels, gas turbines and hydro units under a feedforward control, and wind turbine array output under a closed loop array control. This modified generation control and unit commitment require prediction of trend wind power variation one hour ahead and the prediction of error in this trend wind power prediction one half hour ahead. An improved meter for predicting trend wind speed variation is developed. Methods for accurately simulating the wind array power from a limited number of wind speed prediction records was developed. Finally, two methods for predicting the error in the trend wind power prediction were developed. This research provides a foundation for testing and evaluating the modified unit commitment and generation control that was developed to maintain operating reliability at a greatly reduced overall production cost for utilities with wind generation capacity.
Global Simulations of the Inner Regions of Protoplanetary Disks with Comprehensive Disk Microphysics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai, Xue-Ning, E-mail: xbai@cfa.harvard.edu
2017-08-10
The gas dynamics of weakly ionized protoplanetary disks (PPDs) are largely governed by the coupling between gas and magnetic fields, described by three non-ideal magnetohydrodynamical (MHD) effects (Ohmic, Hall, ambipolar). Previous local simulations incorporating these processes have revealed that the inner regions of PPDs are largely laminar and accompanied by wind-driven accretion. We conduct 2D axisymmetric, fully global MHD simulations of these regions (∼1–20 au), taking into account all non-ideal MHD effects, with tabulated diffusion coefficients and approximate treatment of external ionization and heating. With the net vertical field aligned with disk rotation, the Hall-shear instability strongly amplifies horizontal magneticmore » field, making the overall dynamics dependent on initial field configuration. Following disk formation, the disk likely relaxes into an inner zone characterized by asymmetric field configuration across the midplane, which smoothly transitions to a more symmetric outer zone. Angular momentum transport is driven by both MHD winds and laminar Maxwell stress, with both accretion and decretion flows present at different heights, and modestly asymmetric winds from the two disk sides. With anti-aligned field polarity, weakly magnetized disks settle into an asymmetric field configuration with supersonic accretion flow concentrated at one side of the disk surface, and highly asymmetric winds between the two disk sides. In all cases, the wind is magneto-thermal in nature, characterized by a mass loss rate exceeding the accretion rate. More strongly magnetized disks give more symmetric field configuration and flow structures. Deeper far-UV penetration leads to stronger and less stable outflows. Implications for observations and planet formation are also discussed.« less
On the Effect of Offshore Wind Parks on Ocean Dynamics
NASA Astrophysics Data System (ADS)
Ludewig, E.; Pohlmann, T.
2012-12-01
Nowadays renewable energy resources play a key role in the energy supply discussion and especially an increasingly interest in wind energy induces intensified installations of wind parks. At this offshore wind energy gains in popularity in the course of higher and more consistent energy availability than over land. For example Germany's government adopted a national interurban offshore wind energy program comprising the construction of hundreds of wind turbines within Germany's Exclusive Economic Zone to ensure up to 50% of Germany's renewable energy supply. The large number of installation in coastal regions asks for analyzing the impact of offshore wind parks (OWPs) on the atmosphere and the ocean. As known from literature such wind parks excite also-called wake-effect and such an influence on the wind field in turn affects ocean circulation. To cover OWP's impact on ocean dynamics we evaluate model simulations using the Hamburg Shelf-Ocean-Model (HAMSOM). All simulations were driven with a wind forcing produced by the Mesoscale Atmosphere Model of the Hamburg University (METRAS) which has implemented wind turbines. Wind forcing data were generated in collaboration with and by courtesy of the Meteorological Institute of the University of Hamburg, Department Technical Meteorology, Numeric Modeling-METRAS. To evaluate dynamical changes forced by the OWP's wind wake-effect we did a sensitivity study with a theoretical setup of a virtual ocean of 60m depth with a flat bottom and a temperature and salinity stratification according to common North Sea's conditions. Here our results show that already a small OWP of 12 wind turbines, placed in an area of 4 km^2, lead to a complex change in ocean dynamics. Due to the wake-effect zones of upwelling and downwelling are formed within a minute after turning-on wind turbines. The evolving vertical cells have a size of around 15x15 kilometers with a vertical velocity in order of 10^-2 mm/sec influencing the dynamic of an area being hundred times bigger than the wind park itself. The emerged vertical structure is generated due to a newly created geostrophic balance resulting in a redistribution of the ocean mass field. A number of additional upwelling and downwelling cells around the wind park support an intensified vertical dispersion through all layers and incline the thermocline which also influences the lower levels. The disturbances of mass show a dipole structure across the main wind direction with a maximum change in thermocline depth of some meters close to the OWP. Diffusion, mostly driven by direct wind induced surface shear is also modified by the wind turbines and supports a further modification of the vertical patterns. Considering that wind turbines operate only in a special window of wind speed, i.e. wind turbines will stop in case of too weak or too strong wind speeds as well as in case of technical issues, the averaged dimension and intensity of occurring vertical cells depend on the number of rotors and expected wind speeds. Finally we will focus on scenario runs for the North Sea under fully realistic conditions to estimate possible changes in ocean dynamics due to OWPs in future and these results will be further used for process analyzes of the ecosystem. If we assume a continuous operation of North Sea's OWPs in future we expect a fundamental constant change in ocean dynamics and moreover in the ecosystem in its vicinity.
NASA Astrophysics Data System (ADS)
Vörös, Z.; Facskó, G.; Khodachenko, M.; Honkonen, I.; Janhunen, P.; Palmroth, M.
2014-08-01
Magnetic reconnection (MR) is a key physical concept explaining the addition of magnetic flux to the magnetotail and closed flux lines back-motion to the dayside magnetosphere. This scenario elaborated by Dungey (1963) can explain many aspects of solar wind-magnetosphere interaction processes, including substorms. However, neither the Dungey model nor its numerous modifications were able to explain fully the onset conditions for MR in the tail. In this paper, we introduce new onset conditions for forced MR in the tail. We call our scenario the "windsock memory conditioned ram pressure effect." Our nonflux transfer-associated forcing is introduced by a combination of the large-scale windsock motions exhibiting memory effects and solar wind dynamic pressure actions on the nightside magnetopause during northward oriented interplanetary magnetic field (IMF). Using global MHD Grand Unified Magnetosphere Ionosphere Coupling Simulation version 4 simulation results, upstream data from Wind, magnetosheath data from Cluster 1 and distant tail data from the two-probe Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun mission, we show that the simultaneous occurrence of vertical windsock motions of the magnetotail and enhanced solar wind dynamic pressure introduces strong nightside disturbances, including enhanced electric fields and persistent vertical cross-tail shear flows. These perturbations, associated with a stream interaction region in the solar wind, drive MR in the tail during episodes of northward oriented interplanetary magnetic field (IMF). We detect MR indirectly, observing plasmoids in the tail and ground-based signatures of earthward moving fast flows. We also consider the application to solar system planets and close-in exoplanets, where the proposed scenario can elucidate some new aspects of solar/stellar wind-magnetosphere interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finley, Adam J.; Matt, Sean P., E-mail: af472@exeter.ac.uk
Cool stars with outer convective envelopes are observed to have magnetic fields with a variety of geometries, which on large scales are dominated by a combination of the lowest-order fields such as the dipole, quadrupole, and octupole modes. Magnetized stellar wind outflows are primarily responsible for the loss of angular momentum from these objects during the main sequence. Previous works have shown the reduced effectiveness of the stellar wind braking mechanism with increasingly complex but singular magnetic field geometries. In this paper, we quantify the impact of mixed dipolar and quadrupolar fields on the spin-down torque using 50 MHD simulationsmore » with mixed fields, along with 10 each of the pure geometries. The simulated winds include a wide range of magnetic field strength and reside in the slow-rotator regime. We find that the stellar wind braking torque from our combined geometry cases is well described by a broken power-law behavior, where the torque scaling with field strength can be predicted by the dipole component alone or the quadrupolar scaling utilizing the total field strength. The simulation results can be scaled and apply to all main-sequence cool stars. For solar parameters, the lowest-order component of the field (dipole in this paper) is the most significant in determining the angular momentum loss.« less
A kinetic model of plasma turbulence
NASA Astrophysics Data System (ADS)
Servidio, S.; Valentini, F.; Perrone, D.; Greco, A.; Califano, F.; Matthaeus, W. H.; Veltri, P.
