LES versus DNS: A comparative study
NASA Technical Reports Server (NTRS)
Shtilman, L.; Chasnov, J. R.
1992-01-01
We have performed Direct Numerical Simulations (DNS) and Large Eddy Simulations (LES) of forced isotropic turbulence at moderate Reynolds numbers. The subgrid scale model used in the LES is based on an eddy viscosity which adjusts instantaneously the energy spectrum of the LES to that of the DNS. The statistics of the large scales of the DNS (filtered DNS field or fDNS) are compared to that of the LES. We present results for the transfer spectra, the skewness and flatness factors of the velocity components, the PDF's of the angle between the vorticity and the eigenvectors of the rate of strain, and that between the vorticity and the vorticity stretching tensor. The above LES statistics are found to be in good agreement with those measured in the fDNS field. We further observe that in all the numerical measurements, the trend was for the LES field to be more gaussian than the fDNS field. Future research on this point is planned.
The use of direct numerical simulation data in turbulence modeling
NASA Technical Reports Server (NTRS)
Mansour, N. N.
1991-01-01
Direct numerical simulations (DNS) of turbulent flows provide a complete data base to develop and to test turbulence models. In this article, the progress made in developing models for the dissipation rate equation is reviewed. New scaling arguments for the various terms in the dissipation rate equation were tested using data from DNS of homogeneous shear flows. Modifications to the epsilon-equation model that take into account near-wall effects were developed using DNS of turbulent channel flows. Testing of new models for flows under mean compression was carried out using data from DNS of isotropically compressed turbulence. In all of these studies the data from the simulations was essential in guiding the model development. The next generation of DNS will be at higher Reynolds numbers, and will undoubtedly lead to improved models for computations of flows of practical interest.
Analysis of DNS Cache Effects on Query Distribution
2013-01-01
This paper studies the DNS cache effects that occur on query distribution at the CN top-level domain (TLD) server. We first filter out the malformed DNS queries to purify the log data pollution according to six categories. A model for DNS resolution, more specifically DNS caching, is presented. We demonstrate the presence and magnitude of DNS cache effects and the cache sharing effects on the request distribution through analytic model and simulation. CN TLD log data results are provided and analyzed based on the cache model. The approximate TTL distribution for domain name is inferred quantificationally. PMID:24396313
Analysis of DNS cache effects on query distribution.
Wang, Zheng
2013-01-01
This paper studies the DNS cache effects that occur on query distribution at the CN top-level domain (TLD) server. We first filter out the malformed DNS queries to purify the log data pollution according to six categories. A model for DNS resolution, more specifically DNS caching, is presented. We demonstrate the presence and magnitude of DNS cache effects and the cache sharing effects on the request distribution through analytic model and simulation. CN TLD log data results are provided and analyzed based on the cache model. The approximate TTL distribution for domain name is inferred quantificationally.
Large Eddy Simulation of "turbulent-like" flow in intracranial aneurysms
NASA Astrophysics Data System (ADS)
Khan, Muhammad Owais; Chnafa, Christophe; Steinman, David A.; Mendez, Simon; Nicoud, Franck
2016-11-01
Hemodynamic forces are thought to contribute to pathogenesis and rupture of intracranial aneurysms (IA). Recent high-resolution patient-specific computational fluid dynamics (CFD) simulations have highlighted the presence of "turbulent-like" flow features, characterized by transient high-frequency flow instabilities. In-vitro studies have shown that such "turbulent-like" flows can lead to lack of endothelial cell orientation and cell depletion, and thus, may also have relevance to IA rupture risk assessment. From a modelling perspective, previous studies have relied on DNS to resolve the small-scale structures in these flows. While accurate, DNS is clinically infeasible due to high computational cost and long simulation times. In this study, we present the applicability of LES for IAs using a LES/blood flow dedicated solver (YALES2BIO) and compare against respective DNS. As a qualitative analysis, we compute time-averaged WSS and OSI maps, as well as, novel frequency-based WSS indices. As a quantitative analysis, we show the differences in POD eigenspectra for LES vs. DNS and wavelet analysis of intra-saccular velocity traces. Differences in two SGS models (i.e. Dynamic Smagorinsky vs. Sigma) are also compared against DNS, and computational gains of LES are discussed.
Detailed characteristics of drop-laden mixing layers: LES predictions compared to DNS
NASA Technical Reports Server (NTRS)
Okong'o, N.; Leboissetier, A.; Bellan, J.
2004-01-01
Results have been compared from Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) of a temporal mixing layer laden with evaporating drops, to assess the ability of LES to reproduce detailed characteristics of DNS.
The validity of multiphase DNS initialized on the basis of single--point statistics
NASA Astrophysics Data System (ADS)
Subramaniam, Shankar
1999-11-01
A study of the point--process statistical representation of a spray reveals that single--point statistical information contained in the droplet distribution function (ddf) is related to a sequence of single surrogate--droplet pdf's, which are in general different from the physical single--droplet pdf's. The results of this study have important consequences for the initialization and evolution of direct numerical simulations (DNS) of multiphase flows, which are usually initialized on the basis of single--point statistics such as the average number density in physical space. If multiphase DNS are initialized in this way, this implies that even the initial representation contains certain implicit assumptions concerning the complete ensemble of realizations, which are invalid for general multiphase flows. Also the evolution of a DNS initialized in this manner is shown to be valid only if an as yet unproven commutation hypothesis holds true. Therefore, it is questionable to what extent DNS that are initialized in this manner constitute a direct simulation of the physical droplets.
Prediction of dynamic and mixing characteristics of drop-laden mixing layers using DNS and LES
NASA Technical Reports Server (NTRS)
Okong'o, N.; Leboissetier, A.; Bellan, J.
2004-01-01
Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) have been conducted of a temporal mixing layer laden with evaporating drops, in order to assess the ability of LES to reproduce dynamic and mixing aspects of the DNS which affect combustion, independently of combustion models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tryggvason, Gretar; Bolotnov, Igor; Fang, Jun
2017-03-30
Direct numerical simulation (DNS) has been regarded as a reliable data source for the development and validation of turbulence models along with experiments. The realization of DNS usually involves a very fine mesh that should be able to resolve all relevant turbulence scales down to Kolmogorov scale [1]. As the most computationally expensive approach compared to other CFD techniques, DNS applications used to be limited to flow studies at very low Reynolds numbers. Thanks to the tremendous growth of computing power over the past decades, the simulation capability of DNS has now started overlapping with some of the most challengingmore » engineering problems. One of those examples in nuclear engineering is the turbulent coolant flow inside reactor cores. Coupled with interface tracking methods (ITM), the simulation capability of DNS can be extended to more complicated two-phase flow regimes. Departure from nucleate boiling (DNB) is the limiting critical heat flux phenomena for the majority of accidents that are postulated to occur in pressurized water reactors (PWR) [2]. As one of the major modeling and simulation (M&S) challenges pursued by CASL, the prediction capability is being developed for the onset of DNB utilizing multiphase-CFD (M-CFD) approach. DNS (coupled with ITM) can be employed to provide closure law information for the multiphase flow modeling at CFD scale. In the presented work, research groups at NCSU and UND will focus on applying different ITM to different geometries. Higher void fraction flow analysis at reactor prototypical conditions will be performed, and novel analysis methods will be developed, implemented and verified for the challenging flow conditions.« less
High speed turbulent reacting flows: DNS and LES
NASA Technical Reports Server (NTRS)
Givi, Peyman
1990-01-01
Work on understanding the mechanisms of mixing and reaction in high speed turbulent reacting flows was continued. Efforts, in particular, were concentrated on taking advantage of modern computational methods to simulate high speed turbulent flows. In doing so, two methodologies were used: large eddy simulations (LES) and direct numerical simulations (DNS). In the work related with LES the objective is to study the behavior of the probability density functions (pdfs) of scalar properties within the subgrid in reacting turbulent flows. The data base obtained by DNS for a detailed study of the pdf characteristics within the subgrid was used. Simulations are performed for flows under various initializations to include the effects of compressibility on mixing and chemical reactions. In the work related with DNS, a two-dimensional temporally developing high speed mixing layer under the influence of a second-order non-equilibrium chemical reaction of the type A + B yields products + heat was considered. Simulations were performed with different magnitudes of the convective Mach numbers and with different chemical kinetic parameters for the purpose of examining the isolated effects of the compressibility and the heat released by the chemical reactions on the structure of the layer. A full compressible code was developed and utilized, so that the coupling between mixing and chemical reactions is captured in a realistic manner.
Towards Petascale DNS of High Reynolds-Number Turbulent Boundary Layer
NASA Astrophysics Data System (ADS)
Webster, Keegan R.
In flight vehicles, a large portion of fuel consumption is due to skin-friction drag. Reduction of this drag will significantly reduce the fuel consumption of flight vehicles and help our nation to reduce CO 2 emissions. In order to reduce skin-friction drag, an increased understanding of wall-turbulence is needed. Direct numerical simulation (DNS) of spatially developing turbulent boundary layers (SDTBL) can provide the fundamental understanding of wall-turbulence in order to produce models for Reynolds averaged Navier-Stokes (RANS) and large-eddy simulations (LES). DNS of SDTBL over a flat plate at Retheta = 1430 - 2900 were performed. Improvements were made to the DNS code allowing for higher Reynolds number simulations towards petascale DNS of turbulent boundary layers. Mesh refinement and improvements to the inflow and outflow boundary conditions have resulted in turbulence statistics that match more closely to experimental results. The Reynolds stresses and the terms of their evolution equations are reported.
NASA Technical Reports Server (NTRS)
Joslin, R. D.; Streett, C. L.; Chang, C.-L.
1991-01-01
A study of instabilities in incompressible boundary-layer flow on a flat plate is conducted by spatial direct numerical simulation (DNS) of the Navier-Stokes equations. Here, the DNS results are used to critically evaluate the results obtained using parabolized stability equations (PSE) theory and to study mechanisms associated with breakdown from laminar to turbulent flow. Three test cases are considered: two-dimensional Tollmien-Schlichting wave propagation, subharmonic instability breakdown, and oblique-wave break-down. The instability modes predicted by PSE theory are in good quantitative agreement with the DNS results, except a small discrepancy is evident in the mean-flow distortion component of the 2-D test problem. This discrepancy is attributed to far-field boundary- condition differences. Both DNS and PSE theory results show several modal discrepancies when compared with the experiments of subharmonic breakdown. Computations that allow for a small adverse pressure gradient in the basic flow and a variation of the disturbance frequency result in better agreement with the experiments.
Impact of multi-component diffusion in turbulent combustion using direct numerical simulations
Bruno, Claudio; Sankaran, Vaidyanathan; Kolla, Hemanth; ...
2015-08-28
This study presents the results of DNS of a partially premixed turbulent syngas/air flame at atmospheric pressure. The objective was to assess the importance and possible effects of molecular transport on flame behavior and structure. To this purpose DNS were performed at with two proprietary DNS codes and with three different molecular diffusion transport models: fully multi-component, mixture averaged, and imposing the Lewis number of all species to be unity.
Detailed Comparison of DNS to PSE for Oblique Breakdown at Mach 3
NASA Technical Reports Server (NTRS)
Mayer, Christian S. J.; Fasel, Hermann F.; Choudhari, Meelan; Chang, Chau-Lyan
2010-01-01
A pair of oblique waves at low amplitudes is introduced in a supersonic flat-plate boundary layer. Their downstream development and the concomitant process of laminar to turbulent transition is then investigated numerically using Direct Numerical Simulations (DNS) and Parabolized Stability Equations (PSE). This abstract is the last part of an extensive study of the complete transition process initiated by oblique breakdown at Mach 3. In contrast to the previous simulations, the symmetry condition in the spanwise direction is removed for the simulation presented in this abstract. By removing the symmetry condition, we are able to confirm that the flow is indeed symmetric over the entire computational domain. Asymmetric modes grow in the streamwise direction but reach only small amplitude values at the outflow. Furthermore, this abstract discusses new time-averaged data from our previous simulation CASE 3 and compares PSE data obtained from NASA's LASTRAC code to DNS results.
NASA Technical Reports Server (NTRS)
Givi, Peyman; Madnia, Cyrus K.; Steinberger, C. J.; Frankel, S. H.
1992-01-01
The principal objective is to extend the boundaries within which large eddy simulations (LES) and direct numerical simulations (DNS) can be applied in computational analyses of high speed reacting flows. A summary of work accomplished during the last six months is presented.
Mining IP to Domain Name Interactions to Detect DNS Flood Attacks on Recursive DNS Servers.
Alonso, Roberto; Monroy, Raúl; Trejo, Luis A
2016-08-17
The Domain Name System (DNS) is a critical infrastructure of any network, and, not surprisingly a common target of cybercrime. There are numerous works that analyse higher level DNS traffic to detect anomalies in the DNS or any other network service. By contrast, few efforts have been made to study and protect the recursive DNS level. In this paper, we introduce a novel abstraction of the recursive DNS traffic to detect a flooding attack, a kind of Distributed Denial of Service (DDoS). The crux of our abstraction lies on a simple observation: Recursive DNS queries, from IP addresses to domain names, form social groups; hence, a DDoS attack should result in drastic changes on DNS social structure. We have built an anomaly-based detection mechanism, which, given a time window of DNS usage, makes use of features that attempt to capture the DNS social structure, including a heuristic that estimates group composition. Our detection mechanism has been successfully validated (in a simulated and controlled setting) and with it the suitability of our abstraction to detect flooding attacks. To the best of our knowledge, this is the first time that work is successful in using this abstraction to detect these kinds of attacks at the recursive level. Before concluding the paper, we motivate further research directions considering this new abstraction, so we have designed and tested two additional experiments which exhibit promising results to detect other types of anomalies in recursive DNS servers.
Mining IP to Domain Name Interactions to Detect DNS Flood Attacks on Recursive DNS Servers
Alonso, Roberto; Monroy, Raúl; Trejo, Luis A.
2016-01-01
The Domain Name System (DNS) is a critical infrastructure of any network, and, not surprisingly a common target of cybercrime. There are numerous works that analyse higher level DNS traffic to detect anomalies in the DNS or any other network service. By contrast, few efforts have been made to study and protect the recursive DNS level. In this paper, we introduce a novel abstraction of the recursive DNS traffic to detect a flooding attack, a kind of Distributed Denial of Service (DDoS). The crux of our abstraction lies on a simple observation: Recursive DNS queries, from IP addresses to domain names, form social groups; hence, a DDoS attack should result in drastic changes on DNS social structure. We have built an anomaly-based detection mechanism, which, given a time window of DNS usage, makes use of features that attempt to capture the DNS social structure, including a heuristic that estimates group composition. Our detection mechanism has been successfully validated (in a simulated and controlled setting) and with it the suitability of our abstraction to detect flooding attacks. To the best of our knowledge, this is the first time that work is successful in using this abstraction to detect these kinds of attacks at the recursive level. Before concluding the paper, we motivate further research directions considering this new abstraction, so we have designed and tested two additional experiments which exhibit promising results to detect other types of anomalies in recursive DNS servers. PMID:27548169
Numerical Investigation of Transition in Supersonic Boundary Layers Using DNS and LES
2008-03-31
stream values of velocity, temperature, density, and specific heat ( Uro , Tio, Pe and C2, respectively). For investigations of flows over cones, free...field is simulated without those assumptions for the current investigations. For 2,5 2 UI.l UL u* lO Pn 2BL - - Tl" TU o DNS ’. DNS PDNS T DNS T DNS 025...Because primary amplitude levels impact the resonance behavior, the resonance lo - cation moved upstream to R., = 1, 800 and the nonlinear amplification
DNS of Flow in a Low-Pressure Turbine Cascade Using a Discontinuous-Galerkin Spectral-Element Method
NASA Technical Reports Server (NTRS)
Garai, Anirban; Diosady, Laslo Tibor; Murman, Scott; Madavan, Nateri
2015-01-01
A new computational capability under development for accurate and efficient high-fidelity direct numerical simulation (DNS) and large eddy simulation (LES) of turbomachinery is described. This capability is based on an entropy-stable Discontinuous-Galerkin spectral-element approach that extends to arbitrarily high orders of spatial and temporal accuracy and is implemented in a computationally efficient manner on a modern high performance computer architecture. A validation study using this method to perform DNS of flow in a low-pressure turbine airfoil cascade are presented. Preliminary results indicate that the method captures the main features of the flow. Discrepancies between the predicted results and the experiments are likely due to the effects of freestream turbulence not being included in the simulation and will be addressed in the final paper.
Direct numerical simulation of reactor two-phase flows enabled by high-performance computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Jun; Cambareri, Joseph J.; Brown, Cameron S.
Nuclear reactor two-phase flows remain a great engineering challenge, where the high-resolution two-phase flow database which can inform practical model development is still sparse due to the extreme reactor operation conditions and measurement difficulties. Owing to the rapid growth of computing power, the direct numerical simulation (DNS) is enjoying a renewed interest in investigating the related flow problems. A combination between DNS and an interface tracking method can provide a unique opportunity to study two-phase flows based on first principles calculations. More importantly, state-of-the-art high-performance computing (HPC) facilities are helping unlock this great potential. This paper reviews the recent researchmore » progress of two-phase flow DNS related to reactor applications. The progress in large-scale bubbly flow DNS has been focused not only on the sheer size of those simulations in terms of resolved Reynolds number, but also on the associated advanced modeling and analysis techniques. Specifically, the current areas of active research include modeling of sub-cooled boiling, bubble coalescence, as well as the advanced post-processing toolkit for bubbly flow simulations in reactor geometries. A novel bubble tracking method has been developed to track the evolution of bubbles in two-phase bubbly flow. Also, spectral analysis of DNS database in different geometries has been performed to investigate the modulation of the energy spectrum slope due to bubble-induced turbulence. In addition, the single-and two-phase analysis results are presented for turbulent flows within the pressurized water reactor (PWR) core geometries. The related simulations are possible to carry out only with the world leading HPC platforms. These simulations are allowing more complex turbulence model development and validation for use in 3D multiphase computational fluid dynamics (M-CFD) codes.« less
Sharp magnetic structures from dynamos with density stratification
NASA Astrophysics Data System (ADS)
Jabbari, Sarah; Brandenburg, Axel; Kleeorin, Nathan; Rogachevskii, Igor
2017-05-01
Recent direct numerical simulations (DNS) of large-scale turbulent dynamos in strongly stratified layers have resulted in surprisingly sharp bipolar structures at the surface. Here, we present new DNS of helically and non-helically forced turbulence with and without rotation and compare with corresponding mean-field simulations (MFS) to show that these structures are a generic outcome of a broader class of dynamos in density-stratified layers. The MFS agree qualitatively with the DNS, but the period of oscillations tends to be longer in the DNS. In both DNS and MFS, the sharp structures are produced by converging flows at the surface and might be driven in non-linear stage of evolution by the Lorentz force associated with the large-scale dynamo-driven magnetic field if the dynamo number is at least 2.5 times supercritical.
A priori analysis of differential diffusion for model development for scale-resolving simulations
NASA Astrophysics Data System (ADS)
Hunger, Franziska; Dietzsch, Felix; Gauding, Michael; Hasse, Christian
2018-01-01
The present study analyzes differential diffusion and the mechanisms responsible for it with regard to the turbulent/nonturbulent interface (TNTI) with special focus on model development for scale-resolving simulations. In order to analyze differences between resolved and subfilter phenomena, direct numerical simulation (DNS) data are compared with explicitly filtered data. The DNS database stems from a temporally evolving turbulent plane jet transporting two passive scalars with Schmidt numbers of unity and 0.25 presented by Hunger et al. [F. Hunger et al., J. Fluid Mech. 802, R5 (2016), 10.1017/jfm.2016.471]. The objective of this research is twofold: (i) to compare the position of the turbulent-nonturbulent interface between the original DNS data and the filtered data and (ii) to analyze differential diffusion and the impact of the TNTI with regard to scale resolution in the filtered DNS data. For the latter, differential diffusion quantities are studied, clearly showing the decrease of differential diffusion at the resolved scales with increasing filter width. A transport equation for the scalar differences is evaluated. Finally, the existence of large scalar gradients, gradient alignment, and the diffusive fluxes being the physical mechanisms responsible for the separation of the two scalars are compared between the resolved and subfilter scales.
DNS and LES/FMDF of turbulent jet ignition and combustion
NASA Astrophysics Data System (ADS)
Validi, Abdoulahad; Jaberi, Farhad
2014-11-01
The ignition and combustion of lean fuel-air mixtures by a turbulent jet flow of hot combustion products injected into various geometries are studied by high fidelity numerical models. Turbulent jet ignition (TJI) is an efficient method for starting and controlling the combustion in complex propulsion systems and engines. The TJI and combustion of hydrogen and propane in various flow configurations are simulated with the direct numerical simulation (DNS) and the hybrid large eddy simulation/filtered mass density function (LES/FMDF) models. In the LES/FMDF model, the filtered form of the compressible Navier-Stokes equations are solved with a high-order finite difference scheme for the turbulent velocity and the FMDF transport equation is solved with a Lagrangian stochastic method to obtain the scalar field. The DNS and LES/FMDF data are used to study the physics of TJI and combustion for different turbulent jet igniter and gas mixture conditions. The results show the very complex and different behavior of the turbulence and the flame structure at different jet equivalence ratios.
Direct numerical simulation of broadband trailing edge noise from a NACA 0012 airfoil
NASA Astrophysics Data System (ADS)
Mehrabadi, Mohammad; Bodony, Daniel
2016-11-01
Commercial jet-powered aircraft produce unwanted noise at takeoff and landing when they are close to near-airport communities. Modern high-bypass-ratio turbofan engines have reduced jet exhaust noise sufficiently such that noise from the main fan is now significant. In preparation for a large-eddy simulation of the NASA/GE Source Diagnostic Test Fan, we study the broadband noise due to the turbulent flow on a NACA 0012 airfoil at zero degree angle-of-attack, a chord-based Reynolds number of 408,000 and a Mach number of 0.115 using direct numerical simulation (DNS) and wall-modeled large-eddy simulation (WMLES). The flow conditions correspond to existing experimental data. We investigate the roughness-induced transition-to-turbulence and sound generation from a DNS perspective as well as examine how these two features are captured by a wall model. Comparisons between the DNS- and WMLES-predicted noise are made and provide guidance on the use of WMLES for broadband fan noise prediction. AeroAcoustics Research Consortium.
NASA Technical Reports Server (NTRS)
Selle, L. C.; Bellan, Josette
2006-01-01
Transitional databases from Direct Numerical Simulation (DNS) of three-dimensional mixing layers for single-phase flows and two-phase flows with evaporation are analyzed and used to examine the typical hypothesis that the scalar dissipation Probability Distribution Function (PDF) may be modeled as a Gaussian. The databases encompass a single-component fuel and four multicomponent fuels, two initial Reynolds numbers (Re), two mass loadings for two-phase flows and two free-stream gas temperatures. Using the DNS calculated moments of the scalar-dissipation PDF, it is shown, consistent with existing experimental information on single-phase flows, that the Gaussian is a modest approximation of the DNS-extracted PDF, particularly poor in the range of the high scalar-dissipation values, which are significant for turbulent reaction rate modeling in non-premixed flows using flamelet models. With the same DNS calculated moments of the scalar-dissipation PDF and making a change of variables, a model of this PDF is proposed in the form of the (beta)-PDF which is shown to approximate much better the DNS-extracted PDF, particularly in the regime of the high scalar-dissipation values. Several types of statistical measures are calculated over the ensemble of the fourteen databases. For each statistical measure, the proposed (beta)-PDF model is shown to be much superior to the Gaussian in approximating the DNS-extracted PDF. Additionally, the agreement between the DNS-extracted PDF and the (beta)-PDF even improves when the comparison is performed for higher initial Re layers, whereas the comparison with the Gaussian is independent of the initial Re values. For two-phase flows, the comparison between the DNS-extracted PDF and the (beta)-PDF also improves with increasing free-stream gas temperature and mass loading. The higher fidelity approximation of the DNS-extracted PDF by the (beta)-PDF with increasing Re, gas temperature and mass loading bodes well for turbulent reaction rate modeling.
Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows
NASA Technical Reports Server (NTRS)
Givi, P.; Madnia, C. K.; Steinberger, C. J.; Frankel, S. H.
1992-01-01
The basic objective of this research is to extend the capabilities of Large Eddy Simulations (LES) and Direct Numerical Simulations (DNS) for the computational analyses of high speed reacting flows. In the efforts related to LES, we were primarily involved with assessing the performance of the various modern methods based on the Probability Density Function (PDF) methods for providing closures for treating the subgrid fluctuation correlations of scalar quantities in reacting turbulent flows. In the work on DNS, we concentrated on understanding some of the relevant physics of compressible reacting flows by means of statistical analysis of the data generated by DNS of such flows. In the research conducted in the second year of this program, our efforts focused on the modeling of homogeneous compressible turbulent flows by PDF methods, and on DNS of non-equilibrium reacting high speed mixing layers. Some preliminary work is also in progress on PDF modeling of shear flows, and also on LES of such flows.
Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows
NASA Technical Reports Server (NTRS)
Givi, Peyman; Madnia, Cyrus K.; Steinberger, Craig J.
1990-01-01
This research is involved with the implementation of advanced computational schemes based on large eddy simulations (LES) and direct numerical simulations (DNS) to study the phenomenon of mixing and its coupling with chemical reactions in compressible turbulent flows. In the efforts related to LES, a research program to extend the present capabilities of this method was initiated for the treatment of chemically reacting flows. In the DNS efforts, the focus is on detailed investigations of the effects of compressibility, heat release, and non-equilibrium kinetics modelings in high speed reacting flows. Emphasis was on the simulations of simple flows, namely homogeneous compressible flows, and temporally developing high speed mixing layers.
NASA Technical Reports Server (NTRS)
Okong'o, Nora; Bellan, Josette
2005-01-01
Models for large eddy simulation (LES) are assessed on a database obtained from direct numerical simulations (DNS) of supercritical binary-species temporal mixing layers. The analysis is performed at the DNS transitional states for heptane/nitrogen, oxygen/hydrogen and oxygen/helium mixing layers. The incorporation of simplifying assumptions that are validated on the DNS database leads to a set of LES equations that requires only models for the subgrid scale (SGS) fluxes, which arise from filtering the convective terms in the DNS equations. Constant-coefficient versions of three different models for the SGS fluxes are assessed and calibrated. The Smagorinsky SGS-flux model shows poor correlations with the SGS fluxes, while the Gradient and Similarity models have high correlations, as well as good quantitative agreement with the SGS fluxes when the calibrated coefficients are used.
NASA Astrophysics Data System (ADS)
Wang, Guoqing
Batteries and fuel cells are widely used to generate electrical energy, especially in recent applications to electric and hybrid vehicles. To simulate a porous electrode for batteries and fuel cells, macro-homogeneous models are often employed in which the actual morphology of the electrode is ignored, thereby making computations much easier. However, such models are based on the volume-averaging technique, which smears the microscopically complex interfacial structures and has to invoke empirical correlations for describing the effective transport properties in a multiphase system. In this work, a methodology is developed to achieve the description on the pore level based on direct numerical simulation (DNS) method. The DNS solves the accurate point-wise conservation equations on a real micro-structure of the porous electrode and hence utilizes the intrinsic transport properties for each phase. To demonstrate the DNS method, an idealized morphology and further a random microstructure are constructed to represent all the phases composing the porous electrode. A single set of conservation equations of charge and species valid in all phases are developed and numerically solved using a finite volume technique. The present DNS model is first applied to simulate the behavior of an intercalative carbon electrode in the widely used lithium-ion cell. The concentration and potential distributions in both solid and electrolyte phases at the pore level are obtained across the electrode during the discharge. The species and charge transport processes, as well as the electrochemical reactions, are computationally visualized when discharging the electrode. In addition, empirical correlations in porous electrode theory, which describe the dependency of effective properties (diffusion coefficient, conductivity, etc.) on the porosity, are corroborated using the fundamental DNS data. Then the discharge processes of a full lithium ion cell at various rates are simulated with DNS approach and verified by the experimental data. In the application to the cathode catalyst layer of PEM fuel cells, DNS is employed to identify three characteristic voltage losses: kinetics losses, ohmic losses and O2 transport losses. On a constructed random microstructure, DNS is also utilized to optimize the inlet air humidity and the composition design and hence achieve the minimum voltage loss during operation. In summary, the newly developed DNS method has provided an effective method to simulate behavior of thin porous electrodes with microscopically complicated geometries and the fundamentals insight into structure-performance relationships of porous electrodes for the first time.
Simulation of crossflow instability on a supersonic highly swept wing
NASA Technical Reports Server (NTRS)
Pruett, C. David
1995-01-01
A direct numerical simulation (DNS) algorithm has been developed and validated for use in the investigation of crossflow instability on supersonic swept wings, an application of potential relevance to the design of the High-Speed Civil Transport (HSCT). The algorithm is applied to the investigation of stationary crossflow instability on an infinitely long 77-degree swept wing in Mach 3.5 flow. The results of the DNS are compared with the predictions of linear parabolized stability equation (PSE) methodology. In-general, the DNS and PSE results agree closely in terms of modal growth rate, structure, and orientation angle. Although further validation is needed for large-amplitude (nonlinear) disturbances, the close agreement between independently derived methods offers preliminary validation of both DNS and PSE approaches.
Part 2 of a Computational Study of a Drop-Laden Mixing Layer
NASA Technical Reports Server (NTRS)
Okongo, Nora; Bellan, Josette
2004-01-01
This second of three reports on a computational study of a mixing layer laden with evaporating liquid drops presents the evaluation of Large Eddy Simulation (LES) models. The LES models were evaluated on an existing database that had been generated using Direct Numerical Simulation (DNS). The DNS method and the database are described in the first report of this series, Part 1 of a Computational Study of a Drop-Laden Mixing Layer (NPO-30719), NASA Tech Briefs, Vol. 28, No.7 (July 2004), page 59. The LES equations, which are derived by applying a spatial filter to the DNS set, govern the evolution of the larger scales of the flow and can therefore be solved on a coarser grid. Consistent with the reduction in grid points, the DNS drops would be represented by fewer drops, called computational drops in the LES context. The LES equations contain terms that cannot be directly computed on the coarser grid and that must instead be modeled. Two types of models are necessary: (1) those for the filtered source terms representing the effects of drops on the filtered flow field and (2) those for the sub-grid scale (SGS) fluxes arising from filtering the convective terms in the DNS equations. All of the filtered-sourceterm models that were developed were found to overestimate the filtered source terms. For modeling the SGS fluxes, constant-coefficient Smagorinsky, gradient, and scale-similarity models were assessed and calibrated on the DNS database. The Smagorinsky model correlated poorly with the SGS fluxes, whereas the gradient and scale-similarity models were well correlated with the SGS quantities that they represented.
Probability density function of a puff dispersing from the wall of a turbulent channel
NASA Astrophysics Data System (ADS)
Nguyen, Quoc; Papavassiliou, Dimitrios
2015-11-01
Study of dispersion of passive contaminants in turbulence has proved to be helpful in understanding fundamental heat and mass transfer phenomena. Many simulation and experimental works have been carried out to locate and track motions of scalar markers in a flow. One method is to combine Direct Numerical Simulation (DNS) and Lagrangian Scalar Tracking (LST) to record locations of markers. While this has proved to be useful, high computational cost remains a concern. In this study, we develop a model that could reproduce results obtained by DNS and LST for turbulent flow. Puffs of markers with different Schmidt numbers were released into a flow field at a frictional Reynolds number of 150. The point of release was at the channel wall, so that both diffusion and convection contribute to the puff dispersion pattern, defining different stages of dispersion. Based on outputs from DNS and LST, we seek the most suitable and feasible probability density function (PDF) that represents distribution of markers in the flow field. The PDF would play a significant role in predicting heat and mass transfer in wall turbulence, and would prove to be helpful where DNS and LST are not always available.
Decay of passive scalar fluctuations in axisymmetric turbulence
NASA Astrophysics Data System (ADS)
Yoshimatsu, Katsunori; Davidson, Peter A.; Kaneda, Yukio
2016-11-01
Passive scalar fluctuations in axisymmetric Saffman turbulence are examined theoretically and numerically. Theoretical predictions are verified by direct numerical simulation (DNS). According to the DNS, self-similar decay of the turbulence and the persistency of the large-scale anisotropy are found for its fully developed turbulence. The DNS confirms the time-independence of the Corrsin integral.
Evaluation of a vortex-based subgrid stress model using DNS databases
NASA Technical Reports Server (NTRS)
Misra, Ashish; Lund, Thomas S.
1996-01-01
The performance of a SubGrid Stress (SGS) model for Large-Eddy Simulation (LES) developed by Misra k Pullin (1996) is studied for forced and decaying isotropic turbulence on a 32(exp 3) grid. The physical viability of the model assumptions are tested using DNS databases. The results from LES of forced turbulence at Taylor Reynolds number R(sub (lambda)) approximately equals 90 are compared with filtered DNS fields. Probability density functions (pdfs) of the subgrid energy transfer, total dissipation, and the stretch of the subgrid vorticity by the resolved velocity-gradient tensor show reasonable agreement with the DNS data. The model is also tested in LES of decaying isotropic turbulence where it correctly predicts the decay rate and energy spectra measured by Comte-Bellot & Corrsin (1971).
Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows
NASA Technical Reports Server (NTRS)
Givi, Peyman; Madnia, C. K.; Steinberger, C. J.; Tsai, A.
1991-01-01
This research is involved with the implementations of advanced computational schemes based on large eddy simulations (LES) and direct numerical simulations (DNS) to study the phenomenon of mixing and its coupling with chemical reactions in compressible turbulent flows. In the efforts related to LES, a research program was initiated to extend the present capabilities of this method for the treatment of chemically reacting flows, whereas in the DNS efforts, focus was on detailed investigations of the effects of compressibility, heat release, and nonequilibrium kinetics modeling in high speed reacting flows. The efforts to date were primarily focussed on simulations of simple flows, namely, homogeneous compressible flows and temporally developing hign speed mixing layers. A summary of the accomplishments is provided.
NASA Technical Reports Server (NTRS)
Givi, Peyman; Jaberi, Farhad A.
2001-01-01
The basic objective of this work is to assess the influence of gravity on "the compositional and the spatial structures" of transitional and turbulent diffusion flames via large eddy simulation (LES), and direct numerical simulation (DNS). The DNS is conducted for appraisal of the various closures employed in LES, and to study the effect of buoyancy on the small scale flow features. The LES is based on our "filtered mass density function"' (FMDF) model. The novelty of the methodology is that it allows for reliable simulations with inclusion of "realistic physics." It also allows for detailed analysis of the unsteady large scale flow evolution and compositional flame structure which is not usually possible via Reynolds averaged simulations.
Cloud-edge mixing: Direct numerical simulation and observations in Indian Monsoon clouds
NASA Astrophysics Data System (ADS)
Kumar, Bipin; Bera, Sudarsan; Prabha, Thara V.; Grabowski, Wojceich W.
2017-03-01
A direct numerical simulation (DNS) with the decaying turbulence setup has been carried out to study cloud-edge mixing and its impact on the droplet size distribution (DSD) applying thermodynamic conditions observed in monsoon convective clouds over Indian subcontinent during the Cloud Aerosol Interaction and Precipitation Enhancement EXperiment (CAIPEEX). Evaporation at the cloud-edges initiates mixing at small scale and gradually introduces larger-scale fluctuations of the temperature, moisture, and vertical velocity due to droplet evaporation. Our focus is on early evolution of simulated fields that show intriguing similarities to the CAIPEEX cloud observations. A strong dilution at the cloud edge, accompanied by significant spatial variations of the droplet concentration, mean radius, and spectral width, are found in both the DNS and in observations. In DNS, fluctuations of the mean radius and spectral width come from the impact of small-scale turbulence on the motion and evaporation of inertial droplets. These fluctuations decrease with the increase of the volume over which DNS data are averaged, as one might expect. In cloud observations, these fluctuations also come from other processes, such as entrainment/mixing below the observation level, secondary CCN activation, or variations of CCN activation at the cloud base. Despite large differences in the spatial and temporal scales, the mixing diagram often used in entrainment/mixing studies with aircraft data is remarkably similar for both DNS and cloud observations. We argue that the similarity questions applicability of heuristic ideas based on mixing between two air parcels (that the mixing diagram is designed to properly represent) to the evolution of microphysical properties during turbulent mixing between a cloud and its environment.
NASA Astrophysics Data System (ADS)
Zhong, Xiaolin
1998-08-01
Direct numerical simulation (DNS) has become a powerful tool in studying fundamental phenomena of laminar-turbulent transition of high-speed boundary layers. Previous DNS studies of supersonic and hypersonic boundary layer transition have been limited to perfect-gas flow over flat-plate boundary layers without shock waves. For hypersonic boundary layers over realistic blunt bodies, DNS studies of transition need to consider the effects of bow shocks, entropy layers, surface curvature, and finite-rate chemistry. It is necessary that numerical methods for such studies are robust and high-order accurate both in resolving wide ranges of flow time and length scales and in resolving the interaction between the bow shocks and flow disturbance waves. This paper presents a new high-order shock-fitting finite-difference method for the DNS of the stability and transition of hypersonic boundary layers over blunt bodies with strong bow shocks and with (or without) thermo-chemical nonequilibrium. The proposed method includes a set of new upwind high-order finite-difference schemes which are stable and are less dissipative than a straightforward upwind scheme using an upwind-bias grid stencil, a high-order shock-fitting formulation, and third-order semi-implicit Runge-Kutta schemes for temporal discretization of stiff reacting flow equations. The accuracy and stability of the new schemes are validated by numerical experiments of the linear wave equation and nonlinear Navier-Stokes equations. The algorithm is then applied to the DNS of the receptivity of hypersonic boundary layers over a parabolic leading edge to freestream acoustic disturbances.
NASA Astrophysics Data System (ADS)
Nemkovski, K.; Ioffe, A.; Su, Y.; Babcock, E.; Schweika, W.; Brückel, Th
2017-06-01
We present the concept and the results of the simulations of a new polarizer for the diffuse neutron scattering spectrometer DNS at MLZ. The concept of the polarizer is based on the idea of a bender made from the stack of the silicon wafers with a double-side supermirror polarizing coating and absorbing spacers in between. Owing to its compact design, such a system provides more free space for the arrangement of other instrument components. To reduce activation of the polarizer in the high intensity neutron beam of the DNS spectrometer we plan to use the Fe/Si supermirrors instead of currently used FeCoV/Ti:N ones. Using the VITESS simulation package we have performed simulations for horizontally focusing polarizing benders with different geometries in the combination with the double-focusing crystal monochromator of DNS. Neutron transmission and polarization efficiency as well as the effects of the focusing for convergent conventional C-benders and S-benders have been analyzed both for wedge-like and plane-parallel convergent geometries of the channels. The results of these simulations and the advantages/disadvantages of the various configurations are discussed.
Efficient Parallel Algorithm For Direct Numerical Simulation of Turbulent Flows
NASA Technical Reports Server (NTRS)
Moitra, Stuti; Gatski, Thomas B.
1997-01-01
A distributed algorithm for a high-order-accurate finite-difference approach to the direct numerical simulation (DNS) of transition and turbulence in compressible flows is described. This work has two major objectives. The first objective is to demonstrate that parallel and distributed-memory machines can be successfully and efficiently used to solve computationally intensive and input/output intensive algorithms of the DNS class. The second objective is to show that the computational complexity involved in solving the tridiagonal systems inherent in the DNS algorithm can be reduced by algorithm innovations that obviate the need to use a parallelized tridiagonal solver.
NASA Astrophysics Data System (ADS)
Lozano-Durán, A.; Hack, M. J. P.; Moin, P.
2018-02-01
We examine the potential of the nonlinear parabolized stability equations (PSE) to provide an accurate yet computationally efficient treatment of the growth of disturbances in H-type transition to turbulence. The PSE capture the nonlinear interactions that eventually induce breakdown to turbulence and can as such identify the onset of transition without relying on empirical correlations. Since the local PSE solution at the onset of transition is a close approximation of the Navier-Stokes equations, it provides a natural inflow condition for direct numerical simulations (DNS) and large-eddy simulations (LES) by avoiding nonphysical transients. We show that a combined PSE-DNS approach, where the pretransitional region is modeled by the PSE, can reproduce the skin-friction distribution and downstream turbulent statistics from a DNS of the full domain. When the PSE are used in conjunction with wall-resolved and wall-modeled LES, the computational cost in both the laminar and turbulent regions is reduced by several orders of magnitude compared to DNS.
NASA Astrophysics Data System (ADS)
Gungor, Ayse Gul; Nural, Ozan Ekin; Ertunc, Ozgur
2017-11-01
Purpose of this study is to analyze the direct numerical simulation data of a turbulent boundary layer subjected to strong adverse pressure gradient through anisotropy invariant mapping. RANS simulation using the ``Elliptic Blending Model'' of Manceau and Hanjolic (2002) is also conducted for the same flow case with commercial software Star-CCM+ and comparison of the results with DNS data is done. RANS simulation captures the general trends in the velocity field but, significant deviations are found when skin friction coefficients are compared. Anisotropy invariant map of Lumley and Newman (1977) and barycentric map of Banerjee et al. (2007) are used for the analysis. Invariant mapping of the DNS data has yielded that at locations away from the wall, flow is close to one component turbulence state. In the vicinity of the wall, turbulence is at two component limit which is one border of the barycentric map and as the flow evolves along the streamwise direction, it approaches to two component turbulence state. Additionally, at the locations away from the wall, turbulence approaches to two component limit. Furthermore, analysis of the invariants of the RANS simulations shows dissimilar results. In RANS simulations invariants do not approach to any of the limit states unlike the DNS.
Validation of an LES Model for Soot Evolution against DNS Data in Turbulent Jet Flames
NASA Astrophysics Data System (ADS)
Mueller, Michael
2012-11-01
An integrated modeling approach for soot evolution in turbulent reacting flows is validated against three-dimensional Direct Numerical Simulation (DNS) data in a set of n-heptane nonpremixed temporal jet flames. As in the DNS study, the evolution of the soot population is described statistically with the Hybrid Method of Moments (HMOM). The oxidation of the fuel and formation of soot precursors are described with the Radiation Flamelet/Progress Variable (RFPV) model that includes an additional transport equation for Polycyclic Aromatic Hydrocarbons (PAH) to account for the slow chemistry governing these species. In addition, the small-scale interactions between soot, chemistry, and turbulence are described with a presumed subfilter PDF approach that accounts for the very large spatial intermittency characterizing soot in turbulent reacting flows. The DNS dataset includes flames at three different Damköhler numbers to study the influence of global mixing rates on the evolution of PAH and soot. In this work, the ability of the model to capture these trends quantitatively as Damköhler number varies is investigated. In order to reliably assess the LES approach, the LES is initialized from the filtered DNS data after an initial transitional period in an effort to minimize the hydrodynamic differences between the DNS and the LES.
Discussion of DNS: Past, Present, and Future
NASA Technical Reports Server (NTRS)
Joslin, Ronald D.
1997-01-01
This paper covers the review, status, and projected future of direct numerical simulation (DNS) methodology relative to the state-of-the-art in computer technology, numerical methods, and the trends in fundamental research programs.
Direct Numerical Simulation and Theories of Wall Turbulence with a Range of Pressure Gradients
NASA Technical Reports Server (NTRS)
Coleman, G. N.; Garbaruk, A.; Spalart, P. R.
2014-01-01
A new Direct Numerical Simulation (DNS) of Couette-Poiseuille flow at a higher Reynolds number is presented and compared with DNS of other wall-bounded flows. It is analyzed in terms of testing semi-theoretical proposals for universal behavior of the velocity, mixing length, or eddy viscosity in pressure gradients, and in terms of assessing the accuracy of two turbulence models. These models are used in two modes, the traditional one with only a dependence on the wall-normal coordinate y, and a newer one in which a lateral dependence on z is added. For pure Couette flow and the Couette-Poiseuille case considered here, this z-dependence allows some models to generate steady streamwise vortices, which generally improves the agreement with DNS and experiment. On the other hand, it complicates the comparison between DNS and models.
DNS of incompressible turbulence in a periodic box with up to 4096^3 grid points
NASA Astrophysics Data System (ADS)
Kaneda, Yukio
2007-11-01
Turbulence of incompressible fluid obeying the Navier-Stokes (NS) equations under periodic boundary conditions is one of the simplest dynamical systems keeping the essence of turbulence dynamics, and suitable for the study of high Reynolds number (Re) turbulence by direct numerical simulation (DNS). This talk presents a review on DNS of such a system with the number N^3 of the grid points up to 4096^3, performed on the Earth Simulator (ES). The ES consists of 640 processor nodes (=5120 arithmetic processors) with 10TB of main memory and the peak performance of 40 Tflops. The DNSs are based on a spectral method free from alias error. The convolution sums in the wave vector space were evaluated by radix-4 Fast Fourier Transforms with double precision arithmetic. Sustained performance of 16.4 Tflops was achieved on the 2048^3 DNS by using 512 processor nodes of the ES. The DNSs consist of two series; one is with kmax η1 (Series 1) and the other with kmax η2 (Series 2), where kmax is the highest wavenumber in each simulation, and η is the Kolmogorov length scale. In the 4096^3 DNS, the Taylor-scale Reynolds number Rλ1130 (675) and the ratio L/η of the integral length scale L to η is approximately 2133(1040), in Series 1 (Series 2). Such DNS data are expected to shed some light on the basic questions in turbulence research, including those on (i) the normalized mean rate of energy dissipation in the high Re limit, (ii) the universality of energy spectrum at small scale, (iii) scale- and Re- dependences of the statistics, and (iv) intermittency. We have constructed a database consisting of (a) animations and figures of turbulent fields (b) statistics including those associated with (i)-(iv) noted above, (c) snapshot data of the velocity fields. The data size of (c) can be very large for large N. For example, one snapshot of single precision data of the velocity vector field of the 4096^3 DNS requires approximately 0.8 TB.
DNS of a non-equilibrium adverse pressure gradient turbulent boundary layer
NASA Astrophysics Data System (ADS)
Gungor, Taygun R.; Gungor, Ayse G.; Maciel, Yvan; Simens, Mark P.
2017-11-01
A new direct numerical simulation (DNS) dataset of a non-equilibrium adverse pressure gradient (APG) turbulent boundary layer (TBL) that evolves from a zero-pressure-gradient (ZPG) TBL to a TBL which is very close to separation at Reθ is around 8200 is presented. There are two simulations running together in the DNS computational setup. The APG TBL spans Reθ = 1476 - 8276 . Mean velocity results do not satisfy the log law as the defect in the velocity increases. The production and the Reynolds stress peak are observed around y /δ* = 1 after the flow is evolved up to a certain point. The new dataset is compared with other datasets in terms of mean values, Reynolds stresses and turbulent kinetic energy budgets and using this comparison scaling study is performed. Funded by in part by ITU-AYP and NSERC of Canada.
Lu, Liqiang; Liu, Xiaowen; Li, Tingwen; ...
2017-08-12
For this study, gas–solids flow in a three-dimension periodic domain was numerically investigated by direct numerical simulation (DNS), computational fluid dynamic-discrete element method (CFD-DEM) and two-fluid model (TFM). DNS data obtained by finely resolving the flow around every particle are used as a benchmark to assess the validity of coarser DEM and TFM approaches. The CFD-DEM predicts the correct cluster size distribution and under-predicts the macro-scale slip velocity even with a grid size as small as twice the particle diameter. The TFM approach predicts larger cluster size and lower slip velocity with a homogeneous drag correlation. Although the slip velocitymore » can be matched by a simple modification to the drag model, the predicted voidage distribution is still different from DNS: Both CFD-DEM and TFM over-predict the fraction of particles in dense regions and under-predict the fraction of particles in regions of intermediate void fractions. Also, the cluster aspect ratio of DNS is smaller than CFD-DEM and TFM. Since a simple correction to the drag model can predict a correct slip velocity, it is hopeful that drag corrections based on more elaborate theories that consider voidage gradient and particle fluctuations may be able to improve the current predictions of cluster distribution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Liqiang; Liu, Xiaowen; Li, Tingwen
For this study, gas–solids flow in a three-dimension periodic domain was numerically investigated by direct numerical simulation (DNS), computational fluid dynamic-discrete element method (CFD-DEM) and two-fluid model (TFM). DNS data obtained by finely resolving the flow around every particle are used as a benchmark to assess the validity of coarser DEM and TFM approaches. The CFD-DEM predicts the correct cluster size distribution and under-predicts the macro-scale slip velocity even with a grid size as small as twice the particle diameter. The TFM approach predicts larger cluster size and lower slip velocity with a homogeneous drag correlation. Although the slip velocitymore » can be matched by a simple modification to the drag model, the predicted voidage distribution is still different from DNS: Both CFD-DEM and TFM over-predict the fraction of particles in dense regions and under-predict the fraction of particles in regions of intermediate void fractions. Also, the cluster aspect ratio of DNS is smaller than CFD-DEM and TFM. Since a simple correction to the drag model can predict a correct slip velocity, it is hopeful that drag corrections based on more elaborate theories that consider voidage gradient and particle fluctuations may be able to improve the current predictions of cluster distribution.« less
DNS of Flows over Periodic Hills using a Discontinuous-Galerkin Spectral-Element Method
NASA Technical Reports Server (NTRS)
Diosady, Laslo T.; Murman, Scott M.
2014-01-01
Direct numerical simulation (DNS) of turbulent compressible flows is performed using a higher-order space-time discontinuous-Galerkin finite-element method. The numerical scheme is validated by performing DNS of the evolution of the Taylor-Green vortex and turbulent flow in a channel. The higher-order method is shown to provide increased accuracy relative to low-order methods at a given number of degrees of freedom. The turbulent flow over a periodic array of hills in a channel is simulated at Reynolds number 10,595 using an 8th-order scheme in space and a 4th-order scheme in time. These results are validated against previous large eddy simulation (LES) results. A preliminary analysis provides insight into how these detailed simulations can be used to improve Reynoldsaveraged Navier-Stokes (RANS) modeling
Time-accurate simulations of a shear layer forced at a single frequency
NASA Technical Reports Server (NTRS)
Claus, R. W.; Huang, P. G.; Macinnes, J. M.
1988-01-01
Calculations are presented for the forced shear layer studied experimentally by Oster and Wygnanski, and Weisbrot. Two different computational approaches are examined: Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES). The DNS approach solves the full three dimensional Navier-Stokes equations for a temporally evolving mixing layer, while the LES approach solves the two dimensional Navier-Stokes equations with a subgrid scale turbulence model. While the comparison between these calculations and experimental data was hampered by a lack of information on the inflow boundary conditions, the calculations are shown to qualitatively agree with several aspects of the experiment. The sensitivity of these calculations to factors such as mesh refinement and Reynolds number is illustrated.
A numerical study of mixing in stationary, nonpremixed, turbulent reacting flows
NASA Astrophysics Data System (ADS)
Overholt, Matthew Ryan
1998-10-01
In this work a detailed numerical study is made of a statistically-stationary, non-premixed, turbulent reacting model flow known as Periodic Reaction Zones. The mixture fraction-progress variable approach is used, with a mean gradient in the mixture fraction and a model, single-step, reversible, finite-rate thermochemistry, yielding both stationary and local extinction behavior. The passive scalar is studied first, using a statistical forcing scheme to achieve stationarity of the velocity field. Multiple independent direct numerical simulations (DNS) are performed for a wide range of Reynolds numbers with a number of results including a bilinear model for scalar mixing jointly conditioned on the scalar and x2-component of velocity, Gaussian scalar probability density function tails which were anticipated to be exponential, and the quantification of the dissipation of scalar flux. A new deterministic forcing scheme for DNS is then developed which yields reduced fluctuations in many quantities and a more natural evolution of the velocity fields. This forcing method is used for the final portion of this work. DNS results for Periodic Reaction Zones are compared with the Conditional Moment Closure (CMC) model, the Quasi-Equilibrium Distributed Reaction (QEDR) model, and full probability density function (PDF) simulations using the Euclidean Minimum Spanning Tree (EMST) and the Interaction by Exchange with the Mean (IEM) mixing models. It is shown that CMC and QEDR results based on the local scalar dissipation match DNS wherever local extinction is not present. However, due to the large spatial variations of scalar dissipation, and hence local Damkohler number, local extinction is present even when the global Damkohler number is twenty-five times the critical value for extinction. Finally, in the PDF simulations the EMST mixing model closely reproduces CMC and DNS results when local extinction is not present, whereas the IEM model results in large error.
DNS/LES Simulations of Separated Flows at High Reynolds Numbers
NASA Technical Reports Server (NTRS)
Balakumar, P.
2015-01-01
Direct numerical simulations (DNS) and large-eddy simulations (LES) simulations of flow through a periodic channel with a constriction are performed using the dynamic Smagorinsky model at two Reynolds numbers of 2800 and 10595. The LES equations are solved using higher order compact schemes. DNS are performed for the lower Reynolds number case using a fine grid and the data are used to validate the LES results obtained with a coarse and a medium size grid. LES simulations are also performed for the higher Reynolds number case using a coarse and a medium size grid. The results are compared with an existing reference data set. The DNS and LES results agreed well with the reference data. Reynolds stresses, sub-grid eddy viscosity, and the budgets for the turbulent kinetic energy are also presented. It is found that the turbulent fluctuations in the normal and spanwise directions have the same magnitude. The turbulent kinetic energy budget shows that the production peaks near the separation point region and the production to dissipation ratio is very high on the order of five in this region. It is also observed that the production is balanced by the advection, diffusion, and dissipation in the shear layer region. The dominant term is the turbulent diffusion that is about two times the molecular dissipation.
Hydroacoustic forcing function modeling using DNS database
NASA Technical Reports Server (NTRS)
Zawadzki, I.; Gershfield, J. L.; Na, Y.; Wang, M.
1996-01-01
A wall pressure frequency spectrum model (Blake 1971 ) has been evaluated using databases from Direct Numerical Simulations (DNS) of a turbulent boundary layer (Na & Moin 1996). Good agreement is found for moderate to strong adverse pressure gradient flows in the absence of separation. In the separated flow region, the model underpredicts the directly calculated spectra by an order of magnitude. The discrepancy is attributed to the violation of the model assumptions in that part of the flow domain. DNS computed coherence length scales and the normalized wall pressure cross-spectra are compared with experimental data. The DNS results are consistent with experimental observations.
NASA Astrophysics Data System (ADS)
Ryzhenkov, V.; Ivashchenko, V.; Vinuesa, R.; Mullyadzhanov, R.
2016-10-01
We use the open-source code nek5000 to assess the accuracy of high-order spectral element large-eddy simulations (LES) of a turbulent channel flow depending on the spatial resolution compared to the direct numerical simulation (DNS). The Reynolds number Re = 6800 is considered based on the bulk velocity and half-width of the channel. The filtered governing equations are closed with the dynamic Smagorinsky model for subgrid stresses and heat flux. The results show very good agreement between LES and DNS for time-averaged velocity and temperature profiles and their fluctuations. Even the coarse LES grid which contains around 30 times less points than the DNS one provided predictions of the friction velocity within 2.0% accuracy interval.
Evaluation of the Use of Second Generation Wavelets in the Coherent Vortex Simulation Approach
NASA Technical Reports Server (NTRS)
Goldstein, D. E.; Vasilyev, O. V.; Wray, A. A.; Rogallo, R. S.
2000-01-01
The objective of this study is to investigate the use of the second generation bi-orthogonal wavelet transform for the field decomposition in the Coherent Vortex Simulation of turbulent flows. The performances of the bi-orthogonal second generation wavelet transform and the orthogonal wavelet transform using Daubechies wavelets with the same number of vanishing moments are compared in a priori tests using a spectral direct numerical simulation (DNS) database of isotropic turbulence fields: 256(exp 3) and 512(exp 3) DNS of forced homogeneous turbulence (Re(sub lambda) = 168) and 256(exp 3) and 512(exp 3) DNS of decaying homogeneous turbulence (Re(sub lambda) = 55). It is found that bi-orthogonal second generation wavelets can be used for coherent vortex extraction. The results of a priori tests indicate that second generation wavelets have better compression and the residual field is closer to Gaussian. However, it was found that the use of second generation wavelets results in an integral length scale for the incoherent part that is larger than that derived from orthogonal wavelets. A way of dealing with this difficulty is suggested.
Direct numerical simulation of turbulent plane Couette flow under neutral and stable stratification
NASA Astrophysics Data System (ADS)
Mortikov, Evgeny
2017-11-01
Direct numerical simulation (DNS) approach was used to study turbulence dynamics in plane Couette flow under conditions ranging from neutral stability to the case of extreme stable stratification, where intermittency is observed. Simulations were performed for Reynolds numbers, based on the channel height and relative wall speed, up to 2 ×105 . Using DNS data, which covers a wide range of stability conditions, parameterizations of pressure correlation terms used in second-order closure turbulence models are discussed. Particular attention is also paid to the sustainment of intermittent turbulence under strong stratification. Intermittent regime is found to be associated with the formation of secondary large-scale structures elongated in the spanwise direction, which define spatially confined alternating regions of laminar and turbulent flow. The spanwise length of this structures increases with the increase in the bulk Richardson number and defines and additional constraint on the computational box size. In this work DNS results are presented in extended computational domains, where the intermittent turbulence is sustained for sufficiently higher Richardson numbers than previously reported.
Compressible Turbulent Channel Flows: DNS Results and Modeling
NASA Technical Reports Server (NTRS)
Huang, P. G.; Coleman, G. N.; Bradshaw, P.; Rai, Man Mohan (Technical Monitor)
1994-01-01
The present paper addresses some topical issues in modeling compressible turbulent shear flows. The work is based on direct numerical simulation of two supersonic fully developed channel flows between very cold isothermal walls. Detailed decomposition and analysis of terms appearing in the momentum and energy equations are presented. The simulation results are used to provide insights into differences between conventional time-and Favre-averaging of the mean-flow and turbulent quantities. Study of the turbulence energy budget for the two cases shows that the compressibility effects due to turbulent density and pressure fluctuations are insignificant. In particular, the dilatational dissipation and the mean product of the pressure and dilatation fluctuations are very small, contrary to the results of simulations for sheared homogeneous compressible turbulence and to recent proposals for models for general compressible turbulent flows. This provides a possible explanation of why the Van Driest density-weighted transformation is so successful in correlating compressible boundary layer data. Finally, it is found that the DNS data do not support the strong Reynolds analogy. A more general representation of the analogy is analysed and shown to match the DNS data very well.
NASA Astrophysics Data System (ADS)
Nikolaevich Lipatnikov, Andrei; Nishiki, Shinnosuke; Hasegawa, Tatsuya
2015-05-01
The linear relation between the mean rate of product creation and the mean scalar dissipation rate, derived in the seminal paper by K.N.C. Bray ['The interaction between turbulence and combustion', Proceedings of the Combustion Institute, Vol. 17 (1979), pp. 223-233], is the cornerstone for models of premixed turbulent combustion that deal with the dissipation rate in order to close the reaction rate. In the present work, this linear relation is straightforwardly validated by analysing data computed earlier in the 3D Direct Numerical Simulation (DNS) of three statistically stationary, 1D, planar turbulent flames associated with the flamelet regime of premixed combustion. Although the linear relation does not hold at the leading and trailing edges of the mean flame brush, such a result is expected within the framework of Bray's theory. However, the present DNS yields substantially larger (smaller) values of an input parameter cm (or K2 = 1/(2cm - 1)), involved by the studied linear relation, when compared to the commonly used value of cm = 0.7 (or K2 = 2.5). To gain further insight into the issue and into the eventual dependence of cm on mixture composition, the DNS data are combined with the results of numerical simulations of stationary, 1D, planar laminar methane-air flames with complex chemistry, with the results being reported in terms of differently defined combustion progress variables c, i.e. the normalised temperature, density, or mole fraction of CH4, O2, CO2 or H2O. Such a study indicates the dependence of cm both on the definition of c and on the equivalence ratio. Nevertheless, K2 and cm can be estimated by processing the results of simulations of counterpart laminar premixed flames. Similar conclusions were also drawn by skipping the DNS data, but invoking a presumed beta probability density function in order to evaluate cm for the differently defined c's and various equivalence ratios.
NASA Astrophysics Data System (ADS)
Zhuo, Congshan; Zhong, Chengwen
2016-11-01
In this paper, a three-dimensional filter-matrix lattice Boltzmann (FMLB) model based on large eddy simulation (LES) was verified for simulating wall-bounded turbulent flows. The Vreman subgrid-scale model was employed in the present FMLB-LES framework, which had been proved to be capable of predicting turbulent near-wall region accurately. The fully developed turbulent channel flows were performed at a friction Reynolds number Reτ of 180. The turbulence statistics computed from the present FMLB-LES simulations, including mean stream velocity profile, Reynolds stress profile and root-mean-square velocity fluctuations greed well with the LES results of multiple-relaxation-time (MRT) LB model, and some discrepancies in comparison with those direct numerical simulation (DNS) data of Kim et al. was also observed due to the relatively low grid resolution. Moreover, to investigate the influence of grid resolution on the present LES simulation, a DNS simulation on a finer gird was also implemented by present FMLB-D3Q19 model. Comparisons of detailed computed various turbulence statistics with available benchmark data of DNS showed quite well agreement.
Analysis and modeling of subgrid scalar mixing using numerical data
NASA Technical Reports Server (NTRS)
Girimaji, Sharath S.; Zhou, YE
1995-01-01
Direct numerical simulations (DNS) of passive scalar mixing in isotropic turbulence is used to study, analyze and, subsequently, model the role of small (subgrid) scales in the mixing process. In particular, we attempt to model the dissipation of the large scale (supergrid) scalar fluctuations caused by the subgrid scales by decomposing it into two parts: (1) the effect due to the interaction among the subgrid scales; and (2) the effect due to interaction between the supergrid and the subgrid scales. Model comparisons with DNS data show good agreement. This model is expected to be useful in the large eddy simulations of scalar mixing and reaction.
Shetty, Dinesh A.; Frankel, Steven H.
2013-01-01
Summary The physical space version of the stretched vortex subgrid scale model [Phys. Fluids 12, 1810 (2000)] is tested in large eddy simulations (LES) of the turbulent lid driven cubic cavity flow. LES is carried out using a higher order finite-difference method [J. Comput. Phys. 229, 8802 (2010)]. The effects of different vortex orientation models and subgrid turbulence spectrums are assessed through comparisons of the LES predictions against direct numerical simulations (DNS) [Phys. Fluids 12, 1363 (2000)]. Three Reynolds numbers 12000, 18000, and 22000 are studied. Good agreement with the DNS data for the mean and fluctuating quantities is observed. PMID:24187423
NASA Astrophysics Data System (ADS)
Tanahashi, Mamoru; Kikuta, Satoshi; Miyauchi, Toshio
2004-11-01
Three-dimensional DNS of methane-air turbulent premixed flames have been conducted to investigate local extinction mechanism of turbulent premixed flames. A reduced kinetic mechanism (MeCH-19), which is created from GRI-Mech. 2.11 and includes 23 reactive species and 19 step reactions, are used to simulate CH_4-O_2-N2 reaction in turbulence. The effectiveness of this reduced kinetic mechanism has been conformed by preliminary two-dimensional DNS with the reduced kinetic mechanism and two detailed kinetic mechanisms; GRI-Mech. 2.11 and Miller & Bowman. Flame structures of methane-air turbulent premixed flames are compared with those of hydrogen-air turbulent premixed flames which have been obtained by 3D-DNS with a detailed kinetic mechanism in our previous study. Local extinctions occur in methane-air turbulent premixed flames, whereas no extinction is observed for hydrogen-air flames in nearly same turbulence condition. The local extinction mechanism is discussed based on eddy/flame interaction in small scales.
NASA Astrophysics Data System (ADS)
Annenkov, Sergei; Shrira, Victor
2016-04-01
We study numerically the long-term evolution of water wave spectra without wind forcing, using three different models, aiming at understanding the role of different sets of assumptions. The first model is the classical Hasselmann kinetic equation (KE). We employ the WRT code kindly provided by G. van Vledder. Two other models are new. As the second model, we use the generalised kinetic equation (gKE), derived without the assumption of quasi-stationarity. Thus, unlike the KE, the gKE is valid in the cases when a wave spectrum is changing rapidly (e.g. at the initial stage of evolution of a narrow spectrum). However, the gKE employs the same statistical closure as the KE. The third model is based on the Zakharov integrodifferential equation for water waves and does not depend on any statistical assumptions. Since the Zakharov equation plays the role of the primitive equation of the theory of wave turbulence, we refer to this model as direct numerical simulation of spectral evolution (DNS-ZE). For initial conditions, we choose two narrow-banded spectra with the same frequency distribution (a JONSWAP spectrum with high peakedness γ = 6) and different degrees of directionality. These spectra are from the set of observations collected in a directional wave tank by Onorato et al (2009). Spectrum A is very narrow in angle (corresponding to N = 840 in the cosN directional model). Spectrum B is initially wider in angle (corresponds to N = 24). Short-term evolution of both spectra (O(102) wave periods) has been studied numerically by Xiao et al (2013) using two other approaches (broad-band modified nonlinear Schrödinger equation and direct numerical simulation based on the high-order spectral method). We use these results to verify the initial stage of our DNS-ZE simulations. However, the advantage of the DNS-ZE method is that it allows to study long-term spectral evolution (up to O(104) periods), which was previously possible only with the KE. In the short-term evolution, we find a good agreement between our DNS-ZE results and simulations by Xiao et al (2013), both for the evolution of frequency spectra and for the directional spreading. In the long term, all three approaches demonstrate very close evolution of integral characteristics of spectra, approaching for large time the theoretical asymptotes of the self-similar stage of evolution. However, the detailed comparison of the spectral evolution shows certain notable differences. Both kinetic equations give virtually identical evolution of spectrum B, but in the case of initially nearly one-dimensional spectrum A the KE overestimates the amplitude of the spectral peak. Meanwhile, the DNS-ZE results show considerably wider spectra with less pronounced peak. There is a striking difference for the rate of spectral broadening, which is much larger for the gKE and especially for the KE, than for the DNS-ZE. We show that the rates of change of the spectra obtained with the DNS-ZE are proportional to the fourth power of nonlinearity, corresponding to the dynamical timescale of evolution, rather than the statistical timescale of both kinetic equations.
NASA Astrophysics Data System (ADS)
Dhariwal, Rohit; Rani, Sarma; Koch, Donald
2015-11-01
In an earlier work, Rani, Dhariwal, and Koch (JFM, Vol. 756, 2014) developed an analytical closure for the diffusion current in the PDF transport equation describing the relative motion of high-Stokes-number particle pairs in isotropic turbulence. In this study, an improved closure was developed for the diffusion coefficient, such that the motion of the particle-pair center of mass is taken into account. Using the earlier and the new analytical closures, Langevin simulations of pair relative motion were performed for four particle Stokes numbers, Stη = 10 , 20 , 40 , 80 and at two Taylor micro-scale Reynolds numbers Reλ = 76 , 131 . Detailed comparisons of the analytical model predictions with those of DNS were undertaken. It is seen that the pair relative motion statistics obtained from the improved theory show excellent agreement with the DNS statistics. The radial distribution functions (RDFs), and relative velocity PDFs obtained from the improved-closure-based Langevin simulations are found to be in very good agreement with those from DNS. It was found that the RDFs and relative velocity RMS increased with Reλ for all Stη . The collision kernel also increased strongly with Reλ , since it depended on the RDF and the radial relative velocities.
Part 1 of a Computational Study of a Drop-Laden Mixing Layer
NASA Technical Reports Server (NTRS)
Okong'o, Nora A.; Bellan, Josette
2004-01-01
This first of three reports on a computational study of a drop-laden temporal mixing layer presents the results of direct numerical simulations (DNS) of well-resolved flow fields and the derivation of the large-eddy simulation (LES) equations that would govern the larger scales of a turbulent flow field. The mixing layer consisted of two counterflowing gas streams, one of which was initially laden with evaporating liquid drops. The gas phase was composed of two perfect gas species, the carrier gas and the vapor emanating from the drops, and was computed in an Eulerian reference frame, whereas each drop was tracked individually in a Lagrangian manner. The flow perturbations that were initially imposed on the layer caused mixing and eventual transition to turbulence. The DNS database obtained included transitional states for layers with various liquid mass loadings. For the DNS, the gas-phase equations were the compressible Navier-Stokes equations for conservation of momentum and additional conservation equations for total energy and species mass. These equations included source terms representing the effect of the drops on the mass, momentum, and energy of the gas phase. From the DNS equations, the expression for the irreversible entropy production (dissipation) was derived and used to determine the dissipation due to the source terms. The LES equations were derived by spatially filtering the DNS set and the magnitudes of the terms were computed at transitional states, leading to a hierarchy of terms to guide simplification of the LES equations. It was concluded that effort should be devoted to the accurate modeling of both the subgridscale fluxes and the filtered source terms, which were the dominant unclosed terms appearing in the LES equations.
Direct Numerical Simulation of Complex Turbulence
NASA Astrophysics Data System (ADS)
Hsieh, Alan
Direct numerical simulations (DNS) of spanwise-rotating turbulent channel flow were conducted. The data base obtained from these DNS simulations were used to investigate the turbulence generation cycle for simple and complex turbulence. For turbulent channel flow, three theoretical models concerning the formation and evolution of sublayer streaks, three-dimensional hairpin vortices and propagating plane waves were validated using visualizations from the present DNS data. The principal orthogonal decomposition (POD) method was used to verify the existence of the propagating plane waves; a new extension of the POD method was derived to demonstrate these plane waves in a spatial channel model. The analyses of coherent structures was extended to complex turbulence and used to determine the proper computational box size for a minimal flow unit (MFU) at Rob < 0.5. Proper realization of Taylor-Gortler vortices in the highly turbulent pressure region was demonstrated to be necessary for acceptably accurate MFU turbulence statistics, which required a minimum spanwise domain length Lz = pi. A dependence of MFU accuracy on Reynolds number was also discovered and MFU models required a larger domain to accurately approximate higher-Reynolds number flows. In addition, the results obtained from the DNS simulations were utilized to evaluate several turbulence closure models for momentum and thermal transport in rotating turbulent channel flow. Four nonlinear eddy viscosity turbulence models were tested and among these, Explicit Algebraic Reynolds Stress Models (EARSM) obtained the Reynolds stress distributions in best agreement with DNS data for rotational flows. The modeled pressure-strain functions of EARSM were shown to have strong influence on the Reynolds stress distributions near the wall. Turbulent heatflux distributions obtained from two explicit algebraic heat flux models consistently displayed increasing disagreement with DNS data with increasing rotation rate. Results were also obtained regarding flow control of fully-developed spatially-evolving turbulent channel flow using phononic subsurface structures. Fluid-structure interaction (FSI) simulations were conducted by attaching phononic structures to the bottom wall of a turbulent channel flow field and reduction of turbulent kinetic energy was observed for different phononic designs.
NASA Technical Reports Server (NTRS)
Garai, Anirban; Diosady, Laslo T.; Murman, Scott M.; Madavan, Nateri K.
2016-01-01
Recent progress towards developing a new computational capability for accurate and efficient high-fidelity direct numerical simulation (DNS) and large-eddy simulation (LES) of turbomachinery is described. This capability is based on an entropy- stable Discontinuous-Galerkin spectral-element approach that extends to arbitrarily high orders of spatial and temporal accuracy, and is implemented in a computationally efficient manner on a modern high performance computer architecture. An inflow turbulence generation procedure based on a linear forcing approach has been incorporated in this framework and DNS conducted to study the effect of inflow turbulence on the suction- side separation bubble in low-pressure turbine (LPT) cascades. The T106 series of airfoil cascades in both lightly (T106A) and highly loaded (T106C) configurations at exit isentropic Reynolds numbers of 60,000 and 80,000, respectively, are considered. The numerical simulations are performed using 8th-order accurate spatial and 4th-order accurate temporal discretization. The changes in separation bubble topology due to elevated inflow turbulence is captured by the present method and the physical mechanisms leading to the changes are explained. The present results are in good agreement with prior numerical simulations but some expected discrepancies with the experimental data for the T106C case are noted and discussed.
Turbulent flame-wall interaction: a DNS study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jackie; Hawkes, Evatt R; Sankaran, Ramanan
2010-01-01
A turbulent flame-wall interaction (FWI) configuration is studied using three-dimensional direct numerical simulation (DNS) and detailed chemical kinetics. The simulations are used to investigate the effects of the wall turbulent boundary layer (i) on the structure of a hydrogen-air premixed flame, (ii) on its near-wall propagation characteristics and (iii) on the spatial and temporal patterns of the convective wall heat flux. Results show that the local flame thickness and propagation speed vary between the core flow and the boundary layer, resulting in a regime change from flamelet near the channel centreline to a thickened flame at the wall. This findingmore » has strong implications for the modelling of turbulent combustion using Reynolds-averaged Navier-Stokes or large-eddy simulation techniques. Moreover, the DNS results suggest that the near-wall coherent turbulent structures play an important role on the convective wall heat transfer by pushing the hot reactive zone towards the cold solid surface. At the wall, exothermic radical recombination reactions become important, and are responsible for approximately 70% of the overall heat release rate at the wall. Spectral analysis of the convective wall heat flux provides an unambiguous picture of its spatial and temporal patterns, previously unobserved, that is directly related to the spatial and temporal characteristic scalings of the coherent near-wall turbulent structures.« less
Applications of direct numerical simulation of turbulence in second order closures
NASA Technical Reports Server (NTRS)
Shih, Tsan-Hsing; Lumley, John L.
1995-01-01
This paper discusses two methods of developing models for the rapid pressure-strain correlation term in the Reynolds stress transport equation using direct numerical simulation (DNS) data. One is a perturbation about isotropic turbulence, the other is a perturbation about two-component turbulence -- an extremely anisotropic turbulence. A model based on the latter method is proposed and is found to be very promising when compared with DNS data and other models.
Computation of the sound generated by isotropic turbulence
NASA Technical Reports Server (NTRS)
Sarkar, S.; Hussaini, M. Y.
1993-01-01
The acoustic radiation from isotropic turbulence is computed numerically. A hybrid direct numerical simulation approach which combines direct numerical simulation (DNS) of the turbulent flow with the Lighthill acoustic analogy is utilized. It is demonstrated that the hybrid DNS method is a feasible approach to the computation of sound generated by turbulent flows. The acoustic efficiency in the simulation of isotropic turbulence appears to be substantially less than that in subsonic jet experiments. The dominant frequency of the computed acoustic pressure is found to be somewhat larger than the dominant frequency of the energy-containing scales of motion. The acoustic power in the simulations is proportional to epsilon (M(sub t))(exp 5) where epsilon is the turbulent dissipation rate and M(sub t) is the turbulent Mach number. This is in agreement with the analytical result of Proudman (1952), but the constant of proportionality is smaller than the analytical result. Two different methods of computing the acoustic power from the DNS data bases yielded consistent results.
NASA Technical Reports Server (NTRS)
Poinsot, Thierry J.
1993-01-01
Understanding and modeling of turbulent combustion are key problems in the computation of numerous practical systems. Because of the lack of analytical theories in this field and of the difficulty of performing precise experiments, direct numerical simulation (DNS) appears to be one of the most attractive tools to use in addressing this problem. The general objective of DNS of reacting flows is to improve our knowledge of turbulent combustion but also to use this information for turbulent combustion models. For the foreseeable future, numerical simulation of the full three-dimensional governing partial differential equations with variable density and transport properties as well as complex chemistry will remain intractable; thus, various levels of simplification will remain necessary. On one hand, the requirement to simplify is not necessarily a handicap: numerical simulations allow the researcher a degree of control in isolating specific physical phenomena that is inaccessible in experiments. CTR has pursued an intensive research program in the field of DNS for turbulent reacting flows since 1987. DNS of reacting flows is quite different from DNS of non-reacting flows: without reaction, the equations to solve are clearly the five conservation equations of the Navier Stokes system for compressible situations (four for incompressible cases), and the limitation of the approach is the Reynolds number (or in other words the number of points in the computation). For reacting flows, the choice of the equations, the species (each species will require one additional conservation equation), the chemical scheme, and the configuration itself is more complex.
Sun, Xiaosong; Sakai, Mikio
2016-12-01
In this study, a numerical method is developed to perform the direct numerical simulation (DNS) of gas-solid-liquid flows involving capillary effects. The volume-of-fluid method employed to track the free surface and the immersed boundary method is adopted for the fluid-particle coupling in three-phase flows. This numerical method is able to fully resolve the hydrodynamic force and capillary force as well as the particle motions arising from complicated gas-solid-liquid interactions. We present its application to liquid bridges among spherical particles in this paper. By using the DNS method, we obtain the static bridge force as a function of the liquid volume, contact angle, and separation distance. The results from the DNS are compared with theoretical equations and other solutions to examine its validity and suitability for modeling capillary bridges. Particularly, the nontrivial liquid bridges formed in triangular and tetrahedral particle clusters are calculated and some preliminary results are reported. We also perform dynamic simulations of liquid bridge ruptures subject to axial stretching and particle motions driven by liquid bridge action, for which accurate predictions are obtained with respect to the critical rupture distance and the equilibrium particle position, respectively. As shown through the simulations, the strength of the present method is the ability to predict the liquid bridge problem under general conditions, from which models of liquid bridge actions may be constructed without limitations. Therefore, it is believed that this DNS method can be a useful tool to improve the understanding and modeling of liquid bridges formed in complex gas-solid-liquid flows.
A Parallel, Finite-Volume Algorithm for Large-Eddy Simulation of Turbulent Flows
NASA Technical Reports Server (NTRS)
Bui, Trong T.
1999-01-01
A parallel, finite-volume algorithm has been developed for large-eddy simulation (LES) of compressible turbulent flows. This algorithm includes piecewise linear least-square reconstruction, trilinear finite-element interpolation, Roe flux-difference splitting, and second-order MacCormack time marching. Parallel implementation is done using the message-passing programming model. In this paper, the numerical algorithm is described. To validate the numerical method for turbulence simulation, LES of fully developed turbulent flow in a square duct is performed for a Reynolds number of 320 based on the average friction velocity and the hydraulic diameter of the duct. Direct numerical simulation (DNS) results are available for this test case, and the accuracy of this algorithm for turbulence simulations can be ascertained by comparing the LES solutions with the DNS results. The effects of grid resolution, upwind numerical dissipation, and subgrid-scale dissipation on the accuracy of the LES are examined. Comparison with DNS results shows that the standard Roe flux-difference splitting dissipation adversely affects the accuracy of the turbulence simulation. For accurate turbulence simulations, only 3-5 percent of the standard Roe flux-difference splitting dissipation is needed.
PDF turbulence modeling and DNS
NASA Technical Reports Server (NTRS)
Hsu, A. T.
1992-01-01
The problem of time discontinuity (or jump condition) in the coalescence/dispersion (C/D) mixing model is addressed in probability density function (pdf). A C/D mixing model continuous in time is introduced. With the continuous mixing model, the process of chemical reaction can be fully coupled with mixing. In the case of homogeneous turbulence decay, the new model predicts a pdf very close to a Gaussian distribution, with finite higher moments also close to that of a Gaussian distribution. Results from the continuous mixing model are compared with both experimental data and numerical results from conventional C/D models. The effect of Coriolis forces on compressible homogeneous turbulence is studied using direct numerical simulation (DNS). The numerical method used in this study is an eight order compact difference scheme. Contrary to the conclusions reached by previous DNS studies on incompressible isotropic turbulence, the present results show that the Coriolis force increases the dissipation rate of turbulent kinetic energy, and that anisotropy develops as the Coriolis force increases. The Taylor-Proudman theory does apply since the derivatives in the direction of the rotation axis vanishes rapidly. A closer analysis reveals that the dissipation rate of the incompressible component of the turbulent kinetic energy indeed decreases with a higher rotation rate, consistent with incompressible flow simulations (Bardina), while the dissipation rate of the compressible part increases; the net gain is positive. Inertial waves are observed in the simulation results.
