Sample records for simulation embedded artificial

  1. A hardware-in-the-loop simulation program for ground-based radar

    NASA Astrophysics Data System (ADS)

    Lam, Eric P.; Black, Dennis W.; Ebisu, Jason S.; Magallon, Julianna

    2011-06-01

    A radar system created using an embedded computer system needs testing. The way to test an embedded computer system is different from the debugging approaches used on desktop computers. One way to test a radar system is to feed it artificial inputs and analyze the outputs of the radar. More often, not all of the building blocks of the radar system are available to test. This will require the engineer to test parts of the radar system using a "black box" approach. A common way to test software code on a desktop simulation is to use breakpoints so that is pauses after each cycle through its calculations. The outputs are compared against the values that are expected. This requires the engineer to use valid test scenarios. We will present a hardware-in-the-loop simulator that allows the embedded system to think it is operating with real-world inputs and outputs. From the embedded system's point of view, it is operating in real-time. The hardware in the loop simulation is based on our Desktop PC Simulation (PCS) testbed. In the past, PCS was used for ground-based radars. This embedded simulation, called Embedded PCS, allows a rapid simulated evaluation of ground-based radar performance in a laboratory environment.

  2. Application of artificial neural networks to identify equilibration in computer simulations

    NASA Astrophysics Data System (ADS)

    Leibowitz, Mitchell H.; Miller, Evan D.; Henry, Michael M.; Jankowski, Eric

    2017-11-01

    Determining which microstates generated by a thermodynamic simulation are representative of the ensemble for which sampling is desired is a ubiquitous, underspecified problem. Artificial neural networks are one type of machine learning algorithm that can provide a reproducible way to apply pattern recognition heuristics to underspecified problems. Here we use the open-source TensorFlow machine learning library and apply it to the problem of identifying which hypothetical observation sequences from a computer simulation are “equilibrated” and which are not. We generate training populations and test populations of observation sequences with embedded linear and exponential correlations. We train a two-neuron artificial network to distinguish the correlated and uncorrelated sequences. We find that this simple network is good enough for > 98% accuracy in identifying exponentially-decaying energy trajectories from molecular simulations.

  3. A Novel Framework for Characterizing Exposure-Related Behaviors Using Agent-Based Models Embedded with Needs-Based Artificial Intelligence (CSSSA2016)

    EPA Science Inventory

    Descriptions of where and how individuals spend their time are important for characterizing exposures to chemicals in consumer products and in indoor environments. Herein we create an agent-based model (ABM) that is able to simulate longitudinal patterns in behaviors. By basing o...

  4. Parameter estimation of brain tumors using intraoperative thermal imaging based on artificial tactile sensing in conjunction with artificial neural network

    NASA Astrophysics Data System (ADS)

    Sadeghi-Goughari, M.; Mojra, A.; Sadeghi, S.

    2016-02-01

    Intraoperative Thermal Imaging (ITI) is a new minimally invasive diagnosis technique that can potentially locate margins of brain tumor in order to achieve maximum tumor resection with least morbidity. This study introduces a new approach to ITI based on artificial tactile sensing (ATS) technology in conjunction with artificial neural networks (ANN) and feasibility and applicability of this method in diagnosis and localization of brain tumors is investigated. In order to analyze validity and reliability of the proposed method, two simulations were performed. (i) An in vitro experimental setup was designed and fabricated using a resistance heater embedded in agar tissue phantom in order to simulate heat generation by a tumor in the brain tissue; and (ii) A case report patient with parafalcine meningioma was presented to simulate ITI in the neurosurgical procedure. In the case report, both brain and tumor geometries were constructed from MRI data and tumor temperature and depth of location were estimated. For experimental tests, a novel assisted surgery robot was developed to palpate the tissue phantom surface to measure temperature variations and ANN was trained to estimate the simulated tumor’s power and depth. Results affirm that ITI based ATS is a non-invasive method which can be useful to detect, localize and characterize brain tumors.

  5. A testbed for optimizing electrodes embedded in the skull or in artificial skull replacement pieces used after injury

    PubMed Central

    Jiang, JingLe; Marathe, Amar R.; Keene, Jennifer C.; Taylor, Dawn M.

    2016-01-01

    Background Custom-fitted skull replacement pieces are often used after a head injury or surgery to replace damaged bone. Chronic brain recordings are beneficial after injury/surgery for monitoring brain health and seizure development. Embedding electrodes directly in these artificial skull replacement pieces would be a novel, low-risk way to perform chronic brain monitoring in these patients. Similarly, embedding electrodes directly in healthy skull would be a viable minimally-invasive option for many other neuroscience and neurotechnology applications requiring chronic brain recordings. New Method We demonstrate a preclinical testbed that can be used for refining electrode designs embedded in artificial skull replacement pieces or for embedding directly into the skull itself. Options are explored to increase the surface area of the contacts without increasing recording contact diameter to maximize recording resolution. Results Embedding electrodes in real or artificial skull allows one to lower electrode impedance without increasing the recording contact diameter by making use of conductive channels that extend into the skull. The higher density of small contacts embedded in the artificial skull in this testbed enables one to optimize electrode spacing for use in real bone. Comparison with Existing Methods For brain monitoring applications, skull-embedded electrodes fill a gap between electroencephalograms recorded on the scalp surface and the more invasive epidural or subdural electrode sheets. Conclusions Embedding electrodes into the skull or in skull replacement pieces may provide a safe, convenient, minimally-invasive alternative for chronic brain monitoring. The manufacturing methods described here will facilitate further testing of skull-embedded electrodes in animal models. PMID:27979758

  6. A testbed for optimizing electrodes embedded in the skull or in artificial skull replacement pieces used after injury.

    PubMed

    Jiang, JingLe; Marathe, Amar R; Keene, Jennifer C; Taylor, Dawn M

    2017-02-01

    Custom-fitted skull replacement pieces are often used after a head injury or surgery to replace damaged bone. Chronic brain recordings are beneficial after injury/surgery for monitoring brain health and seizure development. Embedding electrodes directly in these artificial skull replacement pieces would be a novel, low-risk way to perform chronic brain monitoring in these patients. Similarly, embedding electrodes directly in healthy skull would be a viable minimally-invasive option for many other neuroscience and neurotechnology applications requiring chronic brain recordings. We demonstrate a preclinical testbed that can be used for refining electrode designs embedded in artificial skull replacement pieces or for embedding directly into the skull itself. Options are explored to increase the surface area of the contacts without increasing recording contact diameter to maximize recording resolution. Embedding electrodes in real or artificial skull allows one to lower electrode impedance without increasing the recording contact diameter by making use of conductive channels that extend into the skull. The higher density of small contacts embedded in the artificial skull in this testbed enables one to optimize electrode spacing for use in real bone. For brain monitoring applications, skull-embedded electrodes fill a gap between electroencephalograms recorded on the scalp surface and the more invasive epidural or subdural electrode sheets. Embedding electrodes into the skull or in skull replacement pieces may provide a safe, convenient, minimally-invasive alternative for chronic brain monitoring. The manufacturing methods described here will facilitate further testing of skull-embedded electrodes in animal models. Published by Elsevier B.V.

  7. Syntactic Structure and Artificial Grammar Learning: The Learnability of Embedded Hierarchical Structures

    ERIC Educational Resources Information Center

    de Vries, Meinou H.; Monaghan, Padraic; Knecht, Stefan; Zwitserlood, Pienie

    2008-01-01

    Embedded hierarchical structures, such as "the rat the cat ate was brown", constitute a core generative property of a natural language theory. Several recent studies have reported learning of hierarchical embeddings in artificial grammar learning (AGL) tasks, and described the functional specificity of Broca's area for processing such structures.…

  8. Framsticks

    NASA Astrophysics Data System (ADS)

    Komosinski, Maciej; Ulatowski, Szymon

    Life is one of the most complex phenomena known in our world. Researchers construct various models of life that serve diverse purposes and are applied in a wide range of areas — from medicine to entertainment. A part of artificial life research focuses on designing three-dimensional (3D) models of life-forms, which are obviously appealing to observers because the world we live in is three dimensional. Thus, we can easily understand behaviors demonstrated by virtual individuals, study behavioral changes during simulated evolution, analyze dependencies between groups of creatures, and so forth. However, 3D models of life-forms are not only attractive because of their resemblance to the real-world organisms. Simulating 3D agents has practical implications: If the simulation is accurate enough, then real robots can be built based on the simulation, as in [22]. Agents can be designed, tested, and optimized in a virtual environment, and the best ones can be constructed as real robots with embedded control systems. This way artificial intelligence algorithms can be “embodied” in the 3D mechanical constructs.

  9. An open and configurable embedded system for EMG pattern recognition implementation for artificial arms.

    PubMed

    Jun Liu; Fan Zhang; Huang, He Helen

    2014-01-01

    Pattern recognition (PR) based on electromyographic (EMG) signals has been developed for multifunctional artificial arms for decades. However, assessment of EMG PR control for daily prosthesis use is still limited. One of the major barriers is the lack of a portable and configurable embedded system to implement the EMG PR control. This paper aimed to design an open and configurable embedded system for EMG PR implementation so that researchers can easily modify and optimize the control algorithms upon our designed platform and test the EMG PR control outside of the lab environments. The open platform was built on an open source embedded Linux Operating System running a high-performance Gumstix board. Both the hardware and software system framework were openly designed. The system was highly flexible in terms of number of inputs/outputs and calibration interfaces used. Such flexibility enabled easy integration of our embedded system with different types of commercialized or prototypic artificial arms. Thus far, our system was portable for take-home use. Additionally, compared with previously reported embedded systems for EMG PR implementation, our system demonstrated improved processing efficiency and high system precision. Our long-term goals are (1) to develop a wearable and practical EMG PR-based control for multifunctional artificial arms, and (2) to quantify the benefits of EMG PR-based control over conventional myoelectric prosthesis control in a home setting.

  10. Permeability Evolution of Propped Artificial Fractures in Green River Shale

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Feng, Zijun; Han, Gang; Elsworth, Derek; Marone, Chris; Saffer, Demian; Cheon, Dae-Sung

    2017-06-01

    This paper compares the evolution of permeability with effective stress in propped fractures in shale for native CH4 compared with that for sorbing CO2, slightly sorbing N2 and non-sorbing He. We examine the response for laboratory experiments on artificial propped fractures in Green River Shale to explore mechanisms of proppant embedment and fracture diagenesis. Split cylindrical specimens sandwich a proppant bead-pack at a constant confining stress of 20 MPa and with varied pore pressure. Permeability and sorption characteristics are measured with the pulse transient method. To explore the effect of swelling and embedment on fracture surface geometry, we measure the evolution of conductivity characteristics for different proppant geometries (single layer vs. multilayer), gas saturation and specimen variation in order to simulate both production and enhanced gas recovery. The resulting morphology of embedment is measured by white light interferometry and characterized via surface roughness parameter of mean, maximum and root-mean-square amplitudes. For both strongly (CO2, CH4) and slightly adsorptive gases (N2), the permeability first decreases with an increase in gas pressure due to swelling before effective stress effects dominate above the Langmuir pressure threshold. CO2 with its highest adsorption affinity produces the lowest permeability among these three gas permeants. Monolayer propped specimens show maximum swelling and lowered k/k 0 ratio and increased embedment recorded in the surface roughness relative to the multilayered specimens. Permeabilities measured for both injection and depletion cycles generally overlap and are repeatable with little hysteresis. This suggests the dominant role of reversible swelling over irreversible embedment. Gas permeant composition and related swelling have an important effect on the permeability evolution of shales.

  11. Dielectric elastomer actuators for facial expression

    NASA Astrophysics Data System (ADS)

    Wang, Yuzhe; Zhu, Jian

    2016-04-01

    Dielectric elastomer actuators have the advantage of mimicking the salient feature of life: movements in response to stimuli. In this paper we explore application of dielectric elastomer actuators to artificial muscles. These artificial muscles can mimic natural masseter to control jaw movements, which are key components in facial expressions especially during talking and singing activities. This paper investigates optimal design of the dielectric elastomer actuator. It is found that the actuator with embedded plastic fibers can avert electromechanical instability and can greatly improve its actuation. Two actuators are then installed in a robotic skull to drive jaw movements, mimicking the masseters in a human jaw. Experiments show that the maximum vertical displacement of the robotic jaw, driven by artificial muscles, is comparable to that of the natural human jaw during speech activities. Theoretical simulations are conducted to analyze the performance of the actuator, which is quantitatively consistent with the experimental observations.

  12. An artificial test substrate for evaluating electron microscopic immunocytochemical labeling reactions.

    PubMed

    Gagne, G D; Miller, M F

    1987-08-01

    We describe an artificial substrate system for optimization of labeling parameters in electron microscope immunocytochemical studies. The system involves use of blocks of glutaraldehyde-polymerized BSA into which a desired antigen is incorporated by a simple soaking procedure. The resulting antigen-impregnated artificial substrate can then be fixed and embedded identically to a piece of tissue. The BSA substrate can also be dried and then sectioned for immunolabeling with or without chemical fixation and without exposing the antigen to dehydrating agents and embedding resins. The effects of various fixation and embedding procedures can thus be evaluated separately. Other parameters affecting immunocytochemical labeling, such as antibody and conjugate concentration, can also be evaluated. We used this system, along with immunogold labeling, to determine quantitatively the optimal fixation and embedding conditions for labeling of hepatitis B surface antigen (HbsAg), human IgG, and horseradish peroxidase. Using unfixed and unembedded HBsAg, we were able to detect antigen concentrations below 20 micrograms/ml. We have shown that it is not possible to label HBsAg within resin-embedded cells using conventional aldehyde fixation protocols and polyclonal antibodies.

  13. Global Magnetosphere Modeling With Kinetic Treatment of Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Toth, G.; Chen, Y.; Gombosi, T. I.; Cassak, P.; Markidis, S.; Peng, B.; Henderson, M. G.

    2017-12-01

    Global magnetosphere simulations with a kinetic treatment of magnetic reconnection are very challenging because of the large separation of global and kinetic scales. We have developed two algorithms that can overcome these difficulties: 1) the two-way coupling of the global magnetohydrodynamic code with an embedded particle-in-cell model (MHD-EPIC) and 2) the artificial increase of the ion and electron kinetic scales. Both of these techniques improve the efficiency of the simulations by many orders of magnitude. We will describe the techniques and show that they provide correct and meaningful results. Using the coupled model and the increased kinetic scales, we will present global magnetosphere simulations with the PIC domains covering the dayside and/or tail reconnection sites. The simulation results will be compared to and validated with MMS observations.

  14. Broadbanding of circularly polarized patch antenna by waveguided magneto-dielectric metamaterial

    NASA Astrophysics Data System (ADS)

    Yang, Xin Mi; Wen, Juan; Liu, Chang Rong; Liu, Xue Guan; Cui, Tie Jun

    2015-12-01

    Design of bandwidth-enhanced circularly polarized (CP) patch antenna using artificial magneto-dielectric substrate was investigated. The artificial magneto-dielectric material adopted here takes the form of waveguided metamaterial (WG-MTM). In particular, the embedded meander line (EML) structure was employed as the building element of the WG-MTM. As verified by the retrieved effective medium parameters, the EML-based waveguided magneto-dielectric metamaterial (WG-MDM) exhibits two-dimensionally isotropic magneto-dielectric property with respect to TEM wave excitations applied in two orthogonal directions. A CP patch antenna loaded with the EML-based WG-MDM (WG-MDM antenna) has been proposed and its design procedure is described in detail. Simulation results show that the impedance and axial ratio bandwidths of the WG-MDM antenna have increased by 125% and 133%, respectively, compared with those obtained with pure dielectric substrate offering the same patch size. The design of the novel WG-MDM antenna was also validated by measurement results, which show good agreement with their simulated counterparts.

  15. Magnetically-actuated artificial cilia for microfluidic propulsion.

    PubMed

    Khaderi, S N; Craus, C B; Hussong, J; Schorr, N; Belardi, J; Westerweel, J; Prucker, O; Rühe, J; den Toonder, J M J; Onck, P R

    2011-06-21

    In this paper we quantitatively analyse the performance of magnetically-driven artificial cilia for lab-on-a-chip applications. The artificial cilia are fabricated using thin polymer films with embedded magnetic nano-particles and their deformation is studied under different external magnetic fields and flows. A coupled magneto-mechanical solid-fluid model that accurately captures the interaction between the magnetic field, cilia and fluid is used to simulate the cilia motion. The elastic and magnetic properties of the cilia are obtained by fitting the results of the computational model to the experimental data. The performance of the artificial cilia with a non-uniform cross-section is characterised using the numerical model for two channel configurations that are of practical importance: an open-loop and a closed-loop channel. We predict that the flow and pressure head generated by the artificial cilia can be as high as 18 microlitres per minute and 3 mm of water, respectively. We also study the effect of metachronal waves on the flow generated and show that the fluid propelled increases drastically compared to synchronously beating cilia, and is unidirectional. This increase is significant even when the phase difference between adjacent cilia is small. The obtained results provide guidelines for the optimal design of magnetically-driven artificial cilia for microfluidic propulsion.

  16. An Embedded 3D Fracture Modeling Approach for Simulating Fracture-Dominated Fluid Flow and Heat Transfer in Geothermal Reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, Henry; Wang, Cong; Winterfeld, Philip

    An efficient modeling approach is described for incorporating arbitrary 3D, discrete fractures, such as hydraulic fractures or faults, into modeling fracture-dominated fluid flow and heat transfer in fractured geothermal reservoirs. This technique allows 3D discrete fractures to be discretized independently from surrounding rock volume and inserted explicitly into a primary fracture/matrix grid, generated without including 3D discrete fractures in prior. An effective computational algorithm is developed to discretize these 3D discrete fractures and construct local connections between 3D fractures and fracture/matrix grid blocks of representing the surrounding rock volume. The constructed gridding information on 3D fractures is then added tomore » the primary grid. This embedded fracture modeling approach can be directly implemented into a developed geothermal reservoir simulator via the integral finite difference (IFD) method or with TOUGH2 technology This embedded fracture modeling approach is very promising and computationally efficient to handle realistic 3D discrete fractures with complicated geometries, connections, and spatial distributions. Compared with other fracture modeling approaches, it avoids cumbersome 3D unstructured, local refining procedures, and increases computational efficiency by simplifying Jacobian matrix size and sparsity, while keeps sufficient accuracy. Several numeral simulations are present to demonstrate the utility and robustness of the proposed technique. Our numerical experiments show that this approach captures all the key patterns about fluid flow and heat transfer dominated by fractures in these cases. Thus, this approach is readily available to simulation of fractured geothermal reservoirs with both artificial and natural fractures.« less

  17. Predictive wind turbine simulation with an adaptive lattice Boltzmann method for moving boundaries

    NASA Astrophysics Data System (ADS)

    Deiterding, Ralf; Wood, Stephen L.

    2016-09-01

    Operating horizontal axis wind turbines create large-scale turbulent wake structures that affect the power output of downwind turbines considerably. The computational prediction of this phenomenon is challenging as efficient low dissipation schemes are necessary that represent the vorticity production by the moving structures accurately and that are able to transport wakes without significant artificial decay over distances of several rotor diameters. We have developed a parallel adaptive lattice Boltzmann method for large eddy simulation of turbulent weakly compressible flows with embedded moving structures that considers these requirements rather naturally and enables first principle simulations of wake-turbine interaction phenomena at reasonable computational costs. The paper describes the employed computational techniques and presents validation simulations for the Mexnext benchmark experiments as well as simulations of the wake propagation in the Scaled Wind Farm Technology (SWIFT) array consisting of three Vestas V27 turbines in triangular arrangement.

  18. [Initial results with the Munich knee simulator].

    PubMed

    Frey, M; Riener, R; Burgkart, R; Pröll, T

    2002-01-01

    In orthopaedics more than 50 different clinical knee joint evaluation tests exist that have to be trained in orthopaedic education. Often it is not possible to obtain sufficient practical training in a clinical environment. The training can be improved by Virtual Reality technology. In the frame of the Munich Knee Joint Simulation project an artificial leg with anatomical properties is attached by a force-torque sensor to an industrial robot. The recorded forces and torques are the input for a simple biomechanical model of the human knee joint. The robot is controlled in such way that the user gets the feeling he moves a real leg. The leg is embedded in a realistic environment with a couch and a patient on it.

  19. Simulation of blood flow through an artificial heart

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin; Chang, I-Dee; Rogers, Stuart E.; Kwak, Dochan

    1991-01-01

    A numerical simulation of the incompressible viscous flow through a prosthetic tilting disk heart valve is presented in order to demonstrate the current capability to model unsteady flows with moving boundaries. Both steady state and unsteady flow calculations are done by solving the incompressible Navier-Stokes equations in 3-D generalized curvilinear coordinates. In order to handle the moving boundary problems, the chimera grid embedding scheme which decomposes a complex computational domain into several simple subdomains is used. An algebraic turbulence model for internal flows is incorporated to reach the physiological values of Reynolds number. Good agreement is obtained between the numerical results and experimental measurements. It is found that the tilting disk valve causes large regions of separated flow, and regions of high shear.

  20. Simulation-Optimization Model for Seawater Intrusion Management at Pingtung Coastal Area, Taiwan

    NASA Astrophysics Data System (ADS)

    Huang, P. S.; Chiu, Y.

    2015-12-01

    In 1970's, the agriculture and aquaculture were rapidly developed at Pingtung coastal area in southern Taiwan. The groundwater aquifers were over-pumped and caused the seawater intrusion. In order to remedy the contaminated groundwater and find the best strategies of groundwater usage, a management model to search the optimal groundwater operational strategies is developed in this study. The objective function is to minimize the total amount of injection water and a set of constraints are applied to ensure the groundwater levels and concentrations are satisfied. A three-dimension density-dependent flow and transport simulation model, called SEAWAT developed by U.S. Geological Survey, is selected to simulate the phenomenon of seawater intrusion. The simulation model is well calibrated by the field measurements and replaced by the surrogate model of trained artificial neural networks (ANNs) to reduce the computational time. The ANNs are embedded in the management model to link the simulation and optimization models, and the global optimizer of differential evolution (DE) is applied for solving the management model. The optimal results show that the fully trained ANNs could substitute the original simulation model and reduce much computational time. Under appropriate setting of objective function and constraints, DE can find the optimal injection rates at predefined barriers. The concentrations at the target locations could decrease more than 50 percent within the planning horizon of 20 years. Keywords : Seawater intrusion, groundwater management, numerical model, artificial neural networks, differential evolution

  1. Supporting Organizational Problem Solving with a Workstation.

    DTIC Science & Technology

    1982-07-01

    G. [., and Sussman, G. J. AMORD: Explicit Control or Reasoning. In Proceedings of the Symposium on Artificial Intellignece and Programming Languagues...0505 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK Artificial Intelligence Laboratory AREA& WORK UNIT NUMBERS 545...extending ideas from the field of Artificial Intelligence (A), we describ office work as a problem solving activity. A knowledge embedding language called

  2. Organisational Structure and Information Technology (IT): Exploring the Implications of IT for Future Military Structures

    DTIC Science & Technology

    2006-07-01

    4 Abbreviations AI Artificial Intelligence AM Artificial Memory CAD Computer Aided...memory (AM), artificial intelligence (AI), and embedded knowledge systems it is possible to expand the “effective span of competence” of...Technology J Joint J2 Joint Intelligence J3 Joint Operations NATO North Atlantic Treaty Organisation NCW Network Centric Warfare NHS National Health

  3. Evaluation of the impeller shroud performance of an axial flow ventricular assist device using computational fluid dynamics.

    PubMed

    Su, Boyang; Chua, Leok P; Lim, Tau M; Zhou, Tongming

    2010-09-01

    Generally, there are two types of impeller design used in the axial flow blood pumps. For the first type, which can be found in most of the axial flow blood pumps, the magnet is embedded inside the impeller hub or blades. For the second type, the magnet is embedded inside the cylindrical impeller shroud, and this design has not only increased the rotating stability of the impeller but has also avoided the flow interaction between the impeller blade tip and the pump casing. Although the axial flow blood pumps with either impeller design have been studied individually, the comparisons between these two designs have not been conducted in the literature. Therefore, in this study, two axial flow blood pumps with and without impeller shrouds were numerically simulated with computational fluid dynamics and compared with each other in terms of hydraulic and hematologic performances. For the ease of comparison, these two models have the same inner components, which include a three-blade straightener, a two-blade impeller, and a three-blade diffuser. The simulation results showed that the model with impeller shroud had a lower static pressure head with a lower hydraulic efficiency than its counterpart. It was also found that the blood had a high possibility to deposit on the impeller shroud inner surface, which greatly enhanced the possibility of thrombus formation. The blood damage indices in both models were around 1%, which was much lower than the 13.1% of the axial flow blood pump of Yano et al. with the corresponding experimental hemolysis of 0.033 g/100 L. © 2010, Copyright the Authors. Artificial Organs © 2010, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  4. Resolving the Kinetic Reconnection Length Scale in Global Magnetospheric Simulations with MHD-EPIC

    NASA Astrophysics Data System (ADS)

    Toth, G.; Chen, Y.; Cassak, P.; Jordanova, V.; Peng, B.; Markidis, S.; Gombosi, T. I.

    2016-12-01

    We have recently developed a new modeling capability: the Magnetohydrodynamics with Embedded Particle-in-Cell (MHD-EPIC) algorithm with support from Los Alamos SHIELDS and NSF INSPIRE grants. We have implemented MHD-EPIC into the Space Weather Modeling Framework (SWMF) using the implicit Particle-in-Cell (iPIC3D) and the BATS-R-US extended magnetohydrodynamic codes. The MHD-EPIC model allows two-way coupled simulations in two and three dimensions with multiple embedded PIC regions. Both BATS-R-US and iPIC3D are massively parallel codes. The MHD-EPIC approach allows global magnetosphere simulations with embedded kinetic simulations. For small magnetospheres, like Ganymede or Mercury, we can easily resolve the ion scales around the reconnection sites. Modeling the Earth magnetosphere is very challenging even with our efficient MHD-EPIC model due to the large separation between the global and ion scales. On the other hand the large separation of scales may be exploited: the solution may not be sensitive to the ion inertial length as long as it is small relative to the global scales. The ion inertial length can be varied by changing the ion mass while keeping the MHD mass density, the velocity, and pressure the same for the initial and boundary conditions. Our two-dimensional MHD-EPIC simulations for the dayside reconnection region show in fact, that the overall solution is not sensitive to ion inertial length. The shape, size and frequency of flux transfer events are very similar for a wide range of ion masses. Our results mean that 3D MHD-EPIC simulations for the Earth and other large magnetospheres can be made computationally affordable by artificially increasing the ion mass: the required grid resolution and time step in the PIC model are proportional to the ion inertial length. Changing the ion mass by a factor of 4, for example, speeds up the PIC code by a factor of 256. In fact, this approach allowed us to perform an hour-long 3D MHD-EPIC simulations for the Earth magnetosphere.

  5. Multi-layer robot skin with embedded sensors and muscles

    NASA Astrophysics Data System (ADS)

    Tomar, Ankit; Tadesse, Yonas

    2016-04-01

    Soft artificial skin with embedded sensors and actuators is proposed for a crosscutting study of cognitive science on a facial expressive humanoid platform. This paper focuses on artificial muscles suitable for humanoid robots and prosthetic devices for safe human-robot interactions. Novel composite artificial skin consisting of sensors and twisted polymer actuators is proposed. The artificial skin is conformable to intricate geometries and includes protective layers, sensor layers, and actuation layers. Fluidic channels are included in the elastomeric skin to inject fluids in order to control actuator response time. The skin can be used to develop facially expressive humanoid robots or other soft robots. The humanoid robot can be used by computer scientists and other behavioral science personnel to test various algorithms, and to understand and develop more perfect humanoid robots with facial expression capability. The small-scale humanoid robots can also assist ongoing therapeutic treatment research with autistic children. The multilayer skin can be used for many soft robots enabling them to detect both temperature and pressure, while actuating the entire structure.

  6. Saliva with reduced calcium and phosphorous concentrations: Effect on erosion dental lesions.

    PubMed

    Denucci, Giovanna Corrêa; Mantilla, Taís Fonseca; Amaral, Flávia Lucisano Botelho; Basting, Roberta Tarkany; França, Fabiana Mantovani Gomes; Turssi, Cecilia Pedroso

    2018-02-08

    To investigate whether saliva formulations with reduced calcium (Ca) and inorganic phosphorous (Pi) concentration would affect dental erosion caused by hydrochloric acid (HCl). Enamel and root dentine bovine slabs were embedded, polished and measured for surface Knoop microhardness (SMH). After reference areas were created, specimens were exposed to HCl solution (0.01M; pH 2; 120s) and immersed in artificial salivas (6h) containing three different Ca/Pi concentrations (n=15), which simulate serum conditions of normo-, mild- or severe hypocalcaemia. The control group was immersed in Ca/Pi-free saliva. The study protocol was carried out 2x/day for 5 days. Surface loss of enamel and root dentine was assessed using an optical profilometer and SMH was remeasured for enamel. ANOVA (p<0.001) and Tukey's test showed that enamel loss in groups subjected to artificial salivas that simulated mild- or severe hypocalcaemia did not differ from that resembling normocalcemia. %SMH was lower when saliva was mildly- and normally-concentrated in Ca/Pi (p<0.001). Root dentine loss was higher in saliva simulating severe hypocalcaemia than in those referring to mild, hypo- and normocalcemia. Depending on the dental substrate, salivary formulations resembling serum hypocalcaemia affected surface loss due to erosion and rehardening thereof. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Computation of incompressible viscous flows through artificial heart devices with moving boundaries

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin; Rogers, Stuart; Kwak, Dochan; Chang, I.-DEE

    1991-01-01

    The extension of computational fluid dynamics techniques to artificial heart flow simulations is illustrated. Unsteady incompressible Navier-Stokes equations written in 3-D generalized curvilinear coordinates are solved iteratively at each physical time step until the incompressibility condition is satisfied. The solution method is based on the pseudo compressibility approach and uses an implicit upwind differencing scheme together with the Gauss-Seidel line relaxation method. The efficiency and robustness of the time accurate formulation of the algorithm are tested by computing the flow through model geometries. A channel flow with a moving indentation is computed and validated with experimental measurements and other numerical solutions. In order to handle the geometric complexity and the moving boundary problems, a zonal method and an overlapping grid embedding scheme are used, respectively. Steady state solutions for the flow through a tilting disk heart valve was compared against experimental measurements. Good agreement was obtained. The flow computation during the valve opening and closing is carried out to illustrate the moving boundary capability.

