Ten Years of Simulation in Healthcare: A Thematic Analysis of Editorials.
Nestel, Debra
2017-10-01
In this commentary, I review 38 articles published as editorials in Simulation in Healthcare from inception to April 2016. Of the 27 authors, there was a predominance of medical doctors (63%), male authors (67%), and work originating in the United States (86%). The founding Editor-in-Chief Dr David Gaba contributed to half of the editorials. Using inductive thematic analysis, the following five themes were identified: "embedding" simulation, simulation responding to clinical practice, educational considerations for simulation, research practices, and communicating leadership and scholarship about the community. After thematic analysis, the theoretical notion of communities of practice was used to make further meaning of the themes. This theorizing process reveals that editorial content aligns with the features of an evolving community of practice. The editorials seem to have responded to and shaped contemporary simulation practices. The editorial is a powerful forum in which to frame issues relevant to the healthcare simulation community. As the founding Editor-in-Chief, Gaba has made an extraordinary contribution to the Society for Simulation in Healthcare, in these editorials and the broader healthcare simulation community. Under the leadership of the Editor-in-Chief, Dr Mark Scerbo, I am confident that the editorial voice will continue in the true spirit of scholarship.
The Effect of Dilution on the Structure of Microbial Communities
NASA Technical Reports Server (NTRS)
Mills, Aaron L.
2000-01-01
To determine how dilution of microbial communities affects the diversity of the diluted assemblage a series of numerical simulations were conducted that determined the theoretical change in diversity, richness, and evenness of the community with serial dilution. The results of the simulation suggested that the effects are non linear with a high degree of dependence on the initial evenness of the community being diluted. A series of incubation experiments using a range of dilutions of raw sewage as an inoculum into sterile sewage was used for comparison to the simulations. The diluted communities were maintained in batch fed reactors (three day retention time) for nine days. The communities were harvested and examined by conventional plating and by molecular analysis of the whole-community DNA using AFLP and T-RFLP. Additional, CLPP analysis was also applied. The effects on richness predicted by the numerical simulations were confirmed by the analyses used. The diluted communities fell into three groups, a low dilution, intermediate dilution, and high dilution group, which corresponded well with the groupings obtained for community richness in simulation. The grouping demonstrated the non-linear nature of dilution of whole communities. Furthermore, the results implied that the undiluted community consisted of a few dominant types accompanied by a number of rare (low abundance) types as is typical in unevenly distributed communities.
The molecular analysis of drinking water microbial communities has focused primarily on 16S rRNA gene sequence analysis. Since this approach provides limited information on function potential of microbial communities, analysis of whole-metagenome pyrosequencing data was used to...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-03-22
A grid-connected Integrated Community Energy System (ICES) with a coal-burning power plant located on the University of Minnesota campus is planned. The cost benefit analysis performed for this ICES, the cost accounting methods used, and a computer simulation of the operation of the power plant are described. (LCL)
Ofaim, Shany; Ofek-Lalzar, Maya; Sela, Noa; Jinag, Jiandong; Kashi, Yechezkel; Minz, Dror; Freilich, Shiri
2017-01-01
Advances in metagenomics enable high resolution description of complex bacterial communities in their natural environments. Consequently, conceptual approaches for community level functional analysis are in high need. Here, we introduce a framework for a metagenomics-based analysis of community functions. Environment-specific gene catalogs, derived from metagenomes, are processed into metabolic-network representation. By applying established ecological conventions, network-edges (metabolic functions) are assigned with taxonomic annotations according to the dominance level of specific groups. Once a function-taxonomy link is established, prediction of the impact of dominant taxa on the overall community performances is assessed by simulating removal or addition of edges (taxa associated functions). This approach is demonstrated on metagenomic data describing the microbial communities from the root environment of two crop plants – wheat and cucumber. Predictions for environment-dependent effects revealed differences between treatments (root vs. soil), corresponding to documented observations. Metabolism of specific plant exudates (e.g., organic acids, flavonoids) was linked with distinct taxonomic groups in simulated root, but not soil, environments. These dependencies point to the impact of these metabolite families as determinants of community structure. Simulations of the activity of pairwise combinations of taxonomic groups (order level) predicted the possible production of complementary metabolites. Complementation profiles allow formulating a possible metabolic role for observed co-occurrence patterns. For example, production of tryptophan-associated metabolites through complementary interactions is unique to the tryptophan-deficient cucumber root environment. Our approach enables formulation of testable predictions for species contribution to community activity and exploration of the functional outcome of structural shifts in complex bacterial communities. Understanding community-level metabolism is an essential step toward the manipulation and optimization of microbial function. Here, we introduce an analysis framework addressing three key challenges of such data: producing quantified links between taxonomy and function; contextualizing discrete functions into communal networks; and simulating environmental impact on community performances. New technologies will soon provide a high-coverage description of biotic and a-biotic aspects of complex microbial communities such as these found in gut and soil. This framework was designed to allow the integration of high-throughput metabolomic and metagenomic data toward tackling the intricate associations between community structure, community function, and metabolic inputs. PMID:28878756
Integrating software architectures for distributed simulations and simulation analysis communities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldsby, Michael E.; Fellig, Daniel; Linebarger, John Michael
2005-10-01
The one-year Software Architecture LDRD (No.79819) was a cross-site effort between Sandia California and Sandia New Mexico. The purpose of this research was to further develop and demonstrate integrating software architecture frameworks for distributed simulation and distributed collaboration in the homeland security domain. The integrated frameworks were initially developed through the Weapons of Mass Destruction Decision Analysis Center (WMD-DAC), sited at SNL/CA, and the National Infrastructure Simulation & Analysis Center (NISAC), sited at SNL/NM. The primary deliverable was a demonstration of both a federation of distributed simulations and a federation of distributed collaborative simulation analysis communities in the context ofmore » the same integrated scenario, which was the release of smallpox in San Diego, California. To our knowledge this was the first time such a combination of federations under a single scenario has ever been demonstrated. A secondary deliverable was the creation of the standalone GroupMeld{trademark} collaboration client, which uses the GroupMeld{trademark} synchronous collaboration framework. In addition, a small pilot experiment that used both integrating frameworks allowed a greater range of crisis management options to be performed and evaluated than would have been possible without the use of the frameworks.« less
Angeler, David G; Viedma, Olga; Moreno, José M
2009-11-01
Time lag analysis (TLA) is a distance-based approach used to study temporal dynamics of ecological communities by measuring community dissimilarity over increasing time lags. Despite its increased use in recent years, its performance in comparison with other more direct methods (i.e., canonical ordination) has not been evaluated. This study fills this gap using extensive simulations and real data sets from experimental temporary ponds (true zooplankton communities) and landscape studies (landscape categories as pseudo-communities) that differ in community structure and anthropogenic stress history. Modeling time with a principal coordinate of neighborhood matrices (PCNM) approach, the canonical ordination technique (redundancy analysis; RDA) consistently outperformed the other statistical tests (i.e., TLAs, Mantel test, and RDA based on linear time trends) using all real data. In addition, the RDA-PCNM revealed different patterns of temporal change, and the strength of each individual time pattern, in terms of adjusted variance explained, could be evaluated, It also identified species contributions to these patterns of temporal change. This additional information is not provided by distance-based methods. The simulation study revealed better Type I error properties of the canonical ordination techniques compared with the distance-based approaches when no deterministic component of change was imposed on the communities. The simulation also revealed that strong emphasis on uniform deterministic change and low variability at other temporal scales is needed to result in decreased statistical power of the RDA-PCNM approach relative to the other methods. Based on the statistical performance of and information content provided by RDA-PCNM models, this technique serves ecologists as a powerful tool for modeling temporal change of ecological (pseudo-) communities.
A Stigmergy Collaboration Approach in the Open Source Software Developer Community
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Xiaohui; Pullum, Laura L; Treadwell, Jim N
2009-01-01
The communication model of some self-organized online communities is significantly different from the traditional social network based community. It is problematic to use social network analysis to analyze the collaboration structure and emergent behaviors in these communities because these communities lack peer-to-peer connections. Stigmergy theory provides an explanation of the collaboration model of these communities. In this research, we present a stigmergy approach for building an agent-based simulation to simulate the collaboration model in the open source software (OSS) developer community. We used a group of actors who collaborate on OSS projects through forums as our frame of reference andmore » investigated how the choices actors make in contributing their work on the projects determines the global status of the whole OSS project. In our simulation, the forum posts serve as the digital pheromone and the modified Pierre-Paul Grasse pheromone model is used for computing the developer agents behavior selection probability.« less
DEVELOPMENT AND ANALYSIS OF AIR QUALITY MODELING SIMULATIONS FOR HAZARDOUS AIR POLLUTANTS
The concentrations of five hazardous air pollutants were simulated using the Community Multi Scale Air Quality (CMAQ) modeling system. Annual simulations were performed over the continental United States for the entire year of 2001 to support human exposure estimates. Results a...
Network analysis of wildfire transmission and implications for risk governance
Alan A. Ager; Cody R. Evers; Michelle A. Day; Haiganoush K. Preisler; Ana M. G. Barros; Max Nielsen-Pincus
2017-01-01
We characterized wildfire transmission and exposure within a matrix of large land tenures (federal, state, and private) surrounding 56 communities within a 3.3 million ha fire prone region of central Oregon US. Wildfire simulation and network analysis were used to quantify the exchange of fire among land tenures and communities and analyze the relative contributions of...
Specification of Training Simulator Fidelity: A Research Plan. Technical Report 558.
ERIC Educational Resources Information Center
Baum, David R.; And Others
This report presents a research plan to guide the determination of the empirical relationship between level of maintenance training simulator fidelity and training effectiveness. Chapter I describes data collection and analysis activities undertaken to provide guidance for fidelity decision making by the training simulator development community.…
Simulating the Pineapple Express in the half degree Community Climate System Model, CCSM4
NASA Astrophysics Data System (ADS)
Shields, Christine A.; Kiehl, Jeffrey T.
2016-07-01
Atmospheric rivers are recognized as major contributors to the poleward transport of water vapor. Upon reaching land, these phenomena also play a critical role in extreme precipitation and flooding events. The Pineapple Express (PE) is defined as an atmospheric river extending out of the deep tropics and reaching the west coast of North America. Community Climate System Model (CCSM4) high-resolution ensemble simulations for the twentieth and 21st centuries are diagnosed to identify the PE. Analysis of the twentieth century simulations indicated that the CCSM4 accurately captures the spatial and temporal climatology of the PE. Analysis of the end 21st century simulations indicates a significant increase in storm duration and intensity of precipitation associated with landfall of the PE. Only a modest increase in the number of atmospheric rivers of a few percent is projected for the end of 21st century.
Preparing for LISA Data: The Testbed for LISA Analysis Project
NASA Astrophysics Data System (ADS)
Finn, Lee Samuel; Benacquista, Matthew J.; Larson, Shane L.; Rubbo, Louis J.
2006-11-01
The Testbed for LISA Analysis (TLA) Project aims to facilitate the development, validation, and comparison of different methods for LISA science data analysis by the broad LISA Science Community to meet the special challenges that LISA poses. It includes a well-defined Simulated LISA Data Product (SLDP), which provides a clean interface between the modeling of LISA, the preparation of LISA data, and the analysis of the LISA science data stream; a web-based clearinghouse (at
A Little Vacation on Mars: Mars Simulation Microbial Challenge Experiments
NASA Astrophysics Data System (ADS)
Boston, P.; Todd, P.; Van De Camp, J.; Northup, D.; Spilde, M.
2008-06-01
Communities of microbial organisms isolated from a variety of extreme environments were subjected to 1 to 5 weeks of simulated Martian environmental conditions using the Mars Environment Simulation Chamber at the Techshot, Inc. facility in Greenville, Indiana. The goal of the overall experiment program was to assess survival of test Earth organisms under Mars full spectrum sunlight, low-latitude daily temperature profile and various Mars-atmosphere pressures (~50 mbar to 500 mbar, 100% CO2) and low moisture content. Organisms surviving after 5 weeks at 100 mbar included those from gypsum surface fracture communities in a Permian aged evaporite basin, desert varnish on andesite lavas around a manganese mine, and iron and manganese oxidizing organisms isolated from two caves in Mew Mexico. Phylogenetic DNA analysis revealed strains of cyanobacteria, bacterial genera (present in all surviving communities) Asticacaulis, Achromobacter, Comamonas, Pantoea, Verrucomicrobium, Bacillus, Gemmatimonas, Actinomyces, and others. At least one microcolonial fungal strain from a desert varnish community and at least one strain from Utah survived simulations. Strains related to the unusual cave bacterial group Bacteroidetes are present in survivor communities that resist isolation into pure culture implying that their consortial relationships may be critical to their survival.
NASA Technical Reports Server (NTRS)
Oman, Luke D.; Strahan, Susan E.
2016-01-01
Simulations using reanalyzed meteorological conditions have been long used to understand causes of atmospheric composition change over the recent past. Using the new Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2) meteorology, chemistry simulations are being conducted to create products covering 1980-2016 for the atmospheric composition community. These simulations use the Global Modeling Initiative (GMI) chemical mechanism in two different models: the GMI Chemical Transport Model (CTM) and the GEOS-5 model developed Replay mode. Replay mode means an integration of the GEOS-5 general circulation model that is incrementally adjusted each time step toward the MERRA-2 analysis. The GMI CTM is a 1 x 1.25 simulation and the MERRA-2 GMI Replay simulation uses the native MERRA-2 approximately horizontal resolution on the cubed sphere. The Replay simulations is driven by the online use of key MERRA-2 meteorological variables (i.e. U, V, T, and surface pressure) with all other variables calculated in response to those variables. A specialized set of transport diagnostics is included in both runs to better understand trace gas transport and changes over the recent past.
Reference aquaplanet climate in the Community Atmosphere Model, Version 5
Medeiros, Brian; Williamson, David L.; Olson, Jerry G.
2016-03-18
In this study, fundamental characteristics of the aquaplanet climate simulated by the Community Atmosphere Model, Version 5.3 (CAM5.3) are presented. The assumptions and simplifications of the configuration are described. A 16 year long, perpetual equinox integration with prescribed SST using the model’s standard 18 grid spacing is presented as a reference simulation. Statistical analysis is presented that shows similar aquaplanet configurations can be run for about 2 years to obtain robust climatological structures, including global and zonal means, eddy statistics, and precipitation distributions. Such a simulation can be compared to the reference simulation to discern differences in the climate, includingmore » an assessment of confidence in the differences. To aid such comparisons, the reference simulation has been made available via earthsystemgrid.org. Examples are shown comparing the reference simulation with simulations from the CAM5 series that make different microphysical assumptions and use a different dynamical core.« less
77 FR 13607 - Agency Forms Undergoing Paperwork Reduction Act Review
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-07
... Transformation Grants: Use of System Dynamic Modeling and Economic Analysis in Select Communities--New--National... community interventions. Using a system dynamics approach, CDC also plans to conduct simulation modeling... the development of analytic tools for system dynamics modeling under more limited conditions. The...
Equatorial waves simulated by the NCAR community climate model
NASA Technical Reports Server (NTRS)
Cheng, Xinhua; Chen, Tsing-Chang
1988-01-01
The equatorial planetary waves simulated by the NCAR CCM1 general circulation model were investigated in terms of space-time spectral analysis (Kao, 1968; Hayashi, 1971, 1973) and energetic analysis (Hayashi, 1980). These analyses are particularly applied to grid-point data on latitude circles. In order to test some physical factors which may affect the generation of tropical transient planetary waves, three different model simulations with the CCM1 (the control, the no-mountain, and the no-cloud experiments) were analyzed.
Evaluation of the Community Multiscale Air Quality model version 5.1
The Community Multiscale Air Quality model is a state-of-the-science air quality model that simulates the emission, transport and fate of numerous air pollutants, including ozone and particulate matter. The Atmospheric Modeling and Analysis Division (AMAD) of the U.S. Environment...
The Community Multiscale Air Quality (CMAQ) modeling system has recently been adapted to simulate the emission, transport, transformation and deposition of atmospheric mercury in three distinct forms; elemental mercury gas, reactive gaseous mercury, and particulate mercury. Emis...
Bao, Jie; Hou, Zhangshuan; Huang, Maoyi; ...
2015-12-04
Here, effective sensitivity analysis approaches are needed to identify important parameters or factors and their uncertainties in complex Earth system models composed of multi-phase multi-component phenomena and multiple biogeophysical-biogeochemical processes. In this study, the impacts of 10 hydrologic parameters in the Community Land Model on simulations of runoff and latent heat flux are evaluated using data from a watershed. Different metrics, including residual statistics, the Nash-Sutcliffe coefficient, and log mean square error, are used as alternative measures of the deviations between the simulated and field observed values. Four sensitivity analysis (SA) approaches, including analysis of variance based on the generalizedmore » linear model, generalized cross validation based on the multivariate adaptive regression splines model, standardized regression coefficients based on a linear regression model, and analysis of variance based on support vector machine, are investigated. Results suggest that these approaches show consistent measurement of the impacts of major hydrologic parameters on response variables, but with differences in the relative contributions, particularly for the secondary parameters. The convergence behaviors of the SA with respect to the number of sampling points are also examined with different combinations of input parameter sets and output response variables and their alternative metrics. This study helps identify the optimal SA approach, provides guidance for the calibration of the Community Land Model parameters to improve the model simulations of land surface fluxes, and approximates the magnitudes to be adjusted in the parameter values during parametric model optimization.« less
Making objective summaries of climate model behavior more accessible
NASA Astrophysics Data System (ADS)
Gleckler, P. J.
2016-12-01
For multiple reasons, a more efficient and systematic evaluation of publically available climate model simulations is urgently needed. The IPCC, national assessments, and an assortment of other public and policy-driven needs place taxing demands on researchers. While cutting edge research is essential to meeting these needs, so too are results from well-established analysis, and these should be more efficiently produced, widely accessible, and be highly traceable. Furthermore, the number of simulations used by the research community is already large and expected to dramatically increase with the 6th phase of the Coupled Model Intercomparison Project (CMIP6). To help meet the demands on the research community and synthesize results from the rapidly expanding number and complexity of model simulations, well-established characteristics from all CMIP DECK (Diagnosis, Evaluation and Characterization of Klima) experiments will be routinely produced and made accessible. This presentation highlights the PCMDI Metrics Package (PMP), a capability that is designed to provide a diverse suite of objective summary statistics across spatial and temporal scales, gauging the agreement between models and observations. In addition to the PMP, ESMValTool is being developed to broadly diagnose CMIP simulations, and a variety of other packages target specialized sets of analysis. The challenges and opportunities of working towards coordinating these community-based capabilities will be discussed.
Diagnostic Analysis of Ozone Concentrations Simulated by Two Regional-Scale Air Quality Models
Since the Community Multiscale Air Quality modeling system (CMAQ) and the Weather Research and Forecasting with Chemistry model (WRF/Chem) use different approaches to simulate the interaction of meteorology and chemistry, this study compares the CMAQ and WRF/Chem air quality simu...
Publicly Releasing a Large Simulation Dataset with NDS Labs
NASA Astrophysics Data System (ADS)
Goldbaum, Nathan
2016-03-01
Optimally, all publicly funded research should be accompanied by the tools, code, and data necessary to fully reproduce the analysis performed in journal articles describing the research. This ideal can be difficult to attain, particularly when dealing with large (>10 TB) simulation datasets. In this lightning talk, we describe the process of publicly releasing a large simulation dataset to accompany the submission of a journal article. The simulation was performed using Enzo, an open source, community-developed N-body/hydrodynamics code and was analyzed using a wide range of community- developed tools in the scientific Python ecosystem. Although the simulation was performed and analyzed using an ecosystem of sustainably developed tools, we enable sustainable science using our data by making it publicly available. Combining the data release with the NDS Labs infrastructure allows a substantial amount of added value, including web-based access to analysis and visualization using the yt analysis package through an IPython notebook interface. In addition, we are able to accompany the paper submission to the arXiv preprint server with links to the raw simulation data as well as interactive real-time data visualizations that readers can explore on their own or share with colleagues during journal club discussions. It is our hope that the value added by these services will substantially increase the impact and readership of the paper.
1997-12-01
of the DoD environmental science community to identify cloud modeling and other environmental capabilities that support or could potentially support...benefit of the DoD environmental science community. STC determined the detailed requirements for weather effects products and decision aids for specific Air Force operational electro-optical systems.
pyPcazip: A PCA-based toolkit for compression and analysis of molecular simulation data
NASA Astrophysics Data System (ADS)
Shkurti, Ardita; Goni, Ramon; Andrio, Pau; Breitmoser, Elena; Bethune, Iain; Orozco, Modesto; Laughton, Charles A.
The biomolecular simulation community is currently in need of novel and optimised software tools that can analyse and process, in reasonable timescales, the large generated amounts of molecular simulation data. In light of this, we have developed and present here pyPcazip: a suite of software tools for compression and analysis of molecular dynamics (MD) simulation data. The software is compatible with trajectory file formats generated by most contemporary MD engines such as AMBER, CHARMM, GROMACS and NAMD, and is MPI parallelised to permit the efficient processing of very large datasets. pyPcazip is a Unix based open-source software (BSD licenced) written in Python.
Community trees: Identifying codiversification in the Páramo dipteran community.
Carstens, Bryan C; Gruenstaeudl, Michael; Reid, Noah M
2016-05-01
Groups of codistributed species that responded in a concerted manner to environmental events are expected to share patterns of evolutionary diversification. However, the identification of such groups has largely been based on qualitative, post hoc analyses. We develop here two methods (posterior predictive simulation [PPS], Kuhner-Felsenstein [K-F] analysis of variance [ANOVA]) for the analysis of codistributed species that, given a group of species with a shared pattern of diversification, allow empiricists to identify those taxa that do not codiversify (i.e., "outlier" species). The identification of outlier species makes it possible to jointly estimate the evolutionary history of co-diversifying taxa. To evaluate the approaches presented here, we collected data from Páramo dipterans, identified outlier species, and estimated a "community tree" from species that are identified as having codiversified. Our results demonstrate that dipteran communities from different Páramo habitats in the same mountain range are more closely related than communities in other ranges. We also conduct simulation testing to evaluate this approach. Results suggest that our approach provides a useful addition to comparative phylogeographic methods, while identifying aspects of the analysis that require careful interpretation. In particular, both the PPS and K-F ANOVA perform acceptably when there are one or two outlier species, but less so as the number of outliers increases. This is likely a function of the corresponding degradation of the signal of community divergence; without a strong signal from a codiversifying community, there is no dominant pattern from which to detect an outlier species. For this reason, both the magnitude of K-F distance distribution and outside knowledge about the phylogeographic history of each putative member of the community should be considered when interpreting the results. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Open Simulation Laboratories [Guest editors' introduction
Alexander, Francis J.; Meneveau, Charles
2015-09-01
The introduction for the special issue on open simulation laboratories, the guest editors describe how OSLs will become more common as their potential is better understood and they begin providing access to valuable datasets to much larger segments of the scientific community. Moreover, new analysis tools and ways to do science will inevitably develop as a result.
[Computer simulation of thyroid regulatory mechanisms in health and malignancy].
Abduvaliev, A A; Gil'dieva, M S; Khidirov, B N; Saĭdalieva, M; Saatov, T S
2010-07-01
The paper describes a computer model for regulation of the number of thyroid follicular cells in health and malignancy. The authors'computer program for mathematical simulation of the regulatory mechanisms of a thyroid follicular cellular community cannot be now referred to as good commercial products. For commercialization of this product, it is necessary to draw up a direct relation of the introduced corrected values from the actually existing normal values, such as the peripheral blood concentrations of thyroid hormones or the mean values of endocrine tissue mitotic activity. However, the described computer program has been also used in researches by our scientific group in the study of thyroid cancer. The available biological experimental data and theoretical provisions on thyroid structural and functional organization at the cellular level allow one to construct mathematical models for quantitative analysis of the regulation of the size of a cellular community of a thyroid follicle in health and abnormalities, by using the method for simulation of the regulatory mechanisms of living systems and the equations of cellular community regulatory communities.
Web-based Visual Analytics for Extreme Scale Climate Science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steed, Chad A; Evans, Katherine J; Harney, John F
In this paper, we introduce a Web-based visual analytics framework for democratizing advanced visualization and analysis capabilities pertinent to large-scale earth system simulations. We address significant limitations of present climate data analysis tools such as tightly coupled dependencies, ineffi- cient data movements, complex user interfaces, and static visualizations. Our Web-based visual analytics framework removes critical barriers to the widespread accessibility and adoption of advanced scientific techniques. Using distributed connections to back-end diagnostics, we minimize data movements and leverage HPC platforms. We also mitigate system dependency issues by employing a RESTful interface. Our framework embraces the visual analytics paradigm via newmore » visual navigation techniques for hierarchical parameter spaces, multi-scale representations, and interactive spatio-temporal data mining methods that retain details. Although generalizable to other science domains, the current work focuses on improving exploratory analysis of large-scale Community Land Model (CLM) and Community Atmosphere Model (CAM) simulations.« less
Variability of community interaction networks in marine reserves and adjacent exploited areas
Montano-Moctezuma, G.; Li, H.W.; Rossignol, P.A.
2008-01-01
Regional and small-scale local oceanographic conditions can lead to high variability in community structure even among similar habitats. Communities with identical species composition can depict distinct networks due to different levels of disturbance as well as physical and biological processes. In this study we reconstruct community networks in four different areas off the Oregon Coast by matching simulated communities with observed dynamics. We compared reserves with harvested areas. Simulations suggested that different community networks, but with the same species composition, can represent each study site. Differences were found in predator-prey interactions as well as non-predatory interactions between community members. In addition, each site can be represented as a set of models, creating alternative stages among sites. The set of alternative models that characterize each study area depicts a sequence of functional responses where each specific model or interaction structure creates different species composition patterns. Different management practices, either in the past or of the present, may lead to alternative communities. Our findings suggest that management strategies should be analyzed at a community level that considers the possible consequences of shifting from one community scenario to another. This analysis provides a novel conceptual framework to assess the consequences of different management options for ecological communities. ?? 2008 Elsevier B.V. All rights reserved.
A 5 year (2002-2006) simulation of CMAQ covering the eastern United States is evaluated using principle component analysis in order to identify and characterize statistically significant patterns of model bias. Such analysis is useful in that in can identify areas of poor model ...
PlasmaPy: beginning a community developed Python package for plasma physics
NASA Astrophysics Data System (ADS)
Murphy, Nicholas A.; Huang, Yi-Min; PlasmaPy Collaboration
2016-10-01
In recent years, researchers in several disciplines have collaborated on community-developed open source Python packages such as Astropy, SunPy, and SpacePy. These packages provide core functionality, common frameworks for data analysis and visualization, and educational tools. We propose that our community begins the development of PlasmaPy: a new open source core Python package for plasma physics. PlasmaPy could include commonly used functions in plasma physics, easy-to-use plasma simulation codes, Grad-Shafranov solvers, eigenmode solvers, and tools to analyze both simulations and experiments. The development will include modern programming practices such as version control, embedding documentation in the code, unit tests, and avoiding premature optimization. We will describe early code development on PlasmaPy, and discuss plans moving forward. The success of PlasmaPy depends on active community involvement and a welcoming and inclusive environment, so anyone interested in joining this collaboration should contact the authors.
Healthcare Supported by Data Mule Networks in Remote Communities of the Amazon Region
Coutinho, Mauro Margalho; Efrat, Alon; Richa, Andrea
2014-01-01
This paper investigates the feasibility of using boats as data mule nodes, carrying medical ultrasound videos from remote and isolated communities in the Amazon region in Brazil, to the main city of that area. The videos will be used by physicians to perform remote analysis and follow-up routine of prenatal examinations of pregnant women. Two open source simulators (the ONE and NS-2) were used to evaluate the results obtained utilizing a CoDPON (continuous displacement plan oriented network). The simulations took into account the connection times between the network nodes (boats) and the number of nodes on each boat route. PMID:27433519
Scientific Benefits of Space Science Models Archiving at Community Coordinated Modeling Center
NASA Technical Reports Server (NTRS)
Kuznetsova, Maria M.; Berrios, David; Chulaki, Anna; Hesse, Michael; MacNeice, Peter J.; Maddox, Marlo M.; Pulkkinen, Antti; Rastaetter, Lutz; Taktakishvili, Aleksandre
2009-01-01
The Community Coordinated Modeling Center (CCMC) hosts a set of state-of-the-art space science models ranging from the solar atmosphere to the Earth's upper atmosphere. CCMC provides a web-based Run-on-Request system, by which the interested scientist can request simulations for a broad range of space science problems. To allow the models to be driven by data relevant to particular events CCMC developed a tool that automatically downloads data from data archives and transform them to required formats. CCMC also provides a tailored web-based visualization interface for the model output, as well as the capability to download the simulation output in portable format. CCMC offers a variety of visualization and output analysis tools to aid scientists in interpretation of simulation results. During eight years since the Run-on-request system became available the CCMC archived the results of almost 3000 runs that are covering significant space weather events and time intervals of interest identified by the community. The simulation results archived at CCMC also include a library of general purpose runs with modeled conditions that are used for education and research. Archiving results of simulations performed in support of several Modeling Challenges helps to evaluate the progress in space weather modeling over time. We will highlight the scientific benefits of CCMC space science model archive and discuss plans for further development of advanced methods to interact with simulation results.
NASA Astrophysics Data System (ADS)
Pfau, Jens; Kirley, Michael; Kashima, Yoshihisa
2013-01-01
We introduce a variant of the Axelrod model of cultural dissemination in which agents change their physical locations, social links, and cultures. Numerical simulations are used to investigate the evolution of social network communities and the cultural diversity within and between these communities. An analysis of the simulation results shows that an initial peak in the cultural diversity within network communities is evident before agents segregate into a final configuration of culturally homogeneous communities. Larger long-range interaction probabilities facilitate the initial emergence of culturally diverse network communities, which leads to a more pronounced initial peak in cultural diversity within communities. At equilibrium, the number of communities, and hence cultures, increases when the initial cultural diversity increases. However, the number of communities decreases when the lattice size or population density increases. A phase transition between two regimes of initial cultural diversity is evident. For initial diversities below a critical value, a single network community and culture emerges that dominates the population. For initial diversities above the critical value, multiple culturally homogeneous communities emerge. The critical value of initial diversity at which this transition occurs increases with increasing lattice size and population density and generally with increasing absolute population size. We conclude that larger initial diversities promote cultural heterogenization, while larger lattice sizes, population densities, and in fact absolute population sizes promote homogenization.
Identifying Inefficient Single-Family Homes With Utility Bill Analysis: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casey, S.; Krarti, M.; Bianchi, M.
2010-08-01
Differentiating between energy-efficient and inefficient single-family homes on a community scale helps identify and prioritize candidates for energy-efficiency upgrades. Prescreening diagnostic procedures can further retrofit efforts by providing efficiency information before a site-visit is conducted. We applied the prescreening diagnostic to a simulated community of homes in Boulder, Colorado and analyzed energy consumption data to identify energy-inefficient homes.
Analysis of Unsteady Simulations to Inform Turbulence Modeling
NASA Technical Reports Server (NTRS)
Vyas, Manan; Waindim, Mbu; Gaitonde, Datta
2016-01-01
In this work, budgets of the turbulent kinetic energy are presented for a two-dimensional shock wave boundary-layer interaction (SBLI). The work should be of interest to the SBLI research and turbulence modeling community.
ANTARES: Spacecraft Simulation for Multiple User Communities and Facilities
NASA Technical Reports Server (NTRS)
Acevedo, Amanda; Berndt, Jon; Othon, William; Arnold, Jason; Gay, Robet
2007-01-01
The Advanced NASA Technology Architecture for Exploration Studies (ANTARES) simulation is the primary tool being used for requirements assessment of the NASA Orion spacecraft by the Guidance Navigation and Control (GN&C) teams at Johnson Space Center (JSC). ANTARES is a collection of packages and model libraries that are assembled and executed by the Trick simulation environment. Currently, ANTARES is being used for spacecraft design assessment, performance analysis, requirements validation, Hardware In the Loop (HWIL) and Human In the Loop (HIL) testing.
Opatovsky, Itai; Santos-Garcia, Diego; Ruan, Zhepu; Lahav, Tamar; Ofaim, Shany; Mouton, Laurence; Barbe, Valérie; Jiang, Jiandong; Zchori-Fein, Einat; Freilich, Shiri
2018-05-25
Individual organisms are linked to their communities and ecosystems via metabolic activities. Metabolic exchanges and co-dependencies have long been suggested to have a pivotal role in determining community structure. In phloem-feeding insects such metabolic interactions with bacteria enable complementation of their deprived nutrition. The phloem-feeding whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) harbors an obligatory symbiotic bacterium, as well as varying combinations of facultative symbionts. This well-defined bacterial community in B. tabaci serves here as a case study for a comprehensive and systematic survey of metabolic interactions within the bacterial community and their associations with documented occurrences of bacterial combinations. We first reconstructed the metabolic networks of five common B. tabaci symbionts genera (Portiera, Rickettsia, Hamiltonella, Cardinium and Wolbachia), and then used network analysis approaches to predict: (1) species-specific metabolic capacities in a simulated bacteriocyte-like environment; (2) metabolic capacities of the corresponding species' combinations, and (3) dependencies of each species on different media components. The predictions for metabolic capacities of the symbionts in the host environment were in general agreement with previously reported genome analyses, each focused on the single-species level. The analysis suggests several previously un-reported routes for complementary interactions and estimated the dependency of each symbiont in specific host metabolites. No clear association was detected between metabolic co-dependencies and co-occurrence patterns. The analysis generated predictions for testable hypotheses of metabolic exchanges and co-dependencies in bacterial communities and by crossing them with co-occurrence profiles, contextualized interaction patterns into a wider ecological perspective.
Simulating Social Networks of Online Communities: Simulation as a Method for Sociability Design
NASA Astrophysics Data System (ADS)
Ang, Chee Siang; Zaphiris, Panayiotis
We propose the use of social simulations to study and support the design of online communities. In this paper, we developed an Agent-Based Model (ABM) to simulate and study the formation of social networks in a Massively Multiplayer Online Role Playing Game (MMORPG) guild community. We first analyzed the activities and the social network (who-interacts-with-whom) of an existing guild community to identify its interaction patterns and characteristics. Then, based on the empirical results, we derived and formalized the interaction rules, which were implemented in our simulation. Using the simulation, we reproduced the observed social network of the guild community as a means of validation. The simulation was then used to examine how various parameters of the community (e.g. the level of activity, the number of neighbors of each agent, etc) could potentially influence the characteristic of the social networks.
Following the Part I paper that described an application of the U.S. EPA Models-3/Community Multiscale Air Quality (CMAQ) modeling system to the 1999 Southern Oxidants Study episode, this paper presents results from process analysis (PA) using the PA tool embedded in CMAQ and s...
XIMPOL: a new x-ray polarimetry observation-simulation and analysis framework
NASA Astrophysics Data System (ADS)
Omodei, Nicola; Baldini, Luca; Pesce-Rollins, Melissa; di Lalla, Niccolò
2017-08-01
We present a new simulation framework, XIMPOL, based on the python programming language and the Scipy stack, specifically developed for X-ray polarimetric applications. XIMPOL is not tied to any specific mission or instrument design and is meant to produce fast and yet realistic observation-simulations, given as basic inputs: (i) an arbitrary source model including morphological, temporal, spectral and polarimetric information, and (ii) the response functions of the detector under study, i.e., the effective area, the energy dispersion, the point-spread function and the modulation factor. The format of the response files is OGIP compliant, and the framework has the capability of producing output files that can be directly fed into the standard visualization and analysis tools used by the X-ray community, including XSPEC which make it a useful tool not only for simulating physical systems, but also to develop and test end-to-end analysis chains.
Establishing a Virtual Community of Practice in Simulation: The Value of Social Media.
Thoma, Brent; Brazil, Victoria; Spurr, Jesse; Palaganas, Janice; Eppich, Walter; Grant, Vincent; Cheng, Adam
2018-04-01
Professional development opportunities are not readily accessible for most simulation educators, who may only connect with simulation experts at periodic and costly conferences. Virtual communities of practice consist of individuals with a shared passion who communicate via virtual media to advance their own learning and that of others. A nascent virtual community of practice is developing online for healthcare simulation on social media platforms. Simulation educators should consider engaging on these platforms for their own benefit and to help develop healthcare simulation educators around the world. Herein, we describe this developing virtual community of practice and offer guidance to assist educators to engage, learn, and contribute to the growth of the community.
Novak, Mark; Wootton, J. Timothy; Doak, Daniel F.; Emmerson, Mark; Estes, James A.; Tinker, M. Timothy
2011-01-01
How best to predict the effects of perturbations to ecological communities has been a long-standing goal for both applied and basic ecology. This quest has recently been revived by new empirical data, new analysis methods, and increased computing speed, with the promise that ecologically important insights may be obtainable from a limited knowledge of community interactions. We use empirically based and simulated networks of varying size and connectance to assess two limitations to predicting perturbation responses in multispecies communities: (1) the inaccuracy by which species interaction strengths are empirically quantified and (2) the indeterminacy of species responses due to indirect effects associated with network size and structure. We find that even modest levels of species richness and connectance (∼25 pairwise interactions) impose high requirements for interaction strength estimates because system indeterminacy rapidly overwhelms predictive insights. Nevertheless, even poorly estimated interaction strengths provide greater average predictive certainty than an approach that uses only the sign of each interaction. Our simulations provide guidance in dealing with the trade-offs involved in maximizing the utility of network approaches for predicting dynamics in multispecies communities.
A sensitivity analysis of nine diversity and seven similarity indices
Boyle, Terrence P.; Smillie, Gary M.; Anderson, Jana C.; Beeson, David R.
1990-01-01
Indices summarizing community structure are used to evaluate fundamental community ecology, species interaction, biogeographical factors, and environmental stress. Some of these indices are insensitive to gross community changes induced by contaminants of pollution. Sixteen indices commonly used to assess the status of aquatic communities in water quality studies were evaluated using computer simulation techniques to determine specific index responses. Three communities of different initial structure (19 species, 38 species, and 83 species) were generated using the lognormal equation. Each community was then perturbed in three ways: common species disproportionally reduced, all species proportionally reduced, and rare species disproportionally reduced. The behavior of the indices was analyzed graphically and differential response due to initial community structure and type of community change was documented. Some recommendations of potential sources of error using community levels indices were developed.
The community development workshop, appendix B.
NASA Technical Reports Server (NTRS)
Brill, R.; Gastro, E.; Pennington, A. J.
1973-01-01
The Community Development Workshop is the name given to a collection of techniques designed to implement participation in the planning process. It is an electric approach, making use of current work in the psychology of groups, mathematical modeling and systems analysis, simulation gaming, and other techniques. An outline is presented for a session of the workshop which indicates some of the psychological techniques employed, i.e. confrontation, synectics, and encounter micro-labs.
Kandiah, Venu; Binder, Andrew R; Berglund, Emily Z
2017-10-01
Water reuse can serve as a sustainable alternative water source for urban areas. However, the successful implementation of large-scale water reuse projects depends on community acceptance. Because of the negative perceptions that are traditionally associated with reclaimed water, water reuse is often not considered in the development of urban water management plans. This study develops a simulation model for understanding community opinion dynamics surrounding the issue of water reuse, and how individual perceptions evolve within that context, which can help in the planning and decision-making process. Based on the social amplification of risk framework, our agent-based model simulates consumer perceptions, discussion patterns, and their adoption or rejection of water reuse. The model is based on the "risk publics" model, an empirical approach that uses the concept of belief clusters to explain the adoption of new technology. Each household is represented as an agent, and parameters that define their behavior and attributes are defined from survey data. Community-level parameters-including social groups, relationships, and communication variables, also from survey data-are encoded to simulate the social processes that influence community opinion. The model demonstrates its capabilities to simulate opinion dynamics and consumer adoption of water reuse. In addition, based on empirical data, the model is applied to investigate water reuse behavior in different regions of the United States. Importantly, our results reveal that public opinion dynamics emerge differently based on membership in opinion clusters, frequency of discussion, and the structure of social networks. © 2017 Society for Risk Analysis.
A TREETOPS simulation of the Hubble Space Telescope-High Gain Antenna interaction
NASA Technical Reports Server (NTRS)
Sharkey, John P.
1987-01-01
Virtually any project dealing with the control of a Large Space Structure (LSS) will involve some level of verification by digital computer simulation. While the Hubble Space Telescope might not normally be included in a discussion of LSS, it is presented to highlight a recently developed simulation and analysis program named TREETOPS. TREETOPS provides digital simulation, linearization, and control system interaction of flexible, multibody spacecraft which admit to a point-connected tree topology. The HST application of TREETOPS is intended to familiarize the LSS community with TREETOPS by presenting a user perspective of its key features.
Use of simulated data sets to evaluate the fidelity of metagenomic processing methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mavromatis, K; Ivanova, N; Barry, Kerrie
2007-01-01
Metagenomics is a rapidly emerging field of research for studying microbial communities. To evaluate methods presently used to process metagenomic sequences, we constructed three simulated data sets of varying complexity by combining sequencing reads randomly selected from 113 isolate genomes. These data sets were designed to model real metagenomes in terms of complexity and phylogenetic composition. We assembled sampled reads using three commonly used genome assemblers (Phrap, Arachne and JAZZ), and predicted genes using two popular gene-finding pipelines (fgenesb and CRITICA/GLIMMER). The phylogenetic origins of the assembled contigs were predicted using one sequence similarity-based ( blast hit distribution) and twomore » sequence composition-based (PhyloPythia, oligonucleotide frequencies) binning methods. We explored the effects of the simulated community structure and method combinations on the fidelity of each processing step by comparison to the corresponding isolate genomes. The simulated data sets are available online to facilitate standardized benchmarking of tools for metagenomic analysis.« less
Use of simulated data sets to evaluate the fidelity of Metagenomicprocessing methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mavromatis, Konstantinos; Ivanova, Natalia; Barry, Kerri
2006-12-01
Metagenomics is a rapidly emerging field of research for studying microbial communities. To evaluate methods presently used to process metagenomic sequences, we constructed three simulated data sets of varying complexity by combining sequencing reads randomly selected from 113 isolate genomes. These data sets were designed to model real metagenomes in terms of complexity and phylogenetic composition. We assembled sampled reads using three commonly used genome assemblers (Phrap, Arachne and JAZZ), and predicted genes using two popular gene finding pipelines (fgenesb and CRITICA/GLIMMER). The phylogenetic origins of the assembled contigs were predicted using one sequence similarity--based (blast hit distribution) and twomore » sequence composition--based (PhyloPythia, oligonucleotide frequencies) binning methods. We explored the effects of the simulated community structure and method combinations on the fidelity of each processing step by comparison to the corresponding isolate genomes. The simulated data sets are available online to facilitate standardized benchmarking of tools for metagenomic analysis.« less
Engineering uses of physics-based ground motion simulations
Baker, Jack W.; Luco, Nicolas; Abrahamson, Norman A.; Graves, Robert W.; Maechling, Phillip J.; Olsen, Kim B.
2014-01-01
This paper summarizes validation methodologies focused on enabling ground motion simulations to be used with confidence in engineering applications such as seismic hazard analysis and dynmaic analysis of structural and geotechnical systems. Numberical simullation of ground motion from large erthquakes, utilizing physics-based models of earthquake rupture and wave propagation, is an area of active research in the earth science community. Refinement and validatoin of these models require collaboration between earthquake scientists and engineering users, and testing/rating methodolgies for simulated ground motions to be used with confidence in engineering applications. This paper provides an introduction to this field and an overview of current research activities being coordinated by the Souther California Earthquake Center (SCEC). These activities are related both to advancing the science and computational infrastructure needed to produce ground motion simulations, as well as to engineering validation procedures. Current research areas and anticipated future achievements are also discussed.
Song, Kaida; Wang, Rui; Liu, Yi; Qian, Depei; Zhang, Han; Cai, Jihong
2015-01-01
Community networks, the distinguishing feature of which is membership admittance, appear on P2P networks, social networks, and conventional Web networks. Joining the network costs money, time or network bandwidth, but the individuals get access to special resources owned by the community in return. The prosperity and stability of the community are determined by both the policy of admittance and the attraction of the privileges gained by joining. However, some misbehaving users can get the dedicated resources with some illicit and low-cost approaches, which introduce instability into the community, a phenomenon that will destroy the membership policy. In this paper, we analyze on the stability using game theory on such a phenomenon. We propose a game-theoretical model of stability analysis in community networks and provide conditions for a stable community. We then extend the model to analyze the effectiveness of different incentive policies, which could be used when the community cannot maintain its members in certain situations. Then we verify those models through a simulation. Finally, we discuss several ways to promote community network's stability by adjusting the network's properties and give some proposal on the designs of these types of networks from the points of game theory and stability.
Using Reconstructed POD Modes as Turbulent Inflow for LES Wind Turbine Simulations
NASA Astrophysics Data System (ADS)
Nielson, Jordan; Bhaganagar, Kiran; Juttijudata, Vejapong; Sirisup, Sirod
2016-11-01
Currently, in order to get realistic atmospheric effects of turbulence, wind turbine LES simulations require computationally expensive precursor simulations. At times, the precursor simulation is more computationally expensive than the wind turbine simulation. The precursor simulations are important because they capture turbulence in the atmosphere and as stated above, turbulence impacts the power production estimation. On the other hand, POD analysis has been shown to be capable of capturing turbulent structures. The current study was performed to determine the plausibility of using lower dimension models from POD analysis of LES simulations as turbulent inflow to wind turbine LES simulations. The study will aid the wind energy community by lowering the computational cost of full scale wind turbine LES simulations, while maintaining a high level of turbulent information and being able to quickly apply the turbulent inflow to multi turbine wind farms. This will be done by comparing a pure LES precursor wind turbine simulation with simulations that use reduced POD mod inflow conditions. The study shows the feasibility of using lower dimension models as turbulent inflow of LES wind turbine simulations. Overall the power production estimation and velocity field of the wind turbine wake are well captured with small errors.
NASA Astrophysics Data System (ADS)
Pembroke, A. D.; Colbert, J. A.
2015-12-01
The Community Coordinated Modeling Center (CCMC) provides hosting for many of the simulations used by the space weather community of scientists, educators, and forecasters. CCMC users may submit model runs through the Runs on Request system, which produces static visualizations of model output in the browser, while further analysis may be performed off-line via Kameleon, CCMC's cross-language access and interpolation library. Off-line analysis may be suitable for power-users, but storage and coding requirements present a barrier to entry for non-experts. Moreover, a lack of a consistent framework for analysis hinders reproducibility of scientific findings. To that end, we have developed Kameleon Live, a cloud based interactive analysis and visualization platform. Kameleon Live allows users to create scientific studies built around selected runs from the Runs on Request database, perform analysis on those runs, collaborate with other users, and disseminate their findings among the space weather community. In addition to showcasing these novel collaborative analysis features, we invite feedback from CCMC users as we seek to advance and improve on the new platform.
Galperine, Tatiana; Denies, Fanette; Lannoy, Damien; Lenne, Xavier; Odou, Pascal; Guery, Benoit; Dervaux, Benoit
2017-01-01
Background Clostridium difficile infection (CDI) is characterized by high rates of recurrence, resulting in substantial health care costs. The aim of this study was to analyze the cost-effectiveness of treatments for the management of second recurrence of community-onset CDI in France. Methods We developed a decision-analytic simulation model to compare 5 treatments for the management of second recurrence of community-onset CDI: pulsed-tapered vancomycin, fidaxomicin, fecal microbiota transplantation (FMT) via colonoscopy, FMT via duodenal infusion, and FMT via enema. The model outcome was the incremental cost-effectiveness ratio (ICER), expressed as cost per quality-adjusted life year (QALY) among the 5 treatments. ICERs were interpreted using a willingness-to-pay threshold of €32,000/QALY. Uncertainty was evaluated through deterministic and probabilistic sensitivity analyses. Results Three strategies were on the efficiency frontier: pulsed-tapered vancomycin, FMT via enema, and FMT via colonoscopy, in order of increasing effectiveness. FMT via duodenal infusion and fidaxomicin were dominated (i.e. less effective and costlier) by FMT via colonoscopy and FMT via enema. FMT via enema compared with pulsed-tapered vancomycin had an ICER of €18,092/QALY. The ICER for FMT via colonoscopy versus FMT via enema was €73,653/QALY. Probabilistic sensitivity analysis with 10,000 Monte Carlo simulations showed that FMT via enema was the most cost-effective strategy in 58% of simulations and FMT via colonoscopy was favored in 19% at a willingness-to-pay threshold of €32,000/QALY. Conclusions FMT via enema is the most cost-effective initial strategy for the management of second recurrence of community-onset CDI at a willingness-to-pay threshold of €32,000/QALY. PMID:28103289
Baro, Emilie; Galperine, Tatiana; Denies, Fanette; Lannoy, Damien; Lenne, Xavier; Odou, Pascal; Guery, Benoit; Dervaux, Benoit
2017-01-01
Clostridium difficile infection (CDI) is characterized by high rates of recurrence, resulting in substantial health care costs. The aim of this study was to analyze the cost-effectiveness of treatments for the management of second recurrence of community-onset CDI in France. We developed a decision-analytic simulation model to compare 5 treatments for the management of second recurrence of community-onset CDI: pulsed-tapered vancomycin, fidaxomicin, fecal microbiota transplantation (FMT) via colonoscopy, FMT via duodenal infusion, and FMT via enema. The model outcome was the incremental cost-effectiveness ratio (ICER), expressed as cost per quality-adjusted life year (QALY) among the 5 treatments. ICERs were interpreted using a willingness-to-pay threshold of €32,000/QALY. Uncertainty was evaluated through deterministic and probabilistic sensitivity analyses. Three strategies were on the efficiency frontier: pulsed-tapered vancomycin, FMT via enema, and FMT via colonoscopy, in order of increasing effectiveness. FMT via duodenal infusion and fidaxomicin were dominated (i.e. less effective and costlier) by FMT via colonoscopy and FMT via enema. FMT via enema compared with pulsed-tapered vancomycin had an ICER of €18,092/QALY. The ICER for FMT via colonoscopy versus FMT via enema was €73,653/QALY. Probabilistic sensitivity analysis with 10,000 Monte Carlo simulations showed that FMT via enema was the most cost-effective strategy in 58% of simulations and FMT via colonoscopy was favored in 19% at a willingness-to-pay threshold of €32,000/QALY. FMT via enema is the most cost-effective initial strategy for the management of second recurrence of community-onset CDI at a willingness-to-pay threshold of €32,000/QALY.
Causal Effects of Language on the Exchange of Social Support in an Online Community.
Biehl, Sarah A; Kahn, Jeffrey H
2016-07-01
The provision of social support is a common function of many online communities, but a full understanding of the causal effect of emotion language on the provision of support requires experimental study. The frequency of positive- and negative-emotion words in simulated posts requesting emotional support was manipulated and presented to a sample of college students (N = 442) who were randomly assigned to read one of four simulated posts. Participants completed measures of the original poster's (OP's) distress, and they provided a response to the simulated post. These responses were subjected to a computerized text analysis, and their overall effectiveness was rated by two independent judges. Fewer positive-emotion and more negative-emotion words in the simulated post led to perceptions that the OP was distressed and unable to cope. Participant-generated responses to the post were highest in positive-emotion words when the simulated post was high in positive-emotion words, but low in negative-emotion words. Finally, simulated posts that were low in positive-emotion words received responses that were judged to be more effective than did simulated posts that were high in positive-emotion words. These findings have implications for understanding the role of emotion language on the exchange of online social support.
Novak, M.; Wootton, J.T.; Doak, D.F.; Emmerson, M.; Estes, J.A.; Tinker, M.T.
2011-01-01
How best to predict the effects of perturbations to ecological communities has been a long-standing goal for both applied and basic ecology. This quest has recently been revived by new empirical data, new analysis methods, and increased computing speed, with the promise that ecologically important insights may be obtainable from a limited knowledge of community interactions. We use empirically based and simulated networks of varying size and connectance to assess two limitations to predicting perturbation responses in multispecies communities: (1) the inaccuracy by which species interaction strengths are empirically quantified and (2) the indeterminacy of species responses due to indirect effects associated with network size and structure. We find that even modest levels of species richness and connectance (??25 pairwise interactions) impose high requirements for interaction strength estimates because system indeterminacy rapidly overwhelms predictive insights. Nevertheless, even poorly estimated interaction strengths provide greater average predictive certainty than an approach that uses only the sign of each interaction. Our simulations provide guidance in dealing with the trade-offs involved in maximizing the utility of network approaches for predicting dynamics in multispecies communities. ?? 2011 by the Ecological Society of America.
Mean-variance portfolio analysis data for optimizing community-based photovoltaic investment.
Shakouri, Mahmoud; Lee, Hyun Woo
2016-03-01
The amount of electricity generated by Photovoltaic (PV) systems is affected by factors such as shading, building orientation and roof slope. To increase electricity generation and reduce volatility in generation of PV systems, a portfolio of PV systems can be made which takes advantages of the potential synergy among neighboring buildings. This paper contains data supporting the research article entitled: PACPIM: new decision-support model of optimized portfolio analysis for community-based photovoltaic investment [1]. We present a set of data relating to physical properties of 24 houses in Oregon, USA, along with simulated hourly electricity data for the installed PV systems. The developed Matlab code to construct optimized portfolios is also provided in . The application of these files can be generalized to variety of communities interested in investing on PV systems.
Epidemic spreading in time-varying community networks.
Ren, Guangming; Wang, Xingyuan
2014-06-01
The spreading processes of many infectious diseases have comparable time scale as the network evolution. Here, we present a simple networks model with time-varying community structure, and investigate susceptible-infected-susceptible epidemic spreading processes in this model. By both theoretic analysis and numerical simulations, we show that the efficiency of epidemic spreading in this model depends intensively on the mobility rate q of the individuals among communities. We also find that there exists a mobility rate threshold qc. The epidemic will survive when q > qc and die when q < qc. These results can help understanding the impacts of human travel on the epidemic spreading in complex networks with community structure.
Lu, Lingbo; Li, Jingshan; Gisler, Paula
2011-06-01
Radiology tests, such as MRI, CT-scan, X-ray and ultrasound, are cost intensive and insurance pre-approvals are necessary to get reimbursement. In some cases, tests may be denied for payments by insurance companies due to lack of pre-approvals, inaccurate or missing necessary information. This can lead to substantial revenue losses for the hospital. In this paper, we present a simulation study of a centralized scheduling process for outpatient radiology tests at a large community hospital (Central Baptist Hospital in Lexington, Kentucky). Based on analysis of the central scheduling process, a simulation model of information flow in the process has been developed. Using such a model, the root causes of financial losses associated with errors and omissions in this process were identified and analyzed, and their impacts were quantified. In addition, "what-if" analysis was conducted to identify potential process improvement strategies in the form of recommendations to the hospital leadership. Such a model provides a quantitative tool for continuous improvement and process control in radiology outpatient test scheduling process to reduce financial losses associated with process error. This method of analysis is also applicable to other departments in the hospital.
Poverty Simulations: Building Relationships among Extension, Schools, and the Community
ERIC Educational Resources Information Center
Franck, Karen L.; Barnes, Shelly; Harrison, Julie
2016-01-01
Poverty simulations can be effective experiential learning tools for educating community members about the impact of poverty on families. The project described here includes survey results from three simulations with community leaders and teachers. This project illustrated how such workshops can help Extension professionals extend their reach and…
Unsteady flow simulations around complex geometries using stationary or rotating unstructured grids
NASA Astrophysics Data System (ADS)
Sezer-Uzol, Nilay
In this research, the computational analysis of three-dimensional, unsteady, separated, vortical flows around complex geometries is studied by using stationary or moving unstructured grids. Two main engineering problems are investigated. The first problem is the unsteady simulation of a ship airwake, where helicopter operations become even more challenging, by using stationary unstructured grids. The second problem is the unsteady simulation of wind turbine rotor flow fields by using moving unstructured grids which are rotating with the whole three-dimensional rigid rotor geometry. The three dimensional, unsteady, parallel, unstructured, finite volume flow solver, PUMA2, is used for the computational fluid dynamics (CFD) simulations considered in this research. The code is modified to have a moving grid capability to perform three-dimensional, time-dependent rotor simulations. An instantaneous log-law wall model for Large Eddy Simulations is also implemented in PUMA2 to investigate the very large Reynolds number flow fields of rotating blades. To verify the code modifications, several sample test cases are also considered. In addition, interdisciplinary studies, which are aiming to provide new tools and insights to the aerospace and wind energy scientific communities, are done during this research by focusing on the coupling of ship airwake CFD simulations with the helicopter flight dynamics and control analysis, the coupling of wind turbine rotor CFD simulations with the aeroacoustic analysis, and the analysis of these time-dependent and large-scale CFD simulations with the help of a computational monitoring, steering and visualization tool, POSSE.
The Pilot Phase of the Global Soil Wetness Project Phase 3
NASA Astrophysics Data System (ADS)
Kim, H.; Oki, T.
2015-12-01
After the second phase of the Global Soil Wetness Project (GSWP2) as an early global continuous gridded multi-model analysis, a comprehensive set of land surface fluxes and state variables became available. It has been broadly utilized in the hydrology community, and its success has evolved to take advantages of recent scientific progress and to extend the relatively short time span (1986-1995) of the previous project. In the third phase proposed here (GSWP3), an extensive set of quantities for hydro-energy-eco systems will be produced to investigate their long-term (1901-2010) changes. The energy-water-carbon cycles and their interactions are also examined subcomponent-wise with appropriate model verifications in ensemble land simulations. In this study, the preliminary results and problems found from the first round analysis of the GSWP3 pilot study are shown. Also, it is discussed how the global offline simulation activity contributes to wider communities and a bigger scope such as Climate Model Intercomparison Project Phase 6 (CMIP6).
Integrated Exoplanet Modeling with the GSFC Exoplanet Modeling & Analysis Center (EMAC)
NASA Astrophysics Data System (ADS)
Mandell, Avi M.; Hostetter, Carl; Pulkkinen, Antti; Domagal-Goldman, Shawn David
2018-01-01
Our ability to characterize the atmospheres of extrasolar planets will be revolutionized by JWST, WFIRST and future ground- and space-based telescopes. In preparation, the exoplanet community must develop an integrated suite of tools with which we can comprehensively predict and analyze observations of exoplanets, in order to characterize the planetary environments and ultimately search them for signs of habitability and life.The GSFC Exoplanet Modeling and Analysis Center (EMAC) will be a web-accessible high-performance computing platform with science support for modelers and software developers to host and integrate their scientific software tools, with the goal of leveraging the scientific contributions from the entire exoplanet community to improve our interpretations of future exoplanet discoveries. Our suite of models will include stellar models, models for star-planet interactions, atmospheric models, planet system science models, telescope models, instrument models, and finally models for retrieving signals from observational data. By integrating this suite of models, the community will be able to self-consistently calculate the emergent spectra from the planet whether from emission, scattering, or in transmission, and use these simulations to model the performance of current and new telescopes and their instrumentation.The EMAC infrastructure will not only provide a repository for planetary and exoplanetary community models, modeling tools and intermodal comparisons, but it will include a "run-on-demand" portal with each software tool hosted on a separate virtual machine. The EMAC system will eventually include a means of running or “checking in” new model simulations that are in accordance with the community-derived standards. Additionally, the results of intermodal comparisons will be used to produce open source publications that quantify the model comparisons and provide an overview of community consensus on model uncertainties on the climates of various planetary targets.
NASA HPCC Technology for Aerospace Analysis and Design
NASA Technical Reports Server (NTRS)
Schulbach, Catherine H.
1999-01-01
The Computational Aerosciences (CAS) Project is part of NASA's High Performance Computing and Communications Program. Its primary goal is to accelerate the availability of high-performance computing technology to the US aerospace community-thus providing the US aerospace community with key tools necessary to reduce design cycle times and increase fidelity in order to improve safety, efficiency and capability of future aerospace vehicles. A complementary goal is to hasten the emergence of a viable commercial market within the aerospace community for the advantage of the domestic computer hardware and software industry. The CAS Project selects representative aerospace problems (especially design) and uses them to focus efforts on advancing aerospace algorithms and applications, systems software, and computing machinery to demonstrate vast improvements in system performance and capability over the life of the program. Recent demonstrations have served to assess the benefits of possible performance improvements while reducing the risk of adopting high-performance computing technology. This talk will discuss past accomplishments in providing technology to the aerospace community, present efforts, and future goals. For example, the times to do full combustor and compressor simulations (of aircraft engines) have been reduced by factors of 320:1 and 400:1 respectively. While this has enabled new capabilities in engine simulation, the goal of an overnight, dynamic, multi-disciplinary, 3-dimensional simulation of an aircraft engine is still years away and will require new generations of high-end technology.
WholeCellSimDB: a hybrid relational/HDF database for whole-cell model predictions
Karr, Jonathan R.; Phillips, Nolan C.; Covert, Markus W.
2014-01-01
Mechanistic ‘whole-cell’ models are needed to develop a complete understanding of cell physiology. However, extracting biological insights from whole-cell models requires running and analyzing large numbers of simulations. We developed WholeCellSimDB, a database for organizing whole-cell simulations. WholeCellSimDB was designed to enable researchers to search simulation metadata to identify simulations for further analysis, and quickly slice and aggregate simulation results data. In addition, WholeCellSimDB enables users to share simulations with the broader research community. The database uses a hybrid relational/hierarchical data format architecture to efficiently store and retrieve both simulation setup metadata and results data. WholeCellSimDB provides a graphical Web-based interface to search, browse, plot and export simulations; a JavaScript Object Notation (JSON) Web service to retrieve data for Web-based visualizations; a command-line interface to deposit simulations; and a Python API to retrieve data for advanced analysis. Overall, we believe WholeCellSimDB will help researchers use whole-cell models to advance basic biological science and bioengineering. Database URL: http://www.wholecellsimdb.org Source code repository URL: http://github.com/CovertLab/WholeCellSimDB PMID:25231498
NASA Astrophysics Data System (ADS)
Jones, Chris D.; Arora, Vivek; Friedlingstein, Pierre; Bopp, Laurent; Brovkin, Victor; Dunne, John; Graven, Heather; Hoffman, Forrest; Ilyina, Tatiana; John, Jasmin G.; Jung, Martin; Kawamiya, Michio; Koven, Charlie; Pongratz, Julia; Raddatz, Thomas; Randerson, James T.; Zaehle, Sönke
2016-08-01
Coordinated experimental design and implementation has become a cornerstone of global climate modelling. Model Intercomparison Projects (MIPs) enable systematic and robust analysis of results across many models, by reducing the influence of ad hoc differences in model set-up or experimental boundary conditions. As it enters its 6th phase, the Coupled Model Intercomparison Project (CMIP6) has grown significantly in scope with the design and documentation of individual simulations delegated to individual climate science communities. The Coupled Climate-Carbon Cycle Model Intercomparison Project (C4MIP) takes responsibility for design, documentation, and analysis of carbon cycle feedbacks and interactions in climate simulations. These feedbacks are potentially large and play a leading-order contribution in determining the atmospheric composition in response to human emissions of CO2 and in the setting of emissions targets to stabilize climate or avoid dangerous climate change. For over a decade, C4MIP has coordinated coupled climate-carbon cycle simulations, and in this paper we describe the C4MIP simulations that will be formally part of CMIP6. While the climate-carbon cycle community has created this experimental design, the simulations also fit within the wider CMIP activity, conform to some common standards including documentation and diagnostic requests, and are designed to complement the CMIP core experiments known as the Diagnostic, Evaluation and Characterization of Klima (DECK). C4MIP has three key strands of scientific motivation and the requested simulations are designed to satisfy their needs: (1) pre-industrial and historical simulations (formally part of the common set of CMIP6 experiments) to enable model evaluation, (2) idealized coupled and partially coupled simulations with 1 % per year increases in CO2 to enable diagnosis of feedback strength and its components, (3) future scenario simulations to project how the Earth system will respond to anthropogenic activity over the 21st century and beyond. This paper documents in detail these simulations, explains their rationale and planned analysis, and describes how to set up and run the simulations. Particular attention is paid to boundary conditions, input data, and requested output diagnostics. It is important that modelling groups participating in C4MIP adhere as closely as possible to this experimental design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Chris D.; Arora, Vivek; Friedlingstein, Pierre
Coordinated experimental design and implementation has become a cornerstone of global climate modelling. Model Intercomparison Projects (MIPs) enable systematic and robust analysis of results across many models, by reducing the influence of ad hoc differences in model set-up or experimental boundary conditions. As it enters its 6th phase, the Coupled Model Intercomparison Project (CMIP6) has grown significantly in scope with the design and documentation of individual simulations delegated to individual climate science communities. The Coupled Climate–Carbon Cycle Model Intercomparison Project (C4MIP) takes responsibility for design, documentation, and analysis of carbon cycle feedbacks and interactions in climate simulations. These feedbacks aremore » potentially large and play a leading-order contribution in determining the atmospheric composition in response to human emissions of CO 2 and in the setting of emissions targets to stabilize climate or avoid dangerous climate change. For over a decade, C4MIP has coordinated coupled climate–carbon cycle simulations, and in this paper we describe the C4MIP simulations that will be formally part of CMIP6. While the climate–carbon cycle community has created this experimental design, the simulations also fit within the wider CMIP activity, conform to some common standards including documentation and diagnostic requests, and are designed to complement the CMIP core experiments known as the Diagnostic, Evaluation and Characterization of Klima (DECK). C4MIP has three key strands of scientific motivation and the requested simulations are designed to satisfy their needs: (1) pre-industrial and historical simulations (formally part of the common set of CMIP6 experiments) to enable model evaluation, (2) idealized coupled and partially coupled simulations with 1 % per year increases in CO 2 to enable diagnosis of feedback strength and its components, (3) future scenario simulations to project how the Earth system will respond to anthropogenic activity over the 21st century and beyond. This study documents in detail these simulations, explains their rationale and planned analysis, and describes how to set up and run the simulations. Particular attention is paid to boundary conditions, input data, and requested output diagnostics. It is important that modelling groups participating in C4MIP adhere as closely as possible to this experimental design.« less
Jones, Chris D.; Arora, Vivek; Friedlingstein, Pierre; ...
2016-08-25
Coordinated experimental design and implementation has become a cornerstone of global climate modelling. Model Intercomparison Projects (MIPs) enable systematic and robust analysis of results across many models, by reducing the influence of ad hoc differences in model set-up or experimental boundary conditions. As it enters its 6th phase, the Coupled Model Intercomparison Project (CMIP6) has grown significantly in scope with the design and documentation of individual simulations delegated to individual climate science communities. The Coupled Climate–Carbon Cycle Model Intercomparison Project (C4MIP) takes responsibility for design, documentation, and analysis of carbon cycle feedbacks and interactions in climate simulations. These feedbacks aremore » potentially large and play a leading-order contribution in determining the atmospheric composition in response to human emissions of CO 2 and in the setting of emissions targets to stabilize climate or avoid dangerous climate change. For over a decade, C4MIP has coordinated coupled climate–carbon cycle simulations, and in this paper we describe the C4MIP simulations that will be formally part of CMIP6. While the climate–carbon cycle community has created this experimental design, the simulations also fit within the wider CMIP activity, conform to some common standards including documentation and diagnostic requests, and are designed to complement the CMIP core experiments known as the Diagnostic, Evaluation and Characterization of Klima (DECK). C4MIP has three key strands of scientific motivation and the requested simulations are designed to satisfy their needs: (1) pre-industrial and historical simulations (formally part of the common set of CMIP6 experiments) to enable model evaluation, (2) idealized coupled and partially coupled simulations with 1 % per year increases in CO 2 to enable diagnosis of feedback strength and its components, (3) future scenario simulations to project how the Earth system will respond to anthropogenic activity over the 21st century and beyond. This study documents in detail these simulations, explains their rationale and planned analysis, and describes how to set up and run the simulations. Particular attention is paid to boundary conditions, input data, and requested output diagnostics. It is important that modelling groups participating in C4MIP adhere as closely as possible to this experimental design.« less
Tsunami risk mapping simulation for Malaysia
Teh, S.Y.; Koh, H. L.; Moh, Y.T.; De Angelis, D. L.; Jiang, J.
2011-01-01
The 26 December 2004 Andaman mega tsunami killed about a quarter of a million people worldwide. Since then several significant tsunamis have recurred in this region, including the most recent 25 October 2010 Mentawai tsunami. These tsunamis grimly remind us of the devastating destruction that a tsunami might inflict on the affected coastal communities. There is evidence that tsunamis of similar or higher magnitudes might occur again in the near future in this region. Of particular concern to Malaysia are tsunamigenic earthquakes occurring along the northern part of the Sunda Trench. Further, the Manila Trench in the South China Sea has been identified as another source of potential tsunamigenic earthquakes that might trigger large tsunamis. To protect coastal communities that might be affected by future tsunamis, an effective early warning system must be properly installed and maintained to provide adequate time for residents to be evacuated from risk zones. Affected communities must be prepared and educated in advance regarding tsunami risk zones, evacuation routes as well as an effective evacuation procedure that must be taken during a tsunami occurrence. For these purposes, tsunami risk zones must be identified and classified according to the levels of risk simulated. This paper presents an analysis of tsunami simulations for the South China Sea and the Andaman Sea for the purpose of developing a tsunami risk zone classification map for Malaysia based upon simulated maximum wave heights. ?? 2011 WIT Press.
Pennanen; Fritze; Vanhala; Kiikkila; Neuvonen; Baath
1998-06-01
Humus samples were collected 12 growing seasons after the start of a simulated acid rain experiment situated in the subarctic environment. The acid rain was simulated with H2SO4, a combination of H2SO4 and HNO3, and HNO3 at two levels of moderate acidic loads close to the natural anthropogenic pollution levels of southern Scandinavia. The higher levels of acid applications resulted in acidification, as defined by humus chemistry. The concentrations of base cations decreased, while the concentrations of exchangeable H+, Al, and Fe increased. Humus pH decreased from 3.83 to 3.65. Basal respiration decreased with decreasing humus pH, and total microbial biomass, measured by substrate-induced respiration and total amount of phospholipid fatty acids (PLFA), decreased slightly. An altered PLFA pattern indicated a change in the microbial community structure at the higher levels of acid applications. In general, branched fatty acids, typical of gram-positive bacteria, increased in the acid plots. PLFA analysis performed on the bacterial community growing on agar plates also showed that the relative amount of PLFA specific for gram-positive bacteria increased due to the acidification. The changed bacterial community was adapted to the more acidic environment in the acid-treated plots, even though bacterial growth rates, estimated by thymidine and leucine incorporation, decreased with pH. Fungal activity (measured as acetate incorporation into ergosterol) was not affected. This result indicates that bacteria were more affected than fungi by the acidification. The capacity of the bacterial community to utilize 95 different carbon sources was variable and only showed weak correlations to pH. Differences in the toxicities of H2SO4 and HNO3 for the microbial community were not found.
A FAST BAYESIAN METHOD FOR UPDATING AND FORECASTING HOURLY OZONE LEVELS
A Bayesian hierarchical space-time model is proposed by combining information from real-time ambient AIRNow air monitoring data, and output from a computer simulation model known as the Community Multi-scale Air Quality (Eta-CMAQ) forecast model. A model validation analysis shows...
