Silverman, Arielle M; Pitonyak, Jennifer S; Nelson, Ian K; Matsuda, Patricia N; Kartin, Deborah; Molton, Ivan R
2018-05-01
To develop and test a novel impairment simulation activity to teach beginning rehabilitation students how people adapt to physical impairments. Masters of Occupational Therapy students (n = 14) and Doctor of Physical Therapy students (n = 18) completed the study during the first month of their program. Students were randomized to the experimental or control learning activity. Experimental students learned to perform simple tasks while simulating paraplegia and hemiplegia. Control students viewed videos of others completing tasks with these impairments. Before and after the learning activities, all students estimated average self-perceived health, life satisfaction, and depression ratings among people with paraplegia and hemiplegia. Experimental students increased their estimates of self-perceived health, and decreased their estimates of depression rates, among people with paraplegia and hemiplegia after the learning activity. The control activity had no effect on these estimates. Impairment simulation can be an effective way to teach rehabilitation students about the adaptations that people make to physical impairments. Positive impairment simulations should allow students to experience success in completing activities of daily living with impairments. Impairment simulation is complementary to other pedagogical methods, such as simulated clinical encounters using standardized patients. Implication of Rehabilitation It is important for rehabilitation students to learn how people live well with disabilities. Impairment simulations can improve students' assessments of quality of life with disabilities. To be beneficial, impairment simulations must include guided exposure to effective methods for completing daily tasks with disabilities.
Use of a Mobile Device Simulation as a Preclass Active Learning Exercise.
Keegan, Robert D; Oliver, M Cecile; Stanfill, Teresa J; Stevens, Kevin V; Brown, Gary R; Ebinger, Michael; Gay, John M
2016-01-01
Research shows that preclass activities introducing new material can increase student performance. In an effort to engage students in an active learning, preclass activity, the authors developed a mobile application. Eighty-four nursing students were assigned a preclass reading exercise, whereas 32 students completed the preclass simulation scenario on their mobile device. All students completed the same electronic fetal monitoring (EFM) quiz 1 week following the lecture. The effects of reading or simulation on student quiz performance was evaluated with a student's paired t test, using an alpha of .05. Students completing the preclass simulation scored higher on the EFM quiz, compared with students assigned the preclass reading (85% versus 70% correct answers, p = .01). Student survey data indicated that the mobile device simulation was perceived as an engaging and desirable instructional tool. Nursing students completing the mobile device EFM preclass simulation outperformed the students who were given the traditional reading assignment. Copyright 2016, SLACK Incorporated.
An Innovative and Successful Simulation Day.
Bowling, Ann M; Eismann, Michelle
This article discusses the development of a creative and innovative plan to incorporate independent activities, including skill reviews and scenarios, into a single eight-hour day, using small student groups to enhance the learning process for pediatric nursing students. The simulation day consists of skills activities and pediatric simulation scenarios using the human patient simulator. Using small student groups in simulation captures the students' attention and enhances motivation to learn. The simulation day is a work in progress; appropriate changes are continually being made to improve the simulation experience for students.
Simulation Activities and Student Learning Characteristics in a College Economics Survey Course.
ERIC Educational Resources Information Center
Fraas, John W.; Rafeld, Frederick J.
The paper describes a study involving simulation activities in a college level survey course in economics. In addition, it compares student learning in an economics course based on simulation with student learning in a lecture discussion course. The hypothesis was that certain types of students would benefit from the simulation-gaming approach…
How Guidance Affects Student Engagement with an Interactive Simulation
ERIC Educational Resources Information Center
Chamberlain, Julia M.; Lancaster, Kelly; Parson, Robert; Perkins, Katherine K.
2014-01-01
We studied how students engaged with an interactive simulation in a classroom setting and how that engagement was affected by the design of a guiding activity. Students (n = 210) completed a written activity using an interactive simulation in second semester undergraduate general chemistry recitations. The same simulation--PhET Interactive…
Battista, Alexis
2017-01-01
The dominant frameworks for describing how simulations support learning emphasize increasing access to structured practice and the provision of feedback which are commonly associated with skills-based simulations. By contrast, studies examining student participants' experiences during scenario-based simulations suggest that learning may also occur through participation. However, studies directly examining student participation during scenario-based simulations are limited. This study examined the types of activities student participants engaged in during scenario-based simulations and then analyzed their patterns of activity to consider how participation may support learning. Drawing from Engeström's first-, second-, and third-generation activity systems analysis, an in-depth descriptive analysis was conducted. The study drew from multiple qualitative methods, namely narrative, video, and activity systems analysis, to examine student participants' activities and interaction patterns across four video-recorded simulations depicting common motivations for using scenario-based simulations (e.g., communication, critical patient management). The activity systems analysis revealed that student participants' activities encompassed three clinically relevant categories, including (a) use of physical clinical tools and artifacts, (b) social interactions, and (c) performance of structured interventions. Role assignment influenced participants' activities and the complexity of their engagement. Importantly, participants made sense of the clinical situation presented in the scenario by reflexively linking these three activities together. Specifically, student participants performed structured interventions, relying upon the use of physical tools, clinical artifacts, and social interactions together with interactions between students, standardized patients, and other simulated participants to achieve their goals. When multiple student participants were present, such as in a team-based scenario, they distributed the workload to achieve their goals. The findings suggest that student participants learned as they engaged in these scenario-based simulations when they worked to make sense of the patient's clinical presentation. The findings may provide insight into how student participants' meaning-making efforts are mediated by the cultural artifacts (e.g., physical clinical tools) they access, the social interactions they engage in, the structured interventions they perform, and the roles they are assigned. The findings also highlight the complex and emergent properties of scenario-based simulations as well as how activities are nested. Implications for learning, instructional design, and assessment are discussed.
Diversity of nursing student views about simulation design: a q-methodological study.
Paige, Jane B; Morin, Karen H
2015-05-01
Education of future nurses benefits from well-designed simulation activities. Skillful teaching with simulation requires educators to be constantly aware of how students experience learning and perceive educators' actions. Because revision of simulation activities considers feedback elicited from students, it is crucial to understand the perspective from which students base their response. In a Q-methodological approach, 45 nursing students rank-ordered 60 opinion statements about simulation design into a distribution grid. Factor analysis revealed that nursing students hold five distinct and uniquely personal perspectives-Let Me Show You, Stand By Me, The Agony of Defeat, Let Me Think It Through, and I'm Engaging and So Should You. Results suggest that nurse educators need to reaffirm that students clearly understand the purpose of each simulation activity. Nurse educators should incorporate presimulation assignments to optimize learning and help allay anxiety. The five perspectives discovered in this study can serve as a tool to discern individual students' learning needs. Copyright 2015, SLACK Incorporated.
Integration of high-fidelity simulator in third-year paediatrics clerkship.
Ortiz, Nerian; Pedrogo, Yasmin; Bonet, Nydia
2011-06-01
Simulation in medicine is a useful tool for assessing clinical competencies. The liaison committee on medical education expects students to have simulation experiences in the curriculum. The integration of simulators has been encouraged for clinical clerkships. The use of the human simulator in a safe environment should result in enhanced teamworking, communication and critical thinking skills. During the academic year 2007-08, a formative activity using the simulator was implemented in the paediatrics clerkship. The objectives included exposing students to an emergent general paediatric medical scenario using the human simulator. It was imperative that students would adequately go through the critical thinking process. The paediatrics clerkship has incorporated a formative activity using the high-fidelity simulator. A faculty member debriefed the students, and feedback was offered. A total of 124 students participated in the activity. Ninety-eight percent agreed that the use of the simulator in a scenario such as the one presented allowed for a better understanding of the clinical issues studied in the clerkship. More than 85 percent of the students recommended the integration of the simulator in other major clinical clerkships. Performance in the objective structured clinical exam (OSCE) at the end of the clerkship has improved after the implementation of this formative activity. The use of the high-fidelity simulator during the paediatrics clerkship has been identified as an excellent teaching tool. This formative activity has been deemed successful by the students, who feel that it serves as an extra tool to strengthen learned concepts and skills. © Blackwell Publishing Ltd 2011.
A meta-analysis of outcomes from the use of computer-simulated experiments in science education
NASA Astrophysics Data System (ADS)
Lejeune, John Van
The purpose of this study was to synthesize the findings from existing research on the effects of computer simulated experiments on students in science education. Results from 40 reports were integrated by the process of meta-analysis to examine the effect of computer-simulated experiments and interactive videodisc simulations on student achievement and attitudes. Findings indicated significant positive differences in both low-level and high-level achievement of students who use computer-simulated experiments and interactive videodisc simulations as compared to students who used more traditional learning activities. No significant differences in retention, student attitudes toward the subject, or toward the educational method were found. Based on the findings of this study, computer-simulated experiments and interactive videodisc simulations should be used to enhance students' learning in science, especially in cases where the use of traditional laboratory activities are expensive, dangerous, or impractical.
Population Simulation, AKA: Grahz, Rahbitz and Fawkzes
NASA Technical Reports Server (NTRS)
Bangert, Tyler R.
2008-01-01
In an effort to give students a more visceral experience of science and instill a deeper working knowledge of concepts, activities that utilize hands-on, laboratory and simulated experiences are recommended because these activities have a greater impact on student learning, especially for Native American students. Because it is not usually feasible to take large and/or multiple classes of high school science students into the field to count numbers of organisms of a particular species, especially over a long period of time and covering a large area of an environment, the population simulation presented in this paper was created to aid students in understanding population dynamics by working with a simulated environment, which can be done in the classroom. Students create an environment and populate the environment with imaginary species. Then, using a sequence of "rules" that allow organisms to eat, reproduce, move and age, students see how the population of a species changes over time. In particular, students practice collecting data, summarizing information, plotting graphs, and interpreting graphs for such information as carrying capacity, predator prey relationships, and how specific species factors impact population and the environment. Students draw conclusions from their results and suggest further research, which may involve changes in simulation parameters, prediction of outcomes, and testing predictions. The population Simulation has demonstrated success in the above student activities using a "board game" version of the population simulation. A computer version of the population simulation needs more testing, but preliminary runs are promising. A second - and more complicated - computer simulation will simulate the same things and will add simulated population genetics.
ERIC Educational Resources Information Center
Hostrop, Richard W.
This book presents simulation activities for significant events in U.S. history from 1787-1868. Intended for student involvement, the simulations require student research and practice in order to carry out the designated roles. The simulation and role play serve to involve the students actively in their learning, using both the affective and…
Do Simulations Enhance Student Learning? An Empirical Evaluation of an IR Simulation
ERIC Educational Resources Information Center
Shellman, Stephen M.; Turan, Kursad
2006-01-01
There is a nascent literature on the question of whether active learning methods, and in particular simulation methods, enhance student learning. In this article, the authors evaluate the utility of an international relations simulation in enhancing learning objectives. Student evaluations provide evidence that the simulation process enhances…
ERIC Educational Resources Information Center
Winberg, T. Mikael; Berg, C. Anders R.
2007-01-01
To enhance the learning outcomes achieved by students, learners undertook a computer-simulated activity based on an acid-base titration prior to a university-level chemistry laboratory activity. Students were categorized with respect to their attitudes toward learning. During the laboratory exercise, questions that students asked their assistant…
ERIC Educational Resources Information Center
Hostrop, Richard W.
This book presents simulation activities for the eight profiles of U.S. Senators presented in John F. Kennedy's "Profiles in Courage." Intended for student involvement, the simulations require student research and practice in order to carry out the designated roles. The simulations and role play are designed to actively involve the…
ERIC Educational Resources Information Center
Liaw, S. Y.; Chen, F. G.; Klainin, P.; Brammer, J.; O'Brien, A.; Samarasekera, D. D.
2010-01-01
This study aimed to evaluate the integration of a simulation based learning activity on nursing students' clinical crisis management performance in a problem-based learning (PBL) curriculum. It was hypothesized that the clinical performance of first year nursing students who participated in a simulated learning activity during the PBL session…
Secomb, Jacinta; McKenna, Lisa; Smith, Colleen
2012-12-01
To provide evidence on the effectiveness of simulation activities on the clinical decision-making abilities of undergraduate nursing students. Based on previous research, it was hypothesised that the higher the cognitive score, the greater the ability a nursing student would have to make informed valid decisions in their clinical practice. Globally, simulation is being espoused as an education method that increases the competence of health professionals. At present, there is very little evidence to support current investment in time and resources. Following ethical approval, fifty-eight third-year undergraduate nursing students were randomised in a pretest-post-test group-parallel controlled trial. The learning environment preferences (LEP) inventory was used to test cognitive abilities in order to refute the null hypothesis that activities in computer-based simulated learning environments have a negative effect on cognitive abilities when compared with activities in skills laboratory simulated learning environments. There was no significant difference in cognitive development following two cycles of simulation activities. Therefore, it is reasonable to assume that two simulation tasks, either computer-based or laboratory-based, have no effect on an undergraduate student's ability to make clinical decisions in practice. However, there was a significant finding for non-English first-language students, which requires further investigation. More longitudinal studies that quantify the education effects of simulation on the cognitive, affective and psychomotor attributes of health science students and professionals from both English-speaking and non-English-speaking backgrounds are urgently required. It is also recommended that to achieve increased participant numbers and prevent non-participation owing to absenteeism, further studies need to be imbedded directly into curricula. This investigation confirms the effect of simulation activities on real-life clinical practice, and the comparative learning benefits with traditional clinical practice and university education remain unknown. © 2012 Blackwell Publishing Ltd.
ERIC Educational Resources Information Center
1998
This teaching guide/student activities booklet, for grades 6-9 and 7-11, outlines an Internet-based stock exchange simulation that allows students to learn about the stock market in a fun format. The simulation (the "MainXchange") described in the booklet offers students the opportunity to engage in "real-life" investing, while…
Hunter, Janet; Rawlings-Anderson, Karen; Lindsay, Tracy; Bowden, Tracey; Aitken, Leanne M
2018-06-01
As the prevalence of obesity increases worldwide the field of bariatric medicine has emerged, focussing on the causes, prevention and treatment of obesity. People who are obese regularly face bias from healthcare professionals, which can negativity impact on care delivery and patient outcomes. The introduction of bariatric empathy suits into simulated practice may enable student nurses to appreciate the needs of, and influence their attitudes towards, obese people. The aim of this study was to explore student nurses' attitudes towards those who are obese and whether these attitudes change following a simulated activity. A mixed methods study incorporating a pre-post design. A UK university which provides pre-registration nursing education. Nursing students in part 1 (n = 39) and part 2 (n = 29) in adult and mental health fields. Part 1 and 2 nursing students completed the "Nurses' attitudes towards obesity and obese patients scale" (NATOOPS) questionnaire. Part 2 students also took part in a simulation activity while wearing a bariatric empathy suit and completed the NATOOPS questionnaire again immediately after the simulation activity. Students who wore the empathy suits were invited to a focus group. Part 1 students reported poorer attitudes on the NATOOPS scale than Part 2 students. After wearing the bariatric empathy suits students reported changed attitudes on the NATOOPS in three areas: response to obese patients, characteristics of obese patients and supportive roles in caring for obese patients. Five themes emerged from the focus groups related to physical and psychological impact of the suits; thinking differently; simulation as a learning experience and challenges and recommendations. Following a structured educational experience student nurses' attitudes were more positive towards obese patients. The characteristics of the educational activity that appeared to influence student nurses' attitudes was related to the "lived experience" of wearing bariatric empathy suits. Copyright © 2018 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Nicola-Richmond, Kelli; Richards, Kieva; Britt, Kellie
2016-01-01
Student preparation for work-integrated learning using simulated learning experiences is an under researched field in occupational therapy. In 2013 the Deakin University occupational therapy degree introduced a simulated learning experience for students aimed at preparing them for work-integrated learning experiences. The session gave students an…
ERIC Educational Resources Information Center
Tang, Hui; Abraham, Michael R.
2016-01-01
Computer-based simulations can help students visualize chemical representations and understand chemistry concepts, but simulations at different levels of representation may vary in effectiveness on student learning. This study investigated the influence of computer activities that simulate chemical reactions at different levels of representation…
Stahnke, Amanda M.; Behnen, Erin M.
2015-01-01
Objective. To assess the impact of a 6-week patient/provider interaction simulation on empathy and self-efficacy levels of diabetes management skills in third-year pharmacy students. Design. Pharmacy students enrolled in a diabetes elective course were paired to act as a patient with diabetes or as a provider assisting in the management of that patient during a 6-week simulation activity. After 3 weeks, students switched roles. The simulation was designed with activities to build empathy. Assessment. The Jefferson Scale of Empathy (JSE) and a self-efficacy survey were administered to assess change in empathy and confidence levels from baseline to the end of the activity. Completion of the activity resulted in significant improvement in total JSE scores. Additionally, significant improvements in overall self-efficacy scores regarding diabetes management were noted. Conclusion. The 6-week patient/provider interaction simulation improved empathy and self-efficacy levels in third-year pharmacy students. PMID:25995517
NASA Astrophysics Data System (ADS)
Tomshaw, Stephen G.
Physics education research has shown that students bring alternate conceptions to the classroom which can be quite resistant to traditional instruction methods (Clement, 1982; Halloun & Hestenes, 1985; McDermott, 1991). Microcomputer-based laboratory (MBL) experiments that employ an active-engagement strategy have been shown to improve student conceptual understanding in high school and introductory university physics courses (Thornton & Sokoloff, 1998). These (MBL) experiments require a specialized computer interface, type-specific sensors (e.g. motion detectors, force probes, accelerometers), and specialized software in addition to the standard physics experimental apparatus. Tao and Gunstone (1997) have shown that computer simulations used in an active engagement environment can also lead to conceptual change. This study investigated 69 secondary physics students' use of computer simulations of MBL activities in place of the hands-on MBL laboratory activities. The average normalized gain
Taglieri, Catherine A; Crosby, Steven J; Zimmerman, Kristin; Schneider, Tulip; Patel, Dhiren K
2017-06-01
Objective. To assess the effect of incorporating virtual patient activities in a pharmacy skills lab on student competence and confidence when conducting real-time comprehensive clinic visits with mock patients. Methods. Students were randomly assigned to a control or intervention group. The control group completed the clinic visit prior to completing virtual patient activities. The intervention group completed the virtual patient activities prior to the clinic visit. Student proficiency was evaluated in the mock lab. All students completed additional exercises with the virtual patient and were subsequently assessed. Student impressions were assessed via a pre- and post-experience survey. Results. Student performance conducting clinic visits was higher in the intervention group compared to the control group. Overall student performance continued to improve in the subsequent module. There was no change in student confidence from pre- to post-experience. Student rating of the ease of use and realistic simulation of the virtual patient increased; however, student rating of the helpfulness of the virtual patient decreased. Despite student rating of the helpfulness of the virtual patient program, student performance improved. Conclusion. Virtual patient activities enhanced student performance during mock clinic visits. Students felt the virtual patient realistically simulated a real patient. Virtual patients may provide additional learning opportunities for students.
Assessment of a simulated contraceptive prescribing activity for pharmacy students.
Lynch, Sarah E; Griffin, Brooke L; Vest, Kathleen M
2018-02-01
The role of the pharmacist has been shifting rapidly. One example of change is the passage of legislation allowing pharmacists to independently initiate self-administered hormonal contraceptives in several states. There is no evidence of this specific topic being covered in pharmacy school curricula, and many states are requiring additional post-graduate training. This activity was designed to determine the utility of a contraceptive prescribing simulation activity for pharmacy students. Pharmacy students enrolled in a women's health elective learned about relevant state legislation and attended a clinical skills center simulation activity where they utilized an available prescribing algorithm. Students completed two scenarios and received grades based on their clinical decision-making and patient interaction skills. An electronic survey was distributed post-activity to assess student satisfaction and confidence when prescribing contraceptives. Responses and grades on the assignment were analyzed to determine the activity's utility. Students finished with median scores of 15, 14.8, and 14.5 out of 15 possible points for the three scenarios. Students reported overall satisfaction with the activity, with general agreement that the activity was realistic and made them feel like they were prepared to prescribe contraceptives. Independently initiating contraceptives is a novel practice area for pharmacists. This activity introduced students to the process of prescribing using realistic forms and scenarios. The utility of the activity was twofold - it introduced students to the changing environment of pharmacy practice and allowed students to apply their knowledge of contraceptives and women's health. Students performed well on the activity and reported high levels of satisfaction. Copyright © 2017 Elsevier Inc. All rights reserved.
Collier, Izabela A; Baker, David M
2017-07-01
The purpose of this project was to design and develop a health care communications course built around practice-like simulations and active learning in the first year of a professional pharmacy program. A three-credit health care communications course was divided into one didactic (two hours per week) and three simulation components (one hour per week). The simulation components consisted of one written patient education pamphlet, three group presentations, and three one-on-one patient counseling sessions. This was accomplished by breaking the class of approximately 75 students into eight separate sections, each consisting of 8-10 students and one instructor. Each week four sections were devoted to counseling role-plays: half in the role of pharmacists and half as patients. The other four sections were devoted to hour-long professional group presentations-half in the presenting group and half as audience. The students' performance in the simulated counseling sessions and group presentations has been tracked and analyzed to determine if the simulated exercises had a positive impact on the students' active communications skills. Consistently, over the first four years of the implementation of the course, students' communications skills, as measured by faculty assessments, in both professional group presentations and one-on-one counseling sessions significantly improved. Incorporation of active-learning simulation exercises into a healthcare communications course has a positive impact on the development of students' communications skills. This creates a foundation upon which students can build over the remainder of the professional program and into their future careers. Copyright © 2017 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Yoder, Holly
2010-01-01
During Cave Week, more than 200 students explore a simulated cave environment and participate in cave-related activities. Active cavers from a local club bring in equipment and photos and speak about their caving experiences. As student groups explore the simulated cave, other groups participate in different activities where they can create bat…
An undergraduate laboratory activity on molecular dynamics simulations.
Spitznagel, Benjamin; Pritchett, Paige R; Messina, Troy C; Goadrich, Mark; Rodriguez, Juan
2016-01-01
Vision and Change [AAAS, 2011] outlines a blueprint for modernizing biology education by addressing conceptual understanding of key concepts, such as the relationship between structure and function. The document also highlights skills necessary for student success in 21st century Biology, such as the use of modeling and simulation. Here we describe a laboratory activity that allows students to investigate the dynamic nature of protein structure and function through the use of a modeling technique known as molecular dynamics (MD). The activity takes place over two lab periods that are 3 hr each. The first lab period unpacks the basic approach behind MD simulations, beginning with the kinematic equations that all bioscience students learn in an introductory physics course. During this period students are taught rudimentary programming skills in Python while guided through simple modeling exercises that lead up to the simulation of the motion of a single atom. In the second lab period students extend concepts learned in the first period to develop skills in the use of expert MD software. Here students simulate and analyze changes in protein conformation resulting from temperature change, solvation, and phosphorylation. The article will describe how these activities can be carried out using free software packages, including Abalone and VMD/NAMD. © 2016 The International Union of Biochemistry and Molecular Biology.
ERIC Educational Resources Information Center
Sharifi, Akram; Ghanizadeh, Afsaneh; Jahedizadeh, Safoura
2017-01-01
The present study delved into a language learning model in the domain of English as a foreign language (EFL), i.e., simulation. The term simulation is used to describe the activity of producing conditions which are similar to real ones. We hypothesized that simulation plays a role in middle school students' perceptions of classroom activities…
Fossil Simulation in the Classroom
ERIC Educational Resources Information Center
Hoehn, Robert G.
1977-01-01
Describes classroom science demonstrations and experiments that simulate the process of fossil formation. Lists materials, procedures and suggestions for successful activities. Includes ten student activities (coral fossils, leaf fossils, leaf scars, carbonization, etc.). Describes a fossil game in which students work in pairs. (CS)
Interprofessional education in pharmacology using high-fidelity simulation.
Meyer, Brittney A; Seefeldt, Teresa M; Ngorsuraches, Surachat; Hendrickx, Lori D; Lubeck, Paula M; Farver, Debra K; Heins, Jodi R
2017-11-01
This study examined the feasibility of an interprofessional high-fidelity pharmacology simulation and its impact on pharmacy and nursing students' perceptions of interprofessionalism and pharmacology knowledge. Pharmacy and nursing students participated in a pharmacology simulation using a high-fidelity patient simulator. Faculty-facilitated debriefing included discussion of the case and collaboration. To determine the impact of the activity on students' perceptions of interprofessionalism and their ability to apply pharmacology knowledge, surveys were administered to students before and after the simulation. Attitudes Toward Health Care Teams scale (ATHCT) scores improved from 4.55 to 4.72 on a scale of 1-6 (p = 0.005). Almost all (over 90%) of the students stated their pharmacology knowledge and their ability to apply that knowledge improved following the simulation. A simulation in pharmacology is feasible and favorably affected students' interprofessionalism and pharmacology knowledge perceptions. Pharmacology is a core science course required by multiple health professions in early program curricula, making it favorable for incorporation of interprofessional learning experiences. However, reports of high-fidelity interprofessional simulation in pharmacology courses are limited. This manuscript contributes to the literature in the field of interprofessional education by demonstrating that an interprofessional simulation in pharmacology is feasible and can favorably affect students' perceptions of interprofessionalism. This manuscript provides an example of a pharmacology interprofessional simulation that faculty in other programs can use to build similar educational activities. Copyright © 2017 Elsevier Inc. All rights reserved.
Murphy, Judy I; Nimmagadda, Jayashree
2015-05-01
Learning to effectively communicate and work with other professionals requires skill, yet interprofessional education is often not included in the undergraduate healthcare provider curriculum. Simulation is an effective pedagogy to bring students from multiple professions together for learning. This article describes a pilot study where nursing and social work students learned together in a simulated learning activity, which was evaluated to by the Readiness for Interprofessional Learning Scale (RIPLS). The RIPLS was used before and after the simulated activity to determine if this form of education impacted students' perceptions of readiness to learn together. Students from both professions improved in their RIPLS scores. Students were also asked to identify their interprofessional strengths and challenges before and after the simulation. Changes were identified in qualitative data where reports of strengths and challenges indicated learning and growth had occurred. In conclusion, this pilot study suggests that interprofessional simulation can be an effective method to integrate Interprofessional Education Collaborative core competencies into the curriculum.
ERIC Educational Resources Information Center
Byrnes, Deborah A.; Kiger, Gary
The effectiveness of a well-known prejudice-reduction simulation activity, "Blue Eyes-Brown Eyes," was assessed as a tool for changing the attitudes of nonblack teacher education students toward blacks. The subjects were 164 students enrolled in eight sections of an introductory elementary education course at a state university. Three…
Using Computer Simulations in Drug Education Lessons.
ERIC Educational Resources Information Center
Bentz, Glenda D.
1989-01-01
Discussion of drug education for fifth grade students focuses on a computer simulation in which students role-play adolescents encountering various situations where there is drug or alcohol involvement. Activities in the simulation are explained, and discussion groups that occur following the simulation are described. (LRW)
Berndt, Jodi; Dinndorf-Hogenson, Georgia; Herheim, Rena; Hoover, Carrie; Lanc, Nicole; Neuwirth, Janet; Tollefson, Bethany
2015-01-01
Collaborative Classroom Simulation (CCS) is a pedagogy designed to provide a simulation learning experience for a classroom of students simultaneously through the use of unfolding case scenarios. The purpose of this descriptive study was to explore the effectiveness of CCS based on student perceptions. Baccalaureate nursing students (n = 98) participated in the study by completing a survey after participation in the CCS experience. Opportunities for collaboration, clinical judgment, and participation as both observer and active participant were seen as strengths of the experience. Developed as a method to overcome barriers to simulation, CCS was shown to be an effective active learning technique that may prove to be sustainable.
Patel, Radha V; Chudow, Melissa; Vo, Teresa T; Serag-Bolos, Erini S
The purpose of this study was to evaluate students' knowledge and perceptions of the clinical application of pharmacogenetics through a simulation activity and to assess communication of pharmacogenetic-guided treatment recommendations utilizing standardized patients. Third-year students in the four-year doctor of pharmacy (PharmD) program at University of South Florida College of Pharmacy completed a pharmacogenetics simulation involving a patient case review, interpretation of pharmacogenetic test results, completion of a situation, background, assessment, recommendation (SBAR) note with drug therapy recommendations, and patient counseling. Voluntary assessments were completed before and after the simulation, which included demographics, knowledge, and perceptions of students' ability to interpret and communicate pharmacogenetic results. Response rates for the pre- and post-simulation assessments were 109 (98%) and 104 (94%), respectively. Correct responses in application-type questions improved after the simulation (74%) compared to before the simulation (44%, p < 0.01). Responses to perception questions shifted towards "strongly agree" or "agree" after the simulation (p < 0.01). The simulation gave students an opportunity to apply pharmacogenetics knowledge and allowed them to gain an appreciation of pharmacists' roles within the pharmacogenetics field. Copyright © 2017 Elsevier Inc. All rights reserved.
Simulated Job Samples: A Student-Centered Approach to Vocational Exploration and Evaluation.
ERIC Educational Resources Information Center
Richter-Stein, Caryn; Stodden, Robert A.
1981-01-01
Incorporating simulated job samples into the junior high school curriculum can provide vocational exploration opportunities as well as assessment data on special needs students. Students can participate as active learners and decision makers. (CL)
Rubbi, Ivan; Ferri, Paola; Andreina, Giulia; Cremonini, Valeria
2016-01-01
Simulation in the context of the educational workshop is becoming an important learning method, as it allows to play realistic clinical-care situations. These vocational training activities promote the development of cognitive, affective and psychomotor skills in a pedagogical context safe and risk-free, but need to be accounted for using by valid and reliable instruments. To inspect the level of satisfaction of the students of a Degree in Nursing in northern Italy about static and high-fidelity exercises with simulators and clinical cases. A prospective observational study has been conducted involving a non-probabili- stic sample of 51 third-year students throughout the academic year 2013/14. The data collection instrument consists of three questionnaires Student Satisfaction and Self-confidence in Learning Scale, Educational Practices Questionnaire, Simulation Design Scale and 3 questions on overall satisfaction. Statistical analysis was performed with SPSS 20.0 and Office 2003 Excel. The response rate of 89.5% is obtained. The Cronbach Alfa showed a good internal reliability (α = .982). The students were generally satisfied with the activities carried out in the teaching laboratory, showing more enthusiasm for the simulation with static mannequins (71%) and with high-fidelity simulators (60%), activities for which they have experienced a significant involvement and active learning. The teaching with clinical cases scored a lesser degree of satisfaction (38%) and for this method it was found the largest number of elements of weakness.
ERIC Educational Resources Information Center
Saldanha, Luis
2016-01-01
This article reports on a classroom teaching experiment that engaged a group of high school students in designing sampling simulations within a computer microworld. The simulation-design activities aimed to foster students' abilities to conceive of contextual situations as stochastic experiments, and to engage them with the logic of hypothesis…
Bags and blogs: creating an ostomy experience for nursing students.
Reed, Karen S
2012-01-01
There are well over three-quarters of a million people living in the United States with an ostomy. These individuals experience many physical and emotional challenges which nurses should address during the in-patient hospitalization experience. The purpose of this educational activity was to provide undergraduate nursing students with a simulated laboratory experience which allowed the student to discuss and experience some of the challenges of living with an ostomy. Small group work, an experiential learning activity, and blogging were used to foster the cognitive, psychomotor, and affective development of the nursing students. All 134 students participated in the small group work and blogging experience and over 100 students participated in the experiential learning activity of wearing an ostomy bag overnight with the bag containing a small amount of simulated fecal material. The impact of the simulated experience is evident in the depth of awareness and emotion expressed in the blogs. The students collectively acknowledged the value of the activity and the impact the gained awareness had on their careers as nurses. The use of social technology and the provision of learning activities, not available on the clinical unit, can have a significant impact on the cognitive, psychomotor, and affective development of nursing students. © 2012 Association of Rehabilitation Nurses.
Carolan-Olah, Mary; Kruger, Gina; Brown, Vera; Lawton, Felicity; Mazzarino, Melissa; Vasilevski, Vidanka
2018-03-01
Midwifery students feel unprepared to deal with commonly encountered emergencies, such as neonatal resuscitation. Clinical simulation of emergencies may provide a safe forum for students to develop necessary skills. A simulation exercise, for neonatal resuscitation, was developed and evaluated using qualitative methods. Pre and post-simulation questions focussed on student confidence and knowledge of resuscitation. Data were analysed using a thematic analysis approach. Pre-simulation questions revealed that most students considered themselves not very confident/unsure about their level of confidence in undertaking neonatal resuscitation. Most correctly identified features of the neonate requiring resuscitation. Post-simulation, students indicated that their confidence and knowledge of neonatal resuscitation had improved. Themes included: gaining confidence; understanding when to call for help; understanding the principles of resuscitation; tailoring simulation/education approaches to student needs. Students benefits included improved knowledge, confidence and skills. Participants unanimously suggested a program of simulation exercises, over a longer period of time, to reinforce knowledge and confidence gains. Ideally, students would like to actively participate in the simulation, rather than observe. Copyright © 2017. Published by Elsevier Ltd.
Controlled Volcanism in the Classroom: A Simulation
ERIC Educational Resources Information Center
Erdogan, Ibrahim
2005-01-01
In this extended earth science activity, students create a hands-on model of a volcano to achieve an understanding of volcanic structure, lava flows, formation of lava layers, and the scientific work of archaeologists and geoscientists. During this simulation activity, students have opportunities to learn science as inquiry and the nature of…
ERIC Educational Resources Information Center
Pfrogner, Lawrence D.
1990-01-01
"Be All that You Can Dream," a simulation workshop to teach entrepreneurship at Lorain County Joint Vocational School (Ohio), involves students in simulated planning, construction, and promotional activities for a shopping mall. Local business people observe and interview the students as they work, and the activity culminates in a tour,…
Games and Simulations in Developmental Education.
ERIC Educational Resources Information Center
Clavner, Jerry B.
Developmental education activities should attempt to provide experiences which do not hold the student back from the normal flow of learning and which utilize processes already in the student's repertoire. Virtually all areas of developmental instruction can be supplemented with games and simulations, that is, activities designed to show the…
Whitley, Heather P
2012-12-12
To develop and integrate an active-learning diabetes simulation into an advanced pharmacy practice experience to improve pharmacy students' empathy toward patients with diabetes mellitus. Students simulated the experience of having diabetes mellitus by conducting activities commonly prescribed to those with this disease state for 7 days, after which they submitted a standardized diabetes log and narrative reflection. Interpretive phenomenology design with thematic analysis was used to determine the impact of this experience on the students. As shown in student reflections, 95% developed empathy, 97% found the experience beneficial, and 67% improved their ability to relate to and counsel patients. Most (95%) found difficulty adhering to the regimen. On average, students consumed 179 grams of carbohydrates per day and exercised 5 days or 215 minutes per week. Additionally, 69% decided to modify their personal habits to become healthier. Inclusion of the 7-day active-learning exercise greatly impacted student pharmacists' self-reported empathy toward and ability to relate to patients with diabetes mellitus. Completion of this experience may result in long-lasting personal behavior modifications.
Jorm, Christine; Roberts, Chris; Lim, Renee; Roper, Josephine; Skinner, Clare; Robertson, Jeremy; Gentilcore, Stacey; Osomanski, Adam
2016-03-08
There is little research on large-scale complex health care simulations designed to facilitate student learning of non-technical skills in a team-working environment. We evaluated the acceptability and effectiveness of a novel natural disaster simulation that enabled medical students to demonstrate their achievement of the non-technical skills of collaboration, negotiation and communication. In a mixed methods approach, survey data were available from 117 students and a thematic analysis undertaken of both student qualitative comments and tutor observer participation data. Ninety three per cent of students found the activity engaging for their learning. Three themes emerged from the qualitative data: the impact of fidelity on student learning, reflexivity on the importance of non-technical skills in clinical care, and opportunities for collaborative teamwork. Physical fidelity was sufficient for good levels of student engagement, as was sociological fidelity. We demonstrated the effectiveness of the simulation in allowing students to reflect upon and evidence their acquisition of skills in collaboration, negotiation and communication, as well as situational awareness and attending to their emotions. Students readily identified emerging learning opportunities though critical reflection. The scenarios challenged students to work together collaboratively to solve clinical problems, using a range of resources including interacting with clinical experts. A large class teaching activity, framed as a simulation of a natural disaster is an acceptable and effective activity for medical students to develop the non-technical skills of collaboration, negotiation and communication, which are essential to team working. The design could be of value in medical schools in disaster prone areas, including within low resource countries, and as a feasible intervention for learning the non-technical skills that are needed for patient safety.
VLP Simulation: An Interactive Simple Virtual Model to Encourage Geoscience Skill about Volcano
NASA Astrophysics Data System (ADS)
Hariyono, E.; Liliasari; Tjasyono, B.; Rosdiana, D.
2017-09-01
The purpose of this study was to describe physics students predicting skills after following the geoscience learning using VLP (Volcano Learning Project) simulation. This research was conducted to 24 physics students at one of the state university in East Java-Indonesia. The method used is the descriptive analysis based on students’ answers related to predicting skills about volcanic activity. The results showed that the learning by using VLP simulation was very potential to develop physics students predicting skills. Students were able to explain logically about volcanic activity and they have been able to predict the potential eruption that will occur based on the real data visualization. It can be concluded that the VLP simulation is very suitable for physics student requirements in developing geosciences skill and recommended as an alternative media to educate the society in an understanding of volcanic phenomena.
Putting Rhetoric on Trial: Using a Simulated Courtroom in the Rhetoric Classroom
ERIC Educational Resources Information Center
Hess, Aaron
2013-01-01
This article describes an activity in which students will be able to apply rhetorical theory effectively and critically from specific theorists throughout history to modern-day issues. Through a simulated trial of a current figure, this activity makes connections between rhetorical theories to current affairs, thereby inviting students to consider…
ERIC Educational Resources Information Center
Shea, Kathleen
2015-01-01
Nursing students are expected to apply knowledge from lectures and laboratories to the clinical setting. One major challenge of nursing educators is facilitating the transfer of knowledge to the clinical-practice setting. Simulation-based education provides students with an experiential-learning activity within the context of a simulated clinical…
da Silva, Robson Rodrigues; Bissaco, Marcia Aparecida Silva; Goroso, Daniel Gustavo
2015-12-01
Understanding the basic concepts of physiology and biophysics of cardiac cells can be improved by virtual experiments that illustrate the complex excitation-contraction coupling process in cardiac cells. The aim of this study is to propose a rat cardiac myocyte simulator, with which calcium dynamics in excitation-contraction coupling of an isolated cell can be observed. This model has been used in the course "Mathematical Modeling and Simulation of Biological Systems". In this paper we present the didactic utility of the simulator MioLab(®). The simulator enables virtual experiments that can help studying inhibitors and activators in the sarcoplasmic reticulum sodium-calcium exchanger, thus corroborating a better understanding of the effects of medications, which are used to treat arrhythmias, on these compartments. The graphical interfaces were developed not only to facilitate the use of the simulator, but also to promote a constructive learning on the subject, since there are animations and videos for each stage of the simulation. The effectiveness of the simulator was tested by a group of graduate students. Some examples of simulations were presented in order to describe the overall structure of the simulator. Part of these virtual experiments became an activity for Biomedical Engineering graduate students, who evaluated the simulator based on its didactic quality. As a result, students answered a questionnaire on the usability and functionality of the simulator as a teaching tool. All students performed the proposed activities and classified the simulator as an optimal or good learning tool. In their written questions, students indicated as negative characteristics some problems with visualizing graphs; as positive characteristics, they indicated the simulator's didactic function, especially tutorials and videos on the topic of this study. The results show that the simulator complements the study of the physiology and biophysics of the cardiac cell. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
ERIC Educational Resources Information Center
Yoder, Lisa
2006-01-01
Students learn best when they interact with new information on a personal level. It is a challenge for teachers to tightly align student experiences with the standards assessed on high-stakes tests. To achieve this goal in social studies, the author has turned increasingly to simulations where students find such activities engaging, and their…
Educational aspects of molecular simulation
NASA Astrophysics Data System (ADS)
Allen, Michael P.
This article addresses some aspects of teaching simulation methods to undergraduates and graduate students. Simulation is increasingly a cross-disciplinary activity, which means that the students who need to learn about simulation methods may have widely differing backgrounds. Also, they may have a wide range of views on what constitutes an interesting application of simulation methods. Almost always, a successful simulation course includes an element of practical, hands-on activity: a balance always needs to be struck between treating the simulation software as a 'black box', and becoming bogged down in programming issues. With notebook computers becoming widely available, students often wish to take away the programs to run themselves, and access to raw computer power is not the limiting factor that it once was; on the other hand, the software should be portable and, if possible, free. Examples will be drawn from the author's experience in three different contexts. (1) An annual simulation summer school for graduate students, run by the UK CCP5 organization, in which practical sessions are combined with an intensive programme of lectures describing the methodology. (2) A molecular modelling module, given as part of a doctoral training centre in the Life Sciences at Warwick, for students who might not have a first degree in the physical sciences. (3) An undergraduate module in Physics at Warwick, also taken by students from other disciplines, teaching high performance computing, visualization, and scripting in the context of a physical application such as Monte Carlo simulation.
ERIC Educational Resources Information Center
Heiden, Kathleen; Harpel, Tammy
2013-01-01
Many universities offer courses in multiculturalism to broaden students' perspectives, but are the courses effective? This article explores the effects of using simulations to raise awareness and challenge students' perspectives of stereotypes, prejudice, and discrimination. The results of three simulation activities are presented. Three…
"No Taxation without Representation:" A Simulation Activity.
ERIC Educational Resources Information Center
Schur, Joan Brodsky
1992-01-01
Describes a simulation exercise designed to help students understand the objections of U.S. colonists to the Stamp Act and other taxes. Includes a sample handout, instructions for the teacher in carrying out the simulation, and questions to compare students' and colonists' about feelings being assessed fees unfairly. (DK)
DNA Microarray Wet Lab Simulation Brings Genomics into the High School Curriculum
Zanta, Carolyn A.; Heyer, Laurie J.; Kittinger, Ben; Gabric, Kathleen M.; Adler, Leslie
2006-01-01
We have developed a wet lab DNA microarray simulation as part of a complete DNA microarray module for high school students. The wet lab simulation has been field tested with high school students in Illinois and Maryland as well as in workshops with high school teachers from across the nation. Instead of using DNA, our simulation is based on pH indicators, which offer many ideal teaching characteristics. The simulation requires no specialized equipment, is very inexpensive, is very reliable, and takes very little preparation time. Student and teacher assessment data indicate the simulation is popular with both groups, and students show significant learning gains. We include many resources with this publication, including all prelab introductory materials (e.g., a paper microarray activity), the student handouts, teachers notes, and pre- and postassessment tools. We did not test the simulation on other student populations, but based on teacher feedback, the simulation also may fit well in community college and in introductory and nonmajors' college biology curricula. PMID:17146040
DNA microarray wet lab simulation brings genomics into the high school curriculum.
Campbell, A Malcolm; Zanta, Carolyn A; Heyer, Laurie J; Kittinger, Ben; Gabric, Kathleen M; Adler, Leslie; Schulz, Barbara
2006-01-01
We have developed a wet lab DNA microarray simulation as part of a complete DNA microarray module for high school students. The wet lab simulation has been field tested with high school students in Illinois and Maryland as well as in workshops with high school teachers from across the nation. Instead of using DNA, our simulation is based on pH indicators, which offer many ideal teaching characteristics. The simulation requires no specialized equipment, is very inexpensive, is very reliable, and takes very little preparation time. Student and teacher assessment data indicate the simulation is popular with both groups, and students show significant learning gains. We include many resources with this publication, including all prelab introductory materials (e.g., a paper microarray activity), the student handouts, teachers notes, and pre- and postassessment tools. We did not test the simulation on other student populations, but based on teacher feedback, the simulation also may fit well in community college and in introductory and nonmajors' college biology curricula.
Ward, Terry D
2015-01-01
Affective domain teaching and learning can facilitate the reduction of stigmatization of clients with mental illness in nursing students. Experiential learning activities such as simulation are regarded as an effective method for facilitating student learning in the affective domain. The project reported here measured the impact of a simulation experience, "Hearing Voices Which Are Distressing," on attitudes, values, and beliefs of accelerated baccalaureate students caring for clients with mental illness who experienced hearing voices.
ERIC Educational Resources Information Center
Helms, Samuel Arthur
2010-01-01
This single subject case study followed a high school student and his use of a simulation of marine ecosystems. The study examined his metaworld, motivation, and learning before, during and after using the simulation. A briefing was conceptualized based on the literature on pre-instructional activities, advance organizers, and performance…
Active Learning and Engagement with the Wireless Indoor Location Device (WILD) Learning System
NASA Astrophysics Data System (ADS)
Moldwin, M.; Samson, P. J.; Ojeda, L.; Miller, T.; Yu, J.
2016-12-01
The Wireless Indoor Location Device (WILD) Learning System being developed at the University of Michigan and the Education Technology company A2 Motus LLC provides a unique platform for social learning by allowing students to become active participants in live simulations of complex systems, like hurricane formation. The WILD Learning System enables teachers to engage students in kinesthetic activities that explore complex models from a wide variety of STEAM (Science, Technology, Engineering, Art and Math) disciplines. The system provides students' location, orientation and motion within the classroom and assigns each student different parameters depending on the activity. For example, students learning about hurricanes could be assigned atmospheric pressure levels and asked to arrange themselves around the room to simulate a hurricane. The Wild Learning System software then takes the students' pressure readings and locations and projects their locations overlaid onto a real-time generated simulated pressure weather map enabling the observation of how their arrangement influences the pressure structure. The teacher then could have the students orient themselves in the direction they think the resulting wind field will be based on the pressure contours as the system can show an arrow originating from each of the students position in the direction that they are facing. The system also could incorporate a student response-type system for the instructor to then directly question students about other concepts and record their response to both the kinesthetic activity and other formative assessment questions. The WILD Learning System consists of a sensor package for each student in the class, beacons to enable precise localization of the students, software to calculate student location information, and educational software for a variety of activities. In addition, a software development kit (SDK) is under development that would allow others to create additional learning activities using the WILD Learning System. (WILD Learning System development has been partially supported by NASA's CYGNSS Mission EPO, the NSF and the University of Michigan).
Using simulation to improve the capability of undergraduate nursing students in mental health care.
Kunst, Elicia L; Mitchell, Marion; Johnston, Amy N B
2017-03-01
Mental health care is an increasing component of acute patient care and yet mental health care education can be limited in undergraduate nursing programs. The aim of this study was to establish if simulation learning can be an effective method of improving undergraduate nurses' capability in mental health care in an acute care environment. Undergraduate nursing students at an Australian university were exposed to several high-fidelity high-technology simulation activities that incorporated elements of acute emergency nursing practice and acute mental health intervention, scaffolded by theories of learning. This approach provided a safe environment for students to experience clinical practice, and develop their skills for dealing with complex clinical challenges. Using a mixed method approach, the primary domains of interest in this study were student confidence, knowledge and ability. These were self-reported and assessed before and after the simulation activities (intervention) using a pre-validated survey, to gauge the self-rated capacity of students to initiate and complete effective care episodes. Focus group interviews were subsequently held with students who attended placement in the emergency department to explore the impact of the intervention on student performance in this clinical setting. Students who participated in the simulation activity identified and reported significantly increased confidence, knowledge and ability in mental health care post-intervention. They identified key features of the intervention included the impact of its realism on the quality of learning. There is some evidence to suggest that the intervention had an impact on the performance and reflection of students in the clinical setting. This study provides evidence to support the use of simulation to enhance student nurses' clinical capabilities in providing mental health care in acute care environments. Nursing curriculum development should be based on best-evidence to ensure that future nursing graduates have the skills and capability to provide high-quality, holistic care. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dohaney, J. A.; kennedy, B.; Brogt, E.; Gravley, D.; Wilson, T.; O'Steen, B.
2011-12-01
This qualitative study investigates behaviors and experiences of upper-year geosciences undergraduate students during an intensive role-play simulation, in which the students interpret geological data streams and manage a volcanic crisis event. We present the development of the simulation, its academic tasks, (group) role assignment strategies and planned facilitator interventions over three iterations. We aim to develop and balance an authentic, intensive and highly engaging capstone activity for volcanology and geo-hazard courses. Interview data were collected from academic and professional experts in the fields of Volcanology and Hazard Management (n=11) in order to characterize expertise in the field, characteristics of key roles in the simulation, and to validate the authenticity of tasks and scenarios. In each iteration, observations and student artifacts were collected (total student participants: 68) along with interviews (n=36) and semi-structured, open-ended questionnaires (n=26). Our analysis of these data indicates that increasing the structure (i.e. organization, role-specific tasks and responsibilities) lessens non-productive group dynamics, which allows for an increase in difficulty of academic tasks within the simulation without increasing the cognitive load on students. Under these conditions, students exhibit professional expert-like behaviours, in particular in the quality of decision-making, communication skills and task-efficiency. In addition to illustrating the value of using this simulation to teach geosciences concepts, this study has implications for many complex situated-learning activities.
Falcione, Bonnie A; Meyer, Susan M
2014-10-15
To design an elective for pharmacy students that facilitates antimicrobial stewardship awareness, knowledge, and skill development by solving clinical cases, using human patient simulation technology. The elective was designed for PharmD students to describe principles and functions of stewardship programs, select, evaluate, refine, or redesign patient-specific plans for infectious diseases in the context of antimicrobial stewardship, and propose criteria and stewardship management strategies for an antimicrobial class at a health care institution. Teaching methods included active learning and lectures. Cases of bacterial endocarditis and cryptococcal meningitis were developed that incorporated human patient simulation technology. Forty-five pharmacy students completed an antimicrobial stewardship elective between 2010 and 2013. Outcomes were assessed using student perceptions of and performance on rubric-graded assignments. A PharmD elective using active learning, including novel cases conducted with human patient simulation technology, enabled outcomes consistent with those desired of pharmacists assisting in antimicrobial stewardship programs.
Designing EvoRoom: An Immersive Simulation Environment for Collective Inquiry in Secondary Science
NASA Astrophysics Data System (ADS)
Lui, Michelle Mei Yee
This dissertation investigates the design of complex inquiry for co-located students to work as a knowledge community within a mixed-reality learning environment. It presents the design of an immersive simulation called EvoRoom and corresponding collective inquiry activities that allow students to explore concepts around topics of evolution and biodiversity in a Grade 11 Biology course. EvoRoom is a room-sized simulation of a rainforest, modeled after Borneo in Southeast Asia, where several projected displays are stitched together to form a large, animated simulation on each opposing wall of the room. This serves to create an immersive environment in which students work collaboratively as individuals, in small groups and a collective community to investigate science topics using the simulations as an evidentiary base. Researchers and a secondary science teacher co-designed a multi-week curriculum that prepared students with preliminary ideas and expertise, then provided them with guided activities within EvoRoom, supported by tablet-based software as well as larger visualizations of their collective progress. Designs encompassed the broader curriculum, as well as all EvoRoom materials (e.g., projected displays, student tablet interfaces, collective visualizations) and activity sequences. This thesis describes a series of three designs that were developed and enacted iteratively over two and a half years, presenting key features that enhanced students' experiences within the immersive environment, their interactions with peers, and their inquiry outcomes. Primary research questions are concerned with the nature of effective design for such activities and environments, and the kinds of interactions that are seen at the individual, collaborative and whole-class levels. The findings fall under one of three themes: 1) the physicality of the room, 2) the pedagogical script for student observation and reflection and collaboration, and 3) ways of including collective visualizations in the activity. Discrete findings demonstrate how the above variables, through their design as inquiry components (i.e., activity, room, scripts and scaffolds on devices, collective visualizations), can mediate the students' interactions with one another, with their teacher, and impact the outcomes of their inquiry. A set of design recommendations is drawn from the results of this research to guide future design or research efforts.
Students' Evaluations of a Business Simulation Game as a Learning Experience.
ERIC Educational Resources Information Center
Edwards, Keith J.
