Sample records for simulation based acquisition

  1. Simulation/Gaming and the Acquisition of Communicative Competence in Another Language.

    ERIC Educational Resources Information Center

    Garcia-Carbonell, Amparo; Rising, Beverly; Montero, Begona; Watts, Frances

    2001-01-01

    Discussion of communicative competence in second language acquisition focuses on a theoretical and practical meshing of simulation and gaming methodology with theories of foreign language acquisition, including task-based learning, interaction, and comprehensible input. Describes experiments conducted with computer-assisted simulations in…

  2. War-gaming application for future space systems acquisition: MATLAB implementation of war-gaming acquisition models and simulation results

    NASA Astrophysics Data System (ADS)

    Vienhage, Paul; Barcomb, Heather; Marshall, Karel; Black, William A.; Coons, Amanda; Tran, Hien T.; Nguyen, Tien M.; Guillen, Andy T.; Yoh, James; Kizer, Justin; Rogers, Blake A.

    2017-05-01

    The paper describes the MATLAB (MathWorks) programs that were developed during the REU workshop1 to implement The Aerospace Corporation developed Unified Game-based Acquisition Framework and Advanced Game - based Mathematical Framework (UGAF-AGMF) and its associated War-Gaming Engine (WGE) models. Each game can be played from the perspectives of the Department of Defense Acquisition Authority (DAA) or of an individual contractor (KTR). The programs also implement Aerospace's optimum "Program and Technical Baseline (PTB) and associated acquisition" strategy that combines low Total Ownership Cost (TOC) with innovative designs while still meeting warfighter needs. The paper also describes the Bayesian Acquisition War-Gaming approach using Monte Carlo simulations, a numerical analysis technique to account for uncertainty in decision making, which simulate the PTB development and acquisition processes and will detail the procedure of the implementation and the interactions between the games.

  3. The Impact of Simulation-Based Learning Experience on Critical Thinking Acquisition

    ERIC Educational Resources Information Center

    Rome, Candice

    2012-01-01

    The purpose of this comparative experimental project was to compare the impact of simulation-based learning experiences to traditional clinical rotations on critical thinking acquisition of associate nursing students within a maternal-child course. Innovative pedagogies have been integrated in nursing programs to augment inadequate clinical…

  4. Enhancement of multimodality texture-based prediction models via optimization of PET and MR image acquisition protocols: a proof of concept

    NASA Astrophysics Data System (ADS)

    Vallières, Martin; Laberge, Sébastien; Diamant, André; El Naqa, Issam

    2017-11-01

    Texture-based radiomic models constructed from medical images have the potential to support cancer treatment management via personalized assessment of tumour aggressiveness. While the identification of stable texture features under varying imaging settings is crucial for the translation of radiomics analysis into routine clinical practice, we hypothesize in this work that a complementary optimization of image acquisition parameters prior to texture feature extraction could enhance the predictive performance of texture-based radiomic models. As a proof of concept, we evaluated the possibility of enhancing a model constructed for the early prediction of lung metastases in soft-tissue sarcomas by optimizing PET and MR image acquisition protocols via computerized simulations of image acquisitions with varying parameters. Simulated PET images from 30 STS patients were acquired by varying the extent of axial data combined per slice (‘span’). Simulated T 1-weighted and T 2-weighted MR images were acquired by varying the repetition time and echo time in a spin-echo pulse sequence, respectively. We analyzed the impact of the variations of PET and MR image acquisition parameters on individual textures, and we investigated how these variations could enhance the global response and the predictive properties of a texture-based model. Our results suggest that it is feasible to identify an optimal set of image acquisition parameters to improve prediction performance. The model constructed with textures extracted from simulated images acquired with a standard clinical set of acquisition parameters reached an average AUC of 0.84 +/- 0.01 in bootstrap testing experiments. In comparison, the model performance significantly increased using an optimal set of image acquisition parameters (p = 0.04 ), with an average AUC of 0.89 +/- 0.01 . Ultimately, specific acquisition protocols optimized to generate superior radiomics measurements for a given clinical problem could be developed and standardized via dedicated computer simulations and thereafter validated using clinical scanners.

  5. Problem-Based Learning in Instrumentation: Synergism of Real and Virtual Modular Acquisition Chains

    ERIC Educational Resources Information Center

    Nonclercq, A.; Biest, A. V.; De Cuyper, K.; Leroy, E.; Martinez, D. L.; Robert, F.

    2010-01-01

    As part of an instrumentation course, a problem-based learning framework was selected for laboratory instruction. Two acquisition chains were designed to help students carry out realistic instrumentation problems. The first tool is a virtual (simulated) modular acquisition chain that allows rapid overall understanding of the main problems in…

  6. Teaching Experience: How to Make and Use PowerPoint-Based Interactive Simulations for Undergraduate IR Teaching

    ERIC Educational Resources Information Center

    Meibauer, Gustav; Aagaard Nøhr, Andreas

    2018-01-01

    This article is about designing and implementing PowerPoint-based interactive simulations for use in International Relations (IR) introductory undergraduate classes based on core pedagogical literature, models of human skill acquisition, and previous research on simulations in IR teaching. We argue that simulations can be usefully employed at the…

  7. Ultrasound-Guided Regional Anesthesia Simulation Training: A Systematic Review.

    PubMed

    Chen, Xiao Xu; Trivedi, Vatsal; AlSaflan, AbdulHadi A; Todd, Suzanne Clare; Tricco, Andrea C; McCartney, Colin J L; Boet, Sylvain

    Ultrasound-guided regional anesthesia (UGRA) has become the criterion standard of regional anesthesia practice. Ultrasound-guided regional anesthesia teaching programs often use simulation, and guidelines have been published to help guide URGA education. This systematic review aimed to examine the effectiveness of simulation-based education for the acquisition and maintenance of competence in UGRA. Studies identified in MEDLINE, EMBASE, CINAHL, Cochrane Central Register of Controlled Trials, and ERIC were included if they assessed simulation-based UGRA teaching with outcomes measured at Kirkpatrick level 2 (knowledge and skills), 3 (transfer of learning to the workplace), or 4 (patient outcomes). Two authors independently reviewed all identified references for eligibility, abstracted data, and appraised quality. After screening 176 citations and 45 full-text articles, 12 studies were included. Simulation-enhanced training improved knowledge acquisition (Kirkpatrick level 2) when compared with nonsimulation training. Seven studies measuring skill acquisition (Kirkpatrick level 2) found that simulation-enhanced UGRA training was significantly more effective than alternative teaching methods or no intervention. One study measuring transfer of learning into the clinical setting (Kirkpatrick level 3) found no difference between simulation-enhanced UGRA training and non-simulation-based training. However, this study was discontinued early because of technical challenges. Two studies examined patient outcomes (Kirkpatrick level 4), and one of these found that simulation-based UGRA training improved patient outcomes compared with didactic teaching. Ultrasound-guided regional anesthesia knowledge and skills significantly improved with simulation training. The acquired UGRA skills may be transferred to the clinical setting; however, further studies are required to confirm these changes translate to improved patient outcomes.

  8. Simulation-based local anaesthesia teaching enhances learning outcomes.

    PubMed

    Marei, H F; Al-Jandan, B A

    2013-02-01

    The aim of this study was to evaluate the efficacy of simulation-based local anaesthesia teaching strategies compared to the traditional classroom lecture format on the acquisition of knowledge by students. Two groups of 10 students each were included in our study. Each of the dental students was enrolled in their third year of the programme. None of the students had ever received instructions in local anaesthesia. Group I received a 45-min instructional module that was delivered in the classroom in the traditional PowerPoint lecture format. Group II received a 45-min instructional module in the simulation laboratory as a short tutorial that was followed by an integrated practical demonstration and a hands-on practice session using local anaesthesia simulation phantoms. An identical 15-question multiple-choice test was used to test student knowledge acquisition at the end of the given session. There was a statistically significant difference between the two groups, as the participants in group II had higher score results than those of group I. In contrast to the traditional classroom lecture format, simulation-based local anaesthesia teaching is an effective tool to enhance the acquisition of theoretical knowledge by students. © 2012 John Wiley & Sons A/S.

  9. Population-based respiratory 4D motion atlas construction and its application for VR simulations of liver punctures

    NASA Astrophysics Data System (ADS)

    Mastmeyer, Andre; Wilms, Matthias; Handels, Heinz

    2018-03-01

    Virtual reality (VR) training simulators of liver needle insertion in the hepatic area of breathing virtual patients often need 4D image data acquisitions as a prerequisite. Here, first a population-based breathing virtual patient 4D atlas is built and second the requirement of a dose-relevant or expensive acquisition of a 4D CT or MRI data set for a new patient can be mitigated by warping the mean atlas motion. The breakthrough contribution of this work is the construction and reuse of population-based, learned 4D motion models.

  10. Confidence range estimate of extended source imagery acquisition algorithms via computer simulations. [in optical communication systems

    NASA Technical Reports Server (NTRS)

    Chen, CHIEN-C.; Hui, Elliot; Okamoto, Garret

    1992-01-01

    Spatial acquisition using the sun-lit Earth as a beacon source provides several advantages over active beacon-based systems for deep-space optical communication systems. However, since the angular extend of the Earth image is large compared to the laser beam divergence, the acquisition subsystem must be capable of resolving the image to derive the proper pointing orientation. The algorithms used must be capable of deducing the receiver location given the blurring introduced by the imaging optics and the large Earth albedo fluctuation. Furthermore, because of the complexity of modelling the Earth and the tracking algorithms, an accurate estimate of the algorithm accuracy can only be made via simulation using realistic Earth images. An image simulator was constructed for this purpose, and the results of the simulation runs are reported.

  11. High Speed PC Based Data Acquisition and Instrumentation for Measurement of Simulated Low Earth Orbit Thermally Induced Disturbances

    NASA Technical Reports Server (NTRS)

    Sills, Joel W., Jr.; Griffin, Thomas J. (Technical Monitor)

    2001-01-01

    The Hubble Space Telescope (HST) Disturbance Verification Test (DVT) was conducted to characterize responses of the Observatory's new set of rigid solar array's (SA3) to thermally induced 'creak' or stiction releases. The data acquired in the DVT were used in verification of the HST Pointing Control System on-orbit performance, post-Servicing Mission 3B (SM3B). The test simulated the on-orbit environment on a deployed SA3 flight wing. Instrumentation for this test required pretest simulations in order to select the correct sensitivities. Vacuum compatible, highly accurate accelerometers and force gages were used for this test. The complexity of the test, as well as a short planning schedule, required a data acquisition system that was easy to configure, highly flexible, and extremely robust. A PC Windows oriented data acquisition system meets these requirements, allowing the test engineers to minimize the time required to plan and perform complex environmental test. The SA3 DVT provided a direct practical and complex demonstration of the versatility that PC based data acquisition systems provide. Two PC based data acquisition systems were assembled to acquire, process, distribute, and provide real time processing for several types of transducers used in the SA3 DVT. A high sample rate digital tape recorder was used to archive the sensor signals. The two systems provided multi-channel hardware and software architecture and were selected based on the test requirements. How these systems acquire and processes multiple data rates from different transducer types is discussed, along with the system hardware and software architecture.

  12. Simulation and Community-Based Instruction of Vending Machines with Time Delay.

    ERIC Educational Resources Information Center

    Browder, Diane M.; And Others

    1988-01-01

    The study evaluated the use of simulated instruction on vending machine use as an adjunct to community-based instruction with two moderately retarded children. Results showed concurrent acquisition of the vending machine skills across trained and untrained sites. (Author/DB)

  13. SimDoseCT: dose reporting software based on Monte Carlo simulation for a 320 detector-row cone-beam CT scanner and ICRP computational adult phantoms

    NASA Astrophysics Data System (ADS)

    Cros, Maria; Joemai, Raoul M. S.; Geleijns, Jacob; Molina, Diego; Salvadó, Marçal

    2017-08-01

    This study aims to develop and test software for assessing and reporting doses for standard patients undergoing computed tomography (CT) examinations in a 320 detector-row cone-beam scanner. The software, called SimDoseCT, is based on the Monte Carlo (MC) simulation code, which was developed to calculate organ doses and effective doses in ICRP anthropomorphic adult reference computational phantoms for acquisitions with the Aquilion ONE CT scanner (Toshiba). MC simulation was validated by comparing CTDI measurements within standard CT dose phantoms with results from simulation under the same conditions. SimDoseCT consists of a graphical user interface connected to a MySQL database, which contains the look-up-tables that were generated with MC simulations for volumetric acquisitions at different scan positions along the phantom using any tube voltage, bow tie filter, focal spot and nine different beam widths. Two different methods were developed to estimate organ doses and effective doses from acquisitions using other available beam widths in the scanner. A correction factor was used to estimate doses in helical acquisitions. Hence, the user can select any available protocol in the Aquilion ONE scanner for a standard adult male or female and obtain the dose results through the software interface. Agreement within 9% between CTDI measurements and simulations allowed the validation of the MC program. Additionally, the algorithm for dose reporting in SimDoseCT was validated by comparing dose results from this tool with those obtained from MC simulations for three volumetric acquisitions (head, thorax and abdomen). The comparison was repeated using eight different collimations and also for another collimation in a helical abdomen examination. The results showed differences of 0.1 mSv or less for absolute dose in most organs and also in the effective dose calculation. The software provides a suitable tool for dose assessment in standard adult patients undergoing CT examinations in a 320 detector-row cone-beam scanner.

  14. SimDoseCT: dose reporting software based on Monte Carlo simulation for a 320 detector-row cone-beam CT scanner and ICRP computational adult phantoms.

    PubMed

    Cros, Maria; Joemai, Raoul M S; Geleijns, Jacob; Molina, Diego; Salvadó, Marçal

    2017-07-17

    This study aims to develop and test software for assessing and reporting doses for standard patients undergoing computed tomography (CT) examinations in a 320 detector-row cone-beam scanner. The software, called SimDoseCT, is based on the Monte Carlo (MC) simulation code, which was developed to calculate organ doses and effective doses in ICRP anthropomorphic adult reference computational phantoms for acquisitions with the Aquilion ONE CT scanner (Toshiba). MC simulation was validated by comparing CTDI measurements within standard CT dose phantoms with results from simulation under the same conditions. SimDoseCT consists of a graphical user interface connected to a MySQL database, which contains the look-up-tables that were generated with MC simulations for volumetric acquisitions at different scan positions along the phantom using any tube voltage, bow tie filter, focal spot and nine different beam widths. Two different methods were developed to estimate organ doses and effective doses from acquisitions using other available beam widths in the scanner. A correction factor was used to estimate doses in helical acquisitions. Hence, the user can select any available protocol in the Aquilion ONE scanner for a standard adult male or female and obtain the dose results through the software interface. Agreement within 9% between CTDI measurements and simulations allowed the validation of the MC program. Additionally, the algorithm for dose reporting in SimDoseCT was validated by comparing dose results from this tool with those obtained from MC simulations for three volumetric acquisitions (head, thorax and abdomen). The comparison was repeated using eight different collimations and also for another collimation in a helical abdomen examination. The results showed differences of 0.1 mSv or less for absolute dose in most organs and also in the effective dose calculation. The software provides a suitable tool for dose assessment in standard adult patients undergoing CT examinations in a 320 detector-row cone-beam scanner.

  15. Soft tissue deformation for surgical simulation: a position-based dynamics approach.

    PubMed

    Camara, Mafalda; Mayer, Erik; Darzi, Ara; Pratt, Philip

    2016-06-01

    To assist the rehearsal and planning of robot-assisted partial nephrectomy, a real-time simulation platform is presented that allows surgeons to visualise and interact with rapidly constructed patient-specific biomechanical models of the anatomical regions of interest. Coupled to a framework for volumetric deformation, the platform furthermore simulates intracorporeal 2D ultrasound image acquisition, using preoperative imaging as the data source. This not only facilitates the planning of optimal transducer trajectories and viewpoints, but can also act as a validation context for manually operated freehand 3D acquisitions and reconstructions. The simulation platform was implemented within the GPU-accelerated NVIDIA FleX position-based dynamics framework. In order to validate the model and determine material properties and other simulation parameter values, a porcine kidney with embedded fiducial beads was CT-scanned and segmented. Acquisitions for the rest position and three different levels of probe-induced deformation were collected. Optimal values of the cluster stiffness coefficients were determined for a range of different particle radii, where the objective function comprised the mean distance error between real and simulated fiducial positions over the sequence of deformations. The mean fiducial error at each deformation stage was found to be compatible with the level of ultrasound probe calibration error typically observed in clinical practice. Furthermore, the simulation exhibited unconditional stability on account of its use of clustered shape-matching constraints. A novel position-based dynamics implementation of soft tissue deformation has been shown to facilitate several desirable simulation characteristics: real-time performance, unconditional stability, rapid model construction enabling patient-specific behaviour and accuracy with respect to reference CT images.

  16. Enhancing pediatric clinical competency with high-fidelity simulation.

    PubMed

    Birkhoff, Susan D; Donner, Carol

    2010-09-01

    In today's tertiary pediatric hospital setting, the increased complexity of patient care demands seamless coordination and collaboration among multidisciplinary team members. In an effort to enhance patient safety, clinical competence, and teamwork, simulation-based learning has become increasingly integrated into pediatric clinical practice as an innovative educational strategy. The simulated setting provides a risk-free environment where learners can incorporate cognitive, psychomotor, and affective skill acquisition without fear of harming patients. One pediatric university hospital in Southeastern Pennsylvania has enhanced the traditional American Heart Association (AHA) Pediatric Advanced Life Support (PALS) course by integrating high-fidelity simulation into skill acquisition, while still functioning within the guidelines and framework of the AHA educational standards. However, very little research with reliable standardized testing methods has been done to measure the effect of simulation-based learning. This article discusses the AHA guidelines for PALS, evaluation of PALS and nursing clinical competencies, communication among a multidisciplinary team, advantages and disadvantages of simulation, incorporation of high-fidelity simulation into pediatric practice, and suggestions for future practice. Copyright 2010, SLACK Incorporated.

  17. LACIE performance predictor FOC users manual

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The LACIE Performance Predictor (LPP) is a computer simulation of the LACIE process for predicting worldwide wheat production. The simulation provides for the introduction of various errors into the system and provides estimates based on these errors, thus allowing the user to determine the impact of selected error sources. The FOC LPP simulates the acquisition of the sample segment data by the LANDSAT Satellite (DAPTS), the classification of the agricultural area within the sample segment (CAMS), the estimation of the wheat yield (YES), and the production estimation and aggregation (CAS). These elements include data acquisition characteristics, environmental conditions, classification algorithms, the LACIE aggregation and data adjustment procedures. The operational structure for simulating these elements consists of the following key programs: (1) LACIE Utility Maintenance Process, (2) System Error Executive, (3) Ephemeris Generator, (4) Access Generator, (5) Acquisition Selector, (6) LACIE Error Model (LEM), and (7) Post Processor.

  18. Web-based Learning and Computer Supported Collaborative Learning for psychomotor skill acquisition: perspectives of medical undergraduate students.

    PubMed

    Koh, Jansen; Cheung, Jeffrey J H; Mackinnon, Kim; Brett, Clare; Kapralos, Bill; Dubrowski, Adam

    2013-01-01

    There is a lack of evidence for the use of Web-based Learning (WBL) and Computer Supported Collaborative Learning (CSCL) for acquiring psychomotor skills in medical education. In this study, we surveyed medical undergraduate students attending a simulation based training session for central line insertion on their perspectives and utilization of WBL and CSCL for acquisition of a complex psychomotor skill.

  19. Current state of virtual reality simulation in robotic surgery training: a review.

    PubMed

    Bric, Justin D; Lumbard, Derek C; Frelich, Matthew J; Gould, Jon C

    2016-06-01

    Worldwide, the annual number of robotic surgical procedures continues to increase. Robotic surgical skills are unique from those used in either open or laparoscopic surgery. The acquisition of a basic robotic surgical skill set may be best accomplished in the simulation laboratory. We sought to review the current literature pertaining to the use of virtual reality (VR) simulation in the acquisition of robotic surgical skills on the da Vinci Surgical System. A PubMed search was conducted between December 2014 and January 2015 utilizing the following keywords: virtual reality, robotic surgery, da Vinci, da Vinci skills simulator, SimSurgery Educational Platform, Mimic dV-Trainer, and Robotic Surgery Simulator. Articles were included if they were published between 2007 and 2015, utilized VR simulation for the da Vinci Surgical System, and utilized a commercially available VR platform. The initial search criteria returned 227 published articles. After all inclusion and exclusion criteria were applied, a total of 47 peer-reviewed manuscripts were included in the final review. There are many benefits to utilizing VR simulation for robotic skills acquisition. Four commercially available simulators have been demonstrated to be capable of assessing robotic skill. Three of the four simulators demonstrate the ability of a VR training curriculum to improve basic robotic skills, with proficiency-based training being the most effective training style. The skills obtained on a VR training curriculum are comparable with those obtained on dry laboratory simulation. The future of VR simulation includes utilization in assessment for re-credentialing purposes, advanced procedural-based training, and as a warm-up tool prior to surgery.

  20. Acquisition of Skill Proficiency Over Multiple Sessions of a Novel Rover Simulation

    NASA Technical Reports Server (NTRS)

    Dean, S. L.; DeDios,Y. E.; MacDougall, H. G.; Moore, S. T.; Wood, S. J.

    2011-01-01

    Following long-duration exploration transits, adaptive changes in sensorimotor function may impair the crew's ability to safely perform manual control tasks such as operating pressurized rovers. Postflight performance will also be influenced by the level of preflight skill proficiency they have attained. The purpose of this study was to characterize the acquisition of skills in a motion-based rover simulation over multiple sessions, and to investigate the effects of varying the simulation scenarios. METHODS: Twenty healthy subjects were tested in 5 sessions, with 1-3 days between sessions. Each session consisted of a serial presentation of 8 discrete tasks to be completed as quickly and accurately as possible. Each task consisted of 1) perspective-taking, using a map that defined a docking target, 2) navigation toward the target around a Martian outpost, and 3) docking a side hatch of the rover to a visually guided target. The simulator utilized a Stewart-type motion base (CKAS, Australia), single-seat cabin with triple scene projection covering 150 deg horizontal by 50 deg vertical, and joystick controller. Subjects were randomly assigned to a control group (tasks identical in the first 4 sessions) or a varied-practice group. The dependent variables for each task included accuracy toward the target and time to completion. RESULTS: The greatest improvements in time to completion occurred during the docking phase. The varied-practice group showed more improvement in perspective-taking accuracy. Perspective-taking accuracy was also affected by the relative orientation of the rover to the docking target. Skill acquisition was correlated with self-ratings of previous gaming experience. DISCUSSION: Varying task selection and difficulty will optimize the preflight acquisition of skills when performing novel operational tasks. Simulation of operational manual control will provide functionally relevant evidence regarding the impact of sensorimotor adaptation on early surface operations and what countermeasures are needed. Learning Objective: The use of a motion-based simulation to investigate decrements in the proficiency to operate pressurized rovers during early surface operations of space exploration missions, along with the acquisition of skill proficiency needed during the preflight phase of the mission.

  1. Contrast Gradient-Based Blood Velocimetry With Computed Tomography: Theory, Simulations, and Proof of Principle in a Dynamic Flow Phantom.

    PubMed

    Korporaal, Johannes G; Benz, Matthias R; Schindera, Sebastian T; Flohr, Thomas G; Schmidt, Bernhard

    2016-01-01

    The aim of this study was to introduce a new theoretical framework describing the relationship between the blood velocity, computed tomography (CT) acquisition velocity, and iodine contrast enhancement in CT images, and give a proof of principle of contrast gradient-based blood velocimetry with CT. The time-averaged blood velocity (v(blood)) inside an artery along the axis of rotation (z axis) is described as the mathematical division of a temporal (Hounsfield unit/second) and spatial (Hounsfield unit/centimeter) iodine contrast gradient. From this new theoretical framework, multiple strategies for calculating the time-averaged blood velocity from existing clinical CT scan protocols are derived, and contrast gradient-based blood velocimetry was introduced as a new method that can calculate v(blood) directly from contrast agent gradients and the changes therein. Exemplarily, the behavior of this new method was simulated for image acquisition with an adaptive 4-dimensional spiral mode consisting of repeated spiral acquisitions with alternating scan direction. In a dynamic flow phantom with flow velocities between 5.1 and 21.2 cm/s, the same acquisition mode was used to validate the simulations and give a proof of principle of contrast gradient-based blood velocimetry in a straight cylinder of 2.5 cm diameter, representing the aorta. In general, scanning with the direction of blood flow results in decreased and scanning against the flow in increased temporal contrast agent gradients. Velocity quantification becomes better for low blood and high acquisition speeds because the deviation of the measured contrast agent gradient from the temporal gradient will increase. In the dynamic flow phantom, a modulation of the enhancement curve, and thus alternation of the contrast agent gradients, can be observed for the adaptive 4-dimensional spiral mode and is in agreement with the simulations. The measured flow velocities in the downslopes of the enhancement curves were in good agreement with the expected values, although the accuracy and precision worsened with increasing flow velocities. The new theoretical framework increases the understanding of the relationship between the blood velocity, CT acquisition velocity, and iodine contrast enhancement in CT images, and it interconnects existing blood velocimetry methods with research on transluminary attenuation gradients. With these new insights, novel strategies for CT blood velocimetry, such as the contrast gradient-based method presented in this article, may be developed.

  2. Workshop on data acquisition and trigger system simulations for high energy physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1992-12-31

    This report discusses the following topics: DAQSIM: A data acquisition system simulation tool; Front end and DCC Simulations for the SDC Straw Tube System; Simulation of Non-Blocklng Data Acquisition Architectures; Simulation Studies of the SDC Data Collection Chip; Correlation Studies of the Data Collection Circuit & The Design of a Queue for this Circuit; Fast Data Compression & Transmission from a Silicon Strip Wafer; Simulation of SCI Protocols in Modsim; Visual Design with vVHDL; Stochastic Simulation of Asynchronous Buffers; SDC Trigger Simulations; Trigger Rates, DAQ & Online Processing at the SSC; Planned Enhancements to MODSEM II & SIMOBJECT -- anmore » Overview -- R.; DAGAR -- A synthesis system; Proposed Silicon Compiler for Physics Applications; Timed -- LOTOS in a PROLOG Environment: an Algebraic language for Simulation; Modeling and Simulation of an Event Builder for High Energy Physics Data Acquisition Systems; A Verilog Simulation for the CDF DAQ; Simulation to Design with Verilog; The DZero Data Acquisition System: Model and Measurements; DZero Trigger Level 1.5 Modeling; Strategies Optimizing Data Load in the DZero Triggers; Simulation of the DZero Level 2 Data Acquisition System; A Fast Method for Calculating DZero Level 1 Jet Trigger Properties and Physics Input to DAQ Studies.« less

  3. Heuristic-based information acquisition and decision making among pilots.

    PubMed

    Wiggins, Mark W; Bollwerk, Sandra

    2006-01-01

    This research was designed to examine the impact of heuristic-based approaches to the acquisition of task-related information on the selection of an optimal alternative during simulated in-flight decision making. The work integrated features of naturalistic and normative decision making and strategies of information acquisition within a computer-based, decision support framework. The study comprised two phases, the first of which involved familiarizing pilots with three different heuristic-based strategies of information acquisition: frequency, elimination by aspects, and majority of confirming decisions. The second stage enabled participants to choose one of the three strategies of information acquisition to resolve a fourth (choice) scenario. The results indicated that task-oriented experience, rather than the information acquisition strategies, predicted the selection of the optimal alternative. It was also evident that of the three strategies available, the elimination by aspects information acquisition strategy was preferred by most participants. It was concluded that task-oriented experience, rather than the process of information acquisition, predicted task accuracy during the decision-making task. It was also concluded that pilots have a preference for one particular approach to information acquisition. Applications of outcomes of this research include the development of decision support systems that adapt to the information-processing capabilities and preferences of users.

  4. A new approach for data acquisition at the JPL space simulators

    NASA Technical Reports Server (NTRS)

    Fisher, Terry C.

    1992-01-01

    In 1990, a personal computer based data acquisition system was put into service for the Space Simulators and Environmental Test Laboratory at the Jet Propulsion Laboratory (JPL) in Pasadena, California. The new system replaced an outdated minicomputer system which had been in use since 1980. This new data acquisition system was designed and built by JPL for the specific task of acquiring thermal test data in support of space simulation and thermal vacuum testing at JPL. The data acquisition system was designed using powerful personal computers and local-area-network (LAN) technology. Reliability, expandability, and maintainability were some of the most important criteria in the design of the data system and in the selection of hardware and software components. The data acquisition system is used to record both test chamber operational data and thermal data from the unit under test. Tests are conducted in numerous small thermal vacuum chambers and in the large solar simulator and range in size from individual components using only 2 or 3 thermocouples to entire planetary spacecraft requiring in excess of 1200 channels of test data. The system supports several of these tests running concurrently. The previous data system is described along with reasons for its replacement, the types of data acquired, the new data system, and the benefits obtained from the new system including information on tests performed to date.

  5. Virtual Reality Compared with Bench-Top Simulation in the Acquisition of Arthroscopic Skill: A Randomized Controlled Trial.

    PubMed

    Banaszek, Daniel; You, Daniel; Chang, Justues; Pickell, Michael; Hesse, Daniel; Hopman, Wilma M; Borschneck, Daniel; Bardana, Davide

    2017-04-05

    Work-hour restrictions as set forth by the Accreditation Council for Graduate Medical Education (ACGME) and other governing bodies have forced training programs to seek out new learning tools to accelerate acquisition of both medical skills and knowledge. As a result, competency-based training has become an important part of residency training. The purpose of this study was to directly compare arthroscopic skill acquisition in both high-fidelity and low-fidelity simulator models and to assess skill transfer from either modality to a cadaveric specimen, simulating intraoperative conditions. Forty surgical novices (pre-clerkship-level medical students) voluntarily participated in this trial. Baseline demographic data, as well as data on arthroscopic knowledge and skill, were collected prior to training. Subjects were randomized to 5-week independent training sessions on a high-fidelity virtual reality arthroscopic simulator or on a bench-top arthroscopic setup, or to an untrained control group. Post-training, subjects were asked to perform a diagnostic arthroscopy on both simulators and in a simulated intraoperative environment on a cadaveric knee. A more difficult surprise task was also incorporated to evaluate skill transfer. Subjects were evaluated using the Global Rating Scale (GRS), the 14-point arthroscopic checklist, and a timer to determine procedural efficiency (time per task). Secondary outcomes focused on objective measures of virtual reality simulator motion analysis. Trainees on both simulators demonstrated a significant improvement (p < 0.05) in arthroscopic skills compared with baseline scores and untrained controls, both in and ex vivo. The virtual reality simulation group consistently outperformed the bench-top model group in the diagnostic arthroscopy crossover tests and in the simulated cadaveric setup. Furthermore, the virtual reality group demonstrated superior skill transfer in the surprise skill transfer task. Both high-fidelity and low-fidelity simulation trainings were effective in arthroscopic skill acquisition. High-fidelity virtual reality simulation was superior to bench-top simulation in the acquisition of arthroscopic skills, both in the laboratory and in vivo. Further clinical investigation is needed to interpret the importance of these results.

  6. Web-Based versus High-Fidelity Simulation Training for Certified Registered Nurse Anesthetists in the Management of High Risk/Low Occurrence Anesthesia Events

    ERIC Educational Resources Information Center

    Kimemia, Judy

    2017-01-01

    Purpose: The purpose of this project was to compare web-based to high-fidelity simulation training in the management of high risk/low occurrence anesthesia related events, to enhance knowledge acquisition for Certified Registered Nurse Anesthetists (CRNAs). This project was designed to answer the question: Is web-based training as effective as…

  7. Modeling and Simulation in Support of Testing and Evaluation

    DTIC Science & Technology

    1997-03-01

    contains standardized automated test methodology, synthetic stimuli and environments based on TECOM Ground Truth data and physics . The VPG is a distributed...Systems Acquisition Management (FSAM) coursebook , Defense Systems Management College, January 1994. Crocker, Charles M. “Application of the Simulation

  8. Psychomotor testing predicts rate of skill acquisition for proficiency-based laparoscopic skills training.

    PubMed

    Stefanidis, Dimitrios; Korndorffer, James R; Black, F William; Dunne, J Bruce; Sierra, Rafael; Touchard, Cheri L; Rice, David A; Markert, Ronald J; Kastl, Peter R; Scott, Daniel J

    2006-08-01

    Laparoscopic simulator training translates into improved operative performance. Proficiency-based curricula maximize efficiency by tailoring training to meet the needs of each individual; however, because rates of skill acquisition vary widely, such curricula may be difficult to implement. We hypothesized that psychomotor testing would predict baseline performance and training duration in a proficiency-based laparoscopic simulator curriculum. Residents (R1, n = 20) were enrolled in an IRB-approved prospective study at the beginning of the academic year. All completed the following: a background information survey, a battery of 12 innate ability measures (5 motor, and 7 visual-spatial), and baseline testing on 3 validated simulators (5 videotrainer [VT] tasks, 12 virtual reality [minimally invasive surgical trainer-virtual reality, MIST-VR] tasks, and 2 laparoscopic camera navigation [LCN] tasks). Participants trained to proficiency, and training duration and number of repetitions were recorded. Baseline test scores were correlated to skill acquisition rate. Cutoff scores for each predictive test were calculated based on a receiver operator curve, and their sensitivity and specificity were determined in identifying slow learners. Only the Cards Rotation test correlated with baseline simulator ability on VT and LCN. Curriculum implementation required 347 man-hours (6-person team) and 795,000 dollars of capital equipment. With an attendance rate of 75%, 19 of 20 residents (95%) completed the curriculum by the end of the academic year. To complete training, a median of 12 hours (range, 5.5-21), and 325 repetitions (range, 171-782) were required. Simulator score improvement was 50%. Training duration and repetitions correlated with prior video game and billiard exposure, grooved pegboard, finger tap, map planning, Rey Figure Immediate Recall score, and baseline performance on VT and LCN. The map planning cutoff score proved most specific in identifying slow learners. Proficiency-based laparoscopic simulator training provides improvement in performance and can be effectively implemented as a routine part of resident education, but may require significant resources. Although psychomotor testing may be of limited value in the prediction of baseline laparoscopic performance, its importance may lie in the prediction of the rapidity of skill acquisition. These tests may be useful in optimizing curricular design by allowing the tailoring of training to individual needs.

  9. Designing a Virtual Social Space for Language Acquisition

    ERIC Educational Resources Information Center

    Woolson, Maria Alessandra

    2012-01-01

    Middleverse de Español (MdE) is an evolving platform for foreign language (FL) study, aligned to the goals of ACTFL's National Standards and 2007 MLA report. The project simulates an immersive environment in a virtual 3-D space for the acquisition of translingual and transcultural competence in Spanish meant to support content-based and…

  10. Models of Vocabulary Acquisition: Direct Tests and Text-Derived Simulations of Vocabulary Growth

    ERIC Educational Resources Information Center

    Biemiller, Andrew; Rosenstein, Mark; Sparks, Randall; Landauer, Thomas K.; Foltz, Peter W.

    2014-01-01

    Determining word meanings that ought to be taught or introduced is important for educators. A sequence for vocabulary growth can be inferred from many sources, including testing children's knowledge of word meanings at various ages, predicting from print frequency, or adult-recalled Age of Acquisition. A new approach, Word Maturity, is based on…

  11. A Statistical-Physics Approach to Language Acquisition and Language Change

    NASA Astrophysics Data System (ADS)

    Cassandro, Marzio; Collet, Pierre; Galves, Antonio; Galves, Charlotte

    1999-02-01

    The aim of this paper is to explain why Statistical Physics can help understanding two related linguistic questions. The first question is how to model first language acquisition by a child. The second question is how language change proceeds in time. Our approach is based on a Gibbsian model for the interface between syntax and prosody. We also present a simulated annealing model of language acquisition, which extends the Triggering Learning Algorithm recently introduced in the linguistic literature.

  12. Comparative-Effectiveness of Simulation-Based Deliberate Practice Versus Self-Guided Practice on Resident Anesthesiologists' Acquisition of Ultrasound-Guided Regional Anesthesia Skills.

    PubMed

    Udani, Ankeet Deepak; Harrison, T Kyle; Mariano, Edward R; Derby, Ryan; Kan, Jack; Ganaway, Toni; Shum, Cynthia; Gaba, David M; Tanaka, Pedro; Kou, Alex; Howard, Steven K

    2016-01-01

    Simulation-based education strategies to teach regional anesthesia have been described, but their efficacy largely has been assumed. We designed this study to determine whether residents trained using the simulation-based strategy of deliberate practice show greater improvement of ultrasound-guided regional anesthesia (UGRA) skills than residents trained using self-guided practice in simulation. Anesthesiology residents new to UGRA were randomized to participate in either simulation-based deliberate practice (intervention) or self-guided practice (control). Participants were recorded and assessed while performing simulated peripheral nerve blocks at baseline, immediately after the experimental condition, and 3 months after enrollment. Subject performance was scored from video by 2 blinded reviewers using a composite tool. The amount of time each participant spent in deliberate or self-guided practice was recorded. Twenty-eight participants completed the study. Both groups showed within-group improvement from baseline scores immediately after the curriculum and 3 months following study enrollment. There was no difference between groups in changed composite scores immediately after the curriculum (P = 0.461) and 3 months following study enrollment (P = 0.927) from baseline. The average time in minutes that subjects spent in simulation practice was 6.8 minutes for the control group compared with 48.5 minutes for the intervention group (P < 0.001). In this comparative effectiveness study, there was no difference in acquisition and retention of skills in UGRA for novice residents taught by either simulation-based deliberate practice or self-guided practice. Both methods increased skill from baseline; however, self-guided practice required less time and faculty resources.

  13. An automatic detection method for the boiler pipe header based on real-time image acquisition

    NASA Astrophysics Data System (ADS)

    Long, Yi; Liu, YunLong; Qin, Yongliang; Yang, XiangWei; Li, DengKe; Shen, DingJie

    2017-06-01

    Generally, an endoscope is used to test the inner part of the thermal power plants boiler pipe header. However, since the endoscope hose manual operation, the length and angle of the inserted probe cannot be controlled. Additionally, it has a big blind spot observation subject to the length of the endoscope wire. To solve these problems, an automatic detection method for the boiler pipe header based on real-time image acquisition and simulation comparison techniques was proposed. The magnetic crawler with permanent magnet wheel could carry the real-time image acquisition device to complete the crawling work and collect the real-time scene image. According to the obtained location by using the positioning auxiliary device, the position of the real-time detection image in a virtual 3-D model was calibrated. Through comparing of the real-time detection images and the computer simulation images, the defects or foreign matter fall into could be accurately positioning, so as to repair and clean up conveniently.

  14. TestSTORM: Simulator for optimizing sample labeling and image acquisition in localization based super-resolution microscopy

    PubMed Central

    Sinkó, József; Kákonyi, Róbert; Rees, Eric; Metcalf, Daniel; Knight, Alex E.; Kaminski, Clemens F.; Szabó, Gábor; Erdélyi, Miklós

    2014-01-01

    Localization-based super-resolution microscopy image quality depends on several factors such as dye choice and labeling strategy, microscope quality and user-defined parameters such as frame rate and number as well as the image processing algorithm. Experimental optimization of these parameters can be time-consuming and expensive so we present TestSTORM, a simulator that can be used to optimize these steps. TestSTORM users can select from among four different structures with specific patterns, dye and acquisition parameters. Example results are shown and the results of the vesicle pattern are compared with experimental data. Moreover, image stacks can be generated for further evaluation using localization algorithms, offering a tool for further software developments. PMID:24688813

  15. Dynamic Self-Organization and Early Lexical Development in Children

    ERIC Educational Resources Information Center

    Li, Ping; Zhao, Xiaowei; Whinney, Brian Mac

    2007-01-01

    In this study we present a self-organizing connectionist model of early lexical development. We call this model DevLex-II, based on the earlier DevLex model. DevLex-II can simulate a variety of empirical patterns in children's acquisition of words. These include a clear vocabulary spurt, effects of word frequency and length on age of acquisition,…

  16. Discovering mental models and frames in learning of nursing ethics through simulations.

    PubMed

    Díaz Agea, J L; Martín Robles, M R; Jiménez Rodríguez, D; Morales Moreno, I; Viedma Viedma, I; Leal Costa, C

    2018-05-15

    The acquisition of ethical competence is necessary in nursing. The aims of the study were to analyse students' perceptions of the process of learning ethics through simulations and to describe the underlying frames that inform the decision making process of nursing students. A qualitative study based on the analysis of simulated experiences and debriefings of six simulated scenarios with ethical content in three different groups of fourth-year nursing students (n = 30), was performed. The simulated situations were designed to contain ethical dilemmas. The students' perspective regarding their learning and acquisition of ethical competence through simulations was positive. A total of 15 mental models were identified that underlie the ethical decision making of the students. The student's opinions reinforce the use of simulations as a tool for learning ethics. Thus, the putting into practice the knowledge regarding the frames that guide ethical actions is a suitable pedagogical strategy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Simulation for transthoracic echocardiography of aortic valve

    PubMed Central

    Nanda, Navin C.; Kapur, K. K.; Kapoor, Poonam Malhotra

    2016-01-01

    Simulation allows interactive transthoracic echocardiography (TTE) learning using a virtual three-dimensional model of the heart and may aid in the acquisition of the cognitive and technical skills needed to perform TTE. The ability to link probe manipulation, cardiac anatomy, and echocardiographic images using a simulator has been shown to be an effective model for training anesthesiology residents in transesophageal echocardiography. A proposed alternative to real-time reality patient-based learning is simulation-based training that allows anesthesiologists to learn complex concepts and procedures, especially for specific structures such as aortic valve. PMID:27397455

  18. Simulation-Based Acquisition of the Future Air-Land Combat System (acquisition par la simulation des systemes futurs de combat aeroterresire)

    DTIC Science & Technology

    2003-11-01

    de défense sur des matériels, des hommes et des doctrines préexistants, mais part au contraire d’une analyse des menaces et du... hommes et les doctrines. Comme on le verra ultérieurement, cette nouvelle démarche d’ingénierie du système de défense, qui se veut proactive et non...résolvent sous des contraintes de zéro mort ou tout au moins de pertes minimales, dont l ’« acceptabilité » est essentiellement facteur de

  19. Cognitive load predicts point-of-care ultrasound simulator performance.

    PubMed

    Aldekhyl, Sara; Cavalcanti, Rodrigo B; Naismith, Laura M

    2018-02-01

    The ability to maintain good performance with low cognitive load is an important marker of expertise. Incorporating cognitive load measurements in the context of simulation training may help to inform judgements of competence. This exploratory study investigated relationships between demographic markers of expertise, cognitive load measures, and simulator performance in the context of point-of-care ultrasonography. Twenty-nine medical trainees and clinicians at the University of Toronto with a range of clinical ultrasound experience were recruited. Participants answered a demographic questionnaire then used an ultrasound simulator to perform targeted scanning tasks based on clinical vignettes. Participants were scored on their ability to both acquire and interpret ultrasound images. Cognitive load measures included participant self-report, eye-based physiological indices, and behavioural measures. Data were analyzed using a multilevel linear modelling approach, wherein observations were clustered by participants. Experienced participants outperformed novice participants on ultrasound image acquisition. Ultrasound image interpretation was comparable between the two groups. Ultrasound image acquisition performance was predicted by level of training, prior ultrasound training, and cognitive load. There was significant convergence between cognitive load measurement techniques. A marginal model of ultrasound image acquisition performance including prior ultrasound training and cognitive load as fixed effects provided the best overall fit for the observed data. In this proof-of-principle study, the combination of demographic and cognitive load measures provided more sensitive metrics to predict ultrasound simulator performance. Performance assessments which include cognitive load can help differentiate between levels of expertise in simulation environments, and may serve as better predictors of skill transfer to clinical practice.

  20. Trait-based cue Utilization and initial skill acquisition: implications for models of the progression to expertise

    PubMed Central

    Wiggins, Mark W.; Brouwers, Sue; Davies, Joel; Loveday, Thomas

    2014-01-01

    The primary aim of this study was to examine the role of cue utilization in the initial acquisition of psycho-motor skills. Two experiments were undertaken, the first of which examined the relationship between cue utilization typologies and levels of accuracy following four simulated, power-off landing trials in a light aircraft simulator. The results indicated that higher levels of cue utilization were associated with a greater level of landing accuracy following training exposure. In the second study, participants’ levels of cue utilization were assessed prior to two 15 min periods during which they practiced take-offs and landings using a simulated unmanned aerial vehicle (UAV). Consistent with Study 1, the outcomes of Study 2 revealed a statistically significant relationship among levels of cue utilization and the number of trials to criterion on the take-off task, and the proportion of successful trials during both take-off and landing. In combination, the results suggest that the capacity for the acquisition and the subsequent utilization of cues is an important predictor of skill acquisition, particularly during the initial stages of the process. The implications for theory and applied practice are discussed. PMID:24917844

  1. Thrive or overload? The effect of task complexity on novices' simulation-based learning.

    PubMed

    Haji, Faizal A; Cheung, Jeffrey J H; Woods, Nicole; Regehr, Glenn; de Ribaupierre, Sandrine; Dubrowski, Adam

    2016-09-01

    Fidelity is widely viewed as an important element of simulation instructional design based on its purported relationship with transfer of learning. However, higher levels of fidelity may increase task complexity to a point at which novices' cognitive resources become overloaded. In this experiment, we investigate the effects of variations in task complexity on novices' cognitive load and learning during simulation-based procedural skills training. Thirty-eight medical students were randomly assigned to simulation training on a simple or complex lumbar puncture (LP) task. Participants completed four practice trials on this task (skill acquisition). After 10 days of rest, all participants completed one additional trial on their assigned task (retention) and one trial on a 'very complex' simulation designed to be similar to the complex task (transfer). We assessed LP performance and cognitive load on each trial using multiple measures. In both groups, LP performance improved significantly during skill acquisition (p ≤ 0.047, f = 0.29-0.96) and was maintained at retention. The simple task group demonstrated superior performance compared with the complex task group throughout these phases (p ≤ 0.002, d = 1.13-2.31). Cognitive load declined significantly in the simple task group (p < 0.009, f = 0.48-0.76), but not in the complex task group during skill acquisition, and remained lower at retention (p ≤ 0.024, d = 0.78-1.39). Between retention and transfer, LP performance declined and cognitive load increased in the simple task group, whereas both remained stable in the complex task group. At transfer, no group differences were observed in LP performance and cognitive load, except that the simple task group made significantly fewer breaches of sterility (p = 0.023, d = 0.80). Reduced task complexity was associated with superior LP performance and lower cognitive load during skill acquisition and retention, but mixed results on transfer to a more complex task. These results indicate that task complexity is an important factor that may mediate (via cognitive overload) the relationship between instructional design elements (e.g. fidelity) and simulation-based learning outcomes. © 2016 John Wiley & Sons Ltd and The Association for the Study of Medical Education.

  2. The Data Acquisition and Control Systems of the Jet Noise Laboratory at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Jansen, B. J., Jr.

    1998-01-01

    The features of the data acquisition and control systems of the NASA Langley Research Center's Jet Noise Laboratory are presented. The Jet Noise Laboratory is a facility that simulates realistic mixed flow turbofan jet engine nozzle exhaust systems in simulated flight. The system is capable of acquiring data for a complete take-off assessment of noise and nozzle performance. This paper describes the development of an integrated system to control and measure the behavior of model jet nozzles featuring dual independent high pressure combusting air streams with wind tunnel flow. The acquisition and control system is capable of simultaneous measurement of forces, moments, static and dynamic model pressures and temperatures, and jet noise. The design concepts for the coordination of the control computers and multiple data acquisition computers and instruments are discussed. The control system design and implementation are explained, describing the features, equipment, and the experiences of using a primarily Personal Computer based system. Areas for future development are examined.

  3. Designing simulator-based training: an approach integrating cognitive task analysis and four-component instructional design.

    PubMed

    Tjiam, Irene M; Schout, Barbara M A; Hendrikx, Ad J M; Scherpbier, Albert J J M; Witjes, J Alfred; van Merriënboer, Jeroen J G

    2012-01-01

    Most studies of simulator-based surgical skills training have focused on the acquisition of psychomotor skills, but surgical procedures are complex tasks requiring both psychomotor and cognitive skills. As skills training is modelled on expert performance consisting partly of unconscious automatic processes that experts are not always able to explicate, simulator developers should collaborate with educational experts and physicians in developing efficient and effective training programmes. This article presents an approach to designing simulator-based skill training comprising cognitive task analysis integrated with instructional design according to the four-component/instructional design model. This theory-driven approach is illustrated by a description of how it was used in the development of simulator-based training for the nephrostomy procedure.

  4. [Psychomotor skills assessment in basic procedures of laparoscopic surgery in undergraduate medical students at the School of Medicine of the University of Colima].

    PubMed

    Prieto-Díaz-Chávez, Emilio; Medina-Chávez, José Luís; Martínez-Lira, Rafael; Millán-Guerrero, Rebeca; Vázquez-Jiménez, Clemente; Trujillo-Hernández, Benjamín

    2014-01-01

    The changes in recent decades in the training of medical student seem to agree that the educational model for professional skills is most appropriate. The virtual simulator translates skills acquired the operating room, in the Faculty of Medicine of the University of Colima noticed the need to prepare the students of pregrade transferring surgical trainees' skills in basic laparoscopic activities that require a simple cognitive effort. The hypothesis in this study was to evaluate the acquisition of skills in laparoscopic simulator in students of pregrade. Educational research, analytical comparison, which was conducted within the activities of the program of Problem Based Learning in the program of Education and Surgical Technique, Faculty of Medicine of the University of Colima. All participants in the simulator achieved a significantly better during the task one after three repetitions (p= 0.001). The evaluation of final students calcification, we observed significant differences in means being lower during the initial assessment (8.60 ± 0.76) compared to the end (8.96 ± 0.58) p= 0.001. The acquisition of skills in the simulator is longer but at the end is better than the acquisition of skills from the traditional method, showing that leads to the acquisition of skills that promote the transfer of skills to the surgical environment.

  5. NeuroMatic: An Integrated Open-Source Software Toolkit for Acquisition, Analysis and Simulation of Electrophysiological Data

    PubMed Central

    Rothman, Jason S.; Silver, R. Angus

    2018-01-01

    Acquisition, analysis and simulation of electrophysiological properties of the nervous system require multiple software packages. This makes it difficult to conserve experimental metadata and track the analysis performed. It also complicates certain experimental approaches such as online analysis. To address this, we developed NeuroMatic, an open-source software toolkit that performs data acquisition (episodic, continuous and triggered recordings), data analysis (spike rasters, spontaneous event detection, curve fitting, stationarity) and simulations (stochastic synaptic transmission, synaptic short-term plasticity, integrate-and-fire and Hodgkin-Huxley-like single-compartment models). The merging of a wide range of tools into a single package facilitates a more integrated style of research, from the development of online analysis functions during data acquisition, to the simulation of synaptic conductance trains during dynamic-clamp experiments. Moreover, NeuroMatic has the advantage of working within Igor Pro, a platform-independent environment that includes an extensive library of built-in functions, a history window for reviewing the user's workflow and the ability to produce publication-quality graphics. Since its original release, NeuroMatic has been used in a wide range of scientific studies and its user base has grown considerably. NeuroMatic version 3.0 can be found at http://www.neuromatic.thinkrandom.com and https://github.com/SilverLabUCL/NeuroMatic. PMID:29670519

  6. Optoelectronic date acquisition system based on FPGA

    NASA Astrophysics Data System (ADS)

    Li, Xin; Liu, Chunyang; Song, De; Tong, Zhiguo; Liu, Xiangqing

    2015-11-01

    An optoelectronic date acquisition system is designed based on FPGA. FPGA chip that is EP1C3T144C8 of Cyclone devices from Altera corporation is used as the centre of logic control, XTP2046 chip is used as A/D converter, host computer that communicates with the date acquisition system through RS-232 serial communication interface are used as display device and photo resistance is used as photo sensor. We use Verilog HDL to write logic control code about FPGA. It is proved that timing sequence is correct through the simulation of ModelSim. Test results indicate that this system meets the design requirement, has fast response and stable operation by actual hardware circuit test.

  7. Simulations of multi-contrast x-ray imaging using near-field speckles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zdora, Marie-Christine; Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, United Kingdom and Department of Physics & Astronomy, University College London, London, WC1E 6BT; Thibault, Pierre

    2016-01-28

    X-ray dark-field and phase-contrast imaging using near-field speckles is a novel technique that overcomes limitations inherent in conventional absorption x-ray imaging, i.e. poor contrast for features with similar density. Speckle-based imaging yields a wealth of information with a simple setup tolerant to polychromatic and divergent beams, and simple data acquisition and analysis procedures. Here, we present a simulation software used to model the image formation with the speckle-based technique, and we compare simulated results on a phantom sample with experimental synchrotron data. Thorough simulation of a speckle-based imaging experiment will help for better understanding and optimising the technique itself.

  8. Quantifying the impact of respiratory-gated 4D CT acquisition on thoracic image quality: a digital phantom study.

    PubMed

    Bernatowicz, K; Keall, P; Mishra, P; Knopf, A; Lomax, A; Kipritidis, J

    2015-01-01

    Prospective respiratory-gated 4D CT has been shown to reduce tumor image artifacts by up to 50% compared to conventional 4D CT. However, to date no studies have quantified the impact of gated 4D CT on normal lung tissue imaging, which is important in performing dose calculations based on accurate estimates of lung volume and structure. To determine the impact of gated 4D CT on thoracic image quality, the authors developed a novel simulation framework incorporating a realistic deformable digital phantom driven by patient tumor motion patterns. Based on this framework, the authors test the hypothesis that respiratory-gated 4D CT can significantly reduce lung imaging artifacts. Our simulation framework synchronizes the 4D extended cardiac torso (XCAT) phantom with tumor motion data in a quasi real-time fashion, allowing simulation of three 4D CT acquisition modes featuring different levels of respiratory feedback: (i) "conventional" 4D CT that uses a constant imaging and couch-shift frequency, (ii) "beam paused" 4D CT that interrupts imaging to avoid oversampling at a given couch position and respiratory phase, and (iii) "respiratory-gated" 4D CT that triggers acquisition only when the respiratory motion fulfills phase-specific displacement gating windows based on prescan breathing data. Our framework generates a set of ground truth comparators, representing the average XCAT anatomy during beam-on for each of ten respiratory phase bins. Based on this framework, the authors simulated conventional, beam-paused, and respiratory-gated 4D CT images using tumor motion patterns from seven lung cancer patients across 13 treatment fractions, with a simulated 5.5 cm(3) spherical lesion. Normal lung tissue image quality was quantified by comparing simulated and ground truth images in terms of overall mean square error (MSE) intensity difference, threshold-based lung volume error, and fractional false positive/false negative rates. Averaged across all simulations and phase bins, respiratory-gating reduced overall thoracic MSE by 46% compared to conventional 4D CT (p ∼ 10(-19)). Gating leads to small but significant (p < 0.02) reductions in lung volume errors (1.8%-1.4%), false positives (4.0%-2.6%), and false negatives (2.7%-1.3%). These percentage reductions correspond to gating reducing image artifacts by 24-90 cm(3) of lung tissue. Similar to earlier studies, gating reduced patient image dose by up to 22%, but with scan time increased by up to 135%. Beam paused 4D CT did not significantly impact normal lung tissue image quality, but did yield similar dose reductions as for respiratory-gating, without the added cost in scanning time. For a typical 6 L lung, respiratory-gated 4D CT can reduce image artifacts affecting up to 90 cm(3) of normal lung tissue compared to conventional acquisition. This image improvement could have important implications for dose calculations based on 4D CT. Where image quality is less critical, beam paused 4D CT is a simple strategy to reduce imaging dose without sacrificing acquisition time.

  9. Effect of Cardiac Arrhythmia Simulation on Nursing Students' Knowledge Acquisition and Retention.

    PubMed

    Tubaishat, Ahmad; Tawalbeh, Loai I

    2015-09-01

    The realistic and practical environment that simulation provides is an extremely useful part of the teaching process. Simulation is widely used in health and nursing education today. This study aims to evaluate the effect of simulation-based teaching on the acquisition and retention of arrhythmia-related knowledge among nursing students. A randomized controlled design involving a pretest-posttest was used. Nursing students were allocated randomly either to the experimental group (n = 47), who attended simulation scenarios on cardiac arrhythmia, or to the control group (n = 44) who received a traditional lecture on the same topic. A paired t test showed that the mean knowledge score at the posttest was significantly higher than at the pretest for both groups. However, participants in the experimental group demonstrated significantly increased knowledge of cardiac arrhythmia in the first and the second posttest compared with those in the control group. Thus, simulation is superior and significantly improves students' arrhythmia knowledge. © The Author(s) 2014.

  10. Adult Bronchoscopy Training

    PubMed Central

    Wahidi, Momen M.; Read, Charles A.; Buckley, John D.; Addrizzo-Harris, Doreen J.; Shah, Pallav L.; Herth, Felix J. F.; de Hoyos Parra, Alberto; Ornelas, Joseph; Yarmus, Lonny; Silvestri, Gerard A.

    2015-01-01

    BACKGROUND: The determination of competency of trainees in programs performing bronchoscopy is quite variable. Some programs provide didactic lectures with hands-on supervision, other programs incorporate advanced simulation centers, whereas others have a checklist approach. Although no single method has been proven best, the variability alone suggests that outcomes are variable. Program directors and certifying bodies need guidance to create standards for training programs. Little well-developed literature on the topic exists. METHODS: To provide credible and trustworthy guidance, rigorous methodology has been applied to create this bronchoscopy consensus training statement. All panelists were vetted and approved by the CHEST Guidelines Oversight Committee. Each topic group drafted questions in a PICO (population, intervention, comparator, outcome) format. MEDLINE data through PubMed and the Cochrane Library were systematically searched. Manual searches also supplemented the searches. All gathered references were screened for consideration based on inclusion criteria, and all statements were designated as an Ungraded Consensus-Based Statement. RESULTS: We suggest that professional societies move from a volume-based certification system to skill acquisition and knowledge-based competency assessment for trainees. Bronchoscopy training programs should incorporate multiple tools, including simulation. We suggest that ongoing quality and process improvement systems be introduced and that certifying agencies move from a volume-based certification system to skill acquisition and knowledge-based competency assessment for trainees. We also suggest that assessment of skill maintenance and improvement in practice be evaluated regularly with ongoing quality and process improvement systems after initial skill acquisition. CONCLUSIONS: The current methods used for bronchoscopy competency in training programs are variable. We suggest that professional societies and certifying agencies move from a volume- based certification system to a standardized skill acquisition and knowledge-based competency assessment for pulmonary and thoracic surgery trainees. PMID:25674901

  11. Forecasting the quality of water-suppressed 1 H MR spectra based on a single-shot water scan.

    PubMed

    Kyathanahally, Sreenath P; Kreis, Roland

    2017-08-01

    To investigate whether an initial non-water-suppressed acquisition that provides information about the signal-to-noise ratio (SNR) and linewidth is enough to forecast the maximally achievable final spectral quality and thus inform the operator whether the foreseen number of averages and achieved field homogeneity is adequate. A large range of spectra with varying SNR and linewidth was simulated and fitted with popular fitting programs to determine the dependence of fitting errors on linewidth and SNR. A tool to forecast variance based on a single acquisition was developed and its performance evaluated on simulated and in vivo data obtained at 3 Tesla from various brain regions and acquisition settings. A strong correlation to real uncertainties in estimated metabolite contents was found for the forecast values and the Cramer-Rao lower bounds obtained from the water-suppressed spectra. It appears to be possible to forecast the best-case errors associated with specific metabolites to be found in model fits of water-suppressed spectra based on a single water scan. Thus, nonspecialist operators will be able to judge ahead of time whether the planned acquisition can possibly be of sufficient quality to answer the targeted clinical question or whether it needs more averages or improved shimming. Magn Reson Med 78:441-451, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  12. Simultaneous scanning of two mice in a small-animal PET scanner: a simulation-based assessment of the signal degradation

    NASA Astrophysics Data System (ADS)

    Reilhac, Anthonin; Boisson, Frédéric; Wimberley, Catriona; Parmar, Arvind; Zahra, David; Hamze, Hasar; Davis, Emma; Arthur, Andrew; Bouillot, Caroline; Charil, Arnaud; Grégoire, Marie-Claude

    2016-02-01

    In PET imaging, research groups have recently proposed different experimental set ups allowing multiple animals to be simultaneously imaged in a scanner in order to reduce the costs and increase the throughput. In those studies, the technical feasibility was demonstrated and the signal degradation caused by additional mice in the FOV characterized, however, the impact of the signal degradation on the outcome of a PET study has not yet been studied. Here we thoroughly investigated, using Monte Carlo simulated [18F]FDG and [11C]Raclopride PET studies, different experimental designs for whole-body and brain acquisitions of two mice and assessed the actual impact on the detection of biological variations as compared to a single-mouse setting. First, we extended the validation of the PET-SORTEO Monte Carlo simulation platform for the simultaneous simulation of two animals. Then, we designed [18F]FDG and [11C]Raclopride input mouse models for the simulation of realistic whole-body and brain PET studies. Simulated studies allowed us to accurately estimate the differences in detection between single- and dual-mode acquisition settings that are purely the result of having two animals in the FOV. Validation results showed that PET-SORTEO accurately reproduced the spatial resolution and noise degradations that were observed with actual dual phantom experiments. The simulated [18F]FDG whole-body study showed that the resolution loss due to the off-center positioning of the mice was the biggest contributing factor in signal degradation at the pixel level and a minimal inter-animal distance as well as the use of reconstruction methods with resolution modeling should be preferred. Dual mode acquisition did not have a major impact on ROI-based analysis except in situations where uptake values in organs from the same subject were compared. The simulated [11C]Raclopride study however showed that dual-mice imaging strongly reduced the sensitivity to variations when mice were positioned side-by-side while no sensitivity reduction was observed when they were facing each other. This is the first study showing the impact of different experimental designs for whole-body and brain acquisitions of two mice on the quality of the results using Monte Carlo simulated [18F]FDG and [11C]Raclopride PET studies.

  13. Simulation-based validation and arrival-time correction for Patlak analyses of Perfusion-CT scans

    NASA Astrophysics Data System (ADS)

    Bredno, Jörg; Hom, Jason; Schneider, Thomas; Wintermark, Max

    2009-02-01

    Blood-brain-barrier (BBB) breakdown is a hypothesized mechanism for hemorrhagic transformation in acute stroke. The Patlak analysis of a Perfusion Computed Tomography (PCT) scan measures the BBB permeability, but the method yields higher estimates when applied to the first pass of the contrast bolus compared to a delayed phase. We present a numerical phantom that simulates vascular and parenchymal time-attenuation curves to determine the validity of permeability measurements obtained with different acquisition protocols. A network of tubes represents the major cerebral arteries ipsi- and contralateral to an ischemic event. These tubes branch off into smaller segments that represent capillary beds. Blood flow in the phantom is freely defined and simulated as non-Newtonian tubular flow. Diffusion of contrast in the vessels and permeation through vessel walls is part of the simulation. The phantom allows us to compare the results of a permeability measurement to the simulated vessel wall status. A Patlak analysis reliably detects areas with BBB breakdown for acquisitions of 240s duration, whereas results obtained from the first pass are biased in areas of reduced blood flow. Compensating for differences in contrast arrival times reduces this bias and gives good estimates of BBB permeability for PCT acquisitions of 90-150s duration.

  14. Model-based frequency response characterization of a digital-image analysis system for epifluorescence microscopy

    NASA Technical Reports Server (NTRS)

    Hazra, Rajeeb; Viles, Charles L.; Park, Stephen K.; Reichenbach, Stephen E.; Sieracki, Michael E.

    1992-01-01

    Consideration is given to a model-based method for estimating the spatial frequency response of a digital-imaging system (e.g., a CCD camera) that is modeled as a linear, shift-invariant image acquisition subsystem that is cascaded with a linear, shift-variant sampling subsystem. The method characterizes the 2D frequency response of the image acquisition subsystem to beyond the Nyquist frequency by accounting explicitly for insufficient sampling and the sample-scene phase. Results for simulated systems and a real CCD-based epifluorescence microscopy system are presented to demonstrate the accuracy of the method.

  15. Phase imaging in brain using SWIFT

    NASA Astrophysics Data System (ADS)

    Lehto, Lauri Juhani; Garwood, Michael; Gröhn, Olli; Corum, Curtis Andrew

    2015-03-01

    The majority of MRI phase imaging is based on gradient recalled echo (GRE) sequences. This work studies phase contrast behavior due to small off-resonance frequency offsets in brain using SWIFT, a FID-based sequence with nearly zero acquisition delay. 1D simulations and a phantom study were conducted to describe the behavior of phase accumulation in SWIFT. Imaging experiments of known brain phase contrast properties were conducted in a perfused rat brain comparing GRE and SWIFT. Additionally, a human brain sample was imaged. It is demonstrated how SWIFT phase is orientation dependent and correlates well with GRE, linking SWIFT phase to similar off-resonance sources as GRE. The acquisition time is shown to be analogous to TE for phase accumulation time. Using experiments with and without a magnetization transfer preparation, the likely effect of myelin water pool contribution is seen as a phase increase for all acquisition times. Due to the phase accumulation during acquisition, SWIFT phase contrast can be sensitized to small frequency differences between white and gray matter using low acquisition bandwidths.

  16. Target Acquisition for Projectile Vision-Based Navigation

    DTIC Science & Technology

    2014-03-01

    Future Work 20 8. References 21 Appendix A. Simulation Results 23 Appendix B. Derivation of Ground Resolution for a Diffraction-Limited Pinhole Camera...results for visual acquisition (left) and target recognition (right). ..........19 Figure B-1. Differential object and image areas for pinhole camera...projectile and target (measured in terms of the angle ) will depend on target heading. In particular, because we have aligned the x axis along the

  17. Focusing the research agenda for simulation training visual system requirements

    NASA Astrophysics Data System (ADS)

    Lloyd, Charles J.

    2014-06-01

    Advances in the capabilities of the display-related technologies with potential uses in simulation training devices continue to occur at a rapid pace. Simultaneously, ongoing reductions in defense spending stimulate the services to push a higher proportion of training into ground-based simulators to reduce their operational costs. These two trends result in increased customer expectations and desires for more capable training devices, while the money available for these devices is decreasing. Thus, there exists an increasing need to improve the efficiency of the acquisition process and to increase the probability that users get the training devices they need at the lowest practical cost. In support of this need the IDEAS program was initiated in 2010 with the goal of improving display system requirements associated with unmet user needs and expectations and disrupted acquisitions. This paper describes a process of identifying, rating, and selecting the design parameters that should receive research attention. Analyses of existing requirements documents reveal that between 40 and 50 specific design parameters (i.e., resolution, contrast, luminance, field of view, frame rate, etc.) are typically called out for the acquisition of a simulation training display system. Obviously no research effort can address the effects of this many parameters. Thus, we developed a defensible strategy for focusing limited R&D resources on a fraction of these parameters. This strategy encompasses six criteria to identify the parameters most worthy of research attention. Examples based on display design parameters recommended by stakeholders are provided.

  18. Simulation Based Acquisition for NASA's Office of Exploration Systems

    NASA Technical Reports Server (NTRS)

    Hale, Joe

    2004-01-01

    In January 2004, President George W. Bush unveiled his vision for NASA to advance U.S. scientific, security, and economic interests through a robust space exploration program. This vision includes the goal to extend human presence across the solar system, starting with a human return to the Moon no later than 2020, in preparation for human exploration of Mars and other destinations. In response to this vision, NASA has created the Office of Exploration Systems (OExS) to develop the innovative technologies, knowledge, and infrastructures to explore and support decisions about human exploration destinations, including the development of a new Crew Exploration Vehicle (CEV). Within the OExS organization, NASA is implementing Simulation Based Acquisition (SBA), a robust Modeling & Simulation (M&S) environment integrated across all acquisition phases and programs/teams, to make the realization of the President s vision more certain. Executed properly, SBA will foster better informed, timelier, and more defensible decisions throughout the acquisition life cycle. By doing so, SBA will improve the quality of NASA systems and speed their development, at less cost and risk than would otherwise be the case. SBA is a comprehensive, Enterprise-wide endeavor that necessitates an evolved culture, a revised spiral acquisition process, and an infrastructure of advanced Information Technology (IT) capabilities. SBA encompasses all project phases (from requirements analysis and concept formulation through design, manufacture, training, and operations), professional disciplines, and activities that can benefit from employing SBA capabilities. SBA capabilities include: developing and assessing system concepts and designs; planning manufacturing, assembly, transport, and launch; training crews, maintainers, launch personnel, and controllers; planning and monitoring missions; responding to emergencies by evaluating effects and exploring solutions; and communicating across the OExS enterprise, within the Government, and with the general public. The SBA process features empowered collaborative teams (including industry partners) to integrate requirements, acquisition, training, operations, and sustainment. The SBA process also utilizes an increased reliance on and investment in M&S to reduce design risk. SBA originated as a joint Industry and Department of Defense (DoD) initiative to define and integrate an acquisition process that employs robust, collaborative use of M&S technology across acquisition phases and programs. The SBA process was successfully implemented in the Air Force s Joint Strike Fighter (JSF) Program.

  19. Validation of the Monte Carlo simulator GATE for indium-111 imaging.

    PubMed

    Assié, K; Gardin, I; Véra, P; Buvat, I

    2005-07-07

    Monte Carlo simulations are useful for optimizing and assessing single photon emission computed tomography (SPECT) protocols, especially when aiming at measuring quantitative parameters from SPECT images. Before Monte Carlo simulated data can be trusted, the simulation model must be validated. The purpose of this work was to validate the use of GATE, a new Monte Carlo simulation platform based on GEANT4, for modelling indium-111 SPECT data, the quantification of which is of foremost importance for dosimetric studies. To that end, acquisitions of (111)In line sources in air and in water and of a cylindrical phantom were performed, together with the corresponding simulations. The simulation model included Monte Carlo modelling of the camera collimator and of a back-compartment accounting for photomultiplier tubes and associated electronics. Energy spectra, spatial resolution, sensitivity values, images and count profiles obtained for experimental and simulated data were compared. An excellent agreement was found between experimental and simulated energy spectra. For source-to-collimator distances varying from 0 to 20 cm, simulated and experimental spatial resolution differed by less than 2% in air, while the simulated sensitivity values were within 4% of the experimental values. The simulation of the cylindrical phantom closely reproduced the experimental data. These results suggest that GATE enables accurate simulation of (111)In SPECT acquisitions.

  20. Quantifying the impact of respiratory-gated 4D CT acquisition on thoracic image quality: A digital phantom study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernatowicz, K., E-mail: kingab@student.ethz.ch; Knopf, A.; Lomax, A.

    Purpose: Prospective respiratory-gated 4D CT has been shown to reduce tumor image artifacts by up to 50% compared to conventional 4D CT. However, to date no studies have quantified the impact of gated 4D CT on normal lung tissue imaging, which is important in performing dose calculations based on accurate estimates of lung volume and structure. To determine the impact of gated 4D CT on thoracic image quality, the authors developed a novel simulation framework incorporating a realistic deformable digital phantom driven by patient tumor motion patterns. Based on this framework, the authors test the hypothesis that respiratory-gated 4D CTmore » can significantly reduce lung imaging artifacts. Methods: Our simulation framework synchronizes the 4D extended cardiac torso (XCAT) phantom with tumor motion data in a quasi real-time fashion, allowing simulation of three 4D CT acquisition modes featuring different levels of respiratory feedback: (i) “conventional” 4D CT that uses a constant imaging and couch-shift frequency, (ii) “beam paused” 4D CT that interrupts imaging to avoid oversampling at a given couch position and respiratory phase, and (iii) “respiratory-gated” 4D CT that triggers acquisition only when the respiratory motion fulfills phase-specific displacement gating windows based on prescan breathing data. Our framework generates a set of ground truth comparators, representing the average XCAT anatomy during beam-on for each of ten respiratory phase bins. Based on this framework, the authors simulated conventional, beam-paused, and respiratory-gated 4D CT images using tumor motion patterns from seven lung cancer patients across 13 treatment fractions, with a simulated 5.5 cm{sup 3} spherical lesion. Normal lung tissue image quality was quantified by comparing simulated and ground truth images in terms of overall mean square error (MSE) intensity difference, threshold-based lung volume error, and fractional false positive/false negative rates. Results: Averaged across all simulations and phase bins, respiratory-gating reduced overall thoracic MSE by 46% compared to conventional 4D CT (p ∼ 10{sup −19}). Gating leads to small but significant (p < 0.02) reductions in lung volume errors (1.8%–1.4%), false positives (4.0%–2.6%), and false negatives (2.7%–1.3%). These percentage reductions correspond to gating reducing image artifacts by 24–90 cm{sup 3} of lung tissue. Similar to earlier studies, gating reduced patient image dose by up to 22%, but with scan time increased by up to 135%. Beam paused 4D CT did not significantly impact normal lung tissue image quality, but did yield similar dose reductions as for respiratory-gating, without the added cost in scanning time. Conclusions: For a typical 6 L lung, respiratory-gated 4D CT can reduce image artifacts affecting up to 90 cm{sup 3} of normal lung tissue compared to conventional acquisition. This image improvement could have important implications for dose calculations based on 4D CT. Where image quality is less critical, beam paused 4D CT is a simple strategy to reduce imaging dose without sacrificing acquisition time.« less

  1. Is There Bias against Simulation in Microsurgery Training?

    PubMed

    Theman, Todd A; Labow, Brian I

    2016-09-01

    Background While other surgical specialties have embraced virtual reality simulation for training and recertification, microsurgery has lagged. This study aims to assess the opinions of microsurgeons on the role of simulation in microsurgery assessment and training. Methods We surveyed faculty members of the American Society of Reconstructive Microsurgery to ascertain opinions on their use of simulation in training and opinions about the utility of simulation for skills acquisition, teaching, and skills assessment. The 21-question survey was disseminated online to 675 members. Results Eighty-nine members completed the survey for a 13.2% response rate. Few microsurgeons have experience with high-fidelity simulation, and opinions on its utility are internally inconsistent. Although 84% of respondents could not identify a reason why simulation would not be useful, only 24% believed simulation is a useful measure of clinical performance. Nearly three-fourths of respondents were skeptical that simulation would improve their skills. Ninety-four percent had no experience with simulator-based assessment. Conclusion Simulation has been shown to improve skills acquisition in microsurgery, but our survey suggests that unfamiliarity may foster bias against the technology. Failure to incorporate simulation may adversely affect training and may put surgeons at a disadvantage should these technologies be adopted for recertification by regulatory agencies. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  2. Acquisition, preprocessing, and reconstruction of ultralow dose volumetric CT scout for organ-based CT scan planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Zhye, E-mail: yin@ge.com; De Man, Bruno; Yao, Yangyang

    Purpose: Traditionally, 2D radiographic preparatory scan images (scout scans) are used to plan diagnostic CT scans. However, a 3D CT volume with a full 3D organ segmentation map could provide superior information for customized scan planning and other purposes. A practical challenge is to design the volumetric scout acquisition and processing steps to provide good image quality (at least good enough to enable 3D organ segmentation) while delivering a radiation dose similar to that of the conventional 2D scout. Methods: The authors explored various acquisition methods, scan parameters, postprocessing methods, and reconstruction methods through simulation and cadaver data studies tomore » achieve an ultralow dose 3D scout while simultaneously reducing the noise and maintaining the edge strength around the target organ. Results: In a simulation study, the 3D scout with the proposed acquisition, preprocessing, and reconstruction strategy provided a similar level of organ segmentation capability as a traditional 240 mAs diagnostic scan, based on noise and normalized edge strength metrics. At the same time, the proposed approach delivers only 1.25% of the dose of a traditional scan. In a cadaver study, the authors’ pictorial-structures based organ localization algorithm successfully located the major abdominal-thoracic organs from the ultralow dose 3D scout obtained with the proposed strategy. Conclusions: The authors demonstrated that images with a similar degree of segmentation capability (interpretability) as conventional dose CT scans can be achieved with an ultralow dose 3D scout acquisition and suitable postprocessing. Furthermore, the authors applied these techniques to real cadaver CT scans with a CTDI dose level of less than 0.1 mGy and successfully generated a 3D organ localization map.« less

  3. Current target acquisition methodology in force on force simulations

    NASA Astrophysics Data System (ADS)

    Hixson, Jonathan G.; Miller, Brian; Mazz, John P.