Mean-variance portfolio analysis data for optimizing community-based photovoltaic investment
Shakouri, Mahmoud; Lee, Hyun Woo
2016-01-01
The amount of electricity generated by Photovoltaic (PV) systems is affected by factors such as shading, building orientation and roof slope. To increase electricity generation and reduce volatility in generation of PV systems, a portfolio of PV systems can be made which takes advantages of the potential synergy among neighboring buildings. This paper contains data supporting the research article entitled: PACPIM: new decision-support model of optimized portfolio analysis for community-based photovoltaic investment [1]. We present a set of data relating to physical properties of 24 houses in Oregon, USA, along with simulated hourly electricity data for the installed PV systems. The developed Matlab code to construct optimized portfolios is also provided in Supplementary materials. The application of these files can be generalized to variety of communities interested in investing on PV systems. PMID:26937458
Information Architecture for Interactive Archives at the Community Coordianted Modeling Center
NASA Astrophysics Data System (ADS)
De Zeeuw, D.; Wiegand, C.; Kuznetsova, M.; Mullinix, R.; Boblitt, J. M.
2017-12-01
The Community Coordinated Modeling Center (CCMC) is upgrading its meta-data system for model simulations to be compliant with the SPASE meta-data standard. This work is helping to enhance the SPASE standards for simulations to better describe the wide variety of models and their output. It will enable much more sophisticated and automated metrics and validation efforts at the CCMC, as well as much more robust searches for specific types of output. The new meta-data will also allow much more tailored run submissions as it will allow some code options to be selected for Run-On-Request models. We will also demonstrate data accessibility through an implementation of the Heliophysics Application Programmer's Interface (HAPI) protocol of data otherwise available throught the integrated space weather analysis system (iSWA).
2015-12-04
51 6.6 Power Consumption: Communications ...simulations executing on mobile computing platforms, an area not widely studied to date in the distributed simulation research community . A...simulation community . These initial studies focused on two conservative synchronization algorithms widely used in the distributed simulation field
Games and Simulations in the Community College Classroom.
ERIC Educational Resources Information Center
Butler, J. Thomas
This discussion of the use of games and simulations in instruction includes a number of examples of activities that can be used in the community college classroom. Section I assesses the value of games and simulations as an approach to learning; defines games, simulations, and non-simulation games; considers the advantages and disadvantages of the…
Community as client: environmental issues in the real world. A SimCity computer simulation.
Bareford, C G
2001-01-01
The ability to think critically has become a crucial part of professional practice and education. SimCity, a popular computer simulation game, provides an opportunity to practice community assessment and interventions using a systems approach. SimCity is an interactive computer simulation game in which the player takes an active part in community planning. SimCity is supported on either a Windows 95/98 or a Macintosh platform and is available on CD-ROM at retail stores or at www.simcity.com. Students complete a tutorial and then apply a selected scenario in SimCity. Scenarios consist of hypothetical communities that have varying types and degrees of environmental problems, e.g., traffic, crime, nuclear meltdown, flooding, fire, and earthquakes. In problem solving with the simulated scenarios, students (a) identify systems and subsystems within the community that are critical factors impacting the environmental health of the community, (b) create changes in the systems and subsystems in an effort to solve the environmental health problem, and (c) evaluate the effectiveness of interventions based on the game score, demographic and fiscal data, and amount of community support. Because the consequences of planned intervention are part of the simulation, nursing students are able to develop critical-thinking skills. The simulation provides essential content in community planning in an interesting and interactive format.
Rebuilding fish communities: the ghost of fisheries past and the virtue of patience.
Collie, Jeremy; Rochet, Marie-Joëlle; Bell, Richard
2013-03-01
The ecosystem approach to management requires the status of individual species to be considered in a community context. We conducted a comparative ecosystem analysis of the Georges Bank and North Sea fish communities to determine the extent to which biological diversity is restored when fishing pressure is reduced. First, fishing mortality estimates were combined to quantify the community-level intensity and selectivity of fishing pressure. Second, standardized bottom-trawl survey data were used to investigate the temporal trends in community metrics. Third, a size-based, multispecies model (LeMans) was simulated to test the response of community metrics to both hypothetical and observed changes in fishing pressure in the two communities. These temperate North Atlantic fish communities have much in common, including a history of overfishing. In recent decades fishing pressure has been reduced, and some species have started to rebuild. The Georges Bank fishery has been more selective, and fishing pressure was reduced sooner. The two communities have similar levels of size diversity and biomass per unit area, but fundamentally different community structure. The North Sea is dominated by smaller species and has lower evenness than Georges Bank. These fundamental differences in community structure are not explained by recent fishing patterns. The multispecies model was able to predict the observed changes in community metrics better on Georges Bank, where rebuilding is more apparent than in the North Sea. Model simulations predicted hysteresis in rebuilding community metrics toward their unfished levels, particularly in the North Sea. Species in the community rebuild at different rates, with smaller prey species outpacing their large predators and overshooting their pre-exploitation abundances. This indirect effect of predator release delays the rebuilding of community structure and biodiversity. Therefore community rebuilding is not just the sum of single-species rebuilding plans. Management strategies that account for interspecific interactions will be needed to restore biodiversity and community structure.
NASA Astrophysics Data System (ADS)
Mendoza, A. M.; Bakshi, S.; Berrios, D.; Chulaki, A.; Evans, R. M.; Kuznetsova, M. M.; Lee, H.; MacNeice, P. J.; Maddox, M. M.; Mays, M. L.; Mullinix, R. E.; Ngwira, C. M.; Patel, K.; Pulkkinen, A.; Rastaetter, L.; Shim, J.; Taktakishvili, A.; Zheng, Y.
2012-12-01
Community Coordinated Modeling Center (CCMC) was established to enhance basic solar terrestrial research and to aid in the development of models for specifying and forecasting conditions in the space environment. In achieving this goal, CCMC has developed and provides a set of innovative tools varying from: Integrated Space Weather Analysis (iSWA) web -based dissemination system for space weather information, Runs-On-Request System providing access to unique collection of state-of-the-art solar and space physics models (unmatched anywhere in the world), Advanced Online Visualization and Analysis tools for more accurate interpretation of model results, Standard Data formats for Simulation Data downloads, and recently Mobile apps (iPhone/Android) to view space weather data anywhere to the scientific community. The number of runs requested and the number of resulting scientific publications and presentations from the research community has not only been an indication of the broad scientific usage of the CCMC and effective participation by space scientists and researchers, but also guarantees active collaboration and coordination amongst the space weather research community. Arising from the course of CCMC activities, CCMC also supports community-wide model validation challenges and research focus group projects for a broad range of programs such as the multi-agency National Space Weather Program, NSF's CEDAR (Coupling, Energetics and Dynamics of Atmospheric Regions), GEM (Geospace Environment Modeling) and Shine (Solar Heliospheric and INterplanetary Environment) programs. In addition to performing research and model development, CCMC also supports space science education by hosting summer students through local universities; through the provision of simulations in support of classroom programs such as Heliophysics Summer School (with student research contest) and CCMC Workshops; training next generation of junior scientists in space weather forecasting; and educating the general public about the importance and impacts of space weather effects. Although CCMC is organizationally comprised of United States federal agencies, CCMC services are open to members of the international science community and encourages interagency and international collaboration. In this poster, we provide an overview of using Community Coordinated Modeling Center (CCMC) tools and services to support worldwide space weather scientific communities and networks.;
Portillo, M C; Gonzalez, J M
2008-08-01
Molecular fingerprints of microbial communities are a common method for the analysis and comparison of environmental samples. The significance of differences between microbial community fingerprints was analyzed considering the presence of different phylotypes and their relative abundance. A method is proposed by simulating coverage of the analyzed communities as a function of sampling size applying a Cramér-von Mises statistic. Comparisons were performed by a Monte Carlo testing procedure. As an example, this procedure was used to compare several sediment samples from freshwater ponds using a relative quantitative PCR-DGGE profiling technique. The method was able to discriminate among different samples based on their molecular fingerprints, and confirmed the lack of differences between aliquots from a single sample.
Epidemic spreading in time-varying community networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Guangming, E-mail: wangxy@dlut.edu.cn, E-mail: ren-guang-ming@163.com; Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024; Wang, Xingyuan, E-mail: wangxy@dlut.edu.cn, E-mail: ren-guang-ming@163.com
2014-06-15
The spreading processes of many infectious diseases have comparable time scale as the network evolution. Here, we present a simple networks model with time-varying community structure, and investigate susceptible-infected-susceptible epidemic spreading processes in this model. By both theoretic analysis and numerical simulations, we show that the efficiency of epidemic spreading in this model depends intensively on the mobility rate q of the individuals among communities. We also find that there exists a mobility rate threshold q{sub c}. The epidemic will survive when q > q{sub c} and die when q < q{sub c}. These results can help understanding the impacts of human travel onmore » the epidemic spreading in complex networks with community structure.« less
Hammond, Davyda; Conlon, Kathryn; Barzyk, Timothy; Chahine, Teresa; Zartarian, Valerie; Schultz, Brad
2011-03-01
Communities are concerned over pollution levels and seek methods to systematically identify and prioritize the environmental stressors in their communities. Geographic information system (GIS) maps of environmental information can be useful tools for communities in their assessment of environmental-pollution-related risks. Databases and mapping tools that supply community-level estimates of ambient concentrations of hazardous pollutants, risk, and potential health impacts can provide relevant information for communities to understand, identify, and prioritize potential exposures and risk from multiple sources. An assessment of existing databases and mapping tools was conducted as part of this study to explore the utility of publicly available databases, and three of these databases were selected for use in a community-level GIS mapping application. Queried data from the U.S. EPA's National-Scale Air Toxics Assessment, Air Quality System, and National Emissions Inventory were mapped at the appropriate spatial and temporal resolutions for identifying risks of exposure to air pollutants in two communities. The maps combine monitored and model-simulated pollutant and health risk estimates, along with local survey results, to assist communities with the identification of potential exposure sources and pollution hot spots. Findings from this case study analysis will provide information to advance the development of new tools to assist communities with environmental risk assessments and hazard prioritization. © 2010 Society for Risk Analysis.
Documenting Climate Models and Their Simulations
Guilyardi, Eric; Balaji, V.; Lawrence, Bryan; ...
2013-05-01
The results of climate models are of increasing and widespread importance. No longer is climate model output of sole interest to climate scientists and researchers in the climate change impacts and adaptation fields. Now nonspecialists such as government officials, policy makers, and the general public all have an increasing need to access climate model output and understand its implications. For this host of users, accurate and complete metadata (i.e., information about how and why the data were produced) is required to document the climate modeling results. We describe a pilot community initiative to collect and make available documentation of climatemore » models and their simulations. In an initial application, a metadata repository is being established to provide information of this kind for a major internationally coordinated modeling activity known as CMIP5 (Coupled Model Intercomparison Project, Phase 5). We expected that for a wide range of stakeholders, this and similar community-managed metadata repositories will spur development of analysis tools that facilitate discovery and exploitation of Earth system simulations.« less
PetriScape - A plugin for discrete Petri net simulations in Cytoscape.
Almeida, Diogo; Azevedo, Vasco; Silva, Artur; Baumbach, Jan
2016-06-04
Systems biology plays a central role for biological network analysis in the post-genomic era. Cytoscape is the standard bioinformatics tool offering the community an extensible platform for computational analysis of the emerging cellular network together with experimental omics data sets. However, only few apps/plugins/tools are available for simulating network dynamics in Cytoscape 3. Many approaches of varying complexity exist but none of them have been integrated into Cytoscape as app/plugin yet. Here, we introduce PetriScape, the first Petri net simulator for Cytoscape. Although discrete Petri nets are quite simplistic models, they are capable of modeling global network properties and simulating their behaviour. In addition, they are easily understood and well visualizable. PetriScape comes with the following main functionalities: (1) import of biological networks in SBML format, (2) conversion into a Petri net, (3) visualization as Petri net, and (4) simulation and visualization of the token flow in Cytoscape. PetriScape is the first Cytoscape plugin for Petri nets. It allows a straightforward Petri net model creation, simulation and visualization with Cytoscape, providing clues about the activity of key components in biological networks.
PetriScape - A plugin for discrete Petri net simulations in Cytoscape.
Almeida, Diogo; Azevedo, Vasco; Silva, Artur; Baumbach, Jan
2016-03-01
Systems biology plays a central role for biological network analysis in the post-genomic era. Cytoscape is the standard bioinformatics tool offering the community an extensible platform for computational analysis of the emerging cellular network together with experimental omics data sets. However, only few apps/plugins/tools are available for simulating network dynamics in Cytoscape 3. Many approaches of varying complexity exist but none of them have been integrated into Cytoscape as app/plugin yet. Here, we introduce PetriScape, the first Petri net simulator for Cytoscape. Although discrete Petri nets are quite simplistic models, they are capable of modeling global network properties and simulating their behaviour. In addition, they are easily understood and well visualizable. PetriScape comes with the following main functionalities: (1) import of biological networks in SBML format, (2) conversion into a Petri net, (3) visualization as Petri net, and (4) simulation and visualization of the token flow in Cytoscape. PetriScape is the first Cytoscape plugin for Petri nets. It allows a straightforward Petri net model creation, simulation and visualization with Cytoscape, providing clues about the activity of key components in biological networks.
Beddows, Andrew V; Kitwiroon, Nutthida; Williams, Martin L; Beevers, Sean D
2017-06-06
Gaussian process emulation techniques have been used with the Community Multiscale Air Quality model, simulating the effects of input uncertainties on ozone and NO 2 output, to allow robust global sensitivity analysis (SA). A screening process ranked the effect of perturbations in 223 inputs, isolating the 30 most influential from emissions, boundary conditions (BCs), and reaction rates. Community Multiscale Air Quality (CMAQ) simulations of a July 2006 ozone pollution episode in the UK were made with input values for these variables plus ozone dry deposition velocity chosen according to a 576 point Latin hypercube design. Emulators trained on the output of these runs were used in variance-based SA of the model output to input uncertainties. Performing these analyses for every hour of a 21 day period spanning the episode and several days on either side allowed the results to be presented as a time series of sensitivity coefficients, showing how the influence of different input uncertainties changed during the episode. This is one of the most complex models to which these methods have been applied, and here, they reveal detailed spatiotemporal patterns of model sensitivities, with NO and isoprene emissions, NO 2 photolysis, ozone BCs, and deposition velocity being among the most influential input uncertainties.
Community-based benchmarking of the CMIP DECK experiments
NASA Astrophysics Data System (ADS)
Gleckler, P. J.
2015-12-01
A diversity of community-based efforts are independently developing "diagnostic packages" with little or no coordination between them. A short list of examples include NCAR's Climate Variability Diagnostics Package (CVDP), ORNL's International Land Model Benchmarking (ILAMB), LBNL's Toolkit for Extreme Climate Analysis (TECA), PCMDI's Metrics Package (PMP), the EU EMBRACE ESMValTool, the WGNE MJO diagnostics package, and CFMIP diagnostics. The full value of these efforts cannot be realized without some coordination. As a first step, a WCRP effort has initiated a catalog to document candidate packages that could potentially be applied in a "repeat-use" fashion to all simulations contributed to the CMIP DECK (Diagnostic, Evaluation and Characterization of Klima) experiments. Some coordination of community-based diagnostics has the additional potential to improve how CMIP modeling groups analyze their simulations during model-development. The fact that most modeling groups now maintain a "CMIP compliant" data stream means that in principal without much effort they could readily adopt a set of well organized diagnostic capabilities specifically designed to operate on CMIP DECK experiments. Ultimately, a detailed listing of and access to analysis codes that are demonstrated to work "out of the box" with CMIP data could enable model developers (and others) to select those codes they wish to implement in-house, potentially enabling more systematic evaluation during the model development process.
Failure analysis of parameter-induced simulation crashes in climate models
NASA Astrophysics Data System (ADS)
Lucas, D. D.; Klein, R.; Tannahill, J.; Ivanova, D.; Brandon, S.; Domyancic, D.; Zhang, Y.
2013-01-01
Simulations using IPCC-class climate models are subject to fail or crash for a variety of reasons. Quantitative analysis of the failures can yield useful insights to better understand and improve the models. During the course of uncertainty quantification (UQ) ensemble simulations to assess the effects of ocean model parameter uncertainties on climate simulations, we experienced a series of simulation crashes within the Parallel Ocean Program (POP2) component of the Community Climate System Model (CCSM4). About 8.5% of our CCSM4 simulations failed for numerical reasons at combinations of POP2 parameter values. We apply support vector machine (SVM) classification from machine learning to quantify and predict the probability of failure as a function of the values of 18 POP2 parameters. A committee of SVM classifiers readily predicts model failures in an independent validation ensemble, as assessed by the area under the receiver operating characteristic (ROC) curve metric (AUC > 0.96). The causes of the simulation failures are determined through a global sensitivity analysis. Combinations of 8 parameters related to ocean mixing and viscosity from three different POP2 parameterizations are the major sources of the failures. This information can be used to improve POP2 and CCSM4 by incorporating correlations across the relevant parameters. Our method can also be used to quantify, predict, and understand simulation crashes in other complex geoscientific models.
Failure analysis of parameter-induced simulation crashes in climate models
NASA Astrophysics Data System (ADS)
Lucas, D. D.; Klein, R.; Tannahill, J.; Ivanova, D.; Brandon, S.; Domyancic, D.; Zhang, Y.
2013-08-01
Simulations using IPCC (Intergovernmental Panel on Climate Change)-class climate models are subject to fail or crash for a variety of reasons. Quantitative analysis of the failures can yield useful insights to better understand and improve the models. During the course of uncertainty quantification (UQ) ensemble simulations to assess the effects of ocean model parameter uncertainties on climate simulations, we experienced a series of simulation crashes within the Parallel Ocean Program (POP2) component of the Community Climate System Model (CCSM4). About 8.5% of our CCSM4 simulations failed for numerical reasons at combinations of POP2 parameter values. We applied support vector machine (SVM) classification from machine learning to quantify and predict the probability of failure as a function of the values of 18 POP2 parameters. A committee of SVM classifiers readily predicted model failures in an independent validation ensemble, as assessed by the area under the receiver operating characteristic (ROC) curve metric (AUC > 0.96). The causes of the simulation failures were determined through a global sensitivity analysis. Combinations of 8 parameters related to ocean mixing and viscosity from three different POP2 parameterizations were the major sources of the failures. This information can be used to improve POP2 and CCSM4 by incorporating correlations across the relevant parameters. Our method can also be used to quantify, predict, and understand simulation crashes in other complex geoscientific models.
2009-02-01
services; and • Other reconstruction assistance. D-14 17. Train Forces on Military Assistance to Civil Authorities ( MACA ) Develop environments...for training in the planning and execution of MACA in support of disaster relief (natural and man-made), military assistance for civil disturbances
Triple Value System Dynamics Modeling to Help Stakeholders Engage with Food-Energy-Water Problems
Triple Value (3V) Community scoping projects and Triple Value Simulation (3VS) models help decision makers and stakeholders apply systems-analysis methodology to complex problems related to food production, water quality, and energy use. 3VS models are decision support tools that...
Educationally and Cost Effective: Computers in the Classroom.
ERIC Educational Resources Information Center
Agee, Roy
1986-01-01
The author states that the educational community must provide programs that assure students they will be able to learn how to use and control computers. He discusses micro labs, prerequisites to computer literacy, curriculum development, teaching methods, simulation projects, a systems analysis project, new job titles, and primary basic skills…
Fukami, Tadashi; Nakajima, Mifuyu; Fortunel, Claire; Fine, Paul V A; Baraloto, Christopher; Russo, Sabrina E; Peay, Kabir G
2017-08-01
Convergence occurs in both species traits and community structure, but how convergence at the two scales influences each other remains unclear. To address this question, we focus on tropical forest monodominance, in which a single, often ectomycorrhizal (EM) tree species occasionally dominates forest stands within a landscape otherwise characterized by diverse communities of arbuscular mycorrhizal (AM) trees. Such monodominance is a striking potential example of community divergence resulting in alternative stable states. However, it is observed only in some tropical regions. A diverse suite of AM and EM trees locally codominate forest stands elsewhere. We develop a hypothesis to explain this geographical difference using a simulation model of plant community assembly. Simulation results suggest that in a region with a few EM species (e.g., South America), EM trees experience strong selection for convergent traits that match the abiotic conditions of the environment. Consequently, EM species successfully compete against other species to form monodominant stands via positive plant-soil feedbacks. By contrast, in a region with many EM species (e.g., Southeast Asia), species maintain divergent traits because of complex plant-soil feedbacks, with no species having traits that enable monodominance. An analysis of plant trait data from Borneo and Peruvian Amazon was inconclusive. Overall, this work highlights the utility of geographical comparison in understanding the relationship between trait convergence and community convergence.
Opinion diversity and community formation in adaptive networks
NASA Astrophysics Data System (ADS)
Yu, Y.; Xiao, G.; Li, G.; Tay, W. P.; Teoh, H. F.
2017-10-01
It is interesting and of significant importance to investigate how network structures co-evolve with opinions. In this article, we show that, a simple model integrating consensus formation, link rewiring, and opinion change allows complex system dynamics to emerge, driving the system into a dynamic equilibrium with the co-existence of diversified opinions. Specifically, similar opinion holders may form into communities yet with no strict community consensus; and rather than being separated into disconnected communities, different communities are connected by a non-trivial proportion of inter-community links. More importantly, we show that the complex dynamics may lead to different numbers of communities at the steady state with a given tolerance between different opinion holders. We construct a framework for theoretically analyzing the co-evolution process. Theoretical analysis and extensive simulation results reveal some useful insights into the complex co-evolution process, including the formation of dynamic equilibrium, the transition between different steady states with different numbers of communities, and the dynamics between opinion distribution and network modularity.
Lawlor, Jennifer A; Neal, Zachary P
2016-06-01
Addressing complex problems in communities has become a key area of focus in recent years (Kania & Kramer, 2013, Stanford Social Innovation Review). Building on existing approaches to understanding and addressing problems, such as action research, several new approaches have emerged that shift the way communities solve problems (e.g., Burns, 2007, Systemic Action Research; Foth, 2006, Action Research, 4, 205; Kania & Kramer, 2011, Stanford Social Innovation Review, 1, 36). Seeking to bring clarity to the emerging literature on community change strategies, this article identifies the common features of the most widespread community change strategies and explores the conditions under which such strategies have the potential to be effective. We identify and describe five common features among the approaches to change. Then, using an agent-based model, we simulate network-building behavior among stakeholders participating in community change efforts using these approaches. We find that the emergent stakeholder networks are efficient when the processes are implemented under ideal conditions. © Society for Community Research and Action 2016.
Marzorati, Massimo; Van de Wiele, Tom
The gastrointestinal tract (GIT) hosts the most complex microbial community in the human body. Given the extensive metabolic potential which is present in this community, this additional organ is of key importance to maintain a healthy status and several diseases are frequently correlated with an alteration of the composition/functionality of the gut microbiota. Consequently, there is a great interest in identifying potential approaches that could modulate the microbiota and its metabolism to bring about a positive health effect. A classical approach to reach this goal is the use of prebiotics and/or probiotics. How to study the potential effect of new prebiotics/probiotics and how to localize this effect along the full GIT? Human intervention trials are the golden standard to validate functional properties of food products. Yet, most studies on gut microbiota are based on the analysis of fecal samples because they are easily collected in a non-invasive manner. A complementary option is represented by well-designed in vitro simulation technologies. Among all the available systems, the Simulator of Human Intestinal Microbial Ecosystem has already been shown to be a useful model for nutrition studies in terms of analysis of the intestinal microbial community composition and activity. The Simulator of Human Intestinal Microbial Ecosystem is a scientifically validated platform representing the physiology and microbiology of the adult human GIT. Furthermore, recent advances in in vitro modelling also allow to combine the study of bacteria-host interactions, such as mucosal adhesion and interaction with the immune system, thereby further increasing the value of the scientific output.
Neely, III, Ryan Reynolds; Conley, Andrew J.; Vitt, Francis; ...
2016-07-25
Here we describe an updated parameterization for prescribing stratospheric aerosol in the National Center for Atmospheric Research (NCAR) Community Earth System Model (CESM1). The need for a new parameterization is motivated by the poor response of the CESM1 (formerly referred to as the Community Climate System Model, version 4, CCSM4) simulations contributed to the Coupled Model Intercomparison Project 5 (CMIP5) to colossal volcanic perturbations to the stratospheric aerosol layer (such as the 1991 Pinatubo eruption or the 1883 Krakatau eruption) in comparison to observations. In particular, the scheme used in the CMIP5 simulations by CESM1 simulated a global mean surface temperature decreasemore » that was inconsistent with the GISS Surface Temperature Analysis (GISTEMP), NOAA's National Climatic Data Center, and the Hadley Centre of the UK Met Office (HADCRUT4). The new parameterization takes advantage of recent improvements in historical stratospheric aerosol databases to allow for variations in both the mass loading and size of the prescribed aerosol. An ensemble of simulations utilizing the old and new schemes shows CESM1's improved response to the 1991 Pinatubo eruption. Most significantly, the new scheme more accurately simulates the temperature response of the stratosphere due to local aerosol heating. Here, results also indicate that the new scheme decreases the global mean temperature response to the 1991 Pinatubo eruption by half of the observed temperature change, and modelled climate variability precludes statements as to the significance of this change.« less
Modeling mechanisms of vegetation change due to fire in a semi-arid ecosystem
White, J.D.; Gutzwiller, K.J.; Barrow, W.C.; Randall, L.J.; Swint, P.
2008-01-01
Vegetation growth and community composition in semi-arid environments is determined by water availability and carbon assimilation mechanisms specific to different plant types. Disturbance also impacts vegetation productivity and composition dependent on area affected, intensity, and frequency factors. In this study, a new spatially explicit ecosystem model is presented for the purpose of simulating vegetation cover type changes associated with fire disturbance in the northern Chihuahuan Desert region. The model is called the Landscape and Fire Simulator (LAFS) and represents physiological activity of six functional plant types incorporating site climate, fire, and seed dispersal routines for individual grid cells. We applied this model for Big Bend National Park, Texas, by assessing the impact of wildfire on the trajectory of vegetation communities over time. The model was initialized and calibrated based on landcover maps derived from Landsat-5 Thematic Mapper data acquired in 1986 and 1999 coupled with plant biomass measurements collected in the field during 2000. Initial vegetation cover change analysis from satellite data showed shrub encroachment during this time period that was captured in the simulated results. A synthetic 50-year climate record was derived from historical meteorological data to assess system response based on initial landcover conditions. This simulation showed that shrublands increased to the detriment of grass and yucca-ocotillo vegetation cover types indicating an ecosystem-level trajectory for shrub encroachment. Our analysis of simulated fires also showed that fires significantly reduced site biomass components including leaf area, stem, and seed biomass in this semi-arid ecosystem. In contrast to other landscape simulation models, this new model incorporates detailed physiological responses of functional plant types that will allow us to simulated the impact of increased atmospheric CO2 occurring with climate change coupled with fire disturbance. Simulations generated from this model are expected to be the subject of subsequent studies on landscape dynamics with specific regard to prediction of wildlife distributions associated with fire management and climate change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Dean N.
2015-01-27
The climate and weather data science community met December 9–11, 2014, in Livermore, California, for the fourth annual Earth System Grid Federation (ESGF) and Ultrascale Visualization Climate Data Analysis Tools (UV-CDAT) Face-to-Face (F2F) Conference, hosted by the Department of Energy, National Aeronautics and Space Administration, National Oceanic and Atmospheric Administration, the European Infrastructure for the European Network of Earth System Modelling, and the Australian Department of Education. Both ESGF and UVCDATremain global collaborations committed to developing a new generation of open-source software infrastructure that provides distributed access and analysis to simulated and observed data from the climate and weather communities.more » The tools and infrastructure created under these international multi-agency collaborations are critical to understanding extreme weather conditions and long-term climate change. In addition, the F2F conference fosters a stronger climate and weather data science community and facilitates a stronger federated software infrastructure. The 2014 F2F conference detailed the progress of ESGF, UV-CDAT, and other community efforts over the year and sets new priorities and requirements for existing and impending national and international community projects, such as the Coupled Model Intercomparison Project Phase Six. Specifically discussed at the conference were project capabilities and enhancements needs for data distribution, analysis, visualization, hardware and network infrastructure, standards, and resources.« less
Zhu, Yuzhen; Ma, Buyong; Qi, Ruxi; Nussinov, Ruth; Zhang, Qingwen
2016-04-14
Neuronal calcium sensor-1 (NCS-1) protein has orthologues from Saccharomyces cerevisiae to human with highly conserved amino acid sequences. NCS-1 is an important factor controlling the animal's response to temperature change. This leads us to investigate the temperature effects on the conformational dynamics of human NCS-1 at 310 and 316 K by all-atom molecular dynamics (MD) simulations and dynamic community network analysis. Four independent 500 ns MD simulations show that secondary structure content at 316 K is similar to that at 310 K, whereas the global protein structure is expanded. Loop 3 (L3) adopts an extended state occuping the hydrophobic crevice, and the number of suboptimal communication paths between residue D176 and V190 is reduced at 316 K. The dynamic community network analysis suggests that the interdomain correlation is weakened, and the intradomain coupling is strengthened at 316 K. The elevated temperature reduces the number of the salt bridges, especially in C-domain. This study suggests that the elevated temperature affects the conformational dynamics of human NCS-1 protein. Comparison of the structural dynamics of R102Q mutant and Δ176-190 truncated NCS-1 suggests that the structural and dynamical response of NCS-1 protein to elevated temperature may be one of its intrinsic functional properties.
NASA Astrophysics Data System (ADS)
King, E.; Karaoz, U.; Molins, S.; Bouskill, N.; Anantharaman, K.; Beller, H. R.; Banfield, J. F.; Steefel, C. I.; Brodie, E.
2015-12-01
The biogeochemical functioning of ecosystems is shaped in part by genomic information stored in the subsurface microbiome. Cultivation-independent approaches allow us to extract this information through reconstruction of thousands of genomes from a microbial community. Analysis of these genomes, in turn, gives an indication of the organisms present and their functional roles. However, metagenomic analyses can currently deliver thousands of different genomes that range in abundance/importance, requiring the identification and assimilation of key physiologies and metabolisms to be represented as traits for successful simulation of subsurface processes. Here we focus on incorporating -omics information into BioCrunch, a genome-informed trait-based model that represents the diversity of microbial functional processes within a reactive transport framework. This approach models the rate of nutrient uptake and the thermodynamics of coupled electron donors and acceptors for a range of microbial metabolisms including heterotrophs and chemolithotrophs. Metabolism of exogenous substrates fuels catabolic and anabolic processes, with the proportion of energy used for cellular maintenance, respiration, biomass development, and enzyme production based upon dynamic intracellular and environmental conditions. This internal resource partitioning represents a trade-off against biomass formation and results in microbial community emergence across a fitness landscape. Biocrunch was used here in simulations that included organisms and metabolic pathways derived from a dataset of ~1200 non-redundant genomes reflecting a microbial community in a floodplain aquifer. Metagenomic data was directly used to parameterize trait values related to growth and to identify trait linkages associated with respiration, fermentation, and key enzymatic functions such as plant polymer degradation. Simulations spanned a range of metabolic complexities and highlight benefits originating from simulations including a larger number of organisms that more appropriately reflect the in situ microbial community.
Carney, Timothy Jay; Morgan, Geoffrey P.; Jones, Josette; McDaniel, Anna M.; Weaver, Michael; Weiner, Bryan; Haggstrom, David A.
2014-01-01
Our conceptual model demonstrates our goal to investigate the impact of clinical decision support (CDS) utilization on cancer screening improvement strategies in the community health care (CHC) setting. We employed a dual modeling technique using both statistical and computational modeling to evaluate impact. Our statistical model used the Spearman’s Rho test to evaluate the strength of relationship between our proximal outcome measures (CDS utilization) against our distal outcome measure (provider self-reported cancer screening improvement). Our computational model relied on network evolution theory and made use of a tool called Construct-TM to model the use of CDS measured by the rate of organizational learning. We employed the use of previously collected survey data from community health centers Cancer Health Disparities Collaborative (HDCC). Our intent is to demonstrate the added valued gained by using a computational modeling tool in conjunction with a statistical analysis when evaluating the impact a health information technology, in the form of CDS, on health care quality process outcomes such as facility-level screening improvement. Significant simulated disparities in organizational learning over time were observed between community health centers beginning the simulation with high and low clinical decision support capability. PMID:24953241
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medeiros, Brian; Williamson, David L.; Olson, Jerry G.
In this study, fundamental characteristics of the aquaplanet climate simulated by the Community Atmosphere Model, Version 5.3 (CAM5.3) are presented. The assumptions and simplifications of the configuration are described. A 16 year long, perpetual equinox integration with prescribed SST using the model’s standard 18 grid spacing is presented as a reference simulation. Statistical analysis is presented that shows similar aquaplanet configurations can be run for about 2 years to obtain robust climatological structures, including global and zonal means, eddy statistics, and precipitation distributions. Such a simulation can be compared to the reference simulation to discern differences in the climate, includingmore » an assessment of confidence in the differences. To aid such comparisons, the reference simulation has been made available via earthsystemgrid.org. Examples are shown comparing the reference simulation with simulations from the CAM5 series that make different microphysical assumptions and use a different dynamical core.« less
A Computational Approach for Probabilistic Analysis of Water Impact Simulations
NASA Technical Reports Server (NTRS)
Horta, Lucas G.; Mason, Brian H.; Lyle, Karen H.
2009-01-01
NASA's development of new concepts for the Crew Exploration Vehicle Orion presents many similar challenges to those worked in the sixties during the Apollo program. However, with improved modeling capabilities, new challenges arise. For example, the use of the commercial code LS-DYNA, although widely used and accepted in the technical community, often involves high-dimensional, time consuming, and computationally intensive simulations. The challenge is to capture what is learned from a limited number of LS-DYNA simulations to develop models that allow users to conduct interpolation of solutions at a fraction of the computational time. This paper presents a description of the LS-DYNA model, a brief summary of the response surface techniques, the analysis of variance approach used in the sensitivity studies, equations used to estimate impact parameters, results showing conditions that might cause injuries, and concluding remarks.
LAVA web-based remote simulation: enhancements for education and technology innovation
NASA Astrophysics Data System (ADS)
Lee, Sang Il; Ng, Ka Chun; Orimoto, Takashi; Pittenger, Jason; Horie, Toshi; Adam, Konstantinos; Cheng, Mosong; Croffie, Ebo H.; Deng, Yunfei; Gennari, Frank E.; Pistor, Thomas V.; Robins, Garth; Williamson, Mike V.; Wu, Bo; Yuan, Lei; Neureuther, Andrew R.
2001-09-01
The Lithography Analysis using Virtual Access (LAVA) web site at http://cuervo.eecs.berkeley.edu/Volcano/ has been enhanced with new optical and deposition applets, graphical infrastructure and linkage to parallel execution on networks of workstations. More than ten new graphical user interface applets have been designed to support education, illustrate novel concepts from research, and explore usage of parallel machines. These applets have been improved through feedback and classroom use. Over the last year LAVA provided industry and other academic communities 1,300 session and 700 rigorous simulations per month among the SPLAT, SAMPLE2D, SAMPLE3D, TEMPEST, STORM, and BEBS simulators.
NASA Astrophysics Data System (ADS)
Ricciuto, D. M.; Mei, R.; Mao, J.; Hoffman, F. M.; Kumar, J.
2015-12-01
Uncertainties in land parameters could have important impacts on simulated water and energy fluxes and land surface states, which will consequently affect atmospheric and biogeochemical processes. Therefore, quantification of such parameter uncertainties using a land surface model is the first step towards better understanding of predictive uncertainty in Earth system models. In this study, we applied a random-sampling, high-dimensional model representation (RS-HDMR) method to analyze the sensitivity of simulated photosynthesis, surface energy fluxes and surface hydrological components to selected land parameters in version 4.5 of the Community Land Model (CLM4.5). Because of the large computational expense of conducting ensembles of global gridded model simulations, we used the results of a previous cluster analysis to select one thousand representative land grid cells for simulation. Plant functional type (PFT)-specific uniform prior ranges for land parameters were determined using expert opinion and literature survey, and samples were generated with a quasi-Monte Carlo approach-Sobol sequence. Preliminary analysis of 1024 simulations suggested that four PFT-dependent parameters (including slope of the conductance-photosynthesis relationship, specific leaf area at canopy top, leaf C:N ratio and fraction of leaf N in RuBisco) are the dominant sensitive parameters for photosynthesis, surface energy and water fluxes across most PFTs, but with varying importance rankings. On the other hand, for surface ans sub-surface runoff, PFT-independent parameters, such as the depth-dependent decay factors for runoff, play more important roles than the previous four PFT-dependent parameters. Further analysis by conditioning the results on different seasons and years are being conducted to provide guidance on how climate variability and change might affect such sensitivity. This is the first step toward coupled simulations including biogeochemical processes, atmospheric processes or both to determine the full range of sensitivity of Earth system modeling to land-surface parameters. This can facilitate sampling strategies in measurement campaigns targeted at reduction of climate modeling uncertainties and can also provide guidance on land parameter calibration for simulation optimization.
WholeCellSimDB: a hybrid relational/HDF database for whole-cell model predictions.
Karr, Jonathan R; Phillips, Nolan C; Covert, Markus W
2014-01-01
Mechanistic 'whole-cell' models are needed to develop a complete understanding of cell physiology. However, extracting biological insights from whole-cell models requires running and analyzing large numbers of simulations. We developed WholeCellSimDB, a database for organizing whole-cell simulations. WholeCellSimDB was designed to enable researchers to search simulation metadata to identify simulations for further analysis, and quickly slice and aggregate simulation results data. In addition, WholeCellSimDB enables users to share simulations with the broader research community. The database uses a hybrid relational/hierarchical data format architecture to efficiently store and retrieve both simulation setup metadata and results data. WholeCellSimDB provides a graphical Web-based interface to search, browse, plot and export simulations; a JavaScript Object Notation (JSON) Web service to retrieve data for Web-based visualizations; a command-line interface to deposit simulations; and a Python API to retrieve data for advanced analysis. Overall, we believe WholeCellSimDB will help researchers use whole-cell models to advance basic biological science and bioengineering. http://www.wholecellsimdb.org SOURCE CODE REPOSITORY: URL: http://github.com/CovertLab/WholeCellSimDB. © The Author(s) 2014. Published by Oxford University Press.
Nursing simulation: a community experience.
Gunowa, Neesha Oozageer; Elliott, Karen; McBride, Michelle
2018-04-02
The education sector faces major challenges in providing learning experiences so that newly qualified nurses feel adequately prepared to work in a community setting. With this in mind, higher education institutions need to develop more innovative ways to deliver the community-nurse experience to student nurses. This paper presents and explores how simulation provides an opportunity for educators to support and evaluate student performance in an environment that models a complete patient encounter in the community. Following the simulation, evaluative data were collated and the answers analysed to identify key recommendations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Dean N.
The climate and weather data science community gathered December 3–5, 2013, at Lawrence Livermore National Laboratory, in Livermore, California, for the third annual Earth System Grid Federation (ESGF) and Ultra-scale Visualization Climate Data Analysis Tools (UV-CDAT) Face-to-Face (F2F) Meeting, which was hosted by the Department of Energy, National Aeronautics and Space Administration, National Oceanic and Atmospheric Administration, the European Infrastructure for the European Network of Earth System Modelling, and the Australian Department of Education. Both ESGF and UV-CDAT are global collaborations designed to develop a new generation of open-source software infrastructure that provides distributed access and analysis to observed andmore » simulated data from the climate and weather communities. The tools and infrastructure developed under these international multi-agency collaborations are critical to understanding extreme weather conditions and long-term climate change, while the F2F meetings help to build a stronger climate and weather data science community and stronger federated software infrastructure. The 2013 F2F meeting determined requirements for existing and impending national and international community projects; enhancements needed for data distribution, analysis, and visualization infrastructure; and standards and resources needed for better collaborations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickinson, Robert E.; Oleson, Keith; Bonan, Gordon
2006-01-01
Several multidecadal simulations have been carried out with the new version of the Community Climate System Model (CCSM). This paper reports an analysis of the land component of these simulations. Global annual averages over land appear to be within the uncertainty of observational datasets, but the seasonal cycle over land of temperature and precipitation appears to be too weak. These departures from observations appear to be primarily a consequence of deficiencies in the simulation of the atmospheric model rather than of the land processes. High latitudes of northern winter are biased sufficiently warm to have a significant impact on themore » simulated value of global land temperature. The precipitation is approximately doubled from what it should be at some locations, and the snowpack and spring runoff are also excessive. The winter precipitation over Tibet is larger than observed. About two-thirds of this precipitation is sublimated during the winter, but what remains still produces a snowpack that is very large compared to that observed with correspondingly excessive spring runoff. A large cold anomaly over the Sahara Desert and Sahel also appears to be a consequence of a large anomaly in downward longwave radiation; low column water vapor appears to be most responsible. The modeled precipitation over the Amazon basin is low compared to that observed, the soil becomes too dry, and the temperature is too warm during the dry season.« less
Community assembly rules affect the diversity of expanding communities.
Peng, Zechen; Zhou, Shurong
2014-11-01
Despite centuries of interest in species range limits, few studies have taken a whole community into consideration. Actually, multiple species may simultaneously respond to environmental changes, for example, global warming, leading a series of dynamical communities toward the advancing front. We investigated multiple species range expansions through the analysis of a two-species dispersion model and simulations of multiple species assemblages regulated by neutral and fecundity-survival trade-offs (FSTs), respectively, and found that species assemblages regulated by different mechanisms would initiate different expanding patterns in geographic ranges in response to environmental changes. The neutral model generally predicts a higher biodiversity near the core of an expanding range, and a lower community similarity compared with a FST model. Without considering the evolution of life history traits, an assortment of the reproduction ability happens at the advancing front under FSTs at the expense of a higher death rate or lower competitive ability. These results emphasize the importance of community assembly rules to the biodiversity maintenance of range expanding communities.
Yang, Kyeongra; Woomer, Gail Ratliff; Agbemenu, Kafuli; Williams, Lynne
2014-11-01
The study aim was to evaluate the effectiveness of a poverty simulation in increasing understanding of and attitudes toward poverty and resulting in changes in clinical practice among nursing seniors. A poverty simulation was conducted using a diverse group of nursing professors and staff from local community agencies assuming the role of community resource providers. Students were assigned roles as members of low-income families and were required to complete tasks during a simulated month. A debriefing was held after the simulation to explore students' experiences in a simulated poverty environment. Students' understanding of and attitude toward poverty pre- and post-simulation were examined. Changes in the students' clinical experiences following the simulation were summarized into identified categories and themes. The poverty simulation led to a greater empathy for the possible experiences of low income individuals and families, understanding of barriers to health care, change in attitudes towards poverty and to those living in poverty, and changes in the students' nursing practice. Use of poverty simulation is an effective means to teach nursing students about the experience of living in poverty. The simulation experience changed nursing students' clinical practice, with students providing community referrals and initiating inter-professional collaborations. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cheng, Adam; Auerbach, Marc; Calhoun, Aaron; Mackinnon, Ralph; Chang, Todd P; Nadkarni, Vinay; Hunt, Elizabeth A; Duval-Arnould, Jordan; Peiris, Nicola; Kessler, David
2018-06-01
The scope and breadth of simulation-based research is growing rapidly; however, few mechanisms exist for conducting multicenter, collaborative research. Failure to foster collaborative research efforts is a critical gap that lies in the path of advancing healthcare simulation. The 2017 Research Summit hosted by the Society for Simulation in Healthcare highlighted how simulation-based research networks can produce studies that positively impact the delivery of healthcare. In 2011, the International Network for Simulation-based Pediatric Innovation, Research and Education (INSPIRE) was formed to facilitate multicenter, collaborative simulation-based research with the aim of developing a community of practice for simulation researchers. Since its formation, the network has successfully completed and published numerous collaborative research projects. In this article, we describe INSPIRE's history, structure, and internal processes with the goal of highlighting the community of practice model for other groups seeking to form a simulation-based research network.
DOT National Transportation Integrated Search
2012-03-01
The Alaska adapted version of the Weather Research and Forecasting and the Community Modeling and Analysis Quality (WRF-CMAQ) modeling : systems was used to assess the contribution of traffic to the PM2.5-concentration in the Fairbanks nonattainment ...
Analyzing Virtual Physics Simulations with Tracker
ERIC Educational Resources Information Center
Claessens, Tom
2017-01-01
In the physics teaching community, Tracker is well known as a user-friendly open source video analysis software, authored by Douglas Brown. With this tool, the user can trace markers indicated on a video or on stroboscopic photos and perform kinematic analyses. Tracker also includes a data modeling tool that allows one to fit some theoretical…
The Community Multiscale Air Quality (CMAQ) model is a state-of-the-science chemical transport model (CTM) capable of simulating the emission, transport and fate of numerous air pollutants. Similarly, the Weather Research and Forecasting (WRF) model is a state-of-the-science mete...
ERIC Educational Resources Information Center
California Community Colleges, Sacramento. Office of the Chancellor.
A study was conducted by the Chancellor's Office of the California Community Colleges (CCC) to examine the consequences of existing fee policies and the likely impact of possible changes in the fee structures. The study simulated the consequences of three different fee proposals for the CCC system: an annual fee increase of $50 ($30 for those…
Hunt, Kristopher A.; Jennings, Ryan deM.; Inskeep, William P.; Carlson, Ross P.
2017-01-01
Summary Assimilatory and dissimilatory utilisation of autotroph biomass by heterotrophs is a fundamental mechanism for the transfer of nutrients and energy across trophic levels. Metagenome data from a tractable, thermoacidophilic microbial community in Yellowstone National Park was used to build an in silico model to study heterotrophic utilisation of autotroph biomass using elementary flux mode analysis and flux balance analysis. Assimilatory and dissimilatory biomass utilisation was investigated using 29 forms of biomass-derived dissolved organic carbon (DOC) including individual monomer pools, individual macromolecular pools and aggregate biomass. The simulations identified ecologically competitive strategies for utilizing DOC under conditions of varying electron donor, electron acceptor or enzyme limitation. The simulated growth environment affected which form of DOC was the most competitive use of nutrients; for instance, oxygen limitation favoured utilisation of less reduced and fermentable DOC while carbon-limited environments favoured more reduced DOC. Additionally, metabolism was studied considering two encompassing metabolic strategies: simultaneous versus sequential use of DOC. Results of this study bound the transfer of nutrients and energy through microbial food webs, providing a quantitative foundation relevant to most microbial ecosystems. PMID:27387069
Sultan, Mohammad M; Kiss, Gert; Shukla, Diwakar; Pande, Vijay S
2014-12-09
Given the large number of crystal structures and NMR ensembles that have been solved to date, classical molecular dynamics (MD) simulations have become powerful tools in the atomistic study of the kinetics and thermodynamics of biomolecular systems on ever increasing time scales. By virtue of the high-dimensional conformational state space that is explored, the interpretation of large-scale simulations faces difficulties not unlike those in the big data community. We address this challenge by introducing a method called clustering based feature selection (CB-FS) that employs a posterior analysis approach. It combines supervised machine learning (SML) and feature selection with Markov state models to automatically identify the relevant degrees of freedom that separate conformational states. We highlight the utility of the method in the evaluation of large-scale simulations and show that it can be used for the rapid and automated identification of relevant order parameters involved in the functional transitions of two exemplary cell-signaling proteins central to human disease states.
2005-11-01
more random. Autonomous systems can exchange entropy statistics for packet streams with no confidentiality concerns, potentially enabling timely and... analysis began with simulation results, which were validated by analysis of actual data from an Autonomous System (AS). A scale-free network is one...traffic—for example, time series of flux at given nodes and mean path length Outputs the time series from any node queried Calculates
NASA Astrophysics Data System (ADS)
Maechling, P. J.; Taborda, R.; Callaghan, S.; Shaw, J. H.; Plesch, A.; Olsen, K. B.; Jordan, T. H.; Goulet, C. A.
2017-12-01
Crustal seismic velocity models and datasets play a key role in regional three-dimensional numerical earthquake ground-motion simulation, full waveform tomography, modern physics-based probabilistic earthquake hazard analysis, as well as in other related fields including geophysics, seismology, and earthquake engineering. The standard material properties provided by a seismic velocity model are P- and S-wave velocities and density for any arbitrary point within the geographic volume for which the model is defined. Many seismic velocity models and datasets are constructed by synthesizing information from multiple sources and the resulting models are delivered to users in multiple file formats, such as text files, binary files, HDF-5 files, structured and unstructured grids, and through computer applications that allow for interactive querying of material properties. The Southern California Earthquake Center (SCEC) has developed the Unified Community Velocity Model (UCVM) software framework to facilitate the registration and distribution of existing and future seismic velocity models to the SCEC community. The UCVM software framework is designed to provide a standard query interface to multiple, alternative velocity models, even if the underlying velocity models are defined in different formats or use different geographic projections. The UCVM framework provides a comprehensive set of open-source tools for querying seismic velocity model properties, combining regional 3D models and 1D background models, visualizing 3D models, and generating computational models in the form of regular grids or unstructured meshes that can be used as inputs for ground-motion simulations. The UCVM framework helps researchers compare seismic velocity models and build equivalent simulation meshes from alternative velocity models. These capabilities enable researchers to evaluate the impact of alternative velocity models in ground-motion simulations and seismic hazard analysis applications. In this poster, we summarize the key components of the UCVM framework and describe the impact it has had in various computational geoscientific applications.
Natural variability of marine ecosystems inferred from a coupled climate to ecosystem simulation
NASA Astrophysics Data System (ADS)
Le Mézo, Priscilla; Lefort, Stelly; Séférian, Roland; Aumont, Olivier; Maury, Olivier; Murtugudde, Raghu; Bopp, Laurent
2016-01-01
This modeling study analyzes the simulated natural variability of pelagic ecosystems in the North Atlantic and North Pacific. Our model system includes a global Earth System Model (IPSL-CM5A-LR), the biogeochemical model PISCES and the ecosystem model APECOSM that simulates upper trophic level organisms using a size-based approach and three interactive pelagic communities (epipelagic, migratory and mesopelagic). Analyzing an idealized (e.g., no anthropogenic forcing) 300-yr long pre-industrial simulation, we find that low and high frequency variability is dominant for the large and small organisms, respectively. Our model shows that the size-range exhibiting the largest variability at a given frequency, defined as the resonant range, also depends on the community. At a given frequency, the resonant range of the epipelagic community includes larger organisms than that of the migratory community and similarly, the latter includes larger organisms than the resonant range of the mesopelagic community. This study shows that the simulated temporal variability of marine pelagic organisms' abundance is not only influenced by natural climate fluctuations but also by the structure of the pelagic community. As a consequence, the size- and community-dependent response of marine ecosystems to climate variability could impact the sustainability of fisheries in a warming world.
MASTODON: A geosciences simulation tool built using the open-source framework MOOSE
NASA Astrophysics Data System (ADS)
Slaughter, A.
2017-12-01
The Department of Energy (DOE) is currently investing millions of dollars annually into various modeling and simulation tools for all aspects of nuclear energy. An important part of this effort includes developing applications based on the open-source Multiphysics Object Oriented Simulation Environment (MOOSE; mooseframework.org) from Idaho National Laboratory (INL).Thanks to the efforts of the DOE and outside collaborators, MOOSE currently contains a large set of physics modules, including phase field, level set, heat conduction, tensor mechanics, Navier-Stokes, fracture (extended finite-element method), and porous media, among others. The tensor mechanics and contact modules, in particular, are well suited for nonlinear geosciences problems. Multi-hazard Analysis for STOchastic time-DOmaiN phenomena (MASTODON; https://seismic-research.inl.gov/SitePages/Mastodon.aspx)--a MOOSE-based application--is capable of analyzing the response of 3D soil-structure systems to external hazards with current development focused on earthquakes. It is capable of simulating seismic events and can perform extensive "source-to-site" simulations including earthquake fault rupture, nonlinear wave propagation, and nonlinear soil-structure interaction analysis. MASTODON also includes a dynamic probabilistic risk assessment capability that enables analysts to not only perform deterministic analyses, but also easily perform probabilistic or stochastic simulations for the purpose of risk assessment. Although MASTODON has been developed for the nuclear industry, it can be used to assess the risk for any structure subjected to earthquakes.The geosciences community can learn from the nuclear industry and harness the enormous effort underway to build simulation tools that are open, modular, and share a common framework. In particular, MOOSE-based multiphysics solvers are inherently parallel, dimension agnostic, adaptive in time and space, fully coupled, and capable of interacting with other applications. The geosciences community could benefit from existing tools by enabling collaboration between researchers and practitioners throughout the world and advance the state-of-the-art in line with other scientific research efforts.
Waterborne Disease Case Investigation: Public Health Nursing Simulation.
Alexander, Gina K; Canclini, Sharon B; Fripp, Jon; Fripp, William
2017-01-01
The lack of safe drinking water is a significant public health threat worldwide. Registered nurses assess the physical environment, including the quality of the water supply, and apply environmental health knowledge to reduce environmental exposures. The purpose of this research brief is to describe a waterborne disease simulation for students enrolled in a public health nursing (PHN) course. A total of 157 undergraduate students completed the simulation in teams, using the SBAR (Situation-Background-Assessment-Recommendation) reporting tool. Simulation evaluation consisted of content analysis of the SBAR tools and debriefing notes. Student teams completed the simulation and articulated the implications for PHN practice. Student teams discussed assessment findings and primarily recommended four nursing interventions: health teaching focused on water, sanitation, and hygiene; community organizing; collaboration; and advocacy to ensure a safe water supply. With advanced planning and collaboration with partners, waterborne disease simulation may enhance PHN education. [J Nurs Educ. 2017;56(1):39-42.]. Copyright 2017, SLACK Incorporated.
A web portal for hydrodynamical, cosmological simulations
NASA Astrophysics Data System (ADS)
Ragagnin, A.; Dolag, K.; Biffi, V.; Cadolle Bel, M.; Hammer, N. J.; Krukau, A.; Petkova, M.; Steinborn, D.
2017-07-01
This article describes a data centre hosting a web portal for accessing and sharing the output of large, cosmological, hydro-dynamical simulations with a broad scientific community. It also allows users to receive related scientific data products by directly processing the raw simulation data on a remote computing cluster. The data centre has a multi-layer structure: a web portal, a job control layer, a computing cluster and a HPC storage system. The outer layer enables users to choose an object from the simulations. Objects can be selected by visually inspecting 2D maps of the simulation data, by performing highly compounded and elaborated queries or graphically by plotting arbitrary combinations of properties. The user can run analysis tools on a chosen object. These services allow users to run analysis tools on the raw simulation data. The job control layer is responsible for handling and performing the analysis jobs, which are executed on a computing cluster. The innermost layer is formed by a HPC storage system which hosts the large, raw simulation data. The following services are available for the users: (I) CLUSTERINSPECT visualizes properties of member galaxies of a selected galaxy cluster; (II) SIMCUT returns the raw data of a sub-volume around a selected object from a simulation, containing all the original, hydro-dynamical quantities; (III) SMAC creates idealized 2D maps of various, physical quantities and observables of a selected object; (IV) PHOX generates virtual X-ray observations with specifications of various current and upcoming instruments.
NAS (Numerical Aerodynamic Simulation Program) technical summaries, March 1989 - February 1990
NASA Technical Reports Server (NTRS)
1990-01-01
Given here are selected scientific results from the Numerical Aerodynamic Simulation (NAS) Program's third year of operation. During this year, the scientific community was given access to a Cray-2 and a Cray Y-MP supercomputer. Topics covered include flow field analysis of fighter wing configurations, large-scale ocean modeling, the Space Shuttle flow field, advanced computational fluid dynamics (CFD) codes for rotary-wing airloads and performance prediction, turbulence modeling of separated flows, airloads and acoustics of rotorcraft, vortex-induced nonlinearities on submarines, and standing oblique detonation waves.
Virtual community centre for power wheelchair training: Experience of children and clinicians.
Torkia, Caryne; Ryan, Stephen E; Reid, Denise; Boissy, Patrick; Lemay, Martin; Routhier, François; Contardo, Resi; Woodhouse, Janet; Archambault, Phillipe S
2017-11-02
To: 1) characterize the overall experience in using the McGill immersive wheelchair - community centre (miWe-CC) simulator; and 2) investigate the experience of presence (i.e., sense of being in the virtual rather than in the real, physical environment) while driving a PW in the miWe-CC. A qualitative research design with structured interviews was used. Fifteen clinicians and 11 children were interviewed after driving a power wheelchair (PW) in the miWe-CC simulator. Data were analyzed using the conventional and directed content analysis approaches. Overall, participants enjoyed using the simulator and experienced a sense of presence in the virtual space. They felt a sense of being in the virtual environment, involved and focused on driving the virtual PW rather than on the surroundings of the actual room where they were. Participants reported several similarities between the virtual community centre layout and activities of the miWe-CC and the day-to-day reality of paediatric PW users. The simulator replicated participants' expectations of real-life PW use and promises to have an effect on improving the driving skills of new PW users. Implications for rehabilitation Among young users, the McGill immersive wheelchair (miWe) simulator provides an experience of presence within the virtual environment. This experience of presence is generated by a sense of being in the virtual scene, a sense of being involved, engaged, and focused on interacting within the virtual environment, and by the perception that the virtual environment is consistent with the real world. The miWe is a relevant and accessible approach, complementary to real world power wheelchair training for young users.
Evaluation of the Snow Simulations from the Community Land Model, Version 4 (CLM4)
NASA Technical Reports Server (NTRS)
Toure, Ally M.; Rodell, Matthew; Yang, Zong-Liang; Beaudoing, Hiroko; Kim, Edward; Zhang, Yongfei; Kwon, Yonghwan
2015-01-01
This paper evaluates the simulation of snow by the Community Land Model, version 4 (CLM4), the land model component of the Community Earth System Model, version 1.0.4 (CESM1.0.4). CLM4 was run in an offline mode forced with the corrected land-only replay of the Modern-Era Retrospective Analysis for Research and Applications (MERRA-Land) and the output was evaluated for the period from January 2001 to January 2011 over the Northern Hemisphere poleward of 30 deg N. Simulated snow-cover fraction (SCF), snow depth, and snow water equivalent (SWE) were compared against a set of observations including the Moderate Resolution Imaging Spectroradiometer (MODIS) SCF, the Interactive Multisensor Snow and Ice Mapping System (IMS) snow cover, the Canadian Meteorological Centre (CMC) daily snow analysis products, snow depth from the National Weather Service Cooperative Observer (COOP) program, and Snowpack Telemetry (SNOTEL) SWE observations. CLM4 SCF was converted into snow-cover extent (SCE) to compare with MODIS SCE. It showed good agreement, with a correlation coefficient of 0.91 and an average bias of -1.54 x 10(exp 2) sq km. Overall, CLM4 agreed well with IMS snow cover, with the percentage of correctly modeled snow-no snow being 94%. CLM4 snow depth and SWE agreed reasonably well with the CMC product, with the average bias (RMSE) of snow depth and SWE being 0.044m (0.19 m) and -0.010m (0.04 m), respectively. CLM4 underestimated SNOTEL SWE and COOP snow depth. This study demonstrates the need to improve the CLM4 snow estimates and constitutes a benchmark against which improvement of the model through data assimilation can be measured.
Xu, Xiang-Yang; Feng, Li-Juan; Zhu, Liang; Xu, Jing; Ding, Wei; Qi, Han-Ying
2012-06-01
The start-up pattern of biofilm remediation system affects the biofilm characteristics and operating performances. The objective of this study was to evaluate the performances of the contaminated source water remediation systems with different start-up patterns in view of the pollutants removal performances and microbial community succession. The operating performances of four lab-scale simulated river biofilm reactors were examined which employed different start-up methods (natural enrichment and artificial enhancement via discharging sediment with influent velocity gradient increase) and different bio-fillers (Elastic filler and AquaMats® ecobase). At the same time, the microbial communities of the bioreactors in different phases were analyzed by polymerase chain reaction, denaturing gradient gel electrophoresis, and sequencing. The pollutants removal performances became stable in the four reactors after 2 months' operation, with ammonia nitrogen and permanganate index (COD(Mn)) removal efficiencies of 84.41-94.21% and 69.66-76.60%, respectively. The biomass of mature biofilm was higher in the bioreactors by artificial enhancement than that by natural enrichment. Microbial community analysis indicated that elastic filler could enrich mature biofilm faster than AquaMats®. The heterotrophic bacteria diversity of biofilm decreased by artificial enhancement, which favored the ammonia-oxidizing bacteria (AOB) developing on the bio-fillers. Furthermore, Nitrosomonas- and Nitrosospira-like AOB coexisted in the biofilm, and Pseudomonas sp., Sphaerotilus sp., Janthinobacterium sp., Corynebacterium aurimucosum were dominant in the oligotrophic niche. Artificial enhancement via the combination of sediment discharging and influent velocity gradient increasing could enhance the biofilm formation and autotrophic AOB enrichment in oligotrophic niche.
Lubbers, Jaclynn; Rossman, Carol
2016-04-01
Simulation in nursing education is a means to transform student learning and respond to decreasing clinical site availability. This study proposed an innovative simulation experience where students completed community based clinical hours with simulation scenarios. The purpose of this study was to determine the effects of a pediatric community simulation experience on the self-confidence of nursing students. Bandura's (1977) Self-Efficacy Theory and Jeffries' (2005) Nursing Education Simulation Framework were used. This quasi-experimental study collected data using a pre-test and posttest tool. The setting was a private, liberal arts college in the Midwestern United States. Fifty-four baccalaureate nursing students in a convenience sample were the population of interest. The sample was predominantly female with very little exposure to simulation prior to this study. The participants completed a 16-item self-confidence instrument developed for this study which measured students' self-confidence in pediatric community nursing knowledge, skill, communication, and documentation. The overall study showed statistically significant results (t=20.70, p<0.001) and statistically significant results within each of the eight 4-item sub-scales (p<0.001). Students also reported a high level of satisfaction with their simulation experience. The data demonstrate that students who took the Pediatric Community Based Simulation course reported higher self-confidence after the course than before the course. Higher self-confidence scores for simulation participants have been shown to increase quality of care for patients. Copyright © 2016 Elsevier Ltd. All rights reserved.
Peinetti, H.R.; Baker, B.W.; Coughenour, M.B.
2009-01-01
Beaver-willow (Castor-Salix) communities are a unique and vital component of healthy wetlands throughout the Holarctic region. Beaver selectively forage willow to provide fresh food, stored winter food, and construction material. The effects of this complex foraging behavior on the structure and function of willow communities is poorly understood. Simulation modeling may help ecologists understand these complex interactions. In this study, a modified version of the SAVANNA ecosystem model was developed to better understand how beaver foraging affects the structure and function of a willow community in a simulated riparian ecosystem in Rocky Mountain National Park, Colorado (RMNP). The model represents willow in terms of plant and stem dynamics and beaver foraging in terms of the quantity and quality of stems cut to meet the energetic and life history requirements of beaver. Given a site where all stems were equally available, the model suggested a simulated beaver family of 2 adults, 2 yearlings, and 2 kits required a minimum of 4 ha of willow (containing about10 stems m-2) to persist in a steady-state condition. Beaver created a willow community where the annual net primary productivity (ANPP) was 2 times higher and plant architecture was more diverse than the willow community without beaver. Beaver foraging created a plant architecture dominated by medium size willow plants, which likely explains how beaver can increase ANPP. Long-term simulations suggested that woody biomass stabilized at similar values even though availability differed greatly at initial condition. Simulations also suggested that willow ANPP increased across a range of beaver densities until beaver became food limited. Thus, selective foraging by beaver increased productivity, decreased biomass, and increased structural heterogeneity in a simulated willow community.
2009-02-01
Simulation Business Plan, 2007 Edition Volume I: Review of Training Capabilities J.D. Fletcher, IDA Frederick E. Hartman , IDA Robert Halayko, Addx Corp...Community Modeling and Simulation Business Plan, 2007 Edition Volume I: Review of Training Capabilities J.D. Fletcher, IDA Frederick E. Hartman , IDA...Steering Committee for the training community led by the Office of the Under Secretary of Defense (Personnel and Readiness), OUSD( P &R). The task was
Software Development Processes Applied to Computational Icing Simulation
NASA Technical Reports Server (NTRS)
Levinson, Laurie H.; Potapezuk, Mark G.; Mellor, Pamela A.
1999-01-01
The development of computational icing simulation methods is making the transition form the research to common place use in design and certification efforts. As such, standards of code management, design validation, and documentation must be adjusted to accommodate the increased expectations of the user community with respect to accuracy, reliability, capability, and usability. This paper discusses these concepts with regard to current and future icing simulation code development efforts as implemented by the Icing Branch of the NASA Lewis Research Center in collaboration with the NASA Lewis Engineering Design and Analysis Division. With the application of the techniques outlined in this paper, the LEWICE ice accretion code has become a more stable and reliable software product.
1998-04-01
Members (ADFM); 3,182 retirees; 5,064 family members of retired military; and 846 survivors (TDA, 1997). The Active Duty population artificially includes...that real- world casualty collection, evacuation, and treatment is conducted seamlessly while simulated medical processes are conducted intelligently ...Strategie Analysis 34 BJACH METL +Provide quality, cost-effective healthcare to the nation’s soldiers, their families, and to retirees and their families
This paper presents an analysis of the CMAQ v4.5 model performance for particulate matter and its chemical components for the simulated year 2001. This is part two is two part series of papers that examines the model performance of CMAQ v4.5.
An Analysis of Closed-Loop Detailing in the Naval Helicopter Community
2014-03-01
and uncanny ability to do it all allowed me the time and focus to accomplish this task. I am truly blessed to always have you by my side. xv THIS...Objective Reviews (LOR), exams, and oral boards. Simulator and flight training involves a program of flight cards to be completed by the trainee. Each
Schneider, Eric C.; Volk, Lynn A.; Szolovits, Peter; Salzberg, Claudia A.; Simon, Steven R.; Bates, David W.
2013-01-01
Substantial resources are being invested in health information exchanges (HIE), community-based consortia that enable independent health-care organizations to exchange clinical data. However, under pressure to form accountable care organizations, medical groups may merge and support private HIE, reducing the potential utility of community HIEs. Simulations of “care transitions” based on data from 10 Massachusetts communities suggest that mergers would have to be considerable to substantially reduce the potential utility of an HIE. Nonetheless, simulations also suggest that HIEs will need to recruit a large proportion of the medical groups in a community, as hospitals and the largest groups account for only 10 to 20% of care transitions in communities. PMID:22392665
Mangado, Nerea; Piella, Gemma; Noailly, Jérôme; Pons-Prats, Jordi; Ballester, Miguel Ángel González
2016-01-01
Computational modeling has become a powerful tool in biomedical engineering thanks to its potential to simulate coupled systems. However, real parameters are usually not accurately known, and variability is inherent in living organisms. To cope with this, probabilistic tools, statistical analysis and stochastic approaches have been used. This article aims to review the analysis of uncertainty and variability in the context of finite element modeling in biomedical engineering. Characterization techniques and propagation methods are presented, as well as examples of their applications in biomedical finite element simulations. Uncertainty propagation methods, both non-intrusive and intrusive, are described. Finally, pros and cons of the different approaches and their use in the scientific community are presented. This leads us to identify future directions for research and methodological development of uncertainty modeling in biomedical engineering. PMID:27872840
Mangado, Nerea; Piella, Gemma; Noailly, Jérôme; Pons-Prats, Jordi; Ballester, Miguel Ángel González
2016-01-01
Computational modeling has become a powerful tool in biomedical engineering thanks to its potential to simulate coupled systems. However, real parameters are usually not accurately known, and variability is inherent in living organisms. To cope with this, probabilistic tools, statistical analysis and stochastic approaches have been used. This article aims to review the analysis of uncertainty and variability in the context of finite element modeling in biomedical engineering. Characterization techniques and propagation methods are presented, as well as examples of their applications in biomedical finite element simulations. Uncertainty propagation methods, both non-intrusive and intrusive, are described. Finally, pros and cons of the different approaches and their use in the scientific community are presented. This leads us to identify future directions for research and methodological development of uncertainty modeling in biomedical engineering.
Activity and stability of a complex bacterial soil community under simulated Martian conditions
NASA Astrophysics Data System (ADS)
Hansen, Aviaja Anna; Merrison, Jonathan; Nørnberg, Per; Aagaard Lomstein, Bente; Finster, Kai
2005-04-01
A simulation experiment with a complex bacterial soil community in a Mars simulation chamber was performed to determine the effect of Martian conditions on community activity, stability and survival. At three different depths in the soil core short-term effects of Martian conditions with and without ultraviolet (UV) exposure corresponding to 8 Martian Sol were compared. Community metabolic activities and functional diversity, measured as glucose respiration and versatility in substrate utilization, respectively, decreased after UV exposure, whereas they remained unaffected by Martian conditions without UV exposure. In contrast, the numbers of culturable bacteria and the genetic diversity were unaffected by the simulated Martian conditions both with and without UV exposure. The genetic diversity of the soil community and of the colonies grown on agar plates were evaluated by denaturant gradient gel electrophoresis (DGGE) on DNA extracts. Desiccation of the soil prior to experimentation affected the functional diversity by decreasing the versatility in substrate utilization. The natural dominance of endospores and Gram-positive bacteria in the investigated Mars-analogue soil may explain the limited effect of the Mars incubations on the survival and community structure. Our results suggest that UV radiation and desiccation are major selecting factors on bacterial functional diversity in terrestrial bacterial communities incubated under simulated Martian conditions. Furthermore, these results suggest that forward contamination of Mars is a matter of great concern in future space missions.
Network Analysis on Attitudes: A Brief Tutorial.
Dalege, Jonas; Borsboom, Denny; van Harreveld, Frenk; van der Maas, Han L J
2017-07-01
In this article, we provide a brief tutorial on the estimation, analysis, and simulation on attitude networks using the programming language R. We first discuss what a network is and subsequently show how one can estimate a regularized network on typical attitude data. For this, we use open-access data on the attitudes toward Barack Obama during the 2012 American presidential election. Second, we show how one can calculate standard network measures such as community structure, centrality, and connectivity on this estimated attitude network. Third, we show how one can simulate from an estimated attitude network to derive predictions from attitude networks. By this, we highlight that network theory provides a framework for both testing and developing formalized hypotheses on attitudes and related core social psychological constructs.
Borsboom, Denny; van Harreveld, Frenk; van der Maas, Han L. J.