2015-01-01
A Hybrid Vlasov-Maxwell (HVM) model is presented and recent results about the link between kinetic effects and turbulence are reviewed. Using five-dimensional (2D in space and 3D in the velocity space) simulations of plasma turbulence, it is found that kinetic effects (or non-fluid effects) manifest through the deformation of the proton velocity distribution function (DF), with patterns of non-Maxwellian features being concentrated near regions of strong magnetic gradients. The direction of the proper temperature anisotropy, calculated in the main reference frame of the distribution itself, has a finite probability of being along or across the ambient magnetic field, in general agreement with the classical definition of anisotropy T ⊥/T ∥ (where subscripts refer to the magnetic field direction). Adopting the latter conventional definition, by varying the global plasma beta (β) and fluctuation level, simulations explore distinct regions of the space given by T ⊥/T ∥ and β∥, recovering solar wind observations. Moreover, as in the solar wind, HVM simulations suggest that proton anisotropy is not only associated with magnetic intermittent events, but also with gradient-type structures in the flow and in the density. The role of alpha particles is reviewed using multi-ion kinetic simulations, revealing a similarity between proton and helium non-Maxwellian effects. The techniques presented here are applied to 1D spacecraft-like analysis, establishing a link between non-fluid phenomena and solar wind magnetic discontinuities. Finally, the dimensionality of turbulence is investigated, for the first time, via 6D HVM simulations (3D in both spaces). These preliminary results provide support for several previously reported studies based on 2.5D simulations, confirming several basic conclusions. This connection between kinetic features and turbulence open a new path on the study of processes such as heating, particle acceleration, and temperature-anisotropy, commonly observed in space plasmas.
A brief summary of the attempts to develop large wind-electric generating systems in the US
NASA Technical Reports Server (NTRS)
Savino, J. M.
1974-01-01
Interest in developing large wind-electric generating systems in the United States was simulated primarily by one man, Palmer C. Putnam. He was responsible for the construction of the 1250 kilowatt Smith-Putnam wind-electric plant. The existence of this system prompted the U. S. Federal Power Commission to investigate the potential of using the winds as a source energy. Also, in 1933 prior to Putnam's effort, there was an abortive attempt by J. D. Madaras to develop a wind system based on the Magnus effect. These three projects comprise the only serious efforts in America to develop large wind driven plants. In this paper the history of each project is briefly described. Also discussed are some of the reasons why wind energy was not seriously considered as a major source of energy for the U. S.
Stability Augmentation of Wind Farm using Variable Speed Permanent Magnet Synchronous Generator
NASA Astrophysics Data System (ADS)
Rosyadi, Marwan; Muyeen, S. M.; Takahashi, Rion; Tamura, Junji
This paper presents a new control strategy of variable speed permanent magnet wind generator for stability augmentation of wind farm including fixed speed wind turbine with Induction Generator (IG). A new control scheme is developed for two levels back-to-back converters of Permanent Magnet Synchronous Generator (PMSG), by which both active and reactive powers delivered to the grid can be controlled easily. To avoid the converter damage, the DC link protection controller is also proposed in order to protect the dc link circuit during fault condition. To evaluate the control capability of the proposed controllers, simulations are performed on two model systems composed of wind farms connected to an infinite bus. From transient and steady state analyses by using PSCAD/EMTDC, it is concluded that the proposed control scheme is very effective to improve the stability of wind farm for severe network disturbance and randomly fluctuating wind speed.
Neural network based control of Doubly Fed Induction Generator in wind power generation
NASA Astrophysics Data System (ADS)
Barbade, Swati A.; Kasliwal, Prabha
2012-07-01
To complement the other types of pollution-free generation wind energy is a viable option. Previously wind turbines were operated at constant speed. The evolution of technology related to wind systems industry leaded to the development of a generation of variable speed wind turbines that present many advantages compared to the fixed speed wind turbines. In this paper the phasor model of DFIG is used. This paper presents a study of a doubly fed induction generator driven by a wind turbine connected to the grid, and controlled by artificial neural network ANN controller. The behaviour of the system is shown with PI control, and then as controlled by ANN. The effectiveness of the artificial neural network controller is compared to that of a PI controller. The SIMULINK/MATLAB simulation for Doubly Fed Induction Generator and corresponding results and waveforms are displayed.
NASA Astrophysics Data System (ADS)
Schafhirt, S.; Kaufer, D.; Cheng, P. W.
2014-12-01
In recent years many advanced load simulation tools, allowing an aero-servo-hydroelastic analyses of an entire offshore wind turbine, have been developed and verified. Nowadays, even an offshore wind turbine with a complex support structure such as a jacket can be analysed. However, the computational effort rises significantly with an increasing level of details. This counts especially for offshore wind turbines with lattice support structures, since those models do naturally have a higher number of nodes and elements than simpler monopile structures. During the design process multiple load simulations are demanded to obtain an optimal solution. In the view of pre-design tasks it is crucial to apply load simulations which keep the simulation quality and the computational effort in balance. The paper will introduce a reference wind turbine model consisting of the REpower5M wind turbine and a jacket support structure with a high level of detail. In total twelve variations of this reference model are derived and presented. Main focus is to simplify the models of the support structure and the foundation. The reference model and the simplified models are simulated with the coupled simulation tool Flex5-Poseidon and analysed regarding frequencies, fatigue loads, and ultimate loads. A model has been found which reaches an adequate increase of simulation speed while holding the results in an acceptable range compared to the reference results.
NASA Astrophysics Data System (ADS)
Gohari, S. M. Iman; Sarkar, Sutanu; Korobenko, Artem; Bazilevs, Yuri
2017-11-01
Numerical simulations of wind turbines operating under different regimes of stability are performed using LES. A reduced model, based on the generalized actuator disk model (ADM), is implemented to represent the wind turbines within the ABL. Data from the fluid-solid interaction (FSI) simulations of wind turbines have been used to calibrate and validate the reduced model. The computational cost of this method to include wind turbines is affordable and incurs an overhead as low as 1.45%. Using this reduced model, we study the coupling of unsteady turbulent flow with the wind turbine under different ABL conditions: (i) A neutral ABL with zero heat-flux and inversion layer at 350m, in which the incoming wind has the maximum mean shear between the heights of upper-tip and lower-tip; (2) A shallow ABL with surface cooling rate of -1 K/hr wherein the low level jet occurs at the wind turbine hub height. We will discuss how the differences in the unsteady flow between the two ABL regimes impact the wind turbine performance.
The design of nonlinear observers for wind turbine dynamic state and parameter estimation
NASA Astrophysics Data System (ADS)
Ritter, B.; Schild, A.; Feldt, M.; Konigorski, U.
2016-09-01
This contribution addresses the dynamic state and parameter estimation problem which arises with more advanced wind turbine controllers. These control devices need precise information about the system's current state to outperform conventional industrial controllers effectively. First, the necessity of a profound scientific treatment on nonlinear observers for wind turbine application is highlighted. Secondly, the full estimation problem is introduced and the variety of nonlinear filters is discussed. Finally, a tailored observer architecture is proposed and estimation results of an illustrative application example from a complex simulation set-up are presented.