This report investigates student evaluations of a business simulation game as a learning experience in terms of specific claims which have been made for this kind of teaching technique. Ninety-nine junior college students in introductory business courses answered a questionnaire after playing the fame as an ongoing, semester-long activity. The…
ERIC Educational Resources Information Center
Tural, Güner; Tarakçi, Demet
2017-01-01
Background: One of the topics students have difficulties in understanding is electromagnetic induction. Active learning methods instead of traditional learning method may be able to help facilitate students' understanding such topics more effectively. Purpose: The study investigated the effectiveness of physical models and simulations on students'…
ERIC Educational Resources Information Center
Brands, Michael W.; Schumacher, Lori
2009-01-01
To address the challenge of increasing opportunities for active learning into a medical physiology course with 190 students enrolled, we chose an integrated approach. This was facilitated by the availability of a patient simulator facility at the School of Nursing at the Medical College of Georgia, and an 20-min simulation of acute hemorrhage on…
ERIC Educational Resources Information Center
Unlu, Zeynep Koyunlu; Dokme, Ibilge
2011-01-01
The purpose of this study was to investigate whether the combination of both analogy-based simulation and laboratory activities as a teaching tool was more effective than utilizing them separately in teaching the concepts of simple electricity. The quasi-experimental design that involved 66 seventh grade students from urban Turkish elementary…
Alhazmi, Mohammed S; Butler, Craig W; Junghans, Barbara M
2018-06-12
The use of patient simulators in ophthalmic education appears limited. This study examines the effects of the addition of the 'Virtual Refractor' patient simulator learning activity into a short unit preparing students to determine the power of the spectacle lenses required by patients in a clinic. Twenty-four year one optometry students were randomly assigned to either the simulator-intervention group (n = 12) or the non-intervention group. All students attended tutorials on refraction and the use of a refractor-head. Simulator-intervention students additionally attended a tutorial on the Virtual Refractor. All answered a questionnaire concerning time spent studying, perceived knowledge and confidence. Twenty-four short-sighted patients were recruited. Two refractions per student were timed and the accuracy compared with that of an experienced optometrist. Ten students from each group completed the study. Students who used the simulator were significantly (p < 0.05) more accurate at a clinical level (within 0.22 ± 0.22 DS, 95 per cent CI 0.12-0.32) than those who did not (within 0.60 ± 0.67 DS, 95 per cent CI 0.29-0.92) and 13 per cent quicker (4.7 minutes, p < 0.05). Students who used the simulator felt more knowledgeable (p < 0.05) and confident (p < 0.05), but had spent more time reading about refraction and practised on the Virtual Refractor at home for 5.7 ± 1.3 hours. The Virtual Refractor has many features of high-fidelity medical simulation known to lead to effective learning and it also offers flexible independent learning without a concomitant increase in the student time-burden. The improved accuracy and speed on first patient encounters found in this study validates the use of this patient simulator as a useful bridge for students early in training to successfully transfer theoretical knowledge prior to entering the consulting room. The translational benefits resulting from compulsory learning activities on a patient simulator can lead to reduced demands on infrastructure and clinical supervision. © 2018 Optometry Australia.
Building a Community in Our Classroom: The Story of Bat Town, U.S.A.
ERIC Educational Resources Information Center
Keech, Andrea McGann
2001-01-01
Describes a simulation called, "Classroom City," used by elementary students to learn about communities. Focuses on the students' own simulated city named Bat Town, U.S.A. Discusses the project in detail. Describes the activities children participated in and the roles they assumed during the simulation. (CMK)
We have Met the Enemy. Student Guide and Teacher Guide. OEAGLS Investigation 13.
ERIC Educational Resources Information Center
Briss, Dorothy; Mayer, Victor J.
Students investigate several aspects of the War of 1812, especially those which pertain to Lake Erie and Ohio, in this unit. The first activity is a simulation of various battles and maneuvers. In parts B and C, students use information from the simulation and from documents of the era to explain the war's causes and outcomes. A student's guide…
Nutrients in the Great Lakes. Teacher's Guide and Student Workbook.
ERIC Educational Resources Information Center
Brothers, Chris; And Others
This teacher guide and student workbook set presents two learning activities, designed for fifth through ninth grade students, that concentrate on nutrients in the Great Lakes. In activity A, students simulate aquatic habitats using lake water and goldfish in glass jars and observe the effects of nutrient loading and nutrient limitation on aquatic…
ERIC Educational Resources Information Center
Gelbart, Hadas; Brill, Gilat; Yarden, Anat
2009-01-01
Providing learners with opportunities to engage in activities similar to those carried out by scientists was addressed in a web-based research simulation in genetics developed for high school biology students. The research simulation enables learners to apply their genetics knowledge while giving them an opportunity to participate in an authentic…
Using Game Development to Engage Students in Science and Technology
NASA Technical Reports Server (NTRS)
Wiacek, John
2011-01-01
Game design workshops, camps and activities engage K-12 students In STEM disciplines that use game engine and development tools. Game development will have students create games and simulations that Will inspire them to love technology while learning math, physics, and,logic. By using tools such as Gamemaker, Alice, Unity, Gamesalad and others, students will get a sense of confidence and accomplishment creating games and simulations.
Simulation in interprofessional education for patient-centred collaborative care.
Baker, Cynthia; Pulling, Cheryl; McGraw, Robert; Dagnone, Jeffrey Damon; Hopkins-Rosseel, Diana; Medves, Jennifer
2008-11-01
This paper is a report of preliminary evaluations of an interprofessional education through simulation project by focusing on learner and teacher reactions to the pilot modules. Approaches to interprofessional education vary widely. Studies indicate, however, that active, experiential learning facilitate it. Patient simulators require learners to incorporate knowing, being and doing in action. A theoretically based competency framework was developed to guide interprofessional education using simulation. The framework includes a typology of shared, complementary and profession-specific competencies. Each competency type is associated with an intraprofessional, multiprofessional, or interprofessional teaching modality and with the professional composition of learner groups. The project is guided by an action research approach in which ongoing evaluation generates knowledge to modify and further develop it. Preliminary evaluations of the first pilot module, cardiac resuscitation rounds, among 101 nursing students, 42 medical students and 70 junior medical residents were conducted in 2005-2007 using a questionnaire with rating scales and open-ended questions. Another 20 medical students, 7 junior residents and 45 nursing students completed a questionnaire based on the Interdisciplinary Education Perception scale. Simulation-based learning provided students with interprofessional activities they saw as relevant for their future as practitioners. They embraced both the interprofessional and simulation components enthusiastically. Attitudinal scores and responses were consistently positive among both medical and nursing students. Interprofessional education through simulation offers a promising approach to preparing future healthcare professionals for the collaborative models of healthcare delivery being developed internationally.
Spinello, Elio F; Fischbach, Ronald
2008-01-01
This study investigated the use of a Web-based community health simulation as a problem-based learning (PBL) experience for undergraduate students majoring in public health. The study sought to determine whether students who participated in the online simulation achieved differences in academic and attitudinal outcomes compared with students who participated in a traditional PBL exercise. Using a nonexperimental comparative design, 21 undergraduate students enrolled in a health-behavior course were each randomly assigned to one of four workgroups. Each workgroup was randomly assigned the semester-long simulation project or the traditional PBL exercise. Survey instruments were used to measure students' attitudes toward the course, their perceptions of the learning community, and perceptions of their own cognitive learning. Content analysis of final essay exams and group reports was used to identify differences in academic outcomes and students' level of conceptual understanding of health-behavior theory. Findings indicated that students participating in the simulation produced higher mean final exam scores compared with students participating in the traditional PBL (p=0.03). Students in the simulation group also outperformed students in the traditional group with respect to their understanding of health-behavior theory (p=0.04). Students in the simulation group, however, rated their own level of cognitive learning lower than did students in the traditional group (p=0.03). By bridging time and distance constraints of the traditional classroom setting, an online simulation may be an effective PBL approach for public health students. Recommendations include further research using a larger sample to explore students' perceptions of learning when participating in simulated real-world activities. Additional research focusing on possible differences between actual and perceived learning relative to PBL methods and student workgroup dynamics is also recommended.
Development of Active Learning with Simulations and Games
ERIC Educational Resources Information Center
Zapalska, Alina; Brozik, Dallas; Rudd, Denis
2012-01-01
Educational games and simulations are excellent active learning tools that offer students hands-on experience. Little research is available on developing games and simulations and how teachers can be assisted in making their own games and simulations. In this context, the paper presents a multi-step process of how to develop games and simulations…
ERIC Educational Resources Information Center
Czerniak, Charlene M.; And Others
1996-01-01
Presents activities in which elementary and middle school students work together to gain environmental awareness about oil spills. Involves students experiencing a simulated oil spill and attempting to clean it up. Discusses the use of children's literature after the activity in evaluation of the activity. (JRH)
ERIC Educational Resources Information Center
Moseley, Christine
2007-01-01
The purpose of this activity was to help students understand the percentage of cloud cover and make more accurate cloud cover observations. Students estimated the percentage of cloud cover represented by simulated clouds and assigned a cloud cover classification to those simulations. (Contains 2 notes and 3 tables.)
A DNA Fingerprint Simulation: Different, Simple, Effective.
ERIC Educational Resources Information Center
Reed, Eileen
2001-01-01
Discusses the impact of biotechnology (i.e., the use of DNA profiling in the courtroom) on today's society. Presents a hands-on activity for DNA profiling simulation that actively involves students. (YDS)
Effects of a Simulation Exercise on Nursing Students' End-of-Life Care Attitudes.
Dame, Linda; Hoebeke, Roberta
2016-12-01
Students consider end-of-life care content in their nursing curricula to be inadequate and deficient in promoting the development of the necessary attitudes to care for dying patients. Research identifies simulation as an effective teaching strategy to examine nursing students' attitudes toward end-of-life care. An end-of-life care simulation was developed, implemented, and evaluated. Attitudes toward caring for dying patients were measured pre- and postsimulation on a convenience sample of 57 sophomore nursing students using the Frommelt Attitudes Toward Care of the Dying Scale-Form B. Repeated measures of ANOVA on outcome variables evaluated student attitudes toward end-of-life care. Participation in an end-of-life care simulation resulted in more positive student attitudes toward caring for dying patients (p < .001). Simulation is an active learning strategy to incorporate end-of-life care in nursing curricula and improve student attitudes toward caring for dying patients. [J Nurs Educ. 2016;55(12):701-705.]. Copyright 2016, SLACK Incorporated.
Schlairet, Maura C; Schlairet, Timothy James; Sauls, Denise H; Bellflowers, Lois
2015-03-01
Establishing the impact of the high-fidelity simulation environment on student performance, as well as identifying factors that could predict learning, would refine simulation outcome expectations among educators. The purpose of this quasi-experimental pilot study was to explore the impact of simulation on emotion and cognitive load among beginning nursing students. Forty baccalaureate nursing students participated in teaching simulations, rated their emotional state and cognitive load, and completed evaluation simulations. Two principal components of emotion were identified representing the pleasant activation and pleasant deactivation components of affect. Mean rating of cognitive load following simulation was high. Linear regression identiffed slight but statistically nonsignificant positive associations between principal components of emotion and cognitive load. Logistic regression identified a negative but statistically nonsignificant effect of cognitive load on assessment performance. Among lower ability students, a more pronounced effect of cognitive load on assessment performance was observed; this also was statistically non-significant. Copyright 2015, SLACK Incorporated.
ERIC Educational Resources Information Center
Jaakkola, T.; Nurmi, S.
2008-01-01
Computer simulations and laboratory activities have been traditionally treated as substitute or competing methods in science teaching. The aim of this experimental study was to investigate if it would be more beneficial to combine simulation and laboratory activities than to use them separately in teaching the concepts of simple electricity. Based…
Launching a dream: A teachers guide to a simulated space shuttle mission
NASA Technical Reports Server (NTRS)
1989-01-01
Two simulated shuttle missions cosponsored by the NASA Lewis Research Center and Cleveland, Ohio, area schools are highlighted in this manual for teachers. A simulated space shuttle mission is an opportunity for students of all ages to plan, train for, and conduct a shuttle mission. Some students are selected to be astronauts, flight planners, and flight controllers. Other students build and test the experiments that the astronauts will conduct. Some set up mission control, while others design the mission patch. Students also serve as security officers or carry out public relations activities. For the simulated shuttle mission, school buses or recreation vehicles are converted to represent shuttle orbiters. All aspects of a shuttle mission are included. During preflight activities the shuttle is prepared, and experiments and a flight plan are made ready for launch day. The flight itself includes lifting off, conducting experiments on orbit, and rendezvousing with the crew from the sister school. After landing back at the home school, the student astronauts are debriefed and hold press conferences. The astronauts celebrate their successful missions with their fellow students at school and with the community at an evening postflight recognition program. To date, approximately 6,000 students have been involved in simulated shuttle missions with the Lewis Research Center. A list of participating schools, along with the names of their space shuttles, is included. Educations outcomes and other positive effects for the students are described.
An Interactive Simulation Program for Exploring Computational Models of Auto-Associative Memory.
Fink, Christian G
2017-01-01
While neuroscience students typically learn about activity-dependent plasticity early in their education, they often struggle to conceptually connect modification at the synaptic scale with network-level neuronal dynamics, not to mention with their own everyday experience of recalling a memory. We have developed an interactive simulation program (based on the Hopfield model of auto-associative memory) that enables the user to visualize the connections generated by any pattern of neural activity, as well as to simulate the network dynamics resulting from such connectivity. An accompanying set of student exercises introduces the concepts of pattern completion, pattern separation, and sparse versus distributed neural representations. Results from a conceptual assessment administered before and after students worked through these exercises indicate that the simulation program is a useful pedagogical tool for illustrating fundamental concepts of computational models of memory.
Classroom as Reality: Demonstrating Campaign Effects through Live Simulation
ERIC Educational Resources Information Center
Coffey, Daniel J.; Miller, William J.; Feuerstein, Derek
2011-01-01
Scholastic research has demonstrated that when conducted properly, active learning exercises are successful at increasing student awareness, student interest, and knowledge retention. Face-to-face simulations, in particular, have been demonstrated to add positively to classrooms focusing on comparative politics, international relations, public…
Deal or No Deal: Using Games to Improve Student Learning, Retention and Decision-Making
ERIC Educational Resources Information Center
Chow, Alan F.; Woodford, Kelly C.; Maes, Jeanne
2011-01-01
Student understanding and retention can be enhanced and improved by providing alternative learning activities and environments. Education theory recognizes the value of incorporating alternative activities (games, exercises and simulations) to stimulate student interest in the educational environment, enhance transfer of knowledge and improve…
Enhancing Students' Problem-Solving Skills through Context-Based Learning
ERIC Educational Resources Information Center
Yu, Kuang-Chao; Fan, Szu-Chun; Lin, Kuen-Yi
2015-01-01
Problem solving is often challenging for students because they do not understand the problem-solving process (PSP). This study presents a three-stage, context-based, problem-solving, learning activity that involves watching detective films, constructing a context-simulation activity, and introducing a project design to enable students to construct…
Meyer, Susan M.
2014-01-01
Objective. To design an elective for pharmacy students that facilitates antimicrobial stewardship awareness, knowledge, and skill development by solving clinical cases, using human patient simulation technology. Design. The elective was designed for PharmD students to describe principles and functions of stewardship programs, select, evaluate, refine, or redesign patient-specific plans for infectious diseases in the context of antimicrobial stewardship, and propose criteria and stewardship management strategies for an antimicrobial class at a health care institution. Teaching methods included active learning and lectures. Cases of bacterial endocarditis and cryptococcal meningitis were developed that incorporated human patient simulation technology. Assessment. Forty-five pharmacy students completed an antimicrobial stewardship elective between 2010 and 2013. Outcomes were assessed using student perceptions of and performance on rubric-graded assignments. Conclusion. A PharmD elective using active learning, including novel cases conducted with human patient simulation technology, enabled outcomes consistent with those desired of pharmacists assisting in antimicrobial stewardship programs. PMID:25386016
ERIC Educational Resources Information Center
Sottile, James M., Jr.; Brozik, Dallas
2004-01-01
Simulations and games have been used in education for decades, but most of this development has been in the areas of business and economics. Well-designed simulations and games have been shown to improve decision-making and critical thinking skills as well as teaching discipline-specific concepts. Active learning also helps students develop…
Science classroom inquiry (SCI) simulations: a novel method to scaffold science learning.
Peffer, Melanie E; Beckler, Matthew L; Schunn, Christian; Renken, Maggie; Revak, Amanda
2015-01-01
Science education is progressively more focused on employing inquiry-based learning methods in the classroom and increasing scientific literacy among students. However, due to time and resource constraints, many classroom science activities and laboratory experiments focus on simple inquiry, with a step-by-step approach to reach predetermined outcomes. The science classroom inquiry (SCI) simulations were designed to give students real life, authentic science experiences within the confines of a typical classroom. The SCI simulations allow students to engage with a science problem in a meaningful, inquiry-based manner. Three discrete SCI simulations were created as website applications for use with middle school and high school students. For each simulation, students were tasked with solving a scientific problem through investigation and hypothesis testing. After completion of the simulation, 67% of students reported a change in how they perceived authentic science practices, specifically related to the complex and dynamic nature of scientific research and how scientists approach problems. Moreover, 80% of the students who did not report a change in how they viewed the practice of science indicated that the simulation confirmed or strengthened their prior understanding. Additionally, we found a statistically significant positive correlation between students' self-reported changes in understanding of authentic science practices and the degree to which each simulation benefitted learning. Since SCI simulations were effective in promoting both student learning and student understanding of authentic science practices with both middle and high school students, we propose that SCI simulations are a valuable and versatile technology that can be used to educate and inspire a wide range of science students on the real-world complexities inherent in scientific study.
Some Astronomy 101 Activities Using Internet Resources
NASA Astrophysics Data System (ADS)
West, M. L.
2000-12-01
Reputable Internet sites provide a wealth of visual, textual, and numerical data for student activities, as well as some fun simulations. Three activities will be described which have been used in Astronomy 101 classes for non-science students. An exercise in model making and problem solving uses the Astronomy Workshop (janus.astro.umd.edu/astro/impact.html) of the University of Maryland. This site provides a quick simulation of an impact with a planet. One can choose the target, the projectile composition (icy, rocky, or iron), the projectile's diameter, and the projectile's speed. The output provides the energy of impact, the earthquake magnitude, the crater's diameter and depth, and the frequency of such impacts. Students run simulations, pool their data, then collaborate to try to figure out the numerical model behind the simulations. They make predictions, test them, and learn that graphing and physical insight are both important tools. Extrasolar planets are now numerous and fascinating. Students use data from Geoff Marcy's group (www.exoplanets.org) to calculate the masses of the planets using a spreadsheet. They discover that the masses of the stars must depend on spectral type. Correlations among parameters are investigated graphically. As a preparation for writing term papers students review and critique selected sites (csam.montclair.edu/ west/ideasresources.html, west/astrolnk.html), discuss them in small groups, then present the "best" sites to the whole class. Teamwork, evaluation, critical thinking, and public speaking skills are emphasized in this class session. The students find these collaborative activities to be exciting, challenging, and enjoyable as well as increasing their science literacy and problem solving skills.
Role Reversals in Male/Female Communication: A Classroom Simulation.
ERIC Educational Resources Information Center
Rozema, Hazel J.
1988-01-01
Describes a simulation that enhances student ability to gain a perspective on the opposite sex and their world view. Includes a guided mental imagery trip in which the instructor asks questions about daily activities and role reversal simulations using group activity. Cautions that debriefing is essential for success. (KO)
QuVis interactive simulations: tools to support quantum mechanics instruction
NASA Astrophysics Data System (ADS)
Kohnle, Antje
2015-04-01
Quantum mechanics holds a fascination for many students, but its mathematical complexity and counterintuitive results can present major barriers. The QuVis Quantum Mechanics Visualization Project (www.st-andrews.ac.uk/physics/quvis) aims to overcome these issues through the development and evaluation of interactive simulations with accompanying activities for the learning and teaching of quantum mechanics. Over 90 simulations are now available on the QuVis website. One collection of simulations is embedded in the Institute of Physics Quantum Physics website (quantumphysics.iop.org), which consists of freely available resources for an introductory course in quantum mechanics starting from two-level systems. Simulations support model-building by reducing complexity, focusing on fundamental ideas and making the invisible visible. They promote engaged exploration, sense-making and linking of multiple representations, and include high levels of interactivity and direct feedback. Simulations are research-based and evaluation with students informs all stages of the development process. Simulations are iteratively refined using student feedback in individual observation sessions and in-class trials. Evaluation has shown that the simulations can help students learn quantum mechanics concepts at both the introductory and advanced undergraduate level and that students perceive simulations to be beneficial to their learning. Recent activity includes the launch of a new collection of HTML5 simulations that run on both desktop and tablet-based devices and the introduction of a goal and reward structure in simulations through the inclusion of challenges. This presentation will give an overview of the QuVis resources, highlight recent work and outline future plans. QuVis is supported by the UK Institute of Physics, the UK Higher Education Academy and the University of St Andrews.
Persuading Investors: Emphasizing Communication in a Finance Simulation
ERIC Educational Resources Information Center
Yest, Michael T.; Grant, Kelly A.
2013-01-01
This paper introduces a unique project to faculty seeking an interdisciplinary activity that exposes students to the necessary art of persuasive communication in the field of finance. Specifically, we have designed a multi-stage simulation in which undergraduate business students apply both finance and communication skills, specifically…
Feel, imagine and learn! - Haptic augmented simulation and embodied instruction in physics learning
NASA Astrophysics Data System (ADS)
Han, In Sook
The purpose of this study was to investigate the potentials and effects of an embodied instructional model in abstract concept learning. This embodied instructional process included haptic augmented educational simulation as an instructional tool to provide perceptual experiences as well as further instruction to activate those previous experiences with perceptual simulation. In order to verify the effectiveness of this instructional model, haptic augmented simulation with three different haptic levels (force and kinesthetic, kinesthetic, and non-haptic) and instructional materials (narrative and expository) were developed and their effectiveness tested. 220 fifth grade students were recruited to participate in the study from three elementary schools located in lower SES neighborhoods in Bronx, New York. The study was conducted for three consecutive weeks in regular class periods. The data was analyzed using ANCOVA, ANOVA, and MANOVA. The result indicates that haptic augmented simulations, both the force and kinesthetic and the kinesthetic simulations, was more effective than the non-haptic simulation in providing perceptual experiences and helping elementary students to create multimodal representations about machines' movements. However, in most cases, force feedback was needed to construct a fully loaded multimodal representation that could be activated when the instruction with less sensory modalities was being given. In addition, the force and kinesthetic simulation was effective in providing cognitive grounding to comprehend a new learning content based on the multimodal representation created with enhanced force feedback. Regarding the instruction type, it was found that the narrative and the expository instructions did not make any difference in activating previous perceptual experiences. These findings suggest that it is important to help students to make a solid cognitive ground with perceptual anchor. Also, sequential abstraction process would deepen students' understanding by providing an opportunity to practice their mental simulation by removing sensory modalities used one by one and to gradually reach abstract level of understanding where students can imagine the machine's movements and working mechanisms with only abstract language without any perceptual supports.
NASA Astrophysics Data System (ADS)
Huppert, J.; Michal Lomask, S.; Lazarowitz, R.
2002-08-01
Computer-assisted learning, including simulated experiments, has great potential to address the problem solving process which is a complex activity. It requires a highly structured approach in order to understand the use of simulations as an instructional device. This study is based on a computer simulation program, 'The Growth Curve of Microorganisms', which required tenth grade biology students to use problem solving skills whilst simultaneously manipulating three independent variables in one simulated experiment. The aims were to investigate the computer simulation's impact on students' academic achievement and on their mastery of science process skills in relation to their cognitive stages. The results indicate that the concrete and transition operational students in the experimental group achieved significantly higher academic achievement than their counterparts in the control group. The higher the cognitive operational stage, the higher students' achievement was, except in the control group where students in the concrete and transition operational stages did not differ. Girls achieved equally with the boys in the experimental group. Students' academic achievement may indicate the potential impact a computer simulation program can have, enabling students with low reasoning abilities to cope successfully with learning concepts and principles in science which require high cognitive skills.
Science Classroom Inquiry (SCI) Simulations: A Novel Method to Scaffold Science Learning
Peffer, Melanie E.; Beckler, Matthew L.; Schunn, Christian; Renken, Maggie; Revak, Amanda
2015-01-01
Science education is progressively more focused on employing inquiry-based learning methods in the classroom and increasing scientific literacy among students. However, due to time and resource constraints, many classroom science activities and laboratory experiments focus on simple inquiry, with a step-by-step approach to reach predetermined outcomes. The science classroom inquiry (SCI) simulations were designed to give students real life, authentic science experiences within the confines of a typical classroom. The SCI simulations allow students to engage with a science problem in a meaningful, inquiry-based manner. Three discrete SCI simulations were created as website applications for use with middle school and high school students. For each simulation, students were tasked with solving a scientific problem through investigation and hypothesis testing. After completion of the simulation, 67% of students reported a change in how they perceived authentic science practices, specifically related to the complex and dynamic nature of scientific research and how scientists approach problems. Moreover, 80% of the students who did not report a change in how they viewed the practice of science indicated that the simulation confirmed or strengthened their prior understanding. Additionally, we found a statistically significant positive correlation between students’ self-reported changes in understanding of authentic science practices and the degree to which each simulation benefitted learning. Since SCI simulations were effective in promoting both student learning and student understanding of authentic science practices with both middle and high school students, we propose that SCI simulations are a valuable and versatile technology that can be used to educate and inspire a wide range of science students on the real-world complexities inherent in scientific study. PMID:25786245
Survey of factors influencing learner engagement with simulation debriefing among nursing students.
Roh, Young Sook; Jang, Kie In
2017-12-01
Simulation-based education has escalated worldwide, yet few studies have rigorously explored predictors of learner engagement with simulation debriefing. The purpose of this cross-sectional, descriptive survey was to identify factors that determine learner engagement with simulation debriefing among nursing students. A convenience sample of 296 Korean nursing students enrolled in the simulation-based course completed the survey. A total of five instruments were used: (i) Characteristics of Debriefing; (ii) Debriefing Assessment for Simulation in Healthcare - Student Version; (iii) The Korean version of the Simulation Design Scale; (iv) Communication Skills Scale; and (v) Clinical-Based Stress Scale. Multiple regression analysis was performed using the variables to investigate the influencing factors. The results indicated that influencing factors of learning engagement with simulation debriefing were simulation design, confidentiality, stress, and number of students. Simulation design was the most important factor. Video-assisted debriefing was not a significant factor affecting learner engagement. Educators should organize and conduct debriefing activities while considering these factors to effectively induce learner engagement. Further study is needed to identify the effects of debriefing sessions targeting learners' needs and considering situational factors on learning outcomes. © 2017 John Wiley & Sons Australia, Ltd.
ERIC Educational Resources Information Center
Caughman, Joan T.
This in-basket-simulation learning module on the activities of a secretary for secondary and postsecondary teachers and students, the eighth in a series of eleven task and in-basket simulations, was designed to provide individualized instruction in office occupations courses, such as introductory business and typewriting. (Each module in the set…
Sailing to Jamestown, 1606-7: Five Classroom Activities
ERIC Educational Resources Information Center
Pahl, Ronald H.
2007-01-01
The author presents five classroom activities that involve students in the settlement at Jamestown. Activity 1 simulates the problems encountered on the "Godspeed," a fifty-two-foot foot boat with fifty-two passengers traveling across the Atlantic in 1607 for three slow months. In Activity 2, students plot their route, ocean currents,…
A Model Approach to the Electrochemical Cell: An Inquiry Activity
ERIC Educational Resources Information Center
Cullen, Deanna M.; Pentecost, Thomas C.
2011-01-01
In an attempt to address some student misconceptions in electrochemistry, this guided-inquiry laboratory was devised to give students an opportunity to use a manipulative that simulates the particulate-level activity within an electrochemical cell, in addition to using an actual electrochemical cell. Students are led through a review of expected…
ERIC Educational Resources Information Center
Erdogan, Ibrahim
2006-01-01
In this extended biology, ecology, and earth science activity, students construct hands-on models of natural wastewater treatment and wastewater treatment facilities to achieve an understanding of wastewater treatment process in nature and wastewater treatment facilities. During this simulation activity, students have opportunities to learn…
Seif, Gretchen A; Brown, Debora
2013-01-01
It is difficult to provide real-world learning experiences for students to master clinical and communication skills. The purpose of this paper is to describe a novel instructional method using self- and peer-assessment, reflection, and technology to help students develop effective interpersonal and clinical skills. The teaching method is described by the constructivist learning theory and incorporates the use of educational technology. The learning activities were incorporated into the pre-clinical didactic curriculum. The students participated in two video-recording assignments and performed self-assessments on each and had a peer-assessment on the second video-recording. The learning activity was evaluated through the self- and peer-assessments and an instructor-designed survey. This evaluation identified several themes related to the assignment, student performance, clinical behaviors and establishing rapport. Overall the students perceived that the learning activities assisted in the development of clinical and communication skills prior to direct patient care. The use of video recordings of a simulated history and examination is a unique learning activity for preclinical PT students in the development of clinical and communication skills.
Factors Promoting Engaged Exploration with Computer Simulations
ERIC Educational Resources Information Center
Podolefsky, Noah S.; Perkins, Katherine K.; Adams, Wendy K.
2010-01-01
This paper extends prior research on student use of computer simulations (sims) to engage with and explore science topics, in this case wave interference. We describe engaged exploration; a process that involves students actively interacting with educational materials, sense making, and exploring primarily via their own questioning. We analyze…
Use of Spreadsheet Simulations in University Chemistry Education
ERIC Educational Resources Information Center
Lim, Kieran F.
2006-01-01
Students who are strong in logical-mathematical intelligence have a natural advantage in learning and understanding chemistry, which is full of abstractions that are remote from the material world. Simulations provide more-inclusive learning activities for students who are weak in logical-mathematical intelligence. A second advantage of using…
Learning by Doing: Using an Online Simulation Game in an International Relations Course
ERIC Educational Resources Information Center
Epley, Jennifer
2016-01-01
Integrating interactive learning activities into undergraduate courses is one method for increasing student interest, engagement, and skills development. Online simulation games in particular offer students the unique applied opportunity to "learn by doing" in a virtual space to further their overall knowledge base and critical thinking…
Harding, S R; D'Eon, M F
2001-01-01
Teaching patient-centered interviewing skills to medical students can be challenging. We have observed that 1st-year medical students, in particular, do not feel free to concentrate on the interviewing skills because they are preoccupied with complicated technical medical knowledge. The Lego simulation we use with our 1st-year students as part of a professional-skills course overcomes that difficulty. The Lego activity is a role play analogous to a doctor-patient interview that uses identical sets of Legos for the "doctor" and for the "patients" and a small construction that represents a patient history. With a simple questionnaire, data were collected from students at different points during instruction. Results indicate that the Lego activity was very effective in helping students learn the importance of open-ended questioning. It also was rated as highly as the very dynamic interactive part of the instructional session. The effectiveness of the Lego activity may be due to the properties of analogies.
NASA Astrophysics Data System (ADS)
Tolhurst, Jeffrey Wayne
Most students enrolled in lower division physical geology courses are non-majors and tend to finish the course with little appreciation of what it is geologists really do. They may also be expected to analyze, synthesize, and apply knowledge from previous laboratory experiences with little or no instruction and/or practice in utilizing the critical thinking skills necessary to do so. This study sought to answer two research questions: (1) do physical geology students enrolled in a course designed around a mining simulation activity perform better cognitively than students who are taught the same curriculum in the traditional fashion; and (2) do students enrolled in the course gain a greater appreciation of physical geology and the work that geologists do. Eighty students enrolled in the course at Columbia College, Sonora, California over a two year period. During the first year, thirty-one students were taught the traditional physical geology curriculum. During the second year, forty-nine students were taught the traditional curriculum up until week nine, then they were taught a cooperative learning mining simulation activity for three weeks. A static group, split plot, repeated measures design was used. Pre- and post-tests were administered to students in both the control and treatment groups. The cognitive assessment instrument was validated by content area experts in the University of South Carolina Geological Sciences Department. Students were given raw lithologic, gravimetric, topographic, and environmental data with which to construct maps and perform an overlay analysis. They were tested on the cognitive reasoning and spatial analysis they used to make decisions about where to test drill for valuable metallic ores. The affective instrument used a six point Likert scale to assess students' perceived enjoyment, interest, and importance of the material. Gains scores analysis of cognitive achievement data showed a mean of 2.43 for the control group and 4.47 for the treatment group, statistically significantly different at the alpha = 0.05 level (p = 0.0038). Gains scores for the affective data indicated no statistically significant differences between the treatment and control groups. The simulation seems to make a difference in terms of students' intellectual performance, but not in terms of their attitudinal perceptions of the course. Results support the hypothesis that cognitive achievement is improved by a cooperative learning mining simulation activity. One implication might include adapting and implementing the model in lower division physical geology courses. Another would be to develop similar activities for other lower division, non-majors earth science courses (i.e. environmental geology, astronomy, meteorology, oceanography, etc.) that could improve students' subject matter knowledge. Additionally, the research supports shifting the locus of control from the instructor to students as well as the use of the principles of active learning, cooperative learning, and confluent education in the science classroom.
Smith, Morgan; Warland, Jane; Smith, Colleen
2012-03-01
Online role-play has the potential to actively engage students in authentic learning experiences and help develop their clinical reasoning skills. However, evaluation of student learning for this kind of simulation focuses mainly on the content and outcome of learning, rather than on the process of learning through student engagement. This article reports on the use of a student engagement framework to evaluate an online role-play offered as part of a course in Bachelor of Nursing and Bachelor of Midwifery programs. Instruments that measure student engagement to date have targeted large numbers of students at program and institutional levels, rather than at the level of a specific learning activity. Although the framework produced some useful findings for evaluation purposes, further refinement of the questions is required to be certain that deep learning results from the engagement that occurs with course-level learning initiatives. Copyright 2012, SLACK Incorporated.
De Grasset, Jehanne; Audetat, Marie-Claude; Bajwa, Nadia; Jastrow, Nicole; Richard-Lepouriel, Hélène; Nendaz, Mathieu; Junod Perron, Noelle
2018-04-22
Medical students develop professional identity through structured activities and impromptu interactions in various settings. We explored if contributing to an Objective Structured Teaching Exercise (OSTE) influenced students' professional identity development. University clinical faculty members participated in a faculty development program on clinical supervision. Medical students who participated in OSTEs as simulated residents were interviewed in focus groups about what they learnt from the experience and how the experience influenced their vision of learning and teaching. Transcripts were analyzed using the Goldie's personality and social structure perspective model. Twenty-five medical students out of 32 students involved in OSTEs participated. On an institutional level, students developed a feeling of belonging to the institution. At an interactional level, students realized they could influence the teaching interaction by actively seeking or giving feedback. On the personal level, students realized that errors could become sources of learning and felt better prepared to receive faculty feedback. Taking part in OSTEs as a simulated resident has a positive impact on students' vision regarding the institution as a learning environment and their own role by actively seeking or giving feedback. OSTEs support their professional identity development regarding learning and teaching while sustaining faculty development.
Levett-Jones, Tracy; Andersen, Patrea; Reid-Searl, Kerry; Guinea, Stephen; McAllister, Margaret; Lapkin, Samuel; Palmer, Lorinda; Niddrie, Marian
2015-09-01
Active participation in immersive simulation experiences can result in technical and non-technical skill enhancement. However, when simulations are conducted in large groups, maintaining the interest of observers so that they do not disengage from the learning experience can be challenging. We implemented Tag Team Simulation with the aim of ensuring that both participants and observers had active and integral roles in the simulation. In this paper we outline the features of this innovative approach and provide an example of its application to a pain simulation. Evaluation was conducted using the Satisfaction with Simulation Experience Scale. A total of 444 year nursing students participated from a population of 536 (response rate 83%). Cronbach's alpha for the Scale was .94 indicating high internal consistency. The mean satisfaction score for participants was 4.63 compared to 4.56 for observers. An independent sample t test revealed no significant difference between these scores (t (300) = -1.414, p = 0.16). Tag team simulation is an effective approach for ensuring observers' and participants' active involvement during group-based simulations and one that is highly regarded by students. It has the potential for broad applicability across a range of leaning domains both within and beyond nursing. Copyright © 2015 Elsevier Ltd. All rights reserved.
Experiencing Misgendered Pronouns: A Classroom Activity to Encourage Empathy
ERIC Educational Resources Information Center
MacNamara, Jessica; Glann, Sarah; Durlak, Paul
2017-01-01
How can teachers help students understand the importance of gender pronouns for transgender and gender-nonconforming people? This article presents a gender pronoun reversal activity that simulates the experience of being verbally misgendered. Students followed up on the activity by posting reflections on an online class discussion board. The…
Water Pollution Scrubber Activity Simulates Pollution Control Devices.
ERIC Educational Resources Information Center
Kennedy, Edward C., III; Waggoner, Todd C.
2003-01-01
A laboratory activity caused students to think actively about water pollution. The students realized that it would be easier to keep water clean than to remove pollutants. They created a water scrubbing system allowing them to pour water in one end and have it emerge clean at the other end. (JOW)
ERIC Educational Resources Information Center
Ponte, Lucille M.
2006-01-01
Pedagogical experts contend that students learn best when they are actively involved in and responsible for their own learning. In a student-centered learning environment, the instructor ideally serves primarily as a learning resource or facilitator. With the guidance of the instructor, students in active learning environments strive for…
Teaching Supply Chain Management Complexities: A SCOR Model Based Classroom Simulation
ERIC Educational Resources Information Center
Webb, G. Scott; Thomas, Stephanie P.; Liao-Troth, Sara
2014-01-01
The SCOR (Supply Chain Operations Reference) Model Supply Chain Classroom Simulation is an in-class experiential learning activity that helps students develop a holistic understanding of the processes and challenges of supply chain management. The simulation has broader learning objectives than other supply chain related activities such as the…
ERIC Educational Resources Information Center
Demchik, Michael J.
2000-01-01
Describes a curriculum plan in which students learn about acid rain through instructional media, research and class presentations, lab activities, simulations, design, and design implementation. Describes the simulation activity in detail and includes materials, procedures, instructions, examples, results, and discussion sections. (SAH)
Impact of an Aging Simulation Game on Pharmacy Students’ Empathy for Older Adults
Kiersma, Mary E.; Yehle, Karen S.; Plake, Kimberly S.
2015-01-01
Objective. To evaluate changes in empathy and perceptions as well as game experiences among student pharmacists participating in an aging simulation game. Methods. First-year student pharmacists participated in an aging simulation game. Changes were measured pre/post-activity using the Kiersma-Chen Empathy Scale (KCES) and Jefferson Scale of Empathy – Health Professions Scale (JSE-HPS) for empathy and the Aging Simulation Experience Survey (ASES) for perceptions of older adults’ experiences and game experiences. Wilcoxon signed rank tests were used to determine changes. Results. One hundred fifty-six student pharmacists completed the instruments. Empathy using the KCES and JSE-HPS improved significantly. Of the 13 items in the ASES, 9 significantly improved. Conclusion. Simulation games may help students overcome challenges demonstrating empathy and positive attitudes toward elderly patients. PMID:26396274
Enhancing nursing students' understanding of poverty through simulation.
Patterson, Nena; Hulton, Linda J
2012-01-01
The purposes of this study were (a) to describe the implementation of a poverty simulation, (b) to evaluate its use on nursing students' attitudes about poverty, and (c) to offer lessons learned. Using a mixed-method design, a convenience sample of senior undergraduate nursing students (n = 43) from a public university in a mid-Atlantic state participated in a poverty simulation experience. Students assumed the roles of real-life families and were given limited amounts of resources to survive in a simulated community. This simulation took place during a community health practicum clinical day. The short form of Attitudes about Poverty and Poor Populations Scale (APPPS) was adapted for this evaluation. This 21-item scale includes factors of personal deficiency, stigma, and structural perspective, which measures a range of diverse attitudes toward poverty and poor people. The results of this evaluation demonstrated that nursing students viewed the poverty simulation as an effective teaching strategy and actively participated. In particular, nursing students' scores on the factor of stigma of poverty demonstrated statistically significant changes. With proper planning, organization, and reflection, a poverty simulation experience can be a positive impetus for lifelong learning and civic engagement. © 2011 Wiley Periodicals, Inc.
Simulation workshops with first year midwifery students.
Catling, Christine; Hogan, Rosemarie; Fox, Deborah; Cummins, Allison; Kelly, Michelle; Sheehan, Athena
2016-03-01
Simulated teaching methods enable a safe learning environment that are structured, constructive and reflective. We prepared a 2-day simulation project to help prepare students for their first clinical practice. A quasi-experimental pre-test - post-test design was conducted. Qualitative data from the open-ended survey questions were analysed using content analysis. Confidence intervals and p-values were calculated to demonstrate the changes in participants' levels of understanding/ability or confidence in clinical midwifery skills included in the simulation. 71 midwifery students participated. Students rated their understanding, confidence, and abilities as higher after the simulation workshop, and higher still after their clinical experience. There were five main themes arising from the qualitative data: having a learning experience, building confidence, identifying learning needs, developing communication skills and putting skills into practise. First year midwifery students felt well prepared for the clinical workplace following the simulation workshops. Self-rated understanding, confidence and abilities in clinical midwifery skills were significantly higher following consolidation during clinical placement. Longitudinal studies on the relationship between simulation activities and student's overall clinical experience, their intentions to remain in midwifery, and facility feedback, would be desirable. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ethical reasoning through simulation: a phenomenological analysis of student experience.
Lewis, Gareth; McCullough, Melissa; Maxwell, Alexander P; Gormley, Gerard J
2016-01-01
Medical students transitioning into professional practice feel underprepared to deal with the emotional complexities of real-life ethical situations. Simulation-based learning (SBL) may provide a safe environment for students to probe the boundaries of ethical encounters. Published studies of ethics simulation have not generated sufficiently deep accounts of student experience to inform pedagogy. The aim of this study was to understand students' lived experiences as they engaged with the emotional challenges of managing clinical ethical dilemmas within a SBL environment. This qualitative study was underpinned by an interpretivist epistemology. Eight senior medical students participated in an interprofessional ward-based SBL activity incorporating a series of ethically challenging encounters. Each student wore digital video glasses to capture point-of-view (PoV) film footage. Students were interviewed immediately after the simulation and the PoV footage played back to them. Interviews were transcribed verbatim. An interpretative phenomenological approach, using an established template analysis approach, was used to iteratively analyse the data. Four main themes emerged from the analysis: (1) 'Authentic on all levels?', (2)'Letting the emotions flow', (3) 'Ethical alarm bells' and (4) 'Voices of children and ghosts'. Students recognised many explicit ethical dilemmas during the SBL activity but had difficulty navigating more subtle ethical and professional boundaries. In emotionally complex situations, instances of moral compromise were observed (such as telling an untruth). Some participants felt unable to raise concerns or challenge unethical behaviour within the scenarios due to prior negative undergraduate experiences. This study provided deep insights into medical students' immersive and embodied experiences of ethical reasoning during an authentic SBL activity. By layering on the human dimensions of ethical decision-making, students can understand their personal responses to emotion, complexity and interprofessional working. This could assist them in framing and observing appropriate ethical and professional boundaries and help smooth the transition into clinical practice.
Orr, Fiona; Kellehear, Kevin; Armari, Elizabeth; Pearson, Arana; Holmes, Douglas
2013-11-01
Role-play scenarios are frequently used with undergraduate nursing students enrolled in mental health nursing subjects to simulate the experience of voice-hearing. However, role-play has limitations and typically does not involve those who hear voices. This collaborative project between mental health consumers who hear voices and nursing academics aimed to develop and assess simulated voice-hearing as an alternative learning tool that could provide a deeper understanding of the impact of voice-hearing, whilst enabling students to consider the communication skills required when interacting with voice-hearers. Simulated sounds and voices recorded by consumers on mp3 players were given to eighty final year nursing students undertaking a mental health elective. Students participated in various activities whilst listening to the simulations. Seventy-six (95%) students completed a written evaluation following the simulation, which assessed the benefits of the simulation and its implications for clinical practice. An analysis of the students' responses by an external evaluator indicated that there were three major learning outcomes: developing an understanding of voice-hearing, increasing students' awareness of its impact on functioning, and consideration of the communication skills necessary to engage with consumers who hear voices. Copyright © 2013 Elsevier Ltd. All rights reserved.
Rollins, Brent L; Gunturi, Rahul; Sullivan, Donald
2014-04-17
To implement a pharmacy business management simulation exercise as a practical application of business management material and principles and assess students' perceived value. As part of a pharmacy management and administration course, students made various calculations and management decisions in the global categories of hours of operation, inventory, pricing, and personnel. The students entered the data into simulation software and a realistic community pharmacy marketplace was modeled. Course topics included accounting, economics, finance, human resources, management, marketing, and leadership. An 18-item posttest survey was administered. Students' slightly to moderately agreed the pharmacy simulation program enhanced their knowledge and understanding, particularly of inventory management, cash flow statements, balance sheets, and income statements. Overall attitudes toward the pharmacy simulation program were also slightly positive and students also slightly agreed the pharmacy simulation program enhanced their learning of pharmacy business management. Inventory management was the only area in which students felt they had at least "some" exposure to the assessed business management topics during IPPEs/internship, while all other areas of experience ranged from "not at all" to "a little." The pharmacy simulation program is an effective active-learning exercise and enhanced students' knowledge and understanding of the business management topics covered.
Simulation as a learning strategy: supporting undergraduate nursing students with disabilities.
Azzopardi, Toni; Johnson, Amanda; Phillips, Kirrilee; Dickson, Cathy; Hengstberger-Sims, Cecily; Goldsmith, Mary; Allan, Trevor
2014-02-01
To promote simulation as a learning strategy to support undergraduate nursing students with disabilities. Supporting undergraduate nursing students with disabilities has gained further momentum because of amendments to the Disability Discrimination Act in 2009. Providers of higher education must now ensure proactive steps to prevent discrimination against students with a disability are implemented to assist in course progression. Simulation allows for the impact of a student's disability to be assessed and informs the determination of reasonable adjustments to be implemented. Further suitable adjustments can then be determined in a safe environment and evaluated prior to scheduled placement. Auditing in this manner, offers a risk management strategy for all while maintaining the academic integrity of the program. Discursive. Low, medium and high fidelity simulation activities critically analysed and their application to support undergraduate nursing students with disabilities assessed. With advancing technology and new pedagogical approaches simulation as a learning strategy can play a significant role. In this role, simulation supports undergraduate nursing students with disabilities to meet course requirements, while offering higher education providers an important risk management strategy. The discussion recommends simulation is used to inform the determination of reasonable adjustments for undergraduate nursing students with disabilities as an effective, contemporary curriculum practice. Adoption of simulation, in this way, will meet three imperatives: comply with current legislative requirements, embrace advances in learning technologies and embed one of the six principles of inclusive curriculum. Achieving these imperatives is likely to increase accessibility for all students and offer students with a disability a supportive learning experience. Provides capacity to systematically assess, monitor, evaluate and support students with a disability. The students' reasonable adjustments can be determined prior to attending clinical practice to minimise risks and ensure the safety of all. © 2013 Blackwell Publishing Ltd.
Development of Fourth-Grade Students' Understanding of Experimental and Theoretical Probability
ERIC Educational Resources Information Center
English, Lyn; Watson, Jane
2014-01-01
Students explored variation and expectation in a probability activity at the end of the first year of a 3-year longitudinal study across grades 4-6. The activity involved experiments in tossing coins both manually and with simulation using the graphing software, "TinkerPlots." Initial responses indicated that the students were aware of…
Outside, a World Goes By...Applying Mathematics with Flight Simulators.
ERIC Educational Resources Information Center
van den Brink, Jan
1994-01-01
Describes the use of the "Microsoft Flight Simulator" with Dutch students 12- to 16-years-old to apply mathematical knowledge to real-life situations. The use of an overhead projector for class flights is described; and student activities, including converting metric units and drawing maps of the landscape, are explained. (LRW)
Computers with Wings: Flight Simulation and Personalized Landscapes
ERIC Educational Resources Information Center
Oss, Stefano
2005-01-01
We propose, as a special way to explore the physics of flying objects, to use a flight simulator with a personalized scenery to reproduce the territory where students live. This approach increases the participation and attention of students to physics classes but also creates several opportunities for addressing side activities and arguments of…
Audit Workplace Simulations as a Methodology to Increase Undergraduates' Awareness of Competences
ERIC Educational Resources Information Center
Bautista-Mesa, Rafael; Molina Sánchez, Horacio; Ramírez Sobrino, Jesús Nicolás
2018-01-01
This paper describes an audit workplace simulation and investigates its effects on students' perceptions of competences, required as important in the auditing industry. Within the competence-based teaching framework, this training activity involves cooperative learning as it combines first-undergraduate and senior students within one team. First,…
Process and Learning Outcomes from Remotely-Operated, Simulated, and Hands-on Student Laboratories
ERIC Educational Resources Information Center
Corter, James E.; Esche, Sven K.; Chassapis, Constantin; Ma, Jing; Nickerson, Jeffrey V.
2011-01-01
A large-scale, multi-year, randomized study compared learning activities and outcomes for hands-on, remotely-operated, and simulation-based educational laboratories in an undergraduate engineering course. Students (N = 458) worked in small-group lab teams to perform two experiments involving stress on a cantilever beam. Each team conducted the…
Intersectionopoly: A Simulation of the Wage Gap
ERIC Educational Resources Information Center
Paino, Maria; May, Matthew; Burrington, Lori A.; Becker, Jacob H.
2017-01-01
This article describes a simulation activity designed to teach students about the wage gap. The wage gap is an important topic in many sociology classrooms, but it can be difficult to convey the accumulated disadvantage experienced by women and racial/ethnic minorities to students using in-class discussions, lectures, or assigned readings alone.…
How-to-Do-It: A Simulation of the Blood Type Test.
ERIC Educational Resources Information Center
Sharp, John D., Sr.; Smailes, Deborah L.
1989-01-01
Explains an activity that allows students to visualize antigen-antibody type reactions and learn about antibodies and antigens without performing blood typing tests. Provides directions for students and a comparison chart of a blood typing simulation with procedure which is based on the reactions of certain ionic solutions when mixed. (RT)
Written Communications Simulation: Write Me a Letter.
ERIC Educational Resources Information Center
North Carolina State Dept. of Public Instruction, Raleigh. Div. of Vocational Education.
This simulation is intended for use as a culminating activity after students have been exposed to personal and/or business letter writing, use of reference manuals, typing of letters, mailing procedures, typing of numbers, punctuation practice, and filing procedures. Stated objectives are to enable students to type a mailable letter; to inspect,…
Improving Statistics Education through Simulations: The Case of the Sampling Distribution.
ERIC Educational Resources Information Center
Earley, Mark A.
This paper presents a summary of action research investigating statistics students' understandings of the sampling distribution of the mean. With four sections of an introductory Statistics in Education course (n=98 students), a computer simulation activity (R. delMas, J. Garfield, and B. Chance, 1999) was implemented and evaluated to show…
Once Upon a Synapse: A Drug Education Simulation in Three Acts.
ERIC Educational Resources Information Center
London, William M.
1989-01-01
An instructional activity designed to clarify pharmacological concepts related to drug use is described. The focus of the activity is a simulation, with student actors, of the effect of drugs and alcohol on the nervous system. (IAH)
Tuzer, Hilal; Dinc, Leyla; Elcin, Melih
2016-10-01
Existing research literature indicates that the use of various simulation techniques in the training of physical examination skills develops students' cognitive and psychomotor abilities in a realistic learning environment while improving patient safety. The study aimed to compare the effects of the use of a high-fidelity simulator and standardized patients on the knowledge and skills of students conducting thorax-lungs and cardiac examinations, and to explore the students' views and learning experiences. A mixed-method explanatory sequential design. The study was conducted in the Simulation Laboratory of a Nursing School, the Training Center at the Faculty of Medicine, and in the inpatient clinics of the Education and Research Hospital. Fifty-two fourth-year nursing students. Students were randomly assigned to Group I and Group II. The students in Group 1 attended the thorax-lungs and cardiac examination training using a high-fidelity simulator, while the students in Group 2 using standardized patients. After the training sessions, all students practiced their skills on real patients in the clinical setting under the supervision of the investigator. Knowledge and performance scores of all students increased following the simulation activities; however, the students that worked with standardized patients achieved significantly higher knowledge scores than those that worked with the high-fidelity simulator; however, there was no significant difference in performance scores between the groups. The mean performance scores of students on real patients were significantly higher compared to the post-simulation assessment scores (p<0.001). Results of this study revealed that use of standardized patients was more effective than the use of a high-fidelity simulator in increasing the knowledge scores of students on thorax-lungs and cardiac examinations; however, practice on real patients increased performance scores of all students without any significant difference in two groups. Copyright © 2016 Elsevier Ltd. All rights reserved.