Uncertainty quantification in LES of channel flow
Safta, Cosmin; Blaylock, Myra; Templeton, Jeremy; ...
2016-07-12
Here, in this paper, we present a Bayesian framework for estimating joint densities for large eddy simulation (LES) sub-grid scale model parameters based on canonical forced isotropic turbulence direct numerical simulation (DNS) data. The framework accounts for noise in the independent variables, and we present alternative formulations for accounting for discrepancies between model and data. To generate probability densities for flow characteristics, posterior densities for sub-grid scale model parameters are propagated forward through LES of channel flow and compared with DNS data. Synthesis of the calibration and prediction results demonstrates that model parameters have an explicit filter width dependence andmore » are highly correlated. Discrepancies between DNS and calibrated LES results point to additional model form inadequacies that need to be accounted for.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masada, Youhei; Sano, Takayoshi, E-mail: ymasada@harbor.kobe-u.ac.jp, E-mail: sano@ile.osaka-u.ac.jp
2014-10-10
The mechanism of large-scale dynamos in rigidly rotating stratified convection is explored by direct numerical simulations (DNS) in Cartesian geometry. A mean-field dynamo model is also constructed using turbulent velocity profiles consistently extracted from the corresponding DNS results. By quantitative comparison between the DNS and our mean-field model, it is demonstrated that the oscillatory α{sup 2} dynamo wave, excited and sustained in the convection zone, is responsible for large-scale magnetic activities such as cyclic polarity reversal and spatiotemporal migration. The results provide strong evidence that a nonuniformity of the α-effect, which is a natural outcome of rotating stratified convection, canmore » be an important prerequisite for large-scale stellar dynamos, even without the Ω-effect.« less
A mixing timescale model for TPDF simulations of turbulent premixed flames
Kuron, Michael; Ren, Zhuyin; Hawkes, Evatt R.; ...
2017-02-06
Transported probability density function (TPDF) methods are an attractive modeling approach for turbulent flames as chemical reactions appear in closed form. However, molecular micro-mixing needs to be modeled and this modeling is considered a primary challenge for TPDF methods. In the present study, a new algebraic mixing rate model for TPDF simulations of turbulent premixed flames is proposed, which is a key ingredient in commonly used molecular mixing models. The new model aims to properly account for the transition in reactive scalar mixing rate behavior from the limit of turbulence-dominated mixing to molecular mixing behavior in flamelets. An a priorimore » assessment of the new model is performed using direct numerical simulation (DNS) data of a lean premixed hydrogen–air jet flame. The new model accurately captures the mixing timescale behavior in the DNS and is found to be a significant improvement over the commonly used constant mechanical-to-scalar mixing timescale ratio model. An a posteriori TPDF study is then performed using the same DNS data as a numerical test bed. The DNS provides the initial conditions and time-varying input quantities, including the mean velocity, turbulent diffusion coefficient, and modeled scalar mixing rate for the TPDF simulations, thus allowing an exclusive focus on the mixing model. Here, the new mixing timescale model is compared with the constant mechanical-to-scalar mixing timescale ratio coupled with the Euclidean Minimum Spanning Tree (EMST) mixing model, as well as a laminar flamelet closure. It is found that the laminar flamelet closure is unable to properly capture the mixing behavior in the thin reaction zones regime while the constant mechanical-to-scalar mixing timescale model under-predicts the flame speed. Furthermore, the EMST model coupled with the new mixing timescale model provides the best prediction of the flame structure and flame propagation among the models tested, as the dynamics of reactive scalar mixing across different flame regimes are appropriately accounted for.« less
A mixing timescale model for TPDF simulations of turbulent premixed flames
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuron, Michael; Ren, Zhuyin; Hawkes, Evatt R.
Transported probability density function (TPDF) methods are an attractive modeling approach for turbulent flames as chemical reactions appear in closed form. However, molecular micro-mixing needs to be modeled and this modeling is considered a primary challenge for TPDF methods. In the present study, a new algebraic mixing rate model for TPDF simulations of turbulent premixed flames is proposed, which is a key ingredient in commonly used molecular mixing models. The new model aims to properly account for the transition in reactive scalar mixing rate behavior from the limit of turbulence-dominated mixing to molecular mixing behavior in flamelets. An a priorimore » assessment of the new model is performed using direct numerical simulation (DNS) data of a lean premixed hydrogen–air jet flame. The new model accurately captures the mixing timescale behavior in the DNS and is found to be a significant improvement over the commonly used constant mechanical-to-scalar mixing timescale ratio model. An a posteriori TPDF study is then performed using the same DNS data as a numerical test bed. The DNS provides the initial conditions and time-varying input quantities, including the mean velocity, turbulent diffusion coefficient, and modeled scalar mixing rate for the TPDF simulations, thus allowing an exclusive focus on the mixing model. Here, the new mixing timescale model is compared with the constant mechanical-to-scalar mixing timescale ratio coupled with the Euclidean Minimum Spanning Tree (EMST) mixing model, as well as a laminar flamelet closure. It is found that the laminar flamelet closure is unable to properly capture the mixing behavior in the thin reaction zones regime while the constant mechanical-to-scalar mixing timescale model under-predicts the flame speed. Furthermore, the EMST model coupled with the new mixing timescale model provides the best prediction of the flame structure and flame propagation among the models tested, as the dynamics of reactive scalar mixing across different flame regimes are appropriately accounted for.« less
A Computational and Experimental Study of Slit Resonators
NASA Technical Reports Server (NTRS)
Tam, C. K. W.; Ju, H.; Jones, M. G.; Watson, W. R.; Parrott, T. L.
2003-01-01
Computational and experimental studies are carried out to offer validation of the results obtained from direct numerical simulation (DNS) of the flow and acoustic fields of slit resonators. The test cases include slits with 90-degree corners and slits with 45-degree bevel angle housed inside an acoustic impedance tube. Three slit widths are used. Six frequencies from 0.5 to 3.0 kHz are chosen. Good agreement is found between computed and measured reflection factors. In addition, incident sound waves having white noise spectrum and a prescribed pseudo-random noise spectrum are used in subsequent series of tests. The computed broadband results are again found to agree well with experimental data. It is believed the present results provide strong support that DNS can eventually be a useful and accurate prediction tool for liner aeroacoustics. The usage of DNS as a design tool is discussed and illustrated by a simple example.
LES-ODT Simulations of Turbulent Reacting Shear Layers
NASA Astrophysics Data System (ADS)
Hoffie, Andreas; Echekki, Tarek
2012-11-01
Large-eddy simulations (LES) combined with the one-dimensional turbulence (ODT) simulations of a spatially developing turbulent reacting shear layer with heat release and high Reynolds numbers were conducted and compared to results from direct numerical simulations (DNS) of the same configuration. The LES-ODT approach is based on LES solutions for momentum on a coarse grid and solutions for momentum and reactive scalars on a fine ODT grid, which is embedded in the LES computational domain. The shear layer is simulated with a single-step, second-order reaction with an Arrhenius reaction rate. The transport equations are solved using a low Mach number approximation. The LES-ODT simulations yield reasonably accurate predictions of turbulence and passive/reactive scalars' statistics compared to DNS results.
Formation of Double Neutron Star Systems
NASA Astrophysics Data System (ADS)
Tauris, T. M.; Kramer, M.; Freire, P. C. C.; Wex, N.; Janka, H.-T.; Langer, N.; Podsiadlowski, Ph.; Bozzo, E.; Chaty, S.; Kruckow, M. U.; van den Heuvel, E. P. J.; Antoniadis, J.; Breton, R. P.; Champion, D. J.
2017-09-01
Double neutron star (DNS) systems represent extreme physical objects and the endpoint of an exotic journey of stellar evolution and binary interactions. Large numbers of DNS systems and their mergers are anticipated to be discovered using the Square Kilometre Array searching for radio pulsars, and the high-frequency gravitational wave detectors (LIGO/VIRGO), respectively. Here we discuss all key properties of DNS systems, as well as selection effects, and combine the latest observational data with new theoretical progress on various physical processes with the aim of advancing our knowledge on their formation. We examine key interactions of their progenitor systems and evaluate their accretion history during the high-mass X-ray binary stage, the common envelope phase, and the subsequent Case BB mass transfer, and argue that the first-formed NSs have accreted at most ˜ 0.02 {M}⊙ . We investigate DNS masses, spins, and velocities, and in particular correlations between spin period, orbital period, and eccentricity. Numerous Monte Carlo simulations of the second supernova (SN) events are performed to extrapolate pre-SN stellar properties and probe the explosions. All known close-orbit DNS systems are consistent with ultra-stripped exploding stars. Although their resulting NS kicks are often small, we demonstrate a large spread in kick magnitudes that may, in general, depend on the past interaction history of the exploding star and thus correlate with the NS mass. We analyze and discuss NS kick directions based on our SN simulations. Finally, we discuss the terminal evolution of close-orbit DNS systems until they merge and possibly produce a short γ-ray burst.
3D DNS and LES of Breaking Inertia-Gravity Waves
NASA Astrophysics Data System (ADS)
Remmler, S.; Fruman, M. D.; Hickel, S.; Achatz, U.
2012-04-01
As inertia-gravity waves we refer to gravity waves that have a sufficiently low frequency and correspondingly large horizontal wavelength to be strongly influenced by the Coriolis force. Inertia-gravity waves are very active in the middle atmosphere and their breaking is potentially an important influence on the circulation in this region. The parametrization of this process requires a good theoretical understanding, which we want to enhance with the present study. Primary linear instabilities of an inertia-gravity wave and "2.5-dimensional" nonlinear simulations (where the spatial dependence is two dimensional but the velocity and vorticity fields are three-dimensional) with the wave perturbed by its leading primary instabilities by Achatz [1] have shown that the breaking differs significantly from that of high-frequency gravity waves due to the strongly sheared component of velocity perpendicular to the plane of wave-propagation. Fruman & Achatz [2] investigated the three-dimensionalization of the breaking by computing the secondary linear instabilities of the same waves using singular vector analysis. These secondary instabilities are variations perpendicular to the direction of the primary perturbation and the wave itself, and their wavelengths are an order of magnitude shorter than both. In continuation of this work, we carried out fully three-dimensional nonlinear simulations of inertia-gravity waves perturbed by their leading primary and secondary instabilities. The direct numerical simulation (DNS) was made tractable by restricting the domain size to the dominant scales selected by the linear analyses. The study includes both convectively stable and unstable waves. To the best of our knowledge, this is the first fully three-dimensional nonlinear direct numerical simulation of inertia-gravity waves at realistic Reynolds numbers with complete resolution of the smallest turbulence scales. Previous simulations either were restricted to high frequency gravity waves (e. g. Fritts et al. [3]), or the ratio N/f was artificially reduced (e. g. Lelong & Dunkerton [4]). The present simulations give us insight into the three-dimensional breaking process as well as the emerging turbulence. We assess the possibility of reducing the computational costs of three-dimensional simulations by using an implicit turbulence subgrid-scale parametrization based on the Adaptive Local Deconvolution Method (ALDM) for stratified turbulence [5]. In addition, we have performed ensembles of nonlinear 2.5-dimensional DNS, like those in Achatz [1] but with a small amount of noise superposed to the initial state, and compared the results with coarse-resolution simulations using either ALDM as well as with standard LES schemes. We found that the results of the models with parametrized turbulence, which are orders of magnitude more computationally economical than the DNS, compare favorably with the DNS in terms of the decay of the wave amplitude with time (the quantity most important for application to gravity-wave drag parametrization) suggesting that they may be trusted in future simulations of gravity wave breaking.
Generation of Turbulent Inflow Conditions for Pipe Flow via an Annular Ribbed Turbulator
NASA Astrophysics Data System (ADS)
Moallemi, Nima; Brinkerhoff, Joshua
2016-11-01
The generation of turbulent inflow conditions adds significant computational expense to direct numerical simulations (DNS) of turbulent pipe flows. Typical approaches involve introducing boxes of isotropic turbulence to the velocity field at the inlet of the pipe. In the present study, an alternative method is proposed that incurs a lower computational cost and allows the anisotropy observed in pipe turbulence to be physically captured. The method is based on a periodic DNS of a ribbed turbulator upstream of the inlet boundary of the pipe. The Reynolds number based on the bulk velocity and pipe diameter is 5300 and the blockage ratio (BR) is 0.06 based on the rib height and pipe diameter. The pitch ratio is defined as the ratio of rib streamwise spacing to rib height and is varied between 1.7 and 5.0. The generation of turbulent flow structures downstream of the ribbed turbulator are identified and discussed. Suitability of this method for accurate representation of turbulent inflow conditions is assessed through comparison of the turbulent mean properties, fluctuations, Reynolds stress profiles, and spectra with published pipe flow DNS studies. The DNS results achieve excellent agreement with the numerical and experimental data available in the literature.
Turbulent transport in premixed flames
NASA Technical Reports Server (NTRS)
Rutland, C. J.; Cant, R. S.
1994-01-01
Simulations of planar, premixed turbulent flames with heat release were used to study turbulent transport. Reynolds stress and Reynolds flux budgets were obtained and used to guide the investigation of important physical effects. Essentially all pressure terms in the transport equations were found to be significant. In the Reynolds flux equations, these terms are the major source of counter-gradient transport. Viscous and molecular terms were also found to be significant, with both dilatational and solenoidal terms contributing to the Reynolds stress dissipation. The BML theory of premixed turbulent combustion was critically examined in detail. The BML bimodal pdf was found to agree well with the DNS data. All BML decompositions, through the third moments, show very good agreement with the DNS results. Several BML models for conditional terms were checked using the DNS data and were found to require more extensive development.
NASA Astrophysics Data System (ADS)
Fruman, Mark D.; Remmler, Sebastian; Achatz, Ulrich; Hickel, Stefan
2014-10-01
A systematic approach to the direct numerical simulation (DNS) of breaking upper mesospheric inertia-gravity waves of amplitude close to or above the threshold for static instability is presented. Normal mode or singular vector analysis applied in a frame of reference moving with the phase velocity of the wave (in which the wave is a steady solution) is used to determine the most likely scale and structure of the primary instability and to initialize nonlinear "2.5-D" simulations (with three-dimensional velocity and vorticity fields but depending only on two spatial coordinates). Singular vector analysis is then applied to the time-dependent 2.5-D solution to predict the transition of the breaking event to three-dimensional turbulence and to initialize three-dimensional DNS. The careful choice of the computational domain and the relatively low Reynolds numbers, on the order of 25,000, relevant to breaking waves in the upper mesosphere, makes the three-dimensional DNS tractable with present-day computing clusters. Three test cases are presented: a statically unstable low-frequency inertia-gravity wave, a statically and dynamically stable inertia-gravity wave, and a statically unstable high-frequency gravity wave. The three-dimensional DNS are compared to ensembles of 2.5-D simulations. In general, the decay of the wave and generation of turbulence is faster in three dimensions, but the results are otherwise qualitatively and quantitatively similar, suggesting that results of 2.5-D simulations are meaningful if the domain and initial condition are chosen properly.
Low Reynolds number k-epsilon modelling with the aid of direct simulation data
NASA Technical Reports Server (NTRS)
Rodi, W.; Mansour, N. N.
1993-01-01
The constant C sub mu and the near-wall damping function f sub mu in the eddy-viscosity relation of the k-epsilon model are evaluated from direct numerical simulation (DNS) data for developed channel and boundary layer flow at two Reynolds numbers each. Various existing f sub mu model functions are compared with the DNS data, and a new function is fitted to the high-Reynolds-number channel flow data. The epsilon-budget is computed for the fully developed channel flow. The relative magnitude of the terms in the epsilon-equation is analyzed with the aid of scaling arguments, and the parameter governing this magnitude is established. Models for the sum of all source and sink terms in the epsilon-equation are tested against the DNS data, and an improved model is proposed.
Direct numerical simulation of turbulent pipe flow using the lattice Boltzmann method
NASA Astrophysics Data System (ADS)
Peng, Cheng; Geneva, Nicholas; Guo, Zhaoli; Wang, Lian-Ping
2018-03-01
In this paper, we present a first direct numerical simulation (DNS) of a turbulent pipe flow using the mesoscopic lattice Boltzmann method (LBM) on both a D3Q19 lattice grid and a D3Q27 lattice grid. DNS of turbulent pipe flows using LBM has never been reported previously, perhaps due to inaccuracy and numerical stability associated with the previous implementations of LBM in the presence of a curved solid surface. In fact, it was even speculated that the D3Q19 lattice might be inappropriate as a DNS tool for turbulent pipe flows. In this paper, we show, through careful implementation, accurate turbulent statistics can be obtained using both D3Q19 and D3Q27 lattice grids. In the simulation with D3Q19 lattice, a few problems related to the numerical stability of the simulation are exposed. Discussions and solutions for those problems are provided. The simulation with D3Q27 lattice, on the other hand, is found to be more stable than its D3Q19 counterpart. The resulting turbulent flow statistics at a friction Reynolds number of Reτ = 180 are compared systematically with both published experimental and other DNS results based on solving the Navier-Stokes equations. The comparisons cover the mean-flow profile, the r.m.s. velocity and vorticity profiles, the mean and r.m.s. pressure profiles, the velocity skewness and flatness, and spatial correlations and energy spectra of velocity and vorticity. Overall, we conclude that both D3Q19 and D3Q27 simulations yield accurate turbulent flow statistics. The use of the D3Q27 lattice is shown to suppress the weak secondary flow pattern in the mean flow due to numerical artifacts.
Investigation of Hill's optical turbulence model by means of direct numerical simulation.
Muschinski, Andreas; de Bruyn Kops, Stephen M
2015-12-01
For almost four decades, Hill's "Model 4" [J. Fluid Mech. 88, 541 (1978) has played a central role in research and technology of optical turbulence. Based on Batchelor's generalized Obukhov-Corrsin theory of scalar turbulence, Hill's model predicts the dimensionless function h(κl(0), Pr) that appears in Tatarskii's well-known equation for the 3D refractive-index spectrum in the case of homogeneous and isotropic turbulence, Φn(κ)=0.033C2(n)κ(-11/3) h(κl(0), Pr). Here we investigate Hill's model by comparing numerical solutions of Hill's differential equation with scalar spectra estimated from direct numerical simulation (DNS) output data. Our DNS solves the Navier-Stokes equation for the 3D velocity field and the transport equation for the scalar field on a numerical grid containing 4096(3) grid points. Two independent DNS runs are analyzed: one with the Prandtl number Pr=0.7 and a second run with Pr=1.0 . We find very good agreement between h(κl(0), Pr) estimated from the DNS output data and h(κl(0), Pr) predicted by the Hill model. We find that the height of the Hill bump is 1.79 Pr(1/3), implying that there is no bump if Pr<0.17 . Both the DNS and the Hill model predict that the viscous-diffusive "tail" of h(κl(0), Pr) is exponential, not Gaussian.
A Priori Subgrid Analysis of Temporal Mixing Layers with Evaporating Droplets
NASA Technical Reports Server (NTRS)
Okongo, Nora; Bellan, Josette
1999-01-01
Subgrid analysis of a transitional temporal mixing layer with evaporating droplets has been performed using three sets of results from a Direct Numerical Simulation (DNS) database, with Reynolds numbers (based on initial vorticity thickness) as large as 600 and with droplet mass loadings as large as 0.5. In the DNS, the gas phase is computed using a Eulerian formulation, with Lagrangian droplet tracking. The Large Eddy Simulation (LES) equations corresponding to the DNS are first derived, and key assumptions in deriving them are first confirmed by computing the terms using the DNS database. Since LES of this flow requires the computation of unfiltered gas-phase variables at droplet locations from filtered gas-phase variables at the grid points, it is proposed to model these by assuming the gas-phase variables to be the sum of the filtered variables and a correction based on the filtered standard deviation; this correction is then computed from the Subgrid Scale (SGS) standard deviation. This model predicts the unfiltered variables at droplet locations considerably better than simply interpolating the filtered variables. Three methods are investigated for modeling the SGS standard deviation: the Smagorinsky approach, the Gradient model and the Scale-Similarity formulation. When the proportionality constant inherent in the SGS models is properly calculated, the Gradient and Scale-Similarity methods give results in excellent agreement with the DNS.
Doppler Navigation System with a Non-Stabilized Antenna as a Sea-Surface Wind Sensor.
Nekrasov, Alexey; Khachaturian, Alena; Veremyev, Vladimir; Bogachev, Mikhail
2017-06-09
We propose a concept of the utilization of an aircraft Doppler Navigation System (DNS) as a sea-surface wind sensor complementary to its normal functionality. The DNS with an antenna, which is non-stabilized physically to the local horizontal with x -configured beams, is considered. We consider the wind measurements by the DNS configured in the multi-beam scatterometer mode for a rectilinear flight scenario. The system feasibility and the efficiency of the proposed wind algorithm retrieval are supported by computer simulations. Finally, the associated limitations of the proposed approach are considered.
Doppler Navigation System with a Non-Stabilized Antenna as a Sea-Surface Wind Sensor
Nekrasov, Alexey; Khachaturian, Alena; Veremyev, Vladimir; Bogachev, Mikhail
2017-01-01
We propose a concept of the utilization of an aircraft Doppler Navigation System (DNS) as a sea-surface wind sensor complementary to its normal functionality. The DNS with an antenna, which is non-stabilized physically to the local horizontal with x-configured beams, is considered. We consider the wind measurements by the DNS configured in the multi-beam scatterometer mode for a rectilinear flight scenario. The system feasibility and the efficiency of the proposed wind algorithm retrieval are supported by computer simulations. Finally, the associated limitations of the proposed approach are considered. PMID:28598374
A review of direct numerical simulations of astrophysical detonations and their implications
Parete-Koon, Suzanne T.; Smith, Christopher R.; Papatheodore, Thomas L.; ...
2013-04-11
Multi-dimensional direct numerical simulations (DNS) of astrophysical detonations in degenerate matter have revealed that the nuclear burning is typically characterized by cellular structure caused by transverse instabilities in the detonation front. Type Ia supernova modelers often use one- dimensional DNS of detonations as inputs or constraints for their whole star simulations. While these one-dimensional studies are useful tools, the true nature of the detonation is multi-dimensional. The multi-dimensional structure of the burning influences the speed, stability, and the composition of the detonation and its burning products, and therefore, could have an impact on the spectra of Type Ia supernovae. Considerablemore » effort has been expended modeling Type Ia supernovae at densities above 1x10 7 g∙cm -3 where the complexities of turbulent burning dominate the flame propagation. However, most full star models turn the nuclear burning schemes off when the density falls below 1x10 7 g∙cm -3 and distributed burning begins. The deflagration to detonation transition (DDT) is believed to occur at just these densities and consequently they are the densities important for studying the properties of the subsequent detonation. In conclusion, this work reviews the status of DNS studies of detonations and their possible implications for Type Ia supernova models. It will cover the development of Detonation theory from the first simple Chapman-Jouguet (CJ) detonation models to the current models based on the time-dependent, compressible, reactive flow Euler equations of fluid dynamics.« less
DNS and Embedded DNS as Tools for Investigating Unsteady Heat Transfer Phenomena in Turbines
NASA Technical Reports Server (NTRS)
vonTerzi, Dominic; Bauer, H.-J.
2010-01-01
DNS is a powerful tool with high potential for investigating unsteady heat transfer and fluid flow phenomena, in particular for cases involving transition to turbulence and/or large coherent structures. - DNS of idealized configurations related to turbomachinery components is already possible. - For more realistic configurations and the inclusion of more effects, reduction of computational cost is key issue (e.g., hybrid methods). - Approach pursued here: Embedded DNS ( segregated coupling of DNS with LES and/or RANS). - Embedded DNS is an enabling technology for many studies. - Pre-transitional heat transfer and trailing-edge cutback film-cooling are good candidates for (embedded) DNS studies.
An a priori DNS study of the shadow-position mixing model
Zhao, Xin -Yu; Bhagatwala, Ankit; Chen, Jacqueline H.; ...
2016-01-15
In this study, the modeling of mixing by molecular diffusion is a central aspect for transported probability density function (tPDF) methods. In this paper, the newly-proposed shadow position mixing model (SPMM) is examined, using a DNS database for a temporally evolving di-methyl ether slot jet flame. Two methods that invoke different levels of approximation are proposed to extract the shadow displacement (equivalent to shadow position) from the DNS database. An approach for a priori analysis of the mixing-model performance is developed. The shadow displacement is highly correlated with both mixture fraction and velocity, and the peak correlation coefficient of themore » shadow displacement and mixture fraction is higher than that of the shadow displacement and velocity. This suggests that the composition-space localness is reasonably well enforced by the model, with appropriate choices of model constants. The conditional diffusion of mixture fraction and major species from DNS and from SPMM are then compared, using mixing rates that are derived by matching the mixture fraction scalar dissipation rates. Good qualitative agreement is found, for the prediction of the locations of zero and maximum/minimum conditional diffusion locations for mixture fraction and individual species. Similar comparisons are performed for DNS and the IECM (interaction by exchange with the conditional mean) model. The agreement between SPMM and DNS is better than that between IECM and DNS, in terms of conditional diffusion iso-contour similarities and global normalized residual levels. It is found that a suitable value for the model constant c that controls the mixing frequency can be derived using the local normalized scalar variance, and that the model constant a controls the localness of the model. A higher-Reynolds-number test case is anticipated to be more appropriate to evaluate the mixing models, and stand-alone transported PDF simulations are required to more fully enforce localness and to assess model performance.« less
Statistical representation of a spray as a point process
NASA Astrophysics Data System (ADS)
Subramaniam, S.
2000-10-01
The statistical representation of a spray as a finite point process is investigated. One objective is to develop a better understanding of how single-point statistical information contained in descriptions such as the droplet distribution function (ddf), relates to the probability density functions (pdfs) associated with the droplets themselves. Single-point statistical information contained in the droplet distribution function (ddf) is shown to be related to a sequence of single surrogate-droplet pdfs, which are in general different from the physical single-droplet pdfs. It is shown that the ddf contains less information than the fundamental single-point statistical representation of the spray, which is also described. The analysis shows which events associated with the ensemble of spray droplets can be characterized by the ddf, and which cannot. The implications of these findings for the ddf approach to spray modeling are discussed. The results of this study also have important consequences for the initialization and evolution of direct numerical simulations (DNS) of multiphase flows, which are usually initialized on the basis of single-point statistics such as the droplet number density in physical space. If multiphase DNS are initialized in this way, this implies that even the initial representation contains certain implicit assumptions concerning the complete ensemble of realizations, which are invalid for general multiphase flows. Also the evolution of a DNS initialized in this manner is shown to be valid only if an as yet unproven commutation hypothesis holds true. Therefore, it is questionable to what extent DNS that are initialized in this manner constitute a direct simulation of the physical droplets. Implications of these findings for large eddy simulations of multiphase flows are also discussed.
Temperature fluctuations in fully-developed turbulent channel flow with heated upper wall
NASA Astrophysics Data System (ADS)
Bahri, Carla; Mueller, Michael; Hultmark, Marcus
2013-11-01
The interactions and scaling differences between the velocity field and temperature field in a wall-bounded turbulent flow are investigated. In particular, a fully developed turbulent channel flow perturbed by a step change in the wall temperature is considered with a focus on the details of the developing thermal boundary layer. For this specific study, temperature acts as a passive scalar, having no dynamical effect on the flow. A combination of experimental investigation and direct numerical simulation (DNS) is presented. Velocity and temperature data are acquired with high accuracy where, the flow is allowed to reach a fully-developed state before encountering a heated upper wall at constant temperature. The experimental data is compared with DNS data where simulations of the same configuration are conducted.
Sondak, D.; Shadid, J. N.; Oberai, A. A.; ...
2015-04-29
New large eddy simulation (LES) turbulence models for incompressible magnetohydrodynamics (MHD) derived from the variational multiscale (VMS) formulation for finite element simulations are introduced. The new models include the variational multiscale formulation, a residual-based eddy viscosity model, and a mixed model that combines both of these component models. Each model contains terms that are proportional to the residual of the incompressible MHD equations and is therefore numerically consistent. Moreover, each model is also dynamic, in that its effect vanishes when this residual is small. The new models are tested on the decaying MHD Taylor Green vortex at low and highmore » Reynolds numbers. The evaluation of the models is based on comparisons with available data from direct numerical simulations (DNS) of the time evolution of energies as well as energy spectra at various discrete times. Thus a numerical study, on a sequence of meshes, is presented that demonstrates that the large eddy simulation approaches the DNS solution for these quantities with spatial mesh refinement.« less
Second moment closure analysis of the backstep flow database
NASA Technical Reports Server (NTRS)
Parneix, S.; Laurence, D.; Durbin, P.
1996-01-01
A Second Moment Closure computation (SMC) is compared in detail with the Direct Numerical Simulation (DNS) data of Le and Moin for the backstep flow at Re = 5,000 in an attempt to understand why the intensity of the backflow and, consequently, the friction coefficient in the recirculation bubble are severely underestimated. The data show that this recirculation bubble is far from being laminar except in the very near wall layer. A novel 'differential a priori' procedure was used, in which the full transport equation for one isolated component of the Reynolds stress tensor was solved using DNS data as input. Conclusions are then different from what would have been deduced by comparing a full simulation to a DNS. One cause of discrepancy was traced back to insufficient transfer of energy to the normal stress by pressure strain, but was not cured. A significant finding, confirmed by the DNS data in the core region of a channel flow, is that the coefficient that controls destruction of dissipation, C epsilon(sub 2), should be decreased by a factor of 2 when production is vanishing. This is also the case in the recirculation bubble, and a new formulation has cured 25% of the backflow discrepancy.
Toward Better Modeling of Supercritical Turbulent Mixing
NASA Technical Reports Server (NTRS)
Selle, Laurent; Okongo'o, Nora; Bellan, Josette; Harstad, Kenneth
2008-01-01
study was done as part of an effort to develop computational models representing turbulent mixing under thermodynamic supercritical (here, high pressure) conditions. The question was whether the large-eddy simulation (LES) approach, developed previously for atmospheric-pressure compressible-perfect-gas and incompressible flows, can be extended to real-gas non-ideal (including supercritical) fluid mixtures. [In LES, the governing equations are approximated such that the flow field is spatially filtered and subgrid-scale (SGS) phenomena are represented by models.] The study included analyses of results from direct numerical simulation (DNS) of several such mixing layers based on the Navier-Stokes, total-energy, and conservation- of-chemical-species governing equations. Comparison of LES and DNS results revealed the need to augment the atmospheric- pressure LES equations with additional SGS momentum and energy terms. These new terms are the direct result of high-density-gradient-magnitude regions found in the DNS and observed experimentally under fully turbulent flow conditions. A model has been derived for the new term in the momentum equation and was found to perform well at small filter size but to deteriorate with increasing filter size. Several alternative models were derived for the new SGS term in the energy equation that would need further investigations to determine if they are too computationally intensive in LES.
NASA Technical Reports Server (NTRS)
Leboissertier, Anthony; Okong'O, Nora; Bellan, Josette
2005-01-01
Large-eddy simulation (LES) is conducted of a three-dimensional temporal mixing layer whose lower stream is initially laden with liquid drops which may evaporate during the simulation. The gas-phase equations are written in an Eulerian frame for two perfect gas species (carrier gas and vapour emanating from the drops), while the liquid-phase equations are written in a Lagrangian frame. The effect of drop evaporation on the gas phase is considered through mass, species, momentum and energy source terms. The drop evolution is modelled using physical drops, or using computational drops to represent the physical drops. Simulations are performed using various LES models previously assessed on a database obtained from direct numerical simulations (DNS). These LES models are for: (i) the subgrid-scale (SGS) fluxes and (ii) the filtered source terms (FSTs) based on computational drops. The LES, which are compared to filtered-and-coarsened (FC) DNS results at the coarser LES grid, are conducted with 64 times fewer grid points than the DNS, and up to 64 times fewer computational than physical drops. It is found that both constant-coefficient and dynamic Smagorinsky SGS-flux models, though numerically stable, are overly dissipative and damp generated small-resolved-scale (SRS) turbulent structures. Although the global growth and mixing predictions of LES using Smagorinsky models are in good agreement with the FC-DNS, the spatial distributions of the drops differ significantly. In contrast, the constant-coefficient scale-similarity model and the dynamic gradient model perform well in predicting most flow features, with the latter model having the advantage of not requiring a priori calibration of the model coefficient. The ability of the dynamic models to determine the model coefficient during LES is found to be essential since the constant-coefficient gradient model, although more accurate than the Smagorinsky model, is not consistently numerically stable despite using DNS-calibrated coefficients. With accurate SGS-flux models, namely scale-similarity and dynamic gradient, the FST model allows up to a 32-fold reduction in computational drops compared to the number of physical drops, without degradation of accuracy; a 64-fold reduction leads to a slight decrease in accuracy.
Assessment of PLIF-Based Heat Release Rate Markers using DNS of Highly Turbulent Premixed Flames
NASA Astrophysics Data System (ADS)
Zhao, Xinyu; Zhang, Peiyu; Wabel, Timothy; Steinberg, Adam; Wang, Haiou; Hawkes, Evatt
2017-11-01
Planar Laser Induced Fluorescence (PLIF) remains the most common measurement tool for describing turbulent flame topologies. However, the interpretation of the images obtained from such experiments can be obscured due to various experimental constraints, such as the finite laser thickness, the application of intensifier, etc. Synthetic-PLIF images are constructed in this study to understand the effects of various experimental reality using direct numerical simulations. Two DNS databases of highly turbulent premixed methane flames are employed, to generate the synthetic PLIF images. The thickness of the laser sheet and optical blur parameters are systematically varied to study their effects on the implied reactive layer thickness, topological correspondence with heat release rates, as well as the resolved scales of the flames. It is found that the optical blur can have a significant influence on the measured layer thickness, and significant discrepancy between the DNS and the synthetic PLIF arises when the laser thickness is approximately twice the size of the reactive layers.
Self-sustaining turbulence in a restricted nonlinear model of plane Couette flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Vaughan L.; Gayme, Dennice F.; Lieu, Binh K.
2014-10-15
This paper demonstrates the maintenance of self-sustaining turbulence in a restricted nonlinear (RNL) model of plane Couette flow. The RNL system is derived directly from the Navier-Stokes equations and permits higher resolution studies of the dynamical system associated with the stochastic structural stability theory (S3T) model, which is a second order approximation of the statistical state dynamics of the flow. The RNL model shares the dynamical restrictions of the S3T model but can be easily implemented by reducing a DNS code so that it retains only the RNL dynamics. Comparisons of turbulence arising from DNS and RNL simulations demonstrate thatmore » the RNL system supports self-sustaining turbulence with a mean flow as well as structural and dynamical features that are consistent with DNS. These results demonstrate that the simplified RNL system captures fundamental aspects of fully developed turbulence in wall-bounded shear flows and motivate use of the RNL/S3T framework for further study of wall-turbulence.« less
Development of RWHet to Simulate Contaminant Transport in Fractured Porous Media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yong; LaBolle, Eric; Reeves, Donald M
2012-07-01
Accurate simulation of matrix diffusion in regional-scale dual-porosity and dual-permeability media is a critical issue for the DOE Underground Test Area (UGTA) program, given the prevalence of fractured geologic media on the Nevada National Security Site (NNSS). Contaminant transport through regional-scale fractured media is typically quantified by particle-tracking based Lagrangian solvers through the inclusion of dual-domain mass transfer algorithms that probabilistically determine particle transfer between fractures and unfractured matrix blocks. UGTA applications include a wide variety of fracture aperture and spacing, effective diffusion coefficients ranging four orders of magnitude, and extreme end member retardation values. This report incorporates the currentmore » dual-domain mass transfer algorithms into the well-known particle tracking code RWHet [LaBolle, 2006], and then tests and evaluates the updated code. We also develop and test a direct numerical simulation (DNS) approach to replace the classical transfer probability method in characterizing particle dynamics across the fracture/matrix interface. The final goal of this work is to implement the algorithm identified as most efficient and effective into RWHet, so that an accurate and computationally efficient software suite can be built for dual-porosity/dual-permeability applications. RWHet is a mature Lagrangian transport simulator with a substantial user-base that has undergone significant development and model validation. In this report, we also substantially tested the capability of RWHet in simulating passive and reactive tracer transport through regional-scale, heterogeneous media. Four dual-domain mass transfer methodologies were considered in this work. We first developed the empirical transfer probability approach proposed by Liu et al. [2000], and coded it into RWHet. The particle transfer probability from one continuum to the other is proportional to the ratio of the mass entering the other continuum to the mass in the current continuum. Numerical examples show that this method is limited to certain ranges of parameters, due to an intrinsic assumption of an equilibrium concentration profile in the matrix blocks in building the transfer probability. Subsequently, this method fails in describing mass transfer for parameter combinations that violate this assumption, including small diffusion coefficients (i.e., the free-water molecular diffusion coefficient 1×10-11 meter2/second), relatively large fracture spacings (such as meter), and/or relatively large matrix retardation coefficients (i.e., ). These “outliers” in parameter range are common in UGTA applications. To address the above limitations, we then developed a Direct Numerical Simulation (DNS)-Reflective method. The novel DNS-Reflective method can directly track the particle dynamics across the fracture/matrix interface using a random walk, without any empirical assumptions. This advantage should make the DNS-Reflective method feasible for a wide range of parameters. Numerical tests of the DNS-Reflective, however, show that the method is computationally very demanding, since the time step must be very small to resolve particle transfer between fractures and matrix blocks. To improve the computational efficiency of the DNS approach, we then adopted Roubinet et al.’s method [2009], which uses first passage time distributions to simulate dual-domain mass transfer. The DNS-Roubinet method was found to be computationally more efficient than the DNS-Reflective method. It matches the analytical solution for the whole range of major parameters (including diffusion coefficient and fracture aperture values that are considered “outliers” for Liu et al.’s transfer probability method [2000]) for a single fracture system. The DNS-Roubinet method, however, has its own disadvantage: for a parallel fracture system, the truncation of the first passage time distribution creates apparent errors when the fracture spacing is small, and thus it tends to erroneously predict breakthrough curves (BTCs) for the parallel fracture system. Finally, we adopted the transient range approach proposed by Pan and Bodvarsson [2002] in RWHet. In this method, particle transfer between fractures and matrix blocks can be resolved without using very small time steps. It does not use any truncation of the first passage time distribution for particles. Hence it does not have the limitation identified above for the DNS-Reflective method and the DNS-Roubinet method. Numerical results were checked against analytical solutions, and also compared to DCPTV2.0 [Pan, 2002]. This version of RWHet (called RWHet-Pan&Bodvarsson in this report) can accurately capture contaminant transport in fractured porous media for a full range of parameters without any practical or theoretical limitations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bishop, Joseph E.; Emery, John M.; Battaile, Corbett C.
Two fundamental approximations in macroscale solid-mechanics modeling are (1) the assumption of scale separation in homogenization theory and (2) the use of a macroscopic plasticity material model that represents, in a mean sense, the multitude of inelastic processes occurring at the microscale. With the goal of quantifying the errors induced by these approximations on engineering quantities of interest, we perform a set of direct numerical simulations (DNS) in which polycrystalline microstructures are embedded throughout a macroscale structure. The largest simulations model over 50,000 grains. The microstructure is idealized using a randomly close-packed Voronoi tessellation in which each polyhedral Voronoi cellmore » represents a grain. An face centered cubic crystal-plasticity model is used to model the mechanical response of each grain. The overall grain structure is equiaxed, and each grain is randomly oriented with no overall texture. The detailed results from the DNS simulations are compared to results obtained from conventional macroscale simulations that use homogeneous isotropic plasticity models. The macroscale plasticity models are calibrated using a representative volume element of the idealized microstructure. Furthermore, we envision that DNS modeling will be used to gain new insights into the mechanics of material deformation and failure.« less
The Use of DNS in Turbulence Modeling
NASA Technical Reports Server (NTRS)
Mansour, Nagi N.; Merriam, Marshal (Technical Monitor)
1997-01-01
The use of Direct numerical simulations (DNS) data in developing and testing turbulence models is reviewed. The data is used to test turbulence models at all levels: algebraic, one-equation, two-equation and full Reynolds stress models were tested. Particular examples on the development of models for the dissipation rate equation are presented. Homogeneous flows are used to test new scaling arguments for the various terms in the dissipation rate equation. The channel flow data is used to develop modifications to the equation model that take into account near-wall effects. DNS of compressible flows under mean compression are used in testing new compressible modifications to the two-equation models.
Bishop, Joseph E.; Emery, John M.; Battaile, Corbett C.; ...
2016-03-16
Two fundamental approximations in macroscale solid-mechanics modeling are (1) the assumption of scale separation in homogenization theory and (2) the use of a macroscopic plasticity material model that represents, in a mean sense, the multitude of inelastic processes occurring at the microscale. With the goal of quantifying the errors induced by these approximations on engineering quantities of interest, we perform a set of direct numerical simulations (DNS) in which polycrystalline microstructures are embedded throughout a macroscale structure. The largest simulations model over 50,000 grains. The microstructure is idealized using a randomly close-packed Voronoi tessellation in which each polyhedral Voronoi cellmore » represents a grain. An face centered cubic crystal-plasticity model is used to model the mechanical response of each grain. The overall grain structure is equiaxed, and each grain is randomly oriented with no overall texture. The detailed results from the DNS simulations are compared to results obtained from conventional macroscale simulations that use homogeneous isotropic plasticity models. The macroscale plasticity models are calibrated using a representative volume element of the idealized microstructure. Furthermore, we envision that DNS modeling will be used to gain new insights into the mechanics of material deformation and failure.« less
Li, Ling; Shi, Nan; du Puits, Ronald; Resagk, Christian; Schumacher, Jörg; Thess, André
2012-08-01
We report measurements and numerical simulations of the three-dimensional velocity and temperature fields in turbulent Rayleigh-Bénard convection in air. Highly resolved velocity and temperature measurements inside and outside the boundary layers have been directly compared with equivalent data obtained in direct numerical simulations (DNSs). This comparison comprises a set of two Rayleigh numbers at Ra=3×10(9) and 3×10(10) and a fixed aspect ratio; this is the ratio between the diameter and the height of the Rayleigh-Bénard cell of Γ=1. We find that the measured velocity data are in excellent agreement with the DNS results while the temperature data slightly differ. In particular, the measured mean temperature profile does not show the linear trend as seen in the DNS data, and the measured gradients at the wall are significantly higher than those obtained from the DNS. Both viscous and thermal boundary layer thickness scale with respect to the Rayleigh number as δ(v)~Ra(-0.24) and δ(θ)~Ra(-0.24), respectively.
NASA Astrophysics Data System (ADS)
Matsui, H.; Buffett, B. A.
2017-12-01
The flow in the Earth's outer core is expected to have vast length scale from the geometry of the outer core to the thickness of the boundary layer. Because of the limitation of the spatial resolution in the numerical simulations, sub-grid scale (SGS) modeling is required to model the effects of the unresolved field on the large-scale fields. We model the effects of sub-grid scale flow and magnetic field using a dynamic scale similarity model. Four terms are introduced for the momentum flux, heat flux, Lorentz force and magnetic induction. The model was previously used in the convection-driven dynamo in a rotating plane layer and spherical shell using the Finite Element Methods. In the present study, we perform large eddy simulations (LES) using the dynamic scale similarity model. The scale similarity model is implement in Calypso, which is a numerical dynamo model using spherical harmonics expansion. To obtain the SGS terms, the spatial filtering in the horizontal directions is done by taking the convolution of a Gaussian filter expressed in terms of a spherical harmonic expansion, following Jekeli (1981). A Gaussian field is also applied in the radial direction. To verify the present model, we perform a fully resolved direct numerical simulation (DNS) with the truncation of the spherical harmonics L = 255 as a reference. And, we perform unresolved DNS and LES with SGS model on coarser resolution (L= 127, 84, and 63) using the same control parameter as the resolved DNS. We will discuss the verification results by comparison among these simulations and role of small scale fields to large scale fields through the role of the SGS terms in LES.
Large Eddy Simulations and Turbulence Modeling for Film Cooling
NASA Technical Reports Server (NTRS)
Acharya, Sumanta
1999-01-01
The objective of the research is to perform Direct Numerical Simulations (DNS) and Large Eddy Simulations (LES) for film cooling process, and to evaluate and improve advanced forms of the two equation turbulence models for turbine blade surface flow analysis. The DNS/LES were used to resolve the large eddies within the flow field near the coolant jet location. The work involved code development and applications of the codes developed to the film cooling problems. Five different codes were developed and utilized to perform this research. This report presented a summary of the development of the codes and their applications to analyze the turbulence properties at locations near coolant injection holes.
Use of DNS Data for the Evaluation of Closure Models for Rotating Turbulent Channel Flow
NASA Astrophysics Data System (ADS)
Hsieh, Alan; Biringen, Sedat; Kucala, Alec
2013-11-01
A direct numerical simulation (DNS) of a turbulent channel flow rotating about the spanwise axis was conducted at a Reynolds number (based on the centerline velocity and channel half height) 8000, Prandtl number 0.71, and Rossby number 26. Several Reynolds-Averaged Navier-Stokes (RANS) based turbulence models for rotating flows were analyzed and tested. It was shown that the closure approximations in the pressure-strain correlation term proposed by the Speziale, Sarkar, and Gatski (SSG) RSM model were more accurate than the Girimaji EARSM model. The Reynolds stresses, primarily the shear stresses, produced by the Girimaji model were compared to the DNS data and revealed an evident discontinuity in the modeled Reynolds stress profiles; consequently, a smoothing function was generated and applied as a correction so that there is significantly better agreement between the Reynolds shear stress profiles produced by the DNS data and the modified Girimaji model.
LES, DNS and RANS for the analysis of high-speed turbulent reacting flows
NASA Technical Reports Server (NTRS)
Adumitroaie, V.; Colucci, P. J.; Taulbee, D. B.; Givi, P.
1995-01-01
The purpose of this research is to continue our efforts in advancing the state of knowledge in large eddy simulation (LES), direct numerical simulation (DNS), and Reynolds averaged Navier Stokes (RANS) methods for the computational analysis of high-speed reacting turbulent flows. In the second phase of this work, covering the period 1 Aug. 1994 - 31 Jul. 1995, we have focused our efforts on two programs: (1) developments of explicit algebraic moment closures for statistical descriptions of compressible reacting flows and (2) development of Monte Carlo numerical methods for LES of chemically reacting flows.
Steed, Molly E; Hall, Ashley D; Salimnia, Hossein; Kaatz, Glenn W; Kaye, Keith S; Rybak, Michael J
2013-12-01
Despite studies examining daptomycin non-susceptible (DNS) Staphylococcus aureus, examination of the stability and population profiles is limited. The objective was to evaluate the stability, population profiles, and daptomycin activity against DNS isolates. The stability of 12 consecutive clinical DNS strains was evaluated by minimum inhibitory concentration (MICs) and population analysis profiles before and after 5 days of serial passage. Two pairs of DNS S. aureus having the same daptomycin MIC but different daptomycin population profiles were evaluated via an in vitro pharmacokinetic/pharmacodynamic (PK/PD) model of simulated endocardial vegetations for 96 h against daptomycin 6 and 10 mg/kg/day. The sequence of mprF was determined for these isolates before and after 96 h of daptomycin exposure in the in vitro PK/PD model. Daptomycin MIC values were 2-4 mg/L (via Microscan) for the 12 clinical isolates; 9 were confirmed DNS and 3 were within 1 tube dilution of Microscan (daptomycin MIC 1 mg/L). All were stable to serial passage. There was variation in the isolates susceptibility to daptomycin on population analysis (daptomycin population AUC 14.01-26.85). The killing patterns of daptomycin 6 and 10 mg/kg/day differed between isolates with a left-shift and right-shift population profile to daptomycin. Two strains developed additional mprF mutations during daptomycin exposure in the in vitro PK/PD model resulting in P314L, L826F, S337L and a novel Q326Stop mutation. The collection of DNS isolates was stable and displayed variation in susceptibility to daptomycin on population profile. Further research examining this clinical relevance is warranted.
Van Driest transformation and compressible wall-bounded flows
NASA Technical Reports Server (NTRS)
Huang, P. G.; Coleman, G. N.
1994-01-01
The transformation validity question utilizing resulting data from direct numerical simulations (DNS) of supersonic, isothermal cold wall channel flow was investigated. The DNS results stood for a wide scope of parameter and were suitable for the purpose of examining the generality of Van Driest transformation. The Van Driest law of the wall can be obtained from the inner-layer similarity arguments. It was demonstrated that the Van Driest transformation cannot be incorporated to collapse the sublayer and log-layer velocity profiles simultaneously. Velocity and temperature predictions according to the preceding composite mixing-length model were presented. Despite satisfactory congruity with the DNS data, the model must be perceived as an engineering guide and not as a rigorous analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Tianfeng
The goal of the proposed research is to create computational flame diagnostics (CFLD) that are rigorous numerical algorithms for systematic detection of critical flame features, such as ignition, extinction, and premixed and non-premixed flamelets, and to understand the underlying physicochemical processes controlling limit flame phenomena, flame stabilization, turbulence-chemistry interactions and pollutant emissions etc. The goal has been accomplished through an integrated effort on mechanism reduction, direct numerical simulations (DNS) of flames at engine conditions and a variety of turbulent flames with transport fuels, computational diagnostics, turbulence modeling, and DNS data mining and data reduction. The computational diagnostics are primarily basedmore » on the chemical explosive mode analysis (CEMA) and a recently developed bifurcation analysis using datasets from first-principle simulations of 0-D reactors, 1-D laminar flames, and 2-D and 3-D DNS (collaboration with J.H. Chen and S. Som at Argonne, and C.S. Yoo at UNIST). Non-stiff reduced mechanisms for transportation fuels amenable for 3-D DNS are developed through graph-based methods and timescale analysis. The flame structures, stabilization mechanisms, local ignition and extinction etc., and the rate controlling chemical processes are unambiguously identified through CFLD. CEMA is further employed to segment complex turbulent flames based on the critical flame features, such as premixed reaction fronts, and to enable zone-adaptive turbulent combustion modeling.« less
Kumar, Dushyant; Hariharan, Hari; Faizy, Tobias D; Borchert, Patrick; Siemonsen, Susanne; Fiehler, Jens; Reddy, Ravinder; Sedlacik, Jan
2018-05-12
We present a computationally feasible and iterative multi-voxel spatially regularized algorithm for myelin water fraction (MWF) reconstruction. This method utilizes 3D spatial correlations present in anatomical/pathological tissues and underlying B1 + -inhomogeneity or flip angle inhomogeneity to enhance the noise robustness of the reconstruction while intrinsically accounting for stimulated echo contributions using T2-distribution data alone. Simulated data and in vivo data acquired using 3D non-selective multi-echo spin echo (3DNS-MESE) were used to compare the reconstruction quality of the proposed approach against those of the popular algorithm (the method by Prasloski et al.) and our previously proposed 2D multi-slice spatial regularization spatial regularization approach. We also investigated whether the inter-sequence correlations and agreements improved as a result of the proposed approach. MWF-quantifications from two sequences, 3DNS-MESE vs 3DNS-gradient and spin echo (3DNS-GRASE), were compared for both reconstruction approaches to assess correlations and agreements between inter-sequence MWF-value pairs. MWF values from whole-brain data of six volunteers and two multiple sclerosis patients are being reported as well. In comparison with competing approaches such as Prasloski's method or our previously proposed 2D multi-slice spatial regularization method, the proposed method showed better agreements with simulated truths using regression analyses and Bland-Altman analyses. For 3DNS-MESE data, MWF-maps reconstructed using the proposed algorithm provided better depictions of white matter structures in subcortical areas adjoining gray matter which agreed more closely with corresponding contrasts on T2-weighted images than MWF-maps reconstructed with the method by Prasloski et al. We also achieved a higher level of correlations and agreements between inter-sequence (3DNS-MESE vs 3DNS-GRASE) MWF-value pairs. The proposed algorithm provides more noise-robust fits to T2-decay data and improves MWF-quantifications in white matter structures especially in the sub-cortical white matter and major white matter tract regions. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Joslin, Ronald D.; Streett, Craig L.; Chang, Chau-Lyan
1992-01-01
Spatially evolving instabilities in a boundary layer on a flat plate are computed by direct numerical simulation (DNS) of the incompressible Navier-Stokes equations. In a truncated physical domain, a nonstaggered mesh is used for the grid. A Chebyshev-collocation method is used normal to the wall; finite difference and compact difference methods are used in the streamwise direction; and a Fourier series is used in the spanwise direction. For time stepping, implicit Crank-Nicolson and explicit Runge-Kutta schemes are used to the time-splitting method. The influence-matrix technique is used to solve the pressure equation. At the outflow boundary, the buffer-domain technique is used to prevent convective wave reflection or upstream propagation of information from the boundary. Results of the DNS are compared with those from both linear stability theory (LST) and parabolized stability equation (PSE) theory. Computed disturbance amplitudes and phases are in very good agreement with those of LST (for small inflow disturbance amplitudes). A measure of the sensitivity of the inflow condition is demonstrated with both LST and PSE theory used to approximate inflows. Although the DNS numerics are very different than those of PSE theory, the results are in good agreement. A small discrepancy in the results that does occur is likely a result of the variation in PSE boundary condition treatment in the far field. Finally, a small-amplitude wave triad is forced at the inflow, and simulation results are compared with those of LST. Again, very good agreement is found between DNS and LST results for the 3-D simulations, the implication being that the disturbance amplitudes are sufficiently small that nonlinear interactions are negligible.
Study of relationship of concha bullosa to nasal septal deviation and sinusitis.
Bhandary, Satheesh Kumar; Kamath P, Shrinath D
2009-09-01
To study the etiological role of concha bollosa in deviated nasal septum (DNS) and sinusitis. In this retrospective study 419 consecutive CT scans of paranasal sinuses done between October 2005 and September 2007 were serially evaluated for the presence of concha, DNS and sinusitis. Out of 419 CT scans evaluated, concha bullosa was present in 40.3% of patients. Among these, concha co-existent DNS was found in 87.5%, air column between DNS and concha was found in 88.5% and sinus disease was present in 69.2% of patients. Presence of air column between DNS and concha excludes the etiological role of concha in DNS. Concha bullosa may predispose to sinusitis.
Krisman, Alex; Hawkes, Evatt R.; Talei, Mohsen; ...
2016-08-30
With the goal of providing a more detailed fundamental understanding of ignition processes in diesel engines, this study reports analysis of a direct numerical simulation (DNS) database. In the DNS, a pseudo turbulent mixing layer of dimethyl ether (DME) at 400 K and air at 900 K is simulated at a pressure of 40 atmospheres. At these conditions, DME exhibits a two-stage ignition and resides within the negative temperature coefficient (NTC) regime of ignition delay times, similar to diesel fuel. The analysis reveals a complex ignition process with several novel features. Autoignition occurs as a distributed, two-stage event. The high-temperaturemore » stage of ignition establishes edge flames that have a hybrid premixed/autoignition flame structure similar to that previously observed for lifted laminar flames at similar thermochemical conditions. In conclusion, a combustion mode analysis based on key radical species illustrates the multi-stage and multi-mode nature of the ignition process and highlights the substantial modelling challenge presented by diesel combustion.« less
A Direct Numerical Simulation of a Temporally Evolving Liquid-Gas Turbulent Mixing Layer
NASA Astrophysics Data System (ADS)
Vu, Lam Xuan; Chiodi, Robert; Desjardins, Olivier
2017-11-01
Air-blast atomization occurs when streams of co-flowing high speed gas and low speed liquid shear to form drops. Air-blast atomization has numerous industrial applications from combustion engines in jets to sprays used for medical coatings. The high Reynolds number and dynamic pressure ratio of a realistic air-blast atomization case requires large eddy simulation and the use of multiphase sub-grid scale (SGS) models. A direct numerical simulations (DNS) of a temporally evolving mixing layer is presented to be used as a base case from which future multiphase SGS models can be developed. To construct the liquid-gas mixing layer, half of a channel flow from Kim et al. (JFM, 1987) is placed on top of a static liquid layer that then evolves over time. The DNS is performed using a conservative finite volume incompressible multiphase flow solver where phase tracking is handled with a discretely conservative volume of fluid method. This study presents statistics on velocity and volume fraction at different Reynolds and Weber numbers.
Measurements and Computations of Flow in an Urban Street System
NASA Astrophysics Data System (ADS)
Castro, Ian P.; Xie, Zheng-Tong; Fuka, V.; Robins, Alan G.; Carpentieri, M.; Hayden, P.; Hertwig, D.; Coceal, O.
2017-02-01
We present results from laboratory and computational experiments on the turbulent flow over an array of rectangular blocks modelling a typical, asymmetric urban canopy at various orientations to the approach flow. The work forms part of a larger study on dispersion within such arrays (project DIPLOS) and concentrates on the nature of the mean flow and turbulence fields within the canopy region, recognising that unless the flow field is adequately represented in computational models there is no reason to expect realistic simulations of the nature of the dispersion of pollutants emitted within the canopy. Comparisons between the experimental data and those obtained from both large-eddy simulation (LES) and direct numerical simulation (DNS) are shown and it is concluded that careful use of LES can produce generally excellent agreement with laboratory and DNS results, lending further confidence in the use of LES for such situations. Various crucial issues are discussed and advice offered to both experimentalists and those seeking to compute canopy flows with turbulence resolving models.
Nonlinear Evolution of Azimuthally Compact Crossflow-Vortex Packet over a Yawed Cone
NASA Astrophysics Data System (ADS)
Choudhari, Meelan; Li, Fei; Paredes, Pedro; Duan, Lian; NASA Langley Research Center Team; Missouri Univ of Sci; Tech Team
2017-11-01
Hypersonic boundary-layer flows over a circular cone at moderate incidence angle can support strong crossflow instability and, therefore, a likely scenario for laminar-turbulent transition in such flows corresponds to rapid amplification of high-frequency secondary instabilities sustained by finite amplitude stationary crossflow vortices. Direct numerical simulations (DNS) are used to investigate the nonlinear evolution of azimuthally compact crossflow vortex packets over a 7-degree half-angle, yawed circular cone in a Mach 6 free stream. Simulation results indicate that the azimuthal distribution of forcing has a strong influence on the stationary crossflow amplitudes; however, the vortex trajectories are nearly the same for both periodic and localized roughness height distributions. The frequency range, mode shapes, and amplification characteristics of strongly amplified secondary instabilities in the DNS are found to overlap with the predictions of secondary instability theory. The DNS computations also provide valuable insights toward the application of planar, partial-differential-equation based eigenvalue analysis to spanwise inhomogeneous, fully three-dimensional, crossflow-dominated flow configurations.
NASA Astrophysics Data System (ADS)
Saghafian, Amirreza; Pitsch, Heinz
2012-11-01
A compressible flamelet/progress variable approach (CFPV) has been devised for high-speed flows. Temperature is computed from the transported total energy and tabulated species mass fractions and the source term of the progress variable is rescaled with pressure and temperature. The combustion is thus modeled by three additional scalar equations and a chemistry table that is computed in a pre-processing step. Three-dimensional direct numerical simulation (DNS) databases of reacting supersonic turbulent mixing layer with detailed chemistry are analyzed to assess the underlying assumptions of CFPV. Large eddy simulations (LES) of the same configuration using the CFPV method have been performed and compared with the DNS results. The LES computations are based on the presumed subgrid PDFs of mixture fraction and progress variable, beta function and delta function respectively, which are assessed using DNS databases. The flamelet equation budget is also computed to verify the validity of CFPV method for high-speed flows.
A Priori Subgrid Scale Modeling for a Droplet Laden Temporal Mixing Layer
NASA Technical Reports Server (NTRS)
Okongo, Nora; Bellan, Josette
2000-01-01
Subgrid analysis of a transitional temporal mixing layer with evaporating droplets has been performed using a direct numerical simulation (DNS) database. The DNS is for a Reynolds number (based on initial vorticity thickness) of 600, with droplet mass loading of 0.2. The gas phase is computed using a Eulerian formulation, with Lagrangian droplet tracking. Since Large Eddy Simulation (LES) of this flow requires the computation of unfiltered gas-phase variables at droplet locations from filtered gas-phase variables at the grid points, it is proposed to model these by assuming the gas-phase variables to be given by the filtered variables plus a correction based on the filtered standard deviation, which can be computed from the sub-grid scale (SGS) standard deviation. This model predicts unfiltered variables at droplet locations better than simply interpolating the filtered variables. Three methods are investigated for modeling the SGS standard deviation: Smagorinsky, gradient and scale-similarity. When properly calibrated, the gradient and scale-similarity methods give results in excellent agreement with the DNS.
A priori study of subgrid-scale flux of a passive scalar in isotropic homogeneous turbulence.
Chumakov, Sergei G
2008-09-01
We perform a direct numerical simulation (DNS) of forced homogeneous isotropic turbulence with a passive scalar that is forced by mean gradient. The DNS data are used to study the properties of subgrid-scale flux of a passive scalar in the framework of large eddy simulation (LES), such as alignment trends between the flux, resolved, and subgrid-scale flow structures. It is shown that the direction of the flux is strongly coupled with the subgrid-scale stress axes rather than the resolved flow quantities such as strain, vorticity, or scalar gradient. We derive an approximate transport equation for the subgrid-scale flux of a scalar and look at the relative importance of the terms in the transport equation. A particular form of LES tensor-viscosity model for the scalar flux is investigated, which includes the subgrid-scale stress. Effect of different models for the subgrid-scale stress on the model for the subgrid-scale flux is studied.
Terascale direct numerical simulations of turbulent combustion using S3D
NASA Astrophysics Data System (ADS)
Chen, J. H.; Choudhary, A.; de Supinski, B.; DeVries, M.; Hawkes, E. R.; Klasky, S.; Liao, W. K.; Ma, K. L.; Mellor-Crummey, J.; Podhorszki, N.; Sankaran, R.; Shende, S.; Yoo, C. S.
2009-01-01
Computational science is paramount to the understanding of underlying processes in internal combustion engines of the future that will utilize non-petroleum-based alternative fuels, including carbon-neutral biofuels, and burn in new combustion regimes that will attain high efficiency while minimizing emissions of particulates and nitrogen oxides. Next-generation engines will likely operate at higher pressures, with greater amounts of dilution and utilize alternative fuels that exhibit a wide range of chemical and physical properties. Therefore, there is a significant role for high-fidelity simulations, direct numerical simulations (DNS), specifically designed to capture key turbulence-chemistry interactions in these relatively uncharted combustion regimes, and in particular, that can discriminate the effects of differences in fuel properties. In DNS, all of the relevant turbulence and flame scales are resolved numerically using high-order accurate numerical algorithms. As a consequence terascale DNS are computationally intensive, require massive amounts of computing power and generate tens of terabytes of data. Recent results from terascale DNS of turbulent flames are presented here, illustrating its role in elucidating flame stabilization mechanisms in a lifted turbulent hydrogen/air jet flame in a hot air coflow, and the flame structure of a fuel-lean turbulent premixed jet flame. Computing at this scale requires close collaborations between computer and combustion scientists to provide optimized scaleable algorithms and software for terascale simulations, efficient collective parallel I/O, tools for volume visualization of multiscale, multivariate data and automating the combustion workflow. The enabling computer science, applied to combustion science, is also required in many other terascale physics and engineering simulations. In particular, performance monitoring is used to identify the performance of key kernels in the DNS code, S3D and especially memory intensive loops in the code. Through the careful application of loop transformations, data reuse in cache is exploited thereby reducing memory bandwidth needs, and hence, improving S3D's nodal performance. To enhance collective parallel I/O in S3D, an MPI-I/O caching design is used to construct a two-stage write-behind method for improving the performance of write-only operations. The simulations generate tens of terabytes of data requiring analysis. Interactive exploration of the simulation data is enabled by multivariate time-varying volume visualization. The visualization highlights spatial and temporal correlations between multiple reactive scalar fields using an intuitive user interface based on parallel coordinates and time histogram. Finally, an automated combustion workflow is designed using Kepler to manage large-scale data movement, data morphing, and archival and to provide a graphical display of run-time diagnostics.
Pairwise-interaction extended point-particle model for particle-laden flows
NASA Astrophysics Data System (ADS)
Akiki, G.; Moore, W. C.; Balachandar, S.
2017-12-01
In this work we consider the pairwise interaction extended point-particle (PIEP) model for Euler-Lagrange simulations of particle-laden flows. By accounting for the precise location of neighbors the PIEP model goes beyond local particle volume fraction, and distinguishes the influence of upstream, downstream and laterally located neighbors. The two main ingredients of the PIEP model are (i) the undisturbed flow at any particle is evaluated as a superposition of the macroscale flow and a microscale flow that is approximated as a pairwise superposition of perturbation fields induced by each of the neighboring particles, and (ii) the forces and torque on the particle are then calculated from the undisturbed flow using the Faxén form of the force relation. The computational efficiency of the standard Euler-Lagrange approach is retained, since the microscale perturbation fields induced by a neighbor are pre-computed and stored as PIEP maps. Here we extend the PIEP force model of Akiki et al. [3] with a corresponding torque model to systematically include the effect of perturbation fields induced by the neighbors in evaluating the net torque. Also, we use DNS results from a uniform flow over two stationary spheres to further improve the PIEP force and torque models. We then test the PIEP model in three different sedimentation problems and compare the results against corresponding DNS to assess the accuracy of the PIEP model and improvement over the standard point-particle approach. In the case of two sedimenting spheres in a quiescent ambient the PIEP model is shown to capture the drafting-kissing-tumbling process. In cases of 5 and 80 sedimenting spheres a good agreement is obtained between the PIEP simulation and the DNS. For all three simulations, the DEM-PIEP was able to recreate, to a good extent, the results from the DNS, while requiring only a negligible fraction of the numerical resources required by the fully-resolved DNS.
Discontinuous Galerkin Methods and High-Speed Turbulent Flows
NASA Astrophysics Data System (ADS)
Atak, Muhammed; Larsson, Johan; Munz, Claus-Dieter
2014-11-01
Discontinuous Galerkin methods gain increasing importance within the CFD community as they combine arbitrary high order of accuracy in complex geometries with parallel efficiency. Particularly the discontinuous Galerkin spectral element method (DGSEM) is a promising candidate for both the direct numerical simulation (DNS) and large eddy simulation (LES) of turbulent flows due to its excellent scaling attributes. In this talk, we present a DNS of a compressible turbulent boundary layer along a flat plate at a free-stream Mach number of M = 2.67 and assess the computational efficiency of the DGSEM at performing high-fidelity simulations of both transitional and turbulent boundary layers. We compare the accuracy of the results as well as the computational performance to results using a high order finite difference method.
Combination cancer therapy by hapten-targeted prodrug-activating enzymes and cytokines.
Chuang, Kuo-Hsiang; Cheng, Chiu-Min; Roffler, Steve R; Lu, Yu-Lin; Lin, Shiu-Ru; Wang, Jaw-Yuan; Tzou, Wen-Shyong; Su, Yu-Cheng; Chen, Bing-Mae; Cheng, Tian-Lu
2006-01-01
Combination therapy can help overcome limitations in the treatment of heterogeneous tumors. In the current study, we examined whether multiple therapeutic agents could be targeted to anti-dansyl single-chain antibodies (DNS scFv) that were anchored on the plasma membrane of cancer cells. Functional DNS scFv could be stably expressed on CT-26 colon cancer cells both in vitro and in vivo. Dansyl moieties were covalently attached to recombinant beta-glucuronidase (betaG) and interleukin 2 (IL-2) via a flexible poly(ethylene glycol) linker to form DNS-PEG-betaG and DNS-PEG-IL-2 conjugates. The conjugates displayed enzymatic and splenocyte-stimulatory activities, respectively, that were similar to those of the unmodified proteins. The conjugates selectively bound CT-26 cells that expressed anti-DNS scFv (CT-26/DNS cells) but not CT-26 cells that expressed control scFv (CT-26/phOx cells). DNS-PEG-betaG preferentially activated a glucuronide prodrug (BHAMG) of p-hydroxy aniline mustard at CT-26/DNS cells in culture and accumulated in subcutaneous CT-26/DNS tumors after intravenous administration. Systemic administration of DNS-PEG-IL-2 or DNS-PEG-betaG and BHAMG significantly delayed the growth of CT-26/DNS but not control CT-26/phOx tumors. Combination treatment with DNS-PEG-betaG and BHAMG followed by DNS-PEG-IL-2 therapy significantly suppressed the growth of CT-26/DNS tumors as compared to either single-agent regimen. These results show that at least two DNS-modified therapeutic agents can be selectively delivered to DNS scFv receptors in vitro and in vivo, allowing combination therapy of DNS scFv-modified tumors.
Criteria for Modeling in LES of Multicomponent Fuel Flow
NASA Technical Reports Server (NTRS)
Bellan, Josette; Selle, Laurent
2009-01-01
A report presents a study addressing the question of which large-eddy simulation (LES) equations are appropriate for modeling the flow of evaporating drops of a multicomponent liquid in a gas (e.g., a spray of kerosene or diesel fuel in air). The LES equations are obtained from the direct numerical simulation (DNS) equations in which the solution is computed at all flow length scales, by applying a spatial low-pass filter. Thus, in LES the small scales are removed and replaced by terms that cannot be computed from the LES solution and instead must be modeled to retain the effect of the small scales into the equations. The mathematical form of these models is a subject of contemporary research. For a single-component liquid, there is only one LES formulation, but this study revealed that for a multicomponent liquid, there are two non-equivalent LES formulations for the conservation equations describing the composition of the vapor. Criteria were proposed for selecting the multicomponent LES formulation that gives the best accuracy and increased computational efficiency. These criteria were applied in examination of filtered DNS databases to compute the terms in the LES equations. The DNS databases are from mixing layers of diesel and kerosene fuels. The comparisons resulted in the selection of one of the multicomponent LES formulations as the most promising with respect to all criteria.
Large Eddy Simulation of a Supercritical Turbulent Mixing Layer
NASA Astrophysics Data System (ADS)
Sheikhi, Reza; Hadi, Fatemeh; Safari, Mehdi
2017-11-01
Supercritical turbulent flows are relevant to a wide range of applications such as supercritical power cycles, gas turbine combustors, rocket propulsion and internal combustion engines. Large eddy simulation (LES) analysis of such flows involves solving mass, momentum, energy and scalar transport equations with inclusion of generalized diffusion fluxes. These equations are combined with a real gas equation of state and the corresponding thermodynamic mixture variables. Subgrid scale models are needed for not only the conventional convective terms but also the additional high pressure effects arising due to the nonlinearity associated with generalized diffusion fluxes and real gas equation of state. In this study, LES is carried out to study the high pressure turbulent mixing of methane with carbon dioxide in a temporally developing mixing layer under supercritical condition. LES results are assessed by comparing with data obtained from direct numerical simulation (DNS) of the same layer. LES predictions agree favorably with DNS data and represent several key supercritical turbulent flow features such as high density gradient regions. Supported by DOE Grant SC0017097; computational support is provided by DOE National Energy Research Scientific Computing Center.
A method for obtaining a statistically stationary turbulent free shear flow
NASA Technical Reports Server (NTRS)
Timson, Stephen F.; Lele, S. K.; Moser, R. D.
1994-01-01
The long-term goal of the current research is the study of Large-Eddy Simulation (LES) as a tool for aeroacoustics. New algorithms and developments in computer hardware are making possible a new generation of tools for aeroacoustic predictions, which rely on the physics of the flow rather than empirical knowledge. LES, in conjunction with an acoustic analogy, holds the promise of predicting the statistics of noise radiated to the far-field of a turbulent flow. LES's predictive ability will be tested through extensive comparison of acoustic predictions based on a Direct Numerical Simulation (DNS) and LES of the same flow, as well as a priori testing of DNS results. The method presented here is aimed at allowing simulation of a turbulent flow field that is both simple and amenable to acoustic predictions. A free shear flow is homogeneous in both the streamwise and spanwise directions and which is statistically stationary will be simulated using equations based on the Navier-Stokes equations with a small number of added terms. Studying a free shear flow eliminates the need to consider flow-surface interactions as an acoustic source. The homogeneous directions and the flow's statistically stationary nature greatly simplify the application of an acoustic analogy.
Transition to Turbulent Dynamo Saturation
NASA Astrophysics Data System (ADS)
Seshasayanan, Kannabiran; Gallet, Basile; Alexakis, Alexandros
2017-11-01
While the saturated magnetic energy is independent of viscosity in dynamo experiments, it remains viscosity dependent in state-of-the-art 3D direct numerical simulations (DNS). Extrapolating such viscous scaling laws to realistic parameter values leads to an underestimation of the magnetic energy by several orders of magnitude. The origin of this discrepancy is that fully 3D DNS cannot reach low enough values of the magnetic Prandtl number Pm. To bypass this limitation and investigate dynamo saturation at very low Pm, we focus on the vicinity of the dynamo threshold in a rapidly rotating flow: the velocity field then depends on two spatial coordinates only, while the magnetic field consists of a single Fourier mode in the third direction. We perform numerical simulations of the resulting set of reduced equations for Pm down to 2 ×10-5. This parameter regime is currently out of reach to fully 3D DNS. We show that the magnetic energy transitions from a high-Pm viscous scaling regime to a low-Pm turbulent scaling regime, the latter being independent of viscosity. The transition to the turbulent saturation regime occurs at a low value of the magnetic Prandtl number, Pm ≃10-3 , which explains why it has been overlooked by numerical studies so far.
Transition to Turbulent Dynamo Saturation.
Seshasayanan, Kannabiran; Gallet, Basile; Alexakis, Alexandros
2017-11-17
While the saturated magnetic energy is independent of viscosity in dynamo experiments, it remains viscosity dependent in state-of-the-art 3D direct numerical simulations (DNS). Extrapolating such viscous scaling laws to realistic parameter values leads to an underestimation of the magnetic energy by several orders of magnitude. The origin of this discrepancy is that fully 3D DNS cannot reach low enough values of the magnetic Prandtl number Pm. To bypass this limitation and investigate dynamo saturation at very low Pm, we focus on the vicinity of the dynamo threshold in a rapidly rotating flow: the velocity field then depends on two spatial coordinates only, while the magnetic field consists of a single Fourier mode in the third direction. We perform numerical simulations of the resulting set of reduced equations for Pm down to 2×10^{-5}. This parameter regime is currently out of reach to fully 3D DNS. We show that the magnetic energy transitions from a high-Pm viscous scaling regime to a low-Pm turbulent scaling regime, the latter being independent of viscosity. The transition to the turbulent saturation regime occurs at a low value of the magnetic Prandtl number, Pm≃10^{-3}, which explains why it has been overlooked by numerical studies so far.
Conditional statistics in a turbulent premixed flame derived from direct numerical simulation
NASA Technical Reports Server (NTRS)
Mantel, Thierry; Bilger, Robert W.
1994-01-01
The objective of this paper is to briefly introduce conditional moment closure (CMC) methods for premixed systems and to derive the transport equation for the conditional species mass fraction conditioned on the progress variable based on the enthalpy. Our statistical analysis will be based on the 3-D DNS database of Trouve and Poinsot available at the Center for Turbulence Research. The initial conditions and characteristics (turbulence, thermo-diffusive properties) as well as the numerical method utilized in the DNS of Trouve and Poinsot are presented, and some details concerning our statistical analysis are also given. From the analysis of DNS results, the effects of the position in the flame brush, of the Damkoehler and Lewis numbers on the conditional mean scalar dissipation, and conditional mean velocity are presented and discussed. Information concerning unconditional turbulent fluxes are also presented. The anomaly found in previous studies of counter-gradient diffusion for the turbulent flux of the progress variable is investigated.
NASA Astrophysics Data System (ADS)
Sondak, David; Oberai, Assad
2012-10-01
Novel large eddy simulation (LES) models are developed for incompressible magnetohydrodynamics (MHD). These models include the application of the variational multiscale formulation (VMS) of LES to the equations of incompressible MHD, a new residual-based eddy viscosity model (RBEVM,) and a mixed LES model that combines the strengths of both of these models. The new models result in a consistent numerical method that is relatively simple to implement. A dynamic procedure for determining model coefficients is no longer required. The new LES models are tested on a decaying Taylor-Green vortex generalized to MHD and benchmarked against classical and state-of-the art LES turbulence models as well as direct numerical simulations (DNS). These new models are able to account for the essential MHD physics which is demonstrated via comparisons of energy spectra. We also compare the performance of our models to a DNS simulation by A. Pouquet et al., for which the ratio of DNS modes to LES modes is 262,144. Additionally, we extend these models to a finite element setting in which boundary conditions play a role. A classic problem on which we test these models is turbulent channel flow, which in the case of MHD, is called Hartmann flow.
Regularization method for large eddy simulations of shock-turbulence interactions
NASA Astrophysics Data System (ADS)
Braun, N. O.; Pullin, D. I.; Meiron, D. I.
2018-05-01
The rapid change in scales over a shock has the potential to introduce unique difficulties in Large Eddy Simulations (LES) of compressible shock-turbulence flows if the governing model does not sufficiently capture the spectral distribution of energy in the upstream turbulence. A method for the regularization of LES of shock-turbulence interactions is presented which is constructed to enforce that the energy content in the highest resolved wavenumbers decays as k - 5 / 3, and is computed locally in physical-space at low computational cost. The application of the regularization to an existing subgrid scale model is shown to remove high wavenumber errors while maintaining agreement with Direct Numerical Simulations (DNS) of forced and decaying isotropic turbulence. Linear interaction analysis is implemented to model the interaction of a shock with isotropic turbulence from LES. Comparisons to analytical models suggest that the regularization significantly improves the ability of the LES to predict amplifications in subgrid terms over the modeled shockwave. LES and DNS of decaying, modeled post shock turbulence are also considered, and inclusion of the regularization in shock-turbulence LES is shown to improve agreement with lower Reynolds number DNS.
NASA Astrophysics Data System (ADS)
Sloan, Gregory James
The direct numerical simulation (DNS) offers the most accurate approach to modeling the behavior of a physical system, but carries an enormous computation cost. There exists a need for an accurate DNS to model the coupled solid-fluid system seen in targeted drug delivery (TDD), nanofluid thermal energy storage (TES), as well as other fields where experiments are necessary, but experiment design may be costly. A parallel DNS can greatly reduce the large computation times required, while providing the same results and functionality of the serial counterpart. A D2Q9 lattice Boltzmann method approach was implemented to solve the fluid phase. The use of domain decomposition with message passing interface (MPI) parallelism resulted in an algorithm that exhibits super-linear scaling in testing, which may be attributed to the caching effect. Decreased performance on a per-node basis for a fixed number of processes confirms this observation. A multiscale approach was implemented to model the behavior of nanoparticles submerged in a viscous fluid, and used to examine the mechanisms that promote or inhibit clustering. Parallelization of this model using a masterworker algorithm with MPI gives less-than-linear speedup for a fixed number of particles and varying number of processes. This is due to the inherent inefficiency of the master-worker approach. Lastly, these separate simulations are combined, and two-way coupling is implemented between the solid and fluid.
DNS of High Pressure Supercritical Combustion
NASA Astrophysics Data System (ADS)
Chong, Shao Teng; Raman, Venkatramanan
2016-11-01
Supercritical flows have always been important to rocket motors, and more recently to aircraft engines and stationary gas turbines. The purpose of the present study is to understand effects of differential diffusion on reacting scalars using supercritical isotropic turbulence. Focus is on fuel and oxidant reacting in the transcritical region where density, heat capacity and transport properties are highly sensitive to variations in temperature and pressure. Reynolds and Damkohler number vary as a result and although it is common to neglect differential diffusion effects if Re is sufficiently large, this large variation in temperature with heat release can accentuate molecular transport differences. Direct numerical simulations (DNS) for one step chemistry reaction between fuel and oxidizer are used to examine the differential diffusion effects. A key issue investigated in this paper is if the flamelet progress variable approach, where the Lewis number is usually assumed to be unity and constant for all species, can be accurately applied to simulate supercritical combustion.