2017-01-01
In this article, we provide a brief tutorial on the estimation, analysis, and simulation on attitude networks using the programming language R. We first discuss what a network is and subsequently show how one can estimate a regularized network on typical attitude data. For this, we use open-access data on the attitudes toward Barack Obama during the 2012 American presidential election. Second, we show how one can calculate standard network measures such as community structure, centrality, and connectivity on this estimated attitude network. Third, we show how one can simulate from an estimated attitude network to derive predictions from attitude networks. By this, we highlight that network theory provides a framework for both testing and developing formalized hypotheses on attitudes and related core social psychological constructs. PMID:28919944
Xiao, Meng; Sun, Shan-Shan; Zhang, Zhong-Zhi; Wang, Jun-Ming; Qiu, Long-Wei; Sun, Hua-Yang; Song, Zhao-Zheng; Zhang, Bei-Yu; Gao, De-Li; Zhang, Guang-Qing; Wu, Wei-Min
2016-01-20
The community diversities of two oil reservoirs with low permeability of 1.81 × 10(-3) and 2.29 × 10(-3) μm(2) in Changqing, China, were investigated using a high throughput sequencing technique to analyze the influence of biostimulation with a nutrient activator on the bacterial communities. These two blocks differed significantly in salinity (average 17,500 vs 40,900 mg/L). A core simulation test was used to evaluate the effectiveness of indigenous microbial-enhanced oil recovery (MEOR). The results indicated that in the two high salinity oil reservoirs, one reservoir having relatively lower salinity level and a narrow salinity range had higher bacterial and phylogenetic diversity. The addition of the nutrient activator increased the diversity of the bacterial community structure and the diversity differences between the two blocks. The results of the core simulation test showed that the bacterial community in the reservoir with a salinity level of 17,500 mg/L did not show significant higher MEOR efficiency compared with the reservoir with 40,900 mg/L i.e. MEOR efficiency of 8.12% vs 6.56% (test p = 0.291 > 0.05). Therefore, salinity levels affected the bacterial diversities in the two low permeability oil blocks remarkably. But the influence of salinity for the MEOR recovery was slightly.
Spinello, Elio F; Fischbach, Ronald
2008-01-01
This study investigated the use of a Web-based community health simulation as a problem-based learning (PBL) experience for undergraduate students majoring in public health. The study sought to determine whether students who participated in the online simulation achieved differences in academic and attitudinal outcomes compared with students who participated in a traditional PBL exercise. Using a nonexperimental comparative design, 21 undergraduate students enrolled in a health-behavior course were each randomly assigned to one of four workgroups. Each workgroup was randomly assigned the semester-long simulation project or the traditional PBL exercise. Survey instruments were used to measure students' attitudes toward the course, their perceptions of the learning community, and perceptions of their own cognitive learning. Content analysis of final essay exams and group reports was used to identify differences in academic outcomes and students' level of conceptual understanding of health-behavior theory. Findings indicated that students participating in the simulation produced higher mean final exam scores compared with students participating in the traditional PBL (p=0.03). Students in the simulation group also outperformed students in the traditional group with respect to their understanding of health-behavior theory (p=0.04). Students in the simulation group, however, rated their own level of cognitive learning lower than did students in the traditional group (p=0.03). By bridging time and distance constraints of the traditional classroom setting, an online simulation may be an effective PBL approach for public health students. Recommendations include further research using a larger sample to explore students' perceptions of learning when participating in simulated real-world activities. Additional research focusing on possible differences between actual and perceived learning relative to PBL methods and student workgroup dynamics is also recommended.
Billings, Jay Jay; Deyton, Jordan H.; Forest Hull, S.; ...
2015-07-17
Building new fission reactors in the United States presents many technical and regulatory challenges. Chief among the technical challenges is the need to share and present results from new high- fidelity, high- performance simulations in an easily consumable way. In light of the modern multi-scale, multi-physics simulations can generate petabytes of data, this will require the development of new techniques and methods to reduce the data to familiar quantities of interest with a more reasonable resolution and size. Furthermore, some of the results from these simulations may be new quantities for which visualization and analysis techniques are not immediately availablemore » in the community and need to be developed. Our paper describes a new system for managing high-performance simulation results in a domain-specific way that naturally exposes quantities of interest for light water and sodium-cooled fast reactors. It enables easy qualitative and quantitative comparisons between simulation results with a graphical user interface and cross-platform, multi-language input- output libraries for use by developers to work with the data. One example comparing results from two different simulation suites for a single assembly in a light-water reactor is presented along with a detailed discussion of the system s requirements and design.« less
NASA Astrophysics Data System (ADS)
Mas, E.; Takagi, H.; Adriano, B.; Hayashi, S.; Koshimura, S.
2014-12-01
The 2011 Great East Japan earthquake and tsunami reminded that nature can exceed structural countermeasures like seawalls, breakwaters or tsunami gates. In such situations it is a challenging task for people to find nearby haven. This event, as many others before, confirmed the importance of early evacuation, tsunami awareness and the need for developing much more resilient communities with effective evacuation plans. To support reconstruction activities and efforts on developing resilient communities in areas at risk, tsunami evacuation simulation can be applied to tsunami mitigation and evacuation planning. In this study, using the compiled information related to the evacuation behavior at Yuriage in Natori during the 2011 tsunami, we simulated the evacuation process and explored the reasons for the large number of fatalities in the area. It was found that residents did evacuate to nearby shelter areas, however after the tsunami warning was increased some evacuees decided to conduct a second step evacuation to a far inland shelter. Simulation results show the consequences of such decision and the outcomes when a second evacuation would not have been performed. The actual reported number of fatalities in the event and the results from simulation are compared to verify the model. The case study shows the contribution of tsunami evacuation models as tools to be applied for the analysis of evacuees' decisions and the related outcomes. In addition, future evacuation plans and activities for reconstruction process and urban planning can be supported by the results provided from this kind of tsunami evacuation models.
Croft, Hayley; Gilligan, Conor; Rasiah, Rohan; Levett-Jones, Tracy; Schneider, Jennifer
2017-01-01
Medication review and supply by pharmacists involves both cognitive and technical skills related to the safety and appropriateness of prescribed medicines. The cognitive ability of pharmacists to recall, synthesise and memorise information is a critical aspect of safe and optimal medicines use, yet few studies have investigated the clinical reasoning and decision-making processes pharmacists use when supplying prescribed medicines. The objective of this study was to examine the patterns and processes of pharmacists’ clinical reasoning and to identify the information sources used, when making decisions about the safety and appropriateness of prescribed medicines. Ten community pharmacists participated in a simulation in which they were required to review a prescription and make decisions about the safety and appropriateness of supplying the prescribed medicines to the patient, whilst at the same time thinking aloud about the tasks required. Following the simulation each pharmacist was asked a series of questions to prompt retrospective thinking aloud using video-stimulated recall. The simulated consultation and retrospective interview were recorded and transcribed for thematic analysis. All of the pharmacists made a safe and appropriate supply of two prescribed medicines to the simulated patient. Qualitative analysis identified seven core thinking processes used during the supply process: considering prescription in context, retrieving information, identifying medication-related issues, processing information, collaborative planning, decision making and reflection; and align closely with other health professionals. The insights from this study have implications for enhancing awareness of decision making processes in pharmacy practice and informing teaching and assessment approaches in medication supply. PMID:29301223
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Maoyi; Hou, Zhangshuan; Leung, Lai-Yung R.
2013-12-01
With the emergence of earth system models as important tools for understanding and predicting climate change and implications to mitigation and adaptation, it has become increasingly important to assess the fidelity of the land component within earth system models to capture realistic hydrological processes and their response to the changing climate and quantify the associated uncertainties. This study investigates the sensitivity of runoff simulations to major hydrologic parameters in version 4 of the Community Land Model (CLM4) by integrating CLM4 with a stochastic exploratory sensitivity analysis framework at 20 selected watersheds from the Model Parameter Estimation Experiment (MOPEX) spanning amore » wide range of climate and site conditions. We found that for runoff simulations, the most significant parameters are those related to the subsurface runoff parameterizations. Soil texture related parameters and surface runoff parameters are of secondary significance. Moreover, climate and soil conditions play important roles in the parameter sensitivity. In general, site conditions within water-limited hydrologic regimes and with finer soil texture result in stronger sensitivity of output variables, such as runoff and its surface and subsurface components, to the input parameters in CLM4. This study demonstrated the feasibility of parameter inversion for CLM4 using streamflow observations to improve runoff simulations. By ranking the significance of the input parameters, we showed that the parameter set dimensionality could be reduced for CLM4 parameter calibration under different hydrologic and climatic regimes so that the inverse problem is less ill posed.« less
Croft, Hayley; Gilligan, Conor; Rasiah, Rohan; Levett-Jones, Tracy; Schneider, Jennifer
2017-12-31
Medication review and supply by pharmacists involves both cognitive and technical skills related to the safety and appropriateness of prescribed medicines. The cognitive ability of pharmacists to recall, synthesise and memorise information is a critical aspect of safe and optimal medicines use, yet few studies have investigated the clinical reasoning and decision-making processes pharmacists use when supplying prescribed medicines. The objective of this study was to examine the patterns and processes of pharmacists' clinical reasoning and to identify the information sources used, when making decisions about the safety and appropriateness of prescribed medicines. Ten community pharmacists participated in a simulation in which they were required to review a prescription and make decisions about the safety and appropriateness of supplying the prescribed medicines to the patient, whilst at the same time thinking aloud about the tasks required. Following the simulation each pharmacist was asked a series of questions to prompt retrospective thinking aloud using video-stimulated recall. The simulated consultation and retrospective interview were recorded and transcribed for thematic analysis. All of the pharmacists made a safe and appropriate supply of two prescribed medicines to the simulated patient. Qualitative analysis identified seven core thinking processes used during the supply process: considering prescription in context, retrieving information, identifying medication-related issues, processing information, collaborative planning, decision making and reflection; and align closely with other health professionals. The insights from this study have implications for enhancing awareness of decision making processes in pharmacy practice and informing teaching and assessment approaches in medication supply.
NASA Astrophysics Data System (ADS)
Xu, X.; Song, C.; Wang, Y.; Ricciuto, D. M.; Lipson, D.; Shi, X.; Zona, D.; Song, X.; Yuan, F.; Oechel, W. C.; Thornton, P. E.
2017-12-01
A microbial model is introduced for simulating microbial mechanisms controlling soil carbon and nitrogen biogeochemical cycling and methane fluxes. The model is built within the CN (carbon-nitrogen) framework of Community Land Model 4.5, named as CLM-Microbe to emphasize its explicit representation of microbial mechanisms to biogeochemistry. Based on the CLM4.5, three new pools were added: bacteria, fungi, and dissolved organic matter. It has 11 pools and 34 transitional processes, compared with 8 pools and 9 transitional flow in the CLM4.5. The dissolve organic carbon was linked with a new microbial functional group based methane module to explicitly simulate methane production, oxidation, transport and their microbial controls. Comparing with CLM4.5-CN, the CLM-Microbe model has a number of new features, (1) microbial control on carbon and nitrogen flows between soil carbon/nitrogen pools; (2) an implicit representation of microbial community structure as bacteria and fungi; (3) a microbial functional-group based methane module. The model sensitivity analysis suggests the importance of microbial carbon allocation parameters on soil biogeochemistry and microbial controls on methane dynamics. Preliminary simulations validate the model's capability for simulating carbon and nitrogen dynamics and methane at a number of sites across the globe. The regional application to Asia has verified the model in simulating microbial mechanisms in controlling methane dynamics at multiple scales.
Marzorati, Massimo; Maignien, Lois; Verhelst, An; Luta, Gabriela; Sinnott, Robert; Kerckhof, Frederiek Maarten; Boon, Nico; Van de Wiele, Tom; Possemiers, Sam
2013-02-01
The combination of a Simulator of the Human Intestinal Microbial Ecosystem with ad hoc molecular techniques (i.e. pyrosequencing, denaturing gradient gel electrophoresis and quantitative PCR) allowed an evaluation of the extent to which two plant polysaccharide supplements could modify a complex gut microbial community. The presence of Aloe vera gel powder and algae extract in product B as compared to the standard blend (product A) improved its fermentation along the entire simulated colon. The potential extended effect of product B in the simulated distal colon, as compared to product A, was confirmed by: (i) the separate clustering of the samples before and after the treatment in the phylogenetic-based dendrogram and OTU-based PCoA plot only for product B; (ii) a higher richness estimator (+33 vs. -36 % of product A); and (iii) a higher dynamic parameter (21 vs. 13 %). These data show that the combination of well designed in vitro simulators with barcoded pyrosequencing is a powerful tool for characterizing changes occurring in the gut microbiota following a treatment. However, for the quantification of low-abundance species-of interest because of their relationship to potential positive health effects (i.e. bifidobacteria or lactobacilli)-conventional molecular ecological approaches, such as PCR-DGGE and qPCR, still remain a very useful complementary tool.
Building a Community in Our Classroom: The Story of Bat Town, U.S.A.
ERIC Educational Resources Information Center
Keech, Andrea McGann
2001-01-01
Describes a simulation called, "Classroom City," used by elementary students to learn about communities. Focuses on the students' own simulated city named Bat Town, U.S.A. Discusses the project in detail. Describes the activities children participated in and the roles they assumed during the simulation. (CMK)
NASA Astrophysics Data System (ADS)
Cofino, A. S.; Fernández Quiruelas, V.; Blanco Real, J. C.; García Díez, M.; Fernández, J.
2013-12-01
Nowadays Grid Computing is powerful computational tool which is ready to be used for scientific community in different areas (such as biomedicine, astrophysics, climate, etc.). However, the use of this distributed computing infrastructures (DCI) is not yet common practice in climate research, and only a few teams and applications in this area take advantage of this infrastructure. Thus, the WRF4G project objective is to popularize the use of this technology in the atmospheric sciences area. In order to achieve this objective, one of the most used applications has been taken (WRF; a limited- area model, successor of the MM5 model), that has a user community formed by more than 8000 researchers worldwide. This community develop its research activity on different areas and could benefit from the advantages of Grid resources (case study simulations, regional hind-cast/forecast, sensitivity studies, etc.). The WRF model is used by many groups, in the climate research community, to carry on downscaling simulations. Therefore this community will also benefit. However, Grid infrastructures have some drawbacks for the execution of applications that make an intensive use of CPU and memory for a long period of time. This makes necessary to develop a specific framework (middleware). This middleware encapsulates the application and provides appropriate services for the monitoring and management of the simulations and the data. Thus,another objective of theWRF4G project consists on the development of a generic adaptation of WRF to DCIs. It should simplify the access to the DCIs for the researchers, and also to free them from the technical and computational aspects of the use of theses DCI. Finally, in order to demonstrate the ability of WRF4G solving actual scientific challenges with interest and relevance on the climate science (implying a high computational cost) we will shown results from different kind of downscaling experiments, like ERA-Interim re-analysis, CMIP5 models, or seasonal. WRF4G is been used to run WRF simulations which are contributing to the CORDEX initiative and others projects like SPECS and EUPORIAS. This work is been partially funded by the European Regional Development Fund (ERDF) and the Spanish National R&D Plan 2008-2011 (CGL2011-28864)
BERNHARDT, ANTONIA K.; BERGER, GREGORY; LEE, JAMES A.; REUTER, KEVIN; DAVANZO, JOAN; MONTGOMERY, ANNE; DOBSON, ALLEN
2016-01-01
Policy Points: At age 65, the average man and woman can respectively expect 1.5 years and 2.5 years of requiring daily help with “activities of daily living.” Available services fail to match frail elders’ needs, thereby routinely generating errors, unreliability, unwanted services, unmet needs, and high costs.The number of elderly Medicare beneficiaries likely to be frail will triple between 2000 and 2050. Low retirement savings, rising medical and long‐term care costs, and declining family caregiver availability portend gaps in badly needed services.The financial simulation reported here for 4 diverse MediCaring Communities shows lower per capita costs. Program savings are substantial and can improve coverage and function of local supportive services within current overall Medicare spending levels. Context The Altarum Institute Center for Elder Care and Advanced Illness has developed a reform model, MediCaring Communities, to improve services for frail elderly Medicare beneficiaries through longitudinal care planning, better‐coordinated and more desirable medical and social services, and local monitoring and management of a community's quality and supply of services. This study uses financial simulation to determine whether communities could implement the model within current Medicare and Medicaid spending levels, an important consideration to enable development and broad implementation. Methods The financial simulation for MediCaring Communities uses 4 diverse communities chosen for adequate size, varying health care delivery systems, and ability to implement reforms and generate data rapidly: Akron, Ohio; Milwaukie, Oregon; northeastern Queens, New York; and Williamsburg, Virginia. For each community, leaders contributed baseline population and program effect estimates that reflected projections from reported research to build the model. Findings The simulation projected third‐year savings between $269 and $537 per beneficiary per month and cumulative returns on investment between 75% and 165%. Conclusions The MediCaring Communities financial simulation demonstrates that better care at lower cost for frail elderly Medicare beneficiaries is possible within current financing levels. Long‐term success of the initiative will require reinvestment of Medicare savings to bolster nonmedical supportive services in the community. Successful implementation will necessitate waiving certain regulations and developing new infrastructure in pilot communities. This financial simulation methodology will help leadership in other communities to project fiscal performance. Since the MediCaring Communities model also achieves the Centers for Medicare and Medicaid Services' vision for care for frail elders (better care, healthier people, smarter spending) and since these reforms can proceed with limited waivers from Medicare, willing communities should explore implementation and share best practices about how to achieve fundamental service delivery changes that can meet the challenges of a much older population in the 21st century. PMID:27378581
Bernhardt, Antonia K; Lynn, Joanne; Berger, Gregory; Lee, James A; Reuter, Kevin; Davanzo, Joan; Montgomery, Anne; Dobson, Allen
2016-09-01
At age 65, the average man and woman can respectively expect 1.5 years and 2.5 years of requiring daily help with "activities of daily living." Available services fail to match frail elders' needs, thereby routinely generating errors, unreliability, unwanted services, unmet needs, and high costs. The number of elderly Medicare beneficiaries likely to be frail will triple between 2000 and 2050. Low retirement savings, rising medical and long-term care costs, and declining family caregiver availability portend gaps in badly needed services. The financial simulation reported here for 4 diverse MediCaring Communities shows lower per capita costs. Program savings are substantial and can improve coverage and function of local supportive services within current overall Medicare spending levels. The Altarum Institute Center for Elder Care and Advanced Illness has developed a reform model, MediCaring Communities, to improve services for frail elderly Medicare beneficiaries through longitudinal care planning, better-coordinated and more desirable medical and social services, and local monitoring and management of a community's quality and supply of services. This study uses financial simulation to determine whether communities could implement the model within current Medicare and Medicaid spending levels, an important consideration to enable development and broad implementation. The financial simulation for MediCaring Communities uses 4 diverse communities chosen for adequate size, varying health care delivery systems, and ability to implement reforms and generate data rapidly: Akron, Ohio; Milwaukie, Oregon; northeastern Queens, New York; and Williamsburg, Virginia. For each community, leaders contributed baseline population and program effect estimates that reflected projections from reported research to build the model. The simulation projected third-year savings between $269 and $537 per beneficiary per month and cumulative returns on investment between 75% and 165%. The MediCaring Communities financial simulation demonstrates that better care at lower cost for frail elderly Medicare beneficiaries is possible within current financing levels. Long-term success of the initiative will require reinvestment of Medicare savings to bolster nonmedical supportive services in the community. Successful implementation will necessitate waiving certain regulations and developing new infrastructure in pilot communities. This financial simulation methodology will help leadership in other communities to project fiscal performance. Since the MediCaring Communities model also achieves the Centers for Medicare and Medicaid Services' vision for care for frail elders (better care, healthier people, smarter spending) and since these reforms can proceed with limited waivers from Medicare, willing communities should explore implementation and share best practices about how to achieve fundamental service delivery changes that can meet the challenges of a much older population in the 21st century. © 2016 Milbank Memorial Fund. Published by Wiley Periodicals Inc.
NASA Astrophysics Data System (ADS)
Law, Yuen C.; Tenbrinck, Daniel; Jiang, Xiaoyi; Kuhlen, Torsten
2014-03-01
Computer-assisted processing and interpretation of medical ultrasound images is one of the most challenging tasks within image analysis. Physical phenomena in ultrasonographic images, e.g., the characteristic speckle noise and shadowing effects, make the majority of standard methods from image analysis non optimal. Furthermore, validation of adapted computer vision methods proves to be difficult due to missing ground truth information. There is no widely accepted software phantom in the community and existing software phantoms are not exible enough to support the use of specific speckle models for different tissue types, e.g., muscle and fat tissue. In this work we propose an anatomical software phantom with a realistic speckle pattern simulation to _ll this gap and provide a exible tool for validation purposes in medical ultrasound image analysis. We discuss the generation of speckle patterns and perform statistical analysis of the simulated textures to obtain quantitative measures of the realism and accuracy regarding the resulting textures.
Ocean biogeochemistry modeled with emergent trait-based genomics
NASA Astrophysics Data System (ADS)
Coles, V. J.; Stukel, M. R.; Brooks, M. T.; Burd, A.; Crump, B. C.; Moran, M. A.; Paul, J. H.; Satinsky, B. M.; Yager, P. L.; Zielinski, B. L.; Hood, R. R.
2017-12-01
Marine ecosystem models have advanced to incorporate metabolic pathways discovered with genomic sequencing, but direct comparisons between models and “omics” data are lacking. We developed a model that directly simulates metagenomes and metatranscriptomes for comparison with observations. Model microbes were randomly assigned genes for specialized functions, and communities of 68 species were simulated in the Atlantic Ocean. Unfit organisms were replaced, and the model self-organized to develop community genomes and transcriptomes. Emergent communities from simulations that were initialized with different cohorts of randomly generated microbes all produced realistic vertical and horizontal ocean nutrient, genome, and transcriptome gradients. Thus, the library of gene functions available to the community, rather than the distribution of functions among specific organisms, drove community assembly and biogeochemical gradients in the model ocean.
WFIRST: STScI Science Operations Center (SSOC) Activities and Plans
NASA Astrophysics Data System (ADS)
Gilbert, Karoline M.; STScI WFIRST Team
2018-01-01
The science operations for the WFIRST Mission will be distributed between Goddard Space Flight Center, the Space Telescope Science Institute (STScI), and the Infrared Processing and Analysis Center (IPAC). The STScI Science Operations Center (SSOC) will schedule and archive all WFIRST observations, will calibrate and produce pipeline-reduced data products for the Wide Field Instrument, and will support the astronomical community in planning WFI observations and analyzing WFI data. During the formulation phase, WFIRST team members at STScI have developed operations concepts for scheduling, data management, and the archive; have performed technical studies investigating the impact of WFIRST design choices on data quality and analysis; and have built simulation tools to aid the community in exploring WFIRST’s capabilities. We will highlight examples of each of these efforts.
Human dynamic model co-driven by interest and social identity in the MicroBlog community
NASA Astrophysics Data System (ADS)
Yan, Qiang; Yi, Lanli; Wu, Lianren
2012-02-01
This paper analyzes the behavior of releasing messages in the MicroBlog community and presents a human dynamic model co-driven by interest and social identity. According to the empirical analysis and simulation results, the messaging interval distribution follows a power law, which is mainly influenced by the degree of users' interests. Meanwhile, social identity plays a significant role regarding the change of interests and may slow down the decline of the latter. A positive correlation between social identity and numbers of comments or forwarding of messages is illustrated. Besides, the analysis of data for each 24 h reveals obvious differences between micro-blogging and website visits, email, instant communication, and the use of mobile phones, reflecting how people use small amounts of time via mobile Internet technology.
Development of the ARISTOTLE webware for cloud-based rarefied gas flow modeling
NASA Astrophysics Data System (ADS)
Deschenes, Timothy R.; Grot, Jonathan; Cline, Jason A.
2016-11-01
Rarefied gas dynamics are important for a wide variety of applications. An improvement in the ability of general users to predict these gas flows will enable optimization of current, and discovery of future processes. Despite this potential, most rarefied simulation software is designed by and for experts in the community. This has resulted in low adoption of the methods outside of the immediate RGD community. This paper outlines an ongoing effort to create a rarefied gas dynamics simulation tool that can be used by a general audience. The tool leverages a direct simulation Monte Carlo (DSMC) library that is available to the entire community and a web-based simulation process that will enable all users to take advantage of high performance computing capabilities. First, the DSMC library and simulation architecture are described. Then the DSMC library is used to predict a number of representative transient gas flows that are applicable to the rarefied gas dynamics community. The paper closes with a summary and future direction.
NASA Technical Reports Server (NTRS)
Litt, Jonathan S. (Compiler)
2018-01-01
NASA Glenn Research Center hosted a Users' Workshop on the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) on August 21, 2017. The objective of this workshop was to update the user community on the latest features of T-MATS, and to provide a forum to present work performed using T-MATS. Presentations highlighted creative applications and the development of new features and libraries, and emphasized the flexibility and simulation power of T-MATS.
FAST Modularization Framework for Wind Turbine Simulation: Full-System Linearization
Jonkman, Jason M.; Jonkman, Bonnie J.
2016-10-03
The wind engineering community relies on multiphysics engineering software to run nonlinear time-domain simulations e.g. for design-standards-based loads analysis. Although most physics involved in wind energy are nonlinear, linearization of the underlying nonlinear system equations is often advantageous to understand the system response and exploit well-established methods and tools for analyzing linear systems. Here, this paper presents the development and verification of the new linearization functionality of the open-source engineering tool FAST v8 for land-based wind turbines, as well as the concepts and mathematical background needed to understand and apply it correctly.
FAST modularization framework for wind turbine simulation: full-system linearization
NASA Astrophysics Data System (ADS)
Jonkman, J. M.; Jonkman, B. J.
2016-09-01
The wind engineering community relies on multiphysics engineering software to run nonlinear time-domain simulations e.g. for design-standards-based loads analysis. Although most physics involved in wind energy are nonlinear, linearization of the underlying nonlinear system equations is often advantageous to understand the system response and exploit well- established methods and tools for analyzing linear systems. This paper presents the development and verification of the new linearization functionality of the open-source engineering tool FAST v8 for land-based wind turbines, as well as the concepts and mathematical background needed to understand and apply it correctly.
Computational analysis of hydrogenated graphyne folding
NASA Astrophysics Data System (ADS)
Lenear, Christopher; Becton, Matthew; Wang, Xianqiao
2016-02-01
This letter employs molecular mechanics simulations to analyze the geometric changes of foreign-atom-doped graphyne. Simulation results show that higher the density of dopant and the greater area covered by the dopant correlates to a greater folding angle of the graphyne sheet. Compared to graphene, graphyne folding could prove to be more effective for various nanodevices based on its unique band gap, especially when doped, and its tunable interactions with and absorption of foreign molecules. Therefore, our findings may offer unique perspectives into the development of novel graphyne-based nanodevices and stimulate the community's research interest in graphene-related origami.
Fienen, Michael N.; Saad, David A.; Juckem, Paul F.
2013-01-01
The shallow groundwater system in the Forest County Potawatomi Comminity, Forest County, Wisconsin, was simulated by expanding and recalibrating a previously calibrated regional model. The existing model was updated using newly collected water-level measurements, inclusion of surface-water features beyond the previous near-field boundary, and refinements to surface-water features. The updated model then was used to calculate the area contributing recharge for seven existing and three proposed pumping locations on lands of the Forest County Potawatomi Community. The existing wells were the subject of a 2004 source-water evaluation in which areas contributing recharge were calculated using the fixed-radius method. The motivation for the present (2012) project was to improve the level of detail of areas contributing recharge for the existing wells and to provide similar analysis for the proposed wells. Delineated 5- and 10-year areas contributing recharge for existing and proposed wells extend from the areas of pumping to delineate the area at the surface contributing recharge to the wells. Steady-state pumping was simulated for two scenarios: a base-pumping scenario using pumping rates that reflect what the Community currently (2012) pumps (or plans to in the case of proposed wells), and a high-pumping scenario in which the rate was set to the maximum expected from wells installed in this area, according to the Forest County Potawatomi Community Natural Resources Department. In general, the 10-year areas contributing recharge did not intersect surface-water bodies. The 5- and 10-year areas contributing recharge simulated at the maximum pumping rate at Bug Lake Road may intersect Bug Lake. At the casino near the Town of Carter, Wisconsin, the 10-year areas contributing recharge intersect infiltration ponds. At the Devils Lake and Lois Crow Drive wells, areas contributing recharge are near cultural features, including residences.
Blackwood, Christopher B; Hudleston, Deborah; Zak, Donald R; Buyer, Jeffrey S
2007-08-01
Ecological diversity indices are frequently applied to molecular profiling methods, such as terminal restriction fragment length polymorphism (T-RFLP), in order to compare diversity among microbial communities. We performed simulations to determine whether diversity indices calculated from T-RFLP profiles could reflect the true diversity of the underlying communities despite potential analytical artifacts. These include multiple taxa generating the same terminal restriction fragment (TRF) and rare TRFs being excluded by a relative abundance (fluorescence) threshold. True community diversity was simulated using the lognormal species abundance distribution. Simulated T-RFLP profiles were generated by assigning each species a TRF size based on an empirical or modeled TRF size distribution. With a typical threshold (1%), the only consistently useful relationship was between Smith and Wilson evenness applied to T-RFLP data (TRF-E(var)) and true Shannon diversity (H'), with correlations between 0.71 and 0.81. TRF-H' and true H' were well correlated in the simulations using the lowest number of species, but this correlation declined substantially in simulations using greater numbers of species, to the point where TRF-H' cannot be considered a useful statistic. The relationships between TRF diversity indices and true indices were sensitive to the relative abundance threshold, with greatly improved correlations observed using a 0.1% threshold, which was investigated for comparative purposes but is not possible to consistently achieve with current technology. In general, the use of diversity indices on T-RFLP data provides inaccurate estimates of true diversity in microbial communities (with the possible exception of TRF-E(var)). We suggest that, where significant differences in T-RFLP diversity indices were found in previous work, these should be reinterpreted as a reflection of differences in community composition rather than a true difference in community diversity.
Simulation and sensitivity analysis of carbon storage and fluxes in the New Jersey Pinelands
Zewei Miao; Richard G. Lathrop; Ming Xu; Inga P. La Puma; Kenneth L. Clark; John Hom; Nicholas Skowronski; Steve Van Tuyl
2011-01-01
A major challenge in modeling the carbon dynamics of vegetation communities is the proper parameterization and calibration of eco-physiological variables that are critical determinants of the ecosystem process-based model behavior. In this study, we improved and calibrated a biochemical process-based WxBGC model by using in situ AmeriFlux eddy covariance tower...
Modeling, simulation, and analysis at Sandia National Laboratories for health care systems
NASA Astrophysics Data System (ADS)
Polito, Joseph
1994-12-01
Modeling, Simulation, and Analysis are special competencies of the Department of Energy (DOE) National Laboratories which have been developed and refined through years of national defense work. Today, many of these skills are being applied to the problem of understanding the performance of medical devices and treatments. At Sandia National Laboratories we are developing models at all three levels of health care delivery: (1) phenomenology models for Observation and Test, (2) model-based outcomes simulations for Diagnosis and Prescription, and (3) model-based design and control simulations for the Administration of Treatment. A sampling of specific applications include non-invasive sensors for blood glucose, ultrasonic scanning for development of prosthetics, automated breast cancer diagnosis, laser burn debridement, surgical staple deformation, minimally invasive control for administration of a photodynamic drug, and human-friendly decision support aids for computer-aided diagnosis. These and other projects are being performed at Sandia with support from the DOE and in cooperation with medical research centers and private companies. Our objective is to leverage government engineering, modeling, and simulation skills with the biotechnical expertise of the health care community to create a more knowledge-rich environment for decision making and treatment.
Messer, C; Zander, A; Arnolds, I V; Nickel, S; Schuster, M
2015-12-01
In most hospitals the operating rooms (OR) are separated from the rest of the hospital by transfer rooms where patients have to pass through for reasons of hygiene. In the OR transfer room patients are placed on the OR table before surgery and returned to the hospital bed after surgery. It could happen that the number of patients who need to pass through a transfer room at a certain point in time exceed the number of available transfer rooms. As a result the transfer rooms become a bottleneck where patients have to wait and which, in turn, may lead to delays in the OR suite. In this study the ability of a discrete event simulation to analyze the effect of the duration of surgery and the number of ORs on the number of OR transfer rooms needed was investigated. This study was based on a discrete event simulation model developed with the simulation software AnyLogic®. The model studied the effects of the number of OR transfer rooms on the processes in an OR suite of a community hospital by varying the number of ORs from one to eight and using different surgical portfolios. Probability distributions for the process duration of induction, surgery and recovery and transfer room processes were calculated on the basis of real data from the community hospital studied. Furthermore, using a generic simulation model the effect of the average duration of surgery on the number of OR transfer rooms needed was examined. The discrete event simulation model enabled the analysis of both quantitative as well as qualitative changes in the OR process and setting. Key performance indicators of the simulation model were patient throughput per day, the probability of waiting and duration of waiting time in front of OR transfer rooms. In the case of a community hospital with 1 transfer room the average proportion of patients waiting before entering the OR was 17.9 % ± 9.7 % with 3 ORs, 37.6 % ± 9.7 % with 5 ORs and 62.9 % ± 9.1 % with 8 ORs. The average waiting time of patients in the setting with 3 ORs was 3.1 ± 2.7 min, with 5 ORs 5.0 ± 5.8 min and with 8 ORs 11.5 ± 12.5 min. Based on this study the community hospital needs a second transfer room starting from 4 ORs so that there is no bottleneck for the subsequent OR processes. The average patient throughput in a setting with 4 ORs increased significantly by 0.3 patients per day when a second transfer room is available. The generic model showed a strong effect of the average duration of surgery on the number of transfer rooms needed. There was no linear correlation between the number of transfer rooms and the number of ORs. The shorter the average duration of surgery, the earlier an additional transfer room is required. Thus, hospitals with shorter duration of surgery and fewer ORs may need the same or more transfer rooms than a hospital with longer duration of surgery and more ORs. However, with respect to an economic analysis, the costs and benefits of installing additional OR transfer rooms need to be calculated using the profit margins of the specific hospital.
ERIC Educational Resources Information Center
Steck, Laura West; Engler, Jennifer N.; Ligon, Mary; Druen, Perri B.; Cosgrove, Erin
2011-01-01
This article discusses an application of the Lewinian/Kolb experiential learning model in the context of undergraduate participation in the Missouri Community Action Poverty Simulation (CAPS) program. CAPS is designed to simulate common, everyday experiences among people living in poverty as participants take on the roles of family members working…
A mixing evolution model for bidirectional microblog user networks
NASA Astrophysics Data System (ADS)
Yuan, Wei-Guo; Liu, Yun
2015-08-01
Microblogs have been widely used as a new form of online social networking. Based on the user profile data collected from Sina Weibo, we find that the number of microblog user bidirectional friends approximately corresponds with the lognormal distribution. We then build two microblog user networks with real bidirectional relationships, both of which have not only small-world and scale-free but also some special properties, such as double power-law degree distribution, disassortative network, hierarchical and rich-club structure. Moreover, by detecting the community structures of the two real networks, we find both of their community scales follow an exponential distribution. Based on the empirical analysis, we present a novel evolution network model with mixed connection rules, including lognormal fitness preferential and random attachment, nearest neighbor interconnected in the same community, and global random associations in different communities. The simulation results show that our model is consistent with real network in many topology features.
Simulating visibility under reduced acuity and contrast sensitivity.
Thompson, William B; Legge, Gordon E; Kersten, Daniel J; Shakespeare, Robert A; Lei, Quan
2017-04-01
Architects and lighting designers have difficulty designing spaces that are accessible to those with low vision, since the complex nature of most architectural spaces requires a site-specific analysis of the visibility of mobility hazards and key landmarks needed for navigation. We describe a method that can be utilized in the architectural design process for simulating the effects of reduced acuity and contrast on visibility. The key contribution is the development of a way to parameterize the simulation using standard clinical measures of acuity and contrast sensitivity. While these measures are known to be imperfect predictors of visual function, they provide a way of characterizing general levels of visual performance that is familiar to both those working in low vision and our target end-users in the architectural and lighting-design communities. We validate the simulation using a letter-recognition task.
Simulating Visibility Under Reduced Acuity and Contrast Sensitivity
Thompson, William B.; Legge, Gordon E.; Kersten, Daniel J.; Shakespeare, Robert A.; Lei, Quan
2017-01-01
Architects and lighting designers have difficulty designing spaces that are accessible to those with low vision, since the complex nature of most architectural spaces requires a site-specific analysis of the visibility of mobility hazards and key landmarks needed for navigation. We describe a method that can be utilized in the architectural design process for simulating the effects of reduced acuity and contrast on visibility. The key contribution is the development of a way to parameterize the simulation using standard clinical measures of acuity and contrast sensitivity. While these measures are known to be imperfect predictors of visual function, they provide a way of characterizing general levels of visual performance that is familiar to both those working in low vision and our target end-users in the architectural and lighting design communities. We validate the simulation using a letter recognition task. PMID:28375328
GaiaGrid : Its Implications and Implementation
NASA Astrophysics Data System (ADS)
Ansari, S. G.; Lammers, U.; Ter Linden, M.
2005-12-01
Gaia is an ESA space mission to determine positions of 1 billion objects in the Galaxy at micro-arcsecond precision. The data analysis and processing requirements of the mission involves about 20 institutes across Europe, each providing specific algorithms for specific tasks, which range from relativistic effects on positional determination, classification, astrometric binary star detection, photometric analysis, spectroscopic analysis etc. In an initial phase, a study has been ongoing over the past three years to determine the complexity of Gaia's data processing. Two processing categories have materialised: core and shell. While core deals with routine data processing, shell tasks are algorithms to carry out data analysis, which involves the Gaia Community at large. For this latter category, we are currently experimenting with use of Grid paradigms to allow access to the core data and to augment processing power to simulate and analyse the data in preparation for the actual mission. We present preliminary results and discuss the sociological impact of distributing the tasks amongst the community.
PSAMM: A Portable System for the Analysis of Metabolic Models
Steffensen, Jon Lund; Dufault-Thompson, Keith; Zhang, Ying
2016-01-01
The genome-scale models of metabolic networks have been broadly applied in phenotype prediction, evolutionary reconstruction, community functional analysis, and metabolic engineering. Despite the development of tools that support individual steps along the modeling procedure, it is still difficult to associate mathematical simulation results with the annotation and biological interpretation of metabolic models. In order to solve this problem, here we developed a Portable System for the Analysis of Metabolic Models (PSAMM), a new open-source software package that supports the integration of heterogeneous metadata in model annotations and provides a user-friendly interface for the analysis of metabolic models. PSAMM is independent of paid software environments like MATLAB, and all its dependencies are freely available for academic users. Compared to existing tools, PSAMM significantly reduced the running time of constraint-based analysis and enabled flexible settings of simulation parameters using simple one-line commands. The integration of heterogeneous, model-specific annotation information in PSAMM is achieved with a novel format of YAML-based model representation, which has several advantages, such as providing a modular organization of model components and simulation settings, enabling model version tracking, and permitting the integration of multiple simulation problems. PSAMM also includes a number of quality checking procedures to examine stoichiometric balance and to identify blocked reactions. Applying PSAMM to 57 models collected from current literature, we demonstrated how the software can be used for managing and simulating metabolic models. We identified a number of common inconsistencies in existing models and constructed an updated model repository to document the resolution of these inconsistencies. PMID:26828591
Mitchell, Jonathan S; Roopnarine, Peter D; Angielczyk, Kenneth D
2012-11-13
The sudden environmental catastrophe in the wake of the end-Cretaceous asteroid impact had drastic effects that rippled through animal communities. To explore how these effects may have been exacerbated by prior ecological changes, we used a food-web model to simulate the effects of primary productivity disruptions, such as those predicted to result from an asteroid impact, on ten Campanian and seven Maastrichtian terrestrial localities in North America. Our analysis documents that a shift in trophic structure between Campanian and Maastrichtian communities in North America led Maastrichtian communities to experience more secondary extinction at lower levels of primary production shutdown and possess a lower collapse threshold than Campanian communities. Of particular note is the fact that changes in dinosaur richness had a negative impact on the robustness of Maastrichtian ecosystems against environmental perturbations. Therefore, earlier ecological restructuring may have exacerbated the impact and severity of the end-Cretaceous extinction, at least in North America.
Roopnarine, Peter D.; Angielczyk, Kenneth D.
2012-01-01
The sudden environmental catastrophe in the wake of the end-Cretaceous asteroid impact had drastic effects that rippled through animal communities. To explore how these effects may have been exacerbated by prior ecological changes, we used a food-web model to simulate the effects of primary productivity disruptions, such as those predicted to result from an asteroid impact, on ten Campanian and seven Maastrichtian terrestrial localities in North America. Our analysis documents that a shift in trophic structure between Campanian and Maastrichtian communities in North America led Maastrichtian communities to experience more secondary extinction at lower levels of primary production shutdown and possess a lower collapse threshold than Campanian communities. Of particular note is the fact that changes in dinosaur richness had a negative impact on the robustness of Maastrichtian ecosystems against environmental perturbations. Therefore, earlier ecological restructuring may have exacerbated the impact and severity of the end-Cretaceous extinction, at least in North America. PMID:23112149
NASA Astrophysics Data System (ADS)
Mendoza, A. M. M.; Rastaetter, L.; Kuznetsova, M. M.; Mays, M. L.; Chulaki, A.; Shim, J. S.; MacNeice, P. J.; Taktakishvili, A.; Collado-Vega, Y. M.; Weigand, C.; Zheng, Y.; Mullinix, R.; Patel, K.; Pembroke, A. D.; Pulkkinen, A. A.; Boblitt, J. M.; Bakshi, S. S.; Tsui, T.
2017-12-01
The Community Coordinated Modeling Center (CCMC), with the fundamental goal of aiding the transition of modern space science models into space weather forecasting while supporting space science research, has been serving as an integral hub for over 15 years, providing invaluable resources to both space weather scientific and operational communities. CCMC has developed and provided innovative web-based point of access tools varying from: Runs-On-Request System - providing unprecedented global access to the largest collection of state-of-the-art solar and space physics models, Integrated Space Weather Analysis (iSWA) - a powerful dissemination system for space weather information, Advanced Online Visualization and Analysis tools for more accurate interpretation of model results, Standard Data formats for Simulation Data downloads, and Mobile apps to view space weather data anywhere to the scientific community. In addition to supporting research and performing model evaluations, CCMC also supports space science education by hosting summer students through local universities. In this poster, we will showcase CCMC's latest innovative tools and services, and CCMC's tools that revolutionized the way we do research and improve our operational space weather capabilities. CCMC's free tools and resources are all publicly available online (http://ccmc.gsfc.nasa.gov).
Cannon, W Dilworth; Nicandri, Gregg T; Reinig, Karl; Mevis, Howard; Wittstein, Jocelyn
2014-04-02
Several virtual reality simulators have been developed to assist orthopaedic surgeons in acquiring the skills necessary to perform arthroscopic surgery. The purpose of this study was to assess the construct validity of the ArthroSim virtual reality arthroscopy simulator by evaluating whether skills acquired through increased experience in the operating room lead to improved performance on the simulator. Using the simulator, six postgraduate year-1 orthopaedic residents were compared with six postgraduate year-5 residents and with six community-based orthopaedic surgeons when performing diagnostic arthroscopy. The time to perform the procedure was recorded. To ensure that subjects did not sacrifice the quality of the procedure to complete the task in a shorter time, the simulator was programmed to provide a completeness score that indicated whether the surgeon accurately performed all of the steps of diagnostic arthroscopy in the correct sequence. The mean time to perform the procedure by each group was 610 seconds for community-based orthopaedic surgeons, 745 seconds for postgraduate year-5 residents, and 1028 seconds for postgraduate year-1 residents. Both the postgraduate year-5 residents and the community-based orthopaedic surgeons performed the procedure in significantly less time (p = 0.006) than the postgraduate year-1 residents. There was a trend toward significance (p = 0.055) in time to complete the procedure when the postgraduate year-5 residents were compared with the community-based orthopaedic surgeons. The mean level of completeness as assigned by the simulator for each group was 85% for the community-based orthopaedic surgeons, 79% for the postgraduate year-5 residents, and 71% for the postgraduate year-1 residents. As expected, these differences were not significant, indicating that the three groups had achieved an acceptable level of consistency in their performance of the procedure. Higher levels of surgeon experience resulted in improved efficiency when performing diagnostic knee arthroscopy on the simulator. Further validation studies utilizing the simulator are currently under way and the additional simulated tasks of arthroscopic meniscectomy, meniscal repair, microfracture, and loose body removal are being developed.
Multiphysics Simulations: Challenges and Opportunities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keyes, David; McInnes, Lois C.; Woodward, Carol
2013-02-12
We consider multiphysics applications from algorithmic and architectural perspectives, where ‘‘algorithmic’’ includes both mathematical analysis and computational complexity, and ‘‘architectural’’ includes both software and hardware environments. Many diverse multiphysics applications can be reduced, en route to their computational simulation, to a common algebraic coupling paradigm. Mathematical analysis of multiphysics coupling in this form is not always practical for realistic applications, but model problems representative of applications discussed herein can provide insight. A variety of software frameworks for multiphysics applications have been constructed and refined within disciplinary communities and executed on leading-edge computer systems. We examine several of these, expose somemore » commonalities among them, and attempt to extrapolate best practices to future systems. From our study, we summarize challenges and forecast opportunities.« less
Dynamics of sustained use and abandonment of clean cooking systems: lessons from rural India
NASA Astrophysics Data System (ADS)
Chalise, Nishesh; Kumar, Praveen; Priyadarshini, Pratiti; Yadama, Gautam N.
2018-03-01
Clean cooking technologies—ranging from efficient cookstoves to clean fuels—are widely deployed to reduce household air pollution and alleviate adverse health and climate consequences. Although much progress has been made on the technical aspects, sustained and proper use of clean cooking technologies by populations with the most need has been problematic. Only by understanding how clean cooking as an intervention is embedded within complex community processes can we ensure its sustained implementation. Using a community-based system dynamics approach, we engaged two rural communities in co-creating a dynamic model to explain the processes influencing the uptake and transition to sustained use of biogas (an anaerobic methane digester), a clean fuel and cooking technology. The two communities provided contrasting cases: one abandoned biogas while the other continues to use it. We present a system dynamics simulation model, associated analyses, and experiments to understand what factors drive transition and sustained use. A central insight of the model is community processes influencing the capacity to solve technical issues. Model analysis shows that families begin to abandon the technology when it takes longer to solve problems. The momentum in the community then shifts from a determination to address issues with the cooking technology toward caution in further adhering to it. We also conducted experiments using the simulation model to understand the impact of interventions aimed at renewing the use of biogas. A combination of theoretical interventions, including repair of non-functioning biogas units and provision of embedded technical support in communities, resulted in a scenario where the community can continue using the technology even after support is retracted. Our study also demonstrates the utility of a systems approach for engaging local stakeholders in delineating complex community processes to derive significant insights into the dynamic feedback mechanisms involved in the sustained use of biogas by the poor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Covey, Curt; Lucas, Donald D.; Trenberth, Kevin E.
2016-03-02
This document presents the large scale water budget statistics of a perturbed input-parameter ensemble of atmospheric model runs. The model is Version 5.1.02 of the Community Atmosphere Model (CAM). These runs are the “C-Ensemble” described by Qian et al., “Parametric Sensitivity Analysis of Precipitation at Global and Local Scales in the Community Atmosphere Model CAM5” (Journal of Advances in Modeling the Earth System, 2015). As noted by Qian et al., the simulations are “AMIP type” with temperature and sea ice boundary conditions chosen to match surface observations for the five year period 2000-2004. There are 1100 ensemble members in additionmore » to one run with default inputparameter values.« less
Application Architecture of Avian Influenza Research Collaboration Network in Korea e-Science
NASA Astrophysics Data System (ADS)
Choi, Hoon; Lee, Junehawk
In the pursuit of globalization of the AI e-Science environment, KISTI is fostering to extend the AI research community to the AI research institutes of neighboring countries and to share the AI e-Science environment with them in the near future. In this paper we introduce the application architecture of AI research collaboration network (AIRCoN). AIRCoN is a global e-Science environment for AI research conducted by KISTI. It consists of AI virus sequence information sharing system for sufficing data requirement of research community, integrated analysis environment for analyzing the mutation pattern of AI viruses and their risks, epidemic modeling and simulation environment for establishing national effective readiness strategy against AI pandemics, and knowledge portal for sharing expertise of epidemic study and unpublished research results with community members.
Neutron Science TeraGrid Gateway
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lynch, Vickie E; Chen, Meili; Cobb, John W
The unique contributions of the Neutron Science TeraGrid Gateway (NSTG) are the connection of national user facility instrument data sources to the integrated cyberinfrastructure of the National Science FoundationTeraGrid and the development of a neutron science gateway that allows neutron scientists to use TeraGrid resources to analyze their data, including comparison of experiment with simulation. The NSTG is working in close collaboration with the Spallation Neutron Source (SNS) at Oak Ridge as their principal facility partner. The SNS is a next-generation neutron source. It has completed construction at a cost of $1.4 billion and is ramping up operations. The SNSmore » will provide an order of magnitude greater flux than any previous facility in the world and will be available to all of the nation's scientists, independent of funding source, on a peer-reviewed merit basis. With this new capability, the neutron science community is facing orders of magnitude larger data sets and is at a critical point for data analysis and simulation. There is a recognized need for new ways to manage and analyze data to optimize both beam time and scientific output. The TeraGrid is providing new capabilities in the gateway for simulations using McStas and a fitting service on distributed TeraGrid resources to improved turnaround. NSTG staff are also exploring replicating experimental data in archival storage. As part of the SNS partnership, the NSTG provides access to gateway support, cyberinfrastructure outreach, community development, and user support for the neutron science community. This community includes not only SNS staff and users but extends to all the major worldwide neutron scattering centers.« less
Alternative community structures in a kelp-urchin community: A qualitative modeling approach
Montano-Moctezuma, G.; Li, H.W.; Rossignol, P.A.
2007-01-01
Shifts in interaction patterns within a community may result from periodic disturbances and climate. The question arises as to the extent and significance of these shifting patterns. Using a novel approach to link qualitative mathematical models and field data, namely using the inverse matrix to identify the community matrix, we reconstructed community networks from kelp forests off the Oregon Coast. We simulated all ecologically plausible interactions among community members, selected the models whose outcomes match field observations, and identified highly frequent links to characterize the community network from a particular site. We tested all possible biologically reasonable community networks through qualitative simulations, selected those that matched patterns observed in the field, and further reduced the set of possibilities by retaining those that were stable. We found that a community can be represented by a set of alternative structures, or scenarios. From 11,943,936 simulated models, 0.23% matched the field observations; moreover, only 0.006%, or 748 models, were highly reliable in their predictions and met conditions for stability. Predator-prey interactions as well as non-predatory relationships were consistently found in most of the 748 models. These highly frequent connections were useful to characterize the community network in the study site. We suggest that alternative networks provide the community with a buffer to disturbance, allowing it to continuously reorganize to adapt to a variable environment. This is possible due to the fluctuating capacities of foraging species to consume alternate resources. This suggestion is sustained by our results, which indicate that none of the models that matched field observations were fully connected. This plasticity may contribute to the persistence of these communities. We propose that qualitative simulations represent a powerful technique to raise new hypotheses concerning community dynamics and to reconstruct guidelines that may govern community patterns. ?? 2007 Elsevier B.V. All rights reserved.
Oono, Ryoko
2017-01-01
High-throughput sequencing technology has helped microbial community ecologists explore ecological and evolutionary patterns at unprecedented scales. The benefits of a large sample size still typically outweigh that of greater sequencing depths per sample for accurate estimations of ecological inferences. However, excluding or not sequencing rare taxa may mislead the answers to the questions 'how and why are communities different?' This study evaluates the confidence intervals of ecological inferences from high-throughput sequencing data of foliar fungal endophytes as case studies through a range of sampling efforts, sequencing depths, and taxonomic resolutions to understand how technical and analytical practices may affect our interpretations. Increasing sampling size reliably decreased confidence intervals across multiple community comparisons. However, the effects of sequencing depths on confidence intervals depended on how rare taxa influenced the dissimilarity estimates among communities and did not significantly decrease confidence intervals for all community comparisons. A comparison of simulated communities under random drift suggests that sequencing depths are important in estimating dissimilarities between microbial communities under neutral selective processes. Confidence interval analyses reveal important biases as well as biological trends in microbial community studies that otherwise may be ignored when communities are only compared for statistically significant differences.
2017-01-01
High-throughput sequencing technology has helped microbial community ecologists explore ecological and evolutionary patterns at unprecedented scales. The benefits of a large sample size still typically outweigh that of greater sequencing depths per sample for accurate estimations of ecological inferences. However, excluding or not sequencing rare taxa may mislead the answers to the questions ‘how and why are communities different?’ This study evaluates the confidence intervals of ecological inferences from high-throughput sequencing data of foliar fungal endophytes as case studies through a range of sampling efforts, sequencing depths, and taxonomic resolutions to understand how technical and analytical practices may affect our interpretations. Increasing sampling size reliably decreased confidence intervals across multiple community comparisons. However, the effects of sequencing depths on confidence intervals depended on how rare taxa influenced the dissimilarity estimates among communities and did not significantly decrease confidence intervals for all community comparisons. A comparison of simulated communities under random drift suggests that sequencing depths are important in estimating dissimilarities between microbial communities under neutral selective processes. Confidence interval analyses reveal important biases as well as biological trends in microbial community studies that otherwise may be ignored when communities are only compared for statistically significant differences. PMID:29253889
Mathematical modeling of transmission co-infection tuberculosis in HIV community
NASA Astrophysics Data System (ADS)
Lusiana, V.; Putra, P. S.; Nuraini, N.; Soewono, E.
2017-03-01
TB and HIV infection have the effect of deeply on assault the immune system, since they can afford to weaken host immune respone through a mechanism that has not been fully understood. HIV co-infection is the stongest risk factor for progression of M. tuberculosis to active TB disease in HIV individuals, as well as TB has been accelerated to progression HIV infection. In this paper we create a model of transmission co-infection TB in HIV community, dynamic system with ten compartments built in here. Dynamic analysis in this paper mentioned ranging from disease free equilibrium conditions, endemic equilibrium conditions, basic reproduction ratio, stability analysis and numerical simulation. Basic reproductive ratio were obtained from spectral radius the next generation matrix of the model. Numerical simulations are built to justify the results of the analysis and to see the changes in the dynamics of the population in each compartment. The sensitivity analysis indicates that the parameters affecting the population dynamics of TB in people with HIV infection is parameters rate of progression of individuals from the exposed TB class to the active TB, treatment rate of exposed TB individuals, treatment rate of infectious (active TB) individuals and probability of transmission of TB infection from an infective to a susceptible per contact per unit time. We can conclude that growing number of infections carried by infectious TB in people with HIV infection can lead to increased spread of disease or increase in endemic conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Maoyi; Ray, Jaideep; Hou, Zhangshuan
2016-07-04
The Community Land Model (CLM) has been widely used in climate and Earth system modeling. Accurate estimation of model parameters is needed for reliable model simulations and predictions under current and future conditions, respectively. In our previous work, a subset of hydrological parameters has been identified to have significant impact on surface energy fluxes at selected flux tower sites based on parameter screening and sensitivity analysis, which indicate that the parameters could potentially be estimated from surface flux observations at the towers. To date, such estimates do not exist. In this paper, we assess the feasibility of applying a Bayesianmore » model calibration technique to estimate CLM parameters at selected flux tower sites under various site conditions. The parameters are estimated as a joint probability density function (PDF) that provides estimates of uncertainty of the parameters being inverted, conditional on climatologically-average latent heat fluxes derived from observations. We find that the simulated mean latent heat fluxes from CLM using the calibrated parameters are generally improved at all sites when compared to those obtained with CLM simulations using default parameter sets. Further, our calibration method also results in credibility bounds around the simulated mean fluxes which bracket the measured data. The modes (or maximum a posteriori values) and 95% credibility intervals of the site-specific posterior PDFs are tabulated as suggested parameter values for each site. Analysis of relationships between the posterior PDFs and site conditions suggests that the parameter values are likely correlated with the plant functional type, which needs to be confirmed in future studies by extending the approach to more sites.« less
Huang, Maoyi; Ray, Jaideep; Hou, Zhangshuan; ...
2016-06-01
The Community Land Model (CLM) has been widely used in climate and Earth system modeling. Accurate estimation of model parameters is needed for reliable model simulations and predictions under current and future conditions, respectively. In our previous work, a subset of hydrological parameters has been identified to have significant impact on surface energy fluxes at selected flux tower sites based on parameter screening and sensitivity analysis, which indicate that the parameters could potentially be estimated from surface flux observations at the towers. To date, such estimates do not exist. In this paper, we assess the feasibility of applying a Bayesianmore » model calibration technique to estimate CLM parameters at selected flux tower sites under various site conditions. The parameters are estimated as a joint probability density function (PDF) that provides estimates of uncertainty of the parameters being inverted, conditional on climatologically average latent heat fluxes derived from observations. We find that the simulated mean latent heat fluxes from CLM using the calibrated parameters are generally improved at all sites when compared to those obtained with CLM simulations using default parameter sets. Further, our calibration method also results in credibility bounds around the simulated mean fluxes which bracket the measured data. The modes (or maximum a posteriori values) and 95% credibility intervals of the site-specific posterior PDFs are tabulated as suggested parameter values for each site. As a result, analysis of relationships between the posterior PDFs and site conditions suggests that the parameter values are likely correlated with the plant functional type, which needs to be confirmed in future studies by extending the approach to more sites.« less
Is it beneficial to increase the provision of thrombolysis?-- a discrete-event simulation model.
Barton, M; McClean, S; Gillespie, J; Garg, L; Wilson, D; Fullerton, K
2012-07-01
Although Thrombolysis has been licensed in the UK since 2003, it is still administered only to a small percentage of eligible patients. We consider the impact of investing the impact of thrombolysis on important acute stroke services, and the effect on quality of life. The concept is illustrated using data from the Northern Ireland Stroke Service. Retrospective study. We first present results of survival analysis utilizing length of stay (LOS) for discharge destinations, based on data from the Belfast City Hospital (BCH). None of these patients actually received thrombolysis but from those who would have been eligible, we created two initial groups, the first representing a scenario where they received thrombolysis and the second comprising those who do not receive thrombolysis. On the basis of the survival analysis, we created several subgroups based on discharge destination. We then developed a discrete event simulation (DES) model, where each group is a patient pathway within the simulation. Coxian phase type distributions were used to model the group LOS. Various scenarios were explored focusing on cost-effectiveness across hospital, community and social services had thrombolysis been administered to these patients, and the possible improvement in quality of life, should the proportion of patients who are administered thrombolysis be increased. Our aim in simulating various scenarios for this historical group of patients is to assess what the cost-effectiveness of thrombolysis would have been under different scenarios; from this we can infer the likely cost-effectiveness of future policies. The cost of thrombolysis is offset by reduction in hospital, community rehabilitation and institutional care costs, with a corresponding improvement in quality of life. Our model suggests that provision of thrombolysis would produce moderate overall improvement to the service assuming current levels of funding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Maoyi; Ray, Jaideep; Hou, Zhangshuan
The Community Land Model (CLM) has been widely used in climate and Earth system modeling. Accurate estimation of model parameters is needed for reliable model simulations and predictions under current and future conditions, respectively. In our previous work, a subset of hydrological parameters has been identified to have significant impact on surface energy fluxes at selected flux tower sites based on parameter screening and sensitivity analysis, which indicate that the parameters could potentially be estimated from surface flux observations at the towers. To date, such estimates do not exist. In this paper, we assess the feasibility of applying a Bayesianmore » model calibration technique to estimate CLM parameters at selected flux tower sites under various site conditions. The parameters are estimated as a joint probability density function (PDF) that provides estimates of uncertainty of the parameters being inverted, conditional on climatologically average latent heat fluxes derived from observations. We find that the simulated mean latent heat fluxes from CLM using the calibrated parameters are generally improved at all sites when compared to those obtained with CLM simulations using default parameter sets. Further, our calibration method also results in credibility bounds around the simulated mean fluxes which bracket the measured data. The modes (or maximum a posteriori values) and 95% credibility intervals of the site-specific posterior PDFs are tabulated as suggested parameter values for each site. As a result, analysis of relationships between the posterior PDFs and site conditions suggests that the parameter values are likely correlated with the plant functional type, which needs to be confirmed in future studies by extending the approach to more sites.« less
NASA Astrophysics Data System (ADS)
Huang, Maoyi; Ray, Jaideep; Hou, Zhangshuan; Ren, Huiying; Liu, Ying; Swiler, Laura
2016-07-01
The Community Land Model (CLM) has been widely used in climate and Earth system modeling. Accurate estimation of model parameters is needed for reliable model simulations and predictions under current and future conditions, respectively. In our previous work, a subset of hydrological parameters has been identified to have significant impact on surface energy fluxes at selected flux tower sites based on parameter screening and sensitivity analysis, which indicate that the parameters could potentially be estimated from surface flux observations at the towers. To date, such estimates do not exist. In this paper, we assess the feasibility of applying a Bayesian model calibration technique to estimate CLM parameters at selected flux tower sites under various site conditions. The parameters are estimated as a joint probability density function (PDF) that provides estimates of uncertainty of the parameters being inverted, conditional on climatologically average latent heat fluxes derived from observations. We find that the simulated mean latent heat fluxes from CLM using the calibrated parameters are generally improved at all sites when compared to those obtained with CLM simulations using default parameter sets. Further, our calibration method also results in credibility bounds around the simulated mean fluxes which bracket the measured data. The modes (or maximum a posteriori values) and 95% credibility intervals of the site-specific posterior PDFs are tabulated as suggested parameter values for each site. Analysis of relationships between the posterior PDFs and site conditions suggests that the parameter values are likely correlated with the plant functional type, which needs to be confirmed in future studies by extending the approach to more sites.
NASA Technical Reports Server (NTRS)
Kleb, William L.; Wood, William A.
2004-01-01
The computational simulation community is not routinely publishing independently verifiable tests to accompany new models or algorithms. A survey reveals that only 22% of new models published are accompanied by tests suitable for independently verifying the new model. As the community develops larger codes with increased functionality, and hence increased complexity in terms of the number of building block components and their interactions, it becomes prohibitively expensive for each development group to derive the appropriate tests for each component. Therefore, the computational simulation community is building its collective castle on a very shaky foundation of components with unpublished and unrepeatable verification tests. The computational simulation community needs to begin publishing component level verification tests before the tide of complexity undermines its foundation.
Mock ECHO: A Simulation-Based Medical Education Method.
Fowler, Rebecca C; Katzman, Joanna G; Comerci, George D; Shelley, Brian M; Duhigg, Daniel; Olivas, Cynthia; Arnold, Thomas; Kalishman, Summers; Monnette, Rebecca; Arora, Sanjeev
2018-04-16
This study was designed to develop a deeper understanding of the learning and social processes that take place during the simulation-based medical education for practicing providers as part of the Project ECHO® model, known as Mock ECHO training. The ECHO model is utilized to expand access to care of common and complex diseases by supporting the education of primary care providers with an interprofessional team of specialists via videoconferencing networks. Mock ECHO trainings are conducted through a train the trainer model targeted at leaders replicating the ECHO model at their organizations. Trainers conduct simulated teleECHO clinics while participants gain skills to improve communication and self-efficacy. Three focus groups, conducted between May 2015 and January 2016 with a total of 26 participants, were deductively analyzed to identify common themes related to simulation-based medical education and interdisciplinary education. Principal themes generated from the analysis included (a) the role of empathy in community development, (b) the value of training tools as guides for learning, (c) Mock ECHO design components to optimize learning, (d) the role of interdisciplinary education to build community and improve care delivery, (e) improving care integration through collaboration, and (f) development of soft skills to facilitate learning. Mock ECHO trainings offer clinicians the freedom to learn in a noncritical environment while emphasizing real-time multidirectional feedback and encouraging knowledge and skill transfer. The success of the ECHO model depends on training interprofessional healthcare providers in behaviors needed to lead a teleECHO clinic and to collaborate in the educational process. While building a community of practice, Mock ECHO provides a safe opportunity for a diverse group of clinician experts to practice learned skills and receive feedback from coparticipants and facilitators.
NASA Astrophysics Data System (ADS)
Stotesbury, Theresa E.
The research and development of synthetic blood substitutes is a reported need within the forensic community. This work contributes to the growing body of knowledge in bloodstain pattern analysis by offering a materials science approach to designing, producing and testing synthetic forensic blood substitutes. A key deliverable from this research is the creation of a robust silicon-based material using the solution-gelation technique that has been validated for controlled passive drip and spatter simulation. The work investigates the physical properties (viscosity, surface tension and density) of forensic blood substitute formulations and describes the similarity in the spreading dynamics of the optimized material to whole human blood. It then explores how blood and other fluids behave in impact simulation using high-speed video analysis and supports the use of the optimized material for spatter simulation. Finally, the work highlights the practical value of the material as an educational tool for both basic and advanced bloodstain experimentation and training.
Xiao, Meng; Sun, Shan-Shan; Zhang, Zhong-Zhi; Wang, Jun-Ming; Qiu, Long-Wei; Sun, Hua-Yang; Song, Zhao-Zheng; Zhang, Bei-Yu; Gao, De-Li; Zhang, Guang-Qing; Wu, Wei-Min
2016-01-01
The community diversities of two oil reservoirs with low permeability of 1.81 × 10−3 and 2.29 × 10−3 μm2 in Changqing, China, were investigated using a high throughput sequencing technique to analyze the influence of biostimulation with a nutrient activator on the bacterial communities. These two blocks differed significantly in salinity (average 17,500 vs 40,900 mg/L). A core simulation test was used to evaluate the effectiveness of indigenous microbial-enhanced oil recovery (MEOR). The results indicated that in the two high salinity oil reservoirs, one reservoir having relatively lower salinity level and a narrow salinity range had higher bacterial and phylogenetic diversity. The addition of the nutrient activator increased the diversity of the bacterial community structure and the diversity differences between the two blocks. The results of the core simulation test showed that the bacterial community in the reservoir with a salinity level of 17,500 mg/L did not show significant higher MEOR efficiency compared with the reservoir with 40,900 mg/L i.e. MEOR efficiency of 8.12% vs 6.56% (test p = 0.291 > 0.05). Therefore, salinity levels affected the bacterial diversities in the two low permeability oil blocks remarkably. But the influence of salinity for the MEOR recovery was slightly. PMID:26786765
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramos, Jaime
2012-12-14
To unlock the potential of micro grids we plan to build, commission and operate a 5 kWDC PV array and integrate it to the UTPA Engineering building low voltage network, as a micro grid; and promote community awareness. Assisted by a solar radiation tracker providing on-line information of its measurements and performing analysis for the use by the scientific and engineering community, we will write, perform and operate a set of Laboratory experiments and computer simulations supporting Electrical Engineering (graduate and undergraduate) courses on Renewable Energy, as well as Senior Design projects.
Open Rotor Computational Aeroacoustic Analysis with an Immersed Boundary Method
NASA Technical Reports Server (NTRS)
Brehm, Christoph; Barad, Michael F.; Kiris, Cetin C.
2016-01-01
Reliable noise prediction capabilities are essential to enable novel fuel efficient open rotor designs that can meet the community and cabin noise standards. Toward this end, immersed boundary methods have reached a level of maturity so that they are being frequently employed for specific real world applications within NASA. This paper demonstrates that our higher-order immersed boundary method provides the ability for aeroacoustic analysis of wake-dominated flow fields generated by highly complex geometries. This is the first of a kind aeroacoustic simulation of an open rotor propulsion system employing an immersed boundary method. In addition to discussing the peculiarities of applying the immersed boundary method to this moving boundary problem, we will provide a detailed aeroacoustic analysis of the noise generation mechanisms encountered in the open rotor flow. The simulation data is compared to available experimental data and other computational results employing more conventional CFD methods. The noise generation mechanisms are analyzed employing spectral analysis, proper orthogonal decomposition and the causality method.
Tang, Shuaiqi; Zhang, Minghua; Xie, Shaocheng
2016-01-05
Large-scale atmospheric forcing data can greatly impact the simulations of atmospheric process models including Large Eddy Simulations (LES), Cloud Resolving Models (CRMs) and Single-Column Models (SCMs), and impact the development of physical parameterizations in global climate models. This study describes the development of an ensemble variationally constrained objective analysis of atmospheric large-scale forcing data and its application to evaluate the cloud biases in the Community Atmospheric Model (CAM5). Sensitivities of the variational objective analysis to background data, error covariance matrix and constraint variables are described and used to quantify the uncertainties in the large-scale forcing data. Application of the ensemblemore » forcing in the CAM5 SCM during March 2000 intensive operational period (IOP) at the Southern Great Plains (SGP) of the Atmospheric Radiation Measurement (ARM) program shows systematic biases in the model simulations that cannot be explained by the uncertainty of large-scale forcing data, which points to the deficiencies of physical parameterizations. The SCM is shown to overestimate high clouds and underestimate low clouds. These biases are found to also exist in the global simulation of CAM5 when it is compared with satellite data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Shuaiqi; Zhang, Minghua; Xie, Shaocheng
Large-scale atmospheric forcing data can greatly impact the simulations of atmospheric process models including Large Eddy Simulations (LES), Cloud Resolving Models (CRMs) and Single-Column Models (SCMs), and impact the development of physical parameterizations in global climate models. This study describes the development of an ensemble variationally constrained objective analysis of atmospheric large-scale forcing data and its application to evaluate the cloud biases in the Community Atmospheric Model (CAM5). Sensitivities of the variational objective analysis to background data, error covariance matrix and constraint variables are described and used to quantify the uncertainties in the large-scale forcing data. Application of the ensemblemore » forcing in the CAM5 SCM during March 2000 intensive operational period (IOP) at the Southern Great Plains (SGP) of the Atmospheric Radiation Measurement (ARM) program shows systematic biases in the model simulations that cannot be explained by the uncertainty of large-scale forcing data, which points to the deficiencies of physical parameterizations. The SCM is shown to overestimate high clouds and underestimate low clouds. These biases are found to also exist in the global simulation of CAM5 when it is compared with satellite data.« less
Vanegas, Carlos A; Aliaga, Daniel G; Benes, Bedrich; Waddell, Paul
2009-01-01
Urban simulation models and their visualization are used to help regional planning agencies evaluate alternative transportation investments, land use regulations, and environmental protection policies. Typical urban simulations provide spatially distributed data about number of inhabitants, land prices, traffic, and other variables. In this article, we build on a synergy of urban simulation, urban visualization, and computer graphics to automatically infer an urban layout for any time step of the simulation sequence. In addition to standard visualization tools, our method gathers data of the original street network, parcels, and aerial imagery and uses the available simulation results to infer changes to the original urban layout and produce a new and plausible layout for the simulation results. In contrast with previous work, our approach automatically updates the layout based on changes in the simulation data and thus can scale to a large simulation over many years. The method in this article offers a substantial step forward in building integrated visualization and behavioral simulation systems for use in community visioning, planning, and policy analysis. We demonstrate our method on several real cases using a 200 GB database for a 16,300 km2 area surrounding Seattle.
Morales, Y.; Weber, L.J.; Mynett, A.E.; Newton, T.J.