Saltation of Non-Spherical Sand Particles
Wang, Zhengshi; Ren, Shan; Huang, Ning
2014-01-01
Saltation is an important geological process and the primary source of atmospheric mineral dust aerosols. Unfortunately, no studies to date have been able to precisely reproduce the saltation process because of the simplified theoretical models used. For example, sand particles in most of the existing wind sand movement models are considered to be spherical, the effects of the sand shape on the structure of the wind sand flow are rarely studied, and the effect of mid-air collision is usually neglected. In fact, sand grains are rarely round in natural environments. In this paper, we first analyzed the drag coefficients, drag forces, and starting friction wind speeds of sand grains with different shapes in the saltation process, then established a sand saltation model that considers the coupling effect between wind and the sand grains, the effect of the mid-air collision of sand grains, and the effect of the sand grain shape. Based on this model, the saltation process and sand transport rate of non-spherical sand particles were simulated. The results show that the sand shape has a significant impact on the saltation process; for the same wind speed, the sand transport rates varied for different shapes of sand grains by as much as several-fold. Therefore, sand shape is one of the important factors affecting wind-sand movement. PMID:25170614
CFD simulations of a wind turbine for analysis of tip vortex breakdown
NASA Astrophysics Data System (ADS)
Kimura, K.; Tanabe, Y.; Aoyama, T.; Matsuo, Y.; Arakawa, C.; Iida, M.
2016-09-01
This paper discusses about the wake structure of wind turbine via the use of URANS and Quasi-DNS, focussing on the tip vortex breakdown. The moving overlapped structured grids CFD Solver based on a fourth-order reconstruction and an all-speed scheme, rFlow3D is used for capturing the characteristics of tip vortices. The results from the Model Experiments in Controlled Conditions project (MEXICO) was accordingly selected for executing wake simulations through the variation of tip speed ratio (TSR); in an operational wind turbine, TSR often changes in value. Therefore, it is important to assess the potential effects of TSR on wake characteristics. The results obtained by changing TSR show the variations of the position of wake breakdown and wake expansion. The correspondence between vortices and radial/rotational flow is also confirmed.
Effects of wind energy generation and white-nose syndrome on the viability of the Indiana bat
Thogmartin, Wayne E.; Diffendorfer, Jay E.; Russell, Robin E.; Szymanski, Jennifer A.
2016-01-01
Wind energy generation holds the potential to adversely affect wildlife populations. Species-wide effects are difficult to study and few, if any, studies examine effects of wind energy generation on any species across its entire range. One species that may be affected by wind energy generation is the endangered Indiana bat (Myotis sodalis), which is found in the eastern and midwestern United States. In addition to mortality from wind energy generation, the species also faces range-wide threats from the emerging infectious fungal disease, white-nose syndrome (WNS). White-nose syndrome, caused by Pseudogymnoascus destructans, disturbs hibernating bats leading to high levels of mortality. We used a spatially explicit full-annual-cycle model to investigate how wind turbine mortality and WNS may singly and then together affect population dynamics of this species. In the simulation, wind turbine mortality impacted the metapopulation dynamics of the species by causing extirpation of some of the smaller winter colonies. In general, effects of wind turbines were localized and focused on specific spatial subpopulations. Conversely, WNS had a depressive effect on the species across its range. Wind turbine mortality interacted with WNS and together these stressors had a larger impact than would be expected from either alone, principally because these stressors together act to reduce species abundance across the spectrum of population sizes. Our findings illustrate the importance of not only prioritizing the protection of large winter colonies as is currently done, but also of protecting metapopulation dynamics and migratory connectivity. PMID:28028486
Process simulations for manufacturing of thick composites
NASA Astrophysics Data System (ADS)
Kempner, Evan A.
The availability of manufacturing simulations for composites can significantly reduce the costs associated with process development. Simulations provide a tool for evaluating the effect of processing conditions on the quality of parts produced without requiring numerous experiments. This is especially significant in parts that have troublesome features such as large thickness. The development of simulations for thick walled composites has been approached by examining the mechanics of resin flow and fiber deformation during processing, applying these evaluations to develop simulations, and evaluating the simulation with experimental results. A unified analysis is developed to describe the three-dimensional resin flow and fiber preform deformation during processing regardless of the manufacturing process used. It is shown how the generic governing evaluations in the unified analysis can be applied to autoclave molding, compression molding, pultrusion, filament winding, and resin transfer molding. A comparison is provided with earlier models derived individually for these processes. The evaluations described for autoclave curing were used to produce a one-dimensional cure simulation for autoclave curing of thick composites. The simulation consists of an analysis for heat transfer and resin flow in the composite as well as bleeder plies used to absorb resin removed from the part. Experiments were performed in a hot press to approximate curing in an autoclave. Graphite/epoxy laminates of 3 cm and 5 cm thickness were cured while monitoring temperatures at several points inside the laminate and thickness. The simulation predicted temperatures fairly closely, but difficulties were encountered in correlation of thickness results. This simulation was also used to study the effects of prepreg aging on processing of thick composites. An investigation was also performed on filament winding with prepreg tow. Cylinders were wound of approximately 12 mm thickness with pressure gages at the mandrel-composite interface. Cylinders were hoop wound with tensions ranging from 13-34 N. An analytical model was developed to calculate change in stress due to relaxation during winding. Although compressive circumferential stresses occurred throughout each of the cylinders, the magnitude was fairly low.
Quantification of wind flow in the European Mars Simulation Wind Tunnel Facility
NASA Astrophysics Data System (ADS)
Holstein-Rathlou, C.; Merrison, J. P.; Iversen, J. J.; Nornberg, P.
2012-04-01
We present the European Mars Simulation Wind Tunnel facility, a unique prototype facility capable of simulating a wide range of environmental conditions, such as those which can be found at the surface of Earth or Mars. The chamber complements several other large-scale simulation facilities at Aarhus University, Denmark. The facility consists of a 50 m3 environmental chamber capable of operating at low pressure (0.02 - 1000 mbar) and cryogenic temperatures (-130 °C up to +60 °C). This chamber houses a re-circulating wind tunnel capable of generating wind speeds up to 25 m/s and has a dust injection system that can produce suspended particulates (aerosols). It employs a unique LED based optical illumination system (solar simulator) and an advanced network based control system. Laser based optoelectronic instrumentation is used to quantify and monitor wind flow, dust suspension and deposition. This involves a commercial Laser Doppler Anemometer (LDA) and a Particle Dynamics Analysis receiver (PDA), which are small laser based instruments specifically designed for measuring wind speed and sizes of particles situated in a wind flow. Wind flow calibrations will be performed with the LDA system and presented. Pressure and temperature calibrations will follow in order to enable the facility to be used for the testing, development, calibration and comparison of e.g. meteorological sensors under a wide range of environmental conditions as well as multi-disciplinary scientific studies. The wind tunnel is accessible to international collaborators and space agencies for instrument testing, calibration and qualification. It has been financed by the European Space Agency (ESA) as well as the Aarhus University Science Faculty and the Villum Kann Rasmussen Foundation.