    2017-05-01

    The U.S. Army RDECOM CERDEC NVESD MSD's target acquisition models have been used for many years by the military community in force on force simulations for training, testing, and analysis. There have been significant improvements to these models over the past few years. The significant improvements are the transition of ACQUIRE TTP-TAS (ACQUIRE Targeting Task Performance Target Angular Size) methodology for all imaging sensors and the development of new discrimination criteria for urban environments and humans. This paper is intended to provide an overview of the current target acquisition modeling approach and provide data for the new discrimination tasks. This paper will discuss advances and changes to the models and methodologies used to: (1) design and compare sensors' performance, (2) predict expected target acquisition performance in the field, (3) predict target acquisition performance for combat simulations, and (4) how to conduct model data validation for combat simulations.

  4. Collaborative enterprise and virtual prototyping (CEVP): a product-centric approach to distributed simulation

    NASA Astrophysics Data System (ADS)

    Saunders, Vance M.

    1999-06-01

    The downsizing of the Department of Defense (DoD) and the associated reduction in budgets has re-emphasized the need for commonality, reuse, and standards with respect to the way DoD does business. DoD has implemented significant changes in how it buys weapon systems. The new emphasis is on concurrent engineering with Integrated Product and Process Development and collaboration with Integrated Product Teams. The new DoD vision includes Simulation Based Acquisition (SBA), a process supported by robust, collaborative use of simulation technology that is integrated across acquisition phases and programs. This paper discusses the Air Force Research Laboratory's efforts to use Modeling and Simulation (M&S) resources within a Collaborative Enterprise Environment to support SBA and other Collaborative Enterprise and Virtual Prototyping (CEVP) applications. The paper will discuss four technology areas: (1) a Processing Ontology that defines a hierarchically nested set of collaboration contexts needed to organize and support multi-disciplinary collaboration using M&S, (2) a partial taxonomy of intelligent agents needed to manage different M&S resource contributions to advancing the state of product development, (3) an agent- based process for interfacing disparate M&S resources into a CEVP framework, and (4) a Model-View-Control based approach to defining `a new way of doing business' for users of CEVP frameworks/systems.

  5. Effect of vibration on retention characteristics of screen acquisition systems. [for surface tension propellant acquisition

    NASA Technical Reports Server (NTRS)

    Tegart, J. R.; Aydelott, J. C.

    1978-01-01

    The design of surface tension propellant acquisition systems using fine-mesh screen must take into account all factors that influence the liquid pressure differentials within the system. One of those factors is spacecraft vibration. Analytical models to predict the effects of vibration have been developed. A test program to verify the analytical models and to allow a comparative evaluation of the parameters influencing the response to vibration was performed. Screen specimens were tested under conditions simulating the operation of an acquisition system, considering the effects of such parameters as screen orientation and configuration, screen support method, screen mesh, liquid flow and liquid properties. An analytical model, based on empirical coefficients, was most successful in predicting the effects of vibration.

  6. ["Jump in at the deep end" : simulator-based learning in acute care].

    PubMed

    Breuer, G; Schweizer, K; Schüttler, J; Weiß, M; Vladut, A

    2014-01-01

    With high-fidelity simulators in a modern blended learning setting, students are able to acquire knowledge and practical skills in acute medicine in realistic scenarios. However, it has not yet been clarified if the sequence of linking between knowledge and simulator-based training of practical skills plays an important role for increasing knowledge, for the self-concept and learning emotions of trainees. In a pilot study the influence of the type of knowledge acquisition under two independent conditions was investigated in which the order of presenting the learning material (firstly theory and then simulation vs. simulation elements before the theory) was reversed. In addition the influence of individual attributes of personality on the construction of situated knowledge was correlated with these conditions in two groups. To investigate the outcome of simulator-based learning 20 students were randomly allocated to one of the two conditions and undertook two scenarios (anaphylactic shock and myocardial infarction), whereby the theoretical lessons were given either before or after the scenarios. Using standardized questionnaires and problem-centered semi-standardized interviews, the following variables of the participants were assessed: personality traits, current positive and negative feelings, professional self-concept, general self-efficacy and coping strategies for stress. Theoretical knowledge and practical skills were assessed using a knowledge test and standardized assessment questionnaires which also focused on performance and patient safety. All together the results showed a slight advantage for the condition of theory before simulation which was not determined by the acquisition of knowledge but by a better performance of trainees as assessed by the trainers. Regarding knowledge acquisition, no statistically significant differences could be shown. Significant differences (p < 0.05) were found for negative feelings (very intense negative emotional state) and for the professional self-concept (perception of own professional skills) in favor of the theory then simulation condition. More extrovert participants showed poorer results which could not be attributed to one of the conditions. However, the participants always assessed the allocated learning condition as the best premise for effective learning outcome. Reaction to stress has been described as "jumping in at the deep end" as well as the lasting effect on learning from errors. In the context of simulation-based teaching, the learning outcome not only depends on knowledge, practical skills and motivational variables but also on the presence of negative feelings, ability self-concepts and various personality traits. There was a trend which showed that simulation in the field of anesthesiology and emergency medicine should be set up with the theoretical basis first in order to avoid negative feelings.

  7. Improving the performance of a filling line based on simulation

    NASA Astrophysics Data System (ADS)

    Jasiulewicz-Kaczmarek, M.; Bartkowiak, T.

    2016-08-01

    The paper describes the method of improving performance of a filling line based on simulation. This study concerns a production line that is located in a manufacturing centre of a FMCG company. A discrete event simulation model was built using data provided by maintenance data acquisition system. Two types of failures were identified in the system and were approximated using continuous statistical distributions. The model was validated taking into consideration line performance measures. A brief Pareto analysis of line failures was conducted to identify potential areas of improvement. Two improvements scenarios were proposed and tested via simulation. The outcome of the simulations were the bases of financial analysis. NPV and ROI values were calculated taking into account depreciation, profits, losses, current CIT rate and inflation. A validated simulation model can be a useful tool in maintenance decision-making process.

  8. Improving the Acquisition of Basic Technical Surgical Skills with VR-Based Simulation Coupled with Computer-Based Video Instruction.

    PubMed

    Rojas, David; Kapralos, Bill; Dubrowski, Adam

    2016-01-01

    Next to practice, feedback is the most important variable in skill acquisition. Feedback can vary in content and the way that it is used for delivery. Health professions education research has extensively examined the different effects provided by the different feedback methodologies. In this paper we compared two different types of knowledge of performance (KP) feedback. The first type was video-based KP feedback while the second type consisted of computer generated KP feedback. Results of this study showed that computer generated performance feedback is more effective than video based performance feedback. The combination of the two feedback methodologies provides trainees with a better understanding.

  9. An Example-Based Brain MRI Simulation Framework.

    PubMed

    He, Qing; Roy, Snehashis; Jog, Amod; Pham, Dzung L

    2015-02-21

    The simulation of magnetic resonance (MR) images plays an important role in the validation of image analysis algorithms such as image segmentation, due to lack of sufficient ground truth in real MR images. Previous work on MRI simulation has focused on explicitly modeling the MR image formation process. However, because of the overwhelming complexity of MR acquisition these simulations must involve simplifications and approximations that can result in visually unrealistic simulated images. In this work, we describe an example-based simulation framework, which uses an "atlas" consisting of an MR image and its anatomical models derived from the hard segmentation. The relationships between the MR image intensities and its anatomical models are learned using a patch-based regression that implicitly models the physics of the MR image formation. Given the anatomical models of a new brain, a new MR image can be simulated using the learned regression. This approach has been extended to also simulate intensity inhomogeneity artifacts based on the statistical model of training data. Results show that the example based MRI simulation method is capable of simulating different image contrasts and is robust to different choices of atlas. The simulated images resemble real MR images more than simulations produced by a physics-based model.

  10. MRXCAT: Realistic numerical phantoms for cardiovascular magnetic resonance

    PubMed Central

    2014-01-01

    Background Computer simulations are important for validating novel image acquisition and reconstruction strategies. In cardiovascular magnetic resonance (CMR), numerical simulations need to combine anatomical information and the effects of cardiac and/or respiratory motion. To this end, a framework for realistic CMR simulations is proposed and its use for image reconstruction from undersampled data is demonstrated. Methods The extended Cardiac-Torso (XCAT) anatomical phantom framework with various motion options was used as a basis for the numerical phantoms. Different tissue, dynamic contrast and signal models, multiple receiver coils and noise are simulated. Arbitrary trajectories and undersampled acquisition can be selected. The utility of the framework is demonstrated for accelerated cine and first-pass myocardial perfusion imaging using k-t PCA and k-t SPARSE. Results MRXCAT phantoms allow for realistic simulation of CMR including optional cardiac and respiratory motion. Example reconstructions from simulated undersampled k-t parallel imaging demonstrate the feasibility of simulated acquisition and reconstruction using the presented framework. Myocardial blood flow assessment from simulated myocardial perfusion images highlights the suitability of MRXCAT for quantitative post-processing simulation. Conclusion The proposed MRXCAT phantom framework enables versatile and realistic simulations of CMR including breathhold and free-breathing acquisitions. PMID:25204441

  11. Resistive plate chambers in positron emission tomography

    NASA Astrophysics Data System (ADS)

    Crespo, Paulo; Blanco, Alberto; Couceiro, Miguel; Ferreira, Nuno C.; Lopes, Luís; Martins, Paulo; Ferreira Marques, Rui; Fonte, Paulo

    2013-07-01

    Resistive plate chambers (RPC) were originally deployed for high energy physics. Realizing how their properties match the needs of nuclear medicine, a LIP team proposed applying RPCs to both preclinical and clinical positron emission tomography (RPC-PET). We show a large-area RPC-PET simulated scanner covering an axial length of 2.4m —slightly superior to the height of the human body— allowing for whole-body, single-bed RPC-PET acquisitions. Simulations following NEMA (National Electrical Manufacturers Association, USA) protocols yield a system sensitivity at least one order of magnitude larger than present-day, commercial PET systems. Reconstruction of whole-body simulated data is feasible by using a dedicated, direct time-of-flight-based algorithm implemented onto an ordered subsets estimation maximization parallelized strategy. Whole-body RPC-PET patient images following the injection of only 2mCi of 18-fluorodesoxyglucose (FDG) are expected to be ready 7 minutes after the 6 minutes necessary for data acquisition. This compares to the 10-20mCi FDG presently injected for a PET scan, and to the uncomfortable 20-30minutes necessary for its data acquisition. In the preclinical field, two fully instrumented detector heads have been assembled aiming at a four-head-based, small-animal RPC-PET system. Images of a disk-shaped and a needle-like 22Na source show unprecedented sub-millimeter spatial resolution.

  12. Relationship between Fidelity and Dose of Human Patient Simulation, Critical Thinking Skills, and Knowledge in an Associate Degree Nursing Program

    ERIC Educational Resources Information Center

    Beebe, Rosella I.

    2012-01-01

    This study examined the relationship between human patient simulation (HPS), critical thinking skills, and knowledge acquisition after HPS was integrated across the curriculum of an associate degree nursing program to determine if differences existed in critical thinking and knowledge of students based on the fidelity of HPS used and amount of…

  13. Fire Play: ICCARUS--Intelligent Command and Control, Acquisition and Review Using Simulation

    ERIC Educational Resources Information Center

    Powell, James; Wright, Theo; Newland, Paul; Creed, Chris; Logan, Brian

    2008-01-01

    Is it possible to educate a fire officer to deal intelligently with the command and control of a major fire event he will never have experienced? The authors of this paper believe there is, and present here just one solution to this training challenge. It involves the development of an intelligent simulation based upon computer managed interactive…

  14. Web-Based Learning and Instruction Support System for Pneumatics

    ERIC Educational Resources Information Center

    Yen, Chiaming; Li, Wu-Jeng

    2003-01-01

    This research presents a Web-based learning and instructional system for Pneumatics. The system includes course material, remote data acquisition modules, and a pneumatic laboratory set. The course material is in the HTML format accompanied with text, still and animated images, simulation programs, and computer aided design tools. The data…

  15. Collaborative environments for capability-based planning

    NASA Astrophysics Data System (ADS)

    McQuay, William K.

    2005-05-01

    Distributed collaboration is an emerging technology for the 21st century that will significantly change how business is conducted in the defense and commercial sectors. Collaboration involves two or more geographically dispersed entities working together to create a "product" by sharing and exchanging data, information, and knowledge. A product is defined broadly to include, for example, writing a report, creating software, designing hardware, or implementing robust systems engineering and capability planning processes in an organization. Collaborative environments provide the framework and integrate models, simulations, domain specific tools, and virtual test beds to facilitate collaboration between the multiple disciplines needed in the enterprise. The Air Force Research Laboratory (AFRL) is conducting a leading edge program in developing distributed collaborative technologies targeted to the Air Force's implementation of systems engineering for a simulation-aided acquisition and capability-based planning. The research is focusing on the open systems agent-based framework, product and process modeling, structural architecture, and the integration technologies - the glue to integrate the software components. In past four years, two live assessment events have been conducted to demonstrate the technology in support of research for the Air Force Agile Acquisition initiatives. The AFRL Collaborative Environment concept will foster a major cultural change in how the acquisition, training, and operational communities conduct business.

  16. Acquisition of a Multi-Domain Advanced Real-Time Simulator to Support DoD-focused Interdisciplinary Research at CSUB

    DTIC Science & Technology

    2017-10-17

    Report: Acquisition of a Multi-Domain Advanced Real- Time Simulator to Support DoD-focused Interdisciplinary Research at CSUB The views, opinions and...reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions...University - Bakersfield Title: Acquisition of a Multi-Domain Advanced Real- Time Simulator to Support DoD-focused Interdisciplinary Research at CSUB Report

  17. Generating strain signals under consideration of road surface profiles

    NASA Astrophysics Data System (ADS)

    Putra, T. E.; Abdullah, S.; Schramm, D.; Nuawi, M. Z.; Bruckmann, T.

    2015-08-01

    The current study aimed to develop the mechanism for generating strain signal utilising computer-based simulation. The strain data, caused by the acceleration, were undertaken from a fatigue data acquisition involving car movements. Using a mathematical model, the measured strain signals yielded to acceleration data used to describe the bumpiness of road surfaces. The acceleration signals were considered as an external disturbance on generating strain signals. Based on this comparison, both the actual and simulated strain data have similar pattern. The results are expected to provide new knowledge to generate a strain signal via a simulation.

  18. Targeting clinical outcomes: Endovascular simulation improves diagnostic coronary angiography skills.

    PubMed

    Schimmel, Daniel R; Sweis, Ranya; Cohen, Elaine R; Davidson, Charles; Wayne, Diane B

    2016-02-15

    The purpose of this study is to determine the effects of simulation-based medical education (SBME) on the skills required to perform coronary angiography in the cardiac catheterization laboratory. Cardiovascular fellows commonly learn invasive procedures on patients. Because this approach is not standardized, it can result in inconsistent skill acquisition through exclusion of concepts and skills. Also, the learning curve varies between trainees yielding variability in skill acquisition. Therefore, coronary angiography skills are an excellent target for SBME in an environment in which direct patient care is not jeopardized. From January 2013 to June 2013, 14 cardiovascular fellows entering the cardiac catheterization laboratory at a tertiary care teaching hospital were tested on an endovascular simulator to assess baseline skills. All fellows subsequently underwent didactic teaching and preceptor-lead training on the endovascular simulator. Topics included basic catheterization skills and a review of catheterization laboratory systems. Following training, all fellows underwent a post-training assessment on the endovascular simulator. Paired t tests were used to compare items on the skills checklist and simulator defined variables. Cardiovascular fellows scored significantly higher on a diagnostic coronary angiography skills checklist following SBME using an endovascular simulator. The mean pretest score was 66.6% (SD = 9.7%) compared to 86.0% (SD = 6.3%) following simulator training (P < 0.001). Additional findings include significant reduction in procedure time and use of cine-fluoroscopy at posttest. SBME significantly improved cardiovascular fellows' performance of simulated coronary angiography skills. Standardized simulation-based education is a valuable adjunct to traditional clinical education for cardiovascular fellows. © 2015 Wiley Periodicals, Inc.

  19. Learn, see, practice, prove, do, maintain: an evidence-based pedagogical framework for procedural skill training in medicine.

    PubMed

    Sawyer, Taylor; White, Marjorie; Zaveri, Pavan; Chang, Todd; Ades, Anne; French, Heather; Anderson, JoDee; Auerbach, Marc; Johnston, Lindsay; Kessler, David

    2015-08-01

    Acquisition of competency in procedural skills is a fundamental goal of medical training. In this Perspective, the authors propose an evidence-based pedagogical framework for procedural skill training. The framework was developed based on a review of the literature using a critical synthesis approach and builds on earlier models of procedural skill training in medicine. The authors begin by describing the fundamentals of procedural skill development. Then, a six-step pedagogical framework for procedural skills training is presented: Learn, See, Practice, Prove, Do, and Maintain. In this framework, procedural skill training begins with the learner acquiring requisite cognitive knowledge through didactic education (Learn) and observation of the procedure (See). The learner then progresses to the stage of psychomotor skill acquisition and is allowed to deliberately practice the procedure on a simulator (Practice). Simulation-based mastery learning is employed to allow the trainee to prove competency prior to performing the procedure on a patient (Prove). Once competency is demonstrated on a simulator, the trainee is allowed to perform the procedure on patients with direct supervision, until he or she can be entrusted to perform the procedure independently (Do). Maintenance of the skill is ensured through continued clinical practice, supplemented by simulation-based training as needed (Maintain). Evidence in support of each component of the framework is presented. Implementation of the proposed framework presents a paradigm shift in procedural skill training. However, the authors believe that adoption of the framework will improve procedural skill training and patient safety.

  20. Effects of Transcranial Direct-Current Stimulation on Neurosurgical Skill Acquisition: A Randomized Controlled Trial.

    PubMed

    Ciechanski, Patrick; Cheng, Adam; Lopushinsky, Steven; Hecker, Kent; Gan, Liu Shi; Lang, Stefan; Zareinia, Kourosh; Kirton, Adam

    2017-12-01

    Recent changes in surgical training environments may have limited opportunities for trainees to gain proficiency in skill. Complex skills such as neurosurgery require extended periods of training. Methods to enhance surgical training are required to overcome duty-hour restrictions, to ensure the acquisition of skill proficiency. Transcranial direct-current stimulation (tDCS) can enhance motor skill learning, but is untested in surgical procedural training. We aimed to determine the effects of tDCS on simulation-based neurosurgical skill acquisition. Medical students were trained to acquire tumor resection skills using a virtual reality neurosurgical simulator. The primary outcome of change in tumor resection was scored at baseline, over 8 repetitions, post-training, and again at 6 weeks. Participants received anodal tDCS or sham over the primary motor cortex. Secondary outcomes included changes in brain resected, resection effectiveness, duration of excessive forces (EF) applied, and resection efficiency. Additional outcomes included tDCS tolerability. Twenty-two students consented to participate, with no dropouts over the course of the trial. Participants receiving tDCS intervention increased the amount of tumor resected, increased the effectiveness of resection, reduced the duration of EF applied, and improved resection efficiency. Little or no decay was observed at 6 weeks in both groups. No adverse events were documented, and sensation severity did not differ between stimulation groups. The addition of tDCS to neurosurgical training may enhance skill acquisition in a simulation-based environment. Trials of additional skills in high-skill residents, and translation to nonsimulated performance are needed to determine the potential utility of tDCS in surgical training. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. PeneloPET, a Monte Carlo PET simulation tool based on PENELOPE: features and validation

    NASA Astrophysics Data System (ADS)

    España, S; Herraiz, J L; Vicente, E; Vaquero, J J; Desco, M; Udias, J M

    2009-03-01

    Monte Carlo simulations play an important role in positron emission tomography (PET) imaging, as an essential tool for the research and development of new scanners and for advanced image reconstruction. PeneloPET, a PET-dedicated Monte Carlo tool, is presented and validated in this work. PeneloPET is based on PENELOPE, a Monte Carlo code for the simulation of the transport in matter of electrons, positrons and photons, with energies from a few hundred eV to 1 GeV. PENELOPE is robust, fast and very accurate, but it may be unfriendly to people not acquainted with the FORTRAN programming language. PeneloPET is an easy-to-use application which allows comprehensive simulations of PET systems within PENELOPE. Complex and realistic simulations can be set by modifying a few simple input text files. Different levels of output data are available for analysis, from sinogram and lines-of-response (LORs) histogramming to fully detailed list mode. These data can be further exploited with the preferred programming language, including ROOT. PeneloPET simulates PET systems based on crystal array blocks coupled to photodetectors and allows the user to define radioactive sources, detectors, shielding and other parts of the scanner. The acquisition chain is simulated in high level detail; for instance, the electronic processing can include pile-up rejection mechanisms and time stamping of events, if desired. This paper describes PeneloPET and shows the results of extensive validations and comparisons of simulations against real measurements from commercial acquisition systems. PeneloPET is being extensively employed to improve the image quality of commercial PET systems and for the development of new ones.

  2. Accelerated GPU based SPECT Monte Carlo simulations.

    PubMed

    Garcia, Marie-Paule; Bert, Julien; Benoit, Didier; Bardiès, Manuel; Visvikis, Dimitris

    2016-06-07

    Monte Carlo (MC) modelling is widely used in the field of single photon emission computed tomography (SPECT) as it is a reliable technique to simulate very high quality scans. This technique provides very accurate modelling of the radiation transport and particle interactions in a heterogeneous medium. Various MC codes exist for nuclear medicine imaging simulations. Recently, new strategies exploiting the computing capabilities of graphical processing units (GPU) have been proposed. This work aims at evaluating the accuracy of such GPU implementation strategies in comparison to standard MC codes in the context of SPECT imaging. GATE was considered the reference MC toolkit and used to evaluate the performance of newly developed GPU Geant4-based Monte Carlo simulation (GGEMS) modules for SPECT imaging. Radioisotopes with different photon energies were used with these various CPU and GPU Geant4-based MC codes in order to assess the best strategy for each configuration. Three different isotopes were considered: (99m) Tc, (111)In and (131)I, using a low energy high resolution (LEHR) collimator, a medium energy general purpose (MEGP) collimator and a high energy general purpose (HEGP) collimator respectively. Point source, uniform source, cylindrical phantom and anthropomorphic phantom acquisitions were simulated using a model of the GE infinia II 3/8" gamma camera. Both simulation platforms yielded a similar system sensitivity and image statistical quality for the various combinations. The overall acceleration factor between GATE and GGEMS platform derived from the same cylindrical phantom acquisition was between 18 and 27 for the different radioisotopes. Besides, a full MC simulation using an anthropomorphic phantom showed the full potential of the GGEMS platform, with a resulting acceleration factor up to 71. The good agreement with reference codes and the acceleration factors obtained support the use of GPU implementation strategies for improving computational efficiency of SPECT imaging simulations.

  3. Uncertainty Quantification of Medium-Term Heat Storage From Short-Term Geophysical Experiments Using Bayesian Evidential Learning

    NASA Astrophysics Data System (ADS)

    Hermans, Thomas; Nguyen, Frédéric; Klepikova, Maria; Dassargues, Alain; Caers, Jef

    2018-04-01

    In theory, aquifer thermal energy storage (ATES) systems can recover in winter the heat stored in the aquifer during summer to increase the energy efficiency of the system. In practice, the energy efficiency is often lower than expected from simulations due to spatial heterogeneity of hydraulic properties or non-favorable hydrogeological conditions. A proper design of ATES systems should therefore consider the uncertainty of the prediction related to those parameters. We use a novel framework called Bayesian Evidential Learning (BEL) to estimate the heat storage capacity of an alluvial aquifer using a heat tracing experiment. BEL is based on two main stages: pre- and postfield data acquisition. Before data acquisition, Monte Carlo simulations and global sensitivity analysis are used to assess the information content of the data to reduce the uncertainty of the prediction. After data acquisition, prior falsification and machine learning based on the same Monte Carlo are used to directly assess uncertainty on key prediction variables from observations. The result is a full quantification of the posterior distribution of the prediction conditioned to observed data, without any explicit full model inversion. We demonstrate the methodology in field conditions and validate the framework using independent measurements.

  4. Integration of High-resolution Data for Temporal Bone Surgical Simulations

    PubMed Central

    Wiet, Gregory J.; Stredney, Don; Powell, Kimerly; Hittle, Brad; Kerwin, Thomas

    2016-01-01

    Purpose To report on the state of the art in obtaining high-resolution 3D data of the microanatomy of the temporal bone and to process that data for integration into a surgical simulator. Specifically, we report on our experience in this area and discuss the issues involved to further the field. Data Sources Current temporal bone image acquisition and image processing established in the literature as well as in house methodological development. Review Methods We reviewed the current English literature for the techniques used in computer-based temporal bone simulation systems to obtain and process anatomical data for use within the simulation. Search terms included “temporal bone simulation, surgical simulation, temporal bone.” Articles were chosen and reviewed that directly addressed data acquisition and processing/segmentation and enhancement with emphasis given to computer based systems. We present the results from this review in relationship to our approach. Conclusions High-resolution CT imaging (≤100μm voxel resolution), along with unique image processing and rendering algorithms, and structure specific enhancement are needed for high-level training and assessment using temporal bone surgical simulators. Higher resolution clinical scanning and automated processes that run in efficient time frames are needed before these systems can routinely support pre-surgical planning. Additionally, protocols such as that provided in this manuscript need to be disseminated to increase the number and variety of virtual temporal bones available for training and performance assessment. PMID:26762105

  5. A new variable parallel holes collimator for scintigraphic device with validation method based on Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Trinci, G.; Massari, R.; Scandellari, M.; Boccalini, S.; Costantini, S.; Di Sero, R.; Basso, A.; Sala, R.; Scopinaro, F.; Soluri, A.

    2010-09-01

    The aim of this work is to show a new scintigraphic device able to change automatically the length of its collimator in order to adapt the spatial resolution value to gamma source distance. This patented technique replaces the need for collimator change that standard gamma cameras still feature. Monte Carlo simulations represent the best tool in searching new technological solutions for such an innovative collimation structure. They also provide a valid analysis on response of gamma cameras performances as well as on advantages and limits of this new solution. Specifically, Monte Carlo simulations are realized with GEANT4 (GEometry ANd Tracking) framework and the specific simulation object is a collimation method based on separate blocks that can be brought closer and farther, in order to reach and maintain specific spatial resolution values for all source-detector distances. To verify the accuracy and the faithfulness of these simulations, we have realized experimental measurements with identical setup and conditions. This confirms the power of the simulation as an extremely useful tool, especially where new technological solutions need to be studied, tested and analyzed before their practical realization. The final aim of this new collimation system is the improvement of the SPECT techniques, with the real control of the spatial resolution value during tomographic acquisitions. This principle did allow us to simulate a tomographic acquisition of two capillaries of radioactive solution, in order to verify the possibility to clearly distinguish them.

  6. The Effect of Educational Software, Video Modelling and Group Discussion on Social-Skill Acquisition Among Students with Mild Intellectual Disabilities.

    PubMed

    Hetzroni, Orit E; Banin, Irit

    2017-07-01

    People with intellectual and developmental disabilities (IDD) often demonstrate difficulties in social skills. The purpose of this study was to examine the effects of a comprehensive intervention program on the acquisition of social skills among students with mild IDD. Single subject multiple baseline design across situations was used for teaching five school-age children with mild IDD social skills embedded in school-based situations. Results demonstrate that the intervention program that included video modelling and games embedded with group discussions and simulations increased the level and use of adequate social behaviours within the school's natural environment. Results demonstrate the unique attribution of a comprehensive interactive program for acquisition and transfer of participants' social skills such as language pragmatics and social rules within the school environment. Group discussions and simulations were beneficial and enabled both group and personalized instruction through the unique application of the program designed for the study. © 2016 John Wiley & Sons Ltd.

  7. Data acquisition, processing and firing aid software for multichannel EMP simulation

    NASA Astrophysics Data System (ADS)

    Eumurian, Gregoire; Arbaud, Bruno

    1986-08-01

    Electromagnetic compatibility testing yields a large quantity of data for systematic analysis. An automated data acquisition system has been developed. It is based on standard EMP instrumentation which allows a pre-established program to be followed whilst orientating the measurements according to the results obtained. The system is controlled by a computer running interactive programs (multitask windows, scrollable menus, mouse, etc.) which handle the measurement channels, files, displays and process data in addition to providing an aid to firing.

  8. Inquiry Based-Computational Experiment, Acquisition of Threshold Concepts and Argumentation in Science and Mathematics Education

    ERIC Educational Resources Information Center

    Psycharis, Sarantos

    2016-01-01

    Computational experiment approach considers models as the fundamental instructional units of Inquiry Based Science and Mathematics Education (IBSE) and STEM Education, where the model take the place of the "classical" experimental set-up and simulation replaces the experiment. Argumentation in IBSE and STEM education is related to the…

  9. Fiberfox: facilitating the creation of realistic white matter software phantoms.

    PubMed

    Neher, Peter F; Laun, Frederik B; Stieltjes, Bram; Maier-Hein, Klaus H

    2014-11-01

    Phantom-based validation of diffusion-weighted image processing techniques is an important key to innovation in the field and is widely used. Openly available and user friendly tools for the flexible generation of tailor-made datasets for the specific tasks at hand can greatly facilitate the work of researchers around the world. We present an open-source framework, Fiberfox, that enables (1) the intuitive definition of arbitrary artificial white matter fiber tracts, (2) signal generation from those fibers by means of the most recent multi-compartment modeling techniques, and (3) simulation of the actual MR acquisition that allows for the introduction of realistic MRI-related effects into the final image. We show that real acquisitions can be closely approximated by simulating the acquisition of the well-known FiberCup phantom. We further demonstrate the advantages of our framework by evaluating the effects of imaging artifacts and acquisition settings on the outcome of 12 tractography algorithms. Our findings suggest that experiments on a realistic software phantom might change the conclusions drawn from earlier hardware phantom experiments. Fiberfox may find application in validating and further developing methods such as tractography, super-resolution, diffusion modeling or artifact correction. Copyright © 2013 Wiley Periodicals, Inc.

  10. War-gaming application for future space systems acquisition part 2: acquisition and bidding war-gaming modeling and simulation approaches for FFP and FPIF

    NASA Astrophysics Data System (ADS)

    Nguyen, Tien M.; Guillen, Andy T.

    2017-05-01

    This paper describes cooperative and non-cooperative static Bayesian game models with complete and incomplete information for the development of optimum acquisition strategies associated with the Program and Technical Baseline (PTB) solutions obtained from Part 1 of this paper [1]. The optimum acquisition strategies discussed focus on achieving "Affordability" by incorporating contractors' bidding strategies into the government acquisition strategies for acquiring future space systems. The paper discusses System Engineering (SE) frameworks, analytical and simulation approaches and modeling for developing the optimum acquisition strategies from both the government and contractor perspectives for Firm Fixed Price (FFP) and Fixed Price Incentive Firm (FPIF) contract types.

  11. Multi-modal intelligent seizure acquisition (MISA) system--a new approach towards seizure detection based on full body motion measures.

    PubMed

    Conradsen, Isa; Beniczky, Sandor; Wolf, Peter; Terney, Daniella; Sams, Thomas; Sorensen, Helge B D

    2009-01-01

    Many epilepsy patients cannot call for help during a seizure, because they are unconscious or because of the affection of their motor system or speech function. This can lead to injuries, medical complications and at worst death. An alarm system setting off at seizure onset could help to avoid hazards. Today no reliable alarm systems are available. A Multi-modal Intelligent Seizure Acquisition (MISA) system based on full body motion data seems as a good approach towards detection of epileptic seizures. The system is the first to provide a full body description for epilepsy applications. Three test subjects were used for this pilot project. Each subject simulated 15 seizures and in addition performed some predefined normal activities, during a 4-hour monitoring with electromyography (EMG), accelerometer, magnetometer and gyroscope (AMG), electrocardiography (ECG), electroencephalography (EEG) and audio and video recording. The results showed that a non-subject specific MISA system developed on data from the modalities: accelerometer (ACM), gyroscope and EMG is able to detect 98% of the simulated seizures and at the same time mistakes only 4 of the normal movements for seizures. If the system is individualized (subject specific) it is able to detect all simulated seizures with a maximum of 1 false positive. Based on the results from the simulated seizures and normal movements the MISA system seems to be a promising approach to seizure detection.

  12. A Fixed-Wing Aircraft Simulation Tool for Improving the efficiency of DoD Acquisition

    DTIC Science & Technology

    2015-10-05

    simulation tool , CREATETM-AV Helios [12-14], a high fidelity rotary wing vehicle simulation tool , and CREATETM-AV DaVinci [15-16], a conceptual through...05/2015 Oct 2008-Sep 2015 A Fixed-Wing Aircraft Simulation Tool for Improving the Efficiency of DoD Acquisition Scott A. Morton and David R...multi-disciplinary fixed-wing virtual aircraft simulation tool incorporating aerodynamics, structural dynamics, kinematics, and kinetics. Kestrel allows

  13. Evaluation of Parallel and Fan-Beam Data Acquisition Geometries and Strategies for Myocardial SPECT Imaging

    NASA Astrophysics Data System (ADS)

    Qi, Yujin; Tsui, B. M. W.; Gilland, K. L.; Frey, E. C.; Gullberg, G. T.

    2004-06-01

    This study evaluates myocardial SPECT images obtained from parallel-hole (PH) and fan-beam (FB) collimator geometries using both circular-orbit (CO) and noncircular-orbit (NCO) acquisitions. A newly developed 4-D NURBS-based cardiac-torso (NCAT) phantom was used to simulate the /sup 99m/Tc-sestamibi uptakes in human torso with myocardial defects in the left ventricular (LV) wall. Two phantoms were generated to simulate patients with thick and thin body builds. Projection data including the effects of attenuation, collimator-detector response and scatter were generated using SIMSET Monte Carlo simulations. A large number of photon histories were generated such that the projection data were close to noise free. Poisson noise fluctuations were then added to simulate the count densities found in clinical data. Noise-free and noisy projection data were reconstructed using the iterative OS-EM reconstruction algorithm with attenuation compensation. The reconstructed images from noisy projection data show that the noise levels are lower for the FB as compared to the PH collimator due to increase in detected counts. The NCO acquisition method provides slightly better resolution and small improvement in defect contrast as compared to the CO acquisition method in noise-free reconstructed images. Despite lower projection counts the NCO shows the same noise level as the CO in the attenuation corrected reconstruction images. The results from the channelized Hotelling observer (CHO) study show that FB collimator is superior to PH collimator in myocardial defect detection, but the NCO shows no statistical significant difference from the CO for either PH or FB collimator. In conclusion, our results indicate that data acquisition using NCO makes a very small improvement in the resolution over CO for myocardial SPECT imaging. This small improvement does not make a significant difference on myocardial defect detection. However, an FB collimator provides better defect detection than a PH collimator with similar spatial resolution for myocardial SPECT imaging.

  14. Comparison of blood flow models and acquisitions for quantitative myocardial perfusion estimation from dynamic CT

    NASA Astrophysics Data System (ADS)

    Bindschadler, Michael; Modgil, Dimple; Branch, Kelley R.; La Riviere, Patrick J.; Alessio, Adam M.

    2014-04-01

    Myocardial blood flow (MBF) can be estimated from dynamic contrast enhanced (DCE) cardiac CT acquisitions, leading to quantitative assessment of regional perfusion. The need for low radiation dose and the lack of consensus on MBF estimation methods motivates this study to refine the selection of acquisition protocols and models for CT-derived MBF. DCE cardiac CT acquisitions were simulated for a range of flow states (MBF = 0.5, 1, 2, 3 ml (min g)-1, cardiac output = 3, 5, 8 L min-1). Patient kinetics were generated by a mathematical model of iodine exchange incorporating numerous physiological features including heterogenenous microvascular flow, permeability and capillary contrast gradients. CT acquisitions were simulated for multiple realizations of realistic x-ray flux levels. CT acquisitions that reduce radiation exposure were implemented by varying both temporal sampling (1, 2, and 3 s sampling intervals) and tube currents (140, 70, and 25 mAs). For all acquisitions, we compared three quantitative MBF estimation methods (two-compartment model, an axially-distributed model, and the adiabatic approximation to the tissue homogeneous model) and a qualitative slope-based method. In total, over 11 000 time attenuation curves were used to evaluate MBF estimation in multiple patient and imaging scenarios. After iodine-based beam hardening correction, the slope method consistently underestimated flow by on average 47.5% and the quantitative models provided estimates with less than 6.5% average bias and increasing variance with increasing dose reductions. The three quantitative models performed equally well, offering estimates with essentially identical root mean squared error (RMSE) for matched acquisitions. MBF estimates using the qualitative slope method were inferior in terms of bias and RMSE compared to the quantitative methods. MBF estimate error was equal at matched dose reductions for all quantitative methods and range of techniques evaluated. This suggests that there is no particular advantage between quantitative estimation methods nor to performing dose reduction via tube current reduction compared to temporal sampling reduction. These data are important for optimizing implementation of cardiac dynamic CT in clinical practice and in prospective CT MBF trials.

  15. ADAPTIVE REAL-TIME CARDIAC MRI USING PARADISE: VALIDATION BY THE PHYSIOLOGICALLY IMPROVED NCAT PHANTOM

    PubMed Central

    Sharif, Behzad; Bresler, Yoram

    2013-01-01

    Patient-Adaptive Reconstruction and Acquisition Dynamic Imaging with Sensitivity Encoding (PARADISE) is a dynamic MR imaging scheme that optimally combines parallel imaging and model-based adaptive acquisition. In this work, we propose the application of PARADISE to real-time cardiac MRI. We introduce a physiologically improved version of a realistic four-dimensional cardiac-torso (NCAT) phantom, which incorporates natural beat-to-beat heart rate and motion variations. Cardiac cine imaging using PARADISE is simulated and its performance is analyzed by virtue of the improved phantom. Results verify the effectiveness of PARADISE for high resolution un-gated real-time cardiac MRI and its superiority over conventional acquisition methods. PMID:24398475

  16. Comparison of a multimedia simulator to a human model for teaching FAST exam image interpretation and image acquisition.

    PubMed

    Damewood, Sara; Jeanmonod, Donald; Cadigan, Beth

    2011-04-01

    This study compared the effectiveness of a multimedia ultrasound (US) simulator to normal human models during the practical portion of a course designed to teach the skills of both image acquisition and image interpretation for the Focused Assessment with Sonography for Trauma (FAST) exam. This was a prospective, blinded, controlled education study using medical students as an US-naïve population. After a standardized didactic lecture on the FAST exam, trainees were separated into two groups to practice image acquisition on either a multimedia simulator or a normal human model. Four outcome measures were then assessed: image interpretation of prerecorded FAST exams, adequacy of image acquisition on a standardized normal patient, perceived confidence of image adequacy, and time to image acquisition. Ninety-two students were enrolled and separated into two groups, a multimedia simulator group (n = 44), and a human model group (n = 48). Bonferroni adjustment factor determined the level of significance to be p = 0.0125. There was no difference between those trained on the multimedia simulator and those trained on a human model in image interpretation (median 80 of 100 points, interquartile range [IQR] 71-87, vs. median 78, IQR 62-86; p = 0.16), image acquisition (median 18 of 24 points, IQR 12-18 points, vs. median 16, IQR 14-20; p = 0.95), trainee's confidence in obtaining images on a 1-10 visual analog scale (median 5, IQR 4.1-6.5, vs. median 5, IQR 3.7-6.0; p = 0.36), or time to acquire images (median 3.8 minutes, IQR 2.7-5.4 minutes, vs. median = 4.5 minutes, IQR = 3.4-5.9 minutes; p = 0.044). There was no difference in teaching the skills of image acquisition and interpretation to novice FAST examiners using the multimedia simulator or normal human models. These data suggest that practical image acquisition skills learned during simulated training can be directly applied to human models. © 2011 by the Society for Academic Emergency Medicine.

  17. Analysis of the times involved in processing and communication in a lower limb simulation system controlled by SEMG

    NASA Astrophysics Data System (ADS)

    Profumieri, A.; Bonell, C.; Catalfamo, P.; Cherniz, A.

    2016-04-01

    Virtual reality has been proposed for different applications, including the evaluation of new control strategies and training protocols for upper limb prostheses and for the study of new rehabilitation programs. In this study, a lower limb simulation environment commanded by surface electromyography signals is evaluated. The time delays generated by the acquisition and processing stages for the signals that would command the knee joint, were measured and different acquisition windows were analysed. The subjective perception of the quality of simulation was also evaluated when extra delays were added to the process. The results showed that the acquisition window is responsible for the longest delay. Also, the basic implemented processes allowed for the acquisition of three signal channels for commanding the simulation. Finally, the communication between different applications is arguably efficient, although it depends on the amount of data to be sent.

  18. Golden-ratio rotated stack-of-stars acquisition for improved volumetric MRI.

    PubMed

    Zhou, Ziwu; Han, Fei; Yan, Lirong; Wang, Danny J J; Hu, Peng

    2017-12-01

    To develop and evaluate an improved stack-of-stars radial sampling strategy for reducing streaking artifacts. The conventional stack-of-stars sampling strategy collects the same radial angle for every partition (slice) encoding. In an undersampled acquisition, such an aligned acquisition generates coherent aliasing patterns and introduces strong streaking artifacts. We show that by rotating the radial spokes in a golden-angle manner along the partition-encoding direction, the aliasing pattern is modified, resulting in improved image quality for gridding and more advanced reconstruction methods. Computer simulations were performed and phantom as well as in vivo images for three different applications were acquired. Simulation, phantom, and in vivo experiments confirmed that the proposed method was able to generate images with less streaking artifact and sharper structures based on undersampled acquisitions in comparison with the conventional aligned approach at the same acceleration factors. By combining parallel imaging and compressed sensing in the reconstruction, streaking artifacts were mostly removed with improved delineation of fine structures using the proposed strategy. We present a simple method to reduce streaking artifacts and improve image quality in 3D stack-of-stars acquisitions by re-arranging the radial spoke angles in the 3D partition direction, which can be used for rapid volumetric imaging. Magn Reson Med 78:2290-2298, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  19. Singlet-Fission-Sensitized Hybrid Thin-Films For Next-Generation Photovoltaics

    DTIC Science & Technology

    2016-04-12

    evaporators and a spin-coater was constructed. In order to characterize PV devices, a solar -simulator, 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND...with thermal evaporators and a spin-coater was constructed. In order to characterize PV devices, a solar -simulator, semiconductor parameter analyzer...SECURITY CLASSIFICATION OF: This grant enabled the acquisition of equipment for the fabrication of organic and nanocrystal based photovoltaic ( PV

  20. Simulation of the Beating Heart Based on Physically Modeling aDeformable Balloon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohmer, Damien; Sitek, Arkadiusz; Gullberg, Grant T.

    2006-07-18

    The motion of the beating heart is complex and createsartifacts in SPECT and x-ray CT images. Phantoms such as the JaszczakDynamic Cardiac Phantom are used to simulate cardiac motion forevaluationof acquisition and data processing protocols used for cardiacimaging. Two concentric elastic membranes filled with water are connectedto tubing and pump apparatus for creating fluid flow in and out of theinner volume to simulate motion of the heart. In the present report, themovement of two concentric balloons is solved numerically in order tocreate a computer simulation of the motion of the moving membranes in theJaszczak Dynamic Cardiac Phantom. A system ofmore » differential equations,based on the physical properties, determine the motion. Two methods aretested for solving the system of differential equations. The results ofboth methods are similar providing a final shape that does not convergeto a trivial circular profile. Finally,a tomographic imaging simulationis performed by acquiring static projections of the moving shape andreconstructing the result to observe motion artifacts. Two cases aretaken into account: in one case each projection angle is sampled for ashort time interval and the other case is sampled for a longer timeinterval. The longer sampling acquisition shows a clear improvement indecreasing the tomographic streaking artifacts.« less

  1. Channel Acquisition for Massive MIMO-OFDM With Adjustable Phase Shift Pilots

    NASA Astrophysics Data System (ADS)

    You, Li; Gao, Xiqi; Swindlehurst, A. Lee; Zhong, Wen

    2016-03-01

    We propose adjustable phase shift pilots (APSPs) for channel acquisition in wideband massive multiple-input multiple-output (MIMO) systems employing orthogonal frequency division multiplexing (OFDM) to reduce the pilot overhead. Based on a physically motivated channel model, we first establish a relationship between channel space-frequency correlations and the channel power angle-delay spectrum in the massive antenna array regime, which reveals the channel sparsity in massive MIMO-OFDM. With this channel model, we then investigate channel acquisition, including channel estimation and channel prediction, for massive MIMO-OFDM with APSPs. We show that channel acquisition performance in terms of sum mean square error can be minimized if the user terminals' channel power distributions in the angle-delay domain can be made non-overlapping with proper phase shift scheduling. A simplified pilot phase shift scheduling algorithm is developed based on this optimal channel acquisition condition. The performance of APSPs is investigated for both one symbol and multiple symbol data models. Simulations demonstrate that the proposed APSP approach can provide substantial performance gains in terms of achievable spectral efficiency over the conventional phase shift orthogonal pilot approach in typical mobility scenarios.

  2. The Results of a Longitudinal Study of the Effects of Network Delays on Learning

    ERIC Educational Resources Information Center

    Sullivan, Jay; Bush, Francis; Squire, James; Walsh, Vonda

    2013-01-01

    The use of interactive web-based teaching materials has become an indelible feature of the educational landscape over the last decade especially for technical subjects such as engineering and mathematics. While web-based simulations present great opportunity to provide students with the feedback needed for the acquisition of new concepts, it has…

  3. Investigating Student Perceptions of Knowledge Acquisition within a Role-Play Simulation of the Convention on Biological Diversity

    ERIC Educational Resources Information Center

    Schnurr, Matthew A.; De Santo, Elizabeth M.; Green, Amanda D.; Taylor, Alanna

    2015-01-01

    This article investigates the particular mechanisms through which a role-play simulation impacts student perceptions of knowledge acquisition. Longitudinal data were mobilized in the form of quantitative and qualitative surveys to examine whether the simulation succeeded in increasing knowledge around both content and skills. It then delves deeper…

  4. Teaching tactical combat casualty care using the TC3 sim game-based simulation: a study to measure training effectiveness.

    PubMed

    Sotomayor, Teresita M

    2010-01-01

    The effectiveness of games as instructional tools has been debated over the past several decades. This is due to the lack of empirical data to support such claims. The US ARMY developed a game-based simulation to support Tactical Combat Casualty Care (TCCC) Training. The TC3 Game based Simulation is a first person game that allows a Soldier to play the role of a combat medic during an infantry squad mission in an urban environment. This research documents results from a training effectiveness evaluation conducted at the Department of Combat Medic Training (Ft Sam Houston) in an effort to explore the capability of the game based simulation as a potential tool to support the TCCC program of instruction. Reaction to training, as well as, acquisition of knowledge and transfer of skills were explored using Kirkpatrick's Model of Training Effectiveness Evaluation. Results from the evaluation are discussed.

  5. An improved fast acquisition phase frequency detector for high speed phase-locked loops

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Wang, Zongmin; Zhang, Tieliang; Peng, Xinmang

    2018-04-01

    Phase-locked loops (PLL) have been widely applied in many high-speed designs, such as microprocessors or communication systems. In this paper, an improved fast acquisition phase frequency detector for high speed phase-locked loops is proposed. An improved structure based on dynamic latch is used to eliminate the non-ideal effect such as dead zone and blind zone. And frequency dividers are utilized to vastly extend the phase difference detection range and enhance the operation frequency of the PLL. Proposed PFD has been implemented in 65nm CMOS technology, which occupies an area of 0.0016mm2 and consumes 1.5mW only. Simulation results demonstrate that maximum operation frequency can be up to 5GHz. In addition, the acquisition time of PLL using proposed PFD is 1.0us which is 2.6 times faster than that of the PLL using latch-based PFD without divider.

  6. Real-time visual simulation of APT system based on RTW and Vega

    NASA Astrophysics Data System (ADS)

    Xiong, Shuai; Fu, Chengyu; Tang, Tao

    2012-10-01

    The Matlab/Simulink simulation model of APT (acquisition, pointing and tracking) system is analyzed and established. Then the model's C code which can be used for real-time simulation is generated by RTW (Real-Time Workshop). Practical experiments show, the simulation result of running the C code is the same as running the Simulink model directly in the Matlab environment. MultiGen-Vega is a real-time 3D scene simulation software system. With it and OpenGL, the APT scene simulation platform is developed and used to render and display the virtual scenes of the APT system. To add some necessary graphics effects to the virtual scenes real-time, GLSL (OpenGL Shading Language) shaders are used based on programmable GPU. By calling the C code, the scene simulation platform can adjust the system parameters on-line and get APT system's real-time simulation data to drive the scenes. Practical application shows that this visual simulation platform has high efficiency, low charge and good simulation effect.

  7. Accelerated dynamic EPR imaging using fast acquisition and compressive recovery

    NASA Astrophysics Data System (ADS)

    Ahmad, Rizwan; Samouilov, Alexandre; Zweier, Jay L.

    2016-12-01

    Electron paramagnetic resonance (EPR) allows quantitative imaging of tissue redox status, which provides important information about ischemic syndromes, cancer and other pathologies. For continuous wave EPR imaging, however, poor signal-to-noise ratio and low acquisition efficiency limit its ability to image dynamic processes in vivo including tissue redox, where conditions can change rapidly. Here, we present a data acquisition and processing framework that couples fast acquisition with compressive sensing-inspired image recovery to enable EPR-based redox imaging with high spatial and temporal resolutions. The fast acquisition (FA) allows collecting more, albeit noisier, projections in a given scan time. The composite regularization based processing method, called spatio-temporal adaptive recovery (STAR), not only exploits sparsity in multiple representations of the spatio-temporal image but also adaptively adjusts the regularization strength for each representation based on its inherent level of the sparsity. As a result, STAR adjusts to the disparity in the level of sparsity across multiple representations, without introducing any tuning parameter. Our simulation and phantom imaging studies indicate that a combination of fast acquisition and STAR (FASTAR) enables high-fidelity recovery of volumetric image series, with each volumetric image employing less than 10 s of scan. In addition to image fidelity, the time constants derived from FASTAR also match closely to the ground truth even when a small number of projections are used for recovery. This development will enhance the capability of EPR to study fast dynamic processes that cannot be investigated using existing EPR imaging techniques.

  8. A novel 3D-printed hybrid simulation model for robotic-assisted kidney transplantation (RAKT).

    PubMed

    Uwechue, Raphael; Gogalniceanu, Petrut; Kessaris, Nicos; Byrne, Nick; Chandak, Pankaj; Olsburgh, Jonathon; Ahmed, Kamran; Mamode, Nizam; Loukopoulos, Ioannis

    2018-01-27

    Robotic-assisted kidney transplantation (RAKT) offers key benefits for patients that have been demonstrated in several studies. A barrier to the wider uptake of RAKT is surgical skill acquisition. This is exacerbated by the challenges of modern surgery with reduced surgical training time, patient safety concerns and financial pressures. Simulation is a well-established method of developing surgical skill in a safe and controlled environment away from the patient. We have developed a 3D printed simulation model for the key step of the kidney transplant operation which is the vascular anastomosis. The model is anatomically accurate, based on the CT scans of patients and it incorporates deceased donor vascular tissue. Crucially, it was developed to be used in the robotic operating theatre with the operating robot to enhance its fidelity. It is portable and relatively inexpensive when compared with other forms of simulation such as virtual reality or animal lab training. It thus has the potential of being more accessible as a training tool for the safe acquisition of RAKT specific skills. We demonstrate this model here.

  9. Using Predictability for Lexical Segmentation

    ERIC Educational Resources Information Center

    Çöltekin, Çagri

    2017-01-01

    This study investigates a strategy based on predictability of consecutive sub-lexical units in learning to segment a continuous speech stream into lexical units using computational modeling and simulations. Lexical segmentation is one of the early challenges during language acquisition, and it has been studied extensively through psycholinguistic…

  10. eLearning techniques supporting problem based learning in clinical simulation.

    PubMed

    Docherty, Charles; Hoy, Derek; Topp, Helena; Trinder, Kathryn

    2005-08-01

    This paper details the results of the first phase of a project using eLearning to support students' learning within a simulated environment. The locus was a purpose built clinical simulation laboratory (CSL) where the School's philosophy of problem based learning (PBL) was challenged through lecturers using traditional teaching methods. a student-centred, problem based approach to the acquisition of clinical skills that used high quality learning objects embedded within web pages, substituting for lecturers providing instruction and demonstration. This encouraged student nurses to explore, analyse and make decisions within the safety of a clinical simulation. Learning was facilitated through network communications and reflection on video performances of self and others. Evaluations were positive, students demonstrating increased satisfaction with PBL, improved performance in exams, and increased self-efficacy in the performance of nursing activities. These results indicate that eLearning techniques can help students acquire clinical skills in the safety of a simulated environment within the context of a problem based learning curriculum.

  11. Sparsity based target detection for compressive spectral imagery

    NASA Astrophysics Data System (ADS)

    Boada, David Alberto; Arguello Fuentes, Henry

    2016-09-01

    Hyperspectral imagery provides significant information about the spectral characteristics of objects and materials present in a scene. It enables object and feature detection, classification, or identification based on the acquired spectral characteristics. However, it relies on sophisticated acquisition and data processing systems able to acquire, process, store, and transmit hundreds or thousands of image bands from a given area of interest which demands enormous computational resources in terms of storage, computationm, and I/O throughputs. Specialized optical architectures have been developed for the compressed acquisition of spectral images using a reduced set of coded measurements contrary to traditional architectures that need a complete set of measurements of the data cube for image acquisition, dealing with the storage and acquisition limitations. Despite this improvement, if any processing is desired, the image has to be reconstructed by an inverse algorithm in order to be processed, which is also an expensive task. In this paper, a sparsity-based algorithm for target detection in compressed spectral images is presented. Specifically, the target detection model adapts a sparsity-based target detector to work in a compressive domain, modifying the sparse representation basis in the compressive sensing problem by means of over-complete training dictionaries and a wavelet basis representation. Simulations show that the presented method can achieve even better detection results than the state of the art methods.

  12. Stress training improves performance during a stressful flight.

    PubMed

    McClernon, Christopher K; McCauley, Michael E; O'Connor, Paul E; Warm, Joel S

    2011-06-01

    This study investigated whether stress training introduced during the acquisition of simulator-based flight skills enhances pilot performance during subsequent stressful flight operations in an actual aircraft. Despite knowledge that preconditions to aircraft accidents can be strongly influenced by pilot stress, little is known about the effectiveness of stress training and how it transfers to operational flight settings. For this study, 30 participants with no flying experience were assigned at random to a stress-trained treatment group or a control group. Stress training consisted of systematic pairing of skill acquisition in a flight simulator with stress coping mechanisms in the presence of a cold pressor. Control participants received identical flight skill acquisition training but without stress training. Participants then performed a stressful flying task in a Piper Archer aircraft. Stress-trained research participants flew the aircraft more smoothly, as recorded by aircraft telemetry data, and generally better, as recorded by flight instructor evaluations, than did control participants. Introducing stress coping mechanisms during flight training improved performance in a stressful flying task. The results of this study indicate that stress training during the acquisition of flight skills may serve to enhance pilot performance in stressful operational flight and, therefore, might mitigate the contribution of pilot stress to aircraft mishaps.

  13. Interaction and Communication of Agents in Networks and Language Complexity Estimates

    NASA Technical Reports Server (NTRS)

    Smid, Jan; Obitko, Marek; Fisher, David; Truszkowski, Walt

    2004-01-01

    Knowledge acquisition and sharing are arguably the most critical activities of communicating agents. We report about our on-going project featuring knowledge acquisition and sharing among communicating agents embedded in a network. The applications we target range from hardware robots to virtual entities such as internet agents. Agent experiments can be simulated using a convenient simulation language. We analyzed the complexity of communicating agent simulations using Java and Easel. Scenarios we have studied are listed below. The communication among agents can range from declarative queries to sub-natural language queries. 1) A set of agents monitoring an object are asked to build activity profiles based on exchanging elementary observations; 2) A set of car drivers form a line, where every car is following its predecessor. An unsafe distance cm create a strong wave in the line. Individual agents are asked to incorporate and apply directions how to avoid the wave. 3) A set of micro-vehicles form a grid and are asked to propagate information and concepts to a central server.

  14. Manufactured Porous Ambient Surface Simulants

    NASA Technical Reports Server (NTRS)

    Carey, Elizabeth M.; Peters, Gregory H.; Chu, Lauren; Zhou, Yu Meng; Cohen, Brooklin; Panossian, Lara; Green, Jacklyn R.; Moreland, Scott; Backes, Paul

    2016-01-01

    The planetary science decadal survey for 2013-2022 (Vision and Voyages, NRC 2011) has promoted mission concepts for sample acquisition from small solar system bodies. Numerous comet-sampling tools are in development to meet this standard. Manufactured Porous Ambient Surface Simulants (MPASS) materials provide an opportunity to simulate variable features at ambient temperatures and pressures to appropriately test potential sample acquisition systems for comets, asteroids, and planetary surfaces. The original "flavor" of MPASS materials is known as Manufactured Porous Ambient Comet Simulants (MPACS), which was developed in parallel with the development of the Biblade Comet Sampling System (Backes et al., in review). The current suite of MPACS materials was developed through research of the physical and mechanical properties of comets from past comet missions results and modeling efforts, coordination with the science community at the Jet Propulsion Laboratory and testing of a wide range of materials and formulations. These simulants were required to represent the physical and mechanical properties of cometary nuclei, based on the current understanding of the science community. Working with cryogenic simulants can be tedious and costly; thus MPACS is a suite of ambient simulants that yields a brittle failure mode similar to that of cryogenic icy materials. Here we describe our suite of comet simulants known as MPACS that will be used to test and validate the Biblade Comet Sampling System (Backes et al., in review).

  15. A digitally implemented preambleless demodulator for maritime and mobile data communications

    NASA Astrophysics Data System (ADS)

    Chalmers, Harvey; Shenoy, Ajit; Verahrami, Farhad B.

    The hardware design and software algorithms for a low-bit-rate, low-cost, all-digital preambleless demodulator are described. The demodulator operates under severe high-noise conditions, fast Doppler frequency shifts, large frequency offsets, and multipath fading. Sophisticated algorithms, including a fast Fourier transform (FFT)-based burst acquisition algorithm, a cycle-slip resistant carrier phase tracker, an innovative Doppler tracker, and a fast acquisition symbol synchronizer, were developed and extensively simulated for reliable burst reception. The compact digital signal processor (DSP)-based demodulator hardware uses a unique personal computer test interface for downloading test data files. The demodulator test results demonstrate a near-ideal performance within 0.2 dB of theory.

  16. AFFINE-CORRECTED PARADISE: FREE-BREATHING PATIENT-ADAPTIVE CARDIAC MRI WITH SENSITIVITY ENCODING

    PubMed Central

    Sharif, Behzad; Bresler, Yoram

    2013-01-01

    We propose a real-time cardiac imaging method with parallel MRI that allows for free breathing during imaging and does not require cardiac or respiratory gating. The method is based on the recently proposed PARADISE (Patient-Adaptive Reconstruction and Acquisition Dynamic Imaging with Sensitivity Encoding) scheme. The new acquisition method adapts the PARADISE k-t space sampling pattern according to an affine model of the respiratory motion. The reconstruction scheme involves multi-channel time-sequential imaging with time-varying channels. All model parameters are adapted to the imaged patient as part of the experiment and drive both data acquisition and cine reconstruction. Simulated cardiac MRI experiments using the realistic NCAT phantom show high quality cine reconstructions and robustness to modeling inaccuracies. PMID:24390159

  17. Application test of a Detection Method for the Enclosed Turbine Runner Chamber

    NASA Astrophysics Data System (ADS)

    Liu, Yunlong; Shen, Dingjie; Xie, Yi; Yang, Xiangwei; Long, Yi; Li, Wenbo

    2017-06-01

    At present, for the existing problems of the testing methods for the key hidden metal components of the turbine runner chamber, such as the poor reliability, the inaccurate locating and the larger detection blind spots of the detection device, under the downtime without opening the cover of the hydropower turbine runner chamber, an automatic detection method based on real-time image acquisition and simulation comparison techniques was proposed. By using the permanent magnet wheel, the magnetic crawler which carry the real-time image acquisition device, could complete the crawling work on the inner surface of the enclosed chamber. Then the image acquisition device completed the real-time collection of the scene image of the enclosed chamber. According to the obtained location by using the positioning auxiliary device, the position of the real-time detection image in a virtual 3D model was calibrated. Through comparing of the real-time detection images and the computer simulation images, the defects or foreign matter fall into could be accurately positioning, so as to repair and clean up conveniently.

  18. The Effects of Practicing with a Virtual Ultrasound Trainer on FAST Window Identification, Acquisition, and Diagnosis. CRESST Report 787

    ERIC Educational Resources Information Center

    Chung, Gregory K. W. K.; Gyllenhammer, Ruth G.; Baker, Eva L.

    2011-01-01

    In this study, we compared the effects of simulator-based virtual ultrasound scanning practice to classroom-based hands-on ultrasound scanning practice on participants' knowledge of FAST window quadrants and interpretation, and on participants' performance on live patient FAST exams. Twenty-five novice participants were randomly assigned to the…

  19. Signal existence verification (SEV) for GPS low received power signal detection using the time-frequency approach.

    PubMed

    Jan, Shau-Shiun; Sun, Chih-Cheng

    2010-01-01

    The detection of low received power of global positioning system (GPS) signals in the signal acquisition process is an important issue for GPS applications. Improving the miss-detection problem of low received power signal is crucial, especially for urban or indoor environments. This paper proposes a signal existence verification (SEV) process to detect and subsequently verify low received power GPS signals. The SEV process is based on the time-frequency representation of GPS signal, and it can capture the characteristic of GPS signal in the time-frequency plane to enhance the GPS signal acquisition performance. Several simulations and experiments are conducted to show the effectiveness of the proposed method for low received power signal detection. The contribution of this work is that the SEV process is an additional scheme to assist the GPS signal acquisition process in low received power signal detection, without changing the original signal acquisition or tracking algorithms.

  20. Acquisition, retention and transfer of simulated laparoscopic tasks using fNIR and a contextual interference paradigm.

    PubMed

    Shewokis, Patricia A; Shariff, Faiz U; Liu, Yichuan; Ayaz, Hasan; Castellanos, Andres; Lind, D Scott

    2017-02-01

    Using functional near infrared spectroscopy, a noninvasive, optical brain imaging tool that monitors changes in hemodynamics within the prefrontal cortex (PFC), we assessed performance and cognitive effort during the acquisition, retention and transfer of multiple simulated laparoscopic tasks by novice learners within a contextual interference paradigm. Third-year medical students (n = 10) were randomized to either a blocked or random practice schedule. Across 3 days, students performed 108 acquisition trials of 3 laparoscopic tasks on the LapSim ® simulator followed by delayed retention and transfer tests. Performance metrics (Global score, Total time) and hemodynamic responses (total hemoglobin (μm)) were assessed during skill acquisition, retention and transfer. All acquisition tasks resulted in significant practice schedule X trial block interactions for the left medial anterior PFC. During retention and transfer, random performed the skills in less time and had lower total hemoglobin change in the right dorsolateral PFC than blocked. Compared with blocked, random practice resulted in enhanced learning through better performance and less cognitive load for retention and transfer of simulated laparoscopic tasks. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Using Simulation in Interprofessional Education.

    PubMed

    Paige, John T; Garbee, Deborah D; Brown, Kimberly M; Rojas, Jose D

    2015-08-01

    Simulation-based training (SBT) is a powerful educational tool permitting the acquisition of surgical knowledge, skills, and attitudes at both the individual- and team-based level in a safe, nonthreatening learning environment at no risk to a patient. Interprofessional education (IPE), in which participants from 2 or more health or social care professions learn interactively, can help improve patient care through the promotion of efficient coordination, dissemination of advances in care across specialties and professions, and optimization of individual- and team-based function. Nonetheless, conducting SBT IPE sessions poses several tactical and strategic challenges that must be effectively overcome to reap IPE's benefits. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. The Effect of Computer Simulations on Acquisition of Knowledge and Cognitive Load: A Gender Perspective

    ERIC Educational Resources Information Center

    Kaheru, Sam J.; Kriek, Jeanne

    2016-01-01

    A study on the effect of the use of computer simulations (CS) on the acquisition of knowledge and cognitive load was undertaken with 104 Grade 11 learners in four schools in rural South Africa on the physics topic geometrical optics. Owing to the lack of resources a teacher-centred approach was followed in the use of computer simulations. The…

  3. Integrated Eye Tracking and Neural Monitoring for Enhanced Assessment of Mild TBI

    DTIC Science & Technology

    2015-04-01

    virtual reality driving simulator data acquisition. Data collection for the pilot study is nearly complete and data analyses are currently under way...Training for primary study procedures including neuropsychological testing, eye- tracking, virtual reality driving simulator, and EEG data acquisition is...the virtual reality driving simulator. Participants are instructed to drive along a coastal highway while performing the target detection task

  4. Simulation-based education with deliberate practice may improve intraoperative handoff skills: a pilot study.

    PubMed

    Pukenas, Erin W; Dodson, Gregory; Deal, Edward R; Gratz, Irwin; Allen, Elaine; Burden, Amanda R

    2014-11-01

    To examine the results of simulation-based education with deliberate practice on the acquisition of handoff skills by studying resident intraoperative handoff communication performances. Preinvention and postintervention pilot study. Simulated operating room of a university-affiliated hospital. Resident handoff performances during 27 encounters simulating elective surgery were studied. Ten residents (CA-1, CA-2, and CA-3) participated in a one-day simulation-based handoff course. Each resident repeated simulated handoffs to deliberately practice with an intraoperative handoff checklist. One year later, 7 of the 10 residents participated in simulated intraoperative handoffs. All handoffs were videotaped and later scored for accuracy by trained raters. A handoff assessment tool was used to characterize the type and frequency of communication failures. The percentage of handoff errors and omissions were compared before simulation and postsimulation-based education with deliberate practice and at one year following the course. Initially, the overall communication failure rate, defined as the percentage of handoff omissions plus errors, was 29.7%. After deliberate practice with the intraoperative handoff checklist, the communication failure rate decreased to 16.8%, and decreased further to 13.2% one year after the course. Simulation-based education using deliberate practice may result in improved intraoperative handoff communication and retention of skills at one year. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Performance factors in associative learning: assessment of the sometimes competing retrieval model.

    PubMed

    Witnauer, James E; Wojick, Brittany M; Polack, Cody W; Miller, Ralph R

    2012-09-01

    Previous simulations revealed that the sometimes competing retrieval model (SOCR; Stout & Miller, Psychological Review, 114, 759-783, 2007), which assumes local error reduction, can explain many cue interaction phenomena that elude traditional associative theories based on total error reduction. Here, we applied SOCR to a new set of Pavlovian phenomena. Simulations used a single set of fixed parameters to simulate each basic effect (e.g., blocking) and, for specific experiments using different procedures, used fitted parameters discovered through hill climbing. In simulation 1, SOCR was successfully applied to basic acquisition, including the overtraining effect, which is context dependent. In simulation 2, we applied SOCR to basic extinction and renewal. SOCR anticipated these effects with both fixed parameters and best-fitting parameters, although the renewal effects were weaker than those observed in some experiments. In simulation 3a, feature-negative training was simulated, including the often observed transition from second-order conditioning to conditioned inhibition. In simulation 3b, SOCR predicted the observation that conditioned inhibition after feature-negative and differential conditioning depends on intertrial interval. In simulation 3c, SOCR successfully predicted failure of conditioned inhibition to extinguish with presentations of the inhibitor alone under most circumstances. In simulation 4, cue competition, including blocking (4a), recovery from relative validity (4b), and unblocking (4c), was simulated. In simulation 5, SOCR correctly predicted that inhibitors gain more behavioral control than do excitors when they are trained in compound. Simulation 6 demonstrated that SOCR explains the slower acquisition observed following CS-weak shock pairings.

  6. A spectral X-ray CT simulation study for quantitative determination of iron

    NASA Astrophysics Data System (ADS)

    Su, Ting; Kaftandjian, Valérie; Duvauchelle, Philippe; Zhu, Yuemin

    2018-06-01

    Iron is an essential element in the human body and disorders in iron such as iron deficiency or overload can cause serious diseases. This paper aims to explore the ability of spectral X-ray CT to quantitatively separate iron from calcium and potassium and to investigate the influence of different acquisition parameters on material decomposition performance. We simulated spectral X-ray CT imaging of a PMMA phantom filled with iron, calcium, and potassium solutions at various concentrations (15-200 mg/cc). Different acquisition parameters were considered, such as the number of energy bins (6, 10, 15, 20, 30, 60) and exposure factor per projection (0.025, 0.1, 1, 10, 100 mA s). Based on the simulation data, we investigated the performance of two regularized material decomposition approaches: projection domain method and image domain method. It was found that the former method discriminated iron from calcium, potassium and water in all cases and tended to benefit from lower number of energy bins for lower exposure factor acquisition. The latter method succeeded in iron determination only when the number of energy bins equals 60, and in this case, the contrast-to-noise ratios of the decomposed iron images are higher than those obtained using the projection domain method. The results demonstrate that both methods are able to discriminate and quantify iron from calcium, potassium and water under certain conditions. Their performances vary with the acquisition parameters of spectral CT. One can use one method or the other to benefit better performance according to the data available.

  7. Spatial arrangement of color filter array for multispectral image acquisition

    NASA Astrophysics Data System (ADS)

    Shrestha, Raju; Hardeberg, Jon Y.; Khan, Rahat

    2011-03-01

    In the past few years there has been a significant volume of research work carried out in the field of multispectral image acquisition. The focus of most of these has been to facilitate a type of multispectral image acquisition systems that usually requires multiple subsequent shots (e.g. systems based on filter wheels, liquid crystal tunable filters, or active lighting). Recently, an alternative approach for one-shot multispectral image acquisition has been proposed; based on an extension of the color filter array (CFA) standard to produce more than three channels. We can thus introduce the concept of multispectral color filter array (MCFA). But this field has not been much explored, particularly little focus has been given in developing systems which focuses on the reconstruction of scene spectral reflectance. In this paper, we have explored how the spatial arrangement of multispectral color filter array affects the acquisition accuracy with the construction of MCFAs of different sizes. We have simulated acquisitions of several spectral scenes using different number of filters/channels, and compared the results with those obtained by the conventional regular MCFA arrangement, evaluating the precision of the reconstructed scene spectral reflectance in terms of spectral RMS error, and colorimetric ▵E*ab color differences. It has been found that the precision and the the quality of the reconstructed images are significantly influenced by the spatial arrangement of the MCFA and the effect will be more and more prominent with the increase in the number of channels. We believe that MCFA-based systems can be a viable alternative for affordable acquisition of multispectral color images, in particular for applications where spatial resolution can be traded off for spectral resolution. We have shown that the spatial arrangement of the array is an important design issue.

  8. Ultra-low dose CT attenuation correction for PET/CT: analysis of sparse view data acquisition and reconstruction algorithms

    NASA Astrophysics Data System (ADS)

    Rui, Xue; Cheng, Lishui; Long, Yong; Fu, Lin; Alessio, Adam M.; Asma, Evren; Kinahan, Paul E.; De Man, Bruno

    2015-09-01

    For PET/CT systems, PET image reconstruction requires corresponding CT images for anatomical localization and attenuation correction. In the case of PET respiratory gating, multiple gated CT scans can offer phase-matched attenuation and motion correction, at the expense of increased radiation dose. We aim to minimize the dose of the CT scan, while preserving adequate image quality for the purpose of PET attenuation correction by introducing sparse view CT data acquisition. We investigated sparse view CT acquisition protocols resulting in ultra-low dose CT scans designed for PET attenuation correction. We analyzed the tradeoffs between the number of views and the integrated tube current per view for a given dose using CT and PET simulations of a 3D NCAT phantom with lesions inserted into liver and lung. We simulated seven CT acquisition protocols with {984, 328, 123, 41, 24, 12, 8} views per rotation at a gantry speed of 0.35 s. One standard dose and four ultra-low dose levels, namely, 0.35 mAs, 0.175 mAs, 0.0875 mAs, and 0.043 75 mAs, were investigated. Both the analytical Feldkamp, Davis and Kress (FDK) algorithm and the Model Based Iterative Reconstruction (MBIR) algorithm were used for CT image reconstruction. We also evaluated the impact of sinogram interpolation to estimate the missing projection measurements due to sparse view data acquisition. For MBIR, we used a penalized weighted least squares (PWLS) cost function with an approximate total-variation (TV) regularizing penalty function. We compared a tube pulsing mode and a continuous exposure mode for sparse view data acquisition. Global PET ensemble root-mean-squares-error (RMSE) and local ensemble lesion activity error were used as quantitative evaluation metrics for PET image quality. With sparse view sampling, it is possible to greatly reduce the CT scan dose when it is primarily used for PET attenuation correction with little or no measureable effect on the PET image. For the four ultra-low dose levels simulated, sparse view protocols with 41 and 24 views best balanced the tradeoff between electronic noise and aliasing artifacts. In terms of lesion activity error and ensemble RMSE of the PET images, these two protocols, when combined with MBIR, are able to provide results that are comparable to the baseline full dose CT scan. View interpolation significantly improves the performance of FDK reconstruction but was not necessary for MBIR. With the more technically feasible continuous exposure data acquisition, the CT images show an increase in azimuthal blur compared to tube pulsing. However, this blurring generally does not have a measureable impact on PET reconstructed images. Our simulations demonstrated that ultra-low-dose CT-based attenuation correction can be achieved at dose levels on the order of 0.044 mAs with little impact on PET image quality. Highly sparse 41- or 24- view ultra-low dose CT scans are feasible for PET attenuation correction, providing the best tradeoff between electronic noise and view aliasing artifacts. The continuous exposure acquisition mode could potentially be implemented in current commercially available scanners, thus enabling sparse view data acquisition without requiring x-ray tubes capable of operating in a pulsing mode.

  9. Ultra-low dose CT attenuation correction for PET/CT: analysis of sparse view data acquisition and reconstruction algorithms

    PubMed Central

    Rui, Xue; Cheng, Lishui; Long, Yong; Fu, Lin; Alessio, Adam M.; Asma, Evren; Kinahan, Paul E.; De Man, Bruno

    2015-01-01

    For PET/CT systems, PET image reconstruction requires corresponding CT images for anatomical localization and attenuation correction. In the case of PET respiratory gating, multiple gated CT scans can offer phase-matched attenuation and motion correction, at the expense of increased radiation dose. We aim to minimize the dose of the CT scan, while preserving adequate image quality for the purpose of PET attenuation correction by introducing sparse view CT data acquisition. Methods We investigated sparse view CT acquisition protocols resulting in ultra-low dose CT scans designed for PET attenuation correction. We analyzed the tradeoffs between the number of views and the integrated tube current per view for a given dose using CT and PET simulations of a 3D NCAT phantom with lesions inserted into liver and lung. We simulated seven CT acquisition protocols with {984, 328, 123, 41, 24, 12, 8} views per rotation at a gantry speed of 0.35 seconds. One standard dose and four ultra-low dose levels, namely, 0.35 mAs, 0.175 mAs, 0.0875 mAs, and 0.04375 mAs, were investigated. Both the analytical FDK algorithm and the Model Based Iterative Reconstruction (MBIR) algorithm were used for CT image reconstruction. We also evaluated the impact of sinogram interpolation to estimate the missing projection measurements due to sparse view data acquisition. For MBIR, we used a penalized weighted least squares (PWLS) cost function with an approximate total-variation (TV) regularizing penalty function. We compared a tube pulsing mode and a continuous exposure mode for sparse view data acquisition. Global PET ensemble root-mean-squares-error (RMSE) and local ensemble lesion activity error were used as quantitative evaluation metrics for PET image quality. Results With sparse view sampling, it is possible to greatly reduce the CT scan dose when it is primarily used for PET attenuation correction with little or no measureable effect on the PET image. For the four ultra-low dose levels simulated, sparse view protocols with 41 and 24 views best balanced the tradeoff between electronic noise and aliasing artifacts. In terms of lesion activity error and ensemble RMSE of the PET images, these two protocols, when combined with MBIR, are able to provide results that are comparable to the baseline full dose CT scan. View interpolation significantly improves the performance of FDK reconstruction but was not necessary for MBIR. With the more technically feasible continuous exposure data acquisition, the CT images show an increase in azimuthal blur compared to tube pulsing. However, this blurring generally does not have a measureable impact on PET reconstructed images. Conclusions Our simulations demonstrated that ultra-low-dose CT-based attenuation correction can be achieved at dose levels on the order of 0.044 mAs with little impact on PET image quality. Highly sparse 41- or 24- view ultra-low dose CT scans are feasible for PET attenuation correction, providing the best tradeoff between electronic noise and view aliasing artifacts. The continuous exposure acquisition mode could potentially be implemented in current commercially available scanners, thus enabling sparse view data acquisition without requiring x-ray tubes capable of operating in a pulsing mode. PMID:26352168

  10. A model-based analysis of extinction ratio effects on phase-OTDR distributed acoustic sensing system performance

    NASA Astrophysics Data System (ADS)

    Aktas, Metin; Maral, Hakan; Akgun, Toygar

    2018-02-01

    Extinction ratio is an inherent limiting factor that has a direct effect on the detection performance of phase-OTDR based distributed acoustics sensing systems. In this work we present a model based analysis of Rayleigh scattering to simulate the effects of extinction ratio on the received signal under varying signal acquisition scenarios and system parameters. These signal acquisition scenarios are constructed to represent typically observed cases such as multiple vibration sources cluttered around the target vibration source to be detected, continuous wave light sources with center frequency drift, varying fiber optic cable lengths and varying ADC bit resolutions. Results show that an insufficient ER can result in high optical noise floor and effectively hide the effects of elaborate system improvement efforts.