2006-01-01
A model for simulating freshwater mussel population dynamics is presented. The model is a hydroinformatics tool that integrates principles from ecology, river hydraulics, fluid mechanics and sediment transport, and applies the individual-based modelling approach for simulating population dynamics. The general model layout, data requirements, and steps of the simulation process are discussed. As an illustration, simulation results from an application in a 10 km reach of the Upper Mississippi River are presented. The model was used to investigate the spatial distribution of mussels and the effects of food competition in native unionid mussel communities, and communities infested by Dreissena polymorpha, the zebra mussel. Simulation results were found to be realistic and coincided with data obtained from the literature. These results indicate that the model can be a useful tool for assessing the potential effects of different stressors on long-term population dynamics, and consequently, may improve the current understanding of cause and effect relationships in freshwater mussel communities. ?? 2006 Elsevier B.V. All rights reserved.
Fayle, Tom M; Eggleton, Paul; Manica, Andrea; Yusah, Kalsum M; Foster, William A
2015-01-01
Understanding how species assemble into communities is a key goal in ecology. However, assembly rules are rarely tested experimentally, and their ability to shape real communities is poorly known. We surveyed a diverse community of epiphyte-dwelling ants and found that similar-sized species co-occurred less often than expected. Laboratory experiments demonstrated that invasion was discouraged by the presence of similarly sized resident species. The size difference for which invasion was less likely was the same as that for which wild species exhibited reduced co-occurrence. Finally we explored whether our experimentally derived assembly rules could simulate realistic communities. Communities simulated using size-based species assembly exhibited diversities closer to wild communities than those simulated using size-independent assembly, with results being sensitive to the combination of rules employed. Hence, species segregation in the wild can be driven by competitive species assembly, and this process is sufficient to generate observed species abundance distributions for tropical epiphyte-dwelling ants. PMID:25622647
DeMO: An Ontology for Discrete-event Modeling and Simulation.
Silver, Gregory A; Miller, John A; Hybinette, Maria; Baramidze, Gregory; York, William S
2011-09-01
Several fields have created ontologies for their subdomains. For example, the biological sciences have developed extensive ontologies such as the Gene Ontology, which is considered a great success. Ontologies could provide similar advantages to the Modeling and Simulation community. They provide a way to establish common vocabularies and capture knowledge about a particular domain with community-wide agreement. Ontologies can support significantly improved (semantic) search and browsing, integration of heterogeneous information sources, and improved knowledge discovery capabilities. This paper discusses the design and development of an ontology for Modeling and Simulation called the Discrete-event Modeling Ontology (DeMO), and it presents prototype applications that demonstrate various uses and benefits that such an ontology may provide to the Modeling and Simulation community.
DeMO: An Ontology for Discrete-event Modeling and Simulation
Silver, Gregory A; Miller, John A; Hybinette, Maria; Baramidze, Gregory; York, William S
2011-01-01
Several fields have created ontologies for their subdomains. For example, the biological sciences have developed extensive ontologies such as the Gene Ontology, which is considered a great success. Ontologies could provide similar advantages to the Modeling and Simulation community. They provide a way to establish common vocabularies and capture knowledge about a particular domain with community-wide agreement. Ontologies can support significantly improved (semantic) search and browsing, integration of heterogeneous information sources, and improved knowledge discovery capabilities. This paper discusses the design and development of an ontology for Modeling and Simulation called the Discrete-event Modeling Ontology (DeMO), and it presents prototype applications that demonstrate various uses and benefits that such an ontology may provide to the Modeling and Simulation community. PMID:22919114
A performance study of WebDav access to storages within the Belle II collaboration
NASA Astrophysics Data System (ADS)
Pardi, S.; Russo, G.
2017-10-01
WebDav and HTTP are becoming popular protocols for data access in the High Energy Physics community. The most used Grid and Cloud storage solutions provide such kind of interfaces, in this scenario tuning and performance evaluation became crucial aspects to promote the adoption of these protocols within the Belle II community. In this work, we present the results of a large-scale test activity, made with the goal to evaluate performances and reliability of the WebDav protocol, and study a possible adoption for the user analysis. More specifically, we considered a pilot infrastructure composed by a set of storage elements configured with the WebDav interface, hosted at the Belle II sites. The performance tests include a comparison with xrootd and gridftp. As reference tests we used a set of analysis jobs running under the Belle II software framework, accessing the input data with the ROOT I/O library, in order to simulate as much as possible a realistic user activity. The final analysis shows the possibility to achieve promising performances with WebDav on different storage systems, and gives an interesting feedback, for Belle II community and for other high energy physics experiments.
Adaptive pre-specification in randomized trials with and without pair-matching.
Balzer, Laura B; van der Laan, Mark J; Petersen, Maya L
2016-11-10
In randomized trials, adjustment for measured covariates during the analysis can reduce variance and increase power. To avoid misleading inference, the analysis plan must be pre-specified. However, it is often unclear a priori which baseline covariates (if any) should be adjusted for in the analysis. Consider, for example, the Sustainable East Africa Research in Community Health (SEARCH) trial for HIV prevention and treatment. There are 16 matched pairs of communities and many potential adjustment variables, including region, HIV prevalence, male circumcision coverage, and measures of community-level viral load. In this paper, we propose a rigorous procedure to data-adaptively select the adjustment set, which maximizes the efficiency of the analysis. Specifically, we use cross-validation to select from a pre-specified library the candidate targeted maximum likelihood estimator (TMLE) that minimizes the estimated variance. For further gains in precision, we also propose a collaborative procedure for estimating the known exposure mechanism. Our small sample simulations demonstrate the promise of the methodology to maximize study power, while maintaining nominal confidence interval coverage. We show how our procedure can be tailored to the scientific question (intervention effect for the study sample vs. for the target population) and study design (pair-matched or not). Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Parajuli, Sagar Prasad; Yang, Zong-Liang; Lawrence, David M.
2016-06-01
Large amounts of mineral dust are injected into the atmosphere during dust storms, which are common in the Middle East and North Africa (MENA) where most of the global dust hotspots are located. In this work, we present simulations of dust emission using the Community Earth System Model Version 1.2.2 (CESM 1.2.2) and evaluate how well it captures the spatio-temporal characteristics of dust emission in the MENA region with a focus on large-scale dust storm mobilization. We explicitly focus our analysis on the model's two major input parameters that affect the vertical mass flux of dust-surface winds and the soil erodibility factor. We analyze dust emissions in simulations with both prognostic CESM winds and with CESM winds that are nudged towards ERA-Interim reanalysis values. Simulations with three existing erodibility maps and a new observation-based erodibility map are also conducted. We compare the simulated results with MODIS satellite data, MACC reanalysis data, AERONET station data, and CALIPSO 3-d aerosol profile data. The dust emission simulated by CESM, when driven by nudged reanalysis winds, compares reasonably well with observations on daily to monthly time scales despite CESM being a global General Circulation Model. However, considerable bias exists around known high dust source locations in northwest/northeast Africa and over the Arabian Peninsula where recurring large-scale dust storms are common. The new observation-based erodibility map, which can represent anthropogenic dust sources that are not directly represented by existing erodibility maps, shows improved performance in terms of the simulated dust optical depth (DOD) and aerosol optical depth (AOD) compared to existing erodibility maps although the performance of different erodibility maps varies by region.
Training Community Modeling and Simulation Business Plan: 2009 Edition
2010-04-01
strategic information assurance 33 33 Provide crisis action procedures training 34 34 Provide the IC SOF-specific training at the operational level... information and products • Collaborative analysis processes • Dissemination of information throughout a command and to subordinates by redundant means...centric M&S capabilities will improve training for information warfare, assist with training for homeland defense operations, crisis -management plan- ning
Manpower Analysis Using Discrete Simulation
2015-12-01
COMMUNITY PERS-4412, a subsidiary of the greater U.S. Navy personnel management organization based in Millington, Tennessee, deals specifically with...and the response of the United States Congress to budget deficits and national debt, the United States Navy is now facing reductions in the overall...Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget
Ocean biogeochemistry modeled with emergent trait-based genomics.
Coles, V J; Stukel, M R; Brooks, M T; Burd, A; Crump, B C; Moran, M A; Paul, J H; Satinsky, B M; Yager, P L; Zielinski, B L; Hood, R R
2017-12-01
Marine ecosystem models have advanced to incorporate metabolic pathways discovered with genomic sequencing, but direct comparisons between models and "omics" data are lacking. We developed a model that directly simulates metagenomes and metatranscriptomes for comparison with observations. Model microbes were randomly assigned genes for specialized functions, and communities of 68 species were simulated in the Atlantic Ocean. Unfit organisms were replaced, and the model self-organized to develop community genomes and transcriptomes. Emergent communities from simulations that were initialized with different cohorts of randomly generated microbes all produced realistic vertical and horizontal ocean nutrient, genome, and transcriptome gradients. Thus, the library of gene functions available to the community, rather than the distribution of functions among specific organisms, drove community assembly and biogeochemical gradients in the model ocean. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Po-Lun; Gattiker, J. R.; Liu, Xiaohong
2013-06-27
A Gaussian process (GP) emulator is applied to quantify the contribution of local and remote emissions of black carbon (BC) on the BC concentrations in different regions using a Latin Hypercube sampling strategy for emission perturbations in the offline version of the Community Atmosphere Model Version 5.1 (CAM5) simulations. The source-receptor relationships are computed based on simulations constrained by a standard free-running CAM5 simulation and the ERA-Interim reanalysis product. The analysis demonstrates that the emulator is capable of retrieving the source-receptor relationships based on a small number of CAM5 simulations. Most regions are found susceptible to their local emissions. Themore » emulator also finds that the source-receptor relationships retrieved from the model-driven and the reanalysis-driven simulations are very similar, suggesting that the simulated circulation in CAM5 resembles the assimilated meteorology in ERA-Interim. The robustness of the results provides confidence for applying the emulator to detect dose-response signals in the climate system.« less
Status of the AIAA Modeling and Simulation Format Standard
NASA Technical Reports Server (NTRS)
Jackson, E. Bruce; Hildreth, Bruce L.
2008-01-01
The current draft AIAA Standard for flight simulation models represents an on-going effort to improve the productivity of practitioners of the art of digital flight simulation (one of the original digital computer applications). This initial release provides the capability for the efficient representation and exchange of an aerodynamic model in full fidelity; the DAVE-ML format can be easily imported (with development of site-specific import tools) in an unambiguous way with automatic verification. An attractive feature of the standard is the ability to coexist with existing legacy software or tools. The draft Standard is currently limited in scope to static elements of dynamic flight simulations; however, these static elements represent the bulk of typical flight simulation mathematical models. It is already seeing application within U.S. and Australian government agencies in an effort to improve productivity and reduce model rehosting overhead. An existing tool allows import of DAVE-ML models into a popular simulation modeling and analysis tool, and other community-contributed tools and libraries can simplify the use of DAVE-ML compliant models at compile- or run-time of high-fidelity flight simulation.
The effect of horizontal resolution on simulation quality in the Community Atmospheric Model, CAM5.1
Wehner, Michael F.; Reed, Kevin A.; Li, Fuyu; ...
2014-10-13
We present an analysis of version 5.1 of the Community Atmospheric Model (CAM5.1) at a high horizontal resolution. Intercomparison of this global model at approximately 0.25°, 1°, and 2° is presented for extreme daily precipitation as well as for a suite of seasonal mean fields. In general, extreme precipitation amounts are larger in high resolution than in lower-resolution configurations. In many but not all locations and/or seasons, extreme daily precipitation rates in the high-resolution configuration are higher and more realistic. The high-resolution configuration produces tropical cyclones up to category 5 on the Saffir-Simpson scale and a comparison to observations revealsmore » both realistic and unrealistic model behavior. In the absence of extensive model tuning at high resolution, simulation of many of the mean fields analyzed in this study is degraded compared to the tuned lower-resolution public released version of the model.« less
Land Surface Microwave Emissivity Dynamics: Observations, Analysis and Modeling
NASA Technical Reports Server (NTRS)
Tian, Yudong; Peters-Lidard, Christa D.; Harrison, Kenneth W.; Kumar, Sujay; Ringerud, Sarah
2014-01-01
Land surface microwave emissivity affects remote sensing of both the atmosphere and the land surface. The dynamical behavior of microwave emissivity over a very diverse sample of land surface types is studied. With seven years of satellite measurements from AMSR-E, we identified various dynamical regimes of the land surface emission. In addition, we used two radiative transfer models (RTMs), the Community Radiative Transfer Model (CRTM) and the Community Microwave Emission Modeling Platform (CMEM), to simulate land surface emissivity dynamics. With both CRTM and CMEM coupled to NASA's Land Information System, global-scale land surface microwave emissivities were simulated for five years, and evaluated against AMSR-E observations. It is found that both models have successes and failures over various types of land surfaces. Among them, the desert shows the most consistent underestimates (by approx. 70-80%), due to limitations of the physical models used, and requires a revision in both systems. Other snow-free surface types exhibit various degrees of success and it is expected that parameter tuning can improve their performances.
Simulation and Community-Based Instruction of Vending Machines with Time Delay.
ERIC Educational Resources Information Center
Browder, Diane M.; And Others
1988-01-01
The study evaluated the use of simulated instruction on vending machine use as an adjunct to community-based instruction with two moderately retarded children. Results showed concurrent acquisition of the vending machine skills across trained and untrained sites. (Author/DB)
Current target acquisition methodology in force on force simulations
NASA Astrophysics Data System (ADS)
Hixson, Jonathan G.; Miller, Brian; Mazz, John P.
2017-05-01
The U.S. Army RDECOM CERDEC NVESD MSD's target acquisition models have been used for many years by the military community in force on force simulations for training, testing, and analysis. There have been significant improvements to these models over the past few years. The significant improvements are the transition of ACQUIRE TTP-TAS (ACQUIRE Targeting Task Performance Target Angular Size) methodology for all imaging sensors and the development of new discrimination criteria for urban environments and humans. This paper is intended to provide an overview of the current target acquisition modeling approach and provide data for the new discrimination tasks. This paper will discuss advances and changes to the models and methodologies used to: (1) design and compare sensors' performance, (2) predict expected target acquisition performance in the field, (3) predict target acquisition performance for combat simulations, and (4) how to conduct model data validation for combat simulations.
Competitive and demographic leverage points of community shifts under climate warming
Sorte, Cascade J. B.; White, J. Wilson
2013-01-01
Accelerating rates of climate change and a paucity of whole-community studies of climate impacts limit our ability to forecast shifts in ecosystem structure and dynamics, particularly because climate change can lead to idiosyncratic responses via both demographic effects and altered species interactions. We used a multispecies model to predict which processes and species' responses are likely to drive shifts in the composition of a space-limited benthic marine community. Our model was parametrized from experimental manipulations of the community. Model simulations indicated shifts in species dominance patterns as temperatures increase, with projected shifts in composition primarily owing to the temperature dependence of growth, mortality and competition for three critical species. By contrast, warming impacts on two other species (rendering them weaker competitors for space) and recruitment rates of all species were of lesser importance in determining projected community changes. Our analysis reveals the importance of temperature-dependent competitive interactions for predicting effects of changing climate on such communities. Furthermore, by identifying processes and species that could disproportionately leverage shifts in community composition, our results contribute to a mechanistic understanding of climate change impacts, thereby allowing more insightful predictions of future biodiversity patterns. PMID:23658199
Emergence of bursts and communities in evolving weighted networks.
Jo, Hang-Hyun; Pan, Raj Kumar; Kaski, Kimmo
2011-01-01
Understanding the patterns of human dynamics and social interaction and the way they lead to the formation of an organized and functional society are important issues especially for techno-social development. Addressing these issues of social networks has recently become possible through large scale data analysis of mobile phone call records, which has revealed the existence of modular or community structure with many links between nodes of the same community and relatively few links between nodes of different communities. The weights of links, e.g., the number of calls between two users, and the network topology are found correlated such that intra-community links are stronger compared to the weak inter-community links. This feature is known as Granovetter's "The strength of weak ties" hypothesis. In addition to this inhomogeneous community structure, the temporal patterns of human dynamics turn out to be inhomogeneous or bursty, characterized by the heavy tailed distribution of time interval between two consecutive events, i.e., inter-event time. In this paper, we study how the community structure and the bursty dynamics emerge together in a simple evolving weighted network model. The principal mechanisms behind these patterns are social interaction by cyclic closure, i.e., links to friends of friends and the focal closure, links to individuals sharing similar attributes or interests, and human dynamics by task handling process. These three mechanisms have been implemented as a network model with local attachment, global attachment, and priority-based queuing processes. By comprehensive numerical simulations we show that the interplay of these mechanisms leads to the emergence of heavy tailed inter-event time distribution and the evolution of Granovetter-type community structure. Moreover, the numerical results are found to be in qualitative agreement with empirical analysis results from mobile phone call dataset.
Chan, Yvonne L; Schanzenbach, David; Hickerson, Michael J
2014-09-01
Methods that integrate population-level sampling from multiple taxa into a single community-level analysis are an essential addition to the comparative phylogeographic toolkit. Detecting how species within communities have demographically tracked each other in space and time is important for understanding the effects of future climate and landscape changes and the resulting acceleration of extinctions, biological invasions, and potential surges in adaptive evolution. Here, we present a statistical framework for such an analysis based on hierarchical approximate Bayesian computation (hABC) with the goal of detecting concerted demographic histories across an ecological assemblage. Our method combines population genetic data sets from multiple taxa into a single analysis to estimate: 1) the proportion of a community sample that demographically expanded in a temporally clustered pulse and 2) when the pulse occurred. To validate the accuracy and utility of this new approach, we use simulation cross-validation experiments and subsequently analyze an empirical data set of 32 avian populations from Australia that are hypothesized to have expanded from smaller refugia populations in the late Pleistocene. The method can accommodate data set heterogeneity such as variability in effective population size, mutation rates, and sample sizes across species and exploits the statistical strength from the simultaneous analysis of multiple species. This hABC framework used in a multitaxa demographic context can increase our understanding of the impact of historical climate change by determining what proportion of the community responded in concert or independently and can be used with a wide variety of comparative phylogeographic data sets as biota-wide DNA barcoding data sets accumulate. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Development and analysis of air quality modeling simulations for hazardous air pollutants
NASA Astrophysics Data System (ADS)
Luecken, D. J.; Hutzell, W. T.; Gipson, G. L.
The concentrations of five hazardous air pollutants were simulated using the community multi-scale air quality (CMAQ) modeling system. Annual simulations were performed over the continental United States for the entire year of 2001 to support human exposure estimates. Results are shown for formaldehyde, acetaldehyde, benzene, 1,3-butadiene and acrolein. Photochemical production in the atmosphere is predicted to dominate ambient formaldehyde and acetaldehyde concentrations, and to account for a significant fraction of ambient acrolein concentrations. Spatial and temporal variations are large throughout the domain over the year. Predicted concentrations are compared with observations for formaldehyde, acetaldehyde, benzene and 1,3-butadiene. Although the modeling results indicate an overall slight tendency towards underprediction, they reproduce episodic and seasonal behavior of pollutant concentrations at many monitors with good skill.
Virtual DRI dataset development
NASA Astrophysics Data System (ADS)
Hixson, Jonathan G.; Teaney, Brian P.; May, Christopher; Maurer, Tana; Nelson, Michael B.; Pham, Justin R.
2017-05-01
The U.S. Army RDECOM CERDEC NVESD MSD's target acquisition models have been used for many years by the military analysis community for sensor design, trade studies, and field performance prediction. This paper analyzes the results of perception tests performed to compare the results of a field DRI (Detection, Recognition, and Identification Test) performed in 2009 to current Soldier performance viewing the same imagery in a laboratory environment and simulated imagery of the same data set. The purpose of the experiment is to build a robust data set for use in the virtual prototyping of infrared sensors. This data set will provide a strong foundation relating, model predictions, field DRI results and simulated imagery.
NASA Technical Reports Server (NTRS)
Groves, Curtis E.; LLie, Marcel; Shallhorn, Paul A.
2012-01-01
There are inherent uncertainties and errors associated with using Computational Fluid Dynamics (CFD) to predict the flow field and there is no standard method for evaluating uncertainty in the CFD community. This paper describes an approach to -validate the . uncertainty in using CFD. The method will use the state of the art uncertainty analysis applying different turbulence niodels and draw conclusions on which models provide the least uncertainty and which models most accurately predict the flow of a backward facing step.
The MassiveBlack-II simulation: The evolution of haloes and galaxies to z ~ 0
Khandai, Nishikanta; Di Matteo, Tiziana; Croft, Rupert; ...
2015-04-24
We investigate the properties and clustering of halos, galaxies and blackholes to z = 0 in the high resolution hydrodynamical simulation MassiveBlack-II (MBII). MBII evolves a ΛCDM cosmology in a cubical comoving volume V box = (100Mpc/h)³. It is the highest resolution simulation of this size which includes a self-consistent model for star formation, black hole accretion and associated feedback. We provide a simulation browser web application which enables interactive search and tagging of the halos, subhalos and their properties and publicly release our galaxy catalogs to the scientific community. Our analysis of the halo mass function in MBII revealsmore » that baryons have strong effects with changes in the halo abundance of 20–35% below the knee of the mass function (M halo 10 13.2 M ⊙ h at z = 0) when compared to dark-matter-only simulations. We provide a fitting function for the halo MF out to redshift z = 11 and discuss its limitations.« less
NASA Astrophysics Data System (ADS)
Law, Rachel M.; Ziehn, Tilo; Matear, Richard J.; Lenton, Andrew; Chamberlain, Matthew A.; Stevens, Lauren E.; Wang, Ying-Ping; Srbinovsky, Jhan; Bi, Daohua; Yan, Hailin; Vohralik, Peter F.
2017-07-01
Earth system models (ESMs) that incorporate carbon-climate feedbacks represent the present state of the art in climate modelling. Here, we describe the Australian Community Climate and Earth System Simulator (ACCESS)-ESM1, which comprises atmosphere (UM7.3), land (CABLE), ocean (MOM4p1), and sea-ice (CICE4.1) components with OASIS-MCT coupling, to which ocean and land carbon modules have been added. The land carbon model (as part of CABLE) can optionally include both nitrogen and phosphorous limitation on the land carbon uptake. The ocean carbon model (WOMBAT, added to MOM) simulates the evolution of phosphate, oxygen, dissolved inorganic carbon, alkalinity and iron with one class of phytoplankton and zooplankton. We perform multi-centennial pre-industrial simulations with a fixed atmospheric CO2 concentration and different land carbon model configurations (prescribed or prognostic leaf area index). We evaluate the equilibration of the carbon cycle and present the spatial and temporal variability in key carbon exchanges. Simulating leaf area index results in a slight warming of the atmosphere relative to the prescribed leaf area index case. Seasonal and interannual variations in land carbon exchange are sensitive to whether leaf area index is simulated, with interannual variations driven by variability in precipitation and temperature. We find that the response of the ocean carbon cycle shows reasonable agreement with observations. While our model overestimates surface phosphate values, the global primary productivity agrees well with observations. Our analysis highlights some deficiencies inherent in the carbon models and where the carbon simulation is negatively impacted by known biases in the underlying physical model and consequent limits on the applicability of this model version. We conclude the study with a brief discussion of key developments required to further improve the realism of our model simulation.
Simulating realistic predator signatures in quantitative fatty acid signature analysis
Bromaghin, Jeffrey F.
2015-01-01
Diet estimation is an important field within quantitative ecology, providing critical insights into many aspects of ecology and community dynamics. Quantitative fatty acid signature analysis (QFASA) is a prominent method of diet estimation, particularly for marine mammal and bird species. Investigators using QFASA commonly use computer simulation to evaluate statistical characteristics of diet estimators for the populations they study. Similar computer simulations have been used to explore and compare the performance of different variations of the original QFASA diet estimator. In both cases, computer simulations involve bootstrap sampling prey signature data to construct pseudo-predator signatures with known properties. However, bootstrap sample sizes have been selected arbitrarily and pseudo-predator signatures therefore may not have realistic properties. I develop an algorithm to objectively establish bootstrap sample sizes that generates pseudo-predator signatures with realistic properties, thereby enhancing the utility of computer simulation for assessing QFASA estimator performance. The algorithm also appears to be computationally efficient, resulting in bootstrap sample sizes that are smaller than those commonly used. I illustrate the algorithm with an example using data from Chukchi Sea polar bears (Ursus maritimus) and their marine mammal prey. The concepts underlying the approach may have value in other areas of quantitative ecology in which bootstrap samples are post-processed prior to their use.
NASA Technical Reports Server (NTRS)
Franklin, R. B.; Garland, J. L.; Bolster, C. H.; Mills, A. L.
2001-01-01
A series of microcosm experiments was performed using serial dilutions of a sewage microbial community to inoculate a set of batch cultures in sterile sewage. After inoculation, the dilution-defined communities were allowed to regrow for several days and a number of community attributes were measured in the regrown assemblages. Based upon a set of numerical simulations, community structure was expected to differ along the dilution gradient; the greatest differences in structure were anticipated between the undiluted-low-dilution communities and the communities regrown from the very dilute (more than 10(-4)) inocula. Furthermore, some differences were expected among the lower-dilution treatments (e.g., between undiluted and 10(-1)) depending upon the evenness of the original community. In general, each of the procedures used to examine the experimental community structures separated the communities into at least two, often three, distinct groups. The groupings were consistent with the simulated dilution of a mixture of organisms with a very uneven distribution. Significant differences in community structure were detected with genetic (amplified fragment length polymorphism and terminal restriction fragment length polymorphism), physiological (community level physiological profiling), and culture-based (colony morphology on R2A agar) measurements. Along with differences in community structure, differences in community size (acridine orange direct counting), composition (ratio of sewage medium counts to R2A counts, monitoring of each colony morphology across the treatments), and metabolic redundancy (i.e., generalist versus specialist) were also observed, suggesting that the differences in structure and diversity of communities maintained in the same environment can be manifested as differences in community organization and function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Mengmeng; Liu, Shanshan; Wang, Feng
We report that soil transplant serves as a proxy to simulate climate changes. Recently, we have shown that southward transplant of black soil and northward transplant of red soil altered soil microbial communities and biogeochemical variables. However, fundamental differences in soil types have prevented direct comparison between southward and northward transplants. To tackle it, herein we report an analysis of microbial communities of Cambisol soil in an agriculture field after 4 years of adaptation to southward and northward soil transplants over large transects. Analysis of bare fallow soils revealed concurrent increase in microbial functional diversity and coarse-scale taxonomic diversity atmore » both transplanted sites, as detected by GeoChip 3.0 and DGGE, respectively. Furthermore, a correlation between microbial functional diversity and taxonomic diversity was detected, which was masked in maize cropped soils. Mean annual temperature, soil moisture, and nitrate (NO 3¯-N) showed strong correlations with microbial communities. In addition, abundances of ammonium-oxidizing genes (amoA) and denitrification genes were correlated with nitrification capacity and NO 3¯-N contents, suggesting that microbial responses to soil transplant could alter microbe-mediated biogeochemical cycle at the ecosystem level.« less
A multi-objective constraint-based approach for modeling genome-scale microbial ecosystems.
Budinich, Marko; Bourdon, Jérémie; Larhlimi, Abdelhalim; Eveillard, Damien
2017-01-01
Interplay within microbial communities impacts ecosystems on several scales, and elucidation of the consequent effects is a difficult task in ecology. In particular, the integration of genome-scale data within quantitative models of microbial ecosystems remains elusive. This study advocates the use of constraint-based modeling to build predictive models from recent high-resolution -omics datasets. Following recent studies that have demonstrated the accuracy of constraint-based models (CBMs) for simulating single-strain metabolic networks, we sought to study microbial ecosystems as a combination of single-strain metabolic networks that exchange nutrients. This study presents two multi-objective extensions of CBMs for modeling communities: multi-objective flux balance analysis (MO-FBA) and multi-objective flux variability analysis (MO-FVA). Both methods were applied to a hot spring mat model ecosystem. As a result, multiple trade-offs between nutrients and growth rates, as well as thermodynamically favorable relative abundances at community level, were emphasized. We expect this approach to be used for integrating genomic information in microbial ecosystems. Following models will provide insights about behaviors (including diversity) that take place at the ecosystem scale.
Community College Faculty Recruitment: Predictors of Applicant Attraction to Faculty Positions.
ERIC Educational Resources Information Center
Winter, Paul A.; Kjorlien, Chad L.
2000-01-01
Utilizes MBA students' biographical data and reactions to simulated position ads for community college business faculty positions to identify predictors of applicant decisions. Reveals four significant predictors of participants' ratings of simulated positions: applicant's current job satisfaction, spouse's contribution to household income,…
Implementing a high-fidelity simulation program in a community college setting.
Tuoriniemi, Pamela; Schott-Baer, Darlene
2008-01-01
Despite their relatively high cost, there is heightened interest by faculty in undergraduate nursing programs to implement high-fidelity simulation (HFS) programs. High-fidelity simulators are appealing because they allow students to experience high-risk, low-volume patient problems in a realistic setting. The decision to purchase a simulator is the first step in the process of implementing and maintaining an HFS lab. Knowledge, technical skill, commitment, and considerable time are needed to develop a successful program. The process, as experienced by one community college nursing program, is described.
NASA Astrophysics Data System (ADS)
Kuznetsova, M. M.; Liu, Y. H.; Rastaetter, L.; Pembroke, A. D.; Chen, L. J.; Hesse, M.; Glocer, A.; Komar, C. M.; Dorelli, J.; Roytershteyn, V.
2016-12-01
The presentation will provide overview of new tools, services and models implemented at the Community Coordinated Modeling Center (CCMC) to facilitate MMS dayside results analysis. We will provide updates on implementation of Particle-in-Cell (PIC) simulations at the CCMC and opportunities for on-line visualization and analysis of results of PIC simulations of asymmetric magnetic reconnection for different guide fields and boundary conditions. Fields, plasma parameters, particle distribution moments as well as particle distribution functions calculated in selected regions of the vicinity of reconnection sites can be analyzed through the web-based interactive visualization system. In addition there are options to request distribution functions in user selected regions of interest and to fly through simulated magnetic reconnection configurations and a map of distributions to facilitate comparisons with observations. A broad collection of global magnetosphere models hosted at the CCMC provide opportunity to put MMS observations and local PIC simulations into global context. We recently implemented the RECON-X post processing tool (Glocer et al, 2016) which allows users to determine the location of separator surface around closed field lines and between open field lines and solar wind field lines. The tool also finds the separatrix line where the two surfaces touch and positions of magnetic nulls. The surfaces and the separatrix line can be visualized relative to satellite positions in the dayside magnetosphere using an interactive HTML-5 visualization for each time step processed. To validate global magnetosphere models' capability to simulate locations of dayside magnetosphere boundaries we will analyze the proximity of MMS to simulated separatrix locations for a set of MMS diffusion region crossing events.
Liu, Yehao; Li, Yongchun; Hua, Xiaomei; Müller, Karin; Wang, Hailong; Yang, Tongyi; Wang, Qiong; Peng, Xin; Wang, Mengcheng; Pang, Yanjun; Qi, Jinliang; Yang, Yonghua
2018-05-01
Glyphosate is a non-selective organophosphate herbicide that is widely used in agriculture, but its effects on soil microbial communities are highly variable and often contradictory, especially for high dose applications. We applied glyphosate at two rates: the recommended rate of 50 mg active ingredient kg -1 soil and 10-fold this rate to simulate multiple glyphosate applications during a growing season. After 6 months, we investigated the effects on the composition of soil microbial community, the catabolic activity and the genetic diversity of the bacterial community using phospholipid fatty acids (PLFAs), community level catabolic profiles (CLCPs), and 16S rRNA denaturing gradient gel electrophoresis (DGGE). Microbial biomass carbon (C mic ) was reduced by 45%, and the numbers of the cultivable bacteria and fungi were decreased by 84 and 63%, respectively, under the higher glyphosate application rate. According to the PLFA analysis, the fungal biomass was reduced by 29% under both application rates. However, the CLCPs showed that the catabolic activity of the gram-negative (G-) bacterial community was significantly increased under the high glyphosate application rate. Furthermore, the DGGE analysis indicated that the bacterial community in the soil that had received the high glyphosate application rate was dominated by G- bacteria. Real-time PCR results suggested that copies of the glyphosate tolerance gene (EPSPS) increased significantly in the treatment with the high glyphosate application rate. Our results indicated that fungi were impaired through glyphosate while G- bacteria played an important role in the tolerance of microbiota to glyphosate applications.
NASA Astrophysics Data System (ADS)
Laiolo, Leonardo; Matear, Richard; Baird, Mark E.; Soja-Woźniak, Monika; Doblin, Martina A.
2018-07-01
Chlorophyll-a measurements in the form of in situ observations and satellite ocean colour products are commonly used in data assimilation to calibrate marine biogeochemical models. Here, a two size-class phytoplankton biogeochemical model, with a 0D configuration, was used to simulate the surface chlorophyll-a dynamics (simulated surface Chl-a) for cyclonic and anticyclonic eddies off East Australia. An optical model was then used to calculate the inherent optical properties from the simulation and convert them into remote-sensing reflectance (Rrs). Subsequently, Rrs was used to produce a satellite-like estimate of the simulated surface Chl-a concentrations through the MODIS OC3M algorithm (simulated OC3M Chl-a). Identical parameter optimisation experiments were performed through the assimilation of the two separate datasets (simulated surface Chl-a and simulated OC3M Chl-a), with the purpose of investigating the contrasting information content of simulated surface Chl-a and remotely-sensed data sources. The results we present are based on the analysis of the distribution of a cost function, varying four parameters of the biogeochemical model. In our idealized experiments the simulated OC3M Chl-a product is a poor proxy for the total simulated surface Chl-a concentration. Furthermore, our result show the OC3M algorithm can underestimate the simulated chlorophyll-a concentration in offshore eddies off East Australia (Case I waters), because of the weak relationship between large-sized phytoplankton and remote-sensing reflectance. Although Case I waters are usually characteristic of oligotrophic environments, with a photosynthetic community typically represented by relatively small-sized phytoplankton, mesoscale features such as eddies can generate seasonally favourable conditions for a photosynthetic community with a greater proportion of large phytoplankton cells. Furthermore, our results show that in mesoscale features such as eddies, in situ chlorophyll-a observations and the ocean colour products can carry different information related to phytoplankton sizes. Assimilating both remote-sensing reflectance and measurements of in situ chlorophyll-a concentration reduces the uncertainty of the parameter values more than either data set alone, thus reducing the spread of acceptable solutions, giving an improved simulation of the natural environment.
Xu, Xiaoya; Liu, Xiaorui; Li, Yong; Ran, Yu; Liu, Yapeng; Zhang, Qichun; Li, Zheng; He, Yan; Xu, Jianming; Di, Hongjie
2017-04-01
Although the effect of simulated climate change on nitrous oxide (N 2 O) emissions and on associated microbial communities has been reported, it is not well understood if these effects are short-lived or long-lasting. Here, we conducted a field study to determine the interactive effects of simulated warmer and drier conditions on nitrifier and denitrifier communities and N 2 O emissions in an acidic soil and the longevity of the effects. A warmer (+2.3 °C) and drier climate (-7.4% soil moisture content) was created with greenhouses. The variation of microbial population abundance and community structure of ammonia-oxidizing archaea (AOA), bacteria (AOB), and denitrifiers (nirK/S, nosZ) were determined using real-time PCR and high-throughput sequencing. The results showed that the simulated warmer and drier conditions under the greenhouse following urea application significantly increased N 2 O emissions. There was also a moderate legacy effect on the N 2 O emissions when the greenhouses were removed in the urea treatment, although this effect only lasted a short period of time (about 60 days). The simulated climate change conditions changed the composition of AOA with the species affiliated to marine group 1.1a-associated lineage increasing significantly. The abundance of all the functional denitrifier genes decreased significantly under the simulated climate change conditions and the legacy effect, after the removal of greenhouses, significantly increased the abundance of AOB, AOA (mainly the species affiliated to marine group 1.1a-associated lineage), and nirK and nosZ genes in the urea-treated soil. In general, the effect of the simulated climate change was short-lived, with the denitrifier communities being able to return to ambient levels after a period of adaptation to ambient conditions. Therefore, the legacy effect of simulated short-time climate change conditions on the ammonia oxidizer and denitrifier communities and N 2 O emissions were temporary and once the conditions were removed, the microbial communities were able to adapt to the ambient conditions.
The adaptation of the Community Multiscale Air Quality (CMAQ) modeling system to simulate O3, particulate matter, and related precursor distributions over the northern hemisphere is presented. Hemispheric simulations with CMAQ and the Weather Research and Forecasting (...
Flexible workflow sharing and execution services for e-scientists
NASA Astrophysics Data System (ADS)
Kacsuk, Péter; Terstyanszky, Gábor; Kiss, Tamas; Sipos, Gergely
2013-04-01
The sequence of computational and data manipulation steps required to perform a specific scientific analysis is called a workflow. Workflows that orchestrate data and/or compute intensive applications on Distributed Computing Infrastructures (DCIs) recently became standard tools in e-science. At the same time the broad and fragmented landscape of workflows and DCIs slows down the uptake of workflow-based work. The development, sharing, integration and execution of workflows is still a challenge for many scientists. The FP7 "Sharing Interoperable Workflow for Large-Scale Scientific Simulation on Available DCIs" (SHIWA) project significantly improved the situation, with a simulation platform that connects different workflow systems, different workflow languages, different DCIs and workflows into a single, interoperable unit. The SHIWA Simulation Platform is a service package, already used by various scientific communities, and used as a tool by the recently started ER-flow FP7 project to expand the use of workflows among European scientists. The presentation will introduce the SHIWA Simulation Platform and the services that ER-flow provides based on the platform to space and earth science researchers. The SHIWA Simulation Platform includes: 1. SHIWA Repository: A database where workflows and meta-data about workflows can be stored. The database is a central repository to discover and share workflows within and among communities . 2. SHIWA Portal: A web portal that is integrated with the SHIWA Repository and includes a workflow executor engine that can orchestrate various types of workflows on various grid and cloud platforms. 3. SHIWA Desktop: A desktop environment that provides similar access capabilities than the SHIWA Portal, however it runs on the users' desktops/laptops instead of a portal server. 4. Workflow engines: the ASKALON, Galaxy, GWES, Kepler, LONI Pipeline, MOTEUR, Pegasus, P-GRADE, ProActive, Triana, Taverna and WS-PGRADE workflow engines are already integrated with the execution engine of the SHIWA Portal. Other engines can be added when required. Through the SHIWA Portal one can define and run simulations on the SHIWA Virtual Organisation, an e-infrastructure that gathers computing and data resources from various DCIs, including the European Grid Infrastructure. The Portal via third party workflow engines provides support for the most widely used academic workflow engines and it can be extended with other engines on demand. Such extensions translate between workflow languages and facilitate the nesting of workflows into larger workflows even when those are written in different languages and require different interpreters for execution. Through the workflow repository and the portal lonely scientists and scientific collaborations can share and offer workflows for reuse and execution. Given the integrated nature of the SHIWA Simulation Platform the shared workflows can be executed online, without installing any special client environment and downloading workflows. The FP7 "Building a European Research Community through Interoperable Workflows and Data" (ER-flow) project disseminates the achievements of the SHIWA project and use these achievements to build workflow user communities across Europe. ER-flow provides application supports to research communities within and beyond the project consortium to develop, share and run workflows with the SHIWA Simulation Platform.
Calibration and analysis of genome-based models for microbial ecology.
Louca, Stilianos; Doebeli, Michael
2015-10-16
Microbial ecosystem modeling is complicated by the large number of unknown parameters and the lack of appropriate calibration tools. Here we present a novel computational framework for modeling microbial ecosystems, which combines genome-based model construction with statistical analysis and calibration to experimental data. Using this framework, we examined the dynamics of a community of Escherichia coli strains that emerged in laboratory evolution experiments, during which an ancestral strain diversified into two coexisting ecotypes. We constructed a microbial community model comprising the ancestral and the evolved strains, which we calibrated using separate monoculture experiments. Simulations reproduced the successional dynamics in the evolution experiments, and pathway activation patterns observed in microarray transcript profiles. Our approach yielded detailed insights into the metabolic processes that drove bacterial diversification, involving acetate cross-feeding and competition for organic carbon and oxygen. Our framework provides a missing link towards a data-driven mechanistic microbial ecology.
Multiphysics Code Demonstrated for Propulsion Applications
NASA Technical Reports Server (NTRS)
Lawrence, Charles; Melis, Matthew E.
1998-01-01
The utility of multidisciplinary analysis tools for aeropropulsion applications is being investigated at the NASA Lewis Research Center. The goal of this project is to apply Spectrum, a multiphysics code developed by Centric Engineering Systems, Inc., to simulate multidisciplinary effects in turbomachinery components. Many engineering problems today involve detailed computer analyses to predict the thermal, aerodynamic, and structural response of a mechanical system as it undergoes service loading. Analysis of aerospace structures generally requires attention in all three disciplinary areas to adequately predict component service behavior, and in many cases, the results from one discipline substantially affect the outcome of the other two. There are numerous computer codes currently available in the engineering community to perform such analyses in each of these disciplines. Many of these codes are developed and used in-house by a given organization, and many are commercially available. However, few, if any, of these codes are designed specifically for multidisciplinary analyses. The Spectrum code has been developed for performing fully coupled fluid, thermal, and structural analyses on a mechanical system with a single simulation that accounts for all simultaneous interactions, thus eliminating the requirement for running a large number of sequential, separate, disciplinary analyses. The Spectrum code has a true multiphysics analysis capability, which improves analysis efficiency as well as accuracy. Centric Engineering, Inc., working with a team of Lewis and AlliedSignal Engines engineers, has been evaluating Spectrum for a variety of propulsion applications including disk quenching, drum cavity flow, aeromechanical simulations, and a centrifugal compressor flow simulation.
O'Donnell, Michael
2015-01-01
State-and-transition simulation modeling relies on knowledge of vegetation composition and structure (states) that describe community conditions, mechanistic feedbacks such as fire that can affect vegetation establishment, and ecological processes that drive community conditions as well as the transitions between these states. However, as the need for modeling larger and more complex landscapes increase, a more advanced awareness of computing resources becomes essential. The objectives of this study include identifying challenges of executing state-and-transition simulation models, identifying common bottlenecks of computing resources, developing a workflow and software that enable parallel processing of Monte Carlo simulations, and identifying the advantages and disadvantages of different computing resources. To address these objectives, this study used the ApexRMS® SyncroSim software and embarrassingly parallel tasks of Monte Carlo simulations on a single multicore computer and on distributed computing systems. The results demonstrated that state-and-transition simulation models scale best in distributed computing environments, such as high-throughput and high-performance computing, because these environments disseminate the workloads across many compute nodes, thereby supporting analysis of larger landscapes, higher spatial resolution vegetation products, and more complex models. Using a case study and five different computing environments, the top result (high-throughput computing versus serial computations) indicated an approximate 96.6% decrease of computing time. With a single, multicore compute node (bottom result), the computing time indicated an 81.8% decrease relative to using serial computations. These results provide insight into the tradeoffs of using different computing resources when research necessitates advanced integration of ecoinformatics incorporating large and complicated data inputs and models. - See more at: http://aimspress.com/aimses/ch/reader/view_abstract.aspx?file_no=Environ2015030&flag=1#sthash.p1XKDtF8.dpuf
Network analysis of wildfire transmission and implications for risk governance
Ager, Alan A.; Evers, Cody R.; Day, Michelle A.; Preisler, Haiganoush K.; Barros, Ana M. G.; Nielsen-Pincus, Max
2017-01-01
We characterized wildfire transmission and exposure within a matrix of large land tenures (federal, state, and private) surrounding 56 communities within a 3.3 million ha fire prone region of central Oregon US. Wildfire simulation and network analysis were used to quantify the exchange of fire among land tenures and communities and analyze the relative contributions of human versus natural ignitions to wildfire exposure. Among the land tenures examined, the area burned by incoming fires averaged 57% of the total burned area. Community exposure from incoming fires ignited on surrounding land tenures accounted for 67% of the total area burned. The number of land tenures contributing wildfire to individual communities and surrounding wildland urban interface (WUI) varied from 3 to 20. Community firesheds, i.e. the area where ignitions can spawn fires that can burn into the WUI, covered 40% of the landscape, and were 5.5 times larger than the combined area of the community core and WUI. For the major land tenures within the study area, the amount of incoming versus outgoing fire was relatively constant, with some exceptions. The study provides a multi-scale characterization of wildfire networks within a large, mixed tenure and fire prone landscape, and illustrates the connectivity of risk between communities and the surrounding wildlands. We use the findings to discuss how scale mismatches in local wildfire governance result from disconnected planning systems and disparate fire management objectives among the large landowners (federal, state, private) and local communities. Local and regional risk planning processes can adopt our concepts and methods to better define and map the scale of wildfire risk from large fire events and incorporate wildfire network and connectivity concepts into risk assessments. PMID:28257416
Network analysis of wildfire transmission and implications for risk governance.
Ager, Alan A; Evers, Cody R; Day, Michelle A; Preisler, Haiganoush K; Barros, Ana M G; Nielsen-Pincus, Max
2017-01-01
We characterized wildfire transmission and exposure within a matrix of large land tenures (federal, state, and private) surrounding 56 communities within a 3.3 million ha fire prone region of central Oregon US. Wildfire simulation and network analysis were used to quantify the exchange of fire among land tenures and communities and analyze the relative contributions of human versus natural ignitions to wildfire exposure. Among the land tenures examined, the area burned by incoming fires averaged 57% of the total burned area. Community exposure from incoming fires ignited on surrounding land tenures accounted for 67% of the total area burned. The number of land tenures contributing wildfire to individual communities and surrounding wildland urban interface (WUI) varied from 3 to 20. Community firesheds, i.e. the area where ignitions can spawn fires that can burn into the WUI, covered 40% of the landscape, and were 5.5 times larger than the combined area of the community core and WUI. For the major land tenures within the study area, the amount of incoming versus outgoing fire was relatively constant, with some exceptions. The study provides a multi-scale characterization of wildfire networks within a large, mixed tenure and fire prone landscape, and illustrates the connectivity of risk between communities and the surrounding wildlands. We use the findings to discuss how scale mismatches in local wildfire governance result from disconnected planning systems and disparate fire management objectives among the large landowners (federal, state, private) and local communities. Local and regional risk planning processes can adopt our concepts and methods to better define and map the scale of wildfire risk from large fire events and incorporate wildfire network and connectivity concepts into risk assessments.
Nguyen, Van Khanh; Park, Younghyun; Yu, Jaecheul; Lee, Taeho
2016-08-01
Nitrate contamination in aquifers has posed human health under high risk because people still rely on groundwater withdrawn from aquifers as drinking water and running water sources. These days, bioelectrochemical technologies have shown a great number of benefits for nitrate remediation via autotrophic denitrification in groundwater. This study tested the working possibility of a denitrifying biocathode when installed into a simulated aquifer. The reactors were filled with sand and synthetic groundwater at various ratios (10, 50, and 100 %) to clarify the effect of various biocathode states (not-buried, half-buried, and fully buried) on nitrate reduction rate and microbial communities. Decreases in specific nitrate reduction rates were found to be correlated with increases in sand/medium ratios. A specific nitrate reduction rate of 322.6 mg m(-2) day(-1) was obtained when the biocathode was fully buried in an aquifer. Microbial community analysis revealed slight differences in the microbial communities of biocathodes at various sand/medium ratios. Various coccus- and rod-shaped bacteria were found to contribute to bioelectrochemical denitrification including Thiobacillus spp. and Paracoccus spp. This study demonstrated that the denitrifying biocathode could work effectively in a saturated aquifer and confirmed the feasibility of in situ application of microbial electrochemical denitrification technology.
A Modern Picture of Barred Galaxy Dynamics
NASA Astrophysics Data System (ADS)
Petersen, Michael; Weinberg, Martin; Katz, Neal
2018-01-01
Observations of disk galaxies suggest that bars are responsible for altering global galaxy parameters (e.g. structures, gas fraction, star formation rate). The canonical understanding of the mechanisms underpinning bar-driven secular dynamics in disk galaxies has been largely built upon the analysis of linear theory, despite galactic bars being clearly demonstrated to be nonlinear phenomena in n-body simulations. We present simulations of barred Milky Way-like galaxy models designed to elucidate nonlinear barred galaxy dynamics. We have developed two new methodologies for analyzing n-body simulations that give the best of both powerful analytic linear theory and brute force simulation analysis: orbit family identification and multicomponent torque analysis. The software will be offered publicly to the community for their own simulation analysis.The orbit classifier reveals that the details of kinematic components in galactic disks (e.g. the bar, bulge, thin disk, and thick disk components) are powerful discriminators of evolutionary paradigms (i.e. violent instabilities and secular evolution) as well as the basic parameters of the dark matter halo (mass distribution, angular momentum distribution). Multicomponent torque analysis provides a thorough accounting of the transfer of angular momentum between orbits, global patterns, and distinct components in order to better explain the underlying physics which govern the secular evolution of barred disk galaxies.Using these methodologies, we are able to identify the successes and failures of linear theory and traditional n-body simulations en route to a detailed understanding of the control bars exhibit over secular evolution in galaxies. We present explanations for observed physical and velocity structures in observations of barred galaxies alongside predictions for how structures will vary with dynamical properties from galaxy to galaxy as well as over the lifetime of a galaxy, finding that the transfer of angular momentum through previously unidentified channels can more fully explain the observed dynamics.
Plume-Free Stream Interaction Heating Effects During Orion Crew Module Reentry
NASA Technical Reports Server (NTRS)
Marichalar, J.; Lumpkin, F.; Boyles, K.
2012-01-01
During reentry of the Orion Crew Module (CM), vehicle attitude control will be performed by firing reaction control system (RCS) thrusters. Simulation of RCS plumes and their interaction with the oncoming flow has been difficult for the analysis community due to the large scarf angles of the RCS thrusters and the unsteady nature of the Orion capsule backshell environments. The model for the aerothermal database has thus relied on wind tunnel test data to capture the heating effects of thruster plume interactions with the freestream. These data are only valid for the continuum flow regime of the reentry trajectory. A Direct Simulation Monte Carlo (DSMC) analysis was performed to study the vehicle heating effects that result from the RCS thruster plume interaction with the oncoming freestream flow at high altitudes during Orion CM reentry. The study was performed with the DSMC Analysis Code (DAC). The inflow boundary conditions for the jets were obtained from Data Parallel Line Relaxation (DPLR) computational fluid dynamics (CFD) solutions. Simulations were performed for the roll, yaw, pitch-up and pitch-down jets at altitudes of 105 km, 125 km and 160 km as well as vacuum conditions. For comparison purposes (see Figure 1), the freestream conditions were based on previous DAC simulations performed without active RCS to populate the aerodynamic database for the Orion CM. Other inputs to the analysis included a constant Orbital reentry velocity of 7.5 km/s and angle of attack of 160 degrees. The results of the study showed that the interaction effects decrease quickly with increasing altitude. Also, jets with highly scarfed nozzles cause more severe heating compared to the nozzles with lower scarf angles. The difficulty of performing these simulations was based on the maximum number density and the ratio of number densities between the freestream and the plume for each simulation. The lowest altitude solutions required a substantial amount of computational resources (up to 1800 processors) to simulate approximately 2 billion molecules for the refined (adapted) solutions.
Realism of Indian Summer Monsoon Simulation in a Quarter Degree Global Climate Model
NASA Astrophysics Data System (ADS)
Salunke, P.; Mishra, S. K.; Sahany, S.; Gupta, K.
2017-12-01
This study assesses the fidelity of Indian Summer Monsoon (ISM) simulations using a global model at an ultra-high horizontal resolution (UHR) of 0.25°. The model used was the atmospheric component of the Community Earth System Model version 1.2.0 (CESM 1.2.0) developed at the National Center for Atmospheric Research (NCAR). Precipitation and temperature over the Indian region were analyzed for a wide range of space and time scales to evaluate the fidelity of the model under UHR, with special emphasis on the ISM simulations during the period of June-through-September (JJAS). Comparing the UHR simulations with observed data from the India Meteorological Department (IMD) over the Indian land, it was found that 0.25° resolution significantly improved spatial rainfall patterns over many regions, including the Western Ghats and the South-Eastern peninsula as compared to the standard model resolution. Convective and large-scale rainfall components were analyzed using the European Centre for Medium Range Weather Forecast (ECMWF) Re-Analysis (ERA)-Interim (ERA-I) data and it was found that at 0.25° resolution, there was an overall increase in the large-scale component and an associated decrease in the convective component of rainfall as compared to the standard model resolution. Analysis of the diurnal cycle of rainfall suggests a significant improvement in the phase characteristics simulated by the UHR model as compared to the standard model resolution. Analysis of the annual cycle of rainfall, however, failed to show any significant improvement in the UHR model as compared to the standard version. Surface temperature analysis showed small improvements in the UHR model simulations as compared to the standard version. Thus, one may conclude that there are some significant improvements in the ISM simulations using a 0.25° global model, although there is still plenty of scope for further improvement in certain aspects of the annual cycle of rainfall.
NASA Astrophysics Data System (ADS)
Guo, Donglin; Wang, Huijun; Wang, Aihui
2017-11-01
Numerical simulation is of great importance to the investigation of changes in frozen ground on large spatial and long temporal scales. Previous studies have focused on the impacts of improvements in the model for the simulation of frozen ground. Here the sensitivities of permafrost simulation to different atmospheric forcing data sets are examined using the Community Land Model, version 4.5 (CLM4.5), in combination with three sets of newly developed and reanalysis-based atmospheric forcing data sets (NOAA Climate Forecast System Reanalysis (CFSR), European Centre for Medium-Range Weather Forecasts Re-Analysis Interim (ERA-I), and NASA Modern Era Retrospective-Analysis for Research and Applications (MERRA)). All three simulations were run from 1979 to 2009 at a resolution of 0.5° × 0.5° and validated with what is considered to be the best available permafrost observations (soil temperature, active layer thickness, and permafrost extent). Results show that the use of reanalysis-based atmospheric forcing data set reproduces the variations in soil temperature and active layer thickness but produces evident biases in their climatologies. Overall, the simulations based on the CFSR and ERA-I data sets give more reasonable results than the simulation based on the MERRA data set, particularly for the present-day permafrost extent and the change in active layer thickness. The three simulations produce ranges for the present-day climatology (permafrost area: 11.31-13.57 × 106 km2; active layer thickness: 1.10-1.26 m) and for recent changes (permafrost area: -5.8% to -9.0%; active layer thickness: 9.9%-20.2%). The differences in air temperature increase, snow depth, and permafrost thermal conditions in these simulations contribute to the differences in simulated results.
Collaborative development for setup, execution, sharing and analytics of complex NMR experiments.
Irvine, Alistair G; Slynko, Vadim; Nikolaev, Yaroslav; Senthamarai, Russell R P; Pervushin, Konstantin
2014-02-01
Factory settings of NMR pulse sequences are rarely ideal for every scenario in which they are utilised. The optimisation of NMR experiments has for many years been performed locally, with implementations often specific to an individual spectrometer. Furthermore, these optimised experiments are normally retained solely for the use of an individual laboratory, spectrometer or even single user. Here we introduce a web-based service that provides a database for the deposition, annotation and optimisation of NMR experiments. The application uses a Wiki environment to enable the collaborative development of pulse sequences. It also provides a flexible mechanism to automatically generate NMR experiments from deposited sequences. Multidimensional NMR experiments of proteins and other macromolecules consume significant resources, in terms of both spectrometer time and effort required to analyse the results. Systematic analysis of simulated experiments can enable optimal allocation of NMR resources for structural analysis of proteins. Our web-based application (http://nmrplus.org) provides all the necessary information, includes the auxiliaries (waveforms, decoupling sequences etc.), for analysis of experiments by accurate numerical simulation of multidimensional NMR experiments. The online database of the NMR experiments, together with a systematic evaluation of their sensitivity, provides a framework for selection of the most efficient pulse sequences. The development of such a framework provides a basis for the collaborative optimisation of pulse sequences by the NMR community, with the benefits of this collective effort being available to the whole community. Copyright © 2013 Elsevier Inc. All rights reserved.
Effect of simulated acid rain on fluorine mobility and the bacterial community of phosphogypsum.
Wang, Mei; Tang, Ya; Anderson, Christopher W N; Jeyakumar, Paramsothy; Yang, Jinyan
2018-06-01
Contamination of soil and water with fluorine (F) leached from phosphogypsum (PG) stacks is a global environmental issue. Millions of tons of PG is produced each year as a by-product of fertilizer manufacture, and in China, weathering is exacerbated by acid rain. In this work, column leaching experiments using simulated acid rain were run to evaluate the mobility of F and the impact of weathering on native bacterial community composition in PG. After a simulated summer rainfall, 2.42-3.05 wt% of the total F content of PG was leached and the F concentration in leachate was above the quality standard for surface water and groundwater in China. Acid rain had no significant effect on the movement of F in PG. A higher concentration of F was observed at the bottom than the top section of PG columns suggesting mobility and reprecipitation of F. Throughout the simulation, the PG was environmentally safe according the TCLP testing. The dominant bacteria in PG were from the Enterococcus and Bacillus genus. Bacterial community composition in PG leached by simulated acid rain (pH 3.03) was more abundant than at pH 6.88. Information on F mobility and bacterial community in PG under conditions of simulated rain is relevant to management of environmental risk in stockpiled PG waste.
seismo-live: Training in Computational Seismology using Jupyter Notebooks
NASA Astrophysics Data System (ADS)
Igel, H.; Krischer, L.; van Driel, M.; Tape, C.
2016-12-01
Practical training in computational methodologies is still underrepresented in Earth science curriculae despite the increasing use of sometimes highly sophisticated simulation technologies in research projects. At the same time well-engineered community codes make it easy to return simulation-based results yet with the danger that the inherent traps of numerical solutions are not well understood. It is our belief that training with highly simplified numerical solutions (here to the equations describing elastic wave propagation) with carefully chosen elementary ingredients of simulation technologies (e.g., finite-differencing, function interpolation, spectral derivatives, numerical integration) could substantially improve this situation. For this purpose we have initiated a community platform (www.seismo-live.org) where Python-based Jupyter notebooks can be accessed and run without and necessary downloads or local software installations. The increasingly popular Jupyter notebooks allow combining markup language, graphics, equations with interactive, executable python codes. We demonstrate the potential with training notebooks for the finite-difference method, pseudospectral methods, finite/spectral element methods, the finite-volume and the discontinuous Galerkin method. The platform already includes general Python training, introduction to the ObsPy library for seismology as well as seismic data processing and noise analysis. Submission of Jupyter notebooks for general seismology are encouraged. The platform can be used for complementary teaching in Earth Science courses on compute-intensive research areas.
Mark Ibekwe, A; Ors, Selda; Ferreira, Jorge F S; Liu, Xuan; Suarez, Donald L
2017-02-01
Salinity is a common problem under irrigated agriculture, especially in low rainfall and high evaporative demand areas of southwestern United States and other semi-arid regions around the world. However, studies on salinity effects on soil microbial communities are relatively few while the effects of irrigation-induced salinity on soil chemical and physical properties and plant growth are well documented. In this study, we examined the effects of salinity, temperature, and temporal variability on soil and rhizosphere microbial communities in sand tanks irrigated with prepared solutions designed to simulate saline wastewater. Three sets of experiments with spinach (Spinacia oleracea L., cv. Racoon) were conducted under saline water during different time periods (early winter, late spring, and early summer). Bacterial 16S V4 rDNA region was amplified utilizing fusion primers designed against the surrounding conserved regions using MiSeq® Illumina sequencing platform. Across the two sample types, bacteria were relatively dominant among three phyla-the Proteobacteria, Cyanobacteria, and Bacteroidetes-accounted for 77.1% of taxa detected in the rhizosphere, while Proteobacteria, Bacteroidetes, and Actinobacteria accounted for 55.1% of taxa detected in soil. The results were analyzed using UniFrac coupled with principal coordinate analysis (PCoA) to compare diversity, abundance, community structure, and specific bacterial groups in soil and rhizosphere samples. Permutational analysis of variance (PERMANOVA) analysis showed that soil temperature (P=0.001), rhizosphere temperature (P=0.001), rhizosphere salinity (P=0.032), and evapotranspiration (P=0.002) significantly affected beta diversity of soil and rhizosphere microbial communities. Furthermore, salinity had marginal effects (P=0.078) on soil beta diversity. However, temporal variability differentially affected rhizosphere microbial communities irrigated with saline wastewater. Therefore, microbial communities in soils impacted by saline irrigation water respond differently to irrigation water quality and season of application due to temporal effects associated with temperature. Published by Elsevier B.V.
Characterization of Microbial Communities Found in Bioreactor Effluent
NASA Technical Reports Server (NTRS)
Flowe, Candice
2013-01-01
The purpose of this investigation was to examine microbial communities of simulated wastewater effluent from hollow fiber membrane bioreactors collected from the Space Life Science Laboratory and Texas Technical University. Microbes were characterized using quantitative polymerase chain reaction where a total count of bacteria and fungi were determined. The primers that were used to determine the total count of bacteria and fungi were targeted for 16S rDNA genes and the internal transcribed spacer, respectively. PCR products were detected with SYBR Green I fluorescent dye and a melting curve analysis was performed to identify unique melt profiles resulting from DNA sequence variations from each species of the community. Results from both the total bacteria and total fungi count assays showed that distinct populations were present in isolates from these bioreactors. This was exhibited by variation in the number of peaks observed on the melting curve analysis graph. Further analysis of these results using species-specific primers will shed light on exactly which microbes are present in these effluents. Information gained from this study will enable the design of a system that can efficiently monitor microbes that play a role in the biogeochemical cycling of nitrogen in wastewater on the International Space Station to assist in the design of a sustainable system capable of converting this nutrient.
The Madison School-Community: Abbreviated Background Materials.
ERIC Educational Resources Information Center
Sybouts, Ward; Tobiska, Kenneth
The manual describes a simulated community and school district and is to be used with the "in-baskets" (VT 006 654) produced by the University Council of Educational Administration (UCEA) and those produced by the University of Nebraska in conjunction with the UCEA. The "Instructor's Guide for Using Simulated Materials to Instruct School…
Weaving the tapestry of learning: simulation, standardized patients, and virtual communities.
Holland, Brian; Landry, Karen; Mountain, Angela; Middlebrooks, Mary Alice; Heim, Deborah; Missildine, Kathy
2013-01-01
Using situated cognition learning theory, nursing faculty developed simulated clinical learning experiences integrating virtual communities and standardized patients. These learning experiences provide authenticity and realism not easily achieved using the individual techniques in isolation. The authors describe the process of weaving these strategies into a rich learning experience for students.
USDA-ARS?s Scientific Manuscript database
To assess one likely effect of global warming, we experimentally increased the temperature and precipitation of a coleopteran community (mainly Carabidae) of an agro-ecosystem. We simulated climate change on a field of spring wheat by experimentally increasing the temperature by 2°C using infrared h...
The Weather Research and Forecasting (WRF) and Community Multiscale Air Quality (CMAQ) models were used to simulate a 10 day high‐ozone episode observed during the 2013 Uinta Basin Winter Ozone Study (UBWOS). The baseline model had a large negative bias when compared to ozo...
Strong inter-population cooperation leads to partner intermixing in microbial communities
Momeni, Babak; Brileya, Kristen A.; Fields, Matthew W.; ...
2013-01-22
Patterns of spatial positioning of individuals within microbial communities are often critical to community function. However, understanding patterning in natural communities is hampered by the multitude of cell–cell and cell–environment interactions as well as environmental variability. Here, through simulations and experiments on communities in defined environments, we examined how ecological interactions between two distinct partners impacted community patterning. We found that in strong cooperation with spatially localized large fitness benefits to both partners, a unique pattern is generated: partners spatially intermixed by appearing successively on top of each other, insensitive to initial conditions and interaction dynamics. Intermixing was experimentally observedmore » in two obligatory cooperative systems: an engineered yeast community cooperating through metabolite-exchanges and a methane-producing community cooperating through redox-coupling. Even in simulated communities consisting of several species, most of the strongly-cooperating pairs appeared intermixed. Thus, when ecological interactions are the major patterning force, strong cooperation leads to partner intermixing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trujillo, David J.; Sridharan, Srikesh; Weinstock, Irvin
HybSim (short for Hybrid Simulator) is a flexible, easy to use screening tool that allows the user to quanti the technical and economic benefits of installing a village hybrid generating system and simulates systems with any combination of Diesel generator sets Photovoltaic arrays -Wind Turbines and -Battery energy storage systems Most village systems (or small population sites such as villages, remote military bases, small communities, independent or isolated buildings or centers) depend on diesel generation systems for their source of energy. HybSim allows the user to determine other "sources" of energy that can greatly reduce the dollar to kilo-watt hourmore » ratio. Supported by the DOE, Energy Storage Program, HybSim was initially developed to help analyze the benefits of energy storage systems in Alaskan villages. Soon after its development, other sources of energy were added providing the user with a greater range of analysis opportunities and providing the village with potentially added savings. In addition to village systems, HybSim has generated interest for use from military institutions in energy provisions and USAID for international village analysis.« less
Simulation and analysis of differential global positioning system for civil helicopter operations
NASA Technical Reports Server (NTRS)
Denaro, R. P.; Cabak, A. R.
1983-01-01
A Differential Global Positioning System (DGPS) computer simulation was developed, to provide a versatile tool for assessing DGPS referenced civil helicopter navigation. The civil helicopter community will probably be an early user of the GPS capability because of the unique mission requirements which include offshore exploration and low altitude transport into remote areas not currently served by ground based Navaids. The Monte Carlo simulation provided a sufficiently high fidelity dynamic motion and propagation environment to enable accurate comparisons of alternative differential GPS implementations and navigation filter tradeoffs. The analyst has provided the capability to adjust most aspects of the system, the helicopter flight profile, the receiver Kalman filter, and the signal propagation environment to assess differential GPS performance and parameter sensitivities. Preliminary analysis was conducted to evaluate alternative implementations of the differential navigation algorithm in both the position and measurement domain. Results are presented to show that significant performance gains are achieved when compared with conventional GPS but that differences due to DGPS implementation techniques were small. System performance was relatively insensitive to the update rates of the error correction information.
Dam break analysis and flood inundation map of Krisak dam for emergency action plan
NASA Astrophysics Data System (ADS)
Juliastuti, Setyandito, Oki
2017-11-01
The Indonesian Regulation which refers to the ICOLD Regulation (International Committee on Large Dam required have the Emergency Action Plan (EAP) guidelines because of the dams have potential failure. In EAP guidelines there is a management of evacuation where the determination of the inundation map based on flood modeling. The purpose of the EAP is to minimize the risk of loss of life and property in downstream which caused by dam failure. This paper will describe about develop flood modeling and inundation map in Krisak dam using numerical methods through dam break analysis (DBA) using hydraulic model Zhong Xing HY-21. The approaches of dam failure simulation are overtopping and piping. Overtopping simulation based on quadrangular, triangular and trapezium fracture. Piping simulation based on cracks of orifice. Using results of DBA, hazard classification of Krisak dam is very high. The nearest village affected dam failure is Singodutan village (distance is 1.45 kilometer from dam) with inundation depth is 1.85 meter. This result can be used by stakeholders such as emergency responders and the community at risk in formulating evacuation procedure.
Huang, Jianping; Yang, Shisu; Zhang, Siqi
2016-11-01
To compare the degradation performance and biodiversity of a polyvinyl alcohol-degrading microbial community under aerobic and anaerobic conditions. An anaerobic-aerobic bioreactor was operated to degrade polyvinyl alcohol (PVA) in simulated wastewater. The degradation performance of the bioreactor during sludge cultivation and the microbial communities in each reactor were compared. Both anaerobic and aerobic bioreactors demonstrated high chemical oxygen demand removal efficiencies of 87.5 and 83.6 %, respectively. Results of 16S rDNA sequencing indicated that Proteobacteria dominated in both reactors and that the microbial community structures varied significantly under different operating conditions. Both reactors obviously differed in bacterial diversity from the phyla Planctomycetes, Chlamydiae, Bacteroidetes, and Chloroflexi. Betaproteobacteria and Alphaproteobacteria dominated, respectively, in the anaerobic and aerobic reactors. The anaerobic-aerobic system is suitable for PVA wastewater treatment, and the microbial genetic analysis may serve as a reference for PVA biodegradation.
Grid Computing for Earth Science
NASA Astrophysics Data System (ADS)
Renard, Philippe; Badoux, Vincent; Petitdidier, Monique; Cossu, Roberto
2009-04-01
The fundamental challenges facing humankind at the beginning of the 21st century require an effective response to the massive changes that are putting increasing pressure on the environment and society. The worldwide Earth science community, with its mosaic of disciplines and players (academia, industry, national surveys, international organizations, and so forth), provides a scientific basis for addressing issues such as the development of new energy resources; a secure water supply; safe storage of nuclear waste; the analysis, modeling, and mitigation of climate changes; and the assessment of natural and industrial risks. In addition, the Earth science community provides short- and medium-term prediction of weather and natural hazards in real time, and model simulations of a host of phenomena relating to the Earth and its space environment. These capabilities require that the Earth science community utilize, both in real and remote time, massive amounts of data, which are usually distributed among many different organizations and data centers.
Spatiotemporal Permutation Entropy as a Measure for Complexity of Cardiac Arrhythmia
NASA Astrophysics Data System (ADS)
Schlemmer, Alexander; Berg, Sebastian; Lilienkamp, Thomas; Luther, Stefan; Parlitz, Ulrich
2018-05-01
Permutation entropy (PE) is a robust quantity for measuring the complexity of time series. In the cardiac community it is predominantly used in the context of electrocardiogram (ECG) signal analysis for diagnoses and predictions with a major application found in heart rate variability parameters. In this article we are combining spatial and temporal PE to form a spatiotemporal PE that captures both, complexity of spatial structures and temporal complexity at the same time. We demonstrate that the spatiotemporal PE (STPE) quantifies complexity using two datasets from simulated cardiac arrhythmia and compare it to phase singularity analysis and spatial PE (SPE). These datasets simulate ventricular fibrillation (VF) on a two-dimensional and a three-dimensional medium using the Fenton-Karma model. We show that SPE and STPE are robust against noise and demonstrate its usefulness for extracting complexity features at different spatial scales.