Dynamic model based novel findings in power systems analysis and frequency measurement verification
NASA Astrophysics Data System (ADS)
Kook, Kyung Soo
This study selects several new advanced topics in power systems, and verifies their usefulness using the simulation. In the study on ratio of the equivalent reactance and resistance of the bulk power systems, the simulation results give us the more correct value of X/R of the bulk power system, which can explain why the active power compensation is also important in voltage flicker mitigation. In the application study of the Energy Storage System(ESS) to the wind power, the new model implementation of the ESS connected to the wind power is proposed, and the control effect of ESS to the intermittency of the wind power is verified. Also this study conducts the intensive simulations for clarifying the behavior of the wide-area power system frequency as well as the possibility of the on-line instability detection. In our POWER IT Laboratory, since 2003, the U.S. national frequency monitoring network (FNET) has been being continuously operated to monitor the wide-area power system frequency in the U.S. Using the measured frequency data, the event of the power system is triggered, and its location and scale are estimated. This study also looks for the possibility of using the simulation technologies to contribute the applications of FNET, finds similarity of the event detection orders between the frequency measurements and the simulations in the U.S. Eastern power grid, and develops the new methodology for estimating the event location based on the simulated N-1 contingencies using the frequency measurement. It has been pointed out that the simulation results can not represent the actual response of the power systems due to the inevitable limit of modeling power systems and different operating conditions of the systems at every second. However, in the circumstances that we need to test such an important infrastructure supplying the electric energy without taking any risk of it, the software based simulation will be the best solution to verify the new technologies in power system engineering and, for doing this, new models and better application of the simulation should be proposed. Conducting extensive simulation studies, this dissertation verified that the actual X/R ratio of the bulk power systems is much lower than what has been known as its typical value, showed the effectiveness of the ESS control to mitigate the intermittence of the wind power from the perspective of the power grid using the newly proposed simulation model of ESS connected to the wind power, and found many characteristics of the wide-area frequency wave propagation. Also the possibility of using the simulated responses of the power system for replacing the measured data could be confirmed and this is very promising to the future application of the simulation to the on-line analysis of the power systems based on the FNET measurements.
Potential climatic impacts and reliability of large-scale offshore wind farms
NASA Astrophysics Data System (ADS)
Wang, Chien; Prinn, Ronald G.
2011-04-01
The vast availability of wind power has fueled substantial interest in this renewable energy source as a potential near-zero greenhouse gas emission technology for meeting future world energy needs while addressing the climate change issue. However, in order to provide even a fraction of the estimated future energy needs, a large-scale deployment of wind turbines (several million) is required. The consequent environmental impacts, and the inherent reliability of such a large-scale usage of intermittent wind power would have to be carefully assessed, in addition to the need to lower the high current unit wind power costs. Our previous study (Wang and Prinn 2010 Atmos. Chem. Phys. 10 2053) using a three-dimensional climate model suggested that a large deployment of wind turbines over land to meet about 10% of predicted world energy needs in 2100 could lead to a significant temperature increase in the lower atmosphere over the installed regions. A global-scale perturbation to the general circulation patterns as well as to the cloud and precipitation distribution was also predicted. In the later study reported here, we conducted a set of six additional model simulations using an improved climate model to further address the potential environmental and intermittency issues of large-scale deployment of offshore wind turbines for differing installation areas and spatial densities. In contrast to the previous land installation results, the offshore wind turbine installations are found to cause a surface cooling over the installed offshore regions. This cooling is due principally to the enhanced latent heat flux from the sea surface to lower atmosphere, driven by an increase in turbulent mixing caused by the wind turbines which was not entirely offset by the concurrent reduction of mean wind kinetic energy. We found that the perturbation of the large-scale deployment of offshore wind turbines to the global climate is relatively small compared to the case of land-based installations. However, the intermittency caused by the significant seasonal wind variations over several major offshore sites is substantial, and demands further options to ensure the reliability of large-scale offshore wind power. The method that we used to simulate the offshore wind turbine effect on the lower atmosphere involved simply increasing the ocean surface drag coefficient. While this method is consistent with several detailed fine-scale simulations of wind turbines, it still needs further study to ensure its validity. New field observations of actual wind turbine arrays are definitely required to provide ultimate validation of the model predictions presented here.
Numerical Simulation of Selecting Model Scale of Cable in Wind Tunnel Test
NASA Astrophysics Data System (ADS)
Huang, Yifeng; Yang, Jixin
The numerical simulation method based on computational Fluid Dynamics (CFD) provides a possible alternative means of physical wind tunnel test. Firstly, the correctness of the numerical simulation method is validated by one certain example. In order to select the minimum length of the cable as to a certain diameter in the numerical wind tunnel tests, the numerical wind tunnel tests based on CFD are carried out on the cables with several different length-diameter ratios (L/D). The results show that, when the L/D reaches to 18, the drag coefficient is stable essentially.
Model predictive control of a wind turbine modelled in Simpack
NASA Astrophysics Data System (ADS)
Jassmann, U.; Berroth, J.; Matzke, D.; Schelenz, R.; Reiter, M.; Jacobs, G.; Abel, D.
2014-06-01
Wind turbines (WT) are steadily growing in size to increase their power production, which also causes increasing loads acting on the turbine's components. At the same time large structures, such as the blades and the tower get more flexible. To minimize this impact, the classical control loops for keeping the power production in an optimum state are more and more extended by load alleviation strategies. These additional control loops can be unified by a multiple-input multiple-output (MIMO) controller to achieve better balancing of tuning parameters. An example for MIMO control, which has been paid more attention to recently by wind industry, is Model Predictive Control (MPC). In a MPC framework a simplified model of the WT is used to predict its controlled outputs. Based on a user-defined cost function an online optimization calculates the optimal control sequence. Thereby MPC can intrinsically incorporate constraints e.g. of actuators. Turbine models used for calculation within the MPC are typically simplified. For testing and verification usually multi body simulations, such as FAST, BLADED or FLEX5 are used to model system dynamics, but they are still limited in the number of degrees of freedom (DOF). Detailed information about load distribution (e.g. inside the gearbox) cannot be provided by such models. In this paper a Model Predictive Controller is presented and tested in a co-simulation with SlMPACK, a multi body system (MBS) simulation framework used for detailed load analysis. The analysis are performed on the basis of the IME6.0 MBS WT model, described in this paper. It is based on the rotor of the NREL 5MW WT and consists of a detailed representation of the drive train. This takes into account a flexible main shaft and its main bearings with a planetary gearbox, where all components are modelled flexible, as well as a supporting flexible main frame. The wind loads are simulated using the NREL AERODYN v13 code which has been implemented as a routine to SlMPACK. This modeling approach allows to investigate the nonlinear behavior of wind loads and nonlinear drive train dynamics. Thereby the MPC's impact on specific loads and effects not covered by standard simulation tools can be assessed and investigated. Keywords. wind turbine simulation, model predictive control, multi body simulation, MIMO, load alleviation
A parabolic model of drag coefficient for storm surge simulation in the South China Sea
Peng, Shiqiu; Li, Yineng
2015-01-01
Drag coefficient (Cd) is an essential metric in the calculation of momentum exchange over the air-sea interface and thus has large impacts on the simulation or forecast of the upper ocean state associated with sea surface winds such as storm surges. Generally, Cd is a function of wind speed. However, the exact relationship between Cd and wind speed is still in dispute, and the widely-used formula that is a linear function of wind speed in an ocean model could lead to large bias at high wind speed. Here we establish a parabolic model of Cd based on storm surge observations and simulation in the South China Sea (SCS) through a number of tropical cyclone cases. Simulation of storm surges for independent Tropical cyclones (TCs) cases indicates that the new parabolic model of Cd outperforms traditional linear models. PMID:26499262
A parabolic model of drag coefficient for storm surge simulation in the South China Sea.
Peng, Shiqiu; Li, Yineng
2015-10-26
Drag coefficient (Cd) is an essential metric in the calculation of momentum exchange over the air-sea interface and thus has large impacts on the simulation or forecast of the upper ocean state associated with sea surface winds such as storm surges. Generally, Cd is a function of wind speed. However, the exact relationship between Cd and wind speed is still in dispute, and the widely-used formula that is a linear function of wind speed in an ocean model could lead to large bias at high wind speed. Here we establish a parabolic model of Cd based on storm surge observations and simulation in the South China Sea (SCS) through a number of tropical cyclone cases. Simulation of storm surges for independent Tropical cyclones (TCs) cases indicates that the new parabolic model of Cd outperforms traditional linear models.