Energy Spectra of Higher Reynolds Number Turbulence by the DNS with up to 122883 Grid Points
NASA Astrophysics Data System (ADS)
Ishihara, Takashi; Kaneda, Yukio; Morishita, Koji; Yokokawa, Mitsuo; Uno, Atsuya
2014-11-01
Large-scale direct numerical simulations (DNS) of forced incompressible turbulence in a periodic box with up to 122883 grid points have been performed using K computer. The maximum Taylor-microscale Reynolds number Rλ, and the maximum Reynolds number Re based on the integral length scale are over 2000 and 105, respectively. Our previous DNS with Rλ up to 1100 showed that the energy spectrum has a slope steeper than - 5 / 3 (the Kolmogorov scaling law) by factor 0 . 1 at the wavenumber range (kη < 0 . 03). Here η is the Kolmogorov length scale. Our present DNS at higher resolutions show that the energy spectra with different Reynolds numbers (Rλ > 1000) are well normalized not by the integral length-scale but by the Kolmogorov length scale, at the wavenumber range of the steeper slope. This result indicates that the steeper slope is not inherent character in the inertial subrange, and is affected by viscosity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borghesi, Giulio; Bellan, Josette, E-mail: josette.bellan@jpl.nasa.gov; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109-8099
2015-03-15
A Direct Numerical Simulation (DNS) database was created representing mixing of species under high-pressure conditions. The configuration considered is that of a temporally evolving mixing layer. The database was examined and analyzed for the purpose of modeling some of the unclosed terms that appear in the Large Eddy Simulation (LES) equations. Several metrics are used to understand the LES modeling requirements. First, a statistical analysis of the DNS-database large-scale flow structures was performed to provide a metric for probing the accuracy of the proposed LES models as the flow fields obtained from accurate LESs should contain structures of morphology statisticallymore » similar to those observed in the filtered-and-coarsened DNS (FC-DNS) fields. To characterize the morphology of the large-scales structures, the Minkowski functionals of the iso-surfaces were evaluated for two different fields: the second-invariant of the rate of deformation tensor and the irreversible entropy production rate. To remove the presence of the small flow scales, both of these fields were computed using the FC-DNS solutions. It was found that the large-scale structures of the irreversible entropy production rate exhibit higher morphological complexity than those of the second invariant of the rate of deformation tensor, indicating that the burden of modeling will be on recovering the thermodynamic fields. Second, to evaluate the physical effects which must be modeled at the subfilter scale, an a priori analysis was conducted. This a priori analysis, conducted in the coarse-grid LES regime, revealed that standard closures for the filtered pressure, the filtered heat flux, and the filtered species mass fluxes, in which a filtered function of a variable is equal to the function of the filtered variable, may no longer be valid for the high-pressure flows considered in this study. The terms requiring modeling are the filtered pressure, the filtered heat flux, the filtered pressure work, and the filtered species mass fluxes. Improved models were developed based on a scale-similarity approach and were found to perform considerably better than the classical ones. These improved models were also assessed in an a posteriori study. Different combinations of the standard models and the improved ones were tested. At the relatively small Reynolds numbers achievable in DNS and at the relatively small filter widths used here, the standard models for the filtered pressure, the filtered heat flux, and the filtered species fluxes were found to yield accurate results for the morphology of the large-scale structures present in the flow. Analysis of the temporal evolution of several volume-averaged quantities representative of the mixing layer growth, and of the cross-stream variation of homogeneous-plane averages and second-order correlations, as well as of visualizations, indicated that the models performed equivalently for the conditions of the simulations. The expectation is that at the much larger Reynolds numbers and much larger filter widths used in practical applications, the improved models will have much more accurate performance than the standard one.« less
pH-responsive self-assembly by molecular recognition on a macroscopic scale.
Zheng, Yongtai; Hashidzume, Akihito; Harada, Akira
2013-07-12
Macroscopic pH-responsive self-assembly is successfully constructed by polyacrylamide(pAAm)-based gels carrying dansyl (Dns) and β-cyclodextrin (βCD) residues, which are represented as Dns-gel and βCD-gel, respectively. Dns-gel and βCD-gel assemble together at pH ≥ 4.0, but disassemble at pH ≤ 3.0. The adhesion strengths for pairs of Dns-gel/βCD-gel increase with increasing pH. The fluorescence study on the model system of pAAm modified with 1 mol% Dns moieties (pAAm/Dns) reveals that Dns residues are protonated at a lower pH, which results in the reduction in binding constant (K) for Dns residues and βCD. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Adjoint Sensitivity Analysis for Scale-Resolving Turbulent Flow Solvers
NASA Astrophysics Data System (ADS)
Blonigan, Patrick; Garai, Anirban; Diosady, Laslo; Murman, Scott
2017-11-01
Adjoint-based sensitivity analysis methods are powerful design tools for engineers who use computational fluid dynamics. In recent years, these engineers have started to use scale-resolving simulations like large-eddy simulations (LES) and direct numerical simulations (DNS), which resolve more scales in complex flows with unsteady separation and jets than the widely-used Reynolds-averaged Navier-Stokes (RANS) methods. However, the conventional adjoint method computes large, unusable sensitivities for scale-resolving simulations, which unlike RANS simulations exhibit the chaotic dynamics inherent in turbulent flows. Sensitivity analysis based on least-squares shadowing (LSS) avoids the issues encountered by conventional adjoint methods, but has a high computational cost even for relatively small simulations. The following talk discusses a more computationally efficient formulation of LSS, ``non-intrusive'' LSS, and its application to turbulent flows simulated with a discontinuous-Galkerin spectral-element-method LES/DNS solver. Results are presented for the minimal flow unit, a turbulent channel flow with a limited streamwise and spanwise domain.
Cha, Y S; Kim, H; Do, H H; Kim, H I; Kim, O H; Cha, K-C; Lee, K H; Hwang, S O
2018-03-01
Delayed onset of neuropsychiatric symptoms after apparent recovery from acute carbon monoxide (CO) poisoning has been described as delayed neuropsychiatric sequelae (DNS). To date, there have been no studies on the utility of serum neuron-specific enolase (NSE), a marker of neuronal cell damage, as a predictive marker of DNS in acute CO poisoning. This retrospective observational study was performed on adult patients with acute CO poisoning consecutively treated over a 9-month period. Serum NSE was measured after emergency department arrival, and patients were divided into two groups. The DNS group comprised patients with delayed sequelae, while the non-DNS group included patients with none of these sequelae. A total of 98 patients with acute CO poisoning were enrolled in this study. DNS developed in eight patients. The median NSE value was significantly higher in the DNS group than in the non-DNS group. There was a statistical difference between the non-DNS group and the DNS group in terms of CO exposure time, Glasgow Coma Scale (GCS), loss of consciousness, creatinine kinase, and troponin I. GCS and NSE were the early predictors of development of DNS. The area under the curve according to the receiver operating characteristic curves of GCS, serum NSE, and GCS combined with serum NSE were 0.922, 0.836, and 0.969, respectively. In conclusion, initial GCS and NSE served as early predictors of development of DNS. Also, NSE might be a useful additional parameter that could improve the prediction accuracy of initial GCS.
Disintegration of fluids under supercritical conditions from mixing layer studies
NASA Technical Reports Server (NTRS)
Okong'o, N.; Bellan, J.
2003-01-01
Databases of transitional states obtained from Direct Numerical simulations (DNS) of temporal, supercritical mixing layers for two species systems, O2/H2 and C7H16/N2, are analyzed to elucidate species-specific turbulence aspects and features of fluid disintegration.
Modeling the subfilter scalar variance for large eddy simulation in forced isotropic turbulence
NASA Astrophysics Data System (ADS)
Cheminet, Adam; Blanquart, Guillaume
2011-11-01
Static and dynamic model for the subfilter scalar variance in homogeneous isotropic turbulence are investigated using direct numerical simulations (DNS) of a lineary forced passive scalar field. First, we introduce a new scalar forcing technique conditioned only on the scalar field which allows the fluctuating scalar field to reach a statistically stationary state. Statistical properties, including 2nd and 3rd statistical moments, spectra, and probability density functions of the scalar field have been analyzed. Using this technique, we performed constant density and variable density DNS of scalar mixing in isotropic turbulence. The results are used in an a-priori study of scalar variance models. Emphasis is placed on further studying the dynamic model introduced by G. Balarac, H. Pitsch and V. Raman [Phys. Fluids 20, (2008)]. Scalar variance models based on Bedford and Yeo's expansion are accurate for small filter width but errors arise in the inertial subrange. Results suggest that a constant coefficient computed from an assumed Kolmogorov spectrum is often sufficient to predict the subfilter scalar variance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rehagen, Thomas J.; Greenough, Jeffrey A.; Olson, Britton J.
In this paper, the compressible Rayleigh–Taylor (RT) instability is studied by performing a suite of large eddy simulations (LES) using the Miranda and Ares codes. A grid convergence study is carried out for each of these computational methods, and the convergence properties of integral mixing diagnostics and late-time spectra are established. A comparison between the methods is made using the data from the highest resolution simulations in order to validate the Ares hydro scheme. We find that the integral mixing measures, which capture the global properties of the RT instability, show good agreement between the two codes at this resolution.more » The late-time turbulent kinetic energy and mass fraction spectra roughly follow a Kolmogorov spectrum, and drop off as k approaches the Nyquist wave number of each simulation. The spectra from the highest resolution Miranda simulation follow a Kolmogorov spectrum for longer than the corresponding spectra from the Ares simulation, and have a more abrupt drop off at high wave numbers. The growth rate is determined to be between around 0.03 and 0.05 at late times; however, it has not fully converged by the end of the simulation. Finally, we study the transition from direct numerical simulation (DNS) to LES. The highest resolution simulations become LES at around t/τ ≃ 1.5. Finally, to have a fully resolved DNS through the end of our simulations, the grid spacing must be 3.6 (3.1) times finer than our highest resolution mesh when using Miranda (Ares).« less
Rehagen, Thomas J.; Greenough, Jeffrey A.; Olson, Britton J.
2017-04-20
In this paper, the compressible Rayleigh–Taylor (RT) instability is studied by performing a suite of large eddy simulations (LES) using the Miranda and Ares codes. A grid convergence study is carried out for each of these computational methods, and the convergence properties of integral mixing diagnostics and late-time spectra are established. A comparison between the methods is made using the data from the highest resolution simulations in order to validate the Ares hydro scheme. We find that the integral mixing measures, which capture the global properties of the RT instability, show good agreement between the two codes at this resolution.more » The late-time turbulent kinetic energy and mass fraction spectra roughly follow a Kolmogorov spectrum, and drop off as k approaches the Nyquist wave number of each simulation. The spectra from the highest resolution Miranda simulation follow a Kolmogorov spectrum for longer than the corresponding spectra from the Ares simulation, and have a more abrupt drop off at high wave numbers. The growth rate is determined to be between around 0.03 and 0.05 at late times; however, it has not fully converged by the end of the simulation. Finally, we study the transition from direct numerical simulation (DNS) to LES. The highest resolution simulations become LES at around t/τ ≃ 1.5. Finally, to have a fully resolved DNS through the end of our simulations, the grid spacing must be 3.6 (3.1) times finer than our highest resolution mesh when using Miranda (Ares).« less
Modeling of the thermal boundary layer in turbulent Rayleigh-Bénard convection
NASA Astrophysics Data System (ADS)
Emran, Mohammad; Shishkina, Olga
2016-11-01
We report modeling of the thermal boundary layer in turbulent Rayleigh-Bénard convection (RBC), which incorporates the effect of turbulent fluctuations. The study is based on the thermal boundary layer equation from Shishkina et al., and new Direct Numerical Simulations (DNS) of RBC in a cylindrical cell of the aspect ratio 1, for the Prandtl number variation of several orders of magnitude. Our modeled temperature profiles are found to agree with the DNS much better than those obtained with the classical Prandtl-Blasius or Falkner-Skan approaches. The work is supported by the Deutsche Forschungsgemeinschaft (DFG) under the Grant Sh405/4 - Heisenberg fellowship and SFB963, Project A06.
A Study of Two-Equation Turbulence Models on the Elliptic Streamline Flow
NASA Technical Reports Server (NTRS)
Blaisdell, Gregory A.; Qin, Jim H.; Shariff, Karim; Rai, Man Mohan (Technical Monitor)
1995-01-01
Several two-equation turbulence models are compared to data from direct numerical simulations (DNS) of the homogeneous elliptic streamline flow, which combines rotation and strain. The models considered include standard two-equation models and models with corrections for rotational effects. Most of the rotational corrections modify the dissipation rate equation to account for the reduced dissipation rate in rotating turbulent flows, however, the DNS data shows that the production term in the turbulent kinetic energy equation is not modeled correctly by these models. Nonlinear relations for the Reynolds stresses are considered as a means of modifying the production term. Implications for the modeling of turbulent vortices will be discussed.
NASA Technical Reports Server (NTRS)
Winckelmans, G. S.; Lund, T. S.; Carati, D.; Wray, A. A.
1996-01-01
Subgrid-scale models for Large Eddy Simulation (LES) in both the velocity-pressure and the vorticity-velocity formulations were evaluated and compared in a priori tests using spectral Direct Numerical Simulation (DNS) databases of isotropic turbulence: 128(exp 3) DNS of forced turbulence (Re(sub(lambda))=95.8) filtered, using the sharp cutoff filter, to both 32(exp 3) and 16(exp 3) synthetic LES fields; 512(exp 3) DNS of decaying turbulence (Re(sub(Lambda))=63.5) filtered to both 64(exp 3) and 32(exp 3) LES fields. Gaussian and top-hat filters were also used with the 128(exp 3) database. Different LES models were evaluated for each formulation: eddy-viscosity models, hyper eddy-viscosity models, mixed models, and scale-similarity models. Correlations between exact versus modeled subgrid-scale quantities were measured at three levels: tensor (traceless), vector (solenoidal 'force'), and scalar (dissipation) levels, and for both cases of uniform and variable coefficient(s). Different choices for the 1/T scaling appearing in the eddy-viscosity were also evaluated. It was found that the models for the vorticity-velocity formulation produce higher correlations with the filtered DNS data than their counterpart in the velocity-pressure formulation. It was also found that the hyper eddy-viscosity model performs better than the eddy viscosity model, in both formulations.
Organization of descending neurons in Drosophila melanogaster
Hsu, Cynthia T.; Bhandawat, Vikas
2016-01-01
Neural processing in the brain controls behavior through descending neurons (DNs) - neurons which carry signals from the brain to the spinal cord (or thoracic ganglia in insects). Because DNs arise from multiple circuits in the brain, the numerical simplicity and availability of genetic tools make Drosophila a tractable model for understanding descending motor control. As a first step towards a comprehensive study of descending motor control, here we estimate the number and distribution of DNs in the Drosophila brain. We labeled DNs by backfilling them with dextran dye applied to the neck connective and estimated that there are ~1100 DNs distributed in 6 clusters in Drosophila. To assess the distribution of DNs by neurotransmitters, we labeled DNs in flies in which neurons expressing the major neurotransmitters were also labeled. We found DNs belonging to every neurotransmitter class we tested: acetylcholine, GABA, glutamate, serotonin, dopamine and octopamine. Both the major excitatory neurotransmitter (acetylcholine) and the major inhibitory neurotransmitter (GABA) are employed equally; this stands in contrast to vertebrate DNs which are predominantly excitatory. By comparing the distribution of DNs in Drosophila to those reported previously in other insects, we conclude that the organization of DNs in insects is highly conserved. PMID:26837716
Organization of descending neurons in Drosophila melanogaster.
Hsu, Cynthia T; Bhandawat, Vikas
2016-02-03
Neural processing in the brain controls behavior through descending neurons (DNs) - neurons which carry signals from the brain to the spinal cord (or thoracic ganglia in insects). Because DNs arise from multiple circuits in the brain, the numerical simplicity and availability of genetic tools make Drosophila a tractable model for understanding descending motor control. As a first step towards a comprehensive study of descending motor control, here we estimate the number and distribution of DNs in the Drosophila brain. We labeled DNs by backfilling them with dextran dye applied to the neck connective and estimated that there are ~1100 DNs distributed in 6 clusters in Drosophila. To assess the distribution of DNs by neurotransmitters, we labeled DNs in flies in which neurons expressing the major neurotransmitters were also labeled. We found DNs belonging to every neurotransmitter class we tested: acetylcholine, GABA, glutamate, serotonin, dopamine and octopamine. Both the major excitatory neurotransmitter (acetylcholine) and the major inhibitory neurotransmitter (GABA) are employed equally; this stands in contrast to vertebrate DNs which are predominantly excitatory. By comparing the distribution of DNs in Drosophila to those reported previously in other insects, we conclude that the organization of DNs in insects is highly conserved.
Kim, Y S; Cha, Y S; Kim, M S; Kim, H J; Lee, Y S; Youk, H; Kim, H I; Kim, O H; Cha, K-C; Kim, H; Lee, K H; Hwang, S O
2018-06-01
Delayed onset of neuropsychiatric symptoms after apparent recovery from acute carbon monoxide (CO) poisoning has been described as delayed neuropsychiatric sequelae (DNS). No previous study has determined whether early use of diffusion-weighted magnetic resonance imaging (DWI) can predict which patients will develop DNS in the acute CO poisoning. This retrospective observational study was performed on adult patients with acute CO poisoning consecutively treated over a 17-month period. All included patients with acute CO poisoning underwent DWI to evaluate brain injury within 72 h after CO exposure. DWI was evaluated as follows: (1) presence of pathology, (2) number of pathologies, (3) asymmetry, and (4) location of pathology. Patients were divided into two groups. The DNS group was composed of patients with delayed sequelae, while the non-DNS group included patients with no sequelae. A total of 102 patients with acute CO poisoning were finally enrolled in this study. DNS developed in 10 patients (9.8%). Between the DNS group and the non-DNS group, presence of pathology on DWI and initial Glasgow Coma Scale (GCS) showed significant difference. There was also a statistical difference between the non-DNS group and DNS group in terms of CO exposure time, troponin I, rhabdomyolysis, acute kidney injury, and pneumonia. The presence of pathology in DWI and initial GCS (cutoff: <12) at the emergency department served as an early predictors of DNS.
Analysis of acoustic and entropy disturbances in a hypersonic wind tunnel
NASA Astrophysics Data System (ADS)
Schilden, Thomas; Schröder, Wolfgang; Ali, Syed Raza Christopher; Schreyer, Anne-Marie; Wu, Jie; Radespiel, Rolf
2016-05-01
The tunnel noise in a Mach 5.9 Ludwieg tube is determined by two methods, a newly developed cone-probe-DNS method and a reliable hot-wire-Pitot-probe method. The new method combines pressure and heat flux measurements using a cone probe and direct numerical simulation (DNS). The modal analysis is based on transfer functions obtained by the DNS to link the measured quantities to the tunnel noise. The measurements are performed for several unit-Reynolds numbers in the range of 5 ṡ 106 ≤ Re/m ≤ 16 ṡ 106 and probe positions to identify the sensitivities of tunnel noise. The DNS solutions show similar response mechanisms of the cone probe to incident acoustic and entropy waves which leads to high condition numbers of the transfer matrix such that a unique relationship between response and source mechanism can be only determined by neglecting the contribution of the non-acoustic modes to the pressure and heat flux fluctuations. The results of the cone-probe-DNS method are compared to a modal analysis based on the hot-wire-Pitot-probe method which provides reliable results in the frequency range less than 50 kHz. In this low frequency range the findings of the two different mode analyses agree well. At higher frequencies, the newly developed cone-probe-DNS method is still valid. The tunnel noise is dominated by the acoustic mode, since the entropy mode is lower by one order of magnitude and the vorticity mode can be neglected. The acoustic mode is approximately 0.5% at 30 kHz and the cone-probe-DNS data illustrate the acoustic mode to decrease and to asymptotically approach 0.2%.
Koller, Heiko; Fierlbeck, Johann; Auffarth, Alexander; Niederberger, Alfred; Stephan, Daniel; Hitzl, Wolfgang; Augat, Peter; Zenner, Juliane; Blocher, Martina; Blocher, Martina; Resch, Herbert; Mayer, Michael
2014-03-15
Biomechanical in vitro laboratory study. To compare the biomechanical performance of 3 fixation concepts used for anterior instrumented scoliosis correction and fusion (AISF). AISF is an ideal estimate for selective fusion in adolescent idiopathic scoliosis. Correction is mediated using rods and screws anchored in the vertebral bodies. Application of large correction forces can promote early weakening of the implant-vertebra interfaces, with potential postoperative loss of correction, implant dislodgment, and nonunion. Therefore, improvement of screw-rod anchorage characteristics with AISF is valuable. A total of 111 thoracolumbar vertebrae harvested from 7 human spines completed a testing protocol. Age of specimens was 62.9 ± 8.2 years. Vertebrae were potted in polymethylmethacrylate and instrumented using 3 different devices with identical screw length and unicortical fixation: single constrained screw fixation (SC fixation), nonconstrained dual-screw fixation (DNS fixation), and constrained dual-screw fixation (DC fixation) resembling a novel implant type. Mechanical testing of each implant-vertebra unit using cyclic loading and pullout tests were performed after stress tests were applied mimicking surgical maneuvers during AISF. Test order was as follows: (1) preload test 1 simulating screw-rod locking and cantilever forces; (2) preload test 2 simulating compression/distraction maneuver; (3) cyclic loading tests with implant-vertebra unit subjected to stepwise increased cyclic loading (maximum: 200 N) protocol with 1000 cycles at 2 Hz, tests were aborted if displacement greater than 2 mm occurred before reaching 1000 cycles; and (4) coaxial pullout tests at a pullout rate of 5 mm/min. With each test, the mode of failure, that is, shear versus fracture, was noted as well as the ultimate load to failure (N), number of implant-vertebra units surpassing 1000 cycles, and number of cycles and related loads applied. Thirty-three percent of vertebrae surpassed 1000 cycles, 38% in the SC group, 19% in the DNS group, and 43% in the DC group. The difference between the DC group and the DNS group yielded significance (P = 0.04). For vertebrae not surpassing 1000 cycles, the number of cycles at implant displacement greater than 2 mm in the SC group was 648.7 ± 280.2 cycles, in the DNS group was 478.8 ± 219.0 cycles, and in the DC group was 699.5 ± 150.6 cycles. Differences between the SC group and the DNS group were significant (P = 0.008) as between the DC group and the DNS group (P = 0.0009). Load to failure in the SC group was 444.3 ± 302 N, in the DNS group was 527.7 ± 273 N, and in the DC group was 664.4 ± 371.5 N. The DC group outperformed the other constructs. The difference between the SC group and the DNS group failed significance (P = 0.25), whereas there was a significant difference between the SC group and the DC group (P = 0.003). The DC group showed a strong trend toward increased load to failure compared with the DNS group but without significance (P = 0.067). Surpassing 1000 cycles had a significant impact on the maximum load to failure in the SC group (P = 0.0001) and in the DNS group (P = 0.01) but not in the DC group (P = 0.2), which had the highest number of vertebrae surpassing 1000 cycles. Constrained dual-screw fixation characteristics in modern AISF implants can improve resistance to cyclic loading and pullout forces. DC constructs bear the potential to reduce the mechanical shortcomings of AISF.
LES, DNS and RANS for the analysis of high-speed turbulent reacting flows
NASA Technical Reports Server (NTRS)
Givi, Peyman
1994-01-01
The objective of this research is to continue our efforts in advancing the state of knowledge in Large Eddy Simulation (LES), Direct Numerical Simulation (DNS), and Reynolds Averaged Navier Stokes (RANS) methods for the analysis of high-speed reacting turbulent flows. In the first phase of this research, conducted within the past six months, focus was in three directions: RANS of turbulent reacting flows by Probability Density Function (PDF) methods, RANS of non-reacting turbulent flows by advanced turbulence closures, and LES of mixing dominated reacting flows by a dynamics subgrid closure. A summary of our efforts within the past six months of this research is provided in this semi-annual progress report.
Cha, Young Joo; Lee, Jae Jin; Kim, Do Hyun; You, Joshua Sung H
2017-10-23
Core stabilization plays an important role in the regulation of postural stability. To overcome shortcomings associated with pain and severe core instability during conventional core stabilization tests, we recently developed the dynamic neuromuscular stabilization-based heel sliding (DNS-HS) test. The purpose of this study was to establish the criterion validity and test-retest reliability of the novel DNS-HS test. Twenty young adults with core instability completed both the bilateral straight leg lowering test (BSLLT) and DNS-HS test for the criterion validity study and repeated the DNS-HS test for the test-retest reliability study. Criterion validity was determined by comparing hip joint angle data that were obtained from BSLLT and DNS-HS measures. The test-retest reliability was determined by comparing hip joint angle data. Criterion validity was (ICC2,3) = 0.700 (p< 0.05), suggesting a good relationship between the two core stability measures. Test-retest reliability was (ICC3,3) = 0.953 (p< 0.05), indicating excellent consistency between the repeated DNS-HS measurements. Criterion validity data demonstrated a good relationship between the gold standard BSLLT and DNS-HS core stability measures. Test-retest reliability data suggests that DNS-HS core stability was a reliable test for core stability. Clinically, the DNS-HS test is useful to objectively quantify core instability and allow early detection and evaluation.
Effect of Deviated Nasal Septum on Mean Platelet Volume: A Prospective Study.
Poorey, Vijay Kumar; Thakur, Pooja
2014-12-01
In E.N.T clinical practice, patients with nasal obstruction due to deviated nasal septum is a common presentation. Nasal airway obstruction is a common cause of upper airway obstruction further leading to obstructive and hypoxic manifestations. Mean platelet volume (MPV) levels increase in hypoxic conditions. MPV is one of the platelet activation index which reflects the platelet production rate. Present prospective study conducted in the department of Otorhinolaryngology and Head and Neck surgery, Gandhi Medical College and Hamidia Hospital, Bhopal, on 63 patients with the clinical evidence of DNS and 63 healthy age matched subjects as control group, aimed to evaluate the relationship between MPV levels and nasal obstruction due to deviated nasal septum (DNS). The diagnosis of patients with DNS was based on anterior rhinoscopy and endoscopic nasal examination. Blood samples were collected before surgical correction. In present study, the authors found that there is preponderance of DNS in the age group of 25-45 years being the most active age group, males having the higher incidence. Majority of cases of DNS being left sided and of obstructed type. MPV were significantly higher in patients with DNS than the control group. Among the cases MPV being higher in females and in the impacted type of DNS. Present study reemphasized the concept that MPV is increased in chronic nasal obstruction due to DNS and this increase is in accordance with the severity of DNS.
An Evaluation of Linear Instability Waves as Sources of Sound in a Supersonic Turbulent Jet
NASA Technical Reports Server (NTRS)
Mohseni, Kamran; Colonius, Tim; Freund, Jonathan B.
2002-01-01
Mach wave radiation from supersonic jets is revisited to better quantify the extent to which linearized equations represent the details of the actual mechanism. To this end, we solve the linearized Navier-Stokes equations (LNS) with precisely the same mean flow and inflow disturbances as a previous direct numerical simulation (DNS) of a perfectly expanded turbulent M = 1.92 jet. We restrict our attention to the first two azimuthal modes, n = 0 and n = 1, which constitute most of the acoustic field. The direction of peak radiation and the peak Strouhal number matches the DNS reasonably well, which is in accord with previous experimental justification of the linear theory. However, it is found that the sound pressure level predicted by LNS is significantly lower than that from DNS. In order to investigate the discrepancy, individual frequency components of the solution are examined. These confirm that near the peak Strouhal number, particularly for the first helical mode n = 1, the amplification of disturbances in the LNS closely matches the DNS. However, away from the peak frequency (and generally for the azimuthal mode n = 0), modes in the LNS are damped while those in the DNS grow at rates comparable to those at the peak Strouhal number.
Direct numerical simulation of turbulent Rayleigh-Bénard convection in a vertical thin disk
NASA Astrophysics Data System (ADS)
Xu, Wei; Wang, Yin; He, Xiao-Zhou; Yik, Hiu-Fai; Wang, Xiao-Ping; Schumacher, Jorg; Tong, Penger
2017-11-01
We report a direct numerical simulation (DNS) of turbulent Rayleigh-Bénard convection in a thin vertical disk with a high-order spectral element method code NEK5000. An unstructured mesh is used to adapt the turbulent flow in the thin disk and to ensure that the mesh sizes satisfy the refined Groetzbach criterion and a new criterion for thin boundary layers proposed by Shishkina et al. The DNS results for the mean and variance temperature profiles in the thermal boundary layer region are found to be in good agreement with the predictions of the new boundary layer models proposed by Shishkina et al. and Wang et al.. Furthermore, we numerically calculate the five budget terms in the boundary layer equation, which are difficult to measure in experiment. The DNS results agree well with the theoretical predictions by Wang et al. Our numerical work thus provides a strong support for the development of a common framework for understanding the effect of boundary layer fluctuations. This work was supported in part by Hong Kong Research Grants Council.
NASA Technical Reports Server (NTRS)
Joslin, Ronald D.
2004-01-01
The unsteady, incompressible Navier-Stokes equations are used for the direct numerical simulation (DNS) of spatially evolving disturbances in a three-dimensional (3-D) attachment-line boundary layer. Two-dimensional (2-D) disturbances are introduced either by forcing at the in ow or by harmonic-source generators at the wall; 3-D disturbances are introduced by harmonic-source generators at the wall. The DNS results are in good agreement with both 2-D non-parallel theory (for small-amplitude disturbances) and weakly nonlinear theory (for finite-amplitude disturbances), which validates the two theories. The 2-D DNS results indicate that nonlinear disturbance growth occurs near branch II of the neutral stability curve; however, steady suction can be used to stabilize this disturbance growth. For 3-D instabilities that are generated o the attachment line, spreading both toward and away from the attachment line causes energy transfer to the attachment-line and downstream instabilities; suction stabilizes these instabilities. Furthermore, 3-D instabilities are more stable than 2-D or quasi-2-D instabilities.
NASA Astrophysics Data System (ADS)
Ireland, Peter J.; Collins, Lance R.
2012-11-01
Turbulence-induced collision of inertial particles may contribute to the rapid onset of precipitation in warm cumulus clouds. The particle collision frequency is determined from two parameters: the radial distribution function g (r) and the mean inward radial relative velocity
Atmospheric Teleconnections From Cumulants
NASA Astrophysics Data System (ADS)
Sabou, F.; Kaspi, Y.; Marston, B.; Schneider, T.
2011-12-01
Multi-point cumulants of fields such as vorticity provide a way to visualize atmospheric teleconnections, complementing other approaches such as the method of empirical orthogonal functions (EOFs). We calculate equal-time two-point cumulants of the vorticity from NCEP reanalysis data during the period 1980 -- 2010 and from direct numerical simulation (DNS) using an idealized dry general circulation model (GCM) (Schneider and Walker, 2006). Extratropical correlations seen in the NCEP data are qualitatively reproduced by the model. Three- and four-point cumulants accumulated from DNS quantify departures of the probability distribution function from a normal distribution, shedding light on the efficacy of direct statistical simulation (DSS) of atmosphere dynamics by cumulant expansions (Marston, Conover, and Schneider, 2008; Marston 2011). Lagged-time two-point cumulants between temperature gradients and eddy kinetic energy (EKE), accumulated by DNS of an idealized moist aquaplanet GCM (O'Gorman and Schneider, 2008), reveal dynamics of storm tracks. Regions of enhanced baroclinicity (as found along the eastern boundary of continents) lead to a local enhancement of EKE and a suppression of EKE further downstream as the storm track self-destructs (Kaspi and Schneider, 2011).
Off-wall boundary conditions for turbulent flows obtained from buffer-layer minimal flow units
NASA Astrophysics Data System (ADS)
Garcia-Mayoral, Ricardo; Pierce, Brian; Wallace, James
2012-11-01
There is strong evidence that the transport processes in the buffer region of wall-bounded turbulence are common across various flow configurations, even in the embryonic turbulence in transition (Park et al., Phys. Fl. 24). We use this premise to develop off-wall boundary conditions for turbulent simulations. Boundary conditions are constructed from DNS databases using periodic minimal flow units and reduced order modeling. The DNS data was taken from a channel at Reτ = 400 and a zero-pressure gradient transitional boundary layer (Sayadi et al., submitted to J . FluidMech .) . Both types of boundary conditions were first tested on a DNS of the core of the channel flow with the aim of extending their application to LES and to spatially evolving flows. 2012 CTR Summer Program.
NASA Astrophysics Data System (ADS)
Komen, E. M. J.; Camilo, L. H.; Shams, A.; Geurts, B. J.; Koren, B.
2017-09-01
LES for industrial applications with complex geometries is mostly characterised by: a) a finite volume CFD method using a non-staggered arrangement of the flow variables and second order accurate spatial and temporal discretisation schemes, b) an implicit top-hat filter, where the filter length is equal to the local computational cell size, and c) eddy-viscosity type LES models. LES based on these three main characteristics is indicated as industrial LES in this paper. It becomes increasingly clear that the numerical dissipation in CFD codes typically used in industrial applications with complex geometries may inhibit the predictive capabilities of explicit LES. Therefore, there is a need to quantify the numerical dissipation rate in such CFD codes. In this paper, we quantify the numerical dissipation rate in physical space based on an analysis of the transport equation for the mean turbulent kinetic energy. Using this method, we quantify the numerical dissipation rate in a quasi-Direct Numerical Simulation (DNS) and in under-resolved DNS of, as a basic demonstration case, fully-developed turbulent channel flow. With quasi-DNS, we indicate a DNS performed using a second order accurate finite volume method typically used in industrial applications. Furthermore, we determine and explain the trends in the performance of industrial LES for fully-developed turbulent channel flow for four different Reynolds numbers for three different LES mesh resolutions. The presented explanation of the mechanisms behind the observed trends is based on an analysis of the turbulent kinetic energy budgets. The presented quantitative analyses demonstrate that the numerical errors in the industrial LES computations of the considered turbulent channel flows result in a net numerical dissipation rate which is larger than the subgrid-scale dissipation rate. No new computational methods are presented in this paper. Instead, the main new elements in this paper are our detailed quantification method for the numerical dissipation rate, the application of this method to a quasi-DNS and under-resolved DNS of fully-developed turbulent channel flow, and the explanation of the effects of the numerical dissipation on the observed trends in the performance of industrial LES for fully-developed turbulent channel flows.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Xin -Yu; Bhagatwala, Ankit; Chen, Jacqueline H.
In this study, the modeling of mixing by molecular diffusion is a central aspect for transported probability density function (tPDF) methods. In this paper, the newly-proposed shadow position mixing model (SPMM) is examined, using a DNS database for a temporally evolving di-methyl ether slot jet flame. Two methods that invoke different levels of approximation are proposed to extract the shadow displacement (equivalent to shadow position) from the DNS database. An approach for a priori analysis of the mixing-model performance is developed. The shadow displacement is highly correlated with both mixture fraction and velocity, and the peak correlation coefficient of themore » shadow displacement and mixture fraction is higher than that of the shadow displacement and velocity. This suggests that the composition-space localness is reasonably well enforced by the model, with appropriate choices of model constants. The conditional diffusion of mixture fraction and major species from DNS and from SPMM are then compared, using mixing rates that are derived by matching the mixture fraction scalar dissipation rates. Good qualitative agreement is found, for the prediction of the locations of zero and maximum/minimum conditional diffusion locations for mixture fraction and individual species. Similar comparisons are performed for DNS and the IECM (interaction by exchange with the conditional mean) model. The agreement between SPMM and DNS is better than that between IECM and DNS, in terms of conditional diffusion iso-contour similarities and global normalized residual levels. It is found that a suitable value for the model constant c that controls the mixing frequency can be derived using the local normalized scalar variance, and that the model constant a controls the localness of the model. A higher-Reynolds-number test case is anticipated to be more appropriate to evaluate the mixing models, and stand-alone transported PDF simulations are required to more fully enforce localness and to assess model performance.« less
Yang, Kai-Chun; Ku, Hsiao-Lun; Wu, Chia-Liang; Wang, Shyh-Jen; Yang, Chen-Chang; Deng, Jou-Fang; Lee, Ming-Been; Chou, Yuan-Hwa
2011-12-30
Carbon monoxide poisoning (COP) after charcoal burning results in delayed neuropsychological sequelae (DNS), which show clinical resemblance to Parkinson's disease, without adequate predictors at present. This study examined the role of dopamine transporter (DAT) binding for the prediction of DNS. Twenty-seven suicide attempters with COP were recruited. Seven of them developed DNS, while the remainder did not. The striatal DAT binding was measured by single photon emission computed tomography with (99m)Tc-TRODAT. The specific uptake ratio was derived based on a ratio equilibrium model. Using a logistic regression model, multiple clinical variables were examined as potential predictors for DNS. COP patients with DNS had a lower binding on left striatal DAT binding than patients without DNS. Logistic regression analysis showed that a combination of initial loss of consciousness and lower left striatal DAT binding predicted the development of DNS. Our data indicate that the left striatal DAT binding could help to predict the development of DNS. This finding not only demonstrates the feasibility of brain imaging techniques for predicting the development of DNS but will also help clinicians to improve the quality of care for COP patients. 2011 Elsevier Ireland Ltd. All rights reserved.
Comparative Study of Three High Order Schemes for LES of Temporally Evolving Mixing Layers
NASA Technical Reports Server (NTRS)
Yee, Helen M. C.; Sjogreen, Biorn Axel; Hadjadj, C.
2012-01-01
Three high order shock-capturing schemes are compared for large eddy simulations (LES) of temporally evolving mixing layers (TML) for different convective Mach numbers (Mc) ranging from the quasi-incompressible regime to highly compressible supersonic regime. The considered high order schemes are fifth-order WENO (WENO5), seventh-order WENO (WENO7) and the associated eighth-order central spatial base scheme with the dissipative portion of WENO7 as a nonlinear post-processing filter step (WENO7fi). This high order nonlinear filter method (H.C. Yee and B. Sjogreen, Proceedings of ICOSAHOM09, June 22-26, 2009, Trondheim, Norway) is designed for accurate and efficient simulations of shock-free compressible turbulence, turbulence with shocklets and turbulence with strong shocks with minimum tuning of scheme parameters. The LES results by WENO7fi using the same scheme parameter agree well with experimental results of Barone et al. (2006), and published direct numerical simulations (DNS) work of Rogers & Moser (1994) and Pantano & Sarkar (2002), whereas results by WENO5 and WENO7 compare poorly with experimental data and DNS computations.
NASA Astrophysics Data System (ADS)
Ruan, Shaohong; Swaminathan, Nedunchezhian; Darbyshire, Oliver
2014-03-01
This study focuses on the modelling of turbulent lifted jet flames using flamelets and a presumed Probability Density Function (PDF) approach with interest in both flame lift-off height and flame brush structure. First, flamelet models used to capture contributions from premixed and non-premixed modes of the partially premixed combustion in the lifted jet flame are assessed using a Direct Numerical Simulation (DNS) data for a turbulent lifted hydrogen jet flame. The joint PDFs of mixture fraction Z and progress variable c, including their statistical correlation, are obtained using a copula method, which is also validated using the DNS data. The statistically independent PDFs are found to be generally inadequate to represent the joint PDFs from the DNS data. The effects of Z-c correlation and the contribution from the non-premixed combustion mode on the flame lift-off height are studied systematically by including one effect at a time in the simulations used for a posteriori validation. A simple model including the effects of chemical kinetics and scalar dissipation rate is suggested and used for non-premixed combustion contributions. The results clearly show that both Z-c correlation and non-premixed combustion effects are required in the premixed flamelets approach to get good agreement with the measured flame lift-off heights as a function of jet velocity. The flame brush structure reported in earlier experimental studies is also captured reasonably well for various axial positions. It seems that flame stabilisation is influenced by both premixed and non-premixed combustion modes, and their mutual influences.
NASA Astrophysics Data System (ADS)
Braman, Kalen; Raman, Venkat
2011-11-01
A novel direct numerical simulation (DNS) based a posteriori technique has been developed to investigate scalar transport modeling error. The methodology is used to test Reynolds-averaged Navier-Stokes turbulent scalar flux models for compressible boundary layer flows. Time-averaged DNS velocity and turbulence fields provide the information necessary to evolve the time-averaged scalar transport equation without requiring the use of turbulence modeling. With this technique, passive dispersion of a scalar from a boundary layer surface in a supersonic flow is studied with scalar flux modeling error isolated from any flowfield modeling errors. Several different scalar flux models are used. It is seen that the simple gradient diffusion model overpredicts scalar dispersion, while anisotropic scalar flux models underpredict dispersion. Further, the use of more complex models does not necessarily guarantee an increase in predictive accuracy, indicating that key physics is missing from existing models. Using comparisons of both a priori and a posteriori scalar flux evaluations with DNS data, the main modeling shortcomings are identified. Results will be presented for different boundary layer conditions.
DNS of droplet motion in a turbulent flow
NASA Astrophysics Data System (ADS)
Rosso, Michele; Elghobashi, S.
2013-11-01
The objective of our research is to study the multi-way interactions between turbulence and vaporizing liquid droplets by performing direct numerical simulations (DNS). The freely-moving droplets are fully resolved in 3D space and time and all the relevant scales of the turbulent motion are simultaneously resolved down to the smallest length- and time-scales. Our DNS solve the unsteady three-dimensional Navier-Stokes and continuity equations throughout the whole computational domain, including the interior of the liquid droplets. The droplet surface motion and deformation are captured accurately by using the Level Set method. The pressure jump condition, density and viscosity discontinuities across the interface as well as surface tension are accounted for. Here, we present only the results of the first stage of our research which considers the effects of turbulence on the shape change of an initially spherical liquid droplet, at density ratio (of liquid to carrier fluid) of 1000, moving in isotropic turbulent flow. We validate our results via comparison with available expe. This research has been supported by NSF-CBET Award 0933085 and NSF PRAC (Petascale Computing Resource Allocation) Award.
DNS of Supersonic Turbulent Flows in a DLR Scramjet Intake
NASA Astrophysics Data System (ADS)
Li, Xinliang; Yu, Changping
2014-11-01
Direct numerical simulation (DNS) of supersonic/hypersonic flow through a DLR scramjet intake GK01 is performed. The free stream Mach numbers are 3, 5 and 7, and the angle of attack is zero degree. The DNS cases are performed by using an optimized MP scheme with adaptive dissipation (OMP-AD) developed by the authors, and the blow-and-suction perturbations near the leading edge are used to trigger the transition. To stabilize the simulation, locally non-linear flittering is used in high-Mach-number case. The transition, separation, and shock-turbulent boundary layer interaction are studied by using both flow visualization and statistical analysis. A new method, OMP-AD, is also addressed in this paper. The OMP-AD scheme is developed by using joint MP method and optimized technique, and the coefficients in the scheme are flexible to show low dissipation in the smoothing region, and to show high robust (but high dissipation) in the large gradient region. Numerical tests show that the OMP-AD is more robust than the original MP schemes, and the numerical dissipation of OMP-AD is very low.
Simulation of a turbulent flame in a channel
NASA Technical Reports Server (NTRS)
Bruneaux, G.; Akselvoll, K.; Poinsot, T.; Ferziger, J. H.
1994-01-01
The interaction between turbulent premixed flames and channel walls is studied. Combustion is represented by a simple irreversible reaction with a large activation temperature. Feedback to the flowfield is suppressed by invoking a constant density assumption. The effect of wall distance on local and global flame structure is investigated. Quenching distances and maximum wall heat fluxes computed in laminar cases are compared to DNS results. It is found that quenching distances decrease and maximum heat fluxes increase relative to laminar flame values. It is shown that these effects are due to large coherent structures which push flame elements towards to wall. The effect of wall strain is studied in flame-wall interaction in a stagnation line flow; this is used to explain the DNS results. It is also shown that 'remarkable' flame events are produced by interaction with a horseshoe vortex: burnt gases are pushed towards the wall at high speed and induce quenching and high wall heat fluxes while fresh gases are expelled from the wall region and form finger-like structures. Effects of the wall on flame surface density are investigated, and a simple model for flame-wall interaction is proposed; its predictions compare well with the DNS results.
Friman, Anne; Wahlberg, Anna Carin; Mattiasson, Anne-Cathrine; Ebbeskog, Britt
2014-10-01
The aim of this study was to describe district nurses' (DNs') experiences of their knowledge development in wound management when treating patients with different types of wounds at healthcare centers. In primary healthcare, DNs are mainly responsible for wound management. Previous research has focused on DNs' level of expertise regarding wound management, mostly based on quantitative studies. An unanswered question concerns DNs' knowledge development in wound management. The present study therefore intends to broaden understanding and to provide deeper knowledge in regard to the DNs' experiences of their knowledge development when treating patients with wounds. A qualitative descriptive design was used. Subjects were a purposeful sample of 16 DNs from eight healthcare centers in a metropolitan area in Stockholm, Sweden. The study was conducted with qualitative interviews and qualitative content analysis was used to analyze the data. The content analysis resulted in three categories and 11 sub-categories. The first category, 'ongoing learning by experience,' was based on experiences of learning alongside clinical practice. The second category 'searching for information,' consisted of various channels for obtaining information. The third category, 'lacking organizational support,' consisted of experiences related to the DNs' work organization, which hindered their development in wound care knowledge. The DNs experienced that they were in a constant state of learning and obtained their wound care knowledge to a great extent through practical work, from their colleagues as well as from various companies. A lack of organizational structures and support from staff management made it difficult for DNs to develop their knowledge and skills in wound management, which can lead to inadequate wound management.
Direct Numerical Simulation of Transition in a Swept-Wing Boundary Layer
NASA Technical Reports Server (NTRS)
Duan, Lian; Choudhari, Meelan M.; Li, Fei
2013-01-01
Direct numerical simulation (DNS) is performed to examine laminar to turbulent transition due to high-frequency secondary instability of stationary crossflow vortices in a subsonic swept-wing boundary layer for a realistic natural-laminar-flow airfoil configuration. The secondary instability is introduced via inflow forcing derived from a two-dimensional, partial-differential-equation based eigenvalue computation; and the mode selected for forcing corresponds to the most amplified secondary instability mode which, in this case, derives a majority of its growth from energy production mechanisms associated with the wall-normal shear of the stationary basic state. Both the growth of the secondary instability wave and the resulting onset of laminar-turbulent transition are captured within the DNS computations. The growth of the secondary instability wave in the DNS solution compares well with linear secondary instability theory when the amplitude is small; the linear growth is followed by a region of reduced growth resulting from nonlinear effects before an explosive onset of laminar breakdown to turbulence. The peak fluctuations are concentrated near the boundary layer edge during the initial stage of transition, but rapidly propagates towards the surface during the process of laminar breakdown. Both time-averaged statistics and flow visualization based on the DNS reveal a sawtooth transition pattern that is analogous to previously documented surface flow visualizations of transition due to stationary crossflow instability. The memory of the stationary crossflow vortex is found to persist through the transition zone and well beyond the location of the maximum skin friction.
Double neutron stars: merger rates revisited
NASA Astrophysics Data System (ADS)
Chruslinska, Martyna; Belczynski, Krzysztof; Klencki, Jakub; Benacquista, Matthew
2018-03-01
We revisit double neutron star (DNS) formation in the classical binary evolution scenario in light of the recent Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo DNS detection (GW170817). The observationally estimated Galactic DNS merger rate of R_MW = 21^{+28}_{-14} Myr-1, based on three Galactic DNS systems, fully supports our standard input physics model with RMW = 24 Myr-1. This estimate for the Galaxy translates in a non-trivial way (due to cosmological evolution of progenitor stars in chemically evolving Universe) into a local (z ≈ 0) DNS merger rate density of Rlocal = 48 Gpc-3 yr-1, which is not consistent with the current LIGO/Virgo DNS merger rate estimate (1540^{+3200}_{-1220} Gpc-3 yr-1). Within our study of the parameter space, we find solutions that allow for DNS merger rates as high as R_local ≈ 600^{+600}_{-300} Gpc-3 yr-1 which are thus consistent with the LIGO/Virgo estimate. However, our corresponding BH-BH merger rates for the models with high DNS merger rates exceed the current LIGO/Virgo estimate of local BH-BH merger rate (12-213 Gpc-3 yr-1). Apart from being particularly sensitive to the common envelope treatment, DNS merger rates are rather robust against variations of several of the key factors probed in our study (e.g. mass transfer, angular momentum loss, and natal kicks). This might suggest that either common envelope development/survival works differently for DNS (˜10-20 M⊙ stars) than for BH-BH (˜40-100 M⊙ stars) progenitors, or high black hole (BH) natal kicks are needed to meet observational constraints for both types of binaries. Our conclusion is based on a limited number of (21) evolutionary models and is valid within this particular DNS and BH-BH isolated binary formation scenario.
McColl, Kaighin A.; Katul, Gabriel G.; Gentine, Pierre; ...
2016-03-16
A series of recent studies has shown that a model of the turbulent vertical velocity variance spectrum (F vv) combined with a simplified cospectral budget can reproduce many macroscopic flow properties of turbulent wall-bounded flows, including various features of the mean-velocity profile (MVP), i.e., the "law of the wall". While the approach reasonably models the MVP's logarithmic layer, the buffer layer displays insufficient curvature compared to measurements. The assumptions are re-examined here using a direct numerical simulation (DNS) dataset at moderate Reynolds number that includes all the requisite spectral and co-spectral information. Starting with several hypotheses for the cause ofmore » the "missing" curvature in the buffer layer, it is shown that the curvature deficit is mainly due to mismatches between (i) the modelled and DNS-observed pressure-strain terms in the cospectral budget and (ii) the DNS-observed F vv and the idealized form used in previous models. By replacing the current parameterization for the pressure-strain term with an expansive version that directly accounts for wall-blocking effects, the modelled and DNS reported pressure-strain profiles match each other in the buffer and logarithmic layers. Forcing the new model with DNS-reported F vv rather than the idealized form previously used reproduces the missing buffer layer curvature to high fidelity thereby confirming the "spectral link" between F vv and the MVP across the full profile. A broad implication of this work is that much of the macroscopic properties of the flow (such as the MVP) may be derived from the energy distribution in turbulent eddies (i.e., F vv) representing the microstate of the flow, provided the link between them accounts for wall-blocking.« less
Spectra of turbulently advected scalars that have small Schmidt number
NASA Astrophysics Data System (ADS)
Hill, Reginald J.
2017-09-01
Exact statistical equations are derived for turbulent advection of a passive scalar having diffusivity much larger than the kinematic viscosity, i.e., small Schmidt number. The equations contain all terms needed for precise direct numerical simulation (DNS) quantification. In the appropriate limit, the equations reduce to the classical theory for which the scalar spectrum is proportional to the energy spectrum multiplied by k-4, which, in turn, results in the inertial-diffusive range power law, k-17 /3. The classical theory was derived for the case of isotropic velocity and scalar fields. The exact equations are simplified for less restrictive cases: (1) locally isotropic scalar fluctuations at dissipation scales with no restriction on symmetry of the velocity field, (2) isotropic velocity field with averaging over all wave-vector directions with no restriction on the symmetry of the scalar, motivated by that average being used for DNS, and (3) isotropic velocity field with axisymmetric scalar fluctuations, motivated by the mean-scalar-gradient-source case. The equations are applied to recently published DNSs of passive scalars for the cases of a freely decaying scalar and a mean-scalar-gradient source. New terms in the exact equations are estimated for those cases and are found to be significant; those terms cause the deviations from the classical theory found by the DNS studies. A new formula for the mean-scalar-gradient case explains the variation of the scalar spectra for the DNS of the smallest Schmidt-number cases. Expansion in Legendre polynomials reveals the effect of axisymmetry. Inertial-diffusive-range formulas for both the zero- and second-order Legendre contributions are given. Exact statistical equations reveal what must be quantified using DNS to determine what causes deviations from asymptotic relationships.
Ooigawa, Hidetoshi; Nawashiro, Hiroshi; Fukui, Shinji; Otani, Naoki; Osumi, Atsushi; Toyooka, Terushige; Shima, Katsuji
2006-10-01
We studied the fate of Nissl-stained dark neurons (N-DNs) following traumatic brain injury (TBI). N-DNs were investigated in the cerebral neocortex and the hippocampus using a rat lateral fluid percussion injury model. Nissl stain, acid fuchsin stain and immunohistochemistry with phosphorylated extracellular signal-regulated protein kinase (pERK) antibody were used in order to assess posttraumatic neurons. In the neocortex, the number of dead neurons at 24 h postinjury was significantly less than that of the observed N-DNs in the earlier phase. Only a few N-DNs increased their pERK immunoreactivity. On the other hand, in the hippocampus the number of dead neurons was approximately the same number as that of the N-DNs, and most N-DNs showed an increased pERK immunoreactivity. These data suggest that not all N-DNs inevitably die especially in the neocortex after TBI. The fate of N-DNs is thus considered to differ depending on brain subfields.
NASA Astrophysics Data System (ADS)
Yu, R.; Lipatnikov, A. N.; Bai, X. S.
2014-08-01
In order to gain further insight into (i) the use of conditioned quantities for characterizing turbulence within a premixed flame brush and (ii) the influence of front propagation on turbulent scalar transport, a 3D Direct Numerical Simulation (DNS) study of an infinitely thin front that self-propagates in statistically stationary, homogeneous, isotropic, forced turbulence was performed by numerically integrating Navier-Stokes and level set equations. While this study was motivated by issues relevant to premixed combustion, the density was assumed to be constant in order (i) to avoid the influence of the front on the flow and, therefore, to know the true turbulence characteristics as reference quantities for assessment of conditioned moments and (ii) to separate the influence of front propagation on turbulent transport from the influence of pressure gradient induced by heat release. Numerical simulations were performed for two turbulence Reynolds numbers (50 and 100) and four ratios (1, 2, 5, and 10) of the rms turbulent velocity to the front speed. Obtained results show that, first, the mean front thickness is decreased when a ratio of the rms turbulent velocity to the front speed is decreased. Second, although the gradient diffusion closure yields the right direction of turbulent scalar flux obtained in the DNS, the diffusion coefficient Dt determined using the DNS data depends on the mean progress variable. Moreover, Dt is decreased when the front speed is increased, thus, indicating that the front propagation affects turbulent scalar transport even in a constant-density case. Third, conditioned moments of the velocity field differ from counterpart mean moments, thus, disputing the use of conditioned velocity moments for characterizing turbulence when modeling premixed turbulent combustion. Fourth, computed conditioned enstrophies are close to the mean enstrophy in all studied cases, thus, suggesting the use of conditioned enstrophy for characterizing turbulence within a premixed flame brush.
LES of Supersonic Turbulent Channel Flow at Mach Numbers 1.5 and 3
NASA Astrophysics Data System (ADS)
Raghunath, Sriram; Brereton, Giles
2009-11-01
LES of compressible, turbulent, body-force driven, isothermal-wall channel flows at Reτ of 190 and 395 at moderate supersonic speeds (Mach 1.5 and 3) are presented. Simulations are fully resolved in the wall-normal direction without the need for wall-layer models. SGS models for incompressible flows, with appropriate extensions for compressibility, are tested a priori/ with DNS results and used in LES. Convergence of the simulations is found to be sensitive to the initial conditions and to the choice of model (wall-normal damping) in the laminar sublayer. The Nicoud--Ducros wall adapting SGS model, coupled with a standard SGS heat flux model, is found to yield results in good agreement with DNS.
NASA Astrophysics Data System (ADS)
De Grazia, D.; Moxey, D.; Sherwin, S. J.; Kravtsova, M. A.; Ruban, A. I.
2018-02-01
In this paper we study the boundary-layer separation produced in a high-speed subsonic boundary layer by a small wall roughness. Specifically, we present a direct numerical simulation (DNS) of a two-dimensional boundary-layer flow over a flat plate encountering a three-dimensional Gaussian-shaped hump. This work was motivated by the lack of DNS data of boundary-layer flows past roughness elements in a similar regime which is typical of civil aviation. The Mach and Reynolds numbers are chosen to be relevant for aeronautical applications when considering small imperfections at the leading edge of wings. We analyze different heights of the hump: The smaller heights result in a weakly nonlinear regime, while the larger result in a fully nonlinear regime with an increasing laminar separation bubble arising downstream of the roughness element and the formation of a pair of streamwise counterrotating vortices which appear to support themselves.
Predictors for delayed encephalopathy following acute carbon monoxide poisoning.
Kudo, Kaoru; Otsuka, Kotaro; Yagi, Junko; Sanjo, Katsumi; Koizumi, Noritaka; Koeda, Atsuhiko; Umetsu, Miki Yokota; Yoshioka, Yasuhito; Mizugai, Ayumi; Mita, Toshinari; Shiga, Yu; Koizumi, Fumito; Nakamura, Hikaru; Sakai, Akio
2014-01-31
In Japan, many carbon monoxide (CO) poisoning cases are transported to emergency settings, making treatment and prognostic assessment an urgent task. However, there is currently no reliable means to predict whether "delayed neuropsychiatric sequelae (DNS)" will develop after acute CO poisoning. This study is intended to find out risk factors for the development of DNS and to characterize the clinical course following the development of DNS in acute CO poisoning cases. This is a retrospective cohort study of 79 consecutive patients treated at a single institution for CO poisoning. This study included 79 cases of acute CO poisoning admitted to our emergency department after attempted suicide, who were divided into two groups consisting of 13 cases who developed DNS and 66 cases who did not. The two groups were compared and analyzed in terms of clinical symptoms, laboratory findings, etc. Predictors for the development of DNS following acute CO poisoning included: serious consciousness disturbance at emergency admission; head CT findings indicating hypoxic encephalopathy; hematology findings including high creatine kinase, creatine kinase-MB and lactate dehydrogenase levels; and low Global Assessment Scale scores. The clinical course of the DNS-developing cases was characterized by prolonged hospital stay and a larger number of hyperbaric oxygen (HBO) therapy sessions. In patients with the characteristics identified in this study, administration of HBO therapy should be proactively considered after informing their family, at initial stage, of the risk of developing DNS, and at least 5 weeks' follow-up to watch for the development of DNS is considered necessary.
Receptivity Mechanisms in a Rotating Torus: Experiments and Simulations
NASA Astrophysics Data System (ADS)
Clarke, Richard; Calabretto, Sophie; Walbran, Scott; Denier, Jim; Cater, John; Mattner, Trent
2013-11-01
We consider the flow within a rotating fluid-filled torus subject to a sudden change in angular velocity. Previous DNS computations showed the occurence of boundary-layer separation (Hewitt et al., JFM 688), which was conjectured to be linked with structures observed in the top-down visualisations of Madden & Mullin (JFM 265). These showed a ``flow front'' in the equatorial plane propagating from the outer wall, the position of which was seen to match well with the separated flow structures seen in the DNS. However, in the experiments a second streak was observed at later times on the opposite wall, not seen in the DNS. To better understand this structure, we present the first measurements of the cross-sectional flow, using PIV on an experiment designed to overcome the optical issues in cross-sectional measurements. These demonstrate both the post-separated flow structures seen in earlier DNS, as well as the appearance of a vortex-pair on the opposite equator. These we believe to be likely candidates for the second fronts noted in the Madden experiments. We hypothesise that this vortex pair is generated by small geometric imperfections, an idea seemingly borne out by striking agreement with new DNS conducted in a modified geometry that better represents experimental reality. This work is funded by the Royal Society of New Zealand Marsden Fund, and the University of Auckland Doctoral Scholarship Programme.
Direct and Large Eddy Simulation of non-equilibrium wall-bounded turbulent flows
NASA Astrophysics Data System (ADS)
Park, Hee-Jun
2005-11-01
The performance of several existing SGS models in non-equilibrium wall-bounded turbulent flows is investigated through comparisons of LES and DNS. The test problem is a shear-driven three-dimensional turbulent channel flow at base Reτ˜210 established by impulsive motion of one of the channel walls in the spanwise direction with a spanwise velocity equal to 3/4 of the bulk mean velocity in the channel. The DNS and LES are performed using pseudo-spectral methods with resolutions of 128x128x129 and 32x64x65, respectively. The SGS models tested include the nonlinear Interactions Approximation model (NIA) [Haliloglu and Akhavan (2004)], the Dynamic Smagorinsky model (DSM) [Germano et al. (1991)], and the Dynamic Mixed Model (DMM) [Zang et al. (1993)]. The results show that NIA gives the best overall agreement with DNS. Both DMM and DSM over-predict the decay of the mean streamwise wall shear stress on the moving wall, while NIA gives results in close agreements with DNS. Similarly, NIA gives the best agreement with DNS in the prediction of the mean velocity, the higher-order turbulence statistics, and the lag angle between the mean shear and the turbulent shear stress. These results suggest that non-equilibrium wall-bounded turbulent flows can be accurately computed by LES with NIA as the SGS model.
Turbulence in Compressible Flows
NASA Technical Reports Server (NTRS)
1997-01-01
Lecture notes for the AGARD Fluid Dynamics Panel (FDP) Special Course on 'Turbulence in Compressible Flows' have been assembled in this report. The following topics were covered: Compressible Turbulent Boundary Layers, Compressible Turbulent Free Shear Layers, Turbulent Combustion, DNS/LES and RANS Simulations of Compressible Turbulent Flows, and Case Studies of Applications of Turbulence Models in Aerospace.
Study of subgrid-scale velocity models for reacting and nonreacting flows
NASA Astrophysics Data System (ADS)
Langella, I.; Doan, N. A. K.; Swaminathan, N.; Pope, S. B.
2018-05-01
A study is conducted to identify advantages and limitations of existing large-eddy simulation (LES) closures for the subgrid-scale (SGS) kinetic energy using a database of direct numerical simulations (DNS). The analysis is conducted for both reacting and nonreacting flows, different turbulence conditions, and various filter sizes. A model, based on dissipation and diffusion of momentum (LD-D model), is proposed in this paper based on the observed behavior of four existing models. Our model shows the best overall agreements with DNS statistics. Two main investigations are conducted for both reacting and nonreacting flows: (i) an investigation on the robustness of the model constants, showing that commonly used constants lead to a severe underestimation of the SGS kinetic energy and enlightening their dependence on Reynolds number and filter size; and (ii) an investigation on the statistical behavior of the SGS closures, which suggests that the dissipation of momentum is the key parameter to be considered in such closures and that dilatation effect is important and must be captured correctly in reacting flows. Additional properties of SGS kinetic energy modeling are identified and discussed.
DNS of flow in stenosed carotid artery
NASA Astrophysics Data System (ADS)
Grinberg, Leopold; Yakhot, Alexander; Karniadakis, George
2006-11-01
Direct numerical simulation (DNS) of a three-dimensional flow through a stenosed carotid artery has been performed. Onset of turbulence downstream of the occlusion has been observed. The developing turbulence is characterized by an alternating spatio-temporal transitional regime. The transition to turbulence occurs during the systolic phase approximately five throat-diameters downstream of the throat, while laminarization occurs during the diastolic phase. Transition in space is first enhanced and subsequently decays downstream. The wall shear stress increases in the stenosed internal carotid artery due to the vessel occlusion and as the result of turbulence.
Ianni, Federica; Sardella, Roccaldo; Lisanti, Antonella; Gioiello, Antimo; Cenci Goga, Beniamino Terzo; Lindner, Wolfgang; Natalini, Benedetto
2015-12-10
In two-dimensional HPLC (2D-HPLC) "heart-cut" applications, two columns are connected in series via a switching valve and volume fractions from the "primary" column are re-injected on the "secondary" column. The heart-cut 2D-HPLC system here described was implemented by connecting a reversed-phase (RP) column (first dimension) to a chiral column (second dimension) containing a quinidine-based chiral stationary phase. The system was used to evaluate the change in the enantiomeric excess value of dansylated (Dns) amino acids (AAs) in milk samples from two cows with different "California Mastitis Test" scores: negative test for sample 1, positive for sample 2. Apart from the co-elution of Dns-Arg/Dns-Gly and the reduced chemoselectivity for Dns-Leu/Dns-allo-Ile, the optimized achiral RP method distinguished the remaining standard Dns-AAs. Dns-AAs were identified in the chromatograms of the real samples, and in higher concentration Dns-Ala, Dns-Arg, Dns-Asp, Dns-Glu, Dns-Ile, Dns-Leu, Dns-Phe and Dns-Val. Except Dns-Arg, the chiral column enabled the RP enantioseparation of all the other compounds (α and RS values up to 1.65 and 8.63, respectively, for Dns-Phe). In sample 2, the amounts of Dns-d-AAs were rather elevated, in particular for Dns-Ala and Dns-Asp. Instead, for sample 1, D-isomers were detected for Dns-Ala, Dns-Glu and Dns-Leu. The proposed 2D-HPLC method could be useful for the identification of clinical mastitis difficult to be diagnosed. Moreover, the eventual progressive reduction of D-AAs levels with the degree of sub-clinical mastitis could allow the building of mathematical models to use for the diagnosis of early stages of mastitis. Copyright © 2014 Elsevier B.V. All rights reserved.
Kinetic energy budget for electroconvective flows near ion selective membranes
NASA Astrophysics Data System (ADS)
Wang, Karen; Mani, Ali
2017-11-01
Electroconvection occurs when ions are driven from a bulk fluid through an ion-selective surface. When the driving voltage is beyond a threshold, this process undergoes a hydrodynamic instability called electroconvection, which can become chaotic due to nonlinear coupling between ion-transport, fluid flow, and electrostatic forces. Electroconvection significantly enhances ion transport and plays an important role in a wide range of electrochemical applications. We investigate this phenomenon by considering a canonical geometry consisting of a symmetric binary electrolyte between an ion-selective membrane and a reservoir using 2D direct numerical simulation (DNS). Our simulations reveal that for most practical regimes, DNS of electroconvection is expensive. Thus, a plan towards development of reduced-order models is necessary to facilitate the adoption of analysis of this phenomenon in industry. Here we use DNS to analyze the kinetic energy budget to shed light into the mechanisms sustaining flow and mixing in electroconvective flows. Our analysis reveals the relative dominance of kinetic energy sources, dissipation, and transport mechanisms sustaining electroconvection at different distances from the interface and over a wide range of input parameters. Karen Wang was supported by the National Defense Science & Engineering Graduate Fellowship (NDSEG). Ali Mani was supported by the National Science Foundation Award.
Small-Scale Dissipation in Binary-Species Transitional Mixing Layers
NASA Technical Reports Server (NTRS)
Bellan, Josette; Okong'o, Nora
2011-01-01
Motivated by large eddy simulation (LES) modeling of supercritical turbulent flows, transitional states of databases obtained from direct numerical simulations (DNS) of binary-species supercritical temporal mixing layers were examined to understand the subgrid-scale dissipation, and its variation with filter size. Examination of the DSN-scale domain- averaged dissipation confirms previous findings that, out of the three modes of viscous, temperature and species-mass dissipation, the species-mass dissipation is the main contributor to the total dissipation. The results revealed that the percentage of species-mass by total dissipation is nearly invariant across species systems and initial conditions. This dominance of the species-mass dissipation is due to high-density-gradient magnitude (HDGM) regions populating the flow under the supercritical conditions of the simulations; such regions have also been observed in fully turbulent supercritical flows. The domain average being the result of both the local values and the extent of the HDGM regions, the expectations were that the response to filtering would vary with these flow characteristics. All filtering here is performed in the dissipation range of the Kolmogorov spectrum, at filter sizes from 4 to 16 times the DNS grid spacing. The small-scale (subgrid scale, SGS) dissipation was found by subtracting the filtered-field dissipation from the DNS-field dissipation. In contrast to the DNS dissipation, the SGS dissipation is not necessarily positive; negative values indicate backscatter. Backscatter was shown to be spatially widespread in all modes of dissipation and in the total dissipation (25 to 60 percent of the domain). The maximum magnitude of the negative subgrid- scale dissipation was as much as 17 percent of the maximum positive subgrid- scale dissipation, indicating that, not only is backscatter spatially widespread in these flows, but it is considerable in magnitude and cannot be ignored for the purposes of LES modeling. The Smagorinsky model, for example, is unsuited for modeling SGS fluxes in the LES because it cannot render backscatter. With increased filter size, there is only a modest decrease in the spatial extent of backscatter. The implication is that even at large LES grid spacing, the issue of backscatter and related SGS-flux modeling decisions are unavoidable. As a fraction of the total dissipation, the small-scale dissipation is between 10 and 30 percent of the total dissipation for a filter size that is four times the DNS grid spacing, with all OH cases bunched at 10 percent, and the HN cases spanning 24 30 percent. A scale similarity was found in that the domain-average proportion of each small-scale dissipation mode, with respect to the total small-scale dissipation, is very similar to equivalent results at the DNS scale. With increasing filter size, the proportion of the small-scale dissipation in the dissipation increases substantially, although not quite proportionally. When the filter size increases by four-fold, 52 percent for all OH runs, and 70 percent for HN runs, of the dissipation is contained in the subgrid-scale portion with virtually no dependence on the initial conditions of the DNS. The indications from the dissipation analysis are that modeling efforts in LES of thermodynamically supercritical flows should be focused primarily on mass-flux effects, with temperature and viscous effects being secondary. The analysis also reveals a physical justification for scale-similarity type models, although the suitability of these will need to be confirmed in a posteriori studies.
Direct numerical simulation of shockwave and turbulent boundary layer interactions
NASA Astrophysics Data System (ADS)
Wu, Minwei
Direct numerical simulations (DNS) of a shockwave/turbulent boundary layer interaction (STBLI) at Mach number 3 and Reynolds number based on the momentum thickness of 2300 are performed. A 4th-order accurate, bandwidth-optimized weighted-essentially-non-oscillatory (WENO) scheme is used and the method is found to be too dissipative for the STBLI simulation due to the over-adaptation properties of this original WENO scheme. In turn, a relative limiter is introduced to mitigate the problem. Tests on the Shu-Osher problem show that the modified WENO scheme decreases the numerical dissipation significantly. By utilizing a combination of the relative limiter and the absolute limiter described by Jiang & Shu [32], the DNS results are improved further. The DNS data agree well with the reference experiments of Bookey et al. [10] in the size of the separation bubble, the separation and reattachment point, the mean wall-pressure distribution, and the velocity profiles both upstream and downstream of the interaction region. The DNS data show that velocity profiles change dramatically along the streamwise direction. Downstream of the interaction, the velocity profiles show a characteristic "dip" in the logarithmic region, as shown by the experiments of Smits & Muck [66] at much higher Reynolds number. In the separation region, the velocity profiles are found to resemble those of a laminar flow, yet the flow does not fully relaminarize. The mass-flux turbulence intensity is amplified by a factor of about 5 throughout the interaction, which is consistent with that found in higher Reynolds experiments of Selig et al. [52]. All Reynolds stress components are greatly amplified by the interaction. Assuming that the ow is still two dimensional downstream of the interaction, the components rhou'u', rhov'v', rho w'w', and rho u'w' are amplified by factors of 6, 6, 12, and 24, respectively, where u is the streamwise and w is the wall-normal velocity. However, analyses of the turbulence structure show that the ow is not uniform in the spanwise direction downstream of the interaction. A pair of counter-rotating vortices is observed in streamwise-wall-normal planes in the mean ow downstream of the ramp corner. Taking the three-dimensionality into account, the amplification factors of the Reynolds stresses are greatly decreased. The component rhou'w' is amplified by a factor of about 10, which is comparable to that found in the experiments of Smits & Muck [66]. Strong Reynolds analogy (SRA) relations are also studied using the DNS data. The SRA is found to hold in the incoming boundary layer of the DNS. However, inside and downstream of the interaction region, the SRA relations are not satisfied. From the DNS analyses, the shock motion is characterized by a low frequency component (of order 0.01Uinfinity/delta). In addition, the motion of the shock is found to have two aspects: a spanwise wrinkling motion and a streamwise oscillatory motion. The spanwise wrinkling is observed to be a local feature with high frequencies (of order Uinfinity /delta). Two-point correlations reveal that the spanwise wrinkling is closely related to the low momentum motions in the incoming boundary layer as they convect through the shock. The low frequency shock motion is found to be a streamwise oscillation motion. Conditional statistics show that there is no significant difference in the mean properties of the incoming boundary layer when the shock is at an upstream or downstream location. However, analyses of the unsteadiness of the separation bubble reveal that the low frequency shock motion is driven by the downstream flow.
Parameter Estimation for a Pulsating Turbulent Buoyant Jet Using Approximate Bayesian Computation
NASA Astrophysics Data System (ADS)
Christopher, Jason; Wimer, Nicholas; Lapointe, Caelan; Hayden, Torrey; Grooms, Ian; Rieker, Greg; Hamlington, Peter
2017-11-01
Approximate Bayesian Computation (ABC) is a powerful tool that allows sparse experimental or other ``truth'' data to be used for the prediction of unknown parameters, such as flow properties and boundary conditions, in numerical simulations of real-world engineering systems. Here we introduce the ABC approach and then use ABC to predict unknown inflow conditions in simulations of a two-dimensional (2D) turbulent, high-temperature buoyant jet. For this test case, truth data are obtained from a direct numerical simulation (DNS) with known boundary conditions and problem parameters, while the ABC procedure utilizes lower fidelity large eddy simulations. Using spatially-sparse statistics from the 2D buoyant jet DNS, we show that the ABC method provides accurate predictions of true jet inflow parameters. The success of the ABC approach in the present test suggests that ABC is a useful and versatile tool for predicting flow information, such as boundary conditions, that can be difficult to determine experimentally.
NASA Astrophysics Data System (ADS)
Yeung, P. K.; Sreenivasan, K. R.
2014-01-01
In a recent direct numerical simulation (DNS) study [P. K. Yeung and K. R. Sreenivasan, "Spectrum of passive scalars of high molecular diffusivity in turbulent mixing," J. Fluid Mech. 716, R14 (2013)] with Schmidt number as low as 1/2048, we verified the essential physical content of the theory of Batchelor, Howells, and Townsend ["Small-scale variation of convected quantities like temperature in turbulent fluid. 2. The case of large conductivity," J. Fluid Mech. 5, 134 (1959)] for turbulent passive scalar fields with very strong diffusivity, decaying in the absence of any production mechanism. In particular, we confirmed the existence of the -17/3 power of the scalar spectral density in the so-called inertial-diffusive range. In the present paper, we consider the DNS of the same problem, but in the presence of a uniform mean gradient, which leads to the production of scalar fluctuations at (primarily) the large scales. For the parameters of the simulations, the presence of the mean gradient alters the physics of mixing fundamentally at low Peclet numbers. While the spectrum still follows a -17/3 power law in the inertial-diffusive range, the pre-factor is non-universal and depends on the magnitude of the mean scalar gradient. Spectral transfer is greatly reduced in comparison with those for moderately and weakly diffusive scalars, leading to several distinctive features such as the absence of dissipative anomaly and a new balance of terms in the spectral transfer equation for the scalar variance, differing from the case of zero gradient. We use the DNS results to present an alternative explanation for the observed scaling behavior, and discuss a few spectral characteristics in detail.
Therapeutic effects of dendrosomal solanine on a metastatic breast tumor.
Mohsenikia, Maryam; Farhangi, Baharak; Alizadeh, Ali Mohammad; Khodayari, Hamid; Khodayari, Saeed; Khori, Vahid; Arjmand Abbassi, Yasaman; Vesovic, Milica; Soleymani, Ali; Najafi, Farhood
2016-03-01
Our previous studies showed that alpha-solanine can inhibit tumor growth in cell culture and animal models of breast cancer. However, solanine is insoluble in common solvents; therefore, we developed a special nanoparticle with high-capacity solubility. The present study is aimed to deliberate the therapeutic effects of dendrosomal solanine (DNS) on a metastatic breast tumor in vitro and in vivo. After DNS preparation and dosing procedures, forty-five mice were equally divided into five groups to investigate the anti-metastatic effects of DNS on mammary tumor-bearing mice. Compared to solanine, DNS significantly suppressed the proliferation of 4 T1 cells in a dose- and time-dependent manner. DNS showed a remarkable safety rate of up to 10mg/kg. A significant decrease in white blood-cell count was seen at 20mg/kg DNS in comparison with control animals. Mice treated with DNS had smaller tumor volume (mm(3)) in comparison with control and solanine groups. Moreover, the incidence of the breast tumor metastases was about 67% in the control animals, where as solanine and DNS 1mg/kg were about 22% and 0%, respectively. Furthermore, the number of metastases per mouse varied from one to three. The tissues of tumor, brain, liver, spleen, and lung showed higher expression levels of Bcl-2 but lower expression levels of Bax, MMP-2, MMP-9, mTOR, and Akt in DNS-treated mice than control and solanine groups. The findings suggest that DNS has a more impactful therapeutic effect than solanine on 4 T1-induced breast tumorigenesis via influencing the tissue microenvironment. Copyright © 2016 Elsevier Inc. All rights reserved.
Oh, Bong-Kyeong; Kim, Young-Joo; Park, Young Nyun; Choi, Jinsub; Kim, Kyung Sik; Park, Chanil
2006-04-01
Telomerase reverse transcriptase (hTERT) is the rate-limiting determinant of telomerase, which is critical for carcinogenesis. Dysplastic nodules (DNs) appear to be preneoplastic lesions of hepatocellular carcinomas (HCCs). In this study, in order to characterize DNs, hTERT mRNA, hTERT gene dosage, and mRNA for c-myc, a transcriptional activator of hTERT were studied in human multi-step hepatocarcinogenesis. Fifty four hepatic nodules including 5 large regenerative nodules, 14 low-grade DNs, 7 high-grade DNs, 11 DNs with HCC foci and 17 HCCs, 23 livers with chronic hepatitis/cirrhosis, and 6 normal livers were examined. Transcript levels were measured by real-time quantitative RT-PCR and gene dosages by real-time PCR and Southern blotting. The hTERT mRNA levels increased with the progression of hepatocarcinogenesis, and a significant induction in the transition between low- and high-grade DNs was seen. Most high-grade DNs strongly expressed hTERT mRNA at levels similar to those of HCCs. Twenty-one percent of low-grade DNs had high levels of hTERT mRNA, up to those of high-grade DNs and there was no difference in the pathological features between low-grade DNs with and without increased hTERT mRNA levels. No correlation was found between hTERT mRNA levels, hTERT gene dosage, and c-myc mRNA levels. These results suggest that the induction of hTERT mRNA is an important early event and that its measurement by real-time quantitative RT-PCR is a useful tool to detect premalignant/malignant tendencies in hepatic nodules. However, hTERT gene dosage and c-myc expression are not the main mechanisms regulating hTERT expression in hepatocarcinogenesis.
Instability of a Supersonic Boundary-Layer with Localized Roughness
NASA Technical Reports Server (NTRS)
Marxen, Olaf; Iaccarino, Gianluca; Shaqfeh, Eric S. G.
2010-01-01
A localized 3-D roughness causes boundary-layer separation and (weak) shocks. Most importantly, streamwise vortices occur which induce streamwise (low U, high T) streaks. Immersed boundary method (volume force) suitable to represent roughness element in DNS. Favorable comparison between bi-global stability theory and DNS for a "y-mode" Outlook: Understand the flow physics (investigate "z-modes" in DNS through sinuous spanwise forcing, study origin of the beat in DNS).