An analysis of a low-energy, low-water use community in Mexico City
NASA Astrophysics Data System (ADS)
Bermudez Alcocer, Jose Luis
This study investigated how to determine a potential scenario to reduce energy, water and transportation use in Mexico City by implementing low-energy, low-water use communities. The proposed mixed-use community has multi-family apartments and a small grocery store. The research included the analysis of: case studies, energy simulation, and hand calculations for water, transportation and cost analysis. The previous case studies reviewed include: communities in Mexico City, Mexico, Austin, Texas, Phoenix, Arizona, New York City, New York and San Diego, California in terms of successful low-energy, low-water use projects. The analysis and comparison of these centers showed that the Multifamiliar Miguel Aleman is an excellent candidate to be examined for Mexico City. This technical potential study evaluated energy conserving measures such as low-energy appliances and efficient lighting that could be applied to the apartments in Mexico City to reduce energy-use. The use of the simulations and manual calculations showed that the application of the mixed-use concept was successful in reducing the energy and water use and the corresponding carbon footprint. Finally, this technical potential study showed taking people out of their cars as a result of the presence of the on-site grocery store, small recreation center and park on the ground floor also reduced their overall transportation energy-use. The improvement of the whole community (i.e., apartments plus grocery store) using energy-efficient measures provided a reduction of 70 percent of energy from the base-case. In addition a 69 percent reduction in water-use was achieved by using water-saving fixtures and greywater reuse technologies for the complex. The combination of high-efficiency automobiles and the presence of the on-site grocery store, small recreation center and park potentially reduced the transportation energy-use by 65 percent. The analysis showed an energy cost reduction of 82 percent reduction for apartments and a 22 percent reduction for the store. In addition, for water cost there was a 70 percent reduction for apartments and a 16 percent reduction for the store. Overall, a 64 total percent reduction in carbon dioxide (CO2) was accomplished by saving energy-use in the apartments, the grocery store and transportation. Finally, a guide has been created for Mexico City to establish strategies and actions based on the results of this work in order to reduce overall energy and water-use in Mexico City. The guide is expected to be useful in the short term in Mexico City, and could be potentially adopted in the long term in other countries in the same manner as which Brazil and Colombia adopted the Mexican CONAVI's 2010 Housing Building Code.
Smart growth community design and physical activity in children.
Jerrett, Michael; Almanza, Estela; Davies, Molly; Wolch, Jennifer; Dunton, Genevieve; Spruitj-Metz, Donna; Ann Pentz, Mary
2013-10-01
Physical inactivity is a leading cause of death and disease globally. Research suggests physical inactivity might be linked to community designs that discourage active living. A "smart growth" community contains features likely to promote active living (walkability, green space, mixed land use), but objective evidence on the potential benefits of smart growth communities is limited. To assess whether living in a smart growth community was associated with increased neighborhood-centered leisure-time physical activity in children aged 8-14 years, compared to residing in a conventional community (i.e., one not designed according to smart growth principles). Participants were recruited from a smart growth community, "The Preserve," located in Chino, California, and eight conventional communities within a 30-minute drive of The Preserve. The analytic sample included 147 children. During 2009-2010, each child carried an accelerometer and a GPS for 7 days to ascertain physical activity and location information. Negative binomial models were used to assess the association between residence in the smart growth community and physical activity. Analyses were conducted in 2012. Smart growth community residence was associated with a 46% increase in the proportion of neighborhood moderate-to-vigorous physical activity (MVPA) as compared to conventional community residence. This analysis included neighborhood activity data collected during the school season and outside of school hours and home. Counterfactual simulations with model parameters suggested that smart growth community residence could add 10 minutes per day of neighborhood MVPA. Living in a smart growth community may increase local physical activity in children as compared to residence in conventionally designed communities. © 2013 American Journal of Preventive Medicine.
NASA Astrophysics Data System (ADS)
Chan, Steven C.; Kahana, Ron; Kendon, Elizabeth J.; Fowler, Hayley J.
2018-03-01
The UK Met Office has previously conducted convection-permitting climate simulations over the southern UK (Kendon et al. in Nat Clim Change 4:570-576, 2014). The southern UK simulations have been followed up by a new set of northern UK simulations using the same model configuration. Here we present the mean and extreme precipitation projections from these new simulations. Relative to the southern UK, the northern UK projections show a greater summertime increase of return levels and extreme precipitation intensity in both 1.5 km convection-permitting and 12 km convection-parameterised simulations, but this increase is against a backdrop of large decreases in summertime mean precipitation and precipitation frequency. Similar to the southern UK, projected change is model resolution dependent and the convection-permitting simulation projects a larger intensification. For winter, return level increases are somewhat lower than for the southern UK. Analysis of model biases highlight challenges in simulating the diurnal cycle over high terrain, sensitivity to domain size and driving-GCM biases, and quality issues of radar precipitation observations, which are relevant to the wider regional climate modelling community.
NASA Astrophysics Data System (ADS)
Lucas, D. D.; Labute, M.; Chowdhary, K.; Debusschere, B.; Cameron-Smith, P. J.
2014-12-01
Simulating the atmospheric cycles of ozone, methane, and other radiatively important trace gases in global climate models is computationally demanding and requires the use of 100's of photochemical parameters with uncertain values. Quantitative analysis of the effects of these uncertainties on tracer distributions, radiative forcing, and other model responses is hindered by the "curse of dimensionality." We describe efforts to overcome this curse using ensemble simulations and advanced statistical methods. Uncertainties from 95 photochemical parameters in the trop-MOZART scheme were sampled using a Monte Carlo method and propagated through 10,000 simulations of the single column version of the Community Atmosphere Model (CAM). The variance of the ensemble was represented as a network with nodes and edges, and the topology and connections in the network were analyzed using lasso regression, Bayesian compressive sensing, and centrality measures from the field of social network theory. Despite the limited sample size for this high dimensional problem, our methods determined the key sources of variation and co-variation in the ensemble and identified important clusters in the network topology. Our results can be used to better understand the flow of photochemical uncertainty in simulations using CAM and other climate models. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and supported by the DOE Office of Science through the Scientific Discovery Through Advanced Computing (SciDAC).
Building Single-Cell Models of Planktonic Metabolism Using PSAMM
NASA Astrophysics Data System (ADS)
Dufault-Thompson, K.; Zhang, Y.; Steffensen, J. L.
2016-02-01
The Genome-scale models (GEMs) of metabolic networks simulate the metabolic activities of individual cells by integrating omics data with biochemical and physiological measurements. GEMs were applied in the simulation of various photo-, chemo-, and heterotrophic organisms and provide significant insights into the function and evolution of planktonic cells. Despite the quick accumulation of GEMs, challenges remain in assembling the individual cell-based models into community-level models. Among various problems, the lack of consistencies in model representation and model quality checking has hindered the integration of individual GEMs and can lead to erroneous conclusions in the development of new modeling algorithms. Here, we present a Portable System for the Analysis of Metabolic Models (PSAMM). Along with the software a novel format of model representation was developed to enhance the readability of model files and permit the inclusion of heterogeneous, model-specific annotation information. A number of quality checking procedures was also implemented in PSAMM to ensure stoichiometric balance and to identify unused reactions. Using a case study of Shewanella piezotolerans WP3, we demonstrated the application of PSAMM in simulating the coupling of carbon utilization and energy production pathways under low-temperature and high-pressure stress. Applying PSAMM, we have also analyzed over 50 GEMs in the current literature and released an updated collection of the models with corrections on a number of common inconsistencies. Overall, PSAMM opens up new opportunities for integrating individual GEMs for the construction and mathematical simulation of community-level models in the scope of entire ecosystems.
Vieira, Fabricio Rocha; Pecchia, John Andrew
2018-02-01
Substrate preparation (i.e., composting) for Agaricus bisporus cultivation is the most critical point of mushroom production. Among many factors involved in the composting process, the microbial ecology of the system is the underlying drive of composting and can be influenced by composting management techniques. Pasteurization temperature at the beginning of phase II, in theory, may influence the bacterial community and subsequently the "selectivity" and nutrition of the final substrate. Therefore, this hypothesis was tested by simulation in bioreactors under different pasteurization conditions (57 °C/6 h, 60 °C/2 h, and 68 °C/2 h), simulating conditions adopted by many producers. Bacterial diversity, based on 16S ribosomal RNA obtained by high-throughput sequencing and classified in operational taxonomic units (OTUs), was greater than previously reported using culture-dependent methods. Alpha diversity estimators show a lower diversity of OTUs under a high-temperature pasteurization condition. Bacillales order shows a relatively higher OTU abundance under a high-pasteurization temperature, which also was related to high ammonia emission measurements. On the other hand, beta diversity analysis showed no significantly changes in the bacterial community structure under different conditions. Agaricus bisporus mycelium growth during a standard spawn run period was significantly slower in the compost pasteurized at high temperature. Since the bacterial community structure was not greatly affected by different pasteurization conditions but by-products left (e.g., ammonia) at the end of compost conditioning varied, further studies need to be conducted to determine the functional role of the microbial communities found during substrate preparation for Agaricus bisporus cultivation.
The geographic accessibility of pharmacies in Nova Scotia
Heard, Deborah; Fisher, Judith; Douillard, Jay; Muzika, Greg; Sketris, Ingrid S.
2013-01-01
Introduction: Geographic proximity is an important component of access to primary care and the pharmaceutical services of community pharmacies. Variations in access to primary care have been found between rural and urban areas in Canadian and international jurisdictions. We studied access to community pharmacies in the province of Nova Scotia. Methods: We used information on the locations of 297 community pharmacies operating in Nova Scotia in June 2011. Population estimates at the census block level and network analysis were used to study the number of Nova Scotia residents living within 800 m (walking) and 2 km and 5 km (driving) distances of a pharmacy. We then simulated the impact of pharmacy closures on geographic access in urban and rural areas. Results: We found that 40.3% of Nova Scotia residents lived within walking distance of a pharmacy; 62.6% and 78.8% lived within 2 km and 5 km, respectively. Differences between urban and rural areas were pronounced: 99.2% of urban residents lived within 5 km of a pharmacy compared with 53.3% of rural residents. Simulated pharmacy closures had a greater impact on geographic access to community pharmacies in rural areas than urban areas. Conclusion: The majority of Nova Scotia residents lived within walking or short driving distance of at least 1 community pharmacy. While overall geographic access appears to be lower than in the province of Ontario, the difference appears to be largely driven by the higher proportion of rural dwellers in Nova Scotia. Further studies should examine how geographic proximity to pharmacies influences patients’ access to traditional and specialized pharmacy services, as well as health outcomes and adherence to therapy. Can Pharm J 2013;146:39-46. PMID:23795168
The geographic accessibility of pharmacies in Nova Scotia.
Law, Michael R; Heard, Deborah; Fisher, Judith; Douillard, Jay; Muzika, Greg; Sketris, Ingrid S
2013-01-01
Geographic proximity is an important component of access to primary care and the pharmaceutical services of community pharmacies. Variations in access to primary care have been found between rural and urban areas in Canadian and international jurisdictions. We studied access to community pharmacies in the province of Nova Scotia. We used information on the locations of 297 community pharmacies operating in Nova Scotia in June 2011. Population estimates at the census block level and network analysis were used to study the number of Nova Scotia residents living within 800 m (walking) and 2 km and 5 km (driving) distances of a pharmacy. We then simulated the impact of pharmacy closures on geographic access in urban and rural areas. We found that 40.3% of Nova Scotia residents lived within walking distance of a pharmacy; 62.6% and 78.8% lived within 2 km and 5 km, respectively. Differences between urban and rural areas were pronounced: 99.2% of urban residents lived within 5 km of a pharmacy compared with 53.3% of rural residents. Simulated pharmacy closures had a greater impact on geographic access to community pharmacies in rural areas than urban areas. The majority of Nova Scotia residents lived within walking or short driving distance of at least 1 community pharmacy. While overall geographic access appears to be lower than in the province of Ontario, the difference appears to be largely driven by the higher proportion of rural dwellers in Nova Scotia. Further studies should examine how geographic proximity to pharmacies influences patients' access to traditional and specialized pharmacy services, as well as health outcomes and adherence to therapy. Can Pharm J 2013;146:39-46.
Nehme, Jean; Bahsoun, Ali N; Chow, Andre
2016-01-01
Touch Surgery is a novel simulator that allows cognitive task simulation and rehearsal of surgical procedures. Touch Surgery is designed for Apple and Android smartphones and tablets. This allows a global community of surgical professionals to review the steps of a procedure and test their competence. Content on Touch Surgery is developed with expert surgeons in the field from world leading institutions. Here we describe the development of Touch Surgery, its adoption by the global training community.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, L.; Paudel, R.; Hess, P. G. M.
Understanding the temporal and spatial variation of wetland methane emissions is essential to the estimation of the global methane budget. Our goal for this study is three-fold: (i) to evaluate the wetland methane fluxes simulated in two versions of the Community Land Model, the Carbon-Nitrogen (CN; i.e., CLM4.0) and the Biogeochemistry (BGC; i.e., CLM4.5) versions using the methane emission model CLM4Me' so as to determine the sensitivity of the emissions to the underlying carbon model; (ii) to compare the simulated atmospheric methane concentrations to observations, including latitudinal gradients and interannual variability so as to determine the extent to which themore » atmospheric observations constrain the emissions; (iii) to understand the drivers of seasonal and interannual variability in atmospheric methane concentrations. Simulations of the transport and removal of methane use the Community Atmosphere Model with chemistry (CAM-chem) model in conjunction with CLM4Me' methane emissions from both CN and BGC simulations and other methane emission sources from literature. In each case we compare model-simulated atmospheric methane concentration with observations. In addition, we simulate the atmospheric concentrations based on the TransCom wetland and rice paddy emissions derived from a different terrestrial ecosystem model, Vegetation Integrative Simulator for Trace gases (VISIT). Our analysis indicates CN wetland methane emissions are higher in the tropics and lower at high latitudes than emissions from BGC. In CN, methane emissions decrease from 1993 to 2004 while this trend does not appear in the BGC version. In the CN version, methane emission variations follow satellite-derived inundation wetlands closely. However, they are dissimilar in BGC due to its different carbon cycle. CAM-chem simulations with CLM4Me' methane emissions suggest that both prescribed anthropogenic and predicted wetlands methane emissions contribute substantially to seasonal and interannual variability in atmospheric methane concentration. Simulated atmospheric CH 4 concentrations in CAM-chem are highly correlated with observations at most of the 14 measurement stations evaluated with an average correlation between 0.71 and 0.80 depending on the simulation (for the period of 1993–2004 for most stations based on data availability). Our results suggest that different spatial patterns of wetland emissions can have significant impacts on Northern and Southern hemisphere (N–S) atmospheric CH 4 concentration gradients and growth rates. In conclusion, this study suggests that both anthropogenic and wetland emissions have significant contributions to seasonal and interannual variations in atmospheric CH 4 concentrations. However, our analysis also indicates the existence of large uncertainties in terms of spatial patterns and magnitude of global wetland methane budgets, and that substantial uncertainty comes from the carbon model underlying the methane flux modules.« less
Meng, L.; Paudel, R.; Hess, P. G. M.; ...
2015-07-03
Understanding the temporal and spatial variation of wetland methane emissions is essential to the estimation of the global methane budget. Our goal for this study is three-fold: (i) to evaluate the wetland methane fluxes simulated in two versions of the Community Land Model, the Carbon-Nitrogen (CN; i.e., CLM4.0) and the Biogeochemistry (BGC; i.e., CLM4.5) versions using the methane emission model CLM4Me' so as to determine the sensitivity of the emissions to the underlying carbon model; (ii) to compare the simulated atmospheric methane concentrations to observations, including latitudinal gradients and interannual variability so as to determine the extent to which themore » atmospheric observations constrain the emissions; (iii) to understand the drivers of seasonal and interannual variability in atmospheric methane concentrations. Simulations of the transport and removal of methane use the Community Atmosphere Model with chemistry (CAM-chem) model in conjunction with CLM4Me' methane emissions from both CN and BGC simulations and other methane emission sources from literature. In each case we compare model-simulated atmospheric methane concentration with observations. In addition, we simulate the atmospheric concentrations based on the TransCom wetland and rice paddy emissions derived from a different terrestrial ecosystem model, Vegetation Integrative Simulator for Trace gases (VISIT). Our analysis indicates CN wetland methane emissions are higher in the tropics and lower at high latitudes than emissions from BGC. In CN, methane emissions decrease from 1993 to 2004 while this trend does not appear in the BGC version. In the CN version, methane emission variations follow satellite-derived inundation wetlands closely. However, they are dissimilar in BGC due to its different carbon cycle. CAM-chem simulations with CLM4Me' methane emissions suggest that both prescribed anthropogenic and predicted wetlands methane emissions contribute substantially to seasonal and interannual variability in atmospheric methane concentration. Simulated atmospheric CH 4 concentrations in CAM-chem are highly correlated with observations at most of the 14 measurement stations evaluated with an average correlation between 0.71 and 0.80 depending on the simulation (for the period of 1993–2004 for most stations based on data availability). Our results suggest that different spatial patterns of wetland emissions can have significant impacts on Northern and Southern hemisphere (N–S) atmospheric CH 4 concentration gradients and growth rates. In conclusion, this study suggests that both anthropogenic and wetland emissions have significant contributions to seasonal and interannual variations in atmospheric CH 4 concentrations. However, our analysis also indicates the existence of large uncertainties in terms of spatial patterns and magnitude of global wetland methane budgets, and that substantial uncertainty comes from the carbon model underlying the methane flux modules.« less
Benefits of Including a Capstone Simulation Course in Community College Business Curricula.
ERIC Educational Resources Information Center
Black, William L.
This article makes an argument for including a capstone, or end-of-term, business simulation course in community college business curricula. The International Business Practice Firm (IBPF), a worldwide virtual business network, is proposed as a foundation for such a course. The author argues that, in general, graduates of college business programs…
ERIC Educational Resources Information Center
McLaughlin, Michael P.; Starobin, Soko S.; Laanan, Frankie Santos
2010-01-01
As the nation's healthcare education system struggles to keep pace with the demand for its services, educators are seeking creative and innovative solutions to meet the needs of a growing number of students. The integration of medical simulation technology into the community college health science curriculum is a creative solution that can meet…
Evaluating Outcomes of High Fidelity Simulation Curriculum in a Community College Nursing Program
ERIC Educational Resources Information Center
Denlea, Gregory Richard
2017-01-01
This study took place at a Wake Technical Community College, a multi-campus institution in Raleigh, North Carolina. An evaluation of the return on investment in high fidelity simulation used by an associate degree of nursing program was conducted with valid and reliable instruments. The study demonstrated that comparable student outcomes are…
ERIC Educational Resources Information Center
Krolikowska, Karolina; Kronenberg, Jakub; Maliszewska, Karolina; Sendzimir, Jan; Magnuszewski, Piotr; Dunajski, Andrzej; Slodka, Anna
2007-01-01
This article describes a process of role-playing simulation (RPS) as it was used during an educational exercise in community dialogue in the Karkonosze Mountains region of southwest Poland. Over the past decade Karkonosze National Park, a regional tourist magnet, has provided an excellent example of environmental conflict emerging from the…
NASA Astrophysics Data System (ADS)
Pedamallu, Chandra Sekhar; Ozdamar, Linet; Weber, Gerhard-Wilhelm; Kropat, Erik
2010-06-01
The system dynamics approach is a holistic way of solving problems in real-time scenarios. This is a powerful methodology and computer simulation modeling technique for framing, analyzing, and discussing complex issues and problems. System dynamics modeling and simulation is often the background of a systemic thinking approach and has become a management and organizational development paradigm. This paper proposes a system dynamics approach for study the importance of infrastructure facilities on quality of primary education system in developing nations. The model is proposed to be built using the Cross Impact Analysis (CIA) method of relating entities and attributes relevant to the primary education system in any given community. We offer a survey to build the cross-impact correlation matrix and, hence, to better understand the primary education system and importance of infrastructural facilities on quality of primary education. The resulting model enables us to predict the effects of infrastructural facilities on the access of primary education by the community. This may support policy makers to take more effective actions in campaigns.
Finite element analysis simulations for ultrasonic array NDE inspections
NASA Astrophysics Data System (ADS)
Dobson, Jeff; Tweedie, Andrew; Harvey, Gerald; O'Leary, Richard; Mulholland, Anthony; Tant, Katherine; Gachagan, Anthony
2016-02-01
Advances in manufacturing techniques and materials have led to an increase in the demand for reliable and robust inspection techniques to maintain safety critical features. The application of modelling methods to develop and evaluate inspections is becoming an essential tool for the NDE community. Current analytical methods are inadequate for simulation of arbitrary components and heterogeneous materials, such as anisotropic welds or composite structures. Finite element analysis software (FEA), such as PZFlex, can provide the ability to simulate the inspection of these arrangements, providing the ability to economically prototype and evaluate improved NDE methods. FEA is often seen as computationally expensive for ultrasound problems however, advances in computing power have made it a more viable tool. This paper aims to illustrate the capability of appropriate FEA to produce accurate simulations of ultrasonic array inspections - minimizing the requirement for expensive test-piece fabrication. Validation is afforded via corroboration of the FE derived and experimentally generated data sets for a test-block comprising 1D and 2D defects. The modelling approach is extended to consider the more troublesome aspects of heterogeneous materials where defect dimensions can be of the same length scale as the grain structure. The model is used to facilitate the implementation of new ultrasonic array inspection methods for such materials. This is exemplified by considering the simulation of ultrasonic NDE in a weld structure in order to assess new approaches to imaging such structures.
NASA Astrophysics Data System (ADS)
Hogrefe, Christian; Liu, Peng; Pouliot, George; Mathur, Rohit; Roselle, Shawn; Flemming, Johannes; Lin, Meiyun; Park, Rokjin J.
2018-03-01
This study analyzes simulated regional-scale ozone burdens both near the surface and aloft, estimates process contributions to these burdens, and calculates the sensitivity of the simulated regional-scale ozone burden to several key model inputs with a particular emphasis on boundary conditions derived from hemispheric or global-scale models. The Community Multiscale Air Quality (CMAQ) model simulations supporting this analysis were performed over the continental US for the year 2010 within the context of the Air Quality Model Evaluation International Initiative (AQMEII) and Task Force on Hemispheric Transport of Air Pollution (TF-HTAP) activities. CMAQ process analysis (PA) results highlight the dominant role of horizontal and vertical advection on the ozone burden in the mid-to-upper troposphere and lower stratosphere. Vertical mixing, including mixing by convective clouds, couples fluctuations in free-tropospheric ozone to ozone in lower layers. Hypothetical bounding scenarios were performed to quantify the effects of emissions, boundary conditions, and ozone dry deposition on the simulated ozone burden. Analysis of these simulations confirms that the characterization of ozone outside the regional-scale modeling domain can have a profound impact on simulated regional-scale ozone. This was further investigated by using data from four hemispheric or global modeling systems (Chemistry - Integrated Forecasting Model (C-IFS), CMAQ extended for hemispheric applications (H-CMAQ), the Goddard Earth Observing System model coupled to chemistry (GEOS-Chem), and AM3) to derive alternate boundary conditions for the regional-scale CMAQ simulations. The regional-scale CMAQ simulations using these four different boundary conditions showed that the largest ozone abundance in the upper layers was simulated when using boundary conditions from GEOS-Chem, followed by the simulations using C-IFS, AM3, and H-CMAQ boundary conditions, consistent with the analysis of the ozone fields from the global models along the CMAQ boundaries. Using boundary conditions from AM3 yielded higher springtime ozone columns burdens in the middle and lower troposphere compared to boundary conditions from the other models. For surface ozone, the differences between the AM3-driven CMAQ simulations and the CMAQ simulations driven by other large-scale models are especially pronounced during spring and winter where they can reach more than 10 ppb for seasonal mean ozone mixing ratios and as much as 15 ppb for domain-averaged daily maximum 8 h average ozone on individual days. In contrast, the differences between the C-IFS-, GEOS-Chem-, and H-CMAQ-driven regional-scale CMAQ simulations are typically smaller. Comparing simulated surface ozone mixing ratios to observations and computing seasonal and regional model performance statistics revealed that boundary conditions can have a substantial impact on model performance. Further analysis showed that boundary conditions can affect model performance across the entire range of the observed distribution, although the impacts tend to be lower during summer and for the very highest observed percentiles. The results are discussed in the context of future model development and analysis opportunities.
SimVascular: An Open Source Pipeline for Cardiovascular Simulation.
Updegrove, Adam; Wilson, Nathan M; Merkow, Jameson; Lan, Hongzhi; Marsden, Alison L; Shadden, Shawn C
2017-03-01
Patient-specific cardiovascular simulation has become a paradigm in cardiovascular research and is emerging as a powerful tool in basic, translational and clinical research. In this paper we discuss the recent development of a fully open-source SimVascular software package, which provides a complete pipeline from medical image data segmentation to patient-specific blood flow simulation and analysis. This package serves as a research tool for cardiovascular modeling and simulation, and has contributed to numerous advances in personalized medicine, surgical planning and medical device design. The SimVascular software has recently been refactored and expanded to enhance functionality, usability, efficiency and accuracy of image-based patient-specific modeling tools. Moreover, SimVascular previously required several licensed components that hindered new user adoption and code management and our recent developments have replaced these commercial components to create a fully open source pipeline. These developments foster advances in cardiovascular modeling research, increased collaboration, standardization of methods, and a growing developer community.
A climate analysis using CORDEX simulations in a cooperation framework: the case of Paraguay
NASA Astrophysics Data System (ADS)
Mercogliano, Paola; Bucchignani, Edoardo; Ciervo, Fabio; Montesarchio, Myriam; Zollo, Alessandra Lucia; Villani, Veronica; Barbato, Giuliana; Vendemia, Rosalba; Polato, Raul; Baez, Julian; Pasten, Max
2017-04-01
In recent years, changes in climate have entailed variations in surface temperature and precipitation patterns in various countries of the South America, among which Paraguay. Climate change-attributed effects on weather impacts, such as river and urban floods, droughts and heat waves could severely affect the actual conditions of the country. In fact, Paraguay exhibits significant vulnerabilities to climate changes, especially because of its dependence on commodities production (e.g. agriculture, livestock, etc.) and its infrastructural and logistic asset not yet fully formed. In this context, climate change analysis can be an important technical support for practitioners to assist - under uncertainty - national/regional planning, financial resources managing and development (e.g. land-use practices, population growth, economic and community behavior, health, etc.). Moreover, actions in adaptation, disaster risk reduction (DRR), social protection and impacts mitigation may involve high costs if not properly contextualized. The assessment of 21st century climate change and development of whatever response strategies requires climate scenarios at high resolution, including an accurate evaluation of projection uncertainties (i.e. robustness of the analysis). This should ensure adequate insights into the potential impacts of climate change and allow practitioners, usually ill equipped to consider uncertain climate outputs into a broader context (e.g. planning, designing, managing), to make appropriate choices. In the framework of CORDEX initiative, Paraguay is included into the SOUTH-AMERICA-CORDEX one. Three climate simulations over this area are available at the spatial resolution of 0.44° (about 50km), obtained with RCM SMHI-RCA4 (forced by GCMs ICHEC-EC-EARTH and MPI-M-MPI-ESM-LR) and RCM MPI-CSC-REMO2009 (forced by MPI-M-MPI-ESM-LR). Simulations over the 21st century have been performed according with IPCC RCP2.6, RCP4.5 and RCP8.5 scenarios. The plausibility of the acquired climate simulations has been determined by comparison with different observational datasets over the baseline period. Three future periods have been selected for the analysis: 2011-2040, 2041-2070 and 2071-2100. The analysis is carried out in order to address the mean changes in seasonal mean temperature and total precipitation, and of some indicators suitable to quantify the impact of climate extreme events. The analysis is performed in the framework of the Chake Ou project "Strengthening of institutional and community preparedness and coordination capacities for disaster risk reduction in Paraguay" funded by the European Commission's Humanitarian Aid and Civil Protection Department (ECHO), in the context of the Disaster Preparedness Action Plan (DIPECHO) (code ECHO/-SM/BUD/2015/91028). The partners of the project are COOPI (a humanitarian, no-confessional and independent organization that works to support civil, economic and social development of populations struck by emergencies (disasters and conflicts), PLAN International (a child-centered community development organization) and CMCC Foundation (Euro-Mediterranean Center on Climate Change). The consortium works in close collaboration with the local institutions such as the Secretaria de Emergencia Nacional (SEN) and the Dirección de Meteorología e Hidrología (DMH - DINAC).
Yule, Daniel L.; Adams, Jean V.; Warner, David M.; Hrabik, Thomas R.; Kocovsky, Patrick M.; Weidel, Brian C.; Rudstam, Lars G.; Sullivan, Patrick J.
2013-01-01
Pelagic fish assessments often combine large amounts of acoustic-based fish density data and limited midwater trawl information to estimate species-specific biomass density. We compared the accuracy of five apportionment methods for estimating pelagic fish biomass density using simulated communities with known fish numbers that mimic Lakes Superior, Michigan, and Ontario, representing a range of fish community complexities. Across all apportionment methods, the error in the estimated biomass generally declined with increasing effort, but methods that accounted for community composition changes with water column depth performed best. Correlations between trawl catch and the true species composition were highest when more fish were caught, highlighting the benefits of targeted trawling in locations of high fish density. Pelagic fish surveys should incorporate geographic and water column depth stratification in the survey design, use apportionment methods that account for species-specific depth differences, target midwater trawling effort in areas of high fish density, and include at least 15 midwater trawls. With relatively basic biological information, simulations of fish communities and sampling programs can optimize effort allocation and reduce error in biomass estimates.
NASA Astrophysics Data System (ADS)
Kuznetsova, Maria
The Community Coordinated Modeling Center (CCMC, http://ccmc.gsfc.nasa.gov) was established at the dawn of the new millennium as a long-term flexible solution to the problem of transition of progress in space environment modeling to operational space weather forecasting. CCMC hosts an expanding collection of state-of-the-art space weather models developed by the international space science community. Over the years the CCMC acquired the unique experience in preparing complex models and model chains for operational environment and developing and maintaining custom displays and powerful web-based systems and tools ready to be used by researchers, space weather service providers and decision makers. In support of space weather needs of NASA users CCMC is developing highly-tailored applications and services that target specific orbits or locations in space and partnering with NASA mission specialists on linking CCMC space environment modeling with impacts on biological and technological systems in space. Confidence assessment of model predictions is an essential element of space environment modeling. CCMC facilitates interaction between model owners and users in defining physical parameters and metrics formats relevant to specific applications and leads community efforts to quantify models ability to simulate and predict space environment events. Interactive on-line model validation systems developed at CCMC make validation a seamless part of model development circle. The talk will showcase innovative solutions for space weather research, validation, anomaly analysis and forecasting and review on-going community-wide model validation initiatives enabled by CCMC applications.
Auer, Lucas; Mariadassou, Mahendra; O'Donohue, Michael; Klopp, Christophe; Hernandez-Raquet, Guillermina
2017-11-01
Next-generation sequencing technologies give access to large sets of data, which are extremely useful in the study of microbial diversity based on 16S rRNA gene. However, the production of such large data sets is not only marred by technical biases and sequencing noise but also increases computation time and disc space use. To improve the accuracy of OTU predictions and overcome both computations, storage and noise issues, recent studies and tools suggested removing all single reads and low abundant OTUs, considering them as noise. Although the effect of applying an OTU abundance threshold on α- and β-diversity has been well documented, the consequences of removing single reads have been poorly studied. Here, we test the effect of singleton read filtering (SRF) on microbial community composition using in silico simulated data sets as well as sequencing data from synthetic and real communities displaying different levels of diversity and abundance profiles. Scalability to large data sets is also assessed using a complete MiSeq run. We show that SRF drastically reduces the chimera content and computational time, enabling the analysis of a complete MiSeq run in just a few minutes. Moreover, SRF accurately determines the actual community diversity: the differences in α- and β-community diversity obtained with SRF and standard procedures are much smaller than the intrinsic variability of technical and biological replicates. © 2017 John Wiley & Sons Ltd.
Software and the Scientist: Coding and Citation Practices in Geodynamics
NASA Astrophysics Data System (ADS)
Hwang, Lorraine; Fish, Allison; Soito, Laura; Smith, MacKenzie; Kellogg, Louise H.
2017-11-01
In geodynamics as in other scientific areas, computation has become a core component of research, complementing field observation, laboratory analysis, experiment, and theory. Computational tools for data analysis, mapping, visualization, modeling, and simulation are essential for all aspects of the scientific workflow. Specialized scientific software is often developed by geodynamicists for their own use, and this effort represents a distinctive intellectual contribution. Drawing on a geodynamics community that focuses on developing and disseminating scientific software, we assess the current practices of software development and attribution, as well as attitudes about the need and best practices for software citation. We analyzed publications by participants in the Computational Infrastructure for Geodynamics and conducted mixed method surveys of the solid earth geophysics community. From this we learned that coding skills are typically learned informally. Participants considered good code as trusted, reusable, readable, and not overly complex and considered a good coder as one that participates in the community in an open and reasonable manor contributing to both long- and short-term community projects. Participants strongly supported citing software reflected by the high rate a software package was named in the literature and the high rate of citations in the references. However, lacking are clear instructions from developers on how to cite and education of users on what to cite. In addition, citations did not always lead to discoverability of the resource. A unique identifier to the software package itself, community education, and citation tools would contribute to better attribution practices.
Brooker, Simon; Kabatereine, Narcis B.; Myatt, Mark; Stothard, J. Russell; Fenwick, Alan
2007-01-01
Summary Rapid and accurate identification of communities at highest risk of morbidity from schistosomiasis is key for sustainable control. Although school questionnaires can effectively and inexpensively identify communities with a high prevalence of Schistosoma haematobium, parasitological screening remains the preferred option for S. mansoni. To help reduce screening costs, we investigated the validity of Lot Quality Assurance Sampling (LQAS) in classifying schools according categories of S. mansoni prevalence in Uganda, and explored its applicability and cost-effectiveness. First, we evaluated several sampling plans using computer simulation and then field tested one sampling plan in 34 schools in Uganda. Finally, cost-effectiveness of different screening and control strategies (including mass treatment without prior screening) was determined, and sensitivity analysis undertaken to assess the effect of infection levels and treatment costs. In identifying schools with prevalence ≥50%, computer simulations showed that LQAS had high levels of sensitivity and specificity (>90%) at sample sizes <20. The method also provides an ability to classify communities into three prevalence categories. Field testing showed that LQAS where 15 children were sampled had excellent diagnostic performance (sensitivity: 100%, specificity: 96.4%, positive predictive value: 85.7% and negative predictive value: 92.3%). Screening using LQAS was more cost-effective than mass treating all schools (US$ 218 vs. US$ 482 / high prevalence school treated). Threshold analysis indicated that parasitological screening and mass treatment would become equivalent for settings where prevalence exceeds 50% in 75% of schools and for treatment costs of US$ 0.19 per schoolchild. We conclude that, in Uganda, LQAS provides a rapid, valid, and cost-effective method for guiding decision makers in allocating finite resources for the control of schistosomiasis. PMID:15960703
Brooker, Simon; Kabatereine, Narcis B; Myatt, Mark; Russell Stothard, J; Fenwick, Alan
2005-07-01
Rapid and accurate identification of communities at highest risk of morbidity from schistosomiasis is key for sustainable control. Although school questionnaires can effectively and inexpensively identify communities with a high prevalence of Schistosoma haematobium, parasitological screening remains the preferred option for S. mansoni. To help reduce screening costs, we investigated the validity of Lot Quality Assurance Sampling (LQAS) in classifying schools according to categories of S. mansoni prevalence in Uganda, and explored its applicability and cost-effectiveness. First, we evaluated several sampling plans using computer simulation and then field tested one sampling plan in 34 schools in Uganda. Finally, cost-effectiveness of different screening and control strategies (including mass treatment without prior screening) was determined, and sensitivity analysis undertaken to assess the effect of infection levels and treatment costs. In identifying schools with prevalences > or =50%, computer simulations showed that LQAS had high levels of sensitivity and specificity (>90%) at sample sizes <20. The method also provides an ability to classify communities into three prevalence categories. Field testing showed that LQAS where 15 children were sampled had excellent diagnostic performance (sensitivity: 100%, specificity: 96.4%, positive predictive value: 85.7% and negative predictive value: 92.3%). Screening using LQAS was more cost-effective than mass treating all schools (US$218 vs. US$482/high prevalence school treated). Threshold analysis indicated that parasitological screening and mass treatment would become equivalent for settings where prevalence > or =50% in 75% of schools and for treatment costs of US$0.19 per schoolchild. We conclude that, in Uganda, LQAS provides a rapid, valid and cost-effective method for guiding decision makers in allocating finite resources for the control of schistosomiasis.
Curve Boxplot: Generalization of Boxplot for Ensembles of Curves.
Mirzargar, Mahsa; Whitaker, Ross T; Kirby, Robert M
2014-12-01
In simulation science, computational scientists often study the behavior of their simulations by repeated solutions with variations in parameters and/or boundary values or initial conditions. Through such simulation ensembles, one can try to understand or quantify the variability or uncertainty in a solution as a function of the various inputs or model assumptions. In response to a growing interest in simulation ensembles, the visualization community has developed a suite of methods for allowing users to observe and understand the properties of these ensembles in an efficient and effective manner. An important aspect of visualizing simulations is the analysis of derived features, often represented as points, surfaces, or curves. In this paper, we present a novel, nonparametric method for summarizing ensembles of 2D and 3D curves. We propose an extension of a method from descriptive statistics, data depth, to curves. We also demonstrate a set of rendering and visualization strategies for showing rank statistics of an ensemble of curves, which is a generalization of traditional whisker plots or boxplots to multidimensional curves. Results are presented for applications in neuroimaging, hurricane forecasting and fluid dynamics.
Impacts of Energy Sector Emissions on PM2.5 Air Quality in Northern India
NASA Astrophysics Data System (ADS)
Karambelas, A. N.; Kiesewetter, G.; Heyes, C.; Holloway, T.
2015-12-01
India experiences high concentrations of fine particulate matter (PM2.5), and several Indian cities currently rank among the world's most polluted cities. With ongoing urbanization and a growing economy, emissions from different energy sectors remain major contributors to air pollution in India. Emission sectors impact ambient air quality differently due to spatial distribution (typical urban vs. typical rural sources) as well as source height characteristics (low-level vs. high stack sources). This study aims to assess the impacts of emissions from three distinct energy sectors—transportation, domestic, and electricity—on ambient PM2.5 in northern India using an advanced air quality analysis framework based on the U.S. EPA Community Multi-Scale Air Quality (CMAQ) model. Present air quality conditions are simulated using 2010 emissions from the Greenhouse Gas-Air Pollution Interaction and Synergies (GAINS) model. Modeled PM2.5 concentrations are compared with satellite observations of aerosol optical depth (AOD) from the Moderate Imaging Spectroradiometer (MODIS) for 2010. Energy sector emissions impacts on future (2030) PM2.5 are evaluated with three sensitivity simulations, assuming maximum feasible reduction technologies for either transportation, domestic, or electricity sectors. These simulations are compared with a business as usual 2030 simulation to assess relative sectoral impacts spatially and temporally. CMAQ is modeled at 12km by 12km and include biogenic emissions from the Community Land Model coupled with the Model of Emissions of Gases and Aerosols in Nature (CLM-MEGAN), biomass burning emissions from the Global Fires Emissions Database (GFED), and ERA-Interim meteorology generated with the Weather Research and Forecasting (WRF) model for 2010 to quantify the impact of modified anthropogenic emissions on ambient PM2.5 concentrations. Energy sector emissions analysis supports decision-making to improve future air quality and public health in India.
The role of updraft velocity in temporal variability of cloud hydrometeor number
NASA Astrophysics Data System (ADS)
Sullivan, Sylvia; Nenes, Athanasios; Lee, Dong Min; Oreopoulos, Lazaros
2016-04-01
Significant effort has been dedicated to incorporating direct aerosol-cloud links, through parameterization of liquid droplet activation and ice crystal nucleation, within climate models. This significant accomplishment has generated the need for understanding which parameters affecting hydrometer formation drives its variability in coupled climate simulations, as it provides the basis for optimal parameter estimation as well as robust comparison with data, and other models. Sensitivity analysis alone does not address this issue, given that the importance of each parameter for hydrometer formation depends on its variance and sensitivity. To address the above issue, we develop and use a series of attribution metrics defined with adjoint sensitivities to attribute the temporal variability in droplet and crystal number to important aerosol and dynamical parameters. This attribution analysis is done both for the NASA Global Modeling and Assimilation Office Goddard Earth Observing System Model, Version 5 and the National Center for Atmospheric Research Community Atmosphere Model Version 5.1. Within the GEOS simulation, up to 48% of temporal variability in output ice crystal number and 61% in droplet number can be attributed to input updraft velocity fluctuations, while for the CAM simulation, they explain as much as 89% of the ice crystal number variability. This above results suggest that vertical velocity in both model frameworks is seen to be a very important (or dominant) driver of hydrometer variability. Yet, observations of vertical velocity are seldomly available (or used) to evaluate the vertical velocities in simulations; this strikingly contrasts the amount and quality of data available for aerosol-related parameters. Consequentially, there is a strong need for retrievals or measurements of vertical velocity for addressing this important knowledge gap that requires a significant investment and effort by the atmospheric community. The attribution metrics as a tool of understanding for hydrometer variability can be instrumental for understanding the source of differences between models used for aerosol-cloud-climate interaction studies.
NASA Astrophysics Data System (ADS)
Val Martin, M.; Heald, C. L.; Arnold, S. R.
2014-04-01
Dry deposition is an important removal process controlling surface ozone. We examine the representation of this ozone loss mechanism in the Community Earth System Model. We first correct the dry deposition parameterization by coupling the leaf and stomatal vegetation resistances to the leaf area index, an omission which has adversely impacted over a decade of ozone simulations using both the Model for Ozone and Related chemical Tracers (MOZART) and Community Atmospheric Model-Chem (CAM-Chem) global models. We show that this correction increases O3 dry deposition velocities over vegetated regions and improves the simulated seasonality in this loss process. This enhanced removal reduces the previously reported bias in summertime surface O3 simulated over eastern U.S. and Europe. We further optimize the parameterization by scaling down the stomatal resistance used in the Community Land Model to observed values. This in turn further improves the simulation of dry deposition velocity of O3, particularly over broadleaf forested regions. The summertime surface O3 bias is reduced from 30 ppb to 14 ppb over eastern U.S. and 13 ppb to 5 ppb over Europe from the standard to the optimized scheme, respectively. O3 deposition processes must therefore be accurately coupled to vegetation phenology within 3-D atmospheric models, as a first step toward improving surface O3 and simulating O3 responses to future and past vegetation changes.
Open Rotor Computational Aeroacoustic Analysis with an Immersed Boundary Method
NASA Technical Reports Server (NTRS)
Brehm, Christoph; Barad, Michael F.; Kiris, Cetin C.
2016-01-01
Reliable noise prediction capabilities are essential to enable novel fuel efficient open rotor designs that can meet the community and cabin noise standards. Toward this end, immersed boundary methods have reached a level of maturity where more and more complex flow problems can be tackled with this approach. This paper demonstrates that our higher-order immersed boundary method provides the ability for aeroacoustic analysis of wake-dominated flow fields generated by a contra-rotating open rotor. This is the first of a kind aeroacoustic simulation of an open rotor propulsion system employing an immersed boundary method. In addition to discussing the methodologies of how to apply the immersed boundary method to this moving boundary problem, we will provide a detailed validation of the aeroacoustic analysis approach employing the Launch Ascent and Vehicle Aerodynamics (LAVA) solver. Two free-stream Mach numbers with M=0.2 and M=0.78 are considered in this analysis that are based on the nominally take-off and cruise flow conditions. The simulation data is compared to available experimental data and other computational results employing more conventional CFD methods. Spectral analysis is used to determine the dominant wave propagation pattern in the acoustic near-field.
2013-01-01
Background Microbial ecologists often employ methods from classical community ecology to analyze microbial community diversity. However, these methods have limitations because microbial communities differ from macro-organismal communities in key ways. This study sought to quantify microbial diversity using methods that are better suited for data spanning multiple domains of life and dimensions of diversity. Diversity profiles are one novel, promising way to analyze microbial datasets. Diversity profiles encompass many other indices, provide effective numbers of diversity (mathematical generalizations of previous indices that better convey the magnitude of differences in diversity), and can incorporate taxa similarity information. To explore whether these profiles change interpretations of microbial datasets, diversity profiles were calculated for four microbial datasets from different environments spanning all domains of life as well as viruses. Both similarity-based profiles that incorporated phylogenetic relatedness and naïve (not similarity-based) profiles were calculated. Simulated datasets were used to examine the robustness of diversity profiles to varying phylogenetic topology and community composition. Results Diversity profiles provided insights into microbial datasets that were not detectable with classical univariate diversity metrics. For all datasets analyzed, there were key distinctions between calculations that incorporated phylogenetic diversity as a measure of taxa similarity and naïve calculations. The profiles also provided information about the effects of rare species on diversity calculations. Additionally, diversity profiles were used to examine thousands of simulated microbial communities, showing that similarity-based and naïve diversity profiles only agreed approximately 50% of the time in their classification of which sample was most diverse. This is a strong argument for incorporating similarity information and calculating diversity with a range of emphases on rare and abundant species when quantifying microbial community diversity. Conclusions For many datasets, diversity profiles provided a different view of microbial community diversity compared to analyses that did not take into account taxa similarity information, effective diversity, or multiple diversity metrics. These findings are a valuable contribution to data analysis methodology in microbial ecology. PMID:24238386
A Hardware-in-the-Loop Testbed for Spacecraft Formation Flying Applications
NASA Technical Reports Server (NTRS)
Leitner, Jesse; Bauer, Frank H. (Technical Monitor)
2001-01-01
The Formation Flying Test Bed (FFTB) at NASA Goddard Space Flight Center (GSFC) is being developed as a modular, hybrid dynamic simulation facility employed for end-to-end guidance, navigation, and control (GN&C) analysis and design for formation flying clusters and constellations of satellites. The FFTB will support critical hardware and software technology development to enable current and future missions for NASA, other government agencies, and external customers for a wide range of missions, particularly those involving distributed spacecraft operations. The initial capabilities of the FFTB are based upon an integration of high fidelity hardware and software simulation, emulation, and test platforms developed at GSFC in recent years; including a high-fidelity GPS simulator which has been a fundamental component of the Guidance, Navigation, and Control Center's GPS Test Facility. The FFTB will be continuously evolving over the next several years from a too[ with initial capabilities in GPS navigation hardware/software- in-the- loop analysis and closed loop GPS-based orbit control algorithm assessment to one with cross-link communications and relative navigation analysis and simulation capability. Eventually the FFT13 will provide full capability to support all aspects of multi-sensor, absolute and relative position determination and control, in all (attitude and orbit) degrees of freedom, as well as information management for satellite clusters and constellations. In this paper we focus on the architecture for the FFT13 as a general GN&C analysis environment for the spacecraft formation flying community inside and outside of NASA GSFC and we briefly reference some current and future activities which will drive the requirements and development.
Data Analysis Approaches for the Risk-Informed Safety Margins Characterization Toolkit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandelli, Diego; Alfonsi, Andrea; Maljovec, Daniel P.
2016-09-01
In the past decades, several numerical simulation codes have been employed to simulate accident dynamics (e.g., RELAP5-3D, RELAP-7, MELCOR, MAAP). In order to evaluate the impact of uncertainties into accident dynamics, several stochastic methodologies have been coupled with these codes. These stochastic methods range from classical Monte-Carlo and Latin Hypercube sampling to stochastic polynomial methods. Similar approaches have been introduced into the risk and safety community where stochastic methods (such as RAVEN, ADAPT, MCDET, ADS) have been coupled with safety analysis codes in order to evaluate the safety impact of timing and sequencing of events. These approaches are usually calledmore » Dynamic PRA or simulation-based PRA methods. These uncertainties and safety methods usually generate a large number of simulation runs (database storage may be on the order of gigabytes or higher). The scope of this paper is to present a broad overview of methods and algorithms that can be used to analyze and extract information from large data sets containing time dependent data. In this context, “extracting information” means constructing input-output correlations, finding commonalities, and identifying outliers. Some of the algorithms presented here have been developed or are under development within the RAVEN statistical framework.« less
Libiger, Ondrej; Schork, Nicholas J.
2015-01-01
It is now feasible to examine the composition and diversity of microbial communities (i.e., “microbiomes”) that populate different human organs and orifices using DNA sequencing and related technologies. To explore the potential links between changes in microbial communities and various diseases in the human body, it is essential to test associations involving different species within and across microbiomes, environmental settings and disease states. Although a number of statistical techniques exist for carrying out relevant analyses, it is unclear which of these techniques exhibit the greatest statistical power to detect associations given the complexity of most microbiome datasets. We compared the statistical power of principal component regression, partial least squares regression, regularized regression, distance-based regression, Hill's diversity measures, and a modified test implemented in the popular and widely used microbiome analysis methodology “Metastats” across a wide range of simulated scenarios involving changes in feature abundance between two sets of metagenomic samples. For this purpose, simulation studies were used to change the abundance of microbial species in a real dataset from a published study examining human hands. Each technique was applied to the same data, and its ability to detect the simulated change in abundance was assessed. We hypothesized that a small subset of methods would outperform the rest in terms of the statistical power. Indeed, we found that the Metastats technique modified to accommodate multivariate analysis and partial least squares regression yielded high power under the models and data sets we studied. The statistical power of diversity measure-based tests, distance-based regression and regularized regression was significantly lower. Our results provide insight into powerful analysis strategies that utilize information on species counts from large microbiome data sets exhibiting skewed frequency distributions obtained on a small to moderate number of samples. PMID:26734061
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rafique, Rashid; Xia, Jianyang; Hararuk, Oleksandra
Land models are valuable tools to understand the dynamics of global carbon (C) cycle. Various models have been developed and used for predictions of future C dynamics but uncertainties still exist. Diagnosing the models’ behaviors in terms of structures can help to narrow down the uncertainties in prediction of C dynamics. In this study three widely used land surface models, namely CSIRO’s Atmosphere Biosphere Land Exchange (CABLE) with 9 C pools, Community Land Model (version 3.5) combined with Carnegie-Ames-Stanford Approach (CLM-CASA) with 12 C pools and Community Land Model (version 4) (CLM4) with 26 C pools were driven by themore » observed meteorological forcing. The simulated C storage and residence time were used for analysis. The C storage and residence time were computed globally for all individual soil and plant pools, as well as net primary productivity (NPP) and its allocation to different plant components’ based on these models. Remotely sensed NPP and statistically derived HWSD, and GLC2000 datasets were used as a reference to evaluate the performance of these models. Results showed that CABLE exhibited better agreement with referenced C storage and residence time for plant and soil pools, as compared with CLM-CASA and CLM4. CABLE had longer bulk residence time for soil C pools and stored more C in roots, whereas, CLM-CASA and CLM4 stored more C in woody pools due to differential NPP allocation. Overall, these results indicate that the differences in C storage and residence times in three models are largely due to the differences in their fundamental structures (number of C pools), NPP allocation and C transfer rates. Our results have implications in model development and provide a general framework to explain the bias/uncertainties in simulation of C storage and residence times from the perspectives of model structures.« less
2009-01-01
must be considered for each threat. The Department of Homeland Security (DHS) has defined 15 National Planning Scenarios ( NPSs ), along with a...considered how to incorporate the 15 NPSs and the Target Capabilities List developed by DHS. Finally, we considered the work being done by Dr. Charles...suite of models and other tools hampers effective planning and re- sponse for all hazards, including the NPSs . The ES community has many meth- ods
2009-01-01
Department of Homeland Security (DHS) has defined 15 National Planning Scenarios ( NPSs ), along with a Target Capabilities List, which describes...including those in the NPSs , is limited. Considering the range of analytical expertise and resources available in different communities, the suite of...rolled out in phases. From the start, it will include mod- els to support some of the NPSs , as well as models that were most com- monly requested in the
A Computational Approach for Probabilistic Analysis of LS-DYNA Water Impact Simulations
NASA Technical Reports Server (NTRS)
Horta, Lucas G.; Mason, Brian H.; Lyle, Karen H.
2010-01-01
NASA s development of new concepts for the Crew Exploration Vehicle Orion presents many similar challenges to those worked in the sixties during the Apollo program. However, with improved modeling capabilities, new challenges arise. For example, the use of the commercial code LS-DYNA, although widely used and accepted in the technical community, often involves high-dimensional, time consuming, and computationally intensive simulations. Because of the computational cost, these tools are often used to evaluate specific conditions and rarely used for statistical analysis. The challenge is to capture what is learned from a limited number of LS-DYNA simulations to develop models that allow users to conduct interpolation of solutions at a fraction of the computational time. For this problem, response surface models are used to predict the system time responses to a water landing as a function of capsule speed, direction, attitude, water speed, and water direction. Furthermore, these models can also be used to ascertain the adequacy of the design in terms of probability measures. This paper presents a description of the LS-DYNA model, a brief summary of the response surface techniques, the analysis of variance approach used in the sensitivity studies, equations used to estimate impact parameters, results showing conditions that might cause injuries, and concluding remarks.
Microbial responses to southward and northward Cambisol soil transplant
Wang, Mengmeng; Liu, Shanshan; Wang, Feng; ...
2015-10-26
We report that soil transplant serves as a proxy to simulate climate changes. Recently, we have shown that southward transplant of black soil and northward transplant of red soil altered soil microbial communities and biogeochemical variables. However, fundamental differences in soil types have prevented direct comparison between southward and northward transplants. To tackle it, herein we report an analysis of microbial communities of Cambisol soil in an agriculture field after 4 years of adaptation to southward and northward soil transplants over large transects. Analysis of bare fallow soils revealed concurrent increase in microbial functional diversity and coarse-scale taxonomic diversity atmore » both transplanted sites, as detected by GeoChip 3.0 and DGGE, respectively. Furthermore, a correlation between microbial functional diversity and taxonomic diversity was detected, which was masked in maize cropped soils. Mean annual temperature, soil moisture, and nitrate (NO 3¯-N) showed strong correlations with microbial communities. In addition, abundances of ammonium-oxidizing genes (amoA) and denitrification genes were correlated with nitrification capacity and NO 3¯-N contents, suggesting that microbial responses to soil transplant could alter microbe-mediated biogeochemical cycle at the ecosystem level.« less
Convergence in France facing Big Data era and Exascale challenges for Climate Sciences
NASA Astrophysics Data System (ADS)
Denvil, Sébastien; Dufresne, Jean-Louis; Salas, David; Meurdesoif, Yann; Valcke, Sophie; Caubel, Arnaud; Foujols, Marie-Alice; Servonnat, Jérôme; Sénési, Stéphane; Derouillat, Julien; Voury, Pascal
2014-05-01
The presentation will introduce a french national project : CONVERGENCE that has been funded for four years. This project will tackle big data and computational challenges faced by climate modeling community in HPC context. Model simulations are central to the study of complex mechanisms and feedbacks in the climate system and to provide estimates of future and past climate changes. Recent trends in climate modelling are to add more physical components in the modelled system, increasing the resolution of each individual component and the more systematic use of large suites of simulations to address many scientific questions. Climate simulations may therefore differ in their initial state, parameter values, representation of physical processes, spatial resolution, model complexity, and degree of realism or degree of idealisation. In addition, there is a strong need for evaluating, improving and monitoring the performance of climate models using a large ensemble of diagnostics and better integration of model outputs and observational data. High performance computing is currently reaching the exascale and has the potential to produce this exponential increase of size and numbers of simulations. However, post-processing, analysis, and exploration of the generated data have stalled and there is a strong need for new tools to cope with the growing size and complexity of the underlying simulations and datasets. Exascale simulations require new scalable software tools to generate, manage and mine those simulations ,and data to extract the relevant information and to take the correct decision. The primary purpose of this project is to develop a platform capable of running large ensembles of simulations with a suite of models, to handle the complex and voluminous datasets generated, to facilitate the evaluation and validation of the models and the use of higher resolution models. We propose to gather interdisciplinary skills to design, using a component-based approach, a specific programming environment for scalable scientific simulations and analytics, integrating new and efficient ways of deploying and analysing the applications on High Performance Computing (HPC) system. CONVERGENCE, gathering HPC and informatics expertise that cuts across the individual partners and the broader HPC community, will allow the national climate community to leverage information technology (IT) innovations to address its specific needs. Our methodology consists in developing an ensemble of generic elements needed to run the French climate models with different grids and different resolution, ensuring efficient and reliable execution of these models, managing large volume and number of data and allowing analysis of the results and precise evaluation of the models. These elements include data structure definition and input-output (IO), code coupling and interpolation, as well as runtime and pre/post-processing environments. A common data and metadata structure will allow transferring consistent information between the various elements. All these generic elements will be open source and publicly available. The IPSL-CM and CNRM-CM climate models will make use of these elements that will constitute a national platform for climate modelling. This platform will be used, in its entirety, to optimise and tune the next version of the IPSL-CM model and to develop a global coupled climate model with a regional grid refinement. It will also be used, at least partially, to run ensembles of the CNRM-CM model at relatively high resolution and to run a very-high resolution prototype of this model. The climate models we developed are already involved in many international projects. For instance we participate to the CMIP (Coupled Model Intercomparison Project) project that is very demanding but has a high visibility: its results are widely used and are in particular synthesised in the IPCC (Intergovernmental Panel on Climate Change) assessment reports. The CONVERGENCE project will constitute an invaluable step for the French climate community to prepare and better contribute to the next phase of the CMIP project.
Simulating Microbial Community Patterning Using Biocellion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Seung-Hwa; Kahan, Simon H.; Momeni, Babak
2014-04-17
Mathematical modeling and computer simulation are important tools for understanding complex interactions between cells and their biotic and abiotic environment: similarities and differences between modeled and observed behavior provide the basis for hypothesis forma- tion. Momeni et al. [5] investigated pattern formation in communities of yeast strains engaging in different types of ecological interactions, comparing the predictions of mathematical modeling and simulation to actual patterns observed in wet-lab experiments. However, simu- lations of millions of cells in a three-dimensional community are ex- tremely time-consuming. One simulation run in MATLAB may take a week or longer, inhibiting exploration of the vastmore » space of parameter combinations and assumptions. Improving the speed, scale, and accu- racy of such simulations facilitates hypothesis formation and expedites discovery. Biocellion is a high performance software framework for ac- celerating discrete agent-based simulation of biological systems with millions to trillions of cells. Simulations of comparable scale and accu- racy to those taking a week of computer time using MATLAB require just hours using Biocellion on a multicore workstation. Biocellion fur- ther accelerates large scale, high resolution simulations using cluster computers by partitioning the work to run on multiple compute nodes. Biocellion targets computational biologists who have mathematical modeling backgrounds and basic C++ programming skills. This chap- ter describes the necessary steps to adapt the original Momeni et al.'s model to the Biocellion framework as a case study.« less
NASA Technical Reports Server (NTRS)
Petersen, R. H.; Barry, D. J.; Kline, D. M.
1975-01-01
A simplified method of analysis was used in which all flights at a 'simulated' airport were assumed to operate from one runway in a single direction. For this simulated airport, contours of noise exposure forecast were obtained and evaluated. A flight schedule of the simulated airport which is representative of the 23 major U. S. airports was used. The effect of banning night-time operations by four-engine, narrow-body aircraft in combination with other noise reduction options was studied. The reductions in noise which would occur of two- and three-engine, narrow-body aircraft equipped with a refanned engine was examined. A detailed comparison of the effects of engine cutback on takeoff versus the effects of retrofitting quiet nacelles for narrow-body aircraft was also examined. A method of presenting the effects of various noise reduction options was treated.
Online Simulations and Forecasts of the Global Aerosol Distribution in the NASA GEOS-5 Model
NASA Technical Reports Server (NTRS)
Colarco, Peter
2006-01-01
We present an analysis of simulations of the global aerosol system in the NASA GEOS-5 transport, radiation, and chemistry model. The model includes representations of all major tropospheric aerosol species, including dust, sea salt, black carbon, particulate organic matter, and sulfates. The aerosols are run online for the period 2000 through 2005 in a simulation driven by assimilated meteorology from the NASA Goddard Data Assimilation System. Aerosol surface mass concentrations are compared with existing long-term surface measurement networks. Aerosol optical thickness is compared with ground-based AERONET sun photometry and space-based retrievals from MODIS, MISR, and OMI. Particular emphasis is placed here on consistent sampling of model and satellite aerosol optical thickness to account for diurnal variations in aerosol optical properties. Additionally, we illustrate the use of this system for providing chemical weather forecasts in support of various NASA and community field missions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kremer, R.G.
Three papers are presented that focus on remote sensing and ecosystem simulation modeling of the Intermountain Northwest sagebrush-steppe ecosystem. The first utilizes Advanced Very High Resolution Radiometer data to derive seasonal greenness indices of three pre-dominant vegetation communities in south-central WashingtoN. Temporal signatures were statistically separated, and used to create a classification for the three communities by integrating Normalized Difference Vegetation Indices over the growing season. The classification accuracy was 75% when compared to 53 ground-truthed sites, but was less accurate (62%) in a more topographically variable region. The second paper develops a logic for treating the intermountain sagebrush-steepe asmore » a mosaic of distinct, hydrologically partitioned vegetation communities, and identifies critical ecophysiological considerations for process modeling of arid ecosystems. Soil water and nutrient dynamics of an ecosystem process model were modified to simulate productivity and seasonal water use patterns in Artemisia, Agropyron, and Bromus communities for the same study site. 60 year simulations maintained steady state vegetation productivity while predicting soil moisture content for 65 dates in 1992 with R[sup 2] values ranging from 0.93 to 0.98. In the third paper, the model was used to derive projections of the response of the ecosystem to natural and general circulation model (GCM)-predicted climate variability. Simulations predicted the adaptability of a less productive, invasive grass community (Bromus) to climate change, while a native sagebrush (Artemisia) community does not survive the increased temperatures of the GCM climates. High humidity deficits and greater maintenance respiration costs associated with increased temperatures limit the ability of the sagebrush community to support a relatively high biomass, and substantial increases in soil water storage and subsurface outflow occur was the vegetation senesces.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bethel, E. Wes; Greenwald, Martin; Kleese van Dam, Kerstin
Scientific user facilities—particle accelerators, telescopes, colliders, supercomputers, light sources, sequencing facilities, and more—operated by the U.S. Department of Energy (DOE) Office of Science (SC) generate ever increasing volumes of data at unprecedented rates from experiments, observations, and simulations. At the same time there is a growing community of experimentalists that require real-time data analysis feedback, to enable them to steer their complex experimental instruments to optimized scientific outcomes and new discoveries. Recent efforts in DOE-SC have focused on articulating the data-centric challenges and opportunities facing these science communities. Key challenges include difficulties coping with data size, rate, and complexity inmore » the context of both real-time and post-experiment data analysis and interpretation. Solutions will require algorithmic and mathematical advances, as well as hardware and software infrastructures that adequately support data-intensive scientific workloads. This paper presents the summary findings of a workshop held by DOE-SC in September 2015, convened to identify the major challenges and the research that is needed to meet those challenges.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bethel, E. Wes; Greenwald, Martin; Kleese van Dam, Kersten
Scientific user facilities---particle accelerators, telescopes, colliders, supercomputers, light sources, sequencing facilities, and more---operated by the U.S. Department of Energy (DOE) Office of Science (SC) generate ever increasing volumes of data at unprecedented rates from experiments, observations, and simulations. At the same time there is a growing community of experimentalists that require real-time data analysis feedback, to enable them to steer their complex experimental instruments to optimized scientific outcomes and new discoveries. Recent efforts in DOE-SC have focused on articulating the data-centric challenges and opportunities facing these science communities. Key challenges include difficulties coping with data size, rate, and complexity inmore » the context of both real-time and post-experiment data analysis and interpretation. Solutions will require algorithmic and mathematical advances, as well as hardware and software infrastructures that adequately support data-intensive scientific workloads. This paper presents the summary findings of a workshop held by DOE-SC in September 2015, convened to identify the major challenges and the research that is needed to meet those challenges.« less
Strickland, Michael S; McCulley, Rebecca L; Nelson, Jim A; Bradford, Mark A
2015-01-01
Inputs of low molecular weight carbon (LMW-C) to soil - primarily via root exudates- are expected to be a major driver of microbial activity and source of stable soil organic carbon. It is expected that variation in the type and composition of LMW-C entering soil will influence microbial community composition and function. If this is the case then short-term changes in LMW-C inputs may alter processes regulated by these communities. To determine if change in the composition of LMW-C inputs influences microbial community function and composition, we conducted a 90 day microcosm experiment whereby soils sourced from three different land covers (meadows, deciduous forests, and white pine stands) were amended, at low concentrations, with one of eight simulated root exudate treatments. Treatments included no addition of LMW-C, and the full factorial combination of glucose, glycine, and oxalic acid. After 90 days, we conducted a functional response assay and determined microbial composition via phospholipid fatty acid analysis. Whereas we noted a statistically significant effect of exudate treatments, this only accounted for ∼3% of the variation observed in function. In comparison, land cover and site explained ∼46 and ∼41% of the variation, respectively. This suggests that exudate composition has little influence on function compared to site/land cover specific factors. Supporting the finding that exudate effects were minor, we found that an absence of LMW-C elicited the greatest difference in function compared to those treatments receiving any LMW-C. Additionally, exudate treatments did not alter microbial community composition and observable differences were instead due to land cover. These results confirm the strong effects of land cover/site legacies on soil microbial communities. In contrast, short-term changes in exudate composition, at meaningful concentrations, may have little impact on microbial function and composition.
Potter, Margaret A; Brown, Shawn T; Cooley, Phillip C; Sweeney, Patricia M; Hershey, Tina B; Gleason, Sherrianne M; Lee, Bruce Y; Keane, Christopher R; Grefenstette, John; Burke, Donald S
2012-11-14
States' pandemic influenza plans and school closure statutes are intended to guide state and local officials, but most faced a great deal of uncertainty during the 2009 influenza H1N1 epidemic. Questions remained about whether, when, and for how long to close schools and about which agencies and officials had legal authority over school closures. This study began with analysis of states' school-closure statutes and pandemic influenza plans to identify the variations among them. An agent-based model of one state was used to represent as constants a population's demographics, commuting patterns, work and school attendance, and community mixing patterns while repeated simulations explored the effects of variations in school closure authority, duration, closure thresholds, and reopening criteria. The results show no basis on which to justify statewide rather than school-specific or community-specific authority for school closures. Nor do these simulations offer evidence to require school closures promptly at the earliest stage of an epidemic. More important are criteria based on monitoring of local case incidence and on authority to sustain closure periods sufficiently to achieve epidemic mitigation. This agent-based simulation suggests several ways to improve statutes and influenza plans. First, school closure should remain available to state and local authorities as an influenza mitigation strategy. Second, influenza plans need not necessarily specify the threshold for school closures but should clearly define provisions for early and ongoing local monitoring. Finally, school closure authority may be exercised at the statewide or local level, so long as decisions are informed by monitoring incidence in local communities and schools.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tilmes, Simone; Lamarque, Jean -Francois; Emmons, Louisa K.
The Community Earth System Model (CESM1) CAM4-chem has been used to perform the Chemistry Climate Model Initiative (CCMI) reference and sensitivity simulations. In this model, the Community Atmospheric Model version 4 (CAM4) is fully coupled to tropospheric and stratospheric chemistry. Details and specifics of each configuration, including new developments and improvements are described. CESM1 CAM4-chem is a low-top model that reaches up to approximately 40 km and uses a horizontal resolution of 1.9° latitude and 2.5° longitude. For the specified dynamics experiments, the model is nudged to Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis. We summarize the performance ofmore » the three reference simulations suggested by CCMI, with a focus on the last 15 years of the simulation when most observations are available. Comparisons with selected data sets are employed to demonstrate the general performance of the model. We highlight new data sets that are suited for multi-model evaluation studies. Most important improvements of the model are the treatment of stratospheric aerosols and the corresponding adjustments for radiation and optics, the updated chemistry scheme including improved polar chemistry and stratospheric dynamics and improved dry deposition rates. These updates lead to a very good representation of tropospheric ozone within 20 % of values from available observations for most regions. In particular, the trend and magnitude of surface ozone is much improved compared to earlier versions of the model. Furthermore, stratospheric column ozone of the Southern Hemisphere in winter and spring is reasonably well represented. In conclusion, all experiments still underestimate CO most significantly in Northern Hemisphere spring and show a significant underestimation of hydrocarbons based on surface observations.« less
Tilmes, Simone; Lamarque, Jean -Francois; Emmons, Louisa K.; ...
2016-05-20
The Community Earth System Model (CESM1) CAM4-chem has been used to perform the Chemistry Climate Model Initiative (CCMI) reference and sensitivity simulations. In this model, the Community Atmospheric Model version 4 (CAM4) is fully coupled to tropospheric and stratospheric chemistry. Details and specifics of each configuration, including new developments and improvements are described. CESM1 CAM4-chem is a low-top model that reaches up to approximately 40 km and uses a horizontal resolution of 1.9° latitude and 2.5° longitude. For the specified dynamics experiments, the model is nudged to Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis. We summarize the performance ofmore » the three reference simulations suggested by CCMI, with a focus on the last 15 years of the simulation when most observations are available. Comparisons with selected data sets are employed to demonstrate the general performance of the model. We highlight new data sets that are suited for multi-model evaluation studies. Most important improvements of the model are the treatment of stratospheric aerosols and the corresponding adjustments for radiation and optics, the updated chemistry scheme including improved polar chemistry and stratospheric dynamics and improved dry deposition rates. These updates lead to a very good representation of tropospheric ozone within 20 % of values from available observations for most regions. In particular, the trend and magnitude of surface ozone is much improved compared to earlier versions of the model. Furthermore, stratospheric column ozone of the Southern Hemisphere in winter and spring is reasonably well represented. In conclusion, all experiments still underestimate CO most significantly in Northern Hemisphere spring and show a significant underestimation of hydrocarbons based on surface observations.« less
Educational and Scientific Applications of Climate Model Diagnostic Analyzer
NASA Astrophysics Data System (ADS)
Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Kubar, T. L.; Zhang, J.; Bao, Q.
2016-12-01
Climate Model Diagnostic Analyzer (CMDA) is a web-based information system designed for the climate modeling and model analysis community to analyze climate data from models and observations. CMDA provides tools to diagnostically analyze climate data for model validation and improvement, and to systematically manage analysis provenance for sharing results with other investigators. CMDA utilizes cloud computing resources, multi-threading computing, machine-learning algorithms, web service technologies, and provenance-supporting technologies to address technical challenges that the Earth science modeling and model analysis community faces in evaluating and diagnosing climate models. As CMDA infrastructure and technology have matured, we have developed the educational and scientific applications of CMDA. Educationally, CMDA supported the summer school of the JPL Center for Climate Sciences for three years since 2014. In the summer school, the students work on group research projects where CMDA provide datasets and analysis tools. Each student is assigned to a virtual machine with CMDA installed in Amazon Web Services. A provenance management system for CMDA is developed to keep track of students' usages of CMDA, and to recommend datasets and analysis tools for their research topic. The provenance system also allows students to revisit their analysis results and share them with their group. Scientifically, we have developed several science use cases of CMDA covering various topics, datasets, and analysis types. Each use case developed is described and listed in terms of a scientific goal, datasets used, the analysis tools used, scientific results discovered from the use case, an analysis result such as output plots and data files, and a link to the exact analysis service call with all the input arguments filled. For example, one science use case is the evaluation of NCAR CAM5 model with MODIS total cloud fraction. The analysis service used is Difference Plot Service of Two Variables, and the datasets used are NCAR CAM total cloud fraction and MODIS total cloud fraction. The scientific highlight of the use case is that the CAM5 model overall does a fairly decent job at simulating total cloud cover, though simulates too few clouds especially near and offshore of the eastern ocean basins where low clouds are dominant.