A parabolic model of drag coefficient for storm surge simulation in the South China Sea
NASA Astrophysics Data System (ADS)
Peng, Shiqiu; Li, Yineng
2015-10-01
Drag coefficient (Cd) is an essential metric in the calculation of momentum exchange over the air-sea interface and thus has large impacts on the simulation or forecast of the upper ocean state associated with sea surface winds such as storm surges. Generally, Cd is a function of wind speed. However, the exact relationship between Cd and wind speed is still in dispute, and the widely-used formula that is a linear function of wind speed in an ocean model could lead to large bias at high wind speed. Here we establish a parabolic model of Cd based on storm surge observations and simulation in the South China Sea (SCS) through a number of tropical cyclone cases. Simulation of storm surges for independent Tropical cyclones (TCs) cases indicates that the new parabolic model of Cd outperforms traditional linear models.
NASA Astrophysics Data System (ADS)
Tjahjana, Dominicus Danardono Dwi Prija; Purbaningrum, Pradityasari; Hadi, Syamsul; Wicaksono, Yoga Arob; Adiputra, Dimas
2018-02-01
Cross flow turbine can be one of the alternative energies for regions with low wind speed. Collision between wind and the blades which happened two times caused the cross flow turbine to have high power coefficient. Some factors that influence the turbine power coefficient are diameter ratio and blade number. The objective of the research was to study the effect of the diameter ratio and the blade number to the cross flow wind turbine performance. The study was done in two dimensional (2D) computational fluid dynamics (CFD) simulation method using the ANSYS-Fluent software. The turbine diameter ratio were 0.58, 0.63, 0.68 and 0.73. The diameter ratio resulting in the highest power coefficient value was then simulated by varying the number of blades, namely 16, 20 and 24. Each variation was tested on the wind speed of 2 m/s and at the tip speed ratio (TSR) of 0.1 to 0.4 with the interval of 0.1. The wind turbine with the ratio diameter of 0.68 and the number of blades of 20 generated the highest power coefficient of 0.5 at the TSR of 0.3.
CFD three dimensional wake analysis in complex terrain
NASA Astrophysics Data System (ADS)
Castellani, F.; Astolfi, D.; Terzi, L.
2017-11-01
Even if wind energy technology is nowadays fully developed, the use of wind energy in very complex terrain is still challenging. In particular, it is challenging to characterize the combination effects of wind ow over complex terrain and wake interactions between nearby turbines and this has a practical relevance too, for the perspective of mitigating anomalous vibrations and loads as well improving the farm efficiency. In this work, a very complex terrain site has been analyzed through a Reynolds-averaged CFD (Computational Fluid Dynamics) numerical wind field model; in the simulation the inuence of wakes has been included through the Actuator Disk (AD) approach. In particular, the upstream turbine of a cluster of 4 wind turbines having 2.3 MW of rated power is studied. The objective of this study is investigating the full three-dimensional wind field and the impact of three-dimensionality on the evolution of the waked area between nearby turbines. A post-processing method of the output of the CFD simulation is developed and this allows to estimate the wake lateral deviation and the wake width. The reliability of the numerical approach is inspired by and crosschecked through the analysis of the operational SCADA (Supervisory Control and Data Acquisition) data of the cluster of interest.
A Free Wake Numerical Simulation for Darrieus Vertical Axis Wind Turbine Performance Prediction
NASA Astrophysics Data System (ADS)
Belu, Radian
2010-11-01
In the last four decades, several aerodynamic prediction models have been formulated for the Darrieus wind turbine performances and characteristics. We can identified two families: stream-tube and vortex. The paper presents a simplified numerical techniques for simulating vertical axis wind turbine flow, based on the lifting line theory and a free vortex wake model, including dynamic stall effects for predicting the performances of a 3-D vertical axis wind turbine. A vortex model is used in which the wake is composed of trailing stream-wise and shedding span-wise vortices, whose strengths are equal to the change in the bound vortex strength as required by the Helmholz and Kelvin theorems. Performance parameters are computed by application of the Biot-Savart law along with the Kutta-Jukowski theorem and a semi-empirical stall model. We tested the developed model with an adaptation of the earlier multiple stream-tube performance prediction model for the Darrieus turbines. Predictions by using our method are shown to compare favorably with existing experimental data and the outputs of other numerical models. The method can predict accurately the local and global performances of a vertical axis wind turbine, and can be used in the design and optimization of wind turbines for built environment applications.
Wind turbine wakes in forest and neutral plane wall boundary layer large-eddy simulations
NASA Astrophysics Data System (ADS)
Schröttle, Josef; Piotrowski, Zbigniew; Gerz, Thomas; Englberger, Antonia; Dörnbrack, Andreas
2016-09-01
Wind turbine wake flow characteristics are studied in a strongly sheared and turbulent forest boundary layer and a neutral plane wall boundary layer flow. The reference simulations without wind turbine yield similar results as earlier large-eddy simulations by Shaw and Schumann (1992) and Porte-Agel et al. (2000). To use the fields from the homogeneous turbulent boundary layers on the fly as inflow fields for the wind turbine wake simulations, a new and efficient methodology was developed for the multiscale geophysical flow solver EULAG. With this method fully developed turbulent flow fields can be achieved upstream of the wind turbine which are independent of the wake flow. The large-eddy simulations reproduce known boundary-layer statistics as mean wind profile, momentum flux profile, and eddy dissipation rate of the plane wall and the forest boundary layer. The wake velocity deficit is more asymmetric above the forest and recovers faster downstream compared to the velocity deficit in the plane wall boundary layer. This is due to the inflection point in the mean streamwise velocity profile with corresponding turbulent coherent structures of high turbulence intensity in the strong shear flow above the forest.
Dust aerosol radiative effect and influence on urban atmospheric boundary layer
NASA Astrophysics Data System (ADS)
Zhang, L.; Chen, M.; Li, L.
2007-11-01
An 1.5-level-closure and 3-D non-stationary atmospheric boundary layer (ABL) model and a radiation transfer model with the output of Weather Research and Forecast (WRF) Model and lidar AML-1 are employed to simulate the dust aerosol radiative effect and its influence on ABL in Beijing for the period of 23-26 January 2002 when a dust storm occurred. The simulation shows that daytime dust aerosol radiative effect heats up the ABL at the mean rate of about 0.68 K/h. The horizontal wind speed from ground to 900 m layer is also overall increased, and the value changes about 0.01 m/s at 14:00 LT near the ground. At night, the dust aerosol radiative effect cools the ABL at the mean rate of -0.21 K/h and the wind speed lowers down at about -0.19 m/s at 02:00 LT near the ground.
Generation of Plausible Hurricane Tracks for Preparedness Exercises
2017-04-25
wind extents are simulated by Poisson regression and temporal filtering . The un-optimized MATLAB code runs in less than a minute and is integrated into...of real hurricanes. After wind radii have been simulated for the entire track, median filtering , attenuation over land, and smoothing clean up the wind
Increasing power generation in horizontal axis wind turbines using optimized flow control
NASA Astrophysics Data System (ADS)
Cooney, John A., Jr.