Predictors for delayed encephalopathy following acute carbon monoxide poisoning
2014-01-01
Background In Japan, many carbon monoxide (CO) poisoning cases are transported to emergency settings, making treatment and prognostic assessment an urgent task. However, there is currently no reliable means to predict whether “delayed neuropsychiatric sequelae (DNS)” will develop after acute CO poisoning. This study is intended to find out risk factors for the development of DNS and to characterize the clinical course following the development of DNS in acute CO poisoning cases. Methods This is a retrospective cohort study of 79 consecutive patients treated at a single institution for CO poisoning. This study included 79 cases of acute CO poisoning admitted to our emergency department after attempted suicide, who were divided into two groups consisting of 13 cases who developed DNS and 66 cases who did not. The two groups were compared and analyzed in terms of clinical symptoms, laboratory findings, etc. Results Predictors for the development of DNS following acute CO poisoning included: serious consciousness disturbance at emergency admission; head CT findings indicating hypoxic encephalopathy; hematology findings including high creatine kinase, creatine kinase-MB and lactate dehydrogenase levels; and low Global Assessment Scale scores. The clinical course of the DNS-developing cases was characterized by prolonged hospital stay and a larger number of hyperbaric oxygen (HBO) therapy sessions. Conclusion In patients with the characteristics identified in this study, administration of HBO therapy should be proactively considered after informing their family, at initial stage, of the risk of developing DNS, and at least 5 weeks’ follow-up to watch for the development of DNS is considered necessary. PMID:24484081
Sato, Tsunenobu; Kondo, Fukuo; Ebara, Masaaki; Sugiura, Nobuyuki; Okabe, Shinichiro; Sunaga, Masahiko; Yoshikawa, Masaharu; Suzuki, Eiichiro; Ogasawara, Sadayuki; Shinozaki, Yusuke; Ooka, Yoshihiko; Chiba, Tetsuhiro; Kanai, Fumihiko; Kishimoto, Takashi; Nakatani, Yukio; Fukusato, Toshio; Yokosuka, Osamu
2015-04-01
Some follow-up studies of large regenerative nodules (LRNs) and dysplastic nodules (DNs) were reported previously. However, the pre-malignant potentiality of LRNs has remained controversial up to now. No LRNs showed malignant transformation in our previous study. We aimed to evaluate the pre-malignant potentiality of LRNs and DNs with a greater number of cases and longer follow-up periods. From 1982 to 2005, 1,500 consecutive nodular lesions up to 2 cm in diameter were subjected to US guided thin-needle biopsy in cirrhotic patients at Chiba University Hospital. Of these lesions, 68 LRNs in 60 cases and 20 DNs in 22 cases were followed up for more than 6 months without any anti-cancer therapy. The last US examination was in 2010. The total study period was 28 years. We analyzed the histological findings and the clinical data of all cases retrospectively. The outcome of the lesions was examined. The mean follow-up period was 38.9 (16-119) months in LRNs and 31.9 (6-101 months) in DNs. Rate of nodule enlargement was higher in DNs (8/24 nodules, 33%) than LRNs (11/68 nodules, 16 %), (p = 0.0743, not significant). Rate of malignant transformation was also higher in DNs (10/24 nodules, 42%) than LRNs (9/68 nodules, 13%), (p = 0.0040, significant). The rate of disappearance in images was similar between LRNs and DNs. We should recognize LRN as low risk pre-malignant lesions whereas DNs as high risk lesions.
Magnetic flux concentrations from dynamo-generated fields
NASA Astrophysics Data System (ADS)
Jabbari, S.; Brandenburg, A.; Losada, I. R.; Kleeorin, N.; Rogachevskii, I.
2014-08-01
Context. The mean-field theory of magnetized stellar convection gives rise to two distinct instabilities: the large-scale dynamo instability, operating in the bulk of the convection zone and a negative effective magnetic pressure instability (NEMPI) operating in the strongly stratified surface layers. The latter might be important in connection with magnetic spot formation. However, as follows from theoretical analysis, the growth rate of NEMPI is suppressed with increasing rotation rates. On the other hand, recent direct numerical simulations (DNS) have shown a subsequent increase in the growth rate. Aims: We examine quantitatively whether this increase in the growth rate of NEMPI can be explained by an α2 mean-field dynamo, and whether both NEMPI and the dynamo instability can operate at the same time. Methods: We use both DNS and mean-field simulations (MFS) to solve the underlying equations numerically either with or without an imposed horizontal field. We use the test-field method to compute relevant dynamo coefficients. Results: DNS show that magnetic flux concentrations are still possible up to rotation rates above which the large-scale dynamo effect produces mean magnetic fields. The resulting DNS growth rates are quantitatively reproduced with MFS. As expected for weak or vanishing rotation, the growth rate of NEMPI increases with increasing gravity, but there is a correction term for strong gravity and large turbulent magnetic diffusivity. Conclusions: Magnetic flux concentrations are still possible for rotation rates above which dynamo action takes over. For the solar rotation rate, the corresponding turbulent turnover time is about 5 h, with dynamo action commencing in the layers beneath.
LES, DNS and RANS for the analysis of high-speed turbulent reacting flows
NASA Technical Reports Server (NTRS)
Givi, Peyman; Taulbee, Dale B.; Adumitroaie, Virgil; Sabini, George J.; Shieh, Geoffrey S.
1994-01-01
The purpose of this research is to continue our efforts in advancing the state of knowledge in large eddy simulation (LES), direct numerical simulation (DNS), and Reynolds averaged Navier Stokes (RANS) methods for the computational analysis of high-speed reacting turbulent flows. In the second phase of this work, covering the period 1 Sep. 1993 - 1 Sep. 1994, we have focused our efforts on two research problems: (1) developments of 'algebraic' moment closures for statistical descriptions of nonpremixed reacting systems, and (2) assessments of the Dirichlet frequency in presumed scalar probability density function (PDF) methods in stochastic description of turbulent reacting flows. This report provides a complete description of our efforts during this past year as supported by the NASA Langley Research Center under Grant NAG1-1122.
Multigrid methods for flow transition in three-dimensional boundary layers with surface roughness
NASA Technical Reports Server (NTRS)
Liu, Chaoqun; Liu, Zhining; Mccormick, Steve
1993-01-01
The efficient multilevel adaptive method has been successfully applied to perform direct numerical simulations (DNS) of flow transition in 3-D channels and 3-D boundary layers with 2-D and 3-D isolated and distributed roughness in a curvilinear coordinate system. A fourth-order finite difference technique on stretched and staggered grids, a fully-implicit time marching scheme, a semi-coarsening multigrid method associated with line distributive relaxation scheme, and an improved outflow boundary-condition treatment, which needs only a very short buffer domain to damp all order-one wave reflections, are developed. These approaches make the multigrid DNS code very accurate and efficient. This allows us not only to be able to do spatial DNS for the 3-D channel and flat plate at low computational costs, but also to do spatial DNS for transition in the 3-D boundary layer with 3-D single and multiple roughness elements, which would have extremely high computational costs with conventional methods. Numerical results show good agreement with the linear stability theory, the secondary instability theory, and a number of laboratory experiments. The contribution of isolated and distributed roughness to transition is analyzed.
Large-eddy simulations of the restricted nonlinear system
NASA Astrophysics Data System (ADS)
Bretheim, Joel; Gayme, Dennice; Meneveau, Charles
2014-11-01
Wall-bounded shear flows often exhibit elongated flow structures with streamwise coherence (e.g. rolls/streaks), prompting the exploration of a streamwise-constant modeling framework to investigate wall-turbulence. Simulations of a streamwise-constant (2D/3C) model have been shown to produce the roll/streak structures and accurately reproduce the blunted turbulent mean velocity profile in plane Couette flow. The related restricted nonlinear (RNL) model captures these same features but also exhibits self-sustaining turbulent behavior. Direct numerical simulation (DNS) of the RNL system results in similar statistics for a number of flow quantities and a flow field that is consistent with DNS of the Navier-Stokes equations. Aiming to develop reduced-order models of wall-bounded turbulence at very high Reynolds numbers in which viscous near-wall dynamics cannot be resolved, this work presents the development of an RNL formulation of the filtered Navier-Stokes equations solved for in large-eddy simulations (LES). The proposed LES-RNL system is a computationally affordable reduced-order modeling tool that is of interest for studying the underlying dynamics of high-Reynolds wall-turbulence and for engineering applications where the flow field is dominated by streamwise-coherent motions. This work is supported by NSF (IGERT, SEP-1230788 and IIA-1243482).
Dynamical role of Ekman pumping in rapidly rotating convection
NASA Astrophysics Data System (ADS)
Stellmach, Stephan; Julien, Keith; Cheng, Jonathan; Aurnou, Jonathan
2015-04-01
The exact nature of the mechanical boundary conditions (i.e. no-slip versus stress-free) is usually considered to be of secondary importance in the rapidly rotating parameter regime characterizing planetary cores. While they have considerable influence for the Ekman numbers achievable in today's global simulations, for planetary values both the viscous Ekman layers and the associated secondary flows are generally expected to become negligibly small. In fact, usually the main purpose of using stress-free boundary conditions in numerical dynamo simulations is to suppress unrealistically large friction and pumping effects. In this study, we investigate the influence of the mechanical boundary conditions on core convection systematically. By restricting ourselves to the idealized case of rapidly rotating Rayleigh-Bénard convection, we are able to combine results from direct numerical simulations (DNS), laboratory experiments and asymptotic theory into a coherent picture. Contrary to the general expectation, we show that the dynamical effects of Ekman pumping increase with decreasing Ekman number over the investigated parameter range. While stress-free DNS results converge to the asymptotic predictions, both no-slip simulations and laboratory experiments consistently reveal increasingly large deviations from the existing asymptotic theory based on dynamically passive Ekman layers. The implications of these results for core dynamics are discussed briefly.
NASA Astrophysics Data System (ADS)
Cho, Minjeong; Lee, Jungil; Choi, Haecheon
2012-11-01
The mean wall shear stress boundary condition was successfully applied to turbulent channel and boundary flows using large eddy simulation without resolving near-wall region (see Lee, Cho & Choi in this book of abstracts). In the present study, we apply this boundary condition to more complex flows where flow separation and redeveloping flow exist. As a test problem, we consider flow over a backward-facing step at Reh = 22860 based on the step height. Turbulent boundary layer flow at the inlet (Reθ = 1050) is obtained using inflow generation technique by Lund et al. (1998) but with wall shear stress boundary condition. First, we prescribe the mean wall shear stress distribution obtained from DNS (Kim, 2011, Ph.D. Thesis, Stanford U.) as the boundary condition of present simulation. Here we give no-slip boundary condition at flow-reversal region. The present results are in good agreements with the flow statistics by DNS. Currently, a dynamic approach of obtaining mean wall shear stress based on the log-law is being applied to the flow having flow separation and its results will be shown in the presentation. Supported by the WCU and NRF programs.
NASA Astrophysics Data System (ADS)
Linkmann, Moritz; Buzzicotti, Michele; Biferale, Luca
2018-06-01
We provide analytical and numerical results concerning multi-scale correlations between the resolved velocity field and the subgrid-scale (SGS) stress-tensor in large eddy simulations (LES). Following previous studies for Navier-Stokes equations, we derive the exact hierarchy of LES equations governing the spatio-temporal evolution of velocity structure functions of any order. The aim is to assess the influence of the subgrid model on the inertial range intermittency. We provide a series of predictions, within the multifractal theory, for the scaling of correlation involving the SGS stress and we compare them against numerical results from high-resolution Smagorinsky LES and from a-priori filtered data generated from direct numerical simulations (DNS). We find that LES data generally agree very well with filtered DNS results and with the multifractal prediction for all leading terms in the balance equations. Discrepancies are measured for some of the sub-leading terms involving cross-correlation between resolved velocity increments and the SGS tensor or the SGS energy transfer, suggesting that there must be room to improve the SGS modelisation to further extend the inertial range properties for any fixed LES resolution.
NASA Astrophysics Data System (ADS)
Beardsell, Guillaume; Blanquart, Guillaume
2017-11-01
In direct numerical simulations (DNS) of turbulent flows, it is often prohibitively expensive to simulate complete flow geometries. For example, to study turbulence-flame interactions, one cannot perform a DNS of a full combustor. Usually, a well-selected portion of the domain is chosen, in this particular case the region around the flame front. In this work, we perform a Reynolds decomposition of the velocity field and solve for the fluctuating part only. The resulting equations are the same as the original Navier-Stokes equations, except for turbulence-generating large scale features of the flow such as mean shear, which appear as forcing terms. This approach allows us to achieve high Reynolds numbers and sustained turbulence while keeping the computational cost reasonable. We have already applied this strategy to incompressible flows, but not to compressible ones, where special care has to be taken regarding the energy equation. Implementation of the resulting additional terms in the finite-difference code NGA is discussed and preliminary results are presented. In particular, we look at the budget of turbulent kinetic energy and internal energy. We are considering applying this technique to turbulent premixed flames.
Cheng, C-M; Chu, P-Y; Chuang, K-H; Roffler, S R; Kao, C-H; Tseng, W-L; Shiea, J; Chang, W-D; Su, Y-C; Chen, B-M; Wang, Y-M; Cheng, T-L
2009-01-01
Non-invasive gene monitoring is important for most gene therapy applications to ensure selective gene transfer to specific cells or tissues. We developed a non-invasive imaging system to assess the location and persistence of gene expression by anchoring an anti-dansyl (DNS) single-chain antibody (DNS receptor) on the cell surface to trap DNS-derivatized imaging probes. DNS hapten was covalently attached to cross-linked iron oxide (CLIO) to form a 39+/-0.5 nm DNS-CLIO nanoparticle imaging probe. DNS-CLIO specifically bound to DNS receptors but not to a control single-chain antibody receptor. DNS-CLIO (100 microM Fe) was non-toxic to both B16/DNS (DNS receptor positive) and B16/phOx (control receptor positive) cells. Magnetic resonance (MR) imaging could detect as few as 10% B16/DNS cells in a mixture in vitro. Importantly, DNS-CLIO specifically bound to a B16/DNS tumor, which markedly reduced signal intensity. Similar results were also shown with DNS quantum dots, which specifically targeted CT26/DNS cells but not control CT26/phOx cells both in vitro and in vivo. These results demonstrate that DNS nanoparticles can systemically monitor the expression of DNS receptor in vivo by feasible imaging systems. This targeting strategy may provide a valuable tool to estimate the efficacy and specificity of different gene delivery systems and optimize gene therapy protocols in the clinic.
NASA Astrophysics Data System (ADS)
Buchta, David; Freund, Jonathan
2017-11-01
High-speed (supersonic) turbulent shear flows are well-known to radiate pressure-wave patterns that have higher positive peaks than negative valleys, which yields a notable skewness, usually with Sk > 0.4 . Direct numerical simulations (DNS) of planar turbulent mixing layers at different Mach numbers (M) are used to examine this. The baseline simulations, of an air-like gas at speeds up to M = 3.5 , reproduced the observed behavior of jets. Simulations initialized with corresponding instability modes show that Sk increases linearly with the velocity amplitude (Mt =√{ui' ui'} /co), reflecting the M dependence of the DNS, which can be related to simpler gas dynamic flows. Simulations with a stiffened-gas equation of state (often used to model liquids) show essentially the same Mach-number dependence, despite the nominally greater resistance to compressibility. Turbulence simulations with an artificial energy reallocation mechanism, imposed to alter its structure, show little change in Sk. Finally, we also consider significantly increased bulk viscosity to suppress dilatation. In this case, Sk diminishes along with the sound-field intensity, though the turbulence stresses themselves are nearly unchanged.
DNS study of speed of sound in two-phase flows with phase change
NASA Astrophysics Data System (ADS)
Fu, Kai; Deng, Xiaolong
2017-11-01
Heat transfer through pipe flow is important for the safety of thermal power plants. Normally it is considered incompressible. However, in some conditions compressibility effects could deteriorate the heat transfer efficiency and even result in pipe rupture, especially when there is obvious phase change, due to the much lower sound speed in liquid-gas mixture flows. Based on the stratified multiphase flow model (Chang and Liou, JCP 2007), we present a new approach to simulate the sound speed in 3-D compressible two-phase dispersed flows, in which each face is divided into gas-gas, gas-liquid, and liquid-liquid parts via reconstruction by volume fraction, and fluxes are calculated correspondingly. Applying it to well-distributed air-water bubbly flows, comparing with the experiment measurements in air water mixture (Karplus, JASA 1957), the effects of adiabaticity, viscosity, and isothermality are examined. Under viscous and isothermal condition, the simulation results match the experimental ones very well, showing the DNS study with current method is an effective way for the sound speed of complex two-phase dispersed flows. Including the two-phase Riemann solver with phase change (Fechter et al., JCP 2017), more complex problems can be numerically studied.
NASA Astrophysics Data System (ADS)
Liu, Chun-Ho; Leung, Dennis Y. C.
2006-02-01
This study employed a direct numerical simulation (DNS) technique to contrast the plume behaviours and mixing of passive scalar emitted from line sources (aligned with the spanwise direction) in neutrally and unstably stratified open-channel flows. The DNS model was developed using the Galerkin finite element method (FEM) employing trilinear brick elements with equal-order interpolating polynomials that solved the momentum and continuity equations, together with conservation of energy and mass equations in incompressible flow. The second-order accurate fractional-step method was used to handle the implicit velocity-pressure coupling in incompressible flow. It also segregated the solution to the advection and diffusion terms, which were then integrated in time, respectively, by the explicit third-order accurate Runge-Kutta method and the implicit second-order accurate Crank-Nicolson method. The buoyancy term under unstable stratification was integrated in time explicitly by the first-order accurate Euler method. The DNS FEM model calculated the scalar-plume development and the mean plume path. In particular, it calculated the plume meandering in the wall-normal direction under unstable stratification that agreed well with the laboratory and field measurements, as well as previous modelling results available in literature.
NASA Astrophysics Data System (ADS)
Cao, Bochao; Xu, Hongyi
2018-05-01
Based on direct numerical simulation (DNS) data of the straight ducts, namely square and rectangular annular ducts, detailed analyses were conducted for the mean streamwise velocity, relevant velocity scales, and turbulence statistics. It is concluded that turbulent boundary layers (TBL) should be broadly classified into three types (Type-A, -B, and -C) in terms of their distribution patterns of the time-averaged local wall-shear stress (τ _w ) or the mean local frictional velocity (u_τ ) . With reference to the Type-A TBL analysis by von Karman in developing the law-of-the-wall using the time-averaged local frictional velocity (u_τ ) as scale, the current study extended the approach to the Type-B TBL and obtained the analytical expressions for streamwise velocity in the inner-layer using ensemble-averaged frictional velocity (\\bar{{u}}_τ ) as scale. These analytical formulae were formed by introducing the general damping and enhancing functions. Further, the research applied a near-wall DNS-guided integration to the governing equations of Type-B TBL and quantitatively proved the correctness and accuracy of the inner-layer analytical expressions for this type.
DNS and LES of a Shear-Free Mixing Layer
NASA Technical Reports Server (NTRS)
Knaepen, B.; Debliquy, O.; Carati, D.
2003-01-01
The purpose of this work is twofold. First, given the computational resources available today, it is possible to reach, using DNS, higher Reynolds numbers than in Briggs et al.. In the present study, the microscale Reynolds numbers reached in the low- and high-energy homogeneous regions are, respectively, 32 and 69. The results reported earlier can thus be complemented and their robustness in the presence of increased turbulence studied. The second aim of this work is to perform a detailed and documented LES of the shear-free mixing layer. In that respect, the creation of a DNS database at higher Reynolds number is necessary in order to make meaningful LES assessments. From the point of view of LES, the shear-free mixing-layer is interesting since it allows one to test how traditional LES models perform in the presence of an inhomogeneity without having to deal with difficult numerical issues. Indeed, as argued in Briggs et al., it is possible to use a spectral code to study the shear-free mixing layer and one can thus focus on the accuracy of the modelling while avoiding contamination of the results by commutation errors etc. This paper is organized as follows. First we detail the initialization procedure used in the simulation. Since the flow is not statistically stationary, this initialization procedure has a fairly strong influence on the evolution. Although we will focus here on the shear-free mixing layer, the method proposed in the present work can easily be used for other flows with one inhomogeneous direction. The next section of the article is devoted to the description of the DNS. All the relevant parameters are listed and comparison with the Veeravalli & Warhaft experiment is performed. The section on the LES of the shear-free mixing layer follows. A detailed comparison between the filtered DNS data and the LES predictions is presented. It is shown that simple eddy viscosity models perform very well for the present test case, most probably because the flow seems to be almost isotropic in the small-scale range that is not resolved by the LES.
Simulations of Turbulent Flows with Strong Shocks and Density Variations: Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanjiva Lele
2012-10-01
The target of this SciDAC Science Application was to develop a new capability based on high-order and high-resolution schemes to simulate shock-turbulence interactions and multi-material mixing in planar and spherical geometries, and to study Rayleigh-Taylor and Richtmyer-Meshkov turbulent mixing. These fundamental problems have direct application in high-speed engineering flows, such as inertial confinement fusion (ICF) capsule implosions and scramjet combustion, and also in the natural occurrence of supernovae explosions. Another component of this project was the development of subgrid-scale (SGS) models for large-eddy simulations of flows involving shock-turbulence interaction and multi-material mixing, that were to be validated with the DNSmore » databases generated during the program. The numerical codes developed are designed for massively-parallel computer architectures, ensuring good scaling performance. Their algorithms were validated by means of a sequence of benchmark problems. The original multi-stage plan for this five-year project included the following milestones: 1) refinement of numerical algorithms for application to the shock-turbulence interaction problem and multi-material mixing (years 1-2); 2) direct numerical simulations (DNS) of canonical shock-turbulence interaction (years 2-3), targeted at improving our understanding of the physics behind the combined two phenomena and also at guiding the development of SGS models; 3) large-eddy simulations (LES) of shock-turbulence interaction (years 3-5), improving SGS models based on the DNS obtained in the previous phase; 4) DNS of planar/spherical RM multi-material mixing (years 3-5), also with the two-fold objective of gaining insight into the relevant physics of this instability and aiding in devising new modeling strategies for multi-material mixing; 5) LES of planar/spherical RM mixing (years 4-5), integrating the improved SGS and multi-material models developed in stages 3 and 5. This final report is outlined as follows. Section 2 shows an assessment of numerical algorithms that are best suited for the numerical simulation of compressible flows involving turbulence and shock phenomena. Sections 3 and 4 deal with the canonical shock-turbulence interaction problem, from the DNS and LES perspectives, respectively. Section 5 considers the shock-turbulence inter-action in spherical geometry, in particular, the interaction of a converging shock with isotropic turbulence as well as the problem of the blast wave. Section 6 describes the study of shock-accelerated mixing through planar and spherical Richtmyer-Meshkov mixing as well as the shock-curtain interaction problem In section 7 we acknowledge the different interactions between Stanford and other institutions participating in this SciDAC project, as well as several external collaborations made possible through it. Section 8 presents a list of publications and presentations that have been generated during the course of this SciDAC project. Finally, section 9 concludes this report with the list of personnel at Stanford University funded by this SciDAC project.« less
Tien, Yu En; Huang, Wen-Chuan; Kuo, Hui-Yuan; Tai, Lily; Uang, Yow-Shieng; Chern, Wendy H; Huang, Jin-Ding
2017-11-01
Nalbuphine is a semi-synthetic opioid indicated for the relief of moderate to severe pain. Its short half-life requires frequent injections in clinical practice, resulting in a greater incidence of adverse events. A prodrug of nalbuphine has been developed, dinalbuphine sebacate (DNS), dissolved in a simple oil-based injectable formulation, which could deliver and maintain an effective blood level of nalbuphine. An open-label, prospective, two-period study was performed in healthy volunteers to verify the extended blood concentration profile of nalbuphine. Twelve healthy Taiwanese were randomized to receive an intramuscular injection of 20 mg nalbuphine HCl and 150 mg DNS sequentially with a washout period of 5 days. To prevent DNS hydrolysis during sample analysis, the effect of four esterase inhibitors was evaluated in the quantitation of DNS in human whole blood and thenoyltrifluoroacetone was chosen. The bioavailability of nalbuphine from intramuscularly injected DNS relative to that from nalbuphine HCl was 85.4%. The mean absorption time of nalbuphine from DNS was 145.2 h. It took approximately 6 days for the complete release of DNS into the blood stream where DNS was rapidly hydrolysed to nalbuphine; suggesting a single injection of 150 mg DNS in our extended-release formulation could provide long-lasting pain relief. Copyright © 2017 John Wiley & Sons, Ltd.
A Posteriori Study of a DNS Database Describing Super critical Binary-Species Mixing
NASA Technical Reports Server (NTRS)
Bellan, Josette; Taskinoglu, Ezgi
2012-01-01
Currently, the modeling of supercritical-pressure flows through Large Eddy Simulation (LES) uses models derived for atmospheric-pressure flows. Those atmospheric-pressure flows do not exhibit the particularities of high densitygradient magnitude features observed both in experiments and simulations of supercritical-pressure flows in the case of two species mixing. To assess whether the current LES modeling is appropriate and if found not appropriate to propose higher-fidelity models, a LES a posteriori study has been conducted for a mixing layer that initially contains different species in the lower and upper streams, and where the initial pressure is larger than the critical pressure of either species. An initially-imposed vorticity perturbation promotes roll-up and a double pairing of four initial span-wise vortices into an ultimate vortex that reaches a transitional state. The LES equations consist of the differential conservation equations coupled with a real-gas equation of state, and the equation set uses transport properties depending on the thermodynamic variables. Unlike all LES models to date, the differential equations contain, additional to the subgrid scale (SGS) fluxes, a new SGS term that is a pressure correction in the momentum equation. This additional term results from filtering of Direct Numerical Simulation (DNS) equations, and represents the gradient of the difference between the filtered pressure and the pressure computed from the filtered flow field. A previous a priori analysis, using a DNS database for the same configuration, found this term to be of leading order in the momentum equation, a fact traced to the existence of high-densitygradient magnitude regions that populated the entire flow; in the study, models were proposed for the SGS fluxes as well as this new term. In the present study, the previously proposed constantcoefficient SGS-flux models of the a priori investigation are tested a posteriori in LES, devoid of or including, the SGS pressure correction term. The present pressure-correction model is different from, and more accurate as well as less computationally intensive than that of the a priori study. The constant-coefficient SGS-flux models encompass the Smagorinsky (SMC), in conjunction with the Yoshizawa (YO) model for the trace, the Gradient (GRC) and the Scale Similarity (SSC) models, all exercised with the a priori study constant coefficients calibrated at the transitional state. The LES comparison is performed with the filtered- and-coarsened (FC) DNS, which represents an ideal LES solution. Expectably, an LES model devoid of SGS terms is shown to be considerably inferior to models containing SGS effects. Among models containing SGS effects, those including the pressure-correction term are substantially superior to those devoid of it. The sensitivity of the predictions to the initial conditions and grid size are also investigated. Thus, it has been discovered that, additional to the atmospheric-pressure models currently used, a new model is necessary to simulate supercritical-pressure flows. This model depends on the thermodynamic characteristics of the chemical species involved.
Turbulence modeling for Francis turbine water passages simulation
NASA Astrophysics Data System (ADS)
Maruzewski, P.; Hayashi, H.; Munch, C.; Yamaishi, K.; Hashii, T.; Mombelli, H. P.; Sugow, Y.; Avellan, F.
2010-08-01
The applications of Computational Fluid Dynamics, CFD, to hydraulic machines life require the ability to handle turbulent flows and to take into account the effects of turbulence on the mean flow. Nowadays, Direct Numerical Simulation, DNS, is still not a good candidate for hydraulic machines simulations due to an expensive computational time consuming. Large Eddy Simulation, LES, even, is of the same category of DNS, could be an alternative whereby only the small scale turbulent fluctuations are modeled and the larger scale fluctuations are computed directly. Nevertheless, the Reynolds-Averaged Navier-Stokes, RANS, model have become the widespread standard base for numerous hydraulic machine design procedures. However, for many applications involving wall-bounded flows and attached boundary layers, various hybrid combinations of LES and RANS are being considered, such as Detached Eddy Simulation, DES, whereby the RANS approximation is kept in the regions where the boundary layers are attached to the solid walls. Furthermore, the accuracy of CFD simulations is highly dependent on the grid quality, in terms of grid uniformity in complex configurations. Moreover any successful structured and unstructured CFD codes have to offer a wide range to the variety of classic RANS model to hybrid complex model. The aim of this study is to compare the behavior of turbulent simulations for both structured and unstructured grids topology with two different CFD codes which used the same Francis turbine. Hence, the study is intended to outline the encountered discrepancy for predicting the wake of turbine blades by using either the standard k-epsilon model, or the standard k-epsilon model or the SST shear stress model in a steady CFD simulation. Finally, comparisons are made with experimental data from the EPFL Laboratory for Hydraulic Machines reduced scale model measurements.
Kim, Ki Tae; Kim, Hyun Woo; Moon, Dohyun; Rhee, Young Min; Kim, Byeang Hyean
2013-09-14
With the goal of developing a fluorescent nucleoside sensitive to its environment, in this study we synthesized (DNS)C, a novel modified 2'-deoxycytidine bearing a 5-(dimethylamino)naphthalene-1-sulfonyl (dansyl) moiety at the N4 position, and tested its properties in monomeric and oligomeric states. (DNS)C undergoes intramolecular photoinduced electron transfer between its dansyl and cytosine units, resulting in remarkable changes in fluorescence that depend on the choice of solvent. In addition, the fluorescence behavior and thermal stability of oligonucleotides containing (DNS)C are dependent on the nature of the flanking and neighboring bases. Notably, (DNS)C exhibits fluorescence enhancement only in fully matched duplex DNA containing a GGG triad sequence. The environmental sensitivity of (DNS)C can be exploited as a fluorescence tool for monitoring the interactions of DNA with other biomolecules, including DNA, RNA, and proteins.
Working together--primary care doctors' and nurses' attitudes to collaboration.
Hansson, Anders; Arvemo, Tobias; Marklund, Bertil; Gedda, Birgitta; Mattsson, Bengt
2010-02-01
Multidisciplinary teamwork is recommended for various disorders and it has been suggested that it is a way to meet the new challenges and demands facing general practitioners (GPs) in modern society. Attempts to introduce the method in primary care have failed partly due to GPs' unwillingness to participate. The aim of this study was to measure attitudes towards collaboration among GPs and district nurses (DN) and to investigate whether there is a correlation between a positive attitude toward collaboration and high self-esteem in the professional role. The Jefferson Scale of Attitudes toward Physician Nurse Collaboration and the Professional Self-Description Form (PSDF) was used to study a cohort of 600 GPs and DNs in Västra Götaland region. The purpose was to map differences and correlations of attitude between DNs and GPs, between male and female GPs, and between older and younger DNs and GPs. Four hundred and one answers were received. DNs (mean 51.7) were significantly more positive about collaboration than GPs (mean 49.4). There was no difference between younger and older, male and female GPs. DNs scored higher on the PSDF-scale than GPs. DNs were slightly more positive about collaboration than GPs. A positive attitude towards collaboration did not seem to be a part of the GPs' professional role to the same extent as it is for DNs. Professional norms seem to have more influence on attitudes than do gender roles. DNs seem more confident in their profession than GPs.
Van Driessche, L; Valgaeren, B R; Gille, L; Boyen, F; Ducatelle, R; Haesebrouck, F; Deprez, P; Pardon, B
2017-05-01
Nonendoscopic bronchoalveolar lavage (BAL) is a practical alternative for a deep nasopharyngeal swab (DNS) to sample the airways of a large number of calves in a short period of time. The extent of commensal overgrowth and agreement of BAL with DNS culture results in preweaned calves are unknown. To compare commensal overgrowth and bacterial culture results between DNS and BAL samples. A total of 183 preweaned calves (144 with bovine respiratory disease and 39 healthy animals). Cross-sectional study. Deep nasopharyngeal swab and BAL samples were taken from each calf and cultured to detect Pasteurellaceae and Mycoplasma bovis. Agreement and associations between culture results of DNS and BAL samples were determined by kappa statistics and logistic regression. Bronchoalveolar lavage samples were less often polymicrobial, more frequently negative and yielded more pure cultures compared to DNS, leading to a clinically interpretable culture result in 79.2% of the cases compared to only in 31.2% of the DNS samples. Isolation rates were lower in healthy animals, but not different between DNS and BAL samples. Only Histophilus somni was more likely to be isolated from BAL samples. In clinical cases, a polymicrobial DNS culture result did not increase the probability of a polymicrobial BAL result by ≥30%, nor did it influence the probability of a negative culture. A significant herd effect was noted for all observed relationships. Nonendoscopic BAL samples are far less overgrown by bacteria compared to DNS samples under the conditions of this study, facilitating clinical interpretation and resulting in a higher return on investment in bacteriologic culturing. Copyright © 2017 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.
Increased frequency of mitral valve prolapse in patients with deviated nasal septum.
Arslan, Hasan Huseyin; Aparci, Mustafa; Arslan, Zekeriya; Ozturk, Cengiz; Isilak, Zafer; Balta, Sevket; Celik, Turgay; Iyisoy, Atila
2015-07-01
Any abnormality of collagen may affect the tissues with higher collagen content, e.g., joints, heart valves, and great arteries. Mitral valve prolapse (MVP) is a characteristic of generalized collagen abnormality. Nasal septum (NS) is constituted by osseous and cartilaginous septums that are highly rich in collagen. We evaluated the co-existence of deviation of NS (DNS) in patients with MVP. We retrospectively evaluated the recordings of echocardiographic and nasal examinations of subjects with MVP and DNS. We analyzed the features of MVP and anatomical classification of DNS among subjects. Totally, 74 patients with DNS and 38 subjects with normal nasal passage were enrolled to the study. Presence of MVP was significantly higher in patients with DNS compared to normal subjects (63 vs 26%, p < 0.001). Prolapse of anterior, posterior and both leaflets was higher in patients with DNS. Thickness of anterior mitral leaflet was significantly increased in patients with DNS (3.57 ± 0.68 vs 4.59 ± 1.1 mm, p < 0.001) compared to normal subjects. Type I, II, and III, IV DNS were higher in frequency in patients with MVP while type V and VI were higher in normal subjects. DNS is highly co-existent with MVP and increased thickness of mitral anterior leaflet. Generalized abnormality of collagen which is the main component of mitral valves and nasal septum may be accounted for co-existence of MVP and DNS. Also co-existence of them may exaggerate the symptoms of patients with MVP due to limited airflow through the nasal passage.
Lewis, J D; Barros, A J; Sifri, C D
2018-02-10
Vancomycin-resistant Enterococcus faecium (VRE) infections are common in liver transplant recipients (LTRs). Daptomycin (DAP) is an important treatment for such infections; however, DAP-nonsusceptible VRE (DNS-VRE) are increasingly frequent. The purpose of this study was to compare clinical characteristics and outcomes of LTRs with infections due to DNS-VRE and DAP-susceptible VRE (DS-VRE). A single center, retrospective review of patients who underwent liver transplantation between January 1, 2010 and December 31, 2015 and developed infections due to DS-VRE or DNS-VRE post transplant was performed. Patients with DNS-VRE and DS-VRE infections were compared using univariate and logistic regression analysis. Fourteen LTRs developed DNS-VRE and 20 LTRs developed DS-VRE infection post-transplantation. No significant differences were observed in demographics, model for end-stage liver disease (MELD) scores, causes of end-stage liver disease, or rate of pre-transplant perirectal VRE colonization between groups. Bleeding complications and renal replacement therapy were more common in the DNS-VRE group than in the DS-VRE group. The duration of transplant hospitalization and post-transplant intensive care unit (ICU) admission was longer in the DNS-VRE group than in the DS-VRE group. The 30-day and 6-month mortality rate associated with DNS-VRE infection was similar to that associated with DS-VRE infection. Liver transplant recipients who develop DNS-VRE infection have higher bleeding complications and longer, more complex hospitalizations compared to those who develop DS-VRE infection post transplantation; however, mortality at 30 days and 6 months is not significantly worse. Further study is needed to determine optimal strategies for the prevention and treatment of DNS-VRE infections in LTRs. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Linear modeling of turbulent skin-friction reduction due to spanwise wall motion
NASA Astrophysics Data System (ADS)
Duque-Daza, Carlos; Baig, Mirza; Lockerby, Duncan; Chernyshenko, Sergei; Davies, Christopher; University of Warwick Team; Imperial College Team; Cardiff University Team
2012-11-01
We present a study on the effect of streamwise-travelling waves of spanwise wall velocity on the growth of near-wall turbulent streaks using a linearized formulation of the Navier-Stokes equations. The changes in streak amplification due to the travelling waves induced by the wall velocity are compared to published results of direct numerical simulation (DNS) predictions of the turbulent skin-friction reduction over a range of parameters; a clear correlation between these two sets of results is observed. Additional linearized simulations but at a much higher Reynolds numbers, more relevant to aerospace applications, produce results that show no marked differences to those obtained at low Reynolds number. It is also observed that a close correlation exists between DNS data of drag reduction and a very simple characteristic of the ``generalized'' Stokes layer generated by the streamwise-travelling waves. Carlos.Duque-Daza@warwick.ac.uk - School of Engineering, University of Warwick, Coventry CV4 7AL, UK caduqued@unal.edu.co - Department of Mechanical and Mechatronics Engineering, Universidad Nacional de Colombia.
A compressibility correction of the pressure strain correlation model in turbulent flow
NASA Astrophysics Data System (ADS)
Klifi, Hechmi; Lili, Taieb
2013-07-01
This paper is devoted to the second-order closure for compressible turbulent flows with special attention paid to modeling the pressure-strain correlation appearing in the Reynolds stress equation. This term appears as the main one responsible for the changes of the turbulence structures that arise from structural compressibility effects. From the analysis and DNS results of Simone et al. and Sarkar, the compressibility effects on the homogeneous turbulence shear flow are parameterized by the gradient Mach number. Several experiment and DNS results suggest that the convective Mach number is appropriate to study the compressibility effects on the mixing layers. The extension of the LRR model recently proposed by Marzougui, Khlifi and Lili for the pressure-strain correlation gives results that are in disagreement with the DNS results of Sarkar for high-speed shear flows. This extension is revised to derive a turbulence model for the pressure-strain correlation in which the compressibility is included in the turbulent Mach number, the gradient Mach number and then the convective Mach number. The behavior of the proposed model is compared to the compressible model of Adumitroiae et al. for the pressure-strain correlation in two turbulent compressible flows: homogeneous shear flow and mixing layers. In compressible homogeneous shear flows, the predicted results are compared with the DNS data of Simone et al. and those of Sarkar. For low compressibility, the two compressible models are similar, but they become substantially different at high compressibilities. The proposed model shows good agreement with all cases of DNS results. Those of Adumitroiae et al. do not reflect any effect of a change in the initial value of the gradient Mach number on the Reynolds stress anisotropy. The models are used to simulate compressible mixing layers. Comparison of our predictions with those of Adumitroiae et al. and with the experimental results of Goebel et al. shows good qualitative agreement.
A Statistical Study on Neutron Star Masses
NASA Astrophysics Data System (ADS)
Cheng, Z.; Zhang, C. M.; Zhao, Y. H.; Wang, D. H.; Pan, Y. Y.; Lei, Y. J.
2013-11-01
We investigate the measurement of neutron star masses in different population of binaries. Based on the collection of the orbital parameters of 40 systems (46 sources), we apply the boot-strap method together with the Monte Carlo method to reconstruct the likelihood curves for each source separately. The cumulative analysis of the simulation result shows that the neutron star masses in X-ray systems and radio systems obey different distributions, and no evidence for the bimodal distribution could be found. Employing the Bayesian statistical techniques, we find that the most likely distributions for the high mass X-ray binaries (HMXBs), low mass X-ray binaries (LMXBs), double neutron star (DNS) systems, and neutron star-white dwarf (NS-WD) binary systems are (1.340±0.230) M_{⊙}, (1.505±0.125) M_{⊙}, (1.335±0.055) M_{⊙}, and (1.495±0.225) M_{⊙}, respectively. The statistical distribution has no significant deviation from the standard neutron star formation mechanism. It is noticed that the statistical results of the center masses of LMXBs and NS-WD systems are significantly higher than the other groups by about 0.16 M_{⊙}, which could be regarded as the evidence of accretion episodes. And if we regard the HMXBs and LMXBs as the progenitors of DNS and NS-WD systems, then we can draw the conclusion that the accretion effect must be very week during the evolution trajectory from HMXBs to DNS systems, and this could be the reason why the masses of DNS systems have such a narrow distribution.
NASA Astrophysics Data System (ADS)
Jiang, Zhou; Xia, Zhenhua; Shi, Yipeng; Chen, Shiyi
2018-04-01
A fully developed spanwise rotating turbulent channel flow has been numerically investigated utilizing large-eddy simulation. Our focus is to assess the performances of the dynamic variants of eddy viscosity models, including dynamic Vreman's model (DVM), dynamic wall adapting local eddy viscosity (DWALE) model, dynamic σ (Dσ ) model, and the dynamic volumetric strain-stretching (DVSS) model, in this canonical flow. The results with dynamic Smagorinsky model (DSM) and direct numerical simulations (DNS) are used as references. Our results show that the DVM has a wrong asymptotic behavior in the near wall region, while the other three models can correctly predict it. In the high rotation case, the DWALE can get reliable mean velocity profile, but the turbulence intensities in the wall-normal and spanwise directions show clear deviations from DNS data. DVSS exhibits poor predictions on both the mean velocity profile and turbulence intensities. In all three cases, Dσ performs the best.
LES of Temporally Evolving Mixing Layers by Three High Order Schemes
NASA Astrophysics Data System (ADS)
Yee, H.; Sjögreen, B.; Hadjadj, A.
2011-10-01
The performance of three high order shock-capturing schemes is compared for large eddy simulations (LES) of temporally evolving mixing layers for different convective Mach number (Mc) ranging from the quasi-incompressible regime to highly compressible supersonic regime. The considered high order schemes are fifth-order WENO (WENO5), seventh-order WENO (WENO7), and the associated eighth-order central spatial base scheme with the dissipative portion of WENO7 as a nonlinear post-processing filter step (WENO7fi). This high order nonlinear filter method (Yee & Sjögreen 2009) is designed for accurate and efficient simulations of shock-free compressible turbulence, turbulence with shocklets and turbulence with strong shocks with minimum tuning of scheme parameters. The LES results by WENO7fi using the same scheme parameter agree well with experimental results of Barone et al. (2006), and published direct numerical simulations (DNS) by Rogers & Moser (1994) and Pantano & Sarkar (2002), whereas results by WENO5 and WENO7 compare poorly with experimental data and DNS computations.
Squamous cell carcinoma antigen in human liver carcinogenesis.
Guido, M; Roskams, T; Pontisso, P; Fassan, M; Thung, S N; Giacomelli, L; Sergio, A; Farinati, F; Cillo, U; Rugge, M
2008-04-01
Squamous cell carcinoma antigen (SCCA) is a serine protease inhibitor that can be overexpressed in hepatocellular carcinoma (HCC) at both molecular and protein level, but no data are available on its expression in pre-malignant stages. To assess SCCA expression by immunohistochemistry in HCC and its nodular precursors in cirrhotic livers. 55 nodules from 42 explanted livers were evaluated: 7 large regenerative nodules (LRNs), 7 low-grade dysplastic nodules (LG-DNs), 10 high-grade DNs (HG-DNs), and 31 HCC. SCCA expression was semiquantitatively scored on a four-tiered scale. SCCA hepatocyte immunostaining was always restricted to the cytoplasm, mainly exhibiting a granular pattern. Stain intensity varied, ranging from weak to very strong. Within the nodules, positive cells were unevenly distributed, either scattered or in irregular clusters. The prevalence of SCCA expression was 29% in LRNs, 100% in DNs and 93% in HCC. A significant difference emerged in both prevalence and score for LRNs versus LG-DNs (p<0.039), HG-DNs (p = 0.001), and HCC (p = 0.000). A barely significant difference (p = 0.49) was observed between LG-DNs and HG-DNs, while no difference in SCCA expression was detected between HG-DNs and HCC. Cirrhotic tissue adjacent to the nodules was positive in 96% of cases, with a significant difference in the score (p = 0.000) between hepatocytes adjacent to HCC and those surrounding LRNs. This study provides the first evidence that aberrant SCCA expression is an early event in liver cell carcinomatous transformation.
Simulation of Supersonic Base Flows: Numerical Investigations Using DNS, LES, and URANS
2006-10-01
global instabilities were found for a two-dimensional bluff body with a blunt base by Hannemann & Oertel (1989). Oertel (1990) found that the... Hannemann , K. & Oertel, H. 1989 Numerical simulation of the absolutely and convectively unstable wake. J. Fluid Mech. 199, 55–88. Harris, P. J. 1997
A Novel Multi-scale Simulation Strategy for Turbulent Reacting Flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
James, Sutherland C.
In this project, a new methodology was proposed to bridge the gap between Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES). This novel methodology, titled Lattice-Based Multiscale Simulation (LBMS), creates a lattice structure of One-Dimensional Turbulence (ODT) models. This model has been shown to capture turbulent combustion with high fidelity by fully resolving interactions between turbulence and diffusion. By creating a lattice of ODT models, which are then coupled, LBMS overcomes the shortcomings of ODT, which are its inability to capture large scale three dimensional flow structures. However, by spacing these lattices significantly apart, LBMS can avoid the cursemore » of dimensionality that creates untenable computational costs associated with DNS. This project has shown that LBMS is capable of reproducing statistics of isotropic turbulent flows while coarsening the spacing between lines significantly. It also investigates and resolves issues that arise when coupling ODT lines, such as flux reconstruction perpendicular to a given ODT line, preservation of conserved quantities when eddies cross a course cell volume and boundary condition application. Robust parallelization is also investigated.« less
Large Eddy Simulation of Entropy Generation in a Turbulent Mixing Layer
NASA Astrophysics Data System (ADS)
Sheikhi, Reza H.; Safari, Mehdi; Hadi, Fatemeh
2013-11-01
Entropy transport equation is considered in large eddy simulation (LES) of turbulent flows. The irreversible entropy generation in this equation provides a more general description of subgrid scale (SGS) dissipation due to heat conduction, mass diffusion and viscosity effects. A new methodology is developed, termed the entropy filtered density function (En-FDF), to account for all individual entropy generation effects in turbulent flows. The En-FDF represents the joint probability density function of entropy, frequency, velocity and scalar fields within the SGS. An exact transport equation is developed for the En-FDF, which is modeled by a system of stochastic differential equations, incorporating the second law of thermodynamics. The modeled En-FDF transport equation is solved by a Lagrangian Monte Carlo method. The methodology is employed to simulate a turbulent mixing layer involving transport of passive scalars and entropy. Various modes of entropy generation are obtained from the En-FDF and analyzed. Predictions are assessed against data generated by direct numerical simulation (DNS). The En-FDF predictions are in good agreements with the DNS data.
Pal, Abhro; Anupindi, Kameswararao; Delorme, Yann; Ghaisas, Niranjan; Shetty, Dinesh A; Frankel, Steven H
2014-07-01
In the present study, we performed large eddy simulation (LES) of axisymmetric, and 75% stenosed, eccentric arterial models with steady inflow conditions at a Reynolds number of 1000. The results obtained are compared with the direct numerical simulation (DNS) data (Varghese et al., 2007, "Direct Numerical Simulation of Stenotic Flows. Part 1. Steady Flow," J. Fluid Mech., 582, pp. 253-280). An inhouse code (WenoHemo) employing high-order numerical methods for spatial and temporal terms, along with a 2nd order accurate ghost point immersed boundary method (IBM) (Mark, and Vanwachem, 2008, "Derivation and Validation of a Novel Implicit Second-Order Accurate Immersed Boundary Method," J. Comput. Phys., 227(13), pp. 6660-6680) for enforcing boundary conditions on curved geometries is used for simulations. Three subgrid scale (SGS) models, namely, the classical Smagorinsky model (Smagorinsky, 1963, "General Circulation Experiments With the Primitive Equations," Mon. Weather Rev., 91(10), pp. 99-164), recently developed Vreman model (Vreman, 2004, "An Eddy-Viscosity Subgrid-Scale Model for Turbulent Shear Flow: Algebraic Theory and Applications," Phys. Fluids, 16(10), pp. 3670-3681), and the Sigma model (Nicoud et al., 2011, "Using Singular Values to Build a Subgrid-Scale Model for Large Eddy Simulations," Phys. Fluids, 23(8), 085106) are evaluated in the present study. Evaluation of SGS models suggests that the classical constant coefficient Smagorinsky model gives best agreement with the DNS data, whereas the Vreman and Sigma models predict an early transition to turbulence in the poststenotic region. Supplementary simulations are performed using Open source field operation and manipulation (OpenFOAM) ("OpenFOAM," http://www.openfoam.org/) solver and the results are inline with those obtained with WenoHemo.
Inner-outer predictive wall model for wall-bounded turbulence in hypersonic flow
NASA Astrophysics Data System (ADS)
Martin, M. Pino; Helm, Clara M.
2017-11-01
The inner-outer predictive wall model of Mathis et al. is modified for hypersonic turbulent boundary layers. The model is based on a modulation of the energized motions in the inner layer by large scale momentum fluctuations in the logarithmic layer. Using direct numerical simulation (DNS) data of turbulent boundary layers with free stream Mach number 3 to 10, it is shown that the variation of the fluid properties in the compressible flows leads to large Reynolds number (Re) effects in the outer layer and facilitate the modulation observed in high Re incompressible flows. The modulation effect by the large scale increases with increasing free-stream Mach number. The model is extended to include spanwise and wall-normal velocity fluctuations and is generalized through Morkovin scaling. Temperature fluctuations are modeled using an appropriate Reynolds Analogy. Density fluctuations are calculated using an equation of state and a scaling with Mach number. DNS data are used to obtain the universal signal and parameters. The model is tested by using the universal signal to reproduce the flow conditions of Mach 3 and Mach 7 turbulent boundary layer DNS data and comparing turbulence statistics between the modeled flow and the DNS data. This work is supported by the Air Force Office of Scientific Research under Grant FA9550-17-1-0104.
Berlot, J P; Lutz, T; Cherkaoui Malki, M; Nicolas-Frances, V; Jannin, B; Latruffe, N
2000-12-01
The first peroxisome proliferator-activated receptor (PPAR) was cloned in 1990 by Issemann and Green. Many studies have reported the importance of this receptor in the control of gene expression of enzymes involved in lipid metabolic pathways including mitochondrial and peroxisomal fatty acid beta-oxidation, lipoprotein structure [apolipoprotein (apo) A2, apo CIII], and fatty acid synthase. By using radiolabeled molecules, it was shown that peroxisome proliferators bind and activate PPAR. As an alternative method, we developed a fluorescent dansyl (1-dimethylaminonaphthalene-5-sulfonyl) derivative peroxisome proliferator from bezafibrate (DNS-X), a hypolipidemic agent that exhibits an in vitro peroxisome proliferative activity on rat Fao-hepatic derived cultured cells. However, until now, the effect of this new compound on the liver of animals and subcellular localization was unknown. In addition to in vivo rat studies, we present a more efficient large-scale technique of DNS-X purification. Treating rats (DNS-X in the diet at 0.3% w/w) for 6 d leads to a hepatomegaly and a marked increase in liver peroxisomal palmitoyl-CoA oxidase activity. We also developed a method to localize and quantify DNS-X in tissues or cell compartment organelles. The primarily cytosolic distribution of DNS-X was confirmed by direct visualization using fluorescence microscopy of cultured Fao cells. Finally, transfection assay demonstrated that DNS-X enhanced the PPAR alpha activity as well as other peroxisome proliferators do.
Kuroda, Hiroshi; Fujihara, Kazuo; Mugikura, Shunji; Takahashi, Shoki; Kushimoto, Shigeki; Aoki, Masashi
2016-01-15
Proton magnetic resonance spectroscopy ((1)H-MRS) was recently used to examine altered metabolism in the white matter (WM) of patients experiencing carbon monoxide (CO) poisoning; however, only a small number of patients with delayed neurologic sequelae (DNS) were analyzed. We aimed to detect altered metabolism in the WM of patients with DNS using (1)H-MRS; to explore its clinical relevance in the management of patients experiencing CO poisoning. Patients experiencing acute CO poisoning underwent (1)H-MRS and cerebrospinal fluid (CSF) examination within 1week and at 1month after acute poisoning. Metabolites including choline-containing compounds (Cho), creatine (Cr), N-acetylaspartate (NAA), and lactate were measured from the periventricular WM. Myelin basic protein (MBP) concentrations were measured in CSF. Fifty-two patients experiencing acute CO poisoning (15 with DNS, 37 without DNS; median age, 49years; 65% males) underwent (1)H-MRS. Within 1week, NAA/Cr ratios, reflecting neuroaxonal viability, were lower in patients with DNS than in those without DNS (P<0.05). At 1month, when 9 of 15 patients (60%) developed DNS, Cho/Cr ratios were higher, and NAA/Cr and NAA/Cho ratios lower in patients with DNS (P=0.0001, <0.0001, and <0.0001, respectively), indicating increased membrane metabolism and decreased neuroaxonal viability. (1)H-MRS parameter abnormalities correlated with the elevation of MBP in CSF. The presence of a lactate peak was a predictor for a poor long-term outcome. (1)H-MRS within 1week may be useful for predicting DNS development; (1)H-MRS at 1month may be useful for discriminating patients with DNS and predicting long-term outcomes. Copyright © 2015 Elsevier B.V. All rights reserved.
Helicity in supercritical temporal mixing layers
NASA Technical Reports Server (NTRS)
Bellan, J.; Okong'o, N.
2003-01-01
Databases of transitional states obtained from Direct Numerical Simulations (DNS) of temporal, supercritical mixing layers for two species systems, 02/H2 and C7Hle/N2, are analyzed to elucidate species-specific turbulence aspects.
Pepe, Giuseppe; Castelli, Matteo; Nazerian, Peiman; Vanni, Simone; Del Panta, Massimo; Gambassi, Francesco; Botti, Primo; Missanelli, Andrea; Grifoni, Stefano
2011-03-17
Delayed neuropsychological sequelae (DNS) commonly occur after recovery from acute carbon monoxide (CO) poisoning. The preventive role and the indications for hyperbaric oxygen therapy in the acute setting are still controversial. Early identification of patients at risk in the Emergency Department might permit an improvement in quality of care. We conducted a retrospective study to identify predictive risk factors for DNS development in the Emergency Department. We retrospectively considered all CO-poisoned patients admitted to the Emergency Department of Careggi University General Hospital (Florence, Italy) from 1992 to 2007. Patients were invited to participate in three follow-up visits at one, six and twelve months from hospital discharge. Clinical and biohumoral data were collected; univariate and multivariate analysis were performed to identify predictive risk factors for DNS. Three hundred forty seven patients were admitted to the Emergency Department for acute CO poisoning from 1992 to 2007; 141/347 patients participated in the follow-up visit at one month from hospital discharge. Thirty four/141 patients were diagnosed with DNS (24.1%). Five/34 patients previously diagnosed as having DNS presented to the follow-up visit at six months, reporting a complete recovery. The following variables (collected before or upon Emergency Department admission) were associated to DNS development at one month from hospital discharge in the univariate analysis: CO exposure duration >6 hours, a Glasgow Coma Scale (GCS) score <9, seizures, systolic blood pressure <90 mmHg, elevated creatine phosphokinase concentration and leukocytosis. There was no significant correlation with age, sex, voluntary exposure, headache, transient loss of consciousness, GCS between 14 and 9, arterial lactate and carboxyhemoglobin concentration. The multivariate analysis confirmed as independent prognostic factors GCS <9 (OR 7.15; CI 95%: 1.04-48.8) and leukocytosis (OR 3.31; CI 95%: 1.02-10.71). Our study identified several potential predictive risk factors for DNS. Treatment algorithms based on an appropriate risk-stratification of patients in the Emergency Department might reduce DNS incidence; however, more studies are needed. Adequate follow-up after hospital discharge, aimed at correct recognition of DNS, is also important.
2011-01-01
Background Delayed neuropsychological sequelae (DNS) commonly occur after recovery from acute carbon monoxide (CO) poisoning. The preventive role and the indications for hyperbaric oxygen therapy in the acute setting are still controversial. Early identification of patients at risk in the Emergency Department might permit an improvement in quality of care. We conducted a retrospective study to identify predictive risk factors for DNS development in the Emergency Department. Methods We retrospectively considered all CO-poisoned patients admitted to the Emergency Department of Careggi University General Hospital (Florence, Italy) from 1992 to 2007. Patients were invited to participate in three follow-up visits at one, six and twelve months from hospital discharge. Clinical and biohumoral data were collected; univariate and multivariate analysis were performed to identify predictive risk factors for DNS. Results Three hundred forty seven patients were admitted to the Emergency Department for acute CO poisoning from 1992 to 2007; 141/347 patients participated in the follow-up visit at one month from hospital discharge. Thirty four/141 patients were diagnosed with DNS (24.1%). Five/34 patients previously diagnosed as having DNS presented to the follow-up visit at six months, reporting a complete recovery. The following variables (collected before or upon Emergency Department admission) were associated to DNS development at one month from hospital discharge in the univariate analysis: CO exposure duration >6 hours, a Glasgow Coma Scale (GCS) score <9, seizures, systolic blood pressure <90 mmHg, elevated creatine phosphokinase concentration and leukocytosis. There was no significant correlation with age, sex, voluntary exposure, headache, transient loss of consciousness, GCS between 14 and 9, arterial lactate and carboxyhemoglobin concentration. The multivariate analysis confirmed as independent prognostic factors GCS <9 (OR 7.15; CI 95%: 1.04-48.8) and leukocytosis (OR 3.31; CI 95%: 1.02-10.71). Conclusions Our study identified several potential predictive risk factors for DNS. Treatment algorithms based on an appropriate risk-stratification of patients in the Emergency Department might reduce DNS incidence; however, more studies are needed. Adequate follow-up after hospital discharge, aimed at correct recognition of DNS, is also important. PMID:21414211
NASA Astrophysics Data System (ADS)
Dodd, Michael; Ferrante, Antonino
2017-11-01
Our objective is to perform DNS of finite-size droplets that are evaporating in isotropic turbulence. This requires fully resolving the process of momentum, heat, and mass transfer between the droplets and surrounding gas. We developed a combined volume-of-fluid (VOF) method and low-Mach-number approach to simulate this flow. The two main novelties of the method are: (i) the VOF algorithm captures the motion of the liquid gas interface in the presence of mass transfer due to evaporation and condensation without requiring a projection step for the liquid velocity, and (ii) the low-Mach-number approach allows for local volume changes caused by phase change while the total volume of the liquid-gas system is constant. The method is verified against an analytical solution for a Stefan flow problem, and the D2 law is verified for a single droplet in quiescent gas. We also demonstrate the schemes robustness when performing DNS of an evaporating droplet in forced isotropic turbulence.
Conditional dissipation of scalars in homogeneous turbulence: Closure for MMC modelling
NASA Astrophysics Data System (ADS)
Wandel, Andrew P.
2013-08-01
While the mean and unconditional variance are to be predicted well by any reasonable turbulent combustion model, these are generally not sufficient for the accurate modelling of complex phenomena such as extinction/reignition. An additional criterion has been recently introduced: accurate modelling of the dissipation timescales associated with fluctuations of scalars about their conditional mean (conditional dissipation timescales). Analysis of Direct Numerical Simulation (DNS) results for a passive scalar shows that the conditional dissipation timescale is of the order of the integral timescale and smaller than the unconditional dissipation timescale. A model is proposed: the conditional dissipation timescale is proportional to the integral timescale. This model is used in Multiple Mapping Conditioning (MMC) modelling for a passive scalar case and a reactive scalar case, comparing to DNS results for both. The results show that this model improves the accuracy of MMC predictions so as to match the DNS results more closely using a relatively-coarse spatial resolution compared to other turbulent combustion models.
Gusdal, Annelie K; Beckman, Christel; Wahlström, Rolf; Törnkvist, Lena
2011-06-01
To explore the capability of the Safe Medication Assessment (SMA) tool in identifying factors highly related to unsafe medication management among elderly patients and to investigate the district nurses' (DNs) opinions of the SMA's usefulness as a tool in their daily primary healthcare practice. Elderly patients who experience many medical conditions often use multiple drugs. As well as the combined decline in physical and cognitive functions, the elderly are at high risk for medication-related problems. It is essential to develop a screening procedure to distinguish elderly at risk of an unsafe medication management. An explorative study. During a 3-6-month period, 25 voluntary DNs used SMA with 160 patients (consecutively chosen and meeting four specified criteria) in their daily practice. Furthermore, DNs responded to questions regarding SMA's usefulness. The result showed that SMA had the capability to identify factors highly related to unsafe medication management among the elderly included in the study. In 64% of assessments DNs identified areas of new information and in 23% of the assessments DNs intervened. They found SMA to be satisfactory regarding its level of simplicity, relevance, completeness, intelligibility, and time for implementation. SMA alerted the DNs to patients' attitudes about medication and empowered them in identifying elderly patients who had unsafe medication management. SMA was also perceived as a useful assessment tool by the DNs.
Reduced-Order Direct Numerical Simulation of Solute Transport in Porous Media
NASA Astrophysics Data System (ADS)
Mehmani, Yashar; Tchelepi, Hamdi
2017-11-01
Pore-scale models are an important tool for analyzing fluid dynamics in porous materials (e.g., rocks, soils, fuel cells). Current direct numerical simulation (DNS) techniques, while very accurate, are computationally prohibitive for sample sizes that are statistically representative of the porous structure. Reduced-order approaches such as pore-network models (PNM) aim to approximate the pore-space geometry and physics to remedy this problem. Predictions from current techniques, however, have not always been successful. This work focuses on single-phase transport of a passive solute under advection-dominated regimes and delineates the minimum set of approximations that consistently produce accurate PNM predictions. Novel network extraction (discretization) and particle simulation techniques are developed and compared to high-fidelity DNS simulations for a wide range of micromodel heterogeneities and a single sphere pack. Moreover, common modeling assumptions in the literature are analyzed and shown that they can lead to first-order errors under advection-dominated regimes. This work has implications for optimizing material design and operations in manufactured (electrodes) and natural (rocks) porous media pertaining to energy systems. This work was supported by the Stanford University Petroleum Research Institute for Reservoir Simulation (SUPRI-B).
A DNase encoded by integrated element CJIE1 inhibits natural transformation of Campylobacter jejuni.
Gaasbeek, Esther J; Wagenaar, Jaap A; Guilhabert, Magalie R; Wösten, Marc M S M; van Putten, Jos P M; van der Graaf-van Bloois, Linda; Parker, Craig T; van der Wal, Fimme J
2009-04-01
The species Campylobacter jejuni is considered naturally competent for DNA uptake and displays strong genetic diversity. Nevertheless, nonnaturally transformable strains and several relatively stable clonal lineages exist. In the present study, the molecular mechanism responsible for the nonnatural transformability of a subset of C. jejuni strains was investigated. Comparative genome hybridization indicated that C. jejuni Mu-like prophage integrated element 1 (CJIE1) was more abundant in nonnaturally transformable C. jejuni strains than in naturally transformable strains. Analysis of CJIE1 indicated the presence of dns (CJE0256), which is annotated as a gene encoding an extracellular DNase. DNase assays using a defined dns mutant and a dns-negative strain expressing Dns from a plasmid indicated that Dns is an endogenous DNase. The DNA-hydrolyzing activity directly correlated with the natural transformability of the knockout mutant and the dns-negative strain expressing Dns from a plasmid. Analysis of a broader set of strains indicated that the majority of nonnaturally transformable strains expressed DNase activity, while all naturally competent strains lacked this activity. The inhibition of natural transformation in C. jejuni via endogenous DNase activity may contribute to the formation of stable lineages in the C. jejuni population.
Towards LES Models of Jets and Plumes
NASA Technical Reports Server (NTRS)
Webb, A. T.; Mansour, N. N.
2000-01-01
As pointed out by Rodi standard integral solutions for jets and plumes developed for discharge into infinite, quiescent ambient are difficult to extend to complex situations, particularly in the presence of boundaries such as the sea floor or ocean surface. In such cases the assumption of similarity breaks down and it is impossible to find a suitable entrainment coefficient. The models are also incapable of describing any but the most slowly varying unsteady motions. There is therefore a need for full time-dependent modeling of the flow field for which there are three main approaches: (1) Reynolds averaged numerical simulation (RANS), (2) large eddy simulation (LES), and (3) direct numerical simulation (DNS). Rodi applied RANS modeling to both jets and plumes with considerable success, the test being a match with experimental data for time-averaged velocity and temperature profiles as well as turbulent kinetic energy and rms axial turbulent velocity fluctuations. This model still relies on empirical constants, some eleven in the case of the buoyant jet, and so would not be applicable to a partly laminar plume, may have limited use in the presence of boundaries, and would also be unsuitable if one is after details of the unsteady component of the flow (the turbulent eddies). At the other end of the scale DNS modeling includes all motions down to the viscous scales. Boersma et al. have built such a model for the non-buoyant case which also compares well with measured data for mean and turbulent velocity components. The model demonstrates its versatility by application to a laminar flow case. As its name implies, DNS directly models the Navier-Stokes equations without recourse to subgrid modeling so for flows with a broad spectrum of motions (high Re) the cost can be prohibitive - the number of required grid points scaling with Re(exp 9/4) and the number of time steps with Re(exp 3/4). The middle road is provided by LES whereby the Navier-Stokes equations are formally filtered with the filter chosen to only exclude the smallest turbulent motions. If successful, LES should provide much of the detail available to DNS but at more bearable cost. Fatica et al. in comparing LES with DNS for a low Reynolds number jet showed that the LES could simulate the temporally evolving behavior including growth of the jet thickness. It is the intention of this report to explore the application of an LES model to jets and plumes. As always, before tackling complex situations, the model must be tested for the simplest of cases and so we address only two, a non-buoyant axisymmetric jet issuing steadily from an orifice into a semi-infinite stationary environment and a buoyant jet in the same environment. The work is a continuation of Basu and Mansour.
Adaptive LES Methodology for Turbulent Flow Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oleg V. Vasilyev
2008-06-12
Although turbulent flows are common in the world around us, a solution to the fundamental equations that govern turbulence still eludes the scientific community. Turbulence has often been called one of the last unsolved problem in classical physics, yet it is clear that the need to accurately predict the effect of turbulent flows impacts virtually every field of science and engineering. As an example, a critical step in making modern computational tools useful in designing aircraft is to be able to accurately predict the lift, drag, and other aerodynamic characteristics in numerical simulations in a reasonable amount of time. Simulationsmore » that take months to years to complete are much less useful to the design cycle. Much work has been done toward this goal (Lee-Rausch et al. 2003, Jameson 2003) and as cost effective accurate tools for simulating turbulent flows evolve, we will all benefit from new scientific and engineering breakthroughs. The problem of simulating high Reynolds number (Re) turbulent flows of engineering and scientific interest would have been solved with the advent of Direct Numerical Simulation (DNS) techniques if unlimited computing power, memory, and time could be applied to each particular problem. Yet, given the current and near future computational resources that exist and a reasonable limit on the amount of time an engineer or scientist can wait for a result, the DNS technique will not be useful for more than 'unit' problems for the foreseeable future (Moin & Kim 1997, Jimenez & Moin 1991). The high computational cost for the DNS of three dimensional turbulent flows results from the fact that they have eddies of significant energy in a range of scales from the characteristic length scale of the flow all the way down to the Kolmogorov length scale. The actual cost of doing a three dimensional DNS scales as Re{sup 9/4} due to the large disparity in scales that need to be fully resolved. State-of-the-art DNS calculations of isotropic turbulence have recently been completed at the Japanese Earth Simulator (Yokokawa et al. 2002, Kaneda et al. 2003) using a resolution of 40963 (approximately 10{sup 11}) grid points with a Taylor-scale Reynolds number of 1217 (Re {approx} 10{sup 6}). Impressive as these calculations are, performed on one of the world's fastest super computers, more brute computational power would be needed to simulate the flow over the fuselage of a commercial aircraft at cruising speed. Such a calculation would require on the order of 10{sup 16} grid points and would have a Reynolds number in the range of 108. Such a calculation would take several thousand years to simulate one minute of flight time on today's fastest super computers (Moin & Kim 1997). Even using state-of-the-art zonal approaches, which allow DNS calculations that resolve the necessary range of scales within predefined 'zones' in the flow domain, this calculation would take far too long for the result to be of engineering interest when it is finally obtained. Since computing power, memory, and time are all scarce resources, the problem of simulating turbulent flows has become one of how to abstract or simplify the complexity of the physics represented in the full Navier-Stokes (NS) equations in such a way that the 'important' physics of the problem is captured at a lower cost. To do this, a portion of the modes of the turbulent flow field needs to be approximated by a low order model that is cheaper than the full NS calculation. This model can then be used along with a numerical simulation of the 'important' modes of the problem that cannot be well represented by the model. The decision of what part of the physics to model and what kind of model to use has to be based on what physical properties are considered 'important' for the problem. It should be noted that 'nothing is free', so any use of a low order model will by definition lose some information about the original flow.« less
Turbulence generation through intense kinetic energy sources
NASA Astrophysics Data System (ADS)
Maqui, Agustin F.; Donzis, Diego A.
2016-06-01
Direct numerical simulations (DNS) are used to systematically study the development and establishment of turbulence when the flow is initialized with concentrated regions of intense kinetic energy. This resembles both active and passive grids which have been extensively used to generate and study turbulence in laboratories at different Reynolds numbers and with different characteristics, such as the degree of isotropy and homogeneity. A large DNS database was generated covering a wide range of initial conditions with a focus on perturbations with some directional preference, a condition found in active jet grids and passive grids passed through a contraction as well as a new type of active grid inspired by the experimental use of lasers to photo-excite the molecules that comprise the fluid. The DNS database is used to assert under what conditions the flow becomes turbulent and if so, the time required for this to occur. We identify a natural time scale of the problem which indicates the onset of turbulence and a single Reynolds number based exclusively on initial conditions which controls the evolution of the flow. It is found that a minimum Reynolds number is needed for the flow to evolve towards fully developed turbulence. An extensive analysis of single and two point statistics, velocity as well as spectral dynamics and anisotropy measures is presented to characterize the evolution of the flow towards realistic turbulence.
Direct Numerical Simulation of Hypersonic Turbulent Boundary Layer inside an Axisymmetric Nozzle
NASA Technical Reports Server (NTRS)
Huang, Junji; Zhang, Chao; Duan, Lian; Choudhari, Meelan M.
2017-01-01
As a first step toward a study of acoustic disturbance field within a conventional, hypersonic wind tunnel, direct numerical simulations (DNS) of a Mach 6 turbulent boundary layer on the inner wall of a straight axisymmetric nozzle are conducted and the results are compared with those for a flat plate. The DNS results for a nozzle radius to boundary-layer thickness ratio of 5:5 show that the turbulence statistics of the nozzle-wall boundary layer are nearly unaffected by the transverse curvature of the nozzle wall. Before the acoustic waves emanating from different parts of the nozzle surface can interfere with each other and undergo reflections from adjacent portions of the nozzle surface, the rms pressure fluctuation beyond the boundary layer edge increases toward the nozzle axis, apparently due to a focusing effect inside the axisymmetric configuration. Spectral analysis of pressure fluctuations at both the wall and the freestream indicates a similar distribution of energy content for both the nozzle and the flat plate, with the peak of the premultiplied frequency spectrum at a frequency of [(omega)(delta)]/U(sub infinity) approximately 6.0 inside the free stream and at [(omega)(delta)]/U(sub infinity) approximately 2.0 along the wall. The present results provide the basis for follow-on simulations involving reverberation effects inside the nozzle.
Kuroda, Hiroshi; Fujihara, Kazuo; Kushimoto, Shigeki; Aoki, Masashi
2015-05-01
Delayed neurologic sequelae (DNS) after carbon monoxide (CO) poisoning manifest as a relapse of neurologic deficits. However, the long-term outcome of DNS has not been fully clarified. Myelin basic protein (MBP) levels in the cerebrospinal fluid (CSF) have been reported to be elevated in DNS. However, the precise timing and clinical value of the CSF examination have not been fully evaluated. We aimed to clarify the long-term outcome and the factors predicting the outcome of DNS and to evaluate the utility of CSF-MBP for predicting the development and severity of DNS. This work was designed as a single-center, prospective, observational study. We graded DNS severity as Grade 1 (consistent independence), Grade 2 (temporary dependence), or Grade 3 (persistent dependence). We analyzed the percentage categorized in each grade and the parameters associated with outcome. Of 100 patients experiencing acute CO poisoning (median age: 46 years; 69% male), 20 (20%) developed DNS, including six Grade 1 (30%), ten Grade 2 (50%), and four Grade 3 (20%) cases. The Grade 3 patients [median: 77 years; interquartile range (IQR): 76-82] were older than the Grade 1 patients [42; 30-46] (P<0.01); the DNS onset of the Grade 1 patients [median interval after poisoning: 35 days; IQR: 32-56] occurred later than that of the Grade 3 patients [10; 9-13] P<0.001) and the Grade 2 patients [25; 23-27] (P<0.05). The CSF-MBP levels of the DNS patients were higher than those of the non-DNS patients (P<0.0001). The 1-month CSF-MBP levels of the Grade 3 patients were higher than those of the Grade 1 patients (P<0.05); the MBP index, defined as [(Age)×(1-month CSF-MBP)], was higher in the Grade 3 patients than in the Grade 1 patients (P<0.01). Severe DNS were associated with advanced age (>72.5 years), earlier onset (<18 days), higher 1-month CSF-MBP (>252 pg/ml), and higher MBP index (>20.9 year × ng/ml). Poor DNS outcomes were associated with advanced age and earlier onset. CSF-MBP can serve as a sensitive predictor of both the development and outcomes of DNS. Copyright © 2015 Elsevier Inc. All rights reserved.
Lagerin, Annica; Törnkvist, Lena; Hylander, Ingrid
2016-09-01
Aims This study had two aims: to describe the dialogue between district nurses (DNs) and older people in preventive home visits (PHVs) from the perspective of the DNs, and to identify barriers to and facilitators of this dialogue as perceived by the DNs. The number of older people is rapidly increasing in all western countries, and as people's age increases, the probability that they will have multiple diseases also increases. Planned actions are therefore needed to promote health and prevent diseases among older people so they can remain in good health and live in their homes for as long as possible. In Sweden, PHVs to 75-year-olds by DNs are one such action. This qualitative study included five group interviews with 20 DNs. Data were analysed with qualitative content analysis. Findings DNs' experiences of barriers to and facilitators of a successful health dialogue were sorted into five domains. Together, these domains provided a systematic description of the interaction between the DN and the older person in the PHV. The domains included: establishing trustful contact, conducting a structured interview, making an overall assessment, proposing health-promoting activities and offering follow-up. The barriers and facilitators could be related to the older person, the DN or the home environment. The latent content of the interviews was evident in three themes that were related to the DNs' experiences of barriers and facilitators. These themes illustrated professional dilemmas that the DNs had to resolve to achieve the purpose of the PHV. The study demonstrates that the interaction between a DN and an older person in a PHV can be described as a complex social process in which the DN balances a personal and professional approach, combines a person-oriented and a task-oriented approach and employs both a salutogenic and pathogenic perspective.
Towards Adaptive Grids for Atmospheric Boundary-Layer Simulations
NASA Astrophysics Data System (ADS)
van Hooft, J. Antoon; Popinet, Stéphane; van Heerwaarden, Chiel C.; van der Linden, Steven J. A.; de Roode, Stephan R.; van de Wiel, Bas J. H.
2018-02-01
We present a proof-of-concept for the adaptive mesh refinement method applied to atmospheric boundary-layer simulations. Such a method may form an attractive alternative to static grids for studies on atmospheric flows that have a high degree of scale separation in space and/or time. Examples include the diurnal cycle and a convective boundary layer capped by a strong inversion. For such cases, large-eddy simulations using regular grids often have to rely on a subgrid-scale closure for the most challenging regions in the spatial and/or temporal domain. Here we analyze a flow configuration that describes the growth and subsequent decay of a convective boundary layer using direct numerical simulation (DNS). We validate the obtained results and benchmark the performance of the adaptive solver against two runs using fixed regular grids. It appears that the adaptive-mesh algorithm is able to coarsen and refine the grid dynamically whilst maintaining an accurate solution. In particular, during the initial growth of the convective boundary layer a high resolution is required compared to the subsequent stage of decaying turbulence. More specifically, the number of grid cells varies by two orders of magnitude over the course of the simulation. For this specific DNS case, the adaptive solver was not yet more efficient than the more traditional solver that is dedicated to these types of flows. However, the overall analysis shows that the method has a clear potential for numerical investigations of the most challenging atmospheric cases.
Towards Adaptive Grids for Atmospheric Boundary-Layer Simulations
NASA Astrophysics Data System (ADS)
van Hooft, J. Antoon; Popinet, Stéphane; van Heerwaarden, Chiel C.; van der Linden, Steven J. A.; de Roode, Stephan R.; van de Wiel, Bas J. H.
2018-06-01
We present a proof-of-concept for the adaptive mesh refinement method applied to atmospheric boundary-layer simulations. Such a method may form an attractive alternative to static grids for studies on atmospheric flows that have a high degree of scale separation in space and/or time. Examples include the diurnal cycle and a convective boundary layer capped by a strong inversion. For such cases, large-eddy simulations using regular grids often have to rely on a subgrid-scale closure for the most challenging regions in the spatial and/or temporal domain. Here we analyze a flow configuration that describes the growth and subsequent decay of a convective boundary layer using direct numerical simulation (DNS). We validate the obtained results and benchmark the performance of the adaptive solver against two runs using fixed regular grids. It appears that the adaptive-mesh algorithm is able to coarsen and refine the grid dynamically whilst maintaining an accurate solution. In particular, during the initial growth of the convective boundary layer a high resolution is required compared to the subsequent stage of decaying turbulence. More specifically, the number of grid cells varies by two orders of magnitude over the course of the simulation. For this specific DNS case, the adaptive solver was not yet more efficient than the more traditional solver that is dedicated to these types of flows. However, the overall analysis shows that the method has a clear potential for numerical investigations of the most challenging atmospheric cases.
NASA Astrophysics Data System (ADS)
Wimer, N. T.; Mackoweicki, A. S.; Poludnenko, A. Y.; Hoffman, C.; Daily, J. W.; Rieker, G. B.; Hamlington, P.
2017-12-01
Results are presented from a joint computational and experimental research effort focused on understanding and characterizing wildland fire spread at small scales (roughly 1m-1mm) using direct numerical simulations (DNS) with chemical kinetics mechanisms that have been calibrated using data from high-speed laser diagnostics. The simulations are intended to directly resolve, with high physical accuracy, all small-scale fluid dynamic and chemical processes relevant to wildland fire spread. The high fidelity of the simulations is enabled by the calibration and validation of DNS sub-models using data from high-speed laser diagnostics. These diagnostics have the capability to measure temperature and chemical species concentrations, and are used here to characterize evaporation and pyrolysis processes in wildland fuels subjected to an external radiation source. The chemical kinetics code CHEMKIN-PRO is used to study and reduce complex reaction mechanisms for water removal, pyrolysis, and gas phase combustion during solid biomass burning. Simulations are then presented for a gaseous pool fire coupled with the resulting multi-step chemical reaction mechanisms, and the results are connected to the fundamental structure and spread of wildland fires. It is anticipated that the combined computational and experimental approach of this research effort will provide unprecedented access to information about chemical species, temperature, and turbulence during the entire pyrolysis, evaporation, ignition, and combustion process, thereby permitting more complete understanding of the physics that must be represented by coarse-scale numerical models of wildland fire spread.
Implicit Large-Eddy Simulations of Zero-Pressure Gradient, Turbulent Boundary Layer
NASA Technical Reports Server (NTRS)
Sekhar, Susheel; Mansour, Nagi N.