Van den Abbeele, Pieter; Grootaert, Charlotte; Marzorati, Massimo; Possemiers, Sam; Verstraete, Willy; Gérard, Philippe; Rabot, Sylvie; Bruneau, Aurélia; El Aidy, Sahar; Derrien, Muriel; Zoetendal, Erwin; Kleerebezem, Michiel; Smidt, Hauke; Van de Wiele, Tom
2010-08-01
Dynamic, multicompartment in vitro gastrointestinal simulators are often used to monitor gut microbial dynamics and activity. These reactors need to harbor a microbial community that is stable upon inoculation, colon region specific, and relevant to in vivo conditions. Together with the reproducibility of the colonization process, these criteria are often overlooked when the modulatory properties from different treatments are compared. We therefore investigated the microbial colonization process in two identical simulators of the human intestinal microbial ecosystem (SHIME), simultaneously inoculated with the same human fecal microbiota with a high-resolution phylogenetic microarray: the human intestinal tract chip (HITChip). Following inoculation of the in vitro colon compartments, microbial community composition reached steady state after 2 weeks, whereas 3 weeks were required to reach functional stability. This dynamic colonization process was reproducible in both SHIME units and resulted in highly diverse microbial communities which were colon region specific, with the proximal regions harboring saccharolytic microbes (e.g., Bacteroides spp. and Eubacterium spp.) and the distal regions harboring mucin-degrading microbes (e.g., Akkermansia spp.). Importantly, the shift from an in vivo to an in vitro environment resulted in an increased Bacteroidetes/Firmicutes ratio, whereas Clostridium cluster IX (propionate producers) was enriched compared to clusters IV and XIVa (butyrate producers). This was supported by proportionally higher in vitro propionate concentrations. In conclusion, high-resolution analysis of in vitro-cultured gut microbiota offers new insight on the microbial colonization process and indicates the importance of digestive parameters that may be crucial in the development of new in vitro models.
Kinship and mate choice in a historic eastern Blue Ridge community, Madison County, Virginia.
Frankenberg, S R
1990-12-01
Potential mates analysis is difficult to apply to small historic populations that lack clear boundaries or regular vital event registration. Here I analyze the actual mate pool as an alternative way to identify causes of nonrandom mating when unmarried members are unknown. Factors influencing mate choice within a historic eastern Blue Ridge community in Madison County, Virginia, are examined for four marriage cohorts: 1850-1879, 1880-1899, 1900-1919, and 1920-1939. These factors include nuclear kin avoidance, preferred age differences between mates, and preferences for more distant kin. A simulation is used to recombine members of the cohort-specific pools of married individuals to generate the probabilities of various types of kin marriages. The pedigree and vital statistics data are derived from first-time marriage licenses filled by community members in Madison County from 1794 to 1939. The numbers of marriages examined for each cohort are 88, 120, 132, and 132, respectively; the mate pools constructed from the samples are viewed from the female perspective. The results generated by simulation on the actual mate pools consist of mean kinship coefficients, numbers of marriages between "allowed" kin types, and probabilities of these values when marriage is random with respect to kinship. The results indicate significantly high levels of inbreeding in all four marriage cohorts, primarily because of high levels of first-cousin marriages in the first three cohorts and of first-cousin once-removed marriages in the 1920 cohort. The observed mating patterns are discussed in terms of the social history of the Blue Ridge community and restrictions of the data.
Modeling and Simulation at Tidewater Community College
NASA Technical Reports Server (NTRS)
Summers, Michael
2008-01-01
Investment of $1.5 million in medical simulation technology. Integration of medical simulation activities into the curriculum. Support from TCC leadership. Individual and team activities. Skill development and critical thinking/problem solving skills.
Community Level Impact Assessment--Extension Applications.
ERIC Educational Resources Information Center
Woods, Mike D.; Doeksen, Gerald A.
Using the Oklahoma State University (OSU) computerized community simulation model, extension professionals can provide local decision makers with information derived from an impact model that is dynamic, community specific, and easy to adapt to different communities. The four main sections of the OSU model are an economic account, a capital…
Werner, Joel Benjamin
2008-01-01
Objectives To assess whether audio taping simulated patient interactions can improve the reliability of manually documented data and result in more accurate assessments. Methods Over a 3-month period, 1340 simulated patient visits were made to community pharmacies. Following the encounters, data gathered by the simulated patient were relayed to a coordinator who completed a rating form. Data recorded on the forms were later compared to an audiotape of the interaction. Corrections were tallied and reasons for making them were coded. Results Approximately 10% of cases required corrections, resulting in a 10%-20% modification in the pharmacy's total score. The difference between postcorrection and precorrection scores was significant. Conclusions Audio taping simulated patient visits enhances data integrity. Most corrections were required because of the simulated patients' poor recall abilities. PMID:19325956
Wang, Ziyuan; Wang, Zhixin; Pei, Yuansheng
2014-06-01
The riparian zone is an active interface for nitrogen removal, in which nitrogen transformations by microorganisms have not been valued. In this study, a three-stage system was constructed to simulate the riparian zone environments, and nitrogen removal as well as the microbial community was investigated in this 'engineered riparian system'. The results demonstrated that stage 1 of this system accounted for 41-51 % of total nitrogen removal. Initial ammonium loading and redox potential significantly impacted the nitrogen removal performances. Stages 1 and 2 were both composed of an anoxic/oxic (A/O) zone and an anaerobic column. The A/O zone removed most of the ammonium load (6.8 g/m(2)/day), while the anaerobic column showed a significant nitrate removal rate (11.1 g/m(2)/day). Molecular biological analysis demonstrated that bacterial diversity was high in the A/O zones, where ammonium-oxidizing bacteria and nitrite-oxidizing bacteria accounted for 8.42 and 3.32 % of the bacterial population, respectively. The denitrifying bacteria Acidovorax sp. and the nitrifying bacteria Nitrosospira/Nitrosomonas were the predominant microorganisms in this engineered riparian system. This three-stage system was established to achieve favorable nitrogen removal and the microbial community in the system was also retained. This investigation should deepen our understanding of biological nitrogen removal in engineered riparian zones.
Kovacs, Kent; Václavík, Tomáš; Haight, Robert G; Pang, Arwin; Cunniffe, Nik J; Gilligan, Christopher A; Meentemeyer, Ross K
2011-04-01
Phytophthora ramorum, cause of sudden oak death, is a quarantined, non-native, invasive forest pathogen resulting in substantial mortality in coastal live oak (Quercus agrifolia) and several other related tree species on the Pacific Coast of the United States. We estimate the discounted cost of oak treatment, removal, and replacement on developed land in California communities using simulations of P. ramorum spread and infection risk over the next decade (2010-2020). An estimated 734 thousand oak trees occur on developed land in communities in the analysis area. The simulations predict an expanding sudden oak death (SOD) infestation that will likely encompass most of northwestern California and warrant treatment, removal, and replacement of more than 10 thousand oak trees with discounted cost of $7.5 million. In addition, we estimate the discounted property losses to single family homes of $135 million. Expanding the land base to include developed land outside as well as inside communities doubles the estimates of the number of oak trees killed and the associated costs and losses. The predicted costs and property value losses are substantial, but many of the damages in urban areas (e.g. potential losses from increased fire and safety risks of the dead trees and the loss of ecosystem service values) are not included. Copyright © 2010 Elsevier Ltd. All rights reserved.
An inter-institutional collaboration: transforming education through interprofessional simulations.
King, Sharla; Drummond, Jane; Hughes, Ellen; Bookhalter, Sharon; Huffman, Dan; Ansell, Dawn
2013-09-01
An inter-institutional partnership of four post-secondary institutions and a health provider formed a learning community with the goal of developing, implementing and evaluating interprofessional learning experiences in simulation-based environments. The organization, education and educational research activities of the learning community align with the institutional and instructional reforms recommended by the Lancet Commission on Health Professional Education for the 21st century. This article provides an overview of the inter-institutional collaboration, including the interprofessional simulation learning experiences, instructor development activities and preliminary results from the evaluation.
Xia, Li C; Steele, Joshua A; Cram, Jacob A; Cardon, Zoe G; Simmons, Sheri L; Vallino, Joseph J; Fuhrman, Jed A; Sun, Fengzhu
2011-01-01
The increasing availability of time series microbial community data from metagenomics and other molecular biological studies has enabled the analysis of large-scale microbial co-occurrence and association networks. Among the many analytical techniques available, the Local Similarity Analysis (LSA) method is unique in that it captures local and potentially time-delayed co-occurrence and association patterns in time series data that cannot otherwise be identified by ordinary correlation analysis. However LSA, as originally developed, does not consider time series data with replicates, which hinders the full exploitation of available information. With replicates, it is possible to understand the variability of local similarity (LS) score and to obtain its confidence interval. We extended our LSA technique to time series data with replicates and termed it extended LSA, or eLSA. Simulations showed the capability of eLSA to capture subinterval and time-delayed associations. We implemented the eLSA technique into an easy-to-use analytic software package. The software pipeline integrates data normalization, statistical correlation calculation, statistical significance evaluation, and association network construction steps. We applied the eLSA technique to microbial community and gene expression datasets, where unique time-dependent associations were identified. The extended LSA analysis technique was demonstrated to reveal statistically significant local and potentially time-delayed association patterns in replicated time series data beyond that of ordinary correlation analysis. These statistically significant associations can provide insights to the real dynamics of biological systems. The newly designed eLSA software efficiently streamlines the analysis and is freely available from the eLSA homepage, which can be accessed at http://meta.usc.edu/softs/lsa.
2011-01-01
Background The increasing availability of time series microbial community data from metagenomics and other molecular biological studies has enabled the analysis of large-scale microbial co-occurrence and association networks. Among the many analytical techniques available, the Local Similarity Analysis (LSA) method is unique in that it captures local and potentially time-delayed co-occurrence and association patterns in time series data that cannot otherwise be identified by ordinary correlation analysis. However LSA, as originally developed, does not consider time series data with replicates, which hinders the full exploitation of available information. With replicates, it is possible to understand the variability of local similarity (LS) score and to obtain its confidence interval. Results We extended our LSA technique to time series data with replicates and termed it extended LSA, or eLSA. Simulations showed the capability of eLSA to capture subinterval and time-delayed associations. We implemented the eLSA technique into an easy-to-use analytic software package. The software pipeline integrates data normalization, statistical correlation calculation, statistical significance evaluation, and association network construction steps. We applied the eLSA technique to microbial community and gene expression datasets, where unique time-dependent associations were identified. Conclusions The extended LSA analysis technique was demonstrated to reveal statistically significant local and potentially time-delayed association patterns in replicated time series data beyond that of ordinary correlation analysis. These statistically significant associations can provide insights to the real dynamics of biological systems. The newly designed eLSA software efficiently streamlines the analysis and is freely available from the eLSA homepage, which can be accessed at http://meta.usc.edu/softs/lsa. PMID:22784572
A resource facility for kinetic analysis: modeling using the SAAM computer programs.
Foster, D M; Boston, R C; Jacquez, J A; Zech, L
1989-01-01
Kinetic analysis and integrated system modeling have contributed significantly to understanding the physiology and pathophysiology of metabolic systems in humans and animals. Many experimental biologists are aware of the usefulness of these techniques and recognize that kinetic modeling requires special expertise. The Resource Facility for Kinetic Analysis (RFKA) provides this expertise through: (1) development and application of modeling technology for biomedical problems, and (2) development of computer-based kinetic modeling methodologies concentrating on the computer program Simulation, Analysis, and Modeling (SAAM) and its conversational version, CONversational SAAM (CONSAM). The RFKA offers consultation to the biomedical community in the use of modeling to analyze kinetic data and trains individuals in using this technology for biomedical research. Early versions of SAAM were widely applied in solving dosimetry problems; many users, however, are not familiar with recent improvements to the software. The purpose of this paper is to acquaint biomedical researchers in the dosimetry field with RFKA, which, together with the joint National Cancer Institute-National Heart, Lung and Blood Institute project, is overseeing SAAM development and applications. In addition, RFKA provides many service activities to the SAAM user community that are relevant to solving dosimetry problems.
mizer: an R package for multispecies, trait-based and community size spectrum ecological modelling.
Scott, Finlay; Blanchard, Julia L; Andersen, Ken H
2014-10-01
Size spectrum ecological models are representations of a community of individuals which grow and change trophic level. A key emergent feature of these models is the size spectrum; the total abundance of all individuals that scales negatively with size. The models we focus on are designed to capture fish community dynamics useful for assessing the community impacts of fishing.We present mizer , an R package for implementing dynamic size spectrum ecological models of an entire aquatic community subject to fishing. Multiple fishing gears can be defined and fishing mortality can change through time making it possible to simulate a range of exploitation strategies and management options. mizer implements three versions of the size spectrum modelling framework: the community model, where individuals are only characterized by their size; the trait-based model, where individuals are further characterized by their asymptotic size; and the multispecies model where additional trait differences are resolved.A range of plot, community indicator and summary methods are available to inspect the results of the simulations.
MaGate Simulator: A Simulation Environment for a Decentralized Grid Scheduler
NASA Astrophysics Data System (ADS)
Huang, Ye; Brocco, Amos; Courant, Michele; Hirsbrunner, Beat; Kuonen, Pierre
This paper presents a simulator for of a decentralized modular grid scheduler named MaGate. MaGate’s design emphasizes scheduler interoperability by providing intelligent scheduling serving the grid community as a whole. Each MaGate scheduler instance is able to deal with dynamic scheduling conditions, with continuously arriving grid jobs. Received jobs are either allocated on local resources, or delegated to other MaGates for remote execution. The proposed MaGate simulator is based on GridSim toolkit and Alea simulator, and abstracts the features and behaviors of complex fundamental grid elements, such as grid jobs, grid resources, and grid users. Simulation of scheduling tasks is supported by a grid network overlay simulator executing distributed ant-based swarm intelligence algorithms to provide services such as group communication and resource discovery. For evaluation, a comparison of behaviors of different collaborative policies among a community of MaGates is provided. Results support the use of the proposed approach as a functional ready grid scheduler simulator.
HABEBEE: habitability of eyeball-exo-Earths.
Angerhausen, Daniel; Sapers, Haley; Citron, Robert; Bergantini, Alexandre; Lutz, Stefanie; Queiroz, Luciano Lopes; da Rosa Alexandre, Marcelo; Araujo, Ana Carolina Vieira
2013-03-01
Extrasolar Earth and super-Earth planets orbiting within the habitable zone of M dwarf host stars may play a significant role in the discovery of habitable environments beyond Earth. Spectroscopic characterization of these exoplanets with respect to habitability requires the determination of habitability parameters with respect to remote sensing. The habitable zone of dwarf stars is located in close proximity to the host star, such that exoplanets orbiting within this zone will likely be tidally locked. On terrestrial planets with an icy shell, this may produce a liquid water ocean at the substellar point, one particular "Eyeball Earth" state. In this research proposal, HABEBEE: exploring the HABitability of Eyeball-Exo-Earths, we define the parameters necessary to achieve a stable icy Eyeball Earth capable of supporting life. Astronomical and geochemical research will define parameters needed to simulate potentially habitable environments on an icy Eyeball Earth planet. Biological requirements will be based on detailed studies of microbial communities within Earth analog environments. Using the interdisciplinary results of both the physical and biological teams, we will set up a simulation chamber to expose a cold- and UV-tolerant microbial community to the theoretically derived Eyeball Earth climate states, simulating the composition, atmosphere, physical parameters, and stellar irradiation. Combining the results of both studies will enable us to derive observable parameters as well as target decision guidance and feasibility analysis for upcoming astronomical platforms.
Xing, Zhilin; Zhao, Tiantao; Gao, Yanhui; He, Zhi; Zhang, Lijie; Peng, Xuya; Song, Liyan
2017-10-01
Real-time CH 4 oxidation in a landfill cover soil was studied using automated gas sampling that determined biogas (CH 4 and CO 2 ) and O 2 concentrations at various depths in a simulated landfill cover soil (SLCS) column reactor. The real-time monitoring system obtained more than 10,000 biogas (CH 4 and CO 2 ) and O 2 data points covering 32 steady states of CH 4 oxidation with 32 different CH 4 fluxes (0.2-125mol·m -2 ·d -1 ). The kinetics of CH 4 oxidation at different depths (0-20cm, 20-40cm, and 40-60cm) of SLCS were well fit by a CH 4 -O 2 dual-substrate model based on 32 values (averaged, n=5-15) of equilibrated CH 4 concentrations. The quality of the fit (R 2 ranged from 0.90 to 0.96) was higher than those reported in previous studies, which suggests that real time monitoring is beneficial for CH 4 oxidation simulations. MiSeq pyrosequencing indicated that CH 4 flux events changed the bacterial community structure (e.g., increased the abundance of Bacteroidetes and Methanotrophs) and resulted in a relative increase in the amount of type I methanotrophs (Methylobacter and Methylococcales) and a decrease in the amount of type II methanotrophs (Methylocystis). Copyright © 2017 Elsevier Ltd. All rights reserved.
Hincapié-Palacio, Doracelly; Ospina-Giraldo, Juan; Gómez-Arias, Rubén D; Uyi-Afuwape, Anthony; Chowell-Puente, Gerardo
2010-02-01
The study was aimed at comparing measles and rubella disease elimination levels in a homogeneous and heterogeneous population according to socioeconomic status with interactions amongst low- and high-income individuals and diversity in the average number of contacts amongst them. Effective reproductive rate simulations were deduced from a susceptibleinfected- recovered (SIR) mathematical model according to different immunisation rates using measles (1980 and 2005) and rubella (1998 and 2005) incidence data from Latin-America and the Caribbean. Low- and high-income individuals' social interaction and their average number of contacts were analysed by bipartite random network analysis. MAPLE 12 (Maplesoft Inc, Ontario Canada) software was used for making the simulations. The progress made in eliminating both diseases between both periods of time was reproduced in the socially-homogeneous population. Measles (2005) would be eliminated in high- and low-income groups; however, it would only be achieved in rubella (2005) if there were a high immunity rate amongst the low-income group. If the average number of contacts were varied, then rubella would not be eliminated, even with a 95 % immunity rate. Monitoring the elimination level in diseases like measles and rubella requires that socio-economic status be considered as well as the population's interaction pattern. Special attention should be paid to communities having diversity in their average number of contacts occurring in confined spaces such as displaced communities, prisons, educational establishments, or hospitals.
NASA Astrophysics Data System (ADS)
Wu, C.; Liu, X.; Diao, M.; Zhang, K.; Gettelman, A.
2015-12-01
A dominant source of uncertainty within climate system modeling lies in the representation of cloud processes. This is not only because of the great complexity in cloud microphysics, but also because of the large variations of cloud amount and macroscopic properties in time and space. In this study, the cloud properties simulated by the Community Atmosphere Model version 5.4 (CAM5.4) are evaluated using the HIAPER Pole-to-Pole Observations (HIPPO, 2009-2011). CAM5.4 is driven by the meteorology (U, V, and T) from GEOS5 analysis, while water vapor, hydrometeors and aerosols are calculated by the model itself. For direct comparison of CAM5.4 and HIPPO observations, model output is collocated with HIPPO flights. Generally, the model has an ability to capture specific cloud systems of meso- to large-scales. In total, the model can reproduce 80% of observed cloud occurrences inside model grid boxes, and even higher (93%) for ice clouds (T≤-40°C). However, the model produces plenty of clouds that are not presented in the observation. The model also simulates significantly larger cloud fraction including for ice clouds compared to the observation. Further analysis shows that the overestimation is a result of bias in relative humidity (RH) in the model. The bias of RH can be mostly attributed to the discrepancies of water vapor, and to a lesser extent to those of temperature. Down to the micro-scale level of ice clouds, the model can simulate reasonably well the magnitude of ice and snow number concentration (Ni, with diameter larger than 75 μm). However, the model simulates fewer occurrences of Ni>50 L-1. This can be partially ascribed to the low bias of aerosol number concentration (Naer, with diameter between 0.1-1 μm) simulated by the model. Moreover, the model significantly underestimates both the number mean diameter (Di,n) and the volume mean diameter (Di,v) of ice/snow. The result shows that the underestimation may be related to a weaker positive relationship between Di,n and Naer and/or the underestimation of Naer. Finally, it is suggested that better representation of sub-grid variability of meteorology (e.g., water vapor) is needed to improve the formation and evolution of ice clouds in the model.
A Computer Simulation of Community Pharmacy Practice for Educational Use.
Bindoff, Ivan; Ling, Tristan; Bereznicki, Luke; Westbury, Juanita; Chalmers, Leanne; Peterson, Gregory; Ollington, Robert
2014-11-15
To provide a computer-based learning method for pharmacy practice that is as effective as paper-based scenarios, but more engaging and less labor-intensive. We developed a flexible and customizable computer simulation of community pharmacy. Using it, the students would be able to work through scenarios which encapsulate the entirety of a patient presentation. We compared the traditional paper-based teaching method to our computer-based approach using equivalent scenarios. The paper-based group had 2 tutors while the computer group had none. Both groups were given a prescenario and postscenario clinical knowledge quiz and survey. Students in the computer-based group had generally greater improvements in their clinical knowledge score, and third-year students using the computer-based method also showed more improvements in history taking and counseling competencies. Third-year students also found the simulation fun and engaging. Our simulation of community pharmacy provided an educational experience as effective as the paper-based alternative, despite the lack of a human tutor.
Local communities obstruct global consensus: Naming game on multi-local-world networks
NASA Astrophysics Data System (ADS)
Lou, Yang; Chen, Guanrong; Fan, Zhengping; Xiang, Luna
2018-02-01
Community structure is essential for social communications, where individuals belonging to the same community are much more actively interacting and communicating with each other than those in different communities within the human society. Naming game, on the other hand, is a social communication model that simulates the process of learning a name of an object within a community of humans, where the individuals can generally reach global consensus asymptotically through iterative pair-wise conversations. The underlying network indicates the relationships among the individuals. In this paper, three typical topologies, namely random-graph, small-world and scale-free networks, are employed, which are embedded with the multi-local-world community structure, to study the naming game. Simulations show that (1) the convergence process to global consensus is getting slower as the community structure becomes more prominent, and eventually might fail; (2) if the inter-community connections are sufficiently dense, neither the number nor the size of the communities affects the convergence process; and (3) for different topologies with the same (or similar) average node-degree, local clustering of individuals obstruct or prohibit global consensus to take place. The results reveal the role of local communities in a global naming game in social network studies.
Paravattil, Bridget; Kheir, Nadir; Yousif, Adil
2017-08-01
Background Patient counseling is one of the most important services a pharmacist can provide to patients. Studies have shown that counseling provided by pharmacists may prevent medication related problems and improve adherence to medication therapy. Objective To explore counseling practices among community pharmacists using simulated patients and to determine if patient, pharmacist, and pharmacy characteristics influence the counseling provided by community pharmacists. Setting Private community pharmacies within Qatar. Method This is a randomized, cross sectional study where simulated patients visited community pharmacies and presented the pharmacist with a new prescription or requested a refill for either a diabetes or asthma medication. Pharmacists completed a questionnaire at the end of the simulated interaction, which was utilized to determine if patient, pharmacist, or pharmacy characteristics had any influence on the counseling provided to patients. A scoring system was devised to assess the pharmacist's counseling practices. Main outcome measure To evaluate the type of information provided by community pharmacists to the simulated patient regarding diabetes and asthma. Results One hundred and twenty-nine pharmacists were enrolled in the study. Eighty one percent of pharmacists had a score <35%. Medication name (95%), directions (47%), indication (43%), and dose (41%) were the most frequently counseled components by pharmacists during the simulated interaction. Male patients received better counseling compared to the female patients (t = 6.177; p < 0.0001). Pharmacists with a master of pharmacy degree provided significantly better counseling (f = 3.261; p = 0.042). Many pharmacists (65%) provided hypoglycemia management to patients, however, 63% referred the patient to the physician when the patient experienced hypoglycemia from inappropriate medication administration. Only 2 (7%) pharmacists correctly counseled the patient on all 8 inhaler administration steps. Majority of pharmacists (50%) educated on the role of the rescue and controller therapy in asthma, however, 33% referred the patient to the physician when the patient inquired about controller therapy use. Conclusion Patient counseling was substandard with the majority of community pharmacists focusing on the name of the medication. Pharmacists rarely assessed patient's medical history or medication use. Disease management and problem solving skills of pharmacists were suboptimal with many referring patients back to the physician.
Analysis of stability to cheaters in models of antibiotic degrading microbial communities.
Szilágyi, András; Boza, Gergely; Scheuring, István
2017-06-21
Antibiotic resistance carried out by antibiotic degradation has been suggested recently as a new mechanism to maintain coexistence of microbial species competing on a single limiting resource, even in well-mixed homogeneous environments. Species diversity and community stability, however, critically depend on resistance against social cheaters, mutants that do not invest in production, but still enjoy the benefits provided by others. Here we investigate how different mutant cheaters affect the stability of antibiotic producing and degrading microbial communities. We consider two cheater types, production and degradation cheaters. We generalize the mixed inhibition-zone and chemostat models introduced previously [Kelsic, E. D., Zhao, J., Vetsigian, K., Kishony, R., 2015. Counteraction of an tibiotic production and degradation stabilizes microbial communities. Nature521, 516-519.] to study the population dynamics of microbial communities in well-mixed environment, and analyze the invasion of different cheaters in these models. We show that production cheaters, mutants that cease producing antibiotics, always destroy coexistence whenever there is a cost of producing these antibiotics. Degradation cheaters, mutants that loose their function of producing extracellular antibiotic degrading molecules, induce community collapse only if the cost of producing the degradation factors is above a critical level. Our analytical studies, supported by numerical simulations, highlight the sensitivity of antibiotic producing and degrading communities to loss-of-function mutants. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sensitivity analysis of Repast computational ecology models with R/Repast.
Prestes García, Antonio; Rodríguez-Patón, Alfonso
2016-12-01
Computational ecology is an emerging interdisciplinary discipline founded mainly on modeling and simulation methods for studying ecological systems. Among the existing modeling formalisms, the individual-based modeling is particularly well suited for capturing the complex temporal and spatial dynamics as well as the nonlinearities arising in ecosystems, communities, or populations due to individual variability. In addition, being a bottom-up approach, it is useful for providing new insights on the local mechanisms which are generating some observed global dynamics. Of course, no conclusions about model results could be taken seriously if they are based on a single model execution and they are not analyzed carefully. Therefore, a sound methodology should always be used for underpinning the interpretation of model results. The sensitivity analysis is a methodology for quantitatively assessing the effect of input uncertainty in the simulation output which should be incorporated compulsorily to every work based on in-silico experimental setup. In this article, we present R/Repast a GNU R package for running and analyzing Repast Simphony models accompanied by two worked examples on how to perform global sensitivity analysis and how to interpret the results.
BEATBOX v1.0: Background Error Analysis Testbed with Box Models
NASA Astrophysics Data System (ADS)
Knote, Christoph; Barré, Jérôme; Eckl, Max
2018-02-01
The Background Error Analysis Testbed (BEATBOX) is a new data assimilation framework for box models. Based on the BOX Model eXtension (BOXMOX) to the Kinetic Pre-Processor (KPP), this framework allows users to conduct performance evaluations of data assimilation experiments, sensitivity analyses, and detailed chemical scheme diagnostics from an observation simulation system experiment (OSSE) point of view. The BEATBOX framework incorporates an observation simulator and a data assimilation system with the possibility of choosing ensemble, adjoint, or combined sensitivities. A user-friendly, Python-based interface allows for the tuning of many parameters for atmospheric chemistry and data assimilation research as well as for educational purposes, for example observation error, model covariances, ensemble size, perturbation distribution in the initial conditions, and so on. In this work, the testbed is described and two case studies are presented to illustrate the design of a typical OSSE experiment, data assimilation experiments, a sensitivity analysis, and a method for diagnosing model errors. BEATBOX is released as an open source tool for the atmospheric chemistry and data assimilation communities.
A network model of the interbank market
NASA Astrophysics Data System (ADS)
Li, Shouwei; He, Jianmin; Zhuang, Yaming
2010-12-01
This work introduces a network model of an interbank market based on interbank credit lending relationships. It generates some network features identified through empirical analysis. The critical issue to construct an interbank network is to decide the edges among banks, which is realized in this paper based on the interbank’s degree of trust. Through simulation analysis of the interbank network model, some typical structural features are identified in our interbank network, which are also proved to exist in real interbank networks. They are namely, a low clustering coefficient and a relatively short average path length, community structures, and a two-power-law distribution of out-degree and in-degree.
Competitive intransitivity promotes species coexistence.
Laird, Robert A; Schamp, Brandon S
2006-08-01
Using a spatially explicit cellular automaton model with local competition, we investigate the potential for varied levels of competitive intransitivity (i.e., nonhierarchical competition) to promote species coexistence. As predicted, on average, increased levels of intransitivity result in more sustained coexistence within simulated communities, although the outcome of competition also becomes increasingly unpredictable. Interestingly, even a moderate degree of intransitivity within a community can promote coexistence, in terms of both the length of time until the first competitive exclusion and the number of species remaining in the community after 500 simulated generations. These results suggest that modest levels of intransitivity in nature, such as those that are thought to be characteristic of plant communities, can contribute to coexistence and, therefore, community-scale biodiversity. We explore a potential connection between competitive intransitivity and neutral theory, whereby competitive intransitivity may represent an important mechanism for "ecological equivalence."
A transient fully coupled climate-ice-sheet simulation of the last glacial inception
NASA Astrophysics Data System (ADS)
Lofverstrom, M.; Otto-Bliesner, B. L.; Lipscomb, W. H.; Fyke, J. G.; Marshall, S.; Sacks, B.; Brady, E. C.
2017-12-01
The last glacial inception occurred around 115 ka, following a relative minimum in the Northern Hemisphere summer insolation. It is believed that small and spatially separated ice caps initially formed in the high elevation regions of northern Canada, Scandinavia, and along the Siberian Arctic coast. These ice caps subsequently migrated down in the valleys where they coalesced and formed the initial seeds of the large coherent ice masses that covered the northern parts of the North American and Eurasian continents over most of the last glacial cycle. Sea level records show that the initial growth period lasted for about 10 kyrs, and the resulting ice sheets may have lowered the global sea level by as much as 30 to 50 meters. Here we examine the transient climate system evolution over the period between 118 and 110 ka, using the fully coupled Community Earth System Model, version 2 (CESM2). This model features a two-way coupled high-resolution (4x4 km) ice-sheet component (Community Ice Sheet model, version 2; CISM2) that simulates ice sheets as an interactive component of the climate system. We impose a transient forcing protocol where the greenhouse gas concentrations and the orbital parameters follow the nominal year in the simulation; the model topography is also dynamically evolving in order to reflect changes in ice elevation throughout the simulation. The analysis focuses on how the climate system evolves over this time interval, with a special focus on glacial inception in the high-latitude continents. Results will highlight how the evolving ice sheets compare to data and previous model based reconstructions.
2015-01-01
Background Multiscale approaches for integrating submodels of various levels of biological organization into a single model became the major tool of systems biology. In this paper, we have constructed and simulated a set of multiscale models of spatially distributed microbial communities and study an influence of unevenly distributed environmental factors on the genetic diversity and evolution of the community members. Results Haploid Evolutionary Constructor software http://evol-constructor.bionet.nsc.ru/ was expanded by adding the tool for the spatial modeling of a microbial community (1D, 2D and 3D versions). A set of the models of spatially distributed communities was built to demonstrate that the spatial distribution of cells affects both intensity of selection and evolution rate. Conclusion In spatially heterogeneous communities, the change in the direction of the environmental flow might be reflected in local irregular population dynamics, while the genetic structure of populations (frequencies of the alleles) remains stable. Furthermore, in spatially heterogeneous communities, the chemotaxis might dramatically affect the evolution of community members. PMID:25708911
Pintar, K D M; Fazil, A; Pollari, F; Waltner-Toews, D; Charron, D F; McEwen, S A; Walton, T
2012-07-01
Through the use of case-control analyses and quantitative microbial risk assessment (QMRA), relative risks of transmission of cryptosporidiosis have been evaluated (recreational water exposure vs. drinking water consumption) for a Canadian community with higher than national rates of cryptosporidiosis. A QMRA was developed to assess the risk of Cryptosporidium infection through the consumption of municipally treated drinking water. Simulations were based on site-specific surface water contamination levels and drinking water treatment log₁₀ reduction capacity for Cryptosporidium. Results suggested that the risk of Cryptosporidium infection via drinking water in the study community, assuming routine operation of the water treatment plant, was negligible (6 infections per 10¹³ persons per day--5th percentile: 2 infections per 10¹⁵ persons per day; 95th percentile: 3 infections per 10¹² persons per day). The risk is essentially nonexistent during optimized, routine treatment operations. The study community achieves between 7 and 9 log₁₀ Cryptosporidium oocyst reduction through routine water treatment processes. Although these results do not preclude the need for constant vigilance by both water treatment and public health professionals in this community, they suggest that the cause of higher rates of cryptosporidiosis are more likely due to recreational water contact, or perhaps direct animal contact. QMRA can be successfully applied at the community level to identify data gaps, rank relative public health risks, and forecast future risk scenarios. It is most useful when performed in a collaborative way with local stakeholders, from beginning to end of the risk analysis paradigm. © 2011 Society for Risk Analysis.
Detection of Anomalous Insiders in Collaborative Environments via Relational Analysis of Access Logs
Chen, You; Malin, Bradley
2014-01-01
Collaborative information systems (CIS) are deployed within a diverse array of environments, ranging from the Internet to intelligence agencies to healthcare. It is increasingly the case that such systems are applied to manage sensitive information, making them targets for malicious insiders. While sophisticated security mechanisms have been developed to detect insider threats in various file systems, they are neither designed to model nor to monitor collaborative environments in which users function in dynamic teams with complex behavior. In this paper, we introduce a community-based anomaly detection system (CADS), an unsupervised learning framework to detect insider threats based on information recorded in the access logs of collaborative environments. CADS is based on the observation that typical users tend to form community structures, such that users with low a nity to such communities are indicative of anomalous and potentially illicit behavior. The model consists of two primary components: relational pattern extraction and anomaly detection. For relational pattern extraction, CADS infers community structures from CIS access logs, and subsequently derives communities, which serve as the CADS pattern core. CADS then uses a formal statistical model to measure the deviation of users from the inferred communities to predict which users are anomalies. To empirically evaluate the threat detection model, we perform an analysis with six months of access logs from a real electronic health record system in a large medical center, as well as a publicly-available dataset for replication purposes. The results illustrate that CADS can distinguish simulated anomalous users in the context of real user behavior with a high degree of certainty and with significant performance gains in comparison to several competing anomaly detection models. PMID:25485309
Integrated Water Resources Simulation Model for Rural Community
NASA Astrophysics Data System (ADS)
Li, Y.-H.; Liao, W.-T.; Tung, C.-P.
2012-04-01
The purpose of this study is to develop several water resources simulation models for residence houses, constructed wetlands and farms and then integrate these models for a rural community. Domestic and irrigation water uses are the major water demand in rural community. To build up a model estimating domestic water demand for residence houses, the average water use per person per day should be accounted first, including water uses of kitchen, bathroom, toilet and laundry. On the other hand, rice is the major crop in the study region, and its productive efficiency sometimes depends on the quantity of irrigation water. The water demand can be estimated by crop water use, field leakage and water distribution loss. Irrigation water comes from rainfall, water supply system and reclaimed water which treated by constructed wetland. In recent years, constructed wetlands play an important role in water resources recycle. They can purify domestic wastewater for water recycling and reuse. After treating from constructed wetlands, the reclaimed water can be reused in washing toilets, watering gardens and irrigating farms. Constructed wetland is one of highly economic benefits for treating wastewater through imitating the processing mechanism of natural wetlands. In general, the treatment efficiency of constructed wetlands is determined by evapotranspiration, inflow, and water temperature. This study uses system dynamics modeling to develop models for different water resource components in a rural community. Furthermore, these models are integrated into a whole system. The model not only is utilized to simulate how water moves through different components, including residence houses, constructed wetlands and farms, but also evaluates the efficiency of water use. By analyzing the flow of water, the water resource simulation model can optimizes water resource distribution under different scenarios, and the result can provide suggestions for designing water resource system of a rural community. Keywords: Water Resources, Simulation Model, Domestic Water, Irrigation, Constructed Wetland, Rural Community
NASA Astrophysics Data System (ADS)
Lombao, Alba; Barreiro, Ana; Martín, Ángela; Díaz-Raviña, Montserrat
2015-04-01
Microorganisms play an important role in forest ecosystems, especially after fire when vegetation is destroyed and soil is bared. Fire severity and recurrence might be one of main factors controlling the microbial response after a wildfire but information about this topic is scarce. The aim of this study is to evaluate the influence of fire regimen (recurrence and severity) on soil microbial community structure by means of the analysis of phospholipid fatty acid (PLFA). The study was performed with unburned and burned samples collected from the top layer of a soil affected by a high severity fire (Laza, NW Spain) heated under laboratory conditions at different temperatures (50°C, 75°C, 100°C, 125°C, 150°C, 175°C, 200°C, 300°C) to simulate different fire intensities; the process was repeated after further soil recovery (1 month incubation) to simulate fire recurrence. The soil temperature was measured with thermocouples and used to calculate the degree-hours as estimation of the amount of heat supplied to the samples (fire severity). The PLFA analysis was used to estimate total biomass and the biomass of specific groups (bacteria, fungi, gram-positive bacteria and gram-negative bacteria) as well as microbial community structure (PLFA pattern) and PLFA data were analyzed by means of principal component analysis (PCA) in order to identify main factors determining microbial community structure. The results of PCA, performed with the whole PLFA data set, showed that first component explained 35% of variation and clearly allow us to differentiate unburned samples from the corresponding burned samples, while the second component, explaining 16% of variation, separated samples according the heating temperature. A marked impact of fire regimen on soil microorganisms was detected; the microbial community response varied depending on previous history of soil heating and the magnitude of changes in the PLFA pattern was related to the amount of heat supplied to the samples. Thus, wildfire was the main factor determining the microbial community structure followed, in less extent, by fire severity. The total biomass and the biomass of specifics microbial groups decreased notably as consequence of wildfire and minor changes were detected due to soil heating under laboratory conditions. The results clearly showed the usefulness of PLFA pattern combined with PCA to study the relationships between fire regimen (recurrence and severity) and associated direct and indirect changes in soil microorganisms. The data also indicated that degree-hours methodology rather than temperature is adequate for evaluating the impact of soil heating on microbial communities. Keywords: wildfire, heating temperature, degree-hours, PLFA pattern, microbial biomass Acknowledgements. This study was supported by the Ministerio Español de Economía y Competitividad (AGL2012-39688-C02-01). A Lombao is recipient of FPU grant from Ministerio Español de Educación.
MDWiZ: a platform for the automated translation of molecular dynamics simulations.
Rusu, Victor H; Horta, Vitor A C; Horta, Bruno A C; Lins, Roberto D; Baron, Riccardo
2014-03-01
A variety of popular molecular dynamics (MD) simulation packages were independently developed in the last decades to reach diverse scientific goals. However, such non-coordinated development of software, force fields, and analysis tools for molecular simulations gave rise to an array of software formats and arbitrary conventions for routine preparation and analysis of simulation input and output data. Different formats and/or parameter definitions are used at each stage of the modeling process despite largely contain redundant information between alternative software tools. Such Babel of languages that cannot be easily and univocally translated one into another poses one of the major technical obstacles to the preparation, translation, and comparison of molecular simulation data that users face on a daily basis. Here, we present the MDWiZ platform, a freely accessed online portal designed to aid the fast and reliable preparation and conversion of file formats that allows researchers to reproduce or generate data from MD simulations using different setups, including force fields and models with different underlying potential forms. The general structure of MDWiZ is presented, the features of version 1.0 are detailed, and an extensive validation based on GROMACS to LAMMPS conversion is presented. We believe that MDWiZ will be largely useful to the molecular dynamics community. Such fast format and force field exchange for a given system allows tailoring the chosen system to a given computer platform and/or taking advantage of a specific capabilities offered by different software engines. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Requirements Development for Interoperability Simulation Capability for Law Enforcement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holter, Gregory M.
2004-05-19
The National Counterdrug Center (NCC) was initially authorized by Congress in FY 1999 appropriations to create a simulation-based counterdrug interoperability training capability. As the lead organization for Research and Analysis to support the NCC, the Pacific Northwest National Laboratory (PNNL) was responsible for developing the requirements for this interoperability simulation capability. These requirements were structured to address the hardware and software components of the system, as well as the deployment and use of the system. The original set of requirements was developed through a process of conducting a user-based survey of requirements for the simulation capability, coupled with an analysismore » of similar development efforts. The user-based approach ensured that existing concerns with respect to interoperability within the law enforcement community would be addressed. Law enforcement agencies within the designated pilot area of Cochise County, Arizona, were surveyed using interviews and ride-alongs during actual operations. The results of this survey were then accumulated, organized, and validated with the agencies to ensure the accuracy of the results. These requirements were then supplemented by adapting operational requirements from existing systems to ensure system reliability and operability. The NCC adopted a development approach providing incremental capability through the fielding of a phased series of progressively more capable versions of the system. This allowed for feedback from system users to be incorporated into subsequent revisions of the system requirements, and also allowed the addition of new elements as needed to adapt the system to broader geographic and geopolitical areas, including areas along the southwest and northwest U.S. borders. This paper addresses the processes used to develop and refine requirements for the NCC interoperability simulation capability, as well as the response of the law enforcement community to the use of the NCC system. The paper also addresses the applicability of such an interoperability simulation capability to a broader set of law enforcement, border protection, site/facility security, and first-responder needs.« less
NASA Astrophysics Data System (ADS)
Vilotte, Jean-Pierre; Atkinson, Malcolm; Carpené, Michele; Casarotti, Emanuele; Frank, Anton; Igel, Heiner; Rietbrock, Andreas; Schwichtenberg, Horst; Spinuso, Alessandro
2016-04-01
Seismology pioneers global and open-data access -- with internationally approved data, metadata and exchange standards facilitated worldwide by the Federation of Digital Seismic Networks (FDSN) and in Europe the European Integrated Data Archives (EIDA). The growing wealth of data generated by dense observation and monitoring systems and recent advances in seismic wave simulation capabilities induces a change in paradigm. Data-intensive seismology research requires a new holistic approach combining scalable high-performance wave simulation codes and statistical data analysis methods, and integrating distributed data and computing resources. The European E-Infrastructure project "Virtual Earthquake and seismology Research Community e-science environment in Europe" (VERCE) pioneers the federation of autonomous organisations providing data and computing resources, together with a comprehensive, integrated and operational virtual research environment (VRE) and E-infrastructure devoted to the full path of data use in a research-driven context. VERCE delivers to a broad base of seismology researchers in Europe easily used high-performance full waveform simulations and misfit calculations, together with a data-intensive framework for the collaborative development of innovative statistical data analysis methods, all of which were previously only accessible to a small number of well-resourced groups. It balances flexibility with new integrated capabilities to provide a fluent path from research innovation to production. As such, VERCE is a major contribution to the implementation phase of the ``European Plate Observatory System'' (EPOS), the ESFRI initiative of the solid-Earth community. The VRE meets a range of seismic research needs by eliminating chores and technical difficulties to allow users to focus on their research questions. It empowers researchers to harvest the new opportunities provided by well-established and mature high-performance wave simulation codes of the community. It enables active researchers to invent and refine scalable methods for innovative statistical analysis of seismic waveforms in a wide range of application contexts. The VRE paves the way towards a flexible shared framework for seismic waveform inversion, lowering the barriers to uptake for the next generation of researchers. The VRE can be accessed through the science gateway that puts together computational and data-intensive research into the same framework, integrating multiple data sources and services. It provides a context for task-oriented and data-streaming workflows, and maps user actions to the full gamut of the federated platform resources and procurement policies, activating the necessary behind-the-scene automation and transformation. The platform manages and produces domain metadata, coupling them with the provenance information describing the relationships and the dependencies, which characterise the whole workflow process. This dynamic knowledge base, can be explored for validation purposes via a graphical interface and a web API. Moreover, it fosters the assisted selection and re-use of the data within each phase of the scientific analysis. These phases can be identified as Simulation, Data Access, Preprocessing, Misfit and data processing, and are presented to the users of the gateway as dedicated and interactive workspaces. By enabling researchers to share results and provenance information, VERCE steers open-science behaviour, allowing researchers to discover and build on prior work and thereby to progress faster. A key asset is the agile strategy that VERCE deployed in a multi-organisational context, engaging seismologists, data scientists, ICT researchers, HPC and data resource providers, system administrators into short-lived tasks each with a goal that is a seismology priority, and intimately coupling research thinking with technical innovation. This changes the focus from HPC production environments and community data services to user-focused scenario, avoiding wasteful bouts of technology centricity where technologists collect requirements and develop a system that is not used because the ideas of the planned users have moved on. As such the technologies and concepts developed in VERCE are relevant to many other disciplines in computational and data driven Earth Sciences and can provide the key technologies for a European wide computational and data intensive framework in Earth Sciences.
Policy Negotiations: Simulation as a Tool in Long-Range Library Planning
ERIC Educational Resources Information Center
Townley, Charles T.; And Others
1978-01-01
The development and use of a simulation game designed to facilitate nationwide long-range library planning for American Indian communities is described. The use of simulation outcomes in plan development is analyzed. Implications on the effectiveness of simulation in the library planning process are made. (Author)
Vidal-Legaz, Beatriz; Martínez-Fernández, Julia; Picón, Andrés Sánchez; Pugnaire, Francisco I
2013-12-15
Mountainous rural communities have traditionally managed their land extensively, resulting in land uses that provide important ecosystem services for both rural and urban areas. Over recent decades, these communities have undergone drastic changes in economic structure, population size and land use. Our understanding of the exact mechanisms that drive these changes is limited, and there is also a lack of integrative approaches to enable decision makers to steer rural development towards a more sustainable path. In this study, we build a dynamic simulation model to calculate the trade-offs between the provisions of two ecosystem services - landscape aesthetic value and water supply for human use - and the economic development associated with different land use changes. The study area for the simulation comprises two rural communities located in southern Spain. Our results show trade-offs between economic development and the provision of the selected ecosystem services in the selected study area. Land use intensification results in economic development but is not enough to prevent population loss and has a negative impact on both the water supply and on aesthetic services. We conclude that more proactive management policies are needed to mitigate a loss in ecosystem services. Simulation models like ours may facilitate the choice of these policies, as they could test the result of land use planning policies contributing therefore, to a more integrative and sustainable management of rural communities. Copyright © 2013 Elsevier Ltd. All rights reserved.
Simulation of atmospheric oxidation capacity in Houston, Texas
Air quality model simulations are performed and evaluated for Houston using the Community Multiscale Air Quality (CMAQ) model. The simulations use two different emissions estimates: the EPA 2005 National Emissions Inventory (NEI) and the Texas Commission on Environmental Quality ...
Optimal Sizing of Energy Storage for Community Microgrids Considering Building Thermal Dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Guodong; Li, Zhi; Starke, Michael R.
This paper proposes an optimization model for the optimal sizing of energy storage in community microgrids considering the building thermal dynamics and customer comfort preference. The proposed model minimizes the annualized cost of the community microgrid, including energy storage investment, purchased energy cost, demand charge, energy storage degradation cost, voluntary load shedding cost and the cost associated with customer discomfort due to room temperature deviation. The decision variables are the power and energy capacity of invested energy storage. In particular, we assume the heating, ventilation and air-conditioning (HVAC) systems can be scheduled intelligently by the microgrid central controller while maintainingmore » the indoor temperature in the comfort range set by customers. For this purpose, the detailed thermal dynamic characteristics of buildings have been integrated into the optimization model. Numerical simulation shows significant cost reduction by the proposed model. The impacts of various costs on the optimal solution are investigated by sensitivity analysis.« less
Observations of climate change among subsistence-oriented communities around the world
NASA Astrophysics Data System (ADS)
Savo, V.; Lepofsky, D.; Benner, J. P.; Kohfeld, K. E.; Bailey, J.; Lertzman, K.
2016-05-01
The study of climate change has been based strongly on data collected from instruments, but how local people perceive such changes remains poorly quantified. We conducted a meta-analysis of climatic changes observed by subsistence-oriented communities. Our review of 10,660 observations from 2,230 localities in 137 countries shows that increases in temperature and changes in seasonality and rainfall patterns are widespread (~70% of localities across 122 countries). Observations of increased temperature show patterns consistent with simulated trends in surface air temperature taken from the ensemble average of CMIP5 models, for the period 1955-2005. Secondary impacts of climatic changes on both wild and domesticated plants and animals are extensive and threaten the food security of subsistence-oriented communities. Collectively, our results suggest that climate change is having profound disruptive effects at local levels and that local observations can make an important contribution to understanding the pervasiveness of climate change on ecosystems and societies.
Linda T.A. van Diepen; Erik A. Lilleskov; Kurt S. Pregitzer; R. Michael Miller
2010-01-01
Increased nitrogen (N) deposition caused by human activities has altered ecosystem functioning and biodiversity. To understand the effects of altered N availability, we measured the abundance of arbuscular mycorrhizal fungi (AMF) and the microbial community in northern hardwood forests exposed to long-term (12 years) simulated N deposition (30 kg N ha-1...
WFIRST: Data/Instrument Simulation Support at IPAC
NASA Astrophysics Data System (ADS)
Laine, Seppo; Akeson, Rachel; Armus, Lee; Bennett, Lee; Colbert, James; Helou, George; Kirkpatrick, J. Davy; Meshkat, Tiffany; Paladini, Roberta; Ramirez, Solange; Wang, Yun; Xie, Joan; Yan, Lin
2018-01-01
As part of WFIRST Science Center preparations, the IPAC Science Operations Center (ISOC) maintains a repository of 1) WFIRST data and instrument simulations, 2) tools to facilitate scientific performance and feasibility studies using the WFIRST, and 3) parameters summarizing the current design and predicted performance of the WFIRST telescope and instruments. The simulation repository provides access for the science community to simulation code, tools, and resulting analyses. Examples of simulation code with ISOC-built web-based interfaces include EXOSIMS (for estimating exoplanet yields in CGI surveys) and the Galaxy Survey Exposure Time Calculator. In the future the repository will provide an interface for users to run custom simulations of a wide range of coronagraph instrument (CGI) observations and sophisticated tools for designing microlensing experiments. We encourage those who are generating simulations or writing tools for exoplanet observations with WFIRST to contact the ISOC team so we can work with you to bring these to the attention of the broader astronomical community as we prepare for the exciting science that will be enabled by WFIRST.
NASA Astrophysics Data System (ADS)
Bonan, G. B.; Wieder, W. R.
2012-12-01
Decomposition is a large term in the global carbon budget, but models of the earth system that simulate carbon cycle-climate feedbacks are largely untested with respect to litter decomposition. Here, we demonstrate a protocol to document model performance with respect to both long-term (10 year) litter decomposition and steady-state soil carbon stocks. First, we test the soil organic matter parameterization of the Community Land Model version 4 (CLM4), the terrestrial component of the Community Earth System Model, with data from the Long-term Intersite Decomposition Experiment Team (LIDET). The LIDET dataset is a 10-year study of litter decomposition at multiple sites across North America and Central America. We show results for 10-year litter decomposition simulations compared with LIDET for 9 litter types and 20 sites in tundra, grassland, and boreal, conifer, deciduous, and tropical forest biomes. We show additional simulations with DAYCENT, a version of the CENTURY model, to ask how well an established ecosystem model matches the observations. The results reveal large discrepancy between the laboratory microcosm studies used to parameterize the CLM4 litter decomposition and the LIDET field study. Simulated carbon loss is more rapid than the observations across all sites, despite using the LIDET-provided climatic decomposition index to constrain temperature and moisture effects on decomposition. Nitrogen immobilization is similarly biased high. Closer agreement with the observations requires much lower decomposition rates, obtained with the assumption that nitrogen severely limits decomposition. DAYCENT better replicates the observations, for both carbon mass remaining and nitrogen, without requirement for nitrogen limitation of decomposition. Second, we compare global observationally-based datasets of soil carbon with simulated steady-state soil carbon stocks for both models. The models simulations were forced with observationally-based estimates of annual litterfall and model-derived climatic decomposition index. While comparison with the LIDET 10-year litterbag study reveals sharp contrasts between CLM4 and DAYCENT, simulations of steady-state soil carbon show less difference between models. Both CLM4 and DAYCENT significantly underestimate soil carbon. Sensitivity analyses highlight causes of the low soil carbon bias. The terrestrial biogeochemistry of earth system models must be critically tested with observations, and the consequences of particular model choices must be documented. Long-term litter decomposition experiments such as LIDET provide a real-world process-oriented benchmark to evaluate models and can critically inform model development. Analysis of steady-state soil carbon estimates reveal additional, but here different, inferences about model performance.
Simulation of ground-water flow in the Vevay Township area, Ingham County, Michigan
Luukkonen, Carol L.; Simard, Andreanne
2004-01-01
Ground water is the primary source of water for domestic, public-supply, and industrial use within the Tri-County region that includes Clinton, Eaton, and Ingham Counties in Michigan. Because of the importance of this ground-water resource, numerous communities, including the city of Mason in Ingham County, have begun local Wellhead Protection Programs. In these programs, communities protect their groundwater resource by identifying the areas that contribute water to production wells and potential sources of contamination, and by developing methods to manage and minimize threats to the water supply. In addition, some communities in Michigan are concerned about water availability, particularly in areas experiencing water-level declines in the vicinity of quarry dewatering operations. In areas where Wellhead Protection Programs are implemented and there are potential threats to the water supply, residents and communities need adequate information to protect the water supply.In 1996, a regional ground-water-flow model was developed by the U.S. Geological Survey to simulate ground-water flow in Clinton, Eaton, and Ingham Counties. This model was developed primarily to simulate the bedrock ground-waterflow system; ground-water flow in the unconsolidated glacial sediments was simulated to support analysis of flow in the underlying bedrock Saginaw aquifer. Since its development in 1996, regional model simulations have been conducted to address protection concerns and water availability questions of local water-resources managers. As a result of these continuing model simulations, additional hydrogeologic data have been acquired in the Tri-County region that has improved the characterization of the simulated ground-water-flow system and improved the model calibration. A major benefit of these updates and refinements is that the regional Tri-County model continues to be a useful tool that improves the understanding of the ground-water-flow system in the Tri-County region, provides local water-resources managers with a means to answer ground-water protection and availability questions, and serves as an example that can be applied in other areas of the state.A refined version of the 1996 Tri-County regional ground-water-flow model, developed in 1997, was modified with local hydrogeologic information in the Vevay Township area in Michigan. This model, updated in 2003 for this study, was used to simulate ground-water flow to address groundwater protection and availability questions in Vevay Township. The 2003 model included refinement of glacial and bedrock hydraulic characteristics, better representation of the degree of connection between the glacial deposits and the underlying Saginaw aquifer, and refinement of the model cell size.The 2003 model was used to simulate regional groundwater flow, to delineate areas contributing recharge and zones of contribution to production wells in the city of Mason, and to simulate the effects of present and possible future withdrawals. The areal extent of the 10- and 40-year areas contributing recharge and the zones of contribution for the city of Mason's production wells encompass about 2.3 and 6.2 square miles, respectively. Simulation results, where withdrawals for quarry operations were represented by one well pumping at 1.6 million gallons per day, indicate that water levels would decline slightly over 1 foot approximately 2 miles from the quarry in the glacial deposits and in the Saginaw aquifer. With a reduction of the local riverbed conductance or removal of local river model cells representing Mud Creek, water-level declines would extend further west of Mud Creek and further to the north, east, and south of the simulated quarry. Simulation results indicate that water withdrawn for quarry dewatering operations would decrease ground-water recharge to nearby Mud Creek, would increase ground-water discharge from Mud Creek, and that local water levels would be lowered as a result.
NASA Astrophysics Data System (ADS)
Guo, Wenzhang; Wang, Hao; Wu, Zhengping
2018-03-01
Most existing cascading failure mitigation strategy of power grids based on complex network ignores the impact of electrical characteristics on dynamic performance. In this paper, the robustness of the power grid under a power decentralization strategy is analysed through cascading failure simulation based on AC flow theory. The flow-sensitive (FS) centrality is introduced by integrating topological features and electrical properties to help determine the siting of the generation nodes. The simulation results of the IEEE-bus systems show that the flow-sensitive centrality method is a more stable and accurate approach and can enhance the robustness of the network remarkably. Through the study of the optimal flow-sensitive centrality selection for different networks, we find that the robustness of the network with obvious small-world effect depends more on contribution of the generation nodes detected by community structure, otherwise, contribution of the generation nodes with important influence on power flow is more critical. In addition, community structure plays a significant role in balancing the power flow distribution and further slowing the propagation of failures. These results are useful in power grid planning and cascading failure prevention.
Fan, Chunyu; Tan, Lingzhao; Zhang, Chunyu; Zhao, Xiuhai; von Gadow, Klaus
2017-10-30
One of the core issues of forest community ecology is the exploration of how ecological processes affect community structure. The relative importance of different processes is still under debate. This study addresses four questions: (1) how is the taxonomic structure of a forest community affected by spatial scale? (2) does the taxonomic structure reveal effects of local processes such as environmental filtering, dispersal limitation or interspecific competition at a local scale? (3) does the effect of local processes on the taxonomic structure vary with the spatial scale? (4) does the analysis based on taxonomic structures provide similar insights when compared with the use of phylogenetic information? Based on the data collected in two large forest observational field studies, the taxonomic structures of the plant communities were analyzed at different sampling scales using taxonomic ratios (number of genera/number of species, number of families/number of species), and the relationship between the number of higher taxa and the number of species. Two random null models were used and the "standardized effect size" (SES) of taxonomic ratios was calculated, to assess possible differences between the observed and simulated taxonomic structures, which may be caused by specific ecological processes. We further applied a phylogeny-based method to compare results with those of the taxonomic approach. As expected, the taxonomic ratios decline with increasing grain size. The quantitative relationship between genera/families and species, described by a linearized power function, showed a good fit. With the exception of the family-species relationship in the Jiaohe study area, the exponents of the genus/family-species relationships did not show any scale dependent effects. The taxonomic ratios of the observed communities had significantly lower values than those of the simulated random community under the test of two null models at almost all scales. Null Model 2 which considered the spatial dispersion of species generated a taxonomic structure which proved to be more consistent with that in the observed community. As sampling sizes increased from 20 m × 20 m to 50 m × 50 m, the magnitudes of SESs of taxonomic ratios increased. Based on the phylogenetic analysis, we found that the Jiaohe plot was phylogenetically clustered at almost all scales. We detected significant phylogenetically overdispersion at the 20 m × 20 m and 30 m × 30 m scales in the Liangshui plot. The results suggest that the effect of abiotic filtering is greater than the effects of interspecific competition in shaping the local community at almost all scales. Local processes influence the taxonomic structures, but their combined effects vary with the spatial scale. The taxonomic approach provides similar insights as the phylogenetic approach, especially when we applied a more conservative null model. Analysing taxonomic structure may be a useful tool for communities where well-resolved phylogenetic data are not available.
NASA Astrophysics Data System (ADS)
Nolte, C. G.; Otte, T. L.; Bowden, J. H.; Otte, M. J.
2010-12-01
There is disagreement in the regional climate modeling community as to the appropriateness of the use of internal nudging. Some investigators argue that the regional model should be minimally constrained and allowed to respond to regional-scale forcing, while others have noted that in the absence of interior nudging, significant large-scale discrepancies develop between the regional model solution and the driving coarse-scale fields. These discrepancies lead to reduced confidence in the ability of regional climate models to dynamically downscale global climate model simulations under climate change scenarios, and detract from the usability of the regional simulations for impact assessments. The advantages and limitations of interior nudging schemes for regional climate modeling are investigated in this study. Multi-year simulations using the WRF model driven by reanalysis data over the continental United States at 36km resolution are conducted using spectral nudging, grid point nudging, and for a base case without interior nudging. The means, distributions, and inter-annual variability of temperature and precipitation will be evaluated in comparison to regional analyses.
Groth, Katrina M.; Smith, Curtis L.; Swiler, Laura P.
2014-04-05
In the past several years, several international agencies have begun to collect data on human performance in nuclear power plant simulators [1]. This data provides a valuable opportunity to improve human reliability analysis (HRA), but there improvements will not be realized without implementation of Bayesian methods. Bayesian methods are widely used in to incorporate sparse data into models in many parts of probabilistic risk assessment (PRA), but Bayesian methods have not been adopted by the HRA community. In this article, we provide a Bayesian methodology to formally use simulator data to refine the human error probabilities (HEPs) assigned by existingmore » HRA methods. We demonstrate the methodology with a case study, wherein we use simulator data from the Halden Reactor Project to update the probability assignments from the SPAR-H method. The case study demonstrates the ability to use performance data, even sparse data, to improve existing HRA methods. Furthermore, this paper also serves as a demonstration of the value of Bayesian methods to improve the technical basis of HRA.« less
Enabling Efficient Climate Science Workflows in High Performance Computing Environments
NASA Astrophysics Data System (ADS)
Krishnan, H.; Byna, S.; Wehner, M. F.; Gu, J.; O'Brien, T. A.; Loring, B.; Stone, D. A.; Collins, W.; Prabhat, M.; Liu, Y.; Johnson, J. N.; Paciorek, C. J.
2015-12-01
A typical climate science workflow often involves a combination of acquisition of data, modeling, simulation, analysis, visualization, publishing, and storage of results. Each of these tasks provide a myriad of challenges when running on a high performance computing environment such as Hopper or Edison at NERSC. Hurdles such as data transfer and management, job scheduling, parallel analysis routines, and publication require a lot of forethought and planning to ensure that proper quality control mechanisms are in place. These steps require effectively utilizing a combination of well tested and newly developed functionality to move data, perform analysis, apply statistical routines, and finally, serve results and tools to the greater scientific community. As part of the CAlibrated and Systematic Characterization, Attribution and Detection of Extremes (CASCADE) project we highlight a stack of tools our team utilizes and has developed to ensure that large scale simulation and analysis work are commonplace and provide operations that assist in everything from generation/procurement of data (HTAR/Globus) to automating publication of results to portals like the Earth Systems Grid Federation (ESGF), all while executing everything in between in a scalable environment in a task parallel way (MPI). We highlight the use and benefit of these tools by showing several climate science analysis use cases they have been applied to.
Prouty, Christine; Mohebbi, Shima; Zhang, Qiong
2018-06-15
Given the increasing vulnerability of communities to the negative impacts of untreated wastewater, resource recovery (RR) systems provide a paradigm shift away from a traditional approach of waste separation and treatment towards a productive recovery of water, energy and nutrients. The aim of this research is to understand the relationships between factors that influence the adoption and sustainability of wastewater-based RR systems to inform technology implementation strategies. The study presents a theory-informed, community-influenced system dynamics (SD) model to provide decision-makers with an adaptable tool that simulates system-level responses to the strategies that are developed for the coastal town of Placencia, Belize. The modeling framework is informed by literature-based theories such as the theory of diffusion of innovations (TDI) and the theory of planned behavior (TPB). Various methods, including surveys, interviews, participatory observations, and a water constituents mass balance analysis are used to validate relationships and numerically populate the model. The SD model was evaluated with field data and simulated to identify strategies that will improve the adoption and sustainability of RR systems. Site demonstrations (marketing strategy) made a significant impact on the stock of adopted RR systems. The stock of sustained RR systems is driven by the sustainability rate (i.e. economic and environmental viability) which can be improved by more site demonstrations and tank options (technical strategy). These strategies, however, only contributed to incremental improvements in the system's sustainability performance. This study shows that changing community behaviors (i.e. reporting the correct number of users and reclaiming resources), represented by structural change in the SD model, is the more significant way to influence the sustainable management of the community's wastewater resources. Copyright © 2018 Elsevier Ltd. All rights reserved.
Screening for chronic kidney disease in Canadian indigenous peoples is cost-effective.
Ferguson, Thomas W; Tangri, Navdeep; Tan, Zhi; James, Matthew T; Lavallee, Barry D A; Chartrand, Caroline D; McLeod, Lorraine L; Dart, Allison B; Rigatto, Claudio; Komenda, Paul V J
2017-07-01
Canadian indigenous (First Nations) have rates of kidney failure that are 2- to 4-fold higher than the non-indigenous general Canadian population. As such, a strategy of targeted screening and treatment for CKD may be cost-effective in this population. Our objective was to assess the cost utility of screening and subsequent treatment for CKD in rural Canadian indigenous adults by both estimated glomerular filtration rate and the urine albumin-to-creatinine ratio. A decision analytic Markov model was constructed comparing the screening and treatment strategy to usual care. Primary outcomes were presented as incremental cost-effectiveness ratios (ICERs) presented as a cost per quality-adjusted life-year (QALY). Screening for CKD was associated with an ICER of $23,700/QALY in comparison to usual care. Restricting the model to screening in communities accessed only by air travel (CKD prevalence 34.4%), this ratio fell to $7,790/QALY. In road accessible communities (CKD prevalence 17.6%) the ICER was $52,480/QALY. The model was robust to changes in influential variables when tested in univariate sensitivity analyses. Probabilistic sensitivity analysis found 72% of simulations to be cost-effective at a $50,000/QALY threshold and 93% of simulations to be cost-effective at a $100,000/QALY threshold. Thus, targeted screening and treatment for CKD using point-of-care testing equipment in rural Canadian indigenous populations is cost-effective, particularly in remote air access-only communities with the highest risk of CKD and kidney failure. Evaluation of targeted screening initiatives with cluster randomized controlled trials and integration of screening into routine clinical visits in communities with the highest risk is recommended. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Richardson, Brian; Kenny, Jeremy
2015-01-01
Injector design is a critical part of the development of a rocket Thrust Chamber Assembly (TCA). Proper detailed injector design can maximize propulsion efficiency while minimizing the potential for failures in the combustion chamber. Traditional design and analysis methods for hydrocarbon-fuel injector elements are based heavily on empirical data and models developed from heritage hardware tests. Using this limited set of data produces challenges when trying to design a new propulsion system where the operating conditions may greatly differ from heritage applications. Time-accurate, Three-Dimensional (3-D) Computational Fluid Dynamics (CFD) modeling of combusting flows inside of injectors has long been a goal of the fluid analysis group at Marshall Space Flight Center (MSFC) and the larger CFD modeling community. CFD simulation can provide insight into the design and function of an injector that cannot be obtained easily through testing or empirical comparisons to existing hardware. However, the traditional finite-rate chemistry modeling approach utilized to simulate combusting flows for complex fuels, such as Rocket Propellant-2 (RP-2), is prohibitively expensive and time consuming even with a large amount of computational resources. MSFC has been working, in partnership with Streamline Numerics, Inc., to develop a computationally efficient, flamelet-based approach for modeling complex combusting flow applications. In this work, a flamelet modeling approach is used to simulate time-accurate, 3-D, combusting flow inside a single Gas Centered Swirl Coaxial (GCSC) injector using the flow solver, Loci-STREAM. CFD simulations were performed for several different injector geometries. Results of the CFD analysis helped guide the design of the injector from an initial concept to a tested prototype. The results of the CFD analysis are compared to data gathered from several hot-fire, single element injector tests performed in the Air Force Research Lab EC-1 test facility located at Edwards Air Force Base.
From petascale to exascale, the future of simulated climate data (Invited)
NASA Astrophysics Data System (ADS)
Lawrence, B.; Juckes, M. N.
2013-12-01
Coleridge ought to have said: data, data, everywhere, and all the data centres groan, data data everywhere, nor any I should clone. Except of course, he didn't say it, and we do clone data! While we've been dealing with terabytes of simulated datasets, downloading ("cloning") and analysing, has been a plausible way forward. In doing so, we have set up systems that support four broad classes of activities: personal and institutional data analysis, federated data systems, and data portals. We use metadata to manage the migration of data between these (and their communities) and we have built software systems. However, our metadata and software solutions are fragile, often based on soft money, and loose governance arrangements. We often download data with minimal provenance, and often many of us download the same data. In the not too distant future we can imagine exabytes of data being produced, and all these problems will get worse. Arguably we have no plausible methods of effectively exploiting such data - particularly if the analysis requires intercomparison. Yet of course, we know full well that intercomparison is at the heart of climate science. In this talk, we review the current status of simulation data management, with special emphasis on accessibility and usability. We talk about file formats, bundles of files, real and virtual, and simulation metadata. We introduce the InfraStructure for the European Network for Earth Simulation (IS-ENES) and its relationship with the Earth System Grid Federation (ESGF) as well as JASMIN, the UK Joint Analysis System. There will be a small digression on parallel data analysis - locally and distributed. we then progress to the near term problems (and solutions) for climate data before scoping out the problems of the future, both for data handling, and the models that produce the data. The way we think about data, computing, models, even ensemble design, may need to change.
Waltemath, Dagmar; Adams, Richard; Bergmann, Frank T; Hucka, Michael; Kolpakov, Fedor; Miller, Andrew K; Moraru, Ion I; Nickerson, David; Sahle, Sven; Snoep, Jacky L; Le Novère, Nicolas
2011-12-15
The increasing use of computational simulation experiments to inform modern biological research creates new challenges to annotate, archive, share and reproduce such experiments. The recently published Minimum Information About a Simulation Experiment (MIASE) proposes a minimal set of information that should be provided to allow the reproduction of simulation experiments among users and software tools. In this article, we present the Simulation Experiment Description Markup Language (SED-ML). SED-ML encodes in a computer-readable exchange format the information required by MIASE to enable reproduction of simulation experiments. It has been developed as a community project and it is defined in a detailed technical specification and additionally provides an XML schema. The version of SED-ML described in this publication is Level 1 Version 1. It covers the description of the most frequent type of simulation experiments in the area, namely time course simulations. SED-ML documents specify which models to use in an experiment, modifications to apply on the models before using them, which simulation procedures to run on each model, what analysis results to output, and how the results should be presented. These descriptions are independent of the underlying model implementation. SED-ML is a software-independent format for encoding the description of simulation experiments; it is not specific to particular simulation tools. Here, we demonstrate that with the growing software support for SED-ML we can effectively exchange executable simulation descriptions. With SED-ML, software can exchange simulation experiment descriptions, enabling the validation and reuse of simulation experiments in different tools. Authors of papers reporting simulation experiments can make their simulation protocols available for other scientists to reproduce the results. Because SED-ML is agnostic about exact modeling language(s) used, experiments covering models from different fields of research can be accurately described and combined.
NASA Astrophysics Data System (ADS)
Moore, J. K.
2016-02-01
The efficiency of the biological pump is influenced by complex interactions between chemical, biological, and physical processes. The efficiency of export out of surface waters and down through the water column to the deep ocean has been linked to a number of factors including biota community composition, production of mineral ballast components, physical aggregation and disaggregation processes, and ocean oxygen concentrations. I will examine spatial patterns in the export ratio and the efficiency of the biological pump at the global scale using the Community Earth System Model (CESM). There are strong spatial variations in the export efficiency as simulated by the CESM, which are strongly correlated with new nutrient inputs to the euphotic zone and their impacts on phytoplankton community structure. I will compare CESM simulations that include dynamic, variable export ratios driven by the phytoplankton community structure, with simulations that impose a near-constant export ratio to examine the effects of export efficiency on nutrient and surface chlorophyll distributions. The model predicted export ratios will also be compared with recent satellite-based estimates.