In order to effectively realize future goals for wind energy, the efficiency of wind turbines must increase beyond existing technology. One direct method for achieving increased efficiency is by improving the individual power generation characteristics of horizontal axis wind turbines. The potential for additional improvement by traditional approaches is diminishing rapidly however. As a result, a research program was undertaken to assess the potential of using distributed flow control to increase power generation. The overall objective was the development of validated aerodynamic simulations and flow control approaches to improve wind turbine power generation characteristics. BEM analysis was conducted for a general set of wind turbine models encompassing last, current, and next generation designs. This analysis indicated that rotor lift control applied in Region II of the turbine power curve would produce a notable increase in annual power generated. This was achieved by optimizing induction factors along the rotor blade for maximum power generation. In order to demonstrate this approach and other advanced concepts, the University of Notre Dame established the Laboratory for Enhanced Wind Energy Design (eWiND). This initiative includes a fully instrumented meteorological tower and two pitch-controlled wind turbines. The wind turbines are representative in their design and operation to larger multi-megawatt turbines, but of a scale that allows rotors to be easily instrumented and replaced to explore new design concepts. Baseline data detailing typical site conditions and turbine operation is presented. To realize optimized performance, lift control systems were designed and evaluated in CFD simulations coupled with shape optimization tools. These were integrated into a systematic design methodology involving BEM simulations, CFD simulations and shape optimization, and selected experimental validation. To refine and illustrate the proposed design methodology, a complete design cycle was performed for the turbine model incorporated in the wind energy lab. Enhanced power generation was obtained through passive trailing edge shaping aimed at reaching lift and lift-to-drag goals predicted to optimize performance. These targets were determined by BEM analysis to improve power generation characteristics and annual energy production (AEP) for the wind turbine. A preliminary design was validated in wind tunnel experiments on a 2D rotor section in preparation for testing in the full atmospheric environment of the eWiND Laboratory. These tests were performed for the full-scale geometry and atmospheric conditions. Upon making additional improvements to the shape optimization tools, a series of trailing edge additions were designed to optimize power generation. The trailing edge additions were predicted to increase the AEP by up to 4.2% at the White Field site. The pieces were rapid-prototyped and installed on the wind turbine in March, 2014. Field tests are ongoing.
NASA Technical Reports Server (NTRS)
Uhlhorn, Eric; Atlas, Robert; Black, Peter; Buckley, Courtney; Chen, Shuyi; El-Nimri, Salem; Hood, Robbie; Johnson, James; Jones, Linwood; Miller, Timothy;
2009-01-01
The Hurricane Imaging Radiometer (HIRAD) is a new airborne microwave remote sensor currently under development to enhance real-time hurricane ocean surface wind observations. HIRAD builds on the capabilities of the Stepped Frequency Microwave Radiometer (SFMR), which now operates on NOAA P-3, G-4, and AFRC C-130 aircraft. Unlike the SFMR, which measures wind speed and rain rate along the ground track directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath (approximately 3 times the aircraft altitude). To demonstrate potential improvement in the measurement of peak hurricane winds, we present a set of Observing System Simulation Experiments (OSSEs) in which measurements from the new instrument as well as those from existing platforms (air, surface, and space-based) are simulated from the output of a high-resolution (approximately 1.7 km) numerical model. Simulated retrieval errors due to both instrument noise as well as model function accuracy are considered over the expected range of incidence angles, wind speeds and rain rates. Based on numerous simulated flight patterns and data source combinations, statistics are developed to describe relationships between the observed and true (from the model s perspective) peak wind speed. These results have implications for improving the estimation of hurricane intensity (as defined by the peak sustained wind anywhere in the storm), which may often go un-observed due to sampling limitations.
A three-dimensional transport model for the middle atmosphere
NASA Technical Reports Server (NTRS)
Rasch, Philip J.; Tie, Xuexi; Boville, Byron A.; Williamson, David L.
1994-01-01
In this paper we describe fundamental properties of an 'off-line' three-dimensional transport model, that is, a model which uses prescribed rather than predicted winds. The model is currently used primarily for studying problems of the middle atmosphere because we have not (yet) incorporated a formulation for the convective transport of trace species, a prerequisite for many tropospheric problems. The off-line model is simpler and less expensive than a model which predicts the wind and mass evolution (an 'on-line' model), but it is more complex than the two-dimensional (2-D) zonally averaged transport models often used in the study of chemistry and transport in the middle atmosphere. It thus serves as a model of intermediate complexity and can fill a useful niche for the study of transport and chemistry. We compare simulations of four tracers, released in the lower stratosphere, in both the on- and off-line models to document the difference resulting from differences in modeling the same problem with this intermediate model. These differences identify the price to be paid in going to a cheaper and simpler calculation. The off-line model transports a tracer in three dimensions. For this reason, it requires fewer approximations than 2-D transport model, which must parameterize the effects of mixing by transient and zonally asymmetric wind features. We compare simulations of the off-line model with simulations of a 2-D model for two problems. First, we compare 2-D and three-dimensional (3-D) models by simulating the emission of an NO(x)-like tracer by a fleet of high-speed aircraft. The off-line model is then used to simulate the transport of C-14 and to contrast its simulation properties to that of the host of 2-D models which participated in an identical simulation in a recent NASA model intercomparison. The off-line model is shown to be somewhat sensitive to the sampling strategy for off-line winds. Simulations with daily averaged winds are in very good qualitative agreement but are less diffusive than when driven with instantaneous winds sampled at half-hour intervals. Simulations with the off-line and 2-D models are quite similar in the middle and upper stratosphere but behave quite differently in the lower stratosphere, where the 3-D model has a substantially more vigorous circulation. The off-line model is quite realistic in its simulation of C-14. While there are still systematic differences between the 3-D calculation and the observations, the differences seem to be substantially reduced when compared with the body of 2-D simulations documented in the above mentioned NASA intercomparison, particularly at 31 deg N.
Performance of the CORDEX regional climate models in simulating offshore wind and wind potential
NASA Astrophysics Data System (ADS)
Kulkarni, Sumeet; Deo, M. C.; Ghosh, Subimal
2018-03-01
This study is oriented towards quantification of the skill addition by regional climate models (RCMs) in the parent general circulation models (GCMs) while simulating wind speed and wind potential with particular reference to the Indian offshore region. To arrive at a suitable reference dataset, the performance of wind outputs from three different reanalysis datasets is evaluated. The comparison across the RCMs and their corresponding parent GCMs is done on the basis of annual/seasonal wind statistics, intermodel bias, wind climatology, and classes of wind potential. It was observed that while the RCMs could simulate spatial variability of winds, well for certain subregions, they generally failed to replicate the overall spatial pattern, especially in monsoon and winter. Various causes of biases in RCMs were determined by assessing corresponding maps of wind vectors, surface temperature, and sea-level pressure. The results highlight the necessity to carefully assess the RCM-yielded winds before using them for sensitive applications such as coastal vulnerability and hazard assessment. A supplementary outcome of this study is in form of wind potential atlas, based on spatial distribution of wind classes. This could be beneficial in suitably identifying viable subregions for developing offshore wind farms by intercomparing both the RCM and GCM outcomes. It is encouraging that most of the RCMs and GCMs indicate that around 70% of the Indian offshore locations in monsoon would experience mean wind potential greater than 200 W/m2.
A wall interference assessment/correction system
NASA Technical Reports Server (NTRS)
Lo, Ching F.; Overby, Glenn; Qian, Cathy X.; Sickles, W. L.; Ulbrich, N.
1992-01-01
A Wall Signature method originally developed by Hackett has been selected to be adapted for the Ames 12-ft Wind Tunnel WIAC system in the project. This method uses limited measurements of the static pressure at the wall, in conjunction with the solid wall boundary condition, to determine the strength and distribution of singularities representing the test article. The singularities are used in turn for estimating blockage wall interference. The lifting interference will be treated separately by representing in a horseshoe vortex system for the model's lifting effects. The development and implementation of a working prototype will be completed, delivered and documented with a software manual. The WIAC code will be validated by conducting numerically simulated experiments rather than actual wind tunnel experiments. The simulations will be used to generate both free-air and confined wind-tunnel flow fields for each of the test articles over a range of test configurations. Specifically, the pressure signature at the test section wall will be computed for the tunnel case to provide the simulated 'measured' data. These data will serve as the input for the WIAC method--Wall Signature method. The performance of the WIAC method then may be evaluated by comparing the corrected data with those of the free-air simulation.