  11. Simulator Network Project Report: A tool for improvement of teaching materials and targeted resource usage in Skills Labs

    PubMed Central

    Damanakis, Alexander; Blaum, Wolf E.; Stosch, Christoph; Lauener, Hansjörg; Richter, Sabine; Schnabel, Kai P.

    2013-01-01

    During the last decade, medical education in the German-speaking world has been striving to become more practice-oriented. This is currently being achieved in many schools through the implementation of simulation-based instruction in Skills Labs. Simulators are thus an essential part of this type of medical training, and their acquisition and operation by a Skills Lab require a large outlay of resources. Therefore, the Practical Skills Committee of the Medical Education Society (GMA) introduced a new project, which aims to improve the flow of information between the Skills Labs and enable a transparent assessment of the simulators via an online database (the Simulator Network). PMID:23467581

  12. DoD Lead System Integrator (LSI) Transformation - Creating a Model Based Acquisition Framework (MBAF)

    DTIC Science & Technology

    2014-04-30

    cost to acquire systems as design maturity could be verified incrementally as the system was developed vice waiting for specific large “ big bang ...Framework (MBAF) be applied to simulate or optimize process variations on programs? LSI Roles and Responsibilities A review of the roles and...the model/process optimization process. It is the current intent that NAVAIR will use the model to run simulations on process changes in an attempt to

  13. Impact of a Simulated Clinical Day With Peer Coaching and Deliberate Practice: Promoting a Culture of Safety.

    PubMed

    Badowski, Donna M; Oosterhouse, Kimberly J

    Nursing education is challenged to shift from task-based proficiencies to higher level competencies with patient safety as a priority. Using a quasi-experimental pretest/posttest design, a simulation-based, peer-coached, deliberate practice clinical substitution was implemented to compare nursing students' knowledge, skills, and attitudes for promoting safety. Our findings demonstrated improved knowledge and skill acquisition in the intervention and control groups. The former trended toward improved team communication attitudes and enteral medication skill performance. Additional research with larger samples is needed to further investigate this innovative strategy.

  14. Assessment of Proficiency During Simulated Rover Operations Following Long-Duration Spaceflight

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Dean, S. L.; De Dios, Y. E.; MacDougall, H. G.; Moore, S. T.

    2011-01-01

    Following long-duration space travel, pressurized rovers will enhance crew mobility to explore Mars and other planetary surfaces. Adaptive changes in sensorimotor function may limit the crew s proficiency when performing some rover operations shortly after transition to the new gravitoinertial environment. The primary goal of this investigation is to quantify postflight decrements in operational proficiency in a motion-based rover simulation after International Space Station (ISS) expeditions. Given that postflight performance will also be influenced by the level of preflight proficiency attained, a ground-based normative study was conducted to characterize the acquisition of skills over multiple sessions.

  15. The effectiveness of a simulated scenario to teach nursing students how to perform a bed bath: A randomized clinical trial.

    PubMed

    Miranda, Renata Pinto Ribeiro; de Cássia Lopes Chaves, Érika; Silva Lima, Rogério; Braga, Cristiane Giffoni; Simões, Ivandira Anselmo Ribeiro; Fava, Silvana Maria Coelho Leite; Iunes, Denise Hollanda

    2017-10-01

    Simulation allows students to develop several skills during a bed bath that are difficult to teach only in traditional classroom lectures, such as problem-solving, student interactions with the simulator (patient), reasoning in clinical evaluations, evaluation of responses to interventions, teamwork, communication, security and privacy. This study aimed to evaluate the effectiveness of a simulated bed bath scenario on improving cognitive knowledge, practical performance and satisfaction among nursing students. Randomized controlled clinical trial. Nursing students that were in the fifth period from two educational institutions in Brazil. Nursing students (n=58). The data were collected using the assessments of cognitive knowledge, practical performance and satisfaction were made through a written test about bed baths, an Objective Structured Clinical Examination (OSCE) and a satisfaction questionnaire. We identified that the acquisition and assimilation of cognitive knowledge was significantly higher in the simulation group (p=0.001). The performance was similar in both groups regardless of the teaching strategy (p=0.435). At follow-up, the simulation group had significantly more satisfaction with the teaching method than the control group (p=0.007). The teaching strategy based on a simulated scenario of a bed bath proved to be effective for the acquisition of cognitive knowledge regarding bed baths in clinical practice and improved student satisfaction with the teaching process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Impact of crisis resource management simulation-based training for interprofessional and interdisciplinary teams: A systematic review.

    PubMed

    Fung, Lillia; Boet, Sylvain; Bould, M Dylan; Qosa, Haytham; Perrier, Laure; Tricco, Andrea; Tavares, Walter; Reeves, Scott

    2015-01-01

    Crisis resource management (CRM) abilities are important for different healthcare providers to effectively manage critical clinical events. This study aims to review the effectiveness of simulation-based CRM training for interprofessional and interdisciplinary teams compared to other instructional methods (e.g., didactics). Interprofessional teams are composed of several professions (e.g., nurse, physician, midwife) while interdisciplinary teams are composed of several disciplines from the same profession (e.g., cardiologist, anaesthesiologist, orthopaedist). Medline, EMBASE, CINAHL, Cochrane Central Register of Controlled Trials, and ERIC were searched using terms related to CRM, crisis management, crew resource management, teamwork, and simulation. Trials comparing simulation-based CRM team training versus any other methods of education were included. The educational interventions involved interprofessional or interdisciplinary healthcare teams. The initial search identified 7456 publications; 12 studies were included. Simulation-based CRM team training was associated with significant improvements in CRM skill acquisition in all but two studies when compared to didactic case-based CRM training or simulation without CRM training. Of the 12 included studies, one showed significant improvements in team behaviours in the workplace, while two studies demonstrated sustained reductions in adverse patient outcomes after a single simulation-based CRM team intervention. In conclusion, CRM simulation-based training for interprofessional and interdisciplinary teams show promise in teaching CRM in the simulator when compared to didactic case-based CRM education or simulation without CRM teaching. More research, however, is required to demonstrate transfer of learning to workplaces and potential impact on patient outcomes.

  17. Investigating the Environment: Investigating Resource Acquisition and Use.

    ERIC Educational Resources Information Center

    Sheridan, Jack

    This unit provides the student with a simulated experience in the development of decision making skills. The acquisition of petroleum resources in a hypothetical republic provides the basic scenario around which the simulation develops. Students are supplied with specific information about petroleum geology, finances, and drilling. With this…

  18. Accelerated dynamic EPR imaging using fast acquisition and compressive recovery.

    PubMed

    Ahmad, Rizwan; Samouilov, Alexandre; Zweier, Jay L

    2016-12-01

    Electron paramagnetic resonance (EPR) allows quantitative imaging of tissue redox status, which provides important information about ischemic syndromes, cancer and other pathologies. For continuous wave EPR imaging, however, poor signal-to-noise ratio and low acquisition efficiency limit its ability to image dynamic processes in vivo including tissue redox, where conditions can change rapidly. Here, we present a data acquisition and processing framework that couples fast acquisition with compressive sensing-inspired image recovery to enable EPR-based redox imaging with high spatial and temporal resolutions. The fast acquisition (FA) allows collecting more, albeit noisier, projections in a given scan time. The composite regularization based processing method, called spatio-temporal adaptive recovery (STAR), not only exploits sparsity in multiple representations of the spatio-temporal image but also adaptively adjusts the regularization strength for each representation based on its inherent level of the sparsity. As a result, STAR adjusts to the disparity in the level of sparsity across multiple representations, without introducing any tuning parameter. Our simulation and phantom imaging studies indicate that a combination of fast acquisition and STAR (FASTAR) enables high-fidelity recovery of volumetric image series, with each volumetric image employing less than 10 s of scan. In addition to image fidelity, the time constants derived from FASTAR also match closely to the ground truth even when a small number of projections are used for recovery. This development will enhance the capability of EPR to study fast dynamic processes that cannot be investigated using existing EPR imaging techniques. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Video-based peer feedback through social networking for robotic surgery simulation: a multicenter randomized controlled trial.

    PubMed

    Carter, Stacey C; Chiang, Alexander; Shah, Galaxy; Kwan, Lorna; Montgomery, Jeffrey S; Karam, Amer; Tarnay, Christopher; Guru, Khurshid A; Hu, Jim C

    2015-05-01

    To examine the feasibility and outcomes of video-based peer feedback through social networking to facilitate robotic surgical skill acquisition. The acquisition of surgical skills may be challenging for novel techniques and/or those with prolonged learning curves. Randomized controlled trial involving 41 resident physicians performing the Tubes (Da Vinci Intuitive Surgical, Sunnyvale, CA) simulator exercise with versus without peer feedback of video-recorded performance through a social networking Web page. Data collected included simulator exercise score, time to completion, and comfort and satisfaction with robotic surgery simulation. There were no baseline differences between the intervention group (n = 20) and controls (n = 21). The intervention group showed improvement in mean scores from session 1 to sessions 2 and 3 (60.7 vs 75.5, P < 0.001, and 60.7 vs 80.1, P < 0.001, respectively). The intervention group scored significantly higher than controls at sessions 2 and 3 (75.5 vs 59.6, P = 0.009, and 80.1 vs 65.9, P = 0.019, respectively). The mean time (seconds) to complete the task was shorter for the intervention group than for controls during sessions 2 and 3 (217.4 vs 279.0, P = 0.004, and 201.4 vs 261.9, P = 0.006, respectively). At the study conclusion, feedback subjects were more comfortable with robotic surgery than controls (90% vs 62%, P = 0.021) and expressed greater satisfaction with the learning experience (100% vs 67%, P = 0.014). Of the intervention subjects, 85% found that peer feedback was useful and 100% found it effective. Video-based peer feedback through social networking appears to be an effective paradigm for surgical education and accelerates the robotic surgery learning curve during simulation.

  20. Knowledge-Based Systems Research

    DTIC Science & Technology

    1990-08-24

    P. S., Laird, J. E., Newell, A. and McCarl, R. 1991. A Preliminary Analysis of the SOAR Architecture as a Basis for General Intelligence . Artifcial ...on reverse of neceSSjr’y gnd identify by block nhmber) FIELD I GRO’= SUB-C.OROUC Artificial Intelligence , Blackboard Systems, U°nstraint Satisfaction...knowledge acquisition; symbolic simulation; logic-based systems with self-awareness; SOAR, an architecture for general intelligence and learning

  1. RTSPM: real-time Linux control software for scanning probe microscopy.

    PubMed

    Chandrasekhar, V; Mehta, M M

    2013-01-01

    Real time computer control is an essential feature of scanning probe microscopes, which have become important tools for the characterization and investigation of nanometer scale samples. Most commercial (and some open-source) scanning probe data acquisition software uses digital signal processors to handle the real time data processing and control, which adds to the expense and complexity of the control software. We describe here scan control software that uses a single computer and a data acquisition card to acquire scan data. The computer runs an open-source real time Linux kernel, which permits fast acquisition and control while maintaining a responsive graphical user interface. Images from a simulated tuning-fork based microscope as well as a standard topographical sample are also presented, showing some of the capabilities of the software.

  2. Compressed sensing for ultrasound computed tomography.

    PubMed

    van Sloun, Ruud; Pandharipande, Ashish; Mischi, Massimo; Demi, Libertario

    2015-06-01

    Ultrasound computed tomography (UCT) allows the reconstruction of quantitative tissue characteristics, such as speed of sound, mass density, and attenuation. Lowering its acquisition time would be beneficial; however, this is fundamentally limited by the physical time of flight and the number of transmission events. In this letter, we propose a compressed sensing solution for UCT. The adopted measurement scheme is based on compressed acquisitions, with concurrent randomised transmissions in a circular array configuration. Reconstruction of the image is then obtained by combining the born iterative method and total variation minimization, thereby exploiting variation sparsity in the image domain. Evaluation using simulated UCT scattering measurements shows that the proposed transmission scheme performs better than uniform undersampling, and is able to reduce acquisition time by almost one order of magnitude, while maintaining high spatial resolution.

  3. Electromagnetic Compatibility Assessment of CCD Detector Acquisition Chains not Synchronized

    NASA Astrophysics Data System (ADS)

    Nicoletto, M.; Boschetti, D.; Ciancetta, E.; Maiorano, E.; Stagnaro, L.

    2016-05-01

    Euclid is a space observatory managed by the European Space Agency; it is the second medium class mission (see Figure 1) in the frame of Cosmic Vision 2015-2025 program.In the frame of this project, the electromagnetic interference between two different and not synchronized Charge Coupled Device (CCD) (see Figure 2) acquisition chains has been evaluated. The key parameter used for this assessment is the electromagnetic noise induced on each other. Taking into account the specificity of the issue, radiation coupling at relative low frequency and in near field conditions, classical approach based on simulations and testing on qualification model cannot be directly applied. Based on that, it has been decided to investigate the issue by test in an incremental way.

  4. Contextual interference effect on perceptual-cognitive skills training.

    PubMed

    Broadbent, David P; Causer, Joe; Ford, Paul R; Williams, A Mark

    2015-06-01

    Contextual interference (CI) effect predicts that a random order of practice for multiple skills is superior for learning compared to a blocked order. We report a novel attempt to examine the CI effect during acquisition and transfer of anticipatory judgments from simulation training to an applied sport situation. Participants were required to anticipate tennis shots under either a random practice schedule or a blocked practice schedule. Response accuracy was recorded for both groups in pretest, during acquisition, and on a 7-d retention test. Transfer of learning was assessed through a field-based tennis protocol that attempted to assess performance in an applied sport setting. The random practice group had significantly higher response accuracy scores on the 7-d laboratory retention test compared to the blocked group. Moreover, during the transfer of anticipatory judgments to an applied sport situation, the decision times of the random practice group were significantly lower compared to the blocked group. The CI effect extends to the training of anticipatory judgments through simulation techniques. Furthermore, we demonstrate for the first time that the CI effect increases transfer of learning from simulation training to an applied sport task, highlighting the importance of using appropriate practice schedules during simulation training.

  5. The impact of constructive feedback on training in gastrointestinal endoscopy using high-fidelity Virtual-Reality simulation: a randomised controlled trial.

    PubMed

    Kruglikova, Irina; Grantcharov, Teodor P; Drewes, Asbjorn M; Funch-Jensen, Peter

    2010-02-01

    Recently, virtual reality computer simulators have been used to enhance traditional endoscopy teaching. Previous studies have demonstrated construct validity of these systems and transfer of virtual skills to the operating room. However, to date no simulator-training curricula have been designed and there is very little evidence on the impact of external feedback on acquisition of endoscopic skills. The aim of the present study was to assess the impact of external feedback on the learning curves on a VR colonoscopy simulator using inexperienced trainees. 22 trainees, without colonoscopy experience were randomised to a group which received structured feedback provided by an experienced supervisor and a controlled group. All participants performed 15 repetitions of task 3 from the Introduction colonoscopy module of the Accu Touch Endoscopy simulator. Retention/transfer tests on simulator were performed 4-6 weeks after the last repetition. The proficiency levels were based on the performance of eight experienced colonoscopists. All subjects were able to complete the procedure on the simulator. There were no perforations in the feedback group versus seven in the non-feedback group. Subjects in the feedback group reached expert proficiency levels in percentage of mucosa visualised and time to reach the caecum significantly faster compared with the control group. None of the groups demonstrated significant degradation of performance in simulator retention/transfer tests. Concurrent feedback given by supervisor concur an advantage in acquisition of basic colonoscopy skills and achieving of proficiency level as compared to independent training.

  6. A simulation of air pollution model parameter estimation using data from a ground-based LIDAR remote sensor

    NASA Technical Reports Server (NTRS)

    Kibler, J. F.; Suttles, J. T.

    1977-01-01

    One way to obtain estimates of the unknown parameters in a pollution dispersion model is to compare the model predictions with remotely sensed air quality data. A ground-based LIDAR sensor provides relative pollution concentration measurements as a function of space and time. The measured sensor data are compared with the dispersion model output through a numerical estimation procedure to yield parameter estimates which best fit the data. This overall process is tested in a computer simulation to study the effects of various measurement strategies. Such a simulation is useful prior to a field measurement exercise to maximize the information content in the collected data. Parametric studies of simulated data matched to a Gaussian plume dispersion model indicate the trade offs available between estimation accuracy and data acquisition strategy.

  7. Manual Skill Acquisition During Transesophageal Echocardiography Simulator Training of Cardiology Fellows: A Kinematic Assessment.

    PubMed

    Matyal, Robina; Montealegre-Gallegos, Mario; Mitchell, John D; Kim, Han; Bergman, Remco; Hawthorne, Katie M; O'Halloran, David; Wong, Vanessa; Hess, Phillip E; Mahmood, Feroze

    2015-12-01

    To investigate whether a transesophageal echocardiography (TEE) simulator with motion analysis can be used to impart proficiency in TEE in an integrated curriculum-based model. A prospective cohort study. A tertiary-care university hospital. TEE-naïve cardiology fellows. Participants underwent an 8-session multimodal TEE training program. Manual skills were assessed at the end of sessions 2 and 8 using motion analysis of the TEE simulator's probe. At the end of the course, participants performed an intraoperative TEE; their examinations were video captured, and a blinded investigator evaluated the total time and image transitions needed for each view. Results are reported as mean±standard deviation, or median (interquartile range) where appropriate. Eleven fellows completed the knowledge and kinematic portions of the study. Five participants were excluded from the evaluation in the clinical setting because of interim exposure to TEE or having participated in a TEE rotation after the training course. An increase of 12.95% in post-test knowledge scores was observed. From the start to the end of the course, there was a significant reduction (p<0.001 for all) in the number of probe. During clinical performance evaluation, trainees were able to obtain all the required echocardiographic views unassisted but required a longer time and had more probe transitions when compared with an expert. A curriculum-based approach to TEE training for cardiology fellows can be complemented with kinematic analyses to objectify acquisition of manual skills during simulator-based training. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. System Diagnostic Builder - A rule generation tool for expert systems that do intelligent data evaluation. [applied to Shuttle Mission Simulator

    NASA Technical Reports Server (NTRS)

    Nieten, Joseph; Burke, Roger

    1993-01-01

    Consideration is given to the System Diagnostic Builder (SDB), an automated knowledge acquisition tool using state-of-the-art AI technologies. The SDB employs an inductive machine learning technique to generate rules from data sets that are classified by a subject matter expert. Thus, data are captured from the subject system, classified, and used to drive the rule generation process. These rule bases are used to represent the observable behavior of the subject system, and to represent knowledge about this system. The knowledge bases captured from the Shuttle Mission Simulator can be used as black box simulations by the Intelligent Computer Aided Training devices. The SDB can also be used to construct knowledge bases for the process control industry, such as chemical production or oil and gas production.

  9. P2P-Based Data System for the EAST Experiment

    NASA Astrophysics Data System (ADS)

    Shu, Yantai; Zhang, Liang; Zhao, Weifeng; Chen, Haiming; Luo, Jiarong

    2006-06-01

    A peer-to-peer (P2P)-based EAST Data System is being designed to provide data acquisition and analysis support for the EAST superconducting tokamak. Instead of transferring data to the servers, all collected data are stored in the data acquisition subsystems locally and the PC clients can access the raw data directly using the P2P architecture. Both online and offline systems are based on Napster-like P2P architecture. This allows the peer (PC) to act both as a client and as a server. A simulation-based method and a steady-state operational analysis technique are used for performance evaluation. These analyses show that the P2P technique can significantly reduce the completion time of raw data display and real-time processing on the online system, and raise the workload capacity and reduce the delay on the offline system.

  10. A neuromathematical model of human information processing and its application to science content acquisition

    NASA Astrophysics Data System (ADS)

    Anderson, O. Roger

    The rate of information processing during science learning and the efficiency of the learner in mobilizing relevant information in long-term memory as an aid in transmitting newly acquired information to stable storage in long-term memory are fundamental aspects of science content acquisition. These cognitive processes, moreover, may be substantially related in tempo and quality of organization to the efficiency of higher thought processes such as divergent thinking and problem-solving ability that characterize scientific thought. As a contribution to our quantitative understanding of these fundamental information processes, a mathematical model of information acquisition is presented and empirically evaluated in comparison to evidence obtained from experimental studies of science content acquisition. Computer-based models are used to simulate variations in learning parameters and to generate the theoretical predictions to be empirically tested. The initial tests of the predictive accuracy of the model show close agreement between predicted and actual mean recall scores in short-term learning tasks. Implications of the model for human information acquisition and possible future research are discussed in the context of the unique theoretical framework of the model.

  11. Simulation-based Education to Ensure Provider Competency Within the Health Care System.

    PubMed

    Griswold, Sharon; Fralliccardi, Alise; Boulet, John; Moadel, Tiffany; Franzen, Douglas; Auerbach, Marc; Hart, Danielle; Goswami, Varsha; Hui, Joshua; Gordon, James A

    2018-02-01

    The acquisition and maintenance of individual competency is a critical component of effective emergency care systems. This article summarizes consensus working group deliberations and recommendations focusing on the topic "Simulation-based education to ensure provider competency within the healthcare system." The authors presented this work for discussion and feedback at the 2017 Academic Emergency Medicine Consensus Conference on "Catalyzing System Change Through Healthcare Simulation: Systems, Competency, and Outcomes," held on May 16, 2017, in Orlando, Florida. Although simulation-based training is a quality and safety imperative in other high-reliability professions such as aviation, nuclear power, and the military, health care professions still lag behind in applying simulation more broadly. This is likely a result of a number of factors, including cost, assessment challenges, and resistance to change. This consensus subgroup focused on identifying current gaps in knowledge and process related to the use of simulation for developing, enhancing, and maintaining individual provider competency. The resulting product is a research agenda informed by expert consensus and literature review. © 2017 by the Society for Academic Emergency Medicine.

  12. Improved Satellite-based Crop Yield Mapping by Spatially Explicit Parameterization of Crop Phenology

    NASA Astrophysics Data System (ADS)

    Jin, Z.; Azzari, G.; Lobell, D. B.

    2016-12-01

    Field-scale mapping of crop yields with satellite data often relies on the use of crop simulation models. However, these approaches can be hampered by inaccuracies in the simulation of crop phenology. Here we present and test an approach to use dense time series of Landsat 7 and 8 acquisitions data to calibrate various parameters related to crop phenology simulation, such as leaf number and leaf appearance rates. These parameters are then mapped across the Midwestern United States for maize and soybean, and for two different simulation models. We then implement our recently developed Scalable satellite-based Crop Yield Mapper (SCYM) with simulations reflecting the improved phenology parameterizations, and compare to prior estimates based on default phenology routines. Our preliminary results show that the proposed method can effectively alleviate the underestimation of early-season LAI by the default Agricultural Production Systems sIMulator (APSIM), and that spatially explicit parameterization for the phenology model substantially improves the SCYM performance in capturing the spatiotemporal variation in maize and soybean yield. The scheme presented in our study thus preserves the scalability of SCYM, while significantly reducing its uncertainty.

  13. An intersubject variable regional anesthesia simulator with a virtual patient architecture.

    PubMed

    Ullrich, Sebastian; Grottke, Oliver; Fried, Eduard; Frommen, Thorsten; Liao, Wei; Rossaint, Rolf; Kuhlen, Torsten; Deserno, Thomas M

    2009-11-01

    The main purpose is to provide an intuitive VR-based training environment for regional anesthesia (RA). The research question is how to process subject-specific datasets, organize them in a meaningful way and how to perform the simulation for peripheral regions. We propose a flexible virtual patient architecture and methods to process datasets. Image acquisition, image processing (especially segmentation), interactive nerve modeling and permutations (nerve instantiation) are described in detail. The simulation of electric impulse stimulation and according responses are essential for the training of peripheral RA and solved by an approach based on the electric distance. We have created an XML-based virtual patient database with several subjects. Prototypes of the simulation are implemented and run on multimodal VR hardware (e.g., stereoscopic display and haptic device). A first user pilot study has confirmed our approach. The virtual patient architecture enables support for arbitrary scenarios on different subjects. This concept can also be used for other simulators. In future work, we plan to extend the simulation and conduct further evaluations in order to provide a tool for routine training for RA.

  14. Low-dose x-ray tomography through a deep convolutional neural network

    DOE PAGES

    Yang, Xiaogang; De Andrade, Vincent; Scullin, William; ...

    2018-02-07

    Synchrotron-based X-ray tomography offers the potential of rapid large-scale reconstructions of the interiors of materials and biological tissue at fine resolution. However, for radiation sensitive samples, there remain fundamental trade-offs between damaging samples during longer acquisition times and reducing signals with shorter acquisition times. We present a deep convolutional neural network (CNN) method that increases the acquired X-ray tomographic signal by at least a factor of 10 during low-dose fast acquisition by improving the quality of recorded projections. Short exposure time projections enhanced with CNN show similar signal to noise ratios as compared with long exposure time projections and muchmore » lower noise and more structural information than low-dose fats acquisition without CNN. We optimized this approach using simulated samples and further validated on experimental nano-computed tomography data of radiation sensitive mouse brains acquired with a transmission X-ray microscopy. We demonstrate that automated algorithms can reliably trace brain structures in datasets collected with low dose-CNN. As a result, this method can be applied to other tomographic or scanning based X-ray imaging techniques and has great potential for studying faster dynamics in specimens.« less

  15. Low-dose x-ray tomography through a deep convolutional neural network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaogang; De Andrade, Vincent; Scullin, William

    Synchrotron-based X-ray tomography offers the potential of rapid large-scale reconstructions of the interiors of materials and biological tissue at fine resolution. However, for radiation sensitive samples, there remain fundamental trade-offs between damaging samples during longer acquisition times and reducing signals with shorter acquisition times. We present a deep convolutional neural network (CNN) method that increases the acquired X-ray tomographic signal by at least a factor of 10 during low-dose fast acquisition by improving the quality of recorded projections. Short exposure time projections enhanced with CNN show similar signal to noise ratios as compared with long exposure time projections and muchmore » lower noise and more structural information than low-dose fats acquisition without CNN. We optimized this approach using simulated samples and further validated on experimental nano-computed tomography data of radiation sensitive mouse brains acquired with a transmission X-ray microscopy. We demonstrate that automated algorithms can reliably trace brain structures in datasets collected with low dose-CNN. As a result, this method can be applied to other tomographic or scanning based X-ray imaging techniques and has great potential for studying faster dynamics in specimens.« less

  16. Ku-band antenna acquisition and tracking performance study, volume 4

    NASA Technical Reports Server (NTRS)

    Huang, T. C.; Lindsey, W. C.

    1977-01-01

    The results pertaining to the tradeoff analysis and performance of the Ku-band shuttle antenna pointing and signal acquisition system are presented. The square, hexagonal and spiral antenna trajectories were investigated assuming the TDRS postulated uncertainty region and a flexible statistical model for the location of the TDRS within the uncertainty volume. The scanning trajectories, shuttle/TDRS signal parameters and dynamics, and three signal acquisition algorithms were integrated into a hardware simulation. The hardware simulation is quite flexible in that it allows for the evaluation of signal acquisition performance for an arbitrary (programmable) antenna pattern, a large range of C/N sub O's, various TDRS/shuttle a priori uncertainty distributions, and three distinct signal search algorithms.

  17. Simultaneous 99mtc/111in spect reconstruction using accelerated convolution-based forced detection monte carlo

    NASA Astrophysics Data System (ADS)

    Karamat, Muhammad I.; Farncombe, Troy H.

    2015-10-01

    Simultaneous multi-isotope Single Photon Emission Computed Tomography (SPECT) imaging has a number of applications in cardiac, brain, and cancer imaging. The major concern however, is the significant crosstalk contamination due to photon scatter between the different isotopes. The current study focuses on a method of crosstalk compensation between two isotopes in simultaneous dual isotope SPECT acquisition applied to cancer imaging using 99mTc and 111In. We have developed an iterative image reconstruction technique that simulates the photon down-scatter from one isotope into the acquisition window of a second isotope. Our approach uses an accelerated Monte Carlo (MC) technique for the forward projection step in an iterative reconstruction algorithm. The MC estimated scatter contamination of a radionuclide contained in a given projection view is then used to compensate for the photon contamination in the acquisition window of other nuclide. We use a modified ordered subset-expectation maximization (OS-EM) algorithm named simultaneous ordered subset-expectation maximization (Sim-OSEM), to perform this step. We have undertaken a number of simulation tests and phantom studies to verify this approach. The proposed reconstruction technique was also evaluated by reconstruction of experimentally acquired phantom data. Reconstruction using Sim-OSEM showed very promising results in terms of contrast recovery and uniformity of object background compared to alternative reconstruction methods implementing alternative scatter correction schemes (i.e., triple energy window or separately acquired projection data). In this study the evaluation is based on the quality of reconstructed images and activity estimated using Sim-OSEM. In order to quantitate the possible improvement in spatial resolution and signal to noise ratio (SNR) observed in this study, further simulation and experimental studies are required.

  18. Design of a digital phantom population for myocardial perfusion SPECT imaging research.

    PubMed

    Ghaly, Michael; Du, Yong; Fung, George S K; Tsui, Benjamin M W; Links, Jonathan M; Frey, Eric

    2014-06-21

    Digital phantoms and Monte Carlo (MC) simulations have become important tools for optimizing and evaluating instrumentation, acquisition and processing methods for myocardial perfusion SPECT (MPS). In this work, we designed a new adult digital phantom population and generated corresponding Tc-99m and Tl-201 projections for use in MPS research. The population is based on the three-dimensional XCAT phantom with organ parameters sampled from the Emory PET Torso Model Database. Phantoms included three variations each in body size, heart size, and subcutaneous adipose tissue level, for a total of 27 phantoms of each gender. The SimSET MC code and angular response functions were used to model interactions in the body and the collimator-detector system, respectively. We divided each phantom into seven organs, each simulated separately, allowing use of post-simulation summing to efficiently model uptake variations. Also, we adapted and used a criterion based on the relative Poisson effective count level to determine the required number of simulated photons for each simulated organ. This technique provided a quantitative estimate of the true noise in the simulated projection data, including residual MC simulation noise. Projections were generated in 1 keV wide energy windows from 48-184 keV assuming perfect energy resolution to permit study of the effects of window width, energy resolution, and crosstalk in the context of dual isotope MPS. We have developed a comprehensive method for efficiently simulating realistic projections for a realistic population of phantoms in the context of MPS imaging. The new phantom population and realistic database of simulated projections will be useful in performing mathematical and human observer studies to evaluate various acquisition and processing methods such as optimizing the energy window width, investigating the effect of energy resolution on image quality and evaluating compensation methods for degrading factors such as crosstalk in the context of single and dual isotope MPS.

  19. Design of a digital phantom population for myocardial perfusion SPECT imaging research

    NASA Astrophysics Data System (ADS)

    Ghaly, Michael; Du, Yong; Fung, George S. K.; Tsui, Benjamin M. W.; Links, Jonathan M.; Frey, Eric

    2014-06-01

    Digital phantoms and Monte Carlo (MC) simulations have become important tools for optimizing and evaluating instrumentation, acquisition and processing methods for myocardial perfusion SPECT (MPS). In this work, we designed a new adult digital phantom population and generated corresponding Tc-99m and Tl-201 projections for use in MPS research. The population is based on the three-dimensional XCAT phantom with organ parameters sampled from the Emory PET Torso Model Database. Phantoms included three variations each in body size, heart size, and subcutaneous adipose tissue level, for a total of 27 phantoms of each gender. The SimSET MC code and angular response functions were used to model interactions in the body and the collimator-detector system, respectively. We divided each phantom into seven organs, each simulated separately, allowing use of post-simulation summing to efficiently model uptake variations. Also, we adapted and used a criterion based on the relative Poisson effective count level to determine the required number of simulated photons for each simulated organ. This technique provided a quantitative estimate of the true noise in the simulated projection data, including residual MC simulation noise. Projections were generated in 1 keV wide energy windows from 48-184 keV assuming perfect energy resolution to permit study of the effects of window width, energy resolution, and crosstalk in the context of dual isotope MPS. We have developed a comprehensive method for efficiently simulating realistic projections for a realistic population of phantoms in the context of MPS imaging. The new phantom population and realistic database of simulated projections will be useful in performing mathematical and human observer studies to evaluate various acquisition and processing methods such as optimizing the energy window width, investigating the effect of energy resolution on image quality and evaluating compensation methods for degrading factors such as crosstalk in the context of single and dual isotope MPS.

  20. DoD Acquisition Workforce Education: An SBA Education Case Study

    ERIC Educational Resources Information Center

    Davenport, Richard W.

    2009-01-01

    A Department of Defense (DoD) M&S education task force is in the process of studying the Modeling and Simulation (M&S) education of the acquisition workforce. Historically, DoD acquisition workforce education is not referred to as education, but rather what the Defense Acquisition University (DAU) refers to as "practitioner training, career…

  1. ALLTEM System User’s Manual, Munitions Management Projects, ALLTEM Multi-Axis Electromagnetic Induction System Demonstration and Validation, Version 1.0

    DTIC Science & Technology

    2012-03-05

    Alarm button. Under the GPS frame are two smaller frames. On the left is a frame with buttons labeled Tractor Guidance and Acquisition Error... GPS ) and the Attitude Heading Reference System (AHRS) data. 5.2 Using the Data Acquisition Simulator Software The simulator and a practice set... acquisition for one polarity of the TX (33ms dead band for relay switching + 33 ms of waveforms). When the GPS is being used this is usually “1”, but may be

  2. Novel Texture-based Visualization Methods for High-dimensional Multi-field Data Sets

    DTIC Science & Technology

    2013-07-06

    project: In standard format showing authors, title, journal, issue, pages, and date, for each category list the following: b) papers published...visual- isation [18]. Novel image acquisition and simulation tech- niques have made is possible to record a large number of co-located data fields...function, structure, anatomical changes, metabolic activity, blood perfusion, and cellular re- modelling. In this paper we investigate texture-based

  3. Feasibility of scenario-based simulation training versus traditional workshops in continuing medical education: a randomized controlled trial.

    PubMed

    Kerr, Brendan; Hawkins, Trisha Lee-Ann; Herman, Robert; Barnes, Sue; Kaufmann, Stephanie; Fraser, Kristin; Ma, Irene W Y

    2013-07-18

    Although simulation-based training is increasingly used for medical education, its benefits in continuing medical education (CME) are less established. This study seeks to evaluate the feasibility of incorporating simulation-based training into a CME conference and compare its effectiveness with the traditional workshop in improving knowledge and self-reported confidence. Participants (N=27) were group randomized to either a simulation-based workshop or a traditional case-based workshop. Post-training, knowledge assessment score neither did increase significantly in the traditional group (d=0.13; p=0.76) nor did significantly decrease in the simulation group (d= - 0.44; p=0.19). Self-reported comfort in patient assessment parameters increased in both groups (p<0.05 in all). However, only the simulation group reported an increase in comfort in patient management (d=1.1, p=0.051 for the traditional group and d=1.3; p= 0.0003 for the simulation group). At 1 month, comfort measures in the traditional group increased consistently over time while these measures in the simulation group increased post-workshop but decreased by 1 month, suggesting that some of the effects of training with simulation may be short lived. The use of simulation-based training was not associated with benefits in knowledge acquisition, knowledge retention, or comfort in patient assessment. It was associated with superior outcomes in comfort in patient management, but this benefit may be short-lived. Further studies are required to better define the conditions under which simulation-based training is beneficial.

  4. Feasibility of scenario-based simulation training versus traditional workshops in continuing medical education: a randomized controlled trial

    PubMed Central

    Kerr, Brendan; Hawkins, Trisha Lee-Ann; Herman, Robert; Barnes, Sue; Kaufmann, Stephanie; Fraser, Kristin; Ma, Irene W. Y.

    2013-01-01

    Introduction Although simulation-based training is increasingly used for medical education, its benefits in continuing medical education (CME) are less established. This study seeks to evaluate the feasibility of incorporating simulation-based training into a CME conference and compare its effectiveness with the traditional workshop in improving knowledge and self-reported confidence. Methods Participants (N=27) were group randomized to either a simulation-based workshop or a traditional case-based workshop. Results Post-training, knowledge assessment score neither did increase significantly in the traditional group (d=0.13; p=0.76) nor did significantly decrease in the simulation group (d= − 0.44; p=0.19). Self-reported comfort in patient assessment parameters increased in both groups (p<0.05 in all). However, only the simulation group reported an increase in comfort in patient management (d=1.1, p=0.051 for the traditional group and d=1.3; p= 0.0003 for the simulation group). At 1 month, comfort measures in the traditional group increased consistently over time while these measures in the simulation group increased post-workshop but decreased by 1 month, suggesting that some of the effects of training with simulation may be short lived. Discussion The use of simulation-based training was not associated with benefits in knowledge acquisition, knowledge retention, or comfort in patient assessment. It was associated with superior outcomes in comfort in patient management, but this benefit may be short-lived. Further studies are required to better define the conditions under which simulation-based training is beneficial. PMID:23870304

  5. Feasibility of scenario-based simulation training versus traditional workshops in continuing medical education: a randomized controlled trial.

    PubMed

    Kerr, Brendan; Lee-Ann Hawkins, Trisha; Herman, Robert; Barnes, Sue; Kaufmann, Stephanie; Fraser, Kristin; Ma, Irene W Y

    2013-01-01

    Introduction Although simulation-based training is increasingly used for medical education, its benefits in continuing medical education (CME) are less established. This study seeks to evaluate the feasibility of incorporating simulation-based training into a CME conference and compare its effectiveness with the traditional workshop in improving knowledge and self-reported confidence. Methods Participants (N=27) were group randomized to either a simulation-based workshop or a traditional case-based workshop. Results Post-training, knowledge assessment score neither did increase significantly in the traditional group (d=0.13; p=0.76) nor did significantly decrease in the simulation group (d= - 0.44; p=0.19). Self-reported comfort in patient assessment parameters increased in both groups (p<0.05 in all). However, only the simulation group reported an increase in comfort in patient management (d=1.1, p=0.051 for the traditional group and d=1.3; p= 0.0003 for the simulation group). At 1 month, comfort measures in the traditional group increased consistently over time while these measures in the simulation group increased post-workshop but decreased by 1 month, suggesting that some of the effects of training with simulation may be short lived. Discussion The use of simulation-based training was not associated with benefits in knowledge acquisition, knowledge retention, or comfort in patient assessment. It was associated with superior outcomes in comfort in patient management, but this benefit may be short-lived. Further studies are required to better define the conditions under which simulation-based training is beneficial.

  6. GPU accelerated Monte-Carlo simulation of SEM images for metrology

    NASA Astrophysics Data System (ADS)

    Verduin, T.; Lokhorst, S. R.; Hagen, C. W.

    2016-03-01

    In this work we address the computation times of numerical studies in dimensional metrology. In particular, full Monte-Carlo simulation programs for scanning electron microscopy (SEM) image acquisition are known to be notoriously slow. Our quest in reducing the computation time of SEM image simulation has led us to investigate the use of graphics processing units (GPUs) for metrology. We have succeeded in creating a full Monte-Carlo simulation program for SEM images, which runs entirely on a GPU. The physical scattering models of this GPU simulator are identical to a previous CPU-based simulator, which includes the dielectric function model for inelastic scattering and also refinements for low-voltage SEM applications. As a case study for the performance, we considered the simulated exposure of a complex feature: an isolated silicon line with rough sidewalls located on a at silicon substrate. The surface of the rough feature is decomposed into 408 012 triangles. We have used an exposure dose of 6 mC/cm2, which corresponds to 6 553 600 primary electrons on average (Poisson distributed). We repeat the simulation for various primary electron energies, 300 eV, 500 eV, 800 eV, 1 keV, 3 keV and 5 keV. At first we run the simulation on a GeForce GTX480 from NVIDIA. The very same simulation is duplicated on our CPU-based program, for which we have used an Intel Xeon X5650. Apart from statistics in the simulation, no difference is found between the CPU and GPU simulated results. The GTX480 generates the images (depending on the primary electron energy) 350 to 425 times faster than a single threaded Intel X5650 CPU. Although this is a tremendous speedup, we actually have not reached the maximum throughput because of the limited amount of available memory on the GTX480. Nevertheless, the speedup enables the fast acquisition of simulated SEM images for metrology. We now have the potential to investigate case studies in CD-SEM metrology, which otherwise would take unreasonable amounts of computation time.

  7. Design of a short nonuniform acquisition protocol for quantitative analysis in dynamic cardiac SPECT imaging - a retrospective 123 I-MIBG animal study.

    PubMed

    Zan, Yunlong; Long, Yong; Chen, Kewei; Li, Biao; Huang, Qiu; Gullberg, Grant T

    2017-07-01

    Our previous works have found that quantitative analysis of 123 I-MIBG kinetics in the rat heart with dynamic single-photon emission computed tomography (SPECT) offers the potential to quantify the innervation integrity at an early stage of left ventricular hypertrophy. However, conventional protocols involving a long acquisition time for dynamic imaging reduce the animal survival rate and thus make longitudinal analysis difficult. The goal of this work was to develop a procedure to reduce the total acquisition time by selecting nonuniform acquisition times for projection views while maintaining the accuracy and precision of estimated physiologic parameters. Taking dynamic cardiac imaging with 123 I-MIBG in rats as an example, we generated time activity curves (TACs) of regions of interest (ROIs) as ground truths based on a direct four-dimensional reconstruction of experimental data acquired from a rotating SPECT camera, where TACs represented as the coefficients of B-spline basis functions were used to estimate compartmental model parameters. By iteratively adjusting the knots (i.e., control points) of B-spline basis functions, new TACs were created according to two rules: accuracy and precision. The accuracy criterion allocates the knots to achieve low relative entropy between the estimated left ventricular blood pool TAC and its ground truth so that the estimated input function approximates its real value and thus the procedure yields an accurate estimate of model parameters. The precision criterion, via the D-optimal method, forces the estimated parameters to be as precise as possible, with minimum variances. Based on the final knots obtained, a new protocol of 30 min was built with a shorter acquisition time that maintained a 5% error in estimating rate constants of the compartment model. This was evaluated through digital simulations. The simulation results showed that our method was able to reduce the acquisition time from 100 to 30 min for the cardiac study of rats with 123 I-MIBG. Compared to a uniform interval dynamic SPECT protocol (1 s acquisition interval, 30 min acquisition time), the newly proposed protocol with nonuniform interval achieved comparable (K1 and k2, P = 0.5745 for K1 and P = 0.0604 for k2) or better (Distribution Volume, DV, P = 0.0004) performance for parameter estimates with less storage and shorter computational time. In this study, a procedure was devised to shorten the acquisition time while maintaining the accuracy and precision of estimated physiologic parameters in dynamic SPECT imaging. The procedure was designed for 123 I-MIBG cardiac imaging in rat studies; however, it has the potential to be extended to other applications, including patient studies involving the acquisition of dynamic SPECT data. © 2017 American Association of Physicists in Medicine.

  8. Macromolecule mapping of the brain using ultrashort-TE acquisition and reference-based metabolite removal.

    PubMed

    Lam, Fan; Li, Yudu; Clifford, Bryan; Liang, Zhi-Pei

    2018-05-01

    To develop a practical method for mapping macromolecule distribution in the brain using ultrashort-TE MRSI data. An FID-based chemical shift imaging acquisition without metabolite-nulling pulses was used to acquire ultrashort-TE MRSI data that capture the macromolecule signals with high signal-to-noise-ratio (SNR) efficiency. To remove the metabolite signals from the ultrashort-TE data, single voxel spectroscopy data were obtained to determine a set of high-quality metabolite reference spectra. These spectra were then incorporated into a generalized series (GS) model to represent general metabolite spatiospectral distributions. A time-segmented algorithm was developed to back-extrapolate the GS model-based metabolite distribution from truncated FIDs and remove it from the MRSI data. Numerical simulations and in vivo experiments have been performed to evaluate the proposed method. Simulation results demonstrate accurate metabolite signal extrapolation by the proposed method given a high-quality reference. For in vivo experiments, the proposed method is able to produce spatiospectral distributions of macromolecules in the brain with high SNR from data acquired in about 10 minutes. We further demonstrate that the high-dimensional macromolecule spatiospectral distribution resides in a low-dimensional subspace. This finding provides a new opportunity to use subspace models for quantification and accelerated macromolecule mapping. Robustness of the proposed method is also demonstrated using multiple data sets from the same and different subjects. The proposed method is able to obtain macromolecule distributions in the brain from ultrashort-TE acquisitions. It can also be used for acquiring training data to determine a low-dimensional subspace to represent the macromolecule signals for subspace-based MRSI. Magn Reson Med 79:2460-2469, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  9. Partition-based acquisition model for speed up navigated beta-probe surface imaging

    NASA Astrophysics Data System (ADS)

    Monge, Frédéric; Shakir, Dzhoshkun I.; Navab, Nassir; Jannin, Pierre

    2016-03-01

    Although gross total resection in low-grade glioma surgery leads to a better patient outcome, the in-vivo control of resection borders remains challenging. For this purpose, navigated beta-probe systems combined with 18F-based radiotracer, relying on activity distribution surface estimation, have been proposed to generate reconstructed images. The clinical relevancy has been outlined by early studies where intraoperative functional information is leveraged although inducing low spatial resolution in reconstruction. To improve reconstruction quality, multiple acquisition models have been proposed. They involve the definition of attenuation matrix for designing radiation detection physics. Yet, they require high computational power for efficient intraoperative use. To address the problem, we propose a new acquisition model called Partition Model (PM) considering an existing model where coefficients of the matrix are taken from a look-up table (LUT). Our model is based upon the division of the LUT into averaged homogeneous values for assigning attenuation coefficients. We validated our model using in vitro datasets, where tumors and peri-tumoral tissues have been simulated. We compared our acquisition model with the o_-the-shelf LUT and the raw method. Acquisition models outperformed the raw method in term of tumor contrast (7.97:1 mean T:B) but with a difficulty of real-time use. Both acquisition models reached the same detection performance with references (0.8 mean AUC and 0.77 mean NCC), where PM slightly improves the mean tumor contrast up to 10.1:1 vs 9.9:1 with the LUT model and more importantly, it reduces the mean computation time by 7.5%. Our model gives a faster solution for an intraoperative use of navigated beta-probe surface imaging system, with improved image quality.

  10. Designing a SCADA system simulator for fast breeder reactor

    NASA Astrophysics Data System (ADS)

    Nugraha, E.; Abdullah, A. G.; Hakim, D. L.

    2016-04-01

    SCADA (Supervisory Control and Data Acquisition) system simulator is a Human Machine Interface-based software that is able to visualize the process of a plant. This study describes the results of the process of designing a SCADA system simulator that aims to facilitate the operator in monitoring, controlling, handling the alarm, accessing historical data and historical trend in Nuclear Power Plant (NPP) type Fast Breeder Reactor (FBR). This research used simulation to simulate NPP type FBR Kalpakkam in India. This simulator was developed using Wonderware Intouch software 10 and is equipped with main menu, plant overview, area graphics, control display, set point display, alarm system, real-time trending, historical trending and security system. This simulator can properly simulate the principle of energy flow and energy conversion process on NPP type FBR. This SCADA system simulator can be used as training media for NPP type FBR prospective operators.

  11. A novel 3D Cartesian random sampling strategy for Compressive Sensing Magnetic Resonance Imaging.

    PubMed

    Valvano, Giuseppe; Martini, Nicola; Santarelli, Maria Filomena; Chiappino, Dante; Landini, Luigi

    2015-01-01

    In this work we propose a novel acquisition strategy for accelerated 3D Compressive Sensing Magnetic Resonance Imaging (CS-MRI). This strategy is based on a 3D cartesian sampling with random switching of the frequency encoding direction with other K-space directions. Two 3D sampling strategies are presented. In the first strategy, the frequency encoding direction is randomly switched with one of the two phase encoding directions. In the second strategy, the frequency encoding direction is randomly chosen between all the directions of the K-Space. These strategies can lower the coherence of the acquisition, in order to produce reduced aliasing artifacts and to achieve a better image quality after Compressive Sensing (CS) reconstruction. Furthermore, the proposed strategies can reduce the typical smoothing of CS due to the limited sampling of high frequency locations. We demonstrated by means of simulations that the proposed acquisition strategies outperformed the standard Compressive Sensing acquisition. This results in a better quality of the reconstructed images and in a greater achievable acceleration.

  12. The influence of respiratory motion on CT image volume definition.

    PubMed

    Rodríguez-Romero, Ruth; Castro-Tejero, Pablo

    2014-04-01

    Radiotherapy treatments are based on geometric and density information acquired from patient CT scans. It is well established that breathing motion during scan acquisition induces motion artifacts in CT images, which can alter the size, shape, and density of a patient's anatomy. The aim of this work is to examine and evaluate the impact of breathing motion on multislice CT imaging with respiratory synchronization (4DCT) and without it (3DCT). A specific phantom with a movable insert was used. Static and dynamic phantom acquisitions were obtained with a multislice CT. Four sinusoidal breath patterns were simulated to move known geometric structures longitudinally. Respiratory synchronized acquisitions (4DCT) were performed to generate images during inhale, intermediate, and exhale phases using prospective and retrospective techniques. Static phantom data were acquired in helical and sequential mode to define a baseline for each type of respiratory 4DCT technique. Taking into account the fact that respiratory 4DCT is not always available, 3DCT helical image studies were also acquired for several CT rotation periods. To study breath and acquisition coupling when respiratory 4DCT was not performed, the beginning of the CT image acquisition was matched with inhale, intermediate, or exhale respiratory phases, for each breath pattern. Other coupling scenarios were evaluated by simulating different phantom and CT acquisition parameters. Motion induced variations in shape and density were quantified by automatic threshold volume generation and Dice similarity coefficient calculation. The structure mass center positions were also determined to make a comparison with their theoretical expected position. 4DCT acquisitions provided volume and position accuracies within ± 3% and ± 2 mm for structure dimensions >2 cm, breath amplitude ≤ 15 mm, and breath period ≥ 3 s. The smallest object (1 cm diameter) exceeded 5% volume variation for the breath patterns of higher frequency and amplitude motion. Larger volume differences (>10%) and inconsistencies between the relative positions of objects were detected in image studies acquired without respiratory control. Increasing the 3DCT rotation period caused a higher distortion in structures without obtaining their envelope. Simulated data showed that the slice acquisition time should be at least twice the breath period to average object movement. Respiratory 4DCT images provide accurate volume and position of organs affected by breath motion detecting higher volume discrepancies as amplitude length or breath frequency are increased. For 3DCT acquisitions, a CT should be considered slow enough to include lesion envelope as long as the slice acquisition time exceeds twice the breathing period. If this requirement cannot be satisfied, a fast CT (along with breath-hold inhale and exhale CTs to estimate roughly the ITV) is recommended in order to minimize structure distortion. Even with an awareness of a patient's respiratory cycle, its coupling with 3DCT acquisition cannot be predicted since patient anatomy is not accurately known. © 2014 American Association of Physicists in Medicine.

  13. The influence of respiratory motion on CT image volume definition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodríguez-Romero, Ruth, E-mail: rrromero@salud.madrid.org; Castro-Tejero, Pablo, E-mail: pablo.castro@salud.madrid.org

    Purpose: Radiotherapy treatments are based on geometric and density information acquired from patient CT scans. It is well established that breathing motion during scan acquisition induces motion artifacts in CT images, which can alter the size, shape, and density of a patient's anatomy. The aim of this work is to examine and evaluate the impact of breathing motion on multislice CT imaging with respiratory synchronization (4DCT) and without it (3DCT). Methods: A specific phantom with a movable insert was used. Static and dynamic phantom acquisitions were obtained with a multislice CT. Four sinusoidal breath patterns were simulated to move knownmore » geometric structures longitudinally. Respiratory synchronized acquisitions (4DCT) were performed to generate images during inhale, intermediate, and exhale phases using prospective and retrospective techniques. Static phantom data were acquired in helical and sequential mode to define a baseline for each type of respiratory 4DCT technique. Taking into account the fact that respiratory 4DCT is not always available, 3DCT helical image studies were also acquired for several CT rotation periods. To study breath and acquisition coupling when respiratory 4DCT was not performed, the beginning of the CT image acquisition was matched with inhale, intermediate, or exhale respiratory phases, for each breath pattern. Other coupling scenarios were evaluated by simulating different phantom and CT acquisition parameters. Motion induced variations in shape and density were quantified by automatic threshold volume generation and Dice similarity coefficient calculation. The structure mass center positions were also determined to make a comparison with their theoretical expected position. Results: 4DCT acquisitions provided volume and position accuracies within ±3% and ±2 mm for structure dimensions >2 cm, breath amplitude ≤15 mm, and breath period ≥3 s. The smallest object (1 cm diameter) exceeded 5% volume variation for the breath patterns of higher frequency and amplitude motion. Larger volume differences (>10%) and inconsistencies between the relative positions of objects were detected in image studies acquired without respiratory control. Increasing the 3DCT rotation period caused a higher distortion in structures without obtaining their envelope. Simulated data showed that the slice acquisition time should be at least twice the breath period to average object movement. Conclusions: Respiratory 4DCT images provide accurate volume and position of organs affected by breath motion detecting higher volume discrepancies as amplitude length or breath frequency are increased. For 3DCT acquisitions, a CT should be considered slow enough to include lesion envelope as long as the slice acquisition time exceeds twice the breathing period. If this requirement cannot be satisfied, a fast CT (along with breath-hold inhale and exhale CTs to estimate roughly the ITV) is recommended in order to minimize structure distortion. Even with an awareness of a patient's respiratory cycle, its coupling with 3DCT acquisition cannot be predicted since patient anatomy is not accurately known.« less

  14. Brain-shift compensation using intraoperative ultrasound and constraint-based biomechanical simulation.

    PubMed

    Morin, Fanny; Courtecuisse, Hadrien; Reinertsen, Ingerid; Le Lann, Florian; Palombi, Olivier; Payan, Yohan; Chabanas, Matthieu

    2017-08-01

    During brain tumor surgery, planning and guidance are based on preoperative images which do not account for brain-shift. However, this deformation is a major source of error in image-guided neurosurgery and affects the accuracy of the procedure. In this paper, we present a constraint-based biomechanical simulation method to compensate for craniotomy-induced brain-shift that integrates the deformations of the blood vessels and cortical surface, using a single intraoperative ultrasound acquisition. Prior to surgery, a patient-specific biomechanical model is built from preoperative images, accounting for the vascular tree in the tumor region and brain soft tissues. Intraoperatively, a navigated ultrasound acquisition is performed directly in contact with the organ. Doppler and B-mode images are recorded simultaneously, enabling the extraction of the blood vessels and probe footprint, respectively. A constraint-based simulation is then executed to register the pre- and intraoperative vascular trees as well as the cortical surface with the probe footprint. Finally, preoperative images are updated to provide the surgeon with images corresponding to the current brain shape for navigation. The robustness of our method is first assessed using sparse and noisy synthetic data. In addition, quantitative results for five clinical cases are provided, first using landmarks set on blood vessels, then based on anatomical structures delineated in medical images. The average distances between paired vessels landmarks ranged from 3.51 to 7.32 (in mm) before compensation. With our method, on average 67% of the brain-shift is corrected (range [1.26; 2.33]) against 57% using one of the closest existing works (range [1.71; 2.84]). Finally, our method is proven to be fully compatible with a surgical workflow in terms of execution times and user interactions. In this paper, a new constraint-based biomechanical simulation method is proposed to compensate for craniotomy-induced brain-shift. While being efficient to correct this deformation, the method is fully integrable in a clinical process. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. ChiMS: Open-source instrument control software platform on LabVIEW for imaging/depth profiling mass spectrometers.

    PubMed

    Cui, Yang; Hanley, Luke

    2015-06-01

    ChiMS is an open-source data acquisition and control software program written within LabVIEW for high speed imaging and depth profiling mass spectrometers. ChiMS can also transfer large datasets from a digitizer to computer memory at high repetition rate, save data to hard disk at high throughput, and perform high speed data processing. The data acquisition mode generally simulates a digital oscilloscope, but with peripheral devices integrated for control as well as advanced data sorting and processing capabilities. Customized user-designed experiments can be easily written based on several included templates. ChiMS is additionally well suited to non-laser based mass spectrometers imaging and various other experiments in laser physics, physical chemistry, and surface science.

  16. ChiMS: Open-source instrument control software platform on LabVIEW for imaging/depth profiling mass spectrometers

    PubMed Central

    Cui, Yang; Hanley, Luke

    2015-01-01

    ChiMS is an open-source data acquisition and control software program written within LabVIEW for high speed imaging and depth profiling mass spectrometers. ChiMS can also transfer large datasets from a digitizer to computer memory at high repetition rate, save data to hard disk at high throughput, and perform high speed data processing. The data acquisition mode generally simulates a digital oscilloscope, but with peripheral devices integrated for control as well as advanced data sorting and processing capabilities. Customized user-designed experiments can be easily written based on several included templates. ChiMS is additionally well suited to non-laser based mass spectrometers imaging and various other experiments in laser physics, physical chemistry, and surface science. PMID:26133872

  17. ChiMS: Open-source instrument control software platform on LabVIEW for imaging/depth profiling mass spectrometers

    NASA Astrophysics Data System (ADS)

    Cui, Yang; Hanley, Luke

    2015-06-01

    ChiMS is an open-source data acquisition and control software program written within LabVIEW for high speed imaging and depth profiling mass spectrometers. ChiMS can also transfer large datasets from a digitizer to computer memory at high repetition rate, save data to hard disk at high throughput, and perform high speed data processing. The data acquisition mode generally simulates a digital oscilloscope, but with peripheral devices integrated for control as well as advanced data sorting and processing capabilities. Customized user-designed experiments can be easily written based on several included templates. ChiMS is additionally well suited to non-laser based mass spectrometers imaging and various other experiments in laser physics, physical chemistry, and surface science.

  18. Using Elearning techniques to support problem based learning within a clinical simulation laboratory.

    PubMed

    Docherty, Charles; Hoy, Derek; Topp, Helena; Trinder, Kathryn

    2004-01-01

    This paper details the results of the first phase of a project that used eLearning to support students' learning within a simulated environment. The locus was a purpose built Clinical Simulation Laboratory (CSL) where the School's newly adopted philosophy of Problem Based Learning (PBL) was challenged through lecturers reverting to traditional teaching methods. The solution, a student-centred, problem-based approach to the acquisition of clinical skills was developed using learning objects embedded within web pages that substituted for lecturers providing instruction and demonstration. This allowed lecturers to retain their facilitator role, and encouraged students to explore, analyse and make decisions within the safety of a clinical simulation. Learning was enhanced through network communications and reflection on video performances of self and others. Evaluations were positive, students demonstrating increased satisfaction with PBL, improved performance in exams, and increased self-efficacy in the performance of nursing activities. These results indicate that an elearning approach can support PBL in delivering a student centred learning experience.

  19. A Monte Carlo method using octree structure in photon and electron transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogawa, K.; Maeda, S.

    Most of the early Monte Carlo calculations in medical physics were used to calculate absorbed dose distributions, and detector responses and efficiencies. Recently, data acquisition in Single Photon Emission CT (SPECT) has been simulated by a Monte Carlo method to evaluate scatter photons generated in a human body and a collimator. Monte Carlo simulations in SPECT data acquisition are generally based on the transport of photons only because the photons being simulated are low energy, and therefore the bremsstrahlung productions by the electrons generated are negligible. Since the transport calculation of photons without electrons is much simpler than that withmore » electrons, it is possible to accomplish the high-speed simulation in a simple object with one medium. Here, object description is important in performing the photon and/or electron transport using a Monte Carlo method efficiently. The authors propose a new description method using an octree representation of an object. Thus even if the boundaries of each medium are represented accurately, high-speed calculation of photon transport can be accomplished because the number of voxels is much fewer than that of the voxel-based approach which represents an object by a union of the voxels of the same size. This Monte Carlo code using the octree representation of an object first establishes the simulation geometry by reading octree string, which is produced by forming an octree structure from a set of serial sections for the object before the simulation; then it transports photons in the geometry. Using the code, if the user just prepares a set of serial sections for the object in which he or she wants to simulate photon trajectories, he or she can perform the simulation automatically using the suboptimal geometry simplified by the octree representation without forming the optimal geometry by handwriting.« less

  20. Virtual Reality Training System for Anytime/Anywhere Acquisition of Surgical Skills: A Pilot Study.

    PubMed

    Zahiri, Mohsen; Booton, Ryan; Nelson, Carl A; Oleynikov, Dmitry; Siu, Ka-Chun

    2018-03-01

    This article presents a hardware/software simulation environment suitable for anytime/anywhere surgical skills training. It blends the advantages of physical hardware and task analogs with the flexibility of virtual environments. This is further enhanced by a web-based implementation of training feedback accessible to both trainees and trainers. Our training system provides a self-paced and interactive means to attain proficiency in basic tasks that could potentially be applied across a spectrum of trainees from first responder field medical personnel to physicians. This results in a powerful training tool for surgical skills acquisition relevant to helping injured warfighters.

  1. Towards real-time communication between in vivo neurophysiological data sources and simulator-based brain biomimetic models.

    PubMed

    Lee, Giljae; Matsunaga, Andréa; Dura-Bernal, Salvador; Zhang, Wenjie; Lytton, William W; Francis, Joseph T; Fortes, José Ab

    2014-11-01

    Development of more sophisticated implantable brain-machine interface (BMI) will require both interpretation of the neurophysiological data being measured and subsequent determination of signals to be delivered back to the brain. Computational models are the heart of the machine of BMI and therefore an essential tool in both of these processes. One approach is to utilize brain biomimetic models (BMMs) to develop and instantiate these algorithms. These then must be connected as hybrid systems in order to interface the BMM with in vivo data acquisition devices and prosthetic devices. The combined system then provides a test bed for neuroprosthetic rehabilitative solutions and medical devices for the repair and enhancement of damaged brain. We propose here a computer network-based design for this purpose, detailing its internal modules and data flows. We describe a prototype implementation of the design, enabling interaction between the Plexon Multichannel Acquisition Processor (MAP) server, a commercial tool to collect signals from microelectrodes implanted in a live subject and a BMM, a NEURON-based model of sensorimotor cortex capable of controlling a virtual arm. The prototype implementation supports an online mode for real-time simulations, as well as an offline mode for data analysis and simulations without real-time constraints, and provides binning operations to discretize continuous input to the BMM and filtering operations for dealing with noise. Evaluation demonstrated that the implementation successfully delivered monkey spiking activity to the BMM through LAN environments, respecting real-time constraints.

  2. A review of the use of simulation in dental education.

    PubMed

    Perry, Suzanne; Bridges, Susan Margaret; Burrow, Michael Francis

    2015-02-01

    In line with the advances in technology and communication, medical simulations are being developed to support the acquisition of requisite psychomotor skills before real-life clinical applications. This review article aimed to give a general overview of simulation in a cognate field, clinical dental education. Simulations in dentistry are not a new phenomenon; however, recent developments in virtual-reality technology using computer-generated medical simulations of 3-dimensional images or environments are providing more optimal practice conditions to smooth the transition from the traditional model-based simulation laboratory to the clinic. Evidence as to the positive aspects of virtual reality include increased effectiveness in comparison with traditional simulation teaching techniques, more efficient learning, objective and reproducible feedback, unlimited training hours, and enhanced cost-effectiveness for teaching establishments. Negative aspects have been indicated as initial setup costs, faculty training, and the lack of a variety of content and current educational simulation programs.

  3. Two Axis Pointing System (TAPS) attitude acquisition, determination, and control

    NASA Technical Reports Server (NTRS)

    Azzolini, John D.; Mcglew, David E.

    1990-01-01

    The Two Axis Pointing System (TAPS) is a 2 axis gimbal system designed to provide fine pointing of Space Transportation System (STS) borne instruments. It features center-of-mass instrument mounting and will accommodate instruments of up to 1134 kg (2500 pounds) which fit within a 1.0 by 1.0 by 4.2 meter (40 by 40 by 166 inch) envelope. The TAPS system is controlled by a microcomputer based Control Electronics Assembly (CEA), a Power Distribution Unit (PDU), and a Servo Control Unit (SCU). A DRIRU-II inertial reference unit is used to provide incremental angles for attitude propagation. A Ball Brothers STRAP star tracker is used for attitude acquisition and update. The theory of the TAPS attitude determination and error computation for the Broad Band X-ray Telescope (BBXRT) are described. The attitude acquisition is based upon a 2 star geometric solution. The acquisition theory and quaternion algebra are presented. The attitude control combines classical position, integral and derivative (PID) control with techniques to compensate for coulomb friction (bias torque) and the cable harness crossing the gimbals (spring torque). Also presented is a technique for an adaptive bias torque compensation which adjusts to an ever changing frictional torque environment. The control stability margins are detailed, with the predicted pointing performance, based upon simulation studies. The TAPS user interface, which provides high level operations commands to facilitate science observations, is outlined.

  4. Pain Assessment and Management in Nursing Education Using Computer-based Simulations.

    PubMed

    Romero-Hall, Enilda

    2015-08-01

    It is very important for nurses to have a clear understanding of the patient's pain experience and of management strategies. However, a review of the nursing literature shows that one of the main barriers to proper pain management practice is lack of knowledge. Nursing schools are in a unique position to address the gap in pain management knowledge by facilitating the acquisition and use of knowledge by the next generation of nurses. The purpose of this article is to discuss the role of computer-based simulations as a reliable educational technology strategy that can enhance the learning experience of nursing students acquiring pain management knowledge and practice. Computer-based simulations provide a significant number of learning affordances that can help change nursing students' attitudes and behaviors toward and practice of pain assessment and management. Copyright © 2015 American Society for Pain Management Nursing. Published by Elsevier Inc. All rights reserved.

  5. Accuracy assessment of a net radiation and temperature index snowmelt model using ground observations of snow water equivalent in an alpine basin

    NASA Astrophysics Data System (ADS)

    Molotch, N. P.; Painter, T. H.; Bales, R. C.; Dozier, J.

    2003-04-01

    In this study, an accumulated net radiation / accumulated degree-day index snowmelt model was coupled with remotely sensed snow covered area (SCA) data to simulate snow cover depletion and reconstruct maximum snow water equivalent (SWE) in the 19.1-km2 Tokopah Basin of the Sierra Nevada, California. Simple net radiation snowmelt models are attractive for operational snowmelt runoff forecasts as they are computationally inexpensive and have low input requirements relative to physically based energy balance models. The objective of this research was to assess the accuracy of a simple net radiation snowmelt model in a topographically heterogeneous alpine environment. Previous applications of net radiation / temperature index snowmelt models have not been evaluated in alpine terrain with intensive field observations of SWE. Solar radiation data from two meteorological stations were distributed using the topographic radiation model TOPORAD. Relative humidity and temperature data were distributed based on the lapse rate calculated between three meteorological stations within the basin. Fractional SCA data from the Landsat Enhanced Thematic Mapper (5 acquisitions) and the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) (2 acquisitions) were used to derive daily SCA using a linear regression between acquisition dates. Grain size data from AVIRIS (4 acquisitions) were used to infer snow surface albedo and interpolated linearly with time to derive daily albedo values. Modeled daily snowmelt rates for each 30-m pixel were scaled by the SCA and integrated over the snowmelt season to obtain estimates of maximum SWE accumulation. Snow surveys consisting of an average of 335 depth measurements and 53 density measurements during April, May and June, 1997 were interpolated using a regression tree / co-krig model, with independent variables of average incoming solar radiation, elevation, slope and maximum upwind slope. The basin was clustered into 7 elevation / average-solar-radiation zones for SWE accuracy assessment. Model simulations did a poor job at estimating the spatial distribution of SWE. Basin clusters where the solar radiative flux dominated the melt flux were simulated more accurately than those dominated by the turbulent fluxes or the longwave radiative flux.

  6. Poster error probability in the Mu-11 Sequential Ranging System

    NASA Technical Reports Server (NTRS)

    Coyle, C. W.

    1981-01-01

    An expression is derived for the posterior error probability in the Mu-2 Sequential Ranging System. An algorithm is developed which closely bounds the exact answer and can be implemented in the machine software. A computer simulation is provided to illustrate the improved level of confidence in a ranging acquisition using this figure of merit as compared to that using only the prior probabilities. In a simulation of 20,000 acquisitions with an experimentally determined threshold setting, the algorithm detected 90% of the actual errors and made false indication of errors on 0.2% of the acquisitions.

  7. Statistical analysis of target acquisition sensor modeling experiments

    NASA Astrophysics Data System (ADS)

    Deaver, Dawne M.; Moyer, Steve

    2015-05-01

    The U.S. Army RDECOM CERDEC NVESD Modeling and Simulation Division is charged with the development and advancement of military target acquisition models to estimate expected soldier performance when using all types of imaging sensors. Two elements of sensor modeling are (1) laboratory-based psychophysical experiments used to measure task performance and calibrate the various models and (2) field-based experiments used to verify the model estimates for specific sensors. In both types of experiments, it is common practice to control or measure environmental, sensor, and target physical parameters in order to minimize uncertainty of the physics based modeling. Predicting the minimum number of test subjects required to calibrate or validate the model should be, but is not always, done during test planning. The objective of this analysis is to develop guidelines for test planners which recommend the number and types of test samples required to yield a statistically significant result.

  8. Radiation dose reduction using a neck detection algorithm for single spiral brain and cervical spine CT acquisition in the trauma setting.

    PubMed

    Ardley, Nicholas D; Lau, Ken K; Buchan, Kevin

    2013-12-01

    Cervical spine injuries occur in 4-8 % of adults with head trauma. Dual acquisition technique has been traditionally used for the CT scanning of brain and cervical spine. The purpose of this study was to determine the efficacy of radiation dose reduction by using a single acquisition technique that incorporated both anatomical regions with a dedicated neck detection algorithm. Thirty trauma patients for brain and cervical spine CT were included and were scanned with the single acquisition technique. The radiation doses from the single CT acquisition technique with the neck detection algorithm, which allowed appropriate independent dose administration relevant to brain and cervical spine regions, were recorded. Comparison was made both to the doses calculated from the simulation of the traditional dual acquisitions with matching parameters, and to the doses of retrospective dual acquisition legacy technique with the same sample size. The mean simulated dose for the traditional dual acquisition technique was 3.99 mSv, comparable to the average dose of 4.2 mSv from 30 previous patients who had CT of brain and cervical spine as dual acquisitions. The mean dose from the single acquisition technique was 3.35 mSv, resulting in a 16 % overall dose reduction. The images from the single acquisition technique were of excellent diagnostic quality. The new single acquisition CT technique incorporating the neck detection algorithm for brain and cervical spine significantly reduces the overall radiation dose by eliminating the unavoidable overlapping range between 2 anatomical regions which occurs with the traditional dual acquisition technique.

  9. Telemetry Monitoring and Display Using LabVIEW

    NASA Technical Reports Server (NTRS)

    Wells, George; Baroth, Edmund C.

    1993-01-01

    The Measurement Technology Center of the Instrumentation Section configures automated data acquisition systems to meet the diverse needs of JPL's experimental research community. These systems are based on personal computers or workstations (Apple, IBM/Compatible, Hewlett-Packard, and Sun Microsystems) and often include integrated data analysis, visualization and experiment control functions in addition to data acquisition capabilities. These integrated systems may include sensors, signal conditioning, data acquisition interface cards, software, and a user interface. Graphical programming is used to simplify configuration of such systems. Employment of a graphical programming language is the most important factor in enabling the implementation of data acquisition, analysis, display and visualization systems at low cost. Other important factors are the use of commercial software packages and off-the-shelf data acquisition hardware where possible. Understanding the experimenter's needs is also critical. An interactive approach to user interface construction and training of operators is also important. One application was created as a result of a competative effort between a graphical programming language team and a text-based C language programming team to verify the advantages of using a graphical programming language approach. With approximately eight weeks of funding over a period of three months, the text-based programming team accomplished about 10% of the basic requirements, while the Macintosh/LabVIEW team accomplished about 150%, having gone beyond the original requirements to simulate a telemetry stream and provide utility programs. This application verified that using graphical programming can significantly reduce software development time. As a result of this initial effort, additional follow-on work was awarded to the graphical programming team.

  10. Real-Time Monitoring of Scada Based Control System for Filling Process

    NASA Astrophysics Data System (ADS)

    Soe, Aung Kyaw; Myint, Aung Naing; Latt, Maung Maung; Theingi

    2008-10-01

    This paper is a design of real-time monitoring for filling system using Supervisory Control and Data Acquisition (SCADA). The monitoring of production process is described in real-time using Visual Basic.Net programming under Visual Studio 2005 software without SCADA software. The software integrators are programmed to get the required information for the configuration screens. Simulation of components is expressed on the computer screen using parallel port between computers and filling devices. The programs of real-time simulation for the filling process from the pure drinking water industry are provided.

  11. Imaging skills for transthoracic echocardiography in cardiology fellows: The value of motion metrics

    PubMed Central

    Montealegre-Gallegos, Mario; Mahmood, Feroze; Kim, Han; Bergman, Remco; Mitchell, John D.; Bose, Ruma; Hawthorne, Katie M.; O’Halloran, T. David; Wong, Vanessa; Hess, Philip E.; Matyal, Robina

    2016-01-01

    Background: Proficiency in transthoracic echocardiography (TTE) requires an integration of cognitive knowledge and psychomotor skills. Whereas cognitive knowledge can be quantified, psychomotor skills are implied after repetitive task performance. We applied motion analyses to evaluate psychomotor skill acquisition during simulator-based TTE training. Methods and Results: During the first month of their fellowship training, 16 cardiology fellows underwent a multimodal TTE training program for 4 weeks (8 sessions). The program consisted of online and live didactics as well as simulator training. Kinematic metrics (path length, time, probe accelerations) were obtained at the start and end of the course for 8 standard TTE views using a simulator. At the end of the course TTE image acquisition skills were tested on human models. After completion of the training program the trainees reported improved self-perceived comfort with TTE imaging. There was also an increase of 8.7% in post-test knowledge scores. There was a reduction in the number of probe accelerations [median decrease 49.5, 95% CI = 29-73, adjusted P < 0.01], total time [median decrease 10.6 s, 95% CI = 6.6-15.5, adjusted P < 0.01] and path length [median decrease 8.8 cm, 95% CI = 2.2-17.7, adjusted P < 0.01] from the start to the end of the course. During evaluation on human models, the trainees were able to obtain all the required TTE views without instructor assistance. Conclusion: Simulator-derived motion analyses can be used to objectively quantify acquisition of psychomotor skills during TTE training. Such an approach could be used to assess readiness for clinical practice of TTE. PMID:27052064

  12. Inter-satellite laser link acquisition with dual-way scanning for Space Advanced Gravity Measurements mission

    NASA Astrophysics Data System (ADS)

    Zhang, Jing-Yi; Ming, Min; Jiang, Yuan-Ze; Duan, Hui-Zong; Yeh, Hsien-Chi

    2018-06-01

    Laser link acquisition is a key technology for inter-satellite laser ranging and laser communication. In this paper, we present an acquisition scheme based on the differential power sensing method with dual-way scanning, which will be used in the next-generation gravity measurement mission proposed in China, called Space Advanced Gravity Measurements (SAGM). In this scheme, the laser beams emitted from two satellites are power-modulated at different frequencies to enable the signals of the two beams to be measured distinguishably, and their corresponding pointing angles are determined by using the differential power sensing method. As the master laser beam and the slave laser beam are decoupled, the dual-way scanning method, in which the laser beams of both the master and the slave satellites scan uncertainty cones simultaneously and independently, can be used, instead of the commonly used single-way scanning method, in which the laser beam of one satellite scans and that of the other one stares. Therefore, the acquisition time is reduced significantly. Numerical simulation and experiments of the acquisition process are performed using the design parameters of the SAGM mission. The results show that the average acquisition time is less than 10 s for a scanning range of 1-mrad radius with a success rate of more than 99%.