  8. Implicit Learning of Recursive Context-Free Grammars

    PubMed Central

    Rohrmeier, Martin; Fu, Qiufang; Dienes, Zoltan

    2012-01-01

    Context-free grammars are fundamental for the description of linguistic syntax. However, most artificial grammar learning experiments have explored learning of simpler finite-state grammars, while studies exploring context-free grammars have not assessed awareness and implicitness. This paper explores the implicit learning of context-free grammars employing features of hierarchical organization, recursive embedding and long-distance dependencies. The grammars also featured the distinction between left- and right-branching structures, as well as between centre- and tail-embedding, both distinctions found in natural languages. People acquired unconscious knowledge of relations between grammatical classes even for dependencies over long distances, in ways that went beyond learning simpler relations (e.g. n-grams) between individual words. The structural distinctions drawn from linguistics also proved important as performance was greater for tail-embedding than centre-embedding structures. The results suggest the plausibility of implicit learning of complex context-free structures, which model some features of natural languages. They support the relevance of artificial grammar learning for probing mechanisms of language learning and challenge existing theories and computational models of implicit learning. PMID:23094021

  9. On Design and Implementation of Neural-Machine Interface for Artificial Legs

    PubMed Central

    Zhang, Xiaorong; Liu, Yuhong; Zhang, Fan; Ren, Jin; Sun, Yan (Lindsay); Yang, Qing

    2011-01-01

    The quality of life of leg amputees can be improved dramatically by using a cyber physical system (CPS) that controls artificial legs based on neural signals representing amputees’ intended movements. The key to the CPS is the neural-machine interface (NMI) that senses electromyographic (EMG) signals to make control decisions. This paper presents a design and implementation of a novel NMI using an embedded computer system to collect neural signals from a physical system - a leg amputee, provide adequate computational capability to interpret such signals, and make decisions to identify user’s intent for prostheses control in real time. A new deciphering algorithm, composed of an EMG pattern classifier and a post-processing scheme, was developed to identify the user’s intended lower limb movements. To deal with environmental uncertainty, a trust management mechanism was designed to handle unexpected sensor failures and signal disturbances. Integrating the neural deciphering algorithm with the trust management mechanism resulted in a highly accurate and reliable software system for neural control of artificial legs. The software was then embedded in a newly designed hardware platform based on an embedded microcontroller and a graphic processing unit (GPU) to form a complete NMI for real time testing. Real time experiments on a leg amputee subject and an able-bodied subject have been carried out to test the control accuracy of the new NMI. Our extensive experiments have shown promising results on both subjects, paving the way for clinical feasibility of neural controlled artificial legs. PMID:22389637

  10. What is the Value of Embedding Artificial Emotional Prosody in Human–Computer Interactions? Implications for Theory and Design in Psychological Science

    PubMed Central

    Mitchell, Rachel L. C.; Xu, Yi

    2015-01-01

    In computerized technology, artificial speech is becoming increasingly important, and is already used in ATMs, online gaming and healthcare contexts. However, today’s artificial speech typically sounds monotonous, a main reason for this being the lack of meaningful prosody. One particularly important function of prosody is to convey different emotions. This is because successful encoding and decoding of emotions is vital for effective social cognition, which is increasingly recognized in human–computer interaction contexts. Current attempts to artificially synthesize emotional prosody are much improved relative to early attempts, but there remains much work to be done due to methodological problems, lack of agreed acoustic correlates, and lack of theoretical grounding. If the addition of synthetic emotional prosody is not of sufficient quality, it may risk alienating users instead of enhancing their experience. So the value of embedding emotion cues in artificial speech may ultimately depend on the quality of the synthetic emotional prosody. However, early evidence on reactions to synthesized non-verbal cues in the facial modality bodes well. Attempts to implement the recognition of emotional prosody into artificial applications and interfaces have perhaps been met with greater success, but the ultimate test of synthetic emotional prosody will be to critically compare how people react to synthetic emotional prosody vs. natural emotional prosody, at the behavioral, socio-cognitive and neural levels. PMID:26617563

  11. Semantics Boosts Syntax in Artificial Grammar Learning Tasks with Recursion

    ERIC Educational Resources Information Center

    Fedor, Anna; Varga, Mate; Szathmary, Eors

    2012-01-01

    Center-embedded recursion (CER) in natural language is exemplified by sentences such as "The malt that the rat ate lay in the house." Parsing center-embedded structures is in the focus of attention because this could be one of the cognitive capacities that make humans distinct from all other animals. The ability to parse CER is usually…

  12. A continuum treatment of sliding in Eulerian simulations of solid-solid and solid-fluid interfaces

    NASA Astrophysics Data System (ADS)

    Subramaniam, Akshay; Ghaisas, Niranjan; Lele, Sanjiva

    2017-11-01

    A novel treatment of sliding is developed for use in an Eulerian framework for simulating elastic-plastic deformations of solids coupled with fluids. In this method, embedded interfacial boundary conditions for perfect sliding are imposed by enforcing the interface normal to be a principal direction of the Cauchy stress and appropriate consistency conditions ensure correct transmission and reflection of waves at the interface. This sliding treatment may be used either to simulate a solid-solid sliding interface or to incorporate an internal slip boundary condition at a solid-fluid interface. Sliding laws like the Coulomb friction law can also be incorporated with relative ease into this framework. Simulations of sliding interfaces are conducted using a 10th order compact finite difference scheme and a Localized Artificial Diffusivity (LAD) scheme for shock and interface capturing. 1D and 2D simulations are used to assess the accuracy of the sliding treatment. The Richmyer-Meshkov instability between copper and aluminum is simulated with this sliding treatment as a demonstration test case. Support for this work was provided through Grant B612155 from the Lawrence Livermore National Laboratory, US Department of Energy.

  13. Long-term results after artificial iris implantation in patients with aniridia.

    PubMed

    Rickmann, Annekatrin; Szurman, Peter; Januschowski, Kai; Waizel, Maria; Spitzer, Martin S; Boden, Karl T; Szurman, Gesine B

    2016-07-01

    The custom-made, flexible artificial iris developed by HumanOptics and Koch can reconstruct the anterior segment of patients with aniridia. The aim of this study was to evaluate the long-term clinical outcome and complication spectrum after artificial iris implantation and the role of the embedded fiber mesh in view of specific complications. In this retrospective interventional case series, patients received an artificial iris between 2004 and 2013. Only eyes with a minimum follow-up period of 2 years were included. Indications were congenital, traumatic, or iatrogenic aniridia. The artificial iris was used either with or without embedded fiber mesh for partial or full prostheses. We included 34 patients (mean age 48.8 years; SD ±17.2) with a mean follow-up of 50.0 months (SD ±18.9 months). No repositioning of prostheses was necessary. In cases of keratopathy (17.6 %) visual function increased from baseline mean 1.6 logMAR (SD ±0.7) to 1.2 logMAR (SD ±0.7) after artificial iris implantation. The remaining iris tissue darkened during the follow-up in 23.5 % (83.3 % with and 10.7 % without mesh), 8.8 % developed glaucoma (50 % with and 0 % without mesh) and 14.7 % needed consecutive surgery after prostheses implantation (50 % with and 7.1 % without mesh). In three out of seven trauma cases (42.9 %) silicone oil was spilled into the anterior chamber after 2.5 years on average. The artificial iris prosthesis revealed a good clinical outcome in terms of long-term stability, cosmetic appearance, visual function, and represents a good functional iris diaphragm for compartmentalisation. Complications such as glaucoma, darkening of iris tissue, and need for consecutive anterior segment surgery are clearly associated with implants with integrated fiber mesh, but not to those without. Hence, the use of full iris prostheses without embedded fiber mesh, even in cases with remnant iris, and the use of slightly smaller implants than officially recommended may be beneficial.

  14. Soft-error tolerance and energy consumption evaluation of embedded computer with magnetic random access memory in practical systems using computer simulations

    NASA Astrophysics Data System (ADS)

    Nebashi, Ryusuke; Sakimura, Noboru; Sugibayashi, Tadahiko

    2017-08-01

    We evaluated the soft-error tolerance and energy consumption of an embedded computer with magnetic random access memory (MRAM) using two computer simulators. One is a central processing unit (CPU) simulator of a typical embedded computer system. We simulated the radiation-induced single-event-upset (SEU) probability in a spin-transfer-torque MRAM cell and also the failure rate of a typical embedded computer due to its main memory SEU error. The other is a delay tolerant network (DTN) system simulator. It simulates the power dissipation of wireless sensor network nodes of the system using a revised CPU simulator and a network simulator. We demonstrated that the SEU effect on the embedded computer with 1 Gbit MRAM-based working memory is less than 1 failure in time (FIT). We also demonstrated that the energy consumption of the DTN sensor node with MRAM-based working memory can be reduced to 1/11. These results indicate that MRAM-based working memory enhances the disaster tolerance of embedded computers.

  15. Usability evaluation of a medication reconciliation tool: Embedding safety probes to assess users' detection of medication discrepancies.

    PubMed

    Russ, Alissa L; Jahn, Michelle A; Patel, Himalaya; Porter, Brian W; Nguyen, Khoa A; Zillich, Alan J; Linsky, Amy; Simon, Steven R

    2018-06-01

    An electronic medication reconciliation tool was previously developed by another research team to aid provider-patient communication for medication reconciliation. To evaluate the usability of this tool, we integrated artificial safety probes into standard usability methods. The objective of this article is to describe this method of using safety probes, which enabled us to evaluate how well the tool supports users' detection of medication discrepancies. We completed a mixed-method usability evaluation in a simulated setting with 30 participants: 20 healthcare professionals (HCPs) and 10 patients. We used factual scenarios but embedded three artificial safety probes: (1) a missing medication (i.e., omission); (2) an extraneous medication (i.e., commission); and (3) an inaccurate dose (i.e., dose discrepancy). We measured users' detection of each probe to estimate the probability that a HCP or patient would detect these discrepancies. Additionally, we recorded participants' detection of naturally occurring discrepancies. Each safety probe was detected by ≤50% of HCPs. Patients' detection rates were generally higher. Estimates indicate that a HCP and patient, together, would detect 44.8% of these medication discrepancies. Additionally, HCPs and patients detected 25 and 45 naturally-occurring discrepancies, respectively. Overall, detection of medication discrepancies was low. Findings indicate that more advanced interface designs are warranted. Future research is needed on how technologies can be designed to better aid HCPs' and patients' detection of medication discrepancies. This is one of the first studies to evaluate the usability of a collaborative medication reconciliation tool and assess HCPs' and patients' detection of medication discrepancies. Results demonstrate that embedded safety probes can enhance standard usability methods by measuring additional, clinically-focused usability outcomes. The novel safety probes we used may serve as an initial, standard set for future medication reconciliation research. More prevalent use of safety probes could strengthen usability research for a variety of health information technologies. Published by Elsevier Inc.

  16. NSDann2BS, a neutron spectrum unfolding code based on neural networks technology and two bonner spheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz-Rodriguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.

    In this work a neutron spectrum unfolding code, based on artificial intelligence technology is presented. The code called ''Neutron Spectrometry and Dosimetry with Artificial Neural Networks and two Bonner spheres'', (NSDann2BS), was designed in a graphical user interface under the LabVIEW programming environment. The main features of this code are to use an embedded artificial neural network architecture optimized with the ''Robust design of artificial neural networks methodology'' and to use two Bonner spheres as the only piece of information. In order to build the code here presented, once the net topology was optimized and properly trained, knowledge stored atmore » synaptic weights was extracted and using a graphical framework build on the LabVIEW programming environment, the NSDann2BS code was designed. This code is friendly, intuitive and easy to use for the end user. The code is freely available upon request to authors. To demonstrate the use of the neural net embedded in the NSDann2BS code, the rate counts of {sup 252}Cf, {sup 241}AmBe and {sup 239}PuBe neutron sources measured with a Bonner spheres system.« less

  17. NSDann2BS, a neutron spectrum unfolding code based on neural networks technology and two bonner spheres

    NASA Astrophysics Data System (ADS)

    Ortiz-Rodríguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.; Solís Sánches, L. O.; Miranda, R. Castañeda; Cervantes Viramontes, J. M.; Vega-Carrillo, H. R.

    2013-07-01

    In this work a neutron spectrum unfolding code, based on artificial intelligence technology is presented. The code called "Neutron Spectrometry and Dosimetry with Artificial Neural Networks and two Bonner spheres", (NSDann2BS), was designed in a graphical user interface under the LabVIEW programming environment. The main features of this code are to use an embedded artificial neural network architecture optimized with the "Robust design of artificial neural networks methodology" and to use two Bonner spheres as the only piece of information. In order to build the code here presented, once the net topology was optimized and properly trained, knowledge stored at synaptic weights was extracted and using a graphical framework build on the LabVIEW programming environment, the NSDann2BS code was designed. This code is friendly, intuitive and easy to use for the end user. The code is freely available upon request to authors. To demonstrate the use of the neural net embedded in the NSDann2BS code, the rate counts of 252Cf, 241AmBe and 239PuBe neutron sources measured with a Bonner spheres system.

  18. Embedded expert system for space shuttle main engine maintenance

    NASA Technical Reports Server (NTRS)

    Pooley, J.; Thompson, W.; Homsley, T.; Teoh, W.; Jones, J.; Lewallen, P.

    1987-01-01

    The SPARTA Embedded Expert System (SEES) is an intelligent health monitoring system that directs analysis by placing confidence factors on possible engine status and then recommends a course of action to an engineer or engine controller. The technique can prevent catastropic failures or costly rocket engine down time because of false alarms. Further, the SEES has potential as an on-board flight monitor for reusable rocket engine systems. The SEES methodology synergistically integrates vibration analysis, pattern recognition and communications theory techniques with an artificial intelligence technique - the Embedded Expert System (EES).

  19. DNA Photosensitization by an "Insider": Photophysics and Triplet Energy Transfer of 5-Methyl-2-pyrimidone Deoxyribonucleoside.

    PubMed

    Bignon, Emmanuelle; Gattuso, Hugo; Morell, Christophe; Dumont, Elise; Monari, Antonio

    2015-08-03

    The main chromophore of (6-4) photoproducts, namely, 5-methyl-2-pyrimidone (Pyo), is an artificial noncanonical nucleobase. This chromophore has recently been reported as a potential photosensitizer that induces triplet damage in thymine DNA. In this study, we investigate the spectroscopic properties of the Pyo unit embedded in DNA by means of explicit solvent molecular-dynamics simulations coupled to time-dependent DFT and quantum-mechanics/molecular-mechanics techniques. Triplet-state transfer from the Pyo to the thymine unit was monitored in B-DNA by probing the propensity of this photoactive pyrimidine analogue to induce a Dexter-type triplet photosensitization and subsequent DNA damage. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Event-Triggered Model Predictive Control for Embedded Artificial Pancreas Systems.

    PubMed

    Chakrabarty, Ankush; Zavitsanou, Stamatina; Doyle, Francis J; Dassau, Eyal

    2018-03-01

    The development of artificial pancreas (AP) technology for deployment in low-energy, embedded devices is contingent upon selecting an efficient control algorithm for regulating glucose in people with type 1 diabetes mellitus. In this paper, we aim to lower the energy consumption of the AP by reducing controller updates, that is, the number of times the decision-making algorithm is invoked to compute an appropriate insulin dose. Physiological insights into glucose management are leveraged to design an event-triggered model predictive controller (MPC) that operates efficiently, without compromising patient safety. The proposed event-triggered MPC is deployed on a wearable platform. Its robustness to latent hypoglycemia, model mismatch, and meal misinformation is tested, with and without meal announcement, on the full version of the US-FDA accepted UVA/Padova metabolic simulator. The event-based controller remains on for 18 h of 41 h in closed loop with unannounced meals, while maintaining glucose in 70-180 mg/dL for 25 h, compared to 27 h for a standard MPC controller. With meal announcement, the time in 70-180 mg/dL is almost identical, with the controller operating a mere 25.88% of the time in comparison with a standard MPC. A novel control architecture for AP systems enables safe glycemic regulation with reduced processor computations. Our proposed framework integrated seamlessly with a wide variety of popular MPC variants reported in AP research, customizes tradeoff between glycemic regulation and efficacy according to prior design specifications, and eliminates judicious prior selection of controller sampling times.

  1. Virtual Reality for Artificial Intelligence: human-centered simulation for social science.

    PubMed

    Cipresso, Pietro; Riva, Giuseppe

    2015-01-01

    There is a long last tradition in Artificial Intelligence as use of Robots endowing human peculiarities, from a cognitive and emotional point of view, and not only in shape. Today Artificial Intelligence is more oriented to several form of collective intelligence, also building robot simulators (hardware or software) to deeply understand collective behaviors in human beings and society as a whole. Modeling has also been crucial in the social sciences, to understand how complex systems can arise from simple rules. However, while engineers' simulations can be performed in the physical world using robots, for social scientist this is impossible. For decades, researchers tried to improve simulations by endowing artificial agents with simple and complex rules that emulated human behavior also by using artificial intelligence (AI). To include human beings and their real intelligence within artificial societies is now the big challenge. We present an hybrid (human-artificial) platform where experiments can be performed by simulated artificial worlds in the following manner: 1) agents' behaviors are regulated by the behaviors shown in Virtual Reality involving real human beings exposed to specific situations to simulate, and 2) technology transfers these rules into the artificial world. These form a closed-loop of real behaviors inserted into artificial agents, which can be used to study real society.

  2. Implementing embedded artificial intelligence rules within algorithmic programming languages

    NASA Technical Reports Server (NTRS)

    Feyock, Stefan

    1988-01-01

    Most integrations of artificial intelligence (AI) capabilities with non-AI (usually FORTRAN-based) application programs require the latter to execute separately to run as a subprogram or, at best, as a coroutine, of the AI system. In many cases, this organization is unacceptable; instead, the requirement is for an AI facility that runs in embedded mode; i.e., is called as subprogram by the application program. The design and implementation of a Prolog-based AI capability that can be invoked in embedded mode are described. The significance of this system is twofold: Provision of Prolog-based symbol-manipulation and deduction facilities makes a powerful symbolic reasoning mechanism available to applications programs written in non-AI languages. The power of the deductive and non-procedural descriptive capabilities of Prolog, which allow the user to describe the problem to be solved, rather than the solution, is to a large extent vitiated by the absence of the standard control structures provided by other languages. Embedding invocations of Prolog rule bases in programs written in non-AI languages makes it possible to put Prolog calls inside DO loops and similar control constructs. The resulting merger of non-AI and AI languages thus results in a symbiotic system in which the advantages of both programming systems are retained, and their deficiencies largely remedied.

  3. On the relationship between parallel computation and graph embedding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, A.K.

    1989-01-01

    The problem of efficiently simulating an algorithm designed for an n-processor parallel machine G on an m-processor parallel machine H with n > m arises when parallel algorithms designed for an ideal size machine are simulated on existing machines which are of a fixed size. The author studies this problem when every processor of H takes over the function of a number of processors in G, and he phrases the simulation problem as a graph embedding problem. New embeddings presented address relevant issues arising from the parallel computation environment. The main focus centers around embedding complete binary trees into smaller-sizedmore » binary trees, butterflies, and hypercubes. He also considers simultaneous embeddings of r source machines into a single hypercube. Constant factors play a crucial role in his embeddings since they are not only important in practice but also lead to interesting theoretical problems. All of his embeddings minimize dilation and load, which are the conventional cost measures in graph embeddings and determine the maximum amount of time required to simulate one step of G on H. His embeddings also optimize a new cost measure called ({alpha},{beta})-utilization which characterizes how evenly the processors of H are used by the processors of G. Ideally, the utilization should be balanced (i.e., every processor of H simulates at most (n/m) processors of G) and the ({alpha},{beta})-utilization measures how far off from a balanced utilization the embedding is. He presents embeddings for the situation when some processors of G have different capabilities (e.g. memory or I/O) than others and the processors with different capabilities are to be distributed uniformly among the processors of H. Placing such conditions on an embedding results in an increase in some of the cost measures.« less

  4. Artificial fingerprint recognition by using optical coherence tomography with autocorrelation analysis.

    PubMed

    Cheng, Yezeng; Larin, Kirill V

    2006-12-20

    Fingerprint recognition is one of the most widely used methods of biometrics. This method relies on the surface topography of a finger and, thus, is potentially vulnerable for spoofing by artificial dummies with embedded fingerprints. In this study, we applied the optical coherence tomography (OCT) technique to distinguish artificial materials commonly used for spoofing fingerprint scanning systems from the real skin. Several artificial fingerprint dummies made from household cement and liquid silicone rubber were prepared and tested using a commercial fingerprint reader and an OCT system. While the artificial fingerprints easily spoofed the commercial fingerprint reader, OCT images revealed the presence of them at all times. We also demonstrated that an autocorrelation analysis of the OCT images could be potentially used in automatic recognition systems.

  5. Artificial fingerprint recognition by using optical coherence tomography with autocorrelation analysis

    NASA Astrophysics Data System (ADS)

    Cheng, Yezeng; Larin, Kirill V.

    2006-12-01

    Fingerprint recognition is one of the most widely used methods of biometrics. This method relies on the surface topography of a finger and, thus, is potentially vulnerable for spoofing by artificial dummies with embedded fingerprints. In this study, we applied the optical coherence tomography (OCT) technique to distinguish artificial materials commonly used for spoofing fingerprint scanning systems from the real skin. Several artificial fingerprint dummies made from household cement and liquid silicone rubber were prepared and tested using a commercial fingerprint reader and an OCT system. While the artificial fingerprints easily spoofed the commercial fingerprint reader, OCT images revealed the presence of them at all times. We also demonstrated that an autocorrelation analysis of the OCT images could be potentially used in automatic recognition systems.

  6. A.I.-based real-time support for high performance aircraft operations

    NASA Technical Reports Server (NTRS)

    Vidal, J. J.

    1985-01-01

    Artificial intelligence (AI) based software and hardware concepts are applied to the handling system malfunctions during flight tests. A representation of malfunction procedure logic using Boolean normal forms are presented. The representation facilitates the automation of malfunction procedures and provides easy testing for the embedded rules. It also forms a potential basis for a parallel implementation in logic hardware. The extraction of logic control rules, from dynamic simulation and their adaptive revision after partial failure are examined. It uses a simplified 2-dimensional aircraft model with a controller that adaptively extracts control rules for directional thrust that satisfies a navigational goal without exceeding pre-established position and velocity limits. Failure recovery (rule adjusting) is examined after partial actuator failure. While this experiment was performed with primitive aircraft and mission models, it illustrates an important paradigm and provided complexity extrapolations for the proposed extraction of expertise from simulation, as discussed. The use of relaxation and inexact reasoning in expert systems was also investigated.

  7. Commentary on "How Task Features Impact Evidence from Assessments Embedded in Simulations and Games" by Almond et al.

    ERIC Educational Resources Information Center

    Timms, Mike

    2014-01-01

    In his commentary on "How Task Features Impact Evidence from Assessments Embedded in Simulations and Games" by Almond et al., Mike Timms writes that his own research has involved the use of embedded assessments using simulations in interactive learning environments, and the Evidence Centered Design (ECD) approach has provided a solid…

  8. Artificial Neural Network Metamodels of Stochastic Computer Simulations

    DTIC Science & Technology

    1994-08-10

    SUBTITLE r 5. FUNDING NUMBERS Artificial Neural Network Metamodels of Stochastic I () Computer Simulations 6. AUTHOR(S) AD- A285 951 Robert Allen...8217!298*1C2 ARTIFICIAL NEURAL NETWORK METAMODELS OF STOCHASTIC COMPUTER SIMULATIONS by Robert Allen Kilmer B.S. in Education Mathematics, Indiana...dedicate this document to the memory of my father, William Ralph Kilmer. mi ABSTRACT Signature ARTIFICIAL NEURAL NETWORK METAMODELS OF STOCHASTIC

  9. Cosimulation of embedded system using RTOS software simulator

    NASA Astrophysics Data System (ADS)

    Wang, Shihao; Duan, Zhigang; Liu, Mingye

    2003-09-01

    Embedded system design often employs co-simulation to verify system's function; one efficient verification tool of software is Instruction Set Simulator (ISS). As a full functional model of target CPU, ISS interprets instruction of embedded software step by step, which usually is time-consuming since it simulates at low-level. Hence ISS often becomes the bottleneck of co-simulation in a complicated system. In this paper, a new software verification tools, the RTOS software simulator (RSS) was presented. The mechanism of its operation was described in a full details. In RSS method, RTOS API is extended and hardware simulator driver is adopted to deal with data-exchange and synchronism between the two simulators.

  10. Parallel kinematic mechanisms for distributed actuation of future structures

    NASA Astrophysics Data System (ADS)

    Lai, G.; Plummer, A. R.; Cleaver, D. J.; Zhou, H.

    2016-09-01

    Future machines will require distributed actuation integrated with load-bearing structures, so that they are lighter, move faster, use less energy, and are more adaptable. Good examples are shape-changing aircraft wings which can adapt precisely to the ideal aerodynamic form for current flying conditions, and light but powerful robotic manipulators which can interact safely with human co-workers. A 'tensegrity structure' is a good candidate for this application due to its potentially excellent stiffness and strength-to-weight ratio and a multi-element structure into which actuators could be embedded. This paper presents results of an analysis of an example practical actuated tensegrity structure consisting of 3 ‘unit cells’. A numerical method is used to determine the stability of the structure with varying actuator length, showing how four actuators can be used to control movement in three degrees of freedom as well as simultaneously maintaining the structural pre-load. An experimental prototype has been built, in which 4 pneumatic artificial muscles (PAMs) are embedded in one unit cell. The PAMs are controlled antagonistically, by high speed switching of on-off valves, to achieve control of position and structure pre-load. Experimental and simulation results are presented, and future prospects for the approach are discussed.

  11. Terahertz beam switching by electrical control of graphene-enabled tunable metasurface.

    PubMed

    Zhang, Yin; Feng, Yijun; Zhao, Junming; Jiang, Tian; Zhu, Bo

    2017-10-26

    Controlling the terahertz wave, especially the dynamical and full control of terahertz wavefront, is highly demanded due to the increasing development of practical devices and application systems. Recently considerable efforts have been made to fill the 'terahertz gap' with the help of artificial metamaterial or metasurface incorporated with graphene material. Here, we propose a scheme to design tunable metasurface consisting of metallic patch array on a grounded polymer substrate embedded with graphene layers to electrically control the electromagnetic beam reflection at terahertz frequency. By adjusting geometric dimension of the patch elements, 360 degree reflection phase range may be achieved, thus abrupt phase shifts can be introduced along the metasurface for tailoring the reflected wavefront. Moreover, the reflective phase gradient over the metasurface can be switched between 90 and 360 degree by controlling the Fermi energy of the embedded graphene through voltage biasing, hence dynamically switching the reflective beam directions. Numerical simulations demonstrate that either single beam or dual beam dynamically switching between normal and oblique reflection angles can be well attained at working frequency. The proposed approach will bring much freedom in the design of beam manipulation devices and may be applied to terahertz radiation control.

  12. Synthetic ion channels via self-assembly: a route for embedding porous polyoxometalate nanocapsules in lipid bilayer membranes.

    PubMed

    Carr, Rogan; Weinstock, Ira A; Sivaprasadarao, Asipu; Müller, Achim; Aksimentiev, Aleksei

    2008-11-01

    Porous polyoxometalate nanocapsules of Keplerate type are known to exhibit the functionality of biological ion channels; however, their use as an artificial ion channel is tempered by the high negative charge of the capsules, which renders their spontaneous incorporation into a lipid bilayer membrane unlikely. In this Letter we report coarse-grained molecular dynamics simulations that demonstrate a route for embedding negatively charged nanocapsules into lipid bilayer membranes via self-assembly. A homogeneous mixture of water, cationic detergent, and phospholipid was observed to spontaneously self-assemble around the nanocapsule into a layered, liposome-like structure, where the nanocapsule was enveloped by a layer of cationic detergent followed by a layer of phospholipid. Fusion of such a layered liposome with a lipid bilayer membrane was observed to embed the nanocapsule into the lipid bilayer. The resulting assembly was found to remain stable even after the surface of the capsule was exposed to electrolyte. In the latter conformation, water was observed to flow into and out of the capsule as Na(+) cations entered, suggesting that a polyoxometalate nanocapsule can form a functional synthetic ion channel in a lipid bilayer membrane.