2015-01-01
A set of direct simulations of zero-pressure gradient, turbulent boundary layer flows are conducted using various span widths (62-630 wall units), to document their influence on the generated turbulence. The FDL3DI code that solves compressible Navier-Stokes equations using high-order compact-difference scheme and filter, with the standard recycling/rescaling method of turbulence generation, is used. Results are analyzed at two different Re values (500 and 1,400), and compared with spectral DNS data. They show that a minimum span width is required for the mere initiation of numerical turbulence. Narrower domains ((is) less than 100 w.u.) result in relaminarization. Wider spans ((is) greater than 600 w.u.) are required for the turbulent statistics to match reference DNS. The upper-wall boundary condition for this setup spawns marginal deviations in the mean velocity and Reynolds stress profiles, particularly in the buffer region.
Homogenization Issues in the Combustion of Heterogeneous Solid Propellants
NASA Technical Reports Server (NTRS)
Chen, M.; Buckmaster, J.; Jackson, T. L.; Massa, L.
2002-01-01
We examine random packs of discs or spheres, models for ammonium-perchlorate-in-binder propellants, and discuss their average properties. An analytical strategy is described for calculating the mean or effective heat conduction coefficient in terms of the heat conduction coefficients of the individual components, and the results are verified by comparison with those of direct numerical simulations (dns) for both 2-D (disc) and 3-D (sphere) packs across which a temperature difference is applied. Similarly, when the surface regression speed of each component is related to the surface temperature via a simple Arrhenius law, an analytical strategy is developed for calculating an effective Arrhenius law for the combination, and these results are verified using dns in which a uniform heat flux is applied to the pack surface, causing it to regress. These results are needed for homogenization strategies necessary for fully integrated 2-D or 3-D simulations of heterogeneous propellant combustion.
Liang, Fei; Li, Wenqiang; Zhang, Ping; Zhang, Yanxia; Gu, Jiapeng; Wang, Xiahong; Zhang, Hongxing; Gu, Renjun
2013-09-25
Delayed neuropsychological sequelae (DNS) are the most severe and clinically intractable complications following acute carbon monoxide (CO) poisoning. Symptoms of DNS often resemble those of Parkinson's disease (PD), suggesting shared neurological deficits. Furthermore, Parkinson protein 2 (PARK2) mutations are associated with PD and other neurodegenerative diseases. The association signal was detected between PARK2 and DNS after acute CO poisoning in our DNA pooling base genome-wide association study. Two PARK2 single nucleotide polymorphisms (SNPs), rs1784594 (C/T allele) and rs1893895 (G/A allele), selected from DNA pooling base genome-wide association study, were genotyped by in 514 CO poisoning patients using polymerase chain reaction restriction fragment length polymorphisms (PCR-RFLPs). The patient group consisted of 231 patients with DNS and 283 patients with no signs of lasting neurological damage (control population). The frequency of the rs1784594 T allele was significantly lower in the DNS population (OR = 1.42, 95%CI: 1.08 - 1.87), as was the TT vs. CC genotype (OR = 1.95, 95%CI: 1.15 - 3.23) and the TT vs. CT + CC frequency (OR = 1.68, 95%CI: 1.32 - 2.49) compared to controls. Association analysis revealed a significant association between DNS and rs1784594 (P < 0.01) but not rs1893895 (P > 0.05). In female cases, the T allele frequency of rs1784594 was significantly lower in DNS patients compared to female controls (OR = 1.48, 95%CI: 1.01 - 2.17). These data suggest that the allelic variant of rs1784594 is a risk factor for DNS following acute CO poisoning, especially in females. The PARK2 protein may modulate the susceptibility to DNS, underscoring the importance of examining the relationship between other PARK2 polymorphisms and clinical outcome following CO poisoning.
NASA Astrophysics Data System (ADS)
Würz, W.; Sartorius, D.; Kloker, M.; Borodulin, V. I.; Kachanov, Y. S.; Smorodsky, B. V.
2012-09-01
Transition prediction in two-dimensional laminar boundary layers developing on airfoil sections at subsonic speeds and very low turbulence levels is still a challenge. The commonly used semi-empirical prediction tools are mainly based on linear stability theory and do not account for nonlinear effects present unavoidably starting with certain stages of transition. One reason is the lack of systematic investigations of the weakly nonlinear stages of transition, especially of the strongest interactions of the instability modes predominant in non-self-similar boundary layers. The present paper is devoted to the detailed experimental, numerical, and theoretical study of weakly nonlinear subharmonic resonances of Tollmien-Schlichting waves in an airfoil boundary layer, representing main candidates for the strongest mechanism of these initial nonlinear stages. The experimental approach is based on phase-locked hot-wire measurements under controlled disturbance conditions using a new disturbance source being capable to produce well-defined, complex wave compositions in a wide range of streamwise and spanwise wave numbers. The tests were performed in a low-turbulence wind tunnel at a chord Reynolds number of Re = 0.7 × 106. Direct numerical simulations (DNS) were utilized to provide a detailed comparison for the test cases. The results of weakly nonlinear theory (WNT) enabled a profound understanding of the underlying physical mechanisms observed in the experiments and DNS. The data obtained in experiment, DNS and WNT agree basically and provide a high degree of reliability of the results. Interactions occurring between components of various initial frequency-wavenumber spectra of instability waves are investigated by systematic variation of parameters. It is shown that frequency-detuned and spanwise-wavenumber-detuned subharmonic-type resonant interactions have an extremely large spectral width. Similar to results obtained for self-similar base flows it is found that the amplification factors in the frequency-detuned resonances can be even higher than in tuned cases, in spite of the strong base-flow non-self-similarity. An explanation of this unusual phenomenon is found based on the theoretical analysis and comparison of experimental, theoretical, and DNS data.
Goel, Ruchi; Nagpal, Smriti; Kumar, Sushil; Kamal, Saurabh; Dangda, Sonal; Bodh, Sonam Angmo
2015-12-01
The purpose of this study is to study the operative difficulties and success rate of transcanalicular laser-assisted endoscopic dacryocystorhinostomy in patients of chronic dacryocystitis with deviated nasal septum (DNS). A prospective interventional clinical study of 36 consecutive patients suffering from chronic dacryocystitis with nasolacrimal duct obstruction with DNS undergoing primary TCLADCR from March to June 2011 was carried out. Diode laser was used to create a 16-mm(2) ostium which was enlarged to 64 mm(2) using Blakesley's forceps. Success was defined as anatomical patency and absence of symptoms at 12 months of follow-up. Out of the 36 patients, 25 were females with ages 20-72 years, and 19 were left sided. There were 12 high, 12 mid and 12 basal DNS towards the side of surgery, mild to moderate in severity. Intraoperatively there was difficulty in visualising the aiming beam in the nose, tedious manipulation of endoscope and excessive bleeding in 3 patients. Increased bleeding and failures were significantly higher in high DNS (Fisher exact test-2 tailed: 0.0045). The procedure was successful in 94.4 % cases with average ostium size of 21.94 mm(2) at 12 months and no statistically significant difference in success rates between mild and moderate DNS (Fisher exact test-2 tailed: 1.000). Also there was no difference in the complication rate between mild and moderate DNS (Fisher exact test-2 tailed: 0.0841). TCLADCR is an effective procedure in patients with mild to moderate mid and basal DNS and obviates the need for multiple procedures and a cutaneous scar.
NASA Astrophysics Data System (ADS)
Syvitski, J. P.; Arango, H.; Harris, C. K.; Meiburg, E. H.; Jenkins, C. J.; Auad, G.; Hutton, E.; Kniskern, T. A.; Radhakrishnan, S.
2016-12-01
A loosely coupled numerical workflow is developed to address land-sea pathways for sediment routing from terrestrial and coastal sources, across the continental shelf and ultimately down the continental slope canyon system of the northern Gulf of Mexico (GOM). Model simulations represent a range of environmental conditions that might lead to the generation of turbidity-currents. The workflow comprises: 1) A simulator for the water and sediment discharged from rivers into the GOM with WMBsedv2 with calibration using USGS and USACE gauged river data; 2) Domain grids and bathymetry (ETOPO2) for the ocean models and realistic seabed sediment texture grids (dbSEABED) for the sediment transport models; 3) A spectral wave action simulator (10 km resolution) (WaveWatch III) driven by GFDL - GFS winds; 4) A simulator for ocean dynamics (ROMS) forced with ECMWF ERA winds; 5) A simulator for seafloor resuspension and transport (CSTMS); 6) Simulators (HurriSlip) of seafloor failure and flow ignition locations for boundary input to a turbidity current model; and 7) A RANS turbidity current model (TURBINS) to route sediment flows down GOM canyons, providing estimates of bottom shear stresses. TURBINS was developed first as a DNS model and then converted to an LES model wherein a dynamic turbulence closure scheme was employed. Like most DNS to LES model comparisons (these being done by the UCSB team), turbulence scaling allowed for higher Re applications but were found still not capable of simulating field scale (GOM continental canyons) environments. The LES model was next converted to a non-hydrostatic RANS model capable of field scale applications but only with a daisy-chain approach to multiple model runs along the simulated canyon floor. These model adaptations allowed the workflow to be tested for the year 1-Oct-2007 to 30-Sep-2008 that included two domain Hurricanes (Ike and Gustav). The RANS-TURBINS employed further boundary simplifications on both sediment erosion and deposition in line with the ocean model ROMS-CSTMS.
Kim, Do Hyun; Lee, Jae Jin; You, Sung Joshua Hyun
2018-03-23
To investigate the effects of conscious (ADIM) and subconscious (DNS) core stabilization exercises on cortical changes in adults with core instability. Five non-symptomatic participants with core instability. A novel core stabilization task switching paradigm was designed to separate cortical or subcortical neural substrates during a series of DNS or ADIM core stabilization tasks. fMRI blood BOLD analysis revealed a distinctive subcortical activation pattern during the performance of the DNS, whereas the cortical motor network was primarily activated during an ADIM. Peak voxel volume values showed significantly greater DNS (11.08 ± 1.51) compared with the ADIM (8.81 ± 0.21) (p= 0.043). The ADIM exercise activated the cortical PMC-SMC-SMA motor network, whereas the DNS exercise activated both these same cortical areas and the subcortical cerebellum-BG-thalamus-cingulate cortex network.
Modelling of subgrid-scale phenomena in supercritical transitional mixing layers: an a priori study
NASA Astrophysics Data System (ADS)
Selle, Laurent C.; Okong'o, Nora A.; Bellan, Josette; Harstad, Kenneth G.
A database of transitional direct numerical simulation (DNS) realizations of a supercritical mixing layer is analysed for understanding small-scale behaviour and examining subgrid-scale (SGS) models duplicating that behaviour. Initially, the mixing layer contains a single chemical species in each of the two streams, and a perturbation promotes roll-up and a double pairing of the four spanwise vortices initially present. The database encompasses three combinations of chemical species, several perturbation wavelengths and amplitudes, and several initial Reynolds numbers specifically chosen for the sole purpose of achieving transition. The DNS equations are the Navier-Stokes, total energy and species equations coupled to a real-gas equation of state; the fluxes of species and heat include the Soret and Dufour effects. The large-eddy simulation (LES) equations are derived from the DNS ones through filtering. Compared to the DNS equations, two types of additional terms are identified in the LES equations: SGS fluxes and other terms for which either assumptions or models are necessary. The magnitude of all terms in the LES conservation equations is analysed on the DNS database, with special attention to terms that could possibly be neglected. It is shown that in contrast to atmospheric-pressure gaseous flows, there are two new terms that must be modelled: one in each of the momentum and the energy equations. These new terms can be thought to result from the filtering of the nonlinear equation of state, and are associated with regions of high density-gradient magnitude both found in DNS and observed experimentally in fully turbulent high-pressure flows. A model is derived for the momentum-equation additional term that performs well at small filter size but deteriorates as the filter size increases, highlighting the necessity of ensuring appropriate grid resolution in LES. Modelling approaches for the energy-equation additional term are proposed, all of which may be too computationally intensive in LES. Several SGS flux models are tested on an a priori basis. The Smagorinsky (SM) model has a poor correlation with the data, while the gradient (GR) and scale-similarity (SS) models have high correlations. Calibrated model coefficients for the GR and SS models yield good agreement with the SGS fluxes, although statistically, the coefficients are not valid over all realizations. The GR model is also tested for the variances entering the calculation of the new terms in the momentum and energy equations; high correlations are obtained, although the calibrated coefficients are not statistically significant over the entire database at fixed filter size. As a manifestation of the small-scale supercritical mixing peculiarities, both scalar-dissipation visualizations and the scalar-dissipation probability density functions (PDF) are examined. The PDF is shown to exhibit minor peaks, with particular significance for those at larger scalar dissipation values than the mean, thus significantly departing from the Gaussian behaviour.
Bos, Elisabeth; Löfmark, Anna; Törnkvist, Lena
2009-11-01
Nursing students go through clinical supervision in primary health care settings but district nurses' (DNs) circumstances when supervising them are only briefly described in the literature. The aim of this study was to investigate DNs experience of supervising nursing students before and after the implementation of a new supervision model. Ninety-eight (74%) DNs answered a questionnaire before and 84 (65%) after implementation of the new supervision model. The study showed that DNs in most cases felt that conditions for supervision in the workplace were adequate. But about 70% lacked training for the supervisory role and 20% had no specialist district nurse training. They also experienced difficulty in keeping up-to-date with changes in nurse education programmes, in receiving support from the university and from their clinic managers, and in setting aside time for supervision. Improvements after the implementation of a new model chiefly concerned organisation; more DNs stated that one person had primary responsibility for students' clinical practice, that information packages for supervisors and students were available at the health care centres, and that conditions were in place for increasing the number of students they supervised. DNs also stated that supervisors and students benefited from supervision by more than one supervisor. To conclude, implementation of a new supervision model resulted in some improvements.
Zou, Jian-Fang; Guo, Qiming; Shao, Hua; Li, Bin; Du, Yuxiu; Liu, Maofeng; Liu, Fengling; Dai, Lixin; Chung, Min-Hsien; Lin, Hung-Jung; Guo, How-Ran; Yang, Tzu-Meng; Huang, Chien-Cheng; Hsu, Chien-Chin
2014-01-01
As the human population increased in China, the carbon monoxide is a serious environmental toxin in public health. However, predicting the delayed neuropsychiatric sequelae (DNS) of carbon monoxide poisoning (COP) has not been well studied. We investigated the independent predictors of DNS in patients with COP. This study was conducted at four hospitals in China. Data were retrospectively collected from 258 patients with COP between November 1990 and October 2011. DNS was the primary endpoint. A positive Babinski reflex was the independent predictor for DNS: sensitivity = 53.8% (95% confidence interval [CI]: 26.1-79.6), specificity = 88.6% (95% CI: 83.7-92.1), positive predictive value (PPV) = 20.0% (95% CI: 9.1-37.5), and negative predictive value (NPV) = 97.3% (95% CI: 94.0-98.9). The area under the receiver operating characteristic curve = 0.712 (95% CI: 0.544-0.880). A positive Babinski reflex was very memorable, immediately available, and applicable in clinical practice. Even when the sensitivity and PPV of a positive Babinski reflex were unsatisfactory, it had a good specificity and NPV for excluding the risk of DNS. In patients without a positive Babinski reflex, the risk for DNS was only 2.7%. This finding may help physicians make decisions about dispositions for patients with COP.
DNS, Enstrophy Balance, and the Dissipation Equation in a Separated Turbulent Channel Flow
NASA Technical Reports Server (NTRS)
Balakumar, Ponnampalam; Rubinstein, Robert; Rumsey, Christopher L.
2013-01-01
The turbulent flows through a plane channel and a channel with a constriction (2-D hill) are numerically simulated using DNS and RANS calculations. The Navier-Stokes equations in the DNS are solved using a higher order kinetic energy preserving central schemes and a fifth order accurate upwind biased WENO scheme for the space discretization. RANS calculations are performed using the NASA code CFL3D with the komega SST two-equation model and a full Reynolds stress model. Using DNS, the magnitudes of different terms that appear in the enstrophy equation are evaluated. The results show that the dissipation and the diffusion terms reach large values at the wall. All the vortex stretching terms have similar magnitudes within the buffer region. Beyond that the triple correlation among the vorticity and strain rate fluctuations becomes the important kinematic term in the enstrophy equation. This term is balanced by the viscous dissipation. In the separated flow, the triple correlation term and the viscous dissipation term peak locally and balance each other near the separated shear layer region. These findings concur with the analysis of Tennekes and Lumley, confirming that the energy transfer terms associated with the small-scale dissipation and the fluctuations of the vortex stretching essentially cancel each other, leaving an equation for the dissipation that is governed by the large-scale motion.
NASA Astrophysics Data System (ADS)
Andrade, João Rodrigo; Martins, Ramon Silva; Thompson, Roney Leon; Mompean, Gilmar; da Silveira Neto, Aristeu
2018-04-01
The present paper provides an analysis of the statistical uncertainties associated with direct numerical simulation (DNS) results and experimental data for turbulent channel and pipe flows, showing a new physically based quantification of these errors, to improve the determination of the statistical deviations between DNSs and experiments. The analysis is carried out using a recently proposed criterion by Thompson et al. ["A methodology to evaluate statistical errors in DNS data of plane channel flows," Comput. Fluids 130, 1-7 (2016)] for fully turbulent plane channel flows, where the mean velocity error is estimated by considering the Reynolds stress tensor, and using the balance of the mean force equation. It also presents how the residual error evolves in time for a DNS of a plane channel flow, and the influence of the Reynolds number on its convergence rate. The root mean square of the residual error is shown in order to capture a single quantitative value of the error associated with the dimensionless averaging time. The evolution in time of the error norm is compared with the final error provided by DNS data of similar Reynolds numbers available in the literature. A direct consequence of this approach is that it was possible to compare different numerical results and experimental data, providing an improved understanding of the convergence of the statistical quantities in turbulent wall-bounded flows.
A similarity model solution for corner-roll in turbulent Rayleigh-Bénard convection
NASA Astrophysics Data System (ADS)
Zhou, Wen-Feng; Chen, Jun; She, Zhen-Su; Bao, Yun
2017-11-01
The corner-roll (CR) is the coherent structure in Rayleigh-Bénard convection (RBC), playing an important role in determining convection dynamics and heat transport. By inspecting the streamlines of the average flow field of direct numerical simulation (DNS) of RBC for Rayleigh number, 108 <= Ra <= 5 ×109 , we propose a similarity model of statistically steady CR, based on an invariant geometrical form for the central role connected to a multi-layer description near the wall. It is shown that the model predicts the right characteristics of the mean velocity scaling ucr /Uf Ra-0.165 and global Reynolds number's scaling Recr Ra0.25 , compared to DNS. Furthermore, the model allows to extract, from DNS, a characteristic velocity scaling and a Reynolds number's scaling for the CR. More interestingly, we find that the CR possesses a Nusselt number scaling, Nucr Ra0.33 , higher than the wind-shearing region Nush Ra0.285 . This is explained by a model considering the mechanical balance of plume emission in CR, respectively predicting Nucr_mod Ra 1 / 3 , Recr_mod Nu *r/H Ra 1 / 3 - 0.085 , and ucr_mod /Uf Ra - 1 / 6 . In conclusion, a similarity model for CR is proposed and validated by DNS. Supported by NSFC (11221062, 11452002) and by MOST (China) 973 project (2009CB724100).
Németh, Krisztina; Domonkos, Celesztina; Sarnyai, Virág; Szemán, Julianna; Jicsinszky, László; Szente, Lajos; Visy, Júlia
2014-10-01
The resolution power of permethylated 6-monoamino-6-monodeoxy-βCD (PMMABCD) - a single isomer, cationic CD derivative - developed previously for chiral analyses in capillary electrophoresis was further studied here. Dansylated amino acids (Dns-AA) were chosen as amphoteric chiral model compounds. Changes in the resolutions of Dns-AAs by varying pH and selector concentrations were investigated and correlated with their structures and chemical properties (isoelectric point and lipophilicity). Maximal resolutions could be achieved at pH 6 or pH 4. The separations improved with increasing concentration of the selector. Baseline or substantially better resolution for 8 pairs of these Dns-AAs could be achieved. Low CD concentration was enough for the separation of the most apolar Dns-AAs. Chiral discrimination ability of PMMABCD was demonstrated by the separation of an artificial mixture of 8 Dns-AA pairs. Copyright © 2014 Elsevier B.V. All rights reserved.
Wind and boundary layers in Rayleigh-Bénard convection. II. Boundary layer character and scaling.
van Reeuwijk, Maarten; Jonker, Harm J J; Hanjalić, Kemo
2008-03-01
The scaling of the kinematic boundary layer thickness lambda(u) and the friction factor C(f) at the top and bottom walls of Rayleigh-Bénard convection is studied by direct numerical simulation (DNS). By a detailed analysis of the friction factor, a new parameterisation for C(f) and lambda(u) is proposed. The simulations were made of an L/H=4 aspect-ratio domain with periodic lateral boundary conditions at Ra=(10(5), 10(6), 10(7), 10(8)) and Pr=1. The continuous spectrum, as well as significant forcing due to Reynolds stresses, clearly indicates a turbulent character of the boundary layer, while viscous effects cannot be neglected, judging from the scaling of classical integral boundary layer parameters with Reynolds number. Using a conceptual wind model, we find that the friction factor C(f) should scale proportionally to the thermal boundary layer thickness as C(f) proportional variant lambda(Theta)/H, while the kinetic boundary layer thickness lambda(u) scales inversely proportionally to the thermal boundary layer thickness and wind Reynolds number lambda(u)/H proportional variant (lambda(Theta)/H)(-1)Re(-1). The predicted trends for C(f) and lambda(u) are in agreement with DNS results.
Inertial particles in a shearless mixing layer: direct numerical simulations
NASA Astrophysics Data System (ADS)
Ireland, Peter; Collins, Lance
2010-11-01
Entrainment, the drawing in of external fluid by a turbulent flow, is present in nearly all turbulent processes, from exhaust plumes to oceanic thermoclines to cumulus clouds. While the entrainment of fluid and of passive scalars in turbulent flows has been studied extensively, comparatively little research has been undertaken on inertial particle entrainment. We explore entrainment of inertial particles in a shearless mixing layer across a turbulent-non-turbulent interface (TNI) and a turbulent-turbulent interface (TTI) through direct numerical simulation (DNS). Particles are initially placed on one side of the interface and are advanced in time in decaying turbulence. Our results show that the TTI is more efficient in mixing droplets than the TNI. We also find that without the influence of gravity, over the range of Stokes numbers present in cumulus clouds, particle concentration statistics are essentially independent of the dissipation scale Stokes number. The DNS data agrees with results from experiments performed in a wind tunnel with close parametric overlap. We anticipate that a better understanding of the role of gravity and turbulence in inertial particle entrainment will lead to improved cloud evolution predictions and more accurate climate models. Sponsored by the U.S. NSF.
Reynolds number scaling of velocity increments in isotropic turbulence.
Iyer, Kartik P; Sreenivasan, Katepalli R; Yeung, P K
2017-02-01
Using the largest database of isotropic turbulence available to date, generated by the direct numerical simulation (DNS) of the Navier-Stokes equations on an 8192^{3} periodic box, we show that the longitudinal and transverse velocity increments scale identically in the inertial range. By examining the DNS data at several Reynolds numbers, we infer that the contradictory results of the past on the inertial-range universality are artifacts of low Reynolds number and residual anisotropy. We further show that both longitudinal and transverse velocity increments scale on locally averaged dissipation rate, just as postulated by Kolmogorov's refined similarity hypothesis, and that, in isotropic turbulence, a single independent scaling adequately describes fluid turbulence in the inertial range.
NASA Technical Reports Server (NTRS)
Okong'o, N. A.; Bellan, J.
2003-01-01
Analysis of Direct Numerical Simulations (DNS) transitional states of temporal, supercritical mixing layers for C7H16/N2 and O2/H2 shows that the evolution of all layers is characterized by the formation of high-density-gradient magnitude (HDGM) regions.
Dispersion of a Passive Scalar Within and Above an Urban Street Network
NASA Astrophysics Data System (ADS)
Goulart, E. V.; Coceal, O.; Belcher, S. E.
2018-03-01
The transport of a passive scalar from a continuous point-source release in an urban street network is studied using direct numerical simulation (DNS). Dispersion through the network is characterized by evaluating horizontal fluxes of scalar within and above the urban canopy and vertical exchange fluxes through the canopy top. The relative magnitude and balance of these fluxes are used to distinguish three different regions relative to the source location: a near-field region, a transition region and a far-field region. The partitioning of each of these fluxes into mean and turbulent parts is computed. It is shown that within the canopy the horizontal turbulent flux in the street network is small, whereas above the canopy it comprises a significant fraction of the total flux. Vertical fluxes through the canopy top are predominantly turbulent. The mean and turbulent fluxes are respectively parametrized in terms of an advection velocity and a detrainment velocity and the parametrization incorporated into a simple box-network model. The model treats the coupled dispersion problem within and above the street network in a unified way and predictions of mean concentrations compare well with the DNS data. This demonstrates the usefulness of the box-network approach for process studies and interpretation of results from more detailed numerical simulations.
Scalar mixing in LES/PDF of a high-Ka premixed turbulent jet flame
NASA Astrophysics Data System (ADS)
You, Jiaping; Yang, Yue
2016-11-01
We report a large-eddy simulation (LES)/probability density function (PDF) study of a high-Ka premixed turbulent flame in the Lund University Piloted Jet (LUPJ) flame series, which has been investigated using direct numerical simulation (DNS) and experiments. The target flame, featuring broadened preheat and reaction zones, is categorized into the broken reaction zone regime. In the present study, three widely used mixing modes, namely the Interaction by Exchange with the Mean (IEM), Modified Curl (MC), and Euclidean Minimum Spanning Tree (EMST) models are applied to assess their performance through detailed a posteriori comparisons with DNS. A dynamic model for the time scale of scalar mixing is formulated to describe the turbulent mixing of scalars at small scales. Better quantitative agreement for the mean temperature and mean mass fractions of major and minor species are obtained with the MC and EMST models than with the IEM model. The multi-scalar mixing in composition space with the three models are analyzed to assess the modeling of the conditional molecular diffusion term. In addition, we demonstrate that the product of OH and CH2O concentrations can be a good surrogate of the local heat release rate in this flame. This work is supported by the National Natural Science Foundation of China (Grant Nos. 11521091 and 91541204).
Effects of Eddy Viscosity on Time Correlations in Large Eddy Simulation
NASA Technical Reports Server (NTRS)
He, Guowei; Rubinstein, R.; Wang, Lian-Ping; Bushnell, Dennis M. (Technical Monitor)
2001-01-01
Subgrid-scale (SGS) models for large. eddy simulation (LES) have generally been evaluated by their ability to predict single-time statistics of turbulent flows such as kinetic energy and Reynolds stresses. Recent application- of large eddy simulation to the evaluation of sound sources in turbulent flows, a problem in which time, correlations determine the frequency distribution of acoustic radiation, suggest that subgrid models should also be evaluated by their ability to predict time correlations in turbulent flows. This paper compares the two-point, two-time Eulerian velocity correlation evaluated from direct numerical simulation (DNS) with that evaluated from LES, using a spectral eddy viscosity, for isotropic homogeneous turbulence. It is found that the LES fields are too coherent, in the sense that their time correlations decay more slowly than the corresponding time. correlations in the DNS fields. This observation is confirmed by theoretical estimates of time correlations using the Taylor expansion technique. Tile reason for the slower decay is that the eddy viscosity does not include the random backscatter, which decorrelates fluid motion at large scales. An effective eddy viscosity associated with time correlations is formulated, to which the eddy viscosity associated with energy transfer is a leading order approximation.
NASA Astrophysics Data System (ADS)
Robbins, Joshua; Voth, Thomas
2011-06-01
Material response to dynamic loading is often dominated by microstructure such as grain topology, porosity, inclusions, and defects; however, many models rely on assumptions of homogeneity. We use the probabilistic finite element method (WK Liu, IJNME, 1986) to introduce local uncertainty to account for material heterogeneity. The PFEM uses statistical information about the local material response (i.e., its expectation, coefficient of variation, and autocorrelation) drawn from knowledge of the microstructure, single crystal behavior, and direct numerical simulation (DNS) to determine the expectation and covariance of the system response (velocity, strain, stress, etc). This approach is compared to resolved grain-scale simulations of the equivalent system. The microstructures used for the DNS are produced using Monte Carlo simulations of grain growth, and a sufficient number of realizations are computed to ensure a meaningful comparison. Finally, comments are made regarding the suitability of one-dimensional PFEM for modeling material heterogeneity. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Compressibility Effects on Particle-Fluid Interaction Force for Eulerian-Eulerian Simulations
NASA Astrophysics Data System (ADS)
Akiki, Georges; Francois, Marianne; Zhang, Duan
2017-11-01
Particle-fluid interaction forces are essential in modeling multiphase flows. Several models can be found in the literature based on empirical, numerical, and experimental results from various simplified flow conditions. Some of these models also account for finite Mach number effects. Using these models is relatively straightforward with Eulerian-Lagrangian calculations if the model for the total force on particles is used. In Eulerian-Eulerian simulations, however, there is the pressure gradient terms in the momentum equation for particles. For low Mach number flows, the pressure gradient force is negligible if the particle density is much greater than that of the fluid. For supersonic flows where a standing shock is present, even for a steady and uniform flow, it is unclear whether the significant pressure-gradient force should to be separated out from the particle force model. To answer this conceptual question, we perform single-sphere fully-resolved DNS simulations for a wide range of Mach numbers. We then examine whether the total force obtained from the DNS can be categorized into well-established models, such as the quasi-steady, added-mass, pressure-gradient, and history forces. Work sponsored by Advanced Simulation and Computing (ASC) program of NNSA and LDRD-CNLS of LANL.
Crystallographic Lattice Boltzmann Method
Namburi, Manjusha; Krithivasan, Siddharth; Ansumali, Santosh
2016-01-01
Current approaches to Direct Numerical Simulation (DNS) are computationally quite expensive for most realistic scientific and engineering applications of Fluid Dynamics such as automobiles or atmospheric flows. The Lattice Boltzmann Method (LBM), with its simplified kinetic descriptions, has emerged as an important tool for simulating hydrodynamics. In a heterogeneous computing environment, it is often preferred due to its flexibility and better parallel scaling. However, direct simulation of realistic applications, without the use of turbulence models, remains a distant dream even with highly efficient methods such as LBM. In LBM, a fictitious lattice with suitable isotropy in the velocity space is considered to recover Navier-Stokes hydrodynamics in macroscopic limit. The same lattice is mapped onto a cartesian grid for spatial discretization of the kinetic equation. In this paper, we present an inverted argument of the LBM, by making spatial discretization as the central theme. We argue that the optimal spatial discretization for LBM is a Body Centered Cubic (BCC) arrangement of grid points. We illustrate an order-of-magnitude gain in efficiency for LBM and thus a significant progress towards feasibility of DNS for realistic flows. PMID:27251098
A normal stress subgrid-scale eddy viscosity model in large eddy simulation
NASA Technical Reports Server (NTRS)
Horiuti, K.; Mansour, N. N.; Kim, John J.
1993-01-01
The Smagorinsky subgrid-scale eddy viscosity model (SGS-EVM) is commonly used in large eddy simulations (LES) to represent the effects of the unresolved scales on the resolved scales. This model is known to be limited because its constant must be optimized in different flows, and it must be modified with a damping function to account for near-wall effects. The recent dynamic model is designed to overcome these limitations but is compositionally intensive as compared to the traditional SGS-EVM. In a recent study using direct numerical simulation data, Horiuti has shown that these drawbacks are due mainly to the use of an improper velocity scale in the SGS-EVM. He also proposed the use of the subgrid-scale normal stress as a new velocity scale that was inspired by a high-order anisotropic representation model. The testing of Horiuti, however, was conducted using DNS data from a low Reynolds number channel flow simulation. It was felt that further testing at higher Reynolds numbers and also using different flows (other than wall-bounded shear flows) were necessary steps needed to establish the validity of the new model. This is the primary motivation of the present study. The objective is to test the new model using DNS databases of high Reynolds number channel and fully developed turbulent mixing layer flows. The use of both channel (wall-bounded) and mixing layer flows is important for the development of accurate LES models because these two flows encompass many characteristic features of complex turbulent flows.
Flow Modulation and Force Control in Insect Fast Maneuver
NASA Astrophysics Data System (ADS)
Li, Chengyu; Dong, Haibo; Zhang, Wen; Gai, Kuo
2012-11-01
In this work, an integrated study combining high-speed photogrammetry and direct numerical simulation (DNS) is used to study free flying insects in fast maneuver. Quantitative measurement has shown the significant differences between quad-winged flyers such as dragonfly and damselfly and two-winged flyers such as cicada. Comparisons of unsteady 3D vortex formation and associated aerodynamic force production reveal the different mechanisms used by insects in fast turn. This work is supported by NSF CBET-1055949.
Qingsong, Wang; Yeming, Guan; Xuechun, Liu; Hongjuan, Liu; Jing, Wang
2013-01-01
The mechanism underlying delayed neuropsychological sequelae (DNS) after acute carbon monoxide (CO) poisoning is unclear. There are no effective treatments for DNS. As part of a new generation of antioxidants, edaravone has been reported to improve clinical outcomes in patients exhibiting ischemic strokes. There has been little data about edaravone in relationship to DNS prevention and treatment. We hypothesized that edaravone could ameliorate DNS: Here we test that hypothesis in rabbits Rabbits were randomly divided into sham control,DNS group, saline group and edaravone group. DNS model was made by intraperitoneal injection of CO. Normal saline or edaravone (1 mg/kg, twice daily, a total of one course for 14 days) was infused through the ear vein from Day 15 since the DNS model was established. Serum superoxide dismutase (SOD) activity and malondialdehyde (MDA) were measured in each group. Magnetic resonance spectroscopy (MRS) was used to examine regions of the brain for various compounds. The apoptotic index and neuronal density in the hippocampal CA1 area were also investigated. SOD activity decreased significantly and MDA content increased substantially in the DNS group and saline group when compared with the sham control (p < 0.01). Conversely, in the edaravone group, serum SOD activity significantly increased and MDA levels significantly decreased when compared with DNS and saline group (p < 0.01). In the DNS group, the spectra of H1-MRS showed an elevated Cho/Cr and Lac/Cr ratio, and a marked decrease in the NAA/Cr ratio (p < 0.01). Compared with the saline group and DNS group, the NAA/Cr ratio was significantly increased, and the Cho/Cr and Lac/Cr ratio were significantly decreased in the edaravone group (p < 0.01). The apoptotic index in the edaravone group was significantly lower than that of the DNS and saline groups (p < 0.01, respectively), while the neuronal density in edaravone group was significantly higher than that of the DNS and saline group in the hippocampal CA1 area (p < 0.01, respectively). Our present research demonstrates that edaravone could ameliorate DNS after acute carbon monoxide poisoning in rabbits. These results suggest free radicals could be involved in the underlying mechanisms of DNS. Furthermore, brain MRS shows promise as a tool for early diagnosis for DNS.
Wübbeler, Markus; Thyrian, Jochen René; Michalowsky, Bernhard; Erdmann, Pia; Hertel, Johannes; Holle, Bernhard; Gräske, Johannes; Schäfer-Walkmann, Susanne; Hoffmann, Wolfgang
2017-01-01
Outpatient dementia healthcare is predominantly fragmented, and dementia networks (DNs) represent an integrated care concept to overcome this problem. Little is known about the patients of these networks with regard to utilisation of physicians and associated factors. We interviewed 560 caregivers of people with dementia in 13 different DNs in Germany in 2013 and assessed socio-demographics, clinical data and physician utilisation. Networks were categorised in predominantly medical DNs and community-oriented DNs. Descriptive and multivariate statistical models were used to identify associated factors between DNs and users' data. Overall, the users of networks received high rates of physician care; 93% of the sample stated at least one contact with a primary care physician within the last 6 months, and 74% had been treated by a specialist (neurology/psychiatry physician). Only 5% of the sample had no contact with a physician in the 6 months preceding the interview. Females showed a lower odds for physician specialist consultations (OR = 0.641). Users of medical DNs receive greater specialist consultations overall (OR = 8.370). Compared to the German general population and people with dementia in other settings, users of DNs receive physician care more regularly, especially with regard to the consultations of neurologist/psychiatrists. Therefore, DNs seem to perform a supportive role within the integration of physician healthcare. More research is needed on the appropriate relationship between the needs of the people with dementia and utilisation behaviour. © 2016 John Wiley & Sons Ltd.
Effects of shock strength on shock turbulence interaction
NASA Technical Reports Server (NTRS)
Lee, Sangsan
1993-01-01
Direct numerical simulation (DNS) and linear analysis (LIA) of isotropic turbulence interacting with a shock wave are performed for several upstream shock normal Mach numbers (M(sub 1)). Turbulence kinetic energy (TKE) is amplified across the shock wave, but this amplification tends to saturate beyond M(sub 1) = 3.0. TKE amplification and Reynolds stress anisotropy obtained in DNS are consistent with LIA predictions. Rapid evolution of TKE immediate downstream of the shock wave persists for all shock strengths and is attributed to the transfer between kinetic and potential modes of turbulence energy through acoustic fluctuations. Changes in energy spectra and various length scales across the shock wave are predicted by LIA, which is consistent with DNS results. Most turbulence length scales decrease across the shock. Dissipation length scale (rho-bar q(exp 3) / epsilon), however, increases slightly for shock waves with M(sub 1) less than 1.65. Fluctuations in thermodynamic variables behind the shock wave stay nearly isentropic for M(sub 1) less than 1.2 and deviate significantly from isentropy for the stronger shock waves due to large entropy fluctuation generated through the interaction.
DNS of Laminar-Turbulent Transition in Swept-Wing Boundary Layers
NASA Technical Reports Server (NTRS)
Duan, L.; Choudhari, M.; Li, F.
2014-01-01
Direct numerical simulation (DNS) is performed to examine laminar to turbulent transition due to high-frequency secondary instability of stationary crossflow vortices in a subsonic swept-wing boundary layer for a realistic natural-laminar-flow airfoil configuration. The secondary instability is introduced via inflow forcing and the mode selected for forcing corresponds to the most amplified secondary instability mode that, in this case, derives a majority of its growth from energy production mechanisms associated with the wall-normal shear of the stationary basic state. An inlet boundary condition is carefully designed to allow for accurate injection of instability wave modes and minimize acoustic reflections at numerical boundaries. Nonlinear parabolized stability equation (PSE) predictions compare well with the DNS in terms of modal amplitudes and modal shape during the strongly nonlinear phase of the secondary instability mode. During the transition process, the skin friction coefficient rises rather rapidly and the wall-shear distribution shows a sawtooth pattern that is analogous to the previously documented surface flow visualizations of transition due to stationary crossflow instability. Fully turbulent features are observed in the downstream region of the flow.
Statistical Equilibria of Turbulence on Surfaces of Different Symmetry
NASA Astrophysics Data System (ADS)
Qi, Wanming; Marston, Brad
2012-02-01
We test the validity of statistical descriptions of freely decaying 2D turbulence by performing direct numerical simulations (DNS) of the Euler equation with hyperviscosity on a square torus and on a sphere. DNS shows, at long times, a dipolar coherent structure in the vorticity field on the torus but a quadrapole on the sphereootnotetextJ. Y-K. Cho and L. Polvani, Phys. Fluids 8, 1531 (1996).. A truncated Miller-Robert-Sommeria theoryootnotetextA. J. Majda and X. Wang, Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows (Cambridge University Press, 2006). can explain the difference. The theory conserves up to the second-order Casimir, while also respecting conservation laws that reflect the symmetry of the domain. We further show that it is equivalent to the phenomenological minimum-enstrophy principle by generalizing the work by Naso et al.ootnotetextA. Naso, P. H. Chavanis, and B. Dubrulle, Eur. Phys. J. B 77, 284 (2010). to the sphere. To explain finer structures of the coherent states seen in DNS, especially the phenomenon of confinement, we investigate the perturbative inclusion of the higher Casimir constraints.
Large Scale Turbulent Structures in Supersonic Jets
NASA Technical Reports Server (NTRS)
Rao, Ram Mohan; Lundgren, Thomas S.
1997-01-01
Jet noise is a major concern in the design of commercial aircraft. Studies by various researchers suggest that aerodynamic noise is a major contributor to jet noise. Some of these studies indicate that most of the aerodynamic jet noise due to turbulent mixing occurs when there is a rapid variation in turbulent structure, i.e. rapidly growing or decaying vortices. The objective of this research was to simulate a compressible round jet to study the non-linear evolution of vortices and the resulting acoustic radiations. In particular, to understand the effect of turbulence structure on the noise. An ideal technique to study this problem is Direct Numerical Simulations(DNS), because it provides precise control on the initial and boundary conditions that lead to the turbulent structures studied. It also provides complete 3-dimensional time dependent data. Since the dynamics of a temporally evolving jet are not greatly different from those, of a spatially evolving jet, a temporal jet problem was solved, using periodicity ill the direction of the jet axis. This enables the application of Fourier spectral methods in the streamwise direction. Physically this means that turbulent structures in the jet are repeated in successive downstream cells instead of being gradually modified downstream into a jet plume. The DNS jet simulation helps us understand the various turbulent scales and mechanisms of turbulence generation in the evolution of a compressible round jet. These accurate flow solutions will be used in future research to estimate near-field acoustic radiation by computing the total outward flux across a surface and determine how it is related to the evolution of the turbulent solutions. Furthermore, these simulations allow us to investigate the sensitivity of acoustic radiations to inlet/boundary conditions, with possible application to active noise suppression. In addition, the data generated can be used to compute various turbulence quantities such as mean velocities, turbulent stresses, etc. which will aid in turbulence modeling. This report will be presented in two chapters. The first chapter describes some work on the linear stability of a supersonic round jet and the implications of this for the jet noise problem. The second chapter is an extensive discussion of numerical work using the spectral method which we use to solve the compressible Navier-Stokes equations to study turbulent jet flows. The method uses Fourier expansions in the azimuthal and streamwise direction and a 1-D B-spline basis representation in the radial direction. The B-spline basis is locally supported and this ensures block diagonal matrix equations which can be solved in O(N) steps. This is a modification of a boundary layer code developed by Robert Moser. A very accurate highly resolved Direct Numerical Simulation (DNS) of a turbulent jet flow is produced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Chun S
2011-01-01
Direct numerical simulation (DNS) of the near-field of a three-dimensional spatially-developing turbulent ethylene jet flame in highly-heated coflow is performed with a reduced mechanism to determine the stabilization mechanism. The DNS was performed at a jet Reynolds number of 10,000 with over 1.29 billion grid points. The results show that auto-ignition in a fuel-lean mixture at the flame base is the main source of stabilization of the lifted jet flame. The Damkoehler number and chemical explosive mode (CEM) analysis also verify that auto-ignition occurs at the flame base. In addition to auto-ignition, Lagrangian tracking of the flame base reveals themore » passage of large-scale flow structures and their correlation with the fluctuations of the flame base similar to a previous study (Yoo et al., J. Fluid Mech. 640 (2009) 453-481) with hydrogen/air jet flames. It is also observed that the present lifted flame base exhibits a cyclic 'saw-tooth' shaped movement marked by rapid movement upstream and slower movement downstream. This is a consequence of the lifted flame being stabilized by a balance between consecutive auto-ignition events in hot fuel-lean mixtures and convection induced by the high-speed jet and coflow velocities. This is confirmed by Lagrangian tracking of key variables including the flame-normal velocity, displacement speed, scalar dissipation rate, and mixture fraction at the stabilization point.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, C. S.; Richardson, E.; Sankaran, R.
2011-01-01
Direct numerical simulation (DNS) of the near-field of a three-dimensional spatially-developing turbulent ethylene jet flame in highly-heated coflow is performed with a reduced mechanism to determine the stabilization mechanism. The DNS was performed at a jet Reynolds number of 10,000 with over 1.29 billion grid points. The results show that auto-ignition in a fuel-lean mixture at the flame base is the main source of stabilization of the lifted jet flame. The Damköhler number and chemical explosive mode (CEM) analysis also verify that auto-ignition occurs at the flame base. In addition to auto-ignition, Lagrangian tracking of the flame base reveals themore » passage of large-scale flow structures and their correlation with the fluctuations of the flame base similar to a previous study (Yoo et al., J. Fluid Mech. 640 (2009) 453–481) with hydrogen/air jet flames. It is also observed that the present lifted flame base exhibits a cyclic ‘saw-tooth’ shaped movement marked by rapid movement upstream and slower movement downstream. This is a consequence of the lifted flame being stabilized by a balance between consecutive auto-ignition events in hot fuel-lean mixtures and convection induced by the high-speed jet and coflow velocities. This is confirmed by Lagrangian tracking of key variables including the flame-normal velocity, displacement speed, scalar dissipation rate, and mixture fraction at the stabilization point.« less
Mechanism of multinucleon transfer reaction based on the GRAZING model and DNS model
NASA Astrophysics Data System (ADS)
Wen, Pei-wei; Li, Cheng; Zhu, Long; Lin, Cheng-jian; Zhang, Feng-shou
2017-11-01
Multinucleon transfer (MNT) reactions have been studied by either the GRAZING model or dinuclear system (DNS) model before. MNT reactions in the grazing regime have been described quite well by the GRAZING model. The DNS model is able to deal with MNT reactions, which happen in the closer overlapped regime after contact of two colliding nuclei. Since MNT reactions can happen in both areas and cannot be distinguished in view of experimental work, it is beneficial to compare these two models to clarify mechanism of MNT reactions. In this study, the mechanism of the MNT reaction has been studied by comparing the GRAZING model and DNS model for the first time. Reaction systems 136Xe+208Pb at {E}{{c}.{{m}}.}=450 MeV and 64Ni+238U at {E}{{c}.{{m}}.}=307 MeV are taken as examples in this paper. It is found that the gradients of transfer cross sections with respect to the impact parameter of the GRAZING model and DNS model are mainly concentrated on two different areas, which represents two kinds of transfer mechanisms. The theoretical framework of these two models are exclusive according to whether capture happens, which guarantees that the theoretical results calculated by these two models have no overlap and can be added up. Results indicate that the description of experimental MNT reaction cross sections can be significantly improved if calculations of the GRAZING model and DNS model are both considered.
Stratified turbulent Bunsen flames: flame surface analysis and flame surface density modelling
NASA Astrophysics Data System (ADS)
Ramaekers, W. J. S.; van Oijen, J. A.; de Goey, L. P. H.
2012-12-01
In this paper it is investigated whether the Flame Surface Density (FSD) model, developed for turbulent premixed combustion, is also applicable to stratified flames. Direct Numerical Simulations (DNS) of turbulent stratified Bunsen flames have been carried out, using the Flamelet Generated Manifold (FGM) reduction method for reaction kinetics. Before examining the suitability of the FSD model, flame surfaces are characterized in terms of thickness, curvature and stratification. All flames are in the Thin Reaction Zones regime, and the maximum equivalence ratio range covers 0.1⩽φ⩽1.3. For all flames, local flame thicknesses correspond very well to those observed in stretchless, steady premixed flamelets. Extracted curvature radii and mixing length scales are significantly larger than the flame thickness, implying that the stratified flames all burn in a premixed mode. The remaining challenge is accounting for the large variation in (subfilter) mass burning rate. In this contribution, the FSD model is proven to be applicable for Large Eddy Simulations (LES) of stratified flames for the equivalence ratio range 0.1⩽φ⩽1.3. Subfilter mass burning rate variations are taken into account by a subfilter Probability Density Function (PDF) for the mixture fraction, on which the mass burning rate directly depends. A priori analysis point out that for small stratifications (0.4⩽φ⩽1.0), the replacement of the subfilter PDF (obtained from DNS data) by the corresponding Dirac function is appropriate. Integration of the Dirac function with the mass burning rate m=m(φ), can then adequately model the filtered mass burning rate obtained from filtered DNS data. For a larger stratification (0.1⩽φ⩽1.3), and filter widths up to ten flame thicknesses, a β-function for the subfilter PDF yields substantially better predictions than a Dirac function. Finally, inclusion of a simple algebraic model for the FSD resulted only in small additional deviations from DNS data, thereby rendering this approach promising for application in LES.
Direct Numerical Simulations of Multiphase Flows
NASA Astrophysics Data System (ADS)
Tryggvason, Gretar
2013-03-01
Many natural and industrial processes, such as rain and gas exchange between the atmosphere and oceans, boiling heat transfer, atomization and chemical reactions in bubble columns, involve multiphase flows. Often the mixture can be described as a disperse flow where one phase consists of bubbles or drops. Direct numerical simulations (DNS) of disperse flow have recently been used to study the dynamics of multiphase flows with a large number of bubbles and drops, often showing that the collective motion results in relatively simple large-scale structure. Here we review simulations of bubbly flows in vertical channels where the flow direction, as well as the bubble deformability, has profound implications on the flow structure and the total flow rate. Results obtained so far are summarized and open questions identified. The resolution for DNS of multiphase flows is usually determined by a dominant scale, such as the average bubble or drop size, but in many cases much smaller scales are also present. These scales often consist of thin films, threads, or tiny drops appearing during coalescence or breakup, or are due to the presence of additional physical processes that operate on a very different time scale than the fluid flow. The presence of these small-scale features demand excessive resolution for conventional numerical approaches. However, at small flow scales the effects of surface tension are generally strong so the interface geometry is simple and viscous forces dominate the flow and keep it simple also. These are exactly the conditions under which analytical models can be used and we will discuss efforts to combine a semi-analytical description for the small-scale processes with a fully resolved simulation of the rest of the flow. We will, in particular, present an embedded analytical description to capture the mass transfer from bubbles in liquids where the diffusion of mass is much slower than the diffusion of momentum. This results in very thin mass-boundary layers that are difficult to resolve, but the new approach allows us to simulate the mass transfer from many freely evolving bubbles and examine the effect of the interactions of the bubbles with each other and the flow. We will conclude by attempting to summarize the current status of DNS of multiphase flows. Support by NSF and DOE (CASL)
Paech, Daniel; Windschuh, Johannes; Oberhollenzer, Johanna; Dreher, Constantin; Sahm, Felix; Meissner, Jan-Eric; Goerke, Steffen; Schuenke, Patrick; Zaiss, Moritz; Regnery, Sebastian; Bickelhaupt, Sebastian; Bäumer, Philipp; Bendszus, Martin; Wick, Wolfgang; Unterberg, Andreas; Bachert, Peter; Ladd, Mark Edward; Schlemmer, Heinz-Peter; Radbruch, Alexander
2018-05-04
Early identification of prognostic superior characteristics in glioma patients such as Isocitrate dehydrogenase(IDH)-mutation and O6-methylguanine-DNA-methyltransferase (MGMT) promotor methylation status is of great clinical importance. The study purpose was to investigate the non-invasive predictability of IDH-mutation status, MGMT promotor methylation, and differentiation of lower versus higher grade glioma (LGG vs. HGG) in newly-diagnosed patients employing relaxation-compensated multi-pool Chemical Exchange Saturation Transfer (CEST) magnetic resonance imaging (MRI) at 7.0 Tesla (7T). Thirty-one newly-diagnosed glioma patients were included in this prospective study. CEST MRI was performed at a 7T whole-body scanner. Nuclear Overhauser Effect (NOE) and isolated amide proton transfer (APT, downfield NOE-suppressed APT=dns-APT) CEST signals (mean value and 90th signal percentile) were quantitatively investigated in the whole tumor area with regard to predictability of IDH-mutation, MGMT promotor methylation status, and differentiation of LGG vs. HGG. Statistics were performed using receiver operating characteristic (ROC) and area under the curve (AUC) analysis. Results were compared to advanced MRI methods (apparent diffusion coefficient (ADC) and relative cerebral blood volume (rCBV) ROC/AUC analysis) obtained at 3T. dns-APT CEST contrasts yielded highest AUCs in IDH-mutation status prediction (dns-APTmean=91.84%, p<0.01; dns-APT90=97.96%, p<0.001). Furthermore, dns-APT metrics enabled significant differentiation of LGG vs. HGG (AUC: dns-APTmean=0.78, p<0.05; dns-APT90=0.83, p<0.05). There was no significant difference regarding MGMT promotor methylation status at any contrast (p>0.05). Relaxation-compensated multi-pool CEST MRI, particularly dns-APT imaging, enabled prediction of IDH-mutation status and differentiation of LGG vs. HGG and should therefore be considered as non-invasive MR biomarker in the diagnostic workup.
Photoacoustic image reconstruction: a quantitative analysis
NASA Astrophysics Data System (ADS)
Sperl, Jonathan I.; Zell, Karin; Menzenbach, Peter; Haisch, Christoph; Ketzer, Stephan; Marquart, Markus; Koenig, Hartmut; Vogel, Mika W.
2007-07-01
Photoacoustic imaging is a promising new way to generate unprecedented contrast in ultrasound diagnostic imaging. It differs from other medical imaging approaches, in that it provides spatially resolved information about optical absorption of targeted tissue structures. Because the data acquisition process deviates from standard clinical ultrasound, choice of the proper image reconstruction method is crucial for successful application of the technique. In the literature, multiple approaches have been advocated, and the purpose of this paper is to compare four reconstruction techniques. Thereby, we focused on resolution limits, stability, reconstruction speed, and SNR. We generated experimental and simulated data and reconstructed images of the pressure distribution using four different methods: delay-and-sum (DnS), circular backprojection (CBP), generalized 2D Hough transform (HTA), and Fourier transform (FTA). All methods were able to depict the point sources properly. DnS and CBP produce blurred images containing typical superposition artifacts. The HTA provides excellent SNR and allows a good point source separation. The FTA is the fastest and shows the best FWHM. In our study, we found the FTA to show the best overall performance. It allows a very fast and theoretically exact reconstruction. Only a hardware-implemented DnS might be faster and enable real-time imaging. A commercial system may also perform several methods to fully utilize the new contrast mechanism and guarantee optimal resolution and fidelity.
Wilson, Charlotte; Griffiths, Jane; Ewing, Gail; Connolly, Michael; Grande, Gunn
2014-01-01
In the United Kingdom, district nurses (DNs) support patients with advanced cancer in their homes. Although evidence suggests that DNs emphasize the distinctiveness of home rather than hospital settings, little is known about the specific challenges of delivering care in family-home settings. The objective of this study was to explore DNs' experiences of supporting patients within families. Focus groups were conducted with 40 DNs from 4 areas in the United Kingdom. The groups were digitally recorded and facilitated by researchers using a flexible topic guide. Verbatim transcripts were analyzed using thematic content analysis. Case-load complexity (household volatility) and family dynamics posed distinct challenges for nurses supporting patients. Many family members struggled with accepting the patients' prognosis and were complicit in withholding information. At times, this foreclosed a consideration of palliative options. Carers provide a great deal of positive supportive care within the home. However, for some, the home is characterized by conflict rather than consensus. Complexities surrounding family relationships pose a distinctive and challenging environment for DNs. Education and training of DNs should be designed to address the challenges of supporting patients within the family-home setting.
The stabilizing effect of compressibility in turbulent shear flow
NASA Technical Reports Server (NTRS)
Sarkar, S.
1994-01-01
Direct numerical simulation of turbulent homogeneous shear flow is performed in order to clarify compressibility effects on the turbulence growth in the flow. The two Mach numbers relevant to homogeneous shear flow are the turbulent Mach number M(t) and the gradient Mach number M(g). Two series of simulations are performed where the initial values of M(g) and M(t) are increased separately. The growth rate of turbulent kinetic energy is observed to decrease in both series of simulations. This 'stabilizing' effect of compressibility on the turbulent energy growth rate is observed to be substantially larger in the DNS series where the initial value of M(g) is changed. A systematic companion of the different DNS cues shows that the compressibility effect of reduced turbulent energy growth rate is primarily due to the reduced level of turbulence production and not due to explicit dilatational effects. The reduced turbulence production is not a mean density effect since the mean density remains constant in compressible homogeneous shear flow. The stabilizing effect of compressibility on the turbulence growth is observed to increase with the gradient Mach number M(g) in the homogeneous shear flow DNS. Estimates of M(g) for the mixing and the boundary layer are obtained. These estimates show that the parameter M(g) becomes much larger in the high-speed mixing layer relative to the high-speed boundary layer even though the mean flow Mach numbers are the same in the two flows. Therefore, the inhibition of turbulent energy production and consequent 'stabilizing' effect of compressibility on the turbulence (over and above that due to the mean density variation) is expected to be larger in the mixing layer relative to the boundary layer in agreement with experimental observations.
Entropy Splitting for High Order Numerical Simulation of Compressible Turbulence
NASA Technical Reports Server (NTRS)
Sandham, N. D.; Yee, H. C.; Kwak, Dochan (Technical Monitor)
2000-01-01
A stable high order numerical scheme for direct numerical simulation (DNS) of shock-free compressible turbulence is presented. The method is applicable to general geometries. It contains no upwinding, artificial dissipation, or filtering. Instead the method relies on the stabilizing mechanisms of an appropriate conditioning of the governing equations and the use of compatible spatial difference operators for the interior points (interior scheme) as well as the boundary points (boundary scheme). An entropy splitting approach splits the inviscid flux derivatives into conservative and non-conservative portions. The spatial difference operators satisfy a summation by parts condition leading to a stable scheme (combined interior and boundary schemes) for the initial boundary value problem using a generalized energy estimate. A Laplacian formulation of the viscous and heat conduction terms on the right hand side of the Navier-Stokes equations is used to ensure that any tendency to odd-even decoupling associated with central schemes can be countered by the fluid viscosity. A special formulation of the continuity equation is used, based on similar arguments. The resulting methods are able to minimize spurious high frequency oscillation producing nonlinear instability associated with pure central schemes, especially for long time integration simulation such as DNS. For validation purposes, the methods are tested in a DNS of compressible turbulent plane channel flow at a friction Mach number of 0.1 where a very accurate turbulence data base exists. It is demonstrated that the methods are robust in terms of grid resolution, and in good agreement with incompressible channel data, as expected at this Mach number. Accurate turbulence statistics can be obtained with moderate grid sizes. Stability limits on the range of the splitting parameter are determined from numerical tests.
NASA Astrophysics Data System (ADS)
Gorokhovski, Mikhael; Zamansky, Rémi
2018-03-01
Consistently with observations from recent experiments and DNS, we focus on the effects of strong velocity increments at small spatial scales for the simulation of the drag force on particles in high Reynolds number flows. In this paper, we decompose the instantaneous particle acceleration in its systematic and residual parts. The first part is given by the steady-drag force obtained from the large-scale energy-containing motions, explicitly resolved by the simulation, while the second denotes the random contribution due to small unresolved turbulent scales. This is in contrast with standard drag models in which the turbulent microstructures advected by the large-scale eddies are deemed to be filtered by the particle inertia. In our paper, the residual term is introduced as the particle acceleration conditionally averaged on the instantaneous dissipation rate along the particle path. The latter is modeled from a log-normal stochastic process with locally defined parameters obtained from the resolved field. The residual term is supplemented by an orientation model which is given by a random walk on the unit sphere. We propose specific models for particles with diameter smaller and larger size than the Kolmogorov scale. In the case of the small particles, the model is assessed by comparison with direct numerical simulation (DNS). Results showed that by introducing this modeling, the particle acceleration statistics from DNS is predicted fairly well, in contrast with the standard LES approach. For the particles bigger than the Kolmogorov scale, we propose a fluctuating particle response time, based on an eddy viscosity estimated at the particle scale. This model gives stretched tails of the particle acceleration distribution and dependence of its variance consistent with experiments.
DNS of unsteady, turbulent convection in a rotating stratified fluid
NASA Astrophysics Data System (ADS)
Pal, Anikesh; Chalmalla, Vamsi
2017-11-01
Turbulent convection under the influence of intense surface cooling and earth's rotation is a common phenomenon observed in the ocean. In the present study, direct numerical simulations are performed to understand this dynamics. The effect of rotation is represented by Rossby number Ro* which is defined in terms of ocean depth H, Coriolis parameter f and surface buoyancy flux B0, as Ro* =B01// 2 Hf 3 / 2 . Cooling at the surface results in the formation of unstable density configuration where denser fluid lies on top of the lighter fluid. These unstable density configuration leads to a turbulent front. When the turbulent front reaches a transition depth zc, it experiences the effect of rotation leading to the formation of quasi- 2D vortices beneath the 3D turbulent layer. If the surface cooling is strong enough, these vortices penetrate further downwards producing vortex columns. Qualitatively, DNS results agree well with the findings of experimental study by Maxworthy & Narimousa (1993). The motivation of this study is to understand the nonlinear dynamics and turbulence scaling as the surface cooling and Coriolis parameter are varied.
Allam, Ahmed N; Hamdallah, Sherif I; Abdallah, Ossama Y
2017-01-01
Nanodrug delivery systems have been widely reviewed for their use in several drug formulations to improve bioavailability, sustain effect, and decrease side effects of many candidate drugs. The objective of this study was to evaluate the potential of chitosan (CS)-coated nanosuspensions to enhance bioavailability and reduce the diarrheal side effect of diacerein (DCN) after oral administration. DCN nanosuspensions (DNS) were prepared by sonoprecipitation technique using different stabilizers at three different concentrations. The selected DNS with optimum particle size (PS), polydispersity index (PDI), and Zeta potential (ZP) was coated with three different concentrations of CS-coated DNS (CS-DNS) and screened. In vitro dissolution was performed for the selected lyophilized formulae and compared with DCN powder in addition to the assessment of drug crystallinity via scanning electron microscopy, X-ray powder diffraction, and differential scanning calorimetry. Ex vivo drug permeability using noneverted rat intestine, intraluminal content, and mucoadhesion evaluation was studied for nominated formulae in comparison to DCN suspension. Moreover, in vivo study, pharmacokinetic parameters, and evaluation of diarrheal potential were conducted after oral administration of selected formulae. Polyvinyl pyrrolidone (PVP)-stabilized DNS showed a significant increase (P≤0.05) in PS and PDI as the stabilizer concentration increased. PVP-stabilized DNS with the lowest CS concentration was protected from aggregation by lyophilization with mannitol. A remarked enhancement in dissolution parameters was observed in the nanocrystals’ formulae. Morphological examination and X-ray diffraction confirmed drug crystallinity. The intermediate permeation parameters of CS-DNS-F10, lowest rhein-to-DCN ratio in intraluminal content along with the highest percentage of mucoadhesive, could serve as a sustaining profile of coated formula. CS-DNS-F10 showed a significantly higher Cmax of 0.74±0.15 µg/mL at a delayed Tmax of 3.60±0.55 hours with a relative bioavailability of 172.1% compared to DCN suspension. CS-coated nanosuspensions could serve as promising revenue to enhance bioavailability and reduce the diarrheal side effect of DCN after oral administration. PMID:28740381
Allam, Ahmed N; Hamdallah, Sherif I; Abdallah, Ossama Y
2017-01-01
Nanodrug delivery systems have been widely reviewed for their use in several drug formulations to improve bioavailability, sustain effect, and decrease side effects of many candidate drugs. The objective of this study was to evaluate the potential of chitosan (CS)-coated nanosuspensions to enhance bioavailability and reduce the diarrheal side effect of diacerein (DCN) after oral administration. DCN nanosuspensions (DNS) were prepared by sonoprecipitation technique using different stabilizers at three different concentrations. The selected DNS with optimum particle size (PS), polydispersity index (PDI), and Zeta potential (ZP) was coated with three different concentrations of CS-coated DNS (CS-DNS) and screened. In vitro dissolution was performed for the selected lyophilized formulae and compared with DCN powder in addition to the assessment of drug crystallinity via scanning electron microscopy, X-ray powder diffraction, and differential scanning calorimetry. Ex vivo drug permeability using noneverted rat intestine, intraluminal content, and mucoadhesion evaluation was studied for nominated formulae in comparison to DCN suspension. Moreover, in vivo study, pharmacokinetic parameters, and evaluation of diarrheal potential were conducted after oral administration of selected formulae. Polyvinyl pyrrolidone (PVP)-stabilized DNS showed a significant increase ( P ≤0.05) in PS and PDI as the stabilizer concentration increased. PVP-stabilized DNS with the lowest CS concentration was protected from aggregation by lyophilization with mannitol. A remarked enhancement in dissolution parameters was observed in the nanocrystals' formulae. Morphological examination and X-ray diffraction confirmed drug crystallinity. The intermediate permeation parameters of CS-DNS-F10, lowest rhein-to-DCN ratio in intraluminal content along with the highest percentage of mucoadhesive, could serve as a sustaining profile of coated formula. CS-DNS-F10 showed a significantly higher C max of 0.74±0.15 µg/mL at a delayed T max of 3.60±0.55 hours with a relative bioavailability of 172.1% compared to DCN suspension. CS-coated nanosuspensions could serve as promising revenue to enhance bioavailability and reduce the diarrheal side effect of DCN after oral administration.
Transition between free, mixed and forced convection
NASA Astrophysics Data System (ADS)
Jaeger, W.; Trimborn, F.; Niemann, M.; Saini, V.; Hering, W.; Stieglitz, R.; Pritz, B.; Fröhlich, J.; Gabi, M.
2017-07-01
In this contribution, numerical methods are discussed to predict the heat transfer to liquid metal flowing in rectangular flow channels. A correct representation of the thermo-hydraulic behaviour is necessary, because these numerical methods are used to perform design and safety studies of components with rectangular channels. Hence, it must be proven that simulation results are an adequate representation of the real conditions. Up to now, the majority of simulations are related to forced convection of liquid metals flowing in circular pipes or rod bundle, because these geometries represent most of the components in process engineering (e.g. piping, heat exchanger). Open questions related to liquid metal heat transfer, among others, is the behaviour during the transition of the heat transfer regimes. Therefore, this contribution aims to provide useful information related to the transition from forced to mixed and free convection, with the focus on a rectangular flow channel. The assessment of the thermo-hydraulic behaviour under transitional heat transfer regimes is pursued by means of system code simulations, RANS CFD simulations, LES and DNS, and experimental investigations. Thereby, each of the results will compared to the others. The comparison of external experimental data, DNS data, RANS data and system code simulation results shows that the global heat transfer can be consistently represented for forced convection in rectangular flow channels by these means. Furthermore, LES data is in agreement with RANS CFD results for different Richardson numbers with respect to temperature and velocity distribution. The agreement of the simulation results among each other and the hopefully successful validation by means of experimental data will fosters the confidence in the predicting capabilities of numerical methods, which can be applied to engineering application.
Pang, Li; Wang, He-Lei; Wang, Zhi-Hao; Wu, Yang; Dong, Ning; Xu, Da-Hai; Wang, Da-Wei; Xu, Hong; Zhang, Nan
2014-09-01
The present study was designed to assess the usefulness of measuring plasma levels of copeptin (a peptide co-released with the hypothalamic stress hormone vasopressin) as a biomarker for the severity of carbon monoxide (CO) poisoning and for predicting delayed neurological sequelae (DNS). Seventy-two patients with CO poisoning and 72 sex and age matched healthy individuals were recruited. Plasma copeptin levels were measured on admission from CO poisoning patients and for healthy individuals at study entry by using a sandwich immunoassay. The CO poisoning patients were divided into two groups according to severity (unconscious and conscious) and occurrence of DNS. The mean plasma copeptin levels (52.5±18.5 pmol/L) in the unconscious group were significantly higher than in the conscious group (26.3±12.7 pmol/L) (P<0.001). Plasma copeptin levels of more than 39.0 pmol/L detected CO poisoning with severe neurological symptoms e.g. unconsciousness (sensitivity 84.6% and specificity 81.4%). The plasma copeptin levels were higher in patients with DNS compared to patients without DNS (52.2±20.6 pmol/L vs. 27.9±14.8 pmol/L, P<0.001). Plasma copeptin levels higher than 40.5 pmol/L predicted the development of DNS (sensitivity 77.8%, specificity 82.1%). Plasma copeptin levels were identified as an independent predictor for intoxication severity [odds ratio (OR) 1.261, 95% confidence interval (CI) 1.112-1.638, P=0.002] and DNS (OR 1.313, 95% CI 1.106-1.859, P=0.001). Thus, plasma copeptin levels independently related to intoxication severity and were identified as a novel biomarker for predicting DNS after acute CO poisoning. Copyright © 2014 Elsevier Inc. All rights reserved.
Channual, Stephanie; Tan, Nelly; Siripongsakun, Surachate; Lassman, Charles; Lu, David S; Raman, Steven S
2015-09-01
The objective of our study was to determine quantitative differences to differentiate low-grade from high-grade dysplastic nodules (DNs) and low-grade from high-grade hepatocellular carcinomas (HCCs) using gadoxetate disodium-enhanced MRI. A retrospective study of 149 hepatic nodules in 127 consecutive patients who underwent gadoxetic acid-enhanced MRI was performed. MRI signal intensities (SIs) of the representative lesion ROI and of ROIs in liver parenchyma adjacent to the lesion were measured on unenhanced T1-weighted imaging and on dynamic contrast-enhanced MRI in the arterial, portal venous, delayed, and hepatobiliary phases. The relative SI of the lesion was calculated for each phase as the relative intensity ratio as follows: [mass SI / liver SI]. Of the 149 liver lesions, nine (6.0%) were low-grade DNs, 21 (14.1%) were high-grade DNs, 83 (55.7%) were low-grade HCCs, and 36 (24.2%) were high-grade HCCs. The optimal cutoffs for differentiating low-grade DNs from high-grade DNs and HCCs were an unenhanced to arterial SI of ≥ 0 or a relative SI on T2-weighted imaging of ≤ 1.5, with a positive predictive value (PPV) of 99.2% and accuracy of 88.6%. The optimal cutoffs for differentiating low-grade HCCs from high-grade HCCs were a relative hepatobiliary SI of ≤ 0.5 or a relative T2 SI of ≥ 1.5, with a PPV of 81.0% and an accuracy of 60.5%. Gadoxetate disodium-enhanced MRI allows quantitative differentiation of low-grade DNs from high-grade DNs and HCCs, but significant overlap was seen between low-grade HCCs and high-grade HCCs.
Simulation of Nonlinear Instabilities in an Attachment-Line Boundary Layer
NASA Technical Reports Server (NTRS)
Joslin, Ronald D.
1996-01-01
The linear and the nonlinear stability of disturbances that propagate along the attachment line of a three-dimensional boundary layer is considered. The spatially evolving disturbances in the boundary layer are computed by direct numerical simulation (DNS) of the unsteady, incompressible Navier-Stokes equations. Disturbances are introduced either by forcing at the in ow or by applying suction and blowing at the wall. Quasi-parallel linear stability theory and a nonparallel theory yield notably different stability characteristics for disturbances near the critical Reynolds number; the DNS results con rm the latter theory. Previously, a weakly nonlinear theory and computations revealed a high wave-number region of subcritical disturbance growth. More recent computations have failed to achieve this subcritical growth. The present computational results indicate the presence of subcritically growing disturbances; the results support the weakly nonlinear theory. Furthermore, an explanation is provided for the previous theoretical and computational discrepancy. In addition, the present results demonstrate that steady suction can be used to stabilize disturbances that otherwise grow subcritically along the attachment line.
Tarrab, Leticia; Garcia, Carlos M.; Cantero, Mariano I.; Oberg, Kevin
2012-01-01
This work presents a systematic analysis quantifying the role of the presence of turbulence fluctuations on uncertainties (random errors) of acoustic Doppler current profiler (ADCP) discharge measurements from moving platforms. Data sets of three-dimensional flow velocities with high temporal and spatial resolution were generated from direct numerical simulation (DNS) of turbulent open channel flow. Dimensionless functions relating parameters quantifying the uncertainty in discharge measurements due to flow turbulence (relative variance and relative maximum random error) to sampling configuration were developed from the DNS simulations and then validated with field-scale discharge measurements. The validated functions were used to evaluate the role of the presence of flow turbulence fluctuations on uncertainties in ADCP discharge measurements. The results of this work indicate that random errors due to the flow turbulence are significant when: (a) a low number of transects is used for a discharge measurement, and (b) measurements are made in shallow rivers using high boat velocity (short time for the boat to cross a flow turbulence structure).
Remote visual analysis of large turbulence databases at multiple scales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pulido, Jesus; Livescu, Daniel; Kanov, Kalin
The remote analysis and visualization of raw large turbulence datasets is challenging. Current accurate direct numerical simulations (DNS) of turbulent flows generate datasets with billions of points per time-step and several thousand time-steps per simulation. Until recently, the analysis and visualization of such datasets was restricted to scientists with access to large supercomputers. The public Johns Hopkins Turbulence database simplifies access to multi-terabyte turbulence datasets and facilitates the computation of statistics and extraction of features through the use of commodity hardware. In this paper, we present a framework designed around wavelet-based compression for high-speed visualization of large datasets and methodsmore » supporting multi-resolution analysis of turbulence. By integrating common technologies, this framework enables remote access to tools available on supercomputers and over 230 terabytes of DNS data over the Web. Finally, the database toolset is expanded by providing access to exploratory data analysis tools, such as wavelet decomposition capabilities and coherent feature extraction.« less
Remote visual analysis of large turbulence databases at multiple scales
Pulido, Jesus; Livescu, Daniel; Kanov, Kalin; ...
2018-06-15
The remote analysis and visualization of raw large turbulence datasets is challenging. Current accurate direct numerical simulations (DNS) of turbulent flows generate datasets with billions of points per time-step and several thousand time-steps per simulation. Until recently, the analysis and visualization of such datasets was restricted to scientists with access to large supercomputers. The public Johns Hopkins Turbulence database simplifies access to multi-terabyte turbulence datasets and facilitates the computation of statistics and extraction of features through the use of commodity hardware. In this paper, we present a framework designed around wavelet-based compression for high-speed visualization of large datasets and methodsmore » supporting multi-resolution analysis of turbulence. By integrating common technologies, this framework enables remote access to tools available on supercomputers and over 230 terabytes of DNS data over the Web. Finally, the database toolset is expanded by providing access to exploratory data analysis tools, such as wavelet decomposition capabilities and coherent feature extraction.« less
The analysis and modelling of dilatational terms in compressible turbulence
NASA Technical Reports Server (NTRS)
Sarkar, S.; Erlebacher, G.; Hussaini, M. Y.; Kreiss, H. O.
1991-01-01
It is shown that the dilatational terms that need to be modeled in compressible turbulence include not only the pressure-dilatation term but also another term - the compressible dissipation. The nature of these dilatational terms in homogeneous turbulence is explored by asymptotic analysis of the compressible Navier-Stokes equations. A non-dimensional parameter which characterizes some compressible effects in moderate Mach number, homogeneous turbulence is identified. Direct numerical simulations (DNS) of isotropic, compressible turbulence are performed, and their results are found to be in agreement with the theoretical analysis. A model for the compressible dissipation is proposed; the model is based on the asymptotic analysis and the direct numerical simulations. This model is calibrated with reference to the DNS results regarding the influence of compressibility on the decay rate of isotropic turbulence. An application of the proposed model to the compressible mixing layer has shown that the model is able to predict the dramatically reduced growth rate of the compressible mixing layer.
The analysis and modeling of dilatational terms in compressible turbulence
NASA Technical Reports Server (NTRS)
Sarkar, S.; Erlebacher, G.; Hussaini, M. Y.; Kreiss, H. O.
1989-01-01
It is shown that the dilatational terms that need to be modeled in compressible turbulence include not only the pressure-dilatation term but also another term - the compressible dissipation. The nature of these dilatational terms in homogeneous turbulence is explored by asymptotic analysis of the compressible Navier-Stokes equations. A non-dimensional parameter which characterizes some compressible effects in moderate Mach number, homogeneous turbulence is identified. Direct numerical simulations (DNS) of isotropic, compressible turbulence are performed, and their results are found to be in agreement with the theoretical analysis. A model for the compressible dissipation is proposed; the model is based on the asymptotic analysis and the direct numerical simulations. This model is calibrated with reference to the DNS results regarding the influence of compressibility on the decay rate of isotropic turbulence. An application of the proposed model to the compressible mixing layer has shown that the model is able to predict the dramatically reduced growth rate of the compressible mixing layer.
Pal, Abhro; Anupindi, Kameswararao; Delorme, Yann; Ghaisas, Niranjan; Shetty, Dinesh A.; Frankel, Steven H.
2014-01-01
In the present study, we performed large eddy simulation (LES) of axisymmetric, and 75% stenosed, eccentric arterial models with steady inflow conditions at a Reynolds number of 1000. The results obtained are compared with the direct numerical simulation (DNS) data (Varghese et al., 2007, “Direct Numerical Simulation of Stenotic Flows. Part 1. Steady Flow,” J. Fluid Mech., 582, pp. 253–280). An inhouse code (WenoHemo) employing high-order numerical methods for spatial and temporal terms, along with a 2nd order accurate ghost point immersed boundary method (IBM) (Mark, and Vanwachem, 2008, “Derivation and Validation of a Novel Implicit Second-Order Accurate Immersed Boundary Method,” J. Comput. Phys., 227(13), pp. 6660–6680) for enforcing boundary conditions on curved geometries is used for simulations. Three subgrid scale (SGS) models, namely, the classical Smagorinsky model (Smagorinsky, 1963, “General Circulation Experiments With the Primitive Equations,” Mon. Weather Rev., 91(10), pp. 99–164), recently developed Vreman model (Vreman, 2004, “An Eddy-Viscosity Subgrid-Scale Model for Turbulent Shear Flow: Algebraic Theory and Applications,” Phys. Fluids, 16(10), pp. 3670–3681), and the Sigma model (Nicoud et al., 2011, “Using Singular Values to Build a Subgrid-Scale Model for Large Eddy Simulations,” Phys. Fluids, 23(8), 085106) are evaluated in the present study. Evaluation of SGS models suggests that the classical constant coefficient Smagorinsky model gives best agreement with the DNS data, whereas the Vreman and Sigma models predict an early transition to turbulence in the poststenotic region. Supplementary simulations are performed using Open source field operation and manipulation (OpenFOAM) (“OpenFOAM,” http://www.openfoam.org/) solver and the results are inline with those obtained with WenoHemo. PMID:24801556
Perspectives on the Future of CFD
NASA Technical Reports Server (NTRS)
Kwak, Dochan
2000-01-01
This viewgraph presentation gives an overview of the future of computational fluid dynamics (CFD), which in the past has pioneered the field of flow simulation. Over time CFD has progressed as computing power. Numerical methods have been advanced as CPU and memory capacity increases. Complex configurations are routinely computed now and direct numerical simulations (DNS) and large eddy simulations (LES) are used to study turbulence. As the computing resources changed to parallel and distributed platforms, computer science aspects such as scalability (algorithmic and implementation) and portability and transparent codings have advanced. Examples of potential future (or current) challenges include risk assessment, limitations of the heuristic model, and the development of CFD and information technology (IT) tools.
On hairpin vortex generation from near-wall streamwise vortices
NASA Astrophysics Data System (ADS)
Wang, Yinshan; Huang, Weixi; Xu, Chunxiao
2015-04-01
The generation of a hairpin vortex from near-wall streamwise vortices is studied via the direct numerical simulation (DNS) of the streak transient growth in the minimal channel flow at . The streak profile is obtained by conditionally averaging the DNS data of the fully developed turbulent channel flow at the same Reynolds number. The near-wall streamwise vortices are produced by the transient growth of the streak which is initially subjected to the sinuous perturbation of the spanwise velocity. It is shown that the arch head of the hairpin vortex first grows from the downstream end of the stronger streamwise vortex and then connects with the weaker, opposite-signed streamwise vortex in their overlap region, forming a complete individual hairpin structure. The vorticity transport along the vortex lines indicates that the strength increase and the spatial expansion of the arch head are due to the stretching and the turning of the vorticity vector, respectively. The hairpin packets could be further produced from the generated individual hairpin vortex following the parent-offspring process.