  13. The Effectiveness of a Simulation-Based Flipped Classroom in the Acquisition of Laparoscopic Suturing Skills in Medical Students-A Pilot Study.

    PubMed

    Chiu, Hsin-Yi; Kang, Yi-No; Wang, Wei-Lin; Huang, Hung-Chang; Wu, Chien-Chih; Hsu, Wayne; Tong, Yiu-Shun; Wei, Po-Li

    To evaluate the effectiveness of a simulation-based flipped classroom in gaining the laparoscopic skills in medical students. An intervention trial. Taipei Medical University Hospital, an academic teaching hospital. Fifty-nine medical students participating in a 1-hour laparoscopic skill training session were randomly assigned to a conventional classroom (n = 29) or a flipped classroom approach (n = 30) based on their registered order. At the end of the session, instructors assessed participants' performance in laparoscopic suturing and intracorporeal knot-tying using the assessment checklist based on a modified Objective Structured Assessment of Technical Skills tool. Students in the flipped group completed more numbers of stitches (mean [M] = 0.47; standard deviation [SD] = 0.507) than those in the conventional group (M = 0.10; SD = 0.310) (mean difference: 0.37; 95% CI: 0.114-582; p = 0.002). Moreover, students in the flipped group also had higher stitch quality scores (M = 7.17; SD = 2.730) than those in the conventional group (M = 5.14; SD = 1.767) (mean difference = 2.03; 95% CI: 0.83-3.228; p = 0.001). Meanwhile, students in the flipped group had higher pass rates for the second throw (p < 0.001), third throw (p = 0.002), appropriate tissue reapproximation without loosening or strangulation (p < 0.001), needle cut from suture under direct visualization (p = 0.004), and needle safely removed under direct visualization (p = 0.018) than those in the conventional group. Comparing with traditional approach, a simulation-based flipped classroom approach may improve laparoscopic intracorporeal knot-tying skill acquisition in medical students. Copyright © 2017 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  14. LENS: μLENS Simulations, Analysis, and Results

    NASA Astrophysics Data System (ADS)

    Rasco, Charles

    2013-04-01

    Simulations of the Low-Energy Neutrino Spectrometer prototype, μLENS, have been performed in order to benchmark the first measurements of the μLENS detector at the Kimballton Underground Research Facility (KURF). μLENS is a 6x6x6 celled scintillation lattice filled with Linear Alkylbenzene based scintillator. We have performed simulations of μLENS using the GEANT4 toolkit. We have measured various radioactive sources, LEDs, and environmental background radiation measurements at KURF using up to 96 PMTs with a simplified data acquisition system of QDCs and TDCs. In this talk we will demonstrate our understanding of the light propagation and we will compare simulation results with measurements of the μLENS detector of various radioactive sources, LEDs, and the environmental background radiation.

  15. Data acquisition instrument for EEG based on embedded system

    NASA Astrophysics Data System (ADS)

    Toresano, La Ode Husein Z.; Wijaya, Sastra Kusuma; Prawito, Sudarmaji, Arief; Syakura, Abdan; Badri, Cholid

    2017-02-01

    An electroencephalogram (EEG) is a device for measuring and recording the electrical activity of brain. The EEG data of signal can be used as a source of analysis for human brain function. The purpose of this study was to design a portable multichannel EEG based on embedded system and ADS1299. The ADS1299 is an analog front-end to be used as an Analog to Digital Converter (ADC) to convert analog signal of electrical activity of brain, a filter of electrical signal to reduce the noise on low-frequency band and a data communication to the microcontroller. The system has been tested to capture brain signal within a range of 1-20 Hz using the NETECH EEG simulator 330. The developed system was relatively high accuracy of more than 82.5%. The EEG Instrument has been successfully implemented to acquire the brain signal activity using a PC (Personal Computer) connection for displaying the recorded data. The final result of data acquisition has been processed using OpenBCI GUI (Graphical User Interface) based through real-time process for 8-channel signal acquisition, brain-mapping and power spectral decomposition signal using the standard FFT (Fast Fourier Transform) algorithm.

  16. Interconnected growing self-organizing maps for auditory and semantic acquisition modeling.

    PubMed

    Cao, Mengxue; Li, Aijun; Fang, Qiang; Kaufmann, Emily; Kröger, Bernd J

    2014-01-01

    Based on the incremental nature of knowledge acquisition, in this study we propose a growing self-organizing neural network approach for modeling the acquisition of auditory and semantic categories. We introduce an Interconnected Growing Self-Organizing Maps (I-GSOM) algorithm, which takes associations between auditory information and semantic information into consideration, in this paper. Direct phonetic-semantic association is simulated in order to model the language acquisition in early phases, such as the babbling and imitation stages, in which no phonological representations exist. Based on the I-GSOM algorithm, we conducted experiments using paired acoustic and semantic training data. We use a cyclical reinforcing and reviewing training procedure to model the teaching and learning process between children and their communication partners. A reinforcing-by-link training procedure and a link-forgetting procedure are introduced to model the acquisition of associative relations between auditory and semantic information. Experimental results indicate that (1) I-GSOM has good ability to learn auditory and semantic categories presented within the training data; (2) clear auditory and semantic boundaries can be found in the network representation; (3) cyclical reinforcing and reviewing training leads to a detailed categorization as well as to a detailed clustering, while keeping the clusters that have already been learned and the network structure that has already been developed stable; and (4) reinforcing-by-link training leads to well-perceived auditory-semantic associations. Our I-GSOM model suggests that it is important to associate auditory information with semantic information during language acquisition. Despite its high level of abstraction, our I-GSOM approach can be interpreted as a biologically-inspired neurocomputational model.

  17. Flight simulator for hypersonic vehicle and a study of NASP handling qualities

    NASA Technical Reports Server (NTRS)

    Ntuen, Celestine A.; Park, Eui H.; Deeb, Joseph M.; Kim, Jung H.

    1992-01-01

    The research goal of the Human-Machine Systems Engineering Group was to study the existing handling quality studies in aircraft with sonic to supersonic speeds and power in order to understand information requirements needed for a hypersonic vehicle flight simulator. This goal falls within the NASA task statements: (1) develop flight simulator for hypersonic vehicle; (2) study NASP handling qualities; and (3) study effects of flexibility on handling qualities and on control system performance. Following the above statement of work, the group has developed three research strategies. These are: (1) to study existing handling quality studies and the associated aircraft and develop flight simulation data characterization; (2) to develop a profile for flight simulation data acquisition based on objective statement no. 1 above; and (3) to develop a simulator and an embedded expert system platform which can be used in handling quality experiments for hypersonic aircraft/flight simulation training.

  18. SNR-optimized phase-sensitive dual-acquisition turbo spin echo imaging: a fast alternative to FLAIR.

    PubMed

    Lee, Hyunyeol; Park, Jaeseok

    2013-07-01

    Phase-sensitive dual-acquisition single-slab three-dimensional turbo spin echo imaging was recently introduced, producing high-resolution isotropic cerebrospinal fluid attenuated brain images without long inversion recovery preparation. Despite the advantages, the weighted-averaging-based technique suffers from noise amplification resulting from different levels of cerebrospinal fluid signal modulations over the two acquisitions. The purpose of this work is to develop a signal-to-noise ratio-optimized version of the phase-sensitive dual-acquisition single-slab three-dimensional turbo spin echo. Variable refocusing flip angles in the first acquisition are calculated using a three-step prescribed signal evolution while those in the second acquisition are calculated using a two-step pseudo-steady state signal transition with a high flip-angle pseudo-steady state at a later portion of the echo train, balancing the levels of cerebrospinal fluid signals in both the acquisitions. Low spatial frequency signals are sampled during the high flip-angle pseudo-steady state to further suppress noise. Numerical simulations of the Bloch equations were performed to evaluate signal evolutions of brain tissues along the echo train and optimize imaging parameters. In vivo studies demonstrate that compared with conventional phase-sensitive dual-acquisition single-slab three-dimensional turbo spin echo, the proposed optimization yields 74% increase in apparent signal-to-noise ratio for gray matter and 32% decrease in imaging time. The proposed method can be a potential alternative to conventional fluid-attenuated imaging. Copyright © 2012 Wiley Periodicals, Inc.

  19. LabVIEW: a software system for data acquisition, data analysis, and instrument control.

    PubMed

    Kalkman, C J

    1995-01-01

    Computer-based data acquisition systems play an important role in clinical monitoring and in the development of new monitoring tools. LabVIEW (National Instruments, Austin, TX) is a data acquisition and programming environment that allows flexible acquisition and processing of analog and digital data. The main feature that distinguishes LabVIEW from other data acquisition programs is its highly modular graphical programming language, "G," and a large library of mathematical and statistical functions. The advantage of graphical programming is that the code is flexible, reusable, and self-documenting. Subroutines can be saved in a library and reused without modification in other programs. This dramatically reduces development time and enables researchers to develop or modify their own programs. LabVIEW uses a large amount of processing power and computer memory, thus requiring a powerful computer. A large-screen monitor is desirable when developing larger applications. LabVIEW is excellently suited for testing new monitoring paradigms, analysis algorithms, or user interfaces. The typical LabVIEW user is the researcher who wants to develop a new monitoring technique, a set of new (derived) variables by integrating signals from several existing patient monitors, closed-loop control of a physiological variable, or a physiological simulator.

  20. Twelve tips for postgraduate or undergraduate medics building a basic microsurgery simulation training course.

    PubMed

    Mason, Katrina A; Theodorakopoulou, Evgenia; Pafitanis, Georgios; Ghanem, Ali M; Myers, Simon R

    2016-09-01

    Microsurgery is used in a variety of surgical specialties, including Plastic Surgery, Maxillofacial Surgery, Ophthalmic Surgery, Otolaryngology and Neurosurgery. It is considered one of the most technically challenging fields of surgery. Microsurgical skills demand fine, precise and controlled movements, and microsurgical skill acquisition has a steep initial learning curve. Microsurgical simulation provides a safe environment for skill acquisition before operating clinically. The traditional starting point for anyone wanting to pursue microsurgery is a basic simulation training course. We present twelve tips for postgraduate and undergraduate medics on how to set up and run a basic ex-vivo microsurgery simulation training course suitable for their peers.

  1. Multislice spiral CT simulator for dynamic cardiopulmonary studies

    NASA Astrophysics Data System (ADS)

    De Francesco, Silvia; Ferreira da Silva, Augusto M.

    2002-04-01

    We've developed a Multi-slice Spiral CT Simulator modeling the acquisition process of a real tomograph over a 4-dimensional phantom (4D MCAT) of the human thorax. The simulator allows us to visually characterize artifacts due to insufficient temporal sampling and a priori evaluate the quality of the images obtained in cardio-pulmonary studies (both with single-/multi-slice and ECG gated acquisition processes). The simulating environment allows both for conventional and spiral scanning modes and includes a model of noise in the acquisition process. In case of spiral scanning, reconstruction facilities include longitudinal interpolation methods (360LI and 180LI both for single and multi-slice). Then, the reconstruction of the section is performed through FBP. The reconstructed images/volumes are affected by distortion due to insufficient temporal sampling of the moving object. The developed simulating environment allows us to investigate the nature of the distortion characterizing it qualitatively and quantitatively (using, for example, Herman's measures). Much of our work is focused on the determination of adequate temporal sampling and sinogram regularization techniques. At the moment, the simulator model is limited to the case of multi-slice tomograph, being planned as a next step of development the extension to cone beam or area detectors.

  2. Age of acquisition predicts rate of lexical evolution.

    PubMed

    Monaghan, Padraic

    2014-12-01

    The processes taking place during language acquisition are proposed to influence language evolution. However, evidence demonstrating the link between language learning and language evolution is, at best, indirect, constituting studies of laboratory-based artificial language learning studies or computational simulations of diachronic change. In the current study, a direct link between acquisition and evolution is established, showing that for two hundred fundamental vocabulary items, the age at which words are acquired is a predictor of the rate at which they have changed in studies of language evolution. Early-acquired words are more salient and easier to process than late-acquired words, and these early-acquired words are also more stably represented within the community's language. Analysing the properties of these early-acquired words potentially provides insight into the origins of communication, highlighting features of words that have been ultra-conserved in language. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Conference on Real-Time Computer Applications in Nuclear, Particle and Plasma Physics, 6th, Williamsburg, VA, May 15-19, 1989, Proceedings

    NASA Technical Reports Server (NTRS)

    Pordes, Ruth (Editor)

    1989-01-01

    Papers on real-time computer applications in nuclear, particle, and plasma physics are presented, covering topics such as expert systems tactics in testing FASTBUS segment interconnect modules, trigger control in a high energy physcis experiment, the FASTBUS read-out system for the Aleph time projection chamber, a multiprocessor data acquisition systems, DAQ software architecture for Aleph, a VME multiprocessor system for plasma control at the JT-60 upgrade, and a multiasking, multisinked, multiprocessor data acquisition front end. Other topics include real-time data reduction using a microVAX processor, a transputer based coprocessor for VEDAS, simulation of a macropipelined multi-CPU event processor for use in FASTBUS, a distributed VME control system for the LISA superconducting Linac, a distributed system for laboratory process automation, and a distributed system for laboratory process automation. Additional topics include a structure macro assembler for the event handler, a data acquisition and control system for Thomson scattering on ATF, remote procedure execution software for distributed systems, and a PC-based graphic display real-time particle beam uniformity.

  4. Simulation study of communication link for Pioneer Saturn/Uranus atmospheric entry probe. [signal acquisition by candidate modem for radio link

    NASA Technical Reports Server (NTRS)

    Hinrichs, C. A.

    1974-01-01

    A digital simulation is presented for a candidate modem in a modeled atmospheric scintillation environment with Doppler, Doppler rate, and signal attenuation typical of the radio link conditions for an outer planets atmospheric entry probe. The results indicate that the signal acquisition characteristics and the channel error rate are acceptable for the system requirements of the radio link. The simulation also outputs data for calculating other error statistics and a quantized symbol stream from which error correction decoding can be analyzed.

  5. Image-based computational fluid dynamics in blood vessel models: toward developing a prognostic tool to assess cardiovascular function changes in prolonged space flights

    NASA Astrophysics Data System (ADS)

    Chatzimavroudis, George P.; Spirka, Thomas A.; Setser, Randolph M.; Myers, Jerry G.

    2005-04-01

    One of NASA"s objectives is to be able to perform a complete pre-flight evaluation of possible cardiovascular changes in astronauts scheduled for prolonged space missions. Blood flow is an important component of cardiovascular function. Lately, attention has focused on using computational fluid dynamics (CFD) to analyze flow with realistic vessel geometries. MRI can provide detailed geometrical information and is the only clinical technique to measure all three spatial velocity components. The objective of this study was to investigate the reliability of MRI-based model reconstruction for CFD simulations. An aortic arch model and a carotid bifurcation model were scanned in a 1.5T MRI scanner. Axial MRI acquisitions provided images for geometry reconstruction using different resolution settings. The vessel walls were identified and the geometry was reconstructed using existing software. The geometry was then imported into a commercial CFD package for meshing and numerical solution. MRI velocity acquisitions provided true inlet boundary conditions for steady flow, as well as three-directional velocity data at several locations. In addition, an idealized version of each geometry was created from the model drawings. Contour and vector plots of the velocity showed identical features between the MRI velocity data, the MRI-based CFD data, and the idealized-geometry CFD data, with mean differences <10%. CFD results from different MRI resolution settings did not show significant differences (<5%). This study showed quantitatively that reliable CFD simulations can be performed in models reconstructed from MRI acquisitions and gives evidence that a future, subject-specific, computational evaluation of the cardiovascular system is possible.

  6. Research on a simulation-based ship production support system for middle-sized shipbuilding companies

    NASA Astrophysics Data System (ADS)

    Song, Young Joo; Woo, Jong Hun; Shin, Jong Gye

    2009-12-01

    Today, many middle-sized shipbuilding companies in Korea are experiencing strong competition from shipbuilding companies in other nations. This competition is particularly affecting small- and middle-sized shipyards, rather than the major shipyards that have their own support systems and development capabilities. The acquisition of techniques that would enable maximization of production efficiency and minimization of the gap between planning and execution would increase the competitiveness of small- and middle-sized Korean shipyards. In this paper, research on a simulation-based support system for ship production management, which can be applied to the shipbuilding processes of middle-sized shipbuilding companies, is presented. The simulation research includes layout optimization, load balancing, work stage operation planning, block logistics, and integrated material management. Each item is integrated into a network system with a value chain that includes all shipbuilding processes.

  7. Validation and evaluation of model-based crosstalk compensation method in simultaneous /sup 99m/Tc stress and /sup 201/Tl rest myocardial perfusion SPECT

    NASA Astrophysics Data System (ADS)

    Song, X.; Frey, E. C.; Wang, W. T.; Du, Y.; Tsui, B. M. W.

    2004-02-01

    Simultaneous acquisition of /sup 99m/Tc stress and /sup 201/Tl rest myocardial perfusion SPECT has several potential advantages, but the image quality is degraded by crosstalk between the Tc and Tl data. We have previously developed a crosstalk model that includes estimates of the downscatter and Pb X-ray for use in crosstalk compensation. In this work, we validated the model by comparing the crosstalk from /sup 99m/Tc to the Tl window calculated using a combination of the SimSET-MCNP Monte Carlo simulation codes. We also evaluated the model-based crosstalk compensation method using both simulated data from the 3-D MCAT phantom and experimental data from a physical phantom with a myocardial defect. In these studies, the Tl distributions were reconstructed from crosstalk contaminated data without crosstalk compensation, with compensation using the model-based crosstalk estimate, and with compensation using the known true crosstalk, and were compared with the Tl distribution reconstructed from uncontaminated Tl data. Results show that the model gave good estimates of both the downscatter photons and Pb X-rays in the simultaneous dual-isotopes myocardial perfusion SPECT. The model-based compensation method provided image quality that was significantly improved as compared to no compensation and was very close to that from the separate acquisition.

  8. Measuring Knowledge, Acceptance, and Perceptions of Telehealth in an Interprofessional Curriculum for Student Nurse Practitioners, Occupational Therapists, and Physical Therapists

    ERIC Educational Resources Information Center

    Randall, Ken; Steinheider, Brigitte; Isaacson, Mary; Shortridge, Ann; Bird, Stephanie; Crio, Carrie; Ross, Heather; Loving, Gary

    2016-01-01

    Introduction: The use of telehealth in service delivery is both challenging and beneficial. This paper describes the results of a three semester-long interprofessional education program in team-based care using telehealth technology. The study assessed telehealth knowledge acquisition, practice in a structured environment with a simulated patient,…

  9. Experimental and numerical simulation of the acquisition of chemical remanent magnetization and the Thellier procedure

    NASA Astrophysics Data System (ADS)

    Shcherbakov, V. P.; Sycheva, N. K.; Gribov, S. K.

    2017-09-01

    The results of the Thellier-Coe experiments on paleointensity determination on the samples which contain chemical remanent magnetization (CRM) created by thermal annealing of titanomagnetites are reported. The results of the experiments are compared with the theoretical notions. For this purpose, Monte Carlo simulation of the process of CRM acquisition in the system of single-domain interacting particles was carried out; the paleointensity determination method based on the Thellier-Coe procedure was modeled; and the degree of paleointensity underestimation was quantitatively estimated based on the experimental data and on the numerical results. Both the experimental investigations and computer modeling suggest the following main conclusion: all the Arai-Nagata diagrams for CRM in the high-temperature area (in some cases up to the Curie temperature T c) contain a relatively long quasi-linear interval on which it is possible to estimate the slope coefficient k and, therefore, the paleointensity. Hence, if chemical magnetization (or remagnetization) took place in the course of the magnetomineralogical transformations of titanomagnetite- bearing igneous rocks during long-lasting cooling or during repeated heatings, it can lead to incorrect results in determining the intensity of the geomagnetic field in the geological past.

  10. Design of a novel noninvasive spectrometer for pesticide residues monitor

    NASA Astrophysics Data System (ADS)

    Ren, Zhong; Liu, Guodong; Huang, Zhen

    2014-11-01

    Although the gas or liquid chromatography had been widely used into pesticide residues monitoring, some drawbacks such as time-consuming, complicated operation and especially the destructivity for samples were existed. To overcome the limits of destructive detection methods, the noninvasive detection method based on spectroscopy was used to detect the pesticide residues in this paper. To overcome low resolution and light-efficiency due to the drawbacks of the classical plane and holography concave gratings, a novel noninvasive spectrometer for pesticide residues monitor (PRM) based on volume holography transmission (VHT) grating was designed. Meanwhile, a custom-built splitting light system for PRM based on the VHT grating was developed. In addition, the linear charge coupled device (CCD) with combined data acquisition (DAQ) card and the virtual-PRM based on LabVIEW were respectively used as the spectral acquisition hardware and software-platform. Experimental results showed that the spectral resolution of this spectrometer reached 2nm, and the VHT grating's diffraction efficiency was gotten via the simulation experiment.

  11. Integrative Multi-Spectral Sensor Device for Far-Infrared and Visible Light Fusion

    NASA Astrophysics Data System (ADS)

    Qiao, Tiezhu; Chen, Lulu; Pang, Yusong; Yan, Gaowei

    2018-06-01

    Infrared and visible light image fusion technology is a hot spot in the research of multi-sensor fusion technology in recent years. Existing infrared and visible light fusion technologies need to register before fusion because of using two cameras. However, the application effect of the registration technology has yet to be improved. Hence, a novel integrative multi-spectral sensor device is proposed for infrared and visible light fusion, and by using the beam splitter prism, the coaxial light incident from the same lens is projected to the infrared charge coupled device (CCD) and visible light CCD, respectively. In this paper, the imaging mechanism of the proposed sensor device is studied with the process of the signals acquisition and fusion. The simulation experiment, which involves the entire process of the optic system, signal acquisition, and signal fusion, is constructed based on imaging effect model. Additionally, the quality evaluation index is adopted to analyze the simulation result. The experimental results demonstrate that the proposed sensor device is effective and feasible.

  12. Bandwidth management for mobile mode of mobile monitoring system for Indonesian Volcano

    NASA Astrophysics Data System (ADS)

    Evita, Maria; Djamal, Mitra; Zimanowski, Bernd; Schilling, Klaus

    2017-01-01

    Volcano monitoring requires the system which has high-fidelity operation and real-time acquisition. MONICA (Mobile Monitoring System for Indonesian Volcano), a system based on Wireless Sensor Network, mobile robot and satellite technology has been proposed to fulfill this requirement for volcano monitoring system in Indonesia. This system consists of fixed-mode for normal condition and mobile mode for emergency situation. The first and second modes have been simulated in slow motion earthquake cases of Merapi Volcano, Indonesia. In this research, we have investigated the application of our bandwidth management for high-fidelity operation and real time acquisition in mobile mode of a strong motion earthquake from this volcano. The simulation result showed that our system still could manage the bandwidth even when there were 2 died fixed node after had stroked by the lightning. This result (64% to 83% throughput in average) was still better than the bandwidth utilized by the existing equipment (0% throughput because of the broken seismometer).

  13. Model-based sphere localization (MBSL) in x-ray projections

    NASA Astrophysics Data System (ADS)

    Sawall, Stefan; Maier, Joscha; Leinweber, Carsten; Funck, Carsten; Kuntz, Jan; Kachelrieß, Marc

    2017-08-01

    The detection of spherical markers in x-ray projections is an important task in a variety of applications, e.g. geometric calibration and detector distortion correction. Therein, the projection of the sphere center on the detector is of particular interest as the used spherical beads are no ideal point-like objects. Only few methods have been proposed to estimate this respective position on the detector with sufficient accuracy and surrogate positions, e.g. the center of gravity, are used, impairing the results of subsequent algorithms. We propose to estimate the projection of the sphere center on the detector using a simulation-based method matching an artificial projection to the actual measurement. The proposed algorithm intrinsically corrects for all polychromatic effects included in the measurement and absent in the simulation by a polynomial which is estimated simultaneously. Furthermore, neither the acquisition geometry nor any object properties besides the fact that the object is of spherical shape need to be known to find the center of the bead. It is shown by simulations that the algorithm estimates the center projection with an error of less than 1% of the detector pixel size in case of realistic noise levels and that the method is robust to the sphere material, sphere size, and acquisition parameters. A comparison to three reference methods using simulations and measurements indicates that the proposed method is an order of magnitude more accurate compared to these algorithms. The proposed method is an accurate algorithm to estimate the center of spherical markers in CT projections in the presence of polychromatic effects and noise.

  14. Optronic System Imaging Simulator (OSIS): imager simulation tool of the ECOMOS project

    NASA Astrophysics Data System (ADS)

    Wegner, D.; Repasi, E.

    2018-04-01

    ECOMOS is a multinational effort within the framework of an EDA Project Arrangement. Its aim is to provide a generally accepted and harmonized European computer model for computing nominal Target Acquisition (TA) ranges of optronic imagers operating in the Visible or thermal Infrared (IR). The project involves close co-operation of defense and security industry and public research institutes from France, Germany, Italy, The Netherlands and Sweden. ECOMOS uses two approaches to calculate Target Acquisition (TA) ranges, the analytical TRM4 model and the image-based Triangle Orientation Discrimination model (TOD). In this paper the IR imager simulation tool, Optronic System Imaging Simulator (OSIS), is presented. It produces virtual camera imagery required by the TOD approach. Pristine imagery is degraded by various effects caused by atmospheric attenuation, optics, detector footprint, sampling, fixed pattern noise, temporal noise and digital signal processing. Resulting images might be presented to observers or could be further processed for automatic image quality calculations. For convenience OSIS incorporates camera descriptions and intermediate results provided by TRM4. For input OSIS uses pristine imagery tied with meta information about scene content, its physical dimensions, and gray level interpretation. These images represent planar targets placed at specified distances to the imager. Furthermore, OSIS is extended by a plugin functionality that enables integration of advanced digital signal processing techniques in ECOMOS such as compression, local contrast enhancement, digital turbulence mitiga- tion, to name but a few. By means of this image-based approach image degradations and image enhancements can be investigated, which goes beyond the scope of the analytical TRM4 model.

  15. Development of a large-scale, outdoor, ground-based test capability for evaluating the effect of rain on airfoil lift

    NASA Technical Reports Server (NTRS)

    Bezos, Gaudy M.; Campbell, Bryan A.

    1993-01-01

    A large-scale, outdoor, ground-based test capability for acquiring aerodynamic data in a simulated rain environment was developed at the Langley Aircraft Landing Dynamics Facility (ALDF) to assess the effect of heavy rain on airfoil performance. The ALDF test carriage was modified to transport a 10-ft-chord NACA 64210 wing section along a 3000-ft track at full-scale aircraft approach speeds. An overhead rain simulation system was constructed along a 525-ft section of the track with the capability of producing simulated rain fields of 2, 10, 30, and 40 in/hr. The facility modifications, the aerodynamic testing and rain simulation capability, the design and calibration of the rain simulation system, and the operational procedures developed to minimize the effect of wind on the simulated rain field and aerodynamic data are described in detail. The data acquisition and reduction processes are also presented along with sample force data illustrating the environmental effects on data accuracy and repeatability for the 'rain-off' test condition.

  16. Simulating potential water grabbing from large-scale land acquisitions in Africa}

    NASA Astrophysics Data System (ADS)

    Li Johansson, Emma; Fader, Marianela; Seaquist, Jonathan W.; Nicholas, Kimberly A.

    2017-04-01

    The potential high level of water appropriation in Africa by foreign companies might pose high socioenvironmental challenges, including overconsumption of water and conflicts and tensions over water resources allocation. We will present a study published recently in the Proceedings of the National Academy of Sciences11 of the USA, where we simulated green and blue water demand and crop yields of large-scale land acquisitions in several African countries. Green water refers to precipitation stored in soils and consumed by plants through evapotranspiration, while blue water is extracted from rivers, lakes, aquifers, and dams. We simulated seven irrigation scenarios, and compared these data with two baseline scenarios of staple crops representing previous water demand. The results indicate that the green and blue water use is 39% and 76-86% greater, respectively, for crops grown on acquired land compared with the baseline of common staple crops, showing that land acquisitions substantially increase water demands. We also found that most land acquisitions are planted with crops such as sugarcane, jatropha, and eucalyptus, that demand volumes of water >9,000 m3ṡha-1. And even if the most efficient irrigation systems were implemented, 18% of the land acquisitions, totaling 91,000 ha, would still require more than 50% of water from blue water sources.

  17. War-gaming application for future space systems acquisition part 1: program and technical baseline war-gaming modeling and simulation approaches

    NASA Astrophysics Data System (ADS)

    Nguyen, Tien M.; Guillen, Andy T.

    2017-05-01

    This paper describes static Bayesian game models with "Pure" and "Mixed" games for the development of an optimum Program and Technical Baseline (PTB) solution for affordable acquisition of future space systems. The paper discusses System Engineering (SE) frameworks and analytical and simulation modeling approaches for developing the optimum PTB solutions from both the government and contractor perspectives.

  18. FPGA based charge acquisition algorithm for soft x-ray diagnostics system

    NASA Astrophysics Data System (ADS)

    Wojenski, A.; Kasprowicz, G.; Pozniak, K. T.; Zabolotny, W.; Byszuk, A.; Juszczyk, B.; Kolasinski, P.; Krawczyk, R. D.; Zienkiewicz, P.; Chernyshova, M.; Czarski, T.

    2015-09-01

    Soft X-ray (SXR) measurement systems working in tokamaks or with laser generated plasma can expect high photon fluxes. Therefore it is necessary to focus on data processing algorithms to have the best possible efficiency in term of processed photon events per second. This paper refers to recently designed algorithm and data-flow for implementation of charge data acquisition in FPGA. The algorithms are currently on implementation stage for the soft X-ray diagnostics system. In this paper despite of the charge processing algorithm is also described general firmware overview, data storage methods and other key components of the measurement system. The simulation section presents algorithm performance and expected maximum photon rate.

  19. An Ad-Hoc Adaptive Pilot Model for Pitch Axis Gross Acquisition Tasks

    NASA Technical Reports Server (NTRS)

    Hanson, Curtis E.

    2012-01-01

    An ad-hoc algorithm is presented for real-time adaptation of the well-known crossover pilot model and applied to pitch axis gross acquisition tasks in a generic fighter aircraft. Off-line tuning of the crossover model to human pilot data gathered in a fixed-based high fidelity simulation is first accomplished for a series of changes in aircraft dynamics to provide expected values for model parameters. It is shown that in most cases, for this application, the traditional crossover model can be reduced to a gain and a time delay. The ad-hoc adaptive pilot gain algorithm is shown to have desirable convergence properties for most types of changes in aircraft dynamics.

  20. Accuracy of Monte Carlo simulations compared to in-vivo MDCT dosimetry.

    PubMed

    Bostani, Maryam; Mueller, Jonathon W; McMillan, Kyle; Cody, Dianna D; Cagnon, Chris H; DeMarco, John J; McNitt-Gray, Michael F

    2015-02-01

    The purpose of this study was to assess the accuracy of a Monte Carlo simulation-based method for estimating radiation dose from multidetector computed tomography (MDCT) by comparing simulated doses in ten patients to in-vivo dose measurements. MD Anderson Cancer Center Institutional Review Board approved the acquisition of in-vivo rectal dose measurements in a pilot study of ten patients undergoing virtual colonoscopy. The dose measurements were obtained by affixing TLD capsules to the inner lumen of rectal catheters. Voxelized patient models were generated from the MDCT images of the ten patients, and the dose to the TLD for all exposures was estimated using Monte Carlo based simulations. The Monte Carlo simulation results were compared to the in-vivo dose measurements to determine accuracy. The calculated mean percent difference between TLD measurements and Monte Carlo simulations was -4.9% with standard deviation of 8.7% and a range of -22.7% to 5.7%. The results of this study demonstrate very good agreement between simulated and measured doses in-vivo. Taken together with previous validation efforts, this work demonstrates that the Monte Carlo simulation methods can provide accurate estimates of radiation dose in patients undergoing CT examinations.

  1. High performance real-time flight simulation at NASA Langley

    NASA Technical Reports Server (NTRS)

    Cleveland, Jeff I., II

    1994-01-01

    In order to meet the stringent time-critical requirements for real-time man-in-the-loop flight simulation, computer processing operations must be deterministic and be completed in as short a time as possible. This includes simulation mathematical model computational and data input/output to the simulators. In 1986, in response to increased demands for flight simulation performance, personnel at NASA's Langley Research Center (LaRC), working with the contractor, developed extensions to a standard input/output system to provide for high bandwidth, low latency data acquisition and distribution. The Computer Automated Measurement and Control technology (IEEE standard 595) was extended to meet the performance requirements for real-time simulation. This technology extension increased the effective bandwidth by a factor of ten and increased the performance of modules necessary for simulator communications. This technology is being used by more than 80 leading technological developers in the United States, Canada, and Europe. Included among the commercial applications of this technology are nuclear process control, power grid analysis, process monitoring, real-time simulation, and radar data acquisition. Personnel at LaRC have completed the development of the use of supercomputers for simulation mathematical model computational to support real-time flight simulation. This includes the development of a real-time operating system and the development of specialized software and hardware for the CAMAC simulator network. This work, coupled with the use of an open systems software architecture, has advanced the state of the art in real time flight simulation. The data acquisition technology innovation and experience with recent developments in this technology are described.

  2. SNDR Limits of Oscillator-Based Sensor Readout Circuits.

    PubMed

    Cardes, Fernando; Quintero, Andres; Gutierrez, Eric; Buffa, Cesare; Wiesbauer, Andreas; Hernandez, Luis

    2018-02-03

    This paper analyzes the influence of phase noise and distortion on the performance of oscillator-based sensor data acquisition systems. Circuit noise inherent to the oscillator circuit manifests as phase noise and limits the SNR. Moreover, oscillator nonlinearity generates distortion for large input signals. Phase noise analysis of oscillators is well known in the literature, but the relationship between phase noise and the SNR of an oscillator-based sensor is not straightforward. This paper proposes a model to estimate the influence of phase noise in the performance of an oscillator-based system by reflecting the phase noise to the oscillator input. The proposed model is based on periodic steady-state analysis tools to predict the SNR of the oscillator. The accuracy of this model has been validated by both simulation and experiment in a 130 nm CMOS prototype. We also propose a method to estimate the SNDR and the dynamic range of an oscillator-based readout circuit that improves by more than one order of magnitude the simulation time compared to standard time domain simulations. This speed up enables the optimization and verification of this kind of systems with iterative algorithms.

  3. Towards a supported common NEAMS software stack

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cormac Garvey

    2012-04-01

    The NEAMS IPSC's are developing multidimensional, multiphysics, multiscale simulation codes based on first principles that will be capable of predicting all aspects of current and future nuclear reactor systems. These new breeds of simulation codes will include rigorous verification, validation and uncertainty quantification checks to quantify the accuracy and quality of the simulation results. The resulting NEAMS IPSC simulation codes will be an invaluable tool in designing the next generation of Nuclear Reactors and also contribute to a more speedy process in the acquisition of licenses from the NRC for new Reactor designs. Due to the high resolution of themore » models, the complexity of the physics and the added computational resources to quantify the accuracy/quality of the results, the NEAMS IPSC codes will require large HPC resources to carry out the production simulation runs.« less

  4. Virtual environment application with partial gravity simulation

    NASA Technical Reports Server (NTRS)

    Ray, David M.; Vanchau, Michael N.

    1994-01-01

    To support manned missions to the surface of Mars and missions requiring manipulation of payloads and locomotion in space, a training facility is required to simulate the conditions of both partial and microgravity. A partial gravity simulator (Pogo) which uses pneumatic suspension is being studied for use in virtual reality training. Pogo maintains a constant partial gravity simulation with a variation of simulated body force between 2.2 and 10 percent, depending on the type of locomotion inputs. this paper is based on the concept and application of a virtual environment system with Pogo including a head-mounted display and glove. The reality engine consists of a high end SGI workstation and PC's which drive Pogo's sensors and data acquisition hardware used for tracking and control. The tracking system is a hybrid of magnetic and optical trackers integrated for this application.

  5. BeiDou Signal Acquisition with Neumann–Hoffman Code Modulation in a Degraded Channel

    PubMed Central

    Zhao, Lin; Liu, Aimeng; Ding, Jicheng; Wang, Jing

    2017-01-01

    With the modernization of global navigation satellite systems (GNSS), secondary codes, also known as the Neumann–Hoffman (NH) codes, are modulated on the satellite signal to obtain a better positioning performance. However, this leads to an attenuation of the acquisition sensitivity of classic integration algorithms because of the frequent bit transitions that refer to the NH codes. Taking weak BeiDou navigation satellite system (BDS) signals as objects, the present study analyzes the side effect of NH codes on acquisition in detail and derives a straightforward formula, which indicates that bit transitions decrease the frequency accuracy. To meet the requirement of carrier-tracking loop initialization, a frequency recalculation algorithm is proposed based on verified fast Fourier transform (FFT) to mitigate the effect, meanwhile, the starting point of NH codes is found. Then, a differential correction is utilized to improve the acquisition accuracy of code phase. Monte Carlo simulations and real BDS data tests demonstrate that the new structure is superior to the conventional algorithms both in detection probability and frequency accuracy in a degraded channel. PMID:28208776

  6. Functional requirements for the man-vehicle systems research facility. [identifying and correcting human errors during flight simulation

    NASA Technical Reports Server (NTRS)

    Clement, W. F.; Allen, R. W.; Heffley, R. K.; Jewell, W. F.; Jex, H. R.; Mcruer, D. T.; Schulman, T. M.; Stapleford, R. L.

    1980-01-01

    The NASA Ames Research Center proposed a man-vehicle systems research facility to support flight simulation studies which are needed for identifying and correcting the sources of human error associated with current and future air carrier operations. The organization of research facility is reviewed and functional requirements and related priorities for the facility are recommended based on a review of potentially critical operational scenarios. Requirements are included for the experimenter's simulation control and data acquisition functions, as well as for the visual field, motion, sound, computation, crew station, and intercommunications subsystems. The related issues of functional fidelity and level of simulation are addressed, and specific criteria for quantitative assessment of various aspects of fidelity are offered. Recommendations for facility integration, checkout, and staffing are included.

  7. The effectiveness of three sets of school-based instructional materials and community training on the acquisition and generalization of community laundry skills by students with severe handicaps.

    PubMed

    Morrow, S A; Bates, P E

    1987-01-01

    This study examined the effectiveness of three sets of school-based instructional materials and community training on acquisition and generalization of a community laundry skill by nine students with severe handicaps. School-based instruction involved artificial materials (pictures), simulated materials (cardboard replica of a community washing machine), and natural materials (modified home model washing machine). Generalization assessments were conducted at two different community laundromats, on two machines represented fully by the school-based instructional materials and two machines not represented fully by these materials. After three phases of school-based instruction, the students were provided ten community training trials in one laundromat setting and a final assessment was conducted in both the trained and untrained community settings. A multiple probe design across students was used to evaluate the effectiveness of the three types of school instruction and community training. After systematic training, most of the students increased their laundry performance with all three sets of school-based materials; however, generalization of these acquired skills was limited in the two community settings. Direct training in one of the community settings resulted in more efficient acquisition of the laundry skills and enhanced generalization to the untrained laundromat setting for most of the students. Results of this study are discussed in regard to the issue of school versus community-based instruction and recommendations are made for future research in this area.

  8. Data Acquisition Systems

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Technology developed during a joint research program with Langley and Kinetic Systems Corporation led to Kinetic Systems' production of a high speed Computer Automated Measurement and Control (CAMAC) data acquisition system. The study, which involved the use of CAMAC equipment applied to flight simulation, significantly improved the company's technical capability and produced new applications. With Digital Equipment Corporation, Kinetic Systems is marketing the system to government and private companies for flight simulation, fusion research, turbine testing, steelmaking, etc.

  9. Acquisition of Competencies by Medical Students in Neurological Emergency Simulation Environments Using High Fidelity Patient Simulators.

    PubMed

    Sánchez-Ledesma, M J; Juanes, J A; Sáncho, C; Alonso-Sardón, M; Gonçalves, J

    2016-06-01

    The training of medical students demands practice of skills in scenarios as close as possible to real ones that on one hand ensure acquisition of competencies, and on the other, avoid putting patients at risk. This study shows the practicality of using high definition mannequins (SimMan 3G) in scenarios of first attention in neurological emergencies so that medical students at the Faculty of Medicine of the University of Salamanca could acquire specific and transversal competencies. The repetition of activities in simulation environments significantly facilitates the acquisition of competencies by groups of students (p < 00.5). The greatest achievements refer to skills whereas the competencies that demand greater integration of knowledge seem to need more time or new sessions. This is what happens with the competencies related to the initial diagnosis, the requesting of tests and therapeutic approaches, which demand greater theoretical knowledge.

  10. Interconnected growing self-organizing maps for auditory and semantic acquisition modeling

    PubMed Central

    Cao, Mengxue; Li, Aijun; Fang, Qiang; Kaufmann, Emily; Kröger, Bernd J.

    2014-01-01

    Based on the incremental nature of knowledge acquisition, in this study we propose a growing self-organizing neural network approach for modeling the acquisition of auditory and semantic categories. We introduce an Interconnected Growing Self-Organizing Maps (I-GSOM) algorithm, which takes associations between auditory information and semantic information into consideration, in this paper. Direct phonetic–semantic association is simulated in order to model the language acquisition in early phases, such as the babbling and imitation stages, in which no phonological representations exist. Based on the I-GSOM algorithm, we conducted experiments using paired acoustic and semantic training data. We use a cyclical reinforcing and reviewing training procedure to model the teaching and learning process between children and their communication partners. A reinforcing-by-link training procedure and a link-forgetting procedure are introduced to model the acquisition of associative relations between auditory and semantic information. Experimental results indicate that (1) I-GSOM has good ability to learn auditory and semantic categories presented within the training data; (2) clear auditory and semantic boundaries can be found in the network representation; (3) cyclical reinforcing and reviewing training leads to a detailed categorization as well as to a detailed clustering, while keeping the clusters that have already been learned and the network structure that has already been developed stable; and (4) reinforcing-by-link training leads to well-perceived auditory–semantic associations. Our I-GSOM model suggests that it is important to associate auditory information with semantic information during language acquisition. Despite its high level of abstraction, our I-GSOM approach can be interpreted as a biologically-inspired neurocomputational model. PMID:24688478

  11. Fifth Conference on Artificial Intelligence for Space Applications

    NASA Technical Reports Server (NTRS)

    Odell, Steve L. (Compiler)

    1990-01-01

    The Fifth Conference on Artificial Intelligence for Space Applications brings together diverse technical and scientific work in order to help those who employ AI methods in space applications to identify common goals and to address issues of general interest in the AI community. Topics include the following: automation for Space Station; intelligent control, testing, and fault diagnosis; robotics and vision; planning and scheduling; simulation, modeling, and tutoring; development tools and automatic programming; knowledge representation and acquisition; and knowledge base/data base integration.

  12. Data acquisition and path selection decision making for an autonomous roving vehicle

    NASA Technical Reports Server (NTRS)

    Frederick, D. K.; Shen, C. N.; Yerazunis, S. W.

    1976-01-01

    Problems related to the guidance of an autonomous rover for unmanned planetary exploration were investigated. Topics included in these studies were: simulation on an interactive graphics computer system of the Rapid Estimation Technique for detection of discrete obstacles; incorporation of a simultaneous Bayesian estimate of states and inputs in the Rapid Estimation Scheme; development of methods for estimating actual laser rangefinder errors and their application to date provided by Jet Propulsion Laboratory; and modification of a path selection system simulation computer code for evaluation of a hazard detection system based on laser rangefinder data.

  13. EM reconstruction of dual isotope PET using staggered injections and prompt gamma positron emitters

    PubMed Central

    Andreyev, Andriy; Sitek, Arkadiusz; Celler, Anna

    2014-01-01

    Purpose: The aim of dual isotope positron emission tomography (DIPET) is to create two separate images of two coinjected PET radiotracers. DIPET shortens the duration of the study, reduces patient discomfort, and produces perfectly coregistered images compared to the case when two radiotracers would be imaged independently (sequential PET studies). Reconstruction of data from such simultaneous acquisition of two PET radiotracers is difficult because positron decay of any isotope creates only 511 keV photons; therefore, the isotopes cannot be differentiated based on the detected energy. Methods: Recently, the authors have proposed a DIPET technique that uses a combination of radiotracer A which is a pure positron emitter (such as 18F or 11C) and radiotracer B in which positron decay is accompanied by the emission of a high-energy (HE) prompt gamma (such as 38K or 60Cu). Events that are detected as triple coincidences of HE gammas with the corresponding two 511 keV photons allow the authors to identify the lines-of-response (LORs) of isotope B. These LORs are used to separate the two intertwined distributions, using a dedicated image reconstruction algorithm. In this work the authors propose a new version of the DIPET EM-based reconstruction algorithm that allows the authors to include an additional, independent estimate of radiotracer A distribution which may be obtained if radioisotopes are administered using a staggered injections method. In this work the method is tested on simple simulations of static PET acquisitions. Results: The authors’ experiments performed using Monte-Carlo simulations with static acquisitions demonstrate that the combined method provides better results (crosstalk errors decrease by up to 50%) than the positron-gamma DIPET method or staggered injections alone. Conclusions: The authors demonstrate that the authors’ new EM algorithm which combines information from triple coincidences with prompt gammas and staggered injections improves the accuracy of DIPET reconstructions for static acquisitions so they reach almost the benchmark level calculated for perfectly separated tracers. PMID:24506645

  14. The Ionospheric Scintillation Effects on the BeiDou Signal Receiver

    PubMed Central

    He, Zhijun; Zhao, Hongbo; Feng, Wenquan

    2016-01-01

    Irregularities in the Earth’s ionosphere can make the amplitude and phase of radio signals fluctuate rapidly, which is known as ionospheric scintillation. Severe ionospheric scintillation could affect the performance of the Global Navigation Satellite System (GNSS). Currently, the Multiple Phase Screen (MPS) technique is widely used in solving problems caused by weak and strong scintillations. Considering that Southern China is mainly located in the area where moderate and intense scintillation occur frequently, this paper built a model based on the MPS technique and discussed the scintillation impacts on China’s BeiDou navigation system. By using the BeiDou B1I signal, this paper analyzed the scintillation effects on the receiver, which includes the acquisition and tracking process. For acquisition process, this paper focused on the correlation peak and acquisition probability. For the tracking process, this paper focused on the carrier tracking loop and the code tracking loop. Simulation results show that under high scintillation intensity, the phase fluctuation could be −1.13 ± 0.087 rad to 1.40 ± 0.087 rad and the relative amplitude fluctuation could be −10 dB to 8 dB. As the scintillation intensity increased, the average correlation peak would decrease more than 8%, which could thus degrade acquisition performance. On the other hand, when the signal-to-noise ratio (SNR) is comparatively lower, the influence of strong scintillation on the phase locked loop (PLL) is much higher than that of weak scintillation. As the scintillation becomes more intense, PLL variance could consequently results in an error of more than 2.02 cm in carrier-phase based ranging. In addition, the delay locked loop (DLL) simulation results indicated that the pseudo-range error caused by strong scintillation could be more than 4 m and the consequent impact on positioning accuracy could be more than 6 m. PMID:27834867

  15. Ground-to-Flight Handling Qualities Comparisons for a High Performance Airplane

    NASA Technical Reports Server (NTRS)

    Brandon, Jay M.; Glaab, Louis J.; Brown, Philip W.; Phillips, Michael R.

    1995-01-01

    A flight test program was conducted in conjunction with a ground-based piloted simulation study to enable a comparison of handling qualities ratings for a variety of maneuvers between flight and simulation of a modern high performance airplane. Specific objectives included an evaluation of pilot-induced oscillation (PIO) tendencies and a determination of maneuver types which result in either good or poor ground-to-flight pilot handling qualities ratings. A General Dynamics F-16XL aircraft was used for the flight evaluations, and the NASA Langley Differential Maneuvering Simulator was employed for the ground based evaluations. Two NASA research pilots evaluated both the airplane and simulator characteristics using tasks developed in the simulator. Simulator and flight tests were all conducted within approximately a one month time frame. Maneuvers included numerous fine tracking evaluations at various angles of attack, load factors and speed ranges, gross acquisitions involving longitudinal and lateral maneuvering, roll angle captures, and an ILS task with a sidestep to landing. Overall results showed generally good correlation between ground and flight for PIO tendencies and general handling qualities comments. Differences in pilot technique used in simulator evaluations and effects of airplane accelerations and motions are illustrated.

  16. Determination of electron beam polarization using electron detector in Compton polarimeter with less than 1% statistical and systematic uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narayan, Amrendra

    2015-05-01

    The Q-weak experiment aims to measure the weak charge of proton with a precision of 4.2%. The proposed precision on weak charge required a 2.5% measurement of the parity violating asymmetry in elastic electron - proton scattering. Polarimetry was the largest experimental contribution to this uncertainty and a new Compton polarimeter was installed in Hall C at Jefferson Lab to make the goal achievable. In this polarimeter the electron beam collides with green laser light in a low gain Fabry-Perot Cavity; the scattered electrons are detected in 4 planes of a novel diamond micro strip detector while the back scatteredmore » photons are detected in lead tungstate crystals. This diamond micro-strip detector is the first such device to be used as a tracking detector in a nuclear and particle physics experiment. The diamond detectors are read out using custom built electronic modules that include a preamplifier, a pulse shaping amplifier and a discriminator for each detector micro-strip. We use field programmable gate array based general purpose logic modules for event selection and histogramming. Extensive Monte Carlo simulations and data acquisition simulations were performed to estimate the systematic uncertainties. Additionally, the Moller and Compton polarimeters were cross calibrated at low electron beam currents using a series of interleaved measurements. In this dissertation, we describe all the subsystems of the Compton polarimeter with emphasis on the electron detector. We focus on the FPGA based data acquisition system built by the author and the data analysis methods implemented by the author. The simulations of the data acquisition and the polarimeter that helped rigorously establish the systematic uncertainties of the polarimeter are also elaborated, resulting in the first sub 1% measurement of low energy (?1 GeV) electron beam polarization with a Compton electron detector. We have demonstrated that diamond based micro-strip detectors can be used for tracking in a high radiation environment and it has enabled us to achieve the desired precision in the measurement of the electron beam polarization which in turn has allowed the most precise determination of the weak charge of the proton.« less

  17. TestDose: A nuclear medicine software based on Monte Carlo modeling for generating gamma camera acquisitions and dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, Marie-Paule, E-mail: marie-paule.garcia@univ-brest.fr; Villoing, Daphnée; McKay, Erin

    Purpose: The TestDose platform was developed to generate scintigraphic imaging protocols and associated dosimetry by Monte Carlo modeling. TestDose is part of a broader project (www.dositest.com) whose aim is to identify the biases induced by different clinical dosimetry protocols. Methods: The TestDose software allows handling the whole pipeline from virtual patient generation to resulting planar and SPECT images and dosimetry calculations. The originality of their approach relies on the implementation of functional segmentation for the anthropomorphic model representing a virtual patient. Two anthropomorphic models are currently available: 4D XCAT and ICRP 110. A pharmacokinetic model describes the biodistribution of amore » given radiopharmaceutical in each defined compartment at various time-points. The Monte Carlo simulation toolkit GATE offers the possibility to accurately simulate scintigraphic images and absorbed doses in volumes of interest. The TestDose platform relies on GATE to reproduce precisely any imaging protocol and to provide reference dosimetry. For image generation, TestDose stores user’s imaging requirements and generates automatically command files used as input for GATE. Each compartment is simulated only once and the resulting output is weighted using pharmacokinetic data. Resulting compartment projections are aggregated to obtain the final image. For dosimetry computation, emission data are stored in the platform database and relevant GATE input files are generated for the virtual patient model and associated pharmacokinetics. Results: Two samples of software runs are given to demonstrate the potential of TestDose. A clinical imaging protocol for the Octreoscan™ therapeutical treatment was implemented using the 4D XCAT model. Whole-body “step and shoot” acquisitions at different times postinjection and one SPECT acquisition were generated within reasonable computation times. Based on the same Octreoscan™ kinetics, a dosimetry computation performed on the ICRP 110 model is also presented. Conclusions: The proposed platform offers a generic framework to implement any scintigraphic imaging protocols and voxel/organ-based dosimetry computation. Thanks to the modular nature of TestDose, other imaging modalities could be supported in the future such as positron emission tomography.« less

  18. TestDose: A nuclear medicine software based on Monte Carlo modeling for generating gamma camera acquisitions and dosimetry.

    PubMed

    Garcia, Marie-Paule; Villoing, Daphnée; McKay, Erin; Ferrer, Ludovic; Cremonesi, Marta; Botta, Francesca; Ferrari, Mahila; Bardiès, Manuel

    2015-12-01

    The TestDose platform was developed to generate scintigraphic imaging protocols and associated dosimetry by Monte Carlo modeling. TestDose is part of a broader project (www.dositest.com) whose aim is to identify the biases induced by different clinical dosimetry protocols. The TestDose software allows handling the whole pipeline from virtual patient generation to resulting planar and SPECT images and dosimetry calculations. The originality of their approach relies on the implementation of functional segmentation for the anthropomorphic model representing a virtual patient. Two anthropomorphic models are currently available: 4D XCAT and ICRP 110. A pharmacokinetic model describes the biodistribution of a given radiopharmaceutical in each defined compartment at various time-points. The Monte Carlo simulation toolkit gate offers the possibility to accurately simulate scintigraphic images and absorbed doses in volumes of interest. The TestDose platform relies on gate to reproduce precisely any imaging protocol and to provide reference dosimetry. For image generation, TestDose stores user's imaging requirements and generates automatically command files used as input for gate. Each compartment is simulated only once and the resulting output is weighted using pharmacokinetic data. Resulting compartment projections are aggregated to obtain the final image. For dosimetry computation, emission data are stored in the platform database and relevant gate input files are generated for the virtual patient model and associated pharmacokinetics. Two samples of software runs are given to demonstrate the potential of TestDose. A clinical imaging protocol for the Octreoscan™ therapeutical treatment was implemented using the 4D XCAT model. Whole-body "step and shoot" acquisitions at different times postinjection and one SPECT acquisition were generated within reasonable computation times. Based on the same Octreoscan™ kinetics, a dosimetry computation performed on the ICRP 110 model is also presented. The proposed platform offers a generic framework to implement any scintigraphic imaging protocols and voxel/organ-based dosimetry computation. Thanks to the modular nature of TestDose, other imaging modalities could be supported in the future such as positron emission tomography.

  19. Determination of electron beam polarization using electron detector in Compton polarimeter with less than 1% statistical and systematic uncertainty

    NASA Astrophysics Data System (ADS)

    Narayan, Amrendra

    The Q-weak experiment aims to measure the weak charge of proton with a precision of 4.2%. The proposed precision on weak charge required a 2.5% measurement of the parity violating asymmetry in elastic electron - proton scattering. Polarimetry was the largest experimental contribution to this uncertainty and a new Compton polarimeter was installed in Hall C at Jefferson Lab to make the goal achievable. In this polarimeter the electron beam collides with green laser light in a low gain Fabry-Perot Cavity; the scattered electrons are detected in 4 planes of a novel diamond micro strip detector while the back scattered photons are detected in lead tungstate crystals. This diamond micro-strip detector is the first such device to be used as a tracking detector in a nuclear and particle physics experiment. The diamond detectors are read out using custom built electronic modules that include a preamplifier, a pulse shaping amplifier and a discriminator for each detector micro-strip. We use field programmable gate array based general purpose logic modules for event selection and histogramming. Extensive Monte Carlo simulations and data acquisition simulations were performed to estimate the systematic uncertainties. Additionally, the Moller and Compton polarimeters were cross calibrated at low electron beam currents using a series of interleaved measurements. In this dissertation, we describe all the subsystems of the Compton polarimeter with emphasis on the electron detector. We focus on the FPGA based data acquisition system built by the author and the data analysis methods implemented by the author. The simulations of the data acquisition and the polarimeter that helped rigorously establish the systematic uncertainties of the polarimeter are also elaborated, resulting in the first sub 1% measurement of low energy (~1GeV) electron beam polarization with a Compton electron detector. We have demonstrated that diamond based micro-strip detectors can be used for tracking in a high radiation environment and it has enabled us to achieve the desired precision in the measurement of the electron beam polarization which in turn has allowed the most precise determination of the weak charge of the proton.

  20. An approach to knowledge engineering to support knowledge-based simulation of payload ground processing at the Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Mcmanus, Shawn; Mcdaniel, Michael

    1989-01-01

    Planning for processing payloads was always difficult and time-consuming. With the advent of Space Station Freedom and its capability to support a myriad of complex payloads, the planning to support this ground processing maze involves thousands of man-hours of often tedious data manipulation. To provide the capability to analyze various processing schedules, an object oriented knowledge-based simulation environment called the Advanced Generic Accomodations Planning Environment (AGAPE) is being developed. Having nearly completed the baseline system, the emphasis in this paper is directed toward rule definition and its relation to model development and simulation. The focus is specifically on the methodologies implemented during knowledge acquisition, analysis, and representation within the AGAPE rule structure. A model is provided to illustrate the concepts presented. The approach demonstrates a framework for AGAPE rule development to assist expert system development.

  1. Real-time synchronization of wireless sensor network by 1-PPS signal

    NASA Astrophysics Data System (ADS)

    Giammarini, Marco; Pieralisi, Marco; Isidori, Daniela; Concettoni, Enrico; Cristalli, Cristina; Fioravanti, Matteo

    2015-05-01

    The use of wireless sensor networks with different nodes is desirable in a smart environment, because the network setting up and installation on preexisting structures can be done without a fixed cabled infrastructure. The flexibility of the monitoring system is fundamental where the use of a considerable quantity of cables could compromise the normal exercise, could affect the quality of acquired signal and finally increase the cost of the materials and installation. The network is composed of several intelligent "nodes", which acquires data from different kind of sensors, and then store or transmit them to a central elaboration unit. The synchronization of data acquisition is the core of the real-time wireless sensor network (WSN). In this paper, we present a comparison between different methods proposed by literature for the real-time acquisition in a WSN and finally we present our solution based on 1-Pulse-Per-Second (1-PPS) signal generated by GPS systems. The sensor node developed is a small-embedded system based on ARM microcontroller that manages the acquisition, the timing and the post-processing of the data. The communications between the sensors and the master based on IEEE 802.15.4 protocol and managed by dedicated software. Finally, we present the preliminary results obtained on a 3 floor building simulator with the wireless sensors system developed.

  2. Solutions for acceleration measurement in vehicle crash tests

    NASA Astrophysics Data System (ADS)

    Dima, D. S.; Covaciu, D.

    2017-10-01

    Crash tests are useful for validating computer simulations of road traffic accidents. One of the most important parameters measured is the acceleration. The evolution of acceleration versus time, during a crash test, form a crash pulse. The correctness of the crash pulse determination depends on the data acquisition system used. Recommendations regarding the instrumentation for impact tests are given in standards, which are focused on the use of accelerometers as impact sensors. The goal of this paper is to present the device and software developed by authors for data acquisition and processing. The system includes two accelerometers with different input ranges, a processing unit based on a 32-bit microcontroller and a data logging unit with SD card. Data collected on card, as text files, is processed with a dedicated software running on personal computers. The processing is based on diagrams and includes the digital filters recommended in standards.

  3. Study on data acquisition system based on reconfigurable cache technology

    NASA Astrophysics Data System (ADS)

    Zhang, Qinchuan; Li, Min; Jiang, Jun

    2018-03-01

    Waveform capture rate is one of the key features of digital acquisition systems, which represents the waveform processing capability of the system in a unit time. The higher the waveform capture rate is, the larger the chance to capture elusive events is and the more reliable the test result is. First, this paper analyzes the impact of several factors on the waveform capture rate of the system, then the novel technology based on reconfigurable cache is further proposed to optimize system architecture, and the simulation results show that the signal-to-noise ratio of signal, capacity, and structure of cache have significant effects on the waveform capture rate. Finally, the technology is demonstrated by the engineering practice, and the results show that the waveform capture rate of the system is improved substantially without significant increase of system's cost, and the technology proposed has a broad application prospect.

  4. A multilevel modeling approach to examining individual differences in skill acquisition for a computer-based task.

    PubMed

    Nair, Sankaran N; Czaja, Sara J; Sharit, Joseph

    2007-06-01

    This article explores the role of age, cognitive abilities, prior experience, and knowledge in skill acquisition for a computer-based simulated customer service task. Fifty-two participants aged 50-80 performed the task over 4 consecutive days following training. They also completed a battery that assessed prior computer experience and cognitive abilities. The data indicated that overall quality and efficiency of performance improved with practice. The predictors of initial level of performance and rate of change in performance varied according to the performance parameter assessed. Age and fluid intelligence predicted initial level and rate of improvement in overall quality, whereas crystallized intelligence and age predicted initial e-mail processing time, and crystallized intelligence predicted rate of change in e-mail processing time over days. We discuss the implications of these findings for the design of intervention strategies.

  5. Hardware Timestamping for an Image Acquisition System Based on FlexRIO and IEEE 1588 v2 Standard

    NASA Astrophysics Data System (ADS)

    Esquembri, S.; Sanz, D.; Barrera, E.; Ruiz, M.; Bustos, A.; Vega, J.; Castro, R.

    2016-02-01

    Current fusion devices usually implement distributed acquisition systems for the multiple diagnostics of their experiments. However, each diagnostic is composed by hundreds or even thousands of signals, including images from the vessel interior. These signals and images must be correctly timestamped, because all the information will be analyzed to identify plasma behavior using temporal correlations. For acquisition devices without synchronization mechanisms the timestamp is given by another device with timing capabilities when signaled by the first device. Later, each data should be related with its timestamp, usually via software. This critical action is unfeasible for software applications when sampling rates are high. In order to solve this problem this paper presents the implementation of an image acquisition system with real-time hardware timestamping mechanism. This is synchronized with a master clock using the IEEE 1588 v2 Precision Time Protocol (PTP). Synchronization, image acquisition and processing, and timestamping mechanisms are implemented using Field Programmable Gate Array (FPGA) and a timing card -PTP v2 synchronized. The system has been validated using a camera simulator streaming videos from fusion databases. The developed architecture is fully compatible with ITER Fast Controllers and has been integrated with EPICS to control and monitor the whole system.

  6. The use of integrated focal plane array technologies in laser microsatellite networks

    NASA Astrophysics Data System (ADS)

    Arnon, Shlomi

    2004-10-01

    Clustering micro satellites in cooperative fly formation constellations leads to high-performance space systems. The only way to achieve high-speed communication between the satellites is by a laser beam with a narrow divergence angle. In order to make the communication successful three types of focal plane detector arrays are required in the communication terminal: acquisition, tracking and communication detector arrays. The acquisition detector array is used to acquire the neighbor satellite using a wide field-of-view telescope. The tracking detector provides fast, real time and accurate direction location of the neighbor satellite. Based on the information from the acquisition and tracking detectors the receiver and transmitter maintain line of sight. The development of large, fast and very sensitive focal plane detector arrays makes it possible to implement the acquisition, tracking and communication with only one focal plane detector array. By doing so it is possible to reduce dramatically the size, weight, and cost of the optics and electronics which leads to lightweight communication terminals. As a result, the satellites are smaller and lighter, which reduces the space mission cost and increases the booster efficiency. In this paper we will present an overview of the concept of integrated focal plane arrays for laser satellite communication. We also present simulation results based on real system parameters and compare different implementation options.

  7. Autonomous Acquisition Simulator and Associated Data (AASAD).

    DTIC Science & Technology

    1981-01-15

    7 AA95 709 FORD AEROSPACE AND COMMUNICATIONS CORP NEWPORT EACH -ETC F/ 19/5 AUTONOMOUS ACQUISITI N SIMULAT R AND ASSOCIATED DATA (AASAD)(U) JAN 81...llllllllllllJm AUTONOMOUS ACQUISITION 7 SIMULATOR AND ASSOCIATED DATA I BY S. R. KING J. R. BERCHTOLD H. MACK K. R. TAYLOR A. W. MATHE J. N. CAST A. S...FORT BELVOIR, VIRGINIA 22060 81 2 27 01 UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) REPORT DOCUMENTATION PAGE READ

  8. Simulating patient-specific heart shape and motion using SPECT perfusion images with the MCAT phantom

    NASA Astrophysics Data System (ADS)

    Faber, Tracy L.; Garcia, Ernest V.; Lalush, David S.; Segars, W. Paul; Tsui, Benjamin M.

    2001-05-01

    The spline-based Mathematical Cardiac Torso (MCAT) phantom is a realistic software simulation designed to simulate single photon emission computed tomographic (SPECT) data. It incorporates a heart model of known size and shape; thus, it is invaluable for measuring accuracy of acquisition, reconstruction, and post-processing routines. New functionality has been added by replacing the standard heart model with left ventricular (LV) epicaridal and endocardial surface points detected from actual patient SPECT perfusion studies. LV surfaces detected from standard post-processing quantitation programs are converted through interpolation in space and time into new B-spline models. Perfusion abnormalities are added to the model based on results of standard perfusion quantification. The new LV is translated and rotated to fit within existing atria and right ventricular models, which are scaled based on the size of the LV. Simulations were created for five different patients with myocardial infractions who had undergone SPECT perfusion imaging. Shape, size, and motion of the resulting activity map were compared visually to the original SPECT images. In all cases, size, shape and motion of simulated LVs matched well with the original images. Thus, realistic simulations with known physiologic and functional parameters can be created for evaluating efficacy of processing algorithms.

  9. Neural network Hilbert transform based filtered backprojection for fast inline x-ray inspection

    NASA Astrophysics Data System (ADS)

    Janssens, Eline; De Beenhouwer, Jan; Van Dael, Mattias; De Schryver, Thomas; Van Hoorebeke, Luc; Verboven, Pieter; Nicolai, Bart; Sijbers, Jan

    2018-03-01

    X-ray imaging is an important tool for quality control since it allows to inspect the interior of products in a non-destructive way. Conventional x-ray imaging, however, is slow and expensive. Inline x-ray inspection, on the other hand, can pave the way towards fast and individual quality control, provided that a sufficiently high throughput can be achieved at a minimal cost. To meet these criteria, an inline inspection acquisition geometry is proposed where the object moves and rotates on a conveyor belt while it passes a fixed source and detector. Moreover, for this acquisition geometry, a new neural-network-based reconstruction algorithm is introduced: the neural network Hilbert transform based filtered backprojection. The proposed algorithm is evaluated both on simulated and real inline x-ray data and has shown to generate high quality reconstructions of 400  ×  400 reconstruction pixels within 200 ms, thereby meeting the high throughput criteria.

  10. Ultra-low frequency vibration data acquisition concerns in operating flight simulators. [Motion sickness inducing vibrations in flight simulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Hoy, B.W.

    1988-01-01

    The measurement of ultra-low frequency vibration (.01 to 1.0 Hz) in motion based flight simulators was undertaken to quantify the energy and frequencies of motion present during operation. Methods of measurement, the selection of transducers, recorders, and analyzers and the development of a test plan, as well as types of analysis are discussed. Analysis of the data using a high-speed minicomputer and a comparison of the computer analysis with standard FFT analysis are also discussed. Measurement of simulator motion with the pilot included as part of the control dynamics had not been done up to this time. The data aremore » being used to evaluate the effect of low frequency energy on the vestibular system of the air crew, and the incidence of simulator induced sickness. 11 figs.« less

  11. Developing technical expertise in emergency medicine--the role of simulation in procedural skill acquisition.

    PubMed

    Wang, Ernest E; Quinones, Joshua; Fitch, Michael T; Dooley-Hash, Suzanne; Griswold-Theodorson, Sharon; Medzon, Ron; Korley, Frederick; Laack, Torrey; Robinett, Adam; Clay, Lamont

    2008-11-01

    Developing technical expertise in medical procedures is an integral component of emergency medicine (EM) practice and training. This article is the work of an expert panel composed of members from the Society for Academic Emergency Medicine (SAEM) Interest Group, the SAEM Technology in Medical Education Committee, and opinions derived from the May 2008 Academic Emergency Medicine Consensus Conference, "The Science of Simulation in Healthcare." The writing group reviewed the simulation literature on procedures germane to EM training, virtual reality training, and instructional learning theory as it pertains to skill acquisition and procedural skills decay. The authors discuss the role of simulation in teaching technical expertise, identify training conditions that lead to effective learning, and provide recommendations for future foci of research.

  12. An agile acquisition decision-support workbench for evaluating ISR effectiveness

    NASA Astrophysics Data System (ADS)

    Stouch, Daniel W.; Champagne, Valerie; Mow, Christopher; Rosenberg, Brad; Serrin, Joshua

    2011-06-01

    The U.S. Air Force is consistently evolving to support current and future operations through the planning and execution of intelligence, surveillance and reconnaissance (ISR) missions. However, it is a challenge to maintain a precise awareness of current and emerging ISR capabilities to properly prepare for future conflicts. We present a decisionsupport tool for acquisition managers to empirically compare ISR capabilities and approaches to employing them, thereby enabling the DoD to acquire ISR platforms and sensors that provide the greatest return on investment. We have developed an analysis environment to perform modeling and simulation-based experiments to objectively compare alternatives. First, the analyst specifies an operational scenario for an area of operations by providing terrain and threat information; a set of nominated collections; sensor and platform capabilities; and processing, exploitation, and dissemination (PED) capacities. Next, the analyst selects and configures ISR collection strategies to generate collection plans. The analyst then defines customizable measures of effectiveness or performance to compute during the experiment. Finally, the analyst empirically compares the efficacy of each solution and generates concise reports to document their conclusions, providing traceable evidence for acquisition decisions. Our capability demonstrates the utility of using a workbench environment for analysts to design and run experiments. Crafting impartial metrics enables the acquisition manager to focus on evaluating solutions based on specific military needs. Finally, the metric and collection plan visualizations provide an intuitive understanding of the suitability of particular solutions. This facilitates a more agile acquisition strategy that handles rapidly changing technology in response to current military needs.

  13. Experimental study on synchronization of three coupled mechanical metronomes

    NASA Astrophysics Data System (ADS)

    Hu, Qiang; Liu, Weiqing; Yang, Hujiang; Xiao, Jinghua; Qian, Xiaolan

    2013-03-01

    In this paper, a CCD acquisition system is set up to explore the dynamics of three coupled mechanical metronomes in order to compensate for the defects of visual observation. The facility is efficient to observe rich dynamics in an experiment, such as phase synchronization, partial phase synchronization and quasi-periodical oscillation, by accurately recording the trajectory of three coupled metronomes. The parameters, e.g., pendulum length and rolling friction are deemed to significantly influence the dynamics of three coupled mechanical metronomes judging from the experimental phenomena. The experimental results are confirmed by the numerical simulation based on the model with different intrinsic frequencies between three metronomes. The metronome and CCD acquisition systems are excellent demonstration apparatuses for a class and an undergraduate physics laboratory.

  14. Self-organizing map models of language acquisition

    PubMed Central

    Li, Ping; Zhao, Xiaowei

    2013-01-01

    Connectionist models have had a profound impact on theories of language. While most early models were inspired by the classic parallel distributed processing architecture, recent models of language have explored various other types of models, including self-organizing models for language acquisition. In this paper, we aim at providing a review of the latter type of models, and highlight a number of simulation experiments that we have conducted based on these models. We show that self-organizing connectionist models can provide significant insights into long-standing debates in both monolingual and bilingual language development. We suggest future directions in which these models can be extended, to better connect with behavioral and neural data, and to make clear predictions in testing relevant psycholinguistic theories. PMID:24312061

  15. Joint Spatial-Spectral Reconstruction and k-t Spirals for Accelerated 2D Spatial/1D Spectral Imaging of 13C Dynamics

    PubMed Central

    Gordon, Jeremy W.; Niles, David J.; Fain, Sean B.; Johnson, Kevin M.

    2014-01-01

    Purpose To develop a novel imaging technique to reduce the number of excitations and required scan time for hyperpolarized 13C imaging. Methods A least-squares based optimization and reconstruction is developed to simultaneously solve for both spatial and spectral encoding. By jointly solving both domains, spectral imaging can potentially be performed with a spatially oversampled single echo spiral acquisition. Digital simulations, phantom experiments, and initial in vivo hyperpolarized [1-13C]pyruvate experiments were performed to assess the performance of the algorithm as compared to a multi-echo approach. Results Simulations and phantom data indicate that accurate single echo imaging is possible when coupled with oversampling factors greater than six (corresponding to a worst case of pyruvate to metabolite ratio < 9%), even in situations of substantial T2* decay and B0 heterogeneity. With lower oversampling rates, two echoes are required for similar accuracy. These results were confirmed with in vivo data experiments, showing accurate single echo spectral imaging with an oversampling factor of 7 and two echo imaging with an oversampling factor of 4. Conclusion The proposed k-t approach increases data acquisition efficiency by reducing the number of echoes required to generate spectroscopic images, thereby allowing accelerated acquisition speed, preserved polarization, and/or improved temporal or spatial resolution. Magn Reson Med PMID:23716402

  16. The Effect of Concomitant Fields in Fast Spin Echo Acquisition on Asymmetric MRI Gradient Systems

    PubMed Central

    Tao, Shengzhen; Weavers, Paul T.; Trzasko, Joshua D.; Huston, John; Shu, Yunhong; Gray, Erin M.; Foo, Thomas K.F.; Bernstein, Matt A.

    2017-01-01

    Purpose To investigate the effect of the asymmetric gradient concomitant fields (CF) with zeroth and first-order spatial dependence on fast/turbo spin-echo acquisitions, and to demonstrate the effectiveness of their real-time compensation. Methods After briefly reviewing the CF produced by asymmetric gradients, the effects of the additional zeroth and first-order CFs on these systems are investigated using extended-phase graph simulations. Phantom and in vivo experiments are performed to corroborate the simulation. Experiments are performed before and after the real-time compensations using frequency tracking and gradient pre-emphasis to demonstrate their effectiveness in correcting the additional CFs. The interaction between the CFs and prescan-based correction to compensate for eddy currents is also investigated. Results It is demonstrated that, unlike the second-order CFs on conventional gradients, the additional zeroth/first-order CFs on asymmetric gradients cause substantial signal loss and dark banding in fast spin-echo acquisitions within a typical brain-scan field of view. They can confound the prescan correction for eddy currents and degrade image quality. Performing real-time compensation successfully eliminates the artifacts. Conclusions We demonstrate that the zeroth/first-order CFs specific to asymmetric gradients can cause substantial artifacts, including signal loss and dark bands for brain imaging. These effects can be corrected using real-time compensation. PMID:28643408

  17. Data Acquisition Systems

    NASA Technical Reports Server (NTRS)

    1994-01-01

    In the mid-1980s, Kinetic Systems and Langley Research Center determined that high speed CAMAC (Computer Automated Measurement and Control) data acquisition systems could significantly improve Langley's ARTS (Advanced Real Time Simulation) system. The ARTS system supports flight simulation R&D, and the CAMAC equipment allowed 32 high performance simulators to be controlled by centrally located host computers. This technology broadened Kinetic Systems' capabilities and led to several commercial applications. One of them is General Atomics' fusion research program. Kinetic Systems equipment allows tokamak data to be acquired four to 15 times more rapidly. Ford Motor company uses the same technology to control and monitor transmission testing facilities.

  18. Shifts in nitrogen acquisition strategies enable enhanced terrestrial carbon storage under elevated CO2 in a global model

    NASA Astrophysics Data System (ADS)

    Sulman, B. N.; Brzostek, E. R.; Menge, D.; Malyshev, S.; Shevliakova, E.

    2017-12-01

    Earth System Model (ESM) projections of terrestrial carbon (C) uptake are critical to understanding the future of the global C cycle. Current ESMs include intricate representations of photosynthetic C fixation in plants, allowing them to simulate the stimulatory effect of increasing atmospheric CO2 levels on photosynthesis. However, they lack sophisticated representations of plant nutrient acquisition, calling into question their ability to project the future land C sink. We conducted simulations using a new model of terrestrial C and nitrogen (N) cycling within the Geophysical Fluid Dynamics Laboratory (GFDL) global land model LM4 that uses a return on investment framework to simulate global patterns of N acquisition via fixation of N2 from the atmosphere, scavenging of inorganic N from soil solution, and mining of organic N from soil organic matter (SOM). We show that these strategies drive divergent C cycle responses to elevated CO2 at the ecosystem scale, with the scavenging strategy leading to N limitation of plant growth and the mining strategy facilitating stimulation of plant biomass accumulation over decadal time scales. In global simulations, shifts in N acquisition from inorganic N scavenging to organic N mining along with increases in N fixation supported long-term acceleration of C uptake under elevated CO2. Our results indicate that the ability of the land C sink to mitigate atmospheric CO2 levels is tightly coupled to the functional diversity of ecosystems and their capacity to change their N acquisition strategies over time. Incorporation of these mechanisms into ESMs is necessary to improve confidence in model projections of the global C cycle.