  13. Synthetic Ion Channels via Self-Assembly: a Route for Embedding Porous Polyoxometalate Nanocapsules in Lipid Bilayer Membranes

    PubMed Central

    Carr, Rogan; Weinstock, Ira A.; Sivaprasadarao, Asipu; Müller, Achim; Aksimentiev, Aleksei

    2010-01-01

    Porous polyoxometalate nanocapsules of Keplerate type are known to exhibit the functionality of biological ion channels, however, their use as artificial ion channel is tempered by the high negative charge of the capsules, which renders their spontaneous incorporation into a lipid bilayer membrane unlikely. In this letter we report coarse-grained molecular dynamics simulations that demonstrate a route for embedding negatively charged nanocapsules into lipid bilayer membranes via self-assembly. A homogeneous mixture of water, cationic detergent, and phospholipid was observed to spontaneously self-assemble around the nanocapsule into a layered, liposome-like structure, where the nanocapsule was enveloped by a layer of cationic detergent followed by a layer of phospholipid. Fusion of such a layered liposome with a lipid bilayer membrane was observed to embed the nanocapsule into the lipid bilayer. The resulting assembly was found to remain stable even after the surface of the capsule was exposed to electrolyte. In the latter conformation, water was observed to flow into and out of the capsule as Na+ cations entered, suggesting that a polyoxometalate nanocapsule can form a functional synthetic ion channel in a lipid bilayer membrane. PMID:18844424

  14. Testing of Safety-Critical Software Embedded in an Artificial Heart

    NASA Astrophysics Data System (ADS)

    Cha, Sungdeok; Jeong, Sehun; Yoo, Junbeom; Kim, Young-Gab

    Software is being used more frequently to control medical devices such as artificial heart or robotic surgery system. While much of software safety issues in such systems are similar to other safety-critical systems (e.g., nuclear power plants), domain-specific properties may warrant development of customized techniques to demonstrate fitness of the system on patients. In this paper, we report results of a preliminary analysis done on software controlling a Hybrid Ventricular Assist Device (H-VAD) developed by Korea Artificial Organ Centre (KAOC). It is a state-of-the-art artificial heart which completed animal testing phase. We performed software testing in in-vitro experiments and animal experiments. An abnormal behaviour, never detected during extensive in-vitro analysis and animal testing, was found.

  15. All optical detection of picosecond spin-wave dynamics in 2D annular antidot lattice

    NASA Astrophysics Data System (ADS)

    Porwal, Nikita; Mondal, Sucheta; Choudhury, Samiran; De, Anulekha; Sinha, Jaivardhan; Barman, Anjan; Datta, Prasanta Kumar

    2018-02-01

    Novel magnetic structures with precisely controlled dimensions and shapes at the nanoscale have potential applications in spin logic, spintronics and other spin-based communication devices. We report the fabrication of 2D bi-structure magnonic crystal in the form of embedded nanodots in a periodic Ni80Fe20 antidot lattice structure (annular antidot) by focused ion-beam lithography. The spin-wave spectra of the annular antidot sample, studied for the first time by a time-resolved magneto-optic Kerr effect microscopy show a remarkable variation with bias field, which is important for the above device applications. The optically induced spin-wave spectra show multiple modes in the frequency range 14.7 GHz-3.5 GHz due to collective interactions between the dots and antidots as well as the annular elements within the whole array. Numerical simulations qualitatively reproduce the experimental results, and simulated mode profiles reveal the spatial distribution of the spin-wave modes and internal magnetic fields responsible for these observations. It is observed that the internal field strength increases by about 200 Oe inside each dot embedded within the hole of annular antidot lattice as compared to pure antidot lattice and pure dot lattice. The stray field for the annular antidot lattice is found to be significant (0.8 kOe) as opposed to the negligible values of the same for the pure dot lattice and pure antidot lattice. Our findings open up new possibilities for development of novel artificial crystals.

  16. Electronic Cortisol Detection Using an Antibody-Embedded Polymer Coupled to a Field-Effect Transistor.

    PubMed

    Jang, Hyun-June; Lee, Taein; Song, Jian; Russell, Luisa; Li, Hui; Dailey, Jennifer; Searson, Peter C; Katz, Howard E

    2018-05-16

    A field-effect transistor-based cortisol sensor was demonstrated in physiological conditions. An antibody-embedded polymer on the remote gate was proposed to overcome the Debye length issue (λ D ). The sensing membrane was made by linking poly(styrene- co-methacrylic acid) (PSMA) with anticortisol before coating the modified polymer on the remote gate. The embedded receptor in the polymer showed sensitivity from 10 fg/mL to 10 ng/mL for cortisol and a limit of detection (LOD) of 1 pg/mL in 1× PBS where λ D is 0.2 nm. A LOD of 1 ng/mL was shown in lightly buffered artificial sweat. Finally, a sandwich ELISA confirmed the antibody binding activity of antibody-embedded PSMA.

  17. Knowledge Based Simulation: An Artificial Intelligence Approach to System Modeling and Automating the Simulation Life Cycle.

    DTIC Science & Technology

    1988-04-13

    Simulation: An Artificial Intelligence Approach to System Modeling and Automating the Simulation Life Cycle Mark S. Fox, Nizwer Husain, Malcolm...McRoberts and Y.V.Reddy CMU-RI-TR-88-5 Intelligent Systems Laboratory The Robotics Institute Carnegie Mellon University Pittsburgh, Pennsylvania D T T 13...years of research in the application of Artificial Intelligence to Simulation. Our focus has been in two areas: the use of Al knowledge representation

  18. A surgical simulator for peeling the inner limiting membrane during wet conditions.

    PubMed

    Omata, Seiji; Someya, Yusei; Adachi, Shyn'ya; Masuda, Taisuke; Hayakawa, Takeshi; Harada, Kanako; Mitsuishi, Mamoru; Totsuka, Kiyohito; Araki, Fumiyuki; Takao, Muneyuki; Aihara, Makoto; Arai, Fumihito

    2018-01-01

    The present study was performed to establish a novel ocular surgery simulator for training in peeling of the inner limited membrane (ILM). This simulator included a next-generation artificial ILM with mechanical properties similar to the natural ILM that could be peeled underwater in the same manner as in actual surgery. An artificial eye consisting of a fundus and eyeball parts was fabricated. The artificial eye was installed in the eye surgery simulator. The fundus part was mounted in the eyeball, which consisted of an artificial sclera, retina, and ILM. To measure the thickness of the fabricated ILM on the artificial retina, we calculated the distance of the step height as the thickness of the artificial ILM. Two experienced ophthalmologists then assessed the fabricated ILM by sensory evaluation. The minimum thickness of the artificial ILM was 1.9 ± 0.3 μm (n = 3). We were able to perform the peeling task with the ILM in water. Based on the sensory evaluation, an ILM with a minimum thickness and 1000 degrees of polymerization was suitable for training. We installed the eye model on an ocular surgery simulator, which allowed for the performance of a sequence of operations similar to ILM peeling. In conclusion, we developed a novel ocular surgery simulator for ILM peeling. The artificial ILM was peeled underwater in the same manner as in an actual operation.

  19. Application of double-layered skin phantoms for optical flow imaging during laser tattoo treatments

    NASA Astrophysics Data System (ADS)

    Lee, Byeong-il; Song, Woosub; Kim, Hyejin; Kang, Hyun Wook

    2016-05-01

    The feasible application of double-layered skin phantoms was evaluated to identify artificial blood flow with a Doppler optical coherence tomography (DOCT) system for laser tattoo treatments. Polydimethylsiloxane (PDMS) was used to fabricate the artificial phantoms with flow channels embedded. A double-integrating sphere system with an inverse adding-doubling method quantified both the absorption and the reduced scattering coefficients for epidermis and dermis phantoms. Both OCT and caliper measurements confirmed the double-layered phantom structure (epidermis = 136 ± 17 µm vs. dermis = 3.0 ± 0.1 mm). The DOCT method demonstrated that high flow rates were associated with high image contrast, visualizing the position and the shape of the flow channel. Application of the channel-embedded skin phantoms in conjunction with DOCT can be a reliable technique to assess dynamic variations in the blood flow during and after laser tattoo treatments.

  20. Artificial Intelligence Software Engineering (AISE) model

    NASA Technical Reports Server (NTRS)

    Kiss, Peter A.

    1990-01-01

    The American Institute of Aeronautics and Astronautics has initiated a committee on standards for Artificial Intelligence. Presented are the initial efforts of one of the working groups of that committee. A candidate model is presented for the development life cycle of knowledge based systems (KBSs). The intent is for the model to be used by the aerospace community and eventually be evolved into a standard. The model is rooted in the evolutionary model, borrows from the spiral model, and is embedded in the standard Waterfall model for software development. Its intent is to satisfy the development of both stand-alone and embedded KBSs. The phases of the life cycle are shown and detailed as are the review points that constitute the key milestones throughout the development process. The applicability and strengths of the model are discussed along with areas needing further development and refinement by the aerospace community.

  1. Effects of Imperfect Dynamic Clamp: Computational and Experimental Results

    PubMed Central

    Bettencourt, Jonathan C.; Lillis, Kyle P.; White, John A.

    2008-01-01

    In the dynamic clamp technique, a typically nonlinear feedback system delivers electrical current to an excitable cell that represents the actions of “virtual” ion channels (e.g., channels that are gated by local membrane potential or by electrical activity in neighboring biological or virtual neurons). Since the conception of this technique, there have been a number of different implementations of dynamic clamp systems, each with differing levels of flexibility and performance. Embedded hardware-based systems typically offer feedback that is very fast and precisely timed, but these systems are often expensive and sometimes inflexible. PC-based systems, on the other hand, allow the user to write software that defines an arbitrarily complex feedback system, but real-time performance in PC-based systems can be deteriorated by imperfect real-time performance. Here we systematically evaluate the performance requirements for artificial dynamic clamp knock-in of transient sodium and delayed rectifier potassium conductances. Specifically we examine the effects of controller time step duration, differential equation integration method, jitter (variability in time step), and latency (the time lag from reading inputs to updating outputs). Each of these control system flaws is artificially introduced in both simulated and real dynamic clamp experiments. We demonstrate that each of these errors affect dynamic clamp accuracy in a way that depends on the time constants and stiffness of the differential equations being solved. In simulations, time steps above 0.2 ms lead to catastrophic alteration of spike shape, but the frequency-vs.-current relationship is much more robust. Latency (the part of the time step that occurs between measuring membrane potential and injecting re-calculated membrane current) is a crucial factor as well. Experimental data are substantially more sensitive to inaccuracies than simulated data. PMID:18076999

  2. Raman Monte Carlo simulation for light propagation for tissue with embedded objects

    NASA Astrophysics Data System (ADS)

    Periyasamy, Vijitha; Jaafar, Humaira Bte; Pramanik, Manojit

    2018-02-01

    Monte Carlo (MC) stimulation is one of the prominent simulation technique and is rapidly becoming the model of choice to study light-tissue interaction. Monte Carlo simulation for light transport in multi-layered tissue (MCML) is adapted and modelled with different geometry by integrating embedded objects of various shapes (i.e., sphere, cylinder, cuboid and ellipsoid) into the multi-layered structure. These geometries would be useful in providing a realistic tissue structure such as modelling for lymph nodes, tumors, blood vessels, head and other simulation medium. MC simulations were performed on various geometric medium. Simulation of MCML with embedded object (MCML-EO) was improvised for propagation of the photon in the defined medium with Raman scattering. The location of Raman photon generation is recorded. Simulations were experimented on a modelled breast tissue with tumor (spherical and ellipsoidal) and blood vessels (cylindrical). Results were presented in both A-line and B-line scans for embedded objects to determine spatial location where Raman photons were generated. Studies were done for different Raman probabilities.

  3. The effect of artificial bulk viscosity in simulations of forced compressible turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campos, A.; Morgan, B.

    The use of an artificial bulk viscosity for shock stabilization is a common approach employed in turbulence simulations with high-order numerics. The effect of the artificial bulk viscosity is analyzed in the context of large eddy simulations by using as a test case simulations of linearly-forced compressible homogeneous turbulence (Petersen and Livescu, 2010 [12]). This case is unique in that it allows for the specification of a priori target values for total dissipation and ratio of solenoidal to dilatational dissipation. A comparison between these target values and the true predicted levels of dissipation is thus used to investigate the performancemore » of the artificial bulk viscosity. Results show that the artificial bulk viscosity is effective at achieving stable solutions, but also leads to large values of artificial dissipation that outweigh the physical dissipation caused by fluid viscosity. An alternate approach, which employs the artificial thermal conductivity only, shows that the dissipation of dilatational modes is entirely due to the fluid viscosity. However, this method leads to unwanted Gibbs oscillations around the shocklets. The use of shock sensors that further localize the artificial bulk viscosity did not reduce the amount of artificial dissipation introduced by the artificial bulk viscosity. Finally, an improved forcing function that explicitly accounts for the role of the artificial bulk viscosity in the budget of turbulent kinetic energy was explored.« less

  4. The effect of artificial bulk viscosity in simulations of forced compressible turbulence

    DOE PAGES

    Campos, A.; Morgan, B.

    2018-05-17

    The use of an artificial bulk viscosity for shock stabilization is a common approach employed in turbulence simulations with high-order numerics. The effect of the artificial bulk viscosity is analyzed in the context of large eddy simulations by using as a test case simulations of linearly-forced compressible homogeneous turbulence (Petersen and Livescu, 2010 [12]). This case is unique in that it allows for the specification of a priori target values for total dissipation and ratio of solenoidal to dilatational dissipation. A comparison between these target values and the true predicted levels of dissipation is thus used to investigate the performancemore » of the artificial bulk viscosity. Results show that the artificial bulk viscosity is effective at achieving stable solutions, but also leads to large values of artificial dissipation that outweigh the physical dissipation caused by fluid viscosity. An alternate approach, which employs the artificial thermal conductivity only, shows that the dissipation of dilatational modes is entirely due to the fluid viscosity. However, this method leads to unwanted Gibbs oscillations around the shocklets. The use of shock sensors that further localize the artificial bulk viscosity did not reduce the amount of artificial dissipation introduced by the artificial bulk viscosity. Finally, an improved forcing function that explicitly accounts for the role of the artificial bulk viscosity in the budget of turbulent kinetic energy was explored.« less

  5. Torso-Tank Validation of High-Resolution Electrogastrography (EGG): Forward Modelling, Methodology and Results.

    PubMed

    Calder, Stefan; O'Grady, Greg; Cheng, Leo K; Du, Peng

    2018-04-27

    Electrogastrography (EGG) is a non-invasive method for measuring gastric electrical activity. Recent simulation studies have attempted to extend the current clinical utility of the EGG, in particular by providing a theoretical framework for distinguishing specific gastric slow wave dysrhythmias. In this paper we implement an experimental setup called a 'torso-tank' with the aim of expanding and experimentally validating these previous simulations. The torso-tank was developed using an adult male torso phantom with 190 electrodes embedded throughout the torso. The gastric slow waves were reproduced using an artificial current source capable of producing 3D electrical fields. Multiple gastric dysrhythmias were reproduced based on high-resolution mapping data from cases of human gastric dysfunction (gastric re-entry, conduction blocks and ectopic pacemakers) in addition to normal test data. Each case was recorded and compared to the previously-presented simulated results. Qualitative and quantitative analyses were performed to define the accuracy showing [Formula: see text] 1.8% difference, [Formula: see text] 0.99 correlation, and [Formula: see text] 0.04 normalised RMS error between experimental and simulated findings. These results reaffirm previous findings and these methods in unison therefore present a promising morphological-based methodology for advancing the understanding and clinical applications of EGG.

  6. The use of an automated flight test management system in the development of a rapid-prototyping flight research facility

    NASA Technical Reports Server (NTRS)

    Duke, Eugene L.; Hewett, Marle D.; Brumbaugh, Randal W.; Tartt, David M.; Antoniewicz, Robert F.; Agarwal, Arvind K.

    1988-01-01

    An automated flight test management system (ATMS) and its use to develop a rapid-prototyping flight research facility for artificial intelligence (AI) based flight systems concepts are described. The ATMS provides a flight test engineer with a set of tools that assist in flight planning and simulation. This system will be capable of controlling an aircraft during the flight test by performing closed-loop guidance functions, range management, and maneuver-quality monitoring. The rapid-prototyping flight research facility is being developed at the Dryden Flight Research Facility of the NASA Ames Research Center (Ames-Dryden) to provide early flight assessment of emerging AI technology. The facility is being developed as one element of the aircraft automation program which focuses on the qualification and validation of embedded real-time AI-based systems.

  7. Prototype space station automation system delivered and demonstrated at NASA

    NASA Technical Reports Server (NTRS)

    Block, Roger F.

    1987-01-01

    The Automated Subsystem Control for Life Support System (ASCLSS) program has successfully developed and demonstrated a generic approach to the automation and control of Space Station subsystems. The hierarchical and distributed real time controls system places the required controls authority at every level of the automation system architecture. As a demonstration of the automation technique, the ASCLSS system automated the Air Revitalization Group (ARG) of the Space Station regenerative Environmental Control and Life Support System (ECLSS) using real-time, high fidelity simulators of the ARG processess. This automation system represents an early flight prototype and an important test bed for evaluating Space Station controls technology including future application of ADA software in real-time control and the development and demonstration of embedded artificial intelligence and expert systems (AI/ES) in distributed automation and controls systems.

  8. Three-dimensional hysteresis compensation enhances accuracy of robotic artificial muscles

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Simeonov, Anthony; Yip, Michael C.

    2018-03-01

    Robotic artificial muscles are compliant and can generate straight contractions. They are increasingly popular as driving mechanisms for robotic systems. However, their strain and tension force often vary simultaneously under varying loads and inputs, resulting in three-dimensional hysteretic relationships. The three-dimensional hysteresis in robotic artificial muscles poses difficulties in estimating how they work and how to make them perform designed motions. This study proposes an approach to driving robotic artificial muscles to generate designed motions and forces by modeling and compensating for their three-dimensional hysteresis. The proposed scheme captures the nonlinearity by embedding two hysteresis models. The effectiveness of the model is confirmed by testing three popular robotic artificial muscles. Inverting the proposed model allows us to compensate for the hysteresis among temperature surrogate, contraction length, and tension force of a shape memory alloy (SMA) actuator. Feedforward control of an SMA-actuated robotic bicep is demonstrated. This study can be generalized to other robotic artificial muscles, thus enabling muscle-powered machines to generate desired motions.

  9. Employing Inquiry-Based Computer Simulations and Embedded Scientist Videos to Teach Challenging Climate Change and Nature of Science Concepts

    ERIC Educational Resources Information Center

    Cohen, Edward Charles

    2013-01-01

    Design based research was utilized to investigate how students use a greenhouse effect simulation in order to derive best learning practices. During this process, students recognized the authentic scientific process involving computer simulations. The simulation used is embedded within an inquiry-based technology-mediated science curriculum known…

  10. Improved Quantum Artificial Fish Algorithm Application to Distributed Network Considering Distributed Generation.

    PubMed

    Du, Tingsong; Hu, Yang; Ke, Xianting

    2015-01-01

    An improved quantum artificial fish swarm algorithm (IQAFSA) for solving distributed network programming considering distributed generation is proposed in this work. The IQAFSA based on quantum computing which has exponential acceleration for heuristic algorithm uses quantum bits to code artificial fish and quantum revolving gate, preying behavior, and following behavior and variation of quantum artificial fish to update the artificial fish for searching for optimal value. Then, we apply the proposed new algorithm, the quantum artificial fish swarm algorithm (QAFSA), the basic artificial fish swarm algorithm (BAFSA), and the global edition artificial fish swarm algorithm (GAFSA) to the simulation experiments for some typical test functions, respectively. The simulation results demonstrate that the proposed algorithm can escape from the local extremum effectively and has higher convergence speed and better accuracy. Finally, applying IQAFSA to distributed network problems and the simulation results for 33-bus radial distribution network system show that IQAFSA can get the minimum power loss after comparing with BAFSA, GAFSA, and QAFSA.

  11. Improved Quantum Artificial Fish Algorithm Application to Distributed Network Considering Distributed Generation

    PubMed Central

    Hu, Yang; Ke, Xianting

    2015-01-01

    An improved quantum artificial fish swarm algorithm (IQAFSA) for solving distributed network programming considering distributed generation is proposed in this work. The IQAFSA based on quantum computing which has exponential acceleration for heuristic algorithm uses quantum bits to code artificial fish and quantum revolving gate, preying behavior, and following behavior and variation of quantum artificial fish to update the artificial fish for searching for optimal value. Then, we apply the proposed new algorithm, the quantum artificial fish swarm algorithm (QAFSA), the basic artificial fish swarm algorithm (BAFSA), and the global edition artificial fish swarm algorithm (GAFSA) to the simulation experiments for some typical test functions, respectively. The simulation results demonstrate that the proposed algorithm can escape from the local extremum effectively and has higher convergence speed and better accuracy. Finally, applying IQAFSA to distributed network problems and the simulation results for 33-bus radial distribution network system show that IQAFSA can get the minimum power loss after comparing with BAFSA, GAFSA, and QAFSA. PMID:26447713

  12. Automated Development of Accurate Algorithms and Efficient Codes for Computational Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.; Dyson, Rodger W.

    1999-01-01

    The simulation of sound generation and propagation in three space dimensions with realistic aircraft components is a very large time dependent computation with fine details. Simulations in open domains with embedded objects require accurate and robust algorithms for propagation, for artificial inflow and outflow boundaries, and for the definition of geometrically complex objects. The development, implementation, and validation of methods for solving these demanding problems is being done to support the NASA pillar goals for reducing aircraft noise levels. Our goal is to provide algorithms which are sufficiently accurate and efficient to produce usable results rapidly enough to allow design engineers to study the effects on sound levels of design changes in propulsion systems, and in the integration of propulsion systems with airframes. There is a lack of design tools for these purposes at this time. Our technical approach to this problem combines the development of new, algorithms with the use of Mathematica and Unix utilities to automate the algorithm development, code implementation, and validation. We use explicit methods to ensure effective implementation by domain decomposition for SPMD parallel computing. There are several orders of magnitude difference in the computational efficiencies of the algorithms which we have considered. We currently have new artificial inflow and outflow boundary conditions that are stable, accurate, and unobtrusive, with implementations that match the accuracy and efficiency of the propagation methods. The artificial numerical boundary treatments have been proven to have solutions which converge to the full open domain problems, so that the error from the boundary treatments can be driven as low as is required. The purpose of this paper is to briefly present a method for developing highly accurate algorithms for computational aeroacoustics, the use of computer automation in this process, and a brief survey of the algorithms that have resulted from this work. A review of computational aeroacoustics has recently been given by Lele.

  13. Accurate atomistic potentials and training sets for boron-nitride nanostructures

    NASA Astrophysics Data System (ADS)

    Tamblyn, Isaac

    Boron nitride nanotubes exhibit exceptional structural, mechanical, and thermal properties. They are optically transparent and have high thermal stability, suggesting a wide range of opportunities for structural reinforcement of materials. Modeling can play an important role in determining the optimal approach to integrating nanotubes into a supporting matrix. Developing accurate, atomistic scale models of such nanoscale interfaces embedded within composites is challenging, however, due to the mismatch of length scales involved. Typical nanotube diameters range from 5-50 nm, with a length as large as a micron (i.e. a relevant length-scale for structural reinforcement). Unlike their carbon-based counterparts, well tested and transferable interatomic force fields are not common for BNNT. In light of this, we have developed an extensive training database of BN rich materials, under conditions relevant for BNNT synthesis and composites based on extensive first principles molecular dynamics simulations. Using this data, we have produced an artificial neural network potential capable of reproducing the accuracy of first principles data at significantly reduced computational cost, allowing for accurate simulation at the much larger length scales needed for composite design.

  14. On-chip self-assembly of cell embedded microstructures to vascular-like microtubes.

    PubMed

    Yue, Tao; Nakajima, Masahiro; Takeuchi, Masaru; Hu, Chengzhi; Huang, Qiang; Fukuda, Toshio

    2014-03-21

    Currently, research on the construction of vascular-like tubular structures is a hot area of tissue engineering, since it has potential applications in the building of artificial blood vessels. In this paper, we report a fluidic self-assembly method using cell embedded microstructures to construct vascular-like microtubes. A novel 4-layer microfluidic device was fabricated using polydimethylsiloxane (PDMS), which contains fabrication, self-assembly and extraction areas inside one channel. Cell embedded microstructures were directly fabricated using poly(ethylene glycol) diacrylate (PEGDA) in the fabrication area, namely on-chip fabrication. Self-assembly of the fabricated microstructures was performed in the assembly area which has a micro well. Assembled tubular structures (microtubes) were extracted outside the channel into culture dishes using a normally closed (NC) micro valve in the extraction area. The self-assembly mechanism was experimentally demonstrated. The performance of the NC micro valve and embedded cell concentration were both evaluated. Fibroblast (NIH/3T3) embedded vascular-like microtubes were constructed inside this reusable microfluidic device.

  15. Selecting Appropriate Functionality and Technologies for EPSS.

    ERIC Educational Resources Information Center

    McGraw, Karen L.

    1995-01-01

    Presents background information that describes the major components of an embedded performance support system, compares levels of functionality, and discusses some of the required technologies. Highlights include the human-computer interface; online help; advisors; training and tutoring; hypermedia; and artificial intelligence techniques. (LRW)

  16. Broadband and wide-angle light harvesting by ultra-thin silicon solar cells with partially embedded dielectric spheres.

    PubMed

    Yang, Zhenhai; Shang, Aixue; Qin, Linling; Zhan, Yaohui; Zhang, Cheng; Gao, Pingqi; Ye, Jichun; Li, Xiaofeng

    2016-04-01

    We propose a design of crystalline silicon thin-film solar cells (c-Si TFSCs, 2 μm-thick) configured with partially embedded dielectric spheres on the light-injecting side. The intrinsic light trapping and photoconversion are simulated by the complete optoelectronic simulation. It shows that the embedding depth of the spheres provides an effective way to modulate and significantly enhance the optical absorption. Compared to the conventional planar and front sphere systems, the optimized partially embedded sphere design enables a broadband, wide-angle, and strong optical absorption and efficient carrier transportation. Optoelectronic simulation predicts that a 2 μm-thick c-Si TFSC with half-embedded spheres shows an increment of more than 10  mA/cm2 in short-circuit current density and an enhancement ratio of more than 56% in light-conversion efficiency, compared to the conventional planar counterparts.

  17. Effects of accelerated artificial daylight aging on bending strength and bonding of glass fibers in fiber-embedded maxillofacial silicone prostheses.

    PubMed

    Hatamleh, Muhanad M; Watts, David C

    2010-07-01

    The purpose of this study was to test the effect of different periods of accelerated artificial daylight aging on bond strength of glass fiber bundles embedded into maxillofacial silicone elastomer and on bending strength of the glass fiber bundles. Forty specimens were fabricated by embedding resin-impregnated fiber bundles (1.5-mm diameter, 20-mm long) into maxillofacial silicone elastomer. Specimens were randomly allocated into four groups, and each group was subjected to different periods of accelerated daylight aging as follows (in hours); 0, 200, 400, and 600. The aging cycle included continuous exposure to quartz-filtered visible daylight (irradiance 760 W/m(2)) under an alternating weathering cycle (wet for 18 minutes, dry for 102 minutes). Pull-out tests were performed to evaluate bond strength between fiber bundles and silicone using a universal testing machine at 1 mm/min crosshead speed. Also a three-point bending test was performed to evaluate bending strength of the fiber bundles. One-way ANOVA and Bonferroni post hoc tests were carried out to detect statistical significance (p < 0.05). Mean (SD) values of maximum pull-out forces (in N) for groups 1 to 4 were: 13.63 (7.45), 19.67 (1.37), 13.58 (2.61), and 10.37 (2.52). Group 2 exhibited the highest pull-out force that was statistically significant when compared to the other groups. Maximum bending strengths of fiber bundles were in the range of 917.72 MPa to 1124.06 MPa. Bending strength significantly increased after 200 and 400 hours of aging only. After 200 hours of exposure to artificial daylight and moisture conditions, bond strength between glass fibers and heat-cured silicones is optimal, and the bending strength of the glass fiber bundles is enhanced.

  18. Protocol for measurement of enamel loss from brushing with an anti-erosive toothpaste after an acidic episode.

    PubMed

    Dehghan, Mojdeh; Vieira Ozorio, Jose Estevam; Chanin, Simon; Tantbirojn, Daranee; Versluis, Antheunis; Garcia-Godoy, Franklin

    2017-01-01

    Tooth erosion from an acidic insult may be exacerbated by toothbrushing. The purposes of this study were to develop an in vitro methodology to measure enamel loss after brushing immediately following an acidic episode and to investigate the effect of brushing with an anti-erosive toothpaste. The null hypotheses tested were that tooth erosion after brushing with the toothpaste would not be different from brushing with water and that a 1-hour delay before brushing would not reduce tooth erosion. Forty bovine enamel slabs were embedded, polished, and subjected to baseline profilometry. Specimens were bathed in hydrochloric acid for 10 minutes to simulate stomach acid exposure before post-acid profilometry. Toothbrushing was then simulated with a cross-brushing machine and followed by postbrushing profilometry. Group 1 was brushed with water; group 2 was brushed with a 50:50 toothpaste-water slurry; and groups 3 and 4 were immersed in artificial saliva for 1 hour before brushing with water or the toothpaste slurry, respectively. The depth of enamel loss was analyzed and compared using 1-way analysis of variance and post hoc testing (α = 0.05). Greater enamel loss was measured in groups brushed with toothpaste than in groups brushed with water. One-hour immersion in artificial saliva significantly reduced enamel loss when teeth were brushed with water (group 3; P < 0.05) but not with toothpaste (group 4). This study established a protocol for measuring enamel loss resulting from erosion followed by toothbrush abrasion. The results confirmed the abrasive action of toothpaste on acid-softened enamel.

  19. Further Thoughts on "How Task Features Impact Evidence from Assessments Embedded in Simulations and Games"

    ERIC Educational Resources Information Center

    Oliveri, María Elena; Khan, Saad

    2014-01-01

    María Oliveri, and Saad Khan write that the article: "How Task Features Impact Evidence from Assessments Embedded in Simulations and Games" provided helpful illustrations regarding the implementation of evidence-centered assessment design (Mislevy & Haertel, 2006; Mislevy, Steinberg, & Almond, 1999) with games and simulations.…

  20. Pile/shaft designs using artificial neural networks (i.e., genetic programming) with spatial variability considerations : [summary].

    DOT National Transportation Integrated Search

    2014-03-01

    In this project, University of Florida researchers : sought to improve the unit skin friction and tip : resistance correlations embedded in the FB-Deep : software algorithm for estimating driven pile and : drilled shaft resistance. They utilized an a...