Imms, Christine; Chu, Eli Mang Yee; Guinea, Stephen; Sheppard, Loretta; Froude, Elspeth; Carter, Rob; Darzins, Susan; Ashby, Samantha; Gilbert-Hunt, Susan; Gribble, Nigel; Nicola-Richmond, Kelli; Penman, Merrolee; Gospodarevskaya, Elena; Mathieu, Erin; Symmons, Mark
2017-07-21
Clinical placements are a critical component of the training for health professionals such as occupational therapists. However, with growing student enrolments in professional education courses and workload pressures on practitioners, it is increasingly difficult to find sufficient, suitable placements that satisfy program accreditation requirements. The professional accrediting body for occupational therapy in Australia allows up to 200 of the mandatory 1000 clinical placement hours to be completed via simulation activities, but evidence of effectiveness and efficiency for student learning outcomes is lacking. Increasingly placement providers charge a fee to host students, leading educators to consider whether providing an internal program might be a feasible alternative for a portion of placement hours. Economic analysis of the incremental costs and benefits of providing a traditional versus simulated placement is required to inform decision-making. This study is a pragmatic, non-inferiority, single-blind, multicentre, two-group randomised controlled trial (RCT) with an embedded economic analysis. The RCT will compare a block of 40 hours of simulated placement (intervention) with a 40-hour block of traditional placement (comparator), with a focus on student learning outcomes and delivery costs. Six universities will instigate the educational intervention within their respective occupational therapy courses, randomly assigning their cohort of students (1:1 allocation) to the simulated or traditional clinical placements. The primary outcome is achievement of professional behaviours (e.g. communication, clinical reasoning) as assessed by a post-placement written examination. Secondary outcomes include proportions passing the placement assessed using the Student Practice Evaluation Form-Revised, changes in student confidence pre-/post-placement, student and educator evaluation of the placement experience and cost-effectiveness of simulated versus traditional clinical placements. Comprehensive cost data will be collected for both the simulated and traditional placement programs at each site for economic evaluation. Use of simulation in health-related fields like occupational therapy is common, but these activities usually relate to brief opportunities for isolated skill development. The simulated clinical placement evaluated in this trial is less common because it encapsulates a 5-day block of integrated activities, designed and delivered in a manner intended to emulate best-practice placement experiences. The planned study is rare due to inclusion of an economic analysis that aims to provide valuable information about the relationship between costs and outcomes across participating sites. Australian New Zealand Clinical Trials Registry, ACTRN12616001339448 . Registered 26 September 2016.
Integration of simulations and visualizations into classroom contexts through role playing
NASA Astrophysics Data System (ADS)
Moysey, S. M.
2016-12-01
While simulations create a novel way to engage students, the idea of numerical modeling may be overwhelming to a wide swath of students - particularly non-geoscience majors or those students early in their earth science education. Yet even for these students, simulations and visualizations remain a powerful way to explore concepts and take ownership over their learning. One approach to bring these tools into the classroom is to introduce them as a component of a larger role-playing activity. I present two specific examples of how I have done this within a general education course broadly focused on water resources sustainability. In the first example, we have created an online multi-player watershed management game where players make management decisions for their individual farms, which in turn set the parameters for a watershed-scale groundwater model that continuously runs in the background. Through the simulation students were able to influence the behavior of the environment and see feedbacks on their individual land within the game. Though the original intent was to focus student learning on the hydrologic aspects of the watershed behavior, I have found that the value of the simulation is actually in allowing students to become immersed in a way that enables deep conversations about topics ranging from environmental policy to social justice. The second example presents an overview of a role playing activity focused on a multi-party negotiation of water rights in the Klamath watershed. In this case each student takes on a different role in the negotiation (e.g., farmer, energy producer, government, environmental advocate, etc.) and is presented with a rich set of data tying environmental and economic factors to the operation of reservoirs. In this case the simulation model is very simple, i.e., a mass balance calculator that students use to predict the consequences of their management decisions. The simplicity of the simulator, however, allows for reinforcement of the fundamental concept of mass balance which is a key scientific theme throughout the course. It also allows students to focus on analysis of data that enables them to tie hydrologic behaviors to societal consequences that guide their decision making.
ERIC Educational Resources Information Center
Parks, Melissa
2014-01-01
Model-eliciting activities (MEAs) are not new to those in engineering or mathematics, but they were new to Melissa Parks. Model-eliciting activities are simulated real-world problems that integrate engineering, mathematical, and scientific thinking as students find solutions for specific scenarios. During this process, students generate solutions…
A trial of e-simulation of sudden patient deterioration (FIRST2ACT WEB) on student learning.
Bogossian, Fiona E; Cooper, Simon J; Cant, Robyn; Porter, Joanne; Forbes, Helen
2015-10-01
High-fidelity simulation pedagogy is of increasing importance in health professional education; however, face-to-face simulation programs are resource intensive and impractical to implement across large numbers of students. To investigate undergraduate nursing students' theoretical and applied learning in response to the e-simulation program-FIRST2ACT WEBTM, and explore predictors of virtual clinical performance. Multi-center trial of FIRST2ACT WEBTM accessible to students in five Australian universities and colleges, across 8 campuses. A population of 489 final-year nursing students in programs of study leading to license to practice. Participants proceeded through three phases: (i) pre-simulation-briefing and assessment of clinical knowledge and experience; (ii) e-simulation-three interactive e-simulation clinical scenarios which included video recordings of patients with deteriorating conditions, interactive clinical tasks, pop up responses to tasks, and timed performance; and (iii) post-simulation feedback and evaluation. Descriptive statistics were followed by bivariate analysis to detect any associations, which were further tested using standard regression analysis. Of 409 students who commenced the program (83% response rate), 367 undergraduate nursing students completed the web-based program in its entirety, yielding a completion rate of 89.7%; 38.1% of students achieved passing clinical performance across three scenarios, and the proportion achieving passing clinical knowledge increased from 78.15% pre-simulation to 91.6% post-simulation. Knowledge was the main independent predictor of clinical performance in responding to a virtual deteriorating patient R(2)=0.090, F(7, 352)=4.962, p<0.001. The use of web-based technology allows simulation activities to be accessible to a large number of participants and completion rates indicate that 'Net Generation' nursing students were highly engaged with this mode of learning. The web-based e-simulation program FIRST2ACTTM effectively enhanced knowledge, virtual clinical performance, and self-assessed knowledge, skills, confidence, and competence in final-year nursing students. Copyright © 2015 Elsevier Ltd. All rights reserved.
A Computer Simulation Using Spreadsheets for Learning Concept of Steady-State Equilibrium
ERIC Educational Resources Information Center
Sharda, Vandana; Sastri, O. S. K. S.; Bhardwaj, Jyoti; Jha, Arbind K.
2016-01-01
In this paper, we present a simple spreadsheet based simulation activity that can be performed by students at the undergraduate level. This simulation is implemented in free open source software (FOSS) LibreOffice Calc, which is available for both Windows and Linux platform. This activity aims at building the probability distribution for the…
Using the FAR Guide to Teach Simulations: An Example with Natural Selection
ERIC Educational Resources Information Center
Sickel, Aaron J.; Friedrichsen, Patricia J.
2012-01-01
Engaging students in a predator-prey simulation to teach natural selection is a common activity in secondary biology classrooms. The purpose of this article is to demonstrate how the authors have changed their approach to teaching this activity from a laboratory investigation to a class-constructed simulation. Specifically, the authors drew upon a…
NASA Astrophysics Data System (ADS)
Chien, Cheng-Chih
In the past thirty years, the effectiveness of computer assisted learning was found varied by individual studies. Today, with drastic technical improvement, computers have been widely spread in schools and used in a variety of ways. In this study, a design model involving educational technology, pedagogy, and content domain is proposed for effective use of computers in learning. Computer simulation, constructivist and Vygotskian perspectives, and circular motion are the three elements of the specific Chain Model for instructional design. The goal of the physics course is to help students remove the ideas which are not consistent with the physics community and rebuild new knowledge. To achieve the learning goal, the strategies of using conceptual conflicts and using language to internalize specific tasks into mental functions were included. Computer simulations and accompanying worksheets were used to help students explore their own ideas and to generate questions for discussions. Using animated images to describe the dynamic processes involved in the circular motion may reduce the complexity and possible miscommunications resulting from verbal explanations. The effectiveness of the instructional material on student learning is evaluated. The results of problem solving activities show that students using computer simulations had significantly higher scores than students not using computer simulations. For conceptual understanding, on the pretest students in the non-simulation group had significantly higher score than students in the simulation group. There was no significant difference observed between the two groups in the posttest. The relations of gender, prior physics experience, and frequency of computer uses outside the course to student achievement were also studied. There were fewer female students than male students and fewer students using computer simulations than students not using computer simulations. These characteristics affect the statistical power for detecting differences. For the future research, more intervention of simulations may be introduced to explore the potential of computer simulation in helping students learning. A test for conceptual understanding with more problems and appropriate difficulty level may be needed.
eLearning techniques supporting problem based learning in clinical simulation.
Docherty, Charles; Hoy, Derek; Topp, Helena; Trinder, Kathryn
2005-08-01
This paper details the results of the first phase of a project using eLearning to support students' learning within a simulated environment. The locus was a purpose built clinical simulation laboratory (CSL) where the School's philosophy of problem based learning (PBL) was challenged through lecturers using traditional teaching methods. a student-centred, problem based approach to the acquisition of clinical skills that used high quality learning objects embedded within web pages, substituting for lecturers providing instruction and demonstration. This encouraged student nurses to explore, analyse and make decisions within the safety of a clinical simulation. Learning was facilitated through network communications and reflection on video performances of self and others. Evaluations were positive, students demonstrating increased satisfaction with PBL, improved performance in exams, and increased self-efficacy in the performance of nursing activities. These results indicate that eLearning techniques can help students acquire clinical skills in the safety of a simulated environment within the context of a problem based learning curriculum.
Efficient and Effective Use of Peer Teaching for Medical Student Simulation.
House, Joseph B; Choe, Carol H; Wourman, Heather L; Berg, Kristin M; Fischer, Jonathan P; Santen, Sally A
2017-01-01
Simulation is increasingly used in medical education, promoting active learning and retention; however, increasing use also requires considerable instructor resources. Simulation may provide a safe environment for students to teach each other, which many will need to do when they enter residency. Along with reinforcing learning and increasing retention, peer teaching could decrease instructor demands. Our objective was to determine the effectiveness of peer-taught simulation compared to physician-led simulation. We hypothesized that peer-taught simulation would lead to equivalent knowledge acquisition when compared to physician-taught sessions and would be viewed positively by participants. This was a quasi-experimental study in an emergency medicine clerkship. The control group was faculty taught. In the peer-taught intervention group, students were assigned to teach one of the three simulation-based medical emergency cases. Each student was instructed to master their topic and teach it to their peers using the provided objectives and resource materials. The students were assigned to groups of three, with all three cases represented; students took turns leading their case. Three groups ran simultaneously. During the intervention sessions, one physician was present to monitor the accuracy of learning and to answer questions, while three physicians were required for the control groups. Outcomes compared pre-test and post-test knowledge and student reaction between control and intervention groups. Both methods led to equally improved knowledge; mean score for the post-test was 75% for both groups (p=0.6) and were viewed positively. Students in the intervention group agreed that peer-directed learning was an effective way to learn. However, students in the control group scored their simulation experience more favorably. In general, students' response to peer teaching was positive, students learned equally well, and found peer-taught sessions to be interactive and beneficial.
Metzger, Nicole L; Chesson, Melissa M; Momary, Kathryn M
2015-09-25
Objective. To create, implement, and assess a simulated medication reconciliation and an order verification activity using hospital training software. Design. A simulated patient with medication orders and home medications was built into existing hospital training software. Students in an institutional introductory pharmacy practice experience (IPPE) reconciled the patient's medications and determined whether or not to verify the inpatient orders based on his medical history and laboratory data. After reconciliation, students identified medication discrepancies and documented their rationale for rejecting inpatient orders. Assessment. For a 3-year period, the majority of students agreed the simulation enhanced their learning, taught valuable clinical decision-making skills, integrated material from previous courses, and stimulated their interest in institutional pharmacy. Overall feedback from student evaluations about the IPPE also was favorable. Conclusion. Use of existing hospital training software can affordably simulate the pharmacist's role in order verification and medication reconciliation, as well as improve clinical decision-making.
Simulating Issue Networks in Small Classes using the World Wide Web.
ERIC Educational Resources Information Center
Josefson, Jim; Casey, Kelly
2000-01-01
Provides background information on simulations and active learning. Discusses the use of simulations in political science courses. Describes a simulation exercise where students performed specific institutional role playing, simulating the workings of a single congressional issue network, based on the reauthorization of the Endangered Species Act.…
ERIC Educational Resources Information Center
Aji, Chadia Affane; Khan, M. Javed
2015-01-01
Student engagement is an essential element for learning. Active learning has been consistently shown to increase student engagement and hence learning. Hands-on activities are one of the many active learning approaches. These activities vary from structured laboratory experiments on one end of the spectrum to virtual gaming environments and to for…
Morgan, Helen; Marzano, David; Lanham, Michael; Stein, Tamara; Curran, Diana; Hammoud, Maya
2014-01-01
Background The implementation of the Accreditation Council for Graduate Medical Education (ACGME) Milestones in the field of obstetrics and gynecology has arrived with Milestones Level One defined as the level expected of an incoming first-year resident. Purpose We designed, implemented, and evaluated a 4-week elective for fourth-year medical school students, which utilized a multimodal approach to teaching and assessing the Milestones Level One competencies. Methods The 78-hour curriculum utilized traditional didactic lectures, flipped classroom active learning sessions, a simulated paging curriculum, simulation training, embalmed cadaver anatomical dissections, and fresh-frozen cadaver operative procedures. We performed an assessment of student knowledge and surgical skills before and after completion of the course. Students also received feedback on their assessment and management of eight simulated paging scenarios. Students completed course content satisfaction surveys at the completion of each of the 4 weeks. Results Students demonstrated improvement in knowledge and surgical skills at the completion of the course. Paging confidence trended toward improvement at the completion of the course. Student satisfaction was high for all of the course content, and the active learning components of the curriculum (flipped classroom, simulation, and anatomy sessions) had higher scores than the traditional didactics in all six categories of our student satisfaction survey. Conclusions This pilot study demonstrates a practical approach for preparing fourth-year medical students for the expectations of Milestones Level One in obstetrics and gynecology. This curriculum can serve as a framework as medical schools and specific specialties work to meet the first steps of the ACGME's Next Accreditation System. PMID:25430640
China: A Simulation of Ancient Chung Kuo, the World's Most Ancient Civilization.
ERIC Educational Resources Information Center
Sargent, Marcia; Baral, Wanda
This simulation allows students to participate in the "ways" of ancient Chinese history and culture. The unit is organized into five major phases or "li's." Students may spend about one week on activities in each "li" which focuses on a major aspect of Chinese history, culture, or geography. In each "li"…
ERIC Educational Resources Information Center
Blikstein, Paulo; Wilensky, Uri
2009-01-01
This article reports on "MaterialSim", an undergraduate-level computational materials science set of constructionist activities which we have developed and tested in classrooms. We investigate: (a) the cognition of students engaging in scientific inquiry through interacting with simulations; (b) the effects of students programming simulations as…
ERIC Educational Resources Information Center
Macro Systems, Inc., Silver Spring, MD.
This final report describes the development of eight computer based science simulations designed for use with middle school mainstreamed students having learning disabilities or mild mental retardation. The total program includes software, a teacher's manual, 3 videos, and a set of 30 activity worksheets. Special features of the software for…
ERIC Educational Resources Information Center
Duffy, Thomas; And Others
This supplementary volume presents appendixes A-E associated with a 1-year study which determined what secondary school students were doing as they engaged in the Chelsea Bank computer software simulation activities. Appendixes present the SCANS Analysis Coding Sheet; coding problem analysis of 50 video segments; student and teacher interview…
Evaluating "Baby Think It Over" Infant Simulators: A Comparison Group Study
ERIC Educational Resources Information Center
Barnett, Jerrold E.
2006-01-01
To test the efficacy of Baby-Think-It-Over (BTIO) infant simulators, two versions of a sexuality education program were compared. While the program was designed to include BTIO as an important teaching technique, two schools (49 students) opted not to use them. These students completed all elements of the program except the BTIO activities. Their…
Zarifsanaiey, Nahid; Amini, Mitra; Saadat, Farideh
2016-11-16
There is a need to change the focus of nursing education from traditional teacher-centered training programs to student-centered active methods. The integration of the two active learning techniques will improve the effectiveness of training programs. The objective of this study is to compare the effects of the integrated training (simulation and critical thinking strategies) and simulation-based training on the performance level and critical thinking ability of nursing students. The present quasi-experimental study was performed in 2014 on 40 students who were studying practical nursing principles and skills course in the first half of the academic year in Shiraz University of Medical Sciences. Students were randomly divided into control (n = 20) and experimental (n = 20) groups. After training students through simulation and integrated education (simulation and critical thinking strategies), the students' critical thinking ability and performance were evaluated via the use of California Critical Thinking Ability Questionnaire B (CCTST) and Objective Structured Clinical Examination (OSCE) comprising 10 stations, respectively. The external reliability of the California Critical Thinking questionnaire was reported by Case B.to be between 0.78 and 0.80 and the validity of OSCE was approved by 5 members of the faculty. Furthermore, by using Split Half method (the correlation between odd and even stations), the reliability of the test was approved with correlation coefficient of 0.66. Data were analyzed using t-test and Mann-Whitney test. A significance level of 0.05 was considered to be statistically significant. The mean scores of the experimental group performance level were higher than the mean score of the control group performance level. This difference was statistically significant and students in the experimental group in OSCE stations had significantly higher performance than the control group (P <0.001). However, the mean scores obtained for the critical thinking did not increase before and after the intervention. The results showed that, the students' performance level was increased by the application of integrated training (simulation and critical thinking strategies).
NASA Astrophysics Data System (ADS)
Carmack, Gay Lynn Dickinson
2000-10-01
This two-part quasi-experimental repeated measures study examined whether computer simulated experiments have an effect on the problem solving skills of high school biology students in a school-within-a-school magnet program. Specifically, the study identified episodes in a simulation sequence where problem solving skills improved. In the Fall academic semester, experimental group students (n = 30) were exposed to two simulations: CaseIt! and EVOLVE!. Control group students participated in an internet research project and a paper Hardy-Weinberg activity. In the Spring academic semester, experimental group students were exposed to three simulations: Genetics Construction Kit, CaseIt! and EVOLVE! . Spring control group students participated in a Drosophila lab, an internet research project, and Advanced Placement lab 8. Results indicate that the Fall and Spring experimental groups experienced significant gains in scientific problem solving after the second simulation in the sequence. These gains were independent of the simulation sequence or the amount of time spent on the simulations. These gains were significantly greater than control group scores in the Fall. The Spring control group significantly outscored all other study groups on both pretest measures. Even so, the Spring experimental group problem solving performance caught up to the Spring control group performance after the third simulation. There were no significant differences between control and experimental groups on content achievement. Results indicate that CSE is as effective as traditional laboratories in promoting scientific problem solving and that CSE is a useful tool for improving students' scientific problem solving skills. Moreover, retention of problem solving skills is enhanced by utilizing more than one simulation.
NASA Astrophysics Data System (ADS)
Javidi, Giti
2005-07-01
This study was designed to investigate an alternative to the use of traditional physical laboratory activities in a communication systems course. Specifically, this study examined whether as an alternative, computer simulation is as effective as physical laboratory activities in teaching college-level electronics engineering education students about the concepts of signal transmission, modulation and demodulation. Eighty undergraduate engineering students participated in the study, which was conducted at a southeastern four-year university. The students were randomly assigned to two groups. The groups were compared on understanding the concepts, remembering the concepts, completion time of the lab experiments and perception toward the laboratory experiments. The physical group's (n = 40) treatment was to conduct laboratory experiments in a physical laboratory. The students in this group used equipment in a controlled electronics laboratory. The Simulation group's (n = 40) treatment was to conduct similar experiments in a PC laboratory. The students in this group used a simulation program in a controlled PC lab. At the completion of the treatment, scores on a validated conceptual test were collected once after the treatment and again three weeks after the treatment. Attitude surveys and qualitative study were administered at the completion of the treatment. The findings revealed significant differences, in favor of the simulation group, between the two groups on both the conceptual post-test and the follow-up test. The findings also revealed significant correlation between simulation groups' attitude toward the simulation program and their post-test scores. Moreover, there was a significant difference between the two groups on their attitude toward their laboratory experience in favor of the simulation group. In addition, there was significant difference between the two groups on their lab completion time in favor of the simulation group. At the same time, the qualitative research has uncovered several issues not explored by the quantitative research. It was concluded that incorporating the recommendations acquired from the qualitative research, especially elements of incorporating hardware experience to avoid lack of hands-on skills, into the laboratory pedagogy should help improve students' experience regardless of the environment in which the laboratory is conducted.
ERIC Educational Resources Information Center
Stoddard, Beryl
2005-01-01
Have humans been cloned? Is it possible? Immediate interest is sparked when students are asked these questions. In response to their curiosity, the clone factory activity was developed to help them understand the process of cloning. In this activity, students reenact the cloning process, in a very simplified simulation. After completing the…
Why is "S" a Biased Estimate of [sigma]?
ERIC Educational Resources Information Center
Sanqui, Jose Almer T.; Arnholt, Alan T.
2011-01-01
This article describes a simulation activity that can be used to help students see that the estimator "S" is a biased estimator of [sigma]. The activity can be implemented using either a statistical package such as R, Minitab, or a Web applet. In the activity, the students investigate and compare the bias of "S" when sampling from different…
BeeSim: Leveraging Wearable Computers in Participatory Simulations with Young Children
ERIC Educational Resources Information Center
Peppler, Kylie; Danish, Joshua; Zaitlen, Benjamin; Glosson, Diane; Jacobs, Alexander; Phelps, David
2010-01-01
New technologies have enabled students to become active participants in computational simulations of dynamic and complex systems (called Participatory Simulations), providing a "first-person"perspective on complex systems. However, most existing Participatory Simulations have targeted older children, teens, and adults assuming that such concepts…
Developing a Problem-Based Learning Simulation: An Economics Unit on Trade
ERIC Educational Resources Information Center
Maxwell, Nan L.; Mergendoller, John R.; Bellisimo, Yolanda
2004-01-01
This article argues that the merger of simulations and problem-based learning (PBL) can enhance both active-learning strategies. Simulations benefit by using a PBL framework to promote student-directed learning and problem-solving skills to explain a simulated dilemma with multiple solutions. PBL benefits because simulations structure the…
Cuerva, Marcos J; Piñel, Carlos S; Martin, Lourdes; Espinosa, Jose A; Corral, Octavio J; Mendoza, Nicolás
2018-02-12
The design of optimal courses for obstetric undergraduate teaching is a relevant question. This study evaluates two different designs of simulator-based learning activity on childbirth with regard to respect to the patient, obstetric manoeuvres, interpretation of cardiotocography tracings (CTG) and infection prevention. This randomised experimental study which differs in the content of their briefing sessions consisted of two groups of undergraduate students, who performed two simulator-based learning activities on childbirth. The first briefing session included the observations of a properly performed scenario according to Spanish clinical practice guidelines on care in normal childbirth by the teachers whereas the second group did not include the observations of a properly performed scenario, and the students observed it only after the simulation process. The group that observed a properly performed scenario after the simulation obtained worse grades during the simulation, but better grades during the debriefing and evaluation. Simulator use in childbirth may be more fruitful when the medical students observe correct performance at the completion of the scenario compared to that at the start of the scenario. Impact statement What is already known on this subject? There is a scarcity of literature about the design of optimal high-fidelity simulation training in childbirth. It is known that preparing simulator-based learning activities is a complex process. Simulator-based learning includes the following steps: briefing, simulation, debriefing and evaluation. The most important part of high-fidelity simulations is the debriefing. A good briefing and simulation are of high relevance in order to have a fruitful debriefing session. What do the results of this study add? Our study describes a full simulator-based learning activity on childbirth that can be reproduced in similar facilities. The findings of this study add that high-fidelity simulation training in childbirth is favoured by a short briefing session and an abrupt start to the scenario, rather than a long briefing session that includes direct instruction in the scenario. What are the implications of these findings for clinical practice and/or further research? The findings of this study reveal what to include in the briefing of simulator-based learning activities on childbirth. These findings have implications in medical teaching and in medical practice.
The Science Teacher: Fall 2007
NASA Astrophysics Data System (ADS)
Long, Steve
2007-11-01
This article reviews chemistry-related articles published in The Science Teacher from January through Summer 2007. Topics featured in these articles include a student activity simulating HPLC separation, inexpensive inquiry activities using film canisters, learning history as student role-play of scientists in the evolution of atomic theory, testing for radon in homes, and using writing to help high school and elementary students learn about gas laws.
ERIC Educational Resources Information Center
1999
This high school physics resource is a simulator for optics, electronics, force, motion, and sound. Students can study oscillations, look at sound waves, and use probes to graph a wide variety of quantities. Over 100 activities are pre-written, and students can easily create their own additional activities using the multimedia editor. (WRM)
ERIC Educational Resources Information Center
Baser, Mustafa
2006-01-01
This paper reports upon an active learning approach that promotes conceptual change when studying direct current electricity circuits, using free open source software, "Qucs". The study involved a total of 102 prospective mathematics teacher students. Prior to instruction, students' understanding of direct current electricity was…
Sample Strategies Used To Serve Rural Students in the Least Restrictive Environment.
ERIC Educational Resources Information Center
Helge, Doris
This booklet provides sample strategies to ameliorate service delivery problems commonly encountered by rural special educators. Strategies to increase acceptance of disabled students by nondisabled peers include buddy systems and class activities that promote personal interaction, simulation activities, and social and personal skills development.…
Learning the Ropes with Electricity
ERIC Educational Resources Information Center
Carrier, Sarah; Rex, Ted
2013-01-01
This article presents a lesson plan that uses materials such as rope, drinking water, and straws in a classroom activity to teach elementary students about electrical circuits in a "hands on/minds on" fashion. Students first experiment with bulbs, wires, and switches, then they do an activity with simulating electricity through a circuit…
ERIC Educational Resources Information Center
Tabor, Richard; Anderson, Stephen
2007-01-01
In the "Solar Sprint" activity, students design, test, and race a solar-powered car built with Legos. The use of ratios is incorporated to simulate the actual work of scientists and engineers. This method encourages fourth-grade students to think about multiple variables and stimulates their curiosity when an activity doesn't come out as…
Y Is for Yacht Race: A Game of Angles.
ERIC Educational Resources Information Center
Butzow, John W.
1986-01-01
Describes an activity approach for teaching upper elementary school students the concept of angles. In the interdisciplinary activity, students practice reading and drawing angles from 0 to 360 degrees as they simulate the behaviors used to navigate a sailboat. Includes list of equipment needed and procedures used. (JN)
NASA Astrophysics Data System (ADS)
De Ambrosis, Anna; Malgieri, Massimiliano; Mascheretti, Paolo; Onorato, Pasquale
2015-05-01
We designed a teaching-learning sequence on rolling motion, rooted in previous research about student conceptions, and proposing an educational reconstruction strongly centred on the role of friction in different cases of rolling. A series of experiments based on video analysis is used to highlight selected key concepts and to motivate students in their exploration of the topic; and interactive simulations, which can be modified on the fly by students to model different physical situations, are used to stimulate autonomous investigation in enquiry activities. The activity sequence was designed for students on introductory physics courses and was tested with a group of student teachers. Comparisons between pre- and post-tests, and between our results and those reported in the literature, indicate that students’ understanding of rolling motion improved markedly and some typical difficulties were overcome.
ERIC Educational Resources Information Center
Chang, Hsin-Yi; Hsu, Ying-Shao; Wu, Hsin-Kai
2016-01-01
We investigated the impact of an augmented reality (AR) versus interactive simulation (IS) activity incorporated in a computer learning environment to facilitate students' learning of a socio-scientific issue (SSI) on nuclear power plants and radiation pollution. We employed a quasi-experimental research design. Two classes (a total of 45…
ERIC Educational Resources Information Center
Marriott, Pru; Tan, Siew Min; Marriott, Neil
2015-01-01
Finance is a popular programme of study in UK higher education despite it being a challenging subject that requires students to understand and apply complex and abstract mathematical models and academic theories. Educational simulation is an active learning method found to be useful in enhancing students' learning experience, but there has been…
Stress and Simulation in Pilot Training. Final Report, May 1977 Through December 1977.
ERIC Educational Resources Information Center
Krahenbuhl, Gary S.; And Others
Research was conducted on pilot stress during simulated emergency flight conditions. Catecholamine (adrenaline and non-adrenaline) secretion for twenty United States Air Force student pilots and thirteen instructor pilots was determined during daily activities, during simulated flights performed in high realism simulators, and during actual…
Interactive Simulations as Implicit Support for Guided-Inquiry
ERIC Educational Resources Information Center
Moore, Emily B.; Herzog, Timothy A.; Perkins, Katherine K.
2013-01-01
We present the results of a study designed to provide insight into interactive simulation use during guided-inquiry activities in chemistry classes. The PhET Interactive Simulations project at the University of Colorado develops interactive simulations that utilize implicit--rather than explicit--scaffolding to support student learning through…
Using a Simulation and Literature To Teach the Vietnam War.
ERIC Educational Resources Information Center
Johannessen, Larry R.
2000-01-01
Addresses teaching about the Vietnam War. Focuses on selecting literature and how to implement the "mines and booby traps simulation," which demonstrates the experience of an infantry soldier. Describes follow-up activities to the simulation, the connections students made between the simulation and literature, and the importance of simulation…
ERIC Educational Resources Information Center
Jackson, Julia A.; Paty, Alma Hale
2000-01-01
Offers two activities to help students explore the geosciences during Earth Science Week. Uses a fossil collection simulation that has students digging through strata of newspaper. Presents an interdisciplinary research project that has students investigate the fossils, minerals, and rocks of their home state. (ASK)
Prast, Jean; Herlache-Pretzer, Ellen; Frederick, Andrea; Gafni-Lachter, Liat
2016-01-01
Interprofessional collaboration is vital for the provision of quality patient care. Thoughtfully designed educational programs can help students of health professions develop interprofessional competencies and capacities, including values and ethics, roles and responsibilities, interprofessional communication, and teamwork (Interprofessional Education Collaborative Expert Panel, 2011). The authors were involved in developing Interprofessional Education (IPE) activities and simulations to be infused into the curriculums of the various health professions programs in their College. A review of the IPE experiences revealed students greatly benefited from involvement in a diverse set of IPE activities and simulations.
Borg Sapiano, Alexis; Sammut, Roberta; Trapani, Josef
2018-03-01
Preparing nursing students to perform competently in complex emergency situations, such as during rapid patient deterioration, is challenging. Students' active engagement in such scenarios cannot be ensured, due to the unexpected nature of such infrequent events. Many students may consequently not experience and integrate the management of patient deterioration into their knowledge and practical competency by the end of their studies, making them unprepared to manage such situations as practicing nurses. This study investigated the effectiveness of virtual simulation in improving performance during rapid patient deterioration. To investigate the effectiveness of virtual simulation in improving student nurses' knowledge and performance during rapid patient deterioration. A pre- and post-test design was used. Nursing students at a university in Malta were invited to participate in a virtual simulation program named FIRST 2 ACTWeb™, using their own computer devices. A total of 166 (response rate=50%) second and third year diploma and degree nursing students participated in the study. The simulation included three scenarios (Cardiac-Shock-Respiratory) portraying deteriorating patients. Performance feedback was provided at the end of each scenario. Students completed pre- and post-scenario knowledge tests and performance during each scenario was recorded automatically on a database. Findings showed a significant improvement in the students' post-scenario knowledge (z=-6.506, p<0.001). Highest mean performance scores were obtained in the last scenario (M=19.7, median: 20.0, s.d. 3.41) indicating a learning effect. Knowledge was not a predictor of students' performance in the scenarios. This study supports virtual simulation as an effective learning tool for pre-registration nursing students in different programs. Simulation improves both knowledge about and performance during patient deterioration. Virtual simulation of rare events should be a key component of undergraduate nurse education, to prepare students to manage complex situations as practicing nurses. Copyright © 2018 Elsevier Ltd. All rights reserved.
Simulating a Volcanic Crisis in the Classroom.
ERIC Educational Resources Information Center
Harpp, Karen S.; Sweeney, William J.
2002-01-01
Reports on the design of a multi-week cooperative learning activity for an undergraduate introductory volcanology class which culminates in the simulation of a volcanic monitoring crisis. Suggests that this activity creates an effective and exciting learning environment in which students have the opportunity to apply theoretical concepts to a more…
Simulation and rubrics: technology and grading student performance in nurse anesthesia education.
Overstreet, Maria; McCarver, Lewis; Shields, John; Patterson, Jordan
2015-06-01
The use of simulation technology has introduced a challenge for simulation nurse educators: evaluation of student performance. The subjectivity of student performance evaluation has been in need of improvement. It is imperative to provide clear and consistent information to the learner of expectations for their performance. Educators use objectives to define for the learner what the primary focus will be in the learning activities. Creation of rubrics to replace checklists to evaluate learner performance is a team task. Improved rubrics assist instructors in providing valuable, immediate, and postactivity feedback and consistency among instructors, and improved inter-rater reliability. Copyright © 2015 Elsevier Inc. All rights reserved.
The Beads of Translation: Using Beads to Translate mRNA into a Polypeptide Bracelet
ERIC Educational Resources Information Center
Dunlap, Dacey; Patrick, Patricia
2012-01-01
During this activity, by making beaded bracelets that represent the steps of translation, students simulate the creation of an amino acid chain. They are given an mRNA sequence that they translate into a corresponding polypeptide chain (beads). This activity focuses on the events and sites of translation. The activity provides students with a…
The value of SPaCE in delivering patient feedback.
Clapham, Laura; Allan, Laura; Stirling, Kevin
2016-02-01
The use of simulated patients (SPs) within undergraduate medical curricula is an established and valued learning opportunity. Within the context of simulation, it is imperative to capture feedback from all participants within the simulation activity. The Simulated Patient Candidate Evaluation (SPaCE) tool was developed to deliver SP feedback following a simulation activity. SpaCE is a closed feedback tool that allows SPs to rate a student's performance, using a five-point Likert scale, in three domains: attitude; interaction skills; and management. This research study examined the value of the SPaCE tool and how it contributes to the overall feedback that a student receives. Classical test theory was used to determine the reliability of the SPaCE tool. An evaluation of all SP responses was conducted to observe trends in scoring patterns for each question. Qualitative data were collected via a free-text questionnaire and subsequent focus group discussion. It is imperative to capture feedback from all participants within the simulation activity Classical test theory determined that the SPaCE tool had a reliability co-efficient of 0.89. A total of 13 SPs replied to the questionnaire. A thematic analysis of all questionnaire data identified that the SPaCE tool provides a structure that allows patient feedback to be given effectively following a simulation activity. These themes were discussed further with six SPs who attended the subsequent focus group session. The SPaCE tool has been shown to be a reliable closed feedback tool that allows SPs to discriminate between students, based on their performance. The next stage in the development of the SPaCE tool is to test the wider applicability of this feedback tool. © 2015 John Wiley & Sons Ltd.
Optics simulations: a Python workshop
NASA Astrophysics Data System (ADS)
Ghalila, H.; Ammar, A.; Varadharajan, S.; Majdi, Y.; Zghal, M.; Lahmar, S.; Lakshminarayanan, V.
2017-08-01
Numerical simulations allow teachers and students to indirectly perform sophisticated experiments that cannot be realizable otherwise due to cost and other constraints. During the past few decades there has been an explosion in the development of numerical tools concurrently with open source environments such as Python software. This availability of open source software offers an incredible opportunity for advancing teaching methodologies as well as in research. More specifically it is possible to correlate theoretical knowledge with experimental measurements using "virtual" experiments. We have been working on the development of numerical simulation tools using the Python program package and we have concentrated on geometric and physical optics simulations. The advantage of doing hands-on numerical experiments is that it allows the student learner to be an active participant in the pedagogical/learning process rather than playing a passive role as in the traditional lecture format. Even in laboratory classes because of constraints of space, lack of equipment and often-large numbers of students, many students play a passive role since they work in groups of 3 or more students. Furthermore these new tools help students get a handle on numerical methods as well simulations and impart a "feel" for the physics under investigation.
Middle School Students' Decision-Making on Solid Waste Management in Taiwan.
ERIC Educational Resources Information Center
Wang, Kuo-Hua
The purpose of the study was to determine the effectiveness of a HyperCard simulation upon student's concepts, opinions, and option-rankings on solid waste management, and to investigate what cognitive activities of the students were involved in the decision-making processes. One hundred eighth-grade students in Taiwan participated in this…
Docherty, Charles; Hoy, Derek; Topp, Helena; Trinder, Kathryn
2004-01-01
This paper details the results of the first phase of a project that used eLearning to support students' learning within a simulated environment. The locus was a purpose built Clinical Simulation Laboratory (CSL) where the School's newly adopted philosophy of Problem Based Learning (PBL) was challenged through lecturers reverting to traditional teaching methods. The solution, a student-centred, problem-based approach to the acquisition of clinical skills was developed using learning objects embedded within web pages that substituted for lecturers providing instruction and demonstration. This allowed lecturers to retain their facilitator role, and encouraged students to explore, analyse and make decisions within the safety of a clinical simulation. Learning was enhanced through network communications and reflection on video performances of self and others. Evaluations were positive, students demonstrating increased satisfaction with PBL, improved performance in exams, and increased self-efficacy in the performance of nursing activities. These results indicate that an elearning approach can support PBL in delivering a student centred learning experience.
Shoemaker, Michael J; Platko, Christina M; Cleghorn, Susan M; Booth, Andrew
2014-07-01
The purpose of this retrospective qualitative case report is to describe how a case-based, virtual patient interprofessional education (IPE) simulation activity was utilized to achieve physician assistant (PA), physical therapy (PT) and occupational therapy (OT) student IPE learning outcomes. Following completion of a virtual patient case, 30 PA, 46 PT and 24 OT students were required to develop a comprehensive, written treatment plan and respond to reflective questions. A qualitative analysis of the submitted written assignment was used to determine whether IPE learning objectives were met. Student responses revealed three themes that supported the learning objectives of the IPE experience: benefits of collaborative care, role clarification and relevance of the IPE experience for future practice. A case-based, IPE simulation activity for physician assistant and rehabilitation students using a computerized virtual patient software program effectively facilitated achievement of the IPE learning objectives, including development of greater student awareness of other professions and ways in which collaborative patient care can be provided.
Basic guidelines to introduce electric circuit simulation software in a general physics course
NASA Astrophysics Data System (ADS)
Moya, A. A.
2018-05-01
The introduction of electric circuit simulation software for undergraduate students in a general physics course is proposed in order to contribute to the constructive learning of electric circuit theory. This work focuses on the lab exercises based on dc, transient and ac analysis in electric circuits found in introductory physics courses, and shows how students can use the simulation software to do simple activities associated with a lab exercise itself and with related topics. By introducing electric circuit simulation programs in a general physics course as a brief activitiy complementing lab exercise, students develop basic skills in using simulation software, improve their knowledge on the topology of electric circuits and perceive that the technology contributes to their learning, all without reducing the time spent on the actual content of the course.
Learning physical examination skills outside timetabled training sessions: what happens and why?
Duvivier, Robbert J; van Geel, Koos; van Dalen, Jan; Scherpbier, Albert J J A; van der Vleuten, Cees P M
2012-08-01
Lack of published studies on students' practice behaviour of physical examination skills outside timetabled training sessions inspired this study into what activities medical students undertake to improve their skills and factors influencing this. Six focus groups of a total of 52 students from Years 1-3 using a pre-established interview guide. Interviews were recorded, transcribed and analyzed using qualitative methods. The interview guide was based on questionnaire results; overall response rate for Years 1-3 was 90% (n = 875). Students report a variety of activities to improve their physical examination skills. On average, students devote 20% of self-study time to skill training with Year 1 students practising significantly more than Year 3 students. Practice patterns shift from just-in-time learning to a longitudinal selfdirected approach. Factors influencing this change are assessment methods and simulated/real patients. Learning resources used include textbooks, examination guidelines, scientific articles, the Internet, videos/DVDs and scoring forms from previous OSCEs. Practising skills on fellow students happens at university rooms or at home. Also family and friends were mentioned to help. Simulated/real patients stimulated students to practise of physical examination skills, initially causing confusion and anxiety about skill performance but leading to increased feelings of competence. Difficult or enjoyable skills stimulate students to practise. The strategies students adopt to master physical examination skills outside timetabled training sessions are self-directed. OSCE assessment does have influence, but learning takes place also when there is no upcoming assessment. Simulated and real patients provide strong incentives to work on skills. Early patient contacts make students feel more prepared for clinical practice.
The Subsistence Agriculture Game: A Simulation of Farming. Instructional Activities Series IA/S-17.
ERIC Educational Resources Information Center
Martinson, Tom; Harnapp, Vern
This activity is one of a series of 17 teacher-developed instructional activities for geography at the secondary-grade level described in SO 009 140. Through a simulation, students develop an understanding of subsistence agriculture in Central America and how it is influenced by cultural and physical factors. During four 50-minute class periods,…
ERIC Educational Resources Information Center
Science Activities, 1995
1995-01-01
Presents a Project WET water education activity. Students simulate the movement of water within the water cycle by role-playing a water molecule's movements. Students learn the states of water as it moves through the water cycle. (LZ)
Elmore, Donald E
2016-01-01
Molecular dynamics (MD) simulations play an increasingly important role in many aspects of biochemical research but are often not part of the biochemistry curricula at the undergraduate level. This article discusses the pedagogical value of exposing students to MD simulations and provides information to help instructors consider what software and hardware resources are necessary to successfully introduce these simulations into their courses. In addition, a brief review of the MD-based activities in this issue and other sources are provided. © 2016 The International Union of Biochemistry and Molecular Biology.
Simulating Secularization: A Pedagogical Strategy for the Sociology of Religion
ERIC Educational Resources Information Center
May, Matthew
2015-01-01
Instructing students in sociological theory is a foundational part of the discipline, but it can also be a challenge. Readers of "Teaching Sociology" can find a number of activities designed to improve students' understanding of sociological theory in their general theory courses, but there are fewer activities designed to improve…
Sorting Recycled Trash: An Activity for Earth Day 2007
ERIC Educational Resources Information Center
Harris, Mary E.; Harris, Harold H.
2007-01-01
Middle or high school students celebrate Earth Day on April 22, 2007 by participating in the activity to separate commingled recyclable trash to simulate sorting in a recycling center. Students would gain an appreciation for recyclable trash, after it is taken to a recycling center and learn about properties of recyclables.
An Empirical Assessment of an Activity to Teach Sensory Change in Aging
ERIC Educational Resources Information Center
Dickinson, Paige E.; Schwarzmueller, April; Martin, Bret
2014-01-01
This study empirically tested the effectiveness of a brief, inexpensive aging simulation activity to educate traditional-aged students about sensory declines and their potential causes in older adulthood development. Students in a life-span development course wore specific props (e.g., thick gloves, earplugs, and obscured glasses) to simulate…
ERIC Educational Resources Information Center
Baird, Michael J.
2004-01-01
A real-life analytical assignment is presented to students, who had to examine an air conditioning coolant solution for metal contamination using an atomic absorption spectroscopy (AAS). This hands-on access to a real problem exposed the undergraduate students to the mechanism of AAS, and promoted participation in a simulated industrial activity.
Use of a Simulated MCAT to Predict Real MCAT Scores.
ERIC Educational Resources Information Center
Pohlman, Mary; And Others
1979-01-01
A simulated Medical College Admission Test (MCAT) was administered to 39 premedical students two weeks prior to the new MCAT. High correlations between simulated and active test scores were obtained in the biology, chemistry, physics, science problems, reading, and quantitative areas. (MH)
Crisis on Mars: Classroom Energy Simulation.
ERIC Educational Resources Information Center
Pribble, Donald A.
1979-01-01
Described in this article is an energy conservation simulation game in which students participate in a space mission to Mars. Activities such as decision making, valuing, and problem solving occur during the game. (SA)
ERIC Educational Resources Information Center
Bernstein, Bianca L.; Bekki, Jennifer M.; Wilkins, Kerrie G.; Harrison, Caroline J.
2016-01-01
Strong interpersonal communication skills (ICS) are critical for educational and career success, but effective and widely accessible training systems are not available. This paper describes a 2 × 2 × 2 experimental study of an online, educational simulation for practice with the ICS of active listening. The simulation was customized for women…
Prieto-Díaz-Chávez, Emilio; Medina-Chávez, José Luís; Martínez-Lira, Rafael; Millán-Guerrero, Rebeca; Vázquez-Jiménez, Clemente; Trujillo-Hernández, Benjamín
2014-01-01
The changes in recent decades in the training of medical student seem to agree that the educational model for professional skills is most appropriate. The virtual simulator translates skills acquired the operating room, in the Faculty of Medicine of the University of Colima noticed the need to prepare the students of pregrade transferring surgical trainees' skills in basic laparoscopic activities that require a simple cognitive effort. The hypothesis in this study was to evaluate the acquisition of skills in laparoscopic simulator in students of pregrade. Educational research, analytical comparison, which was conducted within the activities of the program of Problem Based Learning in the program of Education and Surgical Technique, Faculty of Medicine of the University of Colima. All participants in the simulator achieved a significantly better during the task one after three repetitions (p= 0.001). The evaluation of final students calcification, we observed significant differences in means being lower during the initial assessment (8.60 ± 0.76) compared to the end (8.96 ± 0.58) p= 0.001. The acquisition of skills in the simulator is longer but at the end is better than the acquisition of skills from the traditional method, showing that leads to the acquisition of skills that promote the transfer of skills to the surgical environment.
NASA Astrophysics Data System (ADS)
Develaki, Maria
2017-11-01
Scientific reasoning is particularly pertinent to science education since it is closely related to the content and methodologies of science and contributes to scientific literacy. Much of the research in science education investigates the appropriate framework and teaching methods and tools needed to promote students' ability to reason and evaluate in a scientific way. This paper aims (a) to contribute to an extended understanding of the nature and pedagogical importance of model-based reasoning and (b) to exemplify how using computer simulations can support students' model-based reasoning. We provide first a background for both scientific reasoning and computer simulations, based on the relevant philosophical views and the related educational discussion. This background suggests that the model-based framework provides an epistemologically valid and pedagogically appropriate basis for teaching scientific reasoning and for helping students develop sounder reasoning and decision-taking abilities and explains how using computer simulations can foster these abilities. We then provide some examples illustrating the use of computer simulations to support model-based reasoning and evaluation activities in the classroom. The examples reflect the procedure and criteria for evaluating models in science and demonstrate the educational advantages of their application in classroom reasoning activities.
Taoscore Teacher's Guides: Phase 3.
ERIC Educational Resources Information Center
Taos Municipal Schools, NM.
The teacher's guide to elementary level career education is comprised of 11 units of learning activities, two each for grades 1-6. Each unit is a simulation of a career cluster; through active participation in the simulation, the students develop career awareness as well as curriculum-related concepts in math, language, reading, social studies,…
The Game of Social Life: An Assessment of a Multidimensional Poverty Simulation
ERIC Educational Resources Information Center
Bramesfeld, Kosha D.; Good, Arla
2015-01-01
This article presents the development of a new simulation activity, the Game of Social Life. The activity introduces students to concepts of social stratification based on multiple dimensions of poverty, including inequalities related to housing, education, occupational status, social power, and health outcomes. The game was administered to…
ERIC Educational Resources Information Center
Li, Na; Black, John B.
2016-01-01
Chemistry knowledge can be represented at macro-, micro- and symbolic levels, and learning a chemistry topic requires students to engage in multiple representational activities. This study focused on scaffolding for inter-level connection-making in learning chemistry knowledge with graphical simulations. We also tested whether different sequences…
Creativity: A Saleable Work Skill. Occupation Simulation Packet. Grades 3rd-4th.
ERIC Educational Resources Information Center
Dye, Dick
This teacher's guide for grades 3 and 4 contains simulated work experiences for students using the isolated skill concept - creativity. Teacher instructions include objectives, evaluation, and sequence of activities. The guide contains pre-tests and post-tests with instructions and answer keys. Two pre-skill activities are suggested, such as…
Saunders, Annette; Green, Rosy; Cross, Merylin
2017-11-01
Preparing a person-centred nursing workforce to work in diverse settings is a global health priority. Nursing students' first placement experience is a key transitional moment that shapes professional understanding and motivation to become a nurse. This paper reports the outcomes of combining flipped and simulated learning to enhance nursing students' understanding of person-centred care, the professional nursing role and preparation for placement. The study design was exploratory, the setting, an undergraduate nursing program in an Australian University. Participants included first year nursing students, academic tutors and clinical facilitators. Data collected via survey, semistructured interviews and focus group discussion were analysed descriptively and thematically. Over 90% of students surveyed considered the unit structure, content and resources prepared them well for placement. Pre-class preparation and simulated tutorial activities facilitated student engagement and knowledge translation. Students, tutors and clinical facilitators valued the person-centred approach. Tutors considered the unit materials and focus enhanced students' professional understanding. Clinical facilitators deemed students well-prepared for placement. These results from multiple perspectives, though limited, support combining the flipped classroom and person-centred simulation in nursing education as a strategy to prepare students for clinical placement, translate person-centred values into practice and promote professional understanding and role socialisation. Copyright © 2017 Elsevier Ltd. All rights reserved.
SIMULATION OF GENERAL ANESTHESIA ON THE "SIMMAN 3G" AND ITS EFFICIENCY.
Potapov, A F; Matveev, A S; Ignatiev, V G; Ivanova, A A; Aprosimov, L A
2015-01-01
In recent years in medical educational process new innovative technologies are widely used with computer simulation, providing the reality of medical intervations and procedures. Practice-training teaching with using of simulation allows to improve the efficiency of learning material at the expense of creating imaginary professional activity and leading barring material to practical activity. The arm of the investigation is evaluation of the students training efficiency at the Medical Institute on the topic "General Anesthesia with using a modern simulation "SimMan 3 G". The material of the investigation is the results, carried out on the basis of the Centre of Practical skills and medical virtual educational technologies (Simulation Centre) at the Medical Institute of NEFU by M.K. Ammosov. The Object of the investigation was made up by 55 students of the third (3) course of the Faculty of General Medicine of the Medical Institute of NEFU. The investigation was hold during practical trainings (April-May 2014) of the General Surgery Department on the topic "General Anesthesia". A simulation practical course "General Anesthesia" consisted of 12 academic hours. Practical training was carried out using instruments, equipments and facilities to install anesthesia on the SimMan 3G with shooting the process and further discussions of the results. The methods of the investigations were the appreciation of students background knowledge before and after practical training (by 5 points scale) and the analysis of the results. The results of the investigation showed that before the practical course only 23 students (41.8%) had dot positive marks: "Good"--7 students (12.7%) and "Satisfactory"--16 (29.1%) students. The rest 22 (58.2%) students had bad results. The practical trainings using real instruments, equipments and facilities with imitation of installation of preparations for introductory anesthesia, main analgesics and muscle relaxants showed a patients reaction on the virtual trainer SimMan 3 G. Students were divided into anesthetic team, co-assisting of an anesthesiologist, an assistant and nurses anesthetist, who conducted general anesthesia (the mask anesthesia, intravenous anesthesia, endotracheal anesthesia). After finishing the practical course 16 students (29.1%) got 5 marks (Excellent), 35 students (63.6%)--4 (Good) and 4 students (7.3%)--3 mark (Satisfactory).