  19. Simulation analysis of photometric data for attitude estimation of unresolved space objects

    NASA Astrophysics Data System (ADS)

    Du, Xiaoping; Gou, Ruixin; Liu, Hao; Hu, Heng; Wang, Yang

    2017-10-01

    The attitude information acquisition of unresolved space objects, such as micro-nano satellites and GEO objects under the way of ground-based optical observations, is a challenge to space surveillance. In this paper, a useful method is proposed to estimate the SO attitude state according to the simulation analysis of photometric data in different attitude states. The object shape model was established and the parameters of the BRDF model were determined, then the space object photometric model was established. Furthermore, the photometric data of space objects in different states are analyzed by simulation and the regular characteristics of the photometric curves are summarized. The simulation results show that the photometric characteristics are useful for attitude inversion in a unique way. Thus, a new idea is provided for space object identification in this paper.

  20. Development of Open Brain Simulator for Human Biomechatronics

    NASA Astrophysics Data System (ADS)

    Otake, Mihoko; Takagi, Toshihisa; Asama, Hajime

    Modeling and simulation based on mechanisms is important in order to design and control mechatronic systems. In particular, in-depth understanding and realistic modeling of biological systems is indispensable for biomechatronics. This paper presents open brain simulator, which estimates the neural state of human through external measurement for the purpose of improving motor and social skills. Macroscopic anatomical nervous systems model was built which can be connected to the musculoskeletal model. Microscopic anatomical and physiological neural models were interfaced to the macroscopic model. Neural activities of somatosensory area and Purkinje cell were calculated from motion capture data. The simulator provides technical infrastructure for human biomechatronics, which is promising for the novel diagnosis of neurological disorders and their treatments through medication and movement therapy, and for motor learning support system supporting acquisition of motor skill considering neural mechanism.

  1. Accuracy of Monte Carlo simulations compared to in-vivo MDCT dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bostani, Maryam, E-mail: mbostani@mednet.ucla.edu; McMillan, Kyle; Cagnon, Chris H.

    Purpose: The purpose of this study was to assess the accuracy of a Monte Carlo simulation-based method for estimating radiation dose from multidetector computed tomography (MDCT) by comparing simulated doses in ten patients to in-vivo dose measurements. Methods: MD Anderson Cancer Center Institutional Review Board approved the acquisition of in-vivo rectal dose measurements in a pilot study of ten patients undergoing virtual colonoscopy. The dose measurements were obtained by affixing TLD capsules to the inner lumen of rectal catheters. Voxelized patient models were generated from the MDCT images of the ten patients, and the dose to the TLD for allmore » exposures was estimated using Monte Carlo based simulations. The Monte Carlo simulation results were compared to the in-vivo dose measurements to determine accuracy. Results: The calculated mean percent difference between TLD measurements and Monte Carlo simulations was −4.9% with standard deviation of 8.7% and a range of −22.7% to 5.7%. Conclusions: The results of this study demonstrate very good agreement between simulated and measured doses in-vivo. Taken together with previous validation efforts, this work demonstrates that the Monte Carlo simulation methods can provide accurate estimates of radiation dose in patients undergoing CT examinations.« less

  2. Single and double acquisition strategies for compensation of artifacts from eddy current and transient oscillation in balanced steady-state free precession.

    PubMed

    Lee, Hyun-Soo; Choi, Seung Hong; Park, Sung-Hong

    2017-07-01

    To develop single and double acquisition methods to compensate for artifacts from eddy currents and transient oscillations in balanced steady-state free precession (bSSFP) with centric phase-encoding (PE) order for magnetization-prepared bSSFP imaging. A single and four different double acquisition methods were developed and evaluated with Bloch equation simulations, phantom/in vivo experiments, and quantitative analyses. For the single acquisition method, multiple PE groups, each of which was composed of N linearly changing PE lines, were ordered in a pseudocentric manner for optimal contrast and minimal signal fluctuations. Double acquisition methods used complex averaging of two images that had opposite artifact patterns from different acquisition orders or from different numbers of dummy scans. Simulation results showed high sensitivity of eddy-current and transient-oscillation artifacts to off-resonance frequency and PE schemes. The artifacts were reduced with the PE-grouping with N values from 3 to 8, similar to or better than the conventional pairing scheme of N = 2. The proposed double acquisition methods removed the remaining artifacts significantly. The proposed methods conserved detailed structures in magnetization transfer imaging well, compared with the conventional methods. The proposed single and double acquisition methods can be useful for artifact-free magnetization-prepared bSSFP imaging with desired contrast and minimized dummy scans. Magn Reson Med 78:254-263, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  3. Improving the Acquisition and Management of Sample Curation Data

    NASA Technical Reports Server (NTRS)

    Todd, Nancy S.; Evans, Cindy A.; Labasse, Dan

    2011-01-01

    This paper discusses the current sample documentation processes used during and after a mission, examines the challenges and special considerations needed for designing effective sample curation data systems, and looks at the results of a simulated sample result mission and the lessons learned from this simulation. In addition, it introduces a new data architecture for an integrated sample Curation data system being implemented at the NASA Astromaterials Acquisition and Curation department and discusses how it improves on existing data management systems.

  4. Automatic Data Processing Equipment (ADPE) acquisition plan for the medical sciences

    NASA Technical Reports Server (NTRS)

    1979-01-01

    An effective mechanism for meeting the SLSD/MSD data handling/processing requirements for Shuttle is discussed. The ability to meet these requirements depends upon the availability of a general purpose high speed digital computer system. This system is expected to implement those data base management and processing functions required across all SLSD/MSD programs during training, laboratory operations/analysis, simulations, mission operations, and post mission analysis/reporting.

  5. A Technology Analysis to Support Acquisition of UAVs for Gulf Coalition Forces Operations

    DTIC Science & Technology

    2017-06-01

    their selection of the most suitable and cost-effective unmanned aerial vehicles to support detection operations. This study uses Map Aware Non ...being detected by Gulf Coalition Forces and improved time to detect them, support the use of UAVs in detection missions. Computer experimentations and...aerial vehicles to support detection operations. We use Map Aware Non - Uniform Automata, an agent-based simulation software platform, for the

  6. Image acquisition device of inspection robot based on adaptive rotation regulation of polarizer

    NASA Astrophysics Data System (ADS)

    Dong, Maoqi; Wang, Xingguang; Liang, Tao; Yang, Guoqing; Zhang, Chuangyou; Gao, Faqin

    2017-12-01

    An image processing device of inspection robot with adaptive polarization adjustment is proposed, that the device includes the inspection robot body, the image collecting mechanism, the polarizer and the polarizer automatic actuating device. Where, the image acquisition mechanism is arranged at the front of the inspection robot body for collecting equipment image data in the substation. Polarizer is fixed on the automatic actuating device of polarizer, and installed in front of the image acquisition mechanism, and that the optical axis of the camera vertically goes through the polarizer and the polarizer rotates with the optical axis of the visible camera as the central axis. The simulation results show that the system solves the fuzzy problems of the equipment that are caused by glare, reflection of light and shadow, and the robot can observe details of the running status of electrical equipment. And the full coverage of the substation equipment inspection robot observation target is achieved, which ensures the safe operation of the substation equipment.

  7. Effects of fundamentals acquisition and strategy switch on stock price dynamics

    NASA Astrophysics Data System (ADS)

    Wu, Songtao; He, Jianmin; Li, Shouwei

    2018-02-01

    An agent-based artificial stock market is developed to simulate trading behavior of investors. In the market, acquisition and employment of information about fundamentals and strategy switch are investigated to explain stock price dynamics. Investors could obtain the information from both market and neighbors resided on their social networks. Depending on information status and performances of different strategies, an informed investor may switch to the strategy of fundamentalist. This in turn affects the information acquisition process, since fundamentalists are more inclined to search and spread the information than chartists. Further investigation into price dynamics generated from three typical networks, i.e. regular lattice, small-world network and random graph, are conducted after general relation between network structures and price dynamics is revealed. In each network, integrated effects of different combinations of information efficiency and switch intensity are investigated. Results have shown that, along with increasing switch intensity, market and social information efficiency play different roles in the formation of price distortion, standard deviation and kurtosis of returns.

  8. Overview of the commercial OPAL LiDAR optimized for rotorcraft platforms operating in degraded visual environments

    NASA Astrophysics Data System (ADS)

    Church, Philip; Borribanbunpotkat, Kiatchai; Trickey, Evan; Iles, Peter; Sekerka, Mike

    2014-06-01

    Neptec has developed a family of obscurant-penetrating 3D laser scanners called OPAL 2.0 that are being adapted for rotorcraft platforms. Neptec and Boeing have been working on an integrated system utilizing the OPAL LiDAR to support operations in degraded visual environments. OPAL scanners incorporate Neptec's patented obscurantpenetrating LiDAR technology which was extensively tested in controlled dust environments and helicopters for brownout mitigation. The OPAL uses a scanning mechanism based on the Risley prism pair. Data acquisition rates can go as high as 200kHz for ranges within 200m and 25kHz for ranges exceeding 200m. The scan patterns are created by the rotation of two prisms under independent motor control. The geometry and material properties of the prisms will define the conical field-of-view of the sensor, which can be set up to 120 degrees. Through detailed simulations and analysis of mission profiles, the system can be tailored for applications to rotorcrafts. Examples of scan patterns and control schemes based on these simulations will be provided along with data density predictions versus acquisition time for applicable DVE scenarios. Preliminary 3D data acquired in clear and obscurant conditions will be presented.

  9. Simulate different environments TDLAS On the analysis of the test signal strength

    NASA Astrophysics Data System (ADS)

    Li, Xin; Zhou, Tao; Jia, Xiaodong

    2014-12-01

    TDLAS system is the use of the wavelength tuning characteristics of the laser diode, for detecting the absorption spectrum of the gas absorption line. Detecting the gas space, temperature, pressure and flow rate and concentration. The use of laboratory techniques TDLAS gas detection, experimental simulation engine combustion water vapor and smoke. using an optical lens system receives the signal acquisition and signal interference test analysis. Analog water vapor and smoke in two different environments in the sample pool interference. In both experiments environmental interference gas absorption in the optical signal acquisition, signal amplitude variation analysis, and records related to the signal data. In order to study site conditions in the engine combustion process for signal acquisition provides an ideal experimental data .

  10. Image-Based Computational Fluid Dynamics in Blood Vessel Models: Toward Developing a Prognostic Tool to Assess Cardiovascular Function Changes in Prolonged Space Flights

    NASA Technical Reports Server (NTRS)

    Chatzimavroudis, George P.; Spirka, Thomas A.; Setser, Randolph M.; Myers, Jerry G.

    2004-01-01

    One of NASA's objectives is to be able to perform a complete, pre-flight, evaluation of cardiovascular changes in astronauts scheduled for prolonged space missions. Computational fluid dynamics (CFD) has shown promise as a method for estimating cardiovascular function during reduced gravity conditions. For this purpose, MRI can provide geometrical information, to reconstruct vessel geometries, and measure all spatial velocity components, providing location specific boundary conditions. The objective of this study was to investigate the reliability of MRI-based model reconstruction and measured boundary conditions for CFD simulations. An aortic arch model and a carotid bifurcation model were scanned in a 1.5T Siemens MRI scanner. Axial MRI acquisitions provided images for geometry reconstruction (slice thickness 3 and 5 mm; pixel size 1x1 and 0.5x0.5 square millimeters). Velocity acquisitions provided measured inlet boundary conditions and localized three-directional steady-flow velocity data (0.7-3.0 L/min). The vessel walls were isolated using NIH provided software (ImageJ) and lofted to form the geometric surface. Constructed and idealized geometries were imported into a commercial CFD code for meshing and simulation. Contour and vector plots of the velocity showed identical features between the MRI velocity data, the MRI-based CFD data, and the idealized-geometry CFD data, with less than 10% differences in the local velocity values. CFD results on models reconstructed from different MRI resolution settings showed insignificant differences (less than 5%). This study illustrated, quantitatively, that reliable CFD simulations can be performed with MRI reconstructed models and gives evidence that a future, subject-specific, computational evaluation of the cardiovascular system alteration during space travel is feasible.

  11. Comparison of bootstrap approaches for estimation of uncertainties of DTI parameters.

    PubMed

    Chung, SungWon; Lu, Ying; Henry, Roland G

    2006-11-01

    Bootstrap is an empirical non-parametric statistical technique based on data resampling that has been used to quantify uncertainties of diffusion tensor MRI (DTI) parameters, useful in tractography and in assessing DTI methods. The current bootstrap method (repetition bootstrap) used for DTI analysis performs resampling within the data sharing common diffusion gradients, requiring multiple acquisitions for each diffusion gradient. Recently, wild bootstrap was proposed that can be applied without multiple acquisitions. In this paper, two new approaches are introduced called residual bootstrap and repetition bootknife. We show that repetition bootknife corrects for the large bias present in the repetition bootstrap method and, therefore, better estimates the standard errors. Like wild bootstrap, residual bootstrap is applicable to single acquisition scheme, and both are based on regression residuals (called model-based resampling). Residual bootstrap is based on the assumption that non-constant variance of measured diffusion-attenuated signals can be modeled, which is actually the assumption behind the widely used weighted least squares solution of diffusion tensor. The performances of these bootstrap approaches were compared in terms of bias, variance, and overall error of bootstrap-estimated standard error by Monte Carlo simulation. We demonstrate that residual bootstrap has smaller biases and overall errors, which enables estimation of uncertainties with higher accuracy. Understanding the properties of these bootstrap procedures will help us to choose the optimal approach for estimating uncertainties that can benefit hypothesis testing based on DTI parameters, probabilistic fiber tracking, and optimizing DTI methods.

  12. SNDR Limits of Oscillator-Based Sensor Readout Circuits

    PubMed Central

    Buffa, Cesare; Wiesbauer, Andreas; Hernandez, Luis

    2018-01-01

    This paper analyzes the influence of phase noise and distortion on the performance of oscillator-based sensor data acquisition systems. Circuit noise inherent to the oscillator circuit manifests as phase noise and limits the SNR. Moreover, oscillator nonlinearity generates distortion for large input signals. Phase noise analysis of oscillators is well known in the literature, but the relationship between phase noise and the SNR of an oscillator-based sensor is not straightforward. This paper proposes a model to estimate the influence of phase noise in the performance of an oscillator-based system by reflecting the phase noise to the oscillator input. The proposed model is based on periodic steady-state analysis tools to predict the SNR of the oscillator. The accuracy of this model has been validated by both simulation and experiment in a 130 nm CMOS prototype. We also propose a method to estimate the SNDR and the dynamic range of an oscillator-based readout circuit that improves by more than one order of magnitude the simulation time compared to standard time domain simulations. This speed up enables the optimization and verification of this kind of systems with iterative algorithms. PMID:29401646

  13. Effects of Resolution, Range, and Image Contrast on Target Acquisition Performance.

    PubMed

    Hollands, Justin G; Terhaar, Phil; Pavlovic, Nada J

    2018-05-01

    We sought to determine the joint influence of resolution, target range, and image contrast on the detection and identification of targets in simulated naturalistic scenes. Resolution requirements for target acquisition have been developed based on threshold values obtained using imaging systems, when target range was fixed, and image characteristics were determined by the system. Subsequent work has examined the influence of factors like target range and image contrast on target acquisition. We varied the resolution and contrast of static images in two experiments. Participants (soldiers) decided whether a human target was located in the scene (detection task) or whether a target was friendly or hostile (identification task). Target range was also varied (50-400 m). In Experiment 1, 30 participants saw color images with a single target exemplar. In Experiment 2, another 30 participants saw monochrome images containing different target exemplars. The effects of target range and image contrast were qualitatively different above and below 6 pixels per meter of target for both tasks in both experiments. Target detection and identification performance were a joint function of image resolution, range, and contrast for both color and monochrome images. The beneficial effects of increasing resolution for target acquisition performance are greater for closer (larger) targets.

  14. Assessment of contrast enhanced respiration managed cone-beam CT for image guided radiotherapy of intrahepatic tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Nikolaj K. G., E-mail: nkyj@regionsjaelland.dk; Stewart, Errol; Imaging Research Lab, Robarts Research Institute, London, Ontario N6A 5B7

    2014-05-15

    Purpose: Contrast enhancement and respiration management are widely used during image acquisition for radiotherapy treatment planning of liver tumors along with respiration management at the treatment unit. However, neither respiration management nor intravenous contrast is commonly used during cone-beam CT (CBCT) image acquisition for alignment prior to radiotherapy. In this study, the authors investigate the potential gains of injecting an iodinated contrast agent in combination with respiration management during CBCT acquisition for liver tumor radiotherapy. Methods: Five rabbits with implanted liver tumors were subjected to CBCT with and without motion management and contrast injection. The acquired CBCT images were registeredmore » to the planning CT to determine alignment accuracy and dosimetric impact. The authors developed a simulation tool for simulating contrast-enhanced CBCT images from dynamic contrast enhanced CT imaging (DCE-CT) to determine optimal contrast injection protocols. The tool was validated against contrast-enhanced CBCT of the rabbit subjects and was used for five human patients diagnosed with hepatocellular carcinoma. Results: In the rabbit experiment, when neither motion management nor contrast was used, tumor centroid misalignment between planning image and CBCT was 9.2 mm. This was reduced to 2.8 mm when both techniques were employed. Tumors were not visualized in clinical CBCT images of human subjects. Simulated contrast-enhanced CBCT was found to improve tumor contrast in all subjects. Different patients were found to require different contrast injections to maximize tumor contrast. Conclusions: Based on the authors’ animal study, respiration managed contrast enhanced CBCT improves IGRT significantly. Contrast enhanced CBCT benefits from patient specific tracer kinetics determined from DCE-CT.« less

  15. Optimization of a shorter variable-acquisition time for legs to achieve true whole-body PET/CT images.

    PubMed

    Umeda, Takuro; Miwa, Kenta; Murata, Taisuke; Miyaji, Noriaki; Wagatsuma, Kei; Motegi, Kazuki; Terauchi, Takashi; Koizumi, Mitsuru

    2017-12-01

    The present study aimed to qualitatively and quantitatively evaluate PET images as a function of acquisition time for various leg sizes, and to optimize a shorter variable-acquisition time protocol for legs to achieve better qualitative and quantitative accuracy of true whole-body PET/CT images. The diameters of legs to be modeled as phantoms were defined based on data derived from 53 patients. This study analyzed PET images of a NEMA phantom and three plastic bottle phantoms (diameter, 5.68, 8.54 and 10.7 cm) that simulated the human body and legs, respectively. The phantoms comprised two spheres (diameters, 10 and 17 mm) containing fluorine-18 fluorodeoxyglucose solution with sphere-to-background ratios of 4 at a background radioactivity level of 2.65 kBq/mL. All PET data were reconstructed with acquisition times ranging from 10 to 180, and 1200 s. We visually evaluated image quality and determined the coefficient of variance (CV) of the background, contrast and the quantitative %error of the hot spheres, and then determined two shorter variable-acquisition protocols for legs. Lesion detectability and quantitative accuracy determined based on maximum standardized uptake values (SUV max ) in PET images of a patient using the proposed protocols were also evaluated. A larger phantom and a shorter acquisition time resulted in increased background noise on images and decreased the contrast in hot spheres. A visual score of ≥ 1.5 was obtained when the acquisition time was ≥ 30 s for three leg phantoms, and ≥ 120 s for the NEMA phantom. The quantitative %errors of the 10- and 17-mm spheres in the leg phantoms were ± 15 and ± 10%, respectively, in PET images with a high CV (scan < 30 s). The mean SUV max of three lesions using the current fixed-acquisition and two proposed variable-acquisition time protocols in the clinical study were 3.1, 3.1 and 3.2, respectively, which did not significantly differ. Leg acquisition time per bed position of even 30-90 s allows axial equalization, uniform image noise and a maximum ± 15% quantitative accuracy for the smallest lesion. The overall acquisition time was reduced by 23-42% using the proposed shorter variable than the current fixed-acquisition time for imaging legs, indicating that this is a useful and practical protocol for routine qualitative and quantitative PET/CT assessment in the clinical setting.

  16. Macro Level Simulation Model Of Space Shuttle Processing

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The contents include: 1) Space Shuttle Processing Simulation Model; 2) Knowledge Acquisition; 3) Simulation Input Analysis; 4) Model Applications in Current Shuttle Environment; and 5) Model Applications for Future Reusable Launch Vehicles (RLV's). This paper is presented in viewgraph form.

  17. A framework for geometry acquisition, 3-D printing, simulation, and measurement of head-related transfer functions with a focus on hearing-assistive devices

    PubMed Central

    Harder, Stine; Paulsen, Rasmus R.; Larsen, Martin; Laugesen, Søren; Mihocic, Michael; Majdak, Piotr

    2017-01-01

    Individual head-related transfer functions (HRTFs) are essential in applications like fitting hearing-assistive devices (HADs) for providing accurate sound localization performance. Individual HRTFs are usually obtained through intricate acoustic measurements. This paper investigates the use of a three-dimensional (3D) head model for acquisition of individual HRTFs. Two aspects were investigated; whether a 3D-printed model can replace measurements on a human listener and whether numerical simulations can replace acoustic measurements. For this purpose, HRTFs were acoustically measured for four human listeners and for a 3D printed head model of one of these listeners. Further, HRTFs were simulated by applying the finite element method to the 3D head model. The monaural spectral features and spectral distortions were very similar between re-measurements and between human and printed measurements, however larger deviations were observed between measurement and simulation. The binaural cues were in agreement among all HRTFs of the same listener, indicating that the 3D model is able to provide localization cues potentially accessible to HAD users. Hence, the pipeline of geometry acquisition, printing, and acoustic measurements or simulations, seems to be a promising step forward towards in-silico design of HADs. PMID:28239188

  18. The Evolving Role of Simulation in Teaching Surgery in Undergraduate Medical Education.

    PubMed

    Acton, Robert D

    2015-08-01

    Simulation-based training (SBT) over the last 10 years has become a mainstay for surgical education at the graduate medical education (GME) level. More recently, however, the technique has rapidly become the standard for early efficient teaching of surgical skills and decision making at the undergraduate medical education (UME) level. The described benefits of SBT include its ability to compartmentalize education, to combine immediate assessment and feedback, and to accelerate knowledge and skill acquisition for the young learner. Consequently, SBT is now being adopted in multiple national medical student surgical educational initiatives. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Optimization of Rb-82 PET acquisition and reconstruction protocols for myocardial perfusion defect detection

    NASA Astrophysics Data System (ADS)

    Tang, Jing; Rahmim, Arman; Lautamäki, Riikka; Lodge, Martin A.; Bengel, Frank M.; Tsui, Benjamin M. W.

    2009-05-01

    The purpose of this study is to optimize the dynamic Rb-82 cardiac PET acquisition and reconstruction protocols for maximum myocardial perfusion defect detection using realistic simulation data and task-based evaluation. Time activity curves (TACs) of different organs under both rest and stress conditions were extracted from dynamic Rb-82 PET images of five normal patients. Combined SimSET-GATE Monte Carlo simulation was used to generate nearly noise-free cardiac PET data from a time series of 3D NCAT phantoms with organ activities modeling different pre-scan delay times (PDTs) and total acquisition times (TATs). Poisson noise was added to the nearly noise-free projections and the OS-EM algorithm was applied to generate noisy reconstructed images. The channelized Hotelling observer (CHO) with 32× 32 spatial templates corresponding to four octave-wide frequency channels was used to evaluate the images. The area under the ROC curve (AUC) was calculated from the CHO rating data as an index for image quality in terms of myocardial perfusion defect detection. The 0.5 cycle cm-1 Butterworth post-filtering on OS-EM (with 21 subsets) reconstructed images generates the highest AUC values while those from iteration numbers 1 to 4 do not show different AUC values. The optimized PDTs for both rest and stress conditions are found to be close to the cross points of the left ventricular chamber and myocardium TACs, which may promote an individualized PDT for patient data processing and image reconstruction. Shortening the TATs for <~3 min from the clinically employed acquisition time does not affect the myocardial perfusion defect detection significantly for both rest and stress studies.

  20. Adaptive hyperspectral imager: design, modeling, and control

    NASA Astrophysics Data System (ADS)

    McGregor, Scot; Lacroix, Simon; Monmayrant, Antoine

    2015-08-01

    An adaptive, hyperspectral imager is presented. We propose a system with easily adaptable spectral resolution, adjustable acquisition time, and high spatial resolution which is independent of spectral resolution. The system yields the possibility to define a variety of acquisition schemes, and in particular near snapshot acquisitions that may be used to measure the spectral content of given or automatically detected regions of interest. The proposed system is modelled and simulated, and tests on a first prototype validate the approach to achieve near snapshot spectral acquisitions without resorting to any computationally heavy post-processing, nor cumbersome calibration

  1. Usefulness of virtual reality in assessment of medical student laparoscopic skill.

    PubMed

    Matzke, Josh; Ziegler, Craig; Martin, Kevin; Crawford, Stuart; Sutton, Erica

    2017-05-01

    This study evaluates if undergraduate medical trainees' laparoscopic skills acquisition could be assessed using a virtual reality (VR) simulator and how the resultant metrics correlate with performance of Fundamentals of Laparoscopic Surgery (FLS) tasks. Our hypothesis is that the VR simulator metrics will correlate with passing results in a competency-based curriculum (FLS). Twenty-eight fourth-year medical students applying for surgical residency were recruited to participate in a VR training curriculum comprised of camera navigation, hand eye coordination, and FLS tasks: circle cutting (CC), ligating loop (LL), peg transfer (PT), and intracorporeal knot tying (IKT). Students were given 8 wk to achieve proficiency goals, after which they were observed performing FLS tasks. The ability of the VR simulator to detect penalties in each of the FLS tasks and correlations of time taken to complete tasks are reported. Twenty-five students trained in all components of the curriculum. All students were proficient in camera navigation and hand eye coordination tasks. Proficiency was achieved in CC, LL, PT, and IKT by 21, 19, 23, and one student, respectively. VR simulation showed high specificity for predicting zero penalties on the observed CC, LL, and PT tasks (80%, 75%, and 80%, respectively). VR can be used to assess medical student's acquisition of laparoscopic skills. The absence of penalties in the simulator reasonably predicts the absence of penalties in all FLS skills, except IKT. The skills acquired by trainees can be used in residency for further monitoring of progress toward proficiency. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Can fatigue affect acquisition of new surgical skills? A prospective trial of pre- and post-call general surgery residents using the da Vinci surgical skills simulator.

    PubMed

    Robison, Weston; Patel, Sonya K; Mehta, Akshat; Senkowski, Tristan; Allen, John; Shaw, Eric; Senkowski, Christopher K

    2018-03-01

    To study the effects of fatigue on general surgery residents' performance on the da Vinci Skills Simulator (dVSS). 15 General Surgery residents from various postgraduate training years (PGY2, PGY3, PGY4, and PGY5) performed 5 simulation tasks on the dVSS as recommended by the Robotic Training Network (RTN). The General Surgery residents had no prior experience with the dVSS. Participants were assigned to either the Pre-call group or Post-call group based on call schedule. As a measure of subjective fatigue, residents were given the Epworth Sleepiness Scale (ESS) prior to their dVSS testing. The dVSS MScore™ software recorded various metrics (Objective Structured Assessment of Technical Skills, OSATS) that were used to evaluate the performance of each resident to compare the robotic simulation proficiency between the Pre-call and Post-call groups. Six general surgery residents were stratified into the Pre-call group and nine into the Post-call group. These residents were also stratified into Fatigued (10) or Nonfatigued (5) groups, as determined by their reported ESS scores. A statistically significant difference was found between the Pre-call and Post-call reported sleep hours (p = 0.036). There was no statistically significant difference between the Pre-call and Post-call groups or between the Fatigued and Nonfatigued groups in time to complete exercise, number of attempts, and high MScore™ score. Despite variation in fatigue levels, there was no effect on the acquisition of robotic simulator skills.

  3. Fine-motor skills testing and prediction of endovascular performance.

    PubMed

    Bech, Bo; Lönn, Lars; Schroeder, Torben V; Ringsted, Charlotte

    2013-12-01

    Performing endovascular procedures requires good control of fine-motor digital movements and hand-eye coordination. Objective assessment of such skills is difficult. Trainees acquire control of catheter/wire movements at various paces. However, little is known to what extent talent plays for novice candidates at entry to practice. To study the association between performance in a novel aptitude test of fine-motor skills and performance in simulated procedures. The test was based on manual course-tracking using a proprietary hand-operated roller-bar device coupled to a personal computer with monitor view rotation. A total of 40 test repetitions were conducted separately with each hand. Test scores were correlated with simulator performance. Group A (n = 14), clinicians with various levels of endovascular experience, performed a simulated procedure of contralateral iliac artery stenting. Group B (n = 19), medical students, performed 10 repetitions of crossing a challenging aortic bifurcation in a simulator. The test score differed markedly between the individuals in both groups, in particular with the non-dominant hand. Group A: the test score with the non-dominant hand correlated significantly with simulator performance assessed with the global rating scale SAVE (R = -0.69, P = 0.007). There was no association observed from performances with the dominant hand. Group B: there was no significant association between the test score and endovascular skills acquisition neither with the dominant nor with the non-dominant hand. Clinicians with increasing levels of endovascular technical experience had developed good fine-motor control of the non-dominant hand, in particular, that was associated with good procedural performance in the simulator. The aptitude test did not predict endovascular skills acquisition among medical students, thus, cannot be suggested for selection of novice candidates. Procedural experience and practice probably supplant the influence of innate abilities (talent) over time.

  4. Improving Security for SCADA Sensor Networks with Reputation Systems and Self-Organizing Maps.

    PubMed

    Moya, José M; Araujo, Alvaro; Banković, Zorana; de Goyeneche, Juan-Mariano; Vallejo, Juan Carlos; Malagón, Pedro; Villanueva, Daniel; Fraga, David; Romero, Elena; Blesa, Javier

    2009-01-01

    The reliable operation of modern infrastructures depends on computerized systems and Supervisory Control and Data Acquisition (SCADA) systems, which are also based on the data obtained from sensor networks. The inherent limitations of the sensor devices make them extremely vulnerable to cyberwarfare/cyberterrorism attacks. In this paper, we propose a reputation system enhanced with distributed agents, based on unsupervised learning algorithms (self-organizing maps), in order to achieve fault tolerance and enhanced resistance to previously unknown attacks. This approach has been extensively simulated and compared with previous proposals.

  5. Improving Security for SCADA Sensor Networks with Reputation Systems and Self-Organizing Maps

    PubMed Central

    Moya, José M.; Araujo, Álvaro; Banković, Zorana; de Goyeneche, Juan-Mariano; Vallejo, Juan Carlos; Malagón, Pedro; Villanueva, Daniel; Fraga, David; Romero, Elena; Blesa, Javier

    2009-01-01

    The reliable operation of modern infrastructures depends on computerized systems and Supervisory Control and Data Acquisition (SCADA) systems, which are also based on the data obtained from sensor networks. The inherent limitations of the sensor devices make them extremely vulnerable to cyberwarfare/cyberterrorism attacks. In this paper, we propose a reputation system enhanced with distributed agents, based on unsupervised learning algorithms (self-organizing maps), in order to achieve fault tolerance and enhanced resistance to previously unknown attacks. This approach has been extensively simulated and compared with previous proposals. PMID:22291569

  6. Machine intelligence and autonomy for aerospace systems

    NASA Technical Reports Server (NTRS)

    Heer, Ewald (Editor); Lum, Henry (Editor)

    1988-01-01

    The present volume discusses progress toward intelligent robot systems in aerospace applications, NASA Space Program automation and robotics efforts, the supervisory control of telerobotics in space, machine intelligence and crew/vehicle interfaces, expert-system terms and building tools, and knowledge-acquisition for autonomous systems. Also discussed are methods for validation of knowledge-based systems, a design methodology for knowledge-based management systems, knowledge-based simulation for aerospace systems, knowledge-based diagnosis, planning and scheduling methods in AI, the treatment of uncertainty in AI, vision-sensing techniques in aerospace applications, image-understanding techniques, tactile sensing for robots, distributed sensor integration, and the control of articulated and deformable space structures.

  7. Research and development of a control system for multi axis cooperative motion based on PMAC

    NASA Astrophysics Data System (ADS)

    Guo, Xiao-xiao; Dong, Deng-feng; Zhou, Wei-hu

    2017-10-01

    Based on Programmable Multi-axes Controller (PMAC), a design of a multi axis motion control system for the simulator of spatial targets' dynamic optical properties is proposed. According to analysis the properties of spatial targets' simulator motion control system, using IPC as the main control layer, TurboPMAC2 as the control layer to meet coordinated motion control, data acquisition and analog output. A simulator using 5 servomotors which is connected with speed reducers to drive the output axis was implemented to simulate the motion of both the sun and the space target. Based on PMAC using PID and a notch filter algorithm, negative feedback, the speed and acceleration feed forward algorithm to satisfy the axis' requirements of the good stability and high precision at low speeds. In the actual system, it shows that the velocity precision is higher than 0.04 s ° and the precision of repetitive positioning is better than 0.006° when each axis is at a low-speed. Besides, the system achieves the control function of multi axis coordinated motion. The design provides an important technical support for detecting spatial targets, also promoting the theoretical research.

  8. 1D-Var multilayer assimilation of X-band SAR data into a detailed snowpack model

    NASA Astrophysics Data System (ADS)

    Phan, X. V.; Ferro-Famil, L.; Gay, M.; Durand, Y.; Dumont, M.; Morin, S.; Allain, S.; D'Urso, G.; Girard, A.

    2014-10-01

    The structure and physical properties of a snowpack and their temporal evolution may be simulated using meteorological data and a snow metamorphism model. Such an approach may meet limitations related to potential divergences and accumulated errors, to a limited spatial resolution, to wind or topography-induced local modulations of the physical properties of a snow cover, etc. Exogenous data are then required in order to constrain the simulator and improve its performance over time. Synthetic-aperture radars (SARs) and, in particular, recent sensors provide reflectivity maps of snow-covered environments with high temporal and spatial resolutions. The radiometric properties of a snowpack measured at sufficiently high carrier frequencies are known to be tightly related to some of its main physical parameters, like its depth, snow grain size and density. SAR acquisitions may then be used, together with an electromagnetic backscattering model (EBM) able to simulate the reflectivity of a snowpack from a set of physical descriptors, in order to constrain a physical snowpack model. In this study, we introduce a variational data assimilation scheme coupling TerraSAR-X radiometric data into the snowpack evolution model Crocus. The physical properties of a snowpack, such as snow density and optical diameter of each layer, are simulated by Crocus, fed by the local reanalysis of meteorological data (SAFRAN) at a French Alpine location. These snowpack properties are used as inputs of an EBM based on dense media radiative transfer (DMRT) theory, which simulates the total backscattering coefficient of a dry snow medium at X and higher frequency bands. After evaluating the sensitivity of the EBM to snowpack parameters, a 1D-Var data assimilation scheme is implemented in order to minimize the discrepancies between EBM simulations and observations obtained from TerraSAR-X acquisitions by modifying the physical parameters of the Crocus-simulated snowpack. The algorithm then re-initializes Crocus with the modified snowpack physical parameters, allowing it to continue the simulation of snowpack evolution, with adjustments based on remote sensing information. This method is evaluated using multi-temporal TerraSAR-X images acquired over the specific site of the Argentière glacier (Mont-Blanc massif, French Alps) to constrain the evolution of Crocus. Results indicate that X-band SAR data can be taken into account to modify the evolution of snowpack simulated by Crocus.

  9. Realistic Analytical Polyhedral MRI Phantoms

    PubMed Central

    Ngo, Tri M.; Fung, George S. K.; Han, Shuo; Chen, Min; Prince, Jerry L.; Tsui, Benjamin M. W.; McVeigh, Elliot R.; Herzka, Daniel A.

    2015-01-01

    Purpose Analytical phantoms have closed form Fourier transform expressions and are used to simulate MRI acquisitions. Existing 3D analytical phantoms are unable to accurately model shapes of biomedical interest. It is demonstrated that polyhedral analytical phantoms have closed form Fourier transform expressions and can accurately represent 3D biomedical shapes. Theory The derivations of the Fourier transform of a polygon and polyhedron are presented. Methods The Fourier transform of a polyhedron was implemented and its accuracy in representing faceted and smooth surfaces was characterized. Realistic anthropomorphic polyhedral brain and torso phantoms were constructed and their use in simulated 3D/2D MRI acquisitions was described. Results Using polyhedra, the Fourier transform of faceted shapes can be computed to within machine precision. Smooth surfaces can be approximated with increasing accuracy by increasing the number of facets in the polyhedron; the additional accumulated numerical imprecision of the Fourier transform of polyhedra with many faces remained small. Simulations of 3D/2D brain and 2D torso cine acquisitions produced realistic reconstructions free of high frequency edge aliasing as compared to equivalent voxelized/rasterized phantoms. Conclusion Analytical polyhedral phantoms are easy to construct and can accurately simulate shapes of biomedical interest. PMID:26479724

  10. Positron Emission Mammography with Multiple Angle Acquisition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mark F. Smith; Stan Majewski; Raymond R. Raylman

    2002-11-01

    Positron emission mammography (PEM) of F-18 fluorodeoxyglucose (FbG) uptake in breast tumors with dedicated detectors typically has been accomplished with two planar detectors in a fixed position with the breast under compression. The potential use of PEM imaging at two detector positions to guide stereotactic breast biopsy has motivated us to use PEM coincidence data acquired at two or more detector positions together in a single image reconstruction. Multiple angle PEM acquisition and iterative image reconstruction were investigated using point source and compressed breast phantom acquisitions with 5, 9, 12 and 15 mm diameter spheres and a simulated tumor:background activitymore » concentration ratio of 6:1. Image reconstruction was performed with an iterative MLEM algorithm that used coincidence events between any two detector pixels on opposed detector heads at each detector position. This present study compared two acquisition protocols: 2 angle acquisition with detector angular positions of -15 and +15 degrees and 11 angle acquisition with detector positions spaced at 3 degree increments over the range -15 to +15 degrees. Three-dimensional image resolution was assessed for the point source acquisitions, and contrast and signal-to-noise metrics were evaluated for the compressed breast phantom with different simulated tumor sizes. Radial and tangential resolutions were similar for the two protocols, while normal resolution was better for the 2 angle acquisition. Analysis is complicated by the asymmetric point spread functions. Signal- to-noise vs. contrast tradeoffs were better for 11 angle acquisition for the smallest visible 9 mm sphere, while tradeoff results were mixed for the larger and more easily visible 12 mm and 15 mm diameter spheres. Additional study is needed to better understand the performance of limited angle tomography for PEM. PEM tomography experiments with complete angular sampling are planned.« less

  11. 48 CFR 237.102-71 - Limitation on service contracts for military flight simulators.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... contracts for military flight simulators. 237.102-71 Section 237.102-71 Federal Acquisition Regulations... flight simulators. (a) Definitions. As used in this subsection— (1) Military flight simulator means any... Law 110-181, DoD is prohibited from entering into a service contract to acquire a military flight...

  12. 48 CFR 237.102-71 - Limitation on service contracts for military flight simulators.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... contracts for military flight simulators. 237.102-71 Section 237.102-71 Federal Acquisition Regulations... flight simulators. (a) Definitions. As used in this subsection— (1) Military flight simulator means any... 110-181, DoD is prohibited from entering into a service contract to acquire a military flight...

  13. 48 CFR 237.102-71 - Limitation on service contracts for military flight simulators.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... contracts for military flight simulators. 237.102-71 Section 237.102-71 Federal Acquisition Regulations... flight simulators. (a) Definitions. As used in this subsection— (1) Military flight simulator means any... 110-181, DoD is prohibited from entering into a service contract to acquire a military flight...

  14. 48 CFR 237.102-71 - Limitation on service contracts for military flight simulators.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... contracts for military flight simulators. 237.102-71 Section 237.102-71 Federal Acquisition Regulations... flight simulators. (a) Definitions. As used in this subsection— (1) Military flight simulator means any... 110-181, DoD is prohibited from entering into a service contract to acquire a military flight...

  15. 48 CFR 237.102-71 - Limitation on service contracts for military flight simulators.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... contracts for military flight simulators. 237.102-71 Section 237.102-71 Federal Acquisition Regulations... flight simulators. (a) Definitions. As used in this subsection— (1) Military flight simulator means any... 110-181, DoD is prohibited from entering into a service contract to acquire a military flight...

  16. A histogram-based technique for rapid vector extraction from PIV photographs

    NASA Technical Reports Server (NTRS)

    Humphreys, William M., Jr.

    1991-01-01

    A new analysis technique, performed totally in the image plane, is proposed which rapidly extracts all available vectors from individual interrogation regions on PIV photographs. The technique avoids the need for using Fourier transforms with the associated computational burden. The data acquisition and analysis procedure is described, and results of a preliminary simulation study to evaluate the accuracy of the technique are presented. Recently obtained PIV photographs are analyzed.

  17. Effects of Rifle Handling, Target Acquisition, and Trigger Control on Simulated Shooting Performance

    DTIC Science & Technology

    2014-05-06

    qualification task, and covers all of the training requirements listed in the Soldier’s Manual of Common Tasks: Warrior Skills Level 1 handbook...allow for more direct and standardized training based on common Soldier errors. If discernible patterns in these core elements of marksmanship were...more than 50 percent of variance in marksmanship performance on a standard EST weapons qualification task for participants whose 3 Snellen acuity

  18. An all-digital receiver for satellite audio broadcasting signals using trellis coded quasi-orthogonal code-division multiplexing

    NASA Astrophysics Data System (ADS)

    Braun, Walter; Eglin, Peter; Abello, Ricard

    1993-02-01

    Spread Spectrum Code Division Multiplex is an attractive scheme for the transmission of multiple signals over a satellite transponder. By using orthogonal or quasi-orthogonal spreading codes the interference between the users can be virtually eliminated. However, the acquisition and tracking of the spreading code phase can not take advantage of the code orthogonality since sequential acquisition and Delay-Locked loop tracking depend on correlation with code phases other than the optimal despreading phase. Hence, synchronization is a critical issue in such a system. A demonstration hardware for the verification of the orthogonal CDM synchronization and data transmission concept is being designed and implemented. The system concept, the synchronization scheme, and the implementation are described. The performance of the system is discussed based on computer simulations.

  19. Managing simulation-based training: A framework for optimizing learning, cost, and time

    NASA Astrophysics Data System (ADS)

    Richmond, Noah Joseph

    This study provides a management framework for optimizing training programs for learning, cost, and time when using simulation based training (SBT) and reality based training (RBT) as resources. Simulation is shown to be an effective means for implementing activity substitution as a way to reduce risk. The risk profile of 22 US Air Force vehicles are calculated, and the potential risk reduction is calculated under the assumption of perfect substitutability of RBT and SBT. Methods are subsequently developed to relax the assumption of perfect substitutability. The transfer effectiveness ratio (TER) concept is defined and modeled as a function of the quality of the simulator used, and the requirements of the activity trained. The Navy F/A-18 is then analyzed in a case study illustrating how learning can be maximized subject to constraints in cost and time, and also subject to the decision maker's preferences for the proportional and absolute use of simulation. Solution methods for optimizing multiple activities across shared resources are next provided. Finally, a simulation strategy including an operations planning program (OPP), an implementation program (IP), an acquisition program (AP), and a pedagogical research program (PRP) is detailed. The study provides the theoretical tools to understand how to leverage SBT, a case study demonstrating these tools' efficacy, and a set of policy recommendations to enable the US military to better utilize SBT in the future.

  20. Modular Analytical Multicomponent Analysis in Gas Sensor Aarrays

    PubMed Central

    Chaiyboun, Ali; Traute, Rüdiger; Kiesewetter, Olaf; Ahlers, Simon; Müller, Gerhard; Doll, Theodor

    2006-01-01

    A multi-sensor system is a chemical sensor system which quantitatively and qualitatively records gases with a combination of cross-sensitive gas sensor arrays and pattern recognition software. This paper addresses the issue of data analysis for identification of gases in a gas sensor array. We introduce a software tool for gas sensor array configuration and simulation. It concerns thereby about a modular software package for the acquisition of data of different sensors. A signal evaluation algorithm referred to as matrix method was used specifically for the software tool. This matrix method computes the gas concentrations from the signals of a sensor array. The software tool was used for the simulation of an array of five sensors to determine gas concentration of CH4, NH3, H2, CO and C2H5OH. The results of the present simulated sensor array indicate that the software tool is capable of the following: (a) identify a gas independently of its concentration; (b) estimate the concentration of the gas, even if the system was not previously exposed to this concentration; (c) tell when a gas concentration exceeds a certain value. A gas sensor data base was build for the configuration of the software. With the data base one can create, generate and manage scenarios and source files for the simulation. With the gas sensor data base and the simulation software an on-line Web-based version was developed, with which the user can configure and simulate sensor arrays on-line.

  1. SU-G-IeP1-08: MR Geometric Distortion Dependency On Imaging Sequence, Acquisition Orientation and Receiver Bandwidth of a Dedicated 1.5T MR-Simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Law, M; Yuan, J; Wong, O

    Purpose: To investigate the 3D geometric distortion of four potential MR sequences for radiotheraptic applications, and its dependency on sequence-type, acquisition-orientation and receiver-bandwidth from a dedicated 1.5T 700mm-wide bore MR-simulator (Magnetom-Aera, Sienmens Healthcare, Erlangen, Germany), using a large customized geometric accuracy phantom. Methods: This work studied 3D gradient-echo (VIBE) and spin-echo (SPACE) sequences for anatomical imaging; a specific ultra-short-TE sequence (PETRA) potentially for bone imaging and MR-based dosimetry; and a motion-insensitive sequence (BLADE) for dynamic applications like 4D-MRI. Integrated geometric-correction was employed, three orthogonal acquisition-orientations and up to three receiver-bandwidths were used, yielding 27 acquisitions for testing (Table 1a).A customizedmore » geometric accuracy phantom (polyurethane, MR/CT invisible, W×L×H:55×55×32.5cm3) was constructed and filled with 3892 spherical markers (6mm diameter, MR/CT visible) arranged on a 25mm-interval 3D isotropic-grid (Fig.1). The marker positions in MR images were quantitatively calculated and compared against those in the CT-reference using customized MatLab scripts. Results: The average distortion within various diameter-of-spherical-volumes (DSVs) and the usable DSVs under various distortion limits were measured (Tables 1b-c). It was observed that distortions fluctuated when sequence-type, acquisition-orientation or receiver-bandwidth changed (e.g. within 300mm-DSV, the lowest/highest average distortions of VIBE were 0.40mm/0.59mm, a 47.5% difference). According to AAPM-TG66 (<1mm distortion, left-most column of Table 1c), PETRA (Largest-DSV:253.9mm) has the potential on brain treatment, while BLADE (Largest-DSV:207.2mm) may need improvement for thoracic/abdominal applications. The results of VIBE (Largest-DSVs:294.3mm, the best among tested acquisitions) and SPACE (Largest-DSVs:267.7mm) suggests their potentials on head and neck applications. These Largest-DSVs were attained on different acquisition-orientations and receiver-bandwidths. Conclusion: Geometric distortion was shown to be dependent on sequence-type, acquisition-orientation and receiver-bandwidth. In the experiment, no configuration in any one of these factors could consistently reduce distortion while the others were varying. The distortion analysis result is a valuable guideline for sequence selection and optimization for MR-aided radiotherapy applications.« less

  2. Reduction of Military Vehicle Acquisition Time and Cost through Advanced Modelling and Virtual Simulation (La reduction des couts et des delais d’acquisition des vehicules militaires par la modelisation avancee et la simulation de produit virtuel)

    DTIC Science & Technology

    2003-03-01

    nations, a very thorough examination of current practices. Introduction The Applied Vehicle Technology Panel (AVT) of the Research and Technology...the introduction of new information generated by computer codes required it to be timely and presented in appropriate fashion so that it could...military competition between the NATO allies and the Soviet Union. The second was the introduction of commercial, high capacity transonic aircraft and

  3. Computational Evaluation of the Traceback Method

    ERIC Educational Resources Information Center

    Kol, Sheli; Nir, Bracha; Wintner, Shuly

    2014-01-01

    Several models of language acquisition have emerged in recent years that rely on computational algorithms for simulation and evaluation. Computational models are formal and precise, and can thus provide mathematically well-motivated insights into the process of language acquisition. Such models are amenable to robust computational evaluation,…

  4. Cloud GPU-based simulations for SQUAREMR.

    PubMed

    Kantasis, George; Xanthis, Christos G; Haris, Kostas; Heiberg, Einar; Aletras, Anthony H

    2017-01-01

    Quantitative Magnetic Resonance Imaging (MRI) is a research tool, used more and more in clinical practice, as it provides objective information with respect to the tissues being imaged. Pixel-wise T 1 quantification (T 1 mapping) of the myocardium is one such application with diagnostic significance. A number of mapping sequences have been developed for myocardial T 1 mapping with a wide range in terms of measurement accuracy and precision. Furthermore, measurement results obtained with these pulse sequences are affected by errors introduced by the particular acquisition parameters used. SQUAREMR is a new method which has the potential of improving the accuracy of these mapping sequences through the use of massively parallel simulations on Graphical Processing Units (GPUs) by taking into account different acquisition parameter sets. This method has been shown to be effective in myocardial T 1 mapping; however, execution times may exceed 30min which is prohibitively long for clinical applications. The purpose of this study was to accelerate the construction of SQUAREMR's multi-parametric database to more clinically acceptable levels. The aim of this study was to develop a cloud-based cluster in order to distribute the computational load to several GPU-enabled nodes and accelerate SQUAREMR. This would accommodate high demands for computational resources without the need for major upfront equipment investment. Moreover, the parameter space explored by the simulations was optimized in order to reduce the computational load without compromising the T 1 estimates compared to a non-optimized parameter space approach. A cloud-based cluster with 16 nodes resulted in a speedup of up to 13.5 times compared to a single-node execution. Finally, the optimized parameter set approach allowed for an execution time of 28s using the 16-node cluster, without compromising the T 1 estimates by more than 10ms. The developed cloud-based cluster and optimization of the parameter set reduced the execution time of the simulations involved in constructing the SQUAREMR multi-parametric database thus bringing SQUAREMR's applicability within time frames that would be likely acceptable in the clinic. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. SU-C-206-07: A Practical Sparse View Ultra-Low Dose CT Acquisition Scheme for PET Attenuation Correction in the Extended Scan Field-Of-View

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, J; Fan, J; Gopinatha Pillai, A

    Purpose: To further reduce CT dose, a practical sparse-view acquisition scheme is proposed to provide the same attenuation estimation as higher dose for PET imaging in the extended scan field-of-view. Methods: CT scans are often used for PET attenuation correction and can be acquired at very low CT radiation dose. Low dose techniques often employ low tube voltage/current accompanied with a smooth filter before backprojection to reduce CT image noise. These techniques can introduce bias in the conversion from HU to attenuation values, especially in the extended CT scan field-of-view (FOV). In this work, we propose an ultra-low dose CTmore » technique for PET attenuation correction based on sparse-view acquisition. That is, instead of an acquisition of full amount of views, only a fraction of views are acquired. We tested this technique on a 64-slice GE CT scanner using multiple phantoms. CT scan FOV truncation completion was performed based on the published water-cylinder extrapolation algorithm. A number of continuous views per rotation: 984 (full), 246, 123, 82 and 62 have been tested, corresponding to a CT dose reduction of none, 4x, 8x, 12x and 16x. We also simulated sparse-view acquisition by skipping views from the fully-acquired view data. Results: FBP reconstruction with Q. AC filter on reduced views in the full extended scan field-of-view possesses similar image quality to the reconstruction on acquired full view data. The results showed a further potential for dose reduction compared to the full acquisition, without sacrificing any significant attenuation support to the PET. Conclusion: With the proposed sparse-view method, one can potential achieve at least 2x more CT dose reduction compared to the current Ultra-Low Dose (ULD) PET/CT protocol. A pre-scan based dose modulation scheme can be combined with the above sparse-view approaches, which can even further reduce the CT scan dose during a PET/CT exam.« less

  6. Distributed collaborative environments for virtual capability-based planning

    NASA Astrophysics Data System (ADS)

    McQuay, William K.

    2003-09-01

    Distributed collaboration is an emerging technology that will significantly change how decisions are made in the 21st century. Collaboration involves two or more geographically dispersed individuals working together to share and exchange data, information, knowledge, and actions. The marriage of information, collaboration, and simulation technologies provides the decision maker with a collaborative virtual environment for planning and decision support. This paper reviews research that is focusing on the applying open standards agent-based framework with integrated modeling and simulation to a new Air Force initiative in capability-based planning and the ability to implement it in a distributed virtual environment. Virtual Capability Planning effort will provide decision-quality knowledge for Air Force resource allocation and investment planning including examining proposed capabilities and cost of alternative approaches, the impact of technologies, identification of primary risk drivers, and creation of executable acquisition strategies. The transformed Air Force business processes are enabled by iterative use of constructive and virtual modeling, simulation, and analysis together with information technology. These tools are applied collaboratively via a technical framework by all the affected stakeholders - warfighter, laboratory, product center, logistics center, test center, and primary contractor.

  7. Stochastic models to demonstrate the effect of motivated testing on HIV incidence estimates using the serological testing algorithm for recent HIV seroconversion (STARHS).

    PubMed

    White, Edward W; Lumley, Thomas; Goodreau, Steven M; Goldbaum, Gary; Hawes, Stephen E

    2010-12-01

    To produce valid seroincidence estimates, the serological testing algorithm for recent HIV seroconversion (STARHS) assumes independence between infection and testing, which may be absent in clinical data. STARHS estimates are generally greater than cohort-based estimates of incidence from observable person-time and diagnosis dates. The authors constructed a series of partial stochastic models to examine whether testing motivated by suspicion of infection could bias STARHS. One thousand Monte Carlo simulations of 10,000 men who have sex with men were generated using parameters for HIV incidence and testing frequency from data from a clinical testing population in Seattle. In one set of simulations, infection and testing dates were independent. In another set, some intertest intervals were abbreviated to reflect the distribution of intervals between suspected HIV exposure and testing in a group of Seattle men who have sex with men recently diagnosed as having HIV. Both estimation methods were applied to the simulated datasets. Both cohort-based and STARHS incidence estimates were calculated using the simulated data and compared with previously calculated, empirical cohort-based and STARHS seroincidence estimates from the clinical testing population. Under simulated independence between infection and testing, cohort-based and STARHS incidence estimates resembled cohort estimates from the clinical dataset. Under simulated motivated testing, cohort-based estimates remained unchanged, but STARHS estimates were inflated similar to empirical STARHS estimates. Varying motivation parameters appreciably affected STARHS incidence estimates, but not cohort-based estimates. Cohort-based incidence estimates are robust against dependence between testing and acquisition of infection, whereas STARHS incidence estimates are not.

  8. Flexible mini gamma camera reconstructions of extended sources using step and shoot and list mode.

    PubMed

    Gardiazabal, José; Matthies, Philipp; Vogel, Jakob; Frisch, Benjamin; Navab, Nassir; Ziegler, Sibylle; Lasser, Tobias

    2016-12-01

    Hand- and robot-guided mini gamma cameras have been introduced for the acquisition of single-photon emission computed tomography (SPECT) images. Less cumbersome than whole-body scanners, they allow for a fast acquisition of the radioactivity distribution, for example, to differentiate cancerous from hormonally hyperactive lesions inside the thyroid. This work compares acquisition protocols and reconstruction algorithms in an attempt to identify the most suitable approach for fast acquisition and efficient image reconstruction, suitable for localization of extended sources, such as lesions inside the thyroid. Our setup consists of a mini gamma camera with precise tracking information provided by a robotic arm, which also provides reproducible positioning for our experiments. Based on a realistic phantom of the thyroid including hot and cold nodules as well as background radioactivity, the authors compare "step and shoot" (SAS) and continuous data (CD) acquisition protocols in combination with two different statistical reconstruction methods: maximum-likelihood expectation-maximization (ML-EM) for time-integrated count values and list-mode expectation-maximization (LM-EM) for individually detected gamma rays. In addition, the authors simulate lower uptake values by statistically subsampling the experimental data in order to study the behavior of their approach without changing other aspects of the acquired data. All compared methods yield suitable results, resolving the hot nodules and the cold nodule from the background. However, the CD acquisition is twice as fast as the SAS acquisition, while yielding better coverage of the thyroid phantom, resulting in qualitatively more accurate reconstructions of the isthmus between the lobes. For CD acquisitions, the LM-EM reconstruction method is preferable, as it yields comparable image quality to ML-EM at significantly higher speeds, on average by an order of magnitude. This work identifies CD acquisition protocols combined with LM-EM reconstruction as a prime candidate for the wider introduction of SPECT imaging with flexible mini gamma cameras in the clinical practice.

  9. 3D imaging, 3D printing and 3D virtual planning in endodontics.

    PubMed

    Shah, Pratik; Chong, B S

    2018-03-01

    The adoption and adaptation of recent advances in digital technology, such as three-dimensional (3D) printed objects and haptic simulators, in dentistry have influenced teaching and/or management of cases involving implant, craniofacial, maxillofacial, orthognathic and periodontal treatments. 3D printed models and guides may help operators plan and tackle complicated non-surgical and surgical endodontic treatment and may aid skill acquisition. Haptic simulators may assist in the development of competency in endodontic procedures through the acquisition of psycho-motor skills. This review explores and discusses the potential applications of 3D printed models and guides, and haptic simulators in the teaching and management of endodontic procedures. An understanding of the pertinent technology related to the production of 3D printed objects and the operation of haptic simulators are also presented.

  10. Simulator training to automaticity leads to improved skill transfer compared with traditional proficiency-based training: a randomized controlled trial.

    PubMed

    Stefanidis, Dimitrios; Scerbo, Mark W; Montero, Paul N; Acker, Christina E; Smith, Warren D

    2012-01-01

    We hypothesized that novices will perform better in the operating room after simulator training to automaticity compared with traditional proficiency based training (current standard training paradigm). Simulator-acquired skill translates to the operating room, but the skill transfer is incomplete. Secondary task metrics reflect the ability of trainees to multitask (automaticity) and may improve performance assessment on simulators and skill transfer by indicating when learning is complete. Novices (N = 30) were enrolled in an IRB-approved, blinded, randomized, controlled trial. Participants were randomized into an intervention (n = 20) and a control (n = 10) group. The intervention group practiced on the FLS suturing task until they achieved expert levels of time and errors (proficiency), were tested on a live porcine fundoplication model, continued simulator training until they achieved expert levels on a visual spatial secondary task (automaticity) and were retested on the operating room (OR) model. The control group participated only during testing sessions. Performance scores were compared within and between groups during testing sessions. : Intervention group participants achieved proficiency after 54 ± 14 and automaticity after additional 109 ± 57 repetitions. Participants achieved better scores in the OR after automaticity training [345 (range, 0-537)] compared with after proficiency-based training [220 (range, 0-452; P < 0.001]. Simulator training to automaticity takes more time but is superior to proficiency-based training, as it leads to improved skill acquisition and transfer. Secondary task metrics that reflect trainee automaticity should be implemented during simulator training to improve learning and skill transfer.

  11. GATE: a simulation toolkit for PET and SPECT.

    PubMed

    Jan, S; Santin, G; Strul, D; Staelens, S; Assié, K; Autret, D; Avner, S; Barbier, R; Bardiès, M; Bloomfield, P M; Brasse, D; Breton, V; Bruyndonckx, P; Buvat, I; Chatziioannou, A F; Choi, Y; Chung, Y H; Comtat, C; Donnarieix, D; Ferrer, L; Glick, S J; Groiselle, C J; Guez, D; Honore, P F; Kerhoas-Cavata, S; Kirov, A S; Kohli, V; Koole, M; Krieguer, M; van der Laan, D J; Lamare, F; Largeron, G; Lartizien, C; Lazaro, D; Maas, M C; Maigne, L; Mayet, F; Melot, F; Merheb, C; Pennacchio, E; Perez, J; Pietrzyk, U; Rannou, F R; Rey, M; Schaart, D R; Schmidtlein, C R; Simon, L; Song, T Y; Vieira, J M; Visvikis, D; Van de Walle, R; Wieërs, E; Morel, C

    2004-10-07

    Monte Carlo simulation is an essential tool in emission tomography that can assist in the design of new medical imaging devices, the optimization of acquisition protocols and the development or assessment of image reconstruction algorithms and correction techniques. GATE, the Geant4 Application for Tomographic Emission, encapsulates the Geant4 libraries to achieve a modular, versatile, scripted simulation toolkit adapted to the field of nuclear medicine. In particular, GATE allows the description of time-dependent phenomena such as source or detector movement, and source decay kinetics. This feature makes it possible to simulate time curves under realistic acquisition conditions and to test dynamic reconstruction algorithms. This paper gives a detailed description of the design and development of GATE by the OpenGATE collaboration, whose continuing objective is to improve, document and validate GATE by simulating commercially available imaging systems for PET and SPECT. Large effort is also invested in the ability and the flexibility to model novel detection systems or systems still under design. A public release of GATE licensed under the GNU Lesser General Public License can be downloaded at http:/www-lphe.epfl.ch/GATE/. Two benchmarks developed for PET and SPECT to test the installation of GATE and to serve as a tutorial for the users are presented. Extensive validation of the GATE simulation platform has been started, comparing simulations and measurements on commercially available acquisition systems. References to those results are listed. The future prospects towards the gridification of GATE and its extension to other domains such as dosimetry are also discussed.

  12. GATE - Geant4 Application for Tomographic Emission: a simulation toolkit for PET and SPECT

    PubMed Central

    Jan, S.; Santin, G.; Strul, D.; Staelens, S.; Assié, K.; Autret, D.; Avner, S.; Barbier, R.; Bardiès, M.; Bloomfield, P. M.; Brasse, D.; Breton, V.; Bruyndonckx, P.; Buvat, I.; Chatziioannou, A. F.; Choi, Y.; Chung, Y. H.; Comtat, C.; Donnarieix, D.; Ferrer, L.; Glick, S. J.; Groiselle, C. J.; Guez, D.; Honore, P.-F.; Kerhoas-Cavata, S.; Kirov, A. S.; Kohli, V.; Koole, M.; Krieguer, M.; van der Laan, D. J.; Lamare, F.; Largeron, G.; Lartizien, C.; Lazaro, D.; Maas, M. C.; Maigne, L.; Mayet, F.; Melot, F.; Merheb, C.; Pennacchio, E.; Perez, J.; Pietrzyk, U.; Rannou, F. R.; Rey, M.; Schaart, D. R.; Schmidtlein, C. R.; Simon, L.; Song, T. Y.; Vieira, J.-M.; Visvikis, D.; Van de Walle, R.; Wieërs, E.; Morel, C.

    2012-01-01

    Monte Carlo simulation is an essential tool in emission tomography that can assist in the design of new medical imaging devices, the optimization of acquisition protocols, and the development or assessment of image reconstruction algorithms and correction techniques. GATE, the Geant4 Application for Tomographic Emission, encapsulates the Geant4 libraries to achieve a modular, versatile, scripted simulation toolkit adapted to the field of nuclear medicine. In particular, GATE allows the description of time-dependent phenomena such as source or detector movement, and source decay kinetics. This feature makes it possible to simulate time curves under realistic acquisition conditions and to test dynamic reconstruction algorithms. This paper gives a detailed description of the design and development of GATE by the OpenGATE collaboration, whose continuing objective is to improve, document, and validate GATE by simulating commercially available imaging systems for PET and SPECT. Large effort is also invested in the ability and the flexibility to model novel detection systems or systems still under design. A public release of GATE licensed under the GNU Lesser General Public License can be downloaded at the address http://www-lphe.ep.ch/GATE/. Two benchmarks developed for PET and SPECT to test the installation of GATE and to serve as a tutorial for the users are presented. Extensive validation of the GATE simulation platform has been started, comparing simulations and measurements on commercially available acquisition systems. References to those results are listed. The future prospects toward the gridification of GATE and its extension to other domains such as dosimetry are also discussed. PMID:15552416

  13. Holographic interferometric and correlation-based laser speckle metrology for 3D deformations in dentistry

    NASA Astrophysics Data System (ADS)

    Dekiff, Markus; Kemper, Björn; Kröger, Elke; Denz, Cornelia; Dirksen, Dieter

    2017-03-01

    The mechanical loading of dental restorations and hard tissue is often investigated numerically. For validation and optimization of such simulations, comparisons with measured deformations are essential. We combine digital holographic interferometry and digital speckle photography for the determination of microscopic deformations with a photogrammetric method that is based on digital image correlation of a projected laser speckle pattern. This multimodal workstation allows the simultaneous acquisition of the specimen's macroscopic 3D shape and thus a quantitative comparison of measured deformations with simulation data. In order to demonstrate the feasibility of our system, two applications are presented: the quantitative determination of (1) the deformation of a mandible model due to mechanical loading of an inserted dental implant and of (2) the deformation of a (dental) bridge model under mechanical loading. The results were compared with data from finite element analyses of the investigated applications. The experimental results showed close agreement with those of the simulations.

  14. Time efficient whole-brain coverage with MR Fingerprinting using slice-interleaved echo-planar-imaging.

    PubMed

    Rieger, Benedikt; Akçakaya, Mehmet; Pariente, José C; Llufriu, Sara; Martinez-Heras, Eloy; Weingärtner, Sebastian; Schad, Lothar R

    2018-04-27

    Magnetic resonance fingerprinting (MRF) is a promising method for fast simultaneous quantification of multiple tissue parameters. The objective of this study is to improve the coverage of MRF based on echo-planar imaging (MRF-EPI) by using a slice-interleaved acquisition scheme. For this, the MRF-EPI is modified to acquire several slices in a randomized interleaved manner, increasing the effective repetition time of the spoiled gradient echo readout acquisition in each slice. Per-slice matching of the signal-trace to a precomputed dictionary allows the generation of T 1 and T 2 * maps with integrated B 1 + correction. Subsequent compensation for the coil sensitivity profile and normalization to the cerebrospinal fluid additionally allows for quantitative proton density (PD) mapping. Numerical simulations are performed to optimize the number of interleaved slices. Quantification accuracy is validated in phantom scans and feasibility is demonstrated in-vivo. Numerical simulations suggest the acquisition of four slices as a trade-off between quantification precision and scan-time. Phantom results indicate good agreement with reference measurements (Difference T 1 : -2.4 ± 1.1%, T 2 *: -0.5 ± 2.5%, PD: -0.5 ± 7.2%). In-vivo whole-brain coverage of T 1 , T 2 * and PD with 32 slices was acquired within 3:36 minutes, resulting in parameter maps of high visual quality and comparable performance with single-slice MRF-EPI at 4-fold scan-time reduction.

  15. Condition Number as a Measure of Noise Performance of Diffusion Tensor Data Acquisition Schemes with MRI

    NASA Astrophysics Data System (ADS)

    Skare, Stefan; Hedehus, Maj; Moseley, Michael E.; Li, Tie-Qiang

    2000-12-01

    Diffusion tensor mapping with MRI can noninvasively track neural connectivity and has great potential for neural scientific research and clinical applications. For each diffusion tensor imaging (DTI) data acquisition scheme, the diffusion tensor is related to the measured apparent diffusion coefficients (ADC) by a transformation matrix. With theoretical analysis we demonstrate that the noise performance of a DTI scheme is dependent on the condition number of the transformation matrix. To test the theoretical framework, we compared the noise performances of different DTI schemes using Monte-Carlo computer simulations and experimental DTI measurements. Both the simulation and the experimental results confirmed that the noise performances of different DTI schemes are significantly correlated with the condition number of the associated transformation matrices. We therefore applied numerical algorithms to optimize a DTI scheme by minimizing the condition number, hence improving the robustness to experimental noise. In the determination of anisotropic diffusion tensors with different orientations, MRI data acquisitions using a single optimum b value based on the mean diffusivity can produce ADC maps with regional differences in noise level. This will give rise to rotational variances of eigenvalues and anisotropy when diffusion tensor mapping is performed using a DTI scheme with a limited number of diffusion-weighting gradient directions. To reduce this type of artifact, a DTI scheme with not only a small condition number but also a large number of evenly distributed diffusion-weighting gradients in 3D is preferable.

  16. Monte Carlo simulation of semiconductor detector response to (222)Rn and (220)Rn environments.

    PubMed

    Irlinger, J; Trinkl, S; Wielunksi, M; Tschiersch, J; Rühm, W

    2016-07-01

    A new electronic radon/thoron monitor employing semiconductor detectors based on a passive diffusion chamber design has been recently developed at the Helmholtz Zentrum München (HMGU). This device allows for acquisition of alpha particle energy spectra, in order to distinguish alpha particles originating from radon and radon progeny decays, as well as those originating from thoron and its progeny decays. A Monte-Carlo application is described which uses the Geant4 toolkit to simulate these alpha particle spectra. Reasonable agreement between measured and simulated spectra were obtained for both (220)Rn and (222)Rn, in the energy range between 1 and 10 MeV. Measured calibration factors could be reproduced by the simulation, given the uncertainties involved in the measurement and simulation. The simulated alpha particle spectra can now be used to interpret spectra measured in mixed radon/thoron atmospheres. The results agreed well with measurements performed in both radon and thoron gas environments. It is concluded that the developed simulation allows for an accurate prediction of calibration factors and alpha particle energy spectra. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Virtual reality simulators and training in laparoscopic surgery.

    PubMed

    Yiannakopoulou, Eugenia; Nikiteas, Nikolaos; Perrea, Despina; Tsigris, Christos

    2015-01-01

    Virtual reality simulators provide basic skills training without supervision in a controlled environment, free of pressure of operating on patients. Skills obtained through virtual reality simulation training can be transferred on the operating room. However, relative evidence is limited with data available only for basic surgical skills and for laparoscopic cholecystectomy. No data exist on the effect of virtual reality simulation on performance on advanced surgical procedures. Evidence suggests that performance on virtual reality simulators reliably distinguishes experienced from novice surgeons Limited available data suggest that independent approach on virtual reality simulation training is not different from proctored approach. The effect of virtual reality simulators training on acquisition of basic surgical skills does not seem to be different from the effect the physical simulators. Limited data exist on the effect of virtual reality simulation training on the acquisition of visual spatial perception and stress coping skills. Undoubtedly, virtual reality simulation training provides an alternative means of improving performance in laparoscopic surgery. However, future research efforts should focus on the effect of virtual reality simulation on performance in the context of advanced surgical procedure, on standardization of training, on the possibility of synergistic effect of virtual reality simulation training combined with mental training, on personalized training. Copyright © 2014 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  18. Advanced Software Development Workstation Project

    NASA Technical Reports Server (NTRS)

    Lee, Daniel

    1989-01-01

    The Advanced Software Development Workstation Project, funded by Johnson Space Center, is investigating knowledge-based techniques for software reuse in NASA software development projects. Two prototypes have been demonstrated and a third is now in development. The approach is to build a foundation that provides passive reuse support, add a layer that uses domain-independent programming knowledge, add a layer that supports the acquisition of domain-specific programming knowledge to provide active support, and enhance maintainability and modifiability through an object-oriented approach. The development of new application software would use specification-by-reformulation, based on a cognitive theory of retrieval from very long-term memory in humans, and using an Ada code library and an object base. Current tasks include enhancements to the knowledge representation of Ada packages and abstract data types, extensions to support Ada package instantiation knowledge acquisition, integration with Ada compilers and relational databases, enhancements to the graphical user interface, and demonstration of the system with a NASA contractor-developed trajectory simulation package. Future work will focus on investigating issues involving scale-up and integration.

  19. Validity evidence for procedural competency in virtual reality robotic simulation, establishing a credible pass/fail standard for the vaginal cuff closure procedure.

    PubMed

    Hovgaard, Lisette Hvid; Andersen, Steven Arild Wuyts; Konge, Lars; Dalsgaard, Torur; Larsen, Christian Rifbjerg

    2018-03-30

    The use of robotic surgery for minimally invasive procedures has increased considerably over the last decade. Robotic surgery has potential advantages compared to laparoscopic surgery but also requires new skills. Using virtual reality (VR) simulation to facilitate the acquisition of these new skills could potentially benefit training of robotic surgical skills and also be a crucial step in developing a robotic surgical training curriculum. The study's objective was to establish validity evidence for a simulation-based test for procedural competency for the vaginal cuff closure procedure that can be used in a future simulation-based, mastery learning training curriculum. Eleven novice gynaecological surgeons without prior robotic experience and 11 experienced gynaecological robotic surgeons (> 30 robotic procedures) were recruited. After familiarization with the VR simulator, participants completed the module 'Guided Vaginal Cuff Closure' six times. Validity evidence was investigated for 18 preselected simulator metrics. The internal consistency was assessed using Cronbach's alpha and a composite score was calculated based on metrics with significant discriminative ability between the two groups. Finally, a pass/fail standard was established using the contrasting groups' method. The experienced surgeons significantly outperformed the novice surgeons on 6 of the 18 metrics. The internal consistency was 0.58 (Cronbach's alpha). The experienced surgeons' mean composite score for all six repetitions were significantly better than the novice surgeons' (76.1 vs. 63.0, respectively, p < 0.001). A pass/fail standard of 75/100 was established. Four novice surgeons passed this standard (false positives) and three experienced surgeons failed (false negatives). Our study has gathered validity evidence for a simulation-based test for procedural robotic surgical competency in the vaginal cuff closure procedure and established a credible pass/fail standard for future proficiency-based training.

  20. [Acquiring skills in malignant hyperthermia crisis management: comparison of high-fidelity simulation versus computer-based case study].

    PubMed

    Mejía, Vilma; Gonzalez, Carlos; Delfino, Alejandro E; Altermatt, Fernando R; Corvetto, Marcia A

    The primary purpose of this study was to compare the effect of high fidelity simulation versus a computer-based case solving self-study, in skills acquisition about malignant hyperthermia on first year anesthesiology residents. After institutional ethical committee approval, 31 first year anesthesiology residents were enrolled in this prospective randomized single-blinded study. Participants were randomized to either a High Fidelity Simulation Scenario or a computer-based Case Study about malignant hyperthermia. After the intervention, all subjects' performance in was assessed through a high fidelity simulation scenario using a previously validated assessment rubric. Additionally, knowledge tests and a satisfaction survey were applied. Finally, a semi-structured interview was done to assess self-perception of reasoning process and decision-making. 28 first year residents finished successfully the study. Resident's management skill scores were globally higher in High Fidelity Simulation versus Case Study, however they were significant in 4 of the 8 performance rubric elements: recognize signs and symptoms (p = 0.025), prioritization of initial actions of management (p = 0.003), recognize complications (p = 0.025) and communication (p = 0.025). Average scores from pre- and post-test knowledge questionnaires improved from 74% to 85% in the High Fidelity Simulation group, and decreased from 78% to 75% in the Case Study group (p = 0.032). Regarding the qualitative analysis, there was no difference in factors influencing the student's process of reasoning and decision-making with both teaching strategies. Simulation-based training with a malignant hyperthermia high-fidelity scenario was superior to computer-based case study, improving knowledge and skills in malignant hyperthermia crisis management, with a very good satisfaction level in anesthesia residents. Copyright © 2018 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  1. Dual-TRACER: High resolution fMRI with constrained evolution reconstruction.

    PubMed

    Li, Xuesong; Ma, Xiaodong; Li, Lyu; Zhang, Zhe; Zhang, Xue; Tong, Yan; Wang, Lihong; Sen Song; Guo, Hua

    2018-01-01

    fMRI with high spatial resolution is beneficial for studies in psychology and neuroscience, but is limited by various factors such as prolonged imaging time, low signal to noise ratio and scarcity of advanced facilities. Compressed Sensing (CS) based methods for accelerating fMRI data acquisition are promising. Other advanced algorithms like k-t FOCUSS or PICCS have been developed to improve performance. This study aims to investigate a new method, Dual-TRACER, based on Temporal Resolution Acceleration with Constrained Evolution Reconstruction (TRACER), for accelerating fMRI acquisitions using golden angle variable density spiral. Both numerical simulations and in vivo experiments at 3T were conducted to evaluate and characterize this method. Results show that Dual-TRACER can provide functional images with a high spatial resolution (1×1mm 2 ) under an acceleration factor of 20 while maintaining hemodynamic signals well. Compared with other investigated methods, dual-TRACER provides a better signal recovery, higher fMRI sensitivity and more reliable activation detection. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Optimal weighted averaging of event related activity from acquisitions with artifacts.