  1. Microwave gain medium with negative refractive index.

    PubMed

    Ye, Dexin; Chang, Kihun; Ran, Lixin; Xin, Hao

    2014-12-19

    Artificial effective media are attractive because of the fantastic applications they may enable, such as super lensing and electromagnetic invisibility. However, the inevitable loss due to their strongly dispersive nature is one of the fundamental challenges preventing such applications from becoming a reality. In this study, we demonstrate an effective gain medium based on negative resistance, to overcompensate the loss of a conventional passive metamaterial, meanwhile keeping its original negative-index property. Energy conservation-based theory, full-wave simulation and experimental measurement show that a fabricated sample consisting of conventional sub-wavelength building blocks with embedded microwave tunnel diodes exhibits a band-limited Lorentzian dispersion simultaneously with a negative refractive index and a net gain. Our work provides experimental evidence to the assertion that a stable net gain in negative-index gain medium is achievable, proposing a potential solution for the critical challenge current metamateiral technology faces in practical applications.

  2. Functional trade-off between strength and thermal capacity of dermal armor: Insights from girdled lizards.

    PubMed

    Broeckhoven, Chris; du Plessis, Anton; Hui, Cang

    2017-10-01

    The presence of dermal armor is often unambiguously considered the result of an evolutionary predator-prey arms-race. Recent studies focusing predominantly on osteoderms - mineralized elements embedded in the dermis layer of various extant and extinct vertebrates - have instead proposed that dermal armor might exhibit additional functionalities besides protection. Multiple divergent functionalities could impose conflicting demands on a phenotype, yet, functional trade-offs in dermal armor have rarely been investigated. Here, we use high-resolution micro-computed tomography and voxel-based simulations to test for a trade-off between the strength and thermal capacity of osteoderms using two armored cordylid lizards as model organisms. We demonstrate that high vascularization, associated with improved thermal capacity might limit the strength of osteoderms. These results call for a holistic, cautionary future approach to studies investigating dermal armor, especially those aiming to inspire artificial protective materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Multiobjective analysis of a public wellfield using artificial neural networks

    USGS Publications Warehouse

    Coppola, E.A.; Szidarovszky, F.; Davis, D.; Spayd, S.; Poulton, M.M.; Roman, E.

    2007-01-01

    As competition for increasingly scarce ground water resources grows, many decision makers may come to rely upon rigorous multiobjective techniques to help identify appropriate and defensible policies, particularly when disparate stakeholder groups are involved. In this study, decision analysis was conducted on a public water supply wellfield to balance water supply needs with well vulnerability to contamination from a nearby ground water contaminant plume. With few alternative water sources, decision makers must balance the conflicting objectives of maximizing water supply volume from noncontaminated wells while minimizing their vulnerability to contamination from the plume. Artificial neural networks (ANNs) were developed with simulation data from a numerical ground water flow model developed for the study area. The ANN-derived state transition equations were embedded into a multiobjective optimization model, from which the Pareto frontier or trade-off curve between water supply and wellfield vulnerability was identified. Relative preference values and power factors were assigned to the three stakeholders, namely the company whose waste contaminated the aquifer, the community supplied by the wells, and the water utility company that owns and operates the wells. A compromise pumping policy that effectively balances the two conflicting objectives in accordance with the preferences of the three stakeholder groups was then identified using various distance-based methods. ?? 2006 National Ground Water Association.

  4. Electrogenic Single-Species Biocomposites as Anodes for Microbial Fuel Cells.

    PubMed

    Kaiser, Patrick; Reich, Steffen; Leykam, Daniel; Willert-Porada, Monika; Greiner, Andreas; Freitag, Ruth

    2017-07-01

    Integration of electrogenic microorganisms remains a challenge in biofuel cell technology. Here, synthetic biocomposites ("artificial biofilms") are proposed. Bacteria (Shewanella oneidensis) are embedded in a hydrogel matrix (poly(vinyl alcohol)) via wet- and electrospinning, creating fibers and nonwoven gauzes. The bacteria remain viable and metabolically active. The performance is compared to S. oneidensis suspension cultures and "natural" biofilms. While lower than with the suspension cultures, the power output from the fuel cells with the artificial biofilms is higher than with the natural one. Handling, reproducibility, and stability are also better. Artificial biofilms can therefore contribute to resolving fundamental issues of design, scale up, and monosepsis in biofuel cell technology. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Development and application of a direct method to observe the implant/bone interface using simulated bone.

    PubMed

    Yamaguchi, Yoko; Shiota, Makoto; FuJii, Masaki; Sekiya, Michi; Ozeki, Masahiko

    2016-01-01

    Primary stability after implant placement is essential for osseointegration. It is important to understand the bone/implant interface for analyzing the influence of implant design on primary stability. In this study rigid polyurethane foam is used as artificial bone to evaluate the bone-implant interface and to identify where the torque is being generated during placement. Five implant systems-Straumann-Standard (ST), Straumann-Bone Level (BL), Straumann-Tapered Effect (TE), Nobel Biocare-Brånemark MKIII (MK3), and Nobel Biocare-Brånemark MKIV (MK4)-were used for this experiment. Artificial bone blocks were prepared and the implant was installed. After placement, a metal jig and one side artificial bone block were removed and then the implant embedded in the artificial bone was exposed for observing the bone-implant interface. A digital micro-analyzer was used for observing the contact interface. The insertion torque values were 39.35, 23.78, 12.53, 26.35, and 17.79 N cm for MK4, BL, ST, TE, and MK3, respectively. In ST, MK3, TE, MK4, and BL the white layer areas were 61 × 103 μm(2), 37 × 103 μm(2), 103 × 103 μm(2) in the tapered portion and 84 × 03 μm(2) in the parallel portion, 134 × 103 μm(2), and 98 × 103 μm(2) in the tapered portion and 87 × 103 μm(2) in the parallel portion, respectively. The direct observation method of the implant/artificial bone interface is a simple and useful method that enables the identification of the area where implant retention occurs. A white layer at the site of stress concentration during implant placement was identified and the magnitude of the stress was quantitatively estimated. The site where the highest torque occurred was the area from the thread crest to the thread root and the under and lateral aspect of the platform. The artificial bone debris created by the self-tapping blade accumulated in both the cutting chamber and in the space between the threads and artificial bone.

  6. Characterizing Exposure-Related Behaviors Using Agent-Based Models Embedded with Needs-Based Artificial Intelligence

    EPA Science Inventory

    Information on where and how individuals spend their time is important for characterizing exposures to chemicals in consumer products and in indoor environments. Traditionally, exposure assessors have relied on time-use surveys in order to obtain information on exposure-related b...

  7. Efficient Measurement of Multiparticle Entanglement with Embedding Quantum Simulator.

    PubMed

    Chen, Ming-Cheng; Wu, Dian; Su, Zu-En; Cai, Xin-Dong; Wang, Xi-Lin; Yang, Tao; Li, Li; Liu, Nai-Le; Lu, Chao-Yang; Pan, Jian-Wei

    2016-02-19

    The quantum measurement of entanglement is a demanding task in the field of quantum information. Here, we report the direct and scalable measurement of multiparticle entanglement with embedding photonic quantum simulators. In this embedding framework [R. Di Candia et al. Phys. Rev. Lett. 111, 240502 (2013)], the N-qubit entanglement, which does not associate with a physical observable directly, can be efficiently measured with only two (for even N) and six (for odd N) local measurement settings. Our experiment uses multiphoton quantum simulators to mimic dynamical concurrence and three-tangle entangled systems and to track their entanglement evolutions.

  8. Physicochemical factors influencing the preferential transport of Escherichia coli in soils

    USDA-ARS?s Scientific Manuscript database

    Laboratory and numerical studies were conducted to investigate the transport and release of Escherichia coli D21g in preferential flow systems with artificial macropores under different ionic strength (IS) conditions. Macropores were created by embedding coarse sand lenses in a fine sand matrix and ...

  9. Predicting Exposure to Consumer-Products Using Agent-Based Models Embedded with Needs-Based Artificial Intelligence and Empirically -Based Scheduling Models

    EPA Science Inventory

    Information on human behavior and consumer product use is important for characterizing exposures to chemicals in consumer products and in indoor environments. Traditionally, exposure-assessors have relied on time-use surveys to obtain information on exposure-related behavior. In ...

  10. Developing a multimodal biometric authentication system using soft computing methods.

    PubMed

    Malcangi, Mario

    2015-01-01

    Robust personal authentication is becoming ever more important in computer-based applications. Among a variety of methods, biometric offers several advantages, mainly in embedded system applications. Hard and soft multi-biometric, combined with hard and soft computing methods, can be applied to improve the personal authentication process and to generalize the applicability. This chapter describes the embedded implementation of a multi-biometric (voiceprint and fingerprint) multimodal identification system based on hard computing methods (DSP) for feature extraction and matching, an artificial neural network (ANN) for soft feature pattern matching, and a fuzzy logic engine (FLE) for data fusion and decision.

  11. Characterization of 17-4 PH stainless steel foam for biomedical applications in simulated body fluid and artificial saliva environments.

    PubMed

    Mutlu, Ilven; Oktay, Enver

    2013-04-01

    Highly porous 17-4 PH stainless steel foam for biomedical applications was produced by space holder technique. Metal release and weight loss from 17-4 PH stainless steel foams was investigated in simulated body fluid and artificial saliva environments by static immersion tests. Inductively coupled plasma-mass spectrometer was employed to measure the concentrations of various metal ions released from the 17-4 PH stainless steel foams into simulated body fluids and artificial saliva. Effect of immersion time and pH value on metal release and weight loss in simulated body fluid and artificial saliva were determined. Pore morphology, pore size and mechanical properties of the 17-4 PH stainless steel foams were close to human cancellous bone. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Comparison of self-efficacy and its improvement after artificial simulator or live animal model emergency procedure training.

    PubMed

    Hall, Andrew B; Riojas, Ramon; Sharon, Danny

    2014-03-01

    The objective of this study is to compare post-training self-efficacy between artificial simulators and live animal training for the performance of emergency medical procedures. Volunteer airmen of the 81st Medical Group, without prior medical procedure training, were randomly assigned to two experimental arms consisting of identical lectures and training of diagnostic peritoneal lavage, thoracostomy (chest tube), and cricothyroidotomy on either the TraumaMan (Simulab Corp., Seattle, Washington) artificial simulator or a live pig (Sus scrofa domestica) model. Volunteers were given a postlecture and postskills training assessment of self-efficacy. Twenty-seven volunteers that initially performed artificial simulator training subsequently underwent live animal training and provided assessments comparing both modalities. The results were first, postskills training self-efficacy scores were significantly higher than postlecture scores for either training mode and for all procedures (p < 0.0001). Second, post-training self-efficacy scores were not statistically different between live animal and artificial simulator training for diagnostic peritoneal lavage (p = 0.555), chest tube (p = 0.486), and cricothyroidotomy (p = 0.329). Finally, volunteers undergoing both training modalities indicated preference for live animal training (p < 0.0001). We conclude that artificial simulator and live animal training produce equivalent levels of self-efficacy after initial training, but there is a preference in using a live animal model to achieve those skills. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.

  13. Simulation of Attacks for Security in Wireless Sensor Network.

    PubMed

    Diaz, Alvaro; Sanchez, Pablo

    2016-11-18

    The increasing complexity and low-power constraints of current Wireless Sensor Networks (WSN) require efficient methodologies for network simulation and embedded software performance analysis of nodes. In addition, security is also a very important feature that has to be addressed in most WSNs, since they may work with sensitive data and operate in hostile unattended environments. In this paper, a methodology for security analysis of Wireless Sensor Networks is presented. The methodology allows designing attack-aware embedded software/firmware or attack countermeasures to provide security in WSNs. The proposed methodology includes attacker modeling and attack simulation with performance analysis (node's software execution time and power consumption estimation). After an analysis of different WSN attack types, an attacker model is proposed. This model defines three different types of attackers that can emulate most WSN attacks. In addition, this paper presents a virtual platform that is able to model the node hardware, embedded software and basic wireless channel features. This virtual simulation analyzes the embedded software behavior and node power consumption while it takes into account the network deployment and topology. Additionally, this simulator integrates the previously mentioned attacker model. Thus, the impact of attacks on power consumption and software behavior/execution-time can be analyzed. This provides developers with essential information about the effects that one or multiple attacks could have on the network, helping them to develop more secure WSN systems. This WSN attack simulator is an essential element of the attack-aware embedded software development methodology that is also introduced in this work.

  14. A new type of artificial structure to achieve broadband omnidirectional acoustic absorption

    NASA Astrophysics Data System (ADS)

    Zheng, Li-Yang; Wu, Ying; Zhang, Xiao-Liu; Ni, Xu; Chen, Ze-Guo; Lu, Ming-Hui; Chen, Yan-Feng

    2013-10-01

    We present a design for a two-dimensional omnidirectional acoustic absorber that can achieve 98.6% absorption of acoustic waves in water, forming an effective acoustic black hole. This artificial black hole consists of an absorptive core coated with layers of periodically distributed polymer cylinders embedded in water. Effective medium theory describes the response of the coating layers to the acoustic waves. The polymer parameters can be adjusted, allowing practical fabrication of the absorber. Since the proposed structure does not rely on resonances, it is applicable to broad bandwidths. The design might be extended to a variety of applications.

  15. Simulations and Evaluation of Mesoscale Convective Systems in a Multi-scale Modeling Framework (MMF)

    NASA Astrophysics Data System (ADS)

    Chern, J. D.; Tao, W. K.

    2017-12-01

    It is well known that the mesoscale convective systems (MCS) produce more than 50% of rainfall in most tropical regions and play important roles in regional and global water cycles. Simulation of MCSs in global and climate models is a very challenging problem. Typical MCSs have horizontal scale of a few hundred kilometers. Models with a domain of several hundred kilometers and fine enough resolution to properly simulate individual clouds are required to realistically simulate MCSs. The multiscale modeling framework (MMF), which replaces traditional cloud parameterizations with cloud-resolving models (CRMs) within a host atmospheric general circulation model (GCM), has shown some capabilities of simulating organized MCS-like storm signals and propagations. However, its embedded CRMs typically have small domain (less than 128 km) and coarse resolution ( 4 km) that cannot realistically simulate MCSs and individual clouds. In this study, a series of simulations were performed using the Goddard MMF. The impacts of the domain size and model grid resolution of the embedded CRMs on simulating MCSs are examined. The changes of cloud structure, occurrence, and properties such as cloud types, updraft and downdraft, latent heating profile, and cold pool strength in the embedded CRMs are examined in details. The simulated MCS characteristics are evaluated against satellite measurements using the Goddard Satellite Data Simulator Unit. The results indicate that embedded CRMs with large domain and fine resolution tend to produce better simulations compared to those simulations with typical MMF configuration (128 km domain size and 4 km model grid spacing).

  16. A system for intelligent teleoperation research

    NASA Technical Reports Server (NTRS)

    Orlando, N. E.

    1983-01-01

    The Automation Technology Branch of NASA Langley Research Center is developing a research capability in the field of artificial intelligence, particularly as applicable in teleoperator/robotics development for remote space operations. As a testbed for experimentation in these areas, a system concept has been developed and is being implemented. This system termed DAISIE (Distributed Artificially Intelligent System for Interacting with the Environment), interfaces the key processes of perception, reasoning, and manipulation by linking hardware sensors and manipulators to a modular artificial intelligence (AI) software system in a hierarchical control structure. Verification experiments have been performed: one experiment used a blocksworld database and planner embedded in the DAISIE system to intelligently manipulate a simple physical environment; the other experiment implemented a joint-space collision avoidance algorithm. Continued system development is planned.

  17. Debugging embedded computer programs. [tactical missile computers

    NASA Technical Reports Server (NTRS)

    Kemp, G. H.

    1980-01-01

    Every embedded computer program must complete its debugging cycle using some system that will allow real time debugging. Many of the common items addressed during debugging are listed. Seven approaches to debugging are analyzed to evaluate how well they treat those items. Cost evaluations are also included in the comparison. The results indicate that the best collection of capabilities to cover the common items present in the debugging task occurs in the approach where a minicomputer handles the environment simulation with an emulation of some kind representing the embedded computer. This approach can be taken at a reasonable cost. The case study chosen is an embedded computer in a tactical missile. Several choices of computer for the environment simulation are discussed as well as different approaches to the embedded emulator.

  18. Liquid-Embedded Elastomer Electronics

    NASA Astrophysics Data System (ADS)

    Kramer, Rebecca; Majidi, Carmel; Park, Yong-Lae; Paik, Jamie; Wood, Robert

    2012-02-01

    Hyperelastic sensors are fabricated by embedding a silicone rubber film with microchannels of conductive liquid. In the case of soft tactile sensors, pressing the surface of the elastomer will deform the cross-section of underlying channels and change their electrical resistance. Soft pressure sensors may be employed in a variety of applications. For example, a network of pressure sensors can serve as artificial skin by yielding detailed information about contact pressures. This concept was demonstrated in a hyperelastic keypad, where perpendicular conductive channels form a quasi-planar network within an elastomeric matrix that registers the location, intensity and duration of applied pressure. In a second demonstration, soft curvature sensors were used for joint angle proprioception. Because the sensors are soft and stretchable, they conform to the host without interfering with the natural mechanics of motion. This marked the first use of liquid-embedded elastomer electronics to monitor human or robotic motion. Finally, liquid-embedded elastomers may be implemented as conductors in applications that call for flexible or stretchable circuitry, such as robotic origami.

  19. A comparative research of different ensemble surrogate models based on set pair analysis for the DNAPL-contaminated aquifer remediation strategy optimization.

    PubMed

    Hou, Zeyu; Lu, Wenxi; Xue, Haibo; Lin, Jin

    2017-08-01

    Surrogate-based simulation-optimization technique is an effective approach for optimizing the surfactant enhanced aquifer remediation (SEAR) strategy for clearing DNAPLs. The performance of the surrogate model, which is used to replace the simulation model for the aim of reducing computation burden, is the key of corresponding researches. However, previous researches are generally based on a stand-alone surrogate model, and rarely make efforts to improve the approximation accuracy of the surrogate model to the simulation model sufficiently by combining various methods. In this regard, we present set pair analysis (SPA) as a new method to build ensemble surrogate (ES) model, and conducted a comparative research to select a better ES modeling pattern for the SEAR strategy optimization problems. Surrogate models were developed using radial basis function artificial neural network (RBFANN), support vector regression (SVR), and Kriging. One ES model is assembling RBFANN model, SVR model, and Kriging model using set pair weights according their performance, and the other is assembling several Kriging (the best surrogate modeling method of three) models built with different training sample datasets. Finally, an optimization model, in which the ES model was embedded, was established to obtain the optimal remediation strategy. The results showed the residuals of the outputs between the best ES model and simulation model for 100 testing samples were lower than 1.5%. Using an ES model instead of the simulation model was critical for considerably reducing the computation time of simulation-optimization process and maintaining high computation accuracy simultaneously. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Numerical Simulation Of Flow Through An Artificial Heart

    NASA Technical Reports Server (NTRS)

    Rogers, Stuart; Kutler, Paul; Kwak, Dochan; Kiris, Centin

    1991-01-01

    Research in both artificial hearts and fluid dynamics benefits from computational studies. Algorithm that implements Navier-Stokes equations of flow extended to simulate flow of viscous, incompressible blood through articifial heart. Ability to compute details of such flow important for two reasons: internal flows with moving boundaries of academic interest in their own right, and many of deficiencies of artificial hearts attributable to dynamics of flow.

  1. In vitro and in vivo assessment of oral autologous artificial connective tissue characteristics that influence its performance as a graft.

    PubMed

    Fontanilla, Marta Raquel; Espinosa, Lady Giovanna

    2012-09-01

    Several studies have evaluated proteins secreted by fibroblasts comprising skin substitutes, finding that they are secreted in combinations and concentrations that promote wound healing. However, assessment of proteins secreted by oral fibroblasts forming a part of oral substitutes is scarce. In our previous work, collagen type-I scaffolds (CSs) and autologous artificial connective tissue (AACT) were produced and implanted in rabbit oral lesions, evidencing that AACT outperforms CS. The present work determined the secreted factor profile of AACT in the time of grafting as well as that of the AACT embedded in the clot. It also evaluated the proliferation and viability of AACT fibroblasts to establish the dwell time of these cells in the grafted area. Finally, it assessed whether CS, AACT, and clot-embedded AACT increase fibroblast recruitment induced by a fibrin clot, because the cell migratory response has been associated with the wound-healing outcome. We found that some of the factors secreted by AACT fibroblasts are significantly different from those secreted by clot-embedded AACT fibroblasts. Also, that the profile of proteins secreted by AACT fibroblasts and clot-embedded AACT fibroblasts is different from already reported protein secretion profiles of other engineered tissues used in treating oral mucosa wounds. It was also found that AACT fibroblasts are viable when grafted and remain in the treated area for almost 2 weeks, and that the migratory response of fibroblasts to tissue-substitute stimulus is significantly less than the migratory response induced by the clot alone. Overall, data suggest that AACT secretion of proteins is modulated by three-dimensionality and environment factors. This bioactivity and the fact that AACT does not increase fibroblast migration can be held accountable for AACT's good performance as a graft.

  2. Artificial Neural Network as the FPGA Trigger in the Cyclone V based Front-End for a Detection of Neutrino-Origin Showers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szadkowski, Zbigniew; Glas, Dariusz; Pytel, Krzysztof

    Neutrinos play a fundamental role in the understanding of the origin of ultra-high-energy cosmic rays. They interact through charged and neutral currents in the atmosphere generating extensive air showers. However, their a very low rate of events potentially generated by neutrinos is a significant challenge for a detection technique and requires both sophisticated algorithms and high-resolution hardware. A trigger based on a artificial neural network was implemented into the Cyclone{sup R} V E FPGA 5CEFA9F31I7 - the heart of the prototype Front-End boards developed for tests of new algorithms in the Pierre Auger surface detectors. Showers for muon and taumore » neutrino initiating particles on various altitudes, angles and energies were simulated in CORSICA and Offline platforms giving pattern of ADC traces in Auger water Cherenkov detectors. The 3-layer 12-8-1 neural network was taught in MATLAB by simulated ADC traces according the Levenberg-Marquardt algorithm. Results show that a probability of a ADC traces generation is very low due to a small neutrino cross-section. Nevertheless, ADC traces, if occur, for 1-10 EeV showers are relatively short and can be analyzed by 16-point input algorithm. We optimized the coefficients from MATLAB to get a maximal range of potentially registered events and for fixed-point FPGA processing to minimize calculation errors. New sophisticated triggers implemented in Cyclone{sup R} V E FPGAs with large amount of DSP blocks, embedded memory running with 120 - 160 MHz sampling may support a discovery of neutrino events in the Pierre Auger Observatory. (authors)« less

  3. Simulated Classrooms and Artificial Students: The Potential Effects of New Technologies on Teacher Education.

    ERIC Educational Resources Information Center

    Brown, Abbie Howard

    1999-01-01

    Describes and discusses how simulation activities can be used in teacher education to augment the traditional field-experience approach, focusing on artificial intelligence, virtual reality, and intelligent tutoring systems. Includes an overview of simulation as a teaching and learning strategy and specific examples of high-technology simulations…

  4. Neurolinguistically constrained simulation of sentence comprehension: integrating artificial intelligence and brain theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gigley, H.M.

    1982-01-01

    An artificial intelligence approach to the simulation of neurolinguistically constrained processes in sentence comprehension is developed using control strategies for simulation of cooperative computation in associative networks. The desirability of this control strategy in contrast to ATN and production system strategies is explained. A first pass implementation of HOPE, an artificial intelligence simulation model of sentence comprehension, constrained by studies of aphasic performance, psycholinguistics, neurolinguistics, and linguistic theory is described. Claims that the model could serve as a basis for sentence production simulation and for a model of language acquisition as associative learning are discussed. HOPE is a model thatmore » performs in a normal state and includes a lesion simulation facility. HOPE is also a research tool. Its modifiability and use as a tool to investigate hypothesized causes of degradation in comprehension performance by aphasic patients are described. Issues of using behavioral constraints in modelling and obtaining appropriate data for simulated process modelling are discussed. Finally, problems of validation of the simulation results are raised; and issues of how to interpret clinical results to define the evolution of the model are discussed. Conclusions with respect to the feasibility of artificial intelligence simulation process modelling are discussed based on the current state of research.« less

  5. Computed Flow Through An Artificial Heart Valve

    NASA Technical Reports Server (NTRS)

    Rogers, Stewart E.; Kwak, Dochan; Kiris, Cetin; Chang, I-Dee

    1994-01-01

    Report discusses computations of blood flow through prosthetic tilting disk valve. Computational procedure developed in simulation used to design better artificial hearts and valves by reducing or eliminating following adverse flow characteristics: large pressure losses, which prevent hearts from working efficiently; separated and secondary flows, which causes clotting; and high turbulent shear stresses, which damages red blood cells. Report reiterates and expands upon part of NASA technical memorandum "Computed Flow Through an Artificial Heart and Valve" (ARC-12983). Also based partly on research described in "Numerical Simulation of Flow Through an Artificial Heart" (ARC-12478).

  6. Potential application of artificial concepts to aerodynamic simulation

    NASA Technical Reports Server (NTRS)

    Kutler, P.; Mehta, U. B.; Andrews, A.

    1984-01-01

    The concept of artificial intelligence as it applies to computational fluid dynamics simulation is investigated. How expert systems can be adapted to speed the numerical aerodynamic simulation process is also examined. A proposed expert grid generation system is briefly described which, given flow parameters, configuration geometry, and simulation constraints, uses knowledge about the discretization process to determine grid point coordinates, computational surface information, and zonal interface parameters.

  7. Platform for real-time simulation of dynamic systems and hardware-in-the-loop for control algorithms.

    PubMed

    de Souza, Isaac D T; Silva, Sergio N; Teles, Rafael M; Fernandes, Marcelo A C

    2014-10-15

    The development of new embedded algorithms for automation and control of industrial equipment usually requires the use of real-time testing. However, the equipment required is often expensive, which means that such tests are often not viable. The objective of this work was therefore to develop an embedded platform for the distributed real-time simulation of dynamic systems. This platform, called the Real-Time Simulator for Dynamic Systems (RTSDS), could be applied in both industrial and academic environments. In industrial applications, the RTSDS could be used to optimize embedded control algorithms. In the academic sphere, it could be used to support research into new embedded solutions for automation and control and could also be used as a tool to assist in undergraduate and postgraduate teaching related to the development of projects concerning on-board control systems.

  8. Platform for Real-Time Simulation of Dynamic Systems and Hardware-in-the-Loop for Control Algorithms

    PubMed Central

    de Souza, Isaac D. T.; Silva, Sergio N.; Teles, Rafael M.; Fernandes, Marcelo A. C.

    2014-01-01

    The development of new embedded algorithms for automation and control of industrial equipment usually requires the use of real-time testing. However, the equipment required is often expensive, which means that such tests are often not viable. The objective of this work was therefore to develop an embedded platform for the distributed real-time simulation of dynamic systems. This platform, called the Real-Time Simulator for Dynamic Systems (RTSDS), could be applied in both industrial and academic environments. In industrial applications, the RTSDS could be used to optimize embedded control algorithms. In the academic sphere, it could be used to support research into new embedded solutions for automation and control and could also be used as a tool to assist in undergraduate and postgraduate teaching related to the development of projects concerning on-board control systems. PMID:25320906

  9. Algebra of implicitly defined constraints for gravity as the general form of embedding theory

    NASA Astrophysics Data System (ADS)

    Paston, S. A.; Semenova, E. N.; Franke, V. A.; Sheykin, A. A.

    2017-01-01

    We consider the embedding theory, the approach to gravity proposed by Regge and Teitelboim, in which 4D space-time is treated as a surface in high-dimensional flat ambient space. In its general form, which does not contain artificially imposed constraints, this theory can be viewed as an extension of GR. In the present paper we study the canonical description of the embedding theory in this general form. In this case, one of the natural constraints cannot be written explicitly, in contrast to the case where additional Einsteinian constraints are imposed. Nevertheless, it is possible to calculate all Poisson brackets with this constraint. We prove that the algebra of four emerging constraints is closed, i.e., all of them are first-class constraints. The explicit form of this algebra is also obtained.

  10. Embedding of multidimensional time-dependent observations.

    PubMed

    Barnard, J P; Aldrich, C; Gerber, M

    2001-10-01

    A method is proposed to reconstruct dynamic attractors by embedding of multivariate observations of dynamic nonlinear processes. The Takens embedding theory is combined with independent component analysis to transform the embedding into a vector space of linearly independent vectors (phase variables). The method is successfully tested against prediction of the unembedded state vector in two case studies of simulated chaotic processes.

  11. Embedding of multidimensional time-dependent observations

    NASA Astrophysics Data System (ADS)

    Barnard, Jakobus P.; Aldrich, Chris; Gerber, Marius

    2001-10-01

    A method is proposed to reconstruct dynamic attractors by embedding of multivariate observations of dynamic nonlinear processes. The Takens embedding theory is combined with independent component analysis to transform the embedding into a vector space of linearly independent vectors (phase variables). The method is successfully tested against prediction of the unembedded state vector in two case studies of simulated chaotic processes.

  12. Embedding speech into virtual realities

    NASA Technical Reports Server (NTRS)

    Bohn, Christian-Arved; Krueger, Wolfgang

    1993-01-01

    In this work a speaker-independent speech recognition system is presented, which is suitable for implementation in Virtual Reality applications. The use of an artificial neural network in connection with a special compression of the acoustic input leads to a system, which is robust, fast, easy to use and needs no additional hardware, beside a common VR-equipment.