Acıoğlu, Engin; Yiğit, Özgür; Seden, Nihal; Huq, Gülben Erdem
2012-01-01
The objectives of this study were to determine the predictive value of dominant nodules (DNs) in multinodular goiters (MNGs), and to stratify the risk of malignancy within the indeterminate category. The study design was retrospective study of patients with MNG. A total of 140 patients were reviewed. Fine needle aspiration biopsy (FNAB) findings for all DNs were categorized into four groups: (1) benign, (2) positive or suspicious for malignancy, (3) indeterminate, and (4) non-diagnostic. All FNAB specimens of the indeterminate group were also evaluated for the presence of Hurthle cell metaplasia and were categorized according to the presence of cytological atypia. Cytohistological comparison was then performed. Mean number and diameter of the DNs were 1.45 and 25.6 mm, respectively. Based on final histopathology, 22.14% of the patients had thyroid malignancy and 74.2% of thyroid carcinomas were located in DNs. The number of DNs was significantly larger in malignant thyroid glands than in benign ones. In total, 22.6% of the indeterminate FNABs were malignant. FNABs of the indeterminate group that included atypical cells had a statistically significant higher incidence of malignancy. The presence of Hurthle cells was not statistically different in malignant and benign nodules upon final histological diagnosis. In conclusion, FNAB of only DNs in MNG could determine thyroid malignancy in 75% of patients. The DN number might be required for the predictive value of malignancy. A subclassification of the indeterminate group, based on the presence or absence of cytological atypia, is necessary to better assess the risk of malignancy.
NASA Astrophysics Data System (ADS)
Hackl, Jason F.
The relative dispersion of one uid particle with respect to another is fundamentally related to the transport and mixing of contaminant species in turbulent flows. The most basic consequence of Kolmogorov's 1941 similarity hypotheses for relative dispersion, the Richardson-Obukhov law that mean-square pair separation distance
Khan, Fehmeda Farrukh; Numan, Ahsan; Khawaja, Khadija Irfan; Atif, Ali; Fatima, Aziz; Masud, Faisal
2015-01-01
Early diagnosis of distal peripheral neuropathy (DSPN) the commonest diabetes complications, helps prevent significant morbidity. Clinical parameters are useful for detection, but subjectivity and lack of operator proficiency often results in inaccuracies. Comparative diagnostic accuracy of Diabetic Neuropathy Symptom (DNS) score and Diabetic Neuropathy Examination (DNE) score in detecting DSPN confirmed by nerve conduction studies (NCS) has not been evaluated. This study compares the performance of these scores in predicting the presence of electro physiologically proven DSPN. The objective of this, study was to compare the diagnostic accuracy of DNS and DNE scores in detecting NCS proven DSPN in type-2 diabetics, and to determine the frequency of sub-clinical DSPN among type-2 diabetics. In this cross-sectional study the DNS score and DNE score were determined in 110 diagnosed type-2 diabetic patients. NCS were carried out and amplitudes, velocities and latencies of sensory and motor nerves in lower limb were recorded. Comparison between the two clinical diagnostic modalities and NCS using Pearson's chi square test showed a significant association between NCS and DNE scores (p-value =.003, specificity 93%). The DNS score performed poorly in comparison (p-value = .068, specificity 77%). When the two scores were taken in combination the specificity in diagnosing DSPN was greater (p-value = .018, specificity 96%) than either alone. 33% of patients had subclinical neuropathy. DNE score alone and in combination with DNS score is reliable in predicting DSPN and is more specific than DNS score in evaluating DSPN. Both tests lack sensitivity. Patients without any evidence of clinical neuropathy manifest abnormalities on NCS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, P.J.; Greene, M.H.; Adams, D.
The dysplastic nevus syndrome (DNS) is a preneoplastic melanocyte abnormality which occurs in families affected by hereditary cutaneous malignant melanoma (HCMM). A putative role of host-environmental interactions in the etiology of hereditary melanoma has been strengthened by the recent finding that fibroblasts derived from HCMM/DNS patients demonstrated enhanced sensitivity to u.v.-irradiation in vitro. An extension of these studies is reported in which we have examined the invitro responses to a model environmental carcinogen, 4-nitroquinoline 1-oxide (4NQO), of six non-tumor skin fibroblast strains from HCMM/DNS patients representing five families. Three of the six HCMM/DNS strains showed enhanced cell killing with sensitivitiesmore » greater than that of a xeroderma pigmentosum (XP) variant strain but less than those of ataxia telangiectasia and XP Group D cell strains. The inhibition and recovery of de novo DNA synthesis, together with the expression of repair synthesis, following 4NQO exposure appeared to be normal in HCMM/DNS strains, irrespective of their subsequent clonogenic potential. The data point to a metabolic anomaly which may contribute to the carcinogenic risk of the melanoma prone preneoplastic state presented by some DNS patients.« less
Han, Chao; Lignell, David O.; Hawkes, Evatt R.; ...
2017-02-09
Here, the effect of differential molecular diffusion (DMD) in turbulent non-premixed flames is studied by examining two previously reported DNS of temporally evolving planar jet flames, one with CO/H 2 as the fuel and the other with C 2H 4 as the fuel. The effect of DMD in the CO/H 2 DNS flames in which H 2 is part of fuel is found to behave similar to laminar flamelet, while in the C 2H 4 DNS flames in which H 2 is not present in the fuel it is similar to laminar flamelet in early stages but becomes different frommore » laminar flamelet later. The scaling of the effect of DMD with respect to the Reynolds number Re is investigated in the CO/H 2 DNS flames, and an evident power law scaling (~Re –a with a a positive constant) is observed. The scaling of the effect of DMD with respect to the Damkohler number Da is explored in both laminar counter-flow jet C 2H 4 diffusion flames and the C 2H 4 DNS flames. A power law scaling (~ Daa with a a positive constant) is clearly demonstrated for C 2H 4 nonpremixed flames.« less
Wang, Qin; Zhang, Shengrui; Zhong, Yaogang; Yang, Xiao-Feng; Li, Zheng; Li, Hua
2017-02-07
Selenocysteine (Sec) carries out the majority of the functions of the various Se-containing species in vivo. Thus, it is of great importance to develop sensitive and selective assays to detect Sec. Herein, a carbon-dot-based fluorescent turn-on probe for highly selective detection of selenol in living cells is presented. The highly photoluminescent carbon dots that emit yellow-green fluorescence (Y-G-CDs; λ max = 520 nm in water) were prepared by using m-aminophenol as carbon precursor through a facile solvothermal method. The surface of Y-G-CDs was then covalently functionalized with 2,4-dinitrobenzenesulfonyl chloride (DNS-Cl) to afford the 2,4-dinitrobenzene-functionalized CDs (CD-DNS) as a nanoprobe for selenol. CD-DNS is almost nonfluorescent. However, upon treating with Sec, the DNS moiety of CD-DNS can be readily cleaved by selenolate through a nucleophilic substitution process, resulting in the formation of highly fluorescent Y-G-CDs and hence leads to a dramatic increase in fluorescence intensity. The proposed nanoprobe exhibits high sensitivity and selectivity toward Sec over biothiols and other biological species. A preliminary study shows that CD-DNS can function as a useful tool for fluorescence imaging of exogenous and endogenous selenol in living cells.
Direct Numerical Simulation of a Weakly Stratified Turbulent Wake
NASA Technical Reports Server (NTRS)
Redford, J. A.; Lund, T. S.; Coleman, Gary N.
2014-01-01
Direct numerical simulation (DNS) is used to investigate a time-dependent turbulent wake evolving in a stably stratified background. A large initial Froude number is chosen to allow the wake to become fully turbulent and axisymmetric before stratification affects the spreading rate of the mean defect. The uncertainty introduced by the finite sample size associated with gathering statistics from a simulation of a time-dependent flow is reduced, compared to earlier simulations of this flow. The DNS reveals the buoyancy-induced changes to the turbulence structure, as well as to the mean-defect history and the terms in the mean-momentum and turbulence-kinetic-energy budgets, that characterize the various states of this flow - namely the three-dimensional (essentially unstratified), non-equilibrium (or 'wake-collapse') and quasi-two-dimensional (or 'two-component') regimes observed elsewhere for wakes embedded in both weakly and strongly stratified backgrounds. The wake-collapse regime is not accompanied by transfer (or 'reconversion') of the potential energy of the turbulence to the kinetic energy of the turbulence, implying that this is not an essential feature of stratified-wake dynamics. The dependence upon Reynolds number of the duration of the wake-collapse period is demonstrated, and the effect of the details of the initial/near-field conditions of the wake on its subsequent development is examined.
DNS study on bursting and intermittency in late boundary layer transition
NASA Astrophysics Data System (ADS)
Wang, YiQian; Liu, ChaoQun
2017-11-01
Experimental and numerical investigations have suggested the existence of a strong correlation between the passage of coherent structures and events of bursting and intermittency. However, a detailed cause-and-effect study on the subject is rarely found in the literature due to the complexity and the nonlinear multiscale nature of turbulent flows. The primary goal of this research is to explore the motion and evolution of coherent structures during late transition, whose structure is much more ordered than that of fully developed turbulence, and their relationship with events of bursting and intermittency based on a verified high-order direct numerical simulation (DNS). The computation was carried out on a flat plate at Reynolds number 1000 (based on the inflow displacement thickness) with an inflow Mach number 0.5. It is concluded that bursting and intermittency detected by stationary sensors in a transitional boundary layer actually result from the passage and development of vortical structures, and it would be more rational to design transitional turbulence models based on modelling the moving vortical structures rather than the statistical features and experimental experiences.
Influence of Computational Drop Representation in LES of a Droplet-Laden Mixing Layer
NASA Technical Reports Server (NTRS)
Bellan, Josette; Radhakrishnan, Senthilkumaran
2013-01-01
Multiphase turbulent flows are encountered in many practical applications including turbine engines or natural phenomena involving particle dispersion. Numerical computations of multiphase turbulent flows are important because they provide a cheaper alternative to performing experiments during an engine design process or because they can provide predictions of pollutant dispersion, etc. Two-phase flows contain millions and sometimes billions of particles. For flows with volumetrically dilute particle loading, the most accurate method of numerically simulating the flow is based on direct numerical simulation (DNS) of the governing equations in which all scales of the flow including the small scales that are responsible for the overwhelming amount of dissipation are resolved. DNS, however, requires high computational cost and cannot be used in engineering design applications where iterations among several design conditions are necessary. Because of high computational cost, numerical simulations of such flows cannot track all these drops. The objective of this work is to quantify the influence of the number of computational drops and grid spacing on the accuracy of predicted flow statistics, and to possibly identify the minimum number, or, if not possible, the optimal number of computational drops that provide minimal error in flow prediction. For this purpose, several Large Eddy Simulation (LES) of a mixing layer with evaporating drops have been performed by using coarse, medium, and fine grid spacings and computational drops, rather than physical drops. To define computational drops, an integer NR is introduced that represents the ratio of the number of existing physical drops to the desired number of computational drops; for example, if NR=8, this means that a computational drop represents 8 physical drops in the flow field. The desired number of computational drops is determined by the available computational resources; the larger NR is, the less computationally intensive is the simulation. A set of first order and second order flow statistics, and of drop statistics are extracted from LES predictions and are compared to results obtained by filtering a DNS database. First order statistics such as Favre averaged stream-wise velocity, Favre averaged vapor mass fraction, and the drop stream-wise velocity, are predicted accurately independent of the number of computational drops and grid spacing. Second order flow statistics depend both on the number of computational drops and on grid spacing. The scalar variance and turbulent vapor flux are predicted accurately by the fine mesh LES only when NR is less than 32, and by the coarse mesh LES reasonably accurately for all NR values. This is attributed to the fact that when the grid spacing is coarsened, the number of drops in a computational cell must not be significantly lower than that in the DNS.
NASA Astrophysics Data System (ADS)
Verma, Sudeep; Dewan, Anupam
2018-01-01
The Partially-Averaged Navier-Stokes (PANS) approach has been applied for the first time to model turbulent flow and heat transfer in an ideal Czochralski set up with the realistic boundary conditions. This method provides variable level of resolution ranging from the Reynolds-Averaged Navier-Stokes (RANS) modelling to Direct Numerical Simulation (DNS) based on the filter control parameter. For the present case, a low-Re PANS model has been developed for Czochralski melt flow, which includes the effect of coriolis, centrifugal, buoyant and surface tension induced forces. The aim of the present study is to assess improvement in results on switching to PANS modelling from unsteady RANS (URANS) approach on the same computational mesh. The PANS computed results were found to be in good agreement with the reported experimental, DNS and Large Eddy Simulation (LES) data. A clear improvement in computational accuracy is observed in switching from the URANS approach to the PANS methodology. The computed results further improved with a reduction in the PANS filter width. Further the capability of the PANS model to capture key characteristics of the Czochralski crystal growth is also highlighted. It was observed that the PANS model was able to resolve the three-dimensional turbulent nature of the melt, characteristic flow structures arising due to flow instabilities and generation of thermal plumes and vortices in the Czochralski melt.
NASA Astrophysics Data System (ADS)
Ranjan, R.; Menon, S.
2018-04-01
The two-level simulation (TLS) method evolves both the large-and the small-scale fields in a two-scale approach and has shown good predictive capabilities in both isotropic and wall-bounded high Reynolds number (Re) turbulent flows in the past. Sensitivity and ability of this modelling approach to predict fundamental features (such as backscatter, counter-gradient turbulent transport, small-scale vorticity, etc.) seen in high Re turbulent flows is assessed here by using two direct numerical simulation (DNS) datasets corresponding to a forced isotropic turbulence at Taylor's microscale-based Reynolds number Reλ ≈ 433 and a fully developed turbulent flow in a periodic channel at friction Reynolds number Reτ ≈ 1000. It is shown that TLS captures the dynamics of local co-/counter-gradient transport and backscatter at the requisite scales of interest. These observations are further confirmed through a posteriori investigation of the flow in a periodic channel at Reτ = 2000. The results reveal that the TLS method can capture both the large- and the small-scale flow physics in a consistent manner, and at a reduced overall cost when compared to the estimated DNS or wall-resolved LES cost.
A minimal model of self-sustaining turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Vaughan L.; Gayme, Dennice F.; Farrell, Brian F.
2015-10-15
In this work, we examine the turbulence maintained in a Restricted Nonlinear (RNL) model of plane Couette flow. This model is a computationally efficient approximation of the second order statistical state dynamics obtained by partitioning the flow into a streamwise averaged mean flow and perturbations about that mean, a closure referred to herein as the RNL{sub ∞} model. The RNL model investigated here employs a single member of the infinite ensemble that comprises the covariance of the RNL{sub ∞} dynamics. The RNL system has previously been shown to support self-sustaining turbulence with a mean flow and structural features that aremore » consistent with direct numerical simulations (DNS). Regardless of the number of streamwise Fourier components used in the simulation, the RNL system’s self-sustaining turbulent state is supported by a small number of streamwise varying modes. Remarkably, further truncation of the RNL system’s support to as few as one streamwise varying mode can suffice to sustain the turbulent state. The close correspondence between RNL simulations and DNS that has been previously demonstrated along with the results presented here suggest that the fundamental mechanisms underlying wall-turbulence can be analyzed using these highly simplified RNL systems.« less
Assessment of dynamic closure for premixed combustion large eddy simulation
NASA Astrophysics Data System (ADS)
Langella, Ivan; Swaminathan, Nedunchezhian; Gao, Yuan; Chakraborty, Nilanjan
2015-09-01
Turbulent piloted Bunsen flames of stoichiometric methane-air mixtures are computed using the large eddy simulation (LES) paradigm involving an algebraic closure for the filtered reaction rate. This closure involves the filtered scalar dissipation rate of a reaction progress variable. The model for this dissipation rate involves a parameter βc representing the flame front curvature effects induced by turbulence, chemical reactions, molecular dissipation, and their interactions at the sub-grid level, suggesting that this parameter may vary with filter width or be a scale-dependent. Thus, it would be ideal to evaluate this parameter dynamically by LES. A procedure for this evaluation is discussed and assessed using direct numerical simulation (DNS) data and LES calculations. The probability density functions of βc obtained from the DNS and LES calculations are very similar when the turbulent Reynolds number is sufficiently large and when the filter width normalised by the laminar flame thermal thickness is larger than unity. Results obtained using a constant (static) value for this parameter are also used for comparative evaluation. Detailed discussion presented in this paper suggests that the dynamic procedure works well and physical insights and reasonings are provided to explain the observed behaviour.
Bansal, Gaurav; Mascarenhas, Ajith; Chen, Jacqueline H.
2014-10-01
In our paper, two- and three-dimensional direct numerical simulations (DNS) of autoignition phenomena in stratified dimethyl-ether (DME)/air turbulent mixtures are performed. A reduced DME oxidation mechanism, which was obtained using rigorous mathematical reduction and stiffness removal procedure from a detailed DME mechanism with 55 species, is used in the present DNS. The reduced DME mechanism consists of 30 chemical species. This study investigates the fundamental aspects of turbulence-mixing-autoignition interaction occurring in homogeneous charge compression ignition (HCCI) engine environments. A homogeneous isotropic turbulence spectrum is used to initialize the velocity field in the domain. Moreover, the computational configuration corresponds to amore » constant volume combustion vessel with inert mass source terms added to the governing equations to mimic the pressure rise due to piston motion, as present in practical engines. DME autoignition is found to be a complex three-staged process; each stage corresponds to a distinct chemical kinetic pathway. The distinct role of turbulence and reaction in generating scalar gradients and hence promoting molecular transport processes are investigated. Then, by applying numerical diagnostic techniques, the different heat release modes present in the igniting mixture are identified. In particular, the contribution of homogeneous autoignition, spontaneous ignition front propagation, and premixed deflagration towards the total heat release are quantified.« less
NASA Astrophysics Data System (ADS)
Yu, Jianyang; Chen, Fu; Liu, Huaping; Song, Yanping
2015-12-01
An investigation into the flow characteristic on a flat plate induced by an unsteady plasma was conducted with the methods of direct numerical simulations (DNS). A simplified model of dielectric barrier discharge (DBD) plasma was applied and its parameters were calibrated with the experimental results. In the simulations, effects of the actuation frequency on the flow were examined. The instantaneous flow parameters were also drawn to serve as a detailed study on the behavior when the plasma actuator was applied to the flow. The result shows that induced by the unsteady actuation, a series of vortex pairs which showed dipole formation and periodicity distribution were formed in the boundary layer. The production of these vortex pairs indicated a strong energy exchange between the main flow and the boundary layer. They moved downstream under the action of the free stream and decayed under the influence of the fluid viscosity. The distance of the neighboring vortices was found to be determined by the actuation frequency. Interaction of the neighboring vortices would be ignored when the actuation frequency was too small to make a difference. supported by the Foundation for Innovative Research Groups of National Natural Science Foundation of China (No. 51121004) and National Natural Science Foundation of China (No. 50976026)
Direct Numerical Simulations of a Full Stationary Wind-Turbine Blade
NASA Astrophysics Data System (ADS)
Qamar, Adnan; Zhang, Wei; Gao, Wei; Samtaney, Ravi
2014-11-01
Direct numerical simulation of flow past a full stationary wind-turbine blade is carried out at Reynolds number, Re = 10,000 placed at 0 and 5 (degree) angle of attack. The study is targeted to create a DNS database for verification of solvers and turbulent models that are utilized in wind-turbine modeling applications. The full blade comprises of a circular cylinder base that is attached to a spanwise varying airfoil cross-section profile (without twist). An overlapping composite grid technique is utilized to perform these DNS computations, which permits block structure in the mapped computational space. Different flow shedding regimes are observed along the blade length. Von-Karman shedding is observed in the cylinder shaft region of the turbine blade. Along the airfoil cross-section of the blade, near body shear layer breakdown is observed. A long tip vortex originates from the blade tip region, which exits the computational plane without being perturbed. Laminar to turbulent flow transition is observed along the blade length. The turbulent fluctuations amplitude decreases along the blade length and the flow remains laminar regime in the vicinity of the blade tip. The Strouhal number is found to decrease monotonously along the blade length. Average lift and drag coefficients are also reported for the cases investigated. Supported by funding under a KAUST OCRF-CRG grant.
DNS study of the ignition of n-heptane fuel spray under high pressure and lean conditions
NASA Astrophysics Data System (ADS)
Wang, Yunliang; Rutland, Christopher J.
2005-01-01
Direct numerical simulations (DNS) are used to investigate the ignition of n-heptane fuel spray under high pressure and lean conditions. For the solution of the carrier gas fluid, the Eulerian method is employed, while for the fuel spray, the Lagrangian method is used. A chemistry mechanism for n-heptane with 33 species and 64 reactions is adopted to describe the chemical reactions. Initial carrier gas temperature and pressure are 926 K and 30.56 atmospheres, respectively. Initial global equivalence ratio is 0.258. Two cases with droplet radiuses of 35.5 and 20.0 macrons are simulated. Evolutions of the carrier gas temperature and species mass fractions are presented. Contours of the carrier gas temperature and species mass fractions near ignition and after ignition are presented. The results show that the smaller fuel droplet case ignites earlier than the larger droplet case. For the larger droplet case, ignition occurs first at one location; for the smaller droplet case, however, ignition occurs first at multiple locations. At ignition kernels, significant NO is produced when temperature is high enough at the ignition kernels. For the larger droplet case, more NO is produced than the smaller droplet case due to the inhomogeneous distribution and incomplete mixing of fuel vapor.
Turbulent flows over superhydrophobic surfaces with shear-dependent slip length
NASA Astrophysics Data System (ADS)
Khosh Aghdam, Sohrab; Seddighi, Mehdi; Ricco, Pierre
2015-11-01
Motivated by recent experimental evidence, shear-dependent slip length superhydrophobic surfaces are studied. Lyapunov stability analysis is applied in a 3D turbulent channel flow and extended to the shear-dependent slip-length case. The feedback law extracted is recognized for the first time to coincide with the constant-slip-length model widely used in simulations of hydrophobic surfaces. The condition for the slip parameters is found to be consistent with the experimental data and with values from DNS. The theoretical approach by Fukagata (PoF 18.5: 051703) is employed to model the drag-reduction effect engendered by the shear-dependent slip-length surfaces. The estimated drag-reduction values are in very good agreement with our DNS data. For slip parameters and flow conditions which are potentially realizable in the lab, the maximum computed drag reduction reaches 50%. The power spent by the turbulent flow on the walls is computed, thereby recognizing the hydrophobic surfaces as a passive-absorbing drag-reduction method, as opposed to geometrically-modifying techniques that do not consume energy, e.g. riblets, hence named passive-neutral. The flow is investigated by visualizations, statistical analysis of vorticity and strain rates, and quadrants of the Reynolds stresses. Part of this work was funded by Airbus Group. Simulations were performed on the ARCHER Supercomputer (UKTC Grant).
Numerical Coupling and Simulation of Point-Mass System with the Turbulent Fluid Flow
NASA Astrophysics Data System (ADS)
Gao, Zheng
A computational framework that combines the Eulerian description of the turbulence field with a Lagrangian point-mass ensemble is proposed in this dissertation. Depending on the Reynolds number, the turbulence field is simulated using Direct Numerical Simulation (DNS) or eddy viscosity model. In the meanwhile, the particle system, such as spring-mass system and cloud droplets, are modeled using the ordinary differential system, which is stiff and hence poses a challenge to the stability of the entire system. This computational framework is applied to the numerical study of parachute deceleration and cloud microphysics. These two distinct problems can be uniformly modeled with Partial Differential Equations (PDEs) and Ordinary Differential Equations (ODEs), and numerically solved in the same framework. For the parachute simulation, a novel porosity model is proposed to simulate the porous effects of the parachute canopy. This model is easy to implement with the projection method and is able to reproduce Darcy's law observed in the experiment. Moreover, the impacts of using different versions of k-epsilon turbulence model in the parachute simulation have been investigated and conclude that the standard and Re-Normalisation Group (RNG) model may overestimate the turbulence effects when Reynolds number is small while the Realizable model has a consistent performance with both large and small Reynolds number. For another application, cloud microphysics, the cloud entrainment-mixing problem is studied in the same numerical framework. Three sets of DNS are carried out with both decaying and forced turbulence. The numerical result suggests a new way parameterize the cloud mixing degree using the dynamical measures. The numerical experiments also verify the negative relationship between the droplets number concentration and the vorticity field. The results imply that the gravity has fewer impacts on the forced turbulence than the decaying turbulence. In summary, the proposed framework can be used to solve a physics problem that involves turbulence field and point-mass system, and therefore has a broad application.
NASA Astrophysics Data System (ADS)
Druzhinin, O.; Troitskaya, Yu; Zilitinkevich, S.
2018-01-01
The detailed knowledge of turbulent exchange processes occurring in the atmospheric marine boundary layer are of primary importance for their correct parameterization in large-scale prognostic models. These processes are complicated, especially at sufficiently strong wind forcing conditions, by the presence of sea-spray drops which are torn off the crests of sufficiently steep surface waves by the wind gusts. Natural observations indicate that mass fraction of sea-spray drops increases with wind speed and their impact on the dynamics of the air in the vicinity of the sea surface can become quite significant. Field experiments, however, are limited by insufficient accuracy of the acquired data and are in general costly and difficult. Laboratory modeling presents another route to investigate the spray-mediated exchange processes in much more detail as compared to the natural experiments. However, laboratory measurements, contact as well as Particle Image Velocimetry (PIV) methods, also suffer from inability to resolve the dynamics of the near-surface air-flow, especially in the surface wave troughs. In this report, we present a first attempt to use Direct Numerical Simulation (DNS) as tool for investigation of the drops-mediated momentum, heat and moisture transfer in a turbulent, droplet-laden air flow over a wavy water surface. DNS is capable of resolving the details of the transfer processes and do not involve any closure assumptions typical of Large-Eddy and Reynolds Averaged Navier-Stokes (LES and RANS) simulations. Thus DNS provides a basis for improving parameterizations in LES and RANS closure models and further development of large-scale prognostic models. In particular, we discuss numerical results showing the details of the modification of the air flow velocity, temperature and relative humidity fields by multidisperse, evaporating drops. We use Eulerian-Lagrangian approach where the equations for the air-flow fields are solved in a Eulerian frame whereas the drops dymanics equations are solved in a Largangain frame. The effects of air flow and drops on the water surface wave are neglected. A point-force approximation is employed to model the feed-back contributions by the drops to the air momentum, heat and moisture transfer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhi-Gang Feng
2012-05-31
The simulation of particulate flows for industrial applications often requires the use of two-fluid models, where the solid particles are considered as a separate continuous phase. One of the underlining uncertainties in the use of the two-fluid models in multiphase computations comes from the boundary condition of the solid phase. Typically, the gas or liquid fluid boundary condition at a solid wall is the so called no-slip condition, which has been widely accepted to be valid for single-phase fluid dynamics provided that the Knudsen number is low. However, the boundary condition for the solid phase is not well understood. Themore » no-slip condition at a solid boundary is not a valid assumption for the solid phase. Instead, several researchers advocate a slip condition as a more appropriate boundary condition. However, the question on the selection of an exact slip length or a slip velocity coefficient is still unanswered. Experimental or numerical simulation data are needed in order to determinate the slip boundary condition that is applicable to a two-fluid model. The goal of this project is to improve the performance and accuracy of the boundary conditions used in two-fluid models such as the MFIX code, which is frequently used in multiphase flow simulations. The specific objectives of the project are to use first principles embedded in a validated Direct Numerical Simulation particulate flow numerical program, which uses the Immersed Boundary method (DNS-IB) and the Direct Forcing scheme in order to establish, modify and validate needed energy and momentum boundary conditions for the MFIX code. To achieve these objectives, we have developed a highly efficient DNS code and conducted numerical simulations to investigate the particle-wall and particle-particle interactions in particulate flows. Most of our research findings have been reported in major conferences and archived journals, which are listed in Section 7 of this report. In this report, we will present a brief description of these results.« less
Large Eddy Simulation of jets laden with evaporating drops
NASA Technical Reports Server (NTRS)
Leboissetier, A.; Okong'o, N.; Bellan, J.
2004-01-01
LES of a circular jet laden with evaporating liquid drops are conducted to assess computational-drop modeling and three different SGS-flux models: the Scale Similarity model (SSC), using a constant coefficient calibrated on a temporal mixing layer DNS database, and dynamic-coefficient Gradient and Smagorinsky models.
Large Scale Turbulent Structures in Supersonic Jets
NASA Technical Reports Server (NTRS)
Rao, Ram Mohan; Lundgren, Thomas S.
1997-01-01
Jet noise is a major concern in the design of commercial aircraft. Studies by various researchers suggest that aerodynamic noise is a major contributor to jet noise. Some of these studies indicate that most of the aerodynamic jet noise due to turbulent mixing occurs when there is a rapid variation in turbulent structure, i.e. rapidly growing or decaying vortices. The objective of this research was to simulate a compressible round jet to study the non-linear evolution of vortices and the resulting acoustic radiations. In particular, to understand the effect of turbulence structure on the noise. An ideal technique to study this problem is Direct Numerical Simulations (DNS), because it provides precise control on the initial and boundary conditions that lead to the turbulent structures studied. It also provides complete 3-dimensional time dependent data. Since the dynamics of a temporally evolving jet are not greatly different from those of a spatially evolving jet, a temporal jet problem was solved, using periodicity in the direction of the jet axis. This enables the application of Fourier spectral methods in the streamwise direction. Physically this means that turbulent structures in the jet are repeated in successive downstream cells instead of being gradually modified downstream into a jet plume. The DNS jet simulation helps us understand the various turbulent scales and mechanisms of turbulence generation in the evolution of a compressible round jet. These accurate flow solutions will be used in future research to estimate near-field acoustic radiation by computing the total outward flux across a surface and determine how it is related to the evolution of the turbulent solutions. Furthermore, these simulations allow us to investigate the sensitivity of acoustic radiations to inlet/boundary conditions, with possible appli(,a- tion to active noise suppression. In addition, the data generated can be used to compute, various turbulence quantities such as mean velocities, turbulent stresses, etc. which will aid in turbulence modeling. This report will be presented in two chapters. The first chapter describes some work on the linear stability of a supersonic round jet and the implications of this for the jet noise problem. The second chapter is an extensive discussion of numerical work using the spectral method which we use to solve the compressible Navier-Stokes equations to study turbulent jet flows. The method uses Fourier expansions in the azimuthal and streamwise direction and a 1-D B-spline basis representation in the radial direction. The B-spline basis is locally supported and this ensures block diagonal matrix equations which can be solved in O(N) steps. This is a modification of a boundary layer code developed by Robert Moser. A very accurate highly resolved DNS of a turbulent jet flow is produced.
Reproducing scalar mixing of turbulent jets in a 3D periodic box
NASA Astrophysics Data System (ADS)
Rah, K. Jeff; Blanquart, Guillaume
2017-11-01
A triply periodic DNS is a convenient framework to analyze the turbulent mixing process, since it can produce statistically stationary turbulence. In addition, the periodic boundary condition makes it easy to compute the spatial spectra of scalars. However, it is difficult to create a realistic turbulent flow with such a geometry. In this current investigation, we aim to develop a method to simulate a realistic turbulent mixing process inside a 3D periodic box. The target real flow is an axisymmetric jet with passive scalars on its centerline. The velocity and scalar information of turbulent jets on the centerline is applied to the momentum equation and scalar transport equation in physical space. The result is the combination of a mean gradient term and a linear forcing term in the scalar equation. These new forcing terms are derived to replicate the scalar mixing properties of jets in a triply periodic DNS. The present analysis differs from other forcing schemes for their derivation process did not involve any use of the velocity or scalar information of a real turbulent flow. A set of DNS has been performed with the new forcing term, and various turbulent parameters and spectral relations are compared against experiments.
Manjunatha, Roopa G; Rajanna, K; Mahapatra, D Roy; Prakash, Surya
2014-01-01
Deviated nasal septum (DNS) is one of the major causes of nasal obstruction. Polyvinylidene fluoride (PVDF) nasal sensor is the new technique developed to assess the nasal obstruction caused by DNS. This study evaluates the PVDF nasal sensor measurements in comparison with PEAK nasal inspiratory flow (PNIF) measurements and visual analog scale (VAS) of nasal obstruction. Because of piezoelectric property, two PVDF nasal sensors provide output voltage signals corresponding to the right and left nostril when they are subjected to nasal airflow. The peak-to-peak amplitude of the voltage signal corresponding to nasal airflow was analyzed to assess the nasal obstruction. PVDF nasal sensor and PNIF were performed on 30 healthy subjects and 30 DNS patients. Receiver operating characteristic was used to analyze the DNS of these two methods. Measurements of PVDF nasal sensor strongly correlated with findings of PNIF (r = 0.67; p < 0.01) in DNS patients. A significant difference (p < 0.001) was observed between PVDF nasal sensor measurements and PNIF measurements of the DNS and the control group. A cutoff between normal and pathological of 0.51 Vp-p for PVDF nasal sensor and 120 L/min for PNIF was calculated. No significant difference in terms of sensitivity of PVDF nasal sensor and PNIF (89.7% versus 82.6%) and specificity (80.5% versus 78.8%) was calculated. The result shows that PVDF measurements closely agree with PNIF findings. Developed PVDF nasal sensor is an objective method that is simple, inexpensive, fast, and portable for determining DNS in clinical practice.
Nonlinear tumor evolution from dysplastic nodules to hepatocellular carcinoma.
Joung, Je-Gun; Ha, Sang Yun; Bae, Joon Seol; Nam, Jae-Yong; Gwak, Geum-Youn; Lee, Hae-Ock; Son, Dae-Soon; Park, Cheol-Keun; Park, Woong-Yang
2017-01-10
Dysplastic nodules are premalignant neoplastic nodules found in explanted livers with cirrhosis. Genetic signatures of premalignant dysplastic nodules (DNs) with concurrent hepatocellular carcinoma (HCC) may provide an insight in the molecular evolution of hepatocellular carcinogenesis. We analyzed four patients with multifocal nodular lesions and cirrhotic background by whole-exome sequencing (WES). The genomic profiles of somatic single nucleotide variations (SNV) and copy number variations (CNV) in DNs were compared to those of HCCs. The number and variant allele frequency of somatic SNVs of DNs and HCCs in each patient was identical along the progression of pathological grade. The somatic SNVs in DNs showed little conservation in HCC. Additionally, CNVs showed no conservation. Phylogenetic analysis based on SNVs and copy number profiles indicated a nonlinear segregation pattern, implying independent development of DNs and HCC in each patient. Thus, somatic mutations in DNs may be developed separately from other malignant nodules in the same liver, suggesting a nonlinear model for hepatocarcinogenesis from DNs to HCC.
NASA Technical Reports Server (NTRS)
Shih, Tsan-Hsing; Lumley, John L.
1991-01-01
Recently, several second order closure models have been proposed for closing the second moment equations, in which the velocity-pressure gradient (and scalar-pressure gradient) tensor and the dissipation rate tensor are two of the most important terms. In the literature, these correlation tensors are usually decomposed into a so called rapid term and a return-to-isotropy term. Models of these terms have been used in global flow calculations together with other modeled terms. However, their individual behavior in different flows have not been fully examined because they are un-measurable in the laboratory. Recently, the development of direct numerical simulation (DNS) of turbulence has given us the opportunity to do this kind of study. With the direct numerical simulation, we may use the solution to exactly calculate the values of these correlation terms and then directly compare them with the values from their modeled formulations (models). Here, we make direct comparisons of five representative rapid models and eight return-to-isotropy models using the DNS data of forty five homogeneous flows which were done by Rogers et al. (1986) and Lee et al. (1985). The purpose of these direct comparisons is to explore the performance of these models in different flows and identify the ones which give the best performance. The modeling procedure, model constraints, and the various evaluated models are described. The detailed results of the direct comparisons are discussed, and a few concluding remarks on turbulence models are given.
Center for Modeling of Turbulence and Transition (CMOTT). Research briefs: 1990
NASA Technical Reports Server (NTRS)
Povinelli, Louis A. (Compiler); Liou, Meng-Sing (Compiler); Shih, Tsan-Hsing (Compiler)
1991-01-01
Brief progress reports of the Center for Modeling of Turbulence and Transition (CMOTT) research staff from May 1990 to May 1991 are given. The objectives of the CMOTT are to develop, validate, and implement the models for turbulence and boundary layer transition in the practical engineering flows. The flows of interest are three dimensional, incompressible, and compressible flows with chemistry. The schemes being studied include the two-equation and algebraic Reynolds stress models, the full Reynolds stress (or second moment closure) models, the probability density function models, the Renormalization Group Theory (RNG) and Interaction Approximation (DIA), the Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS).
Dual-Mode Scramjet Combustor: Numerical Sensitivity and Evaluation of Experiments
2012-01-01
effects of the air gap; the second took into account the effects of the air gap by using a backpressure imposed boundary condition. Figure 36 shows an... exhauster housing at the exit of the combustor in RC22’s test apparatus. I. Introduction Previous experimental efforts in...amount of air/fuel mixing, which affects combustion . Other approaches such as Large-Eddy Simulation (LES) and Direct-Numerical Simulation (DNS) are too
Study and modeling of finite rate chemistry effects in turbulent non-premixed flames
NASA Technical Reports Server (NTRS)
Vervisch, Luc
1993-01-01
The development of numerical models that reflect some of the most important features of turbulent reacting flows requires information about the behavior of key quantities in well defined combustion regimes. In turbulent flames, the coupling between turbulent and chemical processes is so strong that it is extremely difficult to isolate the role played by one individual physical phenomenon. Direct numerical simulation (hereafter DNS) allows us to study in detail the turbulence-chemistry interaction in some restricted but completely defined situations. Globally, non-premixed flames are controlled by two limiting regimes: the fast chemistry case, where the turbulent flame can be pictured as a random distribution of local chemical equilibrium problems; and the slow chemistry case, where the chemistry integrates in time the turbulent fluctuations. The Damkoehler number, ratio of a mechanical time scale to chemical time scale, is used to distinguish between these regimes. Today most of the industrial computer codes are able to perform predictions in the hypothesis of local equilibrium chemistry using a presumed shape for the probability density function (pdt) of the conserved scalar. However, the finite rate chemistry situation is of great interest because industrial burners usually generate regimes in which, at some points, the flame is undergoing local extinction or at least non-equilibrium situations. Moreover, this variety of situations strongly influences the production of pollutants. To quantify finite rate chemistry effect, the interaction between a non-premixed flame and a free decaying turbulence is studied using DNS. The attention is focused on the dynamic of extinction, and an attempt is made to quantify the effect of the reaction on the small scale mixing process. The unequal diffusivity effect is also addressed. Finally, a simple turbulent combustion model based on the DNS observations and tractable in real flow configurations is proposed.
Modin, Sonja; Törnkvist, Lena; Furhoff, Anna-Karin; Hylander, Ingrid
2010-10-27
This article concerns Swedish family physicians' (FPs) experiences collaborating with district nurses (DNs) when the DNs provide medical treatment for home care patients. The aim was to develop a model to illuminate this process from the FPs' perspective. Semi-structured interviews were conducted with 13 FPs concerning one of their patients with home care by a DN. The interview focused on one patient's treatment and care by different care providers and the collaboration among them. Grounded theory methodology (GTM) was used in the analyses. It was essential for FPs to collaborate with and rely on DNs in the medical treatment of home care patients. According to the FPs, factors such as the disease, FPs' working conditions and attitude determined how much of the initiative in this treatment FPs retained or left to DNs. Depending on the circumstances, two different roles were adopted by the individual FPs: medical conductors who retain the initiative and medical consultants who leave the initiative to DNs. Factors as the disease, DNs' attitudes towards collaboration and DNs' working conditions influenced whether or not the FPs felt that grounds for relying on DNs were satisfactory. Regardless of the role of the FP, conditions for medical treatment were judged by the FPs to be good enough when the grounds for relying on the DN were satisfactory and problematic when they were not. In the role of conductor, the FP will identify when the grounds for relying on the DN are unsatisfactory and be able to take action, but in the role of consultant the FP will not detect this, leaving home care patients without appropriate support. Only when there are satisfactory grounds for relying on the DN, will conditions for providing home care medical treatment be good enough when the FP adopts a consultative role.
Tsai, Chung-Fen; Yip, Ping-Keung; Chen, Shao-Yuan; Lin, Jen-Cheng; Yeh, Zai-Ting; Kung, Lan-Yu; Wang, Cheng-Yi; Fan, Yu-Ming
2014-04-01
Acute carbon monoxide (CO) poisoning poses a significant threat to the central nervous system. It can cause brain injury and diverse neurological deficits including persistent neurological sequelae (PNS) and delayed neurological sequelae (DNS). The study aimed to investigate the long-term impacts of acute CO poisoning on brain perfusion and neurological function, and to explore potential differences between PNS and DNS patients. We evaluated brain perfusion using (99m)Tc ethyl cysteinate (ECD) brain single photon emission computed tomography (SPECT) and assessed clinical neurological symptoms and signs one month following acute poisoning. For DNS patients, ECD SPECT and clinical evaluation were performed when their delayed symptoms appeared. All patients had follow-up SPECT imaging, along with clinical assessments six months following poisoning. 12 PNS and 12 DNS patients were recruited between 2007 and 2010. Clinically, the main characteristic presentations were cognitive decline, emotional instability, and gait disturbance. SPECT imaging demonstrated consistent frontal hypoperfusion of varying severities in all patients, which decreased in severity at follow-up imaging. DNS patients usually had more severe symptoms and perfusion defects, along with worse clinical outcomes than the PNS group. These results suggest that acute CO poisoning might lead to long term brain injuries and neurological sequelae, particularly in DNS patients. Copyright © 2014 Elsevier B.V. All rights reserved.
Nucleotides containing variously modified sugars: energetics, structure, and mechanical properties.
Yurenko, Yevgen P; Novotný, Jan; Nikolaienko, Tymofii Yu; Marek, Radek
2016-01-21
The influence of various sugar residue modifications on intrinsic energetic, conformational, and mechanical properties of 2'-deoxyribonucleotide-5'-monophosphates (dNs) was comprehensively investigated using modern quantum chemical approaches. In total, fourteen sugar modifications, including double bonds and heteroatoms (S and N) inside the sugar ring, as well as fluorination in various positions, were analyzed. Among hundreds of possible conformational states of dNs, only two - AI and BI, corresponding to the most biologically significant forms of a double-helical DNA, were considered for each dN. It was established that the most of the studied modifications tend to strongly stabilize either AI or BI conformation of dNs both in the gas phase and in aqueous solution (modelled by implicit solvent models). Therefore, some of these modifications can be used as a tool for reducing structural polymorphism of nucleic acids in solution as well as for designing oligonucleotides with specific structural features. The evaluation of relaxed force constants (RFC) for glycosidic bonds suggests that the majority of the studied modifications of the sugar residue yield increased strengths of glycosidic bonds in dNs, and can therefore be used for designing modified nucleic acids with an increased resistance to abasic lesions. The most significant reinforcement of the glycosidic bond occurs in dNs containing the CF2 group instead of the O4' oxygen and the fluorine atom at the 2'-α-position. The calculation of the RFC and vibrational root-mean-square (VRMS) deviations for conformational degrees of freedom revealed a strong dependence between mechanical properties of dNs and their energetic characteristics. In particular, electronic energies of AI and BI conformers of dNs calculated in vacuo are closely connected with the values of relaxed force constants (RFC) for the δ angle: the higher RFC(δ) values correspond to more energetically favorable conformers.
Augoulea, A; Tsakonas, E; Triantafyllopoulos, I; Rizos, D; Armeni, E; Tsoltos, N; Tournis, S; Deligeoroglou, E; Antoniou, A; Lambrinoudaki, I
2017-03-01
To clarify potential differences between denosumab (DNS) and bisphosphonates (BIS) in terms of bone density and bone metabolism, in a sample of postmenopausal women. A total of 113 postmenopausal women aged 53-66 years were treated with either DNS or BIS for 12 months. Bone densitometry and laboratory tests were compared between baseline and follow-up. Femoral neck BMD increased in both treatment-arms (FN-BMD, DNS: 0.69±0.07 g/cm 2 to 0.75±0.09 g/cm 2 ; BIS: 0.69±0.06 g/cm 2 to 0.71±0.07 g/cm 2 ; p≤0.001 in both cases). Lumbar spine BMD (LS-BMD) increased significantly only in the DNS-group (0.83±0.14 g/cm 2 to 0.89±0.14 g/cm 2 , p=0.0001). Only women under treatment with DNS had a significant increase in serum parathyroid hormone (PTH: 44.87±17.54 pg/mL to 53.27±15.77 pg/mL, p=0.04), independently of baseline vitamin D levels. DNS-administration resulted in higher increase from baseline in FN-BMD compared to BIS (DNS vs BIS: 8.7%±8.5 vs 3.8%±7.3, p=0.004). Finally, baseline 25OH vitamin D levels did not determine the extent of PTH-increase following administration of DNS- or BIS-treatment. Both treatments increased BMD, however, the effect of DNS on FN-BMD was superior compared to that of BIS. DNS-treatment increased serum PTH. Baseline 25OH vitamin D levels did not predict the extent of PTH increase at follow-up.
Riordan, Fiona; McHugh, Sheena M; Murphy, Katie; Barrett, Julie; Kearney, Patricia M
2017-01-01
Objectives International evidence suggests the diabetes nurse specialist (DNS) has a key role in supporting integrated management of diabetes. We examine whether hospital and community DNS currently support the integration of care, examine regional variation in aspects of the service relevant to the delivery of integrated care and identify barriers to service delivery and areas for improvement. Design A cross-sectional survey of hospital and community-based DNS in Ireland. Methods Between September 2015 and April 2016, a 67-item online survey, comprising closed and open questions on their clinical role, diabetes clinics, multidisciplinary working, and barriers and facilitators to service delivery, was administered to all eligible DNS (n=152) in Ireland. DNS were excluded if they were retired or on maternity leave or extended leave. Results The response rate was 66.4% (n=101): 60.6% (n=74) and 89.3% (n=25) among hospital and community DNS, respectively. Most DNS had patients with stable (81.8%) and complicated type 2 diabetes mellitus (89.9%) attending their service. The majority were delivering nurse-led clinics (81.1%). Almost all DNS had a role liaising with (91%), and providing support and education to (95%), other professionals. However, only a third reported that there was local agreement on how their service should operate between the hospital and primary care. Barriers to service delivery that were experienced by DNS included deficits in the availability of specialist staff (allied health professionals, endocrinologists and DNS), insufficient space for clinics, structured education and issues with integration. Conclusions Delivering integrated diabetes care through a nurse specialist-led approach requires that wider service issues, including regional disparities in access to specialist resources and formalising agreements and protocols on multidisciplinary working between settings, be explicitly addressed. PMID:28801394
NASA Astrophysics Data System (ADS)
Cantero, Mariano I.; Balachandar, S.; Cantelli, Alessandro; Pirmez, Carlos; Parker, Gary
2009-03-01
In this work we present direct numerical simulations (DNS) of sediment-laden channel flows. In contrast to previous studies, where the flow has been driven by a constant, uniform pressure gradient, our flows are driven by the excess density imposed by suspended sediment. This configuration provides a simplified model of a turbidity current and is thus called the turbidity current with a roof configuration. Our calculations elucidate with DNS for the first time several fascinating features of sediment-laden flows, which may be summarized as follows. First, the presence of sediment breaks the symmetry of the flow because of a tendency to self-stratify. More specifically, this self-stratification is manifested in terms of a Reynolds-averaged suspended sediment concentration that declines in the upward normal direction and a Reynolds-averaged velocity profile with a maximum that is below the channel centerline. Second, this self-stratification damps the turbulence, particularly near the bottom wall. Two regimes are observed, one in which the flow remains turbulent but the level of turbulence is reduced and another in which the flow relaminarizes in a region near the bottom wall, i.e., bed. Third, the analysis allows the determination of a criterion for the break between these two regimes in terms of an appropriately defined dimensionless settling velocity. The results provide guidance for the improvement of Reynolds-averaged closures for turbulent flow in regard to stratification effects. Although the analysis reported here is not performed at the scale of large oceanic turbidity currents, which have sufficiently large Reynolds numbers to be inaccessible via DNS at this time, the implication of flow relaminarization is of considerable importance. Even a swift oceanic turbidity current which at some point crosses the threshold into the regime of relaminarization may lose the capacity to reentrain sediment that settles on the bed and thus may quickly die as it loses its driving force.
Yoon, Min A; Kim, Se Hyung; Park, Hee Sun; Lee, Dong Ho; Lee, Jae Young; Han, Joon Koo; Choi, Byung Ihn
2009-10-01
To assess the diagnostic value of dual contrast magnetic resonance imaging (DC-MRI) in the differentiation of well-differentiated hepatocellular carcinomas (WD-HCCs) from dysplastic nodules (DNs) and to determine the significant MRI predictors using univariate and multivariate analyses. Thirty-two WD-HCCs and 33 DNs in 28 patients who underwent liver transplantation with available histopathology as a gold standard were enrolled in this study. All patients underwent DC-MRI using superparamagnetic iron oxide (SPIO) and gadolinium (Gd) agents on a 3 T MRI unit. For all patients, precontrast T1- and T2-weighted (T2W) images as well as post-SPIO T2- and T2*W images were obtained. Then, for dynamic MRI, arterial (AP), portal, and equilibrium images were also obtained. Two radiologists reviewed the MR images for analyzing signal intensity on the all MR sequences in consensus. On AP images, the degree of enhancement was subjectively categorized into 4 groups: no, minimal, moderate, and strong enhancement. For quantitative analysis, relative arterial enhancement ratio was calculated by averaging 3 regions of interest values of each nodule on pre-Gd T1W and AP images. Each variable was initially evaluated using univariate analyses to assess statistically significant MRI findings differentiating HCCs and DNs, then with multivariate logistic regression analysis to find the most predictable MRI findings. Twenty WD-HCCs showed iso- or high SI on precontrast T2W images, whereas 23 DNs showed low SI (P = 0.003). Most DNs showed low SI on post-SPIO T2W (30/33) and T2*W (25/33) images, whereas HCCs tended to show heterogeneous high or high SI (16/32 and 19/32) (P < 0.012). On post-SPIO and pre-Gd T1W GRE images, 28 WD-HCCs showed iso- or high SI, whereas 24 DNs showed low SI (P < 0.001). On AP images, 20 HCCs revealed more than minimal degree of enhancement, whereas 32 DNs did not show any enhancement (P < 0.001). Mean relative arterial enhancement ratio of HCCs (39.4%) was also significantly larger than that of DNs (15.6%) (P = 0.001). On portal images, WD-HCCs tended to show iso- or high SI (n = 21), whereas DNs showed low SI (n = 29) (P < 0.001). Multivariate analysis revealed that a subjective degree of enhancement on AP images and SI on post-SPIO and pre-Gd T1W GRE images were the 2 variables that independently differentiated WD-HCCs from DNs. The use of DC-MRI is helpful in the differentiation of WD HCCs and DNs. More specifically, a subjective degree of enhancement on AP images and SI on post-SPIO and pre-Gd T1W GRE images are the 2 variables that independently differentiate WD-HCCs from DNs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seetharam, S.; Waters, H.L.; Seidman, M.M.
The hereditary dysplastic nevus syndrome (DNS) is an autosomal dominant disorder in which affected individuals have increased numbers of dysplastic (premalignant) nevi and a greater than 100-fold increased risk of developing cutaneous melanoma. Epstein-Barr virus-transformed lymphoblastoid cell lines from patients with hereditary DNS have been shown to be hypermutable to UV radiation. To examine the mechanism involved in this UV hypermutability, we used a shuttle vector plasmid, pZ189, which carries a 160-base pair marker gene, supF, and can replicate in human cells. pZ189 was treated with UV radiation and transfected into DNS6BE, a lymphoblastoid cell line from a patient withmore » hereditary DNS. Plasmid survival after UV was similar with the DNS6BE line and with a lymphoblastoid cell line from a normal donor. Plasmid mutation frequency was greater with the DNS line in accord with the DNS cellular hypermutability. Base sequence analysis was performed on 69 mutated plasmids recovered from the DNS line. There were significantly more plasmids with single base substitution mutations (P less than 0.01) in comparison to UV-treated plasmids passed through normal fibroblasts. pZ189 hypermutability and an increased frequency of single base substitutions was previously found with a cell line from a melanoma-prone xeroderma pigmentosum patient. These differences may be related to the increased melanoma susceptibility in both DNS and xeroderma pigmentosum.« less
MHD Turbulence Sheared in Fixed and Rotating Frames
NASA Technical Reports Server (NTRS)
Kassinos, S. C.; Knaepen, B.; Wray, A.
2004-01-01
We consider homogeneous turbulence in a conducting fluid that is exposed to a uniform external magnetic field while being sheared in fixed and rotating frames. We take both the frame-rotation axis and the applied magnetic field to be aligned in the direction normal to the plane of the mean shear. Here a systematic parametric study is carried out in a series of Direct Numerical Simulations (DNS) in order to clarify the main effects determining the structural anisotropy and stability of the flow.
Comparing DNS and Experiments of Subcritical Flow Past an Isolated Surface Roughness Element
NASA Astrophysics Data System (ADS)
Doolittle, Charles; Goldstein, David
2009-11-01
Results are presented from computational and experimental studies of subcritical roughness within a Blasius boundary layer. This work stems from discrepancies presented by Stephani and Goldstein (AIAA Paper 2009-585) where DNS results did not agree with hot-wire measurements. The near wake regions of cylindrical surface roughness elements corresponding to roughness-based Reynolds numbers Rek of about 202 are of specific concern. Laser-Doppler anemometry and flow visualization in water, as well as the same spectral DNS code used by Stephani and Goldstein are used to obtain both quantitative and qualitative comparisons with previous results. Conclusions regarding previous studies will be presented alongside discussion of current work including grid resolution studies and an examination of vorticity dynamics.
Control of viscous fingering by nanoparticles
NASA Astrophysics Data System (ADS)
Sabet, Nasser; Hassanzadeh, Hassan; Abedi, Jalal
2017-12-01
A substantial viscosity increase by the addition of a low dose of nanoparticles to the base fluids can well influence the dynamics of viscous fingering. There is a lack of detailed theoretical studies that address the effect of the presence of nanoparticles on unstable miscible displacements. In this study, the impact of nonreactive nanoparticle presence on the stability and subsequent mixing of an originally unstable binary system is examined using linear stability analysis (LSA) and pseudospectral-based direct numerical simulations (DNS). We have parametrized the role of both nondepositing and depositing nanoparticles on the stability of miscible displacements using the developed static and dynamic parametric analyses. Our results show that nanoparticles have the potential to weaken the instabilities of an originally unstable system. Our LSA and DNS results also reveal that nondepositing nanoparticles can be used to fully stabilize an originally unstable front while depositing particles may act as temporary stabilizers whose influence diminishes in the course of time. In addition, we explain the existing inconsistencies concerning the effect of the nanoparticle diffusion coefficient on the dynamics of the system. This study provides a basis for further research on the application of nanoparticles for control of viscosity-driven instabilities.
Predictors of carbon monoxide poisoning-induced delayed neuropsychological sequelae.
Ku, Hsiao-Lun; Yang, Kai-Chun; Lee, Ying-Chiao; Lee, Ming-Been; Chou, Yuan-Hwa
2010-01-01
Carbon monoxide poisoning (COP) commonly results in delayed neuropsychological sequelae (DNS). The aim of the article is to demonstrate the clinical characteristics and potential predictors of COP-induced DNS later. Retrospective medical record review was performed for patients who had COP in the past year at a National Medical Center in Taiwan. Sixty patients with COP were registered during a one-year period. Fifty-six of them (93.3%) were COP because of suicide attempt. Patients with COP who have a complete medical record of carboxyhemoglobin (COHb) and Glasgow Coma Scale (GCS) and Mini-Mental Status Examination (MMSE) scores were recruited. Multiple regression analysis was performed to search for the predictive factors of DNS. Forty-three patients were recruited. Most had attempted suicide (93.0%) using CO, and thirteen developed DNS later. A longer duration of admission, more sessions of hyperbaric oxygen therapy, and positive findings in brain computed tomography (CT) scans were more often found in patients with DNS than those without DNS. The GCS and MMSE scores and positive findings in brain CT scans were associated with the development of DNS but COHb was not. Our results identified several potential predictors of DNS. This finding may help clinicians understand and treat COP patients efficiently. Copyright 2010 Elsevier Inc. All rights reserved.
Assessment of diabetic neuropathy with emission tomography and magnetic resonance spectroscopy.
Rao, Harshvardhan; Gaur, Neeraj; Tipre, Dnyanesh
2017-04-01
Diabetic neuropathies (DNs) are nerve-damaging disorders associated with diabetes. They are commonly attributed to peripheral nerves and primarily affect the limbs of the patient. They cause altered sensitivity to external stimuli along with loss in balance and reflexes of the affected patient. DNs are associated with a variety of clinical manifestations including autonomic failure and are caused by poor management of blood sugar levels. Imaging modalities provide vital information about early physiological changes in DNs. This review summarizes contributions by various teams of scientists in developing imaging methods to assess physiological changes in DNs and ongoing clinical trials where imaging modalities are applied to evaluate therapeutic intervention in DNs. Development of PET, single photon emission computed tomography, and magnetic resonance spectroscopy methods over the past 20 years are reviewed in the diagnostic assessment of DNs. Abnormal radiotracer pharmacokinetics and neurometabolite spectra in affected organs confirm physiological abnormalities in DN. With the use of the Siemens Biograph mMR and GE Signa - 60 cm (PET/MRI scanner), simultaneous acquisition of physiological and anatomical information could enhance understanding of DNs and accelerate drug development.
Utilizing Direct Numerical Simulations of Transition and Turbulence in Design Optimization
NASA Technical Reports Server (NTRS)
Rai, Man M.
2015-01-01
Design optimization methods that use the Reynolds-averaged Navier-Stokes equations with the associated turbulence and transition models, or other model-based forms of the governing equations, may result in aerodynamic designs with actual performance levels that are noticeably different from the expected values because of the complexity of modeling turbulence/transition accurately in certain flows. Flow phenomena such as wake-blade interaction and trailing edge vortex shedding in turbines and compressors (examples of such flows) may require a computational approach that is free of transition/turbulence models, such as direct numerical simulations (DNS), for the underlying physics to be computed accurately. Here we explore the possibility of utilizing DNS data in designing a turbine blade section. The ultimate objective is to substantially reduce differences between predicted performance metrics and those obtained in reality. The redesign of a typical low-pressure turbine blade section with the goal of reducing total pressure loss in the row is provided as an example. The basic ideas presented here are of course just as applicable elsewhere in aerodynamic shape optimization as long as the computational costs are not excessive.
Sharoar, M G; Shi, Q; Ge, Y; He, W; Hu, X; Perry, G; Zhu, X; Yan, R
2016-09-01
Pathological features in Alzheimer's brains include mitochondrial dysfunction and dystrophic neurites (DNs) in areas surrounding amyloid plaques. Using a mouse model that overexpresses reticulon 3 (RTN3) and spontaneously develops age-dependent hippocampal DNs, here we report that DNs contain both RTN3 and REEPs, topologically similar proteins that can shape tubular endoplasmic reticulum (ER). Importantly, ultrastructural examinations of such DNs revealed gradual accumulation of tubular ER in axonal termini, and such abnormal tubular ER inclusion is found in areas surrounding amyloid plaques in biopsy samples from Alzheimer's disease (AD) brains. Functionally, abnormally clustered tubular ER induces enhanced mitochondrial fission in the early stages of DN formation and eventual mitochondrial degeneration at later stages. Furthermore, such DNs are abrogated when RTN3 is ablated in aging and AD mouse models. Hence, abnormally clustered tubular ER can be pathogenic in brain regions: disrupting mitochondrial integrity, inducing DNs formation and impairing cognitive function in AD and aging brains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Chao; Lignell, David O.; Hawkes, Evatt R.
Here, the effect of differential molecular diffusion (DMD) in turbulent non-premixed flames is studied by examining two previously reported DNS of temporally evolving planar jet flames, one with CO/H 2 as the fuel and the other with C 2H 4 as the fuel. The effect of DMD in the CO/H 2 DNS flames in which H 2 is part of fuel is found to behave similar to laminar flamelet, while in the C 2H 4 DNS flames in which H 2 is not present in the fuel it is similar to laminar flamelet in early stages but becomes different frommore » laminar flamelet later. The scaling of the effect of DMD with respect to the Reynolds number Re is investigated in the CO/H 2 DNS flames, and an evident power law scaling (~Re –a with a a positive constant) is observed. The scaling of the effect of DMD with respect to the Damkohler number Da is explored in both laminar counter-flow jet C 2H 4 diffusion flames and the C 2H 4 DNS flames. A power law scaling (~ Daa with a a positive constant) is clearly demonstrated for C 2H 4 nonpremixed flames.« less
Studies of Inviscid Flux Schemes for Acoustics and Turbulence Problems
NASA Technical Reports Server (NTRS)
Morris, Chris
2013-01-01
Five different central difference schemes, based on a conservative differencing form of the Kennedy and Gruber skew-symmetric scheme, were compared with six different upwind schemes based on primitive variable reconstruction and the Roe flux. These eleven schemes were tested on a one-dimensional acoustic standing wave problem, the Taylor-Green vortex problem and a turbulent channel flow problem. The central schemes were generally very accurate and stable, provided the grid stretching rate was kept below 10%. As near-DNS grid resolutions, the results were comparable to reference DNS calculations. At coarser grid resolutions, the need for an LES SGS model became apparent. There was a noticeable improvement moving from CD-2 to CD-4, and higher-order schemes appear to yield clear benefits on coarser grids. The UB-7 and CU-5 upwind schemes also performed very well at near-DNS grid resolutions. The UB-5 upwind scheme does not do as well, but does appear to be suitable for well-resolved DNS. The UF-2 and UB-3 upwind schemes, which have significant dissipation over a wide spectral range, appear to be poorly suited for DNS or LES.
Poorey, V K; Gupta, Neha
2014-09-01
To correlate symptoms of deviated nasal septum (DNS) and chronic rhinosinusitis with the findings of nasal endoscopy and computed tomographic (CT) imaging. To evaluate the influence of degree of septal angle deviation on the severity of lateral nasal wall abnormalities. A prospective study was conducted on 67 patients with clinical evidence of DNS and chronic sinusitis attending ENT OPD between January 2012 and September 2013. All these patients underwent nasal endoscopy and CT scan PNS coronal sections. Direction and degree of DNS was recorded. Range of sinus mucosal thickening on CT scan films was also recorded. Chronic sinusitis is common in the age group between 21 and 40 years (50.74 %) with male preponderance (55.22 %), chief symptoms being nasal obstruction (86.56 %), headache (73.13 %) and nasal discharge (52.23 %). Left sided DNS is more common (64.17 %). Most of the patients have moderate DNS, i.e. 6°-10° (56.7 %), followed by severe (22.4 %) and then mild (20.9 %). DNS results in compensatory structural changes in the turbinates and/or lateral nasal wall which causes ostiomeatal complex (OMC) obstruction resulting in sinusitis. Contralateral concha bullosa and ethmoid bulla prominence was noted. Maxillary sinus is most commonly affected sinus (73.13 %). Patients with increasing septal angles were associated with a higher incidence of maxillary sinus mucosal changes (p < 0.05). Present study reemphasized the concept that septal deviation causes obstruction at OMC which results in an increased incidence and severity of bilateral chronic sinus disease.
Assessment of the effect of deviated nasal septum on the structure of nasal cavity.
Wang, Junguo; Dou, Xin; Liu, Dingding; Song, Panpan; Qian, Xiaoyun; Wang, Shoulin; Gao, Xia
2016-06-01
The present study was aimed to investigate the effects of DNS on the structure of nasal cavity. The paranasal sinus coronal view CT of 108 patients with DNS and 129 hospitalized patients without DNS was retrospectively analyzed. The transverse diameter of nasal cavity (a), transverse diameter of nasal cavity and paranasal sinus (b), angle between maxillary and palatal bone, interalveolar distance, and maxillary rotation distance were measured. The ratio of a/b in experimental group was 0.367 ± 0.006 which was significantly (P = 0.0023) less than that in control group (0.391 ± 0.005). For the angle between maxillary and palatal bone, there was no significant difference found between DNS and control group for both right and left sides. The interalveolar distance was 40.75 mm in experimental group, and 38.8 mm in control (P = 0.0002). For the maxillary rotation distance, findings were considered as significant (P < 0.0001) in experimental group (11.25 mm) compared with control (10.1 mm). The present study demonstrates that long-term DNS affects the development of nasal cavity and paranasal sinus, as well as increases the interalveolar distance and maxillary rotation distance. These influences may be caused by the alteration of airflow inside the nasal cavities.
Berti, Andrew D.; Baines, Sarah L.; Howden, Benjamin P.; Sakoulas, George; Nizet, Victor; Proctor, Richard A.
2015-01-01
Daptomycin is increasingly used in combination with other antibiotics to enhance antimicrobial efficacy and/or to mitigate the emergence of daptomycin nonsusceptibility (DNS). This study used a clinical methicillin-resistant Staphylococcus aureus (MRSA) strain in which DNS emerged upon therapy to examine the influence of antibiotic combinations on the development of mutations in specific genes (mprF, rpoBC, dltA, cls2, and yycFG) previously associated with DNS. Whole genomes of bacteria obtained following 28 days of in vitro exposure to daptomycin with or without adjunctive clarithromycin, linezolid, oxacillin, or trimethoprim-sulfamethoxazole were sequenced, and the sequences were compared to that of the progenitor isolate. The addition of oxacillin to medium containing daptomycin prevented the emergence of mprF mutation but did not prevent rpoBC mutation (P < 0.01). These isolates maintained susceptibility to daptomycin during the combined exposure (median MIC, 1 mg/liter). Daptomycin plus clarithromycin or linezolid resulted in low-level (1.5 to 8 mg/liter) and high-level (12 to 96 mg/liter) DNS, respectively, and did not prevent mprF mutation. However, these same combinations prevented rpoBC mutation. Daptomycin alone or combined with linezolid or trimethoprim-sulfamethoxazole resulted in high-level DNS and mutations in mprF plus rpoBC, cls2, and yycFG. Combining daptomycin with different antimicrobials alters the mutational space available for DNS development, thereby favoring the development of predictable collateral susceptibilities. PMID:25733508
Berti, Andrew D; Baines, Sarah L; Howden, Benjamin P; Sakoulas, George; Nizet, Victor; Proctor, Richard A; Rose, Warren E
2015-05-01
Daptomycin is increasingly used in combination with other antibiotics to enhance antimicrobial efficacy and/or to mitigate the emergence of daptomycin nonsusceptibility (DNS). This study used a clinical methicillin-resistant Staphylococcus aureus (MRSA) strain in which DNS emerged upon therapy to examine the influence of antibiotic combinations on the development of mutations in specific genes (mprF, rpoBC, dltA, cls2, and yycFG) previously associated with DNS. Whole genomes of bacteria obtained following 28 days of in vitro exposure to daptomycin with or without adjunctive clarithromycin, linezolid, oxacillin, or trimethoprim-sulfamethoxazole were sequenced, and the sequences were compared to that of the progenitor isolate. The addition of oxacillin to medium containing daptomycin prevented the emergence of mprF mutation but did not prevent rpoBC mutation (P < 0.01). These isolates maintained susceptibility to daptomycin during the combined exposure (median MIC, 1 mg/liter). Daptomycin plus clarithromycin or linezolid resulted in low-level (1.5 to 8 mg/liter) and high-level (12 to 96 mg/liter) DNS, respectively, and did not prevent mprF mutation. However, these same combinations prevented rpoBC mutation. Daptomycin alone or combined with linezolid or trimethoprim-sulfamethoxazole resulted in high-level DNS and mutations in mprF plus rpoBC, cls2, and yycFG. Combining daptomycin with different antimicrobials alters the mutational space available for DNS development, thereby favoring the development of predictable collateral susceptibilities. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Aeroacoustics of Turbulent High-Speed Jets
NASA Technical Reports Server (NTRS)
Rao, Ram Mohan; Lundgren, Thomas S.
1996-01-01
Aeroacoustic noise generation in a supersonic round jet is studied to understand in particular the effect of turbulence structure on the noise without numerically compromising the turbulence itself. This means that direct numerical simulations (DNS's) are needed. In order to use DNS at high enough Reynolds numbers to get sufficient turbulence structure we have decided to solve the temporal jet problem, using periodicity in the direction of the jet axis. Physically this means that turbulent structures in the jet are repeated in successive downstream cells instead of being gradually modified downstream into a jet plume. Therefore in order to answer some questions about the turbulence we will partially compromise the overall structure of the jet. The first section of chapter 1 describes some work on the linear stability of a supersonic round jet and the implications of this for the jet noise problem. In the second section we present preliminary work done using a TVD numerical scheme on a CM5. This work is only two-dimensional (plane) but shows very interesting results, including weak shock waves. However this is a nonviscous computation and the method resolves the shocks by adding extra numerical dissipation where the gradients are large. One wonders whether the extra dissipation would influence small turbulent structures like small intense vortices. The second chapter is an extensive discussion of preliminary numerical work using the spectral method to solve the compressible Navier-Stokes equations to study turbulent jet flows. The method uses Fourier expansions in the azimuthal and streamwise direction and a 1-D B-spline basis representation in the radial direction. The B-spline basis is locally supported and this ensures block diagonal matrix equations which are solved in O(N) steps. A very accurate highly resolved DNS of a turbulent jet flow is expected.
NASA Astrophysics Data System (ADS)
Yu, Rixin; Lipatnikov, Andrei N.
2017-06-01
3D Direct Numerical Simulation (DNS) study of propagation of a single-reaction wave in forced, statistically stationary, homogeneous, isotropic, and constant-density turbulence was performed in order to evaluate both developing UTt and fully developed UTs bulk turbulent consumption velocities by independently varying a ratio of 0.5 ≤u'/SL≤ 90 of the r.m.s. turbulent velocity to the laminar wave speed and a ratio of 0.39 ≤L11/δF≤ 12.5 of the longitudinal integral length scale of the turbulence to the laminar wave thickness. Accordingly, the Damköhler D a =(L11SL ) /(u'δF ) and Karlovitz K a =δF/(SLτη ) numbers were varied from 0.01 to 24.7 and from 0.36 to 587, respectively. Here, τη is the Kolmogorov time scale. The obtained DNS data show that, at sufficiently low Da, the fully developed ratio of UTs/u' is mainly controlled by Da and scales as √{D a }. However, such a scaling should not be extrapolated to high Da. The higher Da (or the lower Ka), the less pronounced dependence of UTs/u' on a ratio of L11/δF. Moreover, scaling laws UT∝u'αSL1 -α(L11/δF ) β are substantially different for developing UTt and fully developed UTs, i.e., the scaling exponents α and, especially, β depend on the wave-development time. Furthermore, α and, especially, β depend on a method used to evaluate the developing UTt. Such effects can contribute to significant scatter of expressions for UT or ST as a function of {u', SL, L11, δF}, obtained by parameterizing various experimental databases.
Scale-by-scale contributions to Lagrangian particle acceleration
NASA Astrophysics Data System (ADS)
Lalescu, Cristian C.; Wilczek, Michael
2017-11-01
Fluctuations on a wide range of scales in both space and time are characteristic of turbulence. Lagrangian particles, advected by the flow, probe these fluctuations along their trajectories. In an effort to isolate the influence of the different scales on Lagrangian statistics, we employ direct numerical simulations (DNS) combined with a filtering approach. Specifically, we study the acceleration statistics of tracers advected in filtered fields to characterize the smallest temporal scales of the flow. Emphasis is put on the acceleration variance as a function of filter scale, along with the scaling properties of the relevant terms of the Navier-Stokes equations. We furthermore discuss scaling ranges for higher-order moments of the tracer acceleration, as well as the influence of the choice of filter on the results. Starting from the Lagrangian tracer acceleration as the short time limit of the Lagrangian velocity increment, we also quantify the influence of filtering on Lagrangian intermittency. Our work complements existing experimental results on intermittency and accelerations of finite-sized, neutrally-buoyant particles: for the passive tracers used in our DNS, feedback effects are neglected such that the spatial averaging effect is cleanly isolated.
Interactions of non-spherical particles in simple flows
NASA Astrophysics Data System (ADS)
Niazi, Mehdi; Brandt, Luca; Costa, Pedro; Breugem, Wim-Paul
2015-11-01
The behavior of particles in a flow affects the global transport and rheological properties of the mixture. In recent years much effort has been therefore devoted to the development of an efficient method for the direct numerical simulation (DNS) of the motion of spherical rigid particles immersed in an incompressible fluid. However, the literature on non-spherical particle suspensions is quite scarce despite the fact that these are more frequent. We develop a numerical algorithm to simulate finite-size spheroid particles in shear flows to gain new understanding of the flow of particle suspensions. In particular, we wish to understand the role of inertia and its effect on the flow behavior. For this purpose, DNS simulations with a direct-forcing immersed boundary method are used, with collision and lubrication models for particle-particle and particle-wall interactions. We will discuss pair interactions, relative motion and rotation, of two sedimenting spheroids and show that the interaction time increases significantly for non-spherical particles. More interestingly, we show that the particles are attracted to each other from larger lateral displacements. This has important implications for collision kernels. This work was supported by the European Research Council Grant No. ERC-2013-CoG-616186, TRITOS, and by the Swedish Research Council (VR).
NASA Astrophysics Data System (ADS)
Lai, Jiawei; Alwazzan, Dana; Chakraborty, Nilanjan
2017-11-01
The statistical behaviour and the modelling of turbulent scalar flux transport have been analysed using a direct numerical simulation (DNS) database of head-on quenching of statistically planar turbulent premixed flames by an isothermal wall. A range of different values of Damköhler, Karlovitz numbers and Lewis numbers has been considered for this analysis. The magnitudes of the turbulent transport and mean velocity gradient terms in the turbulent scalar flux transport equation remain small in comparison to the pressure gradient, molecular dissipation and reaction-velocity fluctuation correlation terms in the turbulent scalar flux transport equation when the flame is away from the wall but the magnitudes of all these terms diminish and assume comparable values during flame quenching before vanishing altogether. It has been found that the existing models for the turbulent transport, pressure gradient, molecular dissipation and reaction-velocity fluctuation correlation terms in the turbulent scalar flux transport equation do not adequately address the respective behaviours extracted from DNS data in the near-wall region during flame quenching. Existing models for transport equation-based closures of turbulent scalar flux have been modified in such a manner that these models provide satisfactory prediction both near to and away from the wall.
Riordan, Fiona; McHugh, Sheena M; Murphy, Katie; Barrett, Julie; Kearney, Patricia M
2017-08-11
International evidence suggests the diabetes nurse specialist (DNS) has a key role in supporting integrated management of diabetes. We examine whether hospital and community DNS currently support the integration of care, examine regional variation in aspects of the service relevant to the delivery of integrated care and identify barriers to service delivery and areas for improvement. A cross-sectional survey of hospital and community-based DNS in Ireland. Between September 2015 and April 2016, a 67-item online survey, comprising closed and open questions on their clinical role, diabetes clinics, multidisciplinary working, and barriers and facilitators to service delivery, was administered to all eligible DNS (n=152) in Ireland. DNS were excluded if they were retired or on maternity leave or extended leave. The response rate was 66.4% (n=101): 60.6% (n=74) and 89.3% (n=25) among hospital and community DNS, respectively. Most DNS had patients with stable (81.8%) and complicated type 2 diabetes mellitus (89.9%) attending their service. The majority were delivering nurse-led clinics (81.1%). Almost all DNS had a role liaising with (91%), and providing support and education to (95%), other professionals. However, only a third reported that there was local agreement on how their service should operate between the hospital and primary care. Barriers to service delivery that were experienced by DNS included deficits in the availability of specialist staff (allied health professionals, endocrinologists and DNS), insufficient space for clinics, structured education and issues with integration. Delivering integrated diabetes care through a nurse specialist-led approach requires that wider service issues, including regional disparities in access to specialist resources and formalising agreements and protocols on multidisciplinary working between settings, be explicitly addressed. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Lin, Cheng-Kai; Wang, Yu-Fu; Cheng, Yuan-Chung; Yang, Jye-Shane
2013-04-18
A constrained model compound of trans-4-(N,N-dimethylamino)-4'-nitrostilbene (DNS), namely, compound DNS-B3 that is limited to torsions about the phenyl-nitro C-N bond and the central C═C bond, was prepared to investigate the structural nature of the radiative and nonradiative states of electronically excited DNS. The great similarities in solvent-dependent electronic spectra, fluorescence decay times, and quantum yields for fluorescence (Φf) and trans → cis photoisomerization (Φtc) between DNS and DNS-B3 indicate that the fluorescence is from a planar charge-transfer state and torsion of the nitro group is sufficient to account for the nonradiative decay of DNS. This conclusion is supported by TDDFT calculations on DNS-B3 in dichloromethane. The structure at the conical intersection for internal conversion is associated with not only a twisting but also a pyramidalization of the nitro group. The mechanism of the NO2 torsion is discussed in terms of the effects of solvent polarity, the substituents, and the volume demand. The differences and analogies of the NO2- vs amino-twisted intramolecular charge-transfer (TICT) state of trans-aminostilbenes are also discussed.
Parametric instability and wave turbulence driven by tidal excitation of internal waves
NASA Astrophysics Data System (ADS)
Le Reun, Thomas; Favier, Benjamin; Le Bars, Michael
2018-04-01
We investigate the stability of stratified fluid layers undergoing homogeneous and periodic tidal deformation. We first introduce a local model which allows to study velocity and buoyancy fluctuations in a Lagrangian domain periodically stretched and sheared by the tidal base flow. While keeping the key physical ingredients only, such a model is efficient to simulate planetary regimes where tidal amplitudes and dissipation are small. With this model, we prove that tidal flows are able to drive parametric subharmonic resonances of internal waves, in a way reminiscent of the elliptical instability in rotating fluids. The growth rates computed via Direct Numerical Simulations (DNS) are in very good agreement with WKB analysis and Floquet theory. We also investigate the turbulence driven by this instability mechanism. With spatio-temporal analysis, we show that it is a weak internal wave turbulence occurring at small Froude and buoyancy Reynolds numbers. When the gap between the excitation and the Brunt-V\\"ais\\"al\\"a frequencies is increased, the frequency spectrum of this wave turbulence displays a -2 power law reminiscent of the high-frequency branch of the Garett and Munk spectrum (Garrett & Munk 1979) which has been measured in the oceans. In addition, we find that the mixing efficiency is altered compared to what is computed in the context of DNS of stratified turbulence excited at small Froude and large buoyancy Reynolds numbers and is consistent with a superposition of waves.
Numerical Study of Pressure Fluctuations due to High-Speed Turbulent Boundary Layers
NASA Technical Reports Server (NTRS)
Duan, Lian; Choudhari, Meelan M.; Wu, Minwei
2012-01-01
Direct numerical simulations (DNS) are used to examine the pressure fluctuations generated by fully developed turbulence in supersonic turbulent boundary layers with an emphasis on both pressure fluctuations at the wall and the acoustic fluctuations radiated into the freestream. The wall and freestream pressure fields are first analyzed for a zero pressure gradient boundary layer with Mach 2.5 and Reynolds number based on momentum thickness of approximately 2835. The single and multi-point statistics reported include the wall pressure fluctuation intensities, frequency spectra, space-time correlations, and convection velocities. Single and multi-point statistics of surface pressure fluctuations show good agreement with measured data and previously published simulations of turbulent boundary layers under similar flow conditions. Spectral analysis shows that the acoustic fluctuations outside the boundary layer region have much lower energy content within the high-frequency region. The space-time correlations reflect the convective nature of the pressure field both at the wall and in the freestream, which is characterized by the downstream propagation of pressure-carrying eddies. Relative to those at the wall, the pressure-carrying eddies associated with the freestream signal are larger and convect at a significantly lower speed. The preliminary DNS results of a Mach 6 boundary layer show that the pressure rms in the freestream region is significantly higher than that of the lower Mach number case.