Effects of web-based electrocardiography simulation on strategies and learning styles.
Granero-Molina, José; Fernández-Sola, Cayetano; López-Domene, Esperanza; Hernández-Padilla, José Manuel; Preto, Leonel São Romão; Castro-Sánchez, Adelaida María
2015-08-01
To identify the association between the use of web simulation electrocardiography and the learning approaches, strategies and styles of nursing degree students. A descriptive and correlational design with a one-group pretest-posttest measurement was used. The study sample included 246 students in a Basic and Advanced Cardiac Life Support nursing class of nursing degree. No significant differences between genders were found in any dimension of learning styles and approaches to learning. After the introduction of web simulation electrocardiography, significant differences were found in some item scores of learning styles: theorist (p < 0.040), pragmatic (p < 0.010) and approaches to learning. The use of a web electrocardiogram (ECG) simulation is associated with the development of active and reflexive learning styles, improving motivation and a deep approach in nursing students.
Innovative Educational Aerospace Research at the Northeast High School Space Research Center
NASA Technical Reports Server (NTRS)
Luyet, Audra; Matarazzo, Anthony; Folta, David
1997-01-01
Northeast High Magnet School of Philadelphia, Pennsylvania is a proud sponsor of the Space Research Center (SPARC). SPARC, a model program of the Medical, Engineering, and Aerospace Magnet school, provides talented students the capability to successfully exercise full simulations of NASA manned missions. These simulations included low-Earth Shuttle missions and Apollo lunar missions in the past, and will focus on a planetary mission to Mars this year. At the end of each scholastic year, a simulated mission, lasting between one and eight days, is performed involving 75 students as specialists in seven teams The groups are comprised of Flight Management, Spacecraft Communications (SatCom), Computer Networking, Spacecraft Design and Engineering, Electronics, Rocketry, Robotics, and Medical teams in either the mission operations center or onboard the spacecraft. Software development activities are also required in support of these simulations The objective of this paper is to present the accomplishments, technology innovations, interactions, and an overview of SPARC with an emphasis on how the program's educational activities parallel NASA mission support and how this education is preparing student for the space frontier.
Carnahan, Heather; Herold, Jodi
2015-01-01
ABSTRACT Purpose: To review the literature on simulation-based learning experiences and to examine their potential to have a positive impact on physiotherapy (PT) learners' knowledge, skills, and attitudes in entry-to-practice curricula. Method: A systematic literature search was conducted in the MEDLINE, CINAHL, Embase Classic+Embase, Scopus, and Web of Science databases, using keywords such as physical therapy, simulation, education, and students. Results: A total of 820 abstracts were screened, and 23 articles were included in the systematic review. While there were few randomized controlled trials with validated outcome measures, some discoveries about simulation can positively affect the design of the PT entry-to-practice curricula. Using simulators to provide specific output feedback can help students learn specific skills. Computer simulations can also augment students' learning experience. Human simulation experiences in managing the acute patient in the ICU are well received by students, positively influence their confidence, and decrease their anxiety. There is evidence that simulated learning environments can replace a portion of a full-time 4-week clinical rotation without impairing learning. Conclusions: Simulation-based learning activities are being effectively incorporated into PT curricula. More rigorously designed experimental studies that include a cost–benefit analysis are necessary to help curriculum developers make informed choices in curriculum design. PMID:25931672
Simulations in a Science and Society Course.
ERIC Educational Resources Information Center
Maier, Mark H.; Venanzi, Thomas
1984-01-01
Provides a course outline which includes simulation exercises designed as in-class activities related to science and society interactions. Simulations focus on the IQ debate, sociobiology, nuclear weapons and nulcear strategy, nuclear power and radiation, computer explosion, and cosmology. Indicates that learning improves when students take active…
Simulating History to Understand International Politics
ERIC Educational Resources Information Center
Weir, Kimberly; Baranowski, Michael
2011-01-01
To understand world politics, one must appreciate the context in which international systems develop and operate. Pedagogy studies demonstrate that the more active students are in their learning, the more they learn. As such, using computer simulations can complement and enhance classroom instruction. CIVILIZATION is a computer simulation game…
Computer Simulation of the Population Growth (Schizosaccharomyces Pombe) Experiment.
ERIC Educational Resources Information Center
Daley, Michael; Hillier, Douglas
1981-01-01
Describes a computer program (available from authors) developed to simulate "Growth of a Population (Yeast) Experiment." Students actively revise the counting techniques with realistically simulated haemocytometer or eye-piece grid and are reminded of the necessary dilution technique. Program can be modified to introduce such variables…
Using Technology Effectively to Teach about Fractions
ERIC Educational Resources Information Center
Hensberry, Karina K. R.; Moore, Emily B.; Perkins, Katherine
2015-01-01
In this article, the authors describe classroom use of technology that successfully engaged fourth grade students (typically aged 9-10) in the United States in learning about fractions. The activities involved the use of an interactive simulation designed to support student learning of fractions, and whole-class discussion where students were…
Improving Student Understanding of Spatial Ecology Statistics
ERIC Educational Resources Information Center
Hopkins, Robert, II; Alberts, Halley
2015-01-01
This activity is designed as a primer to teaching population dispersion analysis. The aim is to help improve students' spatial thinking and their understanding of how spatial statistic equations work. Students use simulated data to develop their own statistic and apply that equation to experimental behavioral data for Gambusia affinis (western…
Students as Technicians: Screening Newborns for Cystic Fibrosis
ERIC Educational Resources Information Center
Gusky, Sharon
2014-01-01
In this activity, freshman college students learn biotechnology techniques while playing the role of a laboratory technician. They perform simulations of three diagnostic tests used to screen newborns for cystic fibrosis. By performing an ELISA, a PCR analysis, and a conductivity test, students learn how biotechnology techniques can be used to…
The Living Dead: Transformative Experiences in Modelling Natural Selection
ERIC Educational Resources Information Center
Petersen, Morten Rask
2017-01-01
This study considers how students change their coherent conceptual understanding of natural selection through a hands-on simulation. The results show that most students change their understanding. In addition, some students also underwent a transformative experience and used their new knowledge in a leisure time activity. These transformative…
Inquiry-Based Instruction of Compound Microscopy Using Simulated Paleobiogeography
ERIC Educational Resources Information Center
Hodgson, Jay Y. S.; Mateer, Scott C.
2015-01-01
The compound microscope is an important tool in biology, and mastering it requires repetition. Unfortunately, introductory activities for students can be formulaic, and consequently, students are often unengaged and fail to develop the required experience to become proficient in microscopy. To engage students, increase repetition, and develop…
ERIC Educational Resources Information Center
Noone, E. T., Jr.
1991-01-01
Presented is an activity in which probability and percents are taught using a basketball computer simulation. Computer programs that replicate the free-throw accuracy of college and professional stars and allow students to compete with those stars are included. (KR)
Teaching Workflow Analysis and Lean Thinking via Simulation: A Formative Evaluation
Campbell, Robert James; Gantt, Laura; Congdon, Tamara
2009-01-01
This article presents the rationale for the design and development of a video simulation used to teach lean thinking and workflow analysis to health services and health information management students enrolled in a course on the management of health information. The discussion includes a description of the design process, a brief history of the use of simulation in healthcare, and an explanation of how video simulation can be used to generate experiential learning environments. Based on the results of a survey given to 75 students as part of a formative evaluation, the video simulation was judged effective because it allowed students to visualize a real-world process (concrete experience), contemplate the scenes depicted in the video along with the concepts presented in class in a risk-free environment (reflection), develop hypotheses about why problems occurred in the workflow process (abstract conceptualization), and develop solutions to redesign a selected process (active experimentation). PMID:19412533
ERIC Educational Resources Information Center
Cela-Ranilla, Jose María; Esteve-Gonzalez, Vanessa; Esteve-Mon, Francesc; Gisbert-Cervera, Merce
2014-01-01
In this study we analyze how 57 Spanish university students of Education developed a learning process in a virtual world by conducting activities that involved the skill of self-management. The learning experience comprised a serious game designed in a 3D simulation environment. Descriptive statistics and non-parametric tests were used in the…
Learning to manage complexity through simulation: students' challenges and possible strategies.
Gormley, Gerard J; Fenwick, Tara
2016-06-01
Many have called for medical students to learn how to manage complexity in healthcare. This study examines the nuances of students' challenges in coping with a complex simulation learning activity, using concepts from complexity theory, and suggests strategies to help them better understand and manage complexity.Wearing video glasses, participants took part in a simulation ward-based exercise that incorporated characteristics of complexity. Video footage was used to elicit interviews, which were transcribed. Using complexity theory as a theoretical lens, an iterative approach was taken to identify the challenges that participants faced and possible coping strategies using both interview transcripts and video footage.Students' challenges in coping with clinical complexity included being: a) unprepared for 'diving in', b) caught in an escalating system, c) captured by the patient, and d) unable to assert boundaries of acceptable practice.Many characteristics of complexity can be recreated in a ward-based simulation learning activity, affording learners an embodied and immersive experience of these complexity challenges. Possible strategies for managing complexity themes include: a) taking time to size up the system, b) attuning to what emerges, c) reducing complexity, d) boundary practices, and e) working with uncertainty. This study signals pedagogical opportunities for recognizing and dealing with complexity.
The Mind as Black Box: A Simulation of Theory Building in Psychology.
ERIC Educational Resources Information Center
Hildebrandt, Carolyn; Oliver, Jennifer
2000-01-01
Discusses an activity that uses the metaphor "the mind is a black box," in which students work in groups to discover what is inside a sealed, black, plastic box. States that the activity enables students to understand the need for theories in psychology and to comprehend how psychologists build, test, and refine those theories. (CMK)
ERIC Educational Resources Information Center
Russ, Travis L.
2007-01-01
The aim of this activity is to immerse students in a simulated situation where they are enticed to make snap judgments about strangers, demonstrating that they can and easily do, and then motivate them to critically reflect on the consequences that these presumptions have on effective interpersonal communication. This activity allows students to…
Shoeboxes and Taxes: Integrated Course Design Unleashes New Creativity for a Veteran Teacher
ERIC Educational Resources Information Center
Huber, Marsha M.
2009-01-01
This article discusses how the author used an integrated course design model to create new learning activities in her course on federal taxation. The shoebox case--a simulation where students are given realistic documents to use in preparing a tax return--gave her students an opportunity to construct new knowledge. This activity supported the…
ERIC Educational Resources Information Center
Hocking, Colin; And Others
This series of educational activities is intended to help teachers communicate basic scientific concepts related to global warming and the greenhouse effect to students grades 7-10. Seven sessions provide laboratory activities, simulations, and discussions that can be used to improve student understanding of a number of important scientific…
Data-Based Active Learning in the Principles of Macroeconomics Course: A Mock FOMC Meeting
ERIC Educational Resources Information Center
Whiting, Cathleen
2006-01-01
The author presents an active-learning exercise for the introductory macroeconomics class in which students participate in a mock Federal Open Market Committee (FOMC) meeting. Preparation involves data gathering and writing both a research report and a policy recommendation. An FOMC meeting is simulated in which students give their policy…
Cootie Genetics: Simulating Mendel's Experiments to Understand the Laws of Inheritance
ERIC Educational Resources Information Center
Galloway, Katelyn; Anderson, Nadja
2014-01-01
"Cootie Genetics" is a hands-on, inquiry-based activity that enables students to learn the Mendelian laws of inheritance and gain an understanding of genetics principles and terminology. The activity begins with two true-breeding Cooties of the same species that exhibit five observable trait differences. Students observe the retention or…
NASA Astrophysics Data System (ADS)
Jarret, Ronald M.
2001-04-01
The traditional lab exercise that achieves separation of a mixture of 4-aminoacetophenone and benzoic acid by chemically active extraction has been expanded to include two exercises. First, students provide input on condition selections. This is based on the pooling of data from student observations of the solubility-miscibility behavior of 4-aminoacetophenone, benzoic acid, sodium benzoate, and various solvents and aqueous solutions. Second, students participate in an exercise that uses materials from the extraction experiment to simulate how a virus spreads through a population. The additional mini-exercises promote student participation and reinforce the concepts of the extraction lab.
NASA Astrophysics Data System (ADS)
Benakli, Nadia; Kostadinov, Boyan; Satyanarayana, Ashwin; Singh, Satyanand
2017-04-01
The goal of this paper is to promote computational thinking among mathematics, engineering, science and technology students, through hands-on computer experiments. These activities have the potential to empower students to learn, create and invent with technology, and they engage computational thinking through simulations, visualizations and data analysis. We present nine computer experiments and suggest a few more, with applications to calculus, probability and data analysis, which engage computational thinking through simulations, visualizations and data analysis. We are using the free (open-source) statistical programming language R. Our goal is to give a taste of what R offers rather than to present a comprehensive tutorial on the R language. In our experience, these kinds of interactive computer activities can be easily integrated into a smart classroom. Furthermore, these activities do tend to keep students motivated and actively engaged in the process of learning, problem solving and developing a better intuition for understanding complex mathematical concepts.
Expansive learning in the university setting: the case for simulated clinical experience.
Haigh, Jacquelyn
2007-03-01
This paper argues that simulated practice in the university setting is not just a second best to learning in the clinical area but one which offers the potential for deliberation and deep learning [Eraut, M., 2000. Non-formal learning, implicit learning and tacit knowledge in professional work. Journal of Educational Psychology, 70, 113-136]. The context of student learning in an undergraduate midwifery programme is analysed using human activity theory [Engeström, Y., 2001. Expansive learning at work: toward an activity theoretical reconceptualization. Journal of Education and Work, 14, 133-156]. The advantages of this approach to student learning as opposed to situated learning theory and the concept of legitimate peripheral participation [Lave, J., Wenger, E., 1991. Situated Learning: Legitimate Peripheral Participation. Cambridge University Press, New York] are discussed. An activity system changes as a result of contradictions and tensions between what it purports to produce and the views of stakeholders (multi-voicedness) as well as its historical context (Historicity of activity). A focus group with students highlights their expressed need for more simulated practice experience. The views of midwifery lecturers are sought as an alternative voice on this tension in the current programme. Qualitative differences in types of simulated experience are explored and concerns about resources are raised in the analysis. Discussion considers the value of well planned simulations in encouraging the expression of tacit understanding through a group deliberative learning process [Eraut, M., 2000. Non-formal learning, implicit learning and tacit knowledge in professional work. Journal of Educational Psychology, 70, 113-136].
Arif, Sally; Cryder, Brian; Mazan, Jennifer; Quiñones-Boex, Ana; Cyganska, Angelika
2017-04-01
Objective. To develop, implement, and assess whether simulated patient case videos improve students' understanding of and attitudes toward cross-cultural communication in health care. Design. Third-year pharmacy students (N=159) in a health care communications course participated in a one-hour lecture and two-hour workshop on the topic of cross-cultural communication. Three simulated pharmacist-patient case vignettes highlighting cross-cultural communication barriers, the role of active listening, appropriate use of medical interpreters, and useful models to overcome communication barriers were viewed and discussed in groups of 20 students during the workshop. Assessment. A pre-lecture and post-workshop assessed the effect on students' understanding of and attitudes toward cross-cultural communication. Understanding of cross-cultural communication concepts increased significantly, as did comfort level with providing cross-cultural care. Conclusion. Use of simulated patient case videos in conjunction with an interactive workshop improved pharmacy students' understanding of and comfort level with cross-cultural communication skills and can be useful tools for cultural competency training in the curriculum.
Creating student awareness to improve cultural competence: creating the critical incident.
Morell, Venita W; Sharp, Penny C; Crandall, Sonia J
2002-09-01
Teaching medical students to recognize the need for cultural competence and accept their shortcomings in this area is a challenge. A simulated patient scenario was developed to address this challenge. The objective of the simulation is to enhance students' readiness to learn by moving them from 'unconscious incompetence' to 'conscious incompetence'. The patient scenario presents a Cherokee Indian woman with a complaint of abnormal menstrual bleeding who is resistant to gynaecologic care from male providers. A faculty member facilitates a small-group videotape review of student interviews. As students discuss their encounters, they realize they 'misdiagnose' and mishandle the interview. They are confronted by their inability to recognize cultural cues and the impact they may have on health outcomes and begin to question whether cultural beliefs are affecting the care of other patients. This simulation creates an eye-opening situation that must be handled carefully. This activity is an effective method to create awareness in students who feel they 'know all this stuff.'
Utilization of hands-on and simulation activities for teaching middle school lunar concepts
NASA Astrophysics Data System (ADS)
Roseman, Reni B.; Jones, Dyan L.
2013-01-01
A great deal of literature exists surrounding the misconceptions that students have regarding the moon, specifically how the moon phases and eclipses occur. These studies provide teachers with information regarding what misconceptions their students may come to the classroom with as well as some ideas as to how to approach and correct them. However, these methods are not always validated with classroom-based research, and much of the research that has been done is in the high school and college setting. As such, we have undertaken a study to investigate what a group of middle school students know about the moon pre-instruction, and how hands-on activities and computer simulations affect student learning and understanding of these topics. The results of this project show that neither supplementation was distinguishably more effective in improving student test scores, as measured by normalized gains; this may be an artifact of high pre-test scores, as described herein.
Teaching problem solving using non-routine tasks
NASA Astrophysics Data System (ADS)
Chong, Maureen Siew Fang; Shahrill, Masitah; Putri, Ratu Ilma Indra; Zulkardi
2018-04-01
Non-routine problems are related to real-life context and require some realistic considerations and real-world knowledge in order to resolve them. This study examines several activity tasks incorporated with non-routine problems through the use of an emerging mathematics framework, at two junior colleges in Brunei Darussalam. The three sampled teachers in this study assisted in selecting the topics and the lesson plan designs. They also recommended the development of the four activity tasks: incorporating the use of technology; simulation of a reality television show; designing real-life sized car park spaces for the school; and a classroom activity to design a real-life sized dustpan. Data collected from all four of the activity tasks were analyzed based on the students' group work. The findings revealed that the most effective activity task in teaching problem solving was to design a real-life sized car park. This was because the use of real data gave students the opportunity to explore, gather information and give or receive feedback on the effect of their reasons and proposed solutions. The second most effective activity task was incorporating the use of technology as it enhanced the students' understanding of the concepts learnt in the classroom. This was followed by the classroom activity that used real data as it allowed students to work and assess the results mathematically. The simulation of a television show was found to be the least effective since it was viewed as not sufficiently challenging to the students.
Bland, Andrew J; Tobbell, Jane
2016-09-01
Simulation has become an established feature of nurse education yet little is understood about the mechanisms that lead to learning. To explore the attributes of simulation-based education that enable student learning in undergraduate nurse education. Final year students drawn from one UK University (n=46) participated in a grounded theory study. First, nonparticipant observation and video recording of student activity was undertaken. Following initial analysis, recordings and observations were deconstructed during focus group interviews that enabled both the researcher and participants to unpack meaning. Lastly emergent findings were verified with final year students drawn from a second UK University (n=6). A staged approach to learning emerged from engagement in simulation. This began with initial hesitation as students moved through nonlinear stages to making connections and thinking like a nurse. Core findings suggest that simulation enables curiosity and intellect (main concern) through doing (core category) and interaction with others identified as social collaboration (category). This study offers a theoretical basis for understanding simulation-based education and integration of strategies that maximise the potential for learning. Additionally it offers direction for further research, particularly with regards to how the application of theory to practice is accelerated through learning by doing and working collaboratively. Copyright © 2016 Elsevier Ltd. All rights reserved.
Crawling and/or Squatting: A Saleable Work Skill. Occupation Simulation Packet. Grades K-2nd.
ERIC Educational Resources Information Center
Montgomery, Margery
This teacher's guide for grades K-2 contains simulated work experiences for students using the isolated skill concept, crawling and/or squatting. Teacher instructions include objectives, evaluation, and sequence of activities. The guide contains pre-tests and post-tests with instructions and answer keys. Three pre-skill activities are suggested,…
Assembling in Sequence: A Saleable Work Skill. Occupation Simulation Packet. Grades 3rd-4th.
ERIC Educational Resources Information Center
Hueston, Jean
This teacher's guide for grades 3 and 4 contains simulated work experiences for students using the isolated skill concept - assembling in sequence. Teacher instructions include objectives, evaluation, and sequence of activities. The guide contains pre-tests and post-tests with instructions and answer keys. Three pre-skill activities are suggested,…
Oral Persuasion: A Saleable Work Skill. Occupation Simulation Packet. Grades 5th-6th.
ERIC Educational Resources Information Center
Lee, Dennis W.
This teacher's guide contains simulated work experiences for 5th and 6th grade students using the isolated skill concept - oral persuasion. Teacher instructions include objectives, evaluation, and sequence of activities. The guide contains pre-tests and post-tests with instructions and answer keys. Two pre-skill activities are suggested, such as…
Exploring the Learning from an Enterprise Simulation.
ERIC Educational Resources Information Center
Sawyer, John E.; Gopinath, C.
1999-01-01
A computer simulation used in teams by 151 business students tested their ability to translate strategy into decisions. Over eight weeks, the experiential learning activity encouraged strategic decision making and group behavior consistent with long-term strategy. (SK)
Structured student-generated videos for first-year students at a dental school in Malaysia.
Omar, Hanan; Khan, Saad A; Toh, Chooi G
2013-05-01
Student-generated videos provide an authentic learning experience for students, enhance motivation and engagement, improve communication skills, and improve collaborative learning skills. This article describes the development and implementation of a student-generated video activity as part of a knowledge, observation, simulation, and experience (KOSE) program at the School of Dentistry, International Medical University, Kuala Lumpur, Malaysia. It also reports the students' perceptions of an activity that introduced first-year dental students (n=44) to clinical scenarios involving patients and dental team aiming to improve professional behavior and communication skills. The learning activity was divided into three phases: preparatory phase, video production phase, and video-watching. Students were organized into five groups and were instructed to generate videos addressing given clinical scenarios. Following the activity, students' perceptions were assessed with a questionnaire. The results showed that 86 percent and 88 percent, respectively, of the students agreed that preparation of the activity enhanced their understanding of the role of dentists in provision of health care and the role of enhanced teamwork. In addition, 86 percent and 75 percent, respectively, agreed that the activity improved their communication and project management skills. Overall, the dental students perceived that the student-generated video activity was a positive experience and enabled them to play the major role in driving their learning process.
ERIC Educational Resources Information Center
Fratamico, Lauren; Conati, Cristina; Kardan, Samad; Roll, Ido
2017-01-01
Interactive simulations can facilitate inquiry learning. However, similarly to other Exploratory Learning Environments, students may not always learn effectively in these unstructured environments. Thus, providing adaptive support has great potential to help improve student learning with these rich activities. Providing adaptive support requires a…
Simulation-based education for transfusion medicine.
Morgan, Shanna; Rioux-Masse, Benjamin; Oancea, Cristina; Cohn, Claudia; Harmon, James; Konia, Mojca
2015-04-01
The administration of blood products is frequently determined by physicians without subspecialty training in transfusion medicine (TM). Education in TM is necessary for appropriate utilization of resources and maintaining patient safety. Our institution developed an efficient simulation-based TM course with the goal of identifying key topics that could be individualized to learners of all levels in various environments while also allowing for practice in an environment where the patient is not placed at risk. A 2.5-hour simulation-based educational activity was designed and taught to undergraduate medical students rotating through anesthesiology and TM elective rotations and to all Clinical Anesthesia Year 1 (CA-1) residents. Content and process evaluation of the activity consisted of multiple-choice tests and course evaluations. Seventy medical students and seven CA-1 residents were enrolled in the course. There was no significant difference on pretest results between medical students and CA-1 residents. The posttest results for both medical students and CA-1 residents were significantly higher than pretest results. The results of the posttest between medical students and CA-1 residents were not significantly different. The TM knowledge gap is not a trivial problem as transfusion of blood products is associated with significant risks. Innovative educational techniques are needed to address the ongoing challenges with knowledge acquisition and retention in already full curricula. Our institution developed a feasible and effective way to integrate TM into the curriculum. Educational activities, such as this, might be a way to improve the safety of transfusions. © 2014 AABB.
A studentized permutation test for three-arm trials in the 'gold standard' design.
Mütze, Tobias; Konietschke, Frank; Munk, Axel; Friede, Tim
2017-03-15
The 'gold standard' design for three-arm trials refers to trials with an active control and a placebo control in addition to the experimental treatment group. This trial design is recommended when being ethically justifiable and it allows the simultaneous comparison of experimental treatment, active control, and placebo. Parametric testing methods have been studied plentifully over the past years. However, these methods often tend to be liberal or conservative when distributional assumptions are not met particularly with small sample sizes. In this article, we introduce a studentized permutation test for testing non-inferiority and superiority of the experimental treatment compared with the active control in three-arm trials in the 'gold standard' design. The performance of the studentized permutation test for finite sample sizes is assessed in a Monte Carlo simulation study under various parameter constellations. Emphasis is put on whether the studentized permutation test meets the target significance level. For comparison purposes, commonly used Wald-type tests, which do not make any distributional assumptions, are included in the simulation study. The simulation study shows that the presented studentized permutation test for assessing non-inferiority in three-arm trials in the 'gold standard' design outperforms its competitors, for instance the test based on a quasi-Poisson model, for count data. The methods discussed in this paper are implemented in the R package ThreeArmedTrials which is available on the comprehensive R archive network (CRAN). Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Active-learning laboratory session to teach the four M's of diabetes care.
Darbishire, Patricia L; Plake, Kimberly S; Nash, Christiane L; Shepler, Brian M
2009-04-07
To implement an active-learning methodology for teaching diabetes care to pharmacy students and evaluate its effectiveness. Laboratory instruction was divided into 4 primary areas of diabetes care, referred to by the mnemonic, the 4 M's: meal planning, motion, medication, and monitoring. Students participated in skill-based learning laboratory stations and in simulated patient experiences. A pretest, retrospective pretest, and posttest were administered to measure improvements in students' knowledge about diabetes and confidence in providing care to diabetes patients. Students knowledge of and confidence in each area assessed improved. Students enjoyed the laboratory session and felt it contributed to their learning. An active-learning approach to teaching diabetes care allowed students to experience aspects of the disease from the patient's perspective. This approach will be incorporated in other content areas.
Kyle, Richard R; Via, Darin K; Lowy, R Joel; Madsen, James M; Marty, Aileen M; Mongan, Paul D
2004-03-01
To reinforce concepts presented in the lectures; understand the complexity and speed of casualty and information generation during a Weapons of Mass Destruction and Terrorism (WMD/T) event; experience the novelty of combined weapons' effects; recognize the time course of the various chemical, biological, and radiation agents; and make challenging decisions with incomplete and conflicting information. Two environments simulated simultaneously: one a major trauma center emergency room (ER) with two patient simulators and several human actors; the other an Emergency Operations Command Center (EOC). Students for this course included: clinicians, scientists, military and intelligence officers, lawyers, administrators, and logistic personnel whose jobs involve planning and executing emergency response plans to WMD/T. SIMULATION SCRIPT: A WMD/T attack in Washington, D.C., has occurred. Clinical students performed in their real life roles in the simulated ER, while nonclinical students did the same in the simulated EOC. Six ER casualties with combined WMD/T injuries were presented and treated over 40 minutes. In the EOC, each person was given his or her role title with identification tag. The EOC scenario took cues from the action in the ER via two television (TV) news feeds and telephone calls from other Emergency Operations Assets. PERFORMANCE EXPECTATIONS: Students were expected to actively engage in their roles. Student performances were self-evaluated during the debriefing. DEBRIEFING: The two groups were reunited and debriefed utilizing disaster crisis resource management tools. ASSESSMENT OF EFFECTIVENESS: Students answered an 18-point questionnaire to help evaluate the usefulness and acceptance of multimodality patient simulation. Large-scale multimodality patient simulation can be used to train both clinicians and nonclinicians for future events of WMD/T. Students accepted the simulation experience and thought that scenario was appropriately realistic, complex, and overwhelming. Difficulties include the extensive man-hours involved in designing and presenting the live simulations. EOC-only sessions could be staged with only a few video cassette recorders, TVs, telephones, and callers.
ERIC Educational Resources Information Center
Magnin, Michele Claude
A "global simulation" is a class activity allowing students to encounter situations that include love, life, and death in a simulated environment. This paper describes several possible simulations. Each one can be integrated into a variety of intermediate- to advanced-level curricula such as a conversation class, a culture and civilization class,…
Sink or Swim: Learning by Doing in a Supply Chain Integration Activity*
ERIC Educational Resources Information Center
Harnowo, Akhadian S.; Calhoun, Mikelle A.; Monteiro, Heather
2016-01-01
Studies show that supply chain integration (SCI) is important to organizations. This article describes an activity that places students in the middle of an SCI scenario. The highly interactive hands-on simulation requires only 50 to 60 minutes of classroom time, may be used with 18 to about 36 students, and involves minimal instructor preparation.…
A simulated emergency department for medical students.
Johnson, Patricia; Brazil, Victoria; Raymond-Dufresne, Éliane; Nielson, Tracy
2017-08-01
During their training, medical students often undertake a rotation in an emergency department (ED), where they are exposed to a wide variety of patient presentations. Simulation can be an effective teaching strategy to help prepare learners for the realities of the clinical environment. Simulating an ED shift can provide students with the opportunity to perform a range of clinical activities, within their scope of practice, in a supervised and supportive learning environment. Medical students often undertake a rotation in an emergency department CONTEXT: There is limited literature describing the structure, syllabus, feasibility and perceived usefulness of simulating a typical ED for medical student training. We developed a simulated ED (simED) teaching session for medical students at our university. Students were informed of the purpose and learning tasks of the session prior to attendance. At the start of their 2-hour simED shift students were allocated 'patients' by the Triage nurse. At the completion of their shift, students attended a debriefing discussion. Student feedback indicated that they felt that the simED: provided a good opportunity to practise skills and apply theory to practice; was realistic and challenging; highlighted the importance of teamwork; and enabled them to identify skills requiring further practise. Suggestions for improvements included a longer time spent in the simED and the opportunity to see more patients. The simED approach seemed to be well received and perceived by medical students as useful preparation for the ED. An overview of the structure, materials and resources used is provided to assist educators seeking to implement similar ED clinical scenarios in their curriculum. © 2016 John Wiley & Sons Ltd and The Association for the Study of Medical Education.
Teaching Harmonic Motion in Trigonometry: Inductive Inquiry Supported by Physics Simulations
ERIC Educational Resources Information Center
Sokolowski, Andrzej; Rackley, Robin
2011-01-01
In this article, the authors present a lesson whose goal is to utilise a scientific environment to immerse a trigonometry student in the process of mathematical modelling. The scientific environment utilised during this activity is a physics simulation called "Wave on a String" created by the PhET Interactive Simulations Project at…
Interactive Simulations to Support Quantum Mechanics Instruction for Chemistry Students
ERIC Educational Resources Information Center
Kohnle, Antje; Benfield, Cory; Hahner, Georg; Paetkau, Mark
2017-01-01
The QuVis Quantum Mechanics Visualization Project provides freely available research-based interactive simulations with accompanying activities for the teaching and learning of quantum mechanics across a wide range of topics and levels. This article gives an overview of some of the simulations and describes their use in an introductory physical…
ERIC Educational Resources Information Center
Brown, Abbie Howard
1999-01-01
Describes and discusses how simulation activities can be used in teacher education to augment the traditional field-experience approach, focusing on artificial intelligence, virtual reality, and intelligent tutoring systems. Includes an overview of simulation as a teaching and learning strategy and specific examples of high-technology simulations…
Immersive Simulations for Smart Classrooms: Exploring Evolutionary Concepts in Secondary Science
ERIC Educational Resources Information Center
Lui, Michelle; Slotta, James D.
2014-01-01
This article presents the design of an immersive simulation and inquiry activity for technology-enhanced classrooms. Using a co-design method, researchers worked with a high school biology teacher to create a rainforest simulation, distributed across several large displays in the room to immerse students in the environment. The authors created and…
ERIC Educational Resources Information Center
Balakrishnan, B.; Woods, P. C.
2013-01-01
Over the years, rapid development in computer technology has engendered simulation-based laboratory (lab) in addition to the traditional hands-on (physical) lab. Many higher education institutions adopt simulation lab, replacing some existing physical lab experiments. The creation of new systems for conducting engineering lab activities has raised…
ERIC Educational Resources Information Center
Kapralos, Bill; Hogan, Michelle; Pribetic, Antonin I.; Dubrowski, Adam
2011-01-01
Purpose: Gaming and interactive virtual simulation environments support a learner-centered educational model allowing learners to work through problems acquiring knowledge through an active, experiential learning approach. To develop effective virtual simulations and serious games, the views and perceptions of learners and educators must be…
NASA Astrophysics Data System (ADS)
Moiteiro, Bárbara; Rodrigues, Berta
2016-04-01
The motivation of young students to science is much higher when the theoretical teaching is accompanied by practice and these are engaged in activities that involve real problems of their society and requiring a scientific basis for its discussion. Several activities such as collaboration on current scientific experiments, direct contact with scientists, participation in science competitions, visits to Science Museums, artistic and craft activities, the use of simulators and virtual laboratories, increase the degree of student satisfaction and motivate them in their learning processes. This poster shows some of Astronomy activities with students of schools Agrupamento de Escolas José Belchior Viegas within the Physics and Chemistry classes.
ERIC Educational Resources Information Center
Ward, Tony; Falconer, Liz; Frutos-Perez, Manuel; Williams, Bryn; Johns, James; Harold, Sinead
2016-01-01
This study compares online simulation in Second Life® (Linden Labs, San Francisco, California, USA) with equivalent face-to-face activities for three scenarios. The intention was that the three sets of activities would increase participant awareness of how psychology is applied in relation to work-based contexts. These were a Dragons' Den-style…
Use of a PhET Interactive Simulation in General Chemistry Laboratory: Models of the Hydrogen Atom
ERIC Educational Resources Information Center
Clark, Ted M.; Chamberlain, Julia M.
2014-01-01
An activity supporting the PhET interactive simulation, Models of the Hydrogen Atom, has been designed and used in the laboratory portion of a general chemistry course. This article describes the framework used to successfully accomplish implementation on a large scale. The activity guides students through a comparison and analysis of the six…
ERIC Educational Resources Information Center
Kennedy, Helena
This teacher's guide contains simulated work experiences for 5th and 6th grade students using the isolated skill concept - measuring. Teacher instructions include objectives, evaluation, and sequence of activities. The guide contains pre-tests and post-tests with instructions and answer keys. Three pre-skill activities are suggested, such as…
An active-learning laboratory on immunizations.
Donohoe, Krista L; Mawyer, Tonya M; Stevens, J Tyler; Morgan, Laura A; Harpe, Spencer E
2012-12-12
To implement and evaluate an active-learning laboratory activity to teach pharmacy students about influenza, pneumococcal, and shingles vaccines. The laboratory session was divided into 6 immunization stations: 3 stations on influenza including a pediatrics station, and 1 station each for pneumococcal, shingles, and anaphylaxis. Although 118 of 123 (95.9%) students had completed an immunization training certificate prior to attending the laboratory, the average score on a pre-assessment to measure immunization knowledge and confidence was 56%. The post-assessment score was 87.4%. Students' confidence improved by 18.7% to 51.2% in each of the 5 areas assessed. Most respondents rated the activity overall as good or excellent on a post-activity evaluation. An active-learning approach to teaching immunizations allowed students to gain knowledge in simulated real-world experiences and reinforced key concepts on influenza, pneumococcal, and shingles vaccines.
Jakobsen, Rune Bruhn; Gran, Sarah Frandsen; Grimsmo, Bergsvein; Arntzen, Kari; Fosse, Erik; Frich, Jan C; Hjortdahl, Per
2018-01-01
High quality care relies on interprofessional teamwork. We developed a short simulation-based course for final year medical, nursing and nursing anaesthesia students, using scenarios from emergency medicine. The aim of this paper is to describe the adaptation of an interprofessional simulation course in an undergraduate setting and to report participants' experiences with the course and students' learning outcomes. We evaluated the course collecting responses from students through questionnaires with both closed-ended and open-ended questions, supplemented by the facilitators' assessment of students' performance. Our data is based on responses from 310 students and 16 facilitators who contributed through three evaluation phases. In the analysis, we found that students reported emotional activation and learning outcomes within the domains self-insight and stress management, understanding of the leadership role, insight into teamwork, and skills in team communication. In subsequent questionnaire studies students reported having gained insights about communication, teamwork and leadership, and they believed they would be better leaders of teams and/or team members after having completed the course. Facilitators' observations suggested a progress in students' non-technical skills during the course. The facilitators observed that nursing anaesthesia students seemed to be more comfortable in finding their role in the team than the two other groups. In conclusion, we found that an interprofessional simulation-based emergency team training course with a focus on leadership, communication and teamwork, was feasible to run on a regular basis for large groups of students. The course improved the students' team skills and received a favourable evaluation from both students and faculty.
ERIC Educational Resources Information Center
Children & Animals, 1987
1987-01-01
Presents a set of teaching activities which deal with the pet overpopulation problem while improving students' persuasive writing skills. Includes activities that focus on how people can solve problems by working together. The activities range from songs to a computer simulation. (TW)
Rollins, Brent L.; Gunturi, Rahul; Sullivan, Donald
2014-01-01
Objective. To implement a pharmacy business management simulation exercise as a practical application of business management material and principles and assess students’ perceived value. Design. As part of a pharmacy management and administration course, students made various calculations and management decisions in the global categories of hours of operation, inventory, pricing, and personnel. The students entered the data into simulation software and a realistic community pharmacy marketplace was modeled. Course topics included accounting, economics, finance, human resources, management, marketing, and leadership. Assessment. An 18-item posttest survey was administered. Students’ slightly to moderately agreed the pharmacy simulation program enhanced their knowledge and understanding, particularly of inventory management, cash flow statements, balance sheets, and income statements. Overall attitudes toward the pharmacy simulation program were also slightly positive and students also slightly agreed the pharmacy simulation program enhanced their learning of pharmacy business management. Inventory management was the only area in which students felt they had at least “some” exposure to the assessed business management topics during IPPEs/internship, while all other areas of experience ranged from “not at all” to “a little.” Conclusion. The pharmacy simulation program is an effective active-learning exercise and enhanced students’ knowledge and understanding of the business management topics covered. PMID:24761023
Alanazi, Ahmad A; Nicholson, Nannette; Atcherson, Samuel R; Franklin, Clifford; Anders, Michael; Nagaraj, Naveen; Franklin, Jennifer; Highley, Patricia
2016-09-01
The primary purpose of this study was to test the effect of the combined use of trained standardized parents and a baby simulator on students' hearing screening and parental counseling knowledge and skills. A one-group pretest-posttest quasi-experimental study design was used to assess self-ratings of confidence in knowledge and skills and satisfaction of the educational experience with standardized parents and a baby simulator. The mean age of the 14 audiology students participating in this study was 24.79 years (SD = 1.58). Participants completed a pre- and postevent questionnaire in which they rated their level of confidence for specific knowledge and skills. Six students (2 students in each scenario) volunteered to participate in the infant hearing screening and counseling scenarios, whereas others participated as observers. All participants participated in the briefing and debriefing sessions immediately before and after each of 3 scenarios. After the last scenario, participants were asked to complete a satisfaction survey of their learning experience using simulation and standardized parents. Overall, the pre- and post-simulation event questionnaire revealed a significant improvement in the participants' self-rated confidence levels regarding knowledge and skills. The mean difference between pre- and postevent scores was 0.52 (p < .01). The mean satisfaction level was 4.71 (range = 3.91-5.00; SD = 0.30) based on a Likert scale, where 1 = not satisfied and 5 = very satisfied. The results of this novel educational activity demonstrate the value of using infant hearing screening and parental counseling simulation sessions to enhance student learning. In addition, this study demonstrates the use of simulation and standardized parents as an important pedagogical tool for audiology students. Students experienced a high level of satisfaction with the learning experience.
ERIC Educational Resources Information Center
Montes, Georgia E.
1997-01-01
Describes an activity that simulates exploration techniques used in deep-sea explorations and teaches students how this technology can be used to take a closer look inside volcanoes, inspect hazardous waste sites such as nuclear reactors, and explore other environments dangerous to humans. (DDR)
ERIC Educational Resources Information Center
Houser, Larry L.
1981-01-01
Monte Carlo methods are used to simulate activities in baseball such as a team's "hot streak" and a hitter's "batting slump." Student participation in such simulations is viewed as a useful method of giving pupils a better understanding of the probability concepts involved. (MP)
Kiersma, Mary E.; Yehle, Karen S.; Plake, Kimberly S.
2014-01-01
Background Nurses should be well-prepared to improve and address health-related needs of older adults, but students may have difficulty understanding and empathizing, as they may not yet have personally experienced aging-related challenges. Simulation games can be used to help students understand the experiences of others, but limited information is available on the impact of simulation experiences on student empathy. Objective The objective of this study was to examine the impact of participation in an aging simulation game on nursing students’ empathy and attitudes toward older adults as well as their understanding of patients’ experiences in the healthcare system. Design This study used a quasi-experimental, pretest-posttest design. Setting A school of nursing in the Midwestern United States. Participants The convenience sample included 58 sophomore-level baccalaureate nursing students. Methods Students played the role of an older adult during a 3-hour laboratory aging simulation game, the Geriatric Medication Game® (GMG). Students completed the (1) Kiersma-Chen Empathy Scale (KCES, 15 items, 7-point Likert-type), (2) Jefferson Scale of Empathy – Health Professions Students (JSE-HPS, 20 items, 7-point Likert-type), and (3) Aging Simulation Experience Survey (13 items, 7-point Likert-type) pre- and post-game to assess study objectives. Descriptive statistics and paired t-tests (were performed in SPSS v.21.0, as the data were normally distributed. Results Students’ empathy (N=58) toward older adults significantly improved overall (KCES p=0.015, JSE-HPS p<0.001). Improvements also were seen on seven out of 13 questions related to attitudes and healthcare understanding (p<0.05). In the post-test, students agreed that they experienced frustration and impatience during the GMG. Conclusions Students may not be aware of older adults’ feelings and experiences prior to experiencing aging-related changes themselves. Simulation activities, such as the GMG, can be a useful mechanism for addressing empathy and caring during student education. PMID:24912741
Sánchez-Ledesma, M J; Juanes, J A; Sáncho, C; Alonso-Sardón, M; Gonçalves, J
2016-06-01
The training of medical students demands practice of skills in scenarios as close as possible to real ones that on one hand ensure acquisition of competencies, and on the other, avoid putting patients at risk. This study shows the practicality of using high definition mannequins (SimMan 3G) in scenarios of first attention in neurological emergencies so that medical students at the Faculty of Medicine of the University of Salamanca could acquire specific and transversal competencies. The repetition of activities in simulation environments significantly facilitates the acquisition of competencies by groups of students (p < 00.5). The greatest achievements refer to skills whereas the competencies that demand greater integration of knowledge seem to need more time or new sessions. This is what happens with the competencies related to the initial diagnosis, the requesting of tests and therapeutic approaches, which demand greater theoretical knowledge.
Policy Game, Online Game--Simulated: Applying the Ecology of Policy Game to Virtual World
ERIC Educational Resources Information Center
Park, Yong Jin
2012-01-01
Teaching communication policy to young college students can be a challenge. Students often consider law and policy as difficult, abstract, or even unrelated to their lives. Yet experienced teachers note that students--especially those who are first exposed to regulatory concepts--benefit when they actively participate, engage, and deliberate for…
Communicating Wave Energy: An Active Learning Experience for Students
ERIC Educational Resources Information Center
Huynh, Trongnghia; Hou, Gene; Wang, Jin
2016-01-01
We have conducted an education project to communicate the wave energy concept to high school students. A virtual reality system that combines both hardware and software is developed in this project to simulate the buoy-wave interaction. This first-of-its-kind wave energy unit is portable and physics-based, allowing students to conduct a number of…
ERIC Educational Resources Information Center
Lefkos, Ioannis; Psillos, Dimitris; Hatzikraniotis, Euripides
2011-01-01
Background and purpose: The aim of this study was to explore the effect of investigative activities with manipulations in a virtual laboratory on students' ability to design experiments. Sample: Fourteen students in a lower secondary school in Greece attended a teaching sequence on thermal phenomena based on the use of information and…
ERIC Educational Resources Information Center
Helms, Marilyn M.; Whitesell, Melissa
2017-01-01
In the strategic management course, students select, analyze, and present viable future alternatives based on information provided in cases or computer simulations. Rather than understanding the entire process, the student's focus is on the final presentation. Chickering's (1977) research on active learning suggests students learn more effectively…
Multak, Nina; Newell, Karen; Spear, Sherrie; Scalese, Ross J; Issenberg, S Barry
2015-06-01
Research demonstrates limitations in the ability of health care trainees/practitioners, including physician assistants (PAs), to identify important cardiopulmonary examination findings and diagnose corresponding conditions. Studies also show that simulation-based training leads to improved performance and that these skills can transfer to real patients. This study evaluated the effectiveness of a newly developed curriculum incorporating simulation with deliberate practice for teaching cardiopulmonary physical examination/bedside diagnosis skills in the PA population. This multi-institutional study used a pretest/posttest design. Participants, PA students from 4 different programs, received a standardized curriculum including instructor-led activities interspersed among small-group/independent self-study time. Didactic sessions and independent study featured practice with the "Harvey" simulator and use of specially developed computer-based multimedia tutorials. Preintervention: participants completed demographic questionnaires, rated self-confidence, and underwent baseline evaluation of knowledge and cardiopulmonary physical examination skills. Students logged self-study time using various learning resources. Postintervention: students again rated self-confidence and underwent repeat cognitive/performance testing using equivalent written/simulator-based assessments. Physician assistant students (N = 56) demonstrated significant gains in knowledge, cardiac examination technique, recognition of total cardiac findings, identification of key auscultatory findings (extra heart sounds, systolic/diastolic murmurs), and the ability to make correct diagnoses. Learner self-confidence also improved significantly. This study demonstrated the effectiveness of a simulation-based curriculum for teaching essential physical examination/bedside diagnosis skills to PA students. Its results reinforce those of similar/previous research, which suggest that simulation-based training is most effective under certain educational conditions. Future research will include subgroup analyses/correlation of other variables to explore best features/uses of simulation technology for training PAs.
Effectiveness of educational technology to improve patient care in pharmacy curricula.
Smith, Michael A; Benedict, Neal
2015-02-17
A review of the literature on the effectiveness of educational technologies to teach patient care skills to pharmacy students was conducted. Nineteen articles met inclusion criteria for the review. Seven of the articles included computer-aided instruction, 4 utilized human-patient simulation, 1 used both computer-aided instruction and human-patient simulation, and 7 utilized virtual patients. Educational technology was employed with more than 2700 students at 12 colleges and schools of pharmacy in courses including pharmacotherapeutics, skills and patient care laboratories, drug diversion, and advanced pharmacy practice experience (APPE) orientation. Students who learned by means of human-patient simulation and virtual patients reported enjoying the learning activity, whereas the results with computer-aided instruction were mixed. Moreover, the effect on learning was significant in the human-patient simulation and virtual patient studies, while conflicting data emerged on the effectiveness of computer-aided instruction.
DiVall, Margarita V.; Guerra, Christina; Brown, Todd
2013-01-01
Objectives. To implement and evaluate the effects of a simulated hospital pharmacy module using an electronic medical record on student confidence and abilities to perform hospital pharmacist duties. Design. A module was developed that simulated typical hospital pharmacist tasks. Learning activities were modified based upon student feedback and instructor assessment. Assessments. Ninety-seven percent of respondents reported full-time hospital internship experience and 72% had electronic medical record experience prior to completing the module. Mean scores on confidence with performing typical hospital pharmacist tasks significantly increased from the pre-module survey to the post-module survey from 1.5-2.9 (low comfort/confidence) to 2.0-3.4 (moderate comfort/confidence). Course assessments confirmed student achievement of covered competencies. Conclusions. A simulated hospital pharmacy module improved pharmacy students’ hospital practice skills and their perceived comfort and confidence in completing the typical duties of a hospital pharmacist. PMID:23610480
Harris, David M; Ryan, Kathleen; Rabuck, Cynthia
2012-09-01
Students are relying on technology for learning more than ever, and educators need to adapt to facilitate student learning. High-fidelity patient simulators (HFPS) are usually reserved for the clinical years of medical education and are geared to improve clinical decision skills, teamwork, and patient safety. Finding ways to incorporate HFPS into preclinical medical education represents more of a challenge, and there is limited literature regarding its implementation. The main objective of this study was to implement a HFPS activity into a problem-based curriculum to enhance the learning of basic sciences. More specifically, the focus was to aid in student learning of cardiovascular function curves and help students develop heart failure treatment strategies based on basic cardiovascular physiology concepts. Pretests and posttests, along with student surveys, were used to determine student knowledge and perception of learning in two first-year medical school classes. There was an increase of 21% and 22% in the percentage of students achieving correct answers on a posttest compared with their pretest score. The median number of correct questions increased from pretest scores of 2 and 2.5 to posttest scores of 4 and 5 of a possible total of 6 in each respective year. Student survey data showed agreement that the activity aided in learning. This study suggests that a HFPS activity can be implemented during the preclinical years of medical education to address basic science concepts. Additionally, it suggests that student learning of cardiovascular function curves and heart failure strategies are facilitated.
Koo, Laura; Layson-Wolf, Cherokee; Brandt, Nicole; Hammersla, Margaret; Idzik, Shannon; Rocafort, P Tim; Tran, Deanna; Wilkerson, R Gentry; Windemuth, Brenda
2014-11-01
This article describes a qualitative evaluation of an interprofessional educational experience for nurse practitioner and pharmacy students using standardized patients and physicians role-playing physicians in clinical scenarios. This experience included the development of two clinical scenarios; training of standardized patients, providers, and faculty facilitators; pre-briefing preparation; partial facilitator prompting simulations; and facilitated debriefings. Forty-six students participated in the formative simulation. Small groups of students and faculty facilitators worked through two clinical scenarios that were based on the expected emergence of the patient-centered medical homes. The scenarios incorporated different interprofessional communication modes, including in-person, telephonic, and video-conferencing. Time-in/time-out debriefings were incorporated to provide guidance to students about how to engage in interprofessional collaboration. After completion of the scenarios, facilitated group debriefings allowed for reflection on communication strategies and roles. Immediately following the learning activity, 30 volunteer focus group participants provided comments anonymously in a semi-structured format. Conventional content analysis was used to identify overarching themes. Participants expressed improved understanding of individual roles, increased confidence, and a better sense of interprofessional support. The educational experience themes included the benefits of a realistic nature of the simulation and the need for improved student orientation to roles and expectations prior to the clinical simulations. Copyright © 2014 Elsevier Ltd. All rights reserved.
Reime, Marit Hegg; Johnsgaard, Tone; Kvam, Fred Ivan; Aarflot, Morten; Engeberg, Janecke Merethe; Breivik, Marit; Brattebø, Guttorm
2017-01-01
Larger student groups and pressure on limited faculty time have raised the question of the learning value of merely observing simulation training in emergency medicine, instead of active team participation. The purpose of this study was to examine observers and hands-on participants' self-reported learning outcomes during simulation-based interprofessional team training regarding non-technical skills. In addition, we compared the learning outcomes for different professions and investigated team performance relative to the number of simulations in which they participated. A concurrent mixed-method design was chosen to evaluate the study, using questionnaires, observations, and focus group interviews. Participants included a total of 262 postgraduate and bachelor nursing students and medical students, organised into 44 interprofessional teams. The quantitative data showed that observers and participants had similar results in three of six predefined learning outcomes. The qualitative data emphasised the importance of participating in different roles, training several times, and training interprofessionally to enhance realism. Observing simulation training can be a valuable learning experience, but the students' preferred hands-on participation and learning by doing. For this reason, one can legitimise the observer role, given the large student groups and limited faculty time, as long as the students are also given some opportunity for hands-on participation in order to become more confident in their professional roles.