    PubMed

    Vollero, Luca; Petrichella, Sara; Innello, Giulio

    2016-08-01

    In several biomedical applications that require the signal processing of biological data, the starting procedure for noise reduction is the ensemble averaging of multiple repeated acquisitions (trials). This method is based on the assumption that each trial is composed of two additive components: (i) a time-locked activity related to some sensitive/stimulation phenomenon (ERA, Event Related Activity in the following) and (ii) a sum of several other non time-locked background activities. The averaging aims at estimating the ERA activity under very low Signal to Noise and Interference Ratio (SNIR). Although averaging is a well established tool, its performance can be improved in the presence of high-power disturbances (artifacts) by a trials classification and removal stage. In this paper we propose, model and evaluate a new approach that avoids trials removal, managing trials classified as artifact-free and artifact-prone with two different weights. Based on the model, a weights tuning is possible and through modeling and simulations we show that, when optimally configured, the proposed solution outperforms classical approaches.

  3. Synchronous acquisition of multi-channel signals by single-channel ADC based on square wave modulation

    NASA Astrophysics Data System (ADS)

    Yi, Xiaoqing; Hao, Liling; Jiang, Fangfang; Xu, Lisheng; Song, Shaoxiu; Li, Gang; Lin, Ling

    2017-08-01

    Synchronous acquisition of multi-channel biopotential signals, such as electrocardiograph (ECG) and electroencephalograph, has vital significance in health care and clinical diagnosis. In this paper, we proposed a new method which is using single channel ADC to acquire multi-channel biopotential signals modulated by square waves synchronously. In this method, a specific modulate and demodulate method has been investigated without complex signal processing schemes. For each channel, the sampling rate would not decline with the increase of the number of signal channels. More specifically, the signal-to-noise ratio of each channel is n times of the time-division method or an improvement of 3.01 ×log2n dB, where n represents the number of the signal channels. A numerical simulation shows the feasibility and validity of this method. Besides, a newly developed 8-lead ECG based on the new method has been introduced. These experiments illustrate that the method is practicable and thus is potential for low-cost medical monitors.

  4. EM reconstruction of dual isotope PET using staggered injections and prompt gamma positron emitters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreyev, Andriy, E-mail: andriy.andreyev-1@philips.com; Sitek, Arkadiusz; Celler, Anna

    2014-02-15

    Purpose: The aim of dual isotope positron emission tomography (DIPET) is to create two separate images of two coinjected PET radiotracers. DIPET shortens the duration of the study, reduces patient discomfort, and produces perfectly coregistered images compared to the case when two radiotracers would be imaged independently (sequential PET studies). Reconstruction of data from such simultaneous acquisition of two PET radiotracers is difficult because positron decay of any isotope creates only 511 keV photons; therefore, the isotopes cannot be differentiated based on the detected energy. Methods: Recently, the authors have proposed a DIPET technique that uses a combination of radiotracermore » A which is a pure positron emitter (such as{sup 18}F or {sup 11}C) and radiotracer B in which positron decay is accompanied by the emission of a high-energy (HE) prompt gamma (such as {sup 38}K or {sup 60}Cu). Events that are detected as triple coincidences of HE gammas with the corresponding two 511 keV photons allow the authors to identify the lines-of-response (LORs) of isotope B. These LORs are used to separate the two intertwined distributions, using a dedicated image reconstruction algorithm. In this work the authors propose a new version of the DIPET EM-based reconstruction algorithm that allows the authors to include an additional, independent estimate of radiotracer A distribution which may be obtained if radioisotopes are administered using a staggered injections method. In this work the method is tested on simple simulations of static PET acquisitions. Results: The authors’ experiments performed using Monte-Carlo simulations with static acquisitions demonstrate that the combined method provides better results (crosstalk errors decrease by up to 50%) than the positron-gamma DIPET method or staggered injections alone. Conclusions: The authors demonstrate that the authors’ new EM algorithm which combines information from triple coincidences with prompt gammas and staggered injections improves the accuracy of DIPET reconstructions for static acquisitions so they reach almost the benchmark level calculated for perfectly separated tracers.« less

  5. Detection of pointing errors with CMOS-based camera in intersatellite optical communications

    NASA Astrophysics Data System (ADS)

    Yu, Si-yuan; Ma, Jing; Tan, Li-ying

    2005-01-01

    For very high data rates, intersatellite optical communications hold a potential performance edge over microwave communications. Acquisition and Tracking problem is critical because of the narrow transmit beam. A single array detector in some systems performs both spatial acquisition and tracking functions to detect pointing errors, so both wide field of view and high update rate is required. The past systems tend to employ CCD-based camera with complex readout arrangements, but the additional complexity reduces the applicability of the array based tracking concept. With the development of CMOS array, CMOS-based cameras can employ the single array detector concept. The area of interest feature of the CMOS-based camera allows a PAT system to specify portion of the array. The maximum allowed frame rate increases as the size of the area of interest decreases under certain conditions. A commercially available CMOS camera with 105 fps @ 640×480 is employed in our PAT simulation system, in which only part pixels are used in fact. Beams angle varying in the field of view can be detected after getting across a Cassegrain telescope and an optical focus system. Spot pixel values (8 bits per pixel) reading out from CMOS are transmitted to a DSP subsystem via IEEE 1394 bus, and pointing errors can be computed by the centroid equation. It was shown in test that: (1) 500 fps @ 100×100 is available in acquisition when the field of view is 1mrad; (2)3k fps @ 10×10 is available in tracking when the field of view is 0.1mrad.

  6. SU-F-J-181: An Alternative Patient Alignment Tool On TomoTherapy: The First In- Human Megavoltage-Topogram Acquisition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, L; Low, D; Lee, P

    Purpose: To show the first in-human Megavoltage (MV)-Topogram acquisition for the evaluation of the potential for MV-Topogram-based alignment as an alternative to MVCT for reducing dose and imaging time. Methods: A lung cancer patient was enrolled in an ongoing IRB-approved clinical trial at our institute. The patient was set up using the clinical protocol employing positioning lasers. 3.2mm diameter tungsten spheres were placed on the patient’s skin at their alignment tattoos to check surface-based marker concordance between topograms and MVCT. Anterior-Posterior (AP) and lateral (LAT) MV-Topograms were acquired using gantry angles of 0°/90° with a 1mm collimator opening, all MLCmore » leafs open, 4cm/s couch speed, and 12.5s scanning time. The topogram acquisition was immediately followed by the normal MVCT scan acquisition. MV-Topograms were reconstructed from the detector exit-data using in-house developed software. The topograms were also enhanced using contrast-limited adaptive histogram equalization (CLAHE). The MV-Topograms were registered to reference kV-based digitally reconstructed topograms. The localization results were compared against results obtained comparing the clinical MVCT to the kVCT simulation. Results: The shifts using the unenhanced Topograms, enhanced Topograms, and MVCT were (LAT, LONG, VERT, ROLL) (5.8mm, 2.6mm, −5.6mm, 0.34°), (3.9mm, 2.5mm, −2.2mm, 0.65°) and (2.4mm, 1.5mm, −3.0mm, 0.5°), respectively. The magnitude alignment differences between the enhanced Topograms and MVCT were within 1.5 mm and 0.15°. The average MVCT and total Topogram acquisition times were 272.9s ± 31.5s and 46s, respectively. Conclusion: MV-Topograms have the potential for providing equivalent performance with less dose and acquisition time than the traditional MVCT technique. We are evaluating other sites as well as adding patients to develop statistically significant analyses regarding the alignment quality differences. MV-Topograms are likely to be most clinically useful for bony anatomy and radiopaque marker-based alignments. The study was supported by an Accuray Grant.« less

  7. Design and application of BIM based digital sand table for construction management

    NASA Astrophysics Data System (ADS)

    Fuquan, JI; Jianqiang, LI; Weijia, LIU

    2018-05-01

    This paper explores the design and application of BIM based digital sand table for construction management. Aiming at the demands and features of construction management plan for bridge and tunnel engineering, the key functional features of digital sand table should include three-dimensional GIS, model navigation, virtual simulation, information layers, and data exchange, etc. That involving the technology of 3D visualization and 4D virtual simulation of BIM, breakdown structure of BIM model and project data, multi-dimensional information layers, and multi-source data acquisition and interaction. Totally, the digital sand table is a visual and virtual engineering information integrated terminal, under the unified data standard system. Also, the applications shall contain visual constructing scheme, virtual constructing schedule, and monitoring of construction, etc. Finally, the applicability of several basic software to the digital sand table is analyzed.

  8. Three-dimensional spatially curved local Bessel beams generated by metasurface

    NASA Astrophysics Data System (ADS)

    Liu, Dawei; Wu, Jiawen; Cheng, Bo; Li, Hongliang

    2018-03-01

    We propose a reflective metasurface based on an artificial admittance modulation surface to generate three-dimensional spatially curved beams. The phase acquisition utilized to modulate this sinusoidally varying surface admittance combines the enveloping theory of differential geometry and the method for producing two-dimensional Bessel beams. The metasurface is fabricated, and the comparison between the full-wave simulations and experimental results demonstrates good performance of three-dimensional spatially curved beams generated by the metasurface.

  9. Evaluation Of Model Based Systems Engineering Processes For Integration Into Rapid Acquisition Programs

    DTIC Science & Technology

    2016-09-01

    Failure MTBCF Mean Time Between Critical Failure MIRV Multiple Independently-targetable Reentry Vehicle MK6LE MK6 Guidance System Life Extension...programs were the MK54 Lightweight Torpedo program, a Raytheon Radar program, and the Life Extension of the MK6 Guidance System (MK6LE) of the...activities throughout the later life -cycle phases. MBSE allowed the programs to manage the evolution of simulation capabilities, as well as to assess the

  10. A Five-Dimensional Mathematical Model for Regional and Global Changes in Cardiac Uptake and Motion

    NASA Astrophysics Data System (ADS)

    Pretorius, P. H.; King, M. A.; Gifford, H. C.

    2004-10-01

    The objective of this work was to simultaneously introduce known regional changes in contraction pattern and perfusion to the existing gated Mathematical Cardiac Torso (MCAT) phantom heart model. We derived a simple integral to calculate the fraction of the ellipsoidal volume that makes up the left ventricle (LV), taking into account the stationary apex and the moving base. After calculating the LV myocardium volume of the existing beating heart model, we employed the property of conservation of mass to manipulate the LV ejection fraction to values ranging between 13.5% and 68.9%. Multiple dynamic heart models that differ in degree of LV wall thickening, base-to-apex motion, and ejection fraction, are thus available for use with the existing MCAT methodology. To introduce more complex regional LV contraction and perfusion patterns, we used composites of dynamic heart models to create a central region with little or no motion or perfusion, surrounded by a region in which the motion and perfusion gradually reverts to normal. To illustrate this methodology, the following gated cardiac acquisitions for different clinical situations were simulated analytically: 1) reduced regional motion and perfusion; 2) same perfusion as in (1) without motion intervention; and 3) washout from the normal and diseased myocardial regions. Both motion and perfusion can change dynamically during a single rotation or multiple rotations of a simulated single-photon emission computed tomography acquisition system.

  11. Acquisition of fundamental laparoscopic skills: is a box really as good as a virtual reality trainer?

    PubMed

    Vitish-Sharma, P; Knowles, J; Patel, B

    2011-01-01

    Laparoscopic surgery requires working in a three-dimensional environment with a two-dimensional view. Skills such as depth perception, hand to eye co-ordination and bimanual manipulation are crucial to its efficacy. To compare the efficiency of training in laparoscopic skills on a VR simulator with a traditional box trainer. Twenty medical students were recruited. An initial training session on the relevant anatomy and steps of a laparoscopic cholecystectomy was given. Baseline skills were recorded using a pre-training laparoscopic cholecystectomy on the VR trainer. Parameters measured were: (1) total time taken (mins); (2) number of movements right and left instrument; (3) path length (cms) of right and left instrument was recorded. Ten students trained on a VR simulator, and ten on a box trainer, for three hours each. The box trainer group exercises were based on the Royal College of Surgeons core laparoscopic skills course, and the VR trainer exercises were based on the Simbionix LapMentor basic skills tasks. Following this both groups were reassessed by a laparoscopic cholecystectomy on the VR trainer. Both groups showed improvement in all measured parameters. A student T-test at 95% confidence interval showed no statistically significant difference between the two groups pre and post training. Both the VR and box trainer are effective in the acquisition of laparoscopic skills. Copyright © 2011 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  12. Rule-based simulation models

    NASA Technical Reports Server (NTRS)

    Nieten, Joseph L.; Seraphine, Kathleen M.

    1991-01-01

    Procedural modeling systems, rule based modeling systems, and a method for converting a procedural model to a rule based model are described. Simulation models are used to represent real time engineering systems. A real time system can be represented by a set of equations or functions connected so that they perform in the same manner as the actual system. Most modeling system languages are based on FORTRAN or some other procedural language. Therefore, they must be enhanced with a reaction capability. Rule based systems are reactive by definition. Once the engineering system has been decomposed into a set of calculations using only basic algebraic unary operations, a knowledge network of calculations and functions can be constructed. The knowledge network required by a rule based system can be generated by a knowledge acquisition tool or a source level compiler. The compiler would take an existing model source file, a syntax template, and a symbol table and generate the knowledge network. Thus, existing procedural models can be translated and executed by a rule based system. Neural models can be provide the high capacity data manipulation required by the most complex real time models.

  13. Evaluation of PeneloPET Simulations of Biograph PET/CT Scanners

    NASA Astrophysics Data System (ADS)

    Abushab, K. M.; Herraiz, J. L.; Vicente, E.; Cal-González, J.; España, S.; Vaquero, J. J.; Jakoby, B. W.; Udías, J. M.

    2016-06-01

    Monte Carlo (MC) simulations are widely used in positron emission tomography (PET) for optimizing detector design, acquisition protocols, and evaluating corrections and reconstruction methods. PeneloPET is a MC code based on PENELOPE, for PET simulations which considers detector geometry, acquisition electronics and materials, and source definitions. While PeneloPET has been successfully employed and validated with small animal PET scanners, it required a proper validation with clinical PET scanners including time-of-flight (TOF) information. For this purpose, we chose the family of Biograph PET/CT scanners: the Biograph True-Point (B-TP), Biograph True-Point with TrueV (B-TPTV) and the Biograph mCT. They have similar block detectors and electronics, but a different number of rings and configuration. Some effective parameters of the simulations, such as the dead-time and the size of the reflectors in the detectors, were adjusted to reproduce the sensitivity and noise equivalent count (NEC) rate of the B-TPTV scanner. These parameters were then used to make predictions of experimental results such as sensitivity, NEC rate, spatial resolution, and scatter fraction (SF), from all the Biograph scanners and some variations of them (energy windows and additional rings of detectors). Predictions agree with the measured values for the three scanners, within 7% (sensitivity and NEC rate) and 5% (SF). The resolution obtained for the B-TPTV is slightly better (10%) than the experimental values. In conclusion, we have shown that PeneloPET is suitable for simulating and investigating clinical systems with good accuracy and short computational time, though some effort tuning of a few parameters of the scanners modeled may be needed in case that the full details of the scanners studied are not available.

  14. Design of Multishell Sampling Schemes with Uniform Coverage in Diffusion MRI

    PubMed Central

    Caruyer, Emmanuel; Lenglet, Christophe; Sapiro, Guillermo; Deriche, Rachid

    2017-01-01

    Purpose In diffusion MRI, a technique known as diffusion spectrum imaging reconstructs the propagator with a discrete Fourier transform, from a Cartesian sampling of the diffusion signal. Alternatively, it is possible to directly reconstruct the orientation distribution function in q-ball imaging, providing so-called high angular resolution diffusion imaging. In between these two techniques, acquisitions on several spheres in q-space offer an interesting trade-off between the angular resolution and the radial information gathered in diffusion MRI. A careful design is central in the success of multishell acquisition and reconstruction techniques. Methods The design of acquisition in multishell is still an open and active field of research, however. In this work, we provide a general method to design multishell acquisition with uniform angular coverage. This method is based on a generalization of electrostatic repulsion to multishell. Results We evaluate the impact of our method using simulations, on the angular resolution in one and two bundles of fiber configurations. Compared to more commonly used radial sampling, we show that our method improves the angular resolution, as well as fiber crossing discrimination. Discussion We propose a novel method to design sampling schemes with optimal angular coverage and show the positive impact on angular resolution in diffusion MRI. PMID:23625329

  15. Design, Implementation, and Evaluation of a Simulation-Based Clinical Correlation Curriculum as an Adjunctive Pedagogy in an Anatomy Course.

    PubMed

    Coombs, Carmen M; Shields, Ryan Y; Hunt, Elizabeth A; Lum, Ying Wei; Sosnay, Patrick R; Perretta, Julianne S; Lieberman, Rhett H; Shilkofski, Nicole A

    2017-04-01

    Because reported use of simulation in preclinical basic science courses is limited, the authors describe the design, implementation, and preliminary evaluation of a simulation-based clinical correlation curriculum in an anatomy course for first-year medical students at Perdana University Graduate School of Medicine (in collaboration with Johns Hopkins University School of Medicine). The simulation curriculum, with five weekly modules, was a component of a noncadaveric human anatomy course for three classes (n = 81 students) from September 2011 to November 2013. The modules were designed around major anatomical regions (thorax; abdomen and pelvis; lower extremities and back; upper extremities; and head and neck) and used various types of simulation (standardized patients, high-fidelity simulators, and task trainers). Several methods were used to evaluate the curriculum's efficacy, including comparing pre- versus posttest scores and comparing posttest scores against the score on 15 clinical correlation final exam questions. A total of 81 students (response rate: 100%) completed all pre- and posttests and consented to participate. Posttest scores suggest significant knowledge acquisition and better consistency of performance after participation in the curriculum. The comparison of performance on the posttests and final exam suggests that using simulation as an adjunctive pedagogy can lead to excellent short-term knowledge retention. Simulation-based medical education may prove useful in preclinical basic science curricula. Next steps should be to validate the use of this approach, demonstrate cost-efficacy or the "return on investment" for educational and institutional leadership, and examine longer-term knowledge retention.

  16. Novel Maximum-based Timing Acquisition for Spread-Spectrum Communications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sibbetty, Taylor; Moradiz, Hussein; Farhang-Boroujeny, Behrouz

    This paper proposes and analyzes a new packet detection and timing acquisition method for spread spectrum systems. The proposed method provides an enhancement over the typical thresholding techniques that have been proposed for direct sequence spread spectrum (DS-SS). The effective implementation of thresholding methods typically require accurate knowledge of the received signal-to-noise ratio (SNR), which is particularly difficult to estimate in spread spectrum systems. Instead, we propose a method which utilizes a consistency metric of the location of maximum samples at the output of a filter matched to the spread spectrum waveform to achieve acquisition, and does not require knowledgemore » of the received SNR. Through theoretical study, we show that the proposed method offers a low probability of missed detection over a large range of SNR with a corresponding probability of false alarm far lower than other methods. Computer simulations that corroborate our theoretical results are also presented. Although our work here has been motivated by our previous study of a filter bank multicarrier spread-spectrum (FB-MC-SS) system, the proposed method is applicable to DS-SS systems as well.« less

  17. Distributed practice. The more the merrier? A randomised bronchoscopy simulation study.

    PubMed

    Bjerrum, Anne Sofie; Eika, Berit; Charles, Peder; Hilberg, Ole

    2016-01-01

    The distribution of practice affects the acquisition of skills. Distributed practice has shown to be more effective for skills acquisition than massed training. However, it remains unknown as to which is the most effective distributed practice schedule for learning bronchoscopy skills through simulation training. This study compares two distributed practice schedules: One-day distributed practice and weekly distributed practice. Twenty physicians in training were randomly assigned to one-day distributed or weekly distributed bronchoscopy simulation practice. Performance was assessed with a pre-test, a post-test after each practice session, and a 4-week retention test using previously validated simulator measures. Data were analysed with repeated measures ANOVA. No interaction was found between group and test (F(4,72) <1.68, p>0.16), except for the measure 'percent-segments-entered', and no main effect of group was found for any of the measures (F(1,72)< 0.87, p>0.36), which indicates that there was no difference between the learning curves of the one-day distributed practice schedule and the weekly distributed practice schedule. We found no difference in effectiveness of bronchoscopy skills acquisition between the one-day distributed practice and the weekly distributed practice. This finding suggests that the choice of bronchoscopy training practice may be guided by what best suits the clinical practice.

  18. Nuclear Thermal Rocket Element Environmental Simulator (NTREES)

    NASA Technical Reports Server (NTRS)

    Schoenfeld, Michael

    2009-01-01

    A detailed description of the Nuclear Thermal Rocket Element Environmental Simulator (NTREES) is presented. The contents include: 1) Design Requirements; 2) NTREES Layout; 3) Data Acquisition and Control System Schematics; 4) NTREES System Schematic; and 5) NTREES Setup.

  19. Adaptive Search through Constraint Violations

    DTIC Science & Technology

    1990-01-01

    procedural) knowledge? Different methodologies are used to investigate these questions: Psychological experiments, computer simulations, historical studies...learns control knowledge through adaptive search. Unlike most other psychological models of skill acquisition, HS is a model of analytical, or...Newzll, 1986; VanLehn, in press). Psychological models of skill acquisition employ different problem solving mechanisms (forward search, backward

  20. Efficient scatter model for simulation of ultrasound images from computed tomography data

    NASA Astrophysics Data System (ADS)

    D'Amato, J. P.; Lo Vercio, L.; Rubi, P.; Fernandez Vera, E.; Barbuzza, R.; Del Fresno, M.; Larrabide, I.

    2015-12-01

    Background and motivation: Real-time ultrasound simulation refers to the process of computationally creating fully synthetic ultrasound images instantly. Due to the high value of specialized low cost training for healthcare professionals, there is a growing interest in the use of this technology and the development of high fidelity systems that simulate the acquisitions of echographic images. The objective is to create an efficient and reproducible simulator that can run either on notebooks or desktops using low cost devices. Materials and methods: We present an interactive ultrasound simulator based on CT data. This simulator is based on ray-casting and provides real-time interaction capabilities. The simulation of scattering that is coherent with the transducer position in real time is also introduced. Such noise is produced using a simplified model of multiplicative noise and convolution with point spread functions (PSF) tailored for this purpose. Results: The computational efficiency of scattering maps generation was revised with an improved performance. This allowed a more efficient simulation of coherent scattering in the synthetic echographic images while providing highly realistic result. We describe some quality and performance metrics to validate these results, where a performance of up to 55fps was achieved. Conclusion: The proposed technique for real-time scattering modeling provides realistic yet computationally efficient scatter distributions. The error between the original image and the simulated scattering image was compared for the proposed method and the state-of-the-art, showing negligible differences in its distribution.

  1. Use of high performance networks and supercomputers for real-time flight simulation

    NASA Technical Reports Server (NTRS)

    Cleveland, Jeff I., II

    1993-01-01

    In order to meet the stringent time-critical requirements for real-time man-in-the-loop flight simulation, computer processing operations must be consistent in processing time and be completed in as short a time as possible. These operations include simulation mathematical model computation and data input/output to the simulators. In 1986, in response to increased demands for flight simulation performance, NASA's Langley Research Center (LaRC), working with the contractor, developed extensions to the Computer Automated Measurement and Control (CAMAC) technology which resulted in a factor of ten increase in the effective bandwidth and reduced latency of modules necessary for simulator communication. This technology extension is being used by more than 80 leading technological developers in the United States, Canada, and Europe. Included among the commercial applications are nuclear process control, power grid analysis, process monitoring, real-time simulation, and radar data acquisition. Personnel at LaRC are completing the development of the use of supercomputers for mathematical model computation to support real-time flight simulation. This includes the development of a real-time operating system and development of specialized software and hardware for the simulator network. This paper describes the data acquisition technology and the development of supercomputing for flight simulation.

  2. Background of SAM atom-fraction profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ernst, Frank

    Atom-fraction profiles acquired by SAM (scanning Auger microprobe) have important applications, e.g. in the context of alloy surface engineering by infusion of carbon or nitrogen through the alloy surface. However, such profiles often exhibit an artifact in form of a background with a level that anti-correlates with the local atom fraction. This article presents a theory explaining this phenomenon as a consequence of the way in which random noise in the spectrum propagates into the discretized differentiated spectrum that is used for quantification. The resulting model of “energy channel statistics” leads to a useful semi-quantitative background reduction procedure, which ismore » validated by applying it to simulated data. Subsequently, the procedure is applied to an example of experimental SAM data. The analysis leads to conclusions regarding optimum experimental acquisition conditions. The proposed method of background reduction is based on general principles and should be useful for a broad variety of applications. - Highlights: • Atom-fraction–depth profiles of carbon measured by scanning Auger microprobe • Strong background, varies with local carbon concentration. • Needs correction e.g. for quantitative comparison with simulations • Quantitative theory explains background. • Provides background removal strategy and practical advice for acquisition.« less

  3. Characterization of imaging performance in differential phase contrast CT compared with the conventional CT: Spectrum of noise equivalent quanta NEQ(k)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang Xiangyang; Yang Yi; Tang Shaojie

    Purpose: Differential phase contrast CT (DPC-CT) is emerging as a new technology to improve the contrast sensitivity of conventional attenuation-based CT. The noise equivalent quanta as a function over spatial frequency, i.e., the spectrum of noise equivalent quanta NEQ(k), is a decisive indicator of the signal and noise transfer properties of an imaging system. In this work, we derive the functional form of NEQ(k) in DPC-CT. Via system modeling, analysis, and computer simulation, we evaluate and verify the derived NEQ(k) and compare it with that of the conventional attenuation-based CT. Methods: The DPC-CT is implemented with x-ray tube and gratings.more » The x-ray propagation and data acquisition are modeled and simulated through Fresnel and Fourier analysis. A monochromatic x-ray source (30 keV) is assumed to exclude any system imperfection and interference caused by scatter and beam hardening, while a 360 Degree-Sign full scan is carried out in data acquisition to avoid any weighting scheme that may disrupt noise randomness. Adequate upsampling is implemented to simulate the x-ray beam's propagation through the gratings G{sub 1} and G{sub 2} with periods 8 and 4 {mu}m, respectively, while the intergrating distance is 193.6 mm (1/16 of the Talbot distance). The dimensions of the detector cell for data acquisition are 32 Multiplication-Sign 32, 64 Multiplication-Sign 64, 96 Multiplication-Sign 96, and 128 Multiplication-Sign 128 {mu}m{sup 2}, respectively, corresponding to a 40.96 Multiplication-Sign 40.96 mm{sup 2} field of view in data acquisition. An air phantom is employed to obtain the noise power spectrum NPS(k), spectrum of noise equivalent quanta NEQ(k), and detective quantum efficiency DQE(k). A cylindrical water phantom at 5.1 mm diameter and complex refraction coefficient n= 1 -{delta}+i{beta}= 1 -2.5604 Multiplication-Sign 10{sup -7}+i1.2353 Multiplication-Sign 10{sup -10} is placed in air to measure the edge transfer function, line spread function and then modulation transfer function MTF(k), of both DPC-CT and the conventional attenuation-based CT. The x-ray flux is set at 5 Multiplication-Sign 10{sup 6} photon/cm{sup 2} per projection and observes the Poisson distribution, which is consistent with that of a micro-CT for preclinical applications. Approximately 360 regions, each at 128 Multiplication-Sign 128 matrix, are used to calculate the NPS(k) via 2D Fourier transform, in which adequate zero padding is carried out to avoid aliasing in noise. Results: The preliminary data show that the DPC-CT possesses a signal transfer property [MTF(k)] comparable to that of the conventional attenuation-based CT. Meanwhile, though there exists a radical difference in their noise power spectrum NPS(k) (trait 1/|k| in DPC-CT but |k| in the conventional attenuation-based CT) the NEQ(k) and DQE(k) of DPC-CT and the conventional attenuation-based CT are in principle identical. Conclusions: Under the framework of ideal observer study, the joint signal and noise transfer property NEQ(k) and detective quantum efficiency DQE(k) of DPC-CT are essentially the same as those of the conventional attenuation-based CT. The findings reported in this paper may provide insightful guidelines on the research, development, and performance optimization of DPC-CT for extensive preclinical and clinical applications in the future.« less

  4. Realistic simulated MRI and SPECT databases. Application to SPECT/MRI registration evaluation.

    PubMed

    Aubert-Broche, Berengere; Grova, Christophe; Reilhac, Anthonin; Evans, Alan C; Collins, D Louis

    2006-01-01

    This paper describes the construction of simulated SPECT and MRI databases that account for realistic anatomical and functional variability. The data is used as a gold-standard to evaluate four SPECT/MRI similarity-based registration methods. Simulation realism was accounted for using accurate physical models of data generation and acquisition. MRI and SPECT simulations were generated from three subjects to take into account inter-subject anatomical variability. Functional SPECT data were computed from six functional models of brain perfusion. Previous models of normal perfusion and ictal perfusion observed in Mesial Temporal Lobe Epilepsy (MTLE) were considered to generate functional variability. We studied the impact noise and intensity non-uniformity in MRI simulations and SPECT scatter correction may have on registration accuracy. We quantified the amount of registration error caused by anatomical and functional variability. Registration involving ictal data was less accurate than registration involving normal data. MR intensity nonuniformity was the main factor decreasing registration accuracy. The proposed simulated database is promising to evaluate many functional neuroimaging methods, involving MRI and SPECT data.

  5. Simulation Software's Effect on College Students Spreadsheet Project Scores

    ERIC Educational Resources Information Center

    Atkinson, J. Kirk; Thrasher, Evelyn H.; Coleman, Phillip D.

    2011-01-01

    The purpose of this study is to explore the potential impact of support materials on student spreadsheet skill acquisition. Specifically, this study examines the use of an online spreadsheet simulation tool versus a printed book across two independent student groups. This study hypothesizes that the online spreadsheet simulation tool will have a…

  6. Optimized image acquisition for breast tomosynthesis in projection and reconstruction space.

    PubMed

    Chawla, Amarpreet S; Lo, Joseph Y; Baker, Jay A; Samei, Ehsan

    2009-11-01

    Breast tomosynthesis has been an exciting new development in the field of breast imaging. While the diagnostic improvement via tomosynthesis is notable, the full potential of tomosynthesis has not yet been realized. This may be attributed to the dependency of the diagnostic quality of tomosynthesis on multiple variables, each of which needs to be optimized. Those include dose, number of angular projections, and the total angular span of those projections. In this study, the authors investigated the effects of these acquisition parameters on the overall diagnostic image quality of breast tomosynthesis in both the projection and reconstruction space. Five mastectomy specimens were imaged using a prototype tomosynthesis system. 25 angular projections of each specimen were acquired at 6.2 times typical single-view clinical dose level. Images at lower dose levels were then simulated using a noise modification routine. Each projection image was supplemented with 84 simulated 3 mm 3D lesions embedded at the center of 84 nonoverlapping ROIs. The projection images were then reconstructed using a filtered backprojection algorithm at different combinations of acquisition parameters to investigate which of the many possible combinations maximizes the performance. Performance was evaluated in terms of a Laguerre-Gauss channelized Hotelling observer model-based measure of lesion detectability. The analysis was also performed without reconstruction by combining the model results from projection images using Bayesian decision fusion algorithm. The effect of acquisition parameters on projection images and reconstructed slices were then compared to derive an optimization rule for tomosynthesis. The results indicated that projection images yield comparable but higher performance than reconstructed images. Both modes, however, offered similar trends: Performance improved with an increase in the total acquisition dose level and the angular span. Using a constant dose level and angular span, the performance rolled off beyond a certain number of projections, indicating that simply increasing the number of projections in tomosynthesis may not necessarily improve its performance. The best performance for both projection images and tomosynthesis slices was obtained for 15-17 projections spanning an angular are of approximately 45 degrees--the maximum tested in our study, and for an acquisition dose equal to single-view mammography. The optimization framework developed in this framework is applicable to other reconstruction techniques and other multiprojection systems.

  7. Continuous estimation of evapotranspiration and gross primary productivity from an Unmanned Aerial System

    NASA Astrophysics Data System (ADS)

    Wang, S.; Bandini, F.; Jakobsen, J.; J Zarco-Tejada, P.; Liu, X.; Haugård Olesen, D.; Ibrom, A.; Bauer-Gottwein, P.; Garcia, M.

    2017-12-01

    Model prediction of evapotranspiration (ET) and gross primary productivity (GPP) using optical and thermal satellite imagery is biased towards clear-sky conditions. Unmanned Aerial Systems (UAS) can collect optical and thermal signals at unprecedented very high spatial resolution (< 1 meter) under sunny and cloudy weather conditions. However, methods to obtain model outputs between image acquisitions are still needed. This study uses UAS based optical and thermal observations to continuously estimate daily ET and GPP in a Danish willow forest for an entire growing season of 2016. A hexacopter equipped with multispectral and thermal infrared cameras and a real-time kinematic Global Navigation Satellite System was used. The Normalized Differential Vegetation Index (NDVI) and the Temperature Vegetation Dryness Index (TVDI) were used as proxies for leaf area index and soil moisture conditions, respectively. To obtain continuously daily records between UAS acquisitions, UAS surface temperature was assimilated by the ensemble Kalman filter into a prognostic land surface model (Noilhan and Planton, 1989), which relies on the force-restore method, to simulate the continuous land surface temperature. NDVI was interpolated into daily time steps by the cubic spline method. Using these continuous datasets, a joint ET and GPP model, which combines the Priestley-Taylor Jet Propulsion Laboratory ET model (Fisher et al., 2008; Garcia et al., 2013) and the Light Use Efficiency GPP model (Potter et al., 1993), was applied. The simulated ET and GPP were compared with the footprint of eddy covariance observations. The simulated daily ET has a RMSE of 14.41 W•m-2 and a correlation coefficient of 0.83. The simulated daily GPP has a root mean square error (RMSE) of 1.56 g•C•m-2•d-1 and a correlation coefficient of 0.87. This study demonstrates the potential of UAS based multispectral and thermal mapping to continuously estimate ET and GPP for both sunny and cloudy weather conditions.

  8. Estimating B1+ in the breast at 7 T using a generic template.

    PubMed

    van Rijssel, Michael J; Pluim, Josien P W; Luijten, Peter R; Gilhuijs, Kenneth G A; Raaijmakers, Alexander J E; Klomp, Dennis W J

    2018-05-01

    Dynamic contrast-enhanced MRI is the workhorse of breast MRI, where the diagnosis of lesions is largely based on the enhancement curve shape. However, this curve shape is biased by RF transmit (B 1 + ) field inhomogeneities. B 1 + field information is required in order to correct these. The use of a generic, coil-specific B 1 + template is proposed and tested. Finite-difference time-domain simulations for B 1 + were performed for healthy female volunteers with a wide range of breast anatomies. A generic B 1 + template was constructed by averaging simulations based on four volunteers. Three-dimensional B 1 + maps were acquired in 15 other volunteers. Root mean square error (RMSE) metrics were calculated between individual simulations and the template, and between individual measurements and the template. The agreement between the proposed template approach and a B 1 + mapping method was compared against the agreement between acquisition and reacquisition using the same mapping protocol. RMSE values (% of nominal flip angle) comparing individual simulations with the template were in the range 2.00-4.01%, with mean 2.68%. RMSE values comparing individual measurements with the template were in the range8.1-16%, with mean 11.7%. The agreement between the proposed template approach and a B 1 + mapping method was only slightly worse than the agreement between two consecutive acquisitions using the same mapping protocol in one volunteer: the range of agreement increased from ±16% of the nominal angle for repeated measurement to ±22% for the B 1 + template. With local RF transmit coils, intersubject differences in B 1 + fields of the breast are comparable to the accuracy of B 1 + mapping methods, even at 7 T. Consequently, a single generic B 1 + template suits subjects over a wide range of breast anatomies, eliminating the need for a time-consuming B 1 + mapping protocol. © 2018 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.

  9. Estimating B 1 + in the breast at 7 T using a generic template

    PubMed Central

    Pluim, Josien P. W.; Luijten, Peter R.; Gilhuijs, Kenneth G. A.; Raaijmakers, Alexander J. E.; Klomp, Dennis W. J.

    2018-01-01

    Dynamic contrast‐enhanced MRI is the workhorse of breast MRI, where the diagnosis of lesions is largely based on the enhancement curve shape. However, this curve shape is biased by RF transmit (B 1 +) field inhomogeneities. B 1 + field information is required in order to correct these. The use of a generic, coil‐specific B 1 + template is proposed and tested. Finite‐difference time‐domain simulations for B 1 + were performed for healthy female volunteers with a wide range of breast anatomies. A generic B 1 + template was constructed by averaging simulations based on four volunteers. Three‐dimensional B 1 + maps were acquired in 15 other volunteers. Root mean square error (RMSE) metrics were calculated between individual simulations and the template, and between individual measurements and the template. The agreement between the proposed template approach and a B 1 + mapping method was compared against the agreement between acquisition and reacquisition using the same mapping protocol. RMSE values (% of nominal flip angle) comparing individual simulations with the template were in the range 2.00‐4.01%, with mean 2.68%. RMSE values comparing individual measurements with the template were in the range8.1‐16%, with mean 11.7%. The agreement between the proposed template approach and a B 1 + mapping method was only slightly worse than the agreement between two consecutive acquisitions using the same mapping protocol in one volunteer: the range of agreement increased from ±16% of the nominal angle for repeated measurement to ±22% for the B 1 + template. With local RF transmit coils, intersubject differences in B 1 + fields of the breast are comparable to the accuracy of B 1 + mapping methods, even at 7 T. Consequently, a single generic B 1 + template suits subjects over a wide range of breast anatomies, eliminating the need for a time‐consuming B 1 + mapping protocol. PMID:29570887

  10. Modeling of pilot's visual behavior for low-level flight

    NASA Astrophysics Data System (ADS)

    Schulte, Axel; Onken, Reiner

    1995-06-01

    Developers of synthetic vision systems for low-level flight simulators deal with the problem to decide which features to incorporate in order to achieve most realistic training conditions. This paper supports an approach to this problem on the basis of modeling the pilot's visual behavior. This approach is founded upon the basic requirement that the pilot's mechanisms of visual perception should be identical in simulated and real low-level flight. Flight simulator experiments with pilots were conducted for knowledge acquisition. During the experiments video material of a real low-level flight mission containing different situations was displayed to the pilot who was acting under a realistic mission assignment in a laboratory environment. Pilot's eye movements could be measured during the replay. The visual mechanisms were divided into rule based strategies for visual navigation, based on the preflight planning process, as opposed to skill based processes. The paper results in a model of the pilot's planning strategy of a visual fixing routine as part of the navigation task. The model is a knowledge based system based upon the fuzzy evaluation of terrain features in order to determine the landmarks used by pilots. It can be shown that a computer implementation of the model selects those features, which were preferred by trained pilots, too.

  11. Identification of Terrestrial Reflectance From Remote Sensing

    NASA Technical Reports Server (NTRS)

    Alter-Gartenberg, Rachel; Nolf, Scott R.; Stacy, Kathryn (Technical Monitor)

    2000-01-01

    Correcting for atmospheric effects is an essential part of surface-reflectance recovery from radiance measurements. Model-based atmospheric correction techniques enable an accurate identification and classification of terrestrial reflectances from multi-spectral imagery. Successful and efficient removal of atmospheric effects from remote-sensing data is a key factor in the success of Earth observation missions. This report assesses the performance, robustness and sensitivity of two atmospheric-correction and reflectance-recovery techniques as part of an end-to-end simulation of hyper-spectral acquisition, identification and classification.

  12. Development of visual programming techniques to integrate theoretical modeling into the scientific planning and instrument operations environment of ISTP

    NASA Technical Reports Server (NTRS)

    Goodrich, Charles C.

    1993-01-01

    The goal of this project is to investigate the use of visualization software based on the visual programming and data-flow paradigms to meet the needs of the SPOF and through it the International Solar Terrestrial Physics (ISTP) science community. Specific needs we address include science planning, data interpretation, comparisons of data with simulation and model results, and data acquisition. Our accomplishments during the twelve month grant period are discussed below.

  13. Dynamic Acquisition and Retrieval Tool (DART) for Comet Sample Return : Session: 2.06.Robotic Mobility and Sample Acquisition Systems

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Bonitz, Robert; Kulczycki, Erick; Aisen, Norman; Dandino, Charles M.; Cantrell, Brett S.; Gallagher, William; Shevin, Jesse; Ganino, Anthony; Haddad, Nicolas; hide

    2013-01-01

    The 2011 Decadal Survey for planetary science released by the National Research Council of the National Academies identified Comet Surface Sample Return (CSSR) as one of five high priority potential New Frontiers-class missions in the next decade. The main objectives of the research described in this publication are: develop a concept for an end-to-end system for collecting and storing a comet sample to be returned to Earth; design, fabricate and test a prototype Dynamic Acquisition and Retrieval Tool (DART) capable of collecting 500 cc sample in a canister and eject the canister with a predetermined speed; identify a set of simulants with physical properties at room temperature that suitably match the physical properties of the comet surface as it would be sampled. We propose the use of a dart that would be launched from the spacecraft to impact and penetrate the comet surface. After collecting the sample, the sample canister would be ejected at a speed greater than the comet's escape velocity and captured by the spacecraft, packaged into a return capsule and returned to Earth. The dart would be composed of an inner tube or sample canister, an outer tube, a decelerator, a means of capturing and retaining the sample, and a mechanism to eject the canister with the sample for later rendezvous with the spacecraft. One of the significant unknowns is the physical properties of the comet surface. Based on new findings from the recent Deep Impact comet encounter mission, we have limited our search of solutions for sampling materials to materials with 10 to 100 kPa shear strength in loose or consolidated form. As the possible range of values for the comet surface temperature is also significantly different than room temperature and testing at conditions other than the room temperature can become resource intensive, we sought sample simulants with physical properties at room temperature similar to the expected physical properties of the comet surface material. The chosen DART configuration, the efforts to identify a test simulant and the properties of these simulants, and the results of the preliminary testing will be described in this paper.

  14. Development of a Novel Ultrasound-guided Peritonsillar Abscess Model for Simulation Training.

    PubMed

    Ng, Vivienne; Plitt, Jennifer; Biffar, David

    2018-01-01

    Peritonsillar abscess (PTA) is the most common deep space infection of the head and neck presenting to emergency departments.1 No commercial PTA task trainer exists for simulation training. Thus, resident physicians often perform their first PTA needle aspiration in the clinical setting, knowing that carotid artery puncture and hemorrhage are serious and devastating complications. While several low-fidelity PTA task trainers have been previously described, none allow for ultrasound image acquisition.6-9 We sought to create a cost-effective and realistic task trainer that allows trainees to acquire both diagnostic ultrasound and needle aspiration skills while draining a peritonsillar abscess. We built the task trainer with low-cost, replaceable, and easily cleanable materials. A damaged airway headskin was repurposed to build the model. A mesh wire cylinder attached to a wooden base was fashioned to provide infrastructure. PTAs were simulated with a water and lotion solution inside a water balloon that was glued to the bottom of a paper cup. The balloon was fully submerged with ordnance gelatin to facilitate ultrasound image acquisition, and an asymmetric soft palate and deviated uvula were painted on top after setting. PTA cups were replaced after use. We spent eight hours constructing three task trainers and used 50 PTA cups for a total cost <$110. Forty-six emergency medicine (EM) residents performed PTA needle aspirations using the task trainers and were asked to rate ultrasound image realism, task trainer realism, and trainer ease of use on a five-point visual analog scale, with five being very realistic and easy. Sixteen of 46 (35%) residents completed the survey and reported that ultrasound images were representative of real PTAs (mean 3.41). They found the model realistic (mean 3.73) and easy to use (mean 4.08). Residents rated their comfort with the drainage procedure as 2.07 before and 3.64 after practicing on the trainer. This low-cost, easy-to-construct simulator allows for ultrasound image acquisition while performing PTA needle aspirations and is the first reported of its kind. Educators from EM and otolaryngology can use this model to educate inexperienced trainees, thus ultimately improving patient safety in the clinical setting.

  15. Autonomous Surface Sample Acquisition for Planetary and Lunar Exploration

    NASA Astrophysics Data System (ADS)

    Barnes, D. P.

    2007-08-01

    Surface science sample acquisition is a critical activity within any planetary and lunar exploration mission, and our research is focused upon the design, implementation, experimentation and demonstration of an onboard autonomous surface sample acquisition capability for a rover equipped with a robotic arm upon which are mounted appropriate science instruments. Images captured by a rover stereo camera system can be processed using shape from stereo methods and a digital elevation model (DEM) generated. We have developed a terrain feature identification algorithm that can determine autonomously from DEM data suitable regions for instrument placement and/or surface sample acquisition. Once identified, surface normal data can be generated autonomously which are then used to calculate an arm trajectory for instrument placement and sample acquisition. Once an instrument placement and sample acquisition trajectory has been calculated, a collision detection algorithm is required to ensure the safe operation of the arm during sample acquisition.We have developed a novel adaptive 'bounding spheres' approach to this problem. Once potential science targets have been identified, and these are within the reach of the arm and will not cause any undesired collision, then the 'cost' of executing the sample acquisition activity is required. Such information which includes power expenditure and duration can be used to select the 'best' target from a set of potential targets. We have developed a science sample acquisition resource requirements calculation that utilises differential inverse kinematics methods to yield a high fidelity result, thus improving upon simple 1st order approximations. To test our algorithms a new Planetary Analogue Terrain (PAT) Laboratory has been created that has a terrain region composed of Mars Soil Simulant-D from DLR Germany, and rocks that have been fully characterised in the laboratory. These have been donated by the UK Planetary Analogue Field Study network, and constitute the science targets for our autonomous sample acquisition work. Our PAT Lab. terrain has been designed to support our new rover chassis which is based upon the ExoMars rover Concept-E mechanics which were investigated during the ESA ExoMars Phase A study. The rover has 6 wheel drives, 6 wheels steering, and a 6 wheel walking capability. Mounted on the rover chassis is the UWA robotic arm and mast. We have designed and built a PanCam system complete with a computer controlled pan and tilt mechanism. The UWA PanCam is based upon the ExoMars PanCam (Phase A study) and hence supports two Wide Angle Cameras (WAC - 64 degree FOV), and a High Resolution Camera (HRC - 5 degree FOV). WAC separation is 500 mm. Software has been developed to capture images which form the data input into our on-board autonomous surface sample acquisition algorithms.

  16. Robotic surgery basic skills training: Evaluation of a pilot multidisciplinary simulation-based curriculum

    PubMed Central

    Foell, Kirsten; Finelli, Antonio; Yasufuku, Kazuhiro; Bernardini, Marcus Q.; Waddell, Thomas K.; Pace, Kenneth T.; Honey, R. John D.’A.; Lee, Jason Y.

    2013-01-01

    Purpose: Simulation-based training improves clinical skills, while minimizing the impact of the educational process on patient care. We present results of a pilot multidisciplinary, simulation-based robotic surgery basic skills training curriculum (BSTC) for robotic novices. Methods: A 4-week, simulation-based, robotic surgery BSTC was offered to the Departments of Surgery and Obstetrics & Gynecology (ObGyn) at the University of Toronto. The course consisted of various instructional strategies: didactic lecture, self-directed online-training modules, introductory hands-on training with the da Vinci robot (dVR) (Intuitive Surgical Inc., Sunnyvale, CA), and dedicated training on the da Vinci Skills Simulator (Intuitive Surgical Inc., Sunnyvale, CA) (dVSS). A third of trainees participated in competency-based dVSS training, all others engaged in traditional time-based training. Pre- and post-course skill testing was conducted on the dVR using 2 standardized skill tasks: ring transfer (RT) and needle passing (NP). Retention of skills was assessed at 5 months post-BSTC. Results: A total of 37 participants completed training. The mean task completion time and number of errors improved significantly post-course on both RT (180.6 vs. 107.4 sec, p < 0.01 and 3.5 vs. 1.3 sec, p < 0.01, respectively) and NP (197.1 vs. 154.1 sec, p < 0.01 and 4.5 vs. 1.8 sec, p = 0.04, respectively) tasks. No significant difference in performance was seen between specialties. Competency-based training was associated with significantly better post-course performance. The dVSS demonstrated excellent face validity. Conclusions: The implementation of a pilot multidisciplinary, simulation-based robotic surgery BSTC revealed significantly improved basic robotic skills among novice trainees, regardless of specialty or level of training. Competency-based training was associated with significantly better acquisition of basic robotic skills. PMID:24381662

  17. A comparison of human cadaver and augmented reality simulator models for straight laparoscopic colorectal skills acquisition training.

    PubMed

    LeBlanc, Fabien; Champagne, Bradley J; Augestad, Knut M; Neary, Paul C; Senagore, Anthony J; Ellis, Clyde N; Delaney, Conor P

    2010-08-01

    The aim of this study was to compare the human cadaver model with an augmented reality simulator for straight laparoscopic colorectal skills acquisition. Thirty-five sigmoid colectomies were performed on a cadaver (n = 7) or an augmented reality simulator (n = 28) during a laparoscopic training course. Prior laparoscopic colorectal experience was assessed. Objective structured technical skills assessment forms were completed by trainers and trainees independently. Groups were compared according to technical skills and events scores and satisfaction with training model. Prior laparoscopic experience was similar in both groups. For trainers and trainees, technical skills scores were considerably better on the simulator than on the cadaver. For trainers, generic events score was also considerably better on the simulator than on the cadaver. The main generic event occurring on both models was errors in the use of retraction. The main specific event occurring on both models was bowel perforation. Global satisfaction was better for the cadaver than for the simulator model (p < 0.001). The human cadaver model was more difficult but better appreciated than the simulator for laparoscopic sigmoid colectomy training. Simulator training followed by cadaver training can appropriately integrate simulators into the learning curve and maintain the benefits of both training methodologies. Published by Elsevier Inc.

  18. Using Simulation Education With Deliberate Practice to Teach Leadership and Resource Management Skills to Senior Resident Code Leaders.

    PubMed

    Burden, Amanda R; Pukenas, Erin W; Deal, Edward R; Coursin, Douglas B; Dodson, Gregory M; Staman, Gregory W; Gratz, Irwin; Torjman, Marc C

    2014-09-01

    Cardiopulmonary arrests are rare, high-stakes events that benefit from using crisis resource management (CRM). Simulation-based education with deliberate practice can promote skill acquisition. We assessed whether using simulation-based education to teach CRM would lead to improved performance, compared to a lecture format. We tested third-year internal medicine residents in simulated code scenarios. Participants were randomly assigned to simulation-based education with deliberate practice (SIM) group or lecture (LEC) group. We created a checklist of CRM critical actions (which includes announcing the diagnosis, asking for help/suggestions, and assigning tasks), and reviewed videotaped performances, using a checklist of skills and communications patterns to identify CRM skills and communication efforts. Subjects were tested in simulated code scenarios 6 months after the initial assessment. At baseline, all 52 subjects recognized distress, and 92% (48 of 52) called for help. Seventy-eight percent (41 of 52) did not succeed in resuscitating the simulated patient or demonstrate the CRM skills. After intervention, both groups (n  =  26 per group) improved. All SIM subjects announced the diagnosis compared to 65% LEC subjects (17 of 26, P  =  .01); 77% (20 of 26) SIM and 19% (5 of 26) LEC subjects asked for suggestions (P < .001); and 100% (26 of 26) SIM and 27% (7 of 26) LEC subjects assigned tasks (P < .001). The SIM intervention resulted in significantly improved team communication and cardiopulmonary arrest management. During debriefing, participants acknowledged the benefit of the SIM sessions.

  19. Euclid Cosmological Simulations Requirements and Implementation Plan

    NASA Technical Reports Server (NTRS)

    Kiessling, Alina

    2012-01-01

    Simulations are essential for the successful undertaking of the Euclid mission. The simulations requirements for the Euclid mission are vast ! It is an enormous undertaking that includes development of software and acquisition of hardware facilities. The simulations requirements are currently being finalised - please contact myself or Elisabetta Semboloni if you would like to add/modify any r equi r ements (or if you would like to be involved in the development of the simulations).

  20. Organ radiation exposure with EOS: GATE simulations versus TLD measurements

    NASA Astrophysics Data System (ADS)

    Clavel, A. H.; Thevenard-Berger, P.; Verdun, F. R.; Létang, J. M.; Darbon, A.

    2016-03-01

    EOS® is an innovative X-ray imaging system allowing the acquisition of two simultaneous images of a patient in the standing position, during the vertical scan of two orthogonal fan beams. This study aimed to compute organs radiation exposure to a patient, in the particular geometry of this system. Two different positions of the patient in the machine were studied, corresponding to postero-anterior plus left lateral projections (PA-LLAT) and antero-posterior plus right lateral projections (AP-RLAT). To achieve this goal, a Monte-Carlo simulation was developed based on a GATE environment. To model the physical properties of the patient, a computational phantom was produced based on computed tomography scan data of an anthropomorphic phantom. The simulations provided several organs doses, which were compared to previously published dose results measured with Thermo Luminescent Detectors (TLD) in the same conditions and with the same phantom. The simulation results showed a good agreement with measured doses at the TLD locations, for both AP-RLAT and PA-LLAT projections. This study also showed that the organ dose assessed only from a sample of locations, rather than considering the whole organ, introduced significant bias, depending on organs and projections.

  1. Overview of Research Transition Products

    NASA Technical Reports Server (NTRS)

    Robinson, John

    2014-01-01

    Demonstrate increased, more consistent use of Performance- Based Navigation (PBN). Accelerate transfer of NASA scheduling and spacing technologies for inclusion in late mid-term NAS. During high-fidelity human-in-the-loop simulations of Terminal Sequencing and Spacing, air traffic controllers have significantly improved their use of PBN procedures during busy traffic periods without increased workload. Executed an aggressive, short timeframe development schedule. Developed TSS prototype based upon FAA operational systems. Conducted multiple joint FAA/NASA human-in-the-loop simulations. Performed repeated incremental deliveries of tech transfer material to non-traditional RTT stakeholders. Will continue to participate in later phases of FAA acquisition process. ATD-1 transferred Terminal Sequencing and Spacing (TSS) technologies to the FAA. TSS enables routine use of underutilized advanced avionics and PBN procedures. Potential benefits to airlines operating at initial TSS sites estimated to be $300-400M/year. FAA is planning for an initial capability in the NAS in 2018.

  2. EduGATE - basic examples for educative purpose using the GATE simulation platform.

    PubMed

    Pietrzyk, Uwe; Zakhnini, Abdelhamid; Axer, Markus; Sauerzapf, Sophie; Benoit, Didier; Gaens, Michaela

    2013-02-01

    EduGATE is a collection of basic examples to introduce students to the fundamental physical aspects of medical imaging devices. It is based on the GATE platform, which has received a wide acceptance in the field of simulating medical imaging devices including SPECT, PET, CT and also applications in radiation therapy. GATE can be configured by commands, which are, for the sake of simplicity, listed in a collection of one or more macro files to set up phantoms, multiple types of sources, detection device, and acquisition parameters. The aim of the EduGATE is to use all these helpful features of GATE to provide insights into the physics of medical imaging by means of a collection of very basic and simple GATE macros in connection with analysis programs based on ROOT, a framework for data processing. A graphical user interface to define a configuration is also included. Copyright © 2012. Published by Elsevier GmbH.

  3. A prospective gating method to acquire a diverse set of free-breathing CT images for model-based 4DCT

    NASA Astrophysics Data System (ADS)

    O'Connell, D.; Ruan, D.; Thomas, D. H.; Dou, T. H.; Lewis, J. H.; Santhanam, A.; Lee, P.; Low, D. A.

    2018-02-01

    Breathing motion modeling requires observation of tissues at sufficiently distinct respiratory states for proper 4D characterization. This work proposes a method to improve sampling of the breathing cycle with limited imaging dose. We designed and tested a prospective free-breathing acquisition protocol with a simulation using datasets from five patients imaged with a model-based 4DCT technique. Each dataset contained 25 free-breathing fast helical CT scans with simultaneous breathing surrogate measurements. Tissue displacements were measured using deformable image registration. A correspondence model related tissue displacement to the surrogate. Model residual was computed by comparing predicted displacements to image registration results. To determine a stopping criteria for the prospective protocol, i.e. when the breathing cycle had been sufficiently sampled, subsets of N scans where 5  ⩽  N  ⩽  9 were used to fit reduced models for each patient. A previously published metric was employed to describe the phase coverage, or ‘spread’, of the respiratory trajectories of each subset. Minimum phase coverage necessary to achieve mean model residual within 0.5 mm of the full 25-scan model was determined and used as the stopping criteria. Using the patient breathing traces, a prospective acquisition protocol was simulated. In all patients, phase coverage greater than the threshold necessary for model accuracy within 0.5 mm of the 25 scan model was achieved in six or fewer scans. The prospectively selected respiratory trajectories ranked in the (97.5  ±  4.2)th percentile among subsets of the originally sampled scans on average. Simulation results suggest that the proposed prospective method provides an effective means to sample the breathing cycle with limited free-breathing scans. One application of the method is to reduce the imaging dose of a previously published model-based 4DCT protocol to 25% of its original value while achieving mean model residual within 0.5 mm.

  4. Data acquisition system of 16-channel EEG based on ATSAM3X8E ARM Cortex-M3 32-bit microcontroller and ADS1299

    NASA Astrophysics Data System (ADS)

    Toresano, L. O. H. Z.; Wijaya, S. K.; Prawito, Sudarmaji, A.; Badri, C.

    2017-07-01

    The prototype of the EEG (electroencephalogram) instrumentation systems has been developed based on 32-bit microcontrollers of Cortex-M3 ATSAM3X8E and Analog Front-End (AFE) ADS1299 (Texas Instruments, USA), and also consists of 16-channel dry-electrodes in the form of EEG head-caps. The ADS1299-AFE has been designed in a double-layer format PCB (Print Circuit Board) with daisy-chain configuration. The communication protocol of the prototype was based on SPI (Serial Peripheral Interface) and tested using USB SPI-Logic Analyzer Hantek4032L (Qingdao Hantek Electronic, China). The acquired data of the 16-channel from this prototype has been successfully transferred to a PC (Personal Computer) with accuracy greater than 91 %. The data acquisition system has been visualized with time-domain format in the multi-graph plotter, the frequency-domain based on FFT (Fast Fourier Transform) calculation, and also brain-mapping display of 16-channel. The GUI (Graphical User Interface) has been developed based on OpenBCI (Brain Computer Interface) using Java Processing and also can be stored of data in the *.txt format. Instrumentation systems have been tested in the frequency range of 1-50 Hz using MiniSim 330 EEG Simulator (NETECH, USA). The validation process has been done with different frequency of 0.1 Hz, 2 Hz, 5 Hz, and 50 Hz, and difference voltage amplitudes of 10 µV, 30 µV, 50 µV, 100 µV, 500 µV, 1 mV, 2 mV and 2.5 mV. However, the acquisition system was not optimal at a frequency of 0.1 Hz and for amplitude potentials of over 1 mV had differences of the order 10 µV.

  5. A systematic review of evidence for education and training interventions in microsurgery.

    PubMed

    Ghanem, Ali M; Hachach-Haram, Nadine; Leung, Clement Chi Ming; Myers, Simon Richard

    2013-07-01

    Over the past decade, driven by advances in educational theory and pressures for efficiency in the clinical environment, there has been a shift in surgical education and training towards enhanced simulation training. Microsurgery is a technical skill with a steep competency learning curve on which the clinical outcome greatly depends. This paper investigates the evidence for educational and training interventions of traditional microsurgical skills courses in order to establish the best evidence practice in education and training and curriculum design. A systematic review of MEDLINE, EMBASE, and PubMed databases was performed to identify randomized control trials looking at educational and training interventions that objectively improved microsurgical skill acquisition, and these were critically appraised using the BestBETs group methodology. The databases search yielded 1,148, 1,460, and 2,277 citations respectively. These were then further limited to randomized controlled trials from which abstract reviews reduced the number to 5 relevant randomised controlled clinical trials. The best evidence supported a laboratory based low fidelity model microsurgical skills curriculum. There was strong evidence that technical skills acquired on low fidelity models transfers to improved performance on higher fidelity human cadaver models and that self directed practice leads to improved technical performance. Although there is significant paucity in the literature to support current microsurgical education and training practices, simulated training on low fidelity models in microsurgery is an effective intervention that leads to acquisition of transferable skills and improved technical performance. Further research to identify educational interventions associated with accelerated skill acquisition is required.

  6. Brain drain? An examination of stereotype threat effects during training on knowledge acquisition and organizational effectiveness.

    PubMed

    Grand, James A

    2017-02-01

    Stereotype threat describes a situation in which individuals are faced with the risk of upholding a negative stereotype about their subgroup based on their actions. Empirical work in this area has primarily examined the impact of negative stereotypes on performance for threatened individuals. However, this body of research seldom acknowledges that performance is a function of learning-which may also be impaired by pervasive group stereotypes. This study presents evidence from a 3-day self-guided training program demonstrating that stereotype threat impairs acquisition of cognitive learning outcomes for females facing a negative group stereotype. Using hierarchical Bayesian modeling, results revealed that stereotyped females demonstrated poorer declarative knowledge acquisition, spent less time reflecting on learning activities, and developed less efficiently organized knowledge structures compared with females in a control condition. Findings from a Bayesian mediation model also suggested that despite stereotyped individuals "working harder" to perform well, their underachievement was largely attributable to failures in learning to "work smarter." Building upon these empirical results, a computational model and computer simulation is also presented to demonstrate the practical significance of stereotype-induced impairments to learning on the development of an organization's human capital resources and capabilities. The simulation results show that even the presence of small effects of stereotype threat during learning/training have the potential to exert a significant negative impact on an organization's performance potential. Implications for future research and practice examining stereotype threat during learning are discussed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  7. Application of control theory to dynamic systems simulation

    NASA Technical Reports Server (NTRS)

    Auslander, D. M.; Spear, R. C.; Young, G. E.

    1982-01-01

    The application of control theory is applied to dynamic systems simulation. Theory and methodology applicable to controlled ecological life support systems are considered. Spatial effects on system stability, design of control systems with uncertain parameters, and an interactive computing language (PARASOL-II) designed for dynamic system simulation, report quality graphics, data acquisition, and simple real time control are discussed.

  8. Effects of Computer and Classroom Simulations to Teach Students with Various Exceptionalities to Locate Apparel Sizes

    ERIC Educational Resources Information Center

    Bramlett, Virginia; Ayres, Kevin M.; Douglas, Karen H.; Cihak, David F.

    2011-01-01

    This study evaluated the effects of simulation training to teach functional community skills to four students with developmental disabilities in middle school. A multiple probe across participants and multiple probe across behaviors allowed for an evaluation of a functional relation between simulation and skill acquisition. Students learned how to…

  9. HYDRA: High Speed Simulation Architecture for Precision Spacecraft Formation Flying

    NASA Technical Reports Server (NTRS)

    Martin, Bryan J.; Sohl, Garett A.

    2003-01-01

    This viewgraph presentation describes HYDRA, which is architecture to facilitate high-fidelity and real-time simulation of formation flying missions. The contents include: 1) Motivation; 2) Objective; 3) HYDRA-Description and Overview; 4) HYDRA-Hierarchy; 5) Communication in HYDRA; 6) Simulation Specific Concerns in HYDRA; 7) Example application (Formation Acquisition); and 8) Sample Problem Results.

  10. Simulation verification techniques study: Simulation performance validation techniques document. [for the space shuttle system

    NASA Technical Reports Server (NTRS)

    Duncan, L. M.; Reddell, J. P.; Schoonmaker, P. B.

    1975-01-01

    Techniques and support software for the efficient performance of simulation validation are discussed. Overall validation software structure, the performance of validation at various levels of simulation integration, guidelines for check case formulation, methods for real time acquisition and formatting of data from an all up operational simulator, and methods and criteria for comparison and evaluation of simulation data are included. Vehicle subsystems modules, module integration, special test requirements, and reference data formats are also described.

  11. Arduino-based noise robust online heart-rate detection.

    PubMed

    Das, Sangita; Pal, Saurabh; Mitra, Madhuchhanda

    2017-04-01

    This paper introduces a noise robust real time heart rate detection system from electrocardiogram (ECG) data. An online data acquisition system is developed to collect ECG signals from human subjects. Heart rate is detected using window-based autocorrelation peak localisation technique. A low-cost Arduino UNO board is used to implement the complete automated process. The performance of the system is compared with PC-based heart rate detection technique. Accuracy of the system is validated through simulated noisy ECG data with various levels of signal to noise ratio (SNR). The mean percentage error of detected heart rate is found to be 0.72% for the noisy database with five different noise levels.

  12. Experimental investigation of factors affecting the absolute recovery coefficients in iodine-124 PET lesion imaging

    NASA Astrophysics Data System (ADS)

    Jentzen, Walter

    2010-04-01

    The use of recovery coefficients (RCs) in 124I PET lesion imaging is a simple method to correct the imaged activity concentration (AC) primarily for the partial-volume effect and, to a minor extent, for the prompt gamma coincidence effect. The aim of this phantom study was to experimentally investigate a number of various factors affecting the 124I RCs. Three RC-based correction approaches were considered. These approaches differ with respect to the volume of interest (VOI) drawn, which determines the imaged AC and the RCs: a single voxel VOI containing the maximum value (maximum RC), a spherical VOI with a diameter of the scanner resolution (resolution RC) and a VOI equaling the physical object volume (isovolume RC). Measurements were performed using mainly a stand-alone PET scanner (EXACT HR+) and a latest-generation PET/CT scanner (BIOGRAPH mCT). The RCs were determined using a cylindrical phantom containing spheres or rotational ellipsoids and were derived from images acquired with a reference acquisition protocol. For each type of RC, the influence of the following factors on the RC was assessed: object shape, background activity spill in and iterative image reconstruction parameters. To evaluate the robustness of the RC-based correction approaches, the percentage deviation between RC-corrected and true ACs was determined from images acquired with a clinical acquisition protocol of different AC regimes. The observed results of the shape and spill-in effects were compared with simulation data derived from a convolution-based model. The study demonstrated that the shape effect was negligible and, therefore, was in agreement with theoretical expectations. In contradiction to the simulation results, the observed spill-in effect was unexpectedly small. To avoid variations in the determination of RCs due to reconstruction parameter changes, image reconstruction with a pixel length of about one-third or less of the scanner resolution and an OSEM 1 × 32 algorithm or one with somewhat higher number of effective iterations are recommended. Using the clinical acquisition protocol, the phantom study indicated that the resolution- or isovolume-based recovery-correction approaches appeared to be more appropriate to recover the ACs from patient data; however, the application of the three RC-based correction approaches to small lesions containing low ACs was, in particular, associated with large underestimations. The phantom study had several limitations, which were discussed in detail.

  13. SU-D-18C-01: A Novel 4D-MRI Technology Based On K-Space Retrospective Sorting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y; Yin, F; Cai, J

    2014-06-01

    Purpose: Current 4D-MRI techniques lack sufficient temporal/spatial resolution and consistent tumor contrast. To overcome these limitations, this study presents the development and initial evaluation of an entirely new framework of 4D-MRI based on k-space retrospective sorting. Methods: An important challenge of the proposed technique is to determine the number of repeated scans(NR) required to obtain sufficient k-space data for 4D-MRI. To do that, simulations using 29 cancer patients' respiratory profiles were performed to derive the relationship between data acquisition completeness(Cp) and NR, also relationship between NR(Cp=95%) and the following factors: total slice(NS), respiratory phase bin length(Lb), frame rate(fr), resolution(R) andmore » image acquisition starting-phase(P0). To evaluate our technique, a computer simulation study on a 4D digital human phantom (XCAT) were conducted with regular breathing (fr=0.5Hz; R=256×256). A 2D echo planer imaging(EPI) MRI sequence were assumed to acquire raw k-space data, with respiratory signal and acquisition time for each k-space data line recorded simultaneously. K-space data was re-sorted based on respiratory phases. To evaluate 4D-MRI image quality, tumor trajectories were measured and compared with the input signal. Mean relative amplitude difference(D) and cross-correlation coefficient(CC) are calculated. Finally, phase-sharing sliding window technique was applied to investigate the feasibility of generating ultra-fast 4D-MRI. Result: Cp increased with NR(Cp=100*[1-exp(-0.19*NR)], when NS=30, Lb=100%/6). NR(Cp=95%) was inversely-proportional to Lb (r=0.97), but independent of other factors. 4D-MRI on XCAT demonstrated highly accurate motion information (D=0.67%, CC=0.996) with much less artifacts than those on image-based sorting 4D-MRI. Ultra-fast 4D-MRI with an apparent temporal resolution of 10 frames/second was reconstructed using the phase-sharing sliding window technique. Conclusions: A novel 4D-MRI technology based on k-space sorting has been successfully developed and evaluated on the digital phantom. Framework established can be applied to a variety of MR sequences, showing great promises to develop the optimal 4D-MRI technique for many radiation therapy applications. NIH (1R21CA165384-01A1)« less

  14. Comprehensive MRI simulation methodology using a dedicated MRI scanner in radiation oncology for external beam radiation treatment planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paulson, Eric S., E-mail: epaulson@mcw.edu; Erickson, Beth; Schultz, Chris

    Purpose: The use of magnetic resonance imaging (MRI) in radiation oncology is expanding rapidly, and more clinics are integrating MRI into their radiation therapy workflows. However, radiation therapy presents a new set of challenges and places additional constraints on MRI compared to diagnostic radiology that, if not properly addressed, can undermine the advantages MRI offers for radiation treatment planning (RTP). The authors introduce here strategies to manage several challenges of using MRI for virtual simulation in external beam RTP. Methods: A total of 810 clinical MRI simulation exams were performed using a dedicated MRI scanner for external beam RTP ofmore » brain, breast, cervix, head and neck, liver, pancreas, prostate, and sarcoma cancers. Patients were imaged in treatment position using MRI-optimal immobilization devices. Radiofrequency (RF) coil configurations and scan protocols were optimized based on RTP constraints. Off-resonance and gradient nonlinearity-induced geometric distortions were minimized or corrected prior to using images for RTP. A multidisciplinary MRI simulation guide, along with window width and level presets, was created to standardize use of MR images during RTP. A quality assurance program was implemented to maintain accuracy and repeatability of MRI simulation exams. Results: The combination of a large bore scanner, high field strength, and circumferentially wrapped, flexible phased array RF receive coils permitted acquisition of thin slice images with high contrast-to-noise ratio (CNR) and image intensity uniformity, while simultaneously accommodating patient setup and immobilization devices. Postprocessing corrections and alternative acquisition methods were required to reduce or correct off-resonance and gradient nonlinearity induced geometric distortions. Conclusions: The methodology described herein contains practical strategies the authors have implemented through lessons learned performing clinical MRI simulation exams. In their experience, these strategies provide robust, high fidelity, high contrast MR images suitable for external beam RTP.« less

  15. Can we teach core clinical obstetrics and gynaecology skills using low fidelity simulation in an interprofessional setting?

    PubMed

    Kumar, Arunaz; Gilmour, Carole; Nestel, Debra; Aldridge, Robyn; McLelland, Gayle; Wallace, Euan

    2014-12-01

    Core clinical skills acquisition is an essential component of undergraduate medical and midwifery education. Although interprofessional education is an increasingly common format for learning efficient teamwork in clinical medicine, its value in undergraduate education is less clear. We present a collaborative effort from the medical and midwifery schools of Monash University, Melbourne, towards the development of an educational package centred around a core skills-based workshop using low fidelity simulation models in an interprofessional setting. Detailed feedback on the package was positive with respect to the relevance of the teaching content, whether the topic was well taught by task trainers and simulation models used, pitch of level of teaching and perception of confidence gained in performing the skill on a real patient after attending the workshop. Overall, interprofessional core skills training using low fidelity simulation models introduced at an undergraduate level in medicine and midwifery had a good acceptance. © 2014 The Royal Australian and New Zealand College of Obstetricians and Gynaecologists.

  16. Learning nursing procedures: the influence of simulator fidelity and student gender on teaching effectiveness.

    PubMed

    Grady, Janet L; Kehrer, Rosemary G; Trusty, Carole E; Entin, Eileen B; Entin, Elliot E; Brunye, Tad T

    2008-09-01

    Simulation technologies are gaining widespread acceptance across a variety of educational domains and applications. The current research examines whether basic nursing procedure training with high-fidelity versus low-fidelity mannequins results in differential skill acquisition and perceptions of simulator utility. Fifty-two first-year students were taught nasogastric tube and indwelling urinary catheter insertion in one of two ways. The first group learned nasogastric tube and urinary catheter insertion using high-fidelity and low-fidelity mannequins, respectively, and the second group learned nasogastric tube and urinary catheter insertion using low-fidelity and high-fidelity mannequins, respectively. The dependent measures included student performance on nasogastric tube and urinary catheter insertion testing, as measured by observer-based instruments, and self-report questionnaires probing student attitudes about the use of simulation in nursing education. Results demonstrated higher performance with high-fidelity than with low-fidelity mannequin training. In response to a self-report posttraining questionnaire, participants expressed a more positive attitude toward the high-fidelity mannequin, especially regarding its responsiveness and realism.

  17. Analytical methodology for determination of helicopter IFR precision approach requirements. [pilot workload and acceptance level

    NASA Technical Reports Server (NTRS)

    Phatak, A. V.

    1980-01-01

    A systematic analytical approach to the determination of helicopter IFR precision approach requirements is formulated. The approach is based upon the hypothesis that pilot acceptance level or opinion rating of a given system is inversely related to the degree of pilot involvement in the control task. A nonlinear simulation of the helicopter approach to landing task incorporating appropriate models for UH-1H aircraft, the environmental disturbances and the human pilot was developed as a tool for evaluating the pilot acceptance hypothesis. The simulated pilot model is generic in nature and includes analytical representation of the human information acquisition, processing, and control strategies. Simulation analyses in the flight director mode indicate that the pilot model used is reasonable. Results of the simulation are used to identify candidate pilot workload metrics and to test the well known performance-work-load relationship. A pilot acceptance analytical methodology is formulated as a basis for further investigation, development and validation.

  18. Constructing Agent Model for Virtual Training Systems

    NASA Astrophysics Data System (ADS)

    Murakami, Yohei; Sugimoto, Yuki; Ishida, Toru

    Constructing highly realistic agents is essential if agents are to be employed in virtual training systems. In training for collaboration based on face-to-face interaction, the generation of emotional expressions is one key. In training for guidance based on one-to-many interaction such as direction giving for evacuations, emotional expressions must be supplemented by diverse agent behaviors to make the training realistic. To reproduce diverse behavior, we characterize agents by using a various combinations of operation rules instantiated by the user operating the agent. To accomplish this goal, we introduce a user modeling method based on participatory simulations. These simulations enable us to acquire information observed by each user in the simulation and the operating history. Using these data and the domain knowledge including known operation rules, we can generate an explanation for each behavior. Moreover, the application of hypothetical reasoning, which offers consistent selection of hypotheses, to the generation of explanations allows us to use otherwise incompatible operation rules as domain knowledge. In order to validate the proposed modeling method, we apply it to the acquisition of an evacuee's model in a fire-drill experiment. We successfully acquire a subject's model corresponding to the results of an interview with the subject.

  19. Fast readout algorithm for cylindrical beam position monitors providing good accuracy for particle bunches with large offsets

    NASA Astrophysics Data System (ADS)

    Thieberger, P.; Gassner, D.; Hulsart, R.; Michnoff, R.; Miller, T.; Minty, M.; Sorrell, Z.; Bartnik, A.

    2018-04-01

    A simple, analytically correct algorithm is developed for calculating "pencil" relativistic beam coordinates using the signals from an ideal cylindrical particle beam position monitor (BPM) with four pickup electrodes (PUEs) of infinitesimal widths. The algorithm is then applied to simulations of realistic BPMs with finite width PUEs. Surprisingly small deviations are found. Simple empirically determined correction terms reduce the deviations even further. The algorithm is then tested with simulations for non-relativistic beams. As an example of the data acquisition speed advantage, a Field Programmable Gate Array-based BPM readout implementation of the new algorithm has been developed and characterized. Finally, the algorithm is tested with BPM data from the Cornell Preinjector.

  20. Fast readout algorithm for cylindrical beam position monitors providing good accuracy for particle bunches with large offsets

    DOE PAGES

    Thieberger, Peter; Gassner, D.; Hulsart, R.; ...

    2018-04-25

    Here, a simple, analytically correct algorithm is developed for calculating “pencil” relativistic beam coordinates using the signals from an ideal cylindrical particle beam position monitor (BPM) with four pickup electrodes (PUEs) of infinitesimal widths. The algorithm is then applied to simulations of realistic BPMs with finite width PUEs. Surprisingly small deviations are found. Simple empirically determined correction terms reduce the deviations even further. The algorithm is then tested with simulations for non-relativistic beams. As an example of the data acquisition speed advantage, a FPGA-based BPM readout implementation of the new algorithm has been developed and characterized. Lastly, the algorithm ismore » tested with BPM data from the Cornell Preinjector.« less

  1. Fast readout algorithm for cylindrical beam position monitors providing good accuracy for particle bunches with large offsets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thieberger, Peter; Gassner, D.; Hulsart, R.