An assessment of CFD-based wall heat transfer models in piston engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sircar, Arpan; Paul, Chandan; Ferreyro-Fernandez, Sebastian
The lack of accurate submodels for in-cylinder heat transfer has been identified as a key shortcoming in developing truly predictive, physics-based computational fluid dynamics (CFD) models that can be used to develop combustion systems for advanced high-efficiency, low-emissions engines. Only recently have experimental methods become available that enable accurate near-wall measurements to enhance simulation capability via advancing models. Initial results show crank-angle dependent discrepancies with respect to previously used boundary-layer models of up to 100%. However, available experimental data is quite sparse (only few data points on engine walls) and limited (available measurements are those of heat flux only). Predictivemore » submodels are needed for medium-resolution ("engineering") LES and for unsteady Reynolds-averaged simulations (URANS). Recently, some research groups have performed DNS studies on engine-relevant conditions using simple geometries. These provide very useful data for benchmarking wall heat transfer models under such conditions. Further, a number of new and more sophisticated models have also become available in the literature which account for these engine-like conditions. Some of these have been incorporated while others of a more complex nature, which include solving additional partial differential equations (PDEs) within the thin boundary layer near the wall, are underway. These models will then be tested against the available DNS/experimental data in both SI (spark-ignition) and CI (compression-ignition) engines.« less
On the formation and early evolution of soot in turbulent nonpremixed flames
NASA Astrophysics Data System (ADS)
Bisetti, F.; Blanquart, G.; Mueller, M. E.; Pitsch, H.
2010-11-01
A direct numerical simulation of soot formation in a turbulent nonpremixed flame has been performed to investigate unsteady hydrodynamic strain effects on soot growth processes and transport immediately following nucleation. For the first time in a DNS, polycyclic aromatic hydrocarbon (PAH) species are included in the chemical kinetics mechanism to describe soot inception. A novel statistical representation of soot aggregates based on the Hybrid Method of Moments (HMOM) is employed. In agreement with previous experimental studies in laminar flames, Damköhler number effects are significant, and soot nucleation and growth are locally inhibited by high scalar dissipation rate. Upon formation on the rich side of the flame, soot is displaced relative to curved mixture fraction iso-surfaces due to differential diffusion effects. Soot traveling towards the flame is oxidized, and aggregates displaced away from the flame grow by condensation of PAH species on the surface of soot aggregates. In contrast to previous DNS studies employing simplified models, we find that soot-flame interaction plays a limited role in soot growth. Nucleation and condensation processes occurring in the fuel stream are responsible for the greatest generation of soot mass.
NASA Astrophysics Data System (ADS)
Monchaux, R.; Dejoan, A.
2017-10-01
The settling velocity of inertial particles falling in homogeneous turbulence is investigated by making use of direct numerical simulation (DNS) at moderate Reynolds number that include momentum exchange between both phases (two-way coupling approach). Effects of particle volume fraction, particle inertia, and gravity are presented for flow and particle parameters similar to the experiments of Aliseda et al. [J. Fluid Mech. 468, 77 (2002), 10.1017/S0022112002001593]. A good agreement is obtained between the DNS and the experiments for the settling velocity statistics, when overall averaged, but as well when conditioned on the local particle concentration. Both DNS and experiments show that the settling velocity further increases with increasing volume fraction and local concentration. At the considered particle loading the effects of two-way coupling is negligible on the mean statistics of turbulence. Nevertheless, the DNS results show that fluid quantities are locally altered by the particles. In particular, the conditional average on the local particle concentration of the slip velocity shows that the main contribution to the settling enhancement results from the increase of the fluid velocity surrounding the particles along the gravitational direction induced by the collective particle back-reaction force. Particles and the surrounding fluid are observed to fall together, which in turn results in an amplification of the sampling of particles in the downward fluid motion. Effects of two-way coupling on preferential concentration are also reported. Increase of both volume fraction and gravity is shown to lower preferential concentration of small inertia particles while a reverse tendency is observed for large inertia particles. This behavior is found to be related to an attenuation of the centrifuge effects and to an increase of particle accumulation along gravity direction, as particle loading and gravity become large.
On the estimation of wall pressure coherence using time-resolved tomographic PIV
NASA Astrophysics Data System (ADS)
Pröbsting, Stefan; Scarano, Fulvio; Bernardini, Matteo; Pirozzoli, Sergio
2013-07-01
Three-dimensional time-resolved velocity field measurements are obtained using a high-speed tomographic Particle Image Velocimetry (PIV) system on a fully developed flat plate turbulent boundary layer for the estimation of wall pressure fluctuations. The work focuses on the applicability of tomographic PIV to compute the coherence of pressure fluctuations, with attention to the estimation of the stream and spanwise coherence length. The latter is required for estimations of aeroacoustic noise radiation by boundary layers and trailing edge flows, but is also of interest for vibro-structural problems. The pressure field is obtained by solving the Poisson equation for incompressible flows, where the source terms are provided by time-resolved velocity field measurements. Measured 3D velocity data is compared to results obtained from planar PIV, and a Direct Numerical Simulation (DNS) at similar Reynolds number. An improved method for the estimation of the material based on a least squares estimator of the velocity derivative along a particle trajectory is proposed and applied. Computed surface pressure fluctuations are further verified by means of simultaneous measurements by a pinhole microphone and compared to the DNS results and a semi-empirical model available from literature. The correlation coefficient for the reconstructed pressure time series with respect to pinhole microphone measurements attains approximately 0.5 for the band-pass filtered signal over the range of frequencies resolved by the velocity field measurements. Scaled power spectra of the pressure at a single point compare favorably to the DNS results and those available from literature. Finally, the coherence of surface pressure fluctuations and the resulting span- and streamwise coherence lengths are estimated and compared to semi-empirical models and DNS results.
Lellek, Heinrich; Franke, Gefion C; Ruckert, Carolin; Wolters, Manuel; Wolschke, Christiane; Christner, Martin; Büttner, Henning; Alawi, Malik; Kröger, Nicolaus; Rohde, Holger
2015-12-01
Infections due to vancomycin-resistant enterococci (VRE) are of significant importance in high-risk populations, and daptomycin is a bactericidal antibiotic to treat multidrug-resistant VRE in these patients. The emergence of daptomycin non-susceptibility invasive VRE during daptomycin therapy is a major clinical issue. Here the hypothesis was tested that systemic daptomycin therapy also induces the emergence of daptomycin non-susceptible (DNS-) isolates in colonizing VRE populations. 11 vancomycin-resistant Enterococcus faecium strain pairs recovered from rectal swabs were available for analysis. All initial isolates exhibited daptomycin MICs within the wild type MIC distribution of E. faecium (MIC≤4 mg/L). In follow-up isolates from five patients a 4-16-fold daptomycin MIC increase was detected. All patients carrying DNS-VRE received daptomycin (14-28 days) at 4 mg/kg body weight, while two patients in whom no DNS-VRE emerged were only treated with daptomycin for 1 and 4 days, respectively. Comparative whole genome sequencing identified DNS-VRE-specific single nucleotide polymorphisms (SNP), including mutations in cardiolipin synthase (Cls), and additional SNPs in independent genes potentially relevant for the DNS phenotype. Mutations within cls were also identified in three additional, colonizing DNS-VRE. Of these, at least one strain was transmitted within the hospital. In none of the VRE isolates tested, pre-existing or de novo mutations in the liaFSR operon were detected. This is the first report documenting the emergence of DNS-VRE in colonizing strains during daptomycin treatment, putting the patient at risk for subsequent DNS-VRE infections and priming the spread of DNS-VRE within the hospital environment. Copyright © 2015 Elsevier GmbH. All rights reserved.
DNS of a turbulent lifted DME jet flame
Minamoto, Yuki; Chen, Jacqueline H.
2016-05-07
A three-dimensional direct numerical simulation (DNS) of a turbulent lifted dimethyl ether (DME) slot jet flame was performed at elevated pressure to study interactions between chemical reactions with low-temperature heat release (LTHR), negative temperature coefficient (NTC) reactions and shear generated turbulence in a jet in a heated coflow. By conditioning on mixture fraction, local reaction zones and local heat release rate, the turbulent flame is revealed to exhibit a “pentabrachial” structure that was observed for a laminar DME lifted flame [Krisman et al., (2015)]. The propagation characteristics of the stabilization and triple points are also investigated. Potential stabilization points, spatialmore » locations characterized by preferred temperature and mixture fraction conditions, exhibit autoignition characteristics with large reaction rate and negligible molecular diffusion. The actual stabilization point which coincides with the most upstream samples from the pool of potential stabilization points fovr each spanwise location shows passive flame structure with large diffusion. The propagation speed along the stoichiometric surface near the triple point is compared with the asymptotic value obtained from theory [Ruetsch et al., (1995)]. At stoichiometric conditions, the asymptotic and averaged DNS values of flame displacement speed deviate by a factor of 1.7. However, accounting for the effect of low-temperature species on the local flame speed increase, these two values become comparable. In conclusion, this suggests that the two-stage ignition influences the triple point propagation speed through enhancement of the laminar flame speed in a configuration where abundant low-temperature products from the first stage, low-temperature ignition are transported to the lifted flame by the high-velocity jet.« less
NASA Astrophysics Data System (ADS)
Weiner, Andre; Bothe, Dieter
2017-10-01
This paper presents a novel subgrid scale (SGS) model for simulating convection-dominated species transport at deformable fluid interfaces. One possible application is the Direct Numerical Simulation (DNS) of mass transfer from rising bubbles. The transport of a dissolving gas along the bubble-liquid interface is determined by two transport phenomena: convection in streamwise direction and diffusion in interface normal direction. The convective transport for technical bubble sizes is several orders of magnitude higher, leading to a thin concentration boundary layer around the bubble. A true DNS, fully resolving hydrodynamic and mass transfer length scales results in infeasible computational costs. Our approach is therefore a DNS of the flow field combined with a SGS model to compute the mass transfer between bubble and liquid. An appropriate model-function is used to compute the numerical fluxes on all cell faces of an interface cell. This allows to predict the mass transfer correctly even if the concentration boundary layer is fully contained in a single cell layer around the interface. We show that the SGS-model reduces the resolution requirements at the interface by a factor of ten and more. The integral flux correction is also applicable to other thin boundary layer problems. Two flow regimes are investigated to validate the model. A semi-analytical solution for creeping flow is used to assess local and global mass transfer quantities. For higher Reynolds numbers ranging from Re = 100 to Re = 460 and Péclet numbers between Pe =104 and Pe = 4 ṡ106 we compare the global Sherwood number against correlations from literature. In terms of accuracy, the predicted mass transfer never deviates more than 4% from the reference values.
NASA Technical Reports Server (NTRS)
Trouve, A.; Veynante, D.; Bray, K. N. C.; Mantel, T.
1994-01-01
Current flamelot models based on a description of the flame surface dynamics require the closure of two inter-related equations: a transport equation for the mean reaction progress variable, (tilde)c, and a transport equation for the flame surface density, Sigma. The coupling between these two equations is investigated using direct numerical simulations (DNS) with emphasis on the correlation between the turbulent fluxes of (tilde)c, bar(pu''c''), and Sigma, (u'')(sub S)Sigma. Two different DNS databases are used in the present work: a database developed at CTR by A. Trouve and a database developed by C. J. Rutland using a different code. Both databases correspond to statistically one-dimensional premixed flames in isotropic turbulent flow. The run parameters, however, are significantly different, and the two databases correspond to different combustion regimes. It is found that in all simulated flames, the correlation between bar(pu''c'') and (u'')(sub S)Sigma is always strong. The sign, however, of the turbulent flux of (tilde)c or Sigma with respect to the mean gradients, delta(tilde)c/delta(x) or delta(Sigma)/delta(x), is case-dependent. The CTR database is found to exhibit gradient turbulent transport of (tilde)c and Sigma, whereas the Rutland DNS features counter-gradient diffusion. The two databases are analyzed and compared using various tools (a local analysis of the flow field near the flame, a classical analysis of the conservation equation for (tilde)(u''c''), and a thin flame theoretical analysis). A mechanism is then proposed to explain the discrepancies between the two databases and a preliminary simple criterion is derived to predict the occurrence of gradient/counter-gradient turbulent diffusion.
District nurses' prescribing practice and its link to structural conditions.
Blanck, Susanne; Engström, Maria
2015-10-01
To describe district nurses' (DNs') prescribing practice and examine associations between DNs' self-reported prescribing frequency, opinions about prescribing, and structural conditions/empowerment. A cross-sectional and correlational design was employed. Data were collected during 2012 using questionnaires and a prescribing register. A random sample of 150 DNs from 32 primary care centers in Sweden was invited. DNs' ability to prescribe is used to a relatively small extent and access to "opportunities" and "informal power" seems to be the most important structural empowerment conditions for increased prescribing frequency and positive opinions about prescribing. The results support Kanter's theory of structural empowerment. This article regarding restricted prescribing shows how important structural conditions/empowerment is to DNs' prescribing and employers have to enhance nurses' access to especially the structures "opportunities" and "informal power" to increase nurse prescribing. More targeted support and training are needed in different prescribing areas to make use of DNs' prescription qualification to a greater extent. ©2015 American Association of Nurse Practitioners.
The transition prediction toolkit: LST, SIT, PSE, DNS, and LES
NASA Technical Reports Server (NTRS)
Zang, Thomas A.; Chang, Chau-Lyan; Ng, Lian L.
1992-01-01
The e(sup N) method for predicting transition onset is an amplitude ratio criterion that is on the verge of full maturation for three-dimensional, compressible, real gas flows. Many of the components for a more sophisticated, absolute amplitude criterion are now emerging: receptivity theory, secondary instability theory, parabolized stability equations approaches, direct numerical simulation and large-eddy simulation. This paper will provide a description of each of these new theoretical tools and provide indications of their current status.
Development of a Localized Low-Dimensional Approach to Turbulence Simulation
NASA Astrophysics Data System (ADS)
Juttijudata, Vejapong; Rempfer, Dietmar; Lumley, John
2000-11-01
Our previous study has shown that the localized low-dimensional model derived from a projection of Navier-Stokes equations onto a set of one-dimensional scalar POD modes, with boundary conditions at y^+=40, can predict wall turbulence accurately for short times while failing to give a stable long-term solution. The structures obtained from the model and later studies suggest our boundary conditions from DNS are not consistent with the solution from the localized model resulting in an injection of energy at the top boundary. In the current study, we develop low-dimensional models using one-dimensional scalar POD modes derived from an explicitly filtered DNS. This model problem has exact no-slip boundary conditions at both walls while the locality of the wall layer is still retained. Furthermore, the interaction between wall and core region is attenuated via an explicit filter which allows us to investigate the quality of the model without requiring complicated modeling of the top boundary conditions. The full-channel model gives reasonable wall turbulence structures as well as long-term turbulent statistics while still having difficulty with the prediction of the mean velocity profile farther from the wall. We also consider a localized model with modified boundary conditions in the last part of our study.
Analysis of red blood cell partitioning at bifurcations in simulated microvascular networks
NASA Astrophysics Data System (ADS)
Balogh, Peter; Bagchi, Prosenjit
2018-05-01
Partitioning of red blood cells (RBCs) at vascular bifurcations has been studied over many decades using in vivo, in vitro, and theoretical models. These studies have shown that RBCs usually do not distribute to the daughter vessels with the same proportion as the blood flow. Such disproportionality occurs, whereby the cell distribution fractions are either higher or lower than the flow fractions and have been referred to as classical partitioning and reverse partitioning, respectively. The current work presents a study of RBC partitioning based on, for the first time, a direct numerical simulation (DNS) of a flowing cell suspension through modeled vascular networks that are comprised of multiple bifurcations and have topological similarity to microvasculature in vivo. The flow of deformable RBCs at physiological hematocrits is considered through the networks, and the 3D dynamics of each individual cell are accurately resolved. The focus is on the detailed analysis of the partitioning, based on the DNS data, as it develops naturally in successive bifurcations, and the underlying mechanisms. We find that while the time-averaged partitioning at a bifurcation manifests in one of two ways, namely, the classical or reverse partitioning, the time-dependent behavior can cycle between these two types. We identify and analyze four different cellular-scale mechanisms underlying the time-dependent partitioning. These mechanisms arise, in general, either due to an asymmetry in the RBC distribution in the feeding vessels caused by the events at an upstream bifurcation or due to a temporary increase in cell concentration near capillary bifurcations. Using the DNS results, we show that a positive skewness in the hematocrit profile in the feeding vessel is associated with the classical partitioning, while a negative skewness is associated with the reverse one. We then present a detailed analysis of the two components of disproportionate partitioning as identified in prior studies, namely, plasma skimming and cell screening. The plasma skimming component is shown to under-predict the disproportionality, leaving the cell screening component to make up for the difference. The crossing of the separation surface by the cells is observed to be a dominant mechanism underlying the cell screening, which is shown to mitigate extreme heterogeneity in RBC distribution across the networks.
75 FR 11939 - DNS Electronics, Chandler, AZ; Notice of Termination of Investigation
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-12
... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-70,654] DNS Electronics, Chandler, AZ; Notice of Termination of Investigation Pursuant to Section 223 of the Trade Act of 1974, as... on behalf of workers of DNS Electronics, Chandler, Arizona. The petitioning group of workers is...
Kurowska, Zuzanna; Jewett, Michael; Brattås, Per Ludvik; Jimenez-Ferrer, Itzia; Kenéz, Xuyian; Björklund, Tomas; Nordström, Ulrika; Brundin, Patrik; Swanberg, Maria
2016-08-23
Motor symptoms in Parkinson's disease are attributed to degeneration of midbrain dopaminergic neurons (DNs). Heterozygosity for Engrailed-1 (En1), one of the key factors for programming and maintenance of DNs, results in a parkinsonian phenotype featuring progressive degeneration of DNs in substantia nigra pars compacta (SNpc), decreased striatal dopamine levels and swellings of nigro-striatal axons in the SwissOF1-En1+/- mouse strain. In contrast, C57Bl/6-En1+/- mice do not display this neurodegenerative phenotype, suggesting that susceptibility to En1 heterozygosity is genetically regulated. Our goal was to identify quantitative trait loci (QTLs) that regulate the susceptibility to PD-like neurodegenerative changes in response to loss of one En1 allele. We intercrossed SwissOF1-En1+/- and C57Bl/6 mice to obtain F2 mice with mixed genomes and analyzed number of DNs in SNpc and striatal axonal swellings in 120 F2-En1+/- 17 week-old male mice. Linkage analyses revealed 8 QTLs linked to number of DNs (p = 2.4e-09, variance explained = 74%), 7 QTLs linked to load of axonal swellings (p = 1.7e-12, variance explained = 80%) and 8 QTLs linked to size of axonal swellings (p = 7.0e-11, variance explained = 74%). These loci should be of prime interest for studies of susceptibility to Parkinson's disease-like damage in rodent disease models and considered in clinical association studies in PD.
Modeling Primary Atomization of Liquid Fuels using a Multiphase DNS/LES Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arienti, Marco; Oefelein, Joe; Doisneau, Francois
2016-08-01
As part of a Laboratory Directed Research and Development project, we are developing a modeling-and-simulation capability to study fuel direct injection in automotive engines. Predicting mixing and combustion at realistic conditions remains a challenging objective of energy science. And it is a research priority in Sandia’s mission-critical area of energy security, being also relevant to many flows in defense and climate. High-performance computing applied to this non-linear multi-scale problem is key to engine calculations with increased scientific reliability.
Nilsson, Carina; Skär, Lisa; Söderberg, Siv
2010-06-01
The aim of this case study was to describe two District Nurses' (DN) experiences of using information and communication technology (ICT) to communicate with chronically ill people in their homes. An electronic messaging program via computers and mobile phones with an Internet connection was used, enabling DNs and the ill people to exchange messages to and from anywhere. The program comprised different virtual rooms, and communication was via text messages. The DNs in this study used the program two to four times each week from November 2003 to March 2004. Semi-structured interviews were performed before, during and after the implementation of the new technology and were analysed using thematic content analysis. The results showed that the DNs felt that the technology increased accessibility to nursing care through a more direct communication with the ill person meaning that a more trusting relationship could be created. The DNs also experienced that the use of ICT saved working time. This study indicates that the use of ICT for communication allowed the DN to better support a chronically ill person at home leading to improved home nursing care. This method of communication cannot replace physical presence, but can be seen as a complement to nursing care at home.
Yoon, Hyun S; You, Joshua Sung H
2017-07-20
Postural core instability is associated with poor dynamic balance and a high risk of serious falls. Both neurodevelopmental treatment (NDT) and dynamic neuromuscular stabilization (DNS) core stabilization exercises have been used to improve core stability, but the outcomes of these treatments remain unclear. This study was undertaken to examine the therapeutic effects of NDT and DNS core stabilization exercises on muscular activity, core stability, and core muscle thickness. Ten participants (5 healthy adults; 5 hemiparetic stroke patients) were recruited. Surface electromyography (EMG) was used to determine core muscle activity of the transversus abdominis/internal oblique (TrA/IO), external oblique (EO), and rectus abdominis (RA) muscles. Ultrasound imaging was used to measure transversus abdominals/internal oblique (TrA/IO) thickness, and a pressure biofeedback unit (PBU) was used to measure core stability during the DNS and NDT core exercise conditions. Data are reported as median and range and were compared using nonparametric Mann - Whitney U test and Wilcoxon signed rank test at p< 0.05. Both healthy and hemiparetic stroke groups showed greater median EMG amplitude in the TrA/IO muscles, core stability, and muscle thickness values during the DNS exercise condition than during the NDT core exercise condition, respectively (p< 0.05). However, the relative changes in the EMG amplitude, core stability, and muscle thickness values were greater during the DNS exercise condition than during the NDT core exercise condition in the hemiparetic stroke patient group (p< 0.05). Our novel results provide the first clinical evidence that DNS is more effective than NDT in both healthy and hemiparetic stroke subjects to provide superior deep core muscle activation, core stabilization, and muscle thickness. Moreover, such advantageous therapeutic benefits of the DNS core stabilization exercise over the NDT exercise were more apparent in the hemiparetis stroke patients than normal controls.
Goel, Amit; Shivaprasad, Channabasappa; Kolly, Anish; Sarathi H A, Vijaya; Atluri, Sridevi
2017-01-01
The early diagnosis of diabetic peripheral neuropathy (DPN) is challenging. Sudomotor dysfunction is one of the earliest detectable abnormalities in DPN. The present study aimed to determine the diagnostic performance of the electrochemical skin conductance (ESC) test in detecting early DPN, compared with the vibration perception threshold (VPT) test and diabetic neuropathy symptom (DNS) score, using the modified neuropathy disability score (NDS) as the reference standard. Five hundred and twenty-three patients with type 2 diabetes underwent an NDS-based clinical assessment for neuropathy. Participants were classified into the DPN and non-DPN groups based on the NDS (≥ 6). Both groups were evaluated further using the DNS, and VPT and ESC testing. A receiver-operator characteristic (ROC) curve analysis was performed to compare the efficacy of ESC measurements with those of DNS and VPT testing in detecting DPN. The DPN group (n = 110, 21%) had significantly higher HbA1c levels and longer diabetes durations compared with the non-DPN group (n = 413). The sensitivity of feet ESC < 60 μS, VPT testing, and DNS in detecting DPN were 85%, 72%, and 52%, respectively. The specificity of feet ESC, VPT, and DNS in detecting DPN were 85%, 90% and 60% respectively. The areas under the curves of the ROC plots for feet ESC, VPT testing, and DNS were 0.88, 0.84, and 0.6, respectively. A significant inverse linear relationship was noted between VPT and feet ESC (r = -0.45, p = <0.0001). The odds ratios for having DPN, based on the mean feet ESC testing < 60 μS, VPT testing > 15 V, and DNS ≥ 1, were 16.4, 10.9 and 1.8, respectively. ESC measurement is an objective and sensitive technique for the early detection of DPN. Feet ESC measurement was superior to VPT testing for identifying patients with early DPN.
Kolly, Anish; Sarathi H. A., Vijaya; Atluri, Sridevi
2017-01-01
The early diagnosis of diabetic peripheral neuropathy (DPN) is challenging. Sudomotor dysfunction is one of the earliest detectable abnormalities in DPN. The present study aimed to determine the diagnostic performance of the electrochemical skin conductance (ESC) test in detecting early DPN, compared with the vibration perception threshold (VPT) test and diabetic neuropathy symptom (DNS) score, using the modified neuropathy disability score (NDS) as the reference standard. Five hundred and twenty-three patients with type 2 diabetes underwent an NDS-based clinical assessment for neuropathy. Participants were classified into the DPN and non-DPN groups based on the NDS (≥ 6). Both groups were evaluated further using the DNS, and VPT and ESC testing. A receiver-operator characteristic (ROC) curve analysis was performed to compare the efficacy of ESC measurements with those of DNS and VPT testing in detecting DPN. The DPN group (n = 110, 21%) had significantly higher HbA1c levels and longer diabetes durations compared with the non-DPN group (n = 413). The sensitivity of feet ESC < 60 μS, VPT testing, and DNS in detecting DPN were 85%, 72%, and 52%, respectively. The specificity of feet ESC, VPT, and DNS in detecting DPN were 85%, 90% and 60% respectively. The areas under the curves of the ROC plots for feet ESC, VPT testing, and DNS were 0.88, 0.84, and 0.6, respectively. A significant inverse linear relationship was noted between VPT and feet ESC (r = -0.45, p = <0.0001). The odds ratios for having DPN, based on the mean feet ESC testing < 60 μS, VPT testing > 15 V, and DNS ≥ 1, were 16.4, 10.9 and 1.8, respectively. ESC measurement is an objective and sensitive technique for the early detection of DPN. Feet ESC measurement was superior to VPT testing for identifying patients with early DPN. PMID:28880907
DNS of helicity-induced stratified turbulent flow
NASA Astrophysics Data System (ADS)
Chandy, Abhilash J.; Rahimi, Abbas
2013-11-01
Helical flows undergoing density stratification have wide applications in meteorological phenomena such as dust devils, tornadoes, and hurricanes due to the complexity and disasters caused by them. Direct numerical simulations (DNS) of transition to turbulence in a stably stratified Boussinesq fluid are presented for different rotation and stratification intensities. In order to understand the effect of velocity on the energy cascade, comparisons are made between helicity initiated and non-helical flows. Results show that stratification decelerates the helicity decay and causes velocity and vorticity to align with each other. With respect to the helical and non-helical flow comparisons, the total energy in the presence of stratification decays faster with helicity. In addition, the behavior of length scales were examined by comparing temporal variations of the vertical shearing of velocities. Results showed a growing asymmetry with time in the case of helical flow, while non-helical flow stayed close to begin symmetric.
Two-point spectral model for variable density homogeneous turbulence
NASA Astrophysics Data System (ADS)
Pal, Nairita; Kurien, Susan; Clark, Timothy; Aslangil, Denis; Livescu, Daniel
2017-11-01
We present a comparison between a two-point spectral closure model for buoyancy-driven variable density homogeneous turbulence, with Direct Numerical Simulation (DNS) data of the same system. We wish to understand how well a suitable spectral model might capture variable density effects and the transition to turbulence from an initially quiescent state. Following the BHRZ model developed by Besnard et al. (1990), the spectral model calculation computes the time evolution of two-point correlations of the density fluctuations with the momentum and the specific-volume. These spatial correlations are expressed as function of wavenumber k and denoted by a (k) and b (k) , quantifying mass flux and turbulent mixing respectively. We assess the accuracy of the model, relative to a full DNS of the complete hydrodynamical equations, using a and b as metrics. Work at LANL was performed under the auspices of the U.S. DOE Contract No. DE-AC52-06NA25396.
32 CFR 701.114 - PA enforcement actions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... adequately addressed, the individual may contact CNO (DNS-36) or CMC (ARSF), for assistance. (b) Civil court... employee, the responsible DON activity shall promptly apprise CNO (DNS-36)) and provide a copy of all relevant documents. CNO (DNS-36) will in turn apprise the DPO, who will apprise the DOJ. When a court...
32 CFR 701.114 - PA enforcement actions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... adequately addressed, the individual may contact CNO (DNS-36) or CMC (ARSF), for assistance. (b) Civil court... employee, the responsible DON activity shall promptly apprise CNO (DNS-36)) and provide a copy of all relevant documents. CNO (DNS-36) will in turn apprise the DPO, who will apprise the DOJ. When a court...
32 CFR 701.114 - PA enforcement actions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... adequately addressed, the individual may contact CNO (DNS-36) or CMC (ARSF), for assistance. (b) Civil court... employee, the responsible DON activity shall promptly apprise CNO (DNS-36)) and provide a copy of all relevant documents. CNO (DNS-36) will in turn apprise the DPO, who will apprise the DOJ. When a court...
32 CFR 701.114 - PA enforcement actions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... adequately addressed, the individual may contact CNO (DNS-36) or CMC (ARSF), for assistance. (b) Civil court... employee, the responsible DON activity shall promptly apprise CNO (DNS-36)) and provide a copy of all relevant documents. CNO (DNS-36) will in turn apprise the DPO, who will apprise the DOJ. When a court...
32 CFR 701.114 - PA enforcement actions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... adequately addressed, the individual may contact CNO (DNS-36) or CMC (ARSF), for assistance. (b) Civil court... employee, the responsible DON activity shall promptly apprise CNO (DNS-36)) and provide a copy of all relevant documents. CNO (DNS-36) will in turn apprise the DPO, who will apprise the DOJ. When a court...
NASA Astrophysics Data System (ADS)
Radl, Stefan; Municchi, Federico; Goniva, Christoph
2016-11-01
Understanding transport phenomena in fluid-particle systems is of primary importance for the design of large-scale equipment, e.g., in the chemical industry. Typically, the analysis of such systems is performed by numerically solving a set of partial differential equations modeling the particle phase and the fluid phase as interpenetrating continua. Such models require a number of closure models that are often constructed via spatial filtering of data obtained from particle-resolved direct numerical simulations (PR-DNS). In the present work we make use of PR-DNS to evaluate corrections to existing closure models. Specifically, we aim on accounting for wall effects on the fluid-particle drag force and the particle-individual Nusselt number. We then propose an improved closure model to be used in particle-unresolved Euler-Lagrange (PU-EL) simulations. We demonstrate that such an advanced closure should account for a dimensionless filter size, as well as a normalized distance from the wall. In addition, we make an attempt to model the filtered fluid velocity profile in wall-bounded suspension flows. The authors acknowledge funding from the European Commission through FP7 Grant Agreement No. 604656, as well as VSC-3 and dcluster.tugraz.at.
NASA Astrophysics Data System (ADS)
Subramaniam, Shankar; Sun, Bo
2015-11-01
The presence of solid particles in a steady laminar flow generates velocity fluctuations with respect to the mean fluid velocity that are termed pseudo-turbulence. The level of these pseudo-turbulent velocity fluctuations has been characterized in statistically homogeneous fixed particle assemblies and freely evolving suspensions using particle-resolved direct numerical simulation (PR-DNS) by Mehrabadi et al. (JFM, 2015), and it is found to be a significant contribution to the total kinetic energy associated with the flow. The correlation of these velocity fluctuations with temperature (or a passive scalar) generates a flux term that appears in the transport equation for the average fluid temperature (or average scalar concentration). The magnitude of this transport of temperature-velocity covariance is quantified using PR-DNS of thermally fully developed flow past a statistically homogeneous fixed assembly of particles, and the budget of the average fluid temperature equation is presented. The relation of this transport term to the axial dispersion coefficient (Brenner, Phil. Trans. Roy. Soc. A, 1980) is established. The simulation results are then interpreted in the context of our understanding of axial dispersion in gas-solid flow. NSF CBET 1336941.
Stochastic Modeling of Direct Radiation Transmission in Particle-Laden Turbulent Flows
NASA Astrophysics Data System (ADS)
Banko, Andrew; Villafane, Laura; Kim, Ji Hoon; Esmaily Moghadam, Mahdi; Eaton, John K.
2017-11-01
Direct radiation transmission in turbulent flows laden with heavy particles plays a fundamental role in systems such as clouds, spray combustors, and particle-solar-receivers. Owing to their inertia, the particles preferentially concentrate and the resulting voids and clusters lead to deviations in mean transmission from the classical Beer-Lambert law for exponential extinction. Additionally, the transmission fluctuations can exceed those of Poissonian media by an order of magnitude, which implies a gross misprediction in transmission statistics if the correlations in particle positions are neglected. On the other hand, tracking millions of particles in a turbulence simulation can be prohibitively expensive. This work presents stochastic processes as computationally cheap reduced order models for the instantaneous particle number density field and radiation transmission therein. Results from the stochastic processes are compared to Monte Carlo Ray Tracing (MCRT) simulations using the particle positions obtained from the point-particle DNS of isotropic turbulence at a Taylor Reynolds number of 150. Accurate transmission statistics are predicted with respect to MCRT by matching the mean, variance, and correlation length of DNS number density fields. Funded by the U.S. Department of Energy under Grant No. DE-NA0002373-1 and the National Science Foundation under Grant No. DGE-114747.
Reid Ponte, Patricia; Nicholas, Patrice K
2015-07-01
This article examines the evolution of Doctor of Nursing Science (DNS or DNSc) and Doctor of Science in Nursing (DSN) degrees, including their emergence as research-intensive doctoral degrees in the 1960s, efforts to distinguish the degrees from the Doctor of Philosophy (PhD) and Doctor of Nursing Practice (DNP) degrees, the recent decline in program numbers, and implications for degree holders. The article reviews the U.S. history of doctoral education in nursing, research examining similarities and differences between the PhD and DNS, DNSc, or DSN degrees, and how the DNS, DNSc, or DSN degree differs from DNP programs. The article also examines the confusion regarding the focus of the DNS, DNSc, or DSN degree among nurses, patients, and potential funders; and describes actions taken by universities to address the confusion, with examples provided by academic deans, nurse leaders, and nurse researchers. Longstanding confusion about the research merits of the DNS, DNSc, or DSN degree, and the growing prominence of the similarly-titled DNP degree, has created confusion about the focus of DNS, DNSc, or DSN programs and the capabilities of degree holders. Many universities have addressed this confusion by converting their DNS, DNSc, and DSN programs to a PhD or retroactively converting degrees to a PhD. Other universities have chosen not to pursue this route. The DNS, DNSc, or DSN experience highlights the importance of clarifying and standardizing the purpose and goals of nursing education programs and the repercussions for degree holders when such clarity is lacking. The international academic nursing communities have consistently pursued one doctoral-level nursing degree and therefore have not shared this challenging landscape in nursing education. Findings and recommendations presented in this article have implications for schools of nursing and professional groups that oversee the development of educational programs and pathways for nurses. © 2015 Sigma Theta Tau International.
Direct numerical simulations and modeling of a spatially-evolving turbulent wake
NASA Technical Reports Server (NTRS)
Cimbala, John M.
1994-01-01
Understanding of turbulent free shear flows (wakes, jets, and mixing layers) is important, not only for scientific interest, but also because of their appearance in numerous practical applications. Turbulent wakes, in particular, have recently received increased attention by researchers at NASA Langley. The turbulent wake generated by a two-dimensional airfoil has been selected as the test-case for detailed high-resolution particle image velocimetry (PIV) experiments. This same wake has also been chosen to enhance NASA's turbulence modeling efforts. Over the past year, the author has completed several wake computations, while visiting NASA through the 1993 and 1994 ASEE summer programs, and also while on sabbatical leave during the 1993-94 academic year. These calculations have included two-equation (K-omega and K-epsilon) models, algebraic stress models (ASM), full Reynolds stress closure models, and direct numerical simulations (DNS). Recently, there has been mutually beneficial collaboration of the experimental and computational efforts. In fact, these projects have been chosen for joint presentation at the NASA Turbulence Peer Review, scheduled for September 1994. DNS calculations are presently underway for a turbulent wake at Re(sub theta) = 1000 and at a Mach number of 0.20. (Theta is the momentum thickness, which remains constant in the wake of a two dimensional body.) These calculations utilize a compressible DNS code written by M. M. Rai of NASA Ames, and modified for the wake by J. Cimbala. The code employs fifth-order accurate upwind-biased finite differencing for the convective terms, fourth-order accurate central differencing for the viscous terms, and an iterative-implicit time-integration scheme. The computational domain for these calculations starts at x/theta = 10, and extends to x/theta = 610. Fully developed turbulent wake profiles, obtained from experimental data from several wake generators, are supplied at the computational inlet, along with appropriate noise. After some adjustment period, the flow downstream of the inlet develops into a fully three-dimensional turbulent wake. Of particular interest in the present study is the far wake spreading rate and the self-similar mean and turbulence profiles. At the time of this writing, grid resolution studies are underway, and a code is being written to calculate turbulence statistics from these wake calculations; the statistics will be compared to those from the ongoing PIV wake measurements, those of previous experiments, and those predicted by the various turbulence models. These calculations will lead to significant long-term benefits for the turbulence modeling effort. In particular, quantities such as the pressure-strain correlation and the dissipation rate tensor can be easily calculated from the DNS results, whereas these quantities are nearly impossible to measure experimentally. Improvements to existing turbulence models (and development of new models) require knowledge about flow quantities such as these. Present turbulence models do a very good job at prediction of the shape of the mean velocity and Reynolds stress profiles in a turbulent wake, but significantly underpredict the magnitude of the stresses and the spreading rate of the wake. Thus, the turbulent wake is an ideal flow for turbulence modeling research. By careful comparison and analysis of each term in the modeled Reynolds stress equations, the DNS data can show where deficiencies in the models exist; improvements to the models can then be attempted.
Mental ill-health among adult patients at healthcare centres in Sweden: district nurses experiences.
Janlöv, Ann-Christin; Johansson, Linda; Clausson, Eva K
2017-11-13
Mental ill-health among the general population is increasing in Sweden. Primary Health Care (PHC) and Healthcare Centres (HCC), where district nurses (DNs) work, bear the basic responsibility for treatment of mental ill-health, while severe mental ill-health fall under the responsibility of psychiatric specialist care. The increased prevalence of mental ill-health in the community means that DNs increasingly encounter people with mental health problems - not least as a comorbidity. How well DNs are equipped to deal with mental ill-health is currently unclear. The purpose of this study was to explore district nurses' experience of encountering and dealing with mental ill-health among adult patients at healthcare centres. A qualitative explorative approach was used to capture the experiences of the phenomena under study. Individual interviews were conducted with 10 DNs working at six HCCs. The interviews were transcribed and analysed by qualitative content analysis. The result emerged as several subcategories captured by three categories: (i) having competence - a prerequisite for feeling confident; (ii) nursing mental ill-health requires time and commitment; and (iii) working in an organisation without preparedness, encompassed by the synthesising theme; nursing mental ill-health requires specific competence and organisational support. Working as a DN requires formal and informal competence when encountering patients with complex health needs. The findings revealed that the DNs could feel insecure regarding how to deal with patients with mental ill-health due to lack of knowledge. Assessment of patients with mental ill-health is time- and energy-consuming and calls for improved teamwork at HCCs as well as effective collaboration with psychiatric specialist care and other care givers. The DNs responsibility to fulfil their work considering the increasing number of mental ill-health among people that seeks help at HCCs needs to be acknowledged and met by the PHC organisation. © 2017 The Authors. Scandinavian Journal of Caring Sciences published by John Wiley & Sons Ltd on behalf of Nordic College of Caring Science.
32 CFR 701.117 - Changes to PA systems of records.
Code of Federal Regulations, 2012 CFR
2012-07-01
... records. CNO (DNS-36) is the approval authority for Navy/DON PA systems of records actions. CMC (ARSF) is... create, alter, amend, or delete systems should contact CNO (DNS-36) or CMC (ARSF), who will assist in... contact CNO (DNS-36) (regarding Navy system of records) or CMC (ARSF) (regarding Marine Corps system of...
32 CFR 701.117 - Changes to PA systems of records.
Code of Federal Regulations, 2011 CFR
2011-07-01
... records. CNO (DNS-36) is the approval authority for Navy/DON PA systems of records actions. CMC (ARSF) is... create, alter, amend, or delete systems should contact CNO (DNS-36) or CMC (ARSF), who will assist in... contact CNO (DNS-36) (regarding Navy system of records) or CMC (ARSF) (regarding Marine Corps system of...
32 CFR 701.117 - Changes to PA systems of records.
Code of Federal Regulations, 2013 CFR
2013-07-01
... records. CNO (DNS-36) is the approval authority for Navy/DON PA systems of records actions. CMC (ARSF) is... create, alter, amend, or delete systems should contact CNO (DNS-36) or CMC (ARSF), who will assist in... contact CNO (DNS-36) (regarding Navy system of records) or CMC (ARSF) (regarding Marine Corps system of...
32 CFR 701.117 - Changes to PA systems of records.
Code of Federal Regulations, 2014 CFR
2014-07-01
... records. CNO (DNS-36) is the approval authority for Navy/DON PA systems of records actions. CMC (ARSF) is... create, alter, amend, or delete systems should contact CNO (DNS-36) or CMC (ARSF), who will assist in... contact CNO (DNS-36) (regarding Navy system of records) or CMC (ARSF) (regarding Marine Corps system of...
NASA Astrophysics Data System (ADS)
Schilling, Oleg
2016-11-01
Two-, three- and four-equation, single-velocity, multicomponent Reynolds-averaged Navier-Stokes (RANS) models, based on the turbulent kinetic energy dissipation rate or lengthscale, are used to simulate At = 0 . 5 Rayleigh-Taylor turbulent mixing with constant and complex accelerations. The constant acceleration case is inspired by the Cabot and Cook (2006) DNS, and the complex acceleration cases are inspired by the unstable/stable and unstable/neutral cases simulated using DNS (Livescu, Wei & Petersen 2011) and the unstable/stable/unstable case simulated using ILES (Ramaprabhu, Karkhanis & Lawrie 2013). The four-equation models couple equations for the mass flux a and negative density-specific volume correlation b to the K- ɛ or K- L equations, while the three-equation models use a two-fluid algebraic closure for b. The lengthscale-based models are also applied with no buoyancy production in the L equation to explore the consequences of neglecting this term. Predicted mixing widths, turbulence statistics, fields, and turbulent transport equation budgets are compared among these models to identify similarities and differences in the turbulence production, dissipation and diffusion physics represented by the closures used in these models. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Kinetic thermal structure in turbulent Rayleigh-Bénard convection
NASA Astrophysics Data System (ADS)
Chen, Jun; Yin, Ze-Xia; She, Zhen-Su; Bao, Yun
2017-11-01
Plumes are believed to be the most important heat carrier in turbulent Rayleigh-Bénard convection (RBC). However, a physically sound and clear definition of plume is still absent. We report here the investigation of a definition of plume called kinetic thermal structure (KTS), based on the analysis of vertical velocity gradient (Λ = ∂w / ∂z), using direct numerical simulation (DNS) data of the three-dimensional RBC in a rectangular cell for Pr = 0.7 and Ra = 1 ×108 5 ×109 . It is shown that the conditional average of temperature on Λ exhibits such a behavior that when Λ is larger than a threshold, the volume carries a constant temperature of fluid, hence defines an unambiguous thermal structure, KTS. The DNS show that the KTS behaves in a sheet-like shape near the conducting plate, and becomes slender and smaller with increasing Ra . The heat flux carried by KTS displays a scaling law, with an exponent larger than the global- Nu - Ra scaling, indicating stronger heat transport than the turbulent background. An advantage of the KTS is its connection to the balance equation allowing, for the first time, a prediction of the Ra -dependence of its vertical velocity and the characteristic Λ threshold, validated by DNS. Supported by NSFC (11172006, 11221062, 11452002), and by MOST (China) 973 project (2009CB724100).
Tschida, Katherine; Bhandawat, Vikas
2015-01-01
Modulatory descending neurons (DNs) that link the brain to body motor circuits, including dopaminergic DNs (DA-DNs), are thought to contribute to the flexible control of behavior. Dopamine elicits locomotor-like outputs and influences neuronal excitability in isolated body motor circuits over tens of seconds to minutes, but it remains unknown how and over what time scale DA-DN activity relates to movement in behaving animals. To address this question, we identified DA-DNs in the Drosophila brain and developed an electrophysiological preparation to record and manipulate the activity of these cells during behavior. We find that DA-DN spike rates are rapidly modulated during a subset of leg movements and scale with the total speed of ongoing leg movements, whether occurring spontaneously or in response to stimuli. However, activating DA-DNs does not elicit leg movements in intact flies, nor do acute bidirectional manipulations of DA-DN activity affect the probability or speed of leg movements over a time scale of seconds to minutes. Our findings indicate that in the context of intact descending control, changes in DA-DN activity are not sufficient to influence ongoing leg movements and open the door to studies investigating how these cells interact with other descending and local neuromodulatory inputs to influence body motor output. PMID:25742959
Kurowska, Zuzanna; Jewett, Michael; Brattås, Per Ludvik; Jimenez-Ferrer, Itzia; Kenéz, Xuyian; Björklund, Tomas; Nordström, Ulrika; Brundin, Patrik; Swanberg, Maria
2016-01-01
Motor symptoms in Parkinson’s disease are attributed to degeneration of midbrain dopaminergic neurons (DNs). Heterozygosity for Engrailed-1 (En1), one of the key factors for programming and maintenance of DNs, results in a parkinsonian phenotype featuring progressive degeneration of DNs in substantia nigra pars compacta (SNpc), decreased striatal dopamine levels and swellings of nigro-striatal axons in the SwissOF1-En1+/− mouse strain. In contrast, C57Bl/6-En1+/− mice do not display this neurodegenerative phenotype, suggesting that susceptibility to En1 heterozygosity is genetically regulated. Our goal was to identify quantitative trait loci (QTLs) that regulate the susceptibility to PD-like neurodegenerative changes in response to loss of one En1 allele. We intercrossed SwissOF1-En1+/− and C57Bl/6 mice to obtain F2 mice with mixed genomes and analyzed number of DNs in SNpc and striatal axonal swellings in 120 F2-En1+/− 17 week-old male mice. Linkage analyses revealed 8 QTLs linked to number of DNs (p = 2.4e-09, variance explained = 74%), 7 QTLs linked to load of axonal swellings (p = 1.7e-12, variance explained = 80%) and 8 QTLs linked to size of axonal swellings (p = 7.0e-11, variance explained = 74%). These loci should be of prime interest for studies of susceptibility to Parkinson’s disease-like damage in rodent disease models and considered in clinical association studies in PD. PMID:27550741
Center for Modeling of Turbulence and Transition (CMOTT): Research Briefs, 1992
NASA Technical Reports Server (NTRS)
Liou, William W. (Editor)
1992-01-01
The progress is reported of the Center for Modeling of Turbulence and Transition (CMOTT). The main objective of the CMOTT is to develop, validate and implement the turbulence and transition models for practical engineering flows. The flows of interest are three-dimensional, incompressible and compressible flows with chemical reaction. The research covers two-equation (e.g., k-e) and algebraic Reynolds-stress models, second moment closure models, probability density function (pdf) models, Renormalization Group Theory (RNG), Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS).
Large Eddy Simulation of Flow in Turbine Cascades Using LESTool and UNCLE Codes
NASA Technical Reports Server (NTRS)
Huang, P. G.
2004-01-01
During the period December 23,1997 and December August 31,2004, we accomplished the development of 2 CFD codes for DNS/LES/RANS simulation of turbine cascade flows, namely LESTool and UNCLE. LESTool is a structured code making use of 5th order upwind differencing scheme and UNCLE is a second-order-accuracy unstructured code. LESTool has both Dynamic SGS and Spalart's DES models and UNCLE makes use of URANS and DES models. The current report provides a description of methodologies used in the codes.
Large Eddy Simulation of Flow in Turbine Cascades Using LEST and UNCLE Codes
NASA Technical Reports Server (NTRS)
Ashpis, David (Technical Monitor); Huang, P. G.
2004-01-01
During the period December 23, 1997 and December August 31, 2004, we accomplished the development of 2 CFD codes for DNS/LES/RANS simulation of turbine cascade flows, namely LESTool and UNCLE. LESTool is a structured code making use of 5th order upwind differencing scheme and UNCLE is a second-order-accuracy unstructured code. LESTool has both Dynamic SGS and Sparlart's DES models and UNCLE makes use of URANS and DES models. The current report provides a description of methodologies used in the codes.
Luo, Kun; Hu, Chenshu; Wu, Fan; Fan, Jianren
2017-05-01
In the present work, a direct numerical simulation (DNS) of dilute particulate flow in a turbulent boundary layer has been conducted, containing thousands of finite-sized solid rigid particles. The particle surfaces are resolved with the multi-direct forcing immersed-boundary method. This is, to the best of the authors' knowledge, the first DNS study of a turbulent boundary layer laden with finite-sized particles. The particles have a diameter of approximately 11.3 wall units, a density of 3.3 times that of the fluid, and a solid volume fraction of 1/1000. The simulation shows that the onset and the completion of the transition processes are shifted earlier with the inclusion of the solid phase and that the resulting streamwise mean velocity of the boundary layer in the particle-laden case is almost consistent with the results of the single-phase case. At the same time, relatively stronger particle movements are observed in the near-wall regions, due to the driving of the counterrotating streamwise vortexes. As a result, increased levels of dissipation occur on the particle surfaces, and the root mean square of the fluctuating velocities of the fluid in the near-wall regions is decreased. Under the present parameters, including the particle Stokes number St + = 24 and the particle Reynolds number Re p = 33 based on the maximum instantaneous fluid-solid velocity lag, no vortex shedding behind the particle is observed. Lastly, a trajectory analysis of the particles shows the influence of turbophoresis on particle wall-normal concentration, and the particles that originated between y + = 60 and 2/3 of the boundary-layer thickness are the most influenced.
Luo, Kun; Hu, Chenshu; Wu, Fan; Fan, Jianren
2017-01-01
In the present work, a direct numerical simulation (DNS) of dilute particulate flow in a turbulent boundary layer has been conducted, containing thousands of finite-sized solid rigid particles. The particle surfaces are resolved with the multi-direct forcing immersed-boundary method. This is, to the best of the authors’ knowledge, the first DNS study of a turbulent boundary layer laden with finite-sized particles. The particles have a diameter of approximately 11.3 wall units, a density of 3.3 times that of the fluid, and a solid volume fraction of 1/1000. The simulation shows that the onset and the completion of the transition processes are shifted earlier with the inclusion of the solid phase and that the resulting streamwise mean velocity of the boundary layer in the particle-laden case is almost consistent with the results of the single-phase case. At the same time, relatively stronger particle movements are observed in the near-wall regions, due to the driving of the counterrotating streamwise vortexes. As a result, increased levels of dissipation occur on the particle surfaces, and the root mean square of the fluctuating velocities of the fluid in the near-wall regions is decreased. Under the present parameters, including the particle Stokes number St+ = 24 and the particle Reynolds number Rep = 33 based on the maximum instantaneous fluid-solid velocity lag, no vortex shedding behind the particle is observed. Lastly, a trajectory analysis of the particles shows the influence of turbophoresis on particle wall-normal concentration, and the particles that originated between y+ = 60 and 2/3 of the boundary-layer thickness are the most influenced. PMID:29104418
NASA Astrophysics Data System (ADS)
Luo, Kun; Hu, Chenshu; Wu, Fan; Fan, Jianren
2017-05-01
In the present work, a direct numerical simulation (DNS) of dilute particulate flow in a turbulent boundary layer has been conducted, containing thousands of finite-sized solid rigid particles. The particle surfaces are resolved with the multi-direct forcing immersed-boundary method. This is, to the best of the authors' knowledge, the first DNS study of a turbulent boundary layer laden with finite-sized particles. The particles have a diameter of approximately 11.3 wall units, a density of 3.3 times that of the fluid, and a solid volume fraction of 1/1000. The simulation shows that the onset and the completion of the transition processes are shifted earlier with the inclusion of the solid phase and that the resulting streamwise mean velocity of the boundary layer in the particle-laden case is almost consistent with the results of the single-phase case. At the same time, relatively stronger particle movements are observed in the near-wall regions, due to the driving of the counterrotating streamwise vortexes. As a result, increased levels of dissipation occur on the particle surfaces, and the root mean square of the fluctuating velocities of the fluid in the near-wall regions is decreased. Under the present parameters, including the particle Stokes number St+ = 24 and the particle Reynolds number Rep = 33 based on the maximum instantaneous fluid-solid velocity lag, no vortex shedding behind the particle is observed. Lastly, a trajectory analysis of the particles shows the influence of turbophoresis on particle wall-normal concentration, and the particles that originated between y+ = 60 and 2/3 of the boundary-layer thickness are the most influenced.
NASA Astrophysics Data System (ADS)
Madadi-Kandjani, E.; Fox, R. O.; Passalacqua, A.
2017-06-01
An extended quadrature method of moments using the β kernel density function (β -EQMOM) is used to approximate solutions to the evolution equation for univariate and bivariate composition probability distribution functions (PDFs) of a passive scalar for binary and ternary mixing. The key element of interest is the molecular mixing term, which is described using the Fokker-Planck (FP) molecular mixing model. The direct numerical simulations (DNSs) of Eswaran and Pope ["Direct numerical simulations of the turbulent mixing of a passive scalar," Phys. Fluids 31, 506 (1988)] and the amplitude mapping closure (AMC) of Pope ["Mapping closures for turbulent mixing and reaction," Theor. Comput. Fluid Dyn. 2, 255 (1991)] are taken as reference solutions to establish the accuracy of the FP model in the case of binary mixing. The DNSs of Juneja and Pope ["A DNS study of turbulent mixing of two passive scalars," Phys. Fluids 8, 2161 (1996)] are used to validate the results obtained for ternary mixing. Simulations are performed with both the conditional scalar dissipation rate (CSDR) proposed by Fox [Computational Methods for Turbulent Reacting Flows (Cambridge University Press, 2003)] and the CSDR from AMC, with the scalar dissipation rate provided as input and obtained from the DNS. Using scalar moments up to fourth order, the ability of the FP model to capture the evolution of the shape of the PDF, important in turbulent mixing problems, is demonstrated. Compared to the widely used assumed β -PDF model [S. S. Girimaji, "Assumed β-pdf model for turbulent mixing: Validation and extension to multiple scalar mixing," Combust. Sci. Technol. 78, 177 (1991)], the β -EQMOM solution to the FP model more accurately describes the initial mixing process with a relatively small increase in computational cost.
Conservative properties of finite difference schemes for incompressible flow
NASA Technical Reports Server (NTRS)
Morinishi, Youhei
1995-01-01
The purpose of this research is to construct accurate finite difference schemes for incompressible unsteady flow simulations such as LES (large-eddy simulation) or DNS (direct numerical simulation). In this report, conservation properties of the continuity, momentum, and kinetic energy equations for incompressible flow are specified as analytical requirements for a proper set of discretized equations. Existing finite difference schemes in staggered grid systems are checked for satisfaction of the requirements. Proper higher order accurate finite difference schemes in a staggered grid system are then proposed. Plane channel flow is simulated using the proposed fourth order accurate finite difference scheme and the results compared with those of the second order accurate Harlow and Welch algorithm.
Transition to chaos of natural convection between two infinite differentially heated vertical plates
NASA Astrophysics Data System (ADS)
Gao, Zhenlan; Sergent, Anne; Podvin, Berengere; Xin, Shihe; Le Quéré, Patrick; Tuckerman, Laurette S.
2013-08-01
Natural convection of air between two infinite vertical differentially heated plates is studied analytically in two dimensions (2D) and numerically in two and three dimensions (3D) for Rayleigh numbers Ra up to 3 times the critical value Rac=5708. The first instability is a supercritical circle pitchfork bifurcation leading to steady 2D corotating rolls. A Ginzburg-Landau equation is derived analytically for the flow around this first bifurcation and compared with results from direct numerical simulation (DNS). In two dimensions, DNS shows that the rolls become unstable via a Hopf bifurcation. As Ra is further increased, the flow becomes quasiperiodic, and then temporally chaotic for a limited range of Rayleigh numbers, beyond which the flow returns to a steady state through a spatial modulation instability. In three dimensions, the rolls instead undergo another pitchfork bifurcation to 3D structures, which consist of transverse rolls connected by counter-rotating vorticity braids. The flow then becomes time dependent through a Hopf bifurcation, as exchanges of energy occur between the rolls and the braids. Chaotic behavior subsequently occurs through two competing mechanisms: a sequence of period-doubling bifurcations leading to intermittency or a spatial pattern modulation reminiscent of the Eckhaus instability.
Structure of wall-bounded flows at transcritical conditions
NASA Astrophysics Data System (ADS)
Ma, Peter C.; Yang, Xiang I. A.; Ihme, Matthias
2018-03-01
At transcritical conditions, the transition of a fluid from a liquidlike state to a gaslike state occurs continuously, which is associated with significant changes in fluid properties. Therefore, boiling in its conventional sense does not exist and the phase transition at transcritical conditions is known as "pseudoboiling." In this work, direct numerical simulations (DNS) of a channel flow at transcritical conditions are conducted in which the bottom and top walls are kept at temperatures below and above the pseudoboiling temperature, respectively. Over this temperature range, the density changes by a factor of 18 between both walls. Using the DNS data, the usefulness of the semilocal scaling and the Townsend attached-eddy hypothesis are examined in the context of flows at transcritical conditions—both models have received much empirical support from previous studies. It is found that while the semilocal scaling works reasonably well near the bottom cooled wall, where the fluid density changes only moderately, the same scaling has only limited success near the top wall. In addition, it is shown that the streamwise velocity structure function follows a logarithmic scaling and the streamwise energy spectrum exhibits an inverse wave-number scaling, thus providing support to the attached-eddy model at transcritical conditions.
Detailed thermodynamic analyses of high-speed compressible turbulence
NASA Astrophysics Data System (ADS)
Towery, Colin; Darragh, Ryan; Poludnenko, Alexei; Hamlington, Peter
2016-11-01
Interactions between high-speed turbulence and flames (or chemical reactions) are important in the dynamics and description of many different combustion phenomena, including autoignition and deflagration-to-detonation transition. The probability of these phenomena to occur depends on the magnitude and spectral content of turbulence fluctuations, which can impact a wide range of science and engineering problems, from the hypersonic scramjet engine to the onset of Type Ia supernovae. In this talk, we present results from new direct numerical simulations (DNS) of homogeneous isotropic turbulence with turbulence Mach numbers ranging from 0 . 05 to 1 . 0 and Taylor-scale Reynolds numbers as high as 700. A set of detailed analyses are described in both Eulerian and Lagrangian reference frames in order to assess coherent (structural) and incoherent (stochastic) thermodynamic flow features. These analyses provide direct insights into the thermodynamics of strongly compressible turbulence. Furthermore, presented results provide a non-reacting baseline for future studies of turbulence-chemistry interactions in DNS with complex chemistry mechanisms. This work was supported by the Air Force Office of Scientific Research (AFOSR) under Award No. FA9550-14-1-0273, and the Department of Defense (DoD) High Performance Computing Modernization Program (HPCMP) under a Frontier project award.
NASA Technical Reports Server (NTRS)
Miller, R. S.; Bellan, J.
1997-01-01
An Investigation of the statistical description of binary mixing and/or reaction between a carrier gas and an evaporated vapor species in two-phase gas-liquid turbulent flows is perfomed through both theroetical analysis and comparisons with results from direct numerical simulations (DNS) of a two-phase mixing layer.
NASA Astrophysics Data System (ADS)
Tiselj, Iztok
2014-12-01
Channel flow DNS (Direct Numerical Simulation) at friction Reynolds number 180 and with passive scalars of Prandtl numbers 1 and 0.01 was performed in various computational domains. The "normal" size domain was ˜2300 wall units long and ˜750 wall units wide; size taken from the similar DNS of Moser et al. The "large" computational domain, which is supposed to be sufficient to describe the largest structures of the turbulent flows was 3 times longer and 3 times wider than the "normal" domain. The "very large" domain was 6 times longer and 6 times wider than the "normal" domain. All simulations were performed with the same spatial and temporal resolution. Comparison of the standard and large computational domains shows the velocity field statistics (mean velocity, root-mean-square (RMS) fluctuations, and turbulent Reynolds stresses) that are within 1%-2%. Similar agreement is observed for Pr = 1 temperature fields and can be observed also for the mean temperature profiles at Pr = 0.01. These differences can be attributed to the statistical uncertainties of the DNS. However, second-order moments, i.e., RMS temperature fluctuations of standard and large computational domains at Pr = 0.01 show significant differences of up to 20%. Stronger temperature fluctuations in the "large" and "very large" domains confirm the existence of the large-scale structures. Their influence is more or less invisible in the main velocity field statistics or in the statistics of the temperature fields at Prandtl numbers around 1. However, these structures play visible role in the temperature fluctuations at low Prandtl number, where high temperature diffusivity effectively smears the small-scale structures in the thermal field and enhances the relative contribution of large-scales. These large thermal structures represent some kind of an echo of the large scale velocity structures: the highest temperature-velocity correlations are not observed between the instantaneous temperatures and instantaneous streamwise velocities, but between the instantaneous temperatures and velocities averaged over certain time interval.
Numerical study of wind over breaking waves and generation of spume droplets
NASA Astrophysics Data System (ADS)
Yang, Zixuan; Tang, Shuai; Dong, Yu-Hong; Shen, Lian
2017-11-01
We present direct numerical simulation (DNS) results on wind over breaking waves. The air and water are simulated as a coherent system. The air-water interface is captured using a coupled level-set and volume-of-fluid method. The initial condition for the simulation is fully-developed wind turbulence over strongly-forced steep waves. Because wave breaking is an unsteady process, we use ensemble averaging of a large number of runs to obtain turbulence statistics. The generation and transport of spume droplets during wave breaking is also simulated. The trajectories of sea spray droplets are tracked using a Lagrangian particle tracking method. The generation of droplets is captured using a kinematic criterion based on the relative velocity of fluid particles of water with respect to the wave phase speed. From the simulation, we observe that the wave plunging generates a large vortex in air, which makes an important contribution to the suspension of sea spray droplets.
Dynamics of Aerosol Particles in Stationary, Isotropic Turbulence
NASA Technical Reports Server (NTRS)
Collins, Lance R.; Meng, Hui
2004-01-01
A detailed study of the dynamics of sub-Kolmogorov-size aerosol particles in stationary isotropic turbulence has been performed. The study combined direct numerical simulations (DNS; directed by Prof. Collins) and high-resolution experimental measurements (directed by Prof. Meng) under conditions of nearly perfect geometric and parametric overlap. The goal was to measure the accumulation of particles in low-vorticity regions of the flow that arises from the effect commonly referred to as preferential concentration. The grant technically was initiated on June 13, 2000; however, funding was not available until July 11, 2000. The grant was originally awarded to Penn State University (numerical simulations) and SUNY-Buffalo (experiments); however, Prof. Collins effort was moved to Cornell University on January 2002 when he joined that university. He completed the study there. A list of the specific tasks that were completed under this study is presented.
Direct Numerical Simulation of Fluid Flow and Mass Transfer in Particle Clusters
2018-01-01
In this paper, an efficient ghost-cell based immersed boundary method is applied to perform direct numerical simulation (DNS) of mass transfer problems in particle clusters. To be specific, a nine-sphere cuboid cluster and a random-generated spherical cluster consisting of 100 spheres are studied. In both cases, the cluster is composed of active catalysts and inert particles, and the mutual influence of particles on their mass transfer performance is studied. To simulate active catalysts the Dirichlet boundary condition is imposed at the external surface of spheres, while the zero-flux Neumann boundary condition is applied for inert particles. Through our studies, clustering is found to have negative influence on the mass transfer performance, which can be then improved by dilution with inert particles and higher Reynolds numbers. The distribution of active/inert particles may lead to large variations of the cluster mass transfer performance, and individual particle deep inside the cluster may possess a high Sherwood number. PMID:29657359
Menon, Vidthiya; Davis, Rebecca; Shackel, Nick; Espedido, Bjorn A; Beukers, Alicia G; Jensen, Slade O; van Hal, Sebastiaan J
2018-02-01
Daptomycin β-Lactam combination therapy offers "protection" against daptomycin non-susceptibility (DNS) development in Enterococcus faecium. We report failure of this strategy and the importance of source control. Mutations were detected in the LiaF and cls genes in DNS isolates. A single DNS isolate contained an unrecognized mutation, which requires confirmation. Copyright © 2017 Elsevier Inc. All rights reserved.
Autoignition of hydrogen and air using direct numerical simulation
NASA Astrophysics Data System (ADS)
Doom, Jeffrey; Mahesh, Krishnan
2008-11-01
Direct numerical simulation (DNS) is used to study to auto--ignition in laminar vortex rings and turbulent diffusion flames. A novel, all--Mach number algorithm developed by Doom et al (J. Comput. Phys. 2007) is used. The chemical mechanism is a nine species, nineteen reaction mechanism for H2 and Air from Mueller at el (Int. J. Chem. Kinet. 1999). The vortex ring simulations inject diluted H2 at ambient temperature into hot air, and study the effects of stroke ratio, air to fuel ratio and Lewis number. At smaller stroke ratios, ignition occurs in the wake of the vortex ring and propagates into the vortex core. At larger stroke ratios, ignition occurs along the edges of the trailing column before propagating towards the vortex core. The turbulent diffusion flame simulations are three--dimensional and consider the interaction of initially isotropic turbulence with an unstrained diffusion flame. The simulations examine the nature of distinct ignition kernels, the relative roles of chemical reactions, and the relation between the observed behavior and laminar flames and the perfectly stirred reactor problem. These results will be discussed.
The Dental Neglect Scale in adolescents.
Coolidge, Trilby; Heima, Masahiro; Johnson, Elissa K; Weinstein, Philip
2009-01-05
Dental neglect has been found to be related to poor oral health, a tendency not to have had routine check-ups, and a longer period of time since the last dental appointment in samples of children and adults. The Dental Neglect Scale (DNS) has been found to be a valid measure of dental neglect in samples of children and adults, and may be valid for adolescents as well. We administered the DNS to a sample of adolescents and report on the relationships between the DNS and oral health status, whether or not the adolescent has been to the dentist recently for routine check-ups, and whether or not the adolescent currently goes to a dentist. We also report the internal and test-retest reliabilities of the DNS in this sample, as well as the results of an exploratory factor analysis. One hundred seventeen adolescents from seven youth groups in the Seattle-Tacoma metropolitan area (Washington State, U.S.) completed the DNS and indicated whether they currently go to a dentist, while parents indicated whether the adolescent had a check-up in the previous three years. Adolescents also received a dental screening. Sixty six adolescents completed the questionnaire twice. T-tests were used to compare DNS scores of adolescents who have visible caries or not, adolescents who have had a check-up in the past three years or not, and adolescents who currently go to a dentist or not. Internal reliability was measured by Cronbach's alpha, and test-rest reliability was measured by intra-class correlation. Factor analysis (Varimax rotation) was used to examine the factor structure. In each comparison, significantly higher DNS scores were observed in adolescents with visible caries, who have not had a check-up in the past three years, or who do not go to a dentist (all p values < 0.05). The test-retest reliability of the DNS was high (ICC = 0.81), and its internal reliability was acceptable (Cronbach's alpha = 0.60). Factor analysis yielded two factors, characterized by home care and visiting a dentist. The DNS appears to operate similarly in this sample of adolescents as it has in other samples of children and adults.
The evolution equation for the flame surface density in turbulent premixed combustion
NASA Technical Reports Server (NTRS)
Trouve, Arnaud
1993-01-01
The mean reaction rate in flamelet models for turbulent premixed combustion depends on two basic quantities: a mean chemical rate, called the flamelet speed, and the flame surface density. Our previous work had been primarily focused on the problem of the structure and topology of turbulent premixed flames, and it was then determined that the flamelet speed, when space-averaged, is only weakly sensitive to the turbulent flow field. Consequently, the flame surface density is the key quantity that conveys most of the effects of the turbulence on the rate of energy release. In flamelet models, this quantity is obtained via a modeled transport equation called the Sigma-equation. Past theoretical work has produced a rigorous approach that leads to an exact but unclosed formulation for the turbulent Sigma-equation. In the exact Sigma-equation, it appears that the dynamical properties of the flame surface density are determined by a single parameter, namely the turbulent flame stretch. Unfortunately, the turbulent flame stretch as well as the flame surface density is not available from experiments, and, in the absence of experimental data, little is known on the validity of the closure assumptions used in current flamelet models. Direct Numerical Simulation (DNS) is the alternative approach to get basic information on these fundamental quantities. In the present work, three-dimensional DNS of premixed flames in isotropic turbulent flow is used to estimate the different terms appearing in the Sigma-equation. A new methodology is proposed to provide the source and sink terms for the flame surface density, resolved both temporally and spatially throughout the turbulent flame brush. Using this methodology, our objective is to extract the turbulent flame stretch from the DNS data base and then perform extensive comparisons with flamelet models. Thanks to the detailed information produced by the DNS-based analysis, it is expected that this type of comparison will not only underscore the shortcomings of current models, but also suggest ways to improve them.
Temporal Large-Eddy Simulation
NASA Technical Reports Server (NTRS)
Pruett, C. D.; Thomas, B. C.
2004-01-01
In 1999, Stolz and Adams unveiled a subgrid-scale model for LES based upon approximately inverting (defiltering) the spatial grid-filter operator and termed .the approximate deconvolution model (ADM). Subsequently, the utility and accuracy of the ADM were demonstrated in a posteriori analyses of flows as diverse as incompressible plane-channel flow and supersonic compression-ramp flow. In a prelude to the current paper, a parameterized temporal ADM (TADM) was developed and demonstrated in both a priori and a posteriori analyses for forced, viscous Burger's flow. The development of a time-filtered variant of the ADM was motivated-primarily by the desire for a unifying theoretical and computational context to encompass direct numerical simulation (DNS), large-eddy simulation (LES), and Reynolds averaged Navier-Stokes simulation (RANS). The resultant methodology was termed temporal LES (TLES). To permit exploration of the parameter space, however, previous analyses of the TADM were restricted to Burger's flow, and it has remained to demonstrate the TADM and TLES methodology for three-dimensional flow. For several reasons, plane-channel flow presents an ideal test case for the TADM. Among these reasons, channel flow is anisotropic, yet it lends itself to highly efficient and accurate spectral numerical methods. Moreover, channel-flow has been investigated extensively by DNS, and a highly accurate data base of Moser et.al. exists. In the present paper, we develop a fully anisotropic TADM model and demonstrate its utility in simulating incompressible plane-channel flow at nominal values of Re(sub tau) = 180 and Re(sub tau) = 590 by the TLES method. The TADM model is shown to perform nearly as well as the ADM at equivalent resolution, thereby establishing TLES as a viable alternative to LES. Moreover, as the current model is suboptimal is some respects, there is considerable room to improve TLES.
A dynamic regularized gradient model of the subgrid-scale stress tensor for large-eddy simulation
NASA Astrophysics Data System (ADS)
Vollant, A.; Balarac, G.; Corre, C.
2016-02-01
Large-eddy simulation (LES) solves only the large scales part of turbulent flows by using a scales separation based on a filtering operation. The solution of the filtered Navier-Stokes equations requires then to model the subgrid-scale (SGS) stress tensor to take into account the effect of scales smaller than the filter size. In this work, a new model is proposed for the SGS stress model. The model formulation is based on a regularization procedure of the gradient model to correct its unstable behavior. The model is developed based on a priori tests to improve the accuracy of the modeling for both structural and functional performances, i.e., the model ability to locally approximate the SGS unknown term and to reproduce enough global SGS dissipation, respectively. LES is then performed for a posteriori validation. This work is an extension to the SGS stress tensor of the regularization procedure proposed by Balarac et al. ["A dynamic regularized gradient model of the subgrid-scale scalar flux for large eddy simulations," Phys. Fluids 25(7), 075107 (2013)] to model the SGS scalar flux. A set of dynamic regularized gradient (DRG) models is thus made available for both the momentum and the scalar equations. The second objective of this work is to compare this new set of DRG models with direct numerical simulations (DNS), filtered DNS in the case of classic flows simulated with a pseudo-spectral solver and with the standard set of models based on the dynamic Smagorinsky model. Various flow configurations are considered: decaying homogeneous isotropic turbulence, turbulent plane jet, and turbulent channel flows. These tests demonstrate the stable behavior provided by the regularization procedure, along with substantial improvement for velocity and scalar statistics predictions.
Vorticity filaments in two-dimensional turbulence: creation, stability and effect
NASA Astrophysics Data System (ADS)
Kevlahan, N. K.-R.; Farge, M.
1997-09-01
Vorticity filaments are characteristic structures of two-dimensional turbulence. The formation, persistence and effect of vorticity filaments are examined using a high-resolution direct numerical simulation (DNS) of the merging of two positive Gaussian vortices pushed together by a weaker negative vortex. Many intense spiral vorticity filaments are created during this interaction and it is shown using a wavelet packet decomposition that, as has been suggested, the coherent vortex stabilizes the filaments. This result is confirmed by a linear stability analysis at the edge of the vortex and by a calculation of the straining induced by the spiral structure of the filament in the vortex core. The time-averaged energy spectra for simulations using hyper-viscosity and Newtonian viscosity have slopes of [minus sign]3 and [minus sign]4 respectively. Apart from a much higher effective Reynolds number (which accounts for the difference in energy spectra), the hyper-viscous simulation has the same dynamics as the Newtonian viscosity simulation. A wavelet packet decomposition of the hyper-viscous simulation reveals that after the merger the energy spectra of the filamentary and coherent parts of the vorticity field have slopes of [minus sign]2 and [minus sign]6 respectively. An asymptotic analysis and DNS for weak external strain shows that a circular filament at a distance R from the vortex centre always reduces the deformation of a Lamb's (Gaussian) vortex in the region r[gt-or-equal, slanted]R. In the region r
One-dimensional turbulence modeling of a turbulent counterflow flame with comparison to DNS
Jozefik, Zoltan; Kerstein, Alan R.; Schmidt, Heiko; ...
2015-06-01
The one-dimensional turbulence (ODT) model is applied to a reactant-to-product counterflow configuration and results are compared with DNS data. The model employed herein solves conservation equations for momentum, energy, and species on a one dimensional (1D) domain corresponding to the line spanning the domain between nozzle orifice centers. The effects of turbulent mixing are modeled via a stochastic process, while the Kolmogorov and reactive length and time scales are explicitly resolved and a detailed chemical kinetic mechanism is used. Comparisons between model and DNS results for spatial mean and root-mean-square (RMS) velocity, temperature, and major and minor species profiles aremore » shown. The ODT approach shows qualitatively and quantitatively reasonable agreement with the DNS data. Scatter plots and statistics conditioned on temperature are also compared for heat release rate and all species. ODT is able to capture the range of results depicted by DNS. As a result, conditional statistics show signs of underignition.« less
Touring DNS Open Houses for Trends and Configurations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalafut, Prof. Andrew; Shue, Craig A; Gupta, Prof. Minaxi
2011-01-01
DNS is a critical component of the Internet. It maps domain names to IP addresses and serves as a distributed database for various other applications, including mail, Web, and spam filtering. This paper examines DNS zones in the Internet for diversity, adoption rates of new technologies, and prevalence of configuration issues. To gather data, we sweep 60% of the Internet's domains in June - August 2007 for zone transfers. 6.6% of them allow us to transfer their complete information. Surprisingly, this includes a large fraction of the domains deploying DNSSEC. We find that DNS zones vary significantly in size andmore » some span many ASes. Also, while anti-spam technologies appear to be getting deployed, the adoption rates of DNSSEC and IPv6 continue to be low. Finally, we also find that carelessness in handing DNS records can lead to reduced availability of name servers, email, and Web servers. This also undermines anti-spam efforts and the efforts to shut down phishing sites or to contain malware infections.« less
Bailón, Elvira; Cueto-Sola, Margarita; Utrilla, Pilar; Nieto, Ana; Garrido-Mesa, Natividad; Celada, Antonio; Zarzuelo, Antonio; Xaus, Jordi; Gálvez, Julio; Comalada, Mònica
2011-10-01
The dinitrofluorobenzene/dinitrosulfonic acid (DNFB/DNS) model was originally described as an experimental model of intestinal inflammation resembling human ulcerative colitis (UC). Due to the absence of acceptable UC experimental models for pharmacological preclinical assays, here we examine the immune response induced in this model. Balb/c mice were sensitized by skin application of DNFB on day 1, followed by an intrarectal challenge with DNS on day 5. We further expanded this model by administering a second DNS challenge on day 15. The features of colonic inflammation and immune response were evaluated. The changes observed in colonic tissue corresponded, in comparison to the trinitrobenzene sulfonic acid (TNBS) colitis model, to a mild mucosal effect in the colon, which spontaneously resolved in less than 5 days. Furthermore, the second hapten challenge did not exacerbate the inflammatory response. In contrast to other studies, we did not observe any clear involvement of tumor necrosis factor alpha (TNF-α) or other Th1 cytokines during the initial inflammatory response; however, we found that a more Th2-humoral response appeared to mediate the first contact with the hapten. An increased humoral response was detected during the second challenge, although an increased Th1/Th17-cytokine expression profile was also simultaneously observed. On the basis of these results, although the DNFB/DNS model can display some features found in human UC, it should be considered as a model for the study of the intestinal hypersensitivity seen, for example, during food allergy or irritable bowel syndrome but not intestinal inflammation per se. Copyright © 2010 Crohn's & Colitis Foundation of America, Inc.
McCleary, Barry V; McGeough, Paraic
2015-11-01
The most commonly used method for the measurement of the level of endo-xylanase in commercial enzyme preparations is the 3,5-dinitrosalicylic acid (DNS) reducing sugar method with birchwood xylan as substrate. It is well known that with the DNS method, much higher enzyme activity values are obtained than with the Nelson-Somogyi (NS) reducing sugar method. In this paper, we have compared the DNS and NS reducing sugar assays using a range of xylan-type substrates and accurately compared the molar response factors for xylose and a range of xylo-oligosaccharides. Purified beechwood xylan or wheat arabinoxylan is shown to be a suitable replacement for birchwood xylan which is no longer commercially available, and it is clearly demonstrated that the DNS method grossly overestimates endo-xylanase activity. Unlike the DNS assay, the NS assay gave the equivalent colour response with equimolar amounts of xylose, xylobiose, xylotriose and xylotetraose demonstrating that it accurately measures the quantity of glycosidic bonds cleaved by the endo-xylanase. The authors strongly recommend cessation of the use of the DNS assay for measurement of endo-xylanase due to the fact that the values obtained are grossly overestimated due to secondary reactions in colour development.
NASA Astrophysics Data System (ADS)
Konangi, S.; Palakurthi, N. K.; Karadimitriou, N.; Comer, K.; Ghia, U.
2017-12-01
We present results of pore-scale direct numerical simulations (DNS) of drainage and imbibition in a quasi-two-dimensional (40µm thickness) porous medium with a randomly distributed packing of cylindrical obstructions. The Navier-Stokes (NS) equations are solved in the pore space on an Eulerian mesh using the open-source finite-volume computational fluid dynamics (CFD) code, OpenFOAM. The Volume-of-Fluid (VOF) method is employed to track the evolution of the fluid-fluid interface; a static contact angle is used to account for wall adhesion. From the DNS data, we focus on the macroscopic capillary pressure-saturation (Pc-Sw) relation, which is known to be hysteretic, i.e., this relation is flow process (such as drainage, imbibition and scanning curves) and history dependent. In order to overcome the problem of hysteresis, extended theories of multiphase flow hypothesized that the inclusion of specific interfacial area as a state variable will result in a unique relation between capillary pressure, saturation and interfacial area (Pc-Sw-awn). We study the role of specific interfacial area on hysteresis in the macroscopic Pc-Sw relation under non-equilibrium (dynamic) conditions. Under dynamic conditions, capillary pressure depends on the rate of change of the wetting phase saturation, and the dynamic Pc-Sw relation includes the changes caused by viscous effects. Simulations of drainage and imbibition are performed for two capillary numbers by controlling the flow rate of the non-wetting (polydimenthlysiloxane oil) and wetting (water) fluids. From these simulations, the Pc-Sw curves will be estimated; the Pc-S-awn surface will be constructed to determine whether the data points from drainage and imbibition processes fall on a unique surface under transient conditions. Different macroscopic capillary pressure definitions based on phase-averaged pressures and interfacial area will be evaluated. Understanding macroscopic capillary pressure definitions and the uniqueness of the Pc-S- awn relation is step towards complete description of two-phase flow at the Darcy scale.