Livingston, Laura L; West, Courtney A; Livingston, Jerry L; Landry, Karen A; Watzak, Bree C; Graham, Lori L
2016-08-01
Disaster Day is a simulation event that began in the College of Nursing and has increased exponentially in size and popularity for the last 8 years. The evolution has been the direct result of reflective practice and dedicated leadership in the form of students, faculty, and administration. Its development and expansion into a robust interprofessional education activity are noteworthy because it gives health care professions students an opportunity to work in teams to provide care in a disaster setting. The "authentic" learning situation has enhanced student knowledge of roles and responsibilities and seems to increase collaborative efforts with other disciplines. The lessons learned and modifications made in our Disaster Day planning, implementation, and evaluation processes are shared in an effort to facilitate best practices for other institutions interested in a similar activity.
Rainfall simulation in education
NASA Astrophysics Data System (ADS)
Peters, Piet; Baartman, Jantiene; Gooren, Harm; Keesstra, Saskia
2016-04-01
Rainfall simulation has become an important method for the assessment of soil erosion and soil hydrological processes. For students, rainfall simulation offers an year-round, attractive and active way of experiencing water erosion, while not being dependent on (outdoors) weather conditions. Moreover, using rainfall simulation devices, they can play around with different conditions, including rainfall duration, intensity, soil type, soil cover, soil and water conservation measures, etc. and evaluate their effect on erosion and sediment transport. Rainfall simulators differ in design and scale. At Wageningen University, both BSc and MSc student of the curriculum 'International Land and Water Management' work with different types of rainfall simulation devices in three courses: - A mini rainfall simulator (0.0625m2) is used in the BSc level course 'Introduction to Land Degradation and Remediation'. Groups of students take the mini rainfall simulator with them to a nearby field location and test it for different soil types, varying from clay to more sandy, slope angles and vegetation or litter cover. The groups decide among themselves which factors they want to test and they compare their results and discuss advantage and disadvantage of the mini-rainfall simulator. - A medium sized rainfall simulator (0.238 m2) is used in the MSc level course 'Sustainable Land and Water Management', which is a field practical in Eastern Spain. In this course, a group of students has to develop their own research project and design their field measurement campaign using the transportable rainfall simulator. - Wageningen University has its own large rainfall simulation laboratory, in which a 15 m2 rainfall simulation facility is available for research. In the BSc level course 'Land and Water Engineering' Student groups will build slopes in the rainfall simulator in specially prepared containers. Aim is to experience the behaviour of different soil types or slope angles when (heavy) rain occurs. The MSc level course 'Fundamentals of Land Management' students carry out a hands-on practical in which they compare soil type and design and evaluate the effect of soil and water conservation measures. Also, MSc thesis research is being carried out using this facility. For instance, the distribution and movement of pesticide Glyphosate with sediment transportation was being quantified using the rainfall simulation facility.
Trujillo, Jennifer M; McNair, Chelsea D; Linnebur, Sunny A; Valdez, Connie; Trujillo, Toby C
2016-12-25
Objective. To evaluate the impact of a standalone, patient-centered communication (PCC) course series on student achievement of and perceived preparedness for PCC skills and to assess student attitudes regarding learning methods used. Design. During curriculum renewal, a standalone PCC course series that integrated horizontally and vertically within the curriculum was developed. Student achievement of outcomes was evaluated by aggregate performance on simulated evaluations. Students who completed the PCC series were surveyed to assess preparedness and attitudes. Students in the prior curriculum were also surveyed. Assessment. The majority of students who completed the PCC series met or exceeded expectations for the simulated evaluations. Preparedness responses were more positive from students who completed the PCC series than from those who completed the prior curriculum. Student attitudes about the learning methods use in the courses also were more positive. Conclusion. The standalone PCC course series effectively achieved PCC outcomes and improved student preparedness for communication-based activities.
NASA Technical Reports Server (NTRS)
Maney, Tucker; Hamburger, Henry
1993-01-01
VIS/ACT is a multi-media educational system for aircrew coordination training (ACT). Students view video segments, answer questions that are adjusted to individual performance, and engage in related activities. Although the system puts the student in a reactive critiquing role, it has proved effective in improving performance on active targeted ACT skills, in group simulation tasks. VIS/ACT itself is the product of coordination among three Navy agencies.
Qualitative Evaluation of a Role Play Bullying Simulation
Gillespie, Gordon L.; Brown, Kathryn; Grubb, Paula; Shay, Amy; Montoya, Karen
2015-01-01
Bullying against nurses is becoming a pervasive problem. In this article, a role play simulation designed for undergraduate nursing students is described. In addition, the evaluation findings from a subsample of students who participated in a role play simulation addressing bullying behaviors are reported. Focus group sessions were completed with a subset of eight students who participated in the intervention. Sessions were audiorecorded, transcribed verbatim, and analyzed using Colaizzi’s procedural steps for qualitative analysis. Themes derived from the data were “The Experience of Being Bullied”, “Implementation of the Program”, “Desired Outcome of the Program”, and “Context of Bullying in the Nursing Profession”. Role play simulation was an effective and active learning strategy to diffuse education on bullying in nursing practice. Bullying in nursing was identified as a problem worthy of incorporation into the undergraduate nursing curriculum. To further enhance the learning experience with role play simulation, adequate briefing instructions, opportunity to opt out of the role play, and comprehensive debriefing are essential. PMID:26504502
NASA Astrophysics Data System (ADS)
Balakrishnan, B.; Woods, P. C.
2013-05-01
Over the years, rapid development in computer technology has engendered simulation-based laboratory (lab) in addition to the traditional hands-on (physical) lab. Many higher education institutions adopt simulation lab, replacing some existing physical lab experiments. The creation of new systems for conducting engineering lab activities has raised concerns among educators on the merits and shortcomings of both physical and simulation labs; at the same time, many arguments have been raised on the differences of both labs. Investigating the effectiveness of both labs is complicated, as there are multiple factors that should be considered. In view of this challenge, a study on students' perspectives on their experience related to key aspects on engineering laboratory exercise was conducted. In this study, the Visual Auditory Read and Kinetic model was utilised to measure the students' cognitive styles. The investigation was done through a survey among participants from Multimedia University, Malaysia. The findings revealed that there are significant differences for most of the aspects in physical and simulation labs.
Qualitative Evaluation of a Role Play Bullying Simulation.
Gillespie, Gordon L; Brown, Kathryn; Grubb, Paula; Shay, Amy; Montoya, Karen
Bullying against nurses is becoming a pervasive problem. In this article, a role play simulation designed for undergraduate nursing students is described. In addition, the evaluation findings from a subsample of students who participated in a role play simulation addressing bullying behaviors are reported. Focus group sessions were completed with a subset of eight students who participated in the intervention. Sessions were audiorecorded, transcribed verbatim, and analyzed using Colaizzi's procedural steps for qualitative analysis. Themes derived from the data were "The Experience of Being Bullied", "Implementation of the Program", "Desired Outcome of the Program", and "Context of Bullying in the Nursing Profession". Role play simulation was an effective and active learning strategy to diffuse education on bullying in nursing practice. Bullying in nursing was identified as a problem worthy of incorporation into the undergraduate nursing curriculum. To further enhance the learning experience with role play simulation, adequate briefing instructions, opportunity to opt out of the role play, and comprehensive debriefing are essential.
NASA Astrophysics Data System (ADS)
Nugraha, Muhamad Gina; Kaniawati, Ida; Rusdiana, Dadi; Kirana, Kartika Hajar
2016-02-01
Among the purposes of physics learning at high school is to master the physics concepts and cultivate scientific attitude (including critical attitude), develop inductive and deductive reasoning skills. According to Ennis et al., inductive and deductive reasoning skills are part of critical thinking. Based on preliminary studies, both of the competence are lack achieved, it is seen from student learning outcomes is low and learning processes that are not conducive to cultivate critical thinking (teacher-centered learning). One of learning model that predicted can increase mastery concepts and train CTS is inquiry learning model aided computer simulations. In this model, students were given the opportunity to be actively involved in the experiment and also get a good explanation with the computer simulations. From research with randomized control group pretest-posttest design, we found that the inquiry learning model aided computer simulations can significantly improve students' mastery concepts than the conventional (teacher-centered) method. With inquiry learning model aided computer simulations, 20% of students have high CTS, 63.3% were medium and 16.7% were low. CTS greatly contribute to the students' mastery concept with a correlation coefficient of 0.697 and quite contribute to the enhancement mastery concept with a correlation coefficient of 0.603.
Collaborative learning in nursing simulation: near-peer teaching using standardized patients.
Owen, Amy M; Ward-Smith, Peggy
2014-03-01
Simulation in nursing education uses specific patient scenarios to provide students with hands-on learning experiences. A near-peer teaching experience, using upper-level nursing students as standardized patients, was created as an educational intervention. The premises of social cognitive theory, which include cognitive, behavioral, and environmental factors, were incorporated into this teaching activity. The upper-level students played the role of a patient, while they also practiced leadership, teaching, and mentoring of first-semester nursing students. In the scenario, the first-semester students provided care to the patient, while focusing on safety, identifying the problem, and practicing clinical decision making. Faculty were present to provide guidance and promote communication in debriefing. Near-peer teaching provided a learning opportunity for all students, facilitated teamwork, and encouraged knowledge and skills attainment. Copyright 2014, SLACK Incorporated.
Active-Learning Laboratory Session to Teach the Four M's of Diabetes Care
Plake, Kimberly S.; Nash, Christiane L.; Shepler, Brian M.
2009-01-01
Objective To implement an active-learning methodology for teaching diabetes care to pharmacy students and evaluate its effectiveness. Design Laboratory instruction was divided into 4 primary areas of diabetes care, referred to by the mnemonic, the 4 M's: meal planning, motion, medication, and monitoring. Students participated in skill-based learning laboratory stations and in simulated patient experiences. A pretest, retrospective pretest, and posttest were administered to measure improvements in students' knowledge about diabetes and confidence in providing care to diabetes patients. Assessment Students knowledge of and confidence in each area assessed improved. Students enjoyed the laboratory session and felt it contributed to their learning. Conclusion An active-learning approach to teaching diabetes care allowed students to experience aspects of the disease from the patient's perspective. This approach will be incorporated in other content areas. PMID:19513160
Learning about Fossil Formation by Classroom Simulation.
ERIC Educational Resources Information Center
Schlenker, Richard M.; Yoshida, Sarah J.
1991-01-01
Activities in which students build their own simulations of fossils, using seashells, chicken bones, toy dinosaurs, or leaves as models and plaster of paris, sand, mud, clay, or a mixture of gravel and clay as a matrix are presented. Curriculum extensions are included. (KR)
El Tantawi, Maha M A; Abdelaziz, Hytham; AbdelRaheem, Amira S; Mahrous, Ahmed A
2014-01-01
Increasing importance is attached to teaching generic skills to undergraduate students in various disciplines. This article describes an extracurricular, student-led activity for teaching generic skills using the Model United Nations over three months. The activity used the Health Care Simulation Model (HCSM) with peer learning and role-playing to accomplish its objectives. An interview was used to select from undergraduate and postgraduate dental students at Alexandria University, Alexandria, Egypt, to develop a group of staff to act as peer teachers after receiving training (n=77). These peer teachers provided training for 123 undergraduate dental students to serve as delegates who acted as trainees or peer learners. At the end of the training sessions, a conference was held in which the students played the roles of delegates representing officials responsible for health care systems in ten countries. The students reported improvement in generic skills, enjoyed several aspects of the experience, and disliked other aspects of the model to a lesser extent. In multivariate analysis, perceived usefulness of the HCSM was significantly greater for staff than delegates and increased as self-reported improvement in knowledge of health care systems increased. This study suggests that innovative, student-centered educational methods can be effective for teaching generic skills and factual information.
Beltermann, Esther; Krane, Sibylla; Kiesewetter, Jan; Fischer, Martin R; Schelling, Jörg
2015-01-01
Performing vaccine and travel consultations is a crucial aspect of the daily routine in general medicine. However, medical education does not provide adequately and structured training for this future task of medical students. While existing courses mainly focus on theoretical aspects, we developed a course aiming to foster practical experience in performing vaccine and travel consultations. Project report: The course was implemented in the simulation clinic at the University of Munich in the summer 2011 semester using role-plays in a simulation-based learning environment. The course represents different disciplines involved in vaccine and travel medicine. Students' learning is supported through active engagement in planning and conducting consultations of patients. The course was implemented successfully and students' acceptance was high. However, there is a need for structured teaching of theoretical basics in vaccine and travel medicine earlier in medical curriculum. The insights gained through our course are used for the development of the structured longitudinal curriculum "vaccine medicine".
ERIC Educational Resources Information Center
Langsford, Simon; Meredith, Steve; Munday, Bruce
2002-01-01
Presents science activities that mirror real life issues relating to plants and sustainability. Describes how to turn seed growing activities into an environmental simulation. Discusses the advantages of cross-curriculum learning opportunities. Includes student references and notes for teachers. (KHR)
Saber, Deborah A; Strout, Kelley; Caruso, Lisa Swanson; Ingwell-Spolan, Charlene; Koplovsky, Aiden
2017-10-01
Many natural and man-made disasters require the assistance from teams of health care professionals. Knowing that continuing education about disaster simulation training is essential to nursing students, nurses, and emergency first responders (e.g., emergency medical technicians, firefighters, police officers), a university in the northeastern United States planned and implemented an interprofessional mass casualty incident (MCI) disaster simulation using the Project Management Body of Knowledge (PMBOK) management framework. The school of nursing and University Volunteer Ambulance Corps (UVAC) worked together to simulate a bus crash with disaster victim actors to provide continued education for community first responders and train nursing students on the MCI process. This article explains the simulation activity, planning process, and achieved outcomes. J Contin Educ Nurs. 2017;48(10):447-453. Copyright 2017, SLACK Incorporated.
Factors associated with simulator-assessed laparoscopic surgical skills of veterinary students.
Kilkenny, Jessica J; Singh, Ameet; Kerr, Carolyn L; Khosa, Deep K; Fransson, Boel A
2017-06-01
OBJECTIVE To determine whether simulator-assessed laparoscopic skills of veterinary students were associated with training level and prior experience performing nonlaparoscopic veterinary surgery and other activities requiring hand-eye coordination and manual dexterity. DESIGN Experiment. SAMPLE 145 students without any prior laparoscopic surgical or fundamentals of laparoscopic surgery (FLS) simulator experience in years 1 (n = 39), 2 (34), 3 (39), and 4 (33) at a veterinary college. PROCEDURES A questionnaire was used to collect data from participants regarding experience performing veterinary surgery, playing video games, and participating in other activities. Participants performed a peg transfer, pattern cutting, and ligature loop-placement task on an FLS simulator, and FLS scores were assigned by an observer. Scores were compared among academic years, and correlations between amounts of veterinary surgical experience and FLS scores were assessed. A general linear model was used to identify predictors of FLS scores. RESULTS Participants were predominantly female (75%), right-hand dominant (92%), and between 20 and 29 years of age (98%). No significant differences were identified among academic years in FLS scores for individual tasks or total FLS score. Scores were not significantly associated with prior surgical or video game experience. Participants reporting no handicraft experience had significantly lower total FLS scores and FLS scores for task 2 than did participants reporting a lot of handicraft experience. CONCLUSIONS AND CLINICAL RELEVANCE Prior veterinary surgical and video game experience had no influence on FLS scores in this group of veterinary students, suggesting that proficiency of veterinary students in FLS may require specific training.
NASA Astrophysics Data System (ADS)
Straub, K. H.
2016-12-01
I teach an interdisciplinary course on modern climate change that attracts students from a variety of academic backgrounds. The class size is typically 20-25 students. The final exercise of the semester is an in-class simulation of the Paris Agreement negotiations, which integrates all of the topics the students have studied throughout the semester (science, politics, skeptic arguments, ethics, economics, etc.). For this exercise, we use the free online C-Learn climate simulator (https://www.climateinteractive.org/tools/c-learn/), but with several modifications from the suggested negotiation methodology. All but two students were assigned an individual country to represent within the larger groups "Developed," (e.g., US, EU, Australia), "Developing A" (e.g., China, India, Indonesia), and "Developing B" (e.g., Maldives, Haiti, Botswana). The remaining two students were assigned the roles of "Exxon Mobil" and "Greenpeace," to represent external lobbyists. Prior to the in-class negotiation, students completed an assignment on their individual role that required them to research their country's actual INDC and the projected impacts of a 2 degree C rise in average global temperature, as well as create "behavior rules" for their country to follow during the simulation. Lobbyists were given modified assignments. To make the simulation more complex and realistic, I assigned each actor an initial sum of money and created rules about the cost of emissions reductions. The goal of the simulation was to create an affordable timeline of emissions that kept the global temperature rise to less than 2 degrees C. Suggested emissions timelines were entered into the C-Learn online simulator during the activity to check progress toward the goal. Student feedback about the simulation was very positive. I had planned only one class period for the negotiations but students were so engaged that they asked for it to be extended into a second period. This exercise could easily be adapted to smaller or larger class sizes, and modified based on the knowledge base and experience level of the students.
McAllister, Margaret; Searl, Kerry Reid; Davis, Susan
2013-12-01
Simulation learning in nursing has long made use of mannequins, standardized actors and role play to allow students opportunity to practice technical body-care skills and interventions. Even though numerous strategies have been developed to mimic or amplify clinical situations, a common problem that is difficult to overcome in even the most well-executed simulation experiences, is that students may realize the setting is artificial and fail to fully engage, remember or apply the learning. Another problem is that students may learn technical competence but remain uncertain about communicating with the person. Since communication capabilities are imperative in human service work, simulation learning that only achieves technical competence in students is not fully effective for the needs of nursing education. Furthermore, while simulation learning is a burgeoning space for innovative practices, it has been criticized for the absence of a basis in theory. It is within this context that an innovative simulation learning experience named "Mask-Ed (KRS simulation)", has been deconstructed and the active learning components examined. Establishing a theoretical basis for creative teaching and learning practices provides an understanding of how, why and when simulation learning has been effective and it may help to distinguish aspects of the experience that could be improved. Three conceptual theoretical fields help explain the power of this simulation technique: Vygotskian sociocultural learning theory, applied theatre and embodiment. Copyright © 2013 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Danish, Joshua Adam
2009-01-01
Representations such as drawings, graphs, and computer simulations, are central to learning and doing science. Furthermore, ongoing success in science learning requires students to build on the representations and associated practices that they are presumed to have learned throughout their schooling career. Without these practices, students have…
E-Activities: Internet-based Activities To Expand Your History Curriculum.
ERIC Educational Resources Information Center
Trumbauer, Lisa
2002-01-01
Presents three Internet-based activities for teaching elementary students about the Underground Railroad. The activities include creating a freight-train of facts about the Underground Railroad, mapping the routes of the Underground Railroad, and participating in an electronic simulation of life as a fugitive slave. (SM)
Embedding a Virtual Patient Simulator in an Interactive Surgical lecture.
Kleinert, Robert; Plum, Patrick; Heiermann, Nadine; Wahba, Roger; Chang, De-Huan; Hölscher, Arnulf H; Stippel, Dirk L
2016-01-01
Lectures are traditionally used for teaching declarative knowledge. One established tool for clinical education is the demonstration of a real patient. The use of real patients in the daily clinical environment is increasingly difficult. The use of a virtual patient simulator (VPS) can potentially circumvent these problems. Unlimited availability and the opportunity of an electronic feedback system could possibly enrich traditional lectures by enabling more interactivity that meets the expectations of the current student generation. As students face the consequences of their own decisions they take a more active role in the lecture. VPS links declarative knowledge with visual perception that is known to influence students' motivation. Until now, there have been no reports covering the usage and validation of interactive VPS for supporting traditional lectures. In this study, we (1) described the development of a custom-made three-dimensional (3D) VPS for supporting the traditional lecture and (2) performed a feasibility study including an initial assessment of this novel educational concept. Conceptualization included definition of curricular content, technical realization and validation. A custom-made simulator was validated with 68 students. The degree of student acceptance was evaluated. Furthermore, the effect on knowledge gain was determined by testing prelecture and postlecture performance. A custom-made simulator prototype that displays a 3D virtual clinic environment was developed and linked to a PowerPoint presentation. Students were able to connect to the simulator via electronic devices (smartphones and tablets) and to control the simulator via majority vote. The simulator was used in 6 lectures and validated in 2 lectures with 68 students each. Student acceptance and their opinion about effectiveness and applicability were determined. Students showed a high level of motivation when using the simulator as most of them had fun using it. Effect on knowledge gain was proven by comparison of chosen therapeutic workflow before and after the lecture. Students showed significantly (p < 0.05) more correct answers in determination of the therapeutic workflow after the lecture. We successfully developed and evaluated a custom-made 3D VPS for supporting the traditional lecture. VPS is probably an effective instrument that might replace real patients in selected lectures and prepare students for bedside teaching. Copyright © 2016 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Interactive Physics: the role of interactive learning objects in teaching Physics in Engineering
NASA Astrophysics Data System (ADS)
Benito, R. M.; Cámara, M. E.; Arranz, F. J.
2009-04-01
In this work we present the results of a Project in educational innovation entitled "Interactive Physics". We have developed resources for teaching Physics for students of Engineering, with an emphasis in conceptual reinforcement and addressing the shortcomings of students entering the University. The resources developed include hypertext, graphics, equations, quizzes and more elaborated problems that cover the customary syllabus in first-year Physics: kinematics and dynamics, Newton laws, electricity and magnetism, elementary circuits… The role of vector quantities is stressed and we also provide help for the most usual mathematical tools (calculus and trigonometric formulas). The structure and level of detail of the resources are fitted to the conceptual difficulties that most of the students find. Some of the most advanced resources we have developed are interactive simulations. These are real simulations of key physical situations, not only animations. They serve as learning objects, in the well known sense of small reusable digital objects that are self-contained and tagged with metadata. In this sense, we use them to link concepts and content through interaction with active engagement of the student. The development of an interactive simulation involves several steps. First, we identify common pitfalls in the conceptual framework of the students and the points in which they stumble frequently. Then we think of a way to make clear the physical concepts using a simulation. After that, we program the simulation (using Flash or Java) and finally the simulation is tested with the students, and we reelaborate some parts of it in terms of usability. In our communication, we discuss the usefulness of these interactive simulations in teaching Physics for engineers, and their integration in a more comprehensive b-learning system.
Román-Cereto, Montserrat; García-Mayor, Silvia; Kaknani-Uttumchandani, Shakira; García-Gámez, Marina; León-Campos, Alvaro; Fernández-Ordóñez, Eloisa; Ruiz-García, Maria Luisa; Martí-García, C; López-Leiva, Inmaculada; Lasater, Kathie; Morales-Asencio, José Miguel
2018-05-01
The clinical judgment and decision-making abilities of nurses can influence many health outcomes, hence the importance of addressing these qualities in university studies. In this respect, clinical simulation is a commonly employed teaching method. The evaluation of simulation activities requires standardised instruments, such as the Lasater Clinical Judgment Rubric, which is widely used for this purpose, although a culturally adapted and validated version in Spain is not available. To obtain a Spanish culturally adapted and validated version of the rubric for undergraduate students of nursing. Cultural adaptation and psychometric validation study carried out with undergraduate nursing students in the simulation laboratories at the University of Málaga (Spain). A process of translation/back-translation and cultural adaptation was carried out in accordance with international standards. The rubric was empirically evaluated in standardised scenarios with high and medium-fidelity simulators. Each student took part in two different simulation sessions, led by two instructors. In each simulation, the data were collected by two independent observers. 152 observations were obtained from 76 students. The interobserver reliability was high, with an intraclass correlation coefficient of 0.93 (95% CI 0.92-0.95) (p = 0.0001) and Cronbach's alpha of 0.93. According to the confirmatory factor analysis, the fit of the model was satisfactory in all indices, with a χ 2 /df value of 1.08, GFI 0.96, TLI 0.99, NFI 0.97 and RMSEA 0.24 (90% CI 0.000-0.066). The rubric obtained is culturally adapted to the Spanish educational context, and is valid and reliable for nursing students. Further prospective studies should be undertaken to evaluate the responsiveness, potential for transfer to clinical practice and cost-benefit ratios of different simulation designs. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wold, Kari
Successfully interacting with those from different cultures is essential to excel in any field, particularly when global, transnational collaborations in the workplace are increasingly common. However, many higher education students in engineering are not explicitly taught how to display the global competency skills desired by future employers. To display global competency skills means students must be able to visibly respect and recognize differences among those from different cultures. Global competency also means students must be able to show they can adjust their behaviors and integrate others' ideas when working with those with cultural backgrounds other than their own. While these skills are now deemed essential for future engineers, many institutions are struggling with determining which strategies and activities are universally effective to allow students to practice the global competency skills now crucial for success. Immersing engineering students in interactive role-playing simulations in transnational environments is one way institutions are encouraging students to illustrate and develop global competency skills. Role-playing simulations in transnational education provide environments where students adopt roles, interact with other students, and together explore and address realistic global problems. However, no studies have addressed whether or how role-playing simulations can help develop global competency in transnational engineering courses, students' perceptions regarding whether they change their abilities to display global competency in those environments, and their perspectives the effectiveness of using role-playing simulations for this purpose. To address this gap, this study assesses the impact of two subsequent role-playing simulations involving nuclear energy policy in a transnational course involving engineering students from the University of Virginia in Charlottesville, Virginia, and from Technische Universitat Dortmund in Dortmund, Germany. The differences in students' self-reports regarding whether their behaviors showing global competency skills changed were insignificant from pretests and posttests. However, data obtained from observations, surveys, and interviews showed students did increase their abilities to display global competency, and they believed role-playing simulations were useful in helping them do so. Findings from this study inform program designers and instructors on how to help students display, and improve their abilities to display, the global competency skills that will help them succeed in the world that awaits them.
Freedom Train: Building an Underground Railroad.
ERIC Educational Resources Information Center
Hickman, Wayne
1999-01-01
Describes an activity called the "Freedom Train": a simulation for eighth grade students that enables them to gain an understanding of the importance and dangers of the Underground Railroad. Explains that the project encourages students to work cooperatively while also reinforcing their research and map skills. Provides follow-up…
A Placer-Gold Evaluation Exercise.
ERIC Educational Resources Information Center
Tunley, A. Tom
1984-01-01
A laboratory exercise allowing students to use drillhole data to simulate the process of locating a placer gold paystreak is presented. As part of the activity students arithmetically compute the value of their gold, mining costs, and personal profits or losses, and decide on development plans for the claim. (BC)
Introducing Students to Career Exploration
ERIC Educational Resources Information Center
Beutler, Steve
2008-01-01
Using a Web-based program he developed, one educator is helping students understand how their career and lifestyle choices are linked. MyLife, a Web-based life-planning program for young people, offers comprehensive budget activity in which participants develop simulations of their fantasy futures and calculate their future monthly…
A Computer-aided Learning Exercise in Spectrophotometry.
ERIC Educational Resources Information Center
Pamula, Frederick
1994-01-01
Discusses the use of a computer simulation program in teaching the concepts of spectrophotometry. Introduces several parts of the program and program usage. Presents an assessment activity to evaluate students' mastery of material. Concludes with the advantages of this approach to the student and to the assessor. (ASK)
How do clinical clerkship students experience simulator-based teaching? A qualitative analysis.
Takayesu, James K; Farrell, Susan E; Evans, Adelaide J; Sullivan, John E; Pawlowski, John B; Gordon, James A
2006-01-01
To critically analyze the experience of clinical clerkship students exposed to simulator-based teaching, in order to better understand student perspectives on its utility. A convenience sample of clinical students (n = 95) rotating through an emergency medicine, surgery, or longitudinal patient-doctor clerkship voluntarily participated in a 2-hour simulator-based teaching session. Groups of 3-5 students managed acute scenarios including respiratory failure, myocardial infarction, or multisystem trauma. After the session, students completed a brief written evaluation asking for free text commentary on the strengths and weaknesses of the experience; they also provided simple satisfaction ratings. Using a qualitative research approach, the textual commentary was transcribed and parsed into fragments, coded for emergent themes, and tested for inter-rater agreement. Six major thematic categories emerged from the qualitative analysis: The "Knowledge & Curriculum" domain was described by 35% of respondents, who commented on the opportunity for self-assessment, recall and memory, basic and clinical science learning, and motivation. "Applied Cognition and Critical Thought" was highlighted by 53% of respondents, who commented on the value of decision-making, active thought, clinical integration, and the uniqueness of learning-by-doing. "Teamwork and Communication" and "Procedural/Hands-On Skills" were each mentioned by 12% of subjects. Observations on the "Teaching/Learning Environment" were offered by 80% of students, who commented on the realism, interactivity, safety, and emotionality of the experience; here they also offered feedback on format, logistics, and instructors. Finally, "Suggestions for Use/Place in Undergraduate Medical Education" were provided by 22% of subjects, who primarily recommended more exposure. On a simple rating scale, 94% of students rated the quality of the simulator session as "excellent," whereas 91% felt the exercises should be "mandatory." Full-body simulation promises to address a wide range of pedagogical objectives using a unified educational platform. Students value experiential "practice without risk" and want more exposure to simulation. In this study, students thought that that an integrated simulation exercise could help solidify knowledge across domains, foster critical thought and action, enhance technical-procedural skills, and promote effective teamwork and communication.
Segarra, Ignacio; Gomez, Manuel
2014-12-01
We developed a pharmacology practicum assignment to introduce students to the research ethics and steps involved in a clinical trial. The assignment included literature review, critical analysis of bioethical situations, writing a study protocol and presenting it before a simulated ethics committee, a practice interview with a faculty member to obtain informed consent, and a student reflective assessment and self-evaluation. Students were assessed at various steps in the practicum; the learning efficiency of the activity was evaluated using an independent survey as well as students' reflective feedback. Most of the domains of Bloom's and Fink's taxonomies of learning were itemized and covered in the practicum. Students highly valued the translatability of theoretical concepts into practice as well as the approach to mimic professional practice. This activity was within a pharmacy program, but may be easily transferable to other medical or health sciences courses. © The Author(s) 2014.
Trapezius muscle activity in using ordinary and ergonomically designed dentistry chairs.
Haddad, O; Sanjari, M A; Amirfazli, A; Narimani, R; Parnianpour, M
2012-04-01
Most dentists complain of musculoskeletal disorders which can be caused by prolonged static posture, lack of suitable rest and other physical and psychological problems. We evaluated a chair with a new ergonomic design which incorporated forward leaning chest and arm supports. The chair was evaluated in the laboratory during task simulation and EMG analysis on 12 students and subjectively assessed by 30 professional dentists using an 18-item questionnaire. EMG activity of right and left trapezius muscles for 12 male students with no musculoskeletal disorders was measured while simulating common tasks like working on the teeth of the lower jaw. Normalized EMG data showed significant reduction (p<0.05) in all EMG recordings of the trapezius muscle. Dentists also unanimously preferred the ergonomically designed chair. Such ergonomically designed chairs should be introduced as early as possible in student training before bad postural habits are acquired.
The Teaching Decisions Simulation: An Interactive Vehicle for Mapping Teaching Decisions.
ERIC Educational Resources Information Center
Strang, Harold R.
1996-01-01
Describes the Teaching Decisions Simulation, a program that allows participants to make decisions regarding lesson plan activities and student and teacher spatial arrangement or interactions. Postlesson feedback includes variables such as completion time and performance measures. Experienced teachers exhibited more deliberation in completing the…
Intervention: Simulating the War on Global Terrorism
ERIC Educational Resources Information Center
Steinbrink, John E.; Helmer, Joel W.
2004-01-01
Students analyze a contemporary geopolitical event from a comprehensive geographic perspective using role play simulation, discussion, and decision-making. The three-day activity provides teachers with a realistic, ready-made classroom lesson that combines powerful conceptual learning with drama and surprise. The task of the teacher is to…
Interactive simulations for quantum key distribution
NASA Astrophysics Data System (ADS)
Kohnle, Antje; Rizzoli, Aluna
2017-05-01
Secure communication protocols are becoming increasingly important, e.g. for internet-based communication. Quantum key distribution (QKD) allows two parties, commonly called Alice and Bob, to generate a secret sequence of 0s and 1s called a key that is only known to themselves. Classically, Alice and Bob could never be certain that their communication was not compromised by a malicious eavesdropper. Quantum mechanics however makes secure communication possible. The fundamental principle of quantum mechanics that taking a measurement perturbs the system (unless the measurement is compatible with the quantum state) also applies to an eavesdropper. Using appropriate protocols to create the key, Alice and Bob can detect the presence of an eavesdropper by errors in their measurements. As part of the QuVis Quantum Mechanics Visualisation Project, we have developed a suite of four interactive simulations that demonstrate the basic principles of three different QKD protocols. The simulations use either polarised photons or spin 1/2 particles as physical realisations. The simulations and accompanying activities are freely available for use online or download, and run on a wide range of devices including tablets and PCs. Evaluation with students over three years was used to refine the simulations and activities. Preliminary studies show that the refined simulations and activities help students learn the basic principles of QKD at both the introductory and advanced undergraduate levels.
Engaging students in astronomy and spectroscopy through Project SPECTRA!
NASA Astrophysics Data System (ADS)
Wood, E. L.
2011-12-01
Computer simulations for minds-on learning with "Project Spectra!" How do we gain information about the Sun? How do we know Mars has CO2 or that Enceladus has H2O geysers? How do we use light in astronomy? These concepts are something students and educators struggle with because they are abstract. Using simulations and computer interactives (games) where students experience and manipulate the information makes concepts accessible. Visualizing lessons with multi-media solidifies understanding and retention of knowledge and is completely unlike its paper-and-pencil counterpart. Visualizations also enable teachers to forgo purchasing expensive laboratory equipment. "Project Spectra!" is a science and engineering program that uses computer-based Flash interactives to expose students to astronomical spectroscopy and actual data in a way that is not possible with traditional in-class activities. To engage students in "Project Spectra!", students are given a mission, which connects them with the research at hand. Missions range from exploring remote planetary atmospheres and surfaces, experimenting with the Sun using different filters, or analyzing the soil of a remote planet. Additionally, students have an opportunity to learn about NASA missions, view movies, and see images connected with their mission, which is something that is not practical to do during a typical paper-and-pencil activity. Since students can choose what to watch and explore, the interactives accommodate a broad range of learning styles. Students can go back and forth through the interactives if they've missed a concept or wish to view something again. In the end, students are asked critical thinking questions and conduct web-based research. These interactives complement in-class Project SPECTRA! activities exploring applications of the electromagnetic spectrum.
ERIC Educational Resources Information Center
Martinez, Emilly K.; Hearit, Lauren Berkshire; Banerji, Devika; Gettings, Patricia E.; Buzzanell, Patrice M.
2018-01-01
Courses: Organizational Communication, Intercultural Communication. Objectives: This activity encourages students to learn collaboratively about diversity through the sharing of student experiences; deepen and complicate their understanding of organizational diversity; and enhance their ability to apply course material to increasingly complex…
Hard Times and New Deals: Teaching Fifth Graders about the Great Depression.
ERIC Educational Resources Information Center
Fertig, Gary
2001-01-01
Presents a fifth grade study unit about the Great Depression that attempts to incorporate research on student's historical understanding. Features activities that include a simulation focusing on how people lost money, children writing letters to Mrs. Eleanor Roosevelt, and students performing their own historical scenarios. (CMK)
Phenylketonuria Genetic Screening Simulation
ERIC Educational Resources Information Center
Erickson, Patti
2012-01-01
After agreeing to host over 200 students on a daylong genetics field trip, the author needed an easy-to-prepare genetics experiment to accompany the DNA-necklace and gel-electrophoresis activities already planned. One of the student's mothers is a pediatric physician at the local hospital, and she suggested exploring genetic-disease screening…
Teaching Data Sampling in the Communication Theory Course.
ERIC Educational Resources Information Center
Cassella, Michele; Mason, Gail
The basic communication theory course offered at Central Michigan University is designed to provide students with an understanding of fundamental concepts and terminology, and to expose them to theory and research in communication. The course gives students the opportunity to engage in simulations and other in-class activities, thus making…
ERIC Educational Resources Information Center
Albin, Edward F.
1993-01-01
Presents activities to familiarize junior high school students with the processes behind and reasons for volcanism, which is generally a planet's way of releasing excessive internal heat and pressure. Students participate in the creation of four important volcano-related simulations: a lava flow, a shield volcano, a cinder-cone volcano, and a…
Exploring Contemporary Issues in Genetics & Society: Karyotyping, Biological Sex, & Gender
ERIC Educational Resources Information Center
Brown, Julie C.
2013-01-01
In this two-part activity, high school biology students examine human karyotyping, sex-chromosome-linked disorders, and the relationship between biological sex and gender. Through interactive simulations and a structured discussion lab, students create a human karyotype and diagnose chromosomal disorders in hypothetical patients, as well as…
The Electron Transport Chain: An Interactive Simulation
ERIC Educational Resources Information Center
Romero, Chris; Choun, James
2014-01-01
This activity provides students an interactive demonstration of the electron transport chain and chemiosmosis during aerobic respiration. Students use simple, everyday objects as hydrogen ions and electrons and play the roles of the various proteins embedded in the inner mitochondrial membrane to show how this specific process in cellular…
Feeling Abnormal: Simulation of Deviancy in Abnormal and Exceptionality Courses.
ERIC Educational Resources Information Center
Fernald, Charles D.
1980-01-01
Describes activity in which student in abnormal psychology and psychology of exceptional children classes personally experience being judged abnormal. The experience allows the students to remember relevant research, become sensitized to the feelings of individuals classified as deviant, and use caution in classifying individuals as abnormal.…
Treasures from the Past: Using Archaeology in Upper-Elementary Social Studies.
ERIC Educational Resources Information Center
Gardner, Cynthia C.
1997-01-01
Describes a fourth grade teacher's interdisciplinary efforts at imparting the joys of archaeology to her students. The students read fiction and non-fiction materials about the physical environments and participated in a series of hands-on learning activities. These involved simulated archaeological digs, personal artifacts, and realia. (MJP)
Calculator. Owning a Small Business.
ERIC Educational Resources Information Center
Parma City School District, OH.
Seven activities are presented in this student workbook designed for an exploration of small business ownership and the use of the calculator in this career. Included are simulated situations in which students must use a calculator to compute property taxes; estimate payroll taxes and franchise taxes; compute pricing, approximate salaries,…
Leiva R, Isabel; Bitran C, Marcela; Saldías P, Fernando
2012-05-01
As the focus of healthcare provision shifts towards ambulatory care, increasing attention must now be given to develop opportunities for clinical teaching in this setting. To assess teacher and students' views about the strengths and weaknesses of real and simulated patient interactions for teaching undergraduate students clinical skills in the ambulatory setting. Fourth-year medical students were exposed in a systematic way, during two weeks, to real and simulated patients in an outpatient clinic, who presented common respiratory problems, such as asthma, chronic obstructive pulmonary disease, smoking and sleep apnea syndrome. After the clinical interview, students received feedback from the tutor and their peers. The module was assessed interviewing the teachers and evaluating the results qualitatively. Students evaluated the contents and quality of teaching at the end of the rotation. Tutors identified the factors that facilitate ambulatory teaching. These depended on the module design, resources and patient care, of characteristics of students and their participation, leadership and interaction with professors. They also identified factors that hamper teaching activities such as availability of resources, student motivation and academic recognition. Most students evaluated favorably the interaction with real and simulated patients in the ambulatory setting. Teaching in the ambulatory setting was well evaluated by students and teachers. The use of qualitative methodology allowed contrasting the opinions of teachers and students.
Makransky, Guido; Bonde, Mads T; Wulff, Julie S G; Wandall, Jakob; Hood, Michelle; Creed, Peter A; Bache, Iben; Silahtaroglu, Asli; Nørremølle, Anne
2016-03-25
Simulation based learning environments are designed to improve the quality of medical education by allowing students to interact with patients, diagnostic laboratory procedures, and patient data in a virtual environment. However, few studies have evaluated whether simulation based learning environments increase students' knowledge, intrinsic motivation, and self-efficacy, and help them generalize from laboratory analyses to clinical practice and health decision-making. An entire class of 300 University of Copenhagen first-year undergraduate students, most with a major in medicine, received a 2-h training session in a simulation based learning environment. The main outcomes were pre- to post- changes in knowledge, intrinsic motivation, and self-efficacy, together with post-intervention evaluation of the effect of the simulation on student understanding of everyday clinical practice were demonstrated. Knowledge (Cohen's d = 0.73), intrinsic motivation (d = 0.24), and self-efficacy (d = 0.46) significantly increased from the pre- to post-test. Low knowledge students showed the greatest increases in knowledge (d = 3.35) and self-efficacy (d = 0.61), but a non-significant increase in intrinsic motivation (d = 0.22). The medium and high knowledge students showed significant increases in knowledge (d = 1.45 and 0.36, respectively), motivation (d = 0.22 and 0.31), and self-efficacy (d = 0.36 and 0.52, respectively). Additionally, 90 % of students reported a greater understanding of medical genetics, 82 % thought that medical genetics was more interesting, 93 % indicated that they were more interested and motivated, and had gained confidence by having experienced working on a case story that resembled the real working situation of a doctor, and 78 % indicated that they would feel more confident counseling a patient after the simulation. The simulation based learning environment increased students' learning, intrinsic motivation, and self-efficacy (although the strength of these effects differed depending on their pre-test knowledge), and increased the perceived relevance of medical educational activities. The results suggest that simulations can help future generations of doctors transfer new understanding of disease mechanisms gained in virtual laboratory settings into everyday clinical practice.
Modeling the Acoustic Channel for Simulation Studies
2012-09-30
Michele Zorzi (PI), Prof. Gianfranco Pierobon (co-PI), Dr. Paolo Casari (post-doctoral researchers ) and Dr. Beatrice Tomasi (PhD student until 12/31...2011 and then post-doctoral researcher ), Mr. Daniele Munaretto (PhD student ), Mr. Giovanni Toso (engineer) and Mr. Matteo Lazzarin (MS student ...approach, are reported in [TWC2012]. DISSEMINATION ACTIVITIES The results obtained in the conducted reseach have been disseminated to the research
A Novel Approach to Medical Student Peer-assisted Learning Through Case-based Simulations
Jauregui, Joshua; Bright, Steven; Strote, Jared; Shandro, Jamie
2018-01-01
Introduction Peer-assisted learning (PAL) is the development of new knowledge and skills through active learning support from peers. Benefits of PAL include introduction of teaching skills for students, creation of a safe learning environment, and efficient use of faculty time. We present a novel approach to PAL in an emergency medicine (EM) clerkship curriculum using an inexpensive, tablet-based app for students to cooperatively present and perform low-fidelity, case-based simulations that promotes accountability for student learning, fosters teaching skills, and economizes faculty presence. Methods We developed five clinical cases in the style of EM oral boards. Fourth-year medical students were each assigned a unique case one week in advance. Students also received an instructional document and a video example detailing how to lead a case. During the 90-minute session, students were placed in small groups of 3–5 students and rotated between facilitating their assigned cases and participating as a team for the cases presented by their fellow students. Cases were supplemented with a half-mannequin that can be intubated, airway supplies, and a tablet-based app (SimMon, $22.99) to remotely display and update vital signs. One faculty member rotated among groups to provide additional assistance and clarification. Three EM faculty members iteratively developed a survey, based on the literature and pilot tested it with fourth-year medical students, to evaluate the course. Results 135 medical students completed the course and course evaluation survey. Learner satisfaction was high with an overall score of 4.6 on a 5-point Likert scale. In written comments, students reported that small groups with minimal faculty involvement provided a safe learning environment and a unique opportunity to lead a group of peers. They felt that PAL was more effective than traditional simulations for learning. Faculty reported that students remained engaged and required minimal oversight. Conclusion Unlike other simulations, our combination of brief, student-assisted cases using low-fidelity simulation provides a cost-, resource- and time-effective way to implement a medical student clerkship educational experience. PMID:29383080
A Novel Approach to Medical Student Peer-assisted Learning Through Case-based Simulations.
Jauregui, Joshua; Bright, Steven; Strote, Jared; Shandro, Jamie
2018-01-01
Peer-assisted learning (PAL) is the development of new knowledge and skills through active learning support from peers. Benefits of PAL include introduction of teaching skills for students, creation of a safe learning environment, and efficient use of faculty time. We present a novel approach to PAL in an emergency medicine (EM) clerkship curriculum using an inexpensive, tablet-based app for students to cooperatively present and perform low-fidelity, case-based simulations that promotes accountability for student learning, fosters teaching skills, and economizes faculty presence. We developed five clinical cases in the style of EM oral boards. Fourth-year medical students were each assigned a unique case one week in advance. Students also received an instructional document and a video example detailing how to lead a case. During the 90-minute session, students were placed in small groups of 3-5 students and rotated between facilitating their assigned cases and participating as a team for the cases presented by their fellow students. Cases were supplemented with a half-mannequin that can be intubated, airway supplies, and a tablet-based app (SimMon, $22.99) to remotely display and update vital signs. One faculty member rotated among groups to provide additional assistance and clarification. Three EM faculty members iteratively developed a survey, based on the literature and pilot tested it with fourth-year medical students, to evaluate the course. 135 medical students completed the course and course evaluation survey. Learner satisfaction was high with an overall score of 4.6 on a 5-point Likert scale. In written comments, students reported that small groups with minimal faculty involvement provided a safe learning environment and a unique opportunity to lead a group of peers. They felt that PAL was more effective than traditional simulations for learning. Faculty reported that students remained engaged and required minimal oversight. Unlike other simulations, our combination of brief, student-assisted cases using low-fidelity simulation provides a cost-, resource- and time-effective way to implement a medical student clerkship educational experience.
Paper Moon: Simulating a Total Solar Eclipse
ERIC Educational Resources Information Center
Madden, Sean P.; Downing, James P.; Comstock, Jocelyne M.
2006-01-01
This article describes a classroom activity in which a solar eclipse is simulated and a mathematical model is developed to explain the data. Students use manipulative devices and graphing calculators to carry out the experiment and then compare their results to those collected in Koolymilka, Australia, during the 2002 eclipse.
Synergy across the Curriculum: Simulating the Institution of Postwar Iraqi Government
ERIC Educational Resources Information Center
Austin, W. Chadwick; McDowell, Todd; Sacko, David H.
2006-01-01
This article describes an undergraduate simulation that formulates Iraqi regimes following the removal of Saddam Hussein's Baathist regime. This exercise reinforces student comprehension and awareness for a range of legal and political topics--including group decision making, international law, diplomacy, and human rights--by actively engaging the…
An Undergraduate Laboratory Activity on Molecular Dynamics Simulations
ERIC Educational Resources Information Center
Spitznagel, Benjamin; Pritchett, Paige R.; Messina, Troy C.; Goadrich, Mark; Rodriguez, Juan
2016-01-01
Vision and Change [AAAS, 2011] outlines a blueprint for modernizing biology education by addressing conceptual understanding of key concepts, such as the relationship between structure and function. The document also highlights skills necessary for student success in 21st century Biology, such as the use of modeling and simulation. Here we…
Helping Children Understand Disabilities.
ERIC Educational Resources Information Center
Zakariya, Sally Banks
1978-01-01
The program described uses simulation activities; exposure to aids and appliances; guest speakers; books, movies, slides, and videotapes; and class discussion to help elementary students understand disabilities. (IRT)
Algodoo: A Tool for Encouraging Creativity in Physics Teaching and Learning
NASA Astrophysics Data System (ADS)
Gregorcic, Bor; Bodin, Madelen
2017-01-01
Algodoo (http://www.algodoo.com) is a digital sandbox for physics 2D simulations. It allows students and teachers to easily create simulated "scenes" and explore physics through a user-friendly and visually attractive interface. In this paper, we present different ways in which students and teachers can use Algodoo to visualize and solve physics problems, investigate phenomena and processes, and engage in out-of-school activities and projects. Algodoo, with its approachable interface, inhabits a middle ground between computer games and "serious" computer modeling. It is suitable as an entry-level modeling tool for students of all ages and can facilitate discussions about the role of computer modeling in physics.
NASA Astrophysics Data System (ADS)
Frezzo, Dennis C.; Behrens, John T.; Mislevy, Robert J.
2010-04-01
Simulation environments make it possible for science and engineering students to learn to interact with complex systems. Putting these capabilities to effective use for learning, and assessing learning, requires more than a simulation environment alone. It requires a conceptual framework for the knowledge, skills, and ways of thinking that are meant to be developed, in order to design activities that target these capabilities. The challenges of using simulation environments effectively are especially daunting in dispersed social systems. This article describes how these challenges were addressed in the context of the Cisco Networking Academies with a simulation tool for computer networks called Packet Tracer. The focus is on a conceptual support framework for instructors in over 9,000 institutions around the world for using Packet Tracer in instruction and assessment, by learning to create problem-solving scenarios that are at once tuned to the local needs of their students and consistent with the epistemic frame of "thinking like a network engineer." We describe a layered framework of tools and interfaces above the network simulator that supports the use of Packet Tracer in the distributed community of instructors and students.
Aso, Ryoko; Inoue, Chikako; Yoshimura, Akinobu; Shimura, Toshiro
2013-01-01
Our goal was to train simulated patients (SPs) to respond appropriately to questions about family history from medical students in simulated medical interviews. To this end, we carried out a survey of 91 SPs and 76 4th-year medical students to investigate their notions of what constitutes a family. All of the SPs and students surveyed deemed parents and children living together to be members of a family. In a situation where one spouse's parents live together with the basic family unit, 93% of the SPs considered them to be members of the family, whereas only 79% of the students did. Married children living apart from their parents were considered members of the family by 18% of the SPs and 39% of the students. These results indicate clear differences between the SPs and students in their notions of the family. To verify the level of understanding of the definitions of family and blood relatives in particular scenarios used in simulated medical interviews, we administered a written test to 14 SPs who were training to assist in the nationwide common achievement test in medicine, the Objective Structured Clinical Examination (OSCE). The overall score of the SPs was 93.5%; the incorrect answers were "a sibling is not a blood relative" and "a spouse is a blood relative." We analyzed the performance of these 14 SPs in medical interviews carried out after training for the OSCE, in which they were asked questions that required them to reveal their understanding of blood relatives, cohabiting relatives, and the family. All of the SPs responded appropriately to the students' questions about family history. After the OSCE, we asked the SPs to assess themselves on how well they had given their family histories and to evaluate the usefulness of the SP training they had received. Their mean self-assessment score on providing a family history was 3.6 (scale: 1-4); on the usefulness of training, it was 3.4 (scale: 1-4). In conclusion, training SPs to respond appropriately to questions about family history in medical interviews is very important. Medical students have to learn how to take family histories accurately, so SP trainers should pay attention to training SPs in giving appropriate responses to students' questions, bearing in mind the differences between family history taking and everyday conversations about the family.
Mechanical Modeling and Computer Simulation of Protein Folding
ERIC Educational Resources Information Center
Prigozhin, Maxim B.; Scott, Gregory E.; Denos, Sharlene
2014-01-01
In this activity, science education and modern technology are bridged to teach students at the high school and undergraduate levels about protein folding and to strengthen their model building skills. Students are guided from a textbook picture of a protein as a rigid crystal structure to a more realistic view: proteins are highly dynamic…
ERIC Educational Resources Information Center
Dieker, Lisa; Hynes, Michael; Hughes, Charles; Smith, Eileen
2008-01-01
As technology evolves, so does its impact on people's lives. These changes clearly affect people's daily activities, but how might they also impact education, teachers, and the lives of students with disabilities? This article focuses on technological innovations and their potential implications for students and teachers in schools. This article…
ERIC Educational Resources Information Center
Welch, Bernadette; Vo-Tran, Huan; Pittayachawan, Siddhi; Reynolds, Sue
2012-01-01
The value of work integrated learning (WIL) is well-established in the education of information management (IM) professionals. Adding value to WIL through cross-cultural or cross-disciplinary experiences is considered in this article. Using online communication, simulation activities, and onsite work, students from RMIT Melbourne and RMIT Ho Chi…
Sunnqvist, Charlotta; Karlsson, Karin; Lindell, Lisbeth; Fors, Uno
2016-03-01
Psychiatric and mental health nursing is built on a trusted nurse and patient relationship. Therefore communication and clinical reasoning are two important issues. Our experiences as teachers in psychiatric educational programmes are that the students feel anxiety and fear before they start their clinical practices in psychiatry. Therefore there is a need for bridging over the fear. Technology enhanced learning might support such activities so we used Virtual patients (VPs), an interactive computer simulations of real-life clinical scenarios. The aim of this study was to investigate 4th term nursing students' opinions on the use of Virtual Patients for assessment in a Mental Health and Ill-health course module. We asked 24 volunteering students to practise with five different VP cases during almost 10 weeks before the exam. The participants were gathered together for participating in a written and an oral evaluation. The students were positive to the use of VPs in psychiatry and were very positive to use VPs in their continued nursing education. It seems that Virtual Patients can be an activity producing pedagogic model promoting students' independent knowledge development, critical thinking, reflection and problem solving ability for nurse students in psychiatric care. Copyright © 2016 Elsevier Ltd. All rights reserved.