    Here, a simple, analytically correct algorithm is developed for calculating “pencil” relativistic beam coordinates using the signals from an ideal cylindrical particle beam position monitor (BPM) with four pickup electrodes (PUEs) of infinitesimal widths. The algorithm is then applied to simulations of realistic BPMs with finite width PUEs. Surprisingly small deviations are found. Simple empirically determined correction terms reduce the deviations even further. The algorithm is then tested with simulations for non-relativistic beams. As an example of the data acquisition speed advantage, a FPGA-based BPM readout implementation of the new algorithm has been developed and characterized. Lastly, the algorithm ismore » tested with BPM data from the Cornell Preinjector.« less

  2. Fast readout algorithm for cylindrical beam position monitors providing good accuracy for particle bunches with large offsets.

    PubMed

    Thieberger, P; Gassner, D; Hulsart, R; Michnoff, R; Miller, T; Minty, M; Sorrell, Z; Bartnik, A

    2018-04-01

    A simple, analytically correct algorithm is developed for calculating "pencil" relativistic beam coordinates using the signals from an ideal cylindrical particle beam position monitor (BPM) with four pickup electrodes (PUEs) of infinitesimal widths. The algorithm is then applied to simulations of realistic BPMs with finite width PUEs. Surprisingly small deviations are found. Simple empirically determined correction terms reduce the deviations even further. The algorithm is then tested with simulations for non-relativistic beams. As an example of the data acquisition speed advantage, a Field Programmable Gate Array-based BPM readout implementation of the new algorithm has been developed and characterized. Finally, the algorithm is tested with BPM data from the Cornell Preinjector.

  3. Precision analysis of a quantitative CT liver surface nodularity score.

    PubMed

    Smith, Andrew; Varney, Elliot; Zand, Kevin; Lewis, Tara; Sirous, Reza; York, James; Florez, Edward; Abou Elkassem, Asser; Howard-Claudio, Candace M; Roda, Manohar; Parker, Ellen; Scortegagna, Eduardo; Joyner, David; Sandlin, David; Newsome, Ashley; Brewster, Parker; Lirette, Seth T; Griswold, Michael

    2018-04-26

    To evaluate precision of a software-based liver surface nodularity (LSN) score derived from CT images. An anthropomorphic CT phantom was constructed with simulated liver containing smooth and nodular segments at the surface and simulated visceral and subcutaneous fat components. The phantom was scanned multiple times on a single CT scanner with adjustment of image acquisition and reconstruction parameters (N = 34) and on 22 different CT scanners from 4 manufacturers at 12 imaging centers. LSN scores were obtained using a software-based method. Repeatability and reproducibility were evaluated by intraclass correlation (ICC) and coefficient of variation. Using abdominal CT images from 68 patients with various stages of chronic liver disease, inter-observer agreement and test-retest repeatability among 12 readers assessing LSN by software- vs. visual-based scoring methods were evaluated by ICC. There was excellent repeatability of LSN scores (ICC:0.79-0.99) using the CT phantom and routine image acquisition and reconstruction parameters (kVp 100-140, mA 200-400, and auto-mA, section thickness 1.25-5.0 mm, field of view 35-50 cm, and smooth or standard kernels). There was excellent reproducibility (smooth ICC: 0.97; 95% CI 0.95, 0.99; CV: 7%; nodular ICC: 0.94; 95% CI 0.89, 0.97; CV: 8%) for LSN scores derived from CT images from 22 different scanners. Inter-observer agreement for the software-based LSN scoring method was excellent (ICC: 0.84; 95% CI 0.79, 0.88; CV: 28%) vs. good for the visual-based method (ICC: 0.61; 95% CI 0.51, 0.69; CV: 43%). Test-retest repeatability for the software-based LSN scoring method was excellent (ICC: 0.82; 95% CI 0.79, 0.84; CV: 12%). The software-based LSN score is a quantitative CT imaging biomarker with excellent repeatability, reproducibility, inter-observer agreement, and test-retest repeatability.

  4. Three dimensional audio versus head down TCAS displays

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.; Pittman, Marc T.

    1994-01-01

    The advantage of a head up auditory display was evaluated in an experiment designed to measure and compare the acquisition time for capturing visual targets under two conditions: Standard head down traffic collision avoidance system (TCAS) display, and three-dimensional (3-D) audio TCAS presentation. Ten commercial airline crews were tested under full mission simulation conditions at the NASA Ames Crew-Vehicle Systems Research Facility Advanced Concepts Flight Simulator. Scenario software generated targets corresponding to aircraft which activated a 3-D aural advisory or a TCAS advisory. Results showed a significant difference in target acquisition time between the two conditions, favoring the 3-D audio TCAS condition by 500 ms.

  5. Infrared imagery acquisition process supporting simulation and real image training

    NASA Astrophysics Data System (ADS)

    O'Connor, John

    2012-05-01

    The increasing use of infrared sensors requires development of advanced infrared training and simulation tools to meet current Warfighter needs. In order to prepare the force, a challenge exists for training and simulation images to be both realistic and consistent with each other to be effective and avoid negative training. The US Army Night Vision and Electronic Sensors Directorate has corrected this deficiency by developing and implementing infrared image collection methods that meet the needs of both real image trainers and real-time simulations. The author presents innovative methods for collection of high-fidelity digital infrared images and the associated equipment and environmental standards. The collected images are the foundation for US Army, and USMC Recognition of Combat Vehicles (ROC-V) real image combat ID training and also support simulations including the Night Vision Image Generator and Synthetic Environment Core. The characteristics, consistency, and quality of these images have contributed to the success of these and other programs. To date, this method has been employed to generate signature sets for over 350 vehicles. The needs of future physics-based simulations will also be met by this data. NVESD's ROC-V image database will support the development of training and simulation capabilities as Warfighter needs evolve.

  6. Autoregressive moving average modeling for spectral parameter estimation from a multigradient echo chemical shift acquisition

    PubMed Central

    Taylor, Brian A.; Hwang, Ken-Pin; Hazle, John D.; Stafford, R. Jason

    2009-01-01

    The authors investigated the performance of the iterative Steiglitz–McBride (SM) algorithm on an autoregressive moving average (ARMA) model of signals from a fast, sparsely sampled, multiecho, chemical shift imaging (CSI) acquisition using simulation, phantom, ex vivo, and in vivo experiments with a focus on its potential usage in magnetic resonance (MR)-guided interventions. The ARMA signal model facilitated a rapid calculation of the chemical shift, apparent spin-spin relaxation time (T2*), and complex amplitudes of a multipeak system from a limited number of echoes (≤16). Numerical simulations of one- and two-peak systems were used to assess the accuracy and uncertainty in the calculated spectral parameters as a function of acquisition and tissue parameters. The measured uncertainties from simulation were compared to the theoretical Cramer–Rao lower bound (CRLB) for the acquisition. Measurements made in phantoms were used to validate the T2* estimates and to validate uncertainty estimates made from the CRLB. We demonstrated application to real-time MR-guided interventions ex vivo by using the technique to monitor a percutaneous ethanol injection into a bovine liver and in vivo to monitor a laser-induced thermal therapy treatment in a canine brain. Simulation results showed that the chemical shift and amplitude uncertainties reached their respective CRLB at a signal-to-noise ratio (SNR)≥5 for echo train lengths (ETLs)≥4 using a fixed echo spacing of 3.3 ms. T2* estimates from the signal model possessed higher uncertainties but reached the CRLB at larger SNRs and∕or ETLs. Highly accurate estimates for the chemical shift (<0.01 ppm) and amplitude (<1.0%) were obtained with ≥4 echoes and for T2* (<1.0%) with ≥7 echoes. We conclude that, over a reasonable range of SNR, the SM algorithm is a robust estimator of spectral parameters from fast CSI acquisitions that acquire ≤16 echoes for one- and two-peak systems. Preliminary ex vivo and in vivo experiments corroborated the results from simulation experiments and further indicate the potential of this technique for MR-guided interventional procedures with high spatiotemporal resolution ∼1.6×1.6×4 mm3 in ≤5 s. PMID:19378736

  7. Training opportunities and the role of virtual reality simulation in acquisition of basic laparoscopic skills.

    PubMed

    Aggarwal, Rajesh; Balasundaram, Indran; Darzi, Ara

    2008-03-01

    Within the past decade, there has been increasing interest in simulation-based devices for training and assessment of technical skills, especially for minimally invasive techniques such as laparoscopy. The aim of this study was to investigate the perceptions of senior and junior surgeons to virtual reality simulation within the context of current training opportunities for basic laparoscopic procedures. A postal questionnaire was sent to 245 consultants and their corresponding specialist registrar (SpR), detailing laparoscopic surgical practice and their knowledge and use of virtual reality (VR) surgical simulators. One hundred ninety-one (78%) consultants and 103(42%) SpRs returned questionnaires; 16%(10/61) of junior SpRs (year 1-4) had performed more than 50 laparoscopic cholecystectomies to date compared with 76% (32/42) of senior SpRs (year 5-6) (P < 0.001); 90% (55/61) of junior SpRs and 67% (28/42) of senior SpRs were keen to augment their training with VR (P = 0.007); 81% (238/294) of all surgeons agreed that VR has a useful role in the laparoscopic surgical training curriculum. There is a lack of experience in index laparoscopic cases of junior SpRs, and laparoscopic VR simulation is recognized as a useful mode of practice to acquire technical skills. This should encourage surgical program directors to drive the integration of simulation-based training into the surgical curriculum.

  8. A beam hardening and dispersion correction for x-ray dark-field radiography.

    PubMed

    Pelzer, Georg; Anton, Gisela; Horn, Florian; Rieger, Jens; Ritter, André; Wandner, Johannes; Weber, Thomas; Michel, Thilo

    2016-06-01

    X-ray dark-field imaging promises information on the small angle scattering properties even of large samples. However, the dark-field image is correlated with the object's attenuation and phase-shift if a polychromatic x-ray spectrum is used. A method to remove part of these correlations is proposed. The experimental setup for image acquisition was modeled in a wave-field simulation to quantify the dark-field signals originating solely from a material's attenuation and phase-shift. A calibration matrix was simulated for ICRU46 breast tissue. Using the simulated data, a dark-field image of a human mastectomy sample was corrected for the finger print of attenuation- and phase-image. Comparing the simulated, attenuation-based dark-field values to a phantom measurement, a good agreement was found. Applying the proposed method to mammographic dark-field data, a reduction of the dark-field background and anatomical noise was achieved. The contrast between microcalcifications and their surrounding background was increased. The authors show that the influence of and dispersion can be quantified by simulation and, thus, measured image data can be corrected. The simulation allows to determine the corresponding dark-field artifacts for a wide range of setup parameters, like tube-voltage and filtration. The application of the proposed method to mammographic dark-field data shows an increase in contrast compared to the original image, which might simplify a further image-based diagnosis.

  9. Interprofessional teamwork among students in simulated codes: a quasi-experimental study.

    PubMed

    Garbee, Deborah D; Paige, John; Barrier, Kendra; Kozmenko, Valeriy; Kozmenko, Lyubov; Zamjahn, John; Bonanno, Laura; Cefalu, Jean

    2013-01-01

    The purpose of this study was to evaluate the efficacy of using crisis resource management (CRM) principles and high-fidelity human patient simulation (HFHPS) for interprofessional (IP) team training of students from undergraduate nursing, nurse anesthesia, medical, and respiratory therapy. IP education using simulation-based training has the potential to transform education by improving teamwork and communication and breaking down silos in education. This one-year study used a quasi-experimental design to evaluate students' acquisition and retention of teamwork and communication skills. A convenience sample consisted of 52 students in the fall semester, with 40 students returning in the spring. Mean scores increased after training, and skills were retained fairly well. Any loss was regained with repeat training in the spring. The results suggest that using CRM and HFHPS is an effective pedagogy for teaching communication and teamwork skills to IP student teams.

  10. In-depth evaluation of software tools for data-independent acquisition based label-free quantification.

    PubMed

    Kuharev, Jörg; Navarro, Pedro; Distler, Ute; Jahn, Olaf; Tenzer, Stefan

    2015-09-01

    Label-free quantification (LFQ) based on data-independent acquisition workflows currently experiences increasing popularity. Several software tools have been recently published or are commercially available. The present study focuses on the evaluation of three different software packages (Progenesis, synapter, and ISOQuant) supporting ion mobility enhanced data-independent acquisition data. In order to benchmark the LFQ performance of the different tools, we generated two hybrid proteome samples of defined quantitative composition containing tryptically digested proteomes of three different species (mouse, yeast, Escherichia coli). This model dataset simulates complex biological samples containing large numbers of both unregulated (background) proteins as well as up- and downregulated proteins with exactly known ratios between samples. We determined the number and dynamic range of quantifiable proteins and analyzed the influence of applied algorithms (retention time alignment, clustering, normalization, etc.) on quantification results. Analysis of technical reproducibility revealed median coefficients of variation of reported protein abundances below 5% for MS(E) data for Progenesis and ISOQuant. Regarding accuracy of LFQ, evaluation with synapter and ISOQuant yielded superior results compared to Progenesis. In addition, we discuss reporting formats and user friendliness of the software packages. The data generated in this study have been deposited to the ProteomeXchange Consortium with identifier PXD001240 (http://proteomecentral.proteomexchange.org/dataset/PXD001240). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Distributed practice. The more the merrier? A randomised bronchoscopy simulation study

    PubMed Central

    Bjerrum, Anne Sofie; Eika, Berit; Charles, Peder; Hilberg, Ole

    2016-01-01

    Introduction The distribution of practice affects the acquisition of skills. Distributed practice has shown to be more effective for skills acquisition than massed training. However, it remains unknown as to which is the most effective distributed practice schedule for learning bronchoscopy skills through simulation training. This study compares two distributed practice schedules: One-day distributed practice and weekly distributed practice. Method Twenty physicians in training were randomly assigned to one-day distributed or weekly distributed bronchoscopy simulation practice. Performance was assessed with a pre-test, a post-test after each practice session, and a 4-week retention test using previously validated simulator measures. Data were analysed with repeated measures ANOVA. Results No interaction was found between group and test (F(4,72) <1.68, p>0.16), except for the measure ‘percent-segments-entered’, and no main effect of group was found for any of the measures (F(1,72)< 0.87, p>0.36), which indicates that there was no difference between the learning curves of the one-day distributed practice schedule and the weekly distributed practice schedule. Discussion We found no difference in effectiveness of bronchoscopy skills acquisition between the one-day distributed practice and the weekly distributed practice. This finding suggests that the choice of bronchoscopy training practice may be guided by what best suits the clinical practice. PMID:27172423

  12. Distributed practice. The more the merrier? A randomised bronchoscopy simulation study.

    PubMed

    Bjerrum, Anne Sofie; Eika, Berit; Charles, Peder; Hilberg, Ole

    2016-01-01

    Introduction The distribution of practice affects the acquisition of skills. Distributed practice has shown to be more effective for skills acquisition than massed training. However, it remains unknown as to which is the most effective distributed practice schedule for learning bronchoscopy skills through simulation training. This study compares two distributed practice schedules: One-day distributed practice and weekly distributed practice. Method Twenty physicians in training were randomly assigned to one-day distributed or weekly distributed bronchoscopy simulation practice. Performance was assessed with a pre-test, a post-test after each practice session, and a 4-week retention test using previously validated simulator measures. Data were analysed with repeated measures ANOVA. Results No interaction was found between group and test (F(4,72) <1.68, p>0.16), except for the measure 'percent-segments-entered', and no main effect of group was found for any of the measures (F(1,72)< 0.87, p>0.36), which indicates that there was no difference between the learning curves of the one-day distributed practice schedule and the weekly distributed practice schedule. Discussion We found no difference in effectiveness of bronchoscopy skills acquisition between the one-day distributed practice and the weekly distributed practice. This finding suggests that the choice of bronchoscopy training practice may be guided by what best suits the clinical practice.

  13. Exploitation of realistic computational anthropomorphic phantoms for the optimization of nuclear imaging acquisition and processing protocols.

    PubMed

    Loudos, George K; Papadimitroulas, Panagiotis G; Kagadis, George C

    2014-01-01

    Monte Carlo (MC) simulations play a crucial role in nuclear medical imaging since they can provide the ground truth for clinical acquisitions, by integrating and quantifing all physical parameters that affect image quality. The last decade a number of realistic computational anthropomorphic models have been developed to serve imaging, as well as other biomedical engineering applications. The combination of MC techniques with realistic computational phantoms can provide a powerful tool for pre and post processing in imaging, data analysis and dosimetry. This work aims to create a global database for simulated Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) exams and the methodology, as well as the first elements are presented. Simulations are performed using the well validated GATE opensource toolkit, standard anthropomorphic phantoms and activity distribution of various radiopharmaceuticals, derived from literature. The resulting images, projections and sinograms of each study are provided in the database and can be further exploited to evaluate processing and reconstruction algorithms. Patient studies using different characteristics are included in the database and different computational phantoms were tested for the same acquisitions. These include the XCAT, Zubal and the Virtual Family, which some of which are used for the first time in nuclear imaging. The created database will be freely available and our current work is towards its extension by simulating additional clinical pathologies.

  14. Computer Center: It's Time to Take Inventory.

    ERIC Educational Resources Information Center

    Spain, James D.

    1984-01-01

    Describes typical instructional applications of computers. Areas considered include: (1) instructional simulations and animations; (2) data analysis; (3) drill and practice; (4) student evaluation; (5) development of computer models and simulations; (6) biometrics or biostatistics; and (7) direct data acquisition and analysis. (JN)

  15. Clinical evaluation of reducing acquisition time on single-photon emission computed tomography image quality using proprietary resolution recovery software.

    PubMed

    Aldridge, Matthew D; Waddington, Wendy W; Dickson, John C; Prakash, Vineet; Ell, Peter J; Bomanji, Jamshed B

    2013-11-01

    A three-dimensional model-based resolution recovery (RR) reconstruction algorithm that compensates for collimator-detector response, resulting in an improvement in reconstructed spatial resolution and signal-to-noise ratio of single-photon emission computed tomography (SPECT) images, was tested. The software is said to retain image quality even with reduced acquisition time. Clinically, any improvement in patient throughput without loss of quality is to be welcomed. Furthermore, future restrictions in radiotracer supplies may add value to this type of data analysis. The aims of this study were to assess improvement in image quality using the software and to evaluate the potential of performing reduced time acquisitions for bone and parathyroid SPECT applications. Data acquisition was performed using the local standard SPECT/CT protocols for 99mTc-hydroxymethylene diphosphonate bone and 99mTc-methoxyisobutylisonitrile parathyroid SPECT imaging. The principal modification applied was the acquisition of an eight-frame gated data set acquired using an ECG simulator with a fixed signal as the trigger. This had the effect of partitioning the data such that the effect of reduced time acquisitions could be assessed without conferring additional scanning time on the patient. The set of summed data sets was then independently reconstructed using the RR software to permit a blinded assessment of the effect of acquired counts upon reconstructed image quality as adjudged by three experienced observers. Data sets reconstructed with the RR software were compared with the local standard processing protocols; filtered back-projection and ordered-subset expectation-maximization. Thirty SPECT studies were assessed (20 bone and 10 parathyroid). The images reconstructed with the RR algorithm showed improved image quality for both full-time and half-time acquisitions over local current processing protocols (P<0.05). The RR algorithm improved image quality compared with local processing protocols and has been introduced into routine clinical use. SPECT acquisitions are now acquired at half of the time previously required. The method of binning the data can be applied to any other camera system to evaluate the reduction in acquisition time for similar processes. The potential for dose reduction is also inherent with this approach.

  16. Inferring Biological Structures from Super-Resolution Single Molecule Images Using Generative Models

    PubMed Central

    Maji, Suvrajit; Bruchez, Marcel P.

    2012-01-01

    Localization-based super resolution imaging is presently limited by sampling requirements for dynamic measurements of biological structures. Generating an image requires serial acquisition of individual molecular positions at sufficient density to define a biological structure, increasing the acquisition time. Efficient analysis of biological structures from sparse localization data could substantially improve the dynamic imaging capabilities of these methods. Using a feature extraction technique called the Hough Transform simple biological structures are identified from both simulated and real localization data. We demonstrate that these generative models can efficiently infer biological structures in the data from far fewer localizations than are required for complete spatial sampling. Analysis at partial data densities revealed efficient recovery of clathrin vesicle size distributions and microtubule orientation angles with as little as 10% of the localization data. This approach significantly increases the temporal resolution for dynamic imaging and provides quantitatively useful biological information. PMID:22629348

  17. Respiratory motion correction in emission tomography image reconstruction.

    PubMed

    Reyes, Mauricio; Malandain, Grégoire; Koulibaly, Pierre Malick; González Ballester, Miguel A; Darcourt, Jacques

    2005-01-01

    In Emission Tomography imaging, respiratory motion causes artifacts in lungs and cardiac reconstructed images, which lead to misinterpretations and imprecise diagnosis. Solutions like respiratory gating, correlated dynamic PET techniques, list-mode data based techniques and others have been tested with improvements over the spatial activity distribution in lungs lesions, but with the disadvantages of requiring additional instrumentation or discarding part of the projection data used for reconstruction. The objective of this study is to incorporate respiratory motion correction directly into the image reconstruction process, without any additional acquisition protocol consideration. To this end, we propose an extension to the Maximum Likelihood Expectation Maximization (MLEM) algorithm that includes a respiratory motion model, which takes into account the displacements and volume deformations produced by the respiratory motion during the data acquisition process. We present results from synthetic simulations incorporating real respiratory motion as well as from phantom and patient data.

  18. A new attempt using LabVIEW into a computational experiment of plasma focus device

    NASA Astrophysics Data System (ADS)

    Kim, Myungkyu

    2017-03-01

    The simulation program of plasma focus device based on S. Lee's model has been first developed since 30 years ago and it is widely used to date. Originally the program made by GWbasic language, and then modified by visual basic which was included in the Microsoft Excel. Using Excel well-known to researchers is a key advantage of this program. But it has disadvantages in displaying data in same graph, in slow calculation speed, and in displaying data and calculation of smaller time step. To overcome all these points, the LabVIEW that made by national instrument and based on graphical environment is used for simulation. Furthermore it is correlated with data acquisition of experiment, once experiment being the data is directly transferred to the simulation program and then analyzes and predicts for the next shot. The mass swept factor (fm) and current factor (fc) can be easily find out using this program. This paper describes the detail function and usage of the program and compares the results with the existing one.

  19. Radio-frequency energy quantification in magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Alon, Leeor

    Mapping of radio frequency (RF) energy deposition has been challenging for 50+ years, especially, when scanning patients in the magnetic resonance imaging (MRI) environment. As result, electromagnetic simulation software is often used for estimating the specific absorption rate (SAR), the rate of RF energy deposition in tissue. The thesis work presents challenges associated with aligning information provided by electromagnetic simulation and MRI experiments. As result of the limitations of simulations, experimental methods for the quantification of SAR were established. A system for quantification of the total RF energy deposition was developed for parallel transmit MRI (a system that uses multiple antennas to excite and image the body). The system is capable of monitoring and predicting channel-by-channel RF energy deposition, whole body SAR and capable of tracking potential hardware failures that occur in the transmit chain and may cause the deposition of excessive energy into patients. Similarly, we demonstrated that local RF power deposition can be mapped and predicted for parallel transmit systems based on a series of MRI temperature mapping acquisitions. Resulting from the work, we developed tools for optimal reconstruction temperature maps from MRI acquisitions. The tools developed for temperature mapping paved the way for utilizing MRI as a diagnostic tool for evaluation of RF/microwave emitting device safety. Quantification of the RF energy was demonstrated for both MRI compatible and non-MRI-compatible devices (such as cell phones), while having the advantage of being noninvasive, of providing millimeter resolution and high accuracy.

  20. Microcomputer-Based Acquisitions.

    ERIC Educational Resources Information Center

    Desmarais, Norman

    1986-01-01

    This discussion of three automated acquisitions systems--Bib-Base/Acq, The Book Trak Ordering System, and Card Datalog Acquisitions Module--covers searching and updating, editing, acquisitions functions and statistics, purchase orders and order file, budgeting and accounts maintenance, defining parameters, documentation, security, printing, and…

  1. Neurolinguistically constrained simulation of sentence comprehension: integrating artificial intelligence and brain theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gigley, H.M.

    1982-01-01

    An artificial intelligence approach to the simulation of neurolinguistically constrained processes in sentence comprehension is developed using control strategies for simulation of cooperative computation in associative networks. The desirability of this control strategy in contrast to ATN and production system strategies is explained. A first pass implementation of HOPE, an artificial intelligence simulation model of sentence comprehension, constrained by studies of aphasic performance, psycholinguistics, neurolinguistics, and linguistic theory is described. Claims that the model could serve as a basis for sentence production simulation and for a model of language acquisition as associative learning are discussed. HOPE is a model thatmore » performs in a normal state and includes a lesion simulation facility. HOPE is also a research tool. Its modifiability and use as a tool to investigate hypothesized causes of degradation in comprehension performance by aphasic patients are described. Issues of using behavioral constraints in modelling and obtaining appropriate data for simulated process modelling are discussed. Finally, problems of validation of the simulation results are raised; and issues of how to interpret clinical results to define the evolution of the model are discussed. Conclusions with respect to the feasibility of artificial intelligence simulation process modelling are discussed based on the current state of research.« less

  2. Efficacy of computer-based video and simulation in ultrasound-guided regional anesthesia training.

    PubMed

    Woodworth, Glenn E; Chen, Elliza M; Horn, Jean-Louis E; Aziz, Michael F

    2014-05-01

    To determine the effectiveness of a short educational video and simulation on improvement of ultrasound (US) image acquisition and interpretation skills. Prospective, randomized study. University medical center. 28 anesthesia residents and community anesthesiologists with varied ultrasound experience were randomized to teaching video with interactive simulation or sham video groups. Participants were assessed preintervention and postintervention on their ability to identify the sciatic nerve and other anatomic structures on static US images, as well as their ability to locate the sciatic nerve with US on live models. Pretest written test scores correlated with reported US block experience (Kendall tau rank r = 0.47) and with live US scanning scores (r = 0.64). The teaching video and simulation significantly improved scores on the written examination (P < 0.001); however, they did not significantly improve live US scanning skills. A short educational video with interactive simulation significantly improved knowledge of US anatomy, but failed to improve hands-on performance of US scanning to localize the nerve. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Virtual reality surgical simulators- a prerequisite for robotic surgery.

    PubMed

    Rajanbabu, Anupama; Drudi, Laura; Lau, Susie; Press, Joshua Z; Gotlieb, Walter H

    2014-06-01

    The field of computer assisted minimally invasive surgery is rapidly expanding worldwide, including in India. With more hospitals in India contemplating the acquisition of a robotic platform, training of robotic surgeons is becoming essential. Virtual reality simulators can be used for surgeons to become acquainted with the robotic console prior to live surgery. Our aim was to evaluate the amount of simulator training required before a surgeon first operates on the da Vinci® Surgical System. Simulations were conducted on the Intuitive Surgical's da Vinci® Robot Skill Simulator using the software obtained from Mimic Technologies. Participants included attending staff surgeons experienced in robotic surgery and novices. A set of seven activities were chosen for each participant. Based on the mean exercise score from the first attempt, staff surgeons outperformed the novices in all exercises. However, the difference in score between the staff and the novices decreased after the participants repeated the exercises and by the sixth attempt most of the novices obtained similar scores to the staff, suggesting that this might be at present the minimum set of repetitions indicated (or required) prior to performing life robotic surgery.

  4. Developing the Next Generation NATO Reference Mobility Model

    DTIC Science & Technology

    2016-06-27

    acquisition • design UNCLASSIFIED: Distribution Statement A. Approved for public release; distribution is unlimited.(#27992) Vehicle Dynamics Model...and numerical resolution – for use in vehicle design , acquisition and operational mobility planning 27 June 2016 An open architecture was established...the current empirical methods for simulating vehicle and suspension designs . – Industry wide shortfall with tire dynamics and soft soil behavior

  5. Gravity for Detecting Caves: Airborne and Terrestrial Simulations Based on a Comprehensive Karstic Cave Benchmark

    NASA Astrophysics Data System (ADS)

    Braitenberg, Carla; Sampietro, Daniele; Pivetta, Tommaso; Zuliani, David; Barbagallo, Alfio; Fabris, Paolo; Rossi, Lorenzo; Fabbri, Julius; Mansi, Ahmed Hamdi

    2016-04-01

    Underground caves bear a natural hazard due to their possible evolution into a sink hole. Mapping of all existing caves could be useful for general civil usages as natural deposits or tourism and sports. Natural caves exist globally and are typical in karst areas. We investigate the resolution power of modern gravity campaigns to systematically detect all void caves of a minimum size in a given area. Both aerogravity and terrestrial acquisitions are considered. Positioning of the gravity station is fastest with GNSS methods the performance of which is investigated. The estimates are based on a benchmark cave of which the geometry is known precisely through a laser-scan survey. The cave is the Grotta Gigante cave in NE Italy in the classic karst. The gravity acquisition is discussed, where heights have been acquired with dual-frequency geodetic GNSS receivers and Total Station. Height acquisitions with non-geodetic low-cost receivers are shown to be useful, although the error on the gravity field is larger. The cave produces a signal of -1.5 × 10-5 m/s2, with a clear elliptic geometry. We analyze feasibility of airborne gravity acquisitions for the purpose of systematically mapping void caves. It is found that observations from fixed wing aircraft cannot resolve the caves, but observations from slower and low-flying helicopters or drones do. In order to detect the presence of caves the size of the benchmark cave, systematic terrestrial acquisitions require a density of three stations on square 500 by 500 m2 tiles. The question has a large impact on civil and environmental purposes, since it will allow planning of urban development at a safe distance from subsurface caves. The survey shows that a systematic coverage of the karst would have the benefit to recover the position of all of the greater existing void caves.

  6. Selection of a Data Acquisition and Controls System Communications and Software Architecture for Johnson Space Center's Space Environment Simulation Laboratory Thermal and Vacuum Test Facilities

    NASA Technical Reports Server (NTRS)

    Jordan, Eric A.

    2004-01-01

    Upgrade of data acquisition and controls systems software at Johnson Space Center's Space Environment Simulation Laboratory (SESL) involved the definition, evaluation and selection of a system communication architecture and software components. A brief discussion of the background of the SESL and its data acquisition and controls systems provides a context for discussion of the requirements for each selection. Further framework is provided as upgrades to these systems accomplished in the 1990s and in 2003 are compared to demonstrate the role that technological advances have had in their improvement. Both of the selections were similar in their three phases; 1) definition of requirements, 2) identification of candidate products and their evaluation and testing and 3) selection by comparison of requirement fulfillment. The candidates for the communication architecture selection embraced several different methodologies which are explained and contrasted. Requirements for this selection are presented and the selection process is described. Several candidates for the software component of the data acquisition and controls system are identified, requirements for evaluation and selection are presented, and the evaluation process is described.

  7. Business intelligence modeling in launch operations

    NASA Astrophysics Data System (ADS)

    Bardina, Jorge E.; Thirumalainambi, Rajkumar; Davis, Rodney D.

    2005-05-01

    The future of business intelligence in space exploration will focus on the intelligent system-of-systems real-time enterprise. In present business intelligence, a number of technologies that are most relevant to space exploration are experiencing the greatest change. Emerging patterns of set of processes rather than organizational units leading to end-to-end automation is becoming a major objective of enterprise information technology. The cost element is a leading factor of future exploration systems. This technology project is to advance an integrated Planning and Management Simulation Model for evaluation of risks, costs, and reliability of launch systems from Earth to Orbit for Space Exploration. The approach builds on research done in the NASA ARC/KSC developed Virtual Test Bed (VTB) to integrate architectural, operations process, and mission simulations for the purpose of evaluating enterprise level strategies to reduce cost, improve systems operability, and reduce mission risks. The objectives are to understand the interdependency of architecture and process on recurring launch cost of operations, provide management a tool for assessing systems safety and dependability versus cost, and leverage lessons learned and empirical models from Shuttle and International Space Station to validate models applied to Exploration. The systems-of-systems concept is built to balance the conflicting objectives of safety, reliability, and process strategy in order to achieve long term sustainability. A planning and analysis test bed is needed for evaluation of enterprise level options and strategies for transit and launch systems as well as surface and orbital systems. This environment can also support agency simulation based acquisition process objectives. The technology development approach is based on the collaborative effort set forth in the VTB's integrating operations, process models, systems and environment models, and cost models as a comprehensive disciplined enterprise analysis environment. Significant emphasis is being placed on adapting root cause from existing Shuttle operations to exploration. Technical challenges include cost model validation, integration of parametric models with discrete event process and systems simulations, and large-scale simulation integration. The enterprise architecture is required for coherent integration of systems models. It will also require a plan for evolution over the life of the program. The proposed technology will produce long-term benefits in support of the NASA objectives for simulation based acquisition, will improve the ability to assess architectural options verses safety/risk for future exploration systems, and will facilitate incorporation of operability as a systems design consideration, reducing overall life cycle cost for future systems.

  8. Business Intelligence Modeling in Launch Operations

    NASA Technical Reports Server (NTRS)

    Bardina, Jorge E.; Thirumalainambi, Rajkumar; Davis, Rodney D.

    2005-01-01

    This technology project is to advance an integrated Planning and Management Simulation Model for evaluation of risks, costs, and reliability of launch systems from Earth to Orbit for Space Exploration. The approach builds on research done in the NASA ARC/KSC developed Virtual Test Bed (VTB) to integrate architectural, operations process, and mission simulations for the purpose of evaluating enterprise level strategies to reduce cost, improve systems operability, and reduce mission risks. The objectives are to understand the interdependency of architecture and process on recurring launch cost of operations, provide management a tool for assessing systems safety and dependability versus cost, and leverage lessons learned and empirical models from Shuttle and International Space Station to validate models applied to Exploration. The systems-of-systems concept is built to balance the conflicting objectives of safety, reliability, and process strategy in order to achieve long term sustainability. A planning and analysis test bed is needed for evaluation of enterprise level options and strategies for transit and launch systems as well as surface and orbital systems. This environment can also support agency simulation .based acquisition process objectives. The technology development approach is based on the collaborative effort set forth in the VTB's integrating operations. process models, systems and environment models, and cost models as a comprehensive disciplined enterprise analysis environment. Significant emphasis is being placed on adapting root cause from existing Shuttle operations to exploration. Technical challenges include cost model validation, integration of parametric models with discrete event process and systems simulations. and large-scale simulation integration. The enterprise architecture is required for coherent integration of systems models. It will also require a plan for evolution over the life of the program. The proposed technology will produce long-term benefits in support of the NASA objectives for simulation based acquisition, will improve the ability to assess architectural options verses safety/risk for future exploration systems, and will facilitate incorporation of operability as a systems design consideration, reducing overall life cycle cost for future systems. The future of business intelligence of space exploration will focus on the intelligent system-of-systems real-time enterprise. In present business intelligence, a number of technologies that are most relevant to space exploration are experiencing the greatest change. Emerging patterns of set of processes rather than organizational units leading to end-to-end automation is becoming a major objective of enterprise information technology. The cost element is a leading factor of future exploration systems.

  9. Point Cloud Based Relative Pose Estimation of a Satellite in Close Range

    PubMed Central

    Liu, Lujiang; Zhao, Gaopeng; Bo, Yuming

    2016-01-01

    Determination of the relative pose of satellites is essential in space rendezvous operations and on-orbit servicing missions. The key problems are the adoption of suitable sensor on board of a chaser and efficient techniques for pose estimation. This paper aims to estimate the pose of a target satellite in close range on the basis of its known model by using point cloud data generated by a flash LIDAR sensor. A novel model based pose estimation method is proposed; it includes a fast and reliable pose initial acquisition method based on global optimal searching by processing the dense point cloud data directly, and a pose tracking method based on Iterative Closest Point algorithm. Also, a simulation system is presented in this paper in order to evaluate the performance of the sensor and generate simulated sensor point cloud data. It also provides truth pose of the test target so that the pose estimation error can be quantified. To investigate the effectiveness of the proposed approach and achievable pose accuracy, numerical simulation experiments are performed; results demonstrate algorithm capability of operating with point cloud directly and large pose variations. Also, a field testing experiment is conducted and results show that the proposed method is effective. PMID:27271633

  10. Optimization of digital breast tomosynthesis (DBT) acquisition parameters for human observers: effect of reconstruction algorithms

    NASA Astrophysics Data System (ADS)

    Zeng, Rongping; Badano, Aldo; Myers, Kyle J.

    2017-04-01

    We showed in our earlier work that the choice of reconstruction methods does not affect the optimization of DBT acquisition parameters (angular span and number of views) using simulated breast phantom images in detecting lesions with a channelized Hotelling observer (CHO). In this work we investigate whether the model-observer based conclusion is valid when using humans to interpret images. We used previously generated DBT breast phantom images and recruited human readers to find the optimal geometry settings associated with two reconstruction algorithms, filtered back projection (FBP) and simultaneous algebraic reconstruction technique (SART). The human reader results show that image quality trends as a function of the acquisition parameters are consistent between FBP and SART reconstructions. The consistent trends confirm that the optimization of DBT system geometry is insensitive to the choice of reconstruction algorithm. The results also show that humans perform better in SART reconstructed images than in FBP reconstructed images. In addition, we applied CHOs with three commonly used channel models, Laguerre-Gauss (LG) channels, square (SQR) channels and sparse difference-of-Gaussian (sDOG) channels. We found that LG channels predict human performance trends better than SQR and sDOG channel models for the task of detecting lesions in tomosynthesis backgrounds. Overall, this work confirms that the choice of reconstruction algorithm is not critical for optimizing DBT system acquisition parameters.

  11. Illumination-based synchronization of high-speed vision sensors.

    PubMed

    Hou, Lei; Kagami, Shingo; Hashimoto, Koichi

    2010-01-01

    To acquire images of dynamic scenes from multiple points of view simultaneously, the acquisition time of vision sensors should be synchronized. This paper describes an illumination-based synchronization method derived from the phase-locked loop (PLL) algorithm. Incident light to a vision sensor from an intensity-modulated illumination source serves as the reference signal for synchronization. Analog and digital computation within the vision sensor forms a PLL to regulate the output signal, which corresponds to the vision frame timing, to be synchronized with the reference. Simulated and experimental results show that a 1,000 Hz frame rate vision sensor was successfully synchronized with 32 μs jitters.

  12. SU-E-J-237: Real-Time 3D Anatomy Estimation From Undersampled MR Acquisitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glitzner, M; Lagendijk, J; Raaymakers, B

    Recent developments made MRI guided radiotherapy feasible. Performing simultaneous imaging during fractions can provide information about changing anatomy by means of deformable image registration for either immediate plan adaptations or accurate dose accumulation on the changing anatomy. In 3D MRI, however, acquisition time is considerable and scales with resolution. Furthermore, intra-scan motion degrades image quality.In this work, we investigate the sensitivity of registration quality on imageresolution: potentially, by employing spatial undersampling, the acquisition timeof MR images for the purpose of deformable image registration can be reducedsignificantly.On a volunteer, 3D-MR imaging data was sampled in a navigator-gated manner, acquiring one axialmore » volume (360×260×100mm{sup 3}) per 3s during exhale phase. A T1-weighted FFE sequence was used with an acquired voxel size of (2.5mm{sup 3}) for a duration of 17min. Deformation vector fields were evaluated for 100 imaging cycles with respect to the initial anatomy using deformable image registration based on optical flow. Subsequently, the imaging data was downsampled by a factor of 2, simulating a fourfold acquisition speed. Displacements of the downsampled volumes were then calculated by the same process.In kidneyliver boundaries and the region around stomach/duodenum, prominent organ drifts could be observed in both the original and the downsampled imaging data. An increasing displacement of approximately 2mm was observed for the kidney, while an area around the stomach showed sudden displacements of 4mm. Comparison of the motile points over time showed high reproducibility between the displacements of high-resolution and downsampled volumes: over a 17min acquisition, the componentwise RMS error was not more than 0.38mm.Based on the synthetic experiments, 3D nonrigid image registration shows little sensitivity to image resolution and the displacement information is preserved even when halving the resolution. This can be employed to greatly reduce image acquisition times for interventional applications in real-time. This work was funded by the SoRTS consortium, which includes the industry partners Elekta, Philips and Technolution.« less

  13. A Systematic Review of Virtual Reality Simulators for Robot-assisted Surgery.

    PubMed

    Moglia, Andrea; Ferrari, Vincenzo; Morelli, Luca; Ferrari, Mauro; Mosca, Franco; Cuschieri, Alfred

    2016-06-01

    No single large published randomized controlled trial (RCT) has confirmed the efficacy of virtual simulators in the acquisition of skills to the standard required for safe clinical robotic surgery. This remains the main obstacle for the adoption of these virtual simulators in surgical residency curricula. To evaluate the level of evidence in published studies on the efficacy of training on virtual simulators for robotic surgery. In April 2015 a literature search was conducted on PubMed, Web of Science, Scopus, Cochrane Library, the Clinical Trials Database (US) and the Meta Register of Controlled Trials. All publications were scrutinized for relevance to the review and for assessment of the levels of evidence provided using the classification developed by the Oxford Centre for Evidence-Based Medicine. The publications included in the review consisted of one RCT and 28 cohort studies on validity, and seven RCTs and two cohort studies on skills transfer from virtual simulators to robot-assisted surgery. Simulators were rated good for realism (face validity) and for usefulness as a training tool (content validity). However, the studies included used various simulation training methodologies, limiting the assessment of construct validity. The review confirms the absence of any consensus on which tasks and metrics are the most effective for the da Vinci Skills Simulator and dV-Trainer, the most widely investigated systems. Although there is consensus for the RoSS simulator, this is based on only two studies on construct validity involving four exercises. One study on initial evaluation of an augmented reality module for partial nephrectomy using the dV-Trainer reported high correlation (r=0.8) between in vivo porcine nephrectomy and a virtual renorrhaphy task according to the overall Global Evaluation Assessment of Robotic Surgery (GEARS) score. In one RCT on skills transfer, the experimental group outperformed the control group, with a significant difference in overall GEARS score (p=0.012) during performance of urethrovesical anastomosis on an inanimate model. Only one study included assessment of a surgical procedure on real patients: subjects trained on a virtual simulator outperformed the control group following traditional training. However, besides the small numbers, this study was not randomized. There is an urgent need for a large, well-designed, preferably multicenter RCT to study the efficacy of virtual simulation for acquisition competence in and safe execution of clinical robotic-assisted surgery. We reviewed the literature on virtual simulators for robot-assisted surgery. Validity studies used various simulation training methodologies. It is not clear which exercises and metrics are the most effective in distinguishing different levels of experience on the da Vinci robot. There is no reported evidence of skills transfer from simulation to clinical surgery on real patients. Copyright © 2015 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  14. [Simulation-based learning and internal medicine: Opportunities and current perspectives for a national harmonized program].

    PubMed

    Galland, J; Abbara, S; Terrier, B; Samson, M; Tesnières, A; Fournier, J P; Braun, M

    2018-06-01

    Simulation-based learning (SBL) is developing rapidly in France and the question of its use in the teaching of internal medicine (IM) is essential. While HAS encourages its integration into medical education, French Young Internists (AJI) set up a working group to reflect on the added-value of this tool in our specialty. Different sorts of SBL exist: human, synthetic and electronic. It enables student to acquire and evaluate technical skills (strengths, invasive procedures, etc.) and non-technical skills (relational, reasoning…). The debriefing that follows the simulation session is an essential time in pedagogical terms. It enables the acquisition of knowledge by encouraging the students' reflection to reshape their reasoning patterns by self-correcting. IM interns are supportive of its use. The simulation would allow young internists to acquire skills specific to our specialty such as certain gestures, complex consulting management, the synthesis of difficult clinical cases. SBL remains confronted with human and financial cost issues. The budgets allocated to the development and maintenance of simulation centres are uneven, making the supply of training unequal on the territory. Simulation sessions are time-consuming and require teacher training. Are faculties ready to train and invest their time in simulation, even though the studies do not allow us to conclude on its pedagogical validity? Copyright © 2018 Société Nationale Française de Médecine Interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  15. Impact of a simulation training curriculum on technical and nontechnical skills in colonoscopy: a randomized trial.

    PubMed

    Grover, Samir C; Garg, Ankit; Scaffidi, Michael A; Yu, Jeffrey J; Plener, Ian S; Yong, Elaine; Cino, Maria; Grantcharov, Teodor P; Walsh, Catharine M

    2015-12-01

    GI endoscopy simulation-based training augments early clinical performance; however, the optimal manner by which to deliver training is unknown. We aimed to validate a simulation-based structured comprehensive curriculum (SCC) designed to teach technical, cognitive, and integrative competencies in colonoscopy. Single-blinded, randomized, controlled trial. Endoscopic simulation course at an academic hospital. Thirty-three novice endoscopists were allocated to an SCC group or self-regulated learning (SRL) group. The SCC group received a curriculum consisting of 6 hours of didactic lectures and 8 hours of virtual reality simulation-based training with expert feedback. The SRL group was provided a list of desired objectives and was instructed to practice on the simulator for an equivalent time (8 hours). Clinical transfer was assessed during 2 patient colonoscopies using the Joint Advisory Group Direct Observation of Procedural Skills (JAG DOPS) scale. Secondary outcome measures included differences in procedural knowledge, immediate post-training simulation performance, and delayed post-training (4-6 weeks) performance during an integrated scenario test on the JAG DOPS communication and integrated scenario global rating scales. There was no significant difference in baseline or post-training performance on the simulator task. The SCC group performed superiorly during their first and second clinical colonoscopies. Additionally, the SCC group demonstrated significantly better knowledge and colonoscopy-specific performance, communication, and global performance during the integrated scenario. We were unable to measure SRL participants' effort outside of mandatory training. In addition, feedback metrics and number of available simulation cases are limited. These results support integration of endoscopy simulation into a structured curriculum incorporating instructional feedback and complementary didactic knowledge as a means to augment technical, cognitive, and integrative skills acquisition, as compared with SRL on virtual reality simulators. ( NCT01991522.) Copyright © 2015 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.

  16. A CMOS high speed imaging system design based on FPGA

    NASA Astrophysics Data System (ADS)

    Tang, Hong; Wang, Huawei; Cao, Jianzhong; Qiao, Mingrui

    2015-10-01

    CMOS sensors have more advantages than traditional CCD sensors. The imaging system based on CMOS has become a hot spot in research and development. In order to achieve the real-time data acquisition and high-speed transmission, we design a high-speed CMOS imaging system on account of FPGA. The core control chip of this system is XC6SL75T and we take advantages of CameraLink interface and AM41V4 CMOS image sensors to transmit and acquire image data. AM41V4 is a 4 Megapixel High speed 500 frames per second CMOS image sensor with global shutter and 4/3" optical format. The sensor uses column parallel A/D converters to digitize the images. The CameraLink interface adopts DS90CR287 and it can convert 28 bits of LVCMOS/LVTTL data into four LVDS data stream. The reflected light of objects is photographed by the CMOS detectors. CMOS sensors convert the light to electronic signals and then send them to FPGA. FPGA processes data it received and transmits them to upper computer which has acquisition cards through CameraLink interface configured as full models. Then PC will store, visualize and process images later. The structure and principle of the system are both explained in this paper and this paper introduces the hardware and software design of the system. FPGA introduces the driven clock of CMOS. The data in CMOS is converted to LVDS signals and then transmitted to the data acquisition cards. After simulation, the paper presents a row transfer timing sequence of CMOS. The system realized real-time image acquisition and external controls.

  17. Determining content for a simulation-based curriculum in pediatric emergency medicine: results from a national Delphi process.

    PubMed

    Bank, Ilana; Cheng, Adam; McLeod, Peter; Bhanji, Farhan

    2015-11-01

    By the end of residency training, pediatric emergency medicine (PEM) residents are expected to have developed the confidence and abilities required to manage acutely ill children. Acquisition of competence requires exposure and/or supplemental formal education for critical and noncritical medical clinical presentations. Simulation can provide experiential learning and can improve trainees' knowledge, skills, and attitudes. The primary objective of this project was to identify the content for a simulation-based national curriculum for PEM training. We recruited participants for the Delphi study by contacting current PEM program directors and immediate past program directors as well as simulation experts at all of the Canadian PEM fellowship sites. We determined the appropriate core content for the Delphi study by combining the PEM core content requirements of the Royal College of Physicians and Surgeons of Canada (RCPSC) and the American Board of Pediatrics (ABP). Using the Delphi method, we achieved consensus amongst the national group of PEM and simulation experts. The participants completed a three-round Delphi (using a four-point Likert scale). Response rates for the Delphi were 85% for the first round and 77% for second and third rounds. From the initial 224 topics, 53 were eliminated (scored <2). Eighty-five topics scored between 2 and 3, and 87 scored between 3 and 4. The 48 topics, which were scored between 3.5 and 4.0, were labeled as "key curriculum topics." We have iteratively identified a consensus for the content of a national simulation-based curriculum.

  18. Image acquisition with immersion objective lenses using electrons emitted with several tenths of an electron volt energies: towards high spatial resolution ESCA analysis.

    PubMed

    Bernheim, M

    2006-03-01

    This study aims to evaluate the spatial resolution achievable with photoelectrons in order to perform localised UPS or XPS analyses on various heterogeneous samples. This investigation is intentionally restricted to direct image acquisition by immersion objective lenses, involving electrons ejected with initial energies of several tenths of an electron-volt. In order to characterise the contribution of all optical elements, analytical investigations were associated to numerical simulations based on SIMION 7 software. The acquisition of high-quality images implies a simultaneous reduction in spherical and chromatic aberrations by a narrow aperture stop placed at the output pupil of the objective. With such limitations in useful emission angles, it is shown that monochromatic electron beams build images with a resolution of about 1 nm, especially for the acceleration bias mode where the focussing electrode is biased at a positive high voltage. Even energy dispersed electron beams, limited by a 4 eV band pass spectrometer, can produce images convenient for highly localised ESCA analyses (resolution 3 nm), where the objective lens is associated with an aperture stop of 30 microm in diameter without using acceleration voltages above 5000 V.

  19. Spatially Common Sparsity Based Adaptive Channel Estimation and Feedback for FDD Massive MIMO

    NASA Astrophysics Data System (ADS)

    Gao, Zhen; Dai, Linglong; Wang, Zhaocheng; Chen, Sheng

    2015-12-01

    This paper proposes a spatially common sparsity based adaptive channel estimation and feedback scheme for frequency division duplex based massive multi-input multi-output (MIMO) systems, which adapts training overhead and pilot design to reliably estimate and feed back the downlink channel state information (CSI) with significantly reduced overhead. Specifically, a non-orthogonal downlink pilot design is first proposed, which is very different from standard orthogonal pilots. By exploiting the spatially common sparsity of massive MIMO channels, a compressive sensing (CS) based adaptive CSI acquisition scheme is proposed, where the consumed time slot overhead only adaptively depends on the sparsity level of the channels. Additionally, a distributed sparsity adaptive matching pursuit algorithm is proposed to jointly estimate the channels of multiple subcarriers. Furthermore, by exploiting the temporal channel correlation, a closed-loop channel tracking scheme is provided, which adaptively designs the non-orthogonal pilot according to the previous channel estimation to achieve an enhanced CSI acquisition. Finally, we generalize the results of the multiple-measurement-vectors case in CS and derive the Cramer-Rao lower bound of the proposed scheme, which enlightens us to design the non-orthogonal pilot signals for the improved performance. Simulation results demonstrate that the proposed scheme outperforms its counterparts, and it is capable of approaching the performance bound.

  20. Improving the Effectiveness and Acquisition Management of Selected Weapon Systems: A Summary of Major Issues and Recommended Actions.

    DTIC Science & Technology

    1982-05-14

    need for effective training--a situation which will be impaired until the AH-64 combat mission simulator , now under development, becomes available in...antisubmarine warfare system includes the capability to detect, classify, localize, and destroy the enemy. This capability includes multimillion dollar...to simulate combat situations will simulate only air-to-air activity. Air-to-ground and electronic counter countermeasures simulations were deleted

  1. First in situ TOF-PET study using digital photon counters for proton range verification.

    PubMed

    Cambraia Lopes, P; Bauer, J; Salomon, A; Rinaldi, I; Tabacchini, V; Tessonnier, T; Crespo, P; Parodi, K; Schaart, D R

    2016-08-21

    Positron emission tomography (PET) is the imaging modality most extensively tested for treatment monitoring in particle therapy. Optimal use of PET in proton therapy requires in situ acquisition of the relatively strong (15)O signal due to its relatively short half-life (~2 min) and high oxygen content in biological tissues, enabling shorter scans that are less sensitive to biological washout. This paper presents the first performance tests of a scaled-down in situ time-of-flight (TOF) PET system based on digital photon counters (DPCs) coupled to Cerium-doped Lutetium Yttrium Silicate (LYSO:Ce) crystals, providing quantitative results representative of a dual-head tomograph that complies with spatial constraints typically encountered in clinical practice (2  ×  50°, of 360°, transaxial angular acceptance). The proton-induced activity inside polymethylmethacrylate (PMMA) and polyethylene (PE) phantoms was acquired within beam pauses (in-beam) and immediately after irradiation by an actively-delivered synchrotron pencil-beam, with clinically relevant 125.67 MeV/u, 4.6  ×  10(8) protons s(-1), and 10(10) total protons. 3D activity maps reconstructed with and without TOF information are compared to FLUKA simulations, demonstrating the benefit of TOF-PET to reduce limited-angle artefacts using a 382 ps full width at half maximum coincidence resolving time. The time-dependent contributions from different radionuclides to the total count-rate are investigated. We furthermore study the impact of the acquisition time window on the laterally integrated activity depth-profiles, with emphasis on 2 min acquisitions starting at different time points. The results depend on phantom composition and reflect the differences in relative contributions from the radionuclides originating from carbon and oxygen. We observe very good agreement between the shapes of the simulated and measured activity depth-profiles for post-beam protocols. However, our results also suggest that available experimental cross sections underestimate the production of (10)C for in-beam acquisitions, which in PE results in an overestimation of the predicted activity range by 1.4 mm. The uncertainty in the activity range measured in PMMA using the DPC-based TOF-PET prototype setup equals 0.2 mm-0.3 mm.

  2. First in situ TOF-PET study using digital photon counters for proton range verification

    NASA Astrophysics Data System (ADS)

    Cambraia Lopes, P.; Bauer, J.; Salomon, A.; Rinaldi, I.; Tabacchini, V.; Tessonnier, T.; Crespo, P.; Parodi, K.; Schaart, D. R.

    2016-08-01

    Positron emission tomography (PET) is the imaging modality most extensively tested for treatment monitoring in particle therapy. Optimal use of PET in proton therapy requires in situ acquisition of the relatively strong 15O signal due to its relatively short half-life (~2 min) and high oxygen content in biological tissues, enabling shorter scans that are less sensitive to biological washout. This paper presents the first performance tests of a scaled-down in situ time-of-flight (TOF) PET system based on digital photon counters (DPCs) coupled to Cerium-doped Lutetium Yttrium Silicate (LYSO:Ce) crystals, providing quantitative results representative of a dual-head tomograph that complies with spatial constraints typically encountered in clinical practice (2  ×  50°, of 360°, transaxial angular acceptance). The proton-induced activity inside polymethylmethacrylate (PMMA) and polyethylene (PE) phantoms was acquired within beam pauses (in-beam) and immediately after irradiation by an actively-delivered synchrotron pencil-beam, with clinically relevant 125.67 MeV/u, 4.6  ×  108 protons s-1, and 1010 total protons. 3D activity maps reconstructed with and without TOF information are compared to FLUKA simulations, demonstrating the benefit of TOF-PET to reduce limited-angle artefacts using a 382 ps full width at half maximum coincidence resolving time. The time-dependent contributions from different radionuclides to the total count-rate are investigated. We furthermore study the impact of the acquisition time window on the laterally integrated activity depth-profiles, with emphasis on 2 min acquisitions starting at different time points. The results depend on phantom composition and reflect the differences in relative contributions from the radionuclides originating from carbon and oxygen. We observe very good agreement between the shapes of the simulated and measured activity depth-profiles for post-beam protocols. However, our results also suggest that available experimental cross sections underestimate the production of 10C for in-beam acquisitions, which in PE results in an overestimation of the predicted activity range by 1.4 mm. The uncertainty in the activity range measured in PMMA using the DPC-based TOF-PET prototype setup equals 0.2 mm-0.3 mm.

  3. A numerical and theoretical study on the aerodynamics of a rhinoceros beetle (Trypoxlyus dichotomus) and optimization of its wing kinematics in hover

    NASA Astrophysics Data System (ADS)

    Oh, Sehyeong; Lee, Boogeon; Park, Hyungmin; Choi, Haecheon

    2017-11-01

    We investigate a hovering rhinoceros beetle using numerical simulation and blade element theory. Numerical simulations are performed using an immersed boundary method. In the simulation, the hindwings are modeled as a rigid flat plate, and three-dimensionally scanned elytra and body are used. The results of simulation indicate that the lift force generated by the hindwings alone is sufficient to support the weight, and the elytra generate negligible lift force. Considering the hindwings only, we present a blade element model based on quasi-steady assumptions to identify the mechanisms of aerodynamic force generation and power expenditure in the hovering flight of a rhinoceros beetle. We show that the results from the present blade element model are in excellent agreement with numerical ones. Based on the current blade element model, we find the optimal wing kinematics minimizing the aerodynamic power requirement using a hybrid optimization algorithm combining a clustering genetic algorithm with a gradient-based optimizer. We show that the optimal wing kinematics reduce the aerodynamic power consumption, generating enough lift force to support the weight. This research was supported by a Grant to Bio-Mimetic Robot Research Center Funded by Defense Acquisition Program Administration, and by Agency for Defense Development (UD130070ID) and NRF-2016R1E1A1A02921549 of the MSIP of Korea.

  4. Development of an FPGA-based multipoint laser pyroshock measurement system for explosive bolts

    NASA Astrophysics Data System (ADS)

    Abbas, Syed Haider; Jang, Jae-Kyeong; Lee, Jung-Ryul; Kim, Zaeill

    2016-07-01

    Pyroshock can cause failure to the objective of an aerospace structure by damaging its sensitive electronic equipment, which is responsible for performing decisive operations. A pyroshock is the high intensity shock wave that is generated when a pyrotechnic device is explosively triggered to separate, release, or activate structural subsystems of an aerospace architecture. Pyroshock measurement plays an important role in experimental simulations to understand the characteristics of pyroshock on the host structure. This paper presents a technology to measure a pyroshock wave at multiple points using laser Doppler vibrometers (LDVs). These LDVs detect the pyroshock wave generated due to an explosive-based pyrotechnical event. Field programmable gate array (FPGA) based data acquisition is used in the study to acquire pyroshock signals simultaneously from multiple channels. This paper describes the complete system design for multipoint pyroshock measurement. The firmware architecture for the implementation of multichannel data acquisition on an FPGA-based development board is also discussed. An experiment using explosive bolts was configured to test the reliability of the system. Pyroshock was generated using explosive excitation on a 22-mm-thick steel plate. Three LDVs were deployed to capture the pyroshock wave at different points. The pyroshocks captured were displayed as acceleration plots. The results showed that our system effectively captured the pyroshock wave with a peak-to-peak magnitude of 303 741 g. The contribution of this paper is a specialized architecture of firmware design programmed in FPGA for data acquisition of large amount of multichannel pyroshock data. The advantages of the developed system are the near-field, multipoint, non-contact, and remote measurement of a pyroshock wave, which is dangerous and expensive to produce in aerospace pyrotechnic tests.

  5. A methodology for the quantification of doctrine and materiel approaches in a capability-based assessment

    NASA Astrophysics Data System (ADS)

    Tangen, Steven Anthony

    Due to the complexities of modern military operations and the technologies employed on today's military systems, acquisition costs and development times are becoming increasingly large. Meanwhile, the transformation of the global security environment is driving the U.S. military's own transformation. In order to meet the required capabilities of the next generation without buying prohibitively costly new systems, it is necessary for the military to evolve across the spectrum of doctrine, organization, training, materiel, leadership and education, personnel, and facilities (DOTMLPF). However, the methods for analyzing DOTMLPF approaches within the early acquisition phase of a capability-based assessment (CBA) are not as well established as the traditional technology design techniques. This makes it difficult for decision makers to decide if investments should be made in materiel or non-materiel solutions. This research develops an agent-based constructive simulation to quantitatively assess doctrine alongside materiel approaches. Additionally, life-cycle cost techniques are provided to enable a cost-effectiveness trade. These techniques are wrapped together in a decision-making environment that brings crucial information forward so informed and appropriate acquisition choices can be made. The methodology is tested on a future unmanned aerial vehicle design problem. Through the implementation of this quantitative methodology on the proof-of-concept study, it is shown that doctrinal changes including fleet composition, asset allocation, and patrol pattern were capable of dramatic improvements in system effectiveness at a much lower cost than the incorporation of candidate technologies. Additionally, this methodology was able to quantify the precise nature of strong doctrine-doctrine and doctrine-technology interactions which have been observed only qualitatively throughout military history. This dissertation outlines the methodology and demonstrates how potential approaches to capability-gaps can be identified with respect to effectiveness, cost, and time. When implemented, this methodology offers the opportunity to achieve system capabilities in a new way, improve the design of acquisition programs, and field the right combination of ways and means to address future challenges to national security.

  6. Use of simulation-based learning in undergraduate nurse education: An umbrella systematic review.

    PubMed

    Cant, Robyn P; Cooper, Simon J

    2017-02-01

    To conduct a systematic review to appraise and review evidence on the impact of simulation-based education for undergraduate/pre-licensure nursing students, using existing reviews of literature. An umbrella review (review of reviews). Cumulative Index of Nursing and Allied Health Literature (CINAHLPlus), PubMed, and Google Scholar. Reviews of literature conducted between 2010 and 2015 regarding simulation-based education for pre-licensure nursing students. The Joanna Briggs Institute methodology for conduct of an umbrella review was used to inform the review process. Twenty-five systematic reviews of literature were included, of which 14 were recent (2013-2015). Most described the level of evidence of component studies as a mix of experimental and quasi-experimental designs. The reviews measured around 14 different main outcome variables, thus limiting the number of primary studies that each individual review could pool to appraise. Many reviews agreed on the key learning outcome of knowledge acquisition, although no overall quantitative effect was derived. Three of four high-quality reviews found that simulation supported psychomotor development; a fourth found too few high quality studies to make a statistical comparison. Simulation statistically improved self-efficacy in pretest-posttest studies, and in experimental designs self-efficacy was superior to that of other teaching methods; lower level research designs limiting further comparison. The reviews commonly reported strong student satisfaction with simulation education and some reported improved confidence and/or critical thinking. This umbrella review took a global view of 25 reviews of simulation research in nursing education, comprising over 700 primary studies. To discern overall outcomes across reviews, statistical comparison of quantitative results (effect size) must be the key comparator. Simulation-based education contributes to students' learning in a number of ways when integrated into pre-licensure nursing curricula. Overall, use of a constellation of instruments and a lack of high quality study designs mean that there are still some gaps in evidence of effects that need to be addressed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. The effect of degree of immersion upon learning performance in virtual reality simulations for medical education.

    PubMed

    Gutiérrez, Fátima; Pierce, Jennifer; Vergara, Víctor M; Coulter, Robert; Saland, Linda; Caudell, Thomas P; Goldsmith, Timothy E; Alverson, Dale C

    2007-01-01

    Simulations are being used in education and training to enhance understanding, improve performance, and assess competence. However, it is important to measure the performance of these simulations as learning and training tools. This study examined and compared knowledge acquisition using a knowledge structure design. The subjects were first-year medical students at The University of New Mexico School of Medicine. One group used a fully immersed virtual reality (VR) environment using a head mounted display (HMD) and another group used a partially immersed (computer screen) VR environment. The study aims were to determine whether there were significant differences between the two groups as measured by changes in knowledge structure before and after the VR simulation experience. The results showed that both groups benefited from the VR simulation training as measured by the significant increased similarity to the expert knowledge network after the training experience. However, the immersed group showed a significantly higher gain than the partially immersed group. This study demonstrated a positive effect of VR simulation on learning as reflected by improvements in knowledge structure but an enhanced effect of full-immersion using a HMD vs. a screen-based VR system.

  8. Spatial encoding using the nonlinear field perturbations from magnetic materials.

    PubMed

    Karimi, Hirad; Dominguez-Viqueira, William; Cunningham, Charles H

    2014-08-01

    A proof-of-concept study was performed to assess the technical feasibility of using magnetic materials to generate spatial encoding fields. Spatially varying magnetic fields were generated by the placement of markers with different volume susceptibilities within the imaging volume. No linear gradients were used for spatial encoding during the signal acquisition. A signal-encoding model is described for reconstructing the images encoded with these field perturbations. Simulation and proof-of-concept experimental results are presented. Experiments were performed using field perturbations from a cylindrical marker as an example of the new encoding fields. Based on this experimental setup, annular rings were reconstructed from signals encoded with the new fields. Simulation results were presented for different acquisition parameters. Proof-of-concept was supported by the correspondence of regions in an image reconstructed from experimental data compared to those in a conventional gradient-echo image. Experimental results showed that inclusions of dimensions 1.5 mm in size could be resolved with the experimental setup. This study shows the technical feasibility of using magnetic markers to produce encoding fields. Magnetic materials will allow generating spatial encoding fields, which can be tailored to an imaging application with less complexity and at lower cost compared to the use of gradient inserts. Copyright © 2013 Wiley Periodicals, Inc.

  9. Volume 2: Compendium of Abstracts

    DTIC Science & Technology

    2017-06-01

    simulation work using a standard running model for legged systems, the Spring Loaded Inverted Pendulum (SLIP) Model. In this model, the dynamics of a single...bar SLIP model is analyzed using a basin of attraction analyses to determine the optimal configuration for running at different velocities and...acquisition, and the automatic target acquisition were then compared to each other. After running trials with the current system, it will be

  10. Passive acquisition of CLIPS rules

    NASA Technical Reports Server (NTRS)

    Kovarik, Vincent J., Jr.

    1991-01-01

    The automated acquisition of knowledge by machine has not lived up to expectations, and knowledge engineering remains a human intensive task. Part of the reason for the lack of success is the difference in the cognitive focus of the expert. The expert must shift his or her focus from the subject domain to that of the representation environment. In doing so this cognitive shift introduces opportunity for errors and omissions. Presented here is work that observes the expert interact with a simulation of the domain. The system logs changes in the simulation objects and the expert's actions in response to those changes. This is followed by the application of inductive reasoning to move the domain specific rules observed to general domain rules.

  11. Teaching aseptic technique for central venous access under ultrasound guidance: a randomized trial comparing didactic training alone to didactic plus simulation-based training.

    PubMed

    Latif, Rana K; Bautista, Alexander F; Memon, Saima B; Smith, Elizabeth A; Wang, Chenxi; Wadhwa, Anupama; Carter, Mary B; Akca, Ozan

    2012-03-01

    Our goal was to determine whether simulation combined with didactic training improves sterile technique during ultrasound (US)-guided central venous catheter (CVC) insertion compared with didactic training alone among novices. We hypothesized that novices who receive combined didactic and simulation-based training would perform similarly to experienced residents in aseptic technique, knowledge, and perception of comfort during US-guided CVC insertion on a simulator. Seventy-two subjects were enrolled in a randomized, controlled trial of an educational intervention. Fifty-four novices were randomized into either the didactic group or the simulation combined with didactic group. Both groups received didactic training but the simulation combined with didactic group also received simulation-based CVC insertion training. Both groups were tested by demonstrating US-guided CVC insertion on a simulator. Aseptic technique was scored on 8 steps as "yes/no" and also using a 7-point Likert scale with 7 being "excellent technique" by a rater blinded to subject randomization. After initial testing, the didactic group was offered simulation-based training and retesting. Both groups also took a pre- and posttraining test of knowledge and rated their comfort with US and CVC insertion pre- and posttraining on a 5-point Likert scale. Subsequently, 18 experienced residents also took the test of knowledge, rated their comfort level, and were scored while performing aseptic US-guided CVC insertion using a simulator. The simulation combined with didactic group achieved a 167% (95% confidence interval [CI] 133%-167%) incremental increase in yes/no scores and 115% (CI 112%-127%) incremental increase in Likert scale ratings on aseptic technique compared with novices in the didactic group. Compared with experienced residents, simulation combined with didactic trained novices achieved an increase in aseptic scores with a 33.3% (CI 16.7%-50%) increase in yes/no ratings and a 20% (CI 13.3%-40%) increase in Likert scaled ratings, and scored 2.5-fold higher on the test of knowledge. There was a 3-fold increase in knowledge and 2-fold increase in comfort level among all novices (P < 0.001) after combined didactic and simulation-based training. Simulation combined with didactic training is superior to didactic training alone for acquisition of clinical skills such as US-guided CVC insertion. After combined didactic and simulation-based training, novices can outperform experienced residents in aseptic technique as well as in measurements of knowledge.

  12. Auction and Game Theory Based Recommendations for DOD Acquisitions

    DTIC Science & Technology

    2015-03-24

    SPONSORED REPORT SERIES Auction and Game Theory Based Recommendations for DOD Acquisitions 24 March 2015 Justin Blott, 2d Lt; Nicholas...TYPE 3. DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Auction and Game Theory Based Recommendations for DOD Acquisitions 5a...Postgraduate School Abstract This paper synthesizes auction and game theory literature into specific military acquisition improvement

  13. Demonstration of Supervisory Control and Data Acquisition (SCADA) Virtualization Capability in the US Army Research Laboratory (ARL)/Sustaining Base Network Assurance Branch (SBNAB) US Army Cyber Analytics Laboratory (ACAL) SCADA Hardware Testbed

    DTIC Science & Technology

    2015-05-01

    application ,1 while the simulated PLC software is the open source ModbusPal Java application . When queried using the Modbus TCP protocol, ModbusPal reports...and programmable logic controller ( PLC ) components. The HMI and PLC components were instantiated with software and installed in multiple virtual...creating and capturing HMI– PLC network traffic over a 24-h period in the virtualized network and inspect the packets for errors.  Test the

  14. The SAFIR experiment: Concept, status and perspectives

    NASA Astrophysics Data System (ADS)

    Becker, Robert; Buck, Alfred; Casella, Chiara; Dissertori, Günther; Fischer, Jannis; Howard, Alexander; Ito, Mikiko; Khateri, Parisa; Lustermann, Werner; Oliver, Josep F.; Röser, Ulf; Warnock, Geoffrey; Weber, Bruno

    2017-02-01

    The SAFIR development represents a novel Positron Emission Tomography (PET) detector, conceived for preclinical fast acquisitions inside the bore of a Magnetic Resonance Imaging (MRI) scanner. The goal is hybrid and simultaneous PET/MRI dynamic studies at unprecedented temporal resolutions of a few seconds. The detector relies on matrices of scintillating LSO-based crystals coupled one-to-one with SiPM arrays and readout by fast ASICs with excellent timing resolution and high rate capabilities. The paper describes the detector concept and the initial results in terms of simulations and characterisation measurements.

  15. Criteria for Side-Force Control in Air-to-Ground Target Acquisition and Tracking

    NASA Technical Reports Server (NTRS)

    Sammonds, Robert I.; McNeill, Walter E.; Bunnell, John W.

    1982-01-01

    A moving-base simulator experiment conducted at Ames Research Center demonstrated that a wings-level-turn control mode improved flying qualities for air-to-ground weapons delivery compared with those of a conventional aircraft. Evaluations of criteria for dynamic response for this system have shown that pilot ratings correlate well with equivalent time constant of the initial response and with system bandwidth. Ranges of this time constant, as well as digital-system transport delays and lateral-acceleration control authorities that encompassed level 1 through level 3 handling qualities, were determined.

  16. Application of programmable logic controllers to space simulation

    NASA Technical Reports Server (NTRS)

    Sushon, Janet

    1992-01-01

    Incorporating a state-of-the-art process control and instrumentation system into a complex system for thermal vacuum testing is discussed. The challenge was to connect several independent control systems provided by various vendors to a supervisory computer. This combination will sequentially control and monitor the process, collect the data, and transmit it to color a graphic system for subsequent manipulation. The vacuum system upgrade included: replacement of seventeen diffusion pumps with eight cryogenic pumps and one turbomolecular pump, replacing a relay based control system, replacing vacuum instrumentation, and upgrading the data acquisition system.

  17. Reconstructed Image Spatial Resolution of Multiple Coincidences Compton Imager

    NASA Astrophysics Data System (ADS)

    Andreyev, Andriy; Sitek, Arkadiusz; Celler, Anna

    2010-02-01

    We study the multiple coincidences Compton imager (MCCI) which is based on a simultaneous acquisition of several photons emitted in cascade from a single nuclear decay. Theoretically, this technique should provide a major improvement in localization of a single radioactive source as compared to a standard Compton camera. In this work, we investigated the performance and limitations of MCCI using Monte Carlo computer simulations. Spatial resolutions of the reconstructed point source have been studied as a function of the MCCI parameters, including geometrical dimensions and detector characteristics such as materials, energy and spatial resolutions.

  18. NEMA, a functional-structural model of nitrogen economy within wheat culms after flowering. II. Evaluation and sensitivity analysis.

    PubMed

    Bertheloot, Jessica; Wu, Qiongli; Cournède, Paul-Henry; Andrieu, Bruno

    2011-10-01

    Simulating nitrogen economy in crop plants requires formalizing the interactions between soil nitrogen availability, root nitrogen acquisition, distribution between vegetative organs and remobilization towards grains. This study evaluates and analyses the functional-structural and mechanistic model of nitrogen economy, NEMA (Nitrogen Economy Model within plant Architecture), developed for winter wheat (Triticum aestivum) after flowering. NEMA was calibrated for field plants under three nitrogen fertilization treatments at flowering. Model behaviour was investigated and sensitivity to parameter values was analysed. Nitrogen content of all photosynthetic organs and in particular nitrogen vertical distribution along the stem and remobilization patterns in response to fertilization were simulated accurately by the model, from Rubisco turnover modulated by light intercepted by the organ and a mobile nitrogen pool. This pool proved to be a reliable indicator of plant nitrogen status, allowing efficient regulation of nitrogen acquisition by roots, remobilization from vegetative organs and accumulation in grains in response to nitrogen treatments. In our simulations, root capacity to import carbon, rather than carbon availability, limited nitrogen acquisition and ultimately nitrogen accumulation in grains, while Rubisco turnover intensity mostly affected dry matter accumulation in grains. NEMA enabled interpretation of several key patterns usually observed in field conditions and the identification of plausible processes limiting for grain yield, protein content and root nitrogen acquisition that could be targets for plant breeding; however, further understanding requires more mechanistic formalization of carbon metabolism. Its strong physiological basis and its realistic behaviour support its use to gain insights into nitrogen economy after flowering.

  19. Autonomous Integrated Receive System (AIRS) requirements definition. Volume 3: Performance and simulation

    NASA Technical Reports Server (NTRS)

    Chie, C. M.; Su, Y. T.; Lindsey, W. C.; Koukos, J.

    1984-01-01

    The autonomous and integrated aspects of the operation of the AIRS (Autonomous Integrated Receive System) are discussed from a system operation point of view. The advantages of AIRS compared to the existing SSA receive chain equipment are highlighted. The three modes of AIRS operation are addressed in detail. The configurations of the AIRS are defined as a function of the operating modes and the user signal characteristics. Each AIRS configuration selection is made up of three components: the hardware, the software algorithms and the parameters used by these algorithms. A comparison between AIRS and the wide dynamics demodulation (WDD) is provided. The organization of the AIRS analytical/simulation software is described. The modeling and analysis is for simulating the performance of the PN subsystem is documented. The frequence acquisition technique using a frequency-locked loop is also documented. Doppler compensation implementation is described. The technological aspects of employing CCD's for PN acquisition are addressed.

  20. Design of Measure and Control System for Precision Pesticide Deploying Dynamic Simulating Device

    NASA Astrophysics Data System (ADS)

    Liang, Yong; Liu, Pingzeng; Wang, Lu; Liu, Jiping; Wang, Lang; Han, Lei; Yang, Xinxin

    A measure and control system for precision deploying pesticide simulating equipment is designed in order to study pesticide deployment technology. The system can simulate every state of practical pesticide deployment, and carry through precise, simultaneous measure to every factor affecting pesticide deployment effects. The hardware and software incorporates a structural design of modularization. The system is divided into many different function modules of hardware and software, and exploder corresponding modules. The modules’ interfaces are uniformly defined, which is convenient for module connection, enhancement of system’s universality, explodes efficiency and systemic reliability, and make the program’s characteristics easily extended and easy maintained. Some relevant hardware and software modules can be adapted to other measures and control systems easily. The paper introduces the design of special numeric control system, the main module of information acquisition system and the speed acquisition module in order to explain the design process of the module.