  13. The Temporal Dynamics of Regularity Extraction in Non-Human Primates

    ERIC Educational Resources Information Center

    Minier, Laure; Fagot, Joël; Rey, Arnaud

    2016-01-01

    Extracting the regularities of our environment is one of our core cognitive abilities. To study the fine-grained dynamics of the extraction of embedded regularities, a method combining the advantages of the artificial language paradigm (Saffran, Aslin, & Newport, [Saffran, J. R., 1996]) and the serial response time task (Nissen & Bullemer,…

  14. The Use of a Computer-Based Writing Program: Facilitation or Frustration?

    ERIC Educational Resources Information Center

    Chen, Chi-Fen Emily; Cheng, Wei-Yuan

    2006-01-01

    The invention of computer-based writing program has revolutionized the way of teaching second language writing. Embedded with artificial intelligence scoring engine, it can provide students with both immediate score and diagnostic feedback on their essays. In addition, some of such programs offer convenient writing and editing tools to facilitate…

  15. An ANN That Applies Pragmatic Decision on Texts.

    ERIC Educational Resources Information Center

    Aretoulaki, Maria; Tsujii, Jun-ichi

    A computer-based artificial neural network (ANN) that learns to classify sentences in a text as important or unimportant is described. The program is designed to select the sentences that are important enough to be included in composition of an abstract of the text. The ANN is embedded in a conventional symbolic environment consisting of…

  16. Category Induction via Distributional Analysis: Evidence from a Serial Reaction Time Task

    ERIC Educational Resources Information Center

    Hunt, Ruskin H.; Aslin, Richard N.

    2010-01-01

    Category formation lies at the heart of a number of higher-order behaviors, including language. We assessed the ability of human adults to learn, from distributional information alone, categories embedded in a sequence of input stimuli using a serial reaction time task. Artificial grammars generated corpora of input strings containing a…

  17. Using Students' Knowledge to Generate Individual Feedback: Concept for an Intelligent Educational System on Logistics.

    ERIC Educational Resources Information Center

    Ziems, Dietrich; Neumann, Gaby

    1997-01-01

    Discusses a methods kit for interactive problem-solving exercises in engineering education as well as a methodology for intelligent evaluation of solutions. The quality of a system teaching logistics thinking can be improved using artificial intelligence. Embedding a rule-based diagnosis module that evaluates the student's knowledge actively…

  18. Artificial neural networks as quantum associative memory

    NASA Astrophysics Data System (ADS)

    Hamilton, Kathleen; Schrock, Jonathan; Imam, Neena; Humble, Travis

    We present results related to the recall accuracy and capacity of Hopfield networks implemented on commercially available quantum annealers. The use of Hopfield networks and artificial neural networks as content-addressable memories offer robust storage and retrieval of classical information, however, implementation of these models using currently available quantum annealers faces several challenges: the limits of precision when setting synaptic weights, the effects of spurious spin-glass states and minor embedding of densely connected graphs into fixed-connectivity hardware. We consider neural networks which are less than fully-connected, and also consider neural networks which contain multiple sparsely connected clusters. We discuss the effect of weak edge dilution on the accuracy of memory recall, and discuss how the multiple clique structure affects the storage capacity. Our work focuses on storage of patterns which can be embedded into physical hardware containing n < 1000 qubits. This work was supported by the United States Department of Defense and used resources of the Computational Research and Development Programs as Oak Ridge National Laboratory under Contract No. DE-AC0500OR22725 with the U. S. Department of Energy.

  19. ATLAS Simulation using Real Data: Embedding and Overlay

    NASA Astrophysics Data System (ADS)

    Haas, Andrew; ATLAS Collaboration

    2017-10-01

    For some physics processes studied with the ATLAS detector, a more accurate simulation in some respects can be achieved by including real data into simulated events, with substantial potential improvements in the CPU, disk space, and memory usage of the standard simulation configuration, at the cost of significant database and networking challenges. Real proton-proton background events can be overlaid (at the detector digitization output stage) on a simulated hard-scatter process, to account for pileup background (from nearby bunch crossings), cavern background, and detector noise. A similar method is used to account for the large underlying event from heavy ion collisions, rather than directly simulating the full collision. Embedding replaces the muons found in Z→μμ decays in data with simulated taus at the same 4-momenta, thus preserving the underlying event and pileup from the original data event. In all these cases, care must be taken to exactly match detector conditions (beamspot, magnetic fields, alignments, dead sensors, etc.) between the real data event and the simulation. We will discuss the status of these overlay and embedding techniques within ATLAS software and computing.

  20. Securely Partitioning Spacecraft Computing Resources: Validation of a Separation Kernel

    NASA Astrophysics Data System (ADS)

    Bremer, Leon; Schreutelkamp, Erwin

    2011-08-01

    The F-35 Lightning II, also known as the Joint Strike Fighter, will be the first operational fighter aircraft equipped with an operational MultiShip Embedded Training capability. This onboard training system allows teams of fighter pilots to jointly operate their F-35 in flight against virtual threats, avoiding the need for real adversary air threats and surface threat systems in their training. The European Real-time Operations Simulator (EuroSim) framework is well known in the space domain, particularly in support of engineering and test phases of space system development. In the MultiShip Embedded Training project, EuroSim is not only the essential tool for development and verification throughout the project but is also the engine of the final embedded simulator on board of the F-35 aircraft. The novel ways in which EuroSim is applied in the project in relation to distributed simulation problems, team collaboration, tool chains and embedded systems can benefit many projects and applications. The paper describes the application of EuroSim as the simulation engine of the F-35 Embedded Training solution, the extensions to the EuroSim product that enable this application, and its usage in development and verification of the whole project as carried out at the sites of Dutch Space and the National Aerospace Laboratory (NLR).

  1. A strategic framework for the development and enhancement of safety culture in the artificial tanning sector in Greece.

    PubMed

    Petri, Aspasia; Karabetsos, Efthymios

    2018-06-08

    Herein, the strategic framework for the development and enhancement of safety culture in the artificial tanning sector in Greece is presented. This framework has been designed and promoted by the competent national regulatory authority, which is the Greek Atomic Energy Commission (EEAE). The aim is to ensure a common understanding regarding ultraviolet radiation (UVR) and artificial tanning among the artificial tanning professionals, the stakeholders and the general public. The strategic framework is founded on the international organizations' recommendations, the EU requirements and the relevant technical standards. It is comprised of three autonomous but interconnected components: A) A sunbed operators' e-training course and certification process, B) A code of practice addressed individually to the business owners, the sunbeds operators and the sunbeds users, C) Communication strategies aiming to raise awareness regarding UVR and artificial tanning to all the interested parties. The artificial tanning safety culture framework presented here is the policy option that EEAE undertook and it is embedded in the upcoming legislation and regulations for the provision of artificial tanning services in Greece. EEAE considers that the structure of the artificial tanning safety culture strategic framework will serve as the guide for the development and promotion of relevant safety culture strategic frameworks for the provision of aesthetic/wellness services that utilize other non-ionizing radiation sources, which currently don't exist. © 2018 IOP Publishing Ltd.

  2. Simulation of Attacks for Security in Wireless Sensor Network

    PubMed Central

    Diaz, Alvaro; Sanchez, Pablo

    2016-01-01

    The increasing complexity and low-power constraints of current Wireless Sensor Networks (WSN) require efficient methodologies for network simulation and embedded software performance analysis of nodes. In addition, security is also a very important feature that has to be addressed in most WSNs, since they may work with sensitive data and operate in hostile unattended environments. In this paper, a methodology for security analysis of Wireless Sensor Networks is presented. The methodology allows designing attack-aware embedded software/firmware or attack countermeasures to provide security in WSNs. The proposed methodology includes attacker modeling and attack simulation with performance analysis (node’s software execution time and power consumption estimation). After an analysis of different WSN attack types, an attacker model is proposed. This model defines three different types of attackers that can emulate most WSN attacks. In addition, this paper presents a virtual platform that is able to model the node hardware, embedded software and basic wireless channel features. This virtual simulation analyzes the embedded software behavior and node power consumption while it takes into account the network deployment and topology. Additionally, this simulator integrates the previously mentioned attacker model. Thus, the impact of attacks on power consumption and software behavior/execution-time can be analyzed. This provides developers with essential information about the effects that one or multiple attacks could have on the network, helping them to develop more secure WSN systems. This WSN attack simulator is an essential element of the attack-aware embedded software development methodology that is also introduced in this work. PMID:27869710

  3. Proceedings of the Organization of 1990 Meeting of International Neural Network Society Jointed with IEEE Held in Washington, DC on January 15 - 19, 1990. Volume 2. Applications Track.

    DTIC Science & Technology

    1990-11-30

    Simonotto Universita’ di Genova Learning from Natural Selection in an Artificial Environment ...................................................... 1...11-92 Ethem Alpaydin Swiss Federal Institute of Technology Framework for Distributed Artificial Neural System Simulation...11-129 David Y. Fong Lockheed Missiles and Space Co. and Christopher Tocci Raytheon Co. Simulation of Artificial Neural

  4. Evaluation of simulations to understand effects of groundwater development and artificial recharge on the surface water and riparian vegetation Sierra Vista subwatershed, Upper San Pedro Basin, Arizona

    USGS Publications Warehouse

    Leake, Stanley A.; Gungle, Bruce

    2012-01-01

    In 2007, the U.S. Geological Survey documented a five-layer groundwater flow model of the Sierra Vista and Sonoran subwatersheds of the Upper San Pedro Basin. The model has been applied by a private consultant to evaluate the effects of projected groundwater pumping through 2105 and effects of artificial recharge at three near-stream sites for 2012-2111. The main concern regarding simulations of long-term groundwater pumping is the effect of artificial model boundaries on modeled response, particularly for pumping near Cananea, Sonora, Mexico, which is adjacent to an artificial no-flow boundary. Concerns regarding the simulations of the effects of artificial recharge near streams include the resolution of the model and the representation of the model properties at the site scale; a possible limited ability of the model to correctly apportion recharge response between increased streamflow and increased evapotranspiration; a limited ability of the model to simulate detailed geometries of artificial recharge areas and evapotranspiration areas; and stream locations with the 820-foot grid spacing of the basin-scale model. In spite of these concerns, use of the U.S. Geological Survey five-layer groundwater flow model by the consultant are reasonable and valid.

  5. Artificial bee colony in neuro - Symbolic integration

    NASA Astrophysics Data System (ADS)

    Kasihmuddin, Mohd Shareduwan Mohd; Sathasivam, Saratha; Mansor, Mohd. Asyraf

    2017-08-01

    Swarm intelligence is a research area that models the population of the swarm based on natural computation. Artificial bee colony (ABC) algorithm is a swarm based metaheuristic algorithm introduced by Karaboga to optimize numerical problem. Pattern-SAT is a pattern reconstruction paradigm that utilized 2SAT logical rule in representing the behavior of the desired pattern. The information of the desired pattern in terms of 2SAT logic is embedded to Hopfield neural network (HNN-P2SAT) and the desired pattern is reconstructed during the retrieval phase. Since the performance of HNN-P2SAT in Pattern-SAT deteriorates when the number of 2SAT clause increased, newly improved ABC is used to reduce the computation burden during the learning phase of HNN-P2SAT (HNN-P2SATABC). The aim of this study is to investigate the performance of Pattern-SAT produced by ABC incorporated with HNN-P2SAT and compare it with conventional standalone HNN. The comparison is examined by using Microsoft Visual Basic C++ 2013 software. The detailed comparison in doing Pattern-SAT is discussed based on global Pattern-SAT, ratio of activated clauses and computation time. The result obtained from computer simulation indicates the beneficial features of HNN-P2SATABC in doing Pattern-SAT. This finding is expected to result in a significant implication on the choice of searching method used to do Pattern-SAT.

  6. Research and development of service robot platform based on artificial psychology

    NASA Astrophysics Data System (ADS)

    Zhang, Xueyuan; Wang, Zhiliang; Wang, Fenhua; Nagai, Masatake

    2007-12-01

    Some related works about the control architecture of robot system are briefly summarized. According to the discussions above, this paper proposes control architecture of service robot based on artificial psychology. In this control architecture, the robot can obtain the cognition of environment through sensors, and then be handled with intelligent model, affective model and learning model, and finally express the reaction to the outside stimulation through its behavior. For better understanding the architecture, hierarchical structure is also discussed. The control system of robot can be divided into five layers, namely physical layer, drives layer, information-processing and behavior-programming layer, application layer and system inspection and control layer. This paper shows how to achieve system integration from hardware modules, software interface and fault diagnosis. Embedded system GENE-8310 is selected as the PC platform of robot APROS-I, and its primary memory media is CF card. The arms and body of the robot are constituted by 13 motors and some connecting fittings. Besides, the robot has a robot head with emotional facial expression, and the head has 13 DOFs. The emotional and intelligent model is one of the most important parts in human-machine interaction. In order to better simulate human emotion, an emotional interaction model for robot is proposed according to the theory of need levels of Maslom and mood information of Siminov. This architecture has already been used in our intelligent service robot.

  7. A real-time and closed-loop control algorithm for cascaded multilevel inverter based on artificial neural network.

    PubMed

    Wang, Libing; Mao, Chengxiong; Wang, Dan; Lu, Jiming; Zhang, Junfeng; Chen, Xun

    2014-01-01

    In order to control the cascaded H-bridges (CHB) converter with staircase modulation strategy in a real-time manner, a real-time and closed-loop control algorithm based on artificial neural network (ANN) for three-phase CHB converter is proposed in this paper. It costs little computation time and memory. It has two steps. In the first step, hierarchical particle swarm optimizer with time-varying acceleration coefficient (HPSO-TVAC) algorithm is employed to minimize the total harmonic distortion (THD) and generate the optimal switching angles offline. In the second step, part of optimal switching angles are used to train an ANN and the well-designed ANN can generate optimal switching angles in a real-time manner. Compared with previous real-time algorithm, the proposed algorithm is suitable for a wider range of modulation index and results in a smaller THD and a lower calculation time. Furthermore, the well-designed ANN is embedded into a closed-loop control algorithm for CHB converter with variable direct voltage (DC) sources. Simulation results demonstrate that the proposed closed-loop control algorithm is able to quickly stabilize load voltage and minimize the line current's THD (<5%) when subjecting the DC sources disturbance or load disturbance. In real design stage, a switching angle pulse generation scheme is proposed and experiment results verify its correctness.

  8. Numerical simulation of artificial hip joint motion based on human age factor

    NASA Astrophysics Data System (ADS)

    Ramdhani, Safarudin; Saputra, Eko; Jamari, J.

    2018-05-01

    Artificial hip joint is a prosthesis (synthetic body part) which usually consists of two or more components. Replacement of the hip joint due to the occurrence of arthritis, ordinarily patients aged or older. Numerical simulation models are used to observe the range of motion in the artificial hip joint, the range of motion of joints used as the basis of human age. Finite- element analysis (FEA) is used to calculate stress von mises in motion and observes a probability of prosthetic impingement. FEA uses a three-dimensional nonlinear model and considers the position variation of acetabular liner cups. The result of numerical simulation shows that FEA method can be used to analyze the performance calculation of the artificial hip joint at this time more accurate than conventional method.

  9. Simulation of magnetic active polymers for versatile microfluidic devices

    NASA Astrophysics Data System (ADS)

    Gusenbauer, Markus; Özelt, Harald; Fischbacher, Johann; Reichel, Franz; Exl, Lukas; Bance, Simon; Kataeva, Nadezhda; Binder, Claudia; Brückl, Hubert; Schrefl, Thomas

    2013-01-01

    We propose to use a compound of magnetic nanoparticles (20-100 nm) embedded in a flexible polymer (Polydimethylsiloxane PDMS) to filter circulating tumor cells (CTCs). The analysis of CTCs is an emerging tool for cancer biology research and clinical cancer management including the detection, diagnosis and monitoring of cancer. The combination of experiments and simulations lead to a versatile microfluidic lab-on-chip device. Simulations are essential to understand the influence of the embedded nanoparticles in the elastic PDMS when applying a magnetic gradient field. It combines finite element calculations of the polymer, magnetic simulations of the embedded nanoparticles and the fluid dynamic calculations of blood plasma and blood cells. With the use of magnetic active polymers a wide range of tunable microfluidic structures can be created. The method can help to increase the yield of needed isolated CTCs.

  10. Flight code validation simulator

    NASA Astrophysics Data System (ADS)

    Sims, Brent A.

    1996-05-01

    An End-To-End Simulation capability for software development and validation of missile flight software on the actual embedded computer has been developed utilizing a 486 PC, i860 DSP coprocessor, embedded flight computer and custom dual port memory interface hardware. This system allows real-time interrupt driven embedded flight software development and checkout. The flight software runs in a Sandia Digital Airborne Computer and reads and writes actual hardware sensor locations in which Inertial Measurement Unit data resides. The simulator provides six degree of freedom real-time dynamic simulation, accurate real-time discrete sensor data and acts on commands and discretes from the flight computer. This system was utilized in the development and validation of the successful premier flight of the Digital Miniature Attitude Reference System in January of 1995 at the White Sands Missile Range on a two stage attitude controlled sounding rocket.

  11. Use of an embedded, micro-randomised trial to investigate non-compliance in telehealth interventions.

    PubMed

    Law, Lisa M; Edirisinghe, Nuwani; Wason, James Ms

    2016-08-01

    Many types of telehealth interventions rely on activity from the patient in order to have a beneficial effect on their outcome. Remote monitoring systems require the patient to record regular measurements at home, for example, blood pressure, so clinicians can see whether the patient's health changes over time and intervene if necessary. A big problem in this type of intervention is non-compliance. Most telehealth trials report compliance rates, but they rarely compare compliance among various options of telehealth delivery, of which there may be many. Optimising telehealth delivery is vital for improving compliance and, therefore, clinical outcomes. We propose a trial design which investigates ways of improving compliance. For efficiency, this trial is embedded in a larger trial for evaluating clinical effectiveness. It employs a technique called micro-randomisation, where individual patients are randomised multiple times throughout the study. The aims of this article are (1) to verify whether the presence of an embedded secondary trial still allows valid analysis of the primary research and (2) to demonstrate the usefulness of the micro-randomisation technique for comparing compliance interventions. Simulation studies were used to simulate a large number of clinical trials, in which no embedded trial was used, a micro-randomised embedded trial was used, and a factorial embedded trial was used. Each simulation recorded the operating characteristics of the primary and secondary trials. We show that the type I error rate of the primary analysis was not affected by the presence of an embedded secondary trial. Furthermore, we show that micro-randomisation is superior to a factorial design as it reduces the variation caused by within-patient correlation. It therefore requires smaller sample sizes - our simulations showed a requirement of 128 patients for a micro-randomised trial versus 760 patients for a factorial design, in the presence of within-patient correlation. We believe that an embedded, micro-randomised trial is a feasible technique that can potentially be highly useful in telehealth trials. © The Author(s) 2016.

  12. A computational fluid dynamics simulation of the hypersonic flight of the Pegasus(TM) vehicle using an artificial viscosity model and a nonlinear filtering method. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Mendoza, John Cadiz

    1995-01-01

    The computational fluid dynamics code, PARC3D, is tested to see if its use of non-physical artificial dissipation affects the accuracy of its results. This is accomplished by simulating a shock-laminar boundary layer interaction and several hypersonic flight conditions of the Pegasus(TM) launch vehicle using full artificial dissipation, low artificial dissipation, and the Engquist filter. Before the filter is applied to the PARC3D code, it is validated in one-dimensional and two-dimensional form in a MacCormack scheme against the Riemann and convergent duct problem. For this explicit scheme, the filter shows great improvements in accuracy and computational time as opposed to the nonfiltered solutions. However, for the implicit PARC3D code it is found that the best estimate of the Pegasus experimental heat fluxes and surface pressures is the simulation utilizing low artificial dissipation and no filter. The filter does improve accuracy over the artificially dissipative case but at a computational expense greater than that achieved by the low artificial dissipation case which has no computational time penalty and shows better results. For the shock-boundary layer simulation, the filter does well in terms of accuracy for a strong impingement shock but not as well for weaker shock strengths. Furthermore, for the latter problem the filter reduces the required computational time to convergence by 18.7 percent.

  13. Computer graphics testbed to simulate and test vision systems for space applications

    NASA Technical Reports Server (NTRS)

    Cheatham, John B.

    1991-01-01

    Artificial intelligence concepts are applied to robotics. Artificial neural networks, expert systems and laser imaging techniques for autonomous space robots are being studied. A computer graphics laser range finder simulator developed by Wu has been used by Weiland and Norwood to study use of artificial neural networks for path planning and obstacle avoidance. Interest is expressed in applications of CLIPS, NETS, and Fuzzy Control. These applications are applied to robot navigation.

  14. Biomimetic actuators using electroactive polymers (EAP) as artificial muscles

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph

    2006-01-01

    Evolution has resolved many of nature's challenges leading to lasting solutions with maximal performance and effective use of resources. Nature's inventions have always inspired human achievements leading to effective materials, structures, tools, mechanisms, processes, algorithms, methods, systems and many other benefits. The field of mimicking nature is known as Biomimetics and one of its topics includes electroactive polymers that gain the moniker artificial muscles. Integrating EAP with embedded sensors, self-repair and many other capabilities that are used in composite materials can add greatly to the capability of smart biomimetic systems. Such development would enable fascinating possibilities potentially turning science fiction ideas into engineering reality.

  15. Effects of artificial gravity on the cardiovascular system: Computational approach

    NASA Astrophysics Data System (ADS)

    Diaz Artiles, Ana; Heldt, Thomas; Young, Laurence R.

    2016-09-01

    Artificial gravity has been suggested as a multisystem countermeasure against the negative effects of weightlessness. However, many questions regarding the appropriate configuration are still unanswered, including optimal g-level, angular velocity, gravity gradient, and exercise protocol. Mathematical models can provide unique insight into these questions, particularly when experimental data is very expensive or difficult to obtain. In this research effort, a cardiovascular lumped-parameter model is developed to simulate the short-term transient hemodynamic response to artificial gravity exposure combined with ergometer exercise, using a bicycle mounted on a short-radius centrifuge. The model is thoroughly described and preliminary simulations are conducted to show the model capabilities and potential applications. The model consists of 21 compartments (including systemic circulation, pulmonary circulation, and a cardiac model), and it also includes the rapid cardiovascular control systems (arterial baroreflex and cardiopulmonary reflex). In addition, the pressure gradient resulting from short-radius centrifugation is captured in the model using hydrostatic pressure sources located at each compartment. The model also includes the cardiovascular effects resulting from exercise such as the muscle pump effect. An initial set of artificial gravity simulations were implemented using the Massachusetts Institute of Technology (MIT) Compact-Radius Centrifuge (CRC) configuration. Three centripetal acceleration (artificial gravity) levels were chosen: 1 g, 1.2 g, and 1.4 g, referenced to the subject's feet. Each simulation lasted 15.5 minutes and included a baseline period, the spin-up process, the ergometer exercise period (5 minutes of ergometer exercise at 30 W with a simulated pedal cadence of 60 RPM), and the spin-down process. Results showed that the cardiovascular model is able to predict the cardiovascular dynamics during gravity changes, as well as the expected steady-state cardiovascular behavior during sustained artificial gravity and exercise. Further validation of the model was performed using experimental data from the combined exercise and artificial gravity experiments conducted on the MIT CRC, and these results will be presented separately in future publications. This unique computational framework can be used to simulate a variety of centrifuge configuration and exercise intensities to improve understanding and inform decisions about future implementation of artificial gravity in space.

  16. The Impact of Adjacent-Dependencies and Staged-Input on the Learnability of Center-Embedded Hierarchical Structures

    ERIC Educational Resources Information Center

    Lai, Jun; Poletiek, Fenna H.

    2011-01-01

    A theoretical debate in artificial grammar learning (AGL) regards the learnability of hierarchical structures. Recent studies using an A[superscript n]B[superscript n] grammar draw conflicting conclusions ([Bahlmann and Friederici, 2006] and [De Vries et al., 2008]). We argue that 2 conditions crucially affect learning A[superscript…

  17. MATLAB Algorithms for Rapid Detection and Embedding of Palindrome and Emordnilap Electronic Watermarks in Simulated Chemical and Biological Image Data

    DTIC Science & Technology

    2004-11-16

    MATLAB Algorithms for Rapid Detection and Embedding of Palindrome and Emordnilap Electronic Watermarks in Simulated Chemical and Biological Image ...and Emordnilap Electronic Watermarks in Simulated Chemical and Biological Image Data 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...Conference on Chemical and Biological Defense Research. Held in Hunt Valley, Maryland on 15-17 November 2004., The original document contains color images

  18. Embedded ensemble propagation for improving performance, portability, and scalability of uncertainty quantification on emerging computational architectures

    DOE PAGES

    Phipps, Eric T.; D'Elia, Marta; Edwards, Harold C.; ...

    2017-04-18

    In this study, quantifying simulation uncertainties is a critical component of rigorous predictive simulation. A key component of this is forward propagation of uncertainties in simulation input data to output quantities of interest. Typical approaches involve repeated sampling of the simulation over the uncertain input data, and can require numerous samples when accurately propagating uncertainties from large numbers of sources. Often simulation processes from sample to sample are similar and much of the data generated from each sample evaluation could be reused. We explore a new method for implementing sampling methods that simultaneously propagates groups of samples together in anmore » embedded fashion, which we call embedded ensemble propagation. We show how this approach takes advantage of properties of modern computer architectures to improve performance by enabling reuse between samples, reducing memory bandwidth requirements, improving memory access patterns, improving opportunities for fine-grained parallelization, and reducing communication costs. We describe a software technique for implementing embedded ensemble propagation based on the use of C++ templates and describe its integration with various scientific computing libraries within Trilinos. We demonstrate improved performance, portability and scalability for the approach applied to the simulation of partial differential equations on a variety of CPU, GPU, and accelerator architectures, including up to 131,072 cores on a Cray XK7 (Titan).« less

  19. Fluctuation spectra and force generation in nonequilibrium systems.

    PubMed

    Lee, Alpha A; Vella, Dominic; Wettlaufer, John S

    2017-08-29

    Many biological systems are appropriately viewed as passive inclusions immersed in an active bath: from proteins on active membranes to microscopic swimmers confined by boundaries. The nonequilibrium forces exerted by the active bath on the inclusions or boundaries often regulate function, and such forces may also be exploited in artificial active materials. Nonetheless, the general phenomenology of these active forces remains elusive. We show that the fluctuation spectrum of the active medium, the partitioning of energy as a function of wavenumber, controls the phenomenology of force generation. We find that, for a narrow, unimodal spectrum, the force exerted by a nonequilibrium system on two embedded walls depends on the width and the position of the peak in the fluctuation spectrum, and oscillates between repulsion and attraction as a function of wall separation. We examine two apparently disparate examples: the Maritime Casimir effect and recent simulations of active Brownian particles. A key implication of our work is that important nonequilibrium interactions are encoded within the fluctuation spectrum. In this sense, the noise becomes the signal.

  20. SchNet - A deep learning architecture for molecules and materials

    NASA Astrophysics Data System (ADS)

    Schütt, K. T.; Sauceda, H. E.; Kindermans, P.-J.; Tkatchenko, A.; Müller, K.-R.

    2018-06-01

    Deep learning has led to a paradigm shift in artificial intelligence, including web, text, and image search, speech recognition, as well as bioinformatics, with growing impact in chemical physics. Machine learning, in general, and deep learning, in particular, are ideally suitable for representing quantum-mechanical interactions, enabling us to model nonlinear potential-energy surfaces or enhancing the exploration of chemical compound space. Here we present the deep learning architecture SchNet that is specifically designed to model atomistic systems by making use of continuous-filter convolutional layers. We demonstrate the capabilities of SchNet by accurately predicting a range of properties across chemical space for molecules and materials, where our model learns chemically plausible embeddings of atom types across the periodic table. Finally, we employ SchNet to predict potential-energy surfaces and energy-conserving force fields for molecular dynamics simulations of small molecules and perform an exemplary study on the quantum-mechanical properties of C20-fullerene that would have been infeasible with regular ab initio molecular dynamics.

  1. Non-monotonic temperature dependence of chaos-assisted diffusion in driven periodic systems

    NASA Astrophysics Data System (ADS)

    Spiechowicz, J.; Talkner, P.; Hänggi, P.; Łuczka, J.

    2016-12-01

    The spreading of a cloud of independent Brownian particles typically proceeds more effectively at higher temperatures, as it derives from the commonly known Sutherland-Einstein relation for systems in thermal equilibrium. Here, we report on a non-equilibrium situation in which the diffusion of a periodically driven Brownian particle moving in a periodic potential decreases with increasing temperature within a finite temperature window. We identify as the cause for this non-intuitive behaviour a dominant deterministic mechanism consisting of a few unstable periodic orbits embedded into a chaotic attractor together with thermal noise-induced dynamical changes upon varying temperature. The presented analysis is based on extensive numerical simulations of the corresponding Langevin equation describing the studied setup as well as on a simplified stochastic model formulated in terms of a three-state Markovian process. Because chaos exists in many natural as well as in artificial systems representing abundant areas of contemporary knowledge, the described mechanism may potentially be discovered in plentiful different contexts.

  2. Modelling brain emergent behaviours through coevolution of neural agents.

    PubMed

    Maniadakis, Michail; Trahanias, Panos

    2006-06-01

    Recently, many research efforts focus on modelling partial brain areas with the long-term goal to support cognitive abilities of artificial organisms. Existing models usually suffer from heterogeneity, which constitutes their integration very difficult. The present work introduces a computational framework to address brain modelling tasks, emphasizing on the integrative performance of substructures. Moreover, implemented models are embedded in a robotic platform to support its behavioural capabilities. We follow an agent-based approach in the design of substructures to support the autonomy of partial brain structures. Agents are formulated to allow the emergence of a desired behaviour after a certain amount of interaction with the environment. An appropriate collaborative coevolutionary algorithm, able to emphasize both the speciality of brain areas and their cooperative performance, is employed to support design specification of agent structures. The effectiveness of the proposed approach is illustrated through the implementation of computational models for motor cortex and hippocampus, which are successfully tested on a simulated mobile robot.