Computational Fluid Dynamics Simulation Study of Active Power Control in Wind Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleming, Paul; Aho, Jake; Gebraad, Pieter
2016-08-01
This paper presents an analysis performed on a wind plant's ability to provide active power control services using a high-fidelity computational fluid dynamics-based wind plant simulator. This approach allows examination of the impact on wind turbine wake interactions within a wind plant on performance of the wind plant controller. The paper investigates several control methods for improving performance in waked conditions. One method uses wind plant wake controls, an active field of research in which wind turbine control systems are coordinated to account for their wakes, to improve the overall performance. Results demonstrate the challenge of providing active power controlmore » in waked conditions but also the potential methods for improving this performance.« less
Turbulent Extreme Event Simulations for Lidar-Assisted Wind Turbine Control
NASA Astrophysics Data System (ADS)
Schlipf, David; Raach, Steffen
2016-09-01
This work presents a wind field generator which allows to shape wind fields in the time domain while maintaining the spectral properties. This is done by an iterative generation of wind fields and by minimizing the error between wind characteristics of the generated wind fields and desired values. The method leads towards realistic ultimate load calculations for lidar-assisted control. This is demonstrated by fitting a turbulent wind field to an Extreme Operating Gust. The wind field is then used to compare a baseline feedback controller alone against a combined feedback and feedforward controller using simulated lidar measurements. The comparison confirms that the lidar-assisted controller is still able to significantly reduce the ultimate loads on the tower base under this more realistic conditions.
CFD analysis of a Darrieus wind turbine
NASA Astrophysics Data System (ADS)
Niculescu, M. L.; Cojocaru, M. G.; Pricop, M. V.; Pepelea, D.; Dumitrache, A.; Crunteanu, D. E.
2017-07-01
The Darrieus wind turbine has some advantages over the horizontal-axis wind turbine. Firstly, its tip speed ratio is lower than that of the horizontal-axis wind turbine and, therefore, its noise is smaller, privileging their placement near populated areas. Secondly, the Darrieus wind turbine does needs no orientation mechanism with respect to wind direction in contrast to the horizontal-axis wind turbine. However, the efficiency of the Darrieus wind turbine is lower than that of the horizontal-axis wind turbine since its aerodynamics is much more complex. With the advances in computational fluids and computers, it is possible to simulate the Darrieus wind turbine more accurately to understand better its aerodynamics. For these reasons, the present papers deals with the computational aerodynamics of a Darrieus wind turbine applying the state of the art of CFD methods (anisotropic turbulence models, transition from laminar to turbulent, scale adaptive simulation) to better understand its unsteady behavior.
Solar wind/local interstellar medium interaction including charge exchange with neural hydrogen
NASA Technical Reports Server (NTRS)
Pauls, H. Louis; Zank, Gary P.
1995-01-01
We present results from a hydrodynamic model of the interaction of the solar wind with the local interstellar medium (LISM), self-consistently taking into account the effects of charge exchange between the plasma component and the interstellar neutrals. The simulation is fully time dependent, and is carried out in two or three dimensions, depending on whether the helio-latitudinal dependence of the solar wind speed and number density (both giving rise to three dimensional effects) are included. As a first approximation it is assumed that the neutral component of the flow can be described by a single, isotropic fluid. Clearly, this is not the actual situation, since charge exchange with the supersonic solar wind plasma in the region of the nose results in a 'second' neutral fluid propagating in the opposite direction as that of the LISM neutrals.
NASA Astrophysics Data System (ADS)
Kryger, Mateusz; Bubenzer, Olaf; Parteli, Eric
2017-04-01
Seif dunes - which develop in the absence of vegetation and elongate in the resultant sand transport direction - are the prevailing dune type in many deserts of Earth and Mars and display a meandering shape that has challenged geomorphologists for decades. Understanding the factors controlling seif dune morphology may have impact for a broad range of scientific areas, in particular in the investigation of planetary wind regimes, as dune shape is primarily affected by wind directionality. Sand roses of areas hosting seif dunes display, in general, two main wind directions that form a divergence angle larger than 90˚ . Indeed, theory of dune formation predicts that longitudinal alignment of aeolian bedforms occurs under obtuse bimodal winds, a prediction that has been confirmed by field observations and numerical simulations of aeolian dunes, as well as by experiments on subaqueous bedforms. However, numerical simulations and water tank experiments performed under conditions of bimodal flows could never reproduce one of the most salient characteristics of the seif dune shape, which is its meandering. Instead, longitudinal dunes produced in such simulations and experiments display an unrealistic straight shape, which elongates into the resultant transport trend without developing the sinuous morphology of the seif dunes. Here we show, by means of morphodynamic modeling of aeolian sediment transport and dune formation under directionally varying flows, that the meandering shape of seif dunes can be explained by the action of subordinated sand-moving winds, which occur in addition to both main wind components of the bimodal wind. Because such subordinated winds - inherent to most measured sand roses of seif dune fields - are associated with transport rates much smaller than the sand flux values of the main bimodal wind components - they have been long thought to be negligible for dune shape. However, our simulations show that meandering may be caused by a single secondary wind component in the sand rose with transport rate of about 1/5 of the flux due to the bimodal wind components. To verify our model we calculate dune formation using the sand rose of the seif dune field in Bir Lahfan, Sinai, and find good quantitative agreement between the shape of seif dunes in this field and the dune morphology obtained in the simulations. Our simulations suggest that meandering seif dunes constitute a dune type produced by multimodal wind systems and cannot form under (strictly) bimodal wind regimes.
NASA Astrophysics Data System (ADS)
Tomaru, Ryota; Done, Chris; Odaka, Hirokazu; Watanabe, Shin; Takahashi, Tadayuki
2018-05-01
Blueshifted absorption lines from highly ionized iron are seen in some high inclination X-ray binary systems, indicating the presence of an equatorial disc wind. This launch mechanism is under debate, but thermal driving should be ubiquitous. X-ray irradiation from the central source heats disc surface, forming a wind from the outer disc where the local escape velocity is lower than the sound speed. The mass-loss rate from each part of the disc is determined by the luminosity and spectral shape of the central source. We use these together with an assumed density and velocity structure of the wind to predict the column density and ionization state, then combine this with a Monte Carlo radiation transfer to predict the detailed shape of the absorption (and emission) line profiles. We test this on the persistent wind seen in the bright neutron star binary GX 13+1, with luminosity L/LEdd ˜ 0.5. We approximately include the effect of radiation pressure because of high luminosity, and compute line features. We compare these to the highest resolution data, the Chandra third-order grating spectra, which we show here for the first time. This is the first physical model for the wind in this system, and it succeeds in reproducing many of the features seen in the data, showing that the wind in GX13+1 is most likely a thermal-radiation driven wind. This approach, combined with better streamline structures derived from full radiation hydrodynamic simulations, will allow future calorimeter data to explore the detail wind structure.
IPS analysis on relationship among velocity, density and temperature of the solar wind
NASA Astrophysics Data System (ADS)
Hayashi, K.; Tokumaru, M.; Fujiki, K.
2015-12-01
The IPS(Interplanetary Scintillation)-MHD(magnetohydrodynamics) tomography is a method we have developed to determine three-dimensional MHD solution of the solar wind that best matches the line-of-sight IPS solar-wind speed data (Hayashi et al., 2003). The tomographic approach is an iteration method in which IPS observations are simulated in MHD steady-state solution, then differences between the simulated observation and the actual IPS observation is reduced by modifying solar-wind boundary map at 50 solar radii. This forward model needs to assume solar wind density and temperature as function of speed. We use empirical functions, N(V) and T(V), derived from Helios in-situ measurement data within 0.5 AU in 1970s. For recent years, especially after 2006, these functions yield higher densities and lower temperatures than in-situ measurements indicate. To characterize the differences between the simulated and actual solar wind plasma, we tune parameters in the functions so that agreements with in-situ data (near the Earth and at Ulysses) will be optimized. This optimization approach can help better simulations of the solar corona and heliosphere, and will help our understandings on roles of magnetic field in solar wind heating and acceleration.