  1. [Three-dimensional 3D modeling: First applications in radioanatomy and interventional radiology under CT guidance].

    PubMed

    Aubry, S; Pousse, A; Sarliève, P; Laborie, L; Delabrousse, E; Kastler, B

    2006-11-01

    To model vertebrae in 3D to improve radioanatomic knowledge of the spine with the vascular and nerve environment and simulate CT-guided interventions. Vertebra acquisitions were made with multidetector CT. We developed segmentation software and specific viewer software using the Delphi programming environment. This segmentation software makes it possible to model 3D high-resolution segments of vertebrae and their environment from multidetector CT acquisitions. Then the specific viewer software provides multiplanar reconstructions of the CT volume and the possibility to select different 3D objects of interest. This software package improves radiologists' radioanatomic knowledge through a new 3D anatomy presentation. Furthermore, the possibility of inserting virtual 3D objects in the volume can simulate CT-guided intervention. The first volumetric radioanatomic software has been born. Furthermore, it simulates CT-guided intervention and consequently has the potential to facilitate learning interventions using CT guidance.

  2. Monte Carlo simulation of PET/MR scanner and assessment of motion correction strategies

    NASA Astrophysics Data System (ADS)

    Işın, A.; Uzun Ozsahin, D.; Dutta, J.; Haddani, S.; El-Fakhri, G.

    2017-03-01

    Positron Emission Tomography is widely used in three dimensional imaging of metabolic body function and in tumor detection. Important research efforts are made to improve this imaging modality and powerful simulators such as GATE are used to test and develop methods for this purpose. PET requires acquisition time in the order of few minutes. Therefore, because of the natural patient movements such as respiration, the image quality can be adversely affected which drives scientists to develop motion compensation methods to improve the image quality. The goal of this study is to evaluate various image reconstructions methods with GATE simulation of a PET acquisition of the torso area. Obtained results show the need to compensate natural respiratory movements in order to obtain an image with similar quality as the reference image. Improvements are still possible in the applied motion field's extraction algorithms. Finally a statistical analysis should confirm the obtained results.

  3. High quality transmission Kikuchi diffraction analysis of deformed alloys - Case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tokarski, Tomasz, E-mail: tokarski@agh.edu.pl

    Modern scanning electron microscopes (SEM) equipped with thermally assisted field emission guns (Schottky FEG) are capable of imaging with a resolution in the range of several nanometers or better. Simultaneously, the high electron beam current can be used, which enables fast chemical and crystallographic analysis with a higher resolution than is normally offered by SEM with a tungsten cathode. The current resolution that limits the EDS and EBSD analysis is related to materials' physics, particularly to the electron-specimen interaction volume. The application of thin, electron-transparent specimens, instead of bulk samples, improves the resolution and allows for the detailed analysis ofmore » very fine microstructural features. Beside the typical imaging mode, it is possible to use a standard EBSD camera in such a configuration that only transmitted and scattered electrons are detected. This modern approach was successfully applied to various materials giving rise to significant resolution improvement, especially for the light element magnesium based alloys. This paper presents an insight into the application of the transmission Kikuchi diffraction (TKD) technique applied to the most troublesome, heavily-deformed materials. In particular, the values of the highest possible acquisition rates for high resolution and high quality mapping were estimated within typical imaging conditions of stainless steel and magnesium-yttrium alloy. - Highlights: •Monte Carlo simulations were used to simulate EBSD camera intensity for various measuring conditions. •Transmission Kikuchi diffraction parameters were evaluated for highly deformed, light and heavy elements based alloys. •High quality maps with 20 nm spatial resolution were acquired for Mg and Fe based alloys. •High speed TKD measurements were performed at acquisition rates comparable to the reflection EBSD.« less

  4. A Neurocomputational Model of Goal-Directed Navigation in Insect-Inspired Artificial Agents

    PubMed Central

    Goldschmidt, Dennis; Manoonpong, Poramate; Dasgupta, Sakyasingha

    2017-01-01

    Despite their small size, insect brains are able to produce robust and efficient navigation in complex environments. Specifically in social insects, such as ants and bees, these navigational capabilities are guided by orientation directing vectors generated by a process called path integration. During this process, they integrate compass and odometric cues to estimate their current location as a vector, called the home vector for guiding them back home on a straight path. They further acquire and retrieve path integration-based vector memories globally to the nest or based on visual landmarks. Although existing computational models reproduced similar behaviors, a neurocomputational model of vector navigation including the acquisition of vector representations has not been described before. Here we present a model of neural mechanisms in a modular closed-loop control—enabling vector navigation in artificial agents. The model consists of a path integration mechanism, reward-modulated global learning, random search, and action selection. The path integration mechanism integrates compass and odometric cues to compute a vectorial representation of the agent's current location as neural activity patterns in circular arrays. A reward-modulated learning rule enables the acquisition of vector memories by associating the local food reward with the path integration state. A motor output is computed based on the combination of vector memories and random exploration. In simulation, we show that the neural mechanisms enable robust homing and localization, even in the presence of external sensory noise. The proposed learning rules lead to goal-directed navigation and route formation performed under realistic conditions. Consequently, we provide a novel approach for vector learning and navigation in a simulated, situated agent linking behavioral observations to their possible underlying neural substrates. PMID:28446872

  5. Sci-Thur PM - Colourful Interactions: Highlights 04: A Fast Quantitative MRI Acquisition and Processing Pipeline for Radiation Treatment Planning and Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jutras, Jean-David

    MRI-only Radiation Treatment Planning (RTP) is becoming increasingly popular because of a simplified work-flow, and less inconvenience to the patient who avoids multiple scans. The advantages of MRI-based RTP over traditional CT-based RTP lie in its superior soft-tissue contrast, and absence of ionizing radiation dose. The lack of electron-density information in MRI can be addressed by automatic tissue classification. To distinguish bone from air, which both appear dark in MRI, an ultra-short echo time (UTE) pulse sequence may be used. Quantitative MRI parametric maps can provide improved tissue segmentation/classification and better sensitivity in monitoring disease progression and treatment outcome thanmore » standard weighted images. Superior tumor contrast can be achieved on pure T{sub 1} images compared to conventional T{sub 1}-weighted images acquired in the same scan duration and voxel resolution. In this study, we have developed a robust and fast quantitative MRI acquisition and post-processing work-flow that integrates these latest advances into the MRI-based RTP of brain lesions. Using 3D multi-echo FLASH images at two different optimized flip angles (both acquired in under 9 min, and 1mm isotropic resolution), parametric maps of T{sub 1}, proton-density (M{sub 0}), and T{sub 2}{sup *} are obtained with high contrast-to-noise ratio, and negligible geometrical distortions, water-fat shifts and susceptibility effects. An additional 3D UTE MRI dataset is acquired (in under 4 min) and post-processed to classify tissues for dose simulation. The pipeline was tested on four healthy volunteers and a clinical trial on brain cancer patients is underway.« less

  6. A Neurocomputational Model of Goal-Directed Navigation in Insect-Inspired Artificial Agents.

    PubMed

    Goldschmidt, Dennis; Manoonpong, Poramate; Dasgupta, Sakyasingha

    2017-01-01

    Despite their small size, insect brains are able to produce robust and efficient navigation in complex environments. Specifically in social insects, such as ants and bees, these navigational capabilities are guided by orientation directing vectors generated by a process called path integration. During this process, they integrate compass and odometric cues to estimate their current location as a vector, called the home vector for guiding them back home on a straight path. They further acquire and retrieve path integration-based vector memories globally to the nest or based on visual landmarks. Although existing computational models reproduced similar behaviors, a neurocomputational model of vector navigation including the acquisition of vector representations has not been described before. Here we present a model of neural mechanisms in a modular closed-loop control-enabling vector navigation in artificial agents. The model consists of a path integration mechanism, reward-modulated global learning, random search, and action selection. The path integration mechanism integrates compass and odometric cues to compute a vectorial representation of the agent's current location as neural activity patterns in circular arrays. A reward-modulated learning rule enables the acquisition of vector memories by associating the local food reward with the path integration state. A motor output is computed based on the combination of vector memories and random exploration. In simulation, we show that the neural mechanisms enable robust homing and localization, even in the presence of external sensory noise. The proposed learning rules lead to goal-directed navigation and route formation performed under realistic conditions. Consequently, we provide a novel approach for vector learning and navigation in a simulated, situated agent linking behavioral observations to their possible underlying neural substrates.

  7. Dynamic whole-body PET parametric imaging: I. Concept, acquisition protocol optimization and clinical application.

    PubMed

    Karakatsanis, Nicolas A; Lodge, Martin A; Tahari, Abdel K; Zhou, Y; Wahl, Richard L; Rahmim, Arman

    2013-10-21

    Static whole-body PET/CT, employing the standardized uptake value (SUV), is considered the standard clinical approach to diagnosis and treatment response monitoring for a wide range of oncologic malignancies. Alternative PET protocols involving dynamic acquisition of temporal images have been implemented in the research setting, allowing quantification of tracer dynamics, an important capability for tumor characterization and treatment response monitoring. Nonetheless, dynamic protocols have been confined to single-bed-coverage limiting the axial field-of-view to ~15-20 cm, and have not been translated to the routine clinical context of whole-body PET imaging for the inspection of disseminated disease. Here, we pursue a transition to dynamic whole-body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. We investigate solutions to address the challenges of: (i) long acquisitions, (ii) small number of dynamic frames per bed, and (iii) non-invasive quantification of kinetics in the plasma. In the present study, a novel dynamic (4D) whole-body PET acquisition protocol of ~45 min total length is presented, composed of (i) an initial 6 min dynamic PET scan (24 frames) over the heart, followed by (ii) a sequence of multi-pass multi-bed PET scans (six passes × seven bed positions, each scanned for 45 s). Standard Patlak linear graphical analysis modeling was employed, coupled with image-derived plasma input function measurements. Ordinary least squares Patlak estimation was used as the baseline regression method to quantify the physiological parameters of tracer uptake rate Ki and total blood distribution volume V on an individual voxel basis. Extensive Monte Carlo simulation studies, using a wide set of published kinetic FDG parameters and GATE and XCAT platforms, were conducted to optimize the acquisition protocol from a range of ten different clinically acceptable sampling schedules examined. The framework was also applied to six FDG PET patient studies, demonstrating clinical feasibility. Both simulated and clinical results indicated enhanced contrast-to-noise ratios (CNRs) for Ki images in tumor regions with notable background FDG concentration, such as the liver, where SUV performed relatively poorly. Overall, the proposed framework enables enhanced quantification of physiological parameters across the whole body. In addition, the total acquisition length can be reduced from 45 to ~35 min and still achieve improved or equivalent CNR compared to SUV, provided the true Ki contrast is sufficiently high. In the follow-up companion paper, a set of advanced linear regression schemes is presented to particularly address the presence of noise, and attempt to achieve a better trade-off between the mean-squared error and the CNR metrics, resulting in enhanced task-based imaging.

  8. Dynamic whole body PET parametric imaging: I. Concept, acquisition protocol optimization and clinical application

    PubMed Central

    Karakatsanis, Nicolas A.; Lodge, Martin A.; Tahari, Abdel K.; Zhou, Y.; Wahl, Richard L.; Rahmim, Arman

    2013-01-01

    Static whole body PET/CT, employing the standardized uptake value (SUV), is considered the standard clinical approach to diagnosis and treatment response monitoring for a wide range of oncologic malignancies. Alternative PET protocols involving dynamic acquisition of temporal images have been implemented in the research setting, allowing quantification of tracer dynamics, an important capability for tumor characterization and treatment response monitoring. Nonetheless, dynamic protocols have been confined to single bed-coverage limiting the axial field-of-view to ~15–20 cm, and have not been translated to the routine clinical context of whole-body PET imaging for the inspection of disseminated disease. Here, we pursue a transition to dynamic whole body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. We investigate solutions to address the challenges of: (i) long acquisitions, (ii) small number of dynamic frames per bed, and (iii) non-invasive quantification of kinetics in the plasma. In the present study, a novel dynamic (4D) whole body PET acquisition protocol of ~45min total length is presented, composed of (i) an initial 6-min dynamic PET scan (24 frames) over the heart, followed by (ii) a sequence of multi-pass multi-bed PET scans (6 passes x 7 bed positions, each scanned for 45sec). Standard Patlak linear graphical analysis modeling was employed, coupled with image-derived plasma input function measurements. Ordinary least squares (OLS) Patlak estimation was used as the baseline regression method to quantify the physiological parameters of tracer uptake rate Ki and total blood distribution volume V on an individual voxel basis. Extensive Monte Carlo simulation studies, using a wide set of published kinetic FDG parameters and GATE and XCAT platforms, were conducted to optimize the acquisition protocol from a range of 10 different clinically acceptable sampling schedules examined. The framework was also applied to six FDG PET patient studies, demonstrating clinical feasibility. Both simulated and clinical results indicated enhanced contrast-to-noise ratios (CNRs) for Ki images in tumor regions with notable background FDG concentration, such as the liver, where SUV performed relatively poorly. Overall, the proposed framework enables enhanced quantification of physiological parameters across the whole-body. In addition, the total acquisition length can be reduced from 45min to ~35min and still achieve improved or equivalent CNR compared to SUV, provided the true Ki contrast is sufficiently high. In the follow-up companion paper, a set of advanced linear regression schemes is presented to particularly address the presence of noise, and attempt to achieve a better trade-off between the mean-squared error (MSE) and the CNR metrics, resulting in enhanced task-based imaging. PMID:24080962

  9. Dynamic whole-body PET parametric imaging: I. Concept, acquisition protocol optimization and clinical application

    NASA Astrophysics Data System (ADS)

    Karakatsanis, Nicolas A.; Lodge, Martin A.; Tahari, Abdel K.; Zhou, Y.; Wahl, Richard L.; Rahmim, Arman

    2013-10-01

    Static whole-body PET/CT, employing the standardized uptake value (SUV), is considered the standard clinical approach to diagnosis and treatment response monitoring for a wide range of oncologic malignancies. Alternative PET protocols involving dynamic acquisition of temporal images have been implemented in the research setting, allowing quantification of tracer dynamics, an important capability for tumor characterization and treatment response monitoring. Nonetheless, dynamic protocols have been confined to single-bed-coverage limiting the axial field-of-view to ˜15-20 cm, and have not been translated to the routine clinical context of whole-body PET imaging for the inspection of disseminated disease. Here, we pursue a transition to dynamic whole-body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. We investigate solutions to address the challenges of: (i) long acquisitions, (ii) small number of dynamic frames per bed, and (iii) non-invasive quantification of kinetics in the plasma. In the present study, a novel dynamic (4D) whole-body PET acquisition protocol of ˜45 min total length is presented, composed of (i) an initial 6 min dynamic PET scan (24 frames) over the heart, followed by (ii) a sequence of multi-pass multi-bed PET scans (six passes × seven bed positions, each scanned for 45 s). Standard Patlak linear graphical analysis modeling was employed, coupled with image-derived plasma input function measurements. Ordinary least squares Patlak estimation was used as the baseline regression method to quantify the physiological parameters of tracer uptake rate Ki and total blood distribution volume V on an individual voxel basis. Extensive Monte Carlo simulation studies, using a wide set of published kinetic FDG parameters and GATE and XCAT platforms, were conducted to optimize the acquisition protocol from a range of ten different clinically acceptable sampling schedules examined. The framework was also applied to six FDG PET patient studies, demonstrating clinical feasibility. Both simulated and clinical results indicated enhanced contrast-to-noise ratios (CNRs) for Ki images in tumor regions with notable background FDG concentration, such as the liver, where SUV performed relatively poorly. Overall, the proposed framework enables enhanced quantification of physiological parameters across the whole body. In addition, the total acquisition length can be reduced from 45 to ˜35 min and still achieve improved or equivalent CNR compared to SUV, provided the true Ki contrast is sufficiently high. In the follow-up companion paper, a set of advanced linear regression schemes is presented to particularly address the presence of noise, and attempt to achieve a better trade-off between the mean-squared error and the CNR metrics, resulting in enhanced task-based imaging.

  10. Implementing and Evaluating an Innovative Approach to Simulation Training Acquisitions

    DTIC Science & Technology

    2006-01-01

    busi- ness model, compares it with other approaches for buying simulations and simulation training, reviews economic theories relevant to the model, and...Points in Common with Other Approaches but Also Some Distinctive Characteristics ........................... 53 Contents vii CHAPTER FOUR The Economic ...Appropriate? .................... 65 4.3. Summary of Key Findings from Economic Theory .............. 72 xiii Summary In the wake of the failure of the Joint

  11. RETROSPECTIVE DETECTION OF INTERLEAVED SLICE ACQUISITION PARAMETERS FROM FMRI DATA

    PubMed Central

    Parker, David; Rotival, Georges; Laine, Andrew; Razlighi, Qolamreza R.

    2015-01-01

    To minimize slice excitation leakage to adjacent slices, interleaved slice acquisition is nowadays performed regularly in fMRI scanners. In interleaved slice acquisition, the number of slices skipped between two consecutive slice acquisitions is often referred to as the ‘interleave parameter’; the loss of this parameter can be catastrophic for the analysis of fMRI data. In this article we present a method to retrospectively detect the interleave parameter and the axis in which it is applied. Our method relies on the smoothness of the temporal-distance correlation function, which becomes disrupted along the axis on which interleaved slice acquisition is applied. We examined this method on simulated and real data in the presence of fMRI artifacts such as physiological noise, motion, etc. We also examined the reliability of this method in detecting different types of interleave parameters and demonstrated an accuracy of about 94% in more than 1000 real fMRI scans. PMID:26161244

  12. Applying Monte-Carlo simulations to optimize an inelastic neutron scattering system for soil carbon analysis

    USDA-ARS?s Scientific Manuscript database

    Computer Monte-Carlo (MC) simulations (Geant4) of neutron propagation and acquisition of gamma response from soil samples was applied to evaluate INS system performance characteristic [sensitivity, minimal detectable level (MDL)] for soil carbon measurement. The INS system model with best performanc...

  13. Simulations with Elaborated Worked Example Modeling: Beneficial Effects on Schema Acquisition

    ERIC Educational Resources Information Center

    Meier, Debra K.; Reinhard, Karl J.; Carter, David O.; Brooks, David W.

    2008-01-01

    Worked examples have been effective in enhancing learning outcomes, especially with novice learners. Most of this research has been conducted in laboratory settings. This study examined the impact of embedding elaborated worked example modeling in a computer simulation practice activity on learning achievement among 39 undergraduate students…

  14. Effects of Error Experience When Learning to Simulate Hypernasality

    ERIC Educational Resources Information Center

    Wong, Andus W.-K.; Tse, Andy C.-Y.; Ma, Estella P.-M.; Whitehill, Tara L.; Masters, Rich S. W.

    2013-01-01

    Purpose: The purpose of this study was to evaluate the effects of error experience on the acquisition of hypernasal speech. Method: Twenty-eight healthy participants were asked to simulate hypernasality in either an "errorless learning" condition (in which the possibility for errors was limited) or an "errorful learning"…

  15. The Flash ADC system and PMT waveform reconstruction for the Daya Bay experiment

    NASA Astrophysics Data System (ADS)

    Huang, Yongbo; Chang, Jinfan; Cheng, Yaping; Chen, Zhang; Hu, Jun; Ji, Xiaolu; Li, Fei; Li, Jin; Li, Qiuju; Qian, Xin; Jetter, Soeren; Wang, Wei; Wang, Zheng; Xu, Yu; Yu, Zeyuan

    2018-07-01

    To better understand the energy response of the Antineutrino Detector (AD), the Daya Bay Reactor Neutrino Experiment installed a full Flash ADC readout system on one AD that allowed for simultaneous data taking with the current readout system. This paper presents the design, data acquisition, and simulation of the Flash ADC system, and focuses on the PMT waveform reconstruction algorithms. For liquid scintillator calorimetry, the most critical requirement to waveform reconstruction is linearity. Several common reconstruction methods were tested but the linearity performance was not satisfactory. A new method based on the deconvolution technique was developed with 1% residual non-linearity, which fulfills the requirement. The performance was validated with both data and Monte Carlo (MC) simulations, and 1% consistency between them has been achieved.

  16. Microsurgery Training for the Twenty-First Century

    PubMed Central

    Myers, Simon Richard; Froschauer, Stefan; Akelina, Yelena; Tos, Pierluigi; Kim, Jeong Tae

    2013-01-01

    Current educational interventions and training courses in microsurgery are often predicated on theories of skill acquisition and development that follow a 'practice makes perfect' model. Given the changing landscape of surgical training and advances in educational theories related to skill development, research is needed to assess current training tools in microsurgery education and devise alternative methods that would enhance training. Simulation is an increasingly important tool for educators because, whilst facilitating improved technical proficiency, it provides a way to reduce risks to both trainees and patients. The International Microsurgery Simulation Society has been founded in 2012 in order to consolidate the global effort in promoting excellence in microsurgical training. The society's aim to achieve standarisation of microsurgical training worldwide could be realised through the development of evidence based educational interventions and sharing best practices. PMID:23898422

  17. Dynamic whole body PET parametric imaging: II. Task-oriented statistical estimation

    PubMed Central

    Karakatsanis, Nicolas A.; Lodge, Martin A.; Zhou, Y.; Wahl, Richard L.; Rahmim, Arman

    2013-01-01

    In the context of oncology, dynamic PET imaging coupled with standard graphical linear analysis has been previously employed to enable quantitative estimation of tracer kinetic parameters of physiological interest at the voxel level, thus, enabling quantitative PET parametric imaging. However, dynamic PET acquisition protocols have been confined to the limited axial field-of-view (~15–20cm) of a single bed position and have not been translated to the whole-body clinical imaging domain. On the contrary, standardized uptake value (SUV) PET imaging, considered as the routine approach in clinical oncology, commonly involves multi-bed acquisitions, but is performed statically, thus not allowing for dynamic tracking of the tracer distribution. Here, we pursue a transition to dynamic whole body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. In a companion study, we presented a novel clinically feasible dynamic (4D) multi-bed PET acquisition protocol as well as the concept of whole body PET parametric imaging employing Patlak ordinary least squares (OLS) regression to estimate the quantitative parameters of tracer uptake rate Ki and total blood distribution volume V. In the present study, we propose an advanced hybrid linear regression framework, driven by Patlak kinetic voxel correlations, to achieve superior trade-off between contrast-to-noise ratio (CNR) and mean squared error (MSE) than provided by OLS for the final Ki parametric images, enabling task-based performance optimization. Overall, whether the observer's task is to detect a tumor or quantitatively assess treatment response, the proposed statistical estimation framework can be adapted to satisfy the specific task performance criteria, by adjusting the Patlak correlation-coefficient (WR) reference value. The multi-bed dynamic acquisition protocol, as optimized in the preceding companion study, was employed along with extensive Monte Carlo simulations and an initial clinical FDG patient dataset to validate and demonstrate the potential of the proposed statistical estimation methods. Both simulated and clinical results suggest that hybrid regression in the context of whole-body Patlak Ki imaging considerably reduces MSE without compromising high CNR. Alternatively, for a given CNR, hybrid regression enables larger reductions than OLS in the number of dynamic frames per bed, allowing for even shorter acquisitions of ~30min, thus further contributing to the clinical adoption of the proposed framework. Compared to the SUV approach, whole body parametric imaging can provide better tumor quantification, and can act as a complement to SUV, for the task of tumor detection. PMID:24080994

  18. Dynamic whole-body PET parametric imaging: II. Task-oriented statistical estimation.

    PubMed

    Karakatsanis, Nicolas A; Lodge, Martin A; Zhou, Y; Wahl, Richard L; Rahmim, Arman

    2013-10-21

    In the context of oncology, dynamic PET imaging coupled with standard graphical linear analysis has been previously employed to enable quantitative estimation of tracer kinetic parameters of physiological interest at the voxel level, thus, enabling quantitative PET parametric imaging. However, dynamic PET acquisition protocols have been confined to the limited axial field-of-view (~15-20 cm) of a single-bed position and have not been translated to the whole-body clinical imaging domain. On the contrary, standardized uptake value (SUV) PET imaging, considered as the routine approach in clinical oncology, commonly involves multi-bed acquisitions, but is performed statically, thus not allowing for dynamic tracking of the tracer distribution. Here, we pursue a transition to dynamic whole-body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. In a companion study, we presented a novel clinically feasible dynamic (4D) multi-bed PET acquisition protocol as well as the concept of whole-body PET parametric imaging employing Patlak ordinary least squares (OLS) regression to estimate the quantitative parameters of tracer uptake rate Ki and total blood distribution volume V. In the present study, we propose an advanced hybrid linear regression framework, driven by Patlak kinetic voxel correlations, to achieve superior trade-off between contrast-to-noise ratio (CNR) and mean squared error (MSE) than provided by OLS for the final Ki parametric images, enabling task-based performance optimization. Overall, whether the observer's task is to detect a tumor or quantitatively assess treatment response, the proposed statistical estimation framework can be adapted to satisfy the specific task performance criteria, by adjusting the Patlak correlation-coefficient (WR) reference value. The multi-bed dynamic acquisition protocol, as optimized in the preceding companion study, was employed along with extensive Monte Carlo simulations and an initial clinical (18)F-deoxyglucose patient dataset to validate and demonstrate the potential of the proposed statistical estimation methods. Both simulated and clinical results suggest that hybrid regression in the context of whole-body Patlak Ki imaging considerably reduces MSE without compromising high CNR. Alternatively, for a given CNR, hybrid regression enables larger reductions than OLS in the number of dynamic frames per bed, allowing for even shorter acquisitions of ~30 min, thus further contributing to the clinical adoption of the proposed framework. Compared to the SUV approach, whole-body parametric imaging can provide better tumor quantification, and can act as a complement to SUV, for the task of tumor detection.

  19. SU-G-JeP3-06: Lower KV Image Dose Are Expected From a Limited-Angle Intra-Fractional Verification (LIVE) System for SBRT Treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, G; Yin, F; Ren, L

    Purpose: In order to track the tumor movement for patient positioning verification during arc treatment delivery or in between 3D/IMRT beams for stereotactic body radiation therapy (SBRT), the limited-angle kV projections acquisition simultaneously during arc treatment delivery or in-between static treatment beams as the gantry moves to the next beam angle was proposed. The purpose of this study is to estimate additional imaging dose resulting from multiple tomosynthesis acquisitions in-between static treatment beams and to compare with that of a conventional kV-CBCT acquisition. Methods: kV imaging system integrated into Varian TrueBeam accelerators was modeled using EGSnrc Monte Carlo user code,more » BEAMnrc and DOSXYZnrc code was used in dose calculations. The simulated realistic kV beams from the Varian TrueBeam OBI 1.5 system were used to calculate dose to patient based on CT images. Organ doses were analyzed using DVHs. The imaging dose to patient resulting from realistic multiple tomosynthesis acquisitions with each 25–30 degree kV source rotation between 6 treatment beam gantry angles was studied. Results: For a typical lung SBRT treatment delivery much lower (20–50%) kV imaging doses from the sum of realistic six tomosynthesis acquisitions with each 25–30 degree x-ray source rotation between six treatment beam gantry angles were observed compared to that from a single CBCT image acquisition. Conclusion: This work indicates that the kV imaging in this proposed Limited-angle Intra-fractional Verification (LIVE) System for SBRT Treatments has a negligible imaging dose increase. It is worth to note that the MV imaging dose caused by MV projection acquisition in-between static beams in LIVE can be minimized by restricting the imaging to the target region and reducing the number of projections acquired. For arc treatments, MV imaging acquisition in LIVE does not add additional imaging dose as the MV images are acquired from treatment beams directly during the treatment.« less

  20. Reducing acquisition risk through integrated systems of systems engineering

    NASA Astrophysics Data System (ADS)

    Gross, Andrew; Hobson, Brian; Bouwens, Christina

    2016-05-01

    In the fall of 2015, the Joint Staff J7 (JS J7) sponsored the Bold Quest (BQ) 15.2 event and conducted planning and coordination to combine this event into a joint event with the Army Warfighting Assessment (AWA) 16.1 sponsored by the U.S. Army. This multipurpose event combined a Joint/Coalition exercise (JS J7) with components of testing, training, and experimentation required by the Army. In support of Assistant Secretary of the Army for Acquisition, Logistics, and Technology (ASA(ALT)) System of Systems Engineering and Integration (SoSE&I), Always On-On Demand (AO-OD) used a system of systems (SoS) engineering approach to develop a live, virtual, constructive distributed environment (LVC-DE) to support risk mitigation utilizing this complex and challenging exercise environment for a system preparing to enter limited user test (LUT). AO-OD executed a requirements-based SoS engineering process starting with user needs and objectives from Army Integrated Air and Missile Defense (AIAMD), Patriot units, Coalition Intelligence, Surveillance and Reconnaissance (CISR), Focused End State 4 (FES4) Mission Command (MC) Interoperability with Unified Action Partners (UAP), and Mission Partner Environment (MPE) Integration and Training, Tactics and Procedures (TTP) assessment. The SoS engineering process decomposed the common operational, analytical, and technical requirements, while utilizing the Institute of Electrical and Electronics Engineers (IEEE) Distributed Simulation Engineering and Execution Process (DSEEP) to provide structured accountability for the integration and execution of the AO-OD LVC-DE. As a result of this process implementation, AO-OD successfully planned for, prepared, and executed a distributed simulation support environment that responsively satisfied user needs and objectives, demonstrating the viability of an LVC-DE environment to support multiple user objectives and support risk mitigation activities for systems in the acquisition process.

  1. Pediatric resident resuscitation skills improve after "rapid cycle deliberate practice" training.

    PubMed

    Hunt, Elizabeth A; Duval-Arnould, Jordan M; Nelson-McMillan, Kristen L; Bradshaw, Jamie Haggerty; Diener-West, Marie; Perretta, Julianne S; Shilkofski, Nicole A

    2014-07-01

    Previous studies reveal pediatric resident resuscitation skills are inadequate, with little improvement during residency. The Accreditation Council for Graduate Medical Education highlights the need for documenting incremental acquisition of skills, i.e., "Milestones". We developed a simulation-based teaching approach "Rapid Cycle Deliberate Practice" (RCDP) focused on rapid acquisition of procedural and teamwork skills (i.e., "first-five minutes" (FFM) resuscitation skills). This novel method utilizes direct feedback and prioritizes opportunities for learners to "try again" over lengthy debriefing. Pediatric residents from an academic medical center. Prospective pre-post interventional study of residents managing a simulated cardiopulmonary arrest. Main outcome measures include: (1) interval between onset of pulseless ventricular tachycardia to initiation of compressions and (2) defibrillation. Seventy pediatric residents participated in the pre-intervention and fifty-one in the post-intervention period. Baseline characteristics were similar. The RCDP-FFM intervention was associated with a decrease in: no-flow fraction: [pre: 74% (5-100%) vs. post: 34% (26-53%); p<0.001)], no-blow fraction: [pre: 39% (22-64%) median (IQR) vs. post: 30% (22-41%); p=0.01], and pre-shock pause: [pre: 84 s (26-162) vs. post: 8s (4-18); p<0.001]. Survival analysis revealed RCDP-FFM was associated with starting compressions within 1 min of loss of pulse: [Adjusted Hazard Ratio (HR): 3.8 (95% CI: 2.0-7.2)] and defibrillating within 2 min: [HR: 1.7 (95% CI: 1.03-2.65)]. Third year residents were significantly more likely than first years to defibrillate within 2 min: [HR: 2.8 (95% CI: 1.5-5.1)]. Implementation of the RCDP-FFM was associated with improvement in performance of key measures of quality life support and progressive acquisition of resuscitation skills during pediatric residency. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. How virtual reality may enhance training in obstetrics and gynecology.

    PubMed

    Letterie, Gerard S

    2002-09-01

    Contemporary training in obstetrics and gynecology is aimed at the acquisition of a complex set of skills oriented to both the technical and personal aspects of patient care. The ability to create clinical simulations through virtual reality (VR) may facilitate the accomplishment of these goals. The purpose of this paper is 2-fold: (1) to review the circumstances and equipment in industry, science, and education in which VR has been successfully applied, and (2) to explore the possible role of VR for training in obstetrics and gynecology and to suggest innovative and unique approaches to enhancing this training. Qualitative assessment of the literature describing successful applications of VR in industry, law enforcement, military, and medicine from 1995 to 2000. Articles were identified through a computer-based search using Medline, Current Contents, and cross referencing bibliographies of articles identified through the search. One hundred and fifty-four articles were reviewed. This review of contemporary literature suggests that VR has been successfully used to simulate person-to-person interactions for training in psychiatry and the social sciences in a variety of circumstances by using real-time simulations of personal interactions, and to launch 3-dimensional trainers for surgical simulation. These successful applications and simulations suggest that this technology may be helpful and should be evaluated as an educational modality in obstetrics and gynecology in two areas: (1) counseling in circumstances ranging from routine preoperative informed consent to intervention in more acute circumstances such as domestic violence or rape, and (2) training in basic and advanced surgical skills for both medical students and residents. Virtual reality is an untested, but potentially useful, modality for training in obstetrics and gynecology. On the basis of successful applications in other nonmedical and medical areas, VR may have a role in teaching essential elements of counseling and surgical skill acquisition.

  3. 1982 Federal Acquisition Research Symposium, Integrating Theory and Experience: The Acquisition Research Connection

    DTIC Science & Technology

    1982-05-07

    Technology. March 1981. 114(157. 16-17. Guetzkow, Harold, Kotler , Philip , i Schultz, Randall L, Simulation in social and administrative science...Primitive. Arcnaic and Modem Economies. Edited bv George Dalton. Beacon Press, Boston, 1968, |16) WOGAMAN, PHILIP I,, Tie Great Economic Debate: An...Department of Energy Washington, DC 20585 Mr. Philip M. King Grant and Contract Specialist National Science Foundation 1800 G Street, NW Washington

  4. Optimized phases for the acquisition of J-spectra in coupled spin systems for thermally and PHIP polarized molecules.

    PubMed

    Bussandri, S; Prina, I; Acosta, R H; Buljubasich, L

    2018-04-01

    We demonstrate that the relative phases in the refocusing pulses of multipulse sequences can compensate for pulse errors and off-resonant effects, which are commonly encountered in J-spectroscopy when CPMG is used for acquisition. The use of supercycles has been considered many times in the past, but always from the view point of time-domain NMR, that is, in an effort to lengthen the decay of the magnetization. Here we use simple spin-coupled systems, in which the quantum evolution of the system can be simulated and contrasted to experimental results. In order to explore fine details, we resort to partial J-spectroscopy, that is, to the acquisition of J-spectra of a defined multiplet, which is acquired with a suitable digital filter. We unambiguously show that when finite radiofrequency pulses are considered, the off-resonance effects on nearby multiplets affects the dynamics of the spins within the spectral window under acquisition. Moreover, the most robust phase cycling scheme for our setup consists of a 4-pulse cycle, with phases yyyy‾ or xxxx‾ for an excitation pulse with phase x. We show simulated and experimental results in both thermally polarized and PHIP hyperpolarized systems. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Optimized phases for the acquisition of J-spectra in coupled spin systems for thermally and PHIP polarized molecules

    NASA Astrophysics Data System (ADS)

    Bussandri, S.; Prina, I.; Acosta, R. H.; Buljubasich, L.

    2018-04-01

    We demonstrate that the relative phases in the refocusing pulses of multipulse sequences can compensate for pulse errors and off-resonant effects, which are commonly encountered in J-spectroscopy when CPMG is used for acquisition. The use of supercycles has been considered many times in the past, but always from the view point of time-domain NMR, that is, in an effort to lengthen the decay of the magnetization. Here we use simple spin-coupled systems, in which the quantum evolution of the system can be simulated and contrasted to experimental results. In order to explore fine details, we resort to partial J-spectroscopy, that is, to the acquisition of J-spectra of a defined multiplet, which is acquired with a suitable digital filter. We unambiguously show that when finite radiofrequency pulses are considered, the off-resonance effects on nearby multiplets affects the dynamics of the spins within the spectral window under acquisition. Moreover, the most robust phase cycling scheme for our setup consists of a 4-pulse cycle, with phases yy yy ‾ or xx xx ‾ for an excitation pulse with phase x. We show simulated and experimental results in both thermally polarized and PHIP hyperpolarized systems.

  6. Simulating reading acquisition: The link between reading outcome and multimodal brain signatures of letter-speech sound learning in prereaders.

    PubMed

    Karipidis, Iliana I; Pleisch, Georgette; Brandeis, Daniel; Roth, Alexander; Röthlisberger, Martina; Schneebeli, Maya; Walitza, Susanne; Brem, Silvia

    2018-05-08

    During reading acquisition, neural reorganization of the human brain facilitates the integration of letters and speech sounds, which enables successful reading. Neuroimaging and behavioural studies have established that impaired audiovisual integration of letters and speech sounds is a core deficit in individuals with developmental dyslexia. This longitudinal study aimed to identify neural and behavioural markers of audiovisual integration that are related to future reading fluency. We simulated the first step of reading acquisition by performing artificial-letter training with prereading children at risk for dyslexia. Multiple logistic regressions revealed that our training provides new precursors of reading fluency at the beginning of reading acquisition. In addition, an event-related potential around 400 ms and functional magnetic resonance imaging activation patterns in the left planum temporale to audiovisual correspondences improved cross-validated prediction of future poor readers. Finally, an exploratory analysis combining simultaneously acquired electroencephalography and hemodynamic data suggested that modulation of temporoparietal brain regions depended on future reading skills. The multimodal approach demonstrates neural adaptations to audiovisual integration in the developing brain that are related to reading outcome. Despite potential limitations arising from the restricted sample size, our results may have promising implications both for identifying poor-reading children and for monitoring early interventions.

  7. The effects of a dynamic graphical model during simulation-based training of console operation skill

    NASA Technical Reports Server (NTRS)

    Farquhar, John D.; Regian, J. Wesley

    1993-01-01

    LOADER is a Windows-based simulation of a complex procedural task. The task requires subjects to execute long sequences of console-operation actions (e.g., button presses, switch actuations, dial rotations) to accomplish specific goals. The LOADER interface is a graphical computer-simulated console which controls railroad cars, tracks, and cranes in a fictitious railroad yard. We hypothesized that acquisition of LOADER performance skill would be supported by the representation of a dynamic graphical model linking console actions to goal and goal states in the 'railroad yard'. Twenty-nine subjects were randomly assigned to one of two treatments (i.e., dynamic model or no model). During training, both groups received identical text-based instruction in an instructional-window above the LOADER interface. One group, however, additionally saw a dynamic version of the bird's-eye view of the railroad yard. After training, both groups were tested under identical conditions. They were asked to perform the complete procedure without guidance and without access to either type of railroad yard representation. Results indicate that rather than becoming dependent on the animated rail yard model, subjects in the dynamic model condition apparently internalized the model, as evidenced by their performance after the model was removed.

  8. T2-weighted four dimensional magnetic resonance imaging with result-driven phase sorting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yilin; Yin, Fang-Fang; Cai, Jing, E-mail: jing.cai@duke.edu

    2015-08-15

    Purpose: T2-weighted MRI provides excellent tumor-to-tissue contrast for target volume delineation in radiation therapy treatment planning. This study aims at developing a novel T2-weighted retrospective four dimensional magnetic resonance imaging (4D-MRI) phase sorting technique for imaging organ/tumor respiratory motion. Methods: A 2D fast T2-weighted half-Fourier acquisition single-shot turbo spin-echo MR sequence was used for image acquisition of 4D-MRI, with a frame rate of 2–3 frames/s. Respiratory motion was measured using an external breathing monitoring device. A phase sorting method was developed to sort the images by their corresponding respiratory phases. Besides, a result-driven strategy was applied to effectively utilize redundantmore » images in the case when multiple images were allocated to a bin. This strategy, selecting the image with minimal amplitude error, will generate the most representative 4D-MRI. Since we are using a different image acquisition mode for 4D imaging (the sequential image acquisition scheme) with the conventionally used cine or helical image acquisition scheme, the 4D dataset sufficient condition was not obviously and directly predictable. An important challenge of the proposed technique was to determine the number of repeated scans (N{sub R}) required to obtain sufficient phase information at each slice position. To tackle this challenge, the authors first conducted computer simulations using real-time position management respiratory signals of the 29 cancer patients under an IRB-approved retrospective study to derive the relationships between N{sub R} and the following factors: number of slices (N{sub S}), number of 4D-MRI respiratory bins (N{sub B}), and starting phase at image acquisition (P{sub 0}). To validate the authors’ technique, 4D-MRI acquisition and reconstruction were simulated on a 4D digital extended cardiac-torso (XCAT) human phantom using simulation derived parameters. Twelve healthy volunteers were involved in an IRB-approved study to investigate the feasibility of this technique. Results: 4D data acquisition completeness (C{sub p}) increases as NR increases in an inverse-exponential fashion (C{sub p} = 100 − 99 × exp(−0.18 × N{sub R}), when N{sub B} = 6, fitted using 29 patients’ data). The N{sub R} required for 4D-MRI reconstruction (defined as achieving 95% completeness, C{sub p} = 95%, N{sub R} = N{sub R,95}) is proportional to N{sub B} (N{sub R,95} ∼ 2.86 × N{sub B}, r = 1.0), but independent of N{sub S} and P{sub 0}. Simulated XCAT 4D-MRI showed a clear pattern of respiratory motion. Tumor motion trajectories measured on 4D-MRI were comparable to the average input signal, with a mean relative amplitude error of 2.7% ± 2.9%. Reconstructed 4D-MRI for healthy volunteers illustrated clear respiratory motion on three orthogonal planes, with minimal image artifacts. The artifacts were presumably caused by breathing irregularity and incompleteness of data acquisition (95% acquired only). The mean relative amplitude error between critical structure trajectory and average breathing curve for 12 healthy volunteers is 2.5 ± 0.3 mm in superior–inferior direction. Conclusions: A novel T2-weighted retrospective phase sorting 4D-MRI technique has been developed and successfully applied on digital phantom and healthy volunteers.« less

  9. SICONID: a FORTRAN-77 program for conditional simulation in one dimension

    NASA Astrophysics Data System (ADS)

    Pardo-Igúzquiza, E.; Chica-Olmo, M.; Delgado-García, J.

    1992-07-01

    The SICONID program, written in FORTRAN 77 for the conditional simulation of geological variables in one dimension, is presented. The program permits all the necessary steps to obtain a simulated series of the experimental data to be carried out. These states are: acquisition of the experimental values, modelization of the anamorphosis function, variogram of the normal scores, conditional simulation, and restoration of the experimental histogram. A practical case of simulation of the evolution of the groundwater level in a survey to show the operation of the program is given.

  10. Educational technology in medical education.

    PubMed

    Han, Heeyoung; Resch, David S; Kovach, Regina A

    2013-01-01

    This article aims to review the past practices of educational technology and envision future directions for medical education. The discussion starts with a historical review of definitions and perspectives of educational technology, in which the authors propose that educators adopt a broader process-oriented understanding of educational technology. Future directions of e-learning, simulation, and health information technology are discussed based on a systems view of the technological process. As new technologies continue to arise, this process-oriented understanding and outcome-based expectations of educational technology should be embraced. With this view, educational technology should be valued in terms of how well the technological process informs and facilitates learning, and the acquisition and maintenance of clinical expertise.

  11. High-fidelity simulation versus case-based discussion for teaching medical students in Brazil about pediatric emergencies.

    PubMed

    Couto, Thomaz Bittencourt; Farhat, Sylvia C L; Geis, Gary L; Olsen, Orjan; Schvartsman, Claudio

    2015-06-01

    To compare high-fidelity simulation with case-based discussion for teaching medical students about pediatric emergencies, as assessed by a knowledge post-test, a knowledge retention test and a survey of satisfaction with the method. This was a non-randomized controlled study using a crossover design for the methods, as well as multiple-choice questionnaire tests and a satisfaction survey. Final-year medical students were allocated into two groups: group 1 participated in an anaphylaxis simulation and a discussion of a supraventricular tachycardia case, and conversely, group 2 participated in a discussion of an anaphylaxis case and a supraventricular tachycardia simulation. Students were tested on each theme at the end of their rotation (post-test) and 4-6 months later (retention test). Most students (108, or 66.3%) completed all of the tests. The mean scores for simulation versus case-based discussion were respectively 43.6% versus 46.6% for the anaphylaxis pre-test (p=0.42), 63.5% versus 67.8% for the post-test (p=0.13) and 61.5% versus 65.5% for the retention test (p=0.19). Additionally, the mean scores were respectively 33.9% versus 31.6% for the supraventricular tachycardia pre-test (p=0.44), 42.5% versus 47.7% for the post-test (p=0.09) and 41.5% versus 39.5% for the retention test (p=0.47). For both themes, there was improvement between the pre-test and the post-test (p<0.05), and no significant difference was observed between the post-test and the retention test (p>0.05). Moreover, the satisfaction survey revealed a preference for simulation (p<0.001). As a single intervention, simulation is not significantly different from case-based discussion in terms of acquisition and retention of knowledge but is superior in terms of student satisfaction.

  12. High-fidelity simulation versus case-based discussion for teaching medical students in Brazil about pediatric emergencies

    PubMed Central

    Couto, Thomaz Bittencourt; Farhat, Sylvia C.L.; Geis, Gary L; Olsen, Orjan; Schvartsman, Claudio

    2015-01-01

    OBJECTIVE: To compare high-fidelity simulation with case-based discussion for teaching medical students about pediatric emergencies, as assessed by a knowledge post-test, a knowledge retention test and a survey of satisfaction with the method. METHODS: This was a non-randomized controlled study using a crossover design for the methods, as well as multiple-choice questionnaire tests and a satisfaction survey. Final-year medical students were allocated into two groups: group 1 participated in an anaphylaxis simulation and a discussion of a supraventricular tachycardia case, and conversely, group 2 participated in a discussion of an anaphylaxis case and a supraventricular tachycardia simulation. Students were tested on each theme at the end of their rotation (post-test) and 4–6 months later (retention test). RESULTS: Most students (108, or 66.3%) completed all of the tests. The mean scores for simulation versus case-based discussion were respectively 43.6% versus 46.6% for the anaphylaxis pre-test (p=0.42), 63.5% versus 67.8% for the post-test (p=0.13) and 61.5% versus 65.5% for the retention test (p=0.19). Additionally, the mean scores were respectively 33.9% versus 31.6% for the supraventricular tachycardia pre-test (p=0.44), 42.5% versus 47.7% for the post-test (p=0.09) and 41.5% versus 39.5% for the retention test (p=0.47). For both themes, there was improvement between the pre-test and the post-test (p<0.05), and no significant difference was observed between the post-test and the retention test (p>0.05). Moreover, the satisfaction survey revealed a preference for simulation (p<0.001). CONCLUSION: As a single intervention, simulation is not significantly different from case-based discussion in terms of acquisition and retention of knowledge but is superior in terms of student satisfaction. PMID:26106956

  13. Development of Ku-band rendezvous radar tracking and acquisition simulation programs

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The fidelity of the Space Shuttle Radar tracking simulation model was improved. The data from the Shuttle Orbiter Radar Test and Evaluation (SORTE) program experiments performed at the White Sands Missile Range (WSMR) were reviewed and analyzed. The selected flight rendezvous radar data was evaluated. Problems with the Inertial Line-of-Sight (ILOS) angle rate tracker were evaluated using the improved fidelity angle rate tracker simulation model.

  14. Large Eddy Simulations of Transverse Combustion Instability in a Multi-Element Injector

    DTIC Science & Technology

    2016-07-27

    plagued the development of liquid rocket engines and remains a large riskin the development and acquisition of new liquid rocket engines. Combustion...simulations to better understand the physics that can lead combustion instability in liquid rocket engines. Simulations of this type are able to...instabilities found in liquid rocket engines are transverse. The motivating of the experiment behind the current work is to subject the CVRC injector

  15. Multiresolution modeling with a JMASS-JWARS HLA Federation

    NASA Astrophysics Data System (ADS)

    Prince, John D.; Painter, Ron D.; Pendell, Brian; Richert, Walt; Wolcott, Christopher

    2002-07-01

    CACI, Inc.-Federal has built, tested, and demonstrated the use of a JMASS-JWARS HLA Federation that supports multi- resolution modeling of a weapon system and its subsystems in a JMASS engineering and engagement model environment, while providing a realistic JWARS theater campaign-level synthetic battle space and operational context to assess the weapon system's value added and deployment/employment supportability in a multi-day, combined force-on-force scenario. Traditionally, acquisition analyses require a hierarchical suite of simulation models to address engineering, engagement, mission and theater/campaign measures of performance, measures of effectiveness and measures of merit. Configuring and running this suite of simulations and transferring the appropriate data between each model is both time consuming and error prone. The ideal solution would be a single simulation with the requisite resolution and fidelity to perform all four levels of acquisition analysis. However, current computer hardware technologies cannot deliver the runtime performance necessary to support the resulting extremely large simulation. One viable alternative is to integrate the current hierarchical suite of simulation models using the DoD's High Level Architecture in order to support multi- resolution modeling. An HLA integration eliminates the extremely large model problem, provides a well-defined and manageable mixed resolution simulation and minimizes VV&A issues.

  16. SU-F-J-178: A Computer Simulation Model Observer for Task-Based Image Quality Assessment in Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolly, S; Mutic, S; Anastasio, M

    Purpose: Traditionally, image quality in radiation therapy is assessed subjectively or by utilizing physically-based metrics. Some model observers exist for task-based medical image quality assessment, but almost exclusively for diagnostic imaging tasks. As opposed to disease diagnosis, the task for image observers in radiation therapy is to utilize the available images to design and deliver a radiation dose which maximizes patient disease control while minimizing normal tissue damage. The purpose of this study was to design and implement a new computer simulation model observer to enable task-based image quality assessment in radiation therapy. Methods: A modular computer simulation framework wasmore » developed to resemble the radiotherapy observer by simulating an end-to-end radiation therapy treatment. Given images and the ground-truth organ boundaries from a numerical phantom as inputs, the framework simulates an external beam radiation therapy treatment and quantifies patient treatment outcomes using the previously defined therapeutic operating characteristic (TOC) curve. As a preliminary demonstration, TOC curves were calculated for various CT acquisition and reconstruction parameters, with the goal of assessing and optimizing simulation CT image quality for radiation therapy. Sources of randomness and bias within the system were analyzed. Results: The relationship between CT imaging dose and patient treatment outcome was objectively quantified in terms of a singular value, the area under the TOC (AUTOC) curve. The AUTOC decreases more rapidly for low-dose imaging protocols. AUTOC variation introduced by the dose optimization algorithm was approximately 0.02%, at the 95% confidence interval. Conclusion: A model observer has been developed and implemented to assess image quality based on radiation therapy treatment efficacy. It enables objective determination of appropriate imaging parameter values (e.g. imaging dose). Framework flexibility allows for incorporation of additional modules to include any aspect of the treatment process, and therefore has great potential for both assessment and optimization within radiation therapy.« less

  17. Software for simulation of a computed tomography imaging spectrometer using optical design software

    NASA Astrophysics Data System (ADS)

    Spuhler, Peter T.; Willer, Mark R.; Volin, Curtis E.; Descour, Michael R.; Dereniak, Eustace L.

    2000-11-01

    Our Imaging Spectrometer Simulation Software known under the name Eikon should improve and speed up the design of a Computed Tomography Imaging Spectrometer (CTIS). Eikon uses existing raytracing software to simulate a virtual instrument. Eikon enables designers to virtually run through the design, calibration and data acquisition, saving significant cost and time when designing an instrument. We anticipate that Eikon simulations will improve future designs of CTIS by allowing engineers to explore more instrument options.

  18. Low-Fidelity Haptic Simulation Versus Mental Imagery Training for Epidural Anesthesia Technical Achievement in Novice Anesthesiology Residents: A Randomized Comparative Study.

    PubMed

    Lim, Grace; Krohner, Robert G; Metro, David G; Rosario, Bedda L; Jeong, Jong-Hyeon; Sakai, Tetsuro

    2016-05-01

    There are many teaching methods for epidural anesthesia skill acquisition. Previous work suggests that there is no difference in skill acquisition whether novice learners engage in low-fidelity (LF) versus high-fidelity haptic simulation for epidural anesthesia. No study, however, has compared the effect of LF haptic simulation for epidural anesthesia versus mental imagery (MI) training in which no physical practice is attempted. We tested the hypothesis that MI training is superior to LF haptic simulation training for epidural anesthesia skill acquisition. Twenty Post-Graduate Year 2 (PGY-2) anesthesiology residents were tested at the beginning of the training year. After a didactic lecture on epidural anesthesia, they were randomized into 2 groups. Group LF had LF simulation training for epidural anesthesia using a previously described banana simulation technique. Group MI had guided, scripted MI training in which they initially were oriented to the epidural kit components and epidural anesthesia was described stepwise in detail, followed by individual mental rehearsal; no physical practice was undertaken. Each resident then individually performed epidural anesthesia on a partial-human task trainer on 3 consecutive occasions under the direct observation of skilled evaluators who were blinded to group assignment. Technical achievement was assessed with the use of a modified validated skills checklist. Scores (0-21) and duration to task completion (minutes) were recorded. A linear mixed-effects model analysis was performed to determine the differences in scores and duration between groups and over time. There was no statistical difference between the 2 groups for scores and duration to task completion. Both groups showed similarly significant increases (P = 0.0015) in scores over time (estimated mean score [SE]: group MI, 15.9 [0.55] to 17.4 [0.55] to 18.6 [0.55]; group LF, 16.2 [0.55] to 17.7 [0.55] to 18.9 [0.55]). Time to complete the procedure decreased similarly and significantly (P = 0.032) for both groups after the first attempt (estimated mean time [SE]: group MI, 16.0 [1.04] minutes to 13.7 [1.04] minutes to 13.3 [1.04] minutes; group LF: 15.8 [1.04] minutes to 13.4 [1.04] minutes to 13.1 [1.04] minutes). MI is not different from LF simulation training for epidural anesthesia skill acquisition. Education in epidural anesthesia with structured didactics and continual MI training may suffice to prepare novice learners before an attempt on human subjects.

  19. Data-Driven Modeling and Rendering of Force Responses from Elastic Tool Deformation

    PubMed Central

    Rakhmatov, Ruslan; Ogay, Tatyana; Jeon, Seokhee

    2018-01-01

    This article presents a new data-driven model design for rendering force responses from elastic tool deformation. The new design incorporates a six-dimensional input describing the initial position of the contact, as well as the state of the tool deformation. The input-output relationship of the model was represented by a radial basis functions network, which was optimized based on training data collected from real tool-surface contact. Since the input space of the model is represented in the local coordinate system of a tool, the model is independent of recording and rendering devices and can be easily deployed to an existing simulator. The model also supports complex interactions, such as self and multi-contact collisions. In order to assess the proposed data-driven model, we built a custom data acquisition setup and developed a proof-of-concept rendering simulator. The simulator was evaluated through numerical and psychophysical experiments with four different real tools. The numerical evaluation demonstrated the perceptual soundness of the proposed model, meanwhile the user study revealed the force feedback of the proposed simulator to be realistic. PMID:29342964

  20. Simulator for Testing Spacecraft Separation Devices

    NASA Technical Reports Server (NTRS)

    Johnston, Nick; Gaines, Joe; Bryan, Tom

    2006-01-01

    A report describes the main features of a system for testing pyrotechnic and mechanical devices used to separate spacecraft and modules of spacecraft during flight. The system includes a spacecraft simulator [also denoted a large mobility base (LMB)] equipped with air thrusters, sensors, and data-acquisition equipment. The spacecraft simulator floats on air bearings over an epoxy-covered concrete floor. This free-flotation arrangement enables simulation of motion in outer space in three degrees of freedom: translation along two orthogonal horizontal axes and rotation about a vertical axis. The system also includes a static stand. In one application, the system was used to test a bolt-retraction system (BRS) intended for separation of the lifting-body and deorbit-propulsion stages of the X- 38 spacecraft. The LMB was connected via the BRS to the static stand, then pyrotechnic devices that actuate the BRS were fired. The separation distance and acceleration were measured. The report cites a document, not yet published at the time of reporting the information for this article, that is said to present additional detailed information.

  1. Melanoma thickness measurement in two-layer tissue phantoms using pulsed photothermal radiometry (PPTR)

    NASA Astrophysics Data System (ADS)

    Wang, Tianyi; Qiu, Jinze; Paranjape, Amit; Milner, Thomas E.

    2009-02-01

    Melanoma is a malignant tumor of melanocytes which are found predominantly in skin. Melanoma is one of the rarer types of skin cancer but causes the majority of skin cancer related deaths. The staging of malignant melanoma using Breslow thickness is important because of the relationship to survival rate after five years. Pulsed photothermal radiometry (PPTR) is based on the time-resolved acquisition of infrared (IR) emission from a sample after pulsed laser exposure. PPTR can be used to investigate the relationship between melanoma thickness and detected radiometric temperature using two-layer tissue phantoms. We used a Monte Carlo simulation to mimic light transport in melanoma and employed a three-dimensional heat transfer model to obtain simulated radiometric temperature increase and, in comparison, we also conducted PPTR experiments to confirm our simulation results. Simulation and experimental results show similar trends: thicker absorbing layers corresponding to deeper lesions produce slower radiometric temperature decays. A quantitative relationship exists between PPTR radiometric temperature decay time and thickness of the absorbing layer in tissue phantoms.

  2. Teaching elliptical excision skills to novice medical students: a randomized controlled study comparing low- and high-fidelity bench models.

    PubMed

    Denadai, Rafael; Oshiiwa, Marie; Saad-Hossne, Rogério

    2014-03-01

    The search for alternative and effective forms of training simulation is needed due to ethical and medico-legal aspects involved in training surgical skills on living patients, human cadavers and living animals. To evaluate if the bench model fidelity interferes in the acquisition of elliptical excision skills by novice medical students. Forty novice medical students were randomly assigned to 5 practice conditions with instructor-directed elliptical excision skills' training (n = 8): didactic materials (control); organic bench model (low-fidelity); ethylene-vinyl acetate bench model (low-fidelity); chicken legs' skin bench model (high-fidelity); or pig foot skin bench model (high-fidelity). Pre- and post-tests were applied. Global rating scale, effect size, and self-perceived confidence based on Likert scale were used to evaluate all elliptical excision performances. The analysis showed that after training, the students practicing on bench models had better performance based on Global rating scale (all P < 0.0000) and felt more confident to perform elliptical excision skills (all P < 0.0000) when compared to the control. There was no significant difference (all P > 0.05) between the groups that trained on bench models. The magnitude of the effect (basic cutaneous surgery skills' training) was considered large (>0.80) in all measurements. The acquisition of elliptical excision skills after instructor-directed training on low-fidelity bench models was similar to the training on high-fidelity bench models; and there was a more substantial increase in elliptical excision performances of students that trained on all simulators compared to the learning on didactic materials.

  3. [A capillary blood flow velocity detection system based on linear array charge-coupled devices].

    PubMed

    Zhou, Houming; Wang, Ruofeng; Dang, Qi; Yang, Li; Wang, Xiang

    2017-12-01

    In order to detect the flow characteristics of blood samples in the capillary, this paper introduces a blood flow velocity measurement system based on field-programmable gate array (FPGA), linear charge-coupled devices (CCD) and personal computer (PC) software structure. Based on the analysis of the TCD1703C and AD9826 device data sheets, Verilog HDL hardware description language was used to design and simulate the driver. Image signal acquisition and the extraction of the real-time edge information of the blood sample were carried out synchronously in the FPGA. Then a series of discrete displacement were performed in a differential operation to scan each of the blood samples displacement, so that the sample flow rate could be obtained. Finally, the feasibility of the blood flow velocity detection system was verified by simulation and debugging. After drawing the flow velocity curve and analyzing the velocity characteristics, the significance of measuring blood flow velocity is analyzed. The results show that the measurement of the system is less time-consuming and less complex than other flow rate monitoring schemes.

  4. Pixel-based parametric source depth map for Cerenkov luminescence imaging

    NASA Astrophysics Data System (ADS)

    Altabella, L.; Boschi, F.; Spinelli, A. E.

    2016-01-01

    Optical tomography represents a challenging problem in optical imaging because of the intrinsically ill-posed inverse problem due to photon diffusion. Cerenkov luminescence tomography (CLT) for optical photons produced in tissues by several radionuclides (i.e.: 32P, 18F, 90Y), has been investigated using both 3D multispectral approach and multiviews methods. Difficult in convergence of 3D algorithms can discourage to use this technique to have information of depth and intensity of source. For these reasons, we developed a faster 2D corrected approach based on multispectral acquisitions, to obtain source depth and its intensity using a pixel-based fitting of source intensity. Monte Carlo simulations and experimental data were used to develop and validate the method to obtain the parametric map of source depth. With this approach we obtain parametric source depth maps with a precision between 3% and 7% for MC simulation and 5-6% for experimental data. Using this method we are able to obtain reliable information about the source depth of Cerenkov luminescence with a simple and flexible procedure.

  5. Simulation in Surgical Education

    PubMed Central

    de Montbrun, Sandra L.; MacRae, Helen

    2012-01-01

    The pedagogical approach to surgical training has changed significantly over the past few decades. No longer are surgical skills solely acquired through a traditional apprenticeship model of training. The acquisition of many technical and nontechnical skills is moving from the operating room to the surgical skills laboratory through the use of simulation. Many platforms exist for the learning and assessment of surgical skills. In this article, the authors provide a broad overview of some of the currently available surgical simulation modalities including bench-top models, laparoscopic simulators, simulation for new surgical technologies, and simulation for nontechnical surgical skills. PMID:23997671

  6. Language acquisition is model-based rather than model-free.

    PubMed

    Wang, Felix Hao; Mintz, Toben H

    2016-01-01

    Christiansen & Chater (C&C) propose that learning language is learning to process language. However, we believe that the general-purpose prediction mechanism they propose is insufficient to account for many phenomena in language acquisition. We argue from theoretical considerations and empirical evidence that many acquisition tasks are model-based, and that different acquisition tasks require different, specialized models.

  7. The Use of Virtual Reality Simulation to Improve Technical Skill in the Undergraduate Medical Imaging Student

    ERIC Educational Resources Information Center

    Gunn, Therese; Jones, Lee; Bridge, Pete; Rowntree, Pam; Nissen, Lisa

    2018-01-01

    In recent years, simulation has increasingly underpinned the acquisition of pre-clinical skills by undergraduate medical imaging (diagnostic radiography) students. This project aimed to evaluate the impact of an innovative virtual reality (VR) learning environment on the development of technical proficiency by students. The study assessed the…

  8. Harvey: The Impact of a Cardiovascular Teaching Simulator on Student Skill Acquisition.

    ERIC Educational Resources Information Center

    Woolliscroft, James O.; And Others

    1987-01-01

    A life-sized cardiovascular patient simulator was used in medical education in a standard sophomore physical skills test. Significant gains were found in overall student scores and in assessment of interpretation of carotid pulses and precordial auscultation. Students did not make significant gains in jugular venous pulse or precordial motion…

  9. Baccalaureate nursing students' perspectives of peer tutoring in simulation laboratory, a Q methodology study.

    PubMed

    Li, Ting; Petrini, Marcia A; Stone, Teresa E

    2018-02-01

    The study aim was to identify the perceived perspectives of baccalaureate nursing students toward the peer tutoring in the simulation laboratory. Insight into the nursing students' experiences and baseline data related to their perception of peer tutoring will assist to improve nursing education. Q methodology was applied to explore the students' perspectives of peer tutoring in the simulation laboratory. A convenience P-sample of 40 baccalaureate nursing students was used. Fifty-eight selected Q statements from each participant were classified into the shape of a normal distribution using an 11-point bipolar scale form with a range from -5 to +5. PQ Method software analyzed the collected data. Three discrete factors emerged: Factor I ("Facilitate or empower" knowledge acquisition), Factor II ("Safety Net" Support environment), and Factor III ("Mentoring" learn how to learn). The findings of this study support and indicate that peer tutoring is an effective supplementary strategy to promote baccalaureate students' knowledge acquisition, establishing a supportive safety net and facilitating their abilities to learn in the simulation laboratory. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. SimLife a new model of simulation using a pulsated revascularized and reventilated cadaver for surgical education.

    PubMed

    Delpech, P O; Danion, J; Oriot, D; Richer, J P; Breque, C; Faure, J P

    2017-02-01

    Alike becoming a pilot requires competences, acquisition of technical skills is essential to become a surgeon. Halsted's theory on surgical education "See one, do one, and teach one" is not currently compatible with the reality of socio-economic constraints of the operating room, the patient's safety demand and the reduction of residents' work hours. In all countries, this brings mandatory to simulation education for surgery resident's training. Many models are available: video trainers or pelvi-trainers, computed simulator, animal models or human cadaver… Human cadaveric dissection has long been used to teach surgical anatomy. Surgery on human cadaveric model brings greatest accuracy to the haptic characteristics of surgical procedures. Learning in an appropriate and realistic simulation context increases the level of acquisition of the residents' skills and reduces stress and anxiety when performing real procedures. We present a technique of perfusion and ventilation of a fresh human cadaver that restores pulsatile circulation and respiratory movements of the model. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. 48 CFR 22.1002-3 - Wage determinations based on collective bargaining agreements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Wage determinations based on collective bargaining agreements. 22.1002-3 Section 22.1002-3 Federal Acquisition Regulations... ACQUISITIONS Service Contract Act of 1965, as Amended 22.1002-3 Wage determinations based on collective...

  12. An automatic frequency control loop using overlapping DFTs (Discrete Fourier Transforms)

    NASA Technical Reports Server (NTRS)

    Aguirre, S.

    1988-01-01

    An automatic frequency control (AFC) loop is introduced and analyzed in detail. The new scheme is a generalization of the well known Cross Product AFC loop that uses running overlapping discrete Fourier transforms (DFTs) to create a discriminator curve. Linear analysis is included and supported with computer simulations. The algorithm is tested in a low carrier to noise ratio (CNR) dynamic environment, and the probability of loss of lock is estimated via computer simulations. The algorithm discussed is a suboptimum tracking scheme with a larger frequency error variance compared to an optimum strategy, but offers simplicity of implementation and a very low operating threshold CNR. This technique can be applied during the carrier acquisition and re-acquisition process in the Advanced Receiver.

  13. An intelligent tutoring system for the investigation of high performance skill acquisition

    NASA Technical Reports Server (NTRS)

    Fink, Pamela K.; Herren, L. Tandy; Regian, J. Wesley

    1991-01-01

    The issue of training high performance skills is of increasing concern. These skills include tasks such as driving a car, playing the piano, and flying an aircraft. Traditionally, the training of high performance skills has been accomplished through the use of expensive, high-fidelity, 3-D simulators, and/or on-the-job training using the actual equipment. Such an approach to training is quite expensive. The design, implementation, and deployment of an intelligent tutoring system developed for the purpose of studying the effectiveness of skill acquisition using lower-cost, lower-physical-fidelity, 2-D simulation. Preliminary experimental results are quite encouraging, indicating that intelligent tutoring systems are a cost-effective means of training high performance skills.

  14. Virtual reality simulators: current status in acquisition and assessment of surgical skills.

    PubMed

    Cosman, Peter H; Cregan, Patrick C; Martin, Christopher J; Cartmill, John A

    2002-01-01

    Medical technology is currently evolving so rapidly that its impact cannot be analysed. Robotics and telesurgery loom on the horizon, and the technology used to drive these advances has serendipitous side-effects for the education and training arena. The graphical and haptic interfaces used to provide remote feedback to the operator--by passing control to a computer--may be used to generate simulations of the operative environment that are useful for training candidates in surgical procedures. One additional advantage is that the metrics calculated inherently in the controlling software in order to run the simulation may be used to provide performance feedback to individual trainees and mentors. New interfaces will be required to undergo evaluation of the simulation fidelity before being deemed acceptable. The potential benefits fall into one of two general categories: those benefits related to skill acquisition, and those related to skill assessment. The educational value of the simulation will require assessment, and comparison to currently available methods of training in any given procedure. It is also necessary to determine--by repeated trials--whether a given simulation actually measures the performance parameters it purports to measure. This trains the spotlight on what constitutes good surgical skill, and how it is to be objectively measured. Early results suggest that virtual reality simulators have an important role to play in this aspect of surgical training.

  15. Hardware-in-the-loop tow missile system simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waldman, G.S.; Wootton, J.R.; Hobson, G.L.

    1993-07-06

    A missile system simulator is described for use in training people for target acquisition, missile launch, and missile guidance under simulated battlefield conditions comprising: simulating means for producing a digital signal representing a simulated battlefield environment including at least one target movable therewithin, the simulating means generating an infrared map representing the field-of-view and the target; interface means for converting said digital signals to an infrared image; missile system hardware including the missile acquisition, tracking, and guidance portions thereof, said hardware sensing the infrared image to determine the location of the target in a field-of-view; and, image means for generatingmore » an infrared image of a missile launched at the target and guided thereto, the image means imposing the missile image onto the field-of-view for the missile hardware to acquire the image of the missile in addition to that of the target, and to generate guidance signals to guide the missile image to the target image, wherein the interfacing means is responsive to a guidance signal from the hardware to simulate, in real-time, the response of the missile to the guidance signal, the image means including a blackbody, laser means for irradiating the blackbody to heat it to a temperature at which it emits infrared radiation, and optic means for integrating the radiant image produced by heating the blackbody into the infrared map.« less

  16. Compressed sensing with cyclic-S Hadamard matrix for terahertz imaging applications

    NASA Astrophysics Data System (ADS)

    Ermeydan, Esra Şengün; ćankaya, Ilyas

    2018-01-01

    Compressed Sensing (CS) with Cyclic-S Hadamard matrix is proposed for single pixel imaging applications in this study. In single pixel imaging scheme, N = r . c samples should be taken for r×c pixel image where . denotes multiplication. CS is a popular technique claiming that the sparse signals can be reconstructed with samples under Nyquist rate. Therefore to solve the slow data acquisition problem in Terahertz (THz) single pixel imaging, CS is a good candidate. However, changing mask for each measurement is a challenging problem since there is no commercial Spatial Light Modulators (SLM) for THz band yet, therefore circular masks are suggested so that for each measurement one or two column shifting will be enough to change the mask. The CS masks are designed using cyclic-S matrices based on Hadamard transform for 9 × 7 and 15 × 17 pixel images within the framework of this study. The %50 compressed images are reconstructed using total variation based TVAL3 algorithm. Matlab simulations demonstrates that cyclic-S matrices can be used for single pixel imaging based on CS. The circular masks have the advantage to reduce the mechanical SLMs to a single sliding strip, whereas the CS helps to reduce acquisition time and energy since it allows to reconstruct the image from fewer samples.

  17. Towards the estimation of the scattered energy spectra reaching the head of the medical staff during interventional radiology: A Monte Carlo simulation study

    NASA Astrophysics Data System (ADS)

    Zagorska, A.; Bliznakova, K.; Buchakliev, Z.

    2015-09-01

    In 2012, the International Commission on Radiological Protection has recommended a reduction of the dose limits to the eye lens for occupational exposure. Recent studies showed that in interventional rooms is possible to reach these limits especially without using protective equipment. The aim of this study was to calculate the scattered energy spectra distribution at the level of the operator's head. For this purpose, an in-house developed Monte Carlo-based computer application was used to design computational phantoms (patient and operator), the acquisition geometry as well as to simulate the photon transport through the designed system. The initial spectra from 70 kV tube voltage and 8 different filtrations were calculated according to the IPEM Report 78. An experimental study was carried out to verify the results from the simulations. The calculated scattered radiation distributions were compared to the initial incident on the patient spectra. Results showed that there is no large difference between the effective energies of the scattered spectra registered in front of the operator's head obtained from simulations of all 8 incident spectra. The results from the experimental study agreed well to simulations as well.

  18. System diagnostic builder: a rule-generation tool for expert systems that do intelligent data evaluation

    NASA Astrophysics Data System (ADS)

    Nieten, Joseph L.; Burke, Roger

    1993-03-01

    The system diagnostic builder (SDB) is an automated knowledge acquisition tool using state- of-the-art artificial intelligence (AI) technologies. The SDB uses an inductive machine learning technique to generate rules from data sets that are classified by a subject matter expert (SME). Thus, data is captured from the subject system, classified by an expert, and used to drive the rule generation process. These rule-bases are used to represent the observable behavior of the subject system, and to represent knowledge about this system. The rule-bases can be used in any knowledge based system which monitors or controls a physical system or simulation. The SDB has demonstrated the utility of using inductive machine learning technology to generate reliable knowledge bases. In fact, we have discovered that the knowledge captured by the SDB can be used in any number of applications. For example, the knowledge bases captured from the SMS can be used as black box simulations by intelligent computer aided training devices. We can also use the SDB to construct knowledge bases for the process control industry, such as chemical production, or oil and gas production. These knowledge bases can be used in automated advisory systems to ensure safety, productivity, and consistency.

  19. SU-E-I-25: Determining Tube Current, Tube Voltage and Pitch Suitable for Low- Dose Lung Screening CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, K; Matthews, K

    2014-06-01

    Purpose: The quality of a computed tomography (CT) image and the dose delivered during its acquisition depend upon the acquisition parameters used. Tube current, tube voltage, and pitch are acquisition parameters that potentially affect image quality and dose. This study investigated physicians' abilities to characterize small, solid nodules in low-dose CT images for combinations of current, voltage and pitch, for three CT scanner models. Methods: Lung CT images was acquired of a Data Spectrum anthropomorphic torso phantom with various combinations of pitch, tube current, and tube voltage; this phantom was used because acrylic beads of various sizes could be placedmore » within the lung compartments to simulate nodules. The phantom was imaged on two 16-slice scanners and a 64-slice scanner. The acquisition parameters spanned a range of estimated CTDI levels; the CTDI estimates from the acquisition software were verified by measurement. Several experienced radiologists viewed the phantom lung CT images and noted nodule location, size and shape, as well as the acceptability of overall image quality. Results: Image quality for assessment of nodules was deemed unsatisfactory for all scanners at 80 kV (any tube current) and at 35 mA (any tube voltage). Tube current of 50 mA or more at 120 kV resulted in similar assessments from all three scanners. Physician-measured sphere diameters were closer to actual diameters for larger spheres, higher tube current, and higher kV. Pitch influenced size measurements less for larger spheres than for smaller spheres. CTDI was typically overestimated by the scanner software compared to measurement. Conclusion: Based on this survey of acquisition parameters, a low-dose CT protocol of 120 kV, 50 mA, and pitch of 1.4 is recommended to balance patient dose and acceptable image quality. For three models of scanners, this protocol resulted in estimated CTDIs from 2.9–3.6 mGy.« less

  20. TH-AB-207A-05: A Fully-Automated Pipeline for Generating CT Images Across a Range of Doses and Reconstruction Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, S; Lo, P; Hoffman, J

    Purpose: To evaluate the robustness of CAD or Quantitative Imaging methods, they should be tested on a variety of cases and under a variety of image acquisition and reconstruction conditions that represent the heterogeneity encountered in clinical practice. The purpose of this work was to develop a fully-automated pipeline for generating CT images that represent a wide range of dose and reconstruction conditions. Methods: The pipeline consists of three main modules: reduced-dose simulation, image reconstruction, and quantitative analysis. The first two modules of the pipeline can be operated in a completely automated fashion, using configuration files and running the modulesmore » in a batch queue. The input to the pipeline is raw projection CT data; this data is used to simulate different levels of dose reduction using a previously-published algorithm. Filtered-backprojection reconstructions are then performed using FreeCT-wFBP, a freely-available reconstruction software for helical CT. We also added support for an in-house, model-based iterative reconstruction algorithm using iterative coordinate-descent optimization, which may be run in tandem with the more conventional recon methods. The reduced-dose simulations and image reconstructions are controlled automatically by a single script, and they can be run in parallel on our research cluster. The pipeline was tested on phantom and lung screening datasets from a clinical scanner (Definition AS, Siemens Healthcare). Results: The images generated from our test datasets appeared to represent a realistic range of acquisition and reconstruction conditions that we would expect to find clinically. The time to generate images was approximately 30 minutes per dose/reconstruction combination on a hybrid CPU/GPU architecture. Conclusion: The automated research pipeline promises to be a useful tool for either training or evaluating performance of quantitative imaging software such as classifiers and CAD algorithms across the range of acquisition and reconstruction parameters present in the clinical environment. Funding support: NIH U01 CA181156; Disclosures (McNitt-Gray): Institutional research agreement, Siemens Healthcare; Past recipient, research grant support, Siemens Healthcare; Consultant, Toshiba America Medical Systems; Consultant, Samsung Electronics.« less

Top