  3. Linearized Programming of Memristors for Artificial Neuro-Sensor Signal Processing

    PubMed Central

    Yang, Changju; Kim, Hyongsuk

    2016-01-01

    A linearized programming method of memristor-based neural weights is proposed. Memristor is known as an ideal element to implement a neural synapse due to its embedded functions of analog memory and analog multiplication. Its resistance variation with a voltage input is generally a nonlinear function of time. Linearization of memristance variation about time is very important for the easiness of memristor programming. In this paper, a method utilizing an anti-serial architecture for linear programming is proposed. The anti-serial architecture is composed of two memristors with opposite polarities. It linearizes the variation of memristance due to complimentary actions of two memristors. For programming a memristor, additional memristor with opposite polarity is employed. The linearization effect of weight programming of an anti-serial architecture is investigated and memristor bridge synapse which is built with two sets of anti-serial memristor architecture is taken as an application example of the proposed method. Simulations are performed with memristors of both linear drift model and nonlinear model. PMID:27548186

  4. Linearized Programming of Memristors for Artificial Neuro-Sensor Signal Processing.

    PubMed

    Yang, Changju; Kim, Hyongsuk

    2016-08-19

    A linearized programming method of memristor-based neural weights is proposed. Memristor is known as an ideal element to implement a neural synapse due to its embedded functions of analog memory and analog multiplication. Its resistance variation with a voltage input is generally a nonlinear function of time. Linearization of memristance variation about time is very important for the easiness of memristor programming. In this paper, a method utilizing an anti-serial architecture for linear programming is proposed. The anti-serial architecture is composed of two memristors with opposite polarities. It linearizes the variation of memristance due to complimentary actions of two memristors. For programming a memristor, additional memristor with opposite polarity is employed. The linearization effect of weight programming of an anti-serial architecture is investigated and memristor bridge synapse which is built with two sets of anti-serial memristor architecture is taken as an application example of the proposed method. Simulations are performed with memristors of both linear drift model and nonlinear model.

  5. Simulation and performance of an artificial retina for 40 MHz track reconstruction

    DOE PAGES

    Abba, A.; Bedeschi, F.; Citterio, M.; ...

    2015-03-05

    We present the results of a detailed simulation of the artificial retina pattern-recognition algorithm, designed to reconstruct events with hundreds of charged-particle tracks in pixel and silicon detectors at LHCb with LHC crossing frequency of 40 MHz. Performances of the artificial retina algorithm are assessed using the official Monte Carlo samples of the LHCb experiment. We found performances for the retina pattern-recognition algorithm comparable with the full LHCb reconstruction algorithm.

  6. Influence of Parameters of a Reactive Interatomic Potential on the Properties of Saturated Hydrocarbons

    DTIC Science & Technology

    2017-01-01

    Methodology 3 2.1 Modified Embedded-Atom Method Theory 3 2.1.1 Embedding Energy Function 3 2.1.2 Screening Factor 8 2.1.3 Modified Embedded-Atom...Simulation Methodology 2.1 Modified Embedded-Atom Method Theory In the EAM and MEAM formalisms1,2,5 the total energy of a system of atoms (Etot) is...An interatomic potential for saturated hydrocarbons using the modified embedded-atom method (MEAM), a semiempirical many-body potential based on

  7. Quality assurance paradigms for artificial intelligence in modelling and simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oren, T.I.

    1987-04-01

    New classes of quality assurance concepts and techniques are required for the advanced knowledge-processing paradigms (such as artificial intelligence, expert systems, or knowledge-based systems) and the complex problems that only simulative systems can cope with. A systematization of quality assurance problems as well as examples are given to traditional and cognizant quality assurance techniques in traditional and cognizant modelling and simulation.

  8. Robotics, Artificial Intelligence, Computer Simulation: Future Applications in Special Education.

    ERIC Educational Resources Information Center

    Moore, Gwendolyn B.; And Others

    1986-01-01

    Describes possible applications of new technologies to special education. Discusses results of a study designed to explore the use of robotics, artificial intelligence, and computer simulations to aid people with handicapping conditions. Presents several scenarios in which specific technological advances may contribute to special education…

  9. Engineering a Light-Attenuating Artificial Iris

    PubMed Central

    Shareef, Farah J.; Sun, Shan; Kotecha, Mrignayani; Kassem, Iris; Azar, Dimitri; Cho, Michael

    2016-01-01

    Purpose Discomfort from light exposure leads to photophobia, glare, and poor vision in patients with congenital or trauma-induced iris damage. Commercial artificial iris lenses are static in nature to provide aesthetics without restoring the natural iris's dynamic response to light. A new photo-responsive artificial iris was therefore developed using a photochromic material with self-adaptive light transmission properties and encased in a transparent biocompatible polymer matrix. Methods The implantable artificial iris was designed and engineered using Photopia, a class of photo-responsive materials (termed naphthopyrans) embedded in polyethylene. Photopia was reshaped into annular disks that were spin-coated with polydimethylsiloxane (PDMS) to form our artificial iris lens of controlled thickness. Results Activated by UV and blue light in approximately 5 seconds with complete reversal in less than 1 minute, the artificial iris demonstrates graded attenuation of up to 40% of visible and 60% of UV light. There optical characteristics are suitable to reversibly regulate the incident light intensity. In vitro cell culture experiments showed up to 60% cell death within 10 days of exposure to Photopia, but no significant cell death observed when cultured with the artificial iris with protective encapsulation. Nuclear magnetic resonance spectroscopy confirmed these results as there was no apparent leakage of potentially toxic photochromic material from the ophthalmic device. Conclusions Our artificial iris lens mimics the functionality of the natural iris by attenuating light intensity entering the eye with its rapid reversible change in opacity and thus potentially providing an improved treatment option for patients with iris damage. PMID:27116547

  10. Engineering a Light-Attenuating Artificial Iris.

    PubMed

    Shareef, Farah J; Sun, Shan; Kotecha, Mrignayani; Kassem, Iris; Azar, Dimitri; Cho, Michael

    2016-04-01

    Discomfort from light exposure leads to photophobia, glare, and poor vision in patients with congenital or trauma-induced iris damage. Commercial artificial iris lenses are static in nature to provide aesthetics without restoring the natural iris's dynamic response to light. A new photo-responsive artificial iris was therefore developed using a photochromic material with self-adaptive light transmission properties and encased in a transparent biocompatible polymer matrix. The implantable artificial iris was designed and engineered using Photopia, a class of photo-responsive materials (termed naphthopyrans) embedded in polyethylene. Photopia was reshaped into annular disks that were spin-coated with polydimethylsiloxane (PDMS) to form our artificial iris lens of controlled thickness. Activated by UV and blue light in approximately 5 seconds with complete reversal in less than 1 minute, the artificial iris demonstrates graded attenuation of up to 40% of visible and 60% of UV light. There optical characteristics are suitable to reversibly regulate the incident light intensity. In vitro cell culture experiments showed up to 60% cell death within 10 days of exposure to Photopia, but no significant cell death observed when cultured with the artificial iris with protective encapsulation. Nuclear magnetic resonance spectroscopy confirmed these results as there was no apparent leakage of potentially toxic photochromic material from the ophthalmic device. Our artificial iris lens mimics the functionality of the natural iris by attenuating light intensity entering the eye with its rapid reversible change in opacity and thus potentially providing an improved treatment option for patients with iris damage.

  11. User interfaces for computational science: A domain specific language for OOMMF embedded in Python

    NASA Astrophysics Data System (ADS)

    Beg, Marijan; Pepper, Ryan A.; Fangohr, Hans

    2017-05-01

    Computer simulations are used widely across the engineering and science disciplines, including in the research and development of magnetic devices using computational micromagnetics. In this work, we identify and review different approaches to configuring simulation runs: (i) the re-compilation of source code, (ii) the use of configuration files, (iii) the graphical user interface, and (iv) embedding the simulation specification in an existing programming language to express the computational problem. We identify the advantages and disadvantages of different approaches and discuss their implications on effectiveness and reproducibility of computational studies and results. Following on from this, we design and describe a domain specific language for micromagnetics that is embedded in the Python language, and allows users to define the micromagnetic simulations they want to carry out in a flexible way. We have implemented this micromagnetic simulation description language together with a computational backend that executes the simulation task using the Object Oriented MicroMagnetic Framework (OOMMF). We illustrate the use of this Python interface for OOMMF by solving the micromagnetic standard problem 4. All the code is publicly available and is open source.

  12. Automating Embedded Analysis Capabilities and Managing Software Complexity in Multiphysics Simulation, Part I: Template-Based Generic Programming

    DOE PAGES

    Pawlowski, Roger P.; Phipps, Eric T.; Salinger, Andrew G.

    2012-01-01

    An approach for incorporating embedded simulation and analysis capabilities in complex simulation codes through template-based generic programming is presented. This approach relies on templating and operator overloading within the C++ language to transform a given calculation into one that can compute a variety of additional quantities that are necessary for many state-of-the-art simulation and analysis algorithms. An approach for incorporating these ideas into complex simulation codes through general graph-based assembly is also presented. These ideas have been implemented within a set of packages in the Trilinos framework and are demonstrated on a simple problem from chemical engineering.

  13. Frameworks and Tools for High-Confidence Design of Adaptive, Distributed Embedded Control Systems. Multi-University Research Initiative on High-Confidence Design for Distributed Embedded Systems

    DTIC Science & Technology

    2009-01-01

    controllers (currently using the Robostix+Gumstix pair ). The interface between the plant simulator and the controller is ‘hard real-time’, and the xPC box... simulation ) on aerobatic maneuver design for the STARMAC quadrotor helicopter testbed. In related work, we have developed a new optimization scheme...for scheduling hybrid systems, and have demonstrated the results on an autonomous car simulation testbed. We are focusing efforts this summer for

  14. Impact of seasonality on artificial drainage discharge under temperate climate conditions

    Treesearch

    Ulrike Hirt; Annett Wetzig; Devandra Amatya; Marisa Matranga

    2011-01-01

    Artificial drainage systems affect all components of the water and matter balance. For the proper simulation of water and solute fluxes, information is needed about artificial drainage discharge rates and their response times. However, there is relatively little information available about the response of artificial drainage systems to precipitation. To address this...

  15. On the Effects of Artificial Feeding on Bee Colony Dynamics: A Mathematical Model

    PubMed Central

    Paiva, Juliana Pereira Lisboa Mohallem; Paiva, Henrique Mohallem; Esposito, Elisa; Morais, Michelle Manfrini

    2016-01-01

    This paper proposes a new mathematical model to evaluate the effects of artificial feeding on bee colony population dynamics. The proposed model is based on a classical framework and contains differential equations that describe the changes in the number of hive bees, forager bees, and brood cells, as a function of amounts of natural and artificial food. The model includes the following elements to characterize the artificial feeding scenario: a function to model the preference of the bees for natural food over artificial food; parameters to quantify the quality and palatability of artificial diets; a function to account for the efficiency of the foragers in gathering food under different environmental conditions; and a function to represent different approaches used by the beekeeper to feed the hive with artificial food. Simulated results are presented to illustrate the main characteristics of the model and its behavior under different scenarios. The model results are validated with experimental data from the literature involving four different artificial diets. A good match between simulated and experimental results was achieved. PMID:27875589

  16. STANFORD ARTIFICIAL INTELLIGENCE PROJECT.

    DTIC Science & Technology

    ARTIFICIAL INTELLIGENCE , GAME THEORY, DECISION MAKING, BIONICS, AUTOMATA, SPEECH RECOGNITION, GEOMETRIC FORMS, LEARNING MACHINES, MATHEMATICAL MODELS, PATTERN RECOGNITION, SERVOMECHANISMS, SIMULATION, BIBLIOGRAPHIES.

  17. Live-cell imaging of invasion and intravasation in an artificial microvessel platform.

    PubMed

    Wong, Andrew D; Searson, Peter C

    2014-09-01

    Methods to visualize metastasis exist, but additional tools to better define the biologic and physical processes underlying invasion and intravasation are still needed. One difficulty in studying metastasis stems from the complexity of the interface between the tumor microenvironment and the vascular system. Here, we report the development of an investigational platform that positions tumor cells next to an artificial vessel embedded in an extracellular matrix. On this platform, we used live-cell fluorescence microscopy to analyze the complex interplay between metastatic cancer cells and a functional artificial microvessel that was lined with endothelial cells. The platform recapitulated known interactions, and its use demonstrated the capabilities for a systematic study of novel physical and biologic parameters involved in invasion and intravasation. In summary, our work offers an important new tool to advance knowledge about metastasis and candidate antimetastatic therapies. ©2014 American Association for Cancer Research.

  18. Colloidal domain lithography for regularly arranged artificial magnetic out-of-plane monodomains in Au/Co/Au layers.

    PubMed

    Kuświk, Piotr; Ehresmann, Arno; Tekielak, Maria; Szymański, Bogdan; Sveklo, Iosif; Mazalski, Piotr; Engel, Dieter; Kisielewski, Jan; Lengemann, Daniel; Urbaniak, Maciej; Schmidt, Christoph; Maziewski, Andrzej; Stobiecki, Feliks

    2011-03-04

    Regularly arranged magnetic out-of-plane patterns in continuous and flat films are promising for applications in data storage technology (bit patterned media) or transport of individual magnetic particles. Whereas topographic magnetic structures are fabricated by standard lithographical techniques, the fabrication of regularly arranged artificial domains in topographically flat films is difficult, since the free energy minimization determines the existence, shape, and regularity of domains. Here we show that keV He(+) ion bombardment of Au/Co/Au layer systems through a colloidal mask of hexagonally arranged spherical polystyrene beads enables magnetic patterning of regularly arranged cylindrical magnetic monodomains with out-of-plane magnetization embedded in a ferromagnetic matrix with easy-plane anisotropy. This colloidal domain lithography creates artificial domains via periodic lateral anisotropy variations induced by periodic defect density modulations. Magnetization reversal of the layer system observed by magnetic force microscopy shows individual disc switching indicating monodomain states.

  19. Robotics, Artificial Intelligence, Computer Simulation: Future Applications in Special Education.

    ERIC Educational Resources Information Center

    Moore, Gwendolyn B.; And Others

    The report describes three advanced technologies--robotics, artificial intelligence, and computer simulation--and identifies the ways in which they might contribute to special education. A hybrid methodology was employed to identify existing technology and forecast future needs. Following this framework, each of the technologies is defined,…

  20. Simulation of Blood flow in Artificial Heart Valve Design through Left heart

    NASA Astrophysics Data System (ADS)

    Hafizah Mokhtar, N.; Abas, Aizat

    2018-05-01

    In this work, an artificial heart valve is designed for use in real heart with further consideration on the effect of thrombosis, vorticity, and stress. The design of artificial heart valve model is constructed by Computer-aided design (CAD) modelling and simulated using Computational fluid dynamic (CFD) software. The effect of blood flow pattern, velocity and vorticity of the artificial heart valve design has been analysed in this research work. Based on the results, the artificial heart valve design shows that it has a Doppler velocity index that is less than the allowable standards for the left heart with values of more than 0.30 and less than 2.2. These values are safe to be used as replacement of the human heart valve.

  1. Optimization of an artificial-recharge-pumping system for water supply in the Maghaway Valley, Cebu, Philippines

    NASA Astrophysics Data System (ADS)

    Kawo, Nafyad Serre; Zhou, Yangxiao; Magalso, Ronnell; Salvacion, Lasaro

    2018-05-01

    A coupled simulation-optimization approach to optimize an artificial-recharge-pumping system for the water supply in the Maghaway Valley, Cebu, Philippines, is presented. The objective is to maximize the total pumping rate through a system of artificial recharge and pumping while meeting constraints such as groundwater-level drawdown and bounds on pumping rates at each well. The simulation models were coupled with groundwater management optimization to maximize production rates. Under steady-state natural conditions, the significant inflow to the aquifer comes from river leakage, whereas the natural discharge is mainly the subsurface outflow to the downstream area. Results from the steady artificial-recharge-pumping simulation model show that artificial recharge is about 20,587 m3/day and accounts for 77% of total inflow. Under transient artificial-recharge-pumping conditions, artificial recharge varies between 14,000 and 20,000 m3/day depending on the wet and dry seasons, respectively. The steady-state optimisation results show that the total optimal abstraction rate is 37,545 m3/day and artificial recharge is increased to 29,313 m3/day. The transient optimization results show that the average total optimal pumping rate is 36,969 m3/day for the current weir height. The transient optimization results for an increase in weir height by 1 and 2 m show that the average total optimal pumping rates are increased to 38,768 and 40,463 m3/day, respectively. It is concluded that the increase in the height of the weir can significantly increase the artificial recharge rate and production rate in Maghaway Valley.

  2. Real-time head movement system and embedded Linux implementation for the control of power wheelchairs.

    PubMed

    Nguyen, H T; King, L M; Knight, G

    2004-01-01

    Mobility has become very important for our quality of life. A loss of mobility due to an injury is usually accompanied by a loss of self-confidence. For many individuals, independent mobility is an important aspect of self-esteem. Head movement is a natural form of pointing and can be used to directly replace the joystick whilst still allowing for similar control. Through the use of embedded LINUX and artificial intelligence, a hands-free head movement wheelchair controller has been designed and implemented successfully. This system provides for severely disabled users an effective power wheelchair control method with improved posture, ease of use and attractiveness.

  3. Modified spontaneous emission of silicon nanocrystals embedded in artificial opals

    NASA Astrophysics Data System (ADS)

    Janda, Petr; Valenta, Jan; Rehspringer, Jean-Luc; Mafouana, Rodrigue R.; Linnros, Jan; Elliman, Robert G.

    2007-10-01

    Si nanocrystals (NCs) were embedded in synthetic silica opals by means of Si-ion implantation or opal impregnation with porous-Si suspensions. In both types of sample photoluminescence (PL) is strongly Bragg-reflection attenuated (up to 75%) at the frequency of the opal stop-band in a direction perpendicular to the (1 1 1) face of the perfect hcp opal structure. Time-resolved PL shows a rich distribution of decay rates, which contains both shorter and longer decay components compared with the ordinary stretched exponential decay of Si NCs. This effect reflects changes in the spontaneous emission rate of Si NCs due to variations in the local density of states of real opal containing defects.

  4. Nanophotonic particle simulation and inverse design using artificial neural networks.

    PubMed

    Peurifoy, John; Shen, Yichen; Jing, Li; Yang, Yi; Cano-Renteria, Fidel; DeLacy, Brendan G; Joannopoulos, John D; Tegmark, Max; Soljačić, Marin

    2018-06-01

    We propose a method to use artificial neural networks to approximate light scattering by multilayer nanoparticles. We find that the network needs to be trained on only a small sampling of the data to approximate the simulation to high precision. Once the neural network is trained, it can simulate such optical processes orders of magnitude faster than conventional simulations. Furthermore, the trained neural network can be used to solve nanophotonic inverse design problems by using back propagation, where the gradient is analytical, not numerical.

  5. 2015 Marine Corps Security Environment Forecast: Futures 2030-2045

    DTIC Science & Technology

    2015-01-01

    The technologies that make the iPhone “smart” were publically funded—the Internet, wireless networks, the global positioning system, microelectronics...Energy Revolution (63 percent);  Internet of Things (ubiquitous sensors embedded in interconnected computing devices) (50 percent);  “Sci-Fi...Neuroscience & artificial intelligence - Sensors /control systems -Power & energy -Human-robot interaction Robots/autonomous systems will become part of the

  6. Enacting the Semantic Web: Ontological Orderings, Negotiated Standards, and Human-Machine Translations

    ERIC Educational Resources Information Center

    McCarthy, Matthew T.

    2017-01-01

    Artificial intelligence (AI) that is based upon semantic search has become one of the dominant means for accessing information in recent years. This is particularly the case in mobile contexts, as search-based AI are embedded in each of the major mobile operating systems. The implications are such that information is becoming less a matter of…

  7. More than Words: Fast Acquisition and Generalization of Orthographic Regularities during Novel Word Learning in Adults

    ERIC Educational Resources Information Center

    Laine, Matti; Polonyi, Tünde; Abari, Kálmán

    2014-01-01

    In literates, reading is a fundamental channel for acquiring new vocabulary both in the mother tongue and in foreign languages. By using an artificial language learning task, we examined the acquisition of novel written words and their embedded regularities (an orthographic surface feature and a syllabic feature) in three groups of university…

  8. Artificial life and Piaget.

    PubMed

    Mueller, Ulrich; Grobman, K H.

    2003-04-01

    Artificial life provides important theoretical and methodological tools for the investigation of Piaget's developmental theory. This new method uses artificial neural networks to simulate living phenomena in a computer. A recent study by Parisi and Schlesinger suggests that artificial life might reinvigorate the Piagetian framework. We contrast artificial life with traditional cognitivist approaches, discuss the role of innateness in development, and examine the relation between physiological and psychological explanations of intelligent behaviour.

  9. 16 CFR 1305.5 - Findings.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS BAN OF ARTIFICIAL... not permanently bound into artificial fireplace logs would be in respirable form, the risk associated...) Products subject to the ban. Artificial emberizing materials are decorative simulated ashes or embers, used...

  10. Black-Box System Testing of Real-Time Embedded Systems Using Random and Search-Based Testing

    NASA Astrophysics Data System (ADS)

    Arcuri, Andrea; Iqbal, Muhammad Zohaib; Briand, Lionel

    Testing real-time embedded systems (RTES) is in many ways challenging. Thousands of test cases can be potentially executed on an industrial RTES. Given the magnitude of testing at the system level, only a fully automated approach can really scale up to test industrial RTES. In this paper we take a black-box approach and model the RTES environment using the UML/MARTE international standard. Our main motivation is to provide a more practical approach to the model-based testing of RTES by allowing system testers, who are often not familiar with the system design but know the application domain well-enough, to model the environment to enable test automation. Environment models can support the automation of three tasks: the code generation of an environment simulator, the selection of test cases, and the evaluation of their expected results (oracles). In this paper, we focus on the second task (test case selection) and investigate three test automation strategies using inputs from UML/MARTE environment models: Random Testing (baseline), Adaptive Random Testing, and Search-Based Testing (using Genetic Algorithms). Based on one industrial case study and three artificial systems, we show how, in general, no technique is better than the others. Which test selection technique to use is determined by the failure rate (testing stage) and the execution time of test cases. Finally, we propose a practical process to combine the use of all three test strategies.

  11. The dynamic lift of developmental process.

    PubMed

    Smith, Linda B; Breazeal, Cynthia

    2007-01-01

    What are the essential properties of human intelligence, currently unparalleled in its power relative to other biological forms and relative to artificial forms of intelligence? We suggest that answering this question depends critically on understanding developmental process. This paper considers three principles potentially essential to building human-like intelligence: the heterogeneity of the component processes, the embedding of development in a social world, and developmental processes that change the cognitive system as a function of the history of soft-assemblies of these heterogeneous processes in specific tasks. The paper uses examples from human development and from developmental robotics to show how these processes also may underlie biological intelligence and enable us to generate more advanced forms of artificial intelligence.

  12. Superconducting qubit in a waveguide cavity with a coherence time approaching 0.1 ms

    NASA Astrophysics Data System (ADS)

    Rigetti, Chad; Gambetta, Jay M.; Poletto, Stefano; Plourde, B. L. T.; Chow, Jerry M.; Córcoles, A. D.; Smolin, John A.; Merkel, Seth T.; Rozen, J. R.; Keefe, George A.; Rothwell, Mary B.; Ketchen, Mark B.; Steffen, M.

    2012-09-01

    We report a superconducting artificial atom with a coherence time of T2*=92 μs and energy relaxation time T1=70 μs. The system consists of a single Josephson junction transmon qubit on a sapphire substrate embedded in an otherwise empty copper waveguide cavity whose lowest eigenmode is dispersively coupled to the qubit transition. We attribute the factor of four increase in the coherence quality factor relative to previous reports to device modifications aimed at reducing qubit dephasing from residual cavity photons. This simple device holds promise as a robust and easily produced artificial quantum system whose intrinsic coherence properties are sufficient to allow tests of quantum error correction.

  13. Fracture Mechanics Method for Word Embedding Generation of Neural Probabilistic Linguistic Model.

    PubMed

    Bi, Size; Liang, Xiao; Huang, Ting-Lei

    2016-01-01

    Word embedding, a lexical vector representation generated via the neural linguistic model (NLM), is empirically demonstrated to be appropriate for improvement of the performance of traditional language model. However, the supreme dimensionality that is inherent in NLM contributes to the problems of hyperparameters and long-time training in modeling. Here, we propose a force-directed method to improve such problems for simplifying the generation of word embedding. In this framework, each word is assumed as a point in the real world; thus it can approximately simulate the physical movement following certain mechanics. To simulate the variation of meaning in phrases, we use the fracture mechanics to do the formation and breakdown of meaning combined by a 2-gram word group. With the experiments on the natural linguistic tasks of part-of-speech tagging, named entity recognition and semantic role labeling, the result demonstrated that the 2-dimensional word embedding can rival the word embeddings generated by classic NLMs, in terms of accuracy, recall, and text visualization.

  14. Atomistic simulations of the effect of embedded hydrogen and helium on the tensile properties of monocrystalline and nanocrystalline tungsten

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Kecskes, Laszlo J.; Zhu, Kaigui; Wei, Qiuming

    2016-12-01

    Uniaxial tensile properties of monocrystalline tungsten (MC-W) and nanocrystalline tungsten (NC-W) with embedded hydrogen and helium atoms have been investigated using molecular dynamics (MD) simulations in the context of radiation damage evolution. Different strain rates have been imposed to investigate the strain rate sensitivity (SRS) of the samples. Results show that the plastic deformation processes of MC-W and NC-W are dominated by different mechanisms, namely dislocation-based for MC-W and grain boundary-based activities for NC-W, respectively. For MC-W, the SRS increases and a transition appears in the deformation mechanism with increasing embedded atom concentration. However, no obvious embedded atom concentration dependence of the SRS has been observed for NC-W. Instead, in the latter case, the embedded atoms facilitate GB sliding and intergranular fracture. Additionally, a strong strain enhanced He cluster growth has been observed. The corresponding underlying mechanisms are discussed.

  15. Integrated MOSFET-Embedded-Cantilever-Based Biosensor Characteristic for Detection of Anthrax Simulant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mostafa, Salwa; Lee, Ida; Islam, Syed K

    2011-01-01

    In this work, MOSFET-embedded cantilevers are configured as microbial sensors for detection of anthrax simulants, Bacillus thuringiensis. Anthrax simulants attached to the chemically treated gold-coated cantilever cause changes in the MOSFET drain current due to the bending of the cantilever which indicates the detection of anthrax simulant. Electrical properties of the anthrax simulant are also responsible for the change in the drain current. The test results suggest a detection range of 10 L of stimulant test solution (a suspension population of 1.3 107 colony-forming units/mL diluted in 40% ethanol and 60% deionized water) with a linear response of 31 A/more » L.« less

  16. Simulation of short-term electric load using an artificial neural network

    NASA Astrophysics Data System (ADS)

    Ivanin, O. A.

    2018-01-01

    While solving the task of optimizing operation modes and equipment composition of small energy complexes or other tasks connected with energy planning, it is necessary to have data on energy loads of a consumer. Usually, there is a problem with obtaining real load charts and detailed information about the consumer, because a method of load-charts simulation on the basis of minimal information should be developed. The analysis of work devoted to short-term loads prediction allows choosing artificial neural networks as a most suitable mathematical instrument for solving this problem. The article provides an overview of applied short-term load simulation methods; it describes the advantages of artificial neural networks and offers a neural network structure for electric loads of residential buildings simulation. The results of modeling loads with proposed method and the estimation of its error are presented.

  17. Rule based design of conceptual models for formative evaluation

    NASA Technical Reports Server (NTRS)

    Moore, Loretta A.; Chang, Kai; Hale, Joseph P.; Bester, Terri; Rix, Thomas; Wang, Yaowen

    1994-01-01

    A Human-Computer Interface (HCI) Prototyping Environment with embedded evaluation capability has been investigated. This environment will be valuable in developing and refining HCI standards and evaluating program/project interface development, especially Space Station Freedom on-board displays for payload operations. This environment, which allows for rapid prototyping and evaluation of graphical interfaces, includes the following four components: (1) a HCI development tool; (2) a low fidelity simulator development tool; (3) a dynamic, interactive interface between the HCI and the simulator; and (4) an embedded evaluator that evaluates the adequacy of a HCI based on a user's performance. The embedded evaluation tool collects data while the user is interacting with the system and evaluates the adequacy of an interface based on a user's performance. This paper describes the design of conceptual models for the embedded evaluation system using a rule-based approach.

  18. Rule based design of conceptual models for formative evaluation

    NASA Technical Reports Server (NTRS)

    Moore, Loretta A.; Chang, Kai; Hale, Joseph P.; Bester, Terri; Rix, Thomas; Wang, Yaowen

    1994-01-01

    A Human-Computer Interface (HCI) Prototyping Environment with embedded evaluation capability has been investigated. This environment will be valuable in developing and refining HCI standards and evaluating program/project interface development, especially Space Station Freedom on-board displays for payload operations. This environment, which allows for rapid prototyping and evaluation of graphical interfaces, includes the following four components: (1) a HCI development tool, (2) a low fidelity simulator development tool, (3) a dynamic, interactive interface between the HCI and the simulator, and (4) an embedded evaluator that evaluates the adequacy of a HCI based on a user's performance. The embedded evaluation tool collects data while the user is interacting with the system and evaluates the adequacy of an interface based on a user's performance. This paper describes the design of conceptual models for the embedded evaluation system using a rule-based approach.