Smackdown: Adventures in Simulation Standards and Interoperability
NASA Technical Reports Server (NTRS)
Elfrey, Priscilla R.; Zacharewicz, Gregory; Ni, marcus
2011-01-01
The paucity of existing employer-driven simulation education and the need for workers broadly trained in Modeling & Simulation (M&S) poses a critical need that the simulation community as a whole must address. This paper will describe how this need became an impetus for a new inter-university activity that allows students to learn about simulation by doing it. The event, called Smackdown, was demonstrated for the first time in April at the Spring Simulation Multi-conference. Smackdown is an adventure in international cooperation. Students and faculty took part from the US and Europe supported by IEEE/SISO standards, industry software and National Aeronautics and Space Administration (NASA) content of are supply mission to the Moon. The developers see Smackdown providing all participants with a memorable, interactive, problem-solving experience, which can contribute, importantly to the workforce of the future. This is part of the larger need to increase undergraduate education in simulation and could be a prime candidate for senior design projects.
Koivisto, Jaana-Maija; Multisilta, Jari; Niemi, Hannele; Katajisto, Jouko; Eriksson, Elina
2016-10-01
Clinical reasoning is viewed as a problem-solving activity; in games, players solve problems. To provide excellent patient care, nursing students must gain competence in clinical reasoning. Utilising gaming elements and virtual simulations may enhance learning of clinical reasoning. To investigate nursing students' experiences of learning clinical reasoning process by playing a 3D simulation game. Cross-sectional descriptive study. Thirteen gaming sessions at two universities of applied sciences in Finland. The prototype of the simulation game used in this study was single-player in format. The game mechanics were built around the clinical reasoning process. Nursing students from the surgical nursing course of autumn 2014 (N=166). Data were collected by means of an online questionnaire. In terms of the clinical reasoning process, students learned how to take action and collect information but were less successful in learning to establish goals for patient care or to evaluate the effectiveness of interventions. Learning of the different phases of clinical reasoning process was strongly positively correlated. The students described that they learned mainly to apply theoretical knowledge while playing. The results show that those who played digital games daily or occasionally felt that they learned clinical reasoning by playing the game more than those who did not play at all. Nursing students' experiences of learning the clinical reasoning process by playing a 3D simulation game showed that such games can be used successfully for learning. To ensure that students follow a systematic approach, the game mechanics need to be built around the clinical reasoning process. Copyright © 2016 Elsevier Ltd. All rights reserved.
Student and faculty perceptions of problem-based learning on a family medicine clerkship.
McGrew, M C; Skipper, B; Palley, T; Kaufman, A
1999-03-01
The value of problem-based learning (PBL) in the preclinical years of medical school has been described widely in the literature. This study evaluates student and faculty perceptions of PBL during the clinical years of medical school, on a family medicine clerkship. Students used a 4-point scale to rate clerkship educational components on how well learning was facilitated. Faculty narratives of their perceptions of PBL were reviewed. Educational components that involved active learning by students--clinical activity, independent learning, and PBL tutorials--were ranked highest by students. Faculty perceived that PBL on the clerkship simulated "real-life" learning, included more behavioral and population issues, and provided substantial blocks of student contact time for improved student evaluation. Students and faculty in a family medicine clerkship ranked PBL sessions higher than any other nonclinical component of the clerkship. In addition to providing students with opportunities for self-directed learning, the PBL sessions provide faculty with more contact time with students, thereby enhancing the assessment of students' learning and progress.
Computer-simulated laboratory explorations for middle school life, earth, and physical Science
NASA Astrophysics Data System (ADS)
von Blum, Ruth
1992-06-01
Explorations in Middle School Science is a set of 72 computer-simulated laboratory lessons in life, earth, and physical Science for grades 6 9 developed by Jostens Learning Corporation with grants from the California State Department of Education and the National Science Foundation.3 At the heart of each lesson is a computer-simulated laboratory that actively involves students in doing science improving their: (1) understanding of science concepts by applying critical thinking to solve real problems; (2) skills in scientific processes and communications; and (3) attitudes about science. Students use on-line tools (notebook, calculator, word processor) to undertake in-depth investigations of phenomena (like motion in outer space, disease transmission, volcanic eruptions, or the structure of the atom) that would be too difficult, dangerous, or outright impossible to do in a “live” laboratory. Suggested extension activities lead students to hands-on investigations, away from the computer. This article presents the underlying rationale, instructional model, and process by which Explorations was designed and developed. It also describes the general courseware structure and three lesson's in detail, as well as presenting preliminary data from the evaluation. Finally, it suggests a model for incorporating technology into the science classroom.
ERIC Educational Resources Information Center
Thomson, Gareth
1998-01-01
Presents a simulation activity in which students assume the role of grizzly bears in Banff National Park. Concepts such as species diversity, fitness, natural selection, habitat loss, extinction, and population dynamics are discussed. Children learn how human activities can affect the bear's reproductive success. Lists materials, instructional…
What Is All This Dam Foolishness? Instructional Activities Series IA/S-2.
ERIC Educational Resources Information Center
Bill, Erwin
This activity is one of a series of 17 teacher-developed instructional activities for geography at the secondary grade level described in SO 009 140. This activity investigates the proposed construction of a dam. It employs a simulation technique in which students debate the conflicts that may evolve between groups with differing goals. To provide…
ERIC Educational Resources Information Center
Chang, C.-J.; Chang, M.-H.; Liu, C.-C.; Chiu, B.-C.; Fan Chiang, S.-H.; Wen, C.-T.; Hwang, F.-K.; Chao, P.-Y.; Chen, Y.-L.; Chai, C.-S.
2017-01-01
Researchers have indicated that the collaborative problem-solving space afforded by the collaborative systems significantly impact the problem-solving process. However, recent investigations into collaborative simulations, which allow a group of students to jointly manipulate a problem in a shared problem space, have yielded divergent results…
Interaction: A Role Playing Simulation Activity.
ERIC Educational Resources Information Center
Henderhan, Robert C.
As part of a program to prepare public librarians to serve the urban disadvantaged, the faculty at Wayne State University experimented with simulation as an instructional technique. They developed and tested a library game, LIB SIM, aimed at introducing students to the relationships between main library and various branches in a large urban public…
ERIC Educational Resources Information Center
Brady, Corey; Orton, Kai; Weintrop, David; Anton, Gabriella; Rodriguez, Sebastian; Wilensky, Uri
2017-01-01
Computer science (CS) is becoming an increasingly diverse domain. This paper reports on an initiative designed to introduce underrepresented populations to computing using an eclectic, multifaceted approach. As part of a yearlong computing course, students engage in Maker activities, participatory simulations, and computing projects that…
A Medical Interviewing Curriculum Intervention for Medical Students' Assessment of Suicide Risk
ERIC Educational Resources Information Center
Fiedorowicz, Jess G.; Tate, Jodi; Miller, Anthony C.; Franklin, Ellen M.; Gourley, Ryan; Rosenbaum, Marcy
2013-01-01
Objective: Effective communication strategies are required to assess suicide risk. The authors determined whether a 2-hour simulated-patient activity during a psychiatry clerkship improved self-assessment of medical interviewing skills relevant to suicide risk-assessment. Methods: In the 2-hour simulated-patient intervention, at least one…
Simulated Analysis of Linear Reversible Enzyme Inhibition with SCILAB
ERIC Educational Resources Information Center
Antuch, Manuel; Ramos, Yaquelin; Álvarez, Rubén
2014-01-01
SCILAB is a lesser-known program (than MATLAB) for numeric simulations and has the advantage of being free software. A challenging software-based activity to analyze the most common linear reversible inhibition types with SCILAB is described. Students establish typical values for the concentration of enzyme, substrate, and inhibitor to simulate…
Watergate: The Waterloo of a President. ETC Simulation Number 1.
ERIC Educational Resources Information Center
Hostrop, Richard W.
This booklet provides instructions for simulating the causes and events that led to the resignation of Richard Nixon as President of the United States. Students role-play activities related to the Watergate break-in, the cover-up attempts, the Congressional hearings relating to impeachment considerations, and the resignation of President Richard…
Learning Patterns as Criterion for Forming Work Groups in 3D Simulation Learning Environments
ERIC Educational Resources Information Center
Maria Cela-Ranilla, Jose; Molías, Luis Marqués; Cervera, Mercè Gisbert
2016-01-01
This study analyzes the relationship between the use of learning patterns as a grouping criterion to develop learning activities in the 3D simulation environment at University. Participants included 72 Spanish students from the Education and Marketing disciplines. Descriptive statistics and non-parametric tests were conducted. The process was…
Choe, Myoung-Ae; Kuwano, Noriko; Bang, Kyung-Sook; Cho, Mi-Kyoung; Yatsushiro, Rika; Kawata, Yuki
The purpose of this study was to identify differences in motivation for joining disaster relief activities as a nurse in the future between Japanese and Korean nursing students. A descriptive 2-group comparative study design was used. The participants were 721 first- to fourth-year nursing students (Japanese, n = 324; Korean, n = 397). From June to September 2014, data were collected through a researcher-administered questionnaire and self-reported answers. The collected data were analyzed by descriptive statistics, the χ test, and the t test.No significant difference was found between Japanese and Korean students in motivation to join domestic relief activities should a disaster occur in the area in which they lived. Compared with Korean students, Japanese students strongly agreed that it is necessary to carry out relief work across borders when disasters occur in foreign countries (p = .001). Meanwhile, Japanese students showed less motivation than Korean students to join relief activities in other domestic areas and foreign countries (p = .020).The results of this study suggest that the motivation of Japanese students to join disaster relief activities as nurses in the future should a disaster occur in other domestic areas and foreign countries needs to be increased. The results also suggest that undergraduate students should be well prepared for disasters through disaster nursing education, including practical training, disaster drills, and simulation.
Bland, Andrew J; Tobbell, Jane
2015-11-01
Simulation has become an established feature of undergraduate nurse education and as such requires extensive investigation. Research limited to pre-constructed categories imposed by some questionnaire and interview methods may only provide partial understanding. This is problematic in understanding the mechanisms of learning in simulation-based education as contemporary distributed theories of learning posit that learning can be understood as the interaction of individual identity with context. This paper details a method of data collection and analysis that captures interaction of individuals within the simulation experience which can be analysed through multiple lenses, including context and through the lens of both researcher and learner. The study utilised a grounded theory approach involving 31 under-graduate third year student nurses. Data was collected and analysed through non-participant observation, digital recordings of simulation activity and focus group deconstruction of their recorded simulation by the participants and researcher. Focus group interviews enabled further clarification. The method revealed multiple levels of dynamic data, concluding that in order to better understand how students learn in social and active learning strategies, dynamic data is required enabling researchers and participants to unpack what is happening as it unfolds in action. Copyright © 2015 Elsevier Ltd. All rights reserved.
King, Judy; Beanlands, Sarah; Fiset, Valerie; Chartrand, Louise; Clarke, Shelley; Findlay, Tarra; Morley, Michelle; Summers, Ian
2016-09-01
Within the care of people living with respiratory conditions, nursing, physiotherapy, and respiratory therapy healthcare professionals routinely work in interprofessional teams. To help students prepare for their future professional roles, there is a need for them to be involved in interprofessional education. The purpose of this project was to compare two different methods of patient simulation in improving interprofessional competencies for students in nursing, physiotherapy, and respiratory therapy programmes. The Canadian Interprofessional Health Collaborative competencies of communication, collaboration, conflict resolution patient/family-centred care, roles and responsibilities, and team functioning were measured. Using a quasi-experimental pre-post intervention approach two different interprofessional workshops were compared: the combination of standardised and simulated patients, and exclusively standardised patients. Students from nursing, physiotherapy, and respiratory therapy programmes worked together in these simulation-based activities to plan and implement care for a patient with a respiratory condition. Key results were that participants in both years improved in their self-reported interprofessional competencies as measured by the Interprofessional Collaborative Competencies Attainment Survey (ICCAS). Participants indicated that they found their interprofessional teams did well with communication and collaboration. But the participants felt they could have better involved the patients and their family members in the patient's care. Regardless of method of patient simulation used, mannequin or standardised patients, students found the experience beneficial and appreciated the opportunity to better understand the roles of other healthcare professionals in working together to help patients living with respiratory conditions.
"SimChemistry" as an Active Learning Tool in Chemical Education
ERIC Educational Resources Information Center
Bolton, Kim; Saalman, Elisabeth; Christie, Michael; Ingerman, Ake; Linder, Cedric
2008-01-01
The publicly available free computer program, "SimChemistry," was used as an active learning tool in the chemical engineering curriculum at the University College of Boras, Sweden. The activity involved students writing their own simulation programs on topics in the area of molecular structure and interactions. Evaluation of the learning…
MacKinnon, Karen; Marcellus, Lenora; Rivers, Julie; Gordon, Carol; Ryan, Maureen; Butcher, Diane
2017-11-01
Although maternal-child care is a pillar of primary health care, there is a global shortage of maternal-child health care providers. Nurse educators experience difficulties providing undergraduate students with maternal-child learning experiences for a number of reasons. Simulation has the potential to complement learning in clinical and classroom settings. Although systematic reviews of simulation are available, no systematic reviews of qualitative evidence related to maternal-child simulation-based learning (SBL) for undergraduate nursing students and/or educators have been located. The aim of this systematic review was to identify the appropriateness and meaningfulness of maternal-child simulation-based learning for undergraduate nursing students and nursing educators in educational settings to inform curriculum decision-making. The review questions are: INCLUSION CRITERIA TYPES OF PARTICIPANTS: Pre-registration or pre-licensure or undergraduate nursing or health professional students and educators. Experiences of simulation in an educational setting with a focus relevant to maternal child nursing. Qualitative research and educational evaluation using qualitative methods. North America, Europe, Australia and New Zealand. A three-step search strategy identified published studies in the English language from 2000 until April 2016. Identified studies that met the inclusion criteria were retrieved and critically appraised using the Joanna Briggs Institute Qualitative Assessment and Review Instrument (JBI-QARI) by at least two independent reviewers. Overall the methodological quality of the included studies was low. Qualitative findings were extracted by two independent reviewers using JBI-QARI data extraction tools. Findings were aggregated and categorized on the basis of similarity in meaning. Categories were subjected to a meta-synthesis to produce a single comprehensive set of synthesized findings. Twenty-two articles from 19 studies were included in the review. A total of 112 findings were extracted from the included articles. Findings were grouped into 15 categories created on the basis of similarity of meaning. Meta-synthesis of these categories generated three synthesized findings.Synthesized finding 1 Students experienced simulated learning experiences (SLE) as preparation that enhanced their confidence in practice. When simulation was being used for evaluation purposes many students experienced anxiety about the SLE.Synthesized finding 2 Pedagogical practices thought to be appropriate and meaningful included: realistic, relevant and engaging scenarios, a safe non-threatening learning environment, supportive guidance throughout the process, and integration with curriculum.Synthesized finding 3 Barriers and enablers to incorporating SLEs into maternal child education were identified including adequate resources, technological support and faculty development. Students and educators recognized that some things, such as relationship building, could not be simulated. Students felt that simulation prepared them for practice through building their self-confidence related to frequently and infrequently seen maternal-child scenarios. Specific pedagogical elements support the meaningfulness of the simulation for student learning. The presence or absence of resources impacts the capacity of educators to integrate simulation activities throughout curricula.
Embedding High-Fidelity Simulation Into a Foundations of Nursing Course.
Talbot, Megan Sary
2015-01-01
Delay in recognizing the need for and initiating lifesaving measures is unacceptable in health care. It is never too early to teach novice nursing students to recognize and respond to early warning signs of patient deterioration. The rapid response system was developed to expedite recognition of and response to changes in a patient's condition. Use of high-fidelity simulation by beginning nursing students to practice recognizing and responding to patient deterioration is vital to both the welfare of patients and the edification of students. Recognizing and responding quickly to patients' early warning signs of deterioration can determine a patient's outcome. This article discusses the importance of instructing beginning nursing students in identifying and reacting appropriately to early signs of patient deterioration and in following the chain of command to activate the rapid response team.
Investigating Ocean Pollution.
ERIC Educational Resources Information Center
LeBeau, Sue
1998-01-01
Describes a fifth-grade class project to investigate two major forms of ocean pollution: plastics and oil. Students work in groups and read, discuss, speculate, offer opinions, and participate in activities such as keeping a plastics journal, testing the biodegradability of plastics, and simulating oil spills. Activities culminate in…
Build an Earthquake City! Grades 6-8.
ERIC Educational Resources Information Center
Rushton, Erik; Ryan, Emily; Swift, Charles
In this activity, students build a city out of sugar cubes, bouillon cubes, and gelatin cubes. The city is then put through simulated earthquakes to see which cube structures withstand the shaking the best. This activity requires a 50-minute time period for completion. (Author/SOE)
Integrating Collaborative Learning Groups in the Large Enrollment Lecture
NASA Astrophysics Data System (ADS)
Adams, J. P.; Brissenden, G.; Lindell Adrian, R.; Slater, T. F.
1998-12-01
Recent reforms for undergraduate education propose that students should work in teams to solve problems that simulate problems that research scientists address. In the context of an innovative large-enrollment course at Montana State University, faculty have developed a series of 15 in-class, collaborative learning group activities that provide students with realistic scenarios to investigate. Focusing on a team approach, the four principle types of activities employed are historical, conceptual, process, and open-ended activities. Examples of these activities include classifying stellar spectra, characterizing galaxies, parallax measurements, estimating stellar radii, and correlating star colors with absolute magnitudes. Summative evaluation results from a combination of attitude surveys, astronomy concept examinations, and focus group interviews strongly suggest that, overall, students are learning more astronomy, believe that the group activities are valuable, enjoy the less-lecture course format, and have significantly higher attendance rates. In addition, class observations of 48 self-formed, collaborative learning groups reveal that female students are more engaged in single-gender learning groups than in mixed gender groups.
Mercury in Retrograde: Shaking Up the Study of Orbital Motion with Kinesthetic Learning
NASA Astrophysics Data System (ADS)
DeStefano, Paul; Allen, Thomas; Widenhorn, Ralf
2018-06-01
We are investigating the use of kinesthetic activities to teach the orbital motion of planets at the introductory astronomy level. In addition to breaking the monotony of traditional classroom settings, kinesthetic activities can allow novel connections to form between the student and the material, as established in a recent study. In our example active learning activity, two students walk along predetermined paths in the classroom, simulating the dynamics of any two real or fictional bodies in orbital motion about a common object. Each student carries a short-range, local positioning device that records its 2D position, continuously. The position data from both devices are collected on a single computer. After acquisition, the data can be used to highlight interesting features of orbital dynamics. For example, we demonstrate a particular transformation of the data that shows apparent retrograde motion arising directly from the relative motion of two bodies orbiting a common object. This activity provides students with the opportunity to observe interesting orbital dynamics on a human scale.
Enhancing Negotiation Skills Using Foreign Service Simulations
ERIC Educational Resources Information Center
Opt, Susan
2017-01-01
Courses: Conflict communication, negotiation, small group. Objective: This activity will enhance students' awareness and critique of their own negotiation behaviors. A list of references and suggested readings is included.
A Hands-On Approach to Teaching Protein Translation & Translocation into the ER
ERIC Educational Resources Information Center
LaBonte, Michelle L.
2013-01-01
The process of protein translation and translocation into the endoplasmic reticulum (ER) can often be challenging for introductory college biology students to visualize. To help them understand how proteins become oriented in the ER membrane, I developed a hands-on activity in which students use Play-Doh to simulate the process of protein…
ERIC Educational Resources Information Center
Henry, Beverly W.; Ozier, Amy D.; Johnson, Amy
2011-01-01
This study aimed to assess the impact of pre-professional education on students' knowledge and attitudes about aging, including the option of a simulated learning activity. Using a mixed design, groups of nursing and nutrition students (n = 127) were randomly assigned to experience the Aging Game. Pre- and posttest observations included measures…
Integration of Simulation into Pre-Laboratory Chemical Course: Computer Cluster versus WebCT
ERIC Educational Resources Information Center
Limniou, Maria; Papadopoulos, Nikos; Whitehead, Christopher
2009-01-01
Pre-laboratory activities have been known to improve students' preparation before their practical work as they assist students to make available more working memory capacity for actual learning during the laboratory. The aim of this investigation was to compare two different teaching approaches which supported a pre-laboratory session by using the…
ERIC Educational Resources Information Center
Benakli, Nadia; Kostadinov, Boyan; Satyanarayana, Ashwin; Singh, Satyanand
2017-01-01
The goal of this paper is to promote computational thinking among mathematics, engineering, science and technology students, through hands-on computer experiments. These activities have the potential to empower students to learn, create and invent with technology, and they engage computational thinking through simulations, visualizations and data…
Data Sharing and the Development of the Cleveland Clinic Statistical Education Dataset Repository
ERIC Educational Resources Information Center
Nowacki, Amy S.
2013-01-01
Examples are highly sought by both students and teachers. This is particularly true as many statistical instructors aim to engage their students and increase active participation. While simulated datasets are functional, they lack real perspective and the intricacies of actual data. In order to obtain real datasets, the principal investigator of a…
Marketing and Distribution: What About Training Plans in the DE Project Laboratory?
ERIC Educational Resources Information Center
Snyder, Ruth
1977-01-01
Managing a distributive education (DE) laboratory is a challenge. The laboratory is the simulated training station, with the instructor taking on the role of employer, managing student activities and learning. One tool to be utilized in managing a DE laboratory is a training plan. This article discusses the need for student training plans and the…
ERIC Educational Resources Information Center
Frack, Susan; Blanchard, Scott Alan
2005-01-01
In this activity students will simulate how sedimentary rocks can be changed into metamorphic rocks by intense pressure. The materials needed are two small pieces of white bread, one piece of wheat bread, and one piece of a dark bread (such as pumpernickel or dark rye) per student, two pieces of waxed paper, scissors, a ruler, and heavy books.…
ERIC Educational Resources Information Center
Wieland, Kristina
2010-01-01
Students benefit from collaborative learning activities, but they do not automatically reach desired learning outcomes when working together (Fischer, Kollar, Mandl, & Haake, 2007; King, 2007). Learners need instructional support to increase the quality of collaborative processes and individual learning outcomes. The core challenge is to find…
Modeling Advance Life Support Systems
NASA Technical Reports Server (NTRS)
Pitts, Marvin; Sager, John; Loader, Coleen; Drysdale, Alan
1996-01-01
Activities this summer consisted of two projects that involved computer simulation of bioregenerative life support systems for space habitats. Students in the Space Life Science Training Program (SLSTP) used the simulation, space station, to learn about relationships between humans, fish, plants, and microorganisms in a closed environment. One student complete a six week project to modify the simulation by converting the microbes from anaerobic to aerobic, and then balancing the simulation's life support system. A detailed computer simulation of a closed lunar station using bioregenerative life support was attempted, but there was not enough known about system restraints and constants in plant growth, bioreactor design for space habitats and food preparation to develop an integrated model with any confidence. Instead of a completed detailed model with broad assumptions concerning the unknown system parameters, a framework for an integrated model was outlined and work begun on plant and bioreactor simulations. The NASA sponsors and the summer Fell were satisfied with the progress made during the 10 weeks, and we have planned future cooperative work.
NASA Astrophysics Data System (ADS)
Price, Norman T.
The availability and sophistication of visual display images, such as simulations, for use in science classrooms has increased exponentially however, it can be difficult for teachers to use these images to encourage and engage active student thinking. There is a need to describe flexible discussion strategies that use visual media to engage active thinking. This mixed methods study analyzes teacher behavior in lessons using visual media about the particulate model of matter that were taught by three experienced middle school teachers. Each teacher taught one half of their students with lessons using static overheads and taught the other half with lessons using a projected dynamic simulation. The quantitative analysis of pre-post data found significant gain differences between the two image mode conditions, suggesting that the students who were assigned to the simulation condition learned more than students who were assigned to the overhead condition. Open coding was used to identify a set of eight image-based teaching strategies that teachers were using with visual displays. Fixed codes for this set of image-based discussion strategies were then developed and used to analyze video and transcripts of whole class discussions from 12 lessons. The image-based discussion strategies were refined over time in a set of three in-depth 2x2 comparative case studies of two teachers teaching one lesson topic with two image display modes. The comparative case study data suggest that the simulation mode may have offered greater affordances than the overhead mode for planning and enacting discussions. The 12 discussions were also coded for overall teacher student interaction patterns, such as presentation, IRE, and IRF. When teachers moved during a lesson from using no image to using either image mode, some teachers were observed asking more questions when the image was displayed while others asked many fewer questions. The changes in teacher student interaction patterns suggest that teachers vary on whether they consider the displayed image as a "tool-for-telling" and a "tool-for-asking." The study attempts to provide new descriptions of strategies teachers use to orchestrate image-based discussions designed to promote student engagement and reasoning in lessons with conceptual goals.
An experiment on radioactive equilibrium and its modelling using the ‘radioactive dice’ approach
NASA Astrophysics Data System (ADS)
Santostasi, Davide; Malgieri, Massimiliano; Montagna, Paolo; Vitulo, Paolo
2017-07-01
In this article we describe an educational activity on radioactive equilibrium we performed with secondary school students (17-18 years old) in the context of a vocational guidance stage for talented students at the Department of Physics of the University of Pavia. Radioactive equilibrium is investigated experimentally by having students measure the activity of 214Bi from two different samples, obtained using different preparation procedures from an uraniferous rock. Students are guided in understanding the mathematical structure of radioactive equilibrium through a modelling activity in two parts. Before the lab measurements, a dice game, which extends the traditional ‘radioactive dice’ activity to the case of a chain of two decaying nuclides, is performed by students divided into small groups. At the end of the laboratory work, students design and run a simple spreadsheet simulation modelling the same basic radioactive chain with user defined decay constants. By setting the constants to realistic values corresponding to nuclides of the uranium decay chain, students can deepen their understanding of the meaning of the experimental data, and also explore the difference between cases of non-equilibrium, transient and secular equilibrium.
NASA Astrophysics Data System (ADS)
Vasina, A. V.
2017-01-01
The author of the article imparts pedagogical experience of realization of intersubject communications of school basic courses of informatics, technology and physics through research activity of students with the use of specialized programs for the development and studying of computer models of physical processes. The considered technique is based on the principles of independent scholar activity of students, intersubject communications such as educational disciplines of technology, physics and informatics; it helps to develop the research activity of students and a professional and practical orientation of education. As an example the lesson of modeling of flotation with the use of the environment "1C Physical simulator" is considered.
ERIC Educational Resources Information Center
Bradway, Heather A.
2001-01-01
Explains a laboratory activity in which students study the effects of balanced and unbalanced nutrition on individuals' health by examining simulated urine samples. Uses a journal writing approach and includes laboratory instructions. (YDS)
ERIC Educational Resources Information Center
Science Activities, 1995
1995-01-01
Presents a Project WET water education activity. Through a game of tag that simulates the effects of environmental stressors on macroinvertebrate populations, students relate the concept of biodiversity to the health of an ecosystem. (LZ)
Expanding the Lester Hill Experience: A Report on Two 'Branch Office' Simulations
ERIC Educational Resources Information Center
Melvin, Opal B.
1976-01-01
Describes use of the Lester Hill Office Simulation, a program taught at the Tishomingo County Area Vocational-Technical Center in Mississippi. A fictitious company which provides students with the opportunity to gain realistic office experience in a classroom setting. Suggested ideas and optional activities can be used by teachers as a starting…
ERIC Educational Resources Information Center
Windschitl, Mark
2001-01-01
Examines how academic assertiveness in junior high school students was related to conceptual change and the degree to which their assertiveness affected conceptual change in the partners paired with them for a series of activities using a simulation of the human cardiovascular system. Indicates that the assertiveness ratings of the individuals'…
Simulations: Interdisciplinary Instruction at Its Best.
ERIC Educational Resources Information Center
Verkler, Karen W.
2003-01-01
Draws on numerous different content areas in the development of a 4-to-6 week long unit with the culminating activity of a simulated Mexican cafe. Students assume the roles of restaurant personnel and greet customers, take and fill orders, cook a variety of Mexican entrees, tally the check, and make change, all in the target language while…
Simulating Gravity: Dark Matter and Gravitational Lensing in the Classroom
ERIC Educational Resources Information Center
Ford, Jes; Stang, Jared; Anderson, Catherine
2015-01-01
Dark matter makes up most of the matter in the universe but very little of a standard introductory physics curriculum. Here we present our construction and use of a spandex sheet-style gravity simulator to qualitatively demonstrate two aspects of modern physics related to dark matter. First, we describe an activity in which students explore the…
ERIC Educational Resources Information Center
Tsai, Fu-Hsing; Kinzer, Charles; Hung, Kuo-Hsun; Chen, Cheng-Ling Alice; Hsu, I-Ying
2013-01-01
While most current educational simulation games provide learners with gameplay experience to motivate learning, there is often a lack of focus on ensuring that the desired content knowledge is actually learned. Students may focus on completing game activities without learning the targeted content knowledge, thus negating the desired learning…
Effect of computer game playing on baseline laparoscopic simulator skills.
Halvorsen, Fredrik H; Cvancarova, Milada; Fosse, Erik; Mjåland, Odd
2013-08-01
Studies examining the possible association between computer game playing and laparoscopic performance in general have yielded conflicting results and neither has a relationship between computer game playing and baseline performance on laparoscopic simulators been established. The aim of this study was to examine the possible association between previous and present computer game playing and baseline performance on a virtual reality laparoscopic performance in a sample of potential future medical students. The participating students completed a questionnaire covering the weekly amount and type of computer game playing activity during the previous year and 3 years ago. They then performed 2 repetitions of 2 tasks ("gallbladder dissection" and "traverse tube") on a virtual reality laparoscopic simulator. Performance on the simulator were then analyzed for association to their computer game experience. Local high school, Norway. Forty-eight students from 2 high school classes volunteered to participate in the study. No association between prior and present computer game playing and baseline performance was found. The results were similar both for prior and present action game playing and prior and present computer game playing in general. Our results indicate that prior and present computer game playing may not affect baseline performance in a virtual reality simulator.
Active Learning Strategies for the Mathematics Classroom
ERIC Educational Resources Information Center
Kerrigan, John
2018-01-01
Active learning involves students engaging with course content beyond lecture: through writing, applets, simulations, games, and more (Prince, 2004). As mathematics is often viewed as a subject area that is taught using more traditional methods (Goldsmith & Mark, 1999), there are actually many simple ways to make undergraduate mathematics…
Educating Students about the Risks of Excessive Videogame Usage.
ERIC Educational Resources Information Center
Kasper, Deirdre; Welsh, Sarah; Chambliss, Catherine
The relationship between videogame usage, active exercise, television viewing, and measures of blood pressure is explored. Videogame participation, especially playing sports or action games, simulates involvement in aggressive situations. This may activate the fight or flight response in players. This response has been associated with blood…
Alienating Students: Marxist Theory in Action
ERIC Educational Resources Information Center
Thiele, Megan; Pan, Yung-Yi Dian; Molina, Devin
2016-01-01
Karl Marx's revolutionary call, "Workers of the World Unite," resonates with many in today's society. This article describes and assesses an easily reproducible classroom activity that simulates both alienating, and perhaps more importantly, non-alienating states of production as described by Marx. This hands-on learning activity gives…
"I got it on Ebay!": cost-effective approach to surgical skills laboratories.
Schneider, Ethan; Schenarts, Paul J; Shostrom, Valerie; Schenarts, Kimberly D; Evans, Charity H
2017-01-01
Surgical education is witnessing a surge in the use of simulation. However, implementation of simulation is often cost-prohibitive. Online shopping offers a low budget alternative. The aim of this study was to implement cost-effective skills laboratories and analyze online versus manufacturers' prices to evaluate for savings. Four skills laboratories were designed for the surgery clerkship from July 2014 to June 2015. Skills laboratories were implemented using hand-built simulation and instruments purchased online. Trademarked simulation was priced online and instruments priced from a manufacturer. Costs were compiled, and a descriptive cost analysis of online and manufacturers' prices was performed. Learners rated their level of satisfaction for all educational activities, and levels of satisfaction were compared. A total of 119 third-year medical students participated. Supply lists and costs were compiled for each laboratory. A descriptive cost analysis of online and manufacturers' prices showed online prices were substantially lower than manufacturers, with a per laboratory savings of: $1779.26 (suturing), $1752.52 (chest tube), $2448.52 (anastomosis), and $1891.64 (laparoscopic), resulting in a year 1 savings of $47,285. Mean student satisfaction scores for the skills laboratories were 4.32, with statistical significance compared to live lectures at 2.96 (P < 0.05) and small group activities at 3.67 (P < 0.05). A cost-effective approach for implementation of skills laboratories showed substantial savings. By using hand-built simulation boxes and online resources to purchase surgical equipment, surgical educators overcome financial obstacles limiting the use of simulation and provide learning opportunities that medical students perceive as beneficial. Copyright © 2016 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Suzuki, David
1992-01-01
Presents an activity in which students make a simulated solar panel to learn about the principles behind energy production using solar panels. Provides information about how solar panels function to produce energy. (MCO)
2014-01-01
Background Many commencing junior doctors worldwide feel ill-prepared to deal with their new responsibilities, particularly prescribing. Simulation has been widely utilised in medical education, but the use of extended multi-method simulation to emulate the junior doctor experience has rarely been reported. Methods A randomised controlled trial compared students who underwent two, week-long, extended simulations, several months apart (Intervention), with students who attended related workshops and seminars alone (Control), for a range of outcome measures. Results Eighty-four third year students in a graduate-entry medical program were randomised, and 82 completed the study. At the end of the first week, Intervention students scored a mean of 75% on a prescribing test, compared with 70% for Control students (P = 0.02) and Intervention teams initiated cardiac compressions a mean of 29.1 seconds into a resuscitation test scenario, compared with 70.1 seconds for Control teams (P < 0.01). At the beginning of the second week, an average of nine months later, a significant difference was maintained in relation to the prescribing test only (78% vs 70%, P < 0.01). At the end of the second week, significant Intervention vs Control differences were seen on knowledge and reasoning tests, a further prescribing test (71% vs 63% [P < 0.01]) and a paediatric resuscitation scenario test (252 seconds to initiation of fluid resuscitation vs 339 seconds [P = 0.05]). Conclusions The study demonstrated long-term retention of improved prescribing skills, and an immediate effect on knowledge acquisition, reasoning and resuscitation skills, from contextualising learning activities through extended multi-method simulation. PMID:24886098
Training students to detect delirium: An interprofessional pilot study.
Chambers, Breah; Meyer, Mary; Peterson, Moya
2018-06-01
The purpose of this paper is to report nursing student knowledge acquisition and attitude after completing and interprofessional simulation with medical students. The IOM has challenged healthcare educators to teach teamwork and communication skills in interprofessional settings. Interprofessional simulation provides a higher fidelity experience than simulation in silos. Simulation may be particularly useful in helping healthcare workers gain the necessary skills to care for psychiatric clients. Specifically, healthcare providers have difficulty differentiating between dementia and delirium. Recognizing this deficit, an interprofessional simulation was created using medical students in their neurology rotation and senior nursing students. Twenty-four volunteer nursing students completed a pre-survey to assess delirium knowledge and then completed an education module about delirium. Twelve of these students participated in a simulation with medicine students. Pre and Post Kid SIM Attitude questionnaires were completed by all students participating in the simulation. After the simulations were complete, all twenty-four students were asked to complete the post-survey regarding delirium knowledge. While delirium knowledge scores improved in both groups, the simulation group scored higher, but the difference did not reach significance. The simulation group demonstrated a statistically significant improvement in attitudes toward simulation, interprofessional education, and teamwork post simulation compared to their pre-simulation scores. Nursing students who participated in an interprofessional simulation developed a heightened appreciation for learning communication, teamwork, situational awareness, and interprofessional roles and responsibilities. These results support the use of interprofessional simulation in healthcare education. Copyright © 2018 Elsevier Ltd. All rights reserved.
Giving students the run of sprinting models
NASA Astrophysics Data System (ADS)
Heck, André; Ellermeijer, Ton
2009-11-01
A biomechanical study of sprinting is an interesting task for students who have a background in mechanics and calculus. These students can work with real data and do practical investigations similar to the way sports scientists do research. Student research activities are viable when the students are familiar with tools to collect and work with data from sensors and video recordings and with modeling tools for comparing simulation and experimental results. This article describes a multipurpose system, named COACH, that offers a versatile integrated set of tools for learning, doing, and teaching mathematics and science in a computer-based inquiry approach. Automated tracking of reference points and correction of perspective distortion in videos, state-of-the-art algorithms for data smoothing and numerical differentiation, and graphical system dynamics based modeling are some of the built-in techniques that are suitable for motion analysis. Their implementation and their application in student activities involving models of running are discussed.
Deal or No Deal: using games to improve student learning, retention and decision-making
NASA Astrophysics Data System (ADS)
Chow, Alan F.; Woodford, Kelly C.; Maes, Jeanne
2011-03-01
Student understanding and retention can be enhanced and improved by providing alternative learning activities and environments. Education theory recognizes the value of incorporating alternative activities (games, exercises and simulations) to stimulate student interest in the educational environment, enhance transfer of knowledge and improve learned retention with meaningful repetition. In this case study, we investigate using an online version of the television game show, 'Deal or No Deal', to enhance student understanding and retention by playing the game to learn expected value in an introductory statistics course, and to foster development of critical thinking skills necessary to succeed in the modern business environment. Enhancing the thinking process of problem solving using repetitive games should also improve a student's ability to follow non-mathematical problem-solving processes, which should improve the overall ability to process information and make logical decisions. Learning and retention are measured to evaluate the success of the students' performance.
Creative Role-Playing Exercises in Science and Technology.
ERIC Educational Resources Information Center
Parisi, Lynn, Ed.
Five simulations for addressing science-related social issues in either the secondary science or social studies classroom are presented. Following a foreword, introduction, and description of the conceptual basis for the activities, each of the activities is presented in its entirety. Complete teacher and student materials for conducting each of…
Comprehension of Architectural Construction through Multimedia Active Learning
ERIC Educational Resources Information Center
Mas, Ángeles; Blasco, Vicente; Lerma, Carlos; Angulo, Quiteria
2013-01-01
This study presents an investigation about the use of multimedia procedures applied to architectural construction teaching. We have applied current technological resources, aiming to rationalize and optimize the active learning process. The experience presented to students is very simple and yet very effective. It has consisted in a simulation of…
Squalls on the Nisqually: A Simulation Game. Ocean Related Curriculum Activities.
ERIC Educational Resources Information Center
Marrett, Andrea
The ocean affects all of our lives. Therefore, awareness of and information about the interconnections between humans and oceans are prerequisites to making sound decisions for the future. Project ORCA (Ocean Related Curriculum Activities) has developed interdisciplinary curriculum materials designed to meet the needs of students and teachers…
Field Trips in College Biology and Ecology Courses: Revisiting Benefits and Drawbacks
ERIC Educational Resources Information Center
Lei, Simon A.
2010-01-01
Learning is best served when students are mentally and physically (actively participation) in the process. Most college and university instructors consist of lectures, discussions, instructional videos, computer simulations, online teaching, guest speakers, but also include active learning components of laboratories, greenhouses, and field trips.…
ERIC Educational Resources Information Center
Johns, Judith A.; Moyer, Matthew T.; Gasque, Lisa M.
2017-01-01
Purpose: This paper highlights the importance of conducting structured, student-centered discussions, known as debriefs, following experiential learning activities in health education. Drawing upon Kolb's experiential learning theory and literature from scholars in simulation-based training, the authors outline key considerations for planning and…
Simulated Real-Life Experiences Using Classified Ads in the Classroom.
ERIC Educational Resources Information Center
Hechler, Ellen
This guide contains activities to help teachers give middle school students experience in practical life skills. Techniques include role playing and using classified advertisements from newspapers. The five lessons include teacher tips on conducting the activities. Lessons contain objectives, materials needed, discussion, and suggested dialogue.…
ERIC Educational Resources Information Center
Dori, Yehudit Judy; Belcher, John
2005-01-01
Educational technology supports meaningful learning and enables the presentation of spatial and dynamic images, which portray relationships among complex concepts. The Technology-Enabled Active Learning (TEAL) Project at the Massachusetts Institute of Technology (MIT) involves media-rich software for simulation and visualization in freshman…
ERIC Educational Resources Information Center
Mason, Julia A.; Jones, Graham A.
1994-01-01
Describes a problem formulated by fourth-grade students about having more pizza for lunch, and the clarifying, predicting, modeling, simulating, comparing, and extending activities that occurred in addressing the problem from a probabilistic perspective. (MKR)
ERIC Educational Resources Information Center
Nunley, Kathie F.
1996-01-01
Presents an activity to simulate electrophoresis using everyday items. Uses adding machine paper to construct a set of DNA fingerprints that can be used to solve crime cases designed by students in any biology class. (JRH)
Montenery, Susan M; Walker, Marjorie; Sorensen, Elizabeth; Thompson, Rhonda; Kirklin, Dena; White, Robin; Ross, Carl
2013-01-01
To determine how millennial nursing students perceive the effects of instructional technology on their attentiveness, knowledge, critical thinking, and satisfaction. BACKGROUND Millennial learners develop critical thinking through experimentation, active participation, and multitasking with rapid shifts between technological devices. They desire immediate feedback. METHOD; A descriptive, longitudinal, anonymous survey design was used with a convenience sample of 108 sophomore, junior, and senior baccalaureate nursing students (participation rates 95 percent, winter, 85 percent, spring). Audience response, virtual learning, simulation, and computerized testing technologies were used. An investigator-designed instrument measured attentiveness, knowledge, critical thinking, and satisfaction (Cronbach's alphas 0.73, winter; 0.84, spring). Participants positively rated the audience response, virtual learning, and simulation instructional technologies on their class participation, learning, attention, and satisfaction. They strongly preferred computerized testing. Consistent with other studies, these students engaged positively with new teaching strategies using contemporary instructional technology. Faculty should consider using instructional technologies.
Snyder, J R
1982-05-01
Allied health students, making the transition from a purely academic to a professional school setting, are suddenly faced with judgment decisions about disclosure of medical information. Obscure guidelines and new interpersonal relationships with other members of the health care team complicate this transition and pose a threat to confidentiality of patient information. This article describes the design and implementation of a simulation exercise to reinforce lecture guidelines specifying disclosure of medical information without risk to the patient or student. The simulation is comprised of 10 critical incidents calling for responses ranging from logical to judgmental. Although written primarily for medical technologists, with emphasis on limitations governing release of patient laboratory data, the simulation approach is presented here as a model for other allied health professions. The use of a latent image format provides learners with positive or negative reinforcement as they learn the consequences of their decisions. The simulation activity described is easily adapted to small group discussion or computer-assisted instruction. While the simulation appears to be an accurate representation of reality, peer and real-life pressures could not be totally simulated.
The Mini-Economy: Integrating Economics into the Elementary Curriculum.
ERIC Educational Resources Information Center
Indiana State Dept. of Education, Indianapolis.
The focus of this guide is to simulate real world economic activity in the classroom by using a form of economics instruction called a " mini-economy." In a mini-economy, students earn play money in a variety of ways and spend it at a class store or class auction. Students apply for classroom jobs, run businesses, pay taxes, buy rental properties,…
They're M-e-e-elting!: An Investigation of Glacial Retreat in Antarctica
ERIC Educational Resources Information Center
Bugg, Samuel R., IV; Constible, Juanita; Kaput, Marianne; Lee, Richard E., Jr.
2007-01-01
In this article, the authors describe the mechanics of They're M-e-e-elting!, an activity wherein middle school students can simulate glacial retreat in Antarctica. They're M-e-e-elting! allows students to melt glaciers, change the water level and salinity of the Southern Ocean, and examine alterations to the Antarctic food web--all without…
Interprofessional simulation of birth in a non-maternity setting for pre-professional students.
McLelland, Gayle; Perera, Chantal; Morphet, Julia; McKenna, Lisa; Hall, Helen; Williams, Brett; Cant, Robyn; Stow, Jill
2017-11-01
Simulation-based learning is an approach recommended for teaching undergraduate health professionals. There is a scarcity of research around interprofessional simulation training for pre-professional students in obstetric emergencies that occur prior to arrival at the maternity ward. The primary aims of the study were to examine whether an interprofessional team-based simulated birth scenario would improve undergraduate paramedic, nursing, and midwifery students' self-efficacy scores and clinical knowledge when managing birth in an unplanned location. The secondary aim was to assess students' satisfaction with the newly developed interprofessional simulation. Quasi-experimental descriptive study with repeated measures. Simulated hospital emergency department. Final year undergraduate paramedic, nursing, and midwifery students. Interprofessional teams of five students managed a simulated unplanned vaginal birth, followed by debriefing. Students completed a satisfaction with simulation survey. Serial surveys of clinical knowledge and self-efficacy were conducted at three time points. Twenty-four students participated in one of five simulation scenarios. Overall, students' self-efficacy and confidence in ability to achieve a successful birth outcome was significantly improved at one month (p<0.001) with a magnitude of increase (effect) of 40% (r=0.71) and remained so after a further three months. Clinical knowledge was significantly increased in only one of three student groups: nursing (p=0.04; r=0.311). Students' satisfaction with the simulation experience was high (M=4.65/5). Results from this study indicate that an interprofessional simulation of a birth in an unplanned setting can improve undergraduate paramedic, nursing and midwifery students' confidence working in an interprofessional team. There was a significant improvement in clinical knowledge of the nursing students (who had least content about managing birth in their program). All students were highly satisfied with the interprofessional simulation experience simulation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Seguino, Alessandro; Seguino, Ferruccio; Eleuteri, Antonio; Rhind, Susan M
2014-01-01
Veterinary surgeons working on farms and food-processing establishments play a fundamental role in safeguarding both public health and the welfare of animals under their care. An essential part of veterinary public health (VPH) undergraduate training in the UK involves students undertaking placements within abattoirs, a practice that remains vital to the educational experience of future veterinary professionals. However, several issues have adversely affected the ability of students to gain such extramural placements. For this reason, the Virtual Slaughterhouse Simulator (VSS) was developed to strengthen and enhance undergraduate VPH teaching at the Royal (Dick) School of Veterinary Studies, enabling students to explore a realistic abattoir work environment with embedded educational activities. The aim of this research project was to evaluate the VSS as a teaching and learning tool for training and educating veterinary students. Ninety-eight final-year veterinary students engaged with the prototype VSS, followed by assessment of their knowledge and behavior when faced with a "real-life" abattoir situation. Further evaluation of their experiences with the VSS was carried out using questionnaires and focus groups. The results of this investigation show that there is the potential for the VSS to enhance the student learning experience in basic abattoir procedures. This innovative tool provides a visually based learning resource that can support traditional lectures and practical classes and can also be used to stimulate interactive problem-solving activities embedded in the relevant context.
Ostomate-for-a-Day: A Novel Pedagogy for Teaching Ostomy Care to Baccalaureate Nursing Students.
Kerr, Noël
2015-08-01
The literature describing successful pedagogies for teaching ostomy care to baccalaureate nursing students is limited. This qualitative study investigated the potential benefits of participating in an immersive simulation that allowed baccalaureate nursing students to explore the physical and psychosocial impact of ostomy surgery. Junior-level nursing students attended a 2-hour interactive session during which they learned about preoperative stoma site marking and practiced the maneuvers on a peer. Students then wore an ostomy appliance for the next 24 hours, completed tasks simulating ostomy self-care, and submitted a three- to four-page reflection on the experience. These data were coded using the iterative process of constant comparison described by Glaser. Six major themes were identified: Accommodation for Activities of Daily Living, Coping with Annoyances, Body Image and Feelings, Disclosure, Insights for Teaching, and Empathy. Each participant affirmed the value of the experience. Suggestions for future research studies are discussed. Copyright 2015, SLACK Incorporated.
NASA Astrophysics Data System (ADS)
Li, Na; Black, John B.
2016-10-01
Chemistry knowledge can be represented at macro-, micro- and symbolic levels, and learning a chemistry topic requires students to engage in multiple representational activities. This study focused on scaffolding for inter-level connection-making in learning chemistry knowledge with graphical simulations. We also tested whether different sequences of representational activities produced different student learning outcomes in learning a chemistry topic. A sample of 129 seventh graders participated in this study. In a simulation-based environment, participants completed three representational activities to learn several ideal gas law concepts. We conducted a 2 × 3 factorial design experiment. We compared two scaffolding conditions: (1) the inter- level scaffolding condition in which participants received inter-level questions and experienced the dynamic link function in the simulation-based environment and (2) the intra- level scaffolding condition in which participants received intra-level questions and did not experience the dynamic link function. We also compared three different sequences of representational activities: macro-symbolic-micro, micro-symbolic-macro and symbolic-micro-macro. For the scaffolding variable, we found that the inter- level scaffolding condition produced significantly better performance in both knowledge comprehension and application, compared to the intra- level scaffolding condition. For the sequence variable, we found that the macro-symbolic-micro sequence produced significantly better knowledge comprehension performance than the other two sequences; however, it did not benefit knowledge application performance. There was a trend that the treatment group who experienced inter- level scaffolding and the micro-symbolic-macro sequence achieved the best knowledge application performance.
Water: A Recycling Success Story.
ERIC Educational Resources Information Center
Swinehart, Rebecca, Ed.
1995-01-01
This activity involves elementary students in simulating water purification techniques by finding ways to clear up soapy water. An introduction discusses water use and conservation. Materials needed and step-by-step procedure are provided. (LZ)
Random Variables: Simulations and Surprising Connections.
ERIC Educational Resources Information Center
Quinn, Robert J.; Tomlinson, Stephen
1999-01-01
Features activities for advanced second-year algebra students in grades 11 and 12. Introduces three random variables and considers an empirical and theoretical probability for each. Uses coins, regular dice, decahedral dice, and calculators. (ASK)
Medical Simulation Practices 2010 Survey Results
NASA Technical Reports Server (NTRS)
McCrindle, Jeffrey J.
2011-01-01
Medical Simulation Centers are an essential component of our learning infrastructure to prepare doctors and nurses for their careers. Unlike the military and aerospace simulation industry, very little has been published regarding the best practices currently in use within medical simulation centers. This survey attempts to provide insight into the current simulation practices at medical schools, hospitals, university nursing programs and community college nursing programs. Students within the MBA program at Saint Joseph's University conducted a survey of medical simulation practices during the summer 2010 semester. A total of 115 institutions responded to the survey. The survey resus discuss overall effectiveness of current simulation centers as well as the tools and techniques used to conduct the simulation activity
Enhancing Tele-robotics with Immersive Virtual Reality
2017-11-03
graduate and undergraduate students within the Digital Gaming and Simulation, Computer Science, and psychology programs have actively collaborated...investigates the use of artificial intelligence and visual computing. Numerous fields across the human-computer interaction and gaming research areas...invested in digital gaming and simulation to cognitively stimulate humans by computers, forming a $10.5B industry [1]. On the other hand, cognitive
ERIC Educational Resources Information Center
Barney, Keith W.