Simulation As a Tool in Education Research and Development. A Technical Paper. EdTalk.
ERIC Educational Resources Information Center
Hood, Paul
This document introduces simulation as a field of endeavor that has great potential for education research, development, and training. Simulation allows education developers to explore, develop, and test new educational programs and practices before communities, educators, and students are asked to participate in them. Simulation technologies…
The changing paradigm for integrated simulation in support of Command and Control (C2)
NASA Astrophysics Data System (ADS)
Riecken, Mark; Hieb, Michael
2016-05-01
Modern software and network technologies are on the verge of enabling what has eluded the simulation and operational communities for more than two decades, truly integrating simulation functionality into operational Command and Control (C2) capabilities. This deep integration will benefit multiple stakeholder communities from experimentation and test to training by providing predictive and advanced analytics. There is a new opportunity to support operations with simulation once a deep integration is achieved. While it is true that doctrinal and acquisition issues remain to be addressed, nonetheless it is increasingly obvious that few technical barriers persist. How will this change the way in which common simulation and operational data is stored and accessed? As the Services move towards single networks, will there be technical and policy issues associated with sharing those operational networks with simulation data, even if the simulation data is operational in nature (e.g., associated with planning)? How will data models that have traditionally been simulation only be merged in with operational data models? How will the issues of trust be addressed?
Computer Simulation for Emergency Incident Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, D L
2004-12-03
This report describes the findings and recommendations resulting from the Department of Homeland Security (DHS) Incident Management Simulation Workshop held by the DHS Advanced Scientific Computing Program in May 2004. This workshop brought senior representatives of the emergency response and incident-management communities together with modeling and simulation technologists from Department of Energy laboratories. The workshop provided an opportunity for incident responders to describe the nature and substance of the primary personnel roles in an incident response, to identify current and anticipated roles of modeling and simulation in support of incident response, and to begin a dialog between the incident responsemore » and simulation technology communities that will guide and inform planned modeling and simulation development for incident response. This report provides a summary of the discussions at the workshop as well as a summary of simulation capabilities that are relevant to incident-management training, and recommendations for the use of simulation in both incident management and in incident management training, based on the discussions at the workshop. In addition, the report discusses areas where further research and development will be required to support future needs in this area.« less
Trident and MISTY: a universal pipeline for generating and sharing synthetic spectra
NASA Astrophysics Data System (ADS)
Hummels, Cameron; Smith, Britton; Silvia, Devin; Peeples, Molly; Prochaska, X.; Tejos, Nicolas
2016-03-01
Astrophysical simulations are useful insofar as they aid in the interpretation of telescopic observations. Thus, a primary task in simulation analysis is in producing synthetic observations for direct comparison against observational data. Furthermore, we as a field need an effective means for storing these synthetic observable data products, such that they are accessible and searchable by the entire population of researchers. In this talk, we present Trident, a universal pipeline for producing synthetic spectra from any of the major hydrodynamics codes, and MISTY, a means of storing these spectra on the HST MAST data archive. Trident and MISTY are our attempts to solve the difficult problems of synthetic data production and publicly-accessible storage for the scientific communities studying the intergalactic medium and circumgalactic medium.
Dynamics of bloggers’ communities: Bipartite networks from empirical data and agent-based modeling
NASA Astrophysics Data System (ADS)
Mitrović, Marija; Tadić, Bosiljka
2012-11-01
We present an analysis of the empirical data and the agent-based modeling of the emotional behavior of users on the Web portals where the user interaction is mediated by posted comments, like Blogs and Diggs. We consider the dataset of discussion-driven popular Diggs, in which all comments are screened by machine-learning emotion detection in the text, to determine positive and negative valence (attractiveness and aversiveness) of each comment. By mapping the data onto a suitable bipartite network, we perform an analysis of the network topology and the related time-series of the emotional comments. The agent-based model is then introduced to simulate the dynamics and to capture the emergence of the emotional behaviors and communities. The agents are linked to posts on a bipartite network, whose structure evolves through their actions on the posts. The emotional states (arousal and valence) of each agent fluctuate in time, subject to the current contents of the posts to which the agent is exposed. By an agent’s action on a post its current emotions are transferred to the post. The model rules and the key parameters are inferred from the considered empirical data to ensure their realistic values and mutual consistency. The model assumes that the emotional arousal over posts drives the agent’s action. The simulations are preformed for the case of constant flux of agents and the results are analyzed in full analogy with the empirical data. The main conclusions are that the emotion-driven dynamics leads to long-range temporal correlations and emergent networks with community structure, that are comparable with the ones in the empirical system of popular posts. In view of pure emotion-driven agents actions, this type of comparisons provide a quantitative measure for the role of emotions in the dynamics on real blogs. Furthermore, the model reveals the underlying mechanisms which relate the post popularity with the emotion dynamics and the prevalence of negative emotions (critique). We also demonstrate how the community structure is tuned by varying a relevant parameter in the model. All data used in these works are fully anonymized.
Spatio-Temporal Simulation and Analysis of Regional Ecological Security Based on Lstm
NASA Astrophysics Data System (ADS)
Gong, C.; Qi, L.; Heming, L.; Karimian, H.; Yuqin, M.
2017-10-01
Region is a complicated system, where human, nature and society interact and influence. Quantitative modeling and simulation of ecology in the region are the key to realize the strategy of regional sustainable development. Traditional machine learning methods have made some achievements in the modeling of regional ecosystems, but it is difficult to determine the learning characteristics and to realize spatio-temporal simulation. Deep learning does not need prior identification of training characteristics, have excellent feature learning ability, can improve the accuracy of model prediction, so the use of deep learning model has a significant advantage. Therefore, we use net primary productivity (NPP), atmospheric optical depth (AOD), moderate-resolution imaging spectrometer (MODIS), Normalized Difference Vegetation Index (NDVI), landcover and population data, and use LSTM to do spatio-temporal simulation. We conduct spatial analysis and driving force analysis. The conclusions are as follows: the ecological deficit of northwestern Henan and urban communities such as Zhengzhou is higher. The reason of former lies in the weak land productivity of the Loess Plateau, the irrational crop cultivation mode. The latter lies in the high consumption of resources in the large urban agglomeration; The positive trend of Henan ecological development from 2013 is mainly due to the effective environmental protection policy in the 12th five-year plan; The main driver of the sustained ecological deficit growth of Henan in 2004-2013 is high-speed urbanization, increasing population and goods consumption. This article provides relevant basic scientific support and reference for the regional ecological scientific management and construction.
F-15B Quiet Spike(TradeMark) Aeroservoelastic Flight-Test Data Analysis
NASA Technical Reports Server (NTRS)
Kukreja, Sunil L.
2007-01-01
System identification is utilized in the aerospace community for development of simulation models for robust control law design. These models are often described as linear, time-invariant processes and assumed to be uniform throughout the flight envelope. Nevertheless, it is well known that the underlying process is inherently nonlinear. Over the past several decades the controls and biomedical communities have made great advances in developing tools for the identification of nonlin ear systems. In this report, we show the application of one such nonlinear system identification technique, structure detection, for the an alysis of Quiet Spike(TradeMark)(Gulfstream Aerospace Corporation, Savannah, Georgia) aeroservoelastic flight-test data. Structure detectio n is concerned with the selection of a subset of candidate terms that best describe the observed output. Structure computation as a tool fo r black-box modeling may be of critical importance for the development of robust, parsimonious models for the flight-test community. The ob jectives of this study are to demonstrate via analysis of Quiet Spike(TradeMark) aeroservoelastic flight-test data for several flight conditions that: linear models are inefficient for modelling aeroservoelast ic data, nonlinear identification provides a parsimonious model description whilst providing a high percent fit for cross-validated data an d the model structure and parameters vary as the flight condition is altered.
NASA Astrophysics Data System (ADS)
McInerney, J. M.; Liu, H.; Marsh, D. R.; Solomon, S. C.; Vitt, F.; Conley, A. J.
2017-12-01
The total solar eclipse of August 21, 2017 transited the entire continental United States. This presented an opportunity for model simulation of eclipse effects on the lower atmosphere, upper atmosphere, and ionosphere. The Community Earth System Model (CESM), v2.0, now includes a functional version of the Whole Atmosphere Community Climate Model - eXtended (WACCM-X) that has a fully interactive ionosphere and thermosphere. WACCM-X, with a model top up to 700 kilometers, is an atmospheric component of CESM and is being developed at the National Center for Atmospheric Research in Boulder, Colorado. Here we present results from simulations using this model during a total solar eclipse. This not only gives insights into the effects of the eclipse through the entire atmosphere from the surface through the ionosphere/thermosphere, but also serves as a validation tool for the model.
NASA Astrophysics Data System (ADS)
Wang, Li Han
2018-06-01
Taking the forest vegetation in Zijin Mountain (Purple Mountain) Area of Nanjing as the research object, based on the simulation natural and semi natural plant communities, the systematic research on the construction of Nanjing regional plant landscape is carried out by the method such as literature and theory, investigation and evaluation, discussion and reference. On the basis of TWINSPAN classification, the species composition (flora and geographical composition), community structure, species diversity, interspecific relationship and ecological niche of Zijin Mountain natural vegetation are studied and analyzed as a basis for simulation design and planting. Then, from the three levels of ornamental value, resource development and utilization potential and biological characteristics, a comprehensive evaluation system used for wild ornamental plant resources in Zijin Mountain is built. Finally, some suggestions on the planting species of deep forest vegetation in Zijin Mountain are put forward.
Lee, Ming-Feng; Lin, Ching-Lan Esther
2017-10-01
The negative attitudes of the general public toward mental illness frequently influence the integration of mental illness patients into the community. Auditory hallucination simulation may be considered as a creative teaching strategy to improve the attitudes of learners toward mental illness. However, the empirical effects of auditory hallucination simulation to change the negative attitudes toward mental illness remains uncertain. To compare and analyze, using a systematic review and meta-analysis, the effectiveness of auditory hallucination simulation in improving empathy, knowledge, social distance, and attitudes toward mental illness in undergraduates. A search using the keywords "auditory hallucination" and "simulation" and the 4 outcome indicators of empathy, knowledge, social distance, and attitudes toward mental illness was conducted to identify related articles published between 2008 and 2016 in 6 Chinese and English electronic databases, including Cochrane Library, EBSCO-CINAHL, MEDLINE, PsycINFO, PubMed, and Airiti Library. Research quality was appraised using the Modified Jadad Scale (MJS), the Oxford Centre for Evidence-Based Medicine Level of Evidence (OCEBM LoE), and the Cochrane Risk of Bias tool. Eleven studies were recruited, and 7 studies with sufficient data were included in the meta-analysis. The meta-analysis showed that hallucination simulation significantly improved the empathy and knowledge of participants, with respective effect sizes of 0.63 (95% CI [0.21, 1.05]) and 0.69 (95% CI [0.43-0.94]). However, this intervention also increased social distance, with an effect size of 0.60 (95% CI [0.01, 1.19]), and did not change attitudes toward mental illness significantly, with an effect size of 0.33 (95% CI [-0.11, 0.77]). Auditory hallucination simulation is an effective teaching strategy for improving the empathy and knowledge of undergraduates. However, related evidence for the effects of social distance and attitudes toward mental illness need to be further strengthened. Most of the extant research on this subject was conducted in the United States and Australia and was of moderate quality. Future studies should use sufficiently rigorous research designs to explore the safety issues and the effectiveness of the auditory hallucination simulation intervention in different countries and ethnic populations.
Figures of Merit for Lunar Simulants
NASA Technical Reports Server (NTRS)
Slane, Frederick A.; Rickman, Douglas L.
2012-01-01
At an earlier SRR the concept for an international standard on Lunar regolith simulants was presented. The international standard, ISO 10788, Lunar Simulants, has recently been published. This paper presents the final content of the standard. Therefore, we are presenting an update of the following: The collection and analysis of lunar samples from 1969 to present has yielded large amounts of data. Published analyses give some idea of the complex nature of the regolith at all scales, rocks, soils and the smaller particulates commonly referred to as dust. Data recently acquired in support of NASA s simulant effort has markedly increased our knowledge and quantitatively demonstrates that complexity. It is anticipated that future analyses will further add to the known complexity. In an effort to communicate among the diverse technical communities performing research on or research using regolith samples and simulants, a set of Figures of Merit (FoM) have been devised. The objective is to allow consistent and concise comparative communication between researchers from multiple organizations and nations engaged in lunar exploration. This paper describes Figures of Merit in a new international standard for Lunar Simulants. The FoM methodology uses scientific understanding of the lunar samples to formulate parameters which are reproducibly quantifiable. Contaminants and impurities in the samples are also addressed.
NASA Technical Reports Server (NTRS)
Pi, Xiaoqing; Mannucci, Anthony J.; Verkhoglyadova, Olga P.; Stephens, Philip; Wilson, Brian D.; Akopian, Vardan; Komjathy, Attila; Lijima, Byron A.
2013-01-01
ISOGAME is designed and developed to assess quantitatively the impact of new observation systems on the capability of imaging and modeling the ionosphere. With ISOGAME, one can perform observation system simulation experiments (OSSEs). A typical OSSE using ISOGAME would involve: (1) simulating various ionospheric conditions on global scales; (2) simulating ionospheric measurements made from a constellation of low-Earth-orbiters (LEOs), particularly Global Navigation Satellite System (GNSS) radio occultation data, and from ground-based global GNSS networks; (3) conducting ionospheric data assimilation experiments with the Global Assimilative Ionospheric Model (GAIM); and (4) analyzing modeling results with visualization tools. ISOGAME can provide quantitative assessment of the accuracy of assimilative modeling with the interested observation system. Other observation systems besides those based on GNSS are also possible to analyze. The system is composed of a suite of software that combines the GAIM, including a 4D first-principles ionospheric model and data assimilation modules, an Internal Reference Ionosphere (IRI) model that has been developed by international ionospheric research communities, observation simulator, visualization software, and orbit design, simulation, and optimization software. The core GAIM model used in ISOGAME is based on the GAIM++ code (written in C++) that includes a new high-fidelity geomagnetic field representation (multi-dipole). New visualization tools and analysis algorithms for the OSSEs are now part of ISOGAME.
The Transiting Exoplanet Community Early Release Science Program for JWST
NASA Astrophysics Data System (ADS)
Berta-Thompson, Zachory K.; Batalha, Natalie M.; Stevenson, Kevin B.; Bean, Jacob; Sing, David K.; Crossfield, Ian; Knutson, Heather; Line, Michael R.; Kreidberg, Laura; Desert, Jean-Michel; Wakeford, Hannah; Crouzet, Nicolas; Moses, Julianne I.; Benneke, Björn; Kempton, Eliza; Lopez-Morales, Mercedes; Parmentier, Vivien; Gibson, Neale; Schlawin, Everett; Fraine, Jonathan; Kendrew, Sarah; Transiting Exoplanet Community ERS Team
2018-06-01
The James Webb Space Telescope offers astronomers the opportunity to observe the composition, structure, and dynamics of transiting exoplanet atmospheres with unprecedented detail. However, such observations require very precise time-series spectroscopic monitoring of bright stars and present unique technical challenges. The Transiting Exoplanet Community Early Release Science Program for JWST aims to help the community understand and overcome these technical challenges as early in the mission as possible, and to enable exciting scientific discoveries through the creation of public exoplanet atmosphere datasets. With observations of three hot Jupiters spanning a range of host star brightnesses, this program will exercise time-series modes with all four JWST instruments and cover a full suite of transiting planet characterization geometries (transits, eclipses, and phase curves). We designed the observational strategy through an open and transparent community effort, with contributions from an international collaboration of over 100 experts in exoplanet observations, theory, and instrumentation. Community engagement with the project will be centered around open Data Challenge activities using both simulated and real ERS data, for exoplanet scientists to cross-validate and improve their analysis tools and theoretical models. Recognizing that the scientific utility of JWST will be determined not only by its hardware and software but also by the community of people who use it, we take an intentional approach toward crafting an inclusive collaboration and encourage new participants to join our efforts.
Thompson, Haydn; Angelova, Angelina; Bowler, Bernard; Jones, Martin; Gutierrez, Tony
2017-07-01
Phytoplankton have been shown to harbour a diversity of hydrocarbonoclastic bacteria (HCB), yet it is not understood how these phytoplankton-associated HCB would respond in the event of an oil spill at sea. Here, we assess the diversity and dynamics of the bacterial community associated with a natural population of marine phytoplankton under oil spill-simulated conditions, and compare it to that of the free-living (non phytoplankton-associated) bacterial community. While the crude oil severely impacted the phytoplankton population and was likely conducive to marine oil snow formation, analysis of the MiSeq-derived 16S rRNA data revealed dramatic and differential shifts in the oil-amended communities that included blooms of recognized HCB (e.g., Thalassospira, Cycloclasticus), including putative novel phyla, as well as other groups with previously unqualified oil-degrading potential (Olleya, Winogradskyella, and members of the inconspicuous BD7-3 phylum). Notably, the oil biodegradation potential of the phytoplankton-associated community exceeded that of the free-living community, and it showed a preference to degrade substituted and non-substituted polycyclic aromatic hydrocarbons. Our study provides evidence of compartmentalization of hydrocarbon-degrading capacity in the marine water column, wherein HCB associated with phytoplankton are better tuned to degrading crude oil hydrocarbons than that by the community of planktonic free-living bacteria. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
BARTTest: Community-Standard Atmospheric Radiative-Transfer and Retrieval Tests
NASA Astrophysics Data System (ADS)
Harrington, Joseph; Himes, Michael D.; Cubillos, Patricio E.; Blecic, Jasmina; Challener, Ryan C.
2018-01-01
Atmospheric radiative transfer (RT) codes are used both to predict planetary and brown-dwarf spectra and in retrieval algorithms to infer atmospheric chemistry, clouds, and thermal structure from observations. Observational plans, theoretical models, and scientific results depend on the correctness of these calculations. Yet, the calculations are complex and the codes implementing them are often written without modern software-verification techniques. The community needs a suite of test calculations with analytically, numerically, or at least community-verified results. We therefore present the Bayesian Atmospheric Radiative Transfer Test Suite, or BARTTest. BARTTest has four categories of tests: analytically verified RT tests of simple atmospheres (single line in single layer, line blends, saturation, isothermal, multiple line-list combination, etc.), community-verified RT tests of complex atmospheres, synthetic retrieval tests on simulated data with known answers, and community-verified real-data retrieval tests.BARTTest is open-source software intended for community use and further development. It is available at https://github.com/ExOSPORTS/BARTTest. We propose this test suite as a standard for verifying atmospheric RT and retrieval codes, analogous to the Held-Suarez test for general circulation models. This work was supported by NASA Planetary Atmospheres grant NX12AI69G, NASA Astrophysics Data Analysis Program grant NNX13AF38G, and NASA Exoplanets Research Program grant NNX17AB62G.
CyberShake: Running Seismic Hazard Workflows on Distributed HPC Resources
NASA Astrophysics Data System (ADS)
Callaghan, S.; Maechling, P. J.; Graves, R. W.; Gill, D.; Olsen, K. B.; Milner, K. R.; Yu, J.; Jordan, T. H.
2013-12-01
As part of its program of earthquake system science research, the Southern California Earthquake Center (SCEC) has developed a simulation platform, CyberShake, to perform physics-based probabilistic seismic hazard analysis (PSHA) using 3D deterministic wave propagation simulations. CyberShake performs PSHA by simulating a tensor-valued wavefield of Strain Green Tensors, and then using seismic reciprocity to calculate synthetic seismograms for about 415,000 events per site of interest. These seismograms are processed to compute ground motion intensity measures, which are then combined with probabilities from an earthquake rupture forecast to produce a site-specific hazard curve. Seismic hazard curves for hundreds of sites in a region can be used to calculate a seismic hazard map, representing the seismic hazard for a region. We present a recently completed PHSA study in which we calculated four CyberShake seismic hazard maps for the Southern California area to compare how CyberShake hazard results are affected by different SGT computational codes (AWP-ODC and AWP-RWG) and different community velocity models (Community Velocity Model - SCEC (CVM-S4) v11.11 and Community Velocity Model - Harvard (CVM-H) v11.9). We present our approach to running workflow applications on distributed HPC resources, including systems without support for remote job submission. We show how our approach extends the benefits of scientific workflows, such as job and data management, to large-scale applications on Track 1 and Leadership class open-science HPC resources. We used our distributed workflow approach to perform CyberShake Study 13.4 on two new NSF open-science HPC computing resources, Blue Waters and Stampede, executing over 470 million tasks to calculate physics-based hazard curves for 286 locations in the Southern California region. For each location, we calculated seismic hazard curves with two different community velocity models and two different SGT codes, resulting in over 1100 hazard curves. We will report on the performance of this CyberShake study, four times larger than previous studies. Additionally, we will examine the challenges we face applying these workflow techniques to additional open-science HPC systems and discuss whether our workflow solutions continue to provide value to our large-scale PSHA calculations.
Yoshimura, Yuko; Ido, Akifumi; Matsumoto, Teruyuki; Yamato, Masahide
2013-01-01
We investigated communities of arbuscular mycorrhizal fungi (AMF) in the fine roots of Pyrus pyrifolia var. culta, and Plantago asiatica to consider the relationship between orchard trees and herbaceous plants in AMF symbioses. The AMF communities were analyzed on the basis of the partial fungal DNA sequences of the nuclear small subunit ribosomal RNA gene (SSU rDNA), which were amplified using the AMF-specific primers AML1 and AML2. Phylogenetic analysis showed that the obtained AMF sequences were divided into 23 phylotypes. Among them, 12 phylotypes included AMF from both host plants, and most of the obtained sequences (689/811) were affiliated to them. Canonical correspondence analysis showed that the host plant species did not have a significant effect on the distribution of AMF phylotypes, whereas the effects of sampling site, soil total C, soil total N and soil-available P were significant. It was also found that the mean observed overlaps of AMF phylotypes between the paired host plants in the same soil cores (27.1% of phylotypes shared) were significantly higher than the mean 1,000 simulated overlaps (14.2%). Furthermore, the same AMF sequences (100% sequence identity) were detected from both host plants in 8/12 soil cores having both roots. Accordingly, we concluded that Py. pyrifolia and Pl. asiatica examined shared some AMF communities, which suggested that understory herbaceous plants may function as AMF inoculum sources for orchard trees.
Yoshimura, Yuko; Ido, Akifumi; Matsumoto, Teruyuki; Yamato, Masahide
2013-01-01
We investigated communities of arbuscular mycorrhizal fungi (AMF) in the fine roots of Pyrus pyrifolia var. culta, and Plantago asiatica to consider the relationship between orchard trees and herbaceous plants in AMF symbioses. The AMF communities were analyzed on the basis of the partial fungal DNA sequences of the nuclear small subunit ribosomal RNA gene (SSU rDNA), which were amplified using the AMF-specific primers AML1 and AML2. Phylogenetic analysis showed that the obtained AMF sequences were divided into 23 phylotypes. Among them, 12 phylotypes included AMF from both host plants, and most of the obtained sequences (689/811) were affiliated to them. Canonical correspondence analysis showed that the host plant species did not have a significant effect on the distribution of AMF phylotypes, whereas the effects of sampling site, soil total C, soil total N and soil-available P were significant. It was also found that the mean observed overlaps of AMF phylotypes between the paired host plants in the same soil cores (27.1% of phylotypes shared) were significantly higher than the mean 1,000 simulated overlaps (14.2%). Furthermore, the same AMF sequences (100% sequence identity) were detected from both host plants in 8/12 soil cores having both roots. Accordingly, we concluded that Py. pyrifolia and Pl. asiatica examined shared some AMF communities, which suggested that understory herbaceous plants may function as AMF inoculum sources for orchard trees. PMID:23614902
Field, Erin K.; D'Imperio, Seth; Miller, Amber R.; VanEngelen, Michael R.; Gerlach, Robin; Lee, Brady D.; Apel, William A.; Peyton, Brent M.
2010-01-01
Low-level-radioactive-waste (low-level-waste) sites, including those at various U.S. Department of Energy sites, frequently contain cellulosic waste in the form of paper towels, cardboard boxes, or wood contaminated with heavy metals and radionuclides such as chromium and uranium. To understand how the soil microbial community is influenced by the presence of cellulosic waste products, multiple soil samples were obtained from a nonradioactive model low-level-waste test pit at the Idaho National Laboratory. Samples were analyzed using 16S rRNA gene clone libraries and 16S rRNA gene microarray (PhyloChip) analyses. Both methods revealed changes in the bacterial community structure with depth. In all samples, the PhyloChip detected significantly more operational taxonomic units, and therefore relative diversity, than the clone libraries. Diversity indices suggest that diversity is lowest in the fill and fill-waste interface (FW) layers and greater in the wood waste and waste-clay interface layers. Principal-coordinate analysis and lineage-specific analysis determined that the Bacteroidetes and Actinobacteria phyla account for most of the significant differences observed between the layers. The decreased diversity in the FW layer and increased members of families containing known cellulose-degrading microorganisms suggest that the FW layer is an enrichment environment for these organisms. These results suggest that the presence of the cellulosic material significantly influences the bacterial community structure in a stratified soil system. PMID:20305022
Soil compartment is a major determinant of the impact of simulated rainfall on desert microbiota.
Aslam, Shazia N; Dumbrell, Alex J; Sabir, Jamal S; Mutwakil, Mohammed H Z; Baeshen, Mohammed M N; Abo-Aba, Salah E M; Clark, Dave R; Yates, Steven A; Baeshen, Nabih A; Underwood, Graham J C; McGenity, Terry J
2016-12-01
Although desert soils support functionally important microbial communities that affect plant growth and influence many biogeochemical processes, the impact of future changes in precipitation patterns on the microbiota and their activities is largely unknown. We performed in-situ experiments to investigate the effect of simulated rainfall on bacterial communities associated with the widespread perennial shrub, Rhazya stricta in Arabian desert soils. The bacterial community composition was distinct between three different soil compartments: surface biological crust, root-attached, and the broader rhizosphere. Simulated rainfall had no significant effect on the overall bacterial community composition, but some population-level responses were observed, especially in soil crusts where Betaproteobacteria, Sphingobacteria, and Bacilli became more abundant. Bacterial biomass in the nutrient-rich crust increased three-fold one week after watering, whereas it did not change in the rhizosphere, despite its much higher water retention. These findings indicate that between rainfall events, desert-soil microbial communities enter into stasis, with limited species turnover, and reactivate rapidly and relatively uniformly when water becomes available. However, microbiota in the crust, which was relatively enriched in nutrients and organic matter, were primarily water-limited, compared with the rhizosphere microbiota that were co-limited by nutrients and water. © 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.
Design and Analysis of Solar Smartflower Simulation by Solidwork Program
NASA Astrophysics Data System (ADS)
Mulyana, Tatang; Sebayang, Darwin; Fajrina, Fildzah; Raihan; Faizal, M.
2018-03-01
The potential of solar energy that is so large in Indonesia can be a driving force for the use of renewable energy as a solution for energy needs. Government with the community can utilize and optimize this technology to increase the electrification ratio up to 100% in all corners of Indonesia. Because of its modular and practical nature, making this technology easy to apply. One of the latest imported products that have started to be offered and sold in Indonesia but not yet widely used for solar power generation is the kind of smartflower. Before using the product, it is of course very important and immediately to undertake an in-depth study of the utilization, use, maintenance, repair, component supply and fabrication. The best way to know the above is through a review of the design and simulation. To meet this need, this paper presents a solar-smartflower design and then simulated using the facilities available in the solidwork program. Solid simulation express is a tool that serves to create power simulation of a design part modelling. With the simulation is very helpful at all to reduce errors in making design. Accurate or not a design created is also influenced by several other factors such as material objects, the silent part of the part, and the load given. The simulation is static simulation and body battery drop test, and based on the results of this simulation is known that the design results have been very satisfactory.
Evaluation of snowmelt simulation in the Weather Research and Forecasting model
NASA Astrophysics Data System (ADS)
Jin, Jiming; Wen, Lijuan
2012-05-01
The objective of this study is to better understand and improve snowmelt simulations in the advanced Weather Research and Forecasting (WRF) model by coupling it with the Community Land Model (CLM) Version 3.5. Both WRF and CLM are developed by the National Center for Atmospheric Research. The automated Snow Telemetry (SNOTEL) station data over the Columbia River Basin in the northwestern United States are used to evaluate snowmelt simulations generated with the coupled WRF-CLM model. These SNOTEL data include snow water equivalent (SWE), precipitation, and temperature. The simulations cover the period of March through June 2002 and focus mostly on the snowmelt season. Initial results show that when compared to observations, WRF-CLM significantly improves the simulations of SWE, which is underestimated when the release version of WRF is coupled with the Noah and Rapid Update Cycle (RUC) land surface schemes, in which snow physics is oversimplified. Further analysis shows that more realistic snow surface energy allocation in CLM is an important process that results in improved snowmelt simulations when compared to that in Noah and RUC. Additional simulations with WRF-CLM at different horizontal spatial resolutions indicate that accurate description of topography is also vital to SWE simulations. WRF-CLM at 10 km resolution produces the most realistic SWE simulations when compared to those produced with coarser spatial resolutions in which SWE is remarkably underestimated. The coupled WRF-CLM provides an important tool for research and forecasts in weather, climate, and water resources at regional scales.
Dynamic Simulation of Crime Perpetration and Reporting to Examine Community Intervention Strategies
ERIC Educational Resources Information Center
Yonas, Michael A.; Burke, Jessica G.; Brown, Shawn T.; Borrebach, Jeffrey D.; Garland, Richard; Burke, Donald S.; Grefenstette, John J.
2013-01-01
Objective: To develop a conceptual computational agent-based model (ABM) to explore community-wide versus spatially focused crime reporting interventions to reduce community crime perpetrated by youth. Method: Agents within the model represent individual residents and interact on a two-dimensional grid representing an abstract nonempirically…
Global Village as Virtual Community (On Writing, Thinking, and Teacher Education).
ERIC Educational Resources Information Center
Polin, Linda
1993-01-01
Describes virtual communities known as Multi-User Simulated Environment (MUSE) or Multi-User Object Oriented environment (MOO), text-based computer "communities" whose inhabitants are a combination of the real people and constructed objects that people agree to treat as real. Describes their uses in the classroom. (SR)
A Stigmergy Approach for Open Source Software Developer Community Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Xiaohui; Beaver, Justin M; Potok, Thomas E
2009-01-01
The stigmergy collaboration approach provides a hypothesized explanation about how online groups work together. In this research, we presented a stigmergy approach for building an agent based open source software (OSS) developer community collaboration simulation. We used group of actors who collaborate on OSS projects as our frame of reference and investigated how the choices actors make in contribution their work on the projects determinate the global status of the whole OSS projects. In our simulation, the forum posts and project codes served as the digital pheromone and the modified Pierre-Paul Grasse pheromone model is used for computing developer agentmore » behaviors selection probability.« less
Establishing a Novel Modeling Tool: A Python-Based Interface for a Neuromorphic Hardware System
Brüderle, Daniel; Müller, Eric; Davison, Andrew; Muller, Eilif; Schemmel, Johannes; Meier, Karlheinz
2008-01-01
Neuromorphic hardware systems provide new possibilities for the neuroscience modeling community. Due to the intrinsic parallelism of the micro-electronic emulation of neural computation, such models are highly scalable without a loss of speed. However, the communities of software simulator users and neuromorphic engineering in neuroscience are rather disjoint. We present a software concept that provides the possibility to establish such hardware devices as valuable modeling tools. It is based on the integration of the hardware interface into a simulator-independent language which allows for unified experiment descriptions that can be run on various simulation platforms without modification, implying experiment portability and a huge simplification of the quantitative comparison of hardware and simulator results. We introduce an accelerated neuromorphic hardware device and describe the implementation of the proposed concept for this system. An example setup and results acquired by utilizing both the hardware system and a software simulator are demonstrated. PMID:19562085
Establishing a novel modeling tool: a python-based interface for a neuromorphic hardware system.
Brüderle, Daniel; Müller, Eric; Davison, Andrew; Muller, Eilif; Schemmel, Johannes; Meier, Karlheinz
2009-01-01
Neuromorphic hardware systems provide new possibilities for the neuroscience modeling community. Due to the intrinsic parallelism of the micro-electronic emulation of neural computation, such models are highly scalable without a loss of speed. However, the communities of software simulator users and neuromorphic engineering in neuroscience are rather disjoint. We present a software concept that provides the possibility to establish such hardware devices as valuable modeling tools. It is based on the integration of the hardware interface into a simulator-independent language which allows for unified experiment descriptions that can be run on various simulation platforms without modification, implying experiment portability and a huge simplification of the quantitative comparison of hardware and simulator results. We introduce an accelerated neuromorphic hardware device and describe the implementation of the proposed concept for this system. An example setup and results acquired by utilizing both the hardware system and a software simulator are demonstrated.
Ran, Yu; Xie, Jianli; Xu, Xiaoya; Li, Yong; Liu, Yapeng; Zhang, Qichun; Li, Zheng; Xu, Jianming; Di, Hongjie
2017-01-01
Methane (CH 4 ) is a potent greenhouse gas, and soil can both be a source and sink for atmospheric CH 4 . It is not clear how future climate change may affect soil CH 4 emissions and related microbial communities. The aim of this study was to determine the interactive effects of a simulated warmer and drier climate scenarios and the application of different nitrogen (N) sources (urea and manure) on CH 4 emissions and related microbial community abundance in a vegetable soil. Greenhouses were used to control simulated climate conditions which gave 2.99 °C warmer and 6.2% lower water content conditions. The field experiment was divided into two phases. At the beginning of phase II, half of the greenhouses were removed to study possible legacy effects of the simulated warmer and drier conditions. The responses in methanogen and methanotroph abundance to a simulated climate change scenario were determined using real-time PCR. The results showed that the simulated warmer and drier conditions in the greenhouses significantly decreased CH 4 emissions largely due to the lower soil moisture content. For the same reason, CH 4 emissions of treatments in phase I were much lower than the same treatments in phase II. The abundance of methanotrophs showed a more significant response than methanogens to the simulated climate change scenario, increasing under simulated drier conditions. Methanogenic community abundance remained low, except where manure was applied which provided a source of organic C that stimulated methanogen growth. Soil moisture content was a major driver for methanotroph abundance and strongly affected CH 4 emissions. The application of N source decreased CH 4 emissions probably because of increased methanotrophic activity. CH 4 emissions were positively correlated to methanogenic abundance and negatively correlated to methanotrophic abundance. These results demonstrate that projected future climate change conditions can have a feedback impact on CH 4 emissions from the soil by altering soil conditions (particularly soil moisture) and related microbial communities.
Application of SWMM in Water Resources Management: A Community Scale Study
NASA Astrophysics Data System (ADS)
Li, Yuan-Hua; Tung, Ching-Pin
2015-04-01
Under the impacts of climate change, water resource management faces a serious challenge. Due to extremely events, the water supply system is hard to maintain stable water supply. In order to decrease the pressure of centralized water supply system, the water demand management should be strengthened. The storm water management model (SWMM) is widely used to simulate surface runoff, and it has been improved to have the ability of continuous simulation. In this study, storm water management model (SWMM) is applied to simulate surface runoff and integrated into the framework of water resource management for a rural community scale. In a rural community, the surface runoff may be collected and treated by wetlands for later uses. The reclaimed water from wetlands may become a new water resource for non-contact domestic water uses, or be reused to meet irrigating water demand. Thus, the water demand from the centralized system can be reduced, and the water supply system may have lower risk under the climate change. On the other hand, SWMM can simulate the measures of low impact development (LID), such as bio-retention cell, green roof, rain barrel etc. The decentralized measures, LID, may not only reduce the runoff and delay the peak flow, and but also provide the service of water supply. In this study, LID is applied to water resource management of a rural community, and combined with the centralized water supply system. The results show the application of SWMM to water resources management in a community scale study. Besides, the effectiveness of LID on water supply is also evaluated.
Lebcir, Reda; Demir, Eren; Ahmad, Raheelah; Vasilakis, Christos; Southern, David
2017-01-18
The number of people affected by Parkinson's disease (PD) is increasing in the United Kingdom driven by population ageing. The treatment of the disease is complex, resource intensive and currently there is no known cure to PD. The National Health Service (NHS), the public organisation delivering healthcare in the UK, is under financial pressures. There is a need to find innovative ways to improve the operational and financial performance of treating PD patients. The use of community services is a new and promising way of providing treatment and care to PD patients at reduced cost than hospital care. The aim of this study is to evaluate the potential operational and financial benefits, which could be achieved through increased integration of community services in the delivery of treatment and care to PD patients in the UK without compromising care quality. A Discrete Event Simulation model was developed to represent the PD care structure including patients' pathways, treatment modes, and the mix of resources required to treat PD patients. The model was parametrised with data from a large NHS Trust in the UK and validated using information from the same trust. Four possible scenarios involving increased use of community services were simulated on the model. Shifting more patients with PD from hospital treatment to community services will reduce the number of visits of PD patients to hospitals by about 25% and the number of PD doctors and nurses required to treat these patients by around 32%. Hospital based treatment costs overall should decrease by 26% leading to overall savings of 10% in the total cost of treating PD patients. The simulation model was useful in predicting the effects of increased use of community services on the performance of PD care delivery. Treatment policies need to reflect upon and formalise the use of community services and integrate these better in PD care. The advantages of community services need to be effectively shared with PD patients and carers to help inform management choices and care plans.
NASA Astrophysics Data System (ADS)
Khodachenko, Maxim; Miller, Steven; Stoeckler, Robert; Topf, Florian
2010-05-01
Computational modeling and observational data analysis are two major aspects of the modern scientific research. Both appear nowadays under extensive development and application. Many of the scientific goals of planetary space missions require robust models of planetary objects and environments as well as efficient data analysis algorithms, to predict conditions for mission planning and to interpret the experimental data. Europe has great strength in these areas, but it is insufficiently coordinated; individual groups, models, techniques and algorithms need to be coupled and integrated. Existing level of scientific cooperation and the technical capabilities for operative communication, allow considerable progress in the development of a distributed international Research Infrastructure (RI) which is based on the existing in Europe computational modelling and data analysis centers, providing the scientific community with dedicated services in the fields of their computational and data analysis expertise. These services will appear as a product of the collaborative communication and joint research efforts of the numerical and data analysis experts together with planetary scientists. The major goal of the EUROPLANET-RI / EMDAF is to make computational models and data analysis algorithms associated with particular national RIs and teams, as well as their outputs, more readily available to their potential user community and more tailored to scientific user requirements, without compromising front-line specialized research on model and data analysis algorithms development and software implementation. This objective will be met through four keys subdivisions/tasks of EMAF: 1) an Interactive Catalogue of Planetary Models; 2) a Distributed Planetary Modelling Laboratory; 3) a Distributed Data Analysis Laboratory, and 4) enabling Models and Routines for High Performance Computing Grids. Using the advantages of the coordinated operation and efficient communication between the involved computational modelling, research and data analysis expert teams and their related research infrastructures, EMDAF will provide a 1) flexible, 2) scientific user oriented, 3) continuously developing and fast upgrading computational and data analysis service to support and intensify the European planetary scientific research. At the beginning EMDAF will create a set of demonstrators and operational tests of this service in key areas of European planetary science. This work will aim at the following objectives: (a) Development and implementation of tools for distant interactive communication between the planetary scientists and computing experts (including related RIs); (b) Development of standard routine packages, and user-friendly interfaces for operation of the existing numerical codes and data analysis algorithms by the specialized planetary scientists; (c) Development of a prototype of numerical modelling services "on demand" for space missions and planetary researchers; (d) Development of a prototype of data analysis services "on demand" for space missions and planetary researchers; (e) Development of a prototype of coordinated interconnected simulations of planetary phenomena and objects (global multi-model simulators); (f) Providing the demonstrators of a coordinated use of high performance computing facilities (super-computer networks), done in cooperation with European HPC Grid DEISA.
Reduced ENSO Variability at the LGM Revealed by an Isotope-Enabled Earth System Model
NASA Technical Reports Server (NTRS)
Zhu, Jiang; Liu, Zhengyu; Brady, Esther; Otto-Bliesner, Bette; Zhang, Jiaxu; Noone, David; Tomas, Robert; Nusbaumer, Jesse; Wong, Tony; Jahn, Alexandra;
2017-01-01
Studying the El Nino Southern Oscillation (ENSO) in the past can help us better understand its dynamics and improve its future projections. However, both paleoclimate reconstructions and model simulations of ENSO strength at the Last Glacial Maximum (LGM; 21 ka B.P.) have led to contradicting results. Here we perform model simulations using the recently developed water isotope-enabled Community Earth System Model (iCESM). For the first time, model-simulated oxygen isotopes are directly compared with those from ENSO reconstructions using the individual foraminifera analysis (IFA). We find that the LGM ENSO is most likely weaker comparing with the preindustrial. The iCESM suggests that total variance of the IFA records may only reflect changes in the annual cycle instead of ENSO variability as previously assumed. Furthermore, the interpretation of subsurface IFA records can be substantially complicated by the habitat depth of thermocline-dwelling foraminifera and their vertical migration with a temporally varying thermocline.
Rodrigo, J. Sanz; Churchfield, M.; Kosović, B.
2016-10-03
The third GEWEX Atmospheric Boundary Layer Studies (GABLS3) model intercomparison study, around the Cabauw met tower in the Netherlands, is revisited as a benchmark for wind energy atmospheric boundary layer (ABL) models. The case was originally developed by the boundary layer meteorology community, interested in analysing the performance of single-column and large-eddy simulation atmospheric models dealing with a diurnal cycle leading to the development of a nocturnal low-level jet. The case addresses fundamental questions related to the definition of the large-scale forcing, the interaction of the ABL with the surface and the evaluation of model results with observations. The characterizationmore » of mesoscale forcing for asynchronous microscale modelling of the ABL is discussed based on momentum budget analysis of WRF simulations. Then a single-column model is used to demonstrate the added value of incorporating different forcing mechanisms in microscale models. The simulations are evaluated in terms of wind energy quantities of interest.« less
A computational workflow for designing silicon donor qubits
Humble, Travis S.; Ericson, M. Nance; Jakowski, Jacek; ...
2016-09-19
Developing devices that can reliably and accurately demonstrate the principles of superposition and entanglement is an on-going challenge for the quantum computing community. Modeling and simulation offer attractive means of testing early device designs and establishing expectations for operational performance. However, the complex integrated material systems required by quantum device designs are not captured by any single existing computational modeling method. We examine the development and analysis of a multi-staged computational workflow that can be used to design and characterize silicon donor qubit systems with modeling and simulation. Our approach integrates quantum chemistry calculations with electrostatic field solvers to performmore » detailed simulations of a phosphorus dopant in silicon. We show how atomistic details can be synthesized into an operational model for the logical gates that define quantum computation in this particular technology. In conclusion, the resulting computational workflow realizes a design tool for silicon donor qubits that can help verify and validate current and near-term experimental devices.« less
Inconsistencies in Numerical Simulations of Dynamical Systems Using Interval Arithmetic
NASA Astrophysics Data System (ADS)
Nepomuceno, Erivelton G.; Peixoto, Márcia L. C.; Martins, Samir A. M.; Rodrigues, Heitor M.; Perc, Matjaž
Over the past few decades, interval arithmetic has been attracting widespread interest from the scientific community. With the expansion of computing power, scientific computing is encountering a noteworthy shift from floating-point arithmetic toward increased use of interval arithmetic. Notwithstanding the significant reliability of interval arithmetic, this paper presents a theoretical inconsistency in a simulation of dynamical systems using a well-known implementation of arithmetic interval. We have observed that two natural interval extensions present an empty intersection during a finite time range, which is contrary to the fundamental theorem of interval analysis. We have proposed a procedure to at least partially overcome this problem, based on the union of the two generated pseudo-orbits. This paper also shows a successful case of interval arithmetic application in the reduction of interval width size on the simulation of discrete map. The implications of our findings on the reliability of scientific computing using interval arithmetic have been properly addressed using two numerical examples.
Ready or Not: Preparation through Simulation
ERIC Educational Resources Information Center
Spellman, Joy
2008-01-01
Immediately after 9/11, Burlington County College (BCC) realized that the focus of emergency preparedness must change. BCC responded by identifying community needs, developing customized simulation training using high-fidelity human patient simulators and laptop/desktop technology; developing partnerships, and securing outside funding. Over 8,500…
NASA Astrophysics Data System (ADS)
Swenson, S. C.; Lawrence, D. M.
2011-11-01
One function of the Community Land Model (CLM4) is the determination of surface albedo in the Community Earth System Model (CESM1). Because the typical spatial scales of CESM1 simulations are large compared to the scales of variability of surface properties such as snow cover and vegetation, unresolved surface heterogeneity is parameterized. Fractional snow-covered area, or snow-covered fraction (SCF), within a CLM4 grid cell is parameterized as a function of grid cell mean snow depth and snow density. This parameterization is based on an analysis of monthly averaged SCF and snow depth that showed a seasonal shift in the snow depth-SCF relationship. In this paper, we show that this shift is an artifact of the monthly sampling and that the current parameterization does not reflect the relationship observed between snow depth and SCF at the daily time scale. We demonstrate that the snow depth analysis used in the original study exhibits a bias toward early melt when compared to satellite-observed SCF. This bias results in a tendency to overestimate SCF as a function of snow depth. Using a more consistent, higher spatial and temporal resolution snow depth analysis reveals a clear hysteresis between snow accumulation and melt seasons. Here, a new SCF parameterization based on snow water equivalent is developed to capture the observed seasonal snow depth-SCF evolution. The effects of the new SCF parameterization on the surface energy budget are described. In CLM4, surface energy fluxes are calculated assuming a uniform snow cover. To more realistically simulate environments having patchy snow cover, we modify the model by computing the surface fluxes separately for snow-free and snow-covered fractions of a grid cell. In this configuration, the form of the parameterized snow depth-SCF relationship is shown to greatly affect the surface energy budget. The direct exposure of the snow-free surfaces to the atmosphere leads to greater heat loss from the ground during autumn and greater heat gain during spring. The net effect is to reduce annual mean soil temperatures by up to 3°C in snow-affected regions.
NASA Astrophysics Data System (ADS)
Swenson, S. C.; Lawrence, D. M.
2012-11-01
One function of the Community Land Model (CLM4) is the determination of surface albedo in the Community Earth System Model (CESM1). Because the typical spatial scales of CESM1 simulations are large compared to the scales of variability of surface properties such as snow cover and vegetation, unresolved surface heterogeneity is parameterized. Fractional snow-covered area, or snow-covered fraction (SCF), within a CLM4 grid cell is parameterized as a function of grid cell mean snow depth and snow density. This parameterization is based on an analysis of monthly averaged SCF and snow depth that showed a seasonal shift in the snow depth-SCF relationship. In this paper, we show that this shift is an artifact of the monthly sampling and that the current parameterization does not reflect the relationship observed between snow depth and SCF at the daily time scale. We demonstrate that the snow depth analysis used in the original study exhibits a bias toward early melt when compared to satellite-observed SCF. This bias results in a tendency to overestimate SCF as a function of snow depth. Using a more consistent, higher spatial and temporal resolution snow depth analysis reveals a clear hysteresis between snow accumulation and melt seasons. Here, a new SCF parameterization based on snow water equivalent is developed to capture the observed seasonal snow depth-SCF evolution. The effects of the new SCF parameterization on the surface energy budget are described. In CLM4, surface energy fluxes are calculated assuming a uniform snow cover. To more realistically simulate environments having patchy snow cover, we modify the model by computing the surface fluxes separately for snow-free and snow-covered fractions of a grid cell. In this configuration, the form of the parameterized snow depth-SCF relationship is shown to greatly affect the surface energy budget. The direct exposure of the snow-free surfaces to the atmosphere leads to greater heat loss from the ground during autumn and greater heat gain during spring. The net effect is to reduce annual mean soil temperatures by up to 3°C in snow-affected regions.
NASA Technical Reports Server (NTRS)
Oman, Luke D.; Strahan, Susan E.
2017-01-01
Simulations using reanalysis meteorological fields have long been used to understand the causes of atmospheric composition change in the recent past. Using the new MERRA-2 reanalysis, we are conducting chemistry simulations to create products covering 1980-2016 for the atmospheric composition community. These simulations use the Global Modeling Initiative (GMI) chemical mechanism in two different models: the GMI Chemical Transport Model (CTM) and the GEOS-5 model in Replay mode. Replay mode means an integration of the GEOS-5 general circulation model that is incrementally adjusted each time step toward the MERRA-2 reanalysis. The GMI CTM is a 1 deg x 1.25 deg simulation and the MERRA-2 GMI Replay simulation uses the native MERRA-2 grid of approximately 1/2 deg horizontal resolution on the cubed sphere. A specialized set of transport diagnostics is included in both runs to better understand trace gas transport and its variability in the recent past.
Amanzi: An Open-Source Multi-process Simulator for Environmental Applications
NASA Astrophysics Data System (ADS)
Moulton, J. D.; Molins, S.; Johnson, J. N.; Coon, E.; Lipnikov, K.; Day, M.; Barker, E.
2014-12-01
The Advanced Simulation Capabililty for Environmental Management (ASCEM) program is developing an approach and open-source tool suite for standardized risk and performance assessments at legacy nuclear waste sites. These assessments begin with simplified models, and add geometric and geologic complexity as understanding is gained. The Platform toolsets (Akuna) generates these conceptual models and Amanzi provides the computational engine to perform the simulations, returning the results for analysis and visualization. In this presentation we highlight key elements of the design, algorithms and implementations used in Amanzi. In particular, the hierarchical and modular design is aligned with the coupled processes being sumulated, and naturally supports a wide range of model complexity. This design leverages a dynamic data manager and the synergy of two graphs (one from the high-level perspective of the models the other from the dependencies of the variables in the model) to enable this flexible model configuration at run time. Moreover, to model sites with complex hydrostratigraphy, as well as engineered systems, we are developing a dual unstructured/structured capability. Recently, these capabilities have been collected in a framework named Arcos, and efforts have begun to improve interoperability between the unstructured and structured AMR approaches in Amanzi. To leverage a range of biogeochemistry capability from the community (e.g., CrunchFlow, PFLOTRAN, etc.), a biogeochemistry interface library was developed called Alquimia. To ensure that Amanzi is truly an open-source community code we require a completely open-source tool chain for our development. We will comment on elements of this tool chain, including the testing and documentation development tools such as docutils, and Sphinx. Finally, we will show simulation results from our phased demonstrations, including the geochemically complex Savannah River F-Area seepage basins.
NASA Technical Reports Server (NTRS)
Hildreth, Bruce L.; Jackson, E. Bruce
2009-01-01
The American Institute of Aeronautics Astronautics (AIAA) Modeling and Simulation Technical Committee is in final preparation of a new standard for the exchange of flight dynamics models. The standard will become an ANSI standard and is under consideration for submission to ISO for acceptance by the international community. The standard has some a spects that should provide benefits to the simulation training community. Use of the new standard by the training simulation community will reduce development, maintenance and technical refresh investment on each device. Furthermore, it will significantly lower the cost of performing model updates to improve fidelity or expand the envelope of the training device. Higher flight fidelity should result in better transfer of training, a direct benefit to the pilots under instruction. Costs of adopting the standard are minimal and should be paid back within the cost of the first use for that training device. The standard achie ves these advantages by making it easier to update the aerodynamic model. It provides a standard format for the model in a custom eXtensible Markup Language (XML) grammar, the Dynamic Aerospace Vehicle Exchange Markup Language (DAVE-ML). It employs an existing XML grammar, MathML, to describe the aerodynamic model in an input data file, eliminating the requirement for actual software compilation. The major components of the aero model become simply an input data file, and updates are simply new XML input files. It includes naming and axis system conventions to further simplify the exchange of information.
NASA Technical Reports Server (NTRS)
Campbell, David; Wysong, Ingrid; Kaplan, Carolyn; Mott, David; Wadsworth, Dean; VanGilder, Douglas
2000-01-01
An AFRL/NRL team has recently been selected to develop a scalable, parallel, reacting, multidimensional (SUPREM) Direct Simulation Monte Carlo (DSMC) code for the DoD user community under the High Performance Computing Modernization Office (HPCMO) Common High Performance Computing Software Support Initiative (CHSSI). This paper will introduce the JANNAF Exhaust Plume community to this three-year development effort and present the overall goals, schedule, and current status of this new code.
NASA Technical Reports Server (NTRS)
Pons, R. L.; Grigsby, C. E.
1980-01-01
Activities planned for phase 2 Of the Small Community Solar Thermal Power Experiment (PFDR) program are summarized with emphasis on a dish-Rankine point focusing distributed receiver solar thermal electric system. Major design efforts include: (1) development of an advanced concept indirect-heated receiver;(2) development of hardware and software for a totally unmanned power plant control system; (3) implementation of a hybrid digital simulator which will validate plant operation prior to field testing; and (4) the acquisition of an efficient organic Rankine cycle power conversion unit. Preliminary performance analyses indicate that a mass-produced dish-Rankine PFDR system is potentially capable of producing electricity at a levelized busbar energy cost of 60 to 70 mills per KWh and with a capital cost of about $1300 per KW.
Future Effects of Southern Hemisphere Stratospheric Zonal Asymmetries on Climate
NASA Astrophysics Data System (ADS)
Stone, K.; Solomon, S.; Kinnison, D. E.; Fyfe, J. C.
2017-12-01
Stratospheric zonal asymmetries in the Southern Hemisphere have been shown to have significant influences on both stratospheric and tropospheric dynamics and climate. Accurate representation of stratospheric ozone in particular is important for realistic simulation of the polar vortex strength and temperature trends. This is therefore also important for stratospheric ozone change's effect on the troposphere, both through modulation of the Southern Annular Mode (SAM), and more localized climate. Here, we characterization the impact of future changes in Southern Hemisphere zonal asymmetry on tropospheric climate, including changes to future tropospheric temperature, and precipitation. The separate impacts of increasing GHGs and ozone recovery on the zonal asymmetric influence on the surface are also investigated. For this purpose, we use a variety of models, including Chemistry Climate Model Initiative simulations from the Community Earth System Model, version 1, with the Whole Atmosphere Community Climate Model (CESM1(WACCM)) and the Australian Community Climate and Earth System Simulator-Chemistry Climate Model (ACCESS-CCM). These models have interactive chemistry and can therefore more accurately represent the zonally asymmetric nature of the stratosphere. The CESM1(WACCM) and ACCESS-CCM models are also compared to simulations from the Canadian Can2ESM model and CESM-Large Ensemble Project (LENS) that have prescribed ozone to further investigate the importance of simulating stratospheric zonal asymmetry.
Felsmann, Katja; Baudis, Mathias; Gimbel, Katharina; Kayler, Zachary E.; Ellerbrock, Ruth; Bruehlheide, Helge; Bruckhoff, Johannes; Welk, Erik; Puhlmann, Heike; Weiler, Markus; Gessler, Arthur; Ulrich, Andreas
2015-01-01
Soil microbial communities play an important role in forest ecosystem functioning, but how climate change will affect the community composition and consequently bacterial functions is poorly understood. We assessed the effects of reduced precipitation with the aim of simulating realistic future drought conditions for one growing season on the bacterial community and its relation to soil properties and forest management. We manipulated precipitation in beech and conifer forest plots managed at different levels of intensity in three different regions across Germany. The precipitation reduction decreased soil water content across the growing season by between 2 to 8% depending on plot and region. T-RFLP analysis and pyrosequencing of the 16S rRNA gene were used to study the total soil bacterial community and its active members after six months of precipitation reduction. The effect of reduced precipitation on the total bacterial community structure was negligible while significant effects could be observed for the active bacteria. However, the effect was secondary to the stronger influence of specific soil characteristics across the three regions and management selection of overstorey tree species and their respective understorey vegetation. The impact of reduced precipitation differed between the studied plots; however, we could not determine the particular parameters being able to modify the response of the active bacterial community among plots. We conclude that the moderate drought induced by the precipitation manipulation treatment started to affect the active but not the total bacterial community, which points to an adequate resistance of the soil microbial system over one growing season. PMID:25875835
Felsmann, Katja; Baudis, Mathias; Gimbel, Katharina; Kayler, Zachary E; Ellerbrock, Ruth; Bruelheide, Helge; Bruehlheide, Helge; Bruckhoff, Johannes; Welk, Erik; Puhlmann, Heike; Weiler, Markus; Gessler, Arthur; Ulrich, Andreas
2015-01-01
Soil microbial communities play an important role in forest ecosystem functioning, but how climate change will affect the community composition and consequently bacterial functions is poorly understood. We assessed the effects of reduced precipitation with the aim of simulating realistic future drought conditions for one growing season on the bacterial community and its relation to soil properties and forest management. We manipulated precipitation in beech and conifer forest plots managed at different levels of intensity in three different regions across Germany. The precipitation reduction decreased soil water content across the growing season by between 2 to 8% depending on plot and region. T-RFLP analysis and pyrosequencing of the 16S rRNA gene were used to study the total soil bacterial community and its active members after six months of precipitation reduction. The effect of reduced precipitation on the total bacterial community structure was negligible while significant effects could be observed for the active bacteria. However, the effect was secondary to the stronger influence of specific soil characteristics across the three regions and management selection of overstorey tree species and their respective understorey vegetation. The impact of reduced precipitation differed between the studied plots; however, we could not determine the particular parameters being able to modify the response of the active bacterial community among plots. We conclude that the moderate drought induced by the precipitation manipulation treatment started to affect the active but not the total bacterial community, which points to an adequate resistance of the soil microbial system over one growing season.
NASA Astrophysics Data System (ADS)
Wei, Min; Xu, Caihong; Chen, Jianmin; Zhu, Chao; Li, Jiarong; Lv, Ganglin
2017-04-01
Bacteria are widely distributed in atmospheric aerosols and are indispensable components of clouds, playing an important role in the atmospheric hydrological cycle. However, limited information is available about the bacterial community structure and function, especially for the increasing air pollution in the North China Plain. Here, we present a comprehensive characterization of bacterial community composition, function, variation, and environmental influence for cloud water collected at Mt Tai from 24 July to 23 August 2014. Using Miseq 16S rRNA gene sequencing, the highly diverse bacterial community in cloud water and the predominant phyla of Proteobacteria, Bacteroidetes, Cyanobacteria, and Firmicutes were investigated. Bacteria that survive at low temperature, radiation, and poor nutrient conditions were found in cloud water, suggesting adaption to an extreme environment. The bacterial gene functions predicted from the 16S rRNA gene using the Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) suggested that the pathways related to metabolism and disease infections were significantly correlated with the predominant genera. The abundant genera Acinetobacter, Stenotrophomonas, Pseudomonas, and Empedobacter originated from a wide range of habitats including cloud condensation nuclei and ice nuclei active species, opportunistic pathogens, and functional species, demonstrating the importance of ecology and health in cloud water. Cluster analysis including hierarchical cluster (Hcluster) and principal coordinate analysis (PCoA) indicated a significant disparity between polluted and non-polluted samples. Linear discriminant analysis effect size (LEfSe) demonstrated that potential pathogens were enriched in the polluted cloud samples, whereas the diverse ecological function groups were significant in the non-polluted samples. Discrepant community structure determined by redundancy analysis (RDA) indicated that the major ions in cloud water and PM2. 5 in the atmosphere have a negative impact on bacteria, playing a vital role in shaping microbial community structure. The major ions might provide nutrition to bacteria and directly influence the bacterial community, whereas PM2. 5 in air has an indirect impact on bacterial community structure. During wet deposition, soluble particulate matter was dissolved in water droplets resulting in elevated concentration in cloud water. PM2. 5 was possibly associated with different origins and pathways of air mass as determined using source tracking by the backward trajectory, mainly related to long-range transport. This work enhanced our understanding of the characteristics of bacterial ecology in the atmospheric aqueous phase, highlighting the potential influence of environmental variables on the bacterial community in cloud processes. It may provide fundamental information of the bacterial community response in cloud water under increasing pollution. However, due to the limited sample size (13 samples) collected at the summit of Mt Tai, these issues need in-depth discussion. Further studies based on an annual series of field observation experiments and laboratory simulations will continue to track these issues.
Bacterial populations were examined in a simulated chloraminated drinking water distribution system. After six months of continuous operation, coupons were incubated in CDC reactors receiving water from the simulated system to study biofilm development. The study was organized ...
DOT National Transportation Integrated Search
2007-05-01
A rapid prototyping approach was used in the driving simulation laboratory at the Western Transportation Institute (WTI) to simulate approximately 22 miles of US 191 between the Big Sky Resort community and the northern mouth of the Gallatin Canyon. ...
SIGNUM: A Matlab, TIN-based landscape evolution model
NASA Astrophysics Data System (ADS)
Refice, A.; Giachetta, E.; Capolongo, D.
2012-08-01
Several numerical landscape evolution models (LEMs) have been developed to date, and many are available as open source codes. Most are written in efficient programming languages such as Fortran or C, but often require additional code efforts to plug in to more user-friendly data analysis and/or visualization tools to ease interpretation and scientific insight. In this paper, we present an effort to port a common core of accepted physical principles governing landscape evolution directly into a high-level language and data analysis environment such as Matlab. SIGNUM (acronym for Simple Integrated Geomorphological Numerical Model) is an independent and self-contained Matlab, TIN-based landscape evolution model, built to simulate topography development at various space and time scales. SIGNUM is presently capable of simulating hillslope processes such as linear and nonlinear diffusion, fluvial incision into bedrock, spatially varying surface uplift which can be used to simulate changes in base level, thrust and faulting, as well as effects of climate changes. Although based on accepted and well-known processes and algorithms in its present version, it is built with a modular structure, which allows to easily modify and upgrade the simulated physical processes to suite virtually any user needs. The code is conceived as an open-source project, and is thus an ideal tool for both research and didactic purposes, thanks to the high-level nature of the Matlab environment and its popularity among the scientific community. In this paper the simulation code is presented together with some simple examples of surface evolution, and guidelines for development of new modules and algorithms are proposed.
Simulating Revenue and Expenditure Limit Projections for a Community College in Arizona.
ERIC Educational Resources Information Center
Gose, Frank J.
In 1980, the Constitution of the State of Arizona was amended to establish expenditure limits for a number of political entities, including community colleges. Limits were also established on revenue derived from local tax levies. Concern that limitations on revenue and expenditures could place real constraints on community college operations…
Spellmon, Nicholas; Sun, Xiaonan; Sirinupong, Nualpun; Edwards, Brian; Li, Chunying; Yang, Zhe
2015-01-01
SMYD proteins are an exciting field of study as they are linked to many types of cancer-related pathways. Cardiac and skeletal muscle development and function also depend on SMYD proteins opening a possible avenue for cardiac-related treatment. Previous crystal structure studies have revealed that this special class of protein lysine methyltransferases have a bilobal structure, and an open-closed motion may regulate substrate specificity. Here we use the molecular dynamics simulation to investigate the still-poorly-understood SMYD2 dynamics. Cross-correlation analysis reveals that SMYD2 exhibits a negative correlated inter-lobe motion. Principle component analysis suggests that this correlated dynamic is contributed to by a twisting motion of the C-lobe with respect to the N-lobe and a clamshell-like motion between the lobes. Dynamical network analysis defines possible allosteric paths for the correlated dynamics. There are nine communities in the dynamical network with six in the N-lobe and three in the C-lobe, and the communication between the lobes is mediated by a lobe-bridging β hairpin. This study provides insight into the dynamical nature of SMYD2 and could facilitate better understanding of SMYD2 substrate specificity.
Improved Test Planning and Analysis Through the Use of Advanced Statistical Methods
NASA Technical Reports Server (NTRS)
Green, Lawrence L.; Maxwell, Katherine A.; Glass, David E.; Vaughn, Wallace L.; Barger, Weston; Cook, Mylan
2016-01-01
The goal of this work is, through computational simulations, to provide statistically-based evidence to convince the testing community that a distributed testing approach is superior to a clustered testing approach for most situations. For clustered testing, numerous, repeated test points are acquired at a limited number of test conditions. For distributed testing, only one or a few test points are requested at many different conditions. The statistical techniques of Analysis of Variance (ANOVA), Design of Experiments (DOE) and Response Surface Methods (RSM) are applied to enable distributed test planning, data analysis and test augmentation. The D-Optimal class of DOE is used to plan an optimally efficient single- and multi-factor test. The resulting simulated test data are analyzed via ANOVA and a parametric model is constructed using RSM. Finally, ANOVA can be used to plan a second round of testing to augment the existing data set with new data points. The use of these techniques is demonstrated through several illustrative examples. To date, many thousands of comparisons have been performed and the results strongly support the conclusion that the distributed testing approach outperforms the clustered testing approach.
Data Serving Climate Simulation Science at the NASA Center for Climate Simulation
NASA Technical Reports Server (NTRS)
Salmon, Ellen M.
2011-01-01
The NASA Center for Climate Simulation (NCCS) provides high performance computational resources, a multi-petabyte archive, and data services in support of climate simulation research and other NASA-sponsored science. This talk describes the NCCS's data-centric architecture and processing, which are evolving in anticipation of researchers' growing requirements for higher resolution simulations and increased data sharing among NCCS users and the external science community.
NASA Astrophysics Data System (ADS)
Dong, X.; Fu, J. S.; Huang, K.; Tong, D.
2015-12-01
The Community Multiscale Air Quality (CMAQ) model has been further developed in terms of simulating natural wind-blown dust in this study, with a series of modifications aimed at improving the model's capability to predict the emission, transport, and chemical reactions of dust aerosols. The default parameterization of threshold friction velocity constants in the CMAQ are revised to avoid double counting of the impact of soil moisture based on the re-analysis of field experiment data; source-dependent speciation profiles for dust emission are derived based on local measurements for the Gobi and Taklamakan deserts in East Asia; and dust heterogeneous chemistry is implemented to simulate the reactions involving dust aerosol. The improved dust module in the CMAQ was applied over East Asia for March and April from 2006 to 2010. Evaluation against observations has demonstrated that simulation bias of PM10 and aerosol optical depth (AOD) is reduced from -55.42 and -31.97 % in the original CMAQ to -16.05 and -22.1 % in the revised CMAQ, respectively. Comparison with observations at the nearby Gobi stations of Duolun and Yulin indicates that applying a source-dependent profile helps reduce simulation bias for trace metals. Implementing heterogeneous chemistry is also found to result in better agreement with observations for sulfur dioxide (SO2), sulfate (SO42-), nitric acid (HNO3), nitrous oxides (NOx), and nitrate (NO3-). Investigation of a severe dust storm episode from 19 to 21 March 2010 suggests that the revised CMAQ is capable of capturing the spatial distribution and temporal variations of dust aerosols. Model evaluation indicates potential uncertainties within the excessive soil moisture fraction used by meteorological simulation. The mass contribution of fine mode aerosol in dust emission may be underestimated by 50 %. The revised revised CMAQ provides a useful tool for future studies to investigate the emission, transport, and impact of wind-blown dust over East Asia and elsewhere.
Novel model coupling approach for resilience analysis of coastal plant communities.
Schibalski, Anett; Körner, Katrin; Maier, Martin; Jeltsch, Florian; Schröder, Boris
2018-06-04
Resilience is a major research focus covering a wide range of topics from biodiversity conservation to ecosystem (service) management. Model simulations can assess the resilience of, e.g., plant species, measured as the return time to conditions prior to a disturbance. This requires process-based models (PBM) that implement relevant processes like regeneration and reproduction and thus successfully reproduce transient dynamics after disturbances. Such models are often complex and thus limited to either short-term or small-scale applications, whereas many research questions require species predictions across larger spatial and temporal scales. We suggest a framework to couple a PBM and a statistical species distribution model (SDM), which transfers the results of a resilience analysis by the PBM to SDM predictions. The resulting hybrid model combines the advantages of both approaches: the convenient applicability of SDMs and the relevant process detail of PBMs in abrupt environmental change situations. First, we simulate dynamic responses of species communities to a disturbance event with a PBM. We aggregate the response behavior in two resilience metrics: return time and amplitude of the response peak. These metrics are then used to complement long-term SDM projections with dynamic short-term responses to disturbance. To illustrate our framework, we investigate the effect of abrupt short-term groundwater level and salinity changes on coastal vegetation at the German Baltic Sea. We found two example species to be largely resilient, and, consequently, modifications of SDM predictions consisted mostly of smoothing out peaks in the occurrence probability that were not confirmed by the PBM. Discrepancies between SDM- and PBM-predicted species responses were caused by community dynamics simulated in the PBM and absent from the SDM. Although demonstrated with boosted regression trees (SDM) and an existing individual-based model, IBC-grass (PBM), our flexible framework can easily be applied to other PBM and SDM types, as well as other definitions of short-term disturbances or long-term trends of environmental change. Thus, our framework allows accounting for biological feedbacks in the response to short- and long-term environmental changes as a major advancement in predictive vegetation modeling. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Reed, K. A.; Bacmeister, J. T.; Rosenbloom, N. A.; ...
2015-05-13
Our paper examines the impact of the dynamical core on the simulation of tropical cyclone (TC) frequency, distribution, and intensity. The dynamical core, the central fluid flow component of any general circulation model (GCM), is often overlooked in the analysis of a model's ability to simulate TCs compared to the impact of more commonly documented components (e.g., physical parameterizations). The Community Atmosphere Model version 5 is configured with multiple dynamics packages. This analysis demonstrates that the dynamical core has a significant impact on storm intensity and frequency, even in the presence of similar large-scale environments. In particular, the spectral elementmore » core produces stronger TCs and more hurricanes than the finite-volume core using very similar parameterization packages despite the latter having a slightly more favorable TC environment. Furthermore, these results suggest that more detailed investigations into the impact of the GCM dynamical core on TC climatology are needed to fully understand these uncertainties. Key Points The impact of the GCM dynamical core is often overlooked in TC assessments The CAM5 dynamical core has a significant impact on TC frequency and intensity A larger effort is needed to better understand this uncertainty« less
A Multifaceted Mathematical Approach for Complex Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander, F.; Anitescu, M.; Bell, J.
2012-03-07
Applied mathematics has an important role to play in developing the tools needed for the analysis, simulation, and optimization of complex problems. These efforts require the development of the mathematical foundations for scientific discovery, engineering design, and risk analysis based on a sound integrated approach for the understanding of complex systems. However, maximizing the impact of applied mathematics on these challenges requires a novel perspective on approaching the mathematical enterprise. Previous reports that have surveyed the DOE's research needs in applied mathematics have played a key role in defining research directions with the community. Although these reports have had significantmore » impact, accurately assessing current research needs requires an evaluation of today's challenges against the backdrop of recent advances in applied mathematics and computing. To address these needs, the DOE Applied Mathematics Program sponsored a Workshop for Mathematics for the Analysis, Simulation and Optimization of Complex Systems on September 13-14, 2011. The workshop had approximately 50 participants from both the national labs and academia. The goal of the workshop was to identify new research areas in applied mathematics that will complement and enhance the existing DOE ASCR Applied Mathematics Program efforts that are needed to address problems associated with complex systems. This report describes recommendations from the workshop and subsequent analysis of the workshop findings by the organizing committee.« less
Anyone Can Become a Troll: Causes of Trolling Behavior in Online Discussions.