3D-PTV around Operational Wind Turbines
NASA Astrophysics Data System (ADS)
Brownstein, Ian; Dabiri, John
2016-11-01
Laboratory studies and numerical simulations of wind turbines are typically constrained in how they can inform operational turbine behavior. Laboratory experiments are usually unable to match both pertinent parameters of full-scale wind turbines, the Reynolds number (Re) and tip speed ratio, using scaled-down models. Additionally, numerical simulations of the flow around wind turbines are constrained by the large domain size and high Re that need to be simulated. When these simulations are preformed, turbine geometry is typically simplified resulting in flow structures near the rotor not being well resolved. In order to bypass these limitations, a quantitative flow visualization method was developed to take in situ measurements of the flow around wind turbines at the Field Laboratory for Optimized Wind Energy (FLOWE) in Lancaster, CA. The apparatus constructed was able to seed an approximately 9m x 9m x 5m volume in the wake of the turbine using artificial snow. Quantitative measurements were obtained by tracking the evolution of the artificial snow using a four camera setup. The methodology for calibrating and collecting data, as well as preliminary results detailing the flow around a 2kW vertical-axis wind turbine (VAWT), will be presented.
Large Eddy Simulation of a Wind Turbine Airfoil at High Freestream-Flow Angle
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2015-04-13
A simulation of the airflow over a section of a wind turbine blade, run on the supercomputer Mira at the Argonne Leadership Computing Facility. Simulations like these help identify ways to make turbine blades more efficient.
Large Eddy Simulation of a Wind Turbine Airfoil at High Freestream-Flow Angle
None
2018-02-07
A simulation of the airflow over a section of a wind turbine blade, run on the supercomputer Mira at the Argonne Leadership Computing Facility. Simulations like these help identify ways to make turbine blades more efficient.
NASA Astrophysics Data System (ADS)
Hayashi, M.; Yoshizumi, M.; Saito, S.; Matsumoto, Y.; Kurita, S.; Teramoto, M.; Hori, T.; Matsuda, S.; Shoji, M.; Machida, S.; Amano, T.; Seki, K.; Higashio, N.; Mitani, T.; Takashima, T.; Kasahara, Y.; Kasaba, Y.; Yagitani, S.; Ishisaka, K.; Tsuchiya, F.; Kumamoto, A.; Matsuoka, A.; Shinohara, I.; Blake, J. B.; Fennell, J. F.; Claudepierre, S. G.
2017-12-01
Relativistic electron fluxes of the outer radiation belt rapidly change in response to solar wind variations. One of the shortest acceleration processes of electrons in the outer radiation belt is wave-particle interactions between drifting electrons and fast-mode waves induced by compression of the dayside magnetopause caused by interplanetary shocks. In order to investigate this process by a solar wind pressure pulse, we perform a code-coupling simulation using the GEMSIS-RB test particle simulation (Saito et al., 2010) and the GEMSIS-GM global MHD magnetosphere simulation (Matsumoto et al., 2010). As a case study, an interplanetary pressure pulse with the enhancement of 5 nPa is used as the up-stream condition. In the magnetosphere, the fast mode waves with the azimuthal electric field ( negative 𝐸𝜙 : |𝐸&;#120601;| 10 mV/m, azimuthal mode number : m ≤ 2) propagates from the dayside to nightside, interacting with electrons. From the simulation results, we derived effective acceleration model and condition : The electrons whose drift velocities vd ≥ (π/2)Vfast are accelerated efficiently. On December 20, 2016, the Arase (ERG) satellite was launched , allowing more accurate multi-point simultaneous observation with other satellites. We will compare our simulation results with observations from Arase and Van Allen Probes, and investigate the acceleration condition of relativistic electrons associated with storm sudden commencement (SSC).
Simulations of wind erosion along the Qinghai-Tibet Railway in north-central Tibet
NASA Astrophysics Data System (ADS)
Jiang, Yingsha; Gao, Yanhong; Dong, Zhibao; Liu, Benli; Zhao, Lin
2018-06-01
Wind erosion along the Qinghai-Tibet Railway causes sand hazard and poses threats to the safety of trains and passengers. A coupled land-surface erosion model (Noah-MPWE) was developed to simulate the wind erosion along the railway. Comparison with the data from the 137Cs isotope analysis shows that this coupled model could simulate the mean erosion amount reasonably. The coupled model was then applied to eight sites along the railway to investigate the wind-erosion distribution and variations from 1979 to 2012. Factors affecting wind erosion spatially and temporally were assessed as well. Majority wind erosion occurs in the non-monsoon season from December to April of the next year except for the site located in desert. The region between Wudaoliang and Tanggula has higher wind erosion occurrences and soil lose amount because of higher frequency of strong wind and relatively lower soil moisture than other sites. Inter-annually, all sites present a significant decreasing trend of annual soil loss with an average rate of -0.18 kg m-2 a-1 in 1979-2012. Decreased frequency of strong wind, increased precipitation and soil moisture contribute to the reduction of wind erosion in 1979-2012. Snow cover duration and vegetation coverage also have great impact on the occurrence of wind erosion.
NASA Astrophysics Data System (ADS)
Fedorovich, E.; Thäter, J.
Results are presented from wind tunnel simulations of gaseous pollutant dispersion in the atmospheric convective boundary layer (CBL) capped by a temperature inversion. The experiments were performed in the thermally stratified wind tunnel of the University of Karlsruhe, Germany. In the tunnel, the case of horizontally evolving, sheared CBL is reproduced. This distinguishes the employed experimental setup from the preceding laboratory and numerical CBL dispersion studies. The diffusive and mixing properties of turbulence in the studied CBL case have been found to be essentially dependent on the stage of the CBL evolution. Effects of the point source elevation on the horizontal variability of the concentration field, and on the ground level concentration as function of distance from the source have been investigated. The applicability of bottom-up/top-down diffusion concept in the simulated CBL case has been evaluated. The influence of surface wind shear and capping inversion strength on the pollutant dispersion and turbulent exchange across the CBL top has been demonstrated. The imposed positive shear across the inversion has been identified as inhibitor of the CBL growth. Comparisons of concentration patterns from the wind tunnel with water tank data are presented.
Khezri, Seyed Mostafa; Biati, Aida; Erfani, Zeynab
2012-01-01
In the present study, a pilot-scale sedimentation tank was used to determine the effect of wind velocity and direction on the removal efficiency of particles. For this purpose, a 1:20 scale pilot simulated according to Frude law. First, the actual efficiency of total suspended solids (TSS) removal was calculated in no wind condition. Then, the wind was blown in the same and the opposite directions of water flow. At each direction TSS removal was calculated at three different velocities from 2.5 to 7 m/s. Results showed that when the wind was in the opposite direction of water flow, TSS removal efficiency initially increased with the increase of wind velocity from 0 to 2.5 m/s, then it decreased with the increase of velocity to 5 m/s. This mainly might happen because the opposite direction of wind can increase particles' retention time in the sedimentation tank. However, higher wind velocities (i.e. 3.5 and 5.5 m/s) could not increase TSS removal efficiency. Thus, if sedimentation tanks are appropriately exposed to the wind, TSS removal efficiency increases by approximately 6%. Therefore, energy consumption will be reduced by a proper site selection for sedimentation tank unit in water and waste water treatment plants.