2012-01-01
Disability simulation as a form of experiential learning has been a popular way for students to "learn what it is like to have a disability" in many different educational curricula from nursing to recreation. There is a lack of research detailing the efficacy of such activities, and some researchers have noted the possibility of negative results.…
ERIC Educational Resources Information Center
Tao, Yu-Hui; Yeh, C. Rosa; Hung, Kung Chin
2015-01-01
Several theoretical models have been constructed to determine the effects of buisness simulation games (BSGs) on learning performance. Although these models agree on the concept of learning-cycle effect, no empirical evidence supports the claim that the use of learning cycle activities with BSGs produces an effect on incremental gains in knowledge…
Eukel, Heidi N.; Frenzel, Jeanne E.; Werremeyer, Amy; McDaniel, Becky
2016-01-01
Objective. To increase student pharmacist empathy through the use of an auditory hallucination simulation. Design. Third-year professional pharmacy students independently completed seven stations requiring skills such as communication, following directions, reading comprehension, and cognition while listening to an audio recording simulating what one experiencing auditory hallucinations may hear. Following the simulation, students participated in a faculty-led debriefing and completed a written reflection. Assessment. The Kiersma-Chen Empathy Scale was completed by each student before and after the simulation to measure changes in empathy. The written reflections were read and qualitatively analyzed. Empathy scores increased significantly after the simulation. Qualitative analysis showed students most frequently reported feeling distracted and frustrated. All student participants recommended the simulation be offered to other student pharmacists, and 99% felt the simulation would impact their future careers. Conclusions. With approximately 10 million adult Americans suffering from serious mental illness, it is important for pharmacy educators to prepare students to provide adequate patient care to this population. This auditory hallucination simulation increased student pharmacist empathy for patients with mental illness. PMID:27899838
Papanagnou, Dimitrios; Lee, Hyunjoo; Rodriguez, Carlos; Zhang, Xiao Chi C; Rudner, Joshua
2018-01-21
As students in the health professions transition from the classroom into the clinical environment, they will be expected to effectively communicate with their team members and their patients. Effective communication skills are essential to their ability to effectively contribute to their clinical team and the patient care they deliver. The authors propose an interactive workshop that can support students' deliberate practice of communication skills. The authors designed a simulation workshop that affords students the opportunity to practice their communication and peer-to-peer coaching skills. Using LEGOs, a one-hour workshop was conducted with medical students. Students were divided into groups of two. Each student took on a different role: teacher or builder. Teachers were tasked with instructing builders on how to construct a pre-made LEGO structure, not allowing builders to look at the structure. A group debriefing followed to evaluate the activity and explore the themes that emerged. Twenty first-year medical students and 25 fourth-year medical students participated in this activity. Most groups were successful in reproducing the pre-made structure. Groups that pre-briefed before building were most successful. Unsuccessful groups did not define orientation or direction in mutually understood terms, resulting in the creation of an incorrect mirror image of the structure - a common phenomenon seen during the teaching of procedures in the clinical learning environment. The workshop was well received. Students made requests to have similar sessions throughout their training to better support the development of effective communication skills. The workshop can easily be applied to other specialties to assist with procedural skills instruction or in workshops focusing on effective communication.
Interactive Learning During Solar Maximum
NASA Technical Reports Server (NTRS)
Ashour-Abdalla, Maha; Curtis, Steven (Technical Monitor)
2001-01-01
The goal of this project is to develop and distribute e-educational material for space science during times of solar activity that emphasizes underlying basic science principles of solar disturbances and their effects on Earth. This includes materials such as simulations, animations, group projects and other on-line materials to be used by students either in high school or at the introductory college level. The on-line delivery tool originally intended to be used is known as Interactive Multimedia Education at a Distance (IMED), which is a web-based software system used at UCLA for interactive distance learning. IMED is a password controlled system that allows students to access text, images, bulletin boards, chat rooms, animation, simulations and individual student web sites to study science and to collaborate on group projects.
A Comparison of Educational Interventions to Enhance Cultural Competency in Pharmacy Students
Jonkman, Lauren; Connor, Sharon; Hall, Deanne
2013-01-01
Objective. To determine the degree to which 3 different educational interventions enhance cultural competency in pharmacy students. Methods. Students were equally divided among a simulated-patient activity group, a written case-scenarios group, and a formal lecture group. Mean scores for pre- and post-intervention cultural self-assessment surveys were compared. Results. In the simulation group, there were significant positive changes in the cultural skills and cultural desire components; in the case-scenario group, there was a significant positive change in the cultural awareness component; and in the lecture group, there were significant positive changes in the cultural skills and cultural empathy components. With respect to the cultural skills component, there was greater post-intervention improvement in the simulation and lecture groups than in the case-scenario group. Conclusions. There were significant positive changes within each group, indicating that ideologies and behaviors may be altered based on the educational intervention received. However, a 1-hour practicum may not be sufficient to enhance cultural competency. PMID:23716744
Khadivzadeh, Talat; Erfanian, Fatemeh
2012-10-01
Midwifery students experience high levels of stress during their initial clinical practices. Addressing the learner's source of anxiety and discomfort can ease the learning experience and lead to better outcomes. The aim of this study was to find out the effect of a simulation-based course, using simulated patients and simulated gynecologic models on student anxiety and comfort while practicing to provide intrauterine device (IUD) services. Fifty-six eligible midwifery students were randomly allocated into simulation-based and traditional training groups. They participated in a 12-hour workshop in providing IUD services. The simulation group was trained through an educational program including simulated gynecologic models and simulated patients. The students in both groups then practiced IUD consultation and insertion with real patients in the clinic. The students' anxiety in IUD insertion was assessed using the "Spielberger anxiety test" and the "comfort in providing IUD services" questionnaire. There were significant differences between students in 2 aspects of anxiety including state (P < 0.001) and trait (P = 0.024) and the level of comfort (P = 0.000) in providing IUD services in simulation and traditional groups. "Fear of uterine perforation during insertion" was the most important cause of students' anxiety in providing IUD services, which was reported by 74.34% of students. Simulated patients and simulated gynecologic models are effective in optimizing students' anxiety levels when practicing to deliver IUD services. Therefore, it is recommended that simulated patients and simulated gynecologic models be used before engaging students in real clinical practice.
Promoting Active Learning: The Use of Computational Software Programs
NASA Astrophysics Data System (ADS)
Dickinson, Tom
The increased emphasis on active learning in essentially all disciplines is proving beneficial in terms of a student's depth of learning, retention, and completion of challenging courses. Formats labeled flipped, hybrid and blended facilitate face-to-face active learning. To be effective, students need to absorb a significant fraction of the course material prior to class, e.g., using online lectures and reading assignments. Getting students to assimilate and at least partially understand this material prior to class can be extremely difficult. As an aid to achieving this preparation as well as enhancing depth of understanding, we find the use of software programs such as Mathematica®or MatLab®, very helpful. We have written several Mathematica®applications and student exercises for use in a blended format two semester E&M course. Formats include tutorials, simulations, graded and non-graded quizzes, walk-through problems, exploration and interpretation exercises, and numerical solutions of complex problems. A good portion of this activity involves student-written code. We will discuss the efficacy of these applications, their role in promoting active learning, and the range of possible uses of this basic scheme in other classes.
Zapko, Karen A; Ferranto, Mary Lou Gemma; Blasiman, Rachael; Shelestak, Debra
2018-01-01
The National League for Nursing (NLN) has endorsed simulation as a necessary teaching approach to prepare students for the demanding role of professional nursing. Questions arise about the suitability of simulation experiences to educate students. Empirical support for the effect of simulation on patient outcomes is sparse. Most studies on simulation report only anecdotal results rather than data obtained using evaluative tools. The aim of this study was to examine student perception of best educational practices in simulation and to evaluate their satisfaction and self-confidence in simulation. This study was a descriptive study designed to explore students' perceptions of the simulation experience over a two-year period. Using the Jeffries framework, a Simulation Day was designed consisting of serial patient simulations using high and medium fidelity simulators and live patient actors. The setting for the study was a regional campus of a large Midwestern Research 2 university. The convenience sample consisted of 199 participants and included sophomore, junior, and senior nursing students enrolled in the baccalaureate nursing program. The Simulation Days consisted of serial patient simulations using high and medium fidelity simulators and live patient actors. Participants rotated through four scenarios that corresponded to their level in the nursing program. Data was collected in two consecutive years. Participants completed both the Educational Practices Questionnaire (Student Version) and the Student Satisfaction and Self-Confidence in Learning Scale. Results provide strong support for using serial simulation as a learning tool. Students were satisfied with the experience, felt confident in their performance, and felt the simulations were based on sound educational practices and were important for learning. Serial simulations and having students experience simulations more than once in consecutive years is a valuable method of clinical instruction. When conducted well, simulations can lead to increased student satisfaction and self-confidence. Copyright © 2017 Elsevier Ltd. All rights reserved.
Interactive simulations as teaching tools for engineering mechanics courses
NASA Astrophysics Data System (ADS)
Carbonell, Victoria; Romero, Carlos; Martínez, Elvira; Flórez, Mercedes
2013-07-01
This study aimed to gauge the effect of interactive simulations in class as an active teaching strategy for a mechanics course. Engineering analysis and design often use the properties of planar sections in calculations. In the stress analysis of a beam under bending and torsional loads, cross-sectional properties are used to determine stress and displacement distributions in the beam cross section. The centroid, moments and products of inertia of an area made up of several common shapes (rectangles usually) may thus be obtained by adding the moments of inertia of the component areas (U-shape, L-shape, C-shape, etc). This procedure is used to calculate the second moments of structural shapes in engineering practice because the determination of their moments of inertia is necessary for the design of structural components. This paper presents examples of interactive simulations developed for teaching the ‘Mechanics and mechanisms’ course at the Universidad Politecnica de Madrid, Spain. The simulations focus on fundamental topics such as centroids, the properties of the moment of inertia, second moments of inertia with respect to two axes, principal moments of inertia and Mohr's Circle for plane stress, and were composed using Geogebra software. These learning tools feature animations, graphics and interactivity and were designed to encourage student participation and engagement in active learning activities, to effectively explain and illustrate course topics, and to build student problem-solving skills.
Cremonini, Valeria; Ferri, Paola; Artioli, Giovanna; Sarli, Leopoldo; Piccioni, Enrico; Rubbi, Ivan
2015-01-01
Student satisfaction is an important element of the effectiveness of clinical placement, but there is little consensus in the literature as to the preferred model of clinical experience for undergraduate nursing students. The aim of this study was assess, for each academic year, students' perception of the roles of nurse teachers (NT) and clinical nurse supervisors (CNS) who perform tutoring in both apprenticeship and laboratories and to identify and evaluate students' satisfaction with the environment of clinical learning. This analytic cross-sectional study was conducted in a sample of 173 nursing students in the Northern Italy. The research instrument used is the Clinical learning environment, supervision and nurse teacher (CLES+T) evaluation scale. Data were statistically analysed. 94% of our sample answered questionnaires. Students expressed a higher level of satisfaction with their training experiences. The highest mean value was in the sub-dimension "Pedagogical atmosphere on the ward". Third year students expressed higher satisfaction levels in their relationship with the CNS and lower satisfaction levels in their relationship with the NT. This result may be due to the educational model that is adopted in the course, in which the simulation laboratory didactic activities of the third year are conducted by CNS, who also supervises experiences of clinical learning in the clinical practice. The main finding in this study was that the students' satisfaction with the supervisory relationship and the role of NT depend on how supervision in the clinical practice and in the simulation laboratory is organized.
Carman, Margaret; Xu, Shu; Rushton, Sharron; Smallheer, Benjamin A; Williams, Denise; Amarasekara, Sathya; Oermann, Marilyn H
Acute care nurse practitioner (ACNP) programs that use high-fidelity simulation as a teaching tool need to consider innovative strategies to provide distance-based students with learning experiences that are comparable to those in a simulation laboratory. The purpose of this article is to describe the use of virtual simulations in a distance-based ACNP program and student performance in the simulations. Virtual simulations using iSimulate were integrated into the ACNP course to promote the translation of content into a clinical context and enable students to develop their knowledge and decision-making skills. With these simulations, students worked as a team, even though they were at different sites from each other and from the faculty, to manage care of an acutely ill patient. The students were assigned to simulation groups of 4 students each. One week before the simulation, they reviewed past medical records. The virtual simulation sessions were recorded and then evaluated. The evaluation tools assessed 8 areas of performance and included key behaviors in each of these areas to be performed by students in the simulation. More than 80% of the student groups performed the key behaviors. Virtual simulations provide a learning platform that allows live interaction between students and faculty, at a distance, and application of content to clinical situations. With simulation, learners have an opportunity to practice assessment and decision-making in emergency and high-risk situations. Simulations not only are valuable for student learning but also provide a nonthreatening environment for staff to practice, receive feedback on their skills, and improve their confidence.
Curtin, Lindsay B; Finn, Laura A; Czosnowski, Quinn A; Whitman, Craig B; Cawley, Michael J
2011-08-10
To assess the impact of computer-based simulation on the achievement of student learning outcomes during mannequin-based simulation. Participants were randomly assigned to rapid response teams of 5-6 students and then teams were randomly assigned to either a group that completed either computer-based or mannequin-based simulation cases first. In both simulations, students used their critical thinking skills and selected interventions independent of facilitator input. A predetermined rubric was used to record and assess students' performance in the mannequin-based simulations. Feedback and student performance scores were generated by the software in the computer-based simulations. More of the teams in the group that completed the computer-based simulation before completing the mannequin-based simulation achieved the primary outcome for the exercise, which was survival of the simulated patient (41.2% vs. 5.6%). The majority of students (>90%) recommended the continuation of simulation exercises in the course. Students in both groups felt the computer-based simulation should be completed prior to the mannequin-based simulation. The use of computer-based simulation prior to mannequin-based simulation improved the achievement of learning goals and outcomes. In addition to improving participants' skills, completing the computer-based simulation first may improve participants' confidence during the more real-life setting achieved in the mannequin-based simulation.
Pressley, Thomas A; Limson, Melvin; Byse, Miranda; Matyas, Marsha Lakes
2011-09-01
The "Healthy Heart Race" activity provides a hands-on demonstration of cardiovascular function suitable for lay audiences. It was field tested during the United States of America Science and Engineering Festival held in Washington, DC, in October 2010. The basic equipment for the activity consisted of lengths of plastic tubing, a hand pump, collection containers, clamps, and simulated blood prepared by tinting water with red food coloring. Student participants were first asked to experience the effort required to pump through an unaltered tube. A presenter then applied a strong clamp that pinched each tube downstream from the pump, and students were asked to pump against the increased resistance. The students' observations were then used as the basis for discussions of atherosclerosis and coronary heart disease with the presenters. Distribution of informative postcards during the 2 days of the festival indicated that at least 2,500 students completed the Healthy Heart Race activity. Our experiences to date suggest that the Healthy Heart Race activity can be accomplished effectively in the high-volume, high-distraction environment of a science fair or museum.
Using Technology to Enhance Teaching of Patient-Centered Interviewing for Early Medical Students.
Kaltman, Stacey; Talisman, Nicholas; Pennestri, Susan; Syverson, Eleri; Arthur, Paige; Vovides, Yianna
2018-06-01
Effective strategies for teaching communication skills to health professions students are needed. This article describes the design and evaluation of immersive and interactive video simulations for medical students to practice basic communication skills. Three simulations were developed, focusing on patient-centered interviewing techniques such as using open-ended questions, reflections, and empathic responses while assessing a patient's history of present illness. First-year medical students were randomized to simulation or education-as-usual arms. Students in the simulation arm were given access to three interactive video simulations developed using Articulate Storyline, an e-learning authoring tool, to practice and receive feedback on patient-centered interviewing techniques to prepare for their Observed Structured Clinical Examination (OSCE). Trained raters evaluated videos of two OSCE cases for each participant to assess specific communication skills used during the history of present illness component of the interview. Eighty-seven percent of the students in the simulation arm interacted with at least one simulation during the history of present illness. For both OSCE cases, students in the simulation arm asked significantly more open-ended questions. Students in the simulation arm asked significantly fewer closed-ended questions and offered significantly more empathic responses in one OSCE case. No differences were found for reflections. Students reported that the simulations helped improve their communication skills. The use of interactive video simulations was found to be feasible to incorporate into the curriculum and was appealing to students. In addition, students in the simulation arm displayed more behaviors consistent with the patient-centered interviewing model practiced in the simulations. Continued development and research are warranted.
NASA Astrophysics Data System (ADS)
D'Alessio, M. A.
2010-12-01
A discussion of P- and S-waves seems an ubiquitous part of studying earthquakes in the classroom. Textbooks from middle school through university level typically define the differences between the waves and illustrate the sense of motion. While many students successfully memorize the differences between wave types (often utilizing the first letter as a memory aide), textbooks rarely give tangible examples of how the two waves would "feel" to a person sitting on the ground. One reason for introducing the wave types is to explain how to calculate earthquake epicenters using seismograms and travel time charts -- very abstract representations of earthquakes. Even when the skill is mastered using paper-and-pencil activities or one of the excellent online interactive versions, locating an epicenter simply does not excite many of our students because it evokes little emotional impact, even in students located in earthquake-prone areas. Despite these limitations, huge numbers of students are mandated to complete the task. At the K-12 level, California requires that all students be able to locate earthquake epicenters in Grade 6; in New York, the skill is a required part of the Regent's Examination. Recent innovations in earthquake early warning systems around the globe give us the opportunity to address the same content standard, but with substantially more emotional impact on students. I outline a lesson about earthquakes focused on earthquake early warning systems. The introductory activities include video clips of actual earthquakes and emphasize the differences between the way P- and S-waves feel when they arrive (P arrives first, but is weaker). I include an introduction to the principle behind earthquake early warning (including a summary of possible uses of a few seconds warning about strong shaking) and show examples from Japan. Students go outdoors to simulate P-waves, S-waves, and occupants of two different cities who are talking to one another on cell phones. The culminating activity is for students to "design" an early warning system that will protect their school from nearby earthquakes. The better they design the system, the safer they will be. Each team of students receives a map of faults in the area and possible sites for real-time seismometer installation. Given a fixed budget, they must select the best sites for detecting a likely earthquake. After selecting their locations, teams face-off two-by-two in a tournament of simulated earthquakes. We created animations of a few simulated earthquakes for our institution and have plans to build a web-based version that will allow others to customize the location to their own location and facilitate the competition between teams. Earthquake early warning is both cutting-edge and has huge societal benefits. Instead of teaching our students how to locate epicenters after an earthquake has occurred, we can teach the same content standards while showing them that earthquake science can really save lives.
Edwards, Michael B; Kanters, Michael A; Bocarro, Jason N
2014-01-16
Extracurricular school sports programs can provide adolescents, including those who are economically disadvantaged, with opportunities to engage in physical activity. Although current models favor more exclusionary interscholastic sports, a better understanding is needed of the potential effects of providing alternative school sports options, such as more inclusive intramural sports. The purpose of this study was to simulate the potential effect of implementing intramural sports programs in North Carolina middle schools on both the rates of sports participation and on energy expenditure related to physical activity levels. Simulations were conducted by using a school-level data set developed by integrating data from multiple sources. Baseline rates of sports participation were extrapolated from individual-level data that were based on school-level characteristics. A regression model was estimated by using the simulated baseline school-level sample. Participation rates and related energy expenditure for schools were calculated on the basis of 2 policy change scenarios. Currently, 37.2% of school sports participants are economically disadvantaged. Simulations suggested that policy changes to implement intramural sports along with interscholastic sports could result in more than 43,000 new sports participants statewide, of which 64.5% would be economically disadvantaged students. This estimate represents a 36.75% increase in economically disadvantaged participants. Adding intramural sports to existing interscholastic sports programs at all middle schools in North Carolina could have an annual effect of an additional 819,892.65 kilogram calories expended statewide. Implementing intramural sports may provide economically disadvantaged students more access to sports, thus reducing disparities in access to school sports while increasing overall physical activity levels among all children.
A Mountain Child: An Active Learning Pack for 9-13 Year Olds.
ERIC Educational Resources Information Center
Lyle, Sue; Jenkins, Alyson
This resource packet includes a teacher's guide, reproducible student activity sheets, a simulation game: "Life with the Incas", and a poster. The resource presents a cross-curricular thematic approach to the United Kingdom's National Curriculum. The materials look at the Andes and the Andean people, the Quechuan, who live in the…
ERIC Educational Resources Information Center
Howard, William; Williams, Richard; Yao, Jason
2010-01-01
Solid modeling is widely used as a teaching tool in summer activities with high school students. The addition of motion analysis allows concepts from statics and dynamics to be introduced to students in both qualitative and quantitative ways. Two sets of solid modeling projects--carnival rides and Rube Goldberg machines--are shown to allow the…
[Effectively communicate active listening : Comparison of two concepts].
Martin, O; Rockenbauch, K; Kleinert, E; Stöbel-Richter, Y
2017-09-01
Communication between physicians and patients has a great influence on patient adherence, patient satisfaction and the success of treatment. In this context, patient centered care and emotional support have a high positive impact; however, it is unclear how physicians can be motivated to communicate with patients in an appreciative and empathetic way. The implementation of such behavior requires a multitude of communicative skills. One of them is active listening, which is very important in two respects. On the one hand active listening provides the basis for several conversational contexts as a special communication technique and on the other hand active listening is presented in current textbooks in different ways: as an attitude or as a technique. In light of this, the question arises how active listening should be taught in order to be not only applicable in concrete conversations but also to lead to the highest possible level of patient satisfaction. The aim of this pilot study was to examine some variations in simulated doctor-patient conversations, which are the result of the different approaches to active listening. For this purpose three groups of first semester medical students were recruited, two of which were schooled in active listening in different ways (two groups of six students), i.e. attitude versus technique oriented. The third group (seven students) acted as the control group. In a pre-post design interviews with standardized simulation patients were conducted and subsequently evaluated. The analysis of these interviews was considered from the perspectives of participants and observers as well as the quantitative aspects. This study revealed some interesting tendencies despite its status as a pilot study: in general, the two interventional groups performed significantly better than the control group in which no relevant changes occurred. In a direct comparison, the group in which active listening was taught from an attitude approach achieved better results than the group in which the focus was on the technical aspects of active listening. In the group with active listening schooled as an attitude, the response to the feelings of the standardized simulation patients was significantly better from the perspectives of both participants and observers.
ERIC Educational Resources Information Center
Clark, A. Rees; Cybriwsky, Roman A.
This activity is one of a series of 17 teacher-developed instructional activities for geography at the secondary-grade level described in SO 009 140. The activity is a simulation which involves 15 to 25 students in making decisions about the best use of an inner city tract of land. The developers recommend that the game extend over at least three…
Lee, Hyunjoo; Rodriguez, Carlos; Zhang, Xiao Chi C; Rudner, Joshua
2018-01-01
As students in the health professions transition from the classroom into the clinical environment, they will be expected to effectively communicate with their team members and their patients. Effective communication skills are essential to their ability to effectively contribute to their clinical team and the patient care they deliver. The authors propose an interactive workshop that can support students’ deliberate practice of communication skills. The authors designed a simulation workshop that affords students the opportunity to practice their communication and peer-to-peer coaching skills. Using LEGOs, a one-hour workshop was conducted with medical students. Students were divided into groups of two. Each student took on a different role: teacher or builder. Teachers were tasked with instructing builders on how to construct a pre-made LEGO structure, not allowing builders to look at the structure. A group debriefing followed to evaluate the activity and explore the themes that emerged. Twenty first-year medical students and 25 fourth-year medical students participated in this activity. Most groups were successful in reproducing the pre-made structure. Groups that pre-briefed before building were most successful. Unsuccessful groups did not define orientation or direction in mutually understood terms, resulting in the creation of an incorrect mirror image of the structure – a common phenomenon seen during the teaching of procedures in the clinical learning environment. The workshop was well received. Students made requests to have similar sessions throughout their training to better support the development of effective communication skills. The workshop can easily be applied to other specialties to assist with procedural skills instruction or in workshops focusing on effective communication. PMID:29568715
Cant, Robyn P; Cooper, Simon J
2014-12-01
The objective of this article was to review the literature on utilisation and place of Web-based simulation within nursing education. Web-based simulation combines electronic multimedia options with a central video or virtual world to produce interactive learning activities mediated by the learner. An integrative review. A search was conducted of healthcare databases between 2000 and 2014 and of Internet sources for hosted simulation programs in nursing. Eighteen primary programs were identified for inclusion. A strategy for integrative review was adopted in which studies were identified, filtered, classified, analysed and compared. Of 18 programs, two game-based programs were identified which represented a 'virtual world' in which students could simultaneously or individually immerse themselves in a character role-play. However, most programs (n=10) taught an aspect of procedural patient care using multimedia (e.g. video, audio, graphics, quiz, text, memo). Time-limited sequences, feedback and reflective activities were often incorporated. Other studies (n=8) taught interpersonal communication skills or technical skills for equipment use. Descriptive study outcomes indicated ease of program use, strong satisfaction with learning and appreciation of program accessibility. Additionally, four studies reported significant improvements in knowledge post-intervention. Web-based simulation is highly acceptable to students and appears to provide learning benefits that align with other simulation approaches and it augments face-to-face teaching. Web-based simulation is likely to have a major place in nursing curricula in the next decade, yet further research is necessary to objectively evaluate learner outcomes and to justify its use. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lees, J.R.
This study was a systematic replication of a study by Stagliano (1981). Additional hypotheses concerning pretest, student major, and student section variance were tested. Achievement in energy knowledge and conservation attitudes attained by (a) lecture-discussion enriched with the Energy-Environment Simulator and (b) lecture-discussion methods of instruction were measured. Energy knowledge was measured on the Energy Knowledge Assessment Test (EKAT), and attitudes were measured on the Youth Energy Survey (YES), the Lecture-discussion simulation (LDS) used a two hour out-of-class activity in debriefing. The population consisted of 142 college student volunteers randomly selected, and assigned to one of two groups of 71more » students for each treatment. Stagliano used three groups (n = 35), one group receiving an energy-game treatment. Both studies used the pretest-posttest true experimental design. The present study included 28 hypotheses, eight of which were found to be significant. Stagliano used 12 hypotheses, all of which were rejected. The present study hypothesized that students who received the LDS treatment would obtain significantly higher scores on the EKAT and the YES instruments. Results showed that significance was found (alpha level .05) on the EKAT and also found on the YES total subscale when covaried for effects of pretest, student major, and student section. When covarying the effects of pretest scores only, significance was found on the EKAT. All YES hypotheses were rejected.« less
Community as client: environmental issues in the real world. A SimCity computer simulation.
Bareford, C G
2001-01-01
The ability to think critically has become a crucial part of professional practice and education. SimCity, a popular computer simulation game, provides an opportunity to practice community assessment and interventions using a systems approach. SimCity is an interactive computer simulation game in which the player takes an active part in community planning. SimCity is supported on either a Windows 95/98 or a Macintosh platform and is available on CD-ROM at retail stores or at www.simcity.com. Students complete a tutorial and then apply a selected scenario in SimCity. Scenarios consist of hypothetical communities that have varying types and degrees of environmental problems, e.g., traffic, crime, nuclear meltdown, flooding, fire, and earthquakes. In problem solving with the simulated scenarios, students (a) identify systems and subsystems within the community that are critical factors impacting the environmental health of the community, (b) create changes in the systems and subsystems in an effort to solve the environmental health problem, and (c) evaluate the effectiveness of interventions based on the game score, demographic and fiscal data, and amount of community support. Because the consequences of planned intervention are part of the simulation, nursing students are able to develop critical-thinking skills. The simulation provides essential content in community planning in an interesting and interactive format.
Husebø, Sissel Eikeland; Dieckmann, Peter; Rystedt, Hans; Søreide, Eldar; Friberg, Febe
2013-06-01
Simulation-based education is a learner-active method that may enhance teamwork skills such as leadership and communication. The importance of postsimulation debriefing to promote reflection is well accepted, but many questions concerning whether and how faculty promote reflection remain largely unanswered in the research literature. The aim of this study was therefore to explore the depth of reflection expressed in questions by facilitators and responses from nursing students during postsimulation debriefings. Eighty-one nursing students and 4 facilitators participated. The data were collected in February and March 2008, the analysis being conducted on 24 video-recorded debriefings from simulated resuscitation teamwork involving nursing students only. Using Gibbs' reflective cycle, we graded the facilitators' questions and nursing students' responses into stages of reflection and then correlated these. Facilitators asked most evaluative and fewest emotional questions, whereas nursing students answered most evaluative and analytic responses and fewest emotional responses. The greatest difference between facilitators and nursing students was in the analytic stage. Only 23 (20%) of 117 questions asked by the facilitators were analytic, whereas 45 (35%) of 130 students' responses were rated as analytic. Nevertheless, the facilitators' descriptive questions also elicited student responses in other stages such as evaluative and analytic responses. We found that postsimulation debriefings provide students with the opportunity to reflect on their simulation experience. Still, if the debriefing is going to pave the way for student reflection, it is necessary to work further on structuring the debriefing to facilitate deeper reflection. Furthermore, it is important that facilitators consider what kind of questions they ask to promote reflection. We think future research on debriefing should focus on developing an analytical framework for grading reflective questions. Such research will inform and support facilitators in devising strategies for the promotion of learning through reflection in postsimulation debriefings.
ERIC Educational Resources Information Center
Price, Norman T.
2013-01-01
The availability and sophistication of visual display images, such as simulations, for use in science classrooms has increased exponentially however, it can be difficult for teachers to use these images to encourage and engage active student thinking. There is a need to describe flexible discussion strategies that use visual media to engage active…
Ribaric, Samo; Kordas, Marjan
2011-06-01
Here, we report on a new tool for teaching cardiovascular physiology and pathophysiology that promotes qualitative as well as quantitative thinking about time-dependent physiological phenomena. Quantification of steady and presteady-state (transient) cardiovascular phenomena is traditionally done by differential equations, but this is time consuming and unsuitable for most undergraduate medical students. As a result, quantitative thinking about time-dependent physiological phenomena is often not extensively dealt with in an undergraduate physiological course. However, basic concepts of steady and presteady state can be explained with relative simplicity, without the introduction of differential equation, with equivalent electronic circuits (EECs). We introduced undergraduate medical students to the concept of simulating cardiovascular phenomena with EECs. EEC simulations facilitate the understanding of simple or complex time-dependent cardiovascular physiological phenomena by stressing the analogies between EECs and physiological processes. Student perceptions on using EEC to simulate, study, and understand cardiovascular phenomena were documented over a 9-yr period, and the impact of the course on the students' knowledge of selected basic facts and concepts in cardiovascular physiology was evaluated over a 3-yr period. We conclude that EECs are a valuable tool for teaching cardiovascular physiology concepts and that EECs promote active learning.
NASA Astrophysics Data System (ADS)
Venkateswarlu, P.
2017-07-01
Reforms in undergraduate engineering curriculum to produce engineers with entrepreneurial skills should address real-world problems relevant to industry and society with active industry support. Technology-assisted, hands-on projects involving experimentation, design simulation and prototyping will transform graduates into professionals with necessary skills to create and advance knowledge that meets global standards. To achieve this goal, this paper proposes establishing a central facility, 'Centre for Engineering Experimentation and Design Simulation' (CEEDS) in autonomous engineering colleges in India. The centre will be equipped with the most recent technology resources and computational facilities where students execute novel interdisciplinary product-oriented projects benefiting both industry and society. Students undertake two projects: a short-term project aimed at an engineering solution to a problem in energy, health and environment and the other a major industry-supported project devoted to a product that enhances innovation and creativity. The paper presents the current status, the theoretical and pedagogical foundation for the centre's relevance, an activity plan and its implementation in the centre for product-based learning with illustrative examples.
NASA Astrophysics Data System (ADS)
Lefkos, Ioannis; Psillos, Dimitris; Hatzikraniotis, Euripides
2011-07-01
Background and purpose: The aim of this study was to explore the effect of investigative activities with manipulations in a virtual laboratory on students' ability to design experiments. Sample Fourteen students in a lower secondary school in Greece attended a teaching sequence on thermal phenomena based on the use of information and communication technology, and specifically of the simulated virtual laboratory 'ThermoLab'. Design and methods A pre-post comparison was applied. Students' design of experiments was rated in eight dimensions; namely, hypothesis forming and verification, selection of variables, initial conditions, device settings, materials and devices used, process and phenomena description. A three-level ranking scheme was employed for the evaluation of students' answers in each dimension. Results A Wilcoxon signed-rank test revealed a statistically significant difference between the students' pre- and post-test scores. Additional analysis by comparing the pre- and post-test scores using the Hake gain showed high gains in all but one dimension, which suggests that this improvement was almost inclusive. Conclusions We consider that our findings support the statement that there was an improvement in students' ability to design experiments.
Exploring the use of student-led simulated practice learning in pre-registration nursing programmes.
Brown, Jo; Collins, Guy; Gratton, Olivia
2017-09-20
Simulated practice learning is used in pre-registration nursing programmes to replicate situations that nursing students are likely to encounter in clinical practice, but in a safe and protected academic environment. However, lecturer-led simulated practice learning has been perceived as detached from contemporary nursing practice by some nursing students. Therefore, a pilot project was implemented in the authors' university to explore the use of student-led simulated practice learning and its potential benefits for nursing students. To evaluate the effectiveness of student-led simulated practice learning in pre-registration nursing programmes. The authors specifically wanted to: enhance the students' skills; improve their critical thinking and reflective strategies; and develop their leadership and management techniques. A literature review was undertaken to examine the evidence supporting student-led simulated practice learning. A skills gap analysis was then conducted with 35 third-year nursing students to identify their learning needs, from which suitable simulated practice learning scenarios and sessions were developed and undertaken. These sessions were evaluated using debriefs following each of the sessions, as well as informal discussions with the nursing students. The pilot project identified that student-led simulated learning: developed nursing students' ability to plan and facilitate colleagues' practice learning; enabled nursing students to develop their mentoring skills; reinforced the nursing students' self-awareness, which contributed to their personal development; and demonstrated the importance of peer feedback and support through the debriefs. Challenges included overcoming some students' resistance to the project and that some lecturers were initially concerned that nursing students may not have the clinical expertise to lead the simulated practice learning sessions effectively. This pilot project has demonstrated how student-led simulated practice learning sessions could be used to engage nursing students as partners in their learning, enhance their knowledge and skills, and promote self-directed learning. ©2012 RCN Publishing Company Ltd. All rights reserved. Not to be copied, transmitted or recorded in any way, in whole or part, without prior permission of the publishers.
Alfred, Michael; Chung, Christopher A
2012-12-01
This paper describes a second generation Simulator for Engineering Ethics Education. Details describing the first generation activities of this overall effort are published in Chung and Alfred (Sci Eng Ethics 15:189-199, 2009). The second generation research effort represents a major development in the interactive simulator educational approach. As with the first generation effort, the simulator places students in first person perspective scenarios involving different types of ethical situations. Students must still gather data, assess the situation, and make decisions. The approach still requires students to develop their own ability to identify and respond to ethical engineering situations. However, were as, the generation one effort involved the use of a dogmatic model based on National Society of Professional Engineers' Code of Ethics, the new generation two model is based on a mathematical model of the actual experiences of engineers involved in ethical situations. This approach also allows the use of feedback in the form of decision effectiveness and professional career impact. Statistical comparisons indicate a 59 percent increase in overall knowledge and a 19 percent improvement in teaching effectiveness over an Internet Engineering Ethics resource based approach.
Shrader, Sarah; Dunn, Brianne; Blake, Elizabeth; Phillips, Cynthia
2015-05-25
To determine the impact of incorporating standardized colleague simulations on pharmacy students' confidence and interprofessional communication skills. Four simulations using standardized colleagues portraying attending physicians in inpatient and outpatient settings were integrated into a required course. Pharmacy students interacted with the standardized colleagues using the Situation, Background, Assessment, Request/Recommendation (SBAR) communication technique and were evaluated on providing recommendations while on simulated inpatient rounds and in an outpatient clinic. Additionally, changes in student attitudes and confidence toward interprofessional communication were assessed with a survey before and after the standardized colleague simulations. One hundred seventy-one pharmacy students participated in the simulations. Student interprofessional communication skills improved after each simulation. Student confidence with interprofessional communication in both inpatient and outpatient settings significantly improved. Incorporation of simulations using standardized colleagues improves interprofessional communication skills and self-confidence of pharmacy students.
Mapping Venus: Modeling the Magellan Mission.
ERIC Educational Resources Information Center
Richardson, Doug
1997-01-01
Provides details of an activity designed to help students understand the relationship between astronomy and geology. Applies concepts of space research and map-making technology to the construction of a topographic map of a simulated section of Venus. (DDR)
NASA Astrophysics Data System (ADS)
Tarboton, D. G.; Habib, E. H.; Deshotel, M.; Merck, M. F.; Lall, U.; Farnham, D. J.
2016-12-01
Traditional approaches to undergraduate hydrology and water resource education are textbook based, adopt unit processes and rely on idealized examples of specific applications, rather than examining the contextual relations in the processes and the dynamics connecting climate and ecosystems. The overarching goal of this project is to address the needed paradigm shift in undergraduate education of engineering hydrology and water resources education to reflect parallel advances in hydrologic research and technology, mainly in the areas of new observational settings, data and modeling resources and web-based technologies. This study presents efforts to develop a set of learning modules that are case-based, data and simulation driven and delivered via a web user interface. The modules are based on real-world case studies from three regional hydrologic settings: Coastal Louisiana, Utah Rocky Mountains and Florida Everglades. These three systems provide unique learning opportunities on topics such as: regional-scale budget analysis, hydrologic effects of human and natural changes, flashflood protection, climate-hydrology teleconnections and water resource management scenarios. The technical design and contents of the modules aim to support students' ability for transforming their learning outcomes and skills to hydrologic systems other than those used by the specific activity. To promote active learning, the modules take students through a set of highly engaging learning activities that are based on analysis of hydrologic data and model simulations. The modules include user support in the form of feedback and self-assessment mechanisms that are integrated within the online modules. Module effectiveness is assessed through an improvement-focused evaluation model using a mixed-method research approach guiding collection and analysis of evaluation data. Both qualitative and quantitative data are collected through student learning data, product analysis, and staff interviews. The presentation shares with the audience lessons learned from the development and implementation of the modules, students' feedback, guidelines on design and content attributes that support active learning in hydrology, and challenges encountered during the class implementation and evaluation of the modules.
ERIC Educational Resources Information Center
Gresch, Eric; Rawls, Janita
2017-01-01
This exploratory research examines students' perceptions of a capstone business simulation game by identifying (a) courses that were most useful in preparing students for the simulation and (b) interpersonal skills students found most helpful when working with teammates on the simulation. Also identified are the simulation's impact on student…
Cobbett, Shelley; Snelgrove-Clarke, Erna
2016-10-01
Clinical simulations can provide students with realistic clinical learning environments to increase their knowledge, self-confidence, and decrease their anxiety prior to entering clinical practice settings. To compare the effectiveness of two maternal newborn clinical simulation scenarios; virtual clinical simulation and face-to-face high fidelity manikin simulation. Randomized pretest-posttest design. A public research university in Canada. Fifty-six third year Bachelor of Science in Nursing students. Participants were randomized to either face-to-face or virtual clinical simulation and then to dyads for completion of two clinical simulations. Measures included: (1) Nursing Anxiety and Self-Confidence with Clinical Decision Making Scale (NASC-CDM) (White, 2011), (2) knowledge pretest and post-test related to preeclampsia and group B strep, and (3) Simulation Completion Questionnaire. Before and after each simulation students completed a knowledge test and the NASC-CDM and the Simulation Completion Questionnaire at study completion. There were no statistically significant differences in student knowledge and self-confidence between face-to-face and virtual clinical simulations. Anxiety scores were higher for students in the virtual clinical simulation than for those in the face-to-face simulation. Students' self-reported preference was face-to-face citing the similarities to practicing in a 'real' situation and the immediate debrief. Students not liking the virtual clinical simulation most often cited technological issues as their rationale. Given the equivalency of knowledge and self-confidence when undergraduate nursing students participate in either maternal newborn clinical scenarios of face-to-face or virtual clinical simulation identified in this trial, it is important to take into the consideration costs and benefits/risks of simulation implementation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Feasibility of Augmented Reality in Clinical Simulations: Using Google Glass With Manikins.
Chaballout, Basil; Molloy, Margory; Vaughn, Jacqueline; Brisson Iii, Raymond; Shaw, Ryan
2016-03-07
Studies show that students who use fidelity-based simulation technology perform better and have higher retention rates than peers who learn in traditional paper-based training. Augmented reality is increasingly being used as a teaching and learning tool in a continual effort to make simulations more realistic for students. The aim of this project was to assess the feasibility and acceptability of using augmented reality via Google Glass during clinical simulation scenarios for training health science students. Students performed a clinical simulation while watching a video through Google Glass of a patient actor simulating respiratory distress. Following participation in the scenarios students completed two surveys and were questioned if they would recommend continued use of this technology in clinical simulation experiences. We were able to have students watch a video in their field of vision of a patient who mimicked the simulated manikin. Students were overall positive about the implications for being able to view a patient during the simulations, and most students recommended using the technology in the future. Overall, students reported perceived realism with augmented reality using Google Glass. However, there were technical and usability challenges with the device. As newer portable and consumer-focused technologies become available, augmented reality is increasingly being used as a teaching and learning tool to make clinical simulations more realistic for health science students. We found Google Glass feasible and acceptable as a tool for augmented reality in clinical simulations.
NASA Astrophysics Data System (ADS)
Sanchez, Christopher A.; Ruddell, Benjamin L.; Schiesser, Roy; Merwade, Venkatesh
2016-03-01
Previous research has suggested that the use of more authentic learning activities can produce more robust and durable knowledge gains. This is consistent with calls within civil engineering education, specifically hydrology, that suggest that curricula should more often include professional perspective and data analysis skills to better develop the "T-shaped" knowledge profile of a professional hydrologist (i.e., professional breadth combined with technical depth). It was expected that the inclusion of a data-driven simulation lab exercise that was contextualized within a real-world situation and more consistent with the job duties of a professional in the field, would provide enhanced learning and appreciation of job duties beyond more conventional paper-and-pencil exercises in a lower-division undergraduate course. Results indicate that while students learned in both conditions, learning was enhanced for the data-driven simulation group in nearly every content area. This pattern of results suggests that the use of data-driven modeling and visualization activities can have a significant positive impact on instruction. This increase in learning likely facilitates the development of student perspective and conceptual mastery, enabling students to make better choices about their studies, while also better preparing them for work as a professional in the field.
NASA Astrophysics Data System (ADS)
Sanchez, C. A.; Ruddell, B. L.; Schiesser, R.; Merwade, V.
2015-07-01
Previous research has suggested that the use of more authentic learning activities can produce more robust and durable knowledge gains. This is consistent with calls within civil engineering education, specifically hydrology, that suggest that curricula should more often include professional perspective and data analysis skills to better develop the "T-shaped" knowledge profile of a professional hydrologist (i.e., professional breadth combined with technical depth). It was expected that the inclusion of a data driven simulation lab exercise that was contextualized within a real-world situation and more consistent with the job duties of a professional in the field, would provide enhanced learning and appreciation of job duties beyond more conventional paper-and-pencil exercises in a lower division undergraduate course. Results indicate that while students learned in both conditions, learning was enhanced for the data-driven simulation group in nearly every content area. This pattern of results suggests that the use of data-driven modeling and visualization activities can have a significant positive impact on instruction. This increase in learning likely facilitates the development of student perspective and conceptual mastery, enabling students to make better choices about their studies, while also better preparing them for work as a professional in the field.
NASA Astrophysics Data System (ADS)
Sitton, Jennifer Susan
Education research has focused on defining and identifying student learning style preferences and how to incorporate this knowledge into teaching practices that are effective in engaging student interest and transmitting information. One objective was determining the learning style preferences of undergraduate students in Biology courses at New Mexico State University by using the online VARK Questionnaire and an investigator developed survey (Self Assessed Learning Style Survey, LSS). Categories include visual, aural, read-write, kinesthetic, and multimodal. The courses differed in VARK single modal learning preferences (p = 0.035) but not in the proportions of the number of modes students preferred (p = 0.18). As elsewhere, the majority of students were multimodal. There were similarities and differences between LSS and VARK results and between students planning on attending medical school and those not. Preferences and modalities tended not to match as expected for ratings of helpfulness of images and text. To detect relationships between VARK preferred learning style and academic performance, ANOVAs were performed using modality preferences and normalized learning gains from pre and post tests over material taught in the different modalities, as well as on end of semester laboratory and lecture grades. Overall, preference did not affect the performance for a given modality based activity, quiz, or final lecture or laboratory grades (p > 0.05). This suggests that a student's preference does not predict an improved performance when supplied with material in that modality. It is recommended that methods be developed to aid learning in a variety of modalities, rather than catering to individual learning styles. Another topic that is heavily debated in the field of education is the use of simulations or videos to replace or supplement dissections. These activities were compared using normalized learning gains from pre and post tests, as well as attitude surveys. Results indicate no differences in average student learning gain based on the activity types tested, although students do rate dissections higher in terms of interest and enthusiasm. Dissections also offer a different type of learning. Therefore, it is suggested that simulations and videos be used as supplements for dissections and not as replacements.
Thomas, Erin M; Rybski, Melinda F; Apke, Tonya L; Kegelmeyer, Deb A; Kloos, Anne D
2017-05-01
Due to the fast pace and high complexity of managing patients in intensive and acute care units (ICUs), healthcare students often feel challenged and unprepared to practice in this environment. Simulations and standardised patients provide "hands-on" learning experiences that are realistic and help students to gain competence and confidence. This study examined the impact of an intensive case simulation laboratory using a patient simulator and standardised patients on students' perceptions of their confidence and preparedness to work in acute care settings. Second-year Masters of Occupational Therapy (MOT; n = 127) and Doctor of Physical Therapy (DPT; n = 105) students participated in a three-hour intensive care simulation laboratory comprised of four stations that were designed to simulate common ICU patient care scenarios. Data analysed were student pre- and post-simulation surveys and written comments, and clinical instructors' (CIs; n = 51) ratings on DPT students' preparedness and confidence within the first two weeks of their acute care internships obtained after the laboratory. There was a significant increase for DPT (p < 0.0001) and MOT (p < 0.10) students in median ratings of how prepared they felt to practice in acute care settings following the ICU simulation compared to before the laboratory. CIs rated the DPT students as either prepared or very prepared for and moderately confident or very confident in the acute care setting. The use of simulation training using standardised patients and patient simulators was beneficial in increasing student confidence and preparing OT and PT students to practice in the acute care setting. Health professional educators should consider using an interprofessional simulation experience to improve their students' confidence and preparedness to provide appropriate care in the acute setting.
Yang, Kyeongra; Woomer, Gail Ratliff; Agbemenu, Kafuli; Williams, Lynne
2014-11-01
The study aim was to evaluate the effectiveness of a poverty simulation in increasing understanding of and attitudes toward poverty and resulting in changes in clinical practice among nursing seniors. A poverty simulation was conducted using a diverse group of nursing professors and staff from local community agencies assuming the role of community resource providers. Students were assigned roles as members of low-income families and were required to complete tasks during a simulated month. A debriefing was held after the simulation to explore students' experiences in a simulated poverty environment. Students' understanding of and attitude toward poverty pre- and post-simulation were examined. Changes in the students' clinical experiences following the simulation were summarized into identified categories and themes. The poverty simulation led to a greater empathy for the possible experiences of low income individuals and families, understanding of barriers to health care, change in attitudes towards poverty and to those living in poverty, and changes in the students' nursing practice. Use of poverty simulation is an effective means to teach nursing students about the experience of living in poverty. The simulation experience changed nursing students' clinical practice, with students providing community referrals and initiating inter-professional collaborations. Copyright © 2014 Elsevier Ltd. All rights reserved.
Evans, Cecile B; Mixon, Diana K
2015-12-01
The purpose of this paper was to assess undergraduate nursing students' pain knowledge after participation in a simulation scenario. The Knowledge and Attitudes of Survey Regarding Pain (KASRP) was used to assess pain knowledge. In addition, reflective questions related to the simulation were examined. Student preferences for education method and reactions to the simulation (SIM) were described. Undergraduate nursing students' knowledge of pain management is reported as inadequate. An emerging pedagogy used to educate undergraduate nurses in a safe, controlled environment is simulation. Literature reports of simulation to educate students' about pain management are limited. As part of the undergraduate nursing student clinical coursework, a post-operative pain management simulation, the SIM was developed. Students were required to assess pain levels and then manage the pain for a late adolescent male whose mother's fear of addiction was a barrier to pain management. The students completed an anonymous written survey that included selected questions from the KASRP and an evaluation of the SIM experience. The students' mean KASRP percent correct was 70.4% ± 8.6%. Students scored the best on items specific to pain assessment and worst on items specific to opiate equivalents and decisions on PRN orders. The students' overall KASRP score post simulation was slightly better than previous studies of nursing students. These results suggest that educators should consider simulations to educate about pain assessment and patient/family education. Future pain simulations should include more opportunities for students to choose appropriate pain medications when provided PRN orders. Copyright © 2015 American Society for Pain Management Nursing. Published by Elsevier Inc. All rights reserved.
The Nature of Laboratory Learning Experiences in Secondary Science Online
NASA Astrophysics Data System (ADS)
Crippen, Kent J.; Archambault, Leanna M.; Kern, Cindy L.
2013-06-01
Teaching science to secondary students in an online environment is a growing international trend. Despite this trend, reports of empirical studies of this phenomenon are noticeably missing. With a survey concerning the nature of laboratory activities, this study describes the perspective of 35-secondary teachers from 15-different U.S. states who are teaching science online. The type and frequency of reported laboratory activities are consistent with the tradition of face-to-face instruction, using hands-on and simulated experiments. While provided examples were student-centered and required the collection of data, they failed to illustrate key components of the nature of science. The features of student-teacher interactions, student engagement, and nonverbal communications were found to be lacking and likely constitute barriers to the enactment of inquiry. These results serve as a call for research and development focused on using existing communication tools to better align with the activity of science such that the nature of science is more clearly addressed, the work of students becomes more collaborative and authentic, and the formative elements of a scientific inquiry are more accessible to all participants.
Enabling Remote Activity: Using mobile technology for remote participation in geoscience fieldwork
NASA Astrophysics Data System (ADS)
Davies, Sarah; Collins, Trevor; Gaved, Mark; Bartlett, Jessica; Valentine, Chris; McCann, Lewis
2010-05-01
Field-based activities are regarded as essential to the development of a range of professional and personal skills within the geosciences. Students enjoy field activities, preferring these to learning with simulations (Spicer and Stratford 2001), and these improve deeper learning and understanding (Kern and Carpenter, 1984; Elkins and Elkins, 2007). However, some students find it difficult to access these field-based learning opportunities. Field sites may be remote and often require travel across uneven, challenging or potentially dangerous terrain. Mobility-impaired students are particularly limited in their opportunities to participate in field-based learning activities and, as higher education institutions have a responsibility to provide inclusive opportunities for students (UK Disability Discrimination Act 1995, UK Special Education Needs and Disability Rights Act 2001), the need for inclusive fieldwork learning is being increasingly recognised. The Enabling Remote Activity (ERA) project has been investigating how mobile communications technologies might allow field learning experiences to be brought to students who would otherwise find it difficult to participate, and also to enhance activities for all participants. It uses a rapidly deployable, battery-powered wireless network to transmit video, audio, and high resolution still images to connect participants at an accessible location with participants in the field. Crucially, the system uses a transient wireless network, allowing multiple locations to be explored during a field visit, and for plans to be changed dynamically if required. Central to the concept is the requirement for independent investigative learning: students are enabled to participate actively in the learning experience and to direct the investigations, as opposed to being simply remote viewers of the experience. Two ways of using the ERA system have been investigated: remote access and collaborative groupwork. In 2006 and 2008 remote access was used to enable mobility-impaired students to take part in and complete a field course. This involved connecting the student in an accessible vehicle located close to the field site, via a wireless network, to a geologist in the field. The geologist worked alongside the general body of students and the field tutor as each geological site was investigated. Two-way communications allowed the student to guide the geologist to provide video panoramas of the area, to select areas of interest for further study and to obtain high resolution images of specific points. The students were able to work through the field activities alongside the rest of the student group. A collaborative groupwork trial (2007) was used to connect two groups of students; one in an accessible laboratory, the other at a field site. Traditionally, students collect data in the field and analyze it on return to the laboratory; this system proposes a more rapid collection and analysis procedure, with information being transmitted between sites with field and laboratory participants having their own distinct, significant roles within the learning activity. This project recently received an award at the 2008 Handheld Learning Conference and a HEFCE sponsored Open University Teaching Award. In contrast to the use of ‘virtual fieldwork' that aims to provide simulations or a resource for a student to use, the focus of this project is on how technology can be used to support actual fieldwork activities. This approach has been trialled now over three field seasons, with students using the system to remotely participate in fieldwork activities. Interviews with tutors and students have shown that this was perceived as valuable and allowed participants to achieve the learning objectives of the course alongside their peers. The challenges of remote fieldwork concern the co-ordination of students' activities, the integration of remote and field activities and practical issues of lightweight, easy-to-use, robust technologies and the provision of a reliable communications network. References Elkins, J.T. & Elkins, N.M.L. (2007) Teaching geology in the field: significant geoscience concept gains in entirely field-based introductory geology courses. Journal of Geoscience Education, 55 (2), 126-132. Kern, E. and Carpenter, J. (2004). Enhancement of student values, interests and attitudes in Earth Science through a field-oriented approach. Journal of Geological Education, 32 (5), 299-305. Spicer, J. I. and Stratford, J. (2001) Student perceptions of a virtual field trip to replace a real field trip. Journal of Computer Assisted Learning, 17(4), 345-354.