  19. Banknote recognition: investigating processing and cognition framework using competitive neural network.

    PubMed

    Oyedotun, Oyebade K; Khashman, Adnan

    2017-02-01

    Humans are apt at recognizing patterns and discovering even abstract features which are sometimes embedded therein. Our ability to use the banknotes in circulation for business transactions lies in the effortlessness with which we can recognize the different banknote denominations after seeing them over a period of time. More significant is that we can usually recognize these banknote denominations irrespective of what parts of the banknotes are exposed to us visually. Furthermore, our recognition ability is largely unaffected even when these banknotes are partially occluded. In a similar analogy, the robustness of intelligent systems to perform the task of banknote recognition should not collapse under some minimum level of partial occlusion. Artificial neural networks are intelligent systems which from inception have taken many important cues related to structure and learning rules from the human nervous/cognition processing system. Likewise, it has been shown that advances in artificial neural network simulations can help us understand the human nervous/cognition system even furthermore. In this paper, we investigate three cognition hypothetical frameworks to vision-based recognition of banknote denominations using competitive neural networks. In order to make the task more challenging and stress-test the investigated hypotheses, we also consider the recognition of occluded banknotes. The implemented hypothetical systems are tasked to perform fast recognition of banknotes with up to 75 % occlusion. The investigated hypothetical systems are trained on Nigeria's Naira banknotes and several experiments are performed to demonstrate the findings presented within this work.

  20. Medicina array demonstrator: calibration and radiation pattern characterization using a UAV-mounted radio-frequency source

    NASA Astrophysics Data System (ADS)

    Pupillo, G.; Naldi, G.; Bianchi, G.; Mattana, A.; Monari, J.; Perini, F.; Poloni, M.; Schiaffino, M.; Bolli, P.; Lingua, A.; Aicardi, I.; Bendea, H.; Maschio, P.; Piras, M.; Virone, G.; Paonessa, F.; Farooqui, Z.; Tibaldi, A.; Addamo, G.; Peverini, O. A.; Tascone, R.; Wijnholds, S. J.

    2015-06-01

    One of the most challenging aspects of the new-generation Low-Frequency Aperture Array (LFAA) radio telescopes is instrument calibration. The operational LOw-Frequency ARray (LOFAR) instrument and the future LFAA element of the Square Kilometre Array (SKA) require advanced calibration techniques to reach the expected outstanding performance. In this framework, a small array, called Medicina Array Demonstrator (MAD), has been designed and installed in Italy to provide a test bench for antenna characterization and calibration techniques based on a flying artificial test source. A radio-frequency tone is transmitted through a dipole antenna mounted on a micro Unmanned Aerial Vehicle (UAV) (hexacopter) and received by each element of the array. A modern digital FPGA-based back-end is responsible for both data-acquisition and data-reduction. A simple amplitude and phase equalization algorithm is exploited for array calibration owing to the high stability and accuracy of the developed artificial test source. Both the measured embedded element patterns and calibrated array patterns are found to be in good agreement with the simulated data. The successful measurement campaign has demonstrated that a UAV-mounted test source provides a means to accurately validate and calibrate the full-polarized response of an antenna/array in operating conditions, including consequently effects like mutual coupling between the array elements and contribution of the environment to the antenna patterns. A similar system can therefore find a future application in the SKA-LFAA context.

  1. AAAI (American Association on Artificial Intelligence) Workshop on AI (Artificial Intelligence) Simulation Held in Philadelphia, Pennsylvania on August 11, 1986,

    DTIC Science & Technology

    1986-08-01

    is then applied in i ABSTRCT : ,.:,.vu knowledge acquisition from those multiple sources for a specific design, for example, an expert system for...67. N 181.1 47.U3 a75 269;9.6 % A. %3 3 Genetic Explanations: For the concept of a genetic explanation (see .d -. above) to apply to the Gaither...Simulation Research Unit (Acock,1985; Baker,1983; Baker,1985). -. MD’,EX srves as an inner shell for apPlying Artificial Intelligence and E:pert System

  2. Computer Simulated Visual and Tactile Feedback as an Aid to Manipulator and Vehicle Control,

    DTIC Science & Technology

    1981-05-08

    STATEMENT ........................ 8 Artificial Intellegence Versus Supervisory Control ....... 8 Computer Generation of Operator Feedback...operator. Artificial Intelligence Versus Supervisory Control The use of computers to aid human operators can be divided into two catagories: artificial ...operator. Artificial intelligence ( A. I. ) attempts to give the computer maximum intelligence and to replace all operator functions by the computer

  3. Integration of Artificial Market Simulation and Text Mining for Market Analysis

    NASA Astrophysics Data System (ADS)

    Izumi, Kiyoshi; Matsui, Hiroki; Matsuo, Yutaka

    We constructed an evaluation system of the self-impact in a financial market using an artificial market and text-mining technology. Economic trends were first extracted from text data circulating in the real world. Then, the trends were inputted into the market simulation. Our simulation revealed that an operation by intervention could reduce over 70% of rate fluctuation in 1995. By the simulation results, the system was able to help for its user to find the exchange policy which can stabilize the yen-dollar rate.

  4. Nanophotonic particle simulation and inverse design using artificial neural networks

    PubMed Central

    Peurifoy, John; Shen, Yichen; Jing, Li; Cano-Renteria, Fidel; DeLacy, Brendan G.; Joannopoulos, John D.; Tegmark, Max

    2018-01-01

    We propose a method to use artificial neural networks to approximate light scattering by multilayer nanoparticles. We find that the network needs to be trained on only a small sampling of the data to approximate the simulation to high precision. Once the neural network is trained, it can simulate such optical processes orders of magnitude faster than conventional simulations. Furthermore, the trained neural network can be used to solve nanophotonic inverse design problems by using back propagation, where the gradient is analytical, not numerical. PMID:29868640

  5. Using artificial intelligence to control fluid flow computations

    NASA Technical Reports Server (NTRS)

    Gelsey, Andrew

    1992-01-01

    Computational simulation is an essential tool for the prediction of fluid flow. Many powerful simulation programs exist today. However, using these programs to reliably analyze fluid flow and other physical situations requires considerable human effort and expertise to set up a simulation, determine whether the output makes sense, and repeatedly run the simulation with different inputs until a satisfactory result is achieved. Automating this process is not only of considerable practical importance but will also significantly advance basic artificial intelligence (AI) research in reasoning about the physical world.

  6. Entanglement measures in embedding quantum simulators with nuclear spins

    NASA Astrophysics Data System (ADS)

    Xin, Tao; Pedernales, Julen S.; Solano, Enrique; Long, Gui-Lu

    2018-02-01

    We implement an embedding quantum simulator (EQS) in nuclear spin systems. The experiment consists of a simulator of up to three qubits, plus a single ancillary qubit, where we are able to efficiently measure the concurrence and the three-tangle of two-qubit and three-qubit systems as they undergo entangling dynamics. The EQS framework allows us to drastically reduce the number of measurements needed for this task, which otherwise would require full-state reconstruction of the qubit system. Our simulator is built of the nuclear spins of four 13C atoms in a molecule of trans-crotonic acid manipulated with NMR techniques.

  7. ALOG user's manual: A Guide to using the spreadsheet-based artificial log generator

    Treesearch

    Matthew F. Winn; Philip A. Araman; Randolph H. Wynne

    2012-01-01

    Computer programs that simulate log sawing can be valuable training tools for sawyers, as well as a means oftesting different sawing patterns. Most available simulation programs rely on diagrammed-log databases, which canbe very costly and time consuming to develop. Artificial Log Generator (ALOG) is a user-friendly Microsoft® Excel®...

  8. Stacking Nematic Elastomers for Artificial Muscle Applications

    DTIC Science & Technology

    2006-04-01

    nematic to isotropic phase transition. In this eport, a new approach is introduced by layering liquid crystal elastomer films to create thermally...actuated stacks. A heating element and thermally onductive grease embedded between elastomer films provide a means for rapid internal heat application...voltage application, stacks composed f two 100 m-thick films and a single heating element produce 18% strain between contracted and relaxed states. In

  9. Computed Flow Through An Artificial Heart And Valve

    NASA Technical Reports Server (NTRS)

    Rogers, Stuart E.; Kwak, Dochan; Kiris, Cetin; Chang, I-Dee

    1994-01-01

    NASA technical memorandum discusses computations of flow of blood through artificial heart and through tilting-disk artificial heart valve. Represents further progress in research described in "Numerical Simulation of Flow Through an Artificial Heart" (ARC-12478). One purpose of research to exploit advanced techniques of computational fluid dynamics and capabilities of supercomputers to gain understanding of complicated internal flows of viscous, essentially incompressible fluids like blood. Another to use understanding to design better artificial hearts and valves.

  10. Molecular-level comparison of alkylsilane and polar-embedded reversed-phase liquid chromatography systems.

    PubMed

    Rafferty, Jake L; Siepmann, J Ilja; Schure, Mark R

    2008-08-15

    Stationary phases with embedded polar groups possess several advantages over conventional alkylsilane phases, such as reduced peak tailing, enhanced selectivity for specific functional groups, and the ability to use a highly aqueous mobile phase. To gain a deeper understanding of the retentive properties of these reversed-phase packings, molecular simulations were carried out for three different stationary phases in contact with mobile phases of various water/methanol ratios. Two polar-embedded phases were modeled, namely, amide and ether containing, and compared to a conventional octadecylsilane phase. The simulations show that, due to specific hydrogen bond interactions, the polar-embedded phases take up significantly more solvent and are more ordered than their alkyl counterparts. Alkane and alcohol probe solutes indicate that the polar-embedded phases are less retentive than alkyl phases for nonpolar species, whereas polar species are more retained by them due to hydrogen bonding with the embedded groups and the increased amount of solvent within the stationary phase. This leads to a significant reduction of the free-energy barrier for the transfer of polar species from the mobile phase to residual silanols, and this reduced barrier provides a possible explanation for reduced peak tailing.

  11. Photosynthesis-dependent isoprene emission from leaf to planet in a global carbon-chemistry-climate model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unger, N.; Harper, K.; Zheng, Y.

    2013-10-22

    We describe the implementation of a biochemical model of isoprene emission that depends on the electron requirement for isoprene synthesis into the Farquhar/Ball- Berry leaf model of photosynthesis and stomatal conductance that is embedded within a global chemistry-climate simulation framework. The isoprene production is calculated as a function of electron transport-limited photosynthesis, intercellular carbon dioxide concentration, and canopy temperature. The vegetation biophysics module computes the photosynthetic uptake of carbon dioxide coupled with the transpiration of water vapor and the isoprene emission rate at the 30 min physical integration time step of the global chemistry-climate model. In the model, the ratemore » of carbon assimilation provides the dominant control on isoprene emission variability over canopy temperature. A control simulation representative of the present day climatic state that uses plant functional types (PFTs), prescribed phenology and generic PFT-specific isoprene emission potentials (fraction of electrons available for isoprene synthesis) reproduces 50% of the variability across different ecosystems and seasons in a global database of measured campaign-average fluxes. Compared to time-varying isoprene flux measurements at select sites, the model authentically captures the observed variability in the 30 min average diurnal cycle (R 2 = 64-96 %) and simulates the flux magnitude to within a factor of 2. The control run yields a global isoprene source strength of 451 TgC yr -1 that increases by 30% in the artificial absence of plant water stress and by 55% for potential natural vegetation.« less

  12. Photosynthesis-dependent Isoprene Emission from Leaf to Planet in a Global Carbon-chemistry-climate Model

    NASA Technical Reports Server (NTRS)

    Unger, N.; Harper, K.; Zeng, Y.; Kiang, N. Y.; Alienov, I.; Arneth, A.; Schurgers, G.; Amelynck, C.; Goldstein, A.; Guenther, A.; hide

    2013-01-01

    We describe the implementation of a biochemical model of isoprene emission that depends on the electron requirement for isoprene synthesis into the FarquharBallBerry leaf model of photosynthesis and stomatal conductance that is embedded within a global chemistry-climate simulation framework. The isoprene production is calculated as a function of electron transport-limited photosynthesis, intercellular and atmospheric carbon dioxide concentration, and canopy temperature. The vegetation biophysics module computes the photosynthetic uptake of carbon dioxide coupled with the transpiration of water vapor and the isoprene emission rate at the 30 min physical integration time step of the global chemistry-climate model. In the model, the rate of carbon assimilation provides the dominant control on isoprene emission variability over canopy temperature. A control simulation representative of the present-day climatic state that uses 8 plant functional types (PFTs), prescribed phenology and generic PFT-specific isoprene emission potentials (fraction of electrons available for isoprene synthesis) reproduces 50 of the variability across different ecosystems and seasons in a global database of 28 measured campaign-average fluxes. Compared to time-varying isoprene flux measurements at 9 select sites, the model authentically captures the observed variability in the 30 min average diurnal cycle (R2 6496) and simulates the flux magnitude to within a factor of 2. The control run yields a global isoprene source strength of 451 TgC yr1 that increases by 30 in the artificial absence of plant water stress and by 55 for potential natural vegetation.

  13. Photosynthesis-dependent isoprene emission from leaf to planet in a global carbon-chemistry-climate model

    NASA Astrophysics Data System (ADS)

    Unger, N.; Harper, K.; Zheng, Y.; Kiang, N. Y.; Aleinov, I.; Arneth, A.; Schurgers, G.; Amelynck, C.; Goldstein, A.; Guenther, A.; Heinesch, B.; Hewitt, C. N.; Karl, T.; Laffineur, Q.; Langford, B.; McKinney, K. A.; Misztal, P.; Potosnak, M.; Rinne, J.; Pressley, S.; Schoon, N.; Serça, D.

    2013-10-01

    We describe the implementation of a biochemical model of isoprene emission that depends on the electron requirement for isoprene synthesis into the Farquhar-Ball-Berry leaf model of photosynthesis and stomatal conductance that is embedded within a global chemistry-climate simulation framework. The isoprene production is calculated as a function of electron transport-limited photosynthesis, intercellular and atmospheric carbon dioxide concentration, and canopy temperature. The vegetation biophysics module computes the photosynthetic uptake of carbon dioxide coupled with the transpiration of water vapor and the isoprene emission rate at the 30 min physical integration time step of the global chemistry-climate model. In the model, the rate of carbon assimilation provides the dominant control on isoprene emission variability over canopy temperature. A control simulation representative of the present-day climatic state that uses 8 plant functional types (PFTs), prescribed phenology and generic PFT-specific isoprene emission potentials (fraction of electrons available for isoprene synthesis) reproduces 50% of the variability across different ecosystems and seasons in a global database of 28 measured campaign-average fluxes. Compared to time-varying isoprene flux measurements at 9 select sites, the model authentically captures the observed variability in the 30 min average diurnal cycle (R2 = 64-96%) and simulates the flux magnitude to within a factor of 2. The control run yields a global isoprene source strength of 451 TgC yr-1 that increases by 30% in the artificial absence of plant water stress and by 55% for potential natural vegetation.

  14. Photosynthesis-dependent isoprene emission from leaf to planet in a global carbon-chemistry-climate model

    NASA Astrophysics Data System (ADS)

    Unger, N.; Harper, K.; Zheng, Y.; Kiang, N. Y.; Aleinov, I.; Arneth, A.; Schurgers, G.; Amelynck, C.; Goldstein, A.; Guenther, A.; Heinesch, B.; Hewitt, C. N.; Karl, T.; Laffineur, Q.; Langford, B.; McKinney, K. A.; Misztal, P.; Potosnak, M.; Rinne, J.; Pressley, S.; Schoon, N.; Serça, D.

    2013-07-01

    We describe the implementation of a biochemical model of isoprene emission that depends on the electron requirement for isoprene synthesis into the Farquhar/Ball-Berry leaf model of photosynthesis and stomatal conductance that is embedded within a global chemistry-climate simulation framework. The isoprene production is calculated as a function of electron transport-limited photosynthesis, intercellular carbon dioxide concentration, and canopy temperature. The vegetation biophysics module computes the photosynthetic uptake of carbon dioxide coupled with the transpiration of water vapor and the isoprene emission rate at the 30 min physical integration time step of the global chemistry-climate model. In the model, the rate of carbon assimilation provides the dominant control on isoprene emission variability over canopy temperature. A control simulation representative of the present day climatic state that uses 8 plant functional types (PFTs), prescribed phenology and generic PFT-specific isoprene emission potentials (fraction of electrons available for isoprene synthesis) reproduces 50% of the variability across different ecosystems and seasons in a global database of 28 measured campaign-average fluxes. Compared to time-varying isoprene flux measurements at 9 select sites, the model authentically captures the observed variability in the 30 min average diurnal cycle (R2= 64-96%) and simulates the flux magnitude to within a factor of 2. The control run yields a global isoprene source strength of 451 Tg C yr-1 that increases by 30% in the artificial absence of plant water stress and by 55% for potential natural vegetation.

  15. Rapid Simulation of Blast Wave Propagation in Built Environments Using Coarse-Grain Based Intelligent Modeling Methods

    DTIC Science & Technology

    2011-04-01

    experiments was performed using an artificial neural network to try to capture the nonlinearities. The radial Gaussian artificial neural network system...Modeling Blast-Wave Propagation using Artificial Neural Network Methods‖, in International Journal of Advanced Engineering Informatics, Elsevier

  16. Practical applications of nondestructive materials characterization

    NASA Astrophysics Data System (ADS)

    Green, Robert E., Jr.

    1992-10-01

    Nondestructive evaluation (NDE) techniques are reviewed for applications to the industrial production of materials including microstructural, physical, and chemical analyses. NDE techniques addressed include: (1) double-pulse holographic interferometry for sealed-package leak testing; (2) process controls for noncontact metals fabrication; (3) ultrasonic detections of oxygen contamination in titanium welds; and (4) scanning acoustic microscopy for the evaluation of solder bonds. The use of embedded sensors and emerging NDE concepts provides the means for controlling the manufacturing and quality of quartz crystal resonators, nickel single-crystal turbine blades, and integrated circuits. Advances in sensor technology and artificial intelligence algorithms and the use of embedded sensors combine to make NDE technology highly effective in controlling industrial materials manufacturing and the quality of the products.

  17. Artificial fluid properties for large-eddy simulation of compressible turbulent mixing

    NASA Astrophysics Data System (ADS)

    Cook, Andrew W.

    2007-05-01

    An alternative methodology is described for large-eddy simulation (LES) of flows involving shocks, turbulence, and mixing. In lieu of filtering the governing equations, it is postulated that the large-scale behavior of a LES fluid, i.e., a fluid with artificial properties, will be similar to that of a real fluid, provided the artificial properties obey certain constraints. The artificial properties consist of modifications to the shear viscosity, bulk viscosity, thermal conductivity, and species diffusivity of a fluid. The modified transport coefficients are designed to damp out high wavenumber modes, close to the resolution limit, without corrupting lower modes. Requisite behavior of the artificial properties is discussed and results are shown for a variety of test problems, each designed to exercise different aspects of the models. When combined with a tenth-order compact scheme, the overall method exhibits excellent resolution characteristics for turbulent mixing, while capturing shocks and material interfaces in a crisp fashion.

  18. Numerical Simulation and Artificial Neural Network Modeling for Predicting Welding-Induced Distortion in Butt-Welded 304L Stainless Steel Plates

    NASA Astrophysics Data System (ADS)

    Narayanareddy, V. V.; Chandrasekhar, N.; Vasudevan, M.; Muthukumaran, S.; Vasantharaja, P.

    2016-02-01

    In the present study, artificial neural network modeling has been employed for predicting welding-induced angular distortions in autogenous butt-welded 304L stainless steel plates. The input data for the neural network have been obtained from a series of three-dimensional finite element simulations of TIG welding for a wide range of plate dimensions. Thermo-elasto-plastic analysis was carried out for 304L stainless steel plates during autogenous TIG welding employing double ellipsoidal heat source. The simulated thermal cycles were validated by measuring thermal cycles using thermocouples at predetermined positions, and the simulated distortion values were validated by measuring distortion using vertical height gauge for three cases. There was a good agreement between the model predictions and the measured values. Then, a multilayer feed-forward back propagation neural network has been developed using the numerically simulated data. Artificial neural network model developed in the present study predicted the angular distortion accurately.

  19. Artificial light sources for simulating natural daylight and skylight.

    PubMed

    Grum, F

    1968-01-01

    A review of the literature reveals the need for reliable and stable artificial light sources that can be used as simulators of daylight and skylight. In quest of such simulators a first requirement is quantitative information on the average spectral distributions of natural sources such as daylight and skylight. Recent investigations of the spectral energy characteristics of natural daylight and skylight made it possible to determine such average conditions. With these conditions established, a search was undertaken for an artificial light source that would simulate these average natural distributions with a minimum of filtering. Certain fluorescent lamps and combinations of them were considered first, but, although it was possible to achieve fairly good visual matches of daylight and skylight, the spectral characteristics and the variability of such combinations are drawbacks to their use in critical scientific work. For this purpose, therefore, xenon arc lamps were found to be superior.

  20. Embedded CLIPS for SDI BM/C3 simulation and analysis

    NASA Technical Reports Server (NTRS)

    Gossage, Brett; Nanney, Van

    1990-01-01

    Nichols Research Corporation is developing the BM/C3 Requirements Analysis Tool (BRAT) for the U.S. Army Strategic Defense Command. BRAT uses embedded CLIPS/Ada to model the decision making processes used by the human commander of a defense system. Embedding CLlPS/Ada in BRAT allows the user to explore the role of the human in Command and Control (C2) and the use of expert systems for automated C2. BRAT models assert facts about the current state of the system, the simulated scenario, and threat information into CLIPS/Ada. A user-defined rule set describes the decision criteria for the commander. We have extended CLIPS/Ada with user-defined functions that allow the firing of a rule to invoke a system action such as weapons release or a change in strategy. The use of embedded CLIPS/Ada will provide a powerful modeling tool for our customer at minimal cost.

  1. A Feasibility Study of Life-Extending Controls for Aircraft Turbine Engines Using a Generic Air Force Model (Preprint)

    DTIC Science & Technology

    2006-12-01

    intelligent control algorithm embedded in the FADEC . This paper evaluates the LEC, based on critical components research, to demonstrate how an...control action, engine component life usage, and designing an intelligent control algorithm embedded in the FADEC . This paper evaluates the LEC, based on...simulation code for each simulator. One is typically configured to operate as a Full- Authority Digital Electronic Controller ( FADEC

  2. Artificial Exo-Society Modeling: a New Tool for SETI Research

    NASA Astrophysics Data System (ADS)

    Gardner, James N.

    2002-01-01

    One of the newest fields of complexity research is artificial society modeling. Methodologically related to artificial life research, artificial society modeling utilizes agent-based computer simulation tools like SWARM and SUGARSCAPE developed by the Santa Fe Institute, Los Alamos National Laboratory and the Bookings Institution in an effort to introduce an unprecedented degree of rigor and quantitative sophistication into social science research. The broad aim of artificial society modeling is to begin the development of a more unified social science that embeds cultural evolutionary processes in a computational environment that simulates demographics, the transmission of culture, conflict, economics, disease, the emergence of groups and coadaptation with an environment in a bottom-up fashion. When an artificial society computer model is run, artificial societal patterns emerge from the interaction of autonomous software agents (the "inhabitants" of the artificial society). Artificial society modeling invites the interpretation of society as a distributed computational system and the interpretation of social dynamics as a specialized category of computation. Artificial society modeling techniques offer the potential of computational simulation of hypothetical alien societies in much the same way that artificial life modeling techniques offer the potential to model hypothetical exobiological phenomena. NASA recently announced its intention to begin exploring the possibility of including artificial life research within the broad portfolio of scientific fields comprised by the interdisciplinary astrobiology research endeavor. It may be appropriate for SETI researchers to likewise commence an exploration of the possible inclusion of artificial exo-society modeling within the SETI research endeavor. Artificial exo-society modeling might be particularly useful in a post-detection environment by (1) coherently organizing the set of data points derived from a detected ETI signal, (2) mapping trends in the data points over time (assuming receipt of an extended ETI signal), and (3) projecting such trends forward to derive alternative cultural evolutionary scenarios for the exo-society under analysis. The latter exercise might be particularly useful to compensate for the inevitable time lag between generation of an ETI signal and receipt of an ETI signal on Earth. For this reason, such an exercise might be a helpful adjunct to the decisional process contemplated by Paragraph 9 of the Declaration of Principles Concerning Activities Following the Detection of Extraterrestrial Intelligence.

  3. Non-invasive measurement of the temperature rise in tissue surrounding a kidney stone subjected to ultrasonic propulsion.

    PubMed

    Oweis, Ghanem F; Dunmire, Barbrina L; Cunitz, Bryan W; Bailey, Michael R

    2015-01-01

    Transcutaneous focused ultrasound (US) is used to propel kidney stones using acoustic radiation force. It is important to estimate the level of heating generated at the stone/tissue interface for safety assessment. An in-vitro experiment is conducted to measure the temperature rise in a tissue-mimicking phantom with an embedded artificial stone and subjected to a focused beam from an imaging US array. A novel optical-imaging-based thermometry method is described using an optically clear tissue phantom. Measurements are compared to the output from a fine wire thermocouple placed on the stone surface. The optical method has good sensitivity, and it does not suffer from artificial viscous heating typically observed with invasive probes and thermocouples.

  4. ALOG: A spreadsheet-based program for generating artificial logs

    Treesearch

    Matthew F. Winn; Randolph H. Wynne; Philip A. Araman

    2004-01-01

    Log sawing simulation computer programs can be valuable tools for training sawyers as well as for testing different sawing patterns. Most available simulation programs rely on databases from which to draw logs and can be very costly and time-consuming to develop. ALOG (Artificial LOg Generator) is a Microsoft Excel®-based computer program that was developed to...

  5. Feature-based component model for design of embedded systems

    NASA Astrophysics Data System (ADS)

    Zha, Xuan Fang; Sriram, Ram D.

    2004-11-01

    An embedded system is a hybrid of hardware and software, which combines software's flexibility and hardware real-time performance. Embedded systems can be considered as assemblies of hardware and software components. An Open Embedded System Model (OESM) is currently being developed at NIST to provide a standard representation and exchange protocol for embedded systems and system-level design, simulation, and testing information. This paper proposes an approach to representing an embedded system feature-based model in OESM, i.e., Open Embedded System Feature Model (OESFM), addressing models of embedded system artifacts, embedded system components, embedded system features, and embedded system configuration/assembly. The approach provides an object-oriented UML (Unified Modeling Language) representation for the embedded system feature model and defines an extension to the NIST Core Product Model. The model provides a feature-based component framework allowing the designer to develop a virtual embedded system prototype through assembling virtual components. The framework not only provides a formal precise model of the embedded system prototype but also offers the possibility of designing variation of prototypes whose members are derived by changing certain virtual components with different features. A case study example is discussed to illustrate the embedded system model.

  6. Wind-tunnel simulation of store jettison with the aid of magnetic artificial gravity

    NASA Technical Reports Server (NTRS)

    Stephens, T.; Adams, R.

    1972-01-01

    A method employed in the simulation of jettison of stores from aircraft involving small scale wind-tunnel drop tests from a model of the parent aircraft is described. Proper scaling of such experiments generally dictates that the gravitational acceleration should ideally be a test variable. A method of introducing a controllable artificial component of gravity by magnetic means has been proposed. The use of a magnetic artificial gravity facility based upon this idea, in conjunction with small scale wind-tunnel drop tests, would improve the accuracy of simulation. A review of the scaling laws as they apply to the design of such a facility is presented. The design constraints involved in the integration of such a facility with a wind tunnel are defined. A detailed performance analysis procedure applicable to such a facility is developed. A practical magnet configuration is defined which is capable of controlling the strength and orientation of the magnetic artificial gravity field in the vertical plane, thereby allowing simulation of store jettison from a diving or climbing aircraft. The factors involved in the choice between continuous or intermittent operation of the facility, and the use of normal or superconducting magnets, are defined.

  7. Effective scheme for partitioning covalent bonds in density-functional embedding theory: From molecules to extended covalent systems.

    PubMed

    Huang, Chen; Muñoz-García, Ana Belén; Pavone, Michele

    2016-12-28

    Density-functional embedding theory provides a general way to perform multi-physics quantum mechanics simulations of large-scale materials by dividing the total system's electron density into a cluster's density and its environment's density. It is then possible to compute the accurate local electronic structures and energetics of the embedded cluster with high-level methods, meanwhile retaining a low-level description of the environment. The prerequisite step in the density-functional embedding theory is the cluster definition. In covalent systems, cutting across the covalent bonds that connect the cluster and its environment leads to dangling bonds (unpaired electrons). These represent a major obstacle for the application of density-functional embedding theory to study extended covalent systems. In this work, we developed a simple scheme to define the cluster in covalent systems. Instead of cutting covalent bonds, we directly split the boundary atoms for maintaining the valency of the cluster. With this new covalent embedding scheme, we compute the dehydrogenation energies of several different molecules, as well as the binding energy of a cobalt atom on graphene. Well localized cluster densities are observed, which can facilitate the use of localized basis sets in high-level calculations. The results are found to converge faster with the embedding method than the other multi-physics approach ONIOM. This work paves the way to perform the density-functional embedding simulations of heterogeneous systems in which different types of chemical bonds are present.

  8. Hybrid Techniques for Quantum Circuit Simulation

    DTIC Science & Technology

    2014-02-01

    Detailed theorems and proofs describing these results are included in our published manuscript [10]. Embedding of stabilizer geometry in the Hilbert ...space. We also describe how the discrete embedding of stabilizer geometry in Hilbert space complicates several natural geometric tasks. As described...the Hilbert space in which they are embedded, and that they are arranged in a fairly uniform pattern. These factors suggest that, if one seeks a

  9. Setup of a Parameterized FE Model for the Die Roll Prediction in Fine Blanking using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Stanke, J.; Trauth, D.; Feuerhack, A.; Klocke, F.