Cheng, Justin; Bernstein, Michael; Danescu-Niculescu-Mizil, Cristian; Leskovec, Jure
2017-01-01
In online communities, antisocial behavior such as trolling disrupts constructive discussion. While prior work suggests that trolling behavior is confined to a vocal and antisocial minority, we demonstrate that ordinary people can engage in such behavior as well. We propose two primary trigger mechanisms: the individual's mood, and the surrounding context of a discussion (e.g., exposure to prior trolling behavior). Through an experiment simulating an online discussion, we find that both negative mood and seeing troll posts by others significantly increases the probability of a user trolling, and together double this probability. To support and extend these results, we study how these same mechanisms play out in the wild via a data-driven, longitudinal analysis of a large online news discussion community. This analysis reveals temporal mood effects, and explores long range patterns of repeated exposure to trolling. A predictive model of trolling behavior shows that mood and discussion context together can explain trolling behavior better than an individual's history of trolling. These results combine to suggest that ordinary people can, under the right circumstances, behave like trolls.
Hierarchical Spatio-temporal Visual Analysis of Cluster Evolution in Electrocorticography Data
Murugesan, Sugeerth; Bouchard, Kristofer; Chang, Edward; ...
2016-10-02
Here, we present ECoG ClusterFlow, a novel interactive visual analysis tool for the exploration of high-resolution Electrocorticography (ECoG) data. Our system detects and visualizes dynamic high-level structures, such as communities, using the time-varying spatial connectivity network derived from the high-resolution ECoG data. ECoG ClusterFlow provides a multi-scale visualization of the spatio-temporal patterns underlying the time-varying communities using two views: 1) an overview summarizing the evolution of clusters over time and 2) a hierarchical glyph-based technique that uses data aggregation and small multiples techniques to visualize the propagation of clusters in their spatial domain. ECoG ClusterFlow makes it possible 1) tomore » compare the spatio-temporal evolution patterns across various time intervals, 2) to compare the temporal information at varying levels of granularity, and 3) to investigate the evolution of spatial patterns without occluding the spatial context information. Lastly, we present case studies done in collaboration with neuroscientists on our team for both simulated and real epileptic seizure data aimed at evaluating the effectiveness of our approach.« less
Anyone Can Become a Troll: Causes of Trolling Behavior in Online Discussions
Cheng, Justin; Bernstein, Michael; Danescu-Niculescu-Mizil, Cristian; Leskovec, Jure
2018-01-01
In online communities, antisocial behavior such as trolling disrupts constructive discussion. While prior work suggests that trolling behavior is confined to a vocal and antisocial minority, we demonstrate that ordinary people can engage in such behavior as well. We propose two primary trigger mechanisms: the individual’s mood, and the surrounding context of a discussion (e.g., exposure to prior trolling behavior). Through an experiment simulating an online discussion, we find that both negative mood and seeing troll posts by others significantly increases the probability of a user trolling, and together double this probability. To support and extend these results, we study how these same mechanisms play out in the wild via a data-driven, longitudinal analysis of a large online news discussion community. This analysis reveals temporal mood effects, and explores long range patterns of repeated exposure to trolling. A predictive model of trolling behavior shows that mood and discussion context together can explain trolling behavior better than an individual’s history of trolling. These results combine to suggest that ordinary people can, under the right circumstances, behave like trolls. PMID:29399664
Rudin, Robert S; Schneider, Eric C; Volk, Lynn A; Szolovits, Peter; Salzberg, Claudia A; Simon, Steven R; Bates, David W
2012-03-01
Federal and state agencies are investing substantial resources in the creation of community health information exchanges, which are consortia that enable independent health care organizations to exchange clinical data. However, under pressure to form accountable care organizations, medical groups may merge and support private health information exchanges. Such activity could reduce the potential utility of community exchanges-that is, the exchanges' capacity to share patient data across hospitals and physician practices that are independent. Simulations of care transitions based on data from ten Massachusetts communities suggest that there would have to be many such mergers to undermine the potential utility of health information exchanges. At the same time, because hospitals and the largest medical groups account for only 10-20 percent of care transitions in a community, information exchanges will still need to recruit a large proportion of the medical groups in a given community for the exchanges to maintain their usefulness in fostering information exchange across independent providers.
Dynamic simulation of crime perpetration and reporting to examine community intervention strategies.
Yonas, Michael A; Burke, Jessica G; Brown, Shawn T; Borrebach, Jeffrey D; Garland, Richard; Burke, Donald S; Grefenstette, John J
2013-10-01
To develop a conceptual computational agent-based model (ABM) to explore community-wide versus spatially focused crime reporting interventions to reduce community crime perpetrated by youth. Agents within the model represent individual residents and interact on a two-dimensional grid representing an abstract nonempirically grounded community setting. Juvenile agents are assigned initial random probabilities of perpetrating a crime and adults are assigned random probabilities of witnessing and reporting crimes. The agents' behavioral probabilities modify depending on the individual's experience with criminal behavior and punishment, and exposure to community crime interventions. Cost-effectiveness analyses assessed the impact of activating different percentages of adults to increase reporting and reduce community crime activity. Community-wide interventions were compared with spatially focused interventions, in which activated adults were focused in areas of highest crime prevalence. The ABM suggests that both community-wide and spatially focused interventions can be effective in reducing overall offenses, but their relative effectiveness may depend on the intensity and cost of the interventions. Although spatially focused intervention yielded localized reductions in crimes, such interventions were shown to move crime to nearby communities. Community-wide interventions can achieve larger reductions in overall community crime offenses than spatially focused interventions, as long as sufficient resources are available. The ABM demonstrates that community-wide and spatially focused crime strategies produce unique intervention dynamics influencing juvenile crime behaviors through the decisions and actions of community adults. It shows how such models might be used to investigate community-supported crime intervention programs by integrating community input and expertise and provides a simulated setting for assessing dimensions of cost comparison and intervention effect sustainability. ABM illustrates how intervention models might be used to investigate community-supported crime intervention programs.
Office Simulation Brings Stimulation and Enthusiasm
ERIC Educational Resources Information Center
Lynn, Helen
1976-01-01
An office simulation devised at an Oregon community college is now being offered in other U.S. and Canadian colleges and high schools. Each simulation employs from 4 to 36 individuals in three areas: main office, training division, and supportive services (customers, bank, etc.). "Employees" rotate positions every three weeks. (AJ)
The Effect of Lateral Boundary Values on Atmospheric Mercury Simulations with the CMAQ Model
Simulation results from three global-scale models of atmospheric mercury have been used to define three sets of initial condition and boundary condition (IC/BC) data for regional-scale model simulations over North America using the Community Multi-scale Air Quality (CMAQ) model. ...
Bacterial populations were examined in a simulated chloraminated drinking water distribution system (i.e. PVC pipe loop). After six months of continuous operation, coupons were incubated in CDC reactors receiving water from the simulated system to study biofilm development. The s...
Dynamic evaluation of two decades of WRF-CMAQ ozone simulations over the contiguous United States
Dynamic evaluation of the fully coupled Weather Research and Forecasting (WRF)– Community Multi-scale Air Quality (CMAQ) model ozone simulations over the contiguous United States (CONUS) using two decades of simulations covering the period from 1990 to 2010 is conducted to ...
Dynamic evaluation of two decades of WRF-CMAQ ozone simulations over the contiguous United States
Dynamic evaluation of the fully coupled Weather Research and Forecasting (WRF)– Community Multi-scale Air Quality (CMAQ) model ozone simulations over the contiguous United States (CONUS) using two decades of simulations covering the period from 1990 to 2010 is conducted to assess...
e-Science on Earthquake Disaster Mitigation by EUAsiaGrid
NASA Astrophysics Data System (ADS)
Yen, Eric; Lin, Simon; Chen, Hsin-Yen; Chao, Li; Huang, Bor-Shoh; Liang, Wen-Tzong
2010-05-01
Although earthquake is not predictable at this moment, with the aid of accurate seismic wave propagation analysis, we could simulate the potential hazards at all distances from possible fault sources by understanding the source rupture process during large earthquakes. With the integration of strong ground-motion sensor network, earthquake data center and seismic wave propagation analysis over gLite e-Science Infrastructure, we could explore much better knowledge on the impact and vulnerability of potential earthquake hazards. On the other hand, this application also demonstrated the e-Science way to investigate unknown earth structure. Regional integration of earthquake sensor networks could aid in fast event reporting and accurate event data collection. Federation of earthquake data center entails consolidation and sharing of seismology and geology knowledge. Capability building of seismic wave propagation analysis implies the predictability of potential hazard impacts. With gLite infrastructure and EUAsiaGrid collaboration framework, earth scientists from Taiwan, Vietnam, Philippine, Thailand are working together to alleviate potential seismic threats by making use of Grid technologies and also to support seismology researches by e-Science. A cross continental e-infrastructure, based on EGEE and EUAsiaGrid, is established for seismic wave forward simulation and risk estimation. Both the computing challenge on seismic wave analysis among 5 European and Asian partners, and the data challenge for data center federation had been exercised and verified. Seismogram-on-Demand service is also developed for the automatic generation of seismogram on any sensor point to a specific epicenter. To ease the access to all the services based on users workflow and retain the maximal flexibility, a Seismology Science Gateway integating data, computation, workflow, services and user communities would be implemented based on typical use cases. In the future, extension of the earthquake wave propagation to tsunami mitigation would be feasible once the user community support is in place.
NASA Astrophysics Data System (ADS)
Edburg, S. L.; Hicke, J. A.; Lawrence, D. M.; Thornton, P. E.
2009-12-01
Forest disturbances, such as fire, insects, and land-use change, significantly alter carbon budgets by changing carbon pools and fluxes. The mountain pine beetle (MPB) kills millions of hectares of trees in the western US, similar to the area killed by fire. Mountain pine beetles kill host trees by consuming the inner bark tissue, and require host tree death for reproduction. Despite being a significant disturbance to forested ecosystems, insects such as MPB are typically not represented in biogeochemical models, thus little is known about their impact on the carbon cycle. We investigate the role of past MPB outbreaks on carbon cycling in the western US using the NCAR Community Land Model with Carbon and Nitrogen cycles (CLM-CN). CLM-CN serves as the land model to the Community Climate System Model (CCSM), providing exchanges of energy, momentum, water, carbon, and nitrogen between the land and atmosphere. We run CLM-CN over the western US extending to eastern Colorado with a spatial resolution of 0.5° and a half hour time step. The model is first spun-up with repeated NCEP forcing (1948-1972) until carbon stocks and fluxes reach equilibrium (~ 3000 years), and then run from 1850 to 2004 with NCEP forcing and a dynamic plant functional type (PFT) database. Carbon stocks from this simulation are compared with stocks from the Forest Inventory Analysis (FIA) program. We prescribe MPB mortality area, once per year, in CLM-CN using USFS Aerial Detection Surveys (ADS) from the last few decades. We simulate carbon impacts of tree mortality by MPB within a model grid cell by moving carbon from live vegetative pools (leaf, stem, and roots) to dead pools (woody debris, litter, and dead roots). We compare carbon pools and fluxes for two simulations, one without MPB outbreaks and one with MPB outbreaks.
NASA Astrophysics Data System (ADS)
Miller, C. T.; McClure, J. E.; Bruning, K.
2017-12-01
Variations in the wettability of a solid material are well known to affect the flow of two fluids in a porous media. However, thesemechanisms have not been modeled with high fidelity at the microscale and such mechanisms are typically not included in macroscalemodels. Recent experimental work by Zhao, MacMinn, and Juanes published in the Proceedings of the National Academy of Sciences(2016) has investigated two-fluid displacement in microfluidic cells. Displacement patterns were investigated as a function of thecontact angle and the capillary number for both drainage and imbibition. These results yielded new mechanistic understanding ofprocesses such as pore filling and post bridging, which were imaged at high resolution. In a challenge to the pore-scale modeling community,the authors of this work released their experimental data and encouraged an international set of modeling research groups tosimulate the conditions that were experimentally observed. The intent is to compare the results that materialize to shed new light on thestate-of-science in pore-scale simulation of these challenging and interesting flow systems. In this work, we summarize the experimentalfindings and report on initial efforts to simulate these community challenge experiments using a high-resolution lattice-Boltzmann method(LBM). A three-dimensional, multiple-relaxation-time color model based on a 19-site lattice is advanced in this work to matchexperimental conditions in a novel manner. A computational approach is implemented for the LBM method on hybrid CPU-GPU nodes and shown toscale near optimally. A new algorithm is described to match experimental boundary conditions. A grid-resolution study is performedto determine the resolution needed to determine grid-independent numerical approximations. Finally, the LBM simulation results arecompared to the highly resolved microfluidic experiments, displacement mechanisms are investigated, and observations and analysis of thetopological state evolution of the system are reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrence, Peter J.; Feddema, Johannes J.; Bonan, Gordon B.
To assess the climate impacts of historical and projected land cover change and land use in the Community Climate System Model (CCSM4) we have developed new time series of transient Community Land Model (CLM4) Plant Functional Type (PFT) parameters and wood harvest parameters. The new parameters capture the dynamics of the Coupled Model Inter-comparison Project phase 5 (CMIP5) land cover change and wood harvest trajectories for the historical period from 1850 to 2005, and for the four Representative Concentration Pathways (RCP) periods from 2006 to 2100. Analysis of the biogeochemical impacts of land cover change in CCSM4 with the parametersmore » found the model produced an historical cumulative land use flux of 148.4 PgC from 1850 to 2005, which was in good agreement with other global estimates of around 156 PgC for the same period. The biogeophysical impacts of only applying the transient land cover change parameters in CCSM4 were cooling of the near surface atmospheric over land by -0.1OC, through increased surface albedo and reduced shortwave radiation absorption. When combined with other transient climate forcings, the higher albedo from land cover change was overwhelmed at global scales by decreases in snow albedo from black carbon deposition and from high latitude warming. At regional scales however the land cover change forcing persisted resulting in reduced warming, with the biggest impacts in eastern North America. The future CCSM4 RCP simulations showed that the CLM4 transient PFT and wood harvest parameters could be used to represent a wide range of human land cover change and land use scenarios. Furthermore, these simulations ranged from the RCP 4.5 reforestation scenario that was able to draw down 82.6 PgC from the atmosphere, to the RCP 8.5 wide scale deforestation scenario that released 171.6 PgC to the atmosphere.« less
Survival of a microbial soil community under Martian conditions
NASA Astrophysics Data System (ADS)
Hansen, A. A.; Noernberg, P.; Merrison, J.; Lomstein, B. Aa.; Finster, K. W.
2003-04-01
Because of the similarities between Earth and Mars early history the hypothesis was forwarded that Mars is a site where extraterrestrial life might have and/or may still occur(red). Sample-return missions are planned by NASA and ESA to test this hypothesis. The enormous economic costs and the logistic challenges of these missions make earth-based model facilities inevitable. The Mars simulation system at University of Aarhus, Denmark allows microbiological experiments under Mars analogue conditions. Thus detailed studies on the effect of Mars environmental conditions on the survival and the activity of a natural microbial soil community were carried out. Changes in the soil community were determined with a suite of different approaches: 1) total microbial respiration activity was investigated with 14C-glucose, 2) the physiological profile was investigated by the EcoLog-system, 3) colony forming units were determined by plate counts and 4) the microbial diversity on the molecular level was accessed with Denaturing Gradient Gel Electrophoresis. The simulation experiments showed that a part of the bacterial community survived Martian conditions corresponding to 9 Sol. These and future simulation experiments will contribute to our understanding of the possibility for extraterrestrial and terrestrial life on Mars.
BEANS - a software package for distributed Big Data analysis
NASA Astrophysics Data System (ADS)
Hypki, Arkadiusz
2018-07-01
BEANS software is a web-based, easy to install and maintain, new tool to store and analyse in a distributed way a massive amount of data. It provides a clear interface for querying, filtering, aggregating, and plotting data from an arbitrary number of data sets. Its main purpose is to simplify the process of storing, examining, and finding new relations in huge data sets. The software is an answer to a growing need of the astronomical community to have a versatile tool to store, analyse, and compare the complex astrophysical numerical simulations with observations (e.g. simulations of the Galaxy or star clusters with the Gaia archive). However, this software was built in a general form and it is ready to use in any other research field. It can be used as a building block for other open-source software too.
BEANS - a software package for distributed Big Data analysis
NASA Astrophysics Data System (ADS)
Hypki, Arkadiusz
2018-03-01
BEANS software is a web based, easy to install and maintain, new tool to store and analyse in a distributed way a massive amount of data. It provides a clear interface for querying, filtering, aggregating, and plotting data from an arbitrary number of datasets. Its main purpose is to simplify the process of storing, examining and finding new relations in huge datasets. The software is an answer to a growing need of the astronomical community to have a versatile tool to store, analyse and compare the complex astrophysical numerical simulations with observations (e.g. simulations of the Galaxy or star clusters with the Gaia archive). However, this software was built in a general form and it is ready to use in any other research field. It can be used as a building block for other open source software too.
Simulation and analysis of differential GPS
NASA Astrophysics Data System (ADS)
Denaro, R. P.
NASA is conducting a research program to evaluate differential Global Positioning System (GPS) concepts for civil helicopter navigation. It is pointed out that the civil helicopter community will probably be an early user of GPS because of the unique mission operations in areas where precise navigation aids are not available. However, many of these applications involve accuracy requirements which cannot be satisfied by conventional GPS. Such applications include remote area search and rescue, offshore oil platform approach, remote area precision landing, and other precise navigation operations. Differential GPS provides a promising approach for meeting very demanding accuracy requirements. The considered procedure eliminates some of the common bias errors experienced by conventional GPS. This is done by making use of a second GPS receiver. A simulation process is developed as a tool for analyzing various scenarios of GPS-referenced civil aircraft navigation.
Do we understand what creates 150-km echoes and gives them their distinct structure?
NASA Astrophysics Data System (ADS)
Oppenheim, M. M.; Kudeki, E.; Salas Reyes, P.; Dimant, Y. S.
2017-12-01
Researchers first discovered 150-km echoes over 50 years ago using the first large VHF radars near the geomagnetic equator. However, the underlying mechanism that creates and modulates them remains largely a mystery. Despite this lack of understanding the aeronomy community uses them to monitor daytime vertical plasma drifts between 130 and 160 km altitude. In a 2016 paper, Oppenheim and Dimant used simulations to show that photoelectrons can generate the type of echoes seen by the radars but this theory doesn't explain any of the detailed structures. This paper will show the modern observations of 150 km echoes using simultaneous radar and ionosonde measurements. It will then describe the latest analysis to attempt to explain these features using large-scale kinetic simulations of photoelectrons interacting with the ambient ionospheric plasma under a range of conditions.
A Simulated Stream Ecology Study.
ERIC Educational Resources Information Center
Zampella, Robert A.
1979-01-01
Describes a simulated field experience to study stream ecology in the classroom. Secondary students determine the composition of the stream community, describe the distribution of the benthic invertebrates, and design a food web. (Author/MA)
Dynamics and control of diseases in networks with community structure.
Salathé, Marcel; Jones, James H
2010-04-08
The dynamics of infectious diseases spread via direct person-to-person transmission (such as influenza, smallpox, HIV/AIDS, etc.) depends on the underlying host contact network. Human contact networks exhibit strong community structure. Understanding how such community structure affects epidemics may provide insights for preventing the spread of disease between communities by changing the structure of the contact network through pharmaceutical or non-pharmaceutical interventions. We use empirical and simulated networks to investigate the spread of disease in networks with community structure. We find that community structure has a major impact on disease dynamics, and we show that in networks with strong community structure, immunization interventions targeted at individuals bridging communities are more effective than those simply targeting highly connected individuals. Because the structure of relevant contact networks is generally not known, and vaccine supply is often limited, there is great need for efficient vaccination algorithms that do not require full knowledge of the network. We developed an algorithm that acts only on locally available network information and is able to quickly identify targets for successful immunization intervention. The algorithm generally outperforms existing algorithms when vaccine supply is limited, particularly in networks with strong community structure. Understanding the spread of infectious diseases and designing optimal control strategies is a major goal of public health. Social networks show marked patterns of community structure, and our results, based on empirical and simulated data, demonstrate that community structure strongly affects disease dynamics. These results have implications for the design of control strategies.
Simulation to Support Local Search in Trajectory Optimization Planning
NASA Technical Reports Server (NTRS)
Morris, Robert A.; Venable, K. Brent; Lindsey, James
2012-01-01
NASA and the international community are investing in the development of a commercial transportation infrastructure that includes the increased use of rotorcraft, specifically helicopters and civil tilt rotors. However, there is significant concern over the impact of noise on the communities surrounding the transportation facilities. One way to address the rotorcraft noise problem is by exploiting powerful search techniques coming from artificial intelligence coupled with simulation and field tests to design low-noise flight profiles which can be tested in simulation or through field tests. This paper investigates the use of simulation based on predictive physical models to facilitate the search for low-noise trajectories using a class of automated search algorithms called local search. A novel feature of this approach is the ability to incorporate constraints directly into the problem formulation that addresses passenger safety and comfort.
Tupper, Judith B; Pearson, Karen B; Meinersmann, Krista M; Dvorak, Jean
2013-06-01
Continuing education for health care workers is an important mechanism for maintaining patient safety and high-quality health care. Interdisciplinary continuing education that incorporates simulation can be an effective teaching strategy for improving patient safety. Health care professionals who attended a recent Patient Safety Academy had the opportunity to experience firsthand a simulated situation that included many potential patient safety errors. This high-fidelity activity combined the best practice components of a simulation and a collaborative experience that promoted interdisciplinary communication and learning. Participants were challenged to see, learn, and experience "ah-ha" moments of insight as a basis for error reduction and quality improvement. This innovative interdisciplinary educational training method can be offered in place of traditional lecture or online instruction in any facility, hospital, nursing home, or community care setting. Copyright 2013, SLACK Incorporated.
SBML-SAT: a systems biology markup language (SBML) based sensitivity analysis tool
Zi, Zhike; Zheng, Yanan; Rundell, Ann E; Klipp, Edda
2008-01-01
Background It has long been recognized that sensitivity analysis plays a key role in modeling and analyzing cellular and biochemical processes. Systems biology markup language (SBML) has become a well-known platform for coding and sharing mathematical models of such processes. However, current SBML compatible software tools are limited in their ability to perform global sensitivity analyses of these models. Results This work introduces a freely downloadable, software package, SBML-SAT, which implements algorithms for simulation, steady state analysis, robustness analysis and local and global sensitivity analysis for SBML models. This software tool extends current capabilities through its execution of global sensitivity analyses using multi-parametric sensitivity analysis, partial rank correlation coefficient, SOBOL's method, and weighted average of local sensitivity analyses in addition to its ability to handle systems with discontinuous events and intuitive graphical user interface. Conclusion SBML-SAT provides the community of systems biologists a new tool for the analysis of their SBML models of biochemical and cellular processes. PMID:18706080
SBML-SAT: a systems biology markup language (SBML) based sensitivity analysis tool.
Zi, Zhike; Zheng, Yanan; Rundell, Ann E; Klipp, Edda
2008-08-15
It has long been recognized that sensitivity analysis plays a key role in modeling and analyzing cellular and biochemical processes. Systems biology markup language (SBML) has become a well-known platform for coding and sharing mathematical models of such processes. However, current SBML compatible software tools are limited in their ability to perform global sensitivity analyses of these models. This work introduces a freely downloadable, software package, SBML-SAT, which implements algorithms for simulation, steady state analysis, robustness analysis and local and global sensitivity analysis for SBML models. This software tool extends current capabilities through its execution of global sensitivity analyses using multi-parametric sensitivity analysis, partial rank correlation coefficient, SOBOL's method, and weighted average of local sensitivity analyses in addition to its ability to handle systems with discontinuous events and intuitive graphical user interface. SBML-SAT provides the community of systems biologists a new tool for the analysis of their SBML models of biochemical and cellular processes.
Chang, Jie; Ye, Dan; Lv, Bing; Jiang, Minghuan; Zhu, Shan; Yan, Kangkang; Tian, Yun; Fang, Yu
2017-04-01
To quantify sales of antibiotics without a medical prescription and to assess the quality of pharmacy services in relation to the antibiotics sold in community pharmacies in urban China. A multicentre cross-sectional survey of community pharmacies was undertaken in 2015 using the simulated client method. Two clinical case scenarios (paediatric diarrhoea and adult acute upper respiratory infection) were presented at systematically sampled community pharmacies in Eastern (Nanjing), Central (Changsha) and Western China (Xi'an). Of 256 pharmacies, antibiotics were obtained without a prescription from 55.9% (95% CI: 49.5%-62.0%) when paediatric diarrhoea was simulated and from 77.7% (95% CI: 72.1%-82.7%) when adult respiratory infection was simulated. Of the pharmacies where antibiotics were dispensed, 83.9% and 66.3% dispensed after the simulated clients requested or insisted in the case of paediatric diarrhoea and adult respiratory infection, respectively. Significant differences ( P < 0.001, χ 2 test) in inappropriate antibiotic dispensing were found among cities, with 57.7%, 37.3% and 73.7% in the case of paediatric diarrhoea and 60.8%, 80.7% and 96.1% in adult respiratory infection in Nanjing, Changsha and Xi'an, respectively. Pharmacists were available in only 14.8% (95% CI: 10.7%-19.8%) of the pharmacies. The performance of pharmacy staff regarding the provision of information and advice was unsatisfactory. Antibiotics were easily obtained without a prescription in community pharmacies in urban China. Measures to enhance the enforcement of prescription-only regulations and training programmes for pharmacy staff to promote the appropriate use of antibiotics are warranted. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Lübken, M; Wichern, M; Letsiou, I; Kehl, O; Bischof, F; Horn, H
2007-01-01
Thermophilic anaerobic digestion in compact systems can be an economical and ecological reasonable decentralised process technique, especially for rural areas. Thermophilic process conditions are important for a sufficient removal of pathogens. The high energy demand, however, can make such systems unfavourable in terms of energy costs. This is the case when low concentrated wastewater is treated or the system is operated at low ambient temperatures. In this paper we present experimental results of a compact thermophilic anaerobic system obtained with fluorescent in situ hybridisation (FISH) analysis and mathematical simulation. The system was operated with faecal sludge for a period of 135 days and with a model substrate consisting of forage and cellulose for a period of 60 days. The change in the microbial community due to the two different substrates treated could be well observed by the FISH analysis. The Anaerobic Digestion Model no. 1 (ADM1) was used to evaluate system performance at different temperature conditions. The model was extended to contribute to decreased methanogenic activity at lower temperatures and was used to calculate energy production. A model was developed to calculate the major parts of energy consumed by the digester itself at different temperature conditions. It was demonstrated by the simulation study that a reduction of the process temperature can lead to higher net energy yield. The simulation study additionally showed that the effect of temperature on the energy yield is higher when a substrate is treated with high protein content.
Exploring JWST's Capability to Constrain Habitability on Simulated Terrestrial TESS Planets
NASA Astrophysics Data System (ADS)
Tremblay, Luke; Britt, Amber; Batalha, Natasha; Schwieterman, Edward; Arney, Giada; Domagal-Goldman, Shawn; Mandell, Avi; Planetary Systems Laboratory; Virtual Planetary Laboratory
2017-01-01
In the following, we have worked to develop a flexible "observability" scale of biologically relevant molecules in the atmospheres of newly discovered exoplanets for the instruments aboard NASA's next flagship mission, the James Webb Space Telescope (JWST). We sought to create such a scale in order to provide the community with a tool with which to optimize target selection for JWST observations based on detections of the upcoming Transiting Exoplanet Satellite Survey (TESS). Current literature has laid the groundwork for defining both biologically relevant molecules as well as what characteristics would make a new world "habitable", but it has so far lacked a cohesive analysis of JWST's capabilities to observe these molecules in exoplanet atmospheres and thereby constrain habitability. In developing our Observability Scale, we utilized a range of hypothetical planets (over planetary radii and stellar insolation) and generated three self-consistent atmospheric models (of dierent molecular compositions) for each of our simulated planets. With these planets and their corresponding atmospheres, we utilized the most accurate JWST instrument simulator, created specically to process transiting exoplanet spectra. Through careful analysis of these simulated outputs, we were able to determine the relevant parameters that effected JWST's ability to constrain each individual molecular bands with statistical accuracy and therefore generate a scale based on those key parameters. As a preliminary test of our Observability Scale, we have also applied it to the list of TESS candidate stars in order to determine JWST's observational capabilities for any soon-to-be-detected planet in those solar systems.
2010-06-01
Military Scenario Definition Language (MSDL) for Nontraditional Warfare Scenarios," Paper 09S- SIW -001, Proceedings of the Spring Simulation...Update to the M&S Community," Paper 09S- SIW -002, Proceedings of the Spring Simulation Interoperability Workshop, Simulation Interoperability...Multiple Simulations: An Application of the Military Scenario Definition Language (MSDL)," Paper 09S- SIW -003, Proc. of the Spring Simulation
Scanza, R. A.; Mahowald, N.; Ghan, S.; ...
2014-07-02
The mineralogy of desert dust is important due to its effect on radiation, clouds and biogeochemical cycling of trace nutrients. This study presents the simulation of dust radiative forcing as a function of both mineral composition and size at the global scale using mineral soil maps for estimating emissions. Externally mixed mineral aerosols in the bulk aerosol module in the Community Atmosphere Model version 4 (CAM4) and internally mixed mineral aerosols in the modal aerosol module in the Community Atmosphere Model version 5.1 (CAM5) embedded in the Community Earth System Model version 1.0.5 (CESM) are speciated into common mineral componentsmore » in place of total dust. The simulations with mineralogy are compared to available observations of mineral atmospheric distribution and deposition along with observations of clear-sky radiative forcing efficiency. Based on these simulations, we estimate the all-sky direct radiative forcing at the top of the atmosphere as +0.05 W m −2 for both CAM4 and CAM5 simulations with mineralogy and compare this both with simulations of dust in release versions of CAM4 and CAM5 (+0.08 and +0.17 W m −2) and of dust with optimized optical properties, wet scavenging and particle size distribution in CAM4 and CAM5, −0.05 and −0.17 W m −2, respectively. The ability to correctly include the mineralogy of dust in climate models is hindered by its spatial and temporal variability as well as insufficient global in-situ observations, incomplete and uncertain source mineralogies and the uncertainties associated with data retrieved from remote sensing methods.« less
Scanza, Rachel; Mahowald, N.; Ghan, Steven J.; ...
2015-01-01
The mineralogy of desert dust is important due to its effect on radiation, clouds and biogeochemical cycling of trace nutrients. This study presents the simulation of dust radiative forcing as a function of both mineral composition and size at the global scale, using mineral soil maps for estimating emissions. Externally mixed mineral aerosols in the bulk aerosol module in the Community Atmosphere Model version 4 (CAM4) and internally mixed mineral aerosols in the modal aerosol module in the Community Atmosphere Model version 5.1 (CAM5) embedded in the Community Earth System Model version 1.0.5 (CESM) are speciated into common mineral componentsmore » in place of total dust. The simulations with mineralogy are compared to available observations of mineral atmospheric distribution and deposition along with observations of clear-sky radiative forcing efficiency. Based on these simulations, we estimate the all-sky direct radiative forcing at the top of the atmosphere as + 0.05 Wm⁻² for both CAM4 and CAM5 simulations with mineralogy. We compare this to the radiative forcing from simulations of dust in release versions of CAM4 and CAM5 (+0.08 and +0.17 Wm⁻²) and of dust with optimized optical properties, wet scavenging and particle size distribution in CAM4 and CAM5, -0.05 and -0.17 Wm⁻², respectively. The ability to correctly include the mineralogy of dust in climate models is hindered by its spatial and temporal variability as well as insufficient global in situ observations, incomplete and uncertain source mineralogies and the uncertainties associated with data retrieved from remote sensing methods.« less
Yamaura, Yuichi; Kery, Marc; Royle, Andy
2016-01-01
Community N-mixture abundance models for replicated counts provide a powerful and novel framework for drawing inferences related to species abundance within communities subject to imperfect detection. To assess the performance of these models, and to compare them to related community occupancy models in situations with marginal information, we used simulation to examine the effects of mean abundance (λ¯: 0.1, 0.5, 1, 5), detection probability (p¯: 0.1, 0.2, 0.5), and number of sampling sites (n site : 10, 20, 40) and visits (n visit : 2, 3, 4) on the bias and precision of species-level parameters (mean abundance and covariate effect) and a community-level parameter (species richness). Bias and imprecision of estimates decreased when any of the four variables (λ¯, p¯, n site , n visit ) increased. Detection probability p¯ was most important for the estimates of mean abundance, while λ¯ was most influential for covariate effect and species richness estimates. For all parameters, increasing n site was more beneficial than increasing n visit . Minimal conditions for obtaining adequate performance of community abundance models were n site ≥ 20, p¯ ≥ 0.2, and λ¯ ≥ 0.5. At lower abundance, the performance of community abundance and community occupancy models as species richness estimators were comparable. We then used additive partitioning analysis to reveal that raw species counts can overestimate β diversity both of species richness and the Shannon index, while community abundance models yielded better estimates. Community N-mixture abundance models thus have great potential for use with community ecology or conservation applications provided that replicated counts are available.
Optimal community structure for social contagions
NASA Astrophysics Data System (ADS)
Su, Zhen; Wang, Wei; Li, Lixiang; Stanley, H. Eugene; Braunstein, Lidia A.
2018-05-01
Community structure is an important factor in the behavior of real-world networks because it strongly affects the stability and thus the phase transition order of the spreading dynamics. We here propose a reversible social contagion model of community networks that includes the factor of social reinforcement. In our model an individual adopts a social contagion when the number of received units of information exceeds its adoption threshold. We use mean-field approximation to describe our proposed model, and the results agree with numerical simulations. The numerical simulations and theoretical analyses both indicate that there is a first-order phase transition in the spreading dynamics, and that a hysteresis loop emerges in the system when there is a variety of initially adopted seeds. We find an optimal community structure that maximizes spreading dynamics. We also find a rich phase diagram with a triple point that separates the no-diffusion phase from the two diffusion phases.
Learning to deal with crisis in the home: Part 2 - preparing preregistration students.
Gibson, Caroline E; Dickson, Caroline; Lawson, Bill; McMillan, Ailsa; Kelly, Helena
2015-12-01
The global shift of health care is from acute services to community and primary care. Therefore, registrants must be prepared to work effectively within diverse settings. This article is the second in a series discussing the preparation of nurses for contemporary health-care challenges in the community. In it, we outline the design, implementation, and evaluation of simulated emergency scenarios within an honours degree-level, pre-registration nursing curriculum in Scotland. Over 3 years, 99 final-year students participated in interactive sessions focusing on recognition and management of the deteriorating patient and emergency care. Clinical scenarios were designed and delivered collaboratively with community practitioners. Debriefing challenged the students to reflect on learning and transferability of skills of clinical reasoning and care management to the community context. Students considered the scenarios to be realistic and perceived that their confidence had increased. Development of such simulation exercises is worthy of further debate in education and practice.
Standardizing Exoplanet Analysis with the Exoplanet Characterization Tool Kit (ExoCTK)
NASA Astrophysics Data System (ADS)
Fowler, Julia; Stevenson, Kevin B.; Lewis, Nikole K.; Fraine, Jonathan D.; Pueyo, Laurent; Bruno, Giovanni; Filippazzo, Joe; Hill, Matthew; Batalha, Natasha; Wakeford, Hannah; Bushra, Rafia
2018-06-01
Exoplanet characterization depends critically on analysis tools, models, and spectral libraries that are constantly under development and have no single source nor sense of unified style or methods. The complexity of spectroscopic analysis and initial time commitment required to become competitive is prohibitive to new researchers entering the field, as well as a remaining obstacle for established groups hoping to contribute in a comparable manner to their peers. As a solution, we are developing an open-source, modular data analysis package in Python and a publicly facing web interface including tools that address atmospheric characterization, transit observation planning with JWST, JWST corongraphy simulations, limb darkening, forward modeling, and data reduction, as well as libraries of stellar, planet, and opacity models. The foundation of these software tools and libraries exist within pockets of the exoplanet community, but our project will gather these seedling tools and grow a robust, uniform, and well-maintained exoplanet characterization toolkit.
Comprehensive rotorcraft analysis methods
NASA Technical Reports Server (NTRS)
Stephens, Wendell B.; Austin, Edward E.
1988-01-01
The development and application of comprehensive rotorcraft analysis methods in the field of rotorcraft technology are described. These large scale analyses and the resulting computer programs are intended to treat the complex aeromechanical phenomena that describe the behavior of rotorcraft. They may be used to predict rotor aerodynamics, acoustic, performance, stability and control, handling qualities, loads and vibrations, structures, dynamics, and aeroelastic stability characteristics for a variety of applications including research, preliminary and detail design, and evaluation and treatment of field problems. The principal comprehensive methods developed or under development in recent years and generally available to the rotorcraft community because of US Army Aviation Research and Technology Activity (ARTA) sponsorship of all or part of the software systems are the Rotorcraft Flight Simulation (C81), Dynamic System Coupler (DYSCO), Coupled Rotor/Airframe Vibration Analysis Program (SIMVIB), Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics (CAMRAD), General Rotorcraft Aeromechanical Stability Program (GRASP), and Second Generation Comprehensive Helicopter Analysis System (2GCHAS).
Chan, Shih-Liang; Huang, Shu-Li
2004-09-01
Corresponding to the concept of 'Think globally, act locally and plan regionally' of sustainable development, this paper discusses the approach of planning a sustainable community in terms of systems thinking. We apply a systems tool, the sensitivity model (SM), to build a model of the development of the community of Ping-Ding, located adjacent to the Yang-Ming-Shan National Park, Taiwan. The major issue in the development of Ping-Ding is the conflict between environmental conservation and the development of a local tourism industry. With the involvement of local residents, planners, and interest groups, a system model of 26 variables was defined to identify characteristics of Ping-Ding through pattern recognition. Two scenarios concerning the sustainable development of Ping-Ding are simulated with interlinked feedbacks from variables. The results of the analysis indicate that the development of Ping-Ding would be better served by the planning of agriculture and the tourism industry. The advantages and shortfalls of applying SM in the current planning environment of Taiwan are also discussed to conclude this paper.
Lekfeldt, Jonas Duus Stevens; Magid, Jakob; Holm, Peter E; Nybroe, Ole; Brandt, Kristian Koefoed
2014-11-01
Copper (Cu) is known to accumulate in agricultural soils receiving urban waste products as fertilizers. We here report the use of the leucine incorporation technique to determine pollution-induced community tolerance (Leu-PICT) to Cu in a long-term agricultural field trial. A significantly increased bacterial community tolerance to Cu was observed for soils amended with organic waste fertilizers and was positively correlated with total soil Cu. However, metal speciation and whole-cell bacterial biosensor analysis demonstrated that the observed PICT responses could be explained entirely by Cu speciation and bioavailability artifacts during Leu-PICT detection. Hence, the agricultural application of urban wastes (sewage sludge or composted municipal waste) simulating more than 100 years of use did not result in sufficient accumulation of Cu to select for Cu resistance. Our findings also have implications for previously published PICT field studies and demonstrate that stringent PICT detection criteria are needed for field identification of specific toxicants. Copyright © 2014 Elsevier Ltd. All rights reserved.
Effects of a simulated hurricane disturbance on forest floor microbial communities
Sharon A. Cantrell; Marirosa Molina; D. Jean Lodge; Francisco J. Rivera-Figueroa; Maria Ortiz; Albany A. Marchetti; Mike J. Cyterski; José R. Pérez-Jiménez
2014-01-01
Forest floor microbial communities play a critical role in the processes of decomposition and nutrient cycling. The impact of cultivation, contamination, fire, and land management on soil microbial communities have been studied but there are few studies of microbial responses to the effects of tropical storms. The Canopy Trimming Experiment was executed in the Luquillo...
Christopher A. Dicus; Michael E. Scott
2006-01-01
This manuscript details a collaborative effort that reduced the risk of wildfire in an affluent, wildland-urban interface community in southern California while simultaneously minimizing the environmental impact to the site. FARSITE simulations illustrated the potential threat to the community of Rancho Santa Fe in San Diego County, California, where multimillion-...
Linda T.A. Van Diepen; Erik Lilleskov; Kurt S. Pregitzer
2011-01-01
Our previous investigation found elevated nitrogen deposition caused declines in abundance of arbuscular mycorrhizal fungi (AMF) associated with forest trees, but little is known about how nitrogen affects the AMF community composition and structure within forest ecosystems. We hypothesized that N deposition would lead to significant changes in the AMF community...
[Analysis of the bacterial community developing in the course of Sphagnum moss decomposition].
Kulichevskaia, I S; Belova, S E; Kevbrin, V V; Dedysh, S N; Zavarzin, G A
2007-01-01
Slow degradation of organic matter in acidic Sphagnum peat bogs suggests a limited activity of organotrophic microorganisms. Monitoring of the Sphagnum debris decomposition in a laboratory simulation experiment showed that this process was accompanied by a shift in the water color to brownish due to accumulation of humic substances and by the development of a specific bacterial community with a density of 2.4 x 10(7) cells ml(-1). About half of these organisms are metabolically active and detectable with rRNA-specific oligonucleotide probes. Molecular identification of the components of this microbial community showed the numerical dominance of bacteria affiliated with the phyla Alphaproteobacteria, Actinobacteria, and Phanctomycetes. The population sizes of Firmicutes and Bacteroidetes, which are believed to be the main agents of bacterially-mediated decomposition in eutrophic wetlands, were low. The numbers of planctomycetes increased at the final stage of Sphagnum decomposition. The representative isolates of Alphaproteobacteria were able to utilize galacturonic acid, the only low-molecular-weight organic compound detected in the water samples; the representatives of Planctomycetes were able to decompose some heteropolysaccharides, which points to the possible functional role of these groups of microorganisms in the community under study. Thus, the composition of the bacterial community responsible for Sphagnum decomposition in acidic and low-mineral oligotrophic conditions seems to be fundamentally different from that of the bacterial community which decomposes plant debris in eutrophic ecosystems at neutral pH.
Impact of oil on bacterial community structure in bioturbated sediments.
Stauffert, Magalie; Cravo-Laureau, Cristiana; Jézéquel, Ronan; Barantal, Sandra; Cuny, Philippe; Gilbert, Franck; Cagnon, Christine; Militon, Cécile; Amouroux, David; Mahdaoui, Fatima; Bouyssiere, Brice; Stora, Georges; Merlin, François-Xavier; Duran, Robert
2013-01-01
Oil spills threaten coastlines where biological processes supply essential ecosystem services. Therefore, it is crucial to understand how oil influences the microbial communities in sediments that play key roles in ecosystem functioning. Ecosystems such as sediments are characterized by intensive bioturbation due to burrowing macrofauna that may modify the microbial metabolisms. It is thus essential to consider the bioturbation when determining the impact of oil on microbial communities. In this study, an experimental laboratory device maintaining pristine collected mudflat sediments in microcosms closer to true environmental conditions--with tidal cycles and natural seawater--was used to simulate an oil spill under bioturbation conditions. Different conditions were applied to the microcosms including an addition of: standardized oil (Blend Arabian Light crude oil, 25.6 mg.g⁻¹ wet sediment), the common burrowing organism Hediste (Nereis) diversicolor and both the oil and H. diversicolor. The addition of H. diversicolor and its associated bioturbation did not affect the removal of petroleum hydrocarbons. After 270 days, 60% of hydrocarbons had been removed in all microcosms irrespective of the H. diversicolor addition. However, 16S-rRNA gene and 16S-cDNA T-RFLP and RT-PCR-amplicon libraries analysis showed an effect of the condition on the bacterial community structure, composition, and dynamics, supported by PerMANOVA analysis. The 16S-cDNA libraries from microcosms where H. diversicolor was added (oiled and un-oiled) showed a marked dominance of sequences related to Gammaproteobacteria. However, in the oiled-library sequences associated to Deltaproteobacteria and Bacteroidetes were also highly represented. The 16S-cDNA libraries from oiled-microcosms (with and without H. diversicolor addition) revealed two distinct microbial communities characterized by different phylotypes associated to known hydrocarbonoclastic bacteria and dominated by Gammaproteobacteria and Deltaproteobacteria. In the oiled-microcosms, the addition of H. diversicolor reduced the phylotype-richness, sequences associated to Actinobacteria, Firmicutes and Plantomycetes were not detected. These observations highlight the influence of the bioturbation on the bacterial community structure without affecting the biodegradation capacities.
Ionospheric Trend Over Wuhan During 1947-2017: Comparison Between Simulation and Observation
NASA Astrophysics Data System (ADS)
Yue, Xinan; Hu, Lianhuan; Wei, Yong; Wan, Weixing; Ning, Baiqi
2018-02-01
Since Roble and Dickinson (1989), who drew the community's attention about the greenhouse gas effect on the ionosphere, huge efforts have been implemented on ionospheric climate study. However, direct comparison between observations and simulations is still rare. Recently, the Wuhan ionosonde observations were digitized and standardized through unified method back to 1947. In this study, the NCAR-TIEGCM was driven by Mauna Loa Observatory observed CO2 level and International Geomagnetic Reference Field (IGRF) geomagnetic field to simulate their effects on ionospheric long-term trend over Wuhan. Only March equinox was considered in both data analysis and simulation. Simulation results show that the CO2 and geomagnetic field have comparable effect on hmF2 trend, while geomagnetic field effect is stronger than CO2 on foF2 trend over Wuhan. Both factors result in obvious but different diurnal variations of foF2/hmF2 long-term trends. The geomagnetic field effect is nonlinear versus years since the long-term variation of geomagnetic field intensity and orientation is complex. Mean value of foF2 and hmF2 trend is (-0.0021 MHz/yr, -0.106 km/yr) and (-0.0022 MHz/yr, -0.0763 km/yr) for observation and simulation, respectively. Regarding the diurnal variation of the trend, the simulation accords well with that of observation except hmF2 results around 12 UT. Overall, good agreement between observation and simulation illustrates the good quality of Wuhan ionosonde long-term data and the validity of ancient ionosphere reconstruction based on realistic indices driving simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Notz, Dirk; Jahn, Alexandra; Holland, Marika
A better understanding of the role of sea ice for the changing climate of our planet is the central aim of the diagnostic Coupled Model Intercomparison Project 6 (CMIP6)-endorsed Sea-Ice Model Intercomparison Project (SIMIP). To reach this aim, SIMIP requests sea-ice-related variables from climate-model simulations that allow for a better understanding and, ultimately, improvement of biases and errors in sea-ice simulations with large-scale climate models. This then allows us to better understand to what degree CMIP6 model simulations relate to reality, thus improving our confidence in answering sea-ice-related questions based on these simulations. Furthermore, the SIMIP protocol provides a standardmore » for sea-ice model output that will streamline and hence simplify the analysis of the simulated sea-ice evolution in research projects independent of CMIP. To reach its aims, SIMIP provides a structured list of model output that allows for an examination of the three main budgets that govern the evolution of sea ice, namely the heat budget, the momentum budget, and the mass budget. Furthermore, we explain the aims of SIMIP in more detail and outline how its design allows us to answer some of the most pressing questions that sea ice still poses to the international climate-research community.« less
Notz, Dirk; Jahn, Alexandra; Holland, Marika; ...
2016-09-23
A better understanding of the role of sea ice for the changing climate of our planet is the central aim of the diagnostic Coupled Model Intercomparison Project 6 (CMIP6)-endorsed Sea-Ice Model Intercomparison Project (SIMIP). To reach this aim, SIMIP requests sea-ice-related variables from climate-model simulations that allow for a better understanding and, ultimately, improvement of biases and errors in sea-ice simulations with large-scale climate models. This then allows us to better understand to what degree CMIP6 model simulations relate to reality, thus improving our confidence in answering sea-ice-related questions based on these simulations. Furthermore, the SIMIP protocol provides a standardmore » for sea-ice model output that will streamline and hence simplify the analysis of the simulated sea-ice evolution in research projects independent of CMIP. To reach its aims, SIMIP provides a structured list of model output that allows for an examination of the three main budgets that govern the evolution of sea ice, namely the heat budget, the momentum budget, and the mass budget. Furthermore, we explain the aims of SIMIP in more detail and outline how its design allows us to answer some of the most pressing questions that sea ice still poses to the international climate-research community.« less
Bivalve grazing can shape phytoplankton communities
Lucas, Lisa; Cloern, James E.; Thompson, Janet K.; Stacey, Mark T.; Koseff, Jeffrey K.
2016-01-01
The ability of bivalve filter feeders to limit phytoplankton biomass in shallow waters is well-documented, but the role of bivalves in shaping phytoplankton communities is not. The coupled effect of bivalve grazing at the sediment-water interface and sinking of phytoplankton cells to that bottom filtration zone could influence the relative biomass of sinking (diatoms) and non-sinking phytoplankton. Simulations with a pseudo-2D numerical model showed that benthic filter feeding can interact with sinking to alter diatom:non-diatom ratios. Cases with the smallest proportion of diatom biomass were those with the fastest sinking speeds and strongest bivalve grazing rates. Hydrodynamics modulated the coupled sinking-grazing influence on phytoplankton communities. For example, in simulations with persistent stratification, the non-sinking forms accumulated in the surface layer away from bottom grazers while the sinking forms dropped out of the surface layer toward bottom grazers. Tidal-scale stratification also influenced vertical gradients of the two groups in opposite ways. The model was applied to Suisun Bay, a low-salinity habitat of the San Francisco Bay system that was transformed by the introduction of the exotic clam Potamocorbula amurensis. Simulation results for this Bay were similar to (but more muted than) those for generic habitats, indicating that P. amurensis grazing could have caused a disproportionate loss of diatoms after its introduction. Our model simulations suggest bivalve grazing affects both phytoplankton biomass and community composition in shallow waters. We view these results as hypotheses to be tested with experiments and more complex modeling approaches.
this report describes the theoretical development, parameterization, and application software of a generalized, community-based, bioaccumulation model called BASS (Bioaccumulation and Aquatic System Simulator).
Simulator sickness research program at NASA-Ames Research Center
NASA Technical Reports Server (NTRS)
Mccauley, Michael E.; Cook, Anthony M.
1987-01-01
The simulator sickness syndrome is receiving increased attention in the simulation community. NASA-Ames Research Center has initiated a program to facilitate the exchange of information on this topic among the tri-services and other interested government organizations. The program objectives are to identify priority research issues, promote efficient research strategies, serve as a repository of information, and disseminate information to simulator users.
Small scale rainfall simulators: Challenges for a future use in soil erosion research
NASA Astrophysics Data System (ADS)
Ries, Johannes B.; Iserloh, Thomas; Seeger, Manuel
2013-04-01
Rainfall simulation on micro-plot scale is a method used worldwide to assess the generation of overland flow, soil erosion, infiltration and interrelated processes such as soil sealing, crusting, splash and redistribution of solids and solutes. The produced data are of great significance not only for the analysis of the simulated processes, but also as a source of input-data for soil erosion modelling. The reliability of the data is therefore of paramount importance, and quality management of rainfall simulation procedure a general responsibility of the rainfall simulation community. This was an accepted outcome at the "International Rainfall Simulator Workshop 2011" at Trier University. The challenges of the present and near future use of small scale rainfall simulations concern the comparability of results and scales, the quality of the data for soil erosion modelling, and further technical developments to overcome physical limitations and constraints. Regarding the high number of research questions, different fields of application, and due to the great technical creativity of researchers, a large number of different types of rainfall simulators is available. But each of the devices produces a different rainfall, leading to different kinetic energy values influencing soil surface and erosion processes. Plot sizes are also variable, as well as the experimental simulation procedures. As a consequence, differing runoff and erosion results are produced. The presentation summarises the three important aspects of rainfall simulations, following a processual order: 1. Input-factor "rain" and its calibration 2. Surface-factor "plot" and its documentation 3. Output-factors "runoff" and "sediment concentration" Finally, general considerations about the limitations and challenges for further developments and applications of rainfall simulation data are presented.
NASA Astrophysics Data System (ADS)
Zimmer, J.; O'Connor, B.; Halmo, K.; Xiong, A.
2016-02-01
Nitrification is one of the processes that prevents accumulation of ammonium in aerobic near-bottom water of almost any basin-type ecosystem. Ammonium arises in part from digestive excretion as well as decomposition and diagenesis of organic matter. Ammonium inputs are especially pronounced near abundant benthic invertebrate communities (e.g., mussel or oyster beds) and where fish congregate en masse. Recent basin-scale changes in ecology of Lake Michigan have resulted in several zones of high excretion that are not accompanied by ammonium accumulation. A roller-bottle simulation of the sediment-water interface, using sand as the solid phase, is used with natural enrichments of nitrifier communities to measure empirical values for key terms in a mathematical model to describe the N-cycle process components of our closed model system. The maximum velocity of transformation is directly proportional to solid phase material in a mature system, with half-saturation values for ammonium and nitrite transformation of 207.3 and 10.8 µM respectively. These are significantly higher than ambient concentrations of 2-5 and 0.2-1.0 µM respectively for dense invertebrate communities but in line with observed values for dense fish aggregations. Thus regulation of reduced nitrogenous compounds can be very effective in these communities when there is sufficient interaction of the solid substrate with the source water. Further analysis of rate parameters and controls in the model system, and assessment of different natural and artificial solid phases for biofilm establishment and nitrification parameters is underway.
Numerical Simulation and Scaling Analysis of Cell Printing
NASA Astrophysics Data System (ADS)
Qiao, Rui; He, Ping
2011-11-01
Cell printing, i.e., printing three dimensional (3D) structures of cells held in a tissue matrix, is gaining significant attention in the biomedical community. The key idea is to use inkjet printer or similar devices to print cells into 3D patterns with a resolution comparable to the size of mammalian cells. Achieving such a resolution in vitro can lead to breakthroughs in areas such as organ transplantation. Although the feasibility of cell printing has been demonstrated recently, the printing resolution and cell viability remain to be improved. Here we investigate a unit operation in cell printing, namely, the impact of a cell-laden droplet into a pool of highly viscous liquids. The droplet and cell dynamics are quantified using both direct numerical simulation and scaling analysis. These studies indicate that although cell experienced significant stress during droplet impact, the duration of such stress is very short, which helps explain why many cells can survive the cell printing process. These studies also revealed that cell membrane can be temporarily ruptured during cell printing, which is supported by indirect experimental evidence.
Spatial Analysis of Traffic and Routing Path Methods for Tsunami Evacuation
NASA Astrophysics Data System (ADS)
Fakhrurrozi, A.; Sari, A. M.
2018-02-01
Tsunami disaster occurred relatively very fast. Thus, it has a very large-scale impact on both non-material and material aspects. Community evacuation caused mass panic, crowds, and traffic congestion. A further research in spatial based modelling, traffic engineering and splitting zone evacuation simulation is very crucial as an effort to reduce higher losses. This topic covers some information from the previous research. Complex parameters include route selection, destination selection, the spontaneous timing of both the departure of the source and the arrival time to destination and other aspects of the result parameter in various methods. The simulation process and its results, traffic modelling, and routing analysis emphasized discussion which is the closest to real conditions in the tsunami evacuation process. The method that we should highlight is Clearance Time Estimate based on Location Priority in which the computation result is superior to others despite many drawbacks. The study is expected to have input to improve and invent a new method that will be a part of decision support systems for disaster risk reduction of tsunamis disaster.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keyes, D.; McInnes, L. C.; Woodward, C.
This report is an outcome of the workshop Multiphysics Simulations: Challenges and Opportunities, sponsored by the Institute of Computing in Science (ICiS). Additional information about the workshop, including relevant reading and presentations on multiphysics issues in applications, algorithms, and software, is available via https://sites.google.com/site/icismultiphysics2011/. We consider multiphysics applications from algorithmic and architectural perspectives, where 'algorithmic' includes both mathematical analysis and computational complexity and 'architectural' includes both software and hardware environments. Many diverse multiphysics applications can be reduced, en route to their computational simulation, to a common algebraic coupling paradigm. Mathematical analysis of multiphysics coupling in this form is not alwaysmore » practical for realistic applications, but model problems representative of applications discussed herein can provide insight. A variety of software frameworks for multiphysics applications have been constructed and refined within disciplinary communities and executed on leading-edge computer systems. We examine several of these, expose some commonalities among them, and attempt to extrapolate best practices to future systems. From our study, we summarize challenges and forecast opportunities. We also initiate a modest suite of test problems encompassing features present in many applications.« less
An Update on Improvements to NiCE Support for PROTEUS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, Andrew; McCaskey, Alexander J.; Billings, Jay Jay
2015-09-01
The Department of Energy Office of Nuclear Energy's Nuclear Energy Advanced Modeling and Simulation (NEAMS) program has supported the development of the NEAMS Integrated Computational Environment (NiCE), a modeling and simulation workflow environment that provides services and plugins to facilitate tasks such as code execution, model input construction, visualization, and data analysis. This report details the development of workflows for the reactor core neutronics application, PROTEUS. This advanced neutronics application (primarily developed at Argonne National Laboratory) aims to improve nuclear reactor design and analysis by providing an extensible and massively parallel, finite-element solver for current and advanced reactor fuel neutronicsmore » modeling. The integration of PROTEUS-specific tools into NiCE is intended to make the advanced capabilities that PROTEUS provides more accessible to the nuclear energy research and development community. This report will detail the work done to improve existing PROTEUS workflow support in NiCE. We will demonstrate and discuss these improvements, including the development of flexible IO services, an improved interface for input generation, and the addition of advanced Fortran development tools natively in the platform.« less
Effect of Increasing Nitrogen Deposition on Soil Microbial Communities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Shengmu; Xue, Kai; He, Zhili
2010-05-17
Increasing nitrogen deposition, increasing atmospheric CO2, and decreasing biodiversity are three main environmental changes occurring on a global scale. The BioCON (Biodiversity, CO2, and Nitrogen) ecological experiment site at the University of Minnesota's Cedar Creek Ecosystem Science Reserve started in 1997, to better understand how these changes would affect soil systems. To understand how increasing nitrogen deposition affects the microbial community diversity, heterogeneity, and functional structure impact soil microbial communities, 12 samples were collected from the BioCON plots in which nitrogenous fertilizer was added to simulate the effect of increasing nitrogen deposition and 12 samples from without added fertilizer. DNAmore » from the 24 samples was extracted using a freeze-grind protocol, amplified, labeled with a fluorescent dye, and then hybridized to GeoChip, a functional gene array containing probes for genes involved in N, S and C cycling, metal resistance and organic contaminant degradation. Detrended correspondence analysis (DCA) of all genes detected was performed to analyze microbial community patterns. The first two axes accounted for 23.5percent of the total variation. The samples fell into two major groups: fertilized and non-fertilized, suggesting that nitrogenous fertilizer had a significant impact on soil microbial community structure and diversity. The functional gene numbers detected in fertilized samples was less that detected in non-fertilizer samples. Functional genes involving in the N cycling were mainly discussed.« less
Hypothermia in a Rural Setting: An Emergency Medicine Simulation Scenario
Jong, Robert; Heroux, Aron; Dubrowski, Adam
2017-01-01
Patients presenting with hypothermia in a rural emergency department can be quite challenging to manage without significant mortality and morbidity. Standard medical school curricula do not fully prepare trainees for the unique aspects of practice in northern rural and remote communities. Training opportunities on site may provide a solution to this lack of experience. However, these communities often have limited simulation-based resources and expertise for conducting and developing simulation scenarios. In this technical report, we outline a hypothermia simulation that utilizes only basic resources and is, thus, practical for rural and remote facilities. The aim of this report is to better equip trainees, clinicians, and emergency department staff who may encounter such a scenario in their practice. While the simulation is specifically designed for medical students, resident doctors, and emergency department staff, it could also be applicable in other low-resource settings, such as military bases, search and rescue stations, and arctic travel and tourism infirmaries. PMID:29511605
Energy considerations in the Community Atmosphere Model (CAM)
Williamson, David L.; Olson, Jerry G.; Hannay, Cécile; ...
2015-06-30
An error in the energy formulation in the Community Atmosphere Model (CAM) is identified and corrected. Ten year AMIP simulations are compared using the correct and incorrect energy formulations. Statistics of selected primary variables all indicate physically insignificant differences between the simulations, comparable to differences with simulations initialized with rounding sized perturbations. The two simulations are so similar mainly because of an inconsistency in the application of the incorrect energy formulation in the original CAM. CAM used the erroneous energy form to determine the states passed between the parameterizations, but used a form related to the correct formulation for themore » state passed from the parameterizations to the dynamical core. If the incorrect form is also used to determine the state passed to the dynamical core the simulations are significantly different. In addition, CAM uses the incorrect form for the global energy fixer, but that seems to be less important. The difference of the magnitude of the fixers using the correct and incorrect energy definitions is very small.« less
A Reduced Form Model (RFM) is a mathematical relationship between the inputs and outputs of an air quality model, permitting estimation of additional modeling without costly new regional-scale simulations. A 21-year Community Multiscale Air Quality (CMAQ) simulation for the con...
ERIC Educational Resources Information Center
Felts, Renee R.
2013-01-01
As increasing numbers of students enroll in introductory computer application courses, instructors have difficulty providing the needed assistance in the traditional laboratory setting. Simulators have been used to facilitate college instruction, but the effectiveness of using a simulator in an introductory computer application course had not yet…
Developing a Policy Flight Simulator to Facilitate the Adoption of an Evidence-Based Intervention
Yu, Zhongyuan; Hirschman, Karen B.; Pepe, Kara; Pauly, Mark V.; Naylor, Mary D.; Rouse, William B.
2018-01-01
While the use of evidence-based interventions (EBIs) has been advocated by the medical research community for quite some time, uptake of these interventions by healthcare providers has been slow. One possible explanation is that it is challenging for providers to estimate impacts of a specific EBI on their particular organization. To address that concern, we developed and evaluated a type of simulation called a policy flight simulator to determine if it could improve the adoption decision about a specific EBI, the transitional care model (TCM). The TCM uses an advanced practice nurse-led model of care to transition older adults with multiple chronic conditions from a hospitalization to home. An evaluation by a National Advisory Committee, made up of senior representatives from various stakeholders in the U.S. healthcare system, found the policy flight simulator to be a useful tool that has the potential to better inform adoption decisions. This paper describes the simulation development effort and documents lessons learned that may be useful to the healthcare modeling community and those interested in using simulation to support decisions based on EBIs. PMID:29805921
Hussain, Azhar; Ibrahim, Mohamed Izham; Malik, Madeeha
2013-10-01
The study aimed to document the state of insomnia management at community pharmacies in Pakistan. A cross-sectional study was conducted at randomly selected 371 pharmacies in three cities of Pakistan. Simulated patient visits were performed to collect information on case management of insomnia in terms of history taking and patient counseling at community pharmacies. The data was coded, entered and analyzed by using SPSS Version 16. Kruskal-Wallis and Mann Whitney tests (p<0.05) were performed to find out differences. The patients were mainly handled by salesman 83.8% (n=311), by pharmacist 3.5% (n=13) and pharmacy assistants 12.7% (n=47). The mean dispensing time was 1.11 minutes (SD=5.61) with the range of 0.5 - 6 minutes. Of the 371 simulated patients who visited the pharmacies, 72.8% (n=270) subjects were given medicines and 24.3% (n=90) subjects were referred to the doctor for treatment of insomnia. 61.8% (n=193) of the subjects were given benzodiazepines, 35.6% (n=111) antihistamines and 2.6% (n=8) NSAIDs at community pharmacies in the three cities. The mean cost of treatment in case of insomnia was PKR12.7 (SD=10.13, median=10). The disease management of insomnia by community pharmacies in Pakistan is not appropriate. The overall process of history taking, medication counselling and referral practices at community pharmacies either located in rural or urban setting and irrespective of the provider type and location of pharmacies, in the three cities is limited.
Microgravity effect on endophytic bacteria communities of Triticum aestivum
NASA Astrophysics Data System (ADS)
Qin, Youcai; Fu, Yuming; Chen, Huiwen; Liu, Hong; Sun, Yi
2018-02-01
Under normal gravity conditions, endophytic bacteria, one of the key bacterial community that inhabit in plant tissues, are well-known in promoting the plant growth and health, which are essential for long-term and long-distance manned microgravity space exploration. Here, we report how the Triticum aestivum endophytic bacterial communities behave differently under the simulated microgravity conditions. We demonstrate that, under simulated microgravity conditions, the microbial diversity in wheat seedling leaf increases while that in root decreases, compared to that cultivated under normal gravity conditions. We found that the dominant bacteria genus such as Pseudomonas, Paenibacillus and Bacillus significantly changes with gravity. The findings of this study provide important insight for space research, especially in terms of the Triticum aestivum cultivation in space.
Ross, R.M.; Long, E.S.; Dropkin, D.S.
2008-01-01
We compared naturally alkaline streams with limestone lithology to freestone streams with and without acid mine drainage (AMD) to predict benthic macroinvertebrate community recovery from AMD in limestone-treated watersheds. Surrogate-recovered (limestone) and, in many cases, freestone systems had significantly higher macroinvertebrate densities; diversity; taxa richness; Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa; EPT/chironomid ratios; scraper/collector - gatherer ratios; herbivores; collector - filterers; and scrapers. AMD-influenced systems had significantly greater numbers of Diptera and collector - gatherers. An entire trophic level (herbivores) was 'restored' in surrogate-recovered streams, which also showed greater trophic specialization. Indicator analysis identified seven taxa (within Crustacea, Diptera, Nematoda, Trichoptera, and Ephemeroptera) as significant indicators of limestone systems and six taxa (within Ephemeroptera, Plecoptera, Tricoptera, Coleoptera, and Mollusca) as significant freestone indicators, all useful as biological indicators of recovery from AMD. ?? Springer Science+Business Media B.V. 2007.
Linking Air Quality and Human Health Effects Models: An Application to the Los Angeles Air Basin
Stewart, Devoun R; Saunders, Emily; Perea, Roberto A; Fitzgerald, Rosa; Campbell, David E; Stockwell, William R
2017-01-01
Proposed emission control strategies for reducing ozone and particulate matter are evaluated better when air quality and health effects models are used together. The Community Multiscale Air Quality (CMAQ) model is the US Environmental Protection Agency’s model for determining public policy and forecasting air quality. CMAQ was used to forecast air quality changes due to several emission control strategies that could be implemented between 2008 and 2030 for the South Coast Air Basin that includes Los Angeles. The Environmental Benefits Mapping and Analysis Program—Community Edition (BenMAP-CE) was used to estimate health and economic impacts of the different emission control strategies based on CMAQ simulations. BenMAP-CE is a computer program based on epidemiologic studies that link human health and air quality. This modeling approach is better for determining optimum public policy than approaches that only examine concentration changes. PMID:29162976
Scientific Visualization to Study Flux Transfer Events at the Community Coordinated Modeling Center
NASA Technical Reports Server (NTRS)
Rastatter, Lutz; Kuznetsova, Maria M.; Sibeck, David G.; Berrios, David H.
2011-01-01
In this paper we present results of modeling of reconnection at the dayside magnetopause with subsequent development of flux transfer event signatures. The tools used include new methods that have been added to the suite of visualization methods that are used at the Community Coordinated Modeling Center (CCMC). Flux transfer events result from localized reconnection that connect magnetosheath magnetic field and plasma with magnetospheric fields and plasma and results in flux rope structures that span the dayside magnetopause. The onset of flux rope formation and the three-dimensional structure of flux ropes are studied as they have been modeled by high-resolution magnetohydrodynamic simulations of the dayside magnetosphere of the Earth. We show that flux transfer events are complex three-dimensional structures that require modern visualization and analysis techniques. Two suites of visualization methods are presented and we demonstrate the usefulness of those methods through the CCMC web site to the general science user.
A Statistical Framework for the Functional Analysis of Metagenomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharon, Itai; Pati, Amrita; Markowitz, Victor
2008-10-01
Metagenomic studies consider the genetic makeup of microbial communities as a whole, rather than their individual member organisms. The functional and metabolic potential of microbial communities can be analyzed by comparing the relative abundance of gene families in their collective genomic sequences (metagenome) under different conditions. Such comparisons require accurate estimation of gene family frequencies. They present a statistical framework for assessing these frequencies based on the Lander-Waterman theory developed originally for Whole Genome Shotgun (WGS) sequencing projects. They also provide a novel method for assessing the reliability of the estimations which can be used for removing seemingly unreliable measurements.more » They tested their method on a wide range of datasets, including simulated genomes and real WGS data from sequencing projects of whole genomes. Results suggest that their framework corrects inherent biases in accepted methods and provides a good approximation to the true statistics of gene families in WGS projects.« less
Modeling Dynamic Evolution of Online Friendship Network
NASA Astrophysics Data System (ADS)
Wu, Lian-Ren; Yan, Qiang
2012-10-01
In this paper, we study the dynamic evolution of friendship network in SNS (Social Networking Site). Our analysis suggests that an individual joining a community depends not only on the number of friends he or she has within the community, but also on the friendship network generated by those friends. In addition, we propose a model which is based on two processes: first, connecting nearest neighbors; second, strength driven attachment mechanism. The model reflects two facts: first, in the social network it is a universal phenomenon that two nodes are connected when they have at least one common neighbor; second, new nodes connect more likely to nodes which have larger weights and interactions, a phenomenon called strength driven attachment (also called weight driven attachment). From the simulation results, we find that degree distribution P(k), strength distribution P(s), and degree-strength correlation are all consistent with empirical data.
Linking Air Quality and Human Health Effects Models: An Application to the Los Angeles Air Basin.
Stewart, Devoun R; Saunders, Emily; Perea, Roberto A; Fitzgerald, Rosa; Campbell, David E; Stockwell, William R
2017-01-01
Proposed emission control strategies for reducing ozone and particulate matter are evaluated better when air quality and health effects models are used together. The Community Multiscale Air Quality (CMAQ) model is the US Environmental Protection Agency's model for determining public policy and forecasting air quality. CMAQ was used to forecast air quality changes due to several emission control strategies that could be implemented between 2008 and 2030 for the South Coast Air Basin that includes Los Angeles. The Environmental Benefits Mapping and Analysis Program-Community Edition (BenMAP-CE) was used to estimate health and economic impacts of the different emission control strategies based on CMAQ simulations. BenMAP-CE is a computer program based on epidemiologic studies that link human health and air quality. This modeling approach is better for determining optimum public policy than approaches that only examine concentration changes.
Can the behavioral sciences self-correct? A social epistemic study.
Romero, Felipe
2016-12-01
Advocates of the self-corrective thesis argue that scientific method will refute false theories and find closer approximations to the truth in the long run. I discuss a contemporary interpretation of this thesis in terms of frequentist statistics in the context of the behavioral sciences. First, I identify experimental replications and systematic aggregation of evidence (meta-analysis) as the self-corrective mechanism. Then, I present a computer simulation study of scientific communities that implement this mechanism to argue that frequentist statistics may converge upon a correct estimate or not depending on the social structure of the community that uses it. Based on this study, I argue that methodological explanations of the "replicability crisis" in psychology are limited and propose an alternative explanation in terms of biases. Finally, I conclude suggesting that scientific self-correction should be understood as an interaction effect between inference methods and social structures. Copyright © 2016 Elsevier Ltd. All rights reserved.