3D Heart: a new visual training method for electrocardiographic analysis.
Olson, Charles W; Lange, David; Chan, Jack-Kang; Olson, Kim E; Albano, Alfred; Wagner, Galen S; Selvester, Ronald H S
2007-01-01
This new training method is based on developing a sound understanding of the sequence in which electrical excitation spreads through both the normal and the infarcted myocardium. The student is made aware of the cardiac electrical performance through a series of 3-dimensional pictures during the excitation process. The electrocardiogram 3D Heart 3-dimensional program contains a variety of different activation simulations. Currently, this program enables the user to view the activation simulation for all of the following pathology examples: normal activation; large, medium, and small anterior myocardial infarction (MI); large, medium, and small posterolateral MI; large, medium, and small inferior MI. Simulations relating to other cardiac abnormalities, such as bundle branch block and left ventricular hypertrophy fasicular block, are being developed as part of a National Institute of Health (NIH) Phase 1 Small Business Innovation Research (SBIR) program.
NASA Astrophysics Data System (ADS)
May, Dominik; Wold, Kari; Moore, Stephanie
2015-09-01
The world is changing significantly, and it is becoming increasingly globalised. This means that countries, businesses, and professionals must think and act globally to be successful. Many individuals, however, are not prepared with the global competency skills needed to communicate and perform effectively in a globalised system. To address this need, higher education institutions are looking for ways to instil these skills in their students. This paper explains one promising approach using current learning principles: transnational interactive online environments in engineering education. In 2011, the TU Dortmund and the University of Virginia initiated a collaboration in which engineering students from both universities took part in one online synchronous course and worked together on global topics. This paper describes how the course was designed and discusses specific research results regarding how interactive online role-playing simulations support students in gaining the global competency skills required to actively participate in today's international workforce.
Using Second Life to enhance ACCEL an online accelerated nursing BSN program.
Stewart, Stephanie; Pope, Dawn; Duncan, Debra
2009-01-01
To create a presence in Second Life (SL) the university college of nursing (CON) purchased four virtual islands in December 2007. The intent was to enhance distance education with immersion learning experiences for nursing students in SL. The Pollock Alumni House, classrooms, faculty offices, a library, a student welcome center, a public health office, a disaster scenario, a clinic, a hospital, and several patient avatars were created. Houses are being built for nursing students to experience different patient care scenarios during home visits. At least 20 nursing faculty and academic staff and three cohorts of accelerated nursing students (77) have avatars and have experienced class sessions. Faculty and students schedule office hours, engage in synchronous chats, and utilize the public health department and SL support groups for class exercises. Current exercises in the public health department include a module in which the student learns the role of the sanitarian. Students use a checklist to inspect restaurants and bars in SL. They are also able to view a video of an interview with a sanitarian. Another module introduces them to the WIC (Women, Infants, and Children) program. Future student activities related to public health include disaster planning, bioterrorism, evacuations, community assessment, windshield surveys, fund raising, and health education as well as other activities suggested by public health nurses and students. The possibilities are limitless because of the resources that exist in the virtual world, SL. The purchase of the first two islands, the initial buildings, and the creation of the public health department was funded by a research grant. Virtual environments offer many advantages for nursing education. Many nursing students say they learn best when they actually "do something," which indicates that they often prefer experiential learning. Rare but life-threatening patient situations can be experienced since the clinical environment can be realistically simulated. The student has the opportunity to practice repeatedly without causing harm to patients. During these simulations, active learning takes place, immediate feedback can be given for both correct and incorrect actions, errors can be corrected, and consistent experiences can be reproduced for all students. This technology is revolutionizing education and will meet the needs of the media savvy generations to come. It can also provide virtual experiences that nursing students may encounter in the clinical setting which are high risk and low volume, thus enhancing patient safety.
ERIC Educational Resources Information Center
Luealamai, Sutha; Panijpan, Bhinyo
2012-01-01
The authors have developed a computer-based learning module on the unit cell of various types of crystal. The module has two components: the virtual unit cell (VUC) part and the subsequent unit cell hunter part. The VUC is a virtual reality simulation for students to actively arrive at the unit cell from exploring, from a broad view, the crystal…
HAWK MACH-III Intelligent Maintenance Tutor Design Development Report
1986-12-01
objective can best be achieved by designing the MACH-IIl to provide augmented hands-on experience in troubleshooting in a setting which will emphasize...artificial intelligence supporting the development activity will focus on development of a strategy for effective and efficient hierarchical simulation of...main components of such a system are the system simulation and problem-solving expertise, the student model, and the tutorial strategies . In the MACH
Serrano, Antonio; Liebner, Jeffrey; Hines, Justin K
2016-01-01
Despite significant efforts to reform undergraduate science education, students often perform worse on assessments of perceptions of science after introductory courses, demonstrating a need for new educational interventions to reverse this trend. To address this need, we created An Inexplicable Disease, an engaging, active-learning case study that is unusual because it aims to simulate scientific inquiry by allowing students to iteratively investigate the Kuru epidemic of 1957 in a choose-your-own-experiment format in large lectures. The case emphasizes the importance of specialization and communication in science and is broadly applicable to courses of any size and sub-discipline of the life sciences.
NASA Technical Reports Server (NTRS)
Kiteley, G. W.; Harris, R. L., Sr.
1978-01-01
Ten student pilots were given a 1 hour training session in the NASA Langley Research Center's General Aviation Simulator by a certified flight instructor and a follow-up flight evaluation was performed by the student's own flight instructor, who has also flown the simulator. The students and instructors generally felt that the simulator session had a positive effect on the students. They recommended that a simulator with a visual scene and a motion base would be useful in performing such maneuvers as: landing approaches, level flight, climbs, dives, turns, instrument work, and radio navigation, recommending that the simulator would be an efficient means of introducing the student to new maneuvers before doing them in flight. The students and instructors estimated that about 8 hours of simulator time could be profitably devoted to the private pilot training.
Student Ability, Confidence, and Attitudes Toward Incorporating a Computer into a Patient Interview.
Ray, Sarah; Valdovinos, Katie
2015-05-25
To improve pharmacy students' ability to effectively incorporate a computer into a simulated patient encounter and to improve their awareness of barriers and attitudes towards and their confidence in using a computer during simulated patient encounters. Students completed a survey that assessed their awareness of, confidence in, and attitudes towards computer use during simulated patient encounters. Students were evaluated with a rubric on their ability to incorporate a computer into a simulated patient encounter. Students were resurveyed and reevaluated after instruction. Students improved in their ability to effectively incorporate computer usage into a simulated patient encounter. They also became more aware of and improved their attitudes toward barriers regarding such usage and gained more confidence in their ability to use a computer during simulated patient encounters. Instruction can improve pharmacy students' ability to incorporate a computer into simulated patient encounters. This skill is critical to developing efficiency while maintaining rapport with patients.
Development of a self-assessment teamwork tool for use by medical and nursing students.
Gordon, Christopher J; Jorm, Christine; Shulruf, Boaz; Weller, Jennifer; Currie, Jane; Lim, Renee; Osomanski, Adam
2016-08-24
Teamwork training is an essential component of health professional student education. A valid and reliable teamwork self-assessment tool could assist students to identify desirable teamwork behaviours with the potential to promote learning about effective teamwork. The aim of this study was to develop and evaluate a self-assessment teamwork tool for health professional students for use in the context of emergency response to a mass casualty. The authors modified a previously published teamwork instrument designed for experienced critical care teams for use with medical and nursing students involved in mass casualty simulations. The 17-item questionnaire was administered to students immediately following the simulations. These scores were used to explore the psychometric properties of the tool, using Exploratory and Confirmatory Factor Analysis. 202 (128 medical and 74 nursing) students completed the self-assessment teamwork tool for students. Exploratory factor analysis revealed 2 factors (5 items - Teamwork coordination and communication; 4 items - Information sharing and support) and these were justified with confirmatory factor analysis. Internal consistency was 0.823 for Teamwork coordination and communication, and 0.812 for Information sharing and support. These data provide evidence to support the validity and reliability of the self-assessment teamwork tool for students This self-assessment tool could be of value to health professional students following team training activities to help them identify the attributes of effective teamwork.
Simulation Genres and Student Uptake: The Patient Health Record in Clinical Nursing Simulations
ERIC Educational Resources Information Center
Campbell, Lilly
2017-01-01
Drawing on fieldwork, this article examines nursing students' design and use of a patient health record during clinical simulations, where small teams of students provide nursing care for a robotic patient. The student-designed patient health record provides a compelling example of how simulation genres can both authentically coordinate action…
Simulating Student Flow: Institutional Research Applications.
ERIC Educational Resources Information Center
Fawcett, Greg
Monitoring and subsequently simulating student transfer patterns from one academic major (or level) to another typically enables an institution to estimate future student enrollment distributions across academic areas. At the University of Missouri-Columbia (UMC), a student flow model not only simulates the patterns of student transfer but also…
Gonzales, Lucia K; Glaser, Dale; Howland, Lois; Clark, Mary Jo; Hutchins, Susie; Macauley, Karen; Close, Jacqueline F; Leveque, Noelle Lipkin; Failla, Kim Reina; Brooks, Raelene; Ward, Jillian
2017-01-01
A number of studies across different disciplines have investigated students' learning styles. Differences are known to exist between graduate and baccalaureate nursing students. However, few studies have investigated the learning styles of students in graduate entry nursing programs. . Study objective was to describe graduate entry nursing students' learning styles. A descriptive design was used for this study. The Index of Learning Styles (ILS) was administered to 202 graduate entry nursing student volunteers at a southwestern university. Descriptive statistics, tests of association, reliability, and validity were performed. Graduate nursing students and faculty participated in data collection, analysis, and dissemination of the results. Predominant learning styles were: sensing - 82.7%, visual - 78.7%, sequential - 65.8%, and active - 59.9%. Inter-item reliabilities for the postulated subscales were: sensing/intuitive (α=0.70), visual/verbal (α=0.694), sequential/global (α=0.599), and active/reflective (α=0.572). Confirmatory factor analysis for results of validity were: χ 2 (896)=1110.25, p<0.001, CFI=0.779, TLI=0.766, WRMR=1.14, and RMSEA =0.034. Predominant learning styles described students as being concrete thinkers oriented toward facts (sensing); preferring pictures, diagrams, flow charts, demonstrations (visual); being linear thinkers (sequencing); and enjoying working in groups and trying things out (active),. The predominant learning styles suggest educators teach concepts through simulation, discussion, and application of knowledge. Multiple studies, including this one, provided similar psychometric results. Similar reliability and validity results for the ILS have been noted in previous studies and therefore provide sufficient evidence to use the ILS with graduate entry nursing students. This study provided faculty with numerous opportunities for actively engaging students in data collection, analysis, and dissemination of results. Copyright © 2016 Elsevier Ltd. All rights reserved.
Carolan-Olah, Mary; Kruger, Gina; Brown, Vera; Lawton, Felicity; Mazzarino, Melissa
2016-01-01
Simulation provides opportunities for midwifery students to enhance their performance in emergency situations. Neonatal resuscitation is one such emergency and its management is a major concern for midwifery students. This project aimed to develop and evaluate a simulation exercise, for neonatal resuscitation, for 3rd year midwifery students. A quantitative survey design was employed using questions from two previously validated questionnaires: (1.) Student Satisfaction and Self-Confidence in Learning and (2.) the Clinical Teamwork Scale (CTS). Australian university. 40 final year midwifery students were invited to participate and 36 agreed to take part in the project. In pre-simulation questionnaires, students reported low levels of confidence in initiating care of an infant requiring resuscitation. Most anticipated that the simulation exercise would be useful to better prepare them respond to a neonatal emergency. Post-simulation questionnaires reported an increase in student confidence, with 30 of 36 students agreeing/ strongly agreeing that their confidence levels had improved. Nonetheless, an unexpected number of students reported a lack of familiarity with the equipment. The single simulation exercise evaluated in this project resulted in improved student confidence and greater knowledge and skills in neonatal resuscitation. However, deficits in handling emergency equipment, and in understanding the role of the student midwife/midwife in neonatal resuscitation, were also noted. For the future, the development and evaluation of a programme of simulation exercises, over a longer period, is warranted. This approach may reduce stress and better address student learning needs. Copyright © 2015. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Beichner, Robert
2016-03-01
The Student-Centered Active Learning Environment with Upside-down Pedagogies (SCALE-UP) Project combines curricula and a specially-designed instructional space to enhance learning. SCALE-UP students practice communication and teamwork skills while performing activities that enhance their conceptual understanding and problem solving skills. This can be done with small or large classes and has been implemented at more than 250 institutions. Educational research indicates that students should collaborate on interesting tasks and be deeply involved with the material they are studying. SCALE-UP classtime is spent primarily on ``tangibles'' and ``ponderables''--hands-on measurements/observations and interesting questions. There are also computer simulations (called ``visibles'') and hypothesis-driven labs. Students sit at tables designed to facilitate group interactions. Instructors circulate and engage in Socratic dialogues. The setting looks like a banquet hall, with lively interactions nearly all the time. Impressive learning gains have been measured at institutions across the US and internationally. This talk describes today's students, how lecturing got started, what happens in a SCALE-UP classroom, and how the approach has spread. The SCALE-UP project has greatly benefitted from numerous Grants made by NSF and FIPSE to NCSU and other institutions.
Limoges, Jacqueline
2010-03-01
Recently, schools of nursing have adopted the use of high-fidelity human patient simulators in laboratory settings to teach nursing. Although numerous articles document the benefits of teaching undergraduate nursing students in this way, little attention has been paid to the discourses and texts organizing this approach. This institutional ethnography uses the critical feminist sociology of Dorothy E. Smith to examine the literature and interviews with Practical and Bachelor of Science in Nursing students, and their faculty about this experience. The research shows how discourses rationalize and sustain certain processes at the expense of others. For example, ruling discourses such as biomedicine, efficiency, and the relational ontology are activated to construct the simulation lab as part of nursing and nursing education. The analysis also highlights the intended and unintended effects of these discourses on nursing education and discusses how emphasizing nursing knowledges can make the simulation lab a positive place for learning.
Baillie, Sarah; Crossan, Andrew; Brewster, Stephen A; May, Stephen A; Mellor, Dominic J
2010-10-01
Simulators provide a potential solution to some of the challenges faced when teaching internal examinations to medical or veterinary students. A virtual reality simulator, the Haptic Cow, has been developed to teach bovine rectal palpation to veterinary students, and significant training benefits have been demonstrated. However, the training needs to be delivered by an instructor, a requirement that limits availability. This article describes the development and evaluation of an automated version that students could use on their own. An automated version was developed based on a recording of an expert's examination. The performance of two groups of eight students was compared. All students had undergone the traditional training in the course, namely lectures and laboratory practicals, and then group S used the simulator whereas group R had no additional training. The students were set the task of finding the uterus when examining cows. The simulator was then made available to students, and feedback about the "usability" was gathered with a questionnaire. The group whose training had been supplemented with a simulator session were significantly better at finding the uterus. The questionnaire feedback was positive and indicated that students found the simulator easy to use. The automated simulator equipped students with useful skills for examining cows. In addition, a simulator that does not need the presence of an instructor will increase the availability of training for students and be a more sustainable option for institutions.
Cryder, Brian; Mazan, Jennifer; Quiñones-Boex, Ana; Cyganska, Angelika
2017-01-01
Objective. To develop, implement, and assess whether simulated patient case videos improve students’ understanding of and attitudes toward cross-cultural communication in health care. Design. Third-year pharmacy students (N=159) in a health care communications course participated in a one-hour lecture and two-hour workshop on the topic of cross-cultural communication. Three simulated pharmacist-patient case vignettes highlighting cross-cultural communication barriers, the role of active listening, appropriate use of medical interpreters, and useful models to overcome communication barriers were viewed and discussed in groups of 20 students during the workshop. Assessment. A pre-lecture and post-workshop assessed the effect on students’ understanding of and attitudes toward cross-cultural communication. Understanding of cross-cultural communication concepts increased significantly, as did comfort level with providing cross-cultural care. Conclusion. Use of simulated patient case videos in conjunction with an interactive workshop improved pharmacy students' understanding of and comfort level with cross-cultural communication skills and can be useful tools for cultural competency training in the curriculum. PMID:28496276
Infusing Social Justice in Undergraduate Nursing Education: Fostering Praxis Through Simulation.
Caldwell, Robyn; Cochran, Courtney
Forensic clinical experiences are often inconsistent in undergraduate nursing education. Nursing students are not included in the process of forensic evidence collection, often because of the sensitive nature of the situation. Unfortunately, nursing students are forced to rely on theoretical knowledge provided by the nurse educator to understand the complexities of forensic nursing care. Nursing students must be able to identify and provide appropriate nursing care for individuals in all forensic situations. Comprehensive clinical laboratory experiences should be provided through active teaching-learning strategies, which replicate nursing care of the forensic patient. Simulated patient experiences provide a unique opportunity to explore the sensitive nature of sexual trauma in a safe learning environment. This strategy facilitates the application of theoretical forensic principles by utilizing live actors or high-fidelity manikins in laboratory settings. The application of theory to each simulated patient infuses conceptual knowledge at the point of care. Change in social consciousness begins at the bedside. The moral imperative of nursing continues to be the preparation of socially responsible, professional nurses who strive to end social injustices.
NASA Astrophysics Data System (ADS)
Orr, C. H.; Mcfadden, R. R.; Manduca, C. A.; Kempler, L. A.
2016-12-01
Teaching with data, simulations, and models in the geosciences can increase many facets of student success in the classroom, and in the workforce. Teaching undergraduates about programming and improving students' quantitative and computational skills expands their perception of Geoscience beyond field-based studies. Processing data and developing quantitative models are critically important for Geoscience students. Students need to be able to perform calculations, analyze data, create numerical models and visualizations, and more deeply understand complex systems—all essential aspects of modern science. These skills require students to have comfort and skill with languages and tools such as MATLAB. To achieve comfort and skill, computational and quantitative thinking must build over a 4-year degree program across courses and disciplines. However, in courses focused on Geoscience content it can be challenging to get students comfortable with using computational methods to answers Geoscience questions. To help bridge this gap, we have partnered with MathWorks to develop two workshops focused on collecting and developing strategies and resources to help faculty teach students to incorporate data, simulations, and models into the curriculum at the course and program levels. We brought together faculty members from the sciences, including Geoscience and allied fields, who teach computation and quantitative thinking skills using MATLAB to build a resource collection for teaching. These materials, and the outcomes of the workshops are freely available on our website. The workshop outcomes include a collection of teaching activities, essays, and course descriptions that can help faculty incorporate computational skills at the course or program level. The teaching activities include in-class assignments, problem sets, labs, projects, and toolboxes. These activities range from programming assignments to creating and using models. The outcomes also include workshop syntheses that highlights best practices, a set of webpages to support teaching with software such as MATLAB, and an interest group actively discussing aspects these issues in Geoscience and allied fields. Learn more and view the resources at http://serc.carleton.edu/matlab_computation2016/index.html
Ten Eyck, Raymond P; Tews, Matthew; Ballester, John M; Hamilton, Glenn C
2010-06-01
To determine the impact of simulation-based instruction on student performance in the role of emergency department resuscitation team leader. A randomized, single-blinded, controlled study using an intention to treat analysis. Eighty-three fourth-year medical students enrolled in an emergency medicine clerkship were randomly allocated to two groups differing only by instructional format. Each student individually completed an initial simulation case, followed by a standardized curriculum of eight cases in either group simulation or case-based group discussion format before a second individual simulation case. A remote coinvestigator measured eight objective performance end points using digital recordings of all individual simulation cases. McNemar chi2, Pearson correlation, repeated measures multivariate analysis of variance, and follow-up analysis of variance were used for statistical evaluation. Sixty-eight students (82%) completed both initial and follow-up individual simulations. Eight students were lost from the simulation group and seven from the discussion group. The mean postintervention case performance was significantly better for the students allocated to simulation instruction compared with the group discussion students for four outcomes including a decrease in mean time to (1) order an intravenous line; (2) initiate cardiac monitoring; (3) order initial laboratory tests; and (4) initiate blood pressure monitoring. Paired comparisons of each student's initial and follow-up simulations demonstrated significant improvement in the same four areas, in mean time to order an abdominal radiograph and in obtaining an allergy history. A single simulation-based teaching session significantly improved student performance as a team leader. Additional simulation sessions provided further improvement compared with instruction provided in case-based group discussion format.
NASA Astrophysics Data System (ADS)
Chini, Jacquelyn J.; Madsen, Adrian; Gire, Elizabeth; Rebello, N. Sanjay; Puntambekar, Sadhana
2012-06-01
Recent research results have failed to support the conventionally held belief that students learn physics best from hands-on experiences with physical equipment. Rather, studies have found that students who perform similar experiments with computer simulations perform as well or better on measures of conceptual understanding than their peers who used physical equipment. In this study, we explored how university-level nonscience majors’ understanding of the physics concepts related to pulleys was supported by experimentation with real pulleys and a computer simulation of pulleys. We report that when students use one type of manipulative (physical or virtual), the comparison is influenced both by the concept studied and the timing of the post-test. Students performed similarly on questions related to force and mechanical advantage regardless of the type of equipment used. On the other hand, students who used the computer simulation performed better on questions related to work immediately after completing the activities; however, the two groups performed similarly on the work questions on a test given one week later. Additionally, both sequences of experimentation (physical-virtual and virtual-physical) equally supported students’ understanding of all of the concepts. These results suggest that both the concept learned and the stability of learning gains should continue to be explored to improve educators’ ability to select the best learning experience for a given topic.
Shin, Hyunsook; Ma, Hyunhee; Park, Jiyoung; Ji, Eun Sun; Kim, Dong Hee
2015-04-01
The use of simulations has been considered as opportunities for students to enhance their critical thinking (CT), but previous studies were limited because they did not provide in-depth information on the working dynamics of simulation or on the effects of the number of simulation exposures on CT. This study examined the effect of an integrated pediatric nursing simulation used in a nursing practicum on students' CT abilities and identified the effects of differing numbers of simulation exposures on CT in a multi-site environment. The study used a multi-site, pre-test, post-test design. A total of 237 nursing students at three universities enrolled in a pediatric practicum participated in this study from February to December 2013. All three schools used the same simulation courseware, including the same simulation scenarios, evaluation tools, and simulation equipment. The courseware incorporated high-fidelity simulators and standardized patients. Students at school A completed one simulation session, whereas students at schools B and C completed two and three simulation sessions, respectively. Yoon's Critical Thinking Disposition tool (2008) was used to measure students' CT abilities. The gains in students' CT scores varied according to their numbers of exposures to the simulation courseware. With a single exposure, there were no statistically significant gains in CT, whereas three exposures to the courseware produced significant gains in CT. In seven subcategories of critical thinking, three exposures to the simulation courseware produced CT gains in the prudence and intellectual eagerness subcategories, and the overall simulation experience produced CT gains in the prudence, systematicity, healthy skepticism, and intellectual eagerness subcategories. Simulation courseware may produce positive learning outcomes for prudence in nursing education. In addition, the findings from the multi-site comparative study may contribute to greater understanding of how patient simulation experiences impact students' CT abilities. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Klug Boonstra, S. L.; Swann, J.; Manfredi, L.; Zippay, A.; Boonstra, D.
2014-12-01
The Next Generation Science Standards (NGSS) brought many dynamic opportunities and capabilities to the K-12 science classroom - especially with the inclusion of engineering. Using science as a context to help students engage in the engineering practices and engineering disciplinary core ideas is an essential step to students' understanding of how science drives engineering and how engineering enables science. Real world examples and applications are critical for students to see how these disciplines are integrated. Furthermore, the interface of science and engineering raise the level of science understanding, and facilitate higher order thinking skills through relevant experiences. Astrobiobound! is designed for the NGSS (Next Generation Science Standards) and CCSS (Common Core State Standards). Students also practice and build 21st Century Skills. Astrobiobound! help students see how science and systems engineering are integrated to achieve a focused scientific goal. Students engage in the engineering design process to design a space mission which requires them to balance the return of their science data with engineering limitations such as power, mass and budget. Risk factors also play a role during this simulation and adds to the excitement and authenticity. Astrobiobound! presents the authentic first stages of NASA mission design process. This simulation mirrors the NASA process in which the science goals, type of mission, and instruments to return required data to meet mission goals are proposed within mission budget before any of the construction part of engineering can begin. NASA scientists and engineers were consulted in the development of this activity as an authentic simulation of their mission proposal process.
Promoting Diversity in Undergraduate Research in Robotics-Based Seismic
NASA Astrophysics Data System (ADS)
Gifford, C. M.; Arthur, C. L.; Carmichael, B. L.; Webber, G. K.; Agah, A.
2006-12-01
The motivation for this research was to investigate forming evenly-spaced grid patterns with a team of mobile robots for future use in seismic imaging in polar environments. A team of robots was incrementally designed and simulated by incorporating sensors and altering each robot's controller. Challenges, design issues, and efficiency were also addressed. This research project incorporated the efforts of two undergraduate REU students from Elizabeth City State University (ECSU) in North Carolina, and the research staff at the Center for Remote Sensing of Ice Sheets (CReSIS) at the University of Kansas. ECSU is a historically black university. Mentoring these two minority students in scientific research, seismic, robotics, and simulation will hopefully encourage them to pursue graduate degrees in science-related or engineering fields. The goals for this 10-week internship during summer 2006 were to educate the students in the fields of seismology, robotics, and virtual prototyping and simulation. Incrementally designing a robot platform for future enhancement and evaluation was central to this research, and involved simulation of several robots working together to change seismic grid shape and spacing. This process gave these undergraduate students experience and knowledge in an actual research project for a real-world application. The two undergraduate students gained valuable research experience and advanced their knowledge of seismic imaging, robotics, sensors, and simulation. They learned that seismic sensors can be used in an array to gather 2D and 3D images of the subsurface. They also learned that robotics can support dangerous or difficult human activities, such as those in a harsh polar environment, by increasing automation, robustness, and precision. Simulating robot designs also gave them experience in programming behaviors for mobile robots. Thus far, one academic paper has resulted from their research. This paper received third place at the 2006 National Technical Association's (NTA) National Conference in Chicago. CReSIS, in conjunction with ECSU, provided these minority students with a well-rounded educational experience in a real-world research project. Their contributions will be used for future projects.
The effect of dyad versus individual simulation-based ultrasound training on skills transfer.
Tolsgaard, Martin G; Madsen, Mette E; Ringsted, Charlotte; Oxlund, Birgitte S; Oldenburg, Anna; Sorensen, Jette L; Ottesen, Bent; Tabor, Ann
2015-03-01
Dyad practice may be as effective as individual practice during clinical skills training, improve students' confidence, and reduce costs of training. However, there is little evidence that dyad training is non-inferior to single-student practice in terms of skills transfer. This study was conducted to compare the effectiveness of simulation-based ultrasound training in pairs (dyad practice) with that of training alone (single-student practice) on skills transfer. In a non-inferiority trial, 30 ultrasound novices were randomised to dyad (n = 16) or single-student (n = 14) practice. All participants completed a 2-hour training programme on a transvaginal ultrasound simulator. Participants in the dyad group practised together and took turns as the active practitioner, whereas participants in the single group practised alone. Performance improvements were evaluated through pre-, post- and transfer tests. The transfer test involved the assessment of a transvaginal ultrasound scan by one of two clinicians using the Objective Structured Assessment of Ultrasound Skills (OSAUS). Thirty participants completed the simulation-based training and 24 of these completed the transfer test. Dyad training was found to be non-inferior to single-student training: transfer test OSAUS scores were significantly higher than the pre-specified non-inferiority margin (delta score 7.8%, 95% confidence interval -3.8-19.6%; p = 0.04). More dyad (71.4%) than single (30.0%) trainees achieved OSAUS scores above a pre-established pass/fail level in the transfer test (p = 0.05). There were significant differences in performance scores before and after training in both groups (pre- versus post-test, p < 0.01) with large effect sizes (Cohen's d = 3.85) and no significant interactions between training type and performance (p = 0.59). The dyad group demonstrated higher training efficiency in terms of simulator score per number of attempts compared with the single-student group (p = 0.03). Dyad practice improves the efficiency of simulation-based training and is non-inferior to individual practice in terms of skills transfer. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Demir, I.
2014-12-01
Recent developments in internet technologies make it possible to manage and visualize large data on the web. Novel visualization techniques and interactive user interfaces allow users to create realistic environments, and interact with data to gain insight from simulations and environmental observations. The hydrological simulation system is a web-based 3D interactive learning environment for teaching hydrological processes and concepts. The simulation systems provides a visually striking platform with realistic terrain information, and water simulation. Students can create or load predefined scenarios, control environmental parameters, and evaluate environmental mitigation alternatives. The web-based simulation system provides an environment for students to learn about the hydrological processes (e.g. flooding and flood damage), and effects of development and human activity in the floodplain. The system utilizes latest web technologies and graphics processing unit (GPU) for water simulation and object collisions on the terrain. Users can access the system in three visualization modes including virtual reality, augmented reality, and immersive reality using heads-up display. The system provides various scenarios customized to fit the age and education level of various users. This presentation provides an overview of the web-based flood simulation system, and demonstrates the capabilities of the system for various visualization and interaction modes.
Thompson, Laura R; Leung, Cynthia G; Green, Brad; Lipps, Jonathan; Schaffernocker, Troy; Ledford, Cynthia; Davis, John; Way, David P; Kman, Nicholas E
2017-01-01
Medical schools in the United States are encouraged to prepare and certify the entrustment of medical students to perform 13 core entrustable professional activities (EPAs) prior to graduation. Entrustment is defined as the informed belief that the learner is qualified to autonomously perform specific patient-care activities. Core EPA-10 is the entrustment of a graduate to care for the emergent patient. The purpose of this project was to design a realistic performance assessment method for evaluating fourth-year medical students on EPA-10. First, we wrote five emergent patient case-scenarios that a medical trainee would likely confront in an acute care setting. Furthermore, we developed high-fidelity simulations to realistically portray these patient case scenarios. Finally, we designed a performance assessment instrument to evaluate the medical student's performance on executing critical actions related to EPA-10 competencies. Critical actions included the following: triage skills, mustering the medical team, identifying causes of patient decompensation, and initiating care. Up to four students were involved with each case scenario; however, only the team leader was evaluated using the assessment instruments developed for each case. A total of 114 students participated in the EPA-10 assessment during their final year of medical school. Most students demonstrated competence in recognizing unstable vital signs (97%), engaging the team (93%), and making appropriate dispositions (92%). Almost 87% of the students were rated as having reached entrustment to manage the care of an emergent patient (99 of 114). Inter-rater reliability varied by case scenario, ranging from moderate to near-perfect agreement. Three of five case-scenario assessment instruments contained items that were internally consistent at measuring student performance. Additionally, the individual item scores for these case scenarios were highly correlated with the global entrustment decision. High-fidelity simulation showed good potential for effective assessment of medical student entrustment of caring for the emergent patient. Preliminary evidence from this pilot project suggests content validity of most cases and associated checklist items. The assessments also demonstrated moderately strong faculty inter-rater reliability.
Alternative Programs and the Reform of Teacher Education.
ERIC Educational Resources Information Center
Wisniewski, Richard
1986-01-01
Characteristics of professionally sound alternative preparation programs are discussed in terms of admissions, core courses, faculty and student time, simulation activities, and academic preparation. The Lyndhurst Fellowship Program at the University of Tennessee-Knoxville and Memphis State University is described. (MT)
Activities Related to Systems Engineering
2004-12-01
competencies include weapons technology including WMD; information management; modeling and simulation; operations analysis; chemical and explosive sciences...thesis students) are drawn from engineering, es • Th s on: s 19. University of Idaho at Idaho Falls Loc o daho ems Engineering; Certificate in n
The Interactive Planetarium: Student-led Investigations of Naked-Eye Astronomy and Planetary Motion
NASA Astrophysics Data System (ADS)
Rice, Emily L.; McCrady, N.
2007-12-01
We have developed a set of interactive, learner-centered planetarium lab activities for the introductory astronomy course for non-majors at UCLA. A planetarium is ideal for the visualization of the celestial sphere as a 2D projection in 3D space and for the direct spatial simulation of geometric relationships. These concepts are fundamental to content areas frequently covered in introductory courses but are notoriously difficult for non-specialists. Opportunities for engaging students in actively learning content and process skills are limited in the traditional "sky show” approach typically employed in a planetarium setting. The novel aspect of our activities is that they actively engage students in learning: students make predictions, design observational tests, and direct the motion of the planetarium sky in order to evaluate their hypotheses. We have also developed complementary, kinesthetic lab activities that take place outside the planetarium with overlapping content and process goals. Several hundred schools, colleges, and universities across the country have immediate access to a planetarium as a classroom, and our method represents a novel way to use the planetarium as interactive lab equipment in college-level introductory astronomy courses.
Bayramzadeh, Sara; Joseph, Anjali; Allison, David; Shultz, Jonas; Abernathy, James
2018-07-01
This paper describes the process and tools developed as part of a multidisciplinary collaborative simulation-based approach for iterative design and evaluation of operating room (OR) prototypes. Full-scale physical mock-ups of healthcare spaces offer an opportunity to actively communicate with and to engage multidisciplinary stakeholders in the design process. While mock-ups are increasingly being used in healthcare facility design projects, they are rarely evaluated in a manner to support active user feedback and engagement. Researchers and architecture students worked closely with clinicians and architects to develop OR design prototypes and engaged clinical end-users in simulated scenarios. An evaluation toolkit was developed to compare design prototypes. The mock-up evaluation helped the team make key decisions about room size, location of OR table, intra-room zoning, and doors location. Structured simulation based mock-up evaluations conducted in the design process can help stakeholders visualize their future workspace and provide active feedback. Copyright © 2018 Elsevier Ltd. All rights reserved.
Student Use of Physics to Make Sense of Incomplete but Functional VPython Programs in a Lab Setting
NASA Astrophysics Data System (ADS)
Weatherford, Shawn A.
2011-12-01
Computational activities in Matter & Interactions, an introductory calculus-based physics course, have the instructional goal of providing students with the experience of applying the same set of a small number of fundamental principles to model a wide range of physical systems. However there are significant instructional challenges for students to build computer programs under limited time constraints, especially for students who are unfamiliar with programming languages and concepts. Prior attempts at designing effective computational activities were successful at having students ultimately build working VPython programs under the tutelage of experienced teaching assistants in a studio lab setting. A pilot study revealed that students who completed these computational activities had significant difficultly repeating the exact same tasks and further, had difficulty predicting the animation that would be produced by the example program after interpreting the program code. This study explores the interpretation and prediction tasks as part of an instructional sequence where students are asked to read and comprehend a functional, but incomplete program. Rather than asking students to begin their computational tasks with modifying program code, we explicitly ask students to interpret an existing program that is missing key lines of code. The missing lines of code correspond to the algebraic form of fundamental physics principles or the calculation of forces which would exist between analogous physical objects in the natural world. Students are then asked to draw a prediction of what they would see in the simulation produced by the VPython program and ultimately run the program to evaluate the students' prediction. This study specifically looks at how the participants use physics while interpreting the program code and creating a whiteboard prediction. This study also examines how students evaluate their understanding of the program and modification goals at the beginning of the modification task. While working in groups over the course of a semester, study participants were recorded while they completed three activities using these incomplete programs. Analysis of the video data showed that study participants had little difficulty interpreting physics quantities, generating a prediction, or determining how to modify the incomplete program. Participants did not base their prediction solely from the information from the incomplete program. When participants tried to predict the motion of the objects in the simulation, many turned to their knowledge of how the system would evolve if it represented an analogous real-world physical system. For example, participants attributed the real-world behavior of springs to helix objects even though the program did not include calculations for the spring to exert a force when stretched. Participants rarely interpreted lines of code in the computational loop during the first computational activity, but this changed during latter computational activities with most participants using their physics knowledge to interpret the computational loop. Computational activities in the Matter & Interactions curriculum were revised in light of these findings to include an instructional sequence of tasks to build a comprehension of the example program. The modified activities also ask students to create an additional whiteboard prediction for the time-evolution of the real-world phenomena which the example program will eventually model. This thesis shows how comprehension tasks identified by Palinscar and Brown (1984) as effective in improving reading comprehension are also effective in helping students apply their physics knowledge to interpret a computer program which attempts to model a real-world phenomena and identify errors in their understanding of the use, or omission, of fundamental physics principles in a computational model.
Characterizing representational learning: A combined simulation and tutorial on perturbation theory
NASA Astrophysics Data System (ADS)
Kohnle, Antje; Passante, Gina
2017-12-01
Analyzing, constructing, and translating between graphical, pictorial, and mathematical representations of physics ideas and reasoning flexibly through them ("representational competence") is a key characteristic of expertise in physics but is a challenge for learners to develop. Interactive computer simulations and University of Washington style tutorials both have affordances to support representational learning. This article describes work to characterize students' spontaneous use of representations before and after working with a combined simulation and tutorial on first-order energy corrections in the context of quantum-mechanical time-independent perturbation theory. Data were collected from two institutions using pre-, mid-, and post-tests to assess short- and long-term gains. A representational competence level framework was adapted to devise level descriptors for the assessment items. The results indicate an increase in the number of representations used by students and the consistency between them following the combined simulation tutorial. The distributions of representational competence levels suggest a shift from perceptual to semantic use of representations based on their underlying meaning. In terms of activity design, this study illustrates the need to support students in making sense of the representations shown in a simulation and in learning to choose the most appropriate representation for a given task. In terms of characterizing representational abilities, this study illustrates the usefulness of a framework focusing on perceptual, syntactic, and semantic use of representations.
NASA Astrophysics Data System (ADS)
Fatimah, Siti; Setiawan, Wawan; Kusnendar, Jajang; Rasim, Junaeti, Enjun; Anggraeni, Ria
2017-05-01
Debriefing of pedagogical competence through both theory and practice which became a requirement for prospective teachers were through micro teaching and teaching practice program. But, some reports from the partner schools stated that the participants of teaching practice program have not well prepared on implementing the learning in the classroom because of lacking the debriefing. In line with the development of information technology, it is very possible to develop a media briefing of pedagogical competencies for prospective teachers through an application so that they can use it anytime and anywhere. This study was one answer to the problem of unpreparedness participants of the teaching practice program. This study developed a teaching simulator, which was an application for learning simulation with the animated film to enhance the professional pedagogical competence prospective teachers. By the application of this teaching simulator, students as prospective teacher could test their own pedagogic competence through learning models with different varied characteristics of students. Teaching Simulator has been equipped with features that allow users to be able to explore the quality of teaching techniques that they employ for the teaching and learning activities in the classroom. These features included the election approaches, the student's character, learning materials, questioning techniques, discussion, and evaluation. Teaching simulator application provided the ease of prospective teachers or teachers in implementing the development of lessons for practice in the classroom. Applications that have been developed to apply simulation models allow users to freely manage a lesson. Development of teaching simulator application was passed through the stages which include needs assessment, design, coding, testing, revision, improvement, grading, and packaging. The application of teaching simulator was also enriched with some real instructional video as a comparison for the user. Based on the two experts, the media expert and education expert, stated that the application of teaching simulator is feasible to be used as an instrument for the debriefing of students as potential participants of the teaching practice program. The results of the use of the application to the students as potential participants of teaching practice program, showed significant increases in the pedagogic competence. This study was presented at an international seminar and in the process of publishing in international reputated journals. Applications teaching simulator was in the process of registration to obtain the copyright of the Ministry of Justice and Human Rights. Debriefing for prospective teachers to use teaching simulator application could improve the mastery of pedagogy, give clear feedback, and perform repetitions at anytime.
Nursing Students' Nonverbal Reactions to Malodor in Wound Care Simulation
ERIC Educational Resources Information Center
Baker, Gloria Waters
2012-01-01
Background: Wound care is an essential competency which nursing students are expected to acquire. To foster students' competency, nurse educators use high fidelity simulation to expose nursing students to various wound characteristics. Problem: Little is known about how nursing students react to simulated wound characteristics. Malodor is a…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naqvi, S
2014-06-15
Purpose: Most medical physics programs emphasize proficiency in routine clinical calculations and QA. The formulaic aspect of these calculations and prescriptive nature of measurement protocols obviate the need to frequently apply basic physical principles, which, therefore, gradually decay away from memory. E.g. few students appreciate the role of electron transport in photon dose, making it difficult to understand key concepts such as dose buildup, electronic disequilibrium effects and Bragg-Gray theory. These conceptual deficiencies manifest when the physicist encounters a new system, requiring knowledge beyond routine activities. Methods: Two interactive computer simulation tools are developed to facilitate deeper learning of physicalmore » principles. One is a Monte Carlo code written with a strong educational aspect. The code can “label” regions and interactions to highlight specific aspects of the physics, e.g., certain regions can be designated as “starters” or “crossers,” and any interaction type can be turned on and off. Full 3D tracks with specific portions highlighted further enhance the visualization of radiation transport problems. The second code calculates and displays trajectories of a collection electrons under arbitrary space/time dependent Lorentz force using relativistic kinematics. Results: Using the Monte Carlo code, the student can interactively study photon and electron transport through visualization of dose components, particle tracks, and interaction types. The code can, for instance, be used to study kerma-dose relationship, explore electronic disequilibrium near interfaces, or visualize kernels by using interaction forcing. The electromagnetic simulator enables the student to explore accelerating mechanisms and particle optics in devices such as cyclotrons and linacs. Conclusion: The proposed tools are designed to enhance understanding of abstract concepts by highlighting various aspects of the physics. The simulations serve as virtual experiments that give deeper and long lasting understanding of core principles. The student can then make sound judgements in novel situations encountered beyond routine clinical activities.« less
Wang, Candice; Huang, Chin-Chou; Lin, Shing-Jong; Chen, Jaw-Wen
2016-01-01
Objectives The goal of our study was to shed light on educational methods to strengthen medical students' cardiopulmonary resuscitation (CPR) leadership and team skills in order to optimise CPR understanding and success using didactic videos and high-fidelity simulations. Design An observational study. Setting A tertiary medical centre in Northern Taiwan. Participants A total of 104 5–7th year medical students, including 72 men and 32 women. Interventions We provided the medical students with a 2-hour training session on advanced CPR. During each class, we divided the students into 1–2 groups; each group consisted of 4–6 team members. Medical student teams were trained by using either method A or B. Method A started with an instructional CPR video followed by a first CPR simulation. Method B started with a first CPR simulation followed by an instructional CPR video. All students then participated in a second CPR simulation. Outcome measures Student teams were assessed with checklist rating scores in leadership, teamwork and team member skills, global rating scores by an attending physician and video-recording evaluation by 2 independent individuals. Results The 104 medical students were divided into 22 teams. We trained 11 teams using method A and 11 using method B. Total second CPR simulation scores were significantly higher than first CPR simulation scores in leadership (p<0.001), teamwork (p<0.001) and team member skills (p<0.001). For methods A and B students' first CPR simulation scores were similar, but method A students' second CPR simulation scores were significantly higher than those of method B in leadership skills (p=0.034), specifically in the support subcategory (p=0.049). Conclusions Although both teaching strategies improved leadership, teamwork and team member performance, video exposure followed by CPR simulation further increased students' leadership skills compared with CPR simulation followed by video exposure. PMID:27678539
Cavanaugh, James T; Konrad, Shelley Cohen
2012-01-01
To describe the implementation of an interprofessional shared learning model designed to promote the development of person-centered healthcare communication skills. Master of social work (MSW) and doctor of physical therapy (DPT) degree students. The model used evidence-based principles of effective healthcare communication and shared learning methods; it was aligned with student learning outcomes contained in MSW and DPT curricula. Students engaged in 3 learning sessions over 2 days. Sessions involved interactive reflective learning, simulated role-modeling with peer assessment, and context-specific practice of communication skills. The perspective of patients/clients was included in each learning activity. Activities were evaluated through narrative feedback. Students valued opportunities to learn directly from each other and from healthcare consumers. Important insights and directions for future interprofessional learning experiences were gleaned from model implementation. The interprofessional shared learning model shows promise as an effective method for developing person-centered communication skills.
Teaching Astronomy Classes and Labs in a Smart Classroom
NASA Astrophysics Data System (ADS)
Gugliucci, Nicole E.
2017-01-01
Saint Anselm College is a small liberal arts college in New Hampshire with an enrollment of approximately 1900 students. All students are required to take one science course with a laboratory component. Introduction to Astronomy is now being offered in regular rotation in the Department of Physics, taking advantage of the new "smart" classrooms with the technology and set up to encourage active learning. These classrooms seat 25 students and feature 5 "pods," each with their own screen that can be hooked up to a student computer or one of the iPads available to the professor. I will present how these classrooms are used for Introduction to Astronomy and related courses under development for active learning. Since the class requires a laboratory component and New Hampshire weather is notably unpredictable, the smart classroom offers an alternative using freely available computer simulations to allow for an alternative indoor laboratory experience.
Role and challenges of simulation in undergraduate curriculum.
Nuzhat, Ayesha; Salem, Raneem Osama; Al Shehri, Fatimah Nasser; Al Hamdan, Nasser
2014-04-01
Medical simulation is relatively a novel technology widely utilized for teaching and assessing students clinical skills. Students and faculty face many challenges when simulation sessions are introduced into undergraduate curriculum. The aim of this study is to obtain the opinion of undergraduate medical students and our faculty regarding the role of simulation in undergraduate curriculum, the simulation modalities used, and the perceived barriers in implementing simulation sessions. A self-administered pilot tested questionnaire with 18 items using a 5-point Likert scale was distributed to undergraduate male (n = 125) and female students (n = 70) as well as to the faculty members (n = 14) at King Fahad Medical City, King Saud Bin Abdul Aziz University of Health Sciences, Saudi Arabia, to respond. Survey elements addressed the role of simulation, simulation modalities used, and perceived challenges to implementation of simulation sessions. Various learning outcomes are achieved and improved through the technology enhanced simulation sessions such as communication skills, diagnostic skills, procedural skills, self-confidence, and integration of basic and clinical sciences. The use of high fidelity simulators, simulated patients and task trainers was more desirable by our students and faculty for teaching and learning as well as an evaluation tool. According to most of the students', institutional support in terms of resources, staff and duration of sessions was adequate. However, motivation to participate in the sessions and provision of adequate feedback by the staff was a constraint. The use of simulation laboratory is of great benefit to the students and a great teaching tool for the staff to ensure students learn various skills.
ERIC Educational Resources Information Center
Plantz, Connie; Callis, Janette M.
This simulation allows students to learn about the lands and customs of the people living in the countries found along the western rim of the Pacific Ocean. The class is divided into eight teams. The phases of the unit include: (1) research; (2) activities; (3) race; and (4) summing up and festival. Each stage of play involves completion of tasks…
Negotiating the role of the professional nurse: The pedagogy of simulation: a grounded theory study.
Walton, Joni; Chute, Elizabeth; Ball, Lynda
2011-01-01
Simulation is the mainstay of laboratory education in health sciences, yet there is a void of pedagogy-the art and science of teaching. Nursing faculty does not have adequate evidence-based resources related to how students learn through simulation. The research questions that were addressed were as follows: (a) How do students learn using simulation? (b) What is the process of learning with simulations from the students' perspective? (c) What faculty teaching styles promote learning? and (d) How can faculty support students during simulation? Grounded theory methodology was used to explore how senior baccalaureate nursing students learn using simulation. Twenty-six students participated in this research study. Sixteen nursing students who completed two semesters of simulation courses volunteered for in-depth audio-taped interviews. In addition, there were two focus groups with five senior students in each group who validated findings and identified faculty teaching styles and supportive interventions. Negotiating the Role of the Professional Nurse was the core category, which included the following phases (I) feeling like an imposter, (II) trial and error, (III) taking it seriously, (IV) transference of skills and knowledge, and (V) professionalization. Faculty traits and teaching strategies for teaching with simulation were also identified. A conceptual model of the socialization process was developed to assist faculty in understanding the ways students learn with simulation and ways to facilitate their development. These findings provide a midrange theory for the pedagogy of simulation and will help faculty gain insight and help to assimilate into teaching-learning strategies. Published by Elsevier Inc.
Zhang, Jun
To explore the subjective learning experiences of baccalaureate nursing students participating in simulation sessions in a Chinese nursing school. This was a qualitative descriptive study. We used semi-structured interviews to explore students' perception about simulation-assisted learning. Each interview was audio-taped and transcribed verbatim. Thematic analysis was used to identify the major themes or categories from the transcript and the field notes. Only 10 students were needed to achieve theoretical saturation, due to high group homogeneity. Three main themes which were found from the study included 1. Students' positive views of the new educational experience of simulation; 2. Factors currently making simulation less attractive to students; and 3. The teacher's role in insuring a positive learning experience. Simulation-assisted teaching has been a positive experience for majority nursing students. Further efforts are needed in developing quality simulation-based course curriculum as well as planning and structuring its teaching process. The pedagogy approach requires close collaboration between faculty and students. Copyright © 2016 Elsevier Inc. All rights reserved.
Competency and an active learning program in undergraduate nursing education.
Shin, Hyunsook; Sok, Sohyune; Hyun, Kyung Sun; Kim, Mi Ja
2015-03-01
To evaluate the effect of an active learning program on competency of senior students. Active learning strategies have been used to help students achieve desired nursing competency, but their effectiveness has not been systematically examined. A descriptive, cross-sectional comparative design was used. Two cohort group comparisons using t-test were made: one in an active learning group and the other in a traditional learning group. A total of 147 senior nursing students near graduation participated in this study: 73 in 2010 and 74 in 2013. The active learning program incorporated high-fidelity simulation, situation-based case studies, standardized patients, audio-video playback, reflective activities and technology such as a SmartPad-based program. The overall scores of the nursing competency in the active group were significantly higher than those in the traditional group. Of five overall subdomains, the scores of the special and general clinical performance competency, critical thinking and human understanding were significantly higher in the active group than in the traditional group. Importance-performance analysis showed that all five subdomains of the active group clustered in the high importance and high performance quadrant, indicating significantly better achievements. In contrast, the students in the traditional group showed scattered patterns in three quadrants, excluding the low importance and low performance quadrants. This pattern indicates that the traditional learning method did not yield the high performance in most important areas. The findings of this study suggest that an active learning strategy is useful for helping undergraduate students to gain competency. © 2014 John Wiley & Sons Ltd.
A New Approach to Teaching Biomechanics Through Active, Adaptive, and Experiential Learning.
Singh, Anita
2017-07-01
Demand of biomedical engineers continues to rise to meet the needs of healthcare industry. Current training of bioengineers follows the traditional and dominant model of theory-focused curricula. However, the unmet needs of the healthcare industry warrant newer skill sets in these engineers. Translational training strategies such as solving real world problems through active, adaptive, and experiential learning hold promise. In this paper, we report our findings of adding a real-world 4-week problem-based learning unit into a biomechanics capstone course for engineering students. Surveys assessed student perceptions of the activity and learning experience. While students, across three cohorts, felt challenged to solve a real-world problem identified during the simulation lab visit, they felt more confident in utilizing knowledge learned in the biomechanics course and self-directed research. Instructor evaluations indicated that the active and experiential learning approach fostered their technical knowledge and life-long learning skills while exposing them to the components of adaptive learning and innovation.