On the Universality of the Kolmogorov Constant in Numerical Simulations of Turbulence
NASA Technical Reports Server (NTRS)
Yeung, P. K.; Zhou, Ye
1997-01-01
Motivated by a recent survey of experimental data, we examine data on the Kolmogorov spectrum constant in numerical simulations of isotropic turbulence, using results both from previous studies and from new direct numerical simulations over a range of Reynolds numbers (up to 240 on the Taylor scale) at grid resolutions up to 512(exp 3). It is noted that in addition to k(exp -5/3) scaling, identification of a true inertial range requires spectral isotropy in the same wavenumber range. We found that a plateau in the compensated three-dimensional energy spectrum at k(eta) approx. = 0.1 - -0.2, commonly used to infer the Kolmogorov constant from the compensated three-dimensional energy spectrum, actually does not represent proper inertial range behavior. Rather, a proper, if still approximate, inertial range emerges at k(eta) approx. = 0.02 - 0.05 when R(sub lambda) increases beyond 140. The new simulations indicate proportionality constants C(sub 1) and C in the one- and three-dimensional energy spectra respectively about 0.60 and 1.62. If the turbulence were perfectly isotropic then use of isotropy relations in wavenumber space (C(sub 1) = 18/55 C) would imply that C(sub 1) approx. = 0.53 for C = 1.62, in excellent agreement with experiments. However the one- and three-dimensional estimates are not fully consistent, because of departures (due to numerical and statistical limitations) from isotropy of the computed spectra at low wavenumbers. The inertial scaling of structure functions in physical space is briefly addressed. Since DNS is still restricted to moderate Reynolds numbers, an accurate evaluation of the Kolmogorov constant is very difficult. We focus on providing new insights on the interpretation of Kolmogorov 1941 similarity in the DNS literature and do not consider issues pertaining to the refined similarity hypotheses of Kolmogorov (K62).
NASA Astrophysics Data System (ADS)
Fu, An; Palakurthi, Nikhil; Konangi, Santosh; Comer, Ken; Jog, Milind
2017-11-01
The physics of capillary flow is used widely in multiple fields. Lucas-Washburn equation is developed by using a single pore-sized capillary tube with continuous pore connection. Although this equation has been extended to describe the penetration kinetics into porous medium, multiple studies have indicated L-W does not accurately predict flow patterns in real porous media. In this study, the penetration kinetics including the effect of pore size and pore connectivity will be closely examined since they are expected to be the key factors effecting the penetration process. The Liquid wicking process is studied from a converging and diverging capillary tube to the complex virtual 3-D porous structures with Direct Numerical Simulation (DNS) using the Volume-Of-Fluid (VOF) method within the OpenFOAM CFD Solver. Additionally Porous Medium properties such as Permeability (k) , Tortuosity (τ) will be also analyzed.
Some Insights on Roughness Induced Transition and Control from DNS and Experiments
NASA Astrophysics Data System (ADS)
Suryanarayanan, Saikishan; Ibitayo, Ifeoluwa; Goldstein, David; Brown, Garry
2016-11-01
We study the receptivity and subsequent evolution of an initially laminar flat boundary layer on a flat plate to single and multiple discrete roughness elements (DRE) using a combination of immersed boundary DNS and water channel flow visualization experiments. We examine the transition caused by a single DRE and demonstrate the possibility of suppressing it by an appropriately designed second DRE in both DNS and experiments. The different phases of transition are identified and the roles of Reynolds numbers based on roughness height and boundary layer thickness are investigated. The underlying mechanisms in the observed transition and its control are understood by examining detailed vorticity flux balances. Connections are also made to recent developments in transient growth and streak instability. A unified picture is sought from a parametric study of different DRE dimensions and orientations. The potential applicability of the observations and understanding derived from this study to controlling transition caused by design and environmental roughness over aircraft wings is discussed. Supported by AFOSR # FA9550-15-1-0345.
Dental nurses as trainers and assessors: vocational dental trainer attitudes.
McKie, A E; Crowe, A; McCombes, W; Freeman, R
2010-11-01
To explore the attitudes of vocational dental trainers (VDTs) working in general dental practice to the role of dental nurses as trainers and assessors of trainee dental nurses (tDNs), vocational dental practitioners (VDPs) and vocational dental hygienist/therapists (VDHTs). This research was conducted within the context of the development of a training and assessment qualification for dental nurses. A survey was sent to all 148 VDTs in Scotland. The survey assessed VDT attitudes as to the appropriateness of dental nurses to train and assess tDNs, VDPs, VDHTs with regard to their clinical, communication-based and administrative duties. The three sets of attitudes for tDNS, VDPS and VDHTs were assessed on a five-point Likert scale ranging from 1 (strongly disagree) to 5 (strongly agree). The data were subjected to one way and repeated measures of ANOVA. A total of 126 VDTs responded giving an 85% response rate. For clinical, communication-based and administrative activities, VDTs had significantly greater mean scores for the appropriateness of DNs to train [F(1,57) = 45.69, P < 0.001] and assess [F(1,57) = 76.94, P < 0.001] tDNs compared with VDPs and VDHTs. Vocational dental trainers felt it was more appropriate for DNs to train and assess tDNs' clinical, communication-based and administrative activities compared with VDPs and VDHTs. Over 80% of dental trainers, however, indicated there would be benefit to their practice in having a dental nurse educated in the principles and application of training and assessment. © 2010 John Wiley & Sons A/S.
Hussein, A S; Ghanim, A M; Abu-Hassan, M I; Manton, D J
2014-10-01
Molar-incisor hypomineralisation (MIH) is a global dental problem, yet little is known about the knowledge of the general dental practitioners (GDPs) and dental nurses (DNs) regarding this defect in South East Asia. To assess and compare the knowledge of the GDPs and DNs in Malaysia regarding the frequency of occurrence of MIH within their practice, its diagnosis, putative aetiological factors and management. A questionnaire was distributed to GDPs and DNs during a nationwide dental conference in Melaka, Malaysia and who were asked to answer questions about demographic variables, knowledge, attitudes and practices in the management of MIH. Descriptive statistics and bivariate analysis were performed. A 5% level of statistical significance was applied for the analyses. A response rate of 58.2% (131/225) was obtained. Most respondents were aware of MIH and encountered it in their practice (GDPs = 82.5%, DNs = 82.4%). The condition was observed by respondents less in primary molars compared to first permanent molars. Full agreement between GDPs and DNs did not exist concerning the aetiological factors and management of MIH. Glass ionomer cements were the most popular material used in treating MIH. Most respondents (GDPs = 93%, DNs = 76.5%) indicated that they had not received sufficient information about MIH and were willing to have clinical training in the diagnosis and therapeutic modalities of MIH. MIH is identified and encountered by most respondents. Agreement did not exist between GDPs and DNs concerning MIH frequency of occurrence within their practice, its diagnosis, aetiological factors and management.
Discrimination of Dysplastic Nevi from Common Melanocytic Nevi by Cellular and Molecular Criteria.
Mitsui, Hiroshi; Kiecker, Felix; Shemer, Avner; Cannizzaro, Maria Vittoria; Wang, Claire Q F; Gulati, Nicholas; Ohmatsu, Hanako; Shah, Kejal R; Gilleaudeau, Patricia; Sullivan-Whalen, Mary; Cueto, Inna; McNutt, Neil Scott; Suárez-Fariñas, Mayte; Krueger, James G
2016-10-01
Dysplastic nevi (DNs), also known as Clark's nevi or atypical moles, are distinguished from common melanocytic nevi by variegation in pigmentation and clinical appearance, as well as differences in tissue patterning. However, cellular and molecular differences between DNs and common melanocytic nevi are not completely understood. Using cDNA microarray, quantitative RT-PCR, and immunohistochemistry, we molecularly characterized DNs and analyzed the difference between DNs and common melanocytic nevi. A total of 111 probesets (91 annotated genes, fold change > 2.0 and false discovery rate < 0.25) were differentially expressed between the two lesions. An unexpected finding in DNs was altered differentiation and activation of epidermal keratinocytes with increased expression of hair follicle-related molecules (keratin 25, trichohyalin, ribonuclease, RNase A family, 7) and inflammation-related molecules (S100A7, S100A8) at both genomic and protein levels. The immune microenvironment of DNs was characterized by an increase of T helper type 1 (IFNγ) and T helper type 2 (IL13) cytokines as well as an upregulation of oncostatin M and CXCL1. DUSP3, which regulates cellular senescence, was identified as one of the disease discriminative genes between DNs and common melanocytic nevi by three independent statistical approaches and its altered expression was confirmed by immunohistochemistry. The molecular and cellular changes in which the epidermal-melanin unit undergoes follicular differentiation as well as upregulation of defined cytokines could drive complex immune, epidermal, and pigmentary alterations. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Gomez-Mendoza, M; Marin, M Luisa; Miranda, Miguel A
2014-11-14
The aim of the present work is to develop two-channel emitters to probe local hydrophobicity by means of fluorescence quenching within different biomimetic supramolecular environments. To achieve this goal, the dansyl (Dns) and tryptophan (Trp) fluorophores have been covalently attached to cholic acid (CA) in order to ensure simultaneous incorporation of the two emitting units into the same compartment. In principle, the two fluorophores of the synthesized Dns-CA-Trp probes could either exhibit an orthogonal behavior or display excited state interactions. The fluorescence spectra of 3β-Dns-CA-Trp showed a residual Trp emission band at ca. 350 nm and an enhanced Dns maximum in the 500-550 nm region. This reveals a partial intramolecular energy transfer, which is consistent with the Dns and Trp singlet energies. Thus, the two photoactive units are not orthogonal; nevertheless, 3β-Dns-CA-Trp seems appropriate as a two-channel reporter for the supramolecular systems of interest. Fluorescence quenching of 3β-Dns-CA-Trp by iodide (which remains essentially in bulk water) was examined within sodium cholate, sodium taurocholate, sodium deoxycholate and mixed micelles. Interestingly, a decrease in the emission intensity of the two bands was observed with increasing iodide concentrations. The most remarkable effect was observed for mixed micelles, where the quenching rate constants were one order of magnitude lower than in solution. As anticipated, the quenching efficiency by iodide decreased with increasing hydrophobicity of the microenvironment, a trend that can be correlated with the relative accessibility of the probe to the ionic quencher.
Pericàs, J M; García-de-la-Mària, C; Brunet, M; Armero, Y; García-González, J; Casals, G; Almela, M; Quintana, E; Falces, C; Ninot, S; Fuster, D; Llopis, J; Marco, F; Moreno, A; Miró, J M
2017-06-01
Previous studies showed development of daptomycin non-susceptibility (DNS: MIC >4 mg/L) in Enterococcus faecalis infections. However, no studies have assessed the efficacy of the combination of daptomycin/ampicillin against E. faecalis strains developing DNS in the experimental endocarditis (EE) model. To assess the in vitro and in vivo efficacy of daptomycin at 10 mg/kg/day, daptomycin/ampicillin and ampicillin/ceftriaxone against two high-level aminoglycoside-resistant E. faecalis strains, one developing DNS after in vitro exposure to daptomycin and another that did not (DS). Subculture of 82 E. faecalis strains from patients with endocarditis with daptomycin MICs, time-kill and in vivo experiments using the EE model. 33% of the strains (27 of 82) displayed DNS after subculture with daptomycin. Daptomycin MIC rose from 0.5-2 to 8-16 mg/L. In time-kill experiments, when using a high inoculum (10 8 cfu/mL), daptomycin/ampicillin was synergistic for one-third of DS strains and none of DNS strains, while ampicillin/ceftriaxone retained synergy in all cases. In the EE model, daptomycin did not significantly reduce cfu/g from vegetations compared with control against either strain, while daptomycin/ampicillin reduced significantly more cfu/g than daptomycin against the DS strain, but not against the DNS strain [2.9 (2.0-4.1) versus 6.1 (4.5-8.0); P = 0.002]. Ampicillin/ceftriaxone was synergistic and bactericidal against both strains, displaying the same activity as daptomycin/ampicillin against the DS strain. Performance of an Etest for daptomycin MIC after subculture with daptomycin inhibitory doses on strains of high-level aminoglycoside-resistant E. faecalis endocarditis may be an easy test to predict the in vivo efficacy of daptomycin/ampicillin. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Berkiten, Güler; Kumral, Tolgar Lütfi; Saltürk, Ziya; Atar, Yavuz; Yildirim, Güven; Uyar, Yavuz; Aydoğdu, Imran; Arslanoğlu, Ahmet
2016-07-01
The aim of this study was to analyze the influence of deviated nasal septum (DNS) type on nasal mucociliary clearance, quality of life (QoL), olfactory function, and efficiency of nasal surgery (septoplasty with or without inferior turbinate reduction and partial middle turbinectomy). Fifty patients (20 females and 30 males) with septal deviation were included in the study and were divided into 6 groups according to deviation type after examination by nasal endoscopy and paranasal computed tomography. The saccharin clearance test to evaluate the nasal mucociliary clearance time, Connecticut Chemosensory Clinical Research Center smell test for olfactory function, and sinonasal outcome test-22 (SNOT-22) for patient satisfaction were applied preoperatively and postoperatively at the sixth week after surgery. Nasal mucociliary clearance, smell, and SNOT-22 scores were measured before surgery and at the sixth week following surgery. No significant difference was found in olfactory and SNOT-22 scores for any of the DNS types (both convex and concave sides) (P > 0.05). In addition, there was no difference in the saccharin clearance time (SCT) of the concave and convex sides (P > 0.05). According to the DNS type, the mean SCT of the convex sides showed no difference, but that of the concave sides showed a difference in types 3, 4, 5, and 6. These types had a prolonged SCT (P < 0.05). Olfactory scores revealed no difference postoperatively in types 5 and 6 but were decreased significantly in types 1 to 4 (P < 0.05). There was no significant difference in the healing of both the mucociliary clearance (MCC) and olfactory functions. SNOT-22 results showed a significant decrease in type 3. All DNS types disturb the QoL regarding nasal MCC and olfaction functions. MCC values, olfactory function, and QoL scores are similar among the DNS types. Both sides of the DNS types affect the MCC scores symmetrically. Septal surgery improves olfaction function and QoL at the sixth week following surgery but disturbs nasal MCC; thus, the sixth week is too early to assess nasal MCC.
Statistics of the relative velocity of particles in bidisperse turbulent suspensions
NASA Astrophysics Data System (ADS)
Bhatnagar, Akshay; Gustavsson, Kristian; Mehlig, Bernhard; Mitra, Dhrubaditya
2017-11-01
We calculate the joint probability distribution function (JPDF) of relative distances (R) and velocities (V with longitudinal component VR) of a pair of bidisperse heavy inertial particles in homogeneous and isotropic turbulent flows using direct numerical simulations (DNS). A recent paper (J. Meibohm, et. al. 2017), using statistical-model simulations and mathematical analysis of an one-dimensional white-noise model, has shown that the JPDF, P (R ,VR) , for two particles with Stokes numbers, St1 and St2 , can be interpreted in terms of StM , the harmonic mean of St1 and St2 and θ ≡ | St1 - St2 | / (St1 + St2) . For small θ there emerges a small-scale cutoff Rc and a small-velocity cutoff Vc such that for VR <
Bisetti, Fabrizio; Attili, Antonio; Pitsch, Heinz
2014-01-01
Combustion of fossil fuels is likely to continue for the near future due to the growing trends in energy consumption worldwide. The increase in efficiency and the reduction of pollutant emissions from combustion devices are pivotal to achieving meaningful levels of carbon abatement as part of the ongoing climate change efforts. Computational fluid dynamics featuring adequate combustion models will play an increasingly important role in the design of more efficient and cleaner industrial burners, internal combustion engines, and combustors for stationary power generation and aircraft propulsion. Today, turbulent combustion modelling is hindered severely by the lack of data that are accurate and sufficiently complete to assess and remedy model deficiencies effectively. In particular, the formation of pollutants is a complex, nonlinear and multi-scale process characterized by the interaction of molecular and turbulent mixing with a multitude of chemical reactions with disparate time scales. The use of direct numerical simulation (DNS) featuring a state of the art description of the underlying chemistry and physical processes has contributed greatly to combustion model development in recent years. In this paper, the analysis of the intricate evolution of soot formation in turbulent flames demonstrates how DNS databases are used to illuminate relevant physico-chemical mechanisms and to identify modelling needs. PMID:25024412
NASA Astrophysics Data System (ADS)
Vollant, A.; Balarac, G.; Corre, C.
2017-09-01
New procedures are explored for the development of models in the context of large eddy simulation (LES) of a passive scalar. They rely on the combination of the optimal estimator theory with machine-learning algorithms. The concept of optimal estimator allows to identify the most accurate set of parameters to be used when deriving a model. The model itself can then be defined by training an artificial neural network (ANN) on a database derived from the filtering of direct numerical simulation (DNS) results. This procedure leads to a subgrid scale model displaying good structural performance, which allows to perform LESs very close to the filtered DNS results. However, this first procedure does not control the functional performance so that the model can fail when the flow configuration differs from the training database. Another procedure is then proposed, where the model functional form is imposed and the ANN used only to define the model coefficients. The training step is a bi-objective optimisation in order to control both structural and functional performances. The model derived from this second procedure proves to be more robust. It also provides stable LESs for a turbulent plane jet flow configuration very far from the training database but over-estimates the mixing process in that case.
NASA Astrophysics Data System (ADS)
Paik, Seung Hoon; Kim, Ji Yeon; Shin, Sang Joon; Kim, Seung Jo
2004-07-01
Smart structures incorporating active materials have been designed and analyzed to improve aerospace vehicle performance and its vibration/noise characteristics. Helicopter integral blade actuation is one example of those efforts using embedded anisotropic piezoelectric actuators. To design and analyze such integrally-actuated blades, beam approach based on homogenization methodology has been traditionally used. Using this approach, the global behavior of the structures is predicted in an averaged sense. However, this approach has intrinsic limitations in describing the local behaviors in the level of the constituents. For example, the failure analysis of the individual active fibers requires the knowledge of the local behaviors. Microscopic approach for the analysis of integrally-actuated structures is established in this paper. Piezoelectric fibers and matrices are modeled individually and finite element method using three-dimensional solid elements is adopted. Due to huge size of the resulting finite element meshes, high performance computing technology is required in its solution process. The present methodology is quoted as Direct Numerical Simulation (DNS) of the smart structure. As an initial validation effort, present analytical results are correlated with the experiments from a small-scaled integrally-actuated blade, Active Twist Rotor (ATR). Through DNS, local stress distribution around the interface of fiber and matrix can be analyzed.
Shishkina, Olga; Wagner, Sebastian; Horn, Susanne
2014-03-01
We derive the asymptotes for the ratio of the thermal to viscous boundary layer thicknesses for infinite and infinitesimal Prandtl numbers Pr as functions of the angle β between the large-scale circulation and an isothermal heated or cooled surface for the case of turbulent thermal convection with laminar-like boundary layers. For this purpose, we apply the Falkner-Skan ansatz, which is a generalization of the Prandtl-Blasius one to a nonhorizontal free-stream flow above the viscous boundary layer. Based on our direct numerical simulations (DNS) of turbulent Rayleigh-Bénard convection for Pr=0.1, 1, and 10 and moderate Rayleigh numbers up to 108 we evaluate the value of β that is found to be around 0.7π for all investigated cases. Our theoretical predictions for the boundary layer thicknesses for this β and the considered Pr are in good agreement with the DNS results.
Equatorially trapped convection in a rapidly rotating shallow shell
NASA Astrophysics Data System (ADS)
Miquel, Benjamin; Xie, Jin-Han; Featherstone, Nicholas; Julien, Keith; Knobloch, Edgar
2018-05-01
Motivated by the recent discovery of subsurface oceans on planetary moons and the interest they have generated, we explore convective flows in shallow spherical shells of dimensionless gap width ɛ2≪1 in the rapid rotation limit E ≪1 , where E is the Ekman number. We employ direct numerical simulation (DNS) of the Boussinesq equations to compute the local heat flux Nu (λ ) as a function of the latitude λ and use the results to characterize the trapping of convection at low latitudes, around the equator. We show that these results are quantitatively reproduced by an asymptotically exact nonhydrostatic equatorial β -plane convection model at a much more modest computational cost than DNS. We identify the trapping parameter β =ɛ E-1 as the key parameter that controls the vigor and latitudinal extent of convection for moderate thermal forcing when E ˜ɛ and ɛ ↓0 . This model provides a theoretical paradigm for nonlinear investigations.
Toward topology-based characterization of small-scale mixing in compressible turbulence
NASA Astrophysics Data System (ADS)
Suman, Sawan; Girimaji, Sharath
2011-11-01
Turbulent mixing rate at small scales of motion (molecular mixing) is governed by the steepness of the scalar-gradient field which in turn is dependent upon the prevailing velocity gradients. Thus motivated, we propose a velocity-gradient topology-based approach for characterizing small-scale mixing in compressible turbulence. We define a mixing efficiency metric that is dependent upon the topology of the solenoidal and dilatational deformation rates of a fluid element. The mixing characteristics of solenoidal and dilatational velocity fluctuations are clearly delineated. We validate this new approach by employing mixing data from direct numerical simulations (DNS) of compressible decaying turbulence with passive scalar. For each velocity-gradient topology, we compare the mixing efficiency predicted by the topology-based model with the corresponding conditional scalar variance obtained from DNS. The new mixing metric accurately distinguishes good and poor mixing topologies and indeed reasonably captures the numerical values. The results clearly demonstrate the viability of the proposed approach for characterizing and predicting mixing in compressible flows.
NASA Astrophysics Data System (ADS)
Araya, Guillermo; Jansen, Kenneth
2017-11-01
DNS of compressible spatially-developing turbulent boundary layers is performed at a Mach number of 2.5 over an isothermal flat plate. Turbulent inflow information is generated by following the concept of the rescaling-recycling approach introduced by Lund et al. (J. Comp. Phys. 140, 233-258, 1998); although, the proposed methodology is extended to compressible flows. Furthermore, a dynamic approach is employed to connect the friction velocities at the inlet and recycle stations (i.e., there is no need of an empirical correlation as in Lund et al.). Additionally, the Morkovin's Strong Reynolds Analogy (SRA) is used in the rescaling process of the thermal fluctuations from the recycle plane. Low/high order flow statistics is compared with direct simulations of an incompressible isothermal ZPG boundary layer at similar Reynolds numbers and temperature regarded as a passive scalar. Focus is given to the effect assessment of flow compressibility on the dynamics of thermal coherent structures. AFOSR #FA9550-17-1-0051.
Large-Eddy Simulation of Conductive Flows at Low Magnetic Reynolds Number
NASA Technical Reports Server (NTRS)
Knaepen, B.; Moin, P.
2003-01-01
In this paper we study the LES method with dynamic procedure in the context of conductive flows subject to an applied external magnetic field at low magnetic Reynolds number R(sub m). These kind of flows are encountered in many industrial applications. For example, in the steel industry, applied magnetic fields can be used to damp turbulence in the casting process. In nuclear fusion devices (Tokamaks), liquid-lithium flows are used as coolant blankets and interact with the surrounding magnetic field that drives and confines the fusion plasma. Also, in experimental facilities investigating the dynamo effect, the flow consists of liquid-sodium for which the Prandtl number and, as a consequence, the magnetic Reynolds number is low. Our attention is focused here on the case of homogeneous (initially isotropic) decaying turbulence. The numerical simulations performed mimic the thought experiment described in Moffatt in which an initially homogeneous isotropic conductive flow is suddenly subjected to an applied magnetic field and freely decays without any forcing. Note that this flow was first studied numerically by Schumann. It is well known that in that case, extra damping of turbulence occurs due to the Joule effect and that the flow tends to become progressively independent of the coordinate along the direction of the magnetic field. Our comparison of filtered direct numerical simulation (DNS) predictions and LES predictions show that the dynamic Smagorinsky model enables one to capture successfully the flow with LES, and that it automatically incorporates the effect of the magnetic field on the turbulence. Our paper is organized as follows. In the next section we summarize the LES approach in the case of MHD turbulence at low R(sub m) and recall the definition of the dynamic Smagorinsky model. In Sec. 3 we describe the parameters of the numerical experiments performed and the code used. Section 4 is devoted to the comparison of filtered DNS results and LES results. Conclusions are presented in Sec. 5.
A Two-length Scale Turbulence Model for Single-phase Multi-fluid Mixing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwarzkopf, J. D.; Livescu, D.; Baltzer, J. R.
2015-09-08
A two-length scale, second moment turbulence model (Reynolds averaged Navier-Stokes, RANS) is proposed to capture a wide variety of single-phase flows, spanning from incompressible flows with single fluids and mixtures of different density fluids (variable density flows) to flows over shock waves. The two-length scale model was developed to address an inconsistency present in the single-length scale models, e.g. the inability to match both variable density homogeneous Rayleigh-Taylor turbulence and Rayleigh-Taylor induced turbulence, as well as the inability to match both homogeneous shear and free shear flows. The two-length scale model focuses on separating the decay and transport length scales,more » as the two physical processes are generally different in inhomogeneous turbulence. This allows reasonable comparisons with statistics and spreading rates over such a wide range of turbulent flows using a common set of model coefficients. The specific canonical flows considered for calibrating the model include homogeneous shear, single-phase incompressible shear driven turbulence, variable density homogeneous Rayleigh-Taylor turbulence, Rayleigh-Taylor induced turbulence, and shocked isotropic turbulence. The second moment model shows to compare reasonably well with direct numerical simulations (DNS), experiments, and theory in most cases. The model was then applied to variable density shear layer and shock tube data and shows to be in reasonable agreement with DNS and experiments. Additionally, the importance of using DNS to calibrate and assess RANS type turbulence models is highlighted.« less
NASA Astrophysics Data System (ADS)
Moreto, Jose; Liu, Xiaofeng
2017-11-01
The accuracy of the Rotating Parallel Ray omnidirectional integration for pressure reconstruction from the measured pressure gradient (Liu et al., AIAA paper 2016-1049) is evaluated against both the Circular Virtual Boundary omnidirectional integration (Liu and Katz, 2006 and 2013) and the conventional Poisson equation approach. Dirichlet condition at one boundary point and Neumann condition at all other boundary points are applied to the Poisson solver. A direct numerical simulation database of isotropic turbulence flow (JHTDB), with a homogeneously distributed random noise added to the entire field of DNS pressure gradient, is used to assess the performance of the methods. The random noise, generated by the Matlab function Rand, has a magnitude varying randomly within the range of +/-40% of the maximum DNS pressure gradient. To account for the effect of the noise distribution pattern on the reconstructed pressure accuracy, a total of 1000 different noise distributions achieved by using different random number seeds are involved in the evaluation. Final results after averaging the 1000 realizations show that the error of the reconstructed pressure normalized by the DNS pressure variation range is 0.15 +/-0.07 for the Poisson equation approach, 0.028 +/-0.003 for the Circular Virtual Boundary method and 0.027 +/-0.003 for the Rotating Parallel Ray method, indicating the robustness of the Rotating Parallel Ray method in pressure reconstruction. Sponsor: The San Diego State University UGP program.
NASA Astrophysics Data System (ADS)
Chen, Jincai; Jin, Guodong; Zhang, Jian
2016-03-01
The rotational motion and orientational distribution of ellipsoidal particles in turbulent flows are of significance in environmental and engineering applications. Whereas the translational motion of an ellipsoidal particle is controlled by the turbulent motions at large scales, its rotational motion is determined by the fluid velocity gradient tensor at small scales, which raises a challenge when predicting the rotational dispersion of ellipsoidal particles using large eddy simulation (LES) method due to the lack of subgrid scale (SGS) fluid motions. We report the effects of the SGS fluid motions on the orientational and rotational statistics, such as the alignment between the long axis of ellipsoidal particles and the vorticity, the mean rotational energy at various aspect ratios against those obtained with direct numerical simulation (DNS) and filtered DNS. The performances of a stochastic differential equation (SDE) model for the SGS velocity gradient seen by the particles and the approximate deconvolution method (ADM) for LES are investigated. It is found that the missing SGS fluid motions in LES flow fields have significant effects on the rotational statistics of ellipsoidal particles. Alignment between the particles and the vorticity is weakened; and the rotational energy of the particles is reduced in LES. The SGS-SDE model leads to a large error in predicting the alignment between the particles and the vorticity and over-predicts the rotational energy of rod-like particles. The ADM significantly improves the rotational energy prediction of particles in LES.
LES of Temporally Evolving Mixing Layers by an Eighth-Order Filter Scheme
NASA Technical Reports Server (NTRS)
Hadjadj, A; Yee, H. C.; Sjogreen, B.
2011-01-01
An eighth-order filter method for a wide range of compressible flow speeds (H.C. Yee and B. Sjogreen, Proceedings of ICOSAHOM09, June 22-26, 2009, Trondheim, Norway) are employed for large eddy simulations (LES) of temporally evolving mixing layers (TML) for different convective Mach numbers (Mc) and Reynolds numbers. The high order filter method is designed for accurate and efficient simulations of shock-free compressible turbulence, turbulence with shocklets and turbulence with strong shocks with minimum tuning of scheme parameters. The value of Mc considered is for the TML range from the quasi-incompressible regime to the highly compressible supersonic regime. The three main characteristics of compressible TML (the self similarity property, compressibility effects and the presence of large-scale structure with shocklets for high Mc) are considered for the LES study. The LES results using the same scheme parameters for all studied cases agree well with experimental results of Barone et al. (2006), and published direct numerical simulations (DNS) work of Rogers & Moser (1994) and Pantano & Sarkar (2002).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krisman, Alex; Hawkes, Evatt R.; Talei, Mohsen
In diesel engines, combustion is initiated by a two-staged autoignition that includes both low- and high-temperature chemistry. The location and timing of both stages of autoignition are important parameters that influence the development and stabilisation of the flame. In this study, a two-dimensional direct numerical simulation (DNS) is conducted to provide a fully resolved description of ignition at diesel engine-relevant conditions. The DNS is performed at a pressure of 40 atmospheres and at an ambient temperature of 900 K using dimethyl ether (DME) as the fuel, with a 30 species reduced chemical mechanism. At these conditions, similar to diesel fuel,more » DME exhibits two-stage ignition. The focus of this study is on the behaviour of the low-temperature chemistry (LTC) and the way in which it influences the high-temperature ignition. The results show that the LTC develops as a “spotty” first-stage autoignition in lean regions which transitions to a diffusively supported cool-flame and then propagates up the local mixture fraction gradient towards richer regions. The cool-flame speed is much faster than can be attributed to spatial gradients in first-stage ignition delay time in homogeneous reactors. The cool-flame causes a shortening of the second-stage ignition delay times compared to a homogeneous reactor and the shortening becomes more pronounced at richer mixtures. Multiple high-temperature ignition kernels are observed over a range of rich mixtures that are much richer than the homogeneous most reactive mixture and most kernels form much earlier than suggested by the homogeneous ignition delay time of the corresponding local mixture. Altogether, the results suggest that LTC can strongly influence both the timing and location in composition space of the high-temperature ignition.« less
NASA Astrophysics Data System (ADS)
Yang, Juan-Cheng; Li, Feng-Chen; Cai, Wei-Hua; Zhang, Hong-Na; Yu, Bo
2015-08-01
Our previous experimental studies have confirmed that viscoelastic-fluid-based nanofluid (VFBN) prepared by suspending nanoparticles in a viscoelastic base fluid (VBF, behaves drag reduction at turbulent flow state) can reduce turbulent flow resistance as compared with water and enhance heat transfer as compared with VBF. Direct numerical simulation (DNS) is performed in this study to explore the mechanisms of heat transfer enhancement (HTE) and flow drag reduction (DR) for the VFBN turbulent flow. The Giesekus model is used as the constitutive equation for VFBN. Our previously proposed thermal dispersion model is adopted to take into account the thermal dispersion effects of nanoparticles in the VFBN turbulent flow. The DNS results show similar behaviors for flow resistance and heat transfer to those obtained in our previous experiments. Detailed analyses are conducted for the turbulent velocity, temperature, and conformation fields obtained by DNSs for different fluid cases, and for the friction factor with viscous, turbulent, and elastic contributions and heat transfer rate with conductive, turbulent and thermal dispersion contributions of nanoparticles, respectively. The mechanisms of HTE and DR of VFBN turbulent flows are then discussed. Based on analogy theory, the ratios of Chilton-Colburn factor to friction factor for different fluid flow cases are investigated, which from another aspect show the significant enhancement in heat transfer performance for some cases of water-based nanofluid and VFBN turbulent flows. Project supported by the National Natural Science Foundation of China (Grant No. 51276046), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20112302110020), the China Postdoctoral Science Foundation (Grant No. 2014M561037), and the President Fund of University of Chinese Academy of Sciences, China (Grant No. Y3510213N00).
Fick, Lambert H.; Merzari, Elia; Hassan, Yassin A.
2017-02-20
Computational analyses of fluid flow through packed pebble bed domains using the Reynolds-averaged NavierStokes framework have had limited success in the past. Because of a lack of high-fidelity experimental or computational data, optimization of Reynolds-averaged closure models for these geometries has not been extensively developed. In the present study, direct numerical simulation was employed to develop a high-fidelity database that can be used for optimizing Reynolds-averaged closure models for pebble bed flows. A face-centered cubic domain with periodic boundaries was used. Flow was simulated at a Reynolds number of 9308 and cross-verified by using available quasi-DNS data. During the simulations,more » low-frequency instability modes were observed that affected the stationary solution. Furthermore, these instabilities were investigated by using the method of proper orthogonal decomposition, and a correlation was found between the time-dependent asymmetry of the averaged velocity profile data and the behavior of the highest energy eigenmodes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fick, Lambert H.; Merzari, Elia; Hassan, Yassin A.
Computational analyses of fluid flow through packed pebble bed domains using the Reynolds-averaged NavierStokes framework have had limited success in the past. Because of a lack of high-fidelity experimental or computational data, optimization of Reynolds-averaged closure models for these geometries has not been extensively developed. In the present study, direct numerical simulation was employed to develop a high-fidelity database that can be used for optimizing Reynolds-averaged closure models for pebble bed flows. A face-centered cubic domain with periodic boundaries was used. Flow was simulated at a Reynolds number of 9308 and cross-verified by using available quasi-DNS data. During the simulations,more » low-frequency instability modes were observed that affected the stationary solution. Furthermore, these instabilities were investigated by using the method of proper orthogonal decomposition, and a correlation was found between the time-dependent asymmetry of the averaged velocity profile data and the behavior of the highest energy eigenmodes.« less
Direct numerical simulation of a high Ka CH 4/air stratified premixed jet flame
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Haiou; Hawkes, Evatt R.; Savard, Bruno
Here, direct numerical simulation (DNS) of a high Karlovitz number (Ka) CH 4/air stratified premixed jet flame was performed and used to provide insights into fundamentals of turbulent stratified premixed flames and their modelling implications. The flame exhibits significant stratification where the central jet has an equivalence ratio of 0.4, which is surrounded by a pilot flame with an equivalence ratio of 0.9. A reduced chemical mechanism for CH 4/air combustion based on GRI-Mech3.0 was used, including 268 elementary reactions and 28 transported species.
Direct numerical simulation of a high Ka CH 4/air stratified premixed jet flame
Wang, Haiou; Hawkes, Evatt R.; Savard, Bruno; ...
2018-04-24
Here, direct numerical simulation (DNS) of a high Karlovitz number (Ka) CH 4/air stratified premixed jet flame was performed and used to provide insights into fundamentals of turbulent stratified premixed flames and their modelling implications. The flame exhibits significant stratification where the central jet has an equivalence ratio of 0.4, which is surrounded by a pilot flame with an equivalence ratio of 0.9. A reduced chemical mechanism for CH 4/air combustion based on GRI-Mech3.0 was used, including 268 elementary reactions and 28 transported species.
NASA Astrophysics Data System (ADS)
Clay, M. P.; Buaria, D.; Gotoh, T.; Yeung, P. K.
2017-10-01
A new dual-communicator algorithm with very favorable performance characteristics has been developed for direct numerical simulation (DNS) of turbulent mixing of a passive scalar governed by an advection-diffusion equation. We focus on the regime of high Schmidt number (S c), where because of low molecular diffusivity the grid-resolution requirements for the scalar field are stricter than those for the velocity field by a factor √{ S c }. Computational throughput is improved by simulating the velocity field on a coarse grid of Nv3 points with a Fourier pseudo-spectral (FPS) method, while the passive scalar is simulated on a fine grid of Nθ3 points with a combined compact finite difference (CCD) scheme which computes first and second derivatives at eighth-order accuracy. A static three-dimensional domain decomposition and a parallel solution algorithm for the CCD scheme are used to avoid the heavy communication cost of memory transposes. A kernel is used to evaluate several approaches to optimize the performance of the CCD routines, which account for 60% of the overall simulation cost. On the petascale supercomputer Blue Waters at the University of Illinois, Urbana-Champaign, scalability is improved substantially with a hybrid MPI-OpenMP approach in which a dedicated thread per NUMA domain overlaps communication calls with computational tasks performed by a separate team of threads spawned using OpenMP nested parallelism. At a target production problem size of 81923 (0.5 trillion) grid points on 262,144 cores, CCD timings are reduced by 34% compared to a pure-MPI implementation. Timings for 163843 (4 trillion) grid points on 524,288 cores encouragingly maintain scalability greater than 90%, although the wall clock time is too high for production runs at this size. Performance monitoring with CrayPat for problem sizes up to 40963 shows that the CCD routines can achieve nearly 6% of the peak flop rate. The new DNS code is built upon two existing FPS and CCD codes. With the grid ratio Nθ /Nv = 8, the disparity in the computational requirements for the velocity and scalar problems is addressed by splitting the global communicator MPI_COMM_WORLD into disjoint communicators for the velocity and scalar fields, respectively. Inter-communicator transfer of the velocity field from the velocity communicator to the scalar communicator is handled with discrete send and non-blocking receive calls, which are overlapped with other operations on the scalar communicator. For production simulations at Nθ = 8192 and Nv = 1024 on 262,144 cores for the scalar field, the DNS code achieves 94% strong scaling relative to 65,536 cores and 92% weak scaling relative to Nθ = 1024 and Nv = 128 on 512 cores.
Differential nuclear staining assay for high-throughput screening to identify cytotoxic compounds.
Lema, Carolina; Varela-Ramirez, Armando; Aguilera, Renato J
As large quantities of novel synthetic molecules continue to be generated there is a challenge to identify therapeutic agents with cytotoxic activity. Here we introduce a Differential Nuclear Staining (DNS) assay adapted to live-cell imaging for high throughput screening (HTS) that utilizes two fluorescent DNA intercalators, Hoechst 33342 and Propidium iodide (PI). Since Hoechst can readily cross cell membranes to stain DNA of living and dead cells, it was used to label the total number of cells. In contrast, PI only enters cells with compromised plasma membranes, thus selectively labeling dead cells. The DNS assay was successfully validated by utilizing well known cytotoxic agents with fast or slow cytotoxic activities. The assay was found to be suitable for HTS with Z' factors ranging from 0.86 to 0.60 for 96 and 384-well formats, respectively. Furthermore, besides plate-to-plate reproducibility, assay quality performance was evaluated by determining ratios of signal-to-noise and signal-to-background, as well as coefficient of variation, which resulted in adequate values and validated the assay for HTS initiatives. As proof of concept, eighty structurally diverse compounds from a small molecule library were screened in a 96-well plate format using the DNS assay. Using this DNS assay, six hits with cytotoxic properties were identified and all of them were also successfully identified by using the commercially available MTS assay (CellTiter 96® Cell Proliferation Assay). In addition, the DNS and a flow cytometry assay were used to validate the activity of the cytotoxic compounds. The DNS assay was also used to generate dose-response curves and to obtain CC 50 values. The results indicate that the DNS assay is reliable and robust and suitable for primary and secondary screens of compounds with potential cytotoxic activity.
Differential nuclear staining assay for high-throughput screening to identify cytotoxic compounds
LEMA, Carolina; VARELA-RAMIREZ, Armando; AGUILERA, Renato J.
2016-01-01
As large quantities of novel synthetic molecules continue to be generated there is a challenge to identify therapeutic agents with cytotoxic activity. Here we introduce a Differential Nuclear Staining (DNS) assay adapted to live-cell imaging for high throughput screening (HTS) that utilizes two fluorescent DNA intercalators, Hoechst 33342 and Propidium iodide (PI). Since Hoechst can readily cross cell membranes to stain DNA of living and dead cells, it was used to label the total number of cells. In contrast, PI only enters cells with compromised plasma membranes, thus selectively labeling dead cells. The DNS assay was successfully validated by utilizing well known cytotoxic agents with fast or slow cytotoxic activities. The assay was found to be suitable for HTS with Z′ factors ranging from 0.86 to 0.60 for 96 and 384-well formats, respectively. Furthermore, besides plate-to-plate reproducibility, assay quality performance was evaluated by determining ratios of signal-to-noise and signal-to-background, as well as coefficient of variation, which resulted in adequate values and validated the assay for HTS initiatives. As proof of concept, eighty structurally diverse compounds from a small molecule library were screened in a 96-well plate format using the DNS assay. Using this DNS assay, six hits with cytotoxic properties were identified and all of them were also successfully identified by using the commercially available MTS assay (CellTiter 96® Cell Proliferation Assay). In addition, the DNS and a flow cytometry assay were used to validate the activity of the cytotoxic compounds. The DNS assay was also used to generate dose-response curves and to obtain CC50 values. The results indicate that the DNS assay is reliable and robust and suitable for primary and secondary screens of compounds with potential cytotoxic activity. PMID:27042697
Leveraging Client-Side DNS Failure Patterns to Identify Malicious Behaviors
2015-09-28
malicious behavior found in our dataset and (ii) to create ground truth to evaluate the system proposed in Section V. We begin by removing those cases that...2011. [10] S. Hao, N. Feamster, and R. Pandrangi, “Monitoring the Initial DNS Behavior of Malicious Domains,” in ACM IMC , 2011. [11] R. Perdisci et...distribution is unlimited. Leveraging Client-Side DNS Failure Patterns to Identify Malicious Behaviors The views, opinions and/or findings contained in
CO2 convective dissolution controlled by temporal changes in free-phase CO2 properties
NASA Astrophysics Data System (ADS)
Jafari Raad, S. M.; Emami-Meybodi, H.; Hassanzadeh, H.
2017-12-01
Understanding the factors that control CO2 convective dissolution, which is one of the permanent trapping mechanisms, in the deep saline aquifer is crucial in the long-term fate of the injected CO2. The present study investigates the effects of temporal changes in the solubility of CO2 at the free-phase CO2/brine interface on the onset of natural convection and the subsequent convective mixing by conducting linear stability analyses (LSA) and direct numerical simulations (DNS). A time-dependent concentration boundary is considered for the free-phase CO2/brine interface where the CO2 concentration first decreases with the time and then remains constant. The LSA results show that the temporal variation in the concentration increases the onset of natural convection up to two orders of magnitude. In addition, the critical Rayleigh number significantly increases as CO2 concentration decreases. In other words, size and pressure of the injected CO2 affect the commencement of convective mixing. Based on LSA results, several scaling relations are proposed to correlate critical Rayleigh number, critical time, and its corresponding wavenumbers with time-dependent boundary's parameters, such as concentration decline rate and equilibrium concentration ratio. The DNS results reveal that the convective fingering patterns are significantly influenced by the variation of CO2 concentration at the interface. These findings improve our understanding of CO2 solubility trapping and are particularly important in estimation of potential storage capacity, risk assessment, and storage sites characterization and screening. Keywords: CO2 sequestration; natural convection; solubility trapping; time-dependent boundary condition; numerical simulation; stability analysis
High Resolution DNS of Turbulent Flows using an Adaptive, Finite Volume Method
NASA Astrophysics Data System (ADS)
Trebotich, David
2014-11-01
We present a new computational capability for high resolution simulation of incompressible viscous flows. Our approach is based on cut cell methods where an irregular geometry such as a bluff body is intersected with a rectangular Cartesian grid resulting in cut cells near the boundary. In the cut cells we use a conservative discretization based on a discrete form of the divergence theorem to approximate fluxes for elliptic and hyperbolic terms in the Navier-Stokes equations. Away from the boundary the method reduces to a finite difference method. The algorithm is implemented in the Chombo software framework which supports adaptive mesh refinement and massively parallel computations. The code is scalable to 200,000 + processor cores on DOE supercomputers, resulting in DNS studies at unprecedented scale and resolution. For flow past a cylinder in transition (Re = 300) we observe a number of secondary structures in the far wake in 2D where the wake is over 120 cylinder diameters in length. These are compared with the more regularized wake structures in 3D at the same scale. For flow past a sphere (Re = 600) we resolve an arrowhead structure in the velocity in the near wake. The effectiveness of AMR is further highlighted in a simulation of turbulent flow (Re = 6000) in the contraction of an oil well blowout preventer. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Applied Mathematics program under Contract Number DE-AC02-05-CH11231.
Two-step simulation of velocity and passive scalar mixing at high Schmidt number in turbulent jets
NASA Astrophysics Data System (ADS)
Rah, K. Jeff; Blanquart, Guillaume
2016-11-01
Simulation of passive scalar in the high Schmidt number turbulent mixing process requires higher computational cost than that of velocity fields, because the scalar is associated with smaller length scales than velocity. Thus, full simulation of both velocity and passive scalar with high Sc for a practical configuration is difficult to perform. In this work, a new approach to simulate velocity and passive scalar mixing at high Sc is suggested to reduce the computational cost. First, the velocity fields are resolved by Large Eddy Simulation (LES). Then, by extracting the velocity information from LES, the scalar inside a moving fluid blob is simulated by Direct Numerical Simulation (DNS). This two-step simulation method is applied to a turbulent jet and provides a new way to examine a scalar mixing process in a practical application with smaller computational cost. NSF, Samsung Scholarship.
Campa-Moran, Irene; Rey-Gudin, Etelvina; Fernández-Carnero, Josué; Paris-Alemany, Alba; Gil-Martinez, Alfonso; Lerma Lara, Sergio; Prieto-Baquero, Almudena; Alonso-Perez, José Luis; La Touche, Roy
2015-01-01
Objective. The aim of this study was to compare the efficacy of three interventions for the treatment of myofascial chronic neck pain. Methods. Thirty-six patients were randomly assigned to one of three intervention groups: orthopedic manual therapy (OMT), dry needling and stretching (DN-S), and soft tissue techniques (STT). All groups received two treatment sessions with a 48 h time interval. Outcome measures included neck pain intensity measured using a visual analogue scale, cervical range of motion (ROM), pressure pain threshold for measuring mechanical hyperalgesia, and two self-reported questionnaires (neck disability index and pain catastrophizing scale). Results. The ANOVA revealed significant differences for the group × time interaction for neck disability, neck pain intensity, and pain catastrophizing. The DN-S and OMT groups reduced neck disability. Only the OMT group showed decreases in mechanical hyperalgesia and pain catastrophizing. The cervical ROM increased in OMT (i.e., flexion, side-bending, and rotation) and DN-S (i.e., side-bending and rotation) groups. Conclusions. The three interventions are all effective in reducing pain intensity. Reduction in mechanical hyperalgesia and pain catastrophizing was only observed in the OMT group. Cervical ROM improved in the DN-S and OMT groups and also neck disability being only clinically relevant for OMT group. PMID:26640708
NASA Astrophysics Data System (ADS)
Samanta, Gaurab; Beris, Antony; Handler, Robert; Housiadas, Kostas
2009-03-01
Karhunen-Loeve (KL) analysis of DNS data of viscoelastic turbulent channel flows helps us to reveal more information on the time-dependent dynamics of viscoelastic modification of turbulence [Samanta et. al., J. Turbulence (in press), 2008]. A selected set of KL modes can be used for a data reduction modeling of these flows. However, it is pertinent that verification be done against established DNS results. For this purpose, we did comparisons of velocity and conformations statistics and probability density functions (PDFs) of relevant quantities obtained from DNS and reconstructed fields using selected KL modes and time-dependent coefficients. While the velocity statistics show good agreement between results from DNS and KL reconstructions even with just hundreds of KL modes, tens of thousands of KL modes are required to adequately capture the trace of polymer conformation resulting from DNS. New modifications to KL method have therefore been attempted to account for the differences in conformation statistics. The applicability and impact of these new modified KL methods will be discussed in the perspective of data reduction modeling.
PSR J1930-1852: a Pulsar in the Widest Known Orbit around Another Neutron Star
NASA Astrophysics Data System (ADS)
Swiggum, J. K.; Rosen, R.; McLaughlin, M. A.; Lorimer, D. R.; Heatherly, S.; Lynch, R.; Scoles, S.; Hockett, T.; Filik, E.; Marlowe, J. A.; Barlow, B. N.; Weaver, M.; Hilzendeger, M.; Ernst, S.; Crowley, R.; Stone, E.; Miller, B.; Nunez, R.; Trevino, G.; Doehler, M.; Cramer, A.; Yencsik, D.; Thorley, J.; Andrews, R.; Laws, A.; Wenger, K.; Teter, L.; Snyder, T.; Dittmann, A.; Gray, S.; Carter, M.; McGough, C.; Dydiw, S.; Pruett, C.; Fink, J.; Vanderhout, A.
2015-06-01
In the summer of 2012, during a Pulsar Search Collaboratory workshop, two high-school students discovered J1930-1852, a pulsar in a double neutron star (DNS) system. Most DNS systems are characterized by short orbital periods, rapid spin periods, and eccentric orbits. However, J1930-1852 has the longest spin period ({{P}spin} ˜ 185 ms) and orbital period ({{P}b} ˜ 45 days) yet measured among known, recycled pulsars in DNS systems, implying a shorter than average and/or inefficient recycling period before its companion went supernova. We measure the relativistic advance of periastron for J1930-1852, \\dot{ω }=0.00078 (4) deg yr-1, which implies a total mass ({{M}tot}=2.59 (4) {{M}⊙ }) consistent with other DNS systems. The 2σ constraints on {{M}tot} place limits on the pulsar and companion masses ({{m}p}\\lt 1.32 {{M}⊙ } and {{m}c}\\gt 1.30 {{M}⊙ } respectively). J1930-1852’s spin and orbital parameters challenge current DNS population models and make J1930-1852 an important system for further investigation.
Piezoelectric sensing: Evaluation for clinical investigation of deviated nasal septum
Manjunatha, Roopa G.; Mahapatra, Roy D.; Dorasala, Srinivas
2013-01-01
Noninvasive objective evaluation of nasal airflow is one of the important clinical aspects. The developed polyvinylidene fluoride (PVDF) sensor enables measurement of airflow through each side of the nose using its piezoelectric property. This study was designed to evaluate the diagnostic capability of the PVDF sensor in assessing the deviated nasal septum (DNS). PVDF nasal sensor uses its piezoelectric property to measure the peak-to-peak amplitude (Vp-p) of nasal airflow in both of the nostrils: right nostril (RN) and left nostril (LN), separately and simultaneously. We have compared the results of PVDF nasal sensor, visual analog scale (VAS), and clinician scale for 34 DNS patients and 28 healthy controls. Additionally, the results were further analyzed by receiver operating characteristic curve and correlation between PVDF nasal sensor and VAS in detecting DNS. We found a significant difference in the peak-to-peak amplitude values of the test group and the control group. The correlation between the PVDF nasal sensor measurements and VAS (RN and LN combined) for test group was statistically significant (−0.807; p < 0.001). Sensitivity and specificity of the PVDF nasal sensor measurements in the detection of DNS (RN and LN combined) was 85.3 and 74.4%, respectively, with optimum cutoff value ≤0.34 Vp-p. The developed PVDF nasal sensor is noninvasive and requires less patient efforts. The sensitivity and specificity of the PVDF nasal sensor are reliable. According to our findings, we propose that the said PVDF nasal sensor can be used as a new diagnostic tool to evaluate the DNS in routine clinical practice. PMID:24498519
The extracellular nuclease Dns and its role in natural transformation of Vibrio cholerae.
Blokesch, Melanie; Schoolnik, Gary K
2008-11-01
Free extracellular DNA is abundant in many aquatic environments. While much of this DNA will be degraded by nucleases secreted by the surrounding microbial community, some is available as transforming material that can be taken up by naturally competent bacteria. One such species is Vibrio cholerae, an autochthonous member of estuarine, riverine, and marine habitats and the causative agent of cholera, whose competence program is induced after colonization of chitin surfaces. In this study, we investigate how Vibrio cholerae's two extracellular nucleases, Xds and Dns, influence its natural transformability. We show that in the absence of Dns, transformation frequencies are significantly higher than in its presence. During growth on a chitin surface, an increase in transformation efficiency was found to correspond in time with increasing cell density and the repression of dns expression by the quorum-sensing regulator HapR. In contrast, at low cell density, the absence of HapR relieves dns repression, leading to the degradation of free DNA and to the abrogation of the transformation phenotype. Thus, as cell density increases, Vibrio cholerae undergoes a switch from nuclease-mediated degradation of extracellular DNA to the uptake of DNA by bacteria induced to a state of competence by chitin. Taken together, these results suggest the following model: nuclease production by low-density populations of V. cholerae might foster rapid growth by providing a source of nucleotides for the repletion of nucleotide pools. In contrast, the termination of nuclease production by static, high-density populations allows the uptake of intact DNA and coincides with a phase of potential genome diversification.
The Extracellular Nuclease Dns and Its Role in Natural Transformation of Vibrio cholerae▿
Blokesch, Melanie; Schoolnik, Gary K.
2008-01-01
Free extracellular DNA is abundant in many aquatic environments. While much of this DNA will be degraded by nucleases secreted by the surrounding microbial community, some is available as transforming material that can be taken up by naturally competent bacteria. One such species is Vibrio cholerae, an autochthonous member of estuarine, riverine, and marine habitats and the causative agent of cholera, whose competence program is induced after colonization of chitin surfaces. In this study, we investigate how Vibrio cholerae's two extracellular nucleases, Xds and Dns, influence its natural transformability. We show that in the absence of Dns, transformation frequencies are significantly higher than in its presence. During growth on a chitin surface, an increase in transformation efficiency was found to correspond in time with increasing cell density and the repression of dns expression by the quorum-sensing regulator HapR. In contrast, at low cell density, the absence of HapR relieves dns repression, leading to the degradation of free DNA and to the abrogation of the transformation phenotype. Thus, as cell density increases, Vibrio cholerae undergoes a switch from nuclease-mediated degradation of extracellular DNA to the uptake of DNA by bacteria induced to a state of competence by chitin. Taken together, these results suggest the following model: nuclease production by low-density populations of V. cholerae might foster rapid growth by providing a source of nucleotides for the repletion of nucleotide pools. In contrast, the termination of nuclease production by static, high-density populations allows the uptake of intact DNA and coincides with a phase of potential genome diversification. PMID:18757542
Griffiths, Jane; Wilson, Charlotte; Ewing, Gail; Connolly, Michael; Grande, Gunn
2015-10-01
To pilot an evidence-based communication skills model (SAGE & THYME) with UK District Nurses (DNs) who visit patients with advanced cancer early in the dying trajectory. Evidence suggests that DNs lack confidence in communication skills and in assessing cancer patients' psycho-social needs; also that they lack time. SAGE & THYME is a highly structured model for teaching patient centred interactions. It addresses concerns about confidence and time. Mixed methods. 33 DNs were trained in SAGE & THYME in a three hour workshop and interviewed in focus groups on three occasions: pre-training, immediately post-training and two months post-training. Questionnaires measuring perceived outcomes of communication, confidence in communication and motivation to use SAGE & THYME were administered at the focus groups. SAGE & THYME provided a structure for conversations and facilitated opening and closing of interactions. The main principle of patient centeredness was reportedly used by all. Knowledge about communication behaviours helpful to patients improved and was sustained two months after training. Increased confidence in communication skills was also sustained. Motivation to use SAGE & THYME was high and remained so at two months, and some said the model saved them time. Challenges with using the model included controlling the home environment and a change in style of communication which was so marked some DNs preferred to use it with new patients. Training DNs in SAGE & THYME in a three hour workshop appears to be a promising model for improving communication skills when working with cancer patients. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Disrupted nighttime sleep in narcolepsy.
Roth, Thomas; Dauvilliers, Yves; Mignot, Emmanuel; Montplaisir, Jacques; Paul, Josh; Swick, Todd; Zee, Phyllis
2013-09-15
Characterize disrupted nighttime sleep (DNS) in narcolepsy, an important symptom of narcolepsy. A panel of international narcolepsy experts was convened in 2011 to build a consensus characterization of DNS in patients with narcolepsy. A literature search of the Medline (1965 to date), Medline In-Process (latest weeks), Embase (1974 to date), Embase Alert (latest 8 weeks), and Biosis (1965 to date) databases was conducted using the following search terms: narcolepsy and disrupted nighttime sleep, disturbed nighttime sleep, fragmented sleep, consolidated sleep, sleep disruption, and narcolepsy questionnaire. The purpose of the literature search was to identify publications characterizing the nighttime sleep of patients with narcolepsy. The panel reviewed the literature. Nocturnal sleep can also be disturbed by REM sleep abnormalities such as vivid dreaming and REM sleep behavior disorder; however, these were not reviewed in the current paper, as we were evaluating for idiopathic sleep disturbances. The literature reviewed provide a consistent characterization of nighttime sleep in patients with narcolepsy as fragmented, with reports of frequent, brief nightly awakenings with difficulties returning to sleep and associated reports of poor sleep quality. Polysomnographic studies consistently report frequent awakenings/arousals after sleep onset, more stage 1 (S1) sleep, and more frequent shifts to S1 sleep or wake from deeper stages of sleep. The consensus of the International Experts' Panel on Narcolepsy was that DNS can be distressing for patients with narcolepsy and that treatment of DNS warrants consideration. Clinicians involved in the management of patients with narcolepsy should investigate patients' quality of nighttime sleep, give weight and consideration to patient reports of nighttime sleep experience, and consider DNS a target for treatment.
Anticonvulsant activity of DNS II fraction in the acute seizure models.
Raza, Muhammad Liaquat; Zeeshan, Mohammad; Ahmad, Manzoor; Shaheen, Farzana; Simjee, Shabana U
2010-04-21
Delphinium nordhagenii belongs to family Ranunculaceae, it is widely found in tropical areas of Pakistan. Other species of Delphinium are reported as anticonvulsant and are traditionally used in the treatment of epilepsy. Delphinium nordhagenii is used by local healer in Pakistan but never used for scientific investigation as anticonvulsant. Thus, Delphinium nordhagenii was subjected to bioassay-guided fractionation and the most active fraction, i.e. DNS II acetone was chosen for further testing in the acute seizure models of epilepsy to study the antiepileptic potential in male mice. Different doses (60, 65 and 70mg/kg, i.p.) of DNS II acetone fraction of Delphinium nordhagenii was administered 30min prior the chemoconvulsant's injection in the male mice. Convulsive doses of chemoconvulsants (pentylenetetrazole 90mg/kg, s.c. and picrotoxin 3.15mg/kg, s.c.) were used. The mice were observed 45-90min for the presence of seizures. Moreover, four different doses of DNS II (60, 65, 70 and 100mg/kg, i.p.) were tested in the MES test. The DNS II acetone fraction of Delphinium nordhagenii has exhibited the anticonvulsant actions by preventing the seizures against PTZ- and picrotoxin-induced seizure as well as 100% seizure protection in MES test. The results are comparable with standard AEDs (diazepam 7.5mg/kg, i.p. and phenytoin 20mg/kg, i.p.). These findings suggest that the Delphinium nordhagenii possesses the anticonvulsant activity. Further analysis is needed to confirm the structure and target the extended activity profile. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.
Direct Numerical Simulation of Turbulent Couette-Poiseuille Flow With Zero Skin Friction
NASA Technical Reports Server (NTRS)
Coleman, Gary N.; Spalart, Philippe R.
2015-01-01
The near-wall scaling of mean velocity U(yw) is addressed for the case of zero skin friction on one wall of a fully turbulent channel flow. The present DNS results can be added to the evidence in support of the conjecture that U is proportional to the square root of yw in the region just above the wall at which the mean shear dU=dy = 0.
NASA Astrophysics Data System (ADS)
Khachaturian, A. B.; Nekrasov, A. V.; Bogachev, M. I.
2018-05-01
The authors report the results of the computer simulations of the performance and accuracy of the sea wind speed and direction retrieval. The analyzed measurements over the sea surface are made by the airborne microwave Doppler navigation system (DNS) with three Y-configured beams operated as a scatterometer enhancing its functionality. Single- and double-stage wind measurement procedures are proposed and recommendations for their implementation are described.
2007-06-01
UPDATEs • TCP UPDATEs 9© 2007 Carnegie Mellon University A queries • Clients asking blackhole -1 and blackhole -2 for prisoner • Results are not cached...Clients requesting the DNS name of an RFC1918 address • Simple queries sent to blackhole -1 and blackhole -2 • Uniformity makes trending very easy...dns.qry.type == 0x000c • Clients requesting the DNS name of an RFC1918 address • Simple queries sent to blackhole -1 and blackhole -2 • Uniformity makes
A Hybrid Physics-Based Data-Driven Approach for Point-Particle Force Modeling
NASA Astrophysics Data System (ADS)
Moore, Chandler; Akiki, Georges; Balachandar, S.
2017-11-01
This study improves upon the physics-based pairwise interaction extended point-particle (PIEP) model. The PIEP model leverages a physical framework to predict fluid mediated interactions between solid particles. While the PIEP model is a powerful tool, its pairwise assumption leads to increased error in flows with high particle volume fractions. To reduce this error, a regression algorithm is used to model the differences between the current PIEP model's predictions and the results of direct numerical simulations (DNS) for an array of monodisperse solid particles subjected to various flow conditions. The resulting statistical model and the physical PIEP model are superimposed to construct a hybrid, physics-based data-driven PIEP model. It must be noted that the performance of a pure data-driven approach without the model-form provided by the physical PIEP model is substantially inferior. The hybrid model's predictive capabilities are analyzed using more DNS. In every case tested, the hybrid PIEP model's prediction are more accurate than those of physical PIEP model. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1315138 and the U.S. DOE, NNSA, ASC Program, as a Cooperative Agreement under Contract No. DE-NA0002378.
Vorticity dynamics after the shock–turbulence interaction
Livescu, Daniel; Ryu, Jaiyoung
2015-07-23
In this article, the interaction of a shock wave with quasi-vortical isotropic turbulence (IT) represents a basic problem for studying some of the phenomena associated with high speed flows, such as hypersonic flight, supersonic combustion and Inertial Confinement Fusion (ICF). In general, in practical applications, the shock width is much smaller than the turbulence scales and the upstream turbulent Mach number is modest. In this case, recent high resolution shock-resolved Direct Numerical Simulations (DNS) (Ryu and Livescu, J Fluid Mech 756, R1, 2014) show that the interaction can be described by the Linear Interaction Approximation (LIA). Using LIA to alleviatemore » the need to resolve the shock, DNS post-shock data can be generated at much higher Reynolds numbers than previously possible. Here, such results with Taylor Reynolds number approximately 180 are used to investigate the changes in the vortical structure as a function of the shock Mach number, M s, up to M s = 10. It is shown that, as M s increases, the shock interaction induces a tendency towards a local axisymmetric state perpendicular to the shock front, which has a profound influence on the vortex-stretching mechanism and divergence of the Lamb vector and, ultimately, on the flow evolution away from the shock.« less
The self-preservation of dissipation elements in homogeneous isotropic decaying turbulence
NASA Astrophysics Data System (ADS)
Gauding, Michael; Danaila, Luminita; Varea, Emilien
2017-11-01
The concept of self-preservation has played an important role in shaping the understanding of turbulent flows. The assumption of complete self-preservation imposes certain constrains on the dynamics of the flow, allowing to express statistics by choosing an appropriate unique length scale. Another approach in turbulence research is to study the dynamics of geometrical objects, like dissipation elements (DE). DE appear as coherent space-filling structures in turbulent scalar fields and can be parameterized by the linear length between their ending points. This distance is a natural length scale that provides information about the local structure of turbulence. In this work, the evolution of DE in decaying turbulence is investigated from a self-preservation perspective. The analysis is based on data obtained from direct numerical simulations (DNS). The temporal evolution of DE is governed by a complex process, involving cutting and reconnection events, which change the number and consequently also the length of DE. An analysis of the evolution equation for the probability density function of the length of DE is carried out and leads to specific constraints for the self-preservation of DE, which are justified from DNS. Financial support was provided by Labex EMC3 (under the Grant VAVIDEN), Normandy Region and FEDER.
Croze, Ottavio A; Sardina, Gaetano; Ahmed, Mansoor; Bees, Martin A; Brandt, Luca
2013-04-06
Shear flow significantly affects the transport of swimming algae in suspension. For example, viscous and gravitational torques bias bottom-heavy cells to swim towards regions of downwelling fluid (gyrotaxis). It is necessary to understand how such biases affect algal dispersion in natural and industrial flows, especially in view of growing interest in algal photobioreactors. Motivated by this, we here study the dispersion of gyrotactic algae in laminar and turbulent channel flows using direct numerical simulation (DNS) and a previously published analytical swimming dispersion theory. Time-resolved dispersion measures are evaluated as functions of the Péclet and Reynolds numbers in upwelling and downwelling flows. For laminar flows, DNS results are compared with theory using competing descriptions of biased swimming cells in shear flow. Excellent agreement is found for predictions that employ generalized Taylor dispersion. The results highlight peculiarities of gyrotactic swimmer dispersion relative to passive tracers. In laminar downwelling flow the cell distribution drifts in excess of the mean flow, increasing in magnitude with Péclet number. The cell effective axial diffusivity increases and decreases with Péclet number (for tracers it merely increases). In turbulent flows, gyrotactic effects are weaker, but discernable and manifested as non-zero drift. These results should have a significant impact on photobioreactor design.
Croze, Ottavio A.; Sardina, Gaetano; Ahmed, Mansoor; Bees, Martin A.; Brandt, Luca
2013-01-01
Shear flow significantly affects the transport of swimming algae in suspension. For example, viscous and gravitational torques bias bottom-heavy cells to swim towards regions of downwelling fluid (gyrotaxis). It is necessary to understand how such biases affect algal dispersion in natural and industrial flows, especially in view of growing interest in algal photobioreactors. Motivated by this, we here study the dispersion of gyrotactic algae in laminar and turbulent channel flows using direct numerical simulation (DNS) and a previously published analytical swimming dispersion theory. Time-resolved dispersion measures are evaluated as functions of the Péclet and Reynolds numbers in upwelling and downwelling flows. For laminar flows, DNS results are compared with theory using competing descriptions of biased swimming cells in shear flow. Excellent agreement is found for predictions that employ generalized Taylor dispersion. The results highlight peculiarities of gyrotactic swimmer dispersion relative to passive tracers. In laminar downwelling flow the cell distribution drifts in excess of the mean flow, increasing in magnitude with Péclet number. The cell effective axial diffusivity increases and decreases with Péclet number (for tracers it merely increases). In turbulent flows, gyrotactic effects are weaker, but discernable and manifested as non-zero drift. These results should have a significant impact on photobioreactor design. PMID:23407572
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutland, Christopher J.
2009-04-26
The Terascale High-Fidelity Simulations of Turbulent Combustion (TSTC) project is a multi-university collaborative effort to develop a high-fidelity turbulent reacting flow simulation capability utilizing terascale, massively parallel computer technology. The main paradigm of the approach is direct numerical simulation (DNS) featuring the highest temporal and spatial accuracy, allowing quantitative observations of the fine-scale physics found in turbulent reacting flows as well as providing a useful tool for development of sub-models needed in device-level simulations. Under this component of the TSTC program the simulation code named S3D, developed and shared with coworkers at Sandia National Laboratories, has been enhanced with newmore » numerical algorithms and physical models to provide predictive capabilities for turbulent liquid fuel spray dynamics. Major accomplishments include improved fundamental understanding of mixing and auto-ignition in multi-phase turbulent reactant mixtures and turbulent fuel injection spray jets.« less
2014-01-01
Background Telomere dysfunction is important in carcinogenesis, and recently, stathmin and elongation factor 1α (EF1α) were reported to be up-regulated in telomere dysfunctional mice. Methods In the present study, the expression levels of stathmin and EF1α in relation to telomere length, telomere dysfunction-induced foci (TIF), γ-H2AX, and p21WAF1/CIP1 expression were assessed in specimens of hepatitis B virus (HBV)-related multistep hepatocarcinogenesis, including 13 liver cirrhosis specimens, 14 low-grade dysplastic nodules (DN), 17 high-grade DNs, and 14 hepatocellular carcinomas (HCC). Five normal liver specimens were used as controls. TIF were analyzed by telomere fluorescent in situ hybridization (FISH) combined with immunostaining, while the protein expressions of stathmin, EF1α, γ-H2AX, and p21WAF1/CIP1 were detected by immunohistochemistry. Result The expressions of stathmin and EF1α gradually increased as multistep hepatocarcinogenesis progressed, showing the highest levels in HCC. Stathmin mRNA levels were higher in high-grade DNs than normal liver and liver cirrhosis, whereas EF1α mRNA expression did not show such a difference. The protein expressions of stathmin and EF1α were found in DNs of precancerous lesions, whereas they were absent or present at very low levels in normal liver and liver cirrhosis. Stathmin histoscores were higher in high-grade DNs and low-grade DNs than in normal liver (all, P < 0.05). EF1α histoscores were higher in high-grade DNs than in normal liver and liver cirrhosis (all, P < 0.05). Stathmin mRNA levels and histoscores, as well as EF1α histoscores (but not mRNA levels), were positively correlated with telomere shortening and γ-H2AX labeling index (all, P < 0.05). EF1α histoscores were also positively correlated with TIF (P < 0.001). Significantly greater inactivation of p21WAF1/CIP1 was observed in low-grade DNs, high-grade DNs, and HCC, compared to liver cirrhosis (all, P < 0.05). p21WAF1/CIP1 labeling index was inversely correlated with TIF, stathmin mRNA level, and EF1α histoscore (all, P < 0.05). Conclusion Stathmin and EF1α are suggested to be closely related to telomere dysfunction, DNA damage, and inactivation of p21WAF1/CIP1 in HBV-related multistep hepatocarcinogenesis. Accordingly, assessment of stathmin and EF1α levels as a reflection of telomere dysfunction may be helpful in evaluating the biological characteristics of precancerous hepatic nodules in hepatitis B viral cirrhotic patients. PMID:24885363
Ahn, Ei Yong; Yoo, Jeong Eun; Rhee, Hyungjin; Kim, Myung Soo; Choi, Junjeong; Ko, Jung Eun; Lee, Jee San; Park, Young Nyun
2014-05-31
Telomere dysfunction is important in carcinogenesis, and recently, stathmin and elongation factor 1α (EF1α) were reported to be up-regulated in telomere dysfunctional mice. In the present study, the expression levels of stathmin and EF1α in relation to telomere length, telomere dysfunction-induced foci (TIF), γ-H2AX, and p21WAF1/CIP1 expression were assessed in specimens of hepatitis B virus (HBV)-related multistep hepatocarcinogenesis, including 13 liver cirrhosis specimens, 14 low-grade dysplastic nodules (DN), 17 high-grade DNs, and 14 hepatocellular carcinomas (HCC). Five normal liver specimens were used as controls. TIF were analyzed by telomere fluorescent in situ hybridization (FISH) combined with immunostaining, while the protein expressions of stathmin, EF1α, γ-H2AX, and p21WAF1/CIP1 were detected by immunohistochemistry. The expressions of stathmin and EF1α gradually increased as multistep hepatocarcinogenesis progressed, showing the highest levels in HCC. Stathmin mRNA levels were higher in high-grade DNs than normal liver and liver cirrhosis, whereas EF1α mRNA expression did not show such a difference. The protein expressions of stathmin and EF1α were found in DNs of precancerous lesions, whereas they were absent or present at very low levels in normal liver and liver cirrhosis. Stathmin histoscores were higher in high-grade DNs and low-grade DNs than in normal liver (all, P<0.05). EF1α histoscores were higher in high-grade DNs than in normal liver and liver cirrhosis (all, P<0.05). Stathmin mRNA levels and histoscores, as well as EF1α histoscores (but not mRNA levels), were positively correlated with telomere shortening and γ-H2AX labeling index (all, P<0.05). EF1α histoscores were also positively correlated with TIF (P<0.001). Significantly greater inactivation of p21WAF1/CIP1 was observed in low-grade DNs, high-grade DNs, and HCC, compared to liver cirrhosis (all, P<0.05). p21WAF1/CIP1 labeling index was inversely correlated with TIF, stathmin mRNA level, and EF1α histoscore (all, P<0.05). Stathmin and EF1α are suggested to be closely related to telomere dysfunction, DNA damage, and inactivation of p21WAF1/CIP1 in HBV-related multistep hepatocarcinogenesis. Accordingly, assessment of stathmin and EF1α levels as a reflection of telomere dysfunction may be helpful in evaluating the biological characteristics of precancerous hepatic nodules in hepatitis B viral cirrhotic patients.
Radl, Stefan; Khinast, Johannes G
2007-08-01
Bubble flows in non-Newtonian fluids were analyzed using first-principles methods with the aim to compute and predict mass transfer coefficients in such fermentation media. The method we used is a Direct Numerical Simulation (DNS) of the reactive multiphase flow with deformable boundaries and interfaces. With this method, we are able for the first time to calculate mass transfer coefficients in non-Newtonian liquids of different rheologies without any experimental data. In the current article, shear-thinning fluids are considered. However, the results provide the basis for further investigations, such as the study of viscoelastic fluids. (c) 2007 Wiley Periodicals, Inc.
An implicit turbulence model for low-Mach Roe scheme using truncated Navier-Stokes equations
NASA Astrophysics Data System (ADS)
Li, Chung-Gang; Tsubokura, Makoto
2017-09-01
The original Roe scheme is well-known to be unsuitable in simulations of turbulence because the dissipation that develops is unsatisfactory. Simulations of turbulent channel flow for Reτ = 180 show that, with the 'low-Mach-fix for Roe' (LMRoe) proposed by Rieper [J. Comput. Phys. 230 (2011) 5263-5287], the Roe dissipation term potentially equates the simulation to an implicit large eddy simulation (ILES) at low Mach number. Thus inspired, a new implicit turbulence model for low Mach numbers is proposed that controls the Roe dissipation term appropriately. Referred to as the automatic dissipation adjustment (ADA) model, the method of solution follows procedures developed previously for the truncated Navier-Stokes (TNS) equations and, without tuning of parameters, uses the energy ratio as a criterion to automatically adjust the upwind dissipation. Turbulent channel flow at two different Reynold numbers and the Taylor-Green vortex were performed to validate the ADA model. In simulations of turbulent channel flow for Reτ = 180 at Mach number of 0.05 using the ADA model, the mean velocity and turbulence intensities are in excellent agreement with DNS results. With Reτ = 950 at Mach number of 0.1, the result is also consistent with DNS results, indicating that the ADA model is also reliable at higher Reynolds numbers. In simulations of the Taylor-Green vortex at Re = 3000, the kinetic energy is consistent with the power law of decaying turbulence with -1.2 exponents for both LMRoe with and without the ADA model. However, with the ADA model, the dissipation rate can be significantly improved near the dissipation peak region and the peak duration can be also more accurately captured. With a firm basis in TNS theory, applicability at higher Reynolds number, and ease in implementation as no extra terms are needed, the ADA model offers to become a promising tool for turbulence modeling.
Luminescence Probe Studies of Ionomers. I. Steady-State Measurements from Nafion Membrane.
1985-02-03
Bu4N+ was monitored by titrating the released protons with NaOH. Bu4N+ uptake by Na+ membranes was assumed to be the same as uptake by acidic form...spaced excited states (21). Because of their solvent sensitivity, 1,5-DNS derivatives may also be used as polarity probes (20). The acid -base... acid . The basic (unprotonated) form of the DNS derivative used here (DA+ ) shows *absorption maxima at ca. 325 and 245 nm (aqueous solution, pH 6.8
Effect of Swirl on Turbulent Structures in Supersonic Jets
NASA Technical Reports Server (NTRS)
Rao, Ram Mohan; Lundgren, Thomas S.
1998-01-01
Direct Numerical Simulation (DNS) is used to study the mechanism of generation and evolution of turbulence structures in a temporally evolving supersonic swirling round jet and also to examine the resulting acoustic radiations. Fourier spectral expansions are used in the streamwise and azimuthal directions and a 1-D b-spline Galerkin representation is used in the radial direction. Spectral-like accuracy is achieved using this numerical scheme. Direct numerical simulations, using the b-spline spectral method, are carried out starting from mean flow initial conditions which are perturbed by the most unstable linear stability eigenfunctions. It is observed that the initial helical instability waves evolve into helical vortices which eventually breakdown into smaller scales of turbulence. 'Rib' structures similar to those seen in incompressible mixing layer flow of Rogers and Moserl are observed. The jet core breakdown stage exhibits increased acoustic radiations.
Turbulence in Electrically Conducting Fluids Driven by Rotating and Travelling Magnetic Fields
NASA Astrophysics Data System (ADS)
Stiller, Jörg; Koal, Kristina; Blackburn, Hugh M.
The turbulent flow driven by rotating and travelling magnetic fields in a closed cylinder is investigated by means of direct numerical simulations (DNS) and large eddy simulations (LES). Our model is based on the low-induction, low-frequency approximation and employs a spectral-element/Fourier method for discretisation. The spectral vanishing viscosity (SVV) technique was adopted for the LES. The study provides first insights into the developed turbulent flow. In the RMF case, Taylor-Görtler vortices remain the dominant turbulence mechanism, as already in the transitional regime. In contrast to previous predictions we found no evidence that the vortices are confined closer to the wall for higher forcing. In the TMF more than 50 percent of the kinetic energy is bound to the turbulent fluctuations, which renders this field an interesting candidate for mixing applications.
NASA Astrophysics Data System (ADS)
Ackerman, A. S.; Kelley, M.; Cheng, Y.; Fridlind, A. M.; Del Genio, A. D.; Bauer, S.
2017-12-01
Reduction in cloud-water sedimentation induced by increasing droplet concentrations has been shown in large-eddy simulations (LES) and direct numerical simulation (DNS) to enhance boundary-layer entrainment, thereby reducing cloud liquid water path and offsetting the Twomey effect when the overlying air is sufficiently dry, which is typical. Among recent upgrades to ModelE3, the latest version of the NASA Goddard Institute for Space Studies (GISS) general circulation model (GCM), are a two-moment stratiform cloud microphysics treatment with prognostic precipitation and a moist turbulence scheme that includes an option in its entrainment closure of a simple parameterization for the effect of cloud-water sedimentation. Single column model (SCM) simulations are compared to LES results for a stratocumulus case study and show that invoking the sedimentation-entrainment parameterization option indeed reduces the dependence of cloud liquid water path on increasing aerosol concentrations. Impacts of variations of the SCM configuration and the sedimentation-entrainment parameterization will be explored. Its impact on global aerosol indirect forcing in the framework of idealized atmospheric GCM simulations will also be assessed.