    2017-09-01

    Die roll is a morphological feature of fine blanked sheared edges. The die roll reduces the functional part of the sheared edge. To compensate for the die roll thicker sheet metal strips and secondary machining must be used. However, in order to avoid this, the influence of various fine blanking process parameters on the die roll has been experimentally and numerically studied, but there is still a lack of knowledge on the effects of some factors and especially factor interactions on the die roll. Recent changes in the field of artificial intelligence motivate the hybrid use of the finite element method and artificial neural networks to account for these non-considered parameters. Therefore, a set of simulations using a validated finite element model of fine blanking is firstly used to train an artificial neural network. Then the artificial neural network is trained with thousands of experimental trials. Thus, the objective of this contribution is to develop an artificial neural network that reliably predicts the die roll. Therefore, in this contribution, the setup of a fully parameterized 2D FE model is presented that will be used for batch training of an artificial neural network. The FE model enables an automatic variation of the edge radii of blank punch and die plate, the counter and blank holder force, the sheet metal thickness and part diameter, V-ring height and position, cutting velocity as well as material parameters covered by the Hensel-Spittel model for 16MnCr5 (1.7131, AISI/SAE 5115). The FE model is validated using experimental trails. The results of this contribution is a FE model suitable to perform 9.623 simulations and to pass the simulated die roll width and height automatically to an artificial neural network.

  10. Opto-mechanical design of a dispersive artificial eye.

    PubMed

    Coughlan, Mark F; Mihashi, Toshifumi; Goncharov, Alexander V

    2017-05-20

    We present an opto-mechanical artificial eye that can be used for examining multi-wavelength ophthalmic instruments. Standard off-the-shelf lenses and a refractive-index-matching fluid were used in the creation of the artificial eye. In addition to dispersive properties, the artificial eye can be used to simulate refractive error. To analyze the artificial eye, a multi-wavelength Hartmann-Shack aberrometer was used to measure the longitudinal chromatic aberration and the possibility of inducing refractive error. Off-axis chromatic aberrations were also analyzed by imaging through the artificial eye at two discrete wavelengths. Possible extensions to the dispersive artificial eye are also discussed.

  11. Materials for Diabetes Therapeutics

    PubMed Central

    Bratlie, Kaitlin M.; York, Roger L.; Invernale, Michael A.; Langer, Robert

    2013-01-01

    This review is focused on the materials and methods used to fabricate closed-loop systems for type 1 diabetes therapy. Herein, we give a brief overview of current methods used for patient care and discuss two types of possible treatments and the materials used for these therapies–(i) artificial pancreases, comprised of insulin producing cells embedded in a polymeric biomaterial, and (ii) totally synthetic pancreases formulated by integrating continuous glucose monitors with controlled insulin release through degradable polymers and glucose-responsive polymer systems. Both the artificial and the completely synthetic pancreas have two major design requirements: the device must be both biocompatible and be permeable to small molecules and proteins, such as insulin. Several polymers and fabrication methods of artificial pancreases are discussed: microencapsulation, conformal coatings, and planar sheets. We also review the two components of a completely synthetic pancreas. Several types of glucose sensing systems (including materials used for electrochemical, optical, and chemical sensing platforms) are discussed, in addition to various polymer-based release systems (including ethylene-vinyl acetate, polyanhydrides, and phenylboronic acid containing hydrogels). PMID:23184741

  12. Biomimetric sentinel reef structures for optical sensing and communications

    NASA Astrophysics Data System (ADS)

    Fries, David; Hutcheson, Tim; Josef, Noam; Millie, David; Tate, Connor

    2017-05-01

    Traditional artificial reef structures are designed with uniform cellular architectures and topologies and do not mimic natural reef forms. Strings and ropes are a proven, common fisheries and mariculture construction element throughout the world and using them as artificial reef scaffolding can enable a diversity of ocean sensing, communications systems including the goal of sentinel reefs. The architecture and packaging of electronics is key to enabling such structures and systems. The distributed sensor reef concept leads toward a demonstrable science-engineering-informed framework for 3D smart habitat designs critical to stock fish development and coastal monitoring and protection. These `nature-inspired' reef infrastructures, can enable novel instrumented `reef observatories' capable of collecting real-time ecosystem data. Embedding lighting and electronic elements into artificial reef systems are the first systems conceptualized. This approach of bringing spatial light to the underwater world for optical sensing, communication and even a new breed of underwater robotic vehicle is an interdisciplinary research activity which integrates principles of electronic packaging, and ocean technology with art/design.

  13. Proceedings from an International Conference on Computers and Philosophy, i-C&P 2006 held 3-5 May 2006 in Laval, France

    DTIC Science & Technology

    2008-10-20

    embedded intelligence and cultural adaptations to the onslaught of robots in society. This volume constitutes a key contribution to the body of... Robotics , CNRS/Toulouse University, France Nathalie COLINEAU, Language & Multi-modality, CSIRO, Australia Roberto CORDESCHI, Computation & Communication...Intelligence, SONY CSL ­ Paris Nik KASABOV, Computer and Information Sciences, Auckland University, New Zealand Oussama KHATIB, Robotics & Artificial

  14. In-Storage Embedded Accelerator for Sparse Pattern Processing

    DTIC Science & Technology

    2016-09-13

    computation . As a result, a very small processor could be used and still make full use of storage device bandwidth. When the host software sends...Rean Griffith, Anthony D. Joseph, Randy Katz, Andy Konwinski, Gunho Lee et al. "A view of cloud computing ."Communications of the ACM 53, no. 4 (2010...Laboratory, * MIT Computer Science & Artificial Intelligence Laboratory Abstract— We present a novel system architecture for sparse pattern

  15. Bringing nanomagnetism to the mesoscale with artificial amorphous structures

    NASA Astrophysics Data System (ADS)

    Muscas, G.; Brucas, R.; Jönsson, P. E.

    2018-05-01

    In the quest for materials with emergent or improved properties, an effective route is to create artificial superstructures. Novel properties emerge from the coupling between the phases, but the strength of this coupling depends on the quality of the interfaces. Atomic control of crystalline interfaces is notoriously complicated and to elude that obstacle, we suggest here an all-amorphous design. Starting from a model amorphous iron alloy, we locally tune the magnetic behavior by creating boron-doped regions by means of ion implantation through a lithographic mask. This process preserves the amorphous environment, creating a non-topographic magnetic superstructure with smooth interfaces and no structural discontinuities. The absence of inhomogeneities acting as pinning centers for the magnetization reversal is demonstrated by the formation of magnetic vortexes for ferromagnetic disks as large as 20 µm in diameter embedded within a paramagnetic matrix. Rigid exchange coupling between two amorphous ferromagnetic phases in a microstructured sample is evidenced by an investigation involving first-order reversal curves. The sample consists of a soft matrix with embedded elements constituting a hard phase where the anisotropy originates from an elongated shape of the elements. We provide an intuitive explanation for the micrometer-range exchange coupling mechanism and discuss how to tailor the properties of all-amorphous superstructures.

  16. Data series embedding and scale invariant statistics.

    PubMed

    Michieli, I; Medved, B; Ristov, S

    2010-06-01

    Data sequences acquired from bio-systems such as human gait data, heart rate interbeat data, or DNA sequences exhibit complex dynamics that is frequently described by a long-memory or power-law decay of autocorrelation function. One way of characterizing that dynamics is through scale invariant statistics or "fractal-like" behavior. For quantifying scale invariant parameters of physiological signals several methods have been proposed. Among them the most common are detrended fluctuation analysis, sample mean variance analyses, power spectral density analysis, R/S analysis, and recently in the realm of the multifractal approach, wavelet analysis. In this paper it is demonstrated that embedding the time series data in the high-dimensional pseudo-phase space reveals scale invariant statistics in the simple fashion. The procedure is applied on different stride interval data sets from human gait measurements time series (Physio-Bank data library). Results show that introduced mapping adequately separates long-memory from random behavior. Smaller gait data sets were analyzed and scale-free trends for limited scale intervals were successfully detected. The method was verified on artificially produced time series with known scaling behavior and with the varying content of noise. The possibility for the method to falsely detect long-range dependence in the artificially generated short range dependence series was investigated. (c) 2009 Elsevier B.V. All rights reserved.

  17. A novel quantum steganography scheme for color images

    NASA Astrophysics Data System (ADS)

    Li, Panchi; Liu, Xiande

    In quantum image steganography, embedding capacity and security are two important issues. This paper presents a novel quantum steganography scheme using color images as cover images. First, the secret information is divided into 3-bit segments, and then each 3-bit segment is embedded into the LSB of one color pixel in the cover image according to its own value and using Gray code mapping rules. Extraction is the inverse of embedding. We designed the quantum circuits that implement the embedding and extracting process. The simulation results on a classical computer show that the proposed scheme outperforms several other existing schemes in terms of embedding capacity and security.

  18. Two-way coupling of magnetohydrodynamic simulations with embedded particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Makwana, K. D.; Keppens, R.; Lapenta, G.

    2017-12-01

    We describe a method for coupling an embedded domain in a magnetohydrodynamic (MHD) simulation with a particle-in-cell (PIC) method. In this two-way coupling we follow the work of Daldorff et al. (2014) [19] in which the PIC domain receives its initial and boundary conditions from MHD variables (MHD to PIC coupling) while the MHD simulation is updated based on the PIC variables (PIC to MHD coupling). This method can be useful for simulating large plasma systems, where kinetic effects captured by particle-in-cell simulations are localized but affect global dynamics. We describe the numerical implementation of this coupling, its time-stepping algorithm, and its parallelization strategy, emphasizing the novel aspects of it. We test the stability and energy/momentum conservation of this method by simulating a steady-state plasma. We test the dynamics of this coupling by propagating plasma waves through the embedded PIC domain. Coupling with MHD shows satisfactory results for the fast magnetosonic wave, but significant distortion for the circularly polarized Alfvén wave. Coupling with Hall-MHD shows excellent coupling for the whistler wave. We also apply this methodology to simulate a Geospace Environmental Modeling (GEM) challenge type of reconnection with the diffusion region simulated by PIC coupled to larger scales with MHD and Hall-MHD. In both these cases we see the expected signatures of kinetic reconnection in the PIC domain, implying that this method can be used for reconnection studies.

  19. [Reinforcement for overdentures on abutment teeth].

    PubMed

    Osada, Tomoko

    2006-04-01

    This study investigated the effect of the position of reinforcement wires, differences in artificial teeth, and framework designs on the breaking strength of overdentures. The basal surfaces of composite resin teeth and acrylic resin teeth were removed using a carbide bur. A reinforcement wire or a wrought palatal bar was embedded near the occlusal surface or basal surface. Four types of framework structures were designed : conventional skeleton (skeleton), housing with skeleton (housing), housing plus short metal backing (metal backing), and housing plus long metal backing (double structure). After the wires, bars, and frameworks were sand-blasted with 50 microm Al(2)O(3) powder, they were primed with a metal primer and embedded in a heat-polymerized denture base resin. The breaking strengths (N) and maximum stiffness (N/mm) of two-week aged (37 degrees C) specimens were measured using a bending test (n=8). All data obtained at a crosshead speed of 2.0 mm/min were analyzed by ANOVA/Tukey's test (alpha=0.01). There were no statistical differences between the two kinds of artificial teeth (p>0.01). The wrought palatal bar had significantly higher strength than the reinforcement wire (p<0.01). Greater strengths were found for specimens with frameworks than those without frameworks (p<0.01). The breaking strength of the wrought palatal bar embedded near the occlusal surface was higher than that on the basal surface (p>0.01). The breaking strength and maximum stiffness of the double structure framework were significantly greater (p<0.01) than those of the conventional frameworks. The breaking strengths of overdentures were influenced by the size and position of the reinforcement wires. Double structure frameworks are recommended for overdentures to promote a long-term prognosis without denture breakage.

  20. Visiting Scholars Program

    DTIC Science & Technology

    2016-09-01

    other associated grants. 15. SUBJECT TERMS SUNY Poly, STEM, Artificial Intelligence , Command and Control 16. SECURITY CLASSIFICATION OF: 17...neuromorphic system has the potential to be widely used in a high-efficiency artificial intelligence system. Simulation results have indicated that the...novel multiresolution fusion and advanced fusion performance evaluation tool for an Artificial Intelligence based natural language annotation engine for

  1. Image understanding architecture: a status report

    NASA Astrophysics Data System (ADS)

    Weems, Charles C.

    1995-01-01

    The image understanding architecture (IUA) effort is now entering a new phase. The second generation IUA prototypes are nearing completion and our experience with the hardware, extensive software simulations, and additional research are guiding the development of a new generation of the IUA. Furthermore, the primary contractors have been selected for a technology reinvestment project (TRP) award to develop a commercial, off-the-shelf implementation of the new IUA for dual-use embedded applications. Thus, the IUA effort is in the process of making the transition from a research and development project to being a commercially available vision accelerator. IUA development is currently taking place at three sites (Hughes Research Laboratories in Malibu, Calif., Amerinex Artificial Intelligence Inc., and the University of Massachusetts at Amherst). This TRP consortium plans to form a new company to take over all aspects of IUA development and production. This article summarizes the previous efforts, describes the current status of the effort, expands briefly upon some of the basic research that is supporting the next generation IUA, and concludes with a section describing the efforts that will be undertaken in developing the next generation.

  2. The AGINAO Self-Programming Engine

    NASA Astrophysics Data System (ADS)

    Skaba, Wojciech

    2013-01-01

    The AGINAO is a project to create a human-level artificial general intelligence system (HL AGI) embodied in the Aldebaran Robotics' NAO humanoid robot. The dynamical and open-ended cognitive engine of the robot is represented by an embedded and multi-threaded control program, that is self-crafted rather than hand-crafted, and is executed on a simulated Universal Turing Machine (UTM). The actual structure of the cognitive engine emerges as a result of placing the robot in a natural preschool-like environment and running a core start-up system that executes self-programming of the cognitive layer on top of the core layer. The data from the robot's sensory devices supplies the training samples for the machine learning methods, while the commands sent to actuators enable testing hypotheses and getting a feedback. The individual self-created subroutines are supposed to reflect the patterns and concepts of the real world, while the overall program structure reflects the spatial and temporal hierarchy of the world dependencies. This paper focuses on the details of the self-programming approach, limiting the discussion of the applied cognitive architecture to a necessary minimum.

  3. Intelligent-based Structural Damage Detection Model

    NASA Astrophysics Data System (ADS)

    Lee, Eric Wai Ming; Yu, Kin Fung

    2010-05-01

    This paper presents the application of a novel Artificial Neural Network (ANN) model for the diagnosis of structural damage. The ANN model, denoted as the GRNNFA, is a hybrid model combining the General Regression Neural Network Model (GRNN) and the Fuzzy ART (FA) model. It not only retains the important features of the GRNN and FA models (i.e. fast and stable network training and incremental growth of network structure) but also facilitates the removal of the noise embedded in the training samples. Structural damage alters the stiffness distribution of the structure and so as to change the natural frequencies and mode shapes of the system. The measured modal parameter changes due to a particular damage are treated as patterns for that damage. The proposed GRNNFA model was trained to learn those patterns in order to detect the possible damage location of the structure. Simulated data is employed to verify and illustrate the procedures of the proposed ANN-based damage diagnosis methodology. The results of this study have demonstrated the feasibility of applying the GRNNFA model to structural damage diagnosis even when the training samples were noise contaminated.

  4. Numerical simulation of a hovering rotor using embedded grids

    NASA Technical Reports Server (NTRS)

    Duque, Earl-Peter N.; Srinivasan, Ganapathi R.

    1992-01-01

    The flow field for a rotor blade in hover was computed by numerically solving the compressible thin-layer Navier-Stokes equations on embedded grids. In this work, three embedded grids were used to discretize the flow field - one for the rotor blade and two to convect the rotor wake. The computations were performed at two hovering test conditions, for a two-bladed rectangular rotor of aspect ratio six. The results compare fairly with experiment and illustrates the use of embedded grids in solving helicopter type flow fields.

  5. Preliminary Study of a Novel Puborectalis-Like Artificial Anal Sphincter.

    PubMed

    Jin, Wentian; Yan, Guozheng; Wu, Hao; Lu, Shan; Zhou, Zerun

    2017-09-01

    Artificial anal sphincter (AAS) is an in situ implanted device that acts as a treatment for fecal incontinence regardless of etiology by augmenting the incompetent sphincteric structures. However, AAS is impeded from becoming a valid therapy by its high rate of ischemic complication and malfunction. This article presents an original puborectalis-like artificial anal sphincter (PAAS) that features a low risk of ischemia necrosis and rectal perception remodeling. The device retains continence by reproducing the action, including the pulling and angulating the rectum, of the puborectalis muscle, which forms the anorectal angle and reduces the required clamping pressure. Three rectal pressure sensors were embedded to maintain the pressure exerted on the rectal wall in a safe range and to monitor the distention of the rectum. A series of in vitro studies were conducted with a porcine rectum, and this PAAS prototype manifested the ability of maintaining continence with a clamping pressure considerably lower than that required by other AAS devices. The pressure sensors exhibit good linearity, and the function of rectal perception remodeling has also revealed high reliability with a success rate of 93.3%. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  6. Non-inertial calibration of vibratory gyroscopes

    NASA Technical Reports Server (NTRS)

    Gutierrez, Roman C. (Inventor); Tang, Tony K. (Inventor)

    2003-01-01

    The electrostatic elements already present in a vibratory gyroscope are used to simulate the Coriolis forces. An artificial electrostatic rotation signal is added to the closed-loop force rebalance system. Because the Coriolis force is at the same frequency as the artificial electrostatic force, the simulated force may be introduced into the system to perform an inertial test on MEMS vibratory gyroscopes without the use of a rotation table.

  7. Mechanical ventilation and thoracic artificial lung assistance during mechanical circulatory support with PUCA pump: in silico study.

    PubMed

    De Lazzari, Claudio; Genuini, Igino; Quatember, Bernhard; Fedele, Francesco

    2014-02-01

    Patients assisted with left ventricular assist device (LVAD) may require prolonged mechanical ventilatory assistance secondary to postoperative respiratory failure. The goal of this work is the study of the interdependent effects LVAD like pulsatile catheter (PUCA) pump and mechanical ventilatory support or thoracic artificial lung (TAL), by the hemodynamic point of view, using a numerical simulator of the human cardiovascular system. In the simulator, different circulatory sections are described using lumped parameter models. Lumped parameter models have been designed to describe the hydrodynamic behavior of both PUCA pump and thoracic artificial lung. Ventricular behavior atrial and septum functions were reproduced using variable elastance model. Starting from simulated pathological conditions we studied the effects produced on some hemodynamic variables by simultaneous PUCA pump, thoracic artificial lung or mechanical ventilation assistance. Thoracic artificial lung was applied in parallel or in hybrid mode. The effects of mechanical ventilation have been simulated by changing mean intrathoracic pressure value from -4 mmHg to +5 mmHg. The hemodynamic variables observed during the simulations, in different assisted conditions, were: left and right ventricular end systolic (diastolic) volume, systolic/diastolic aortic pressure, mean pulmonary arterial pressure, left and right mean atrial pressure, mean systemic venous pressure and the total blood flow. Results show that the application of PUCA (without mechanical ventilatory assistance) increases the total blood flow, reduces the left ventricular end systolic volume and increases the diastolic aortic pressure. Parallel TAL assistance increases the right ventricular end diastolic (systolic) volume reduction both when PUCA is switched "ON" and both when PUCA is switched "OFF". By switching "OFF" the PUCA pump, it seems that parallel thoracic artificial lung assistance produces a greater cardiac output (respect to hybrid TAL assistance). Results concerning PUCA and TAL interaction produced by simulations cannot be compared with "in vivo" results since they are not presented in literature. But results concerning the effects produced by LVAD and mechanical ventilation have a trend consistent with those presented in literature. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Ultrasonic transient bounded-beam propagation in a solid cylinder waveguide embedded in a solid medium.

    PubMed

    Laguerre, Laurent; Grimault, Anne; Deschamps, Marc

    2007-04-01

    A semianalytical solution alternative and complementary to modal technique is presented to predict and interpret the ultrasonic pulsed-bounded-beam propagation in a solid cylinder embedded in a solid matrix. The spectral response to an inside axisymmetric velocity source of longitudinal and transversal cylindrical waves is derived from Debye series expansion of the embedded cylinder generalized cylindrical reflection/transmission coefficients. So, the transient guided wave response, synthesized by inverse double Fourier-Bessel transform, is expressed as a combination of the infinite medium contribution, longitudinal, transversal, and coupled longitudinal and transversal waveguide sidewall interactions. Simulated (f, 1/lambdaz) diagrams show the influence of the number of waveguide sidewall interactions to progressively recover dispersion curves. Besides, they show the embedding material filters specific signal portions by concentrating the propagating signal in regions where phase velocity is closer to phase velocity in steel. Then, simulated time waveforms using broadband high-frequency excitation show that signal leading portions exhibit a similar periodical pattern, for both free and embedded waveguides. Debye series-based interpretation shows that double longitudinal/transversal and transversal/longitudinal conversions govern the time waveform leading portion as well as the radiation attenuation in the surrounding cement grout. Finally, a methodology is deduced to minimize the radiation attenuation for the long-range inspection of embedded cylinders.

  9. Ca-Embedded C2N: an efficient adsorbent for CO2 capture.

    PubMed

    Liu, Yuzhen; Meng, Zhaoshun; Guo, Xiaojian; Xu, Genjian; Rao, Dewei; Wang, Yuhui; Deng, Kaiming; Lu, Ruifeng

    2017-10-25

    Carbon dioxide as a greenhouse gas causes severe impacts on the environment, whereas it is also a necessary chemical feedstock that can be converted into carbon-based fuels via electrochemical reduction. To efficiently and reversibly capture CO 2 , it is important to find novel materials for a good balance between adsorption and desorption. In this study, we performed first-principles calculations and grand canonical Monte Carlo (GCMC) simulations, to systematically study metal-embedded carbon nitride (C 2 N) nanosheets for CO 2 capture. Our first-principles results indicated that Ca atoms can be uniformly trapped in the cavity center of C 2 N structure, while the transition metals (Sc, Ti, V, Cr, Mn, Fe, Co) are favorably embedded in the sites off the center of the cavity. The determined maximum number of CO 2 molecules with strong physisorption showed that Ca-embedded C 2 N monolayer is the most promising CO 2 adsorbent among all considered metal-embedded materials. Moreover, GCMC simulations revealed that at room temperature the gravimetric density for CO 2 adsorbed on Ca-embedded C 2 N reached 50 wt% at 30 bar and 23 wt% at 1 bar, higher than other layered materials, thus providing a satisfactory system for the CO 2 capture and utilization.

  10. Effect of Embedded Piezoelectric Sensors on Fracture Toughness and Fatigue Resistance of Composite Laminates Under Mode I Loading

    NASA Technical Reports Server (NTRS)

    Murri, Gretchen B.

    2006-01-01

    Double-cantilevered beam (DCB) specimens of a glass/epoxy composite material with embedded piezoelectric sensors were tested both statically and under fatigue loading to determine the effect of the embedded material on the Mode I fracture toughness and fatigue resistance compared to baseline data without the embedded elements. A material known as LaRC-Macrofiber Composite (LaRC-MFC (TradeMark)), or MFC, was embedded at the midplane of the specimen during the layup. Specimens were manufactured with the embedded MFC material either at the loaded end of the specimen to simulate an initial delamination; or with the MFC material located at the delaminating interface, with a Teflon film at the loaded end to simulate an initial delamination. There were three types of specimens with the embedded material at the delaminating interface: co-cured with no added adhesive; cured with a paste adhesive applied to the embedded element; or cured with a film adhesive added to the embedded material. Tests were conducted with the sensors in both the passive and active states. Results were compared to baseline data for the same material without embedded elements. Interlaminar fracture toughness values (G(sub Ic)) for the passive condition showed little change when the MFC was at the insert end. Passive results varied when the MFC was at the delaminating interface. For the co-cured case and with the paste adhesive, G(sub Ic) decreased compared to the baseline toughness, whereas, for the film adhesive case, G(sub Ic) was significantly greater than the baseline toughness, but the failure was always catastrophic. When the MFC was in the active state, G(sub Ic) was generally lower compared to the passive results. Fatigue tests showed little effect of the embedded material whether it was active or passive compared to baseline values.

  11. A backing device based on an embedded stiffener and retractable insertion tool for thin-film cochlear arrays

    NASA Astrophysics Data System (ADS)

    Tewari, Radheshyam

    Intracochlear trauma from surgical insertion of bulky electrode arrays and inadequate pitch perception are areas of concern with current hand-assembled commercial cochlear implants. Parylene thin-film arrays with higher electrode densities and lower profiles are a potential solution, but lack rigidity and hence depend on manually fabricated permanently attached polyethylene terephthalate (PET) tubing based bulky backing devices. As a solution, we investigated a new backing device with two sub-systems. The first sub-system is a thin poly(lactic acid) (PLA) stiffener that will be embedded in the parylene array. The second sub-system is an attaching and detaching mechanism, utilizing a poly(N-vinylpyrrolidone)-block-poly(d,l-lactide) (PVP-b-PDLLA) copolymer-based biodegradable and water soluble adhesive, that will help to retract the PET insertion tool after implantation. As a proof-of-concept of sub-system one, a microfabrication process for patterning PLA stiffeners embedded in parylene has been developed. Conventional hot-embossing, mechanical micromachining, and standard cleanroom processes were integrated for patterning fully released and discrete stiffeners coated with parylene. The released embedded stiffeners were thermoformed to demonstrate that imparting perimodiolar shapes to stiffener-embedded arrays will be possible. The developed process when integrated with the array fabrication process will allow fabrication of stiffener-embedded arrays in a single process. As a proof-of-concept of sub-system two, the feasibility of the attaching and detaching mechanism was demonstrated by adhering 1x and 1.5x scale PET tube-based insertion tools and PLA stiffeners embedded in parylene using the copolymer adhesive. The attached devices survived qualitative adhesion tests, thermoforming, and flexing. The viability of the detaching mechanism was tested by aging the assemblies in-vitro in phosphate buffer solution. The average detachment times, 2.6 minutes and 10 minutes for 1x and 1.5x scale devices respectively, were found to be clinically relevant with respect to the reported array insertion times during surgical implantation. Eventually, the stiffener-embedded arrays would not need to be permanently attached to current insertion tools which are left behind after implantation and congest the cochlear scala tympani chamber. Finally, a simulation-based approach for accelerated failure analysis of PLA stiffeners and characterization of PVP-b-PDLLA copolymer adhesive has been explored. The residual functional life of embedded PLA stiffeners exposed to body-fluid and thereby subjected to degradation and erosion has been estimated by simulating PLA stiffeners with different parylene coating failure types and different PLA types for a given parylene coating failure type. For characterizing the PVP-b-PDLLA copolymer adhesive, several formulations of the copolymer adhesive were simulated and compared based on the insertion tool detachment times that were predicted from the dissolution, degradation, and erosion behavior of the simulated adhesive formulations. Results indicate that the simulation-based approaches could be used to reduce the total number of time consuming and expensive in-vitro tests that must be conducted.

  12. Inverse simulation system for manual-controlled rendezvous and docking based on artificial neural network

    NASA Astrophysics Data System (ADS)

    Zhou, Wanmeng; Wang, Hua; Tang, Guojin; Guo, Shuai

    2016-09-01

    The time-consuming experimental method for handling qualities assessment cannot meet the increasing fast design requirements for the manned space flight. As a tool for the aircraft handling qualities research, the model-predictive-control structured inverse simulation (MPC-IS) has potential applications in the aerospace field to guide the astronauts' operations and evaluate the handling qualities more effectively. Therefore, this paper establishes MPC-IS for the manual-controlled rendezvous and docking (RVD) and proposes a novel artificial neural network inverse simulation system (ANN-IS) to further decrease the computational cost. The novel system was obtained by replacing the inverse model of MPC-IS with the artificial neural network. The optimal neural network was trained by the genetic Levenberg-Marquardt algorithm, and finally determined by the Levenberg-Marquardt algorithm. In order to validate MPC-IS and ANN-IS, the manual-controlled RVD experiments on the simulator were carried out. The comparisons between simulation results and experimental data demonstrated the validity of two systems and the high computational efficiency of ANN-IS.

  13. MATLAB Algorithms for Rapid Detection and Embedding of Palindrome and Emordnilap Electronic Watermarks in Simulated Chemical and Biological Image Data

    DTIC Science & Technology

    2004-12-01

    digital watermarking http:// ww*.petitcolas .net/ fabien/ steganography / email: fapp2@cl.cam.ac.uk a=double(imread(’custom-a.jpg’)); %load in image ...MATLAB Algorithms for Rapid Detection and Embedding of Palindrome and Emordnilap Electronic Watermarks in Simulated Chemical and Biological Image ...approach (Ref 2-4) to watermarking involves be used to inform the viewer of data (such as photographs putting the cover image in the first 4

  14. Validation of 3-D Ice Accretion Measurement Methodology for Experimental Aerodynamic Simulation

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Addy, Harold E., Jr.; Lee, Sam; Monastero, Marianne C.

    2015-01-01

    Determining the adverse aerodynamic effects due to ice accretion often relies on dry-air wind-tunnel testing of artificial, or simulated, ice shapes. Recent developments in ice-accretion documentation methods have yielded a laser-scanning capability that can measure highly three-dimensional (3-D) features of ice accreted in icing wind tunnels. The objective of this paper was to evaluate the aerodynamic accuracy of ice-accretion simulations generated from laser-scan data. Ice-accretion tests were conducted in the NASA Icing Research Tunnel using an 18-in. chord, two-dimensional (2-D) straight wing with NACA 23012 airfoil section. For six ice-accretion cases, a 3-D laser scan was performed to document the ice geometry prior to the molding process. Aerodynamic performance testing was conducted at the University of Illinois low-speed wind tunnel at a Reynolds number of 1.8 × 10(exp 6) and a Mach number of 0.18 with an 18-in. chord NACA 23012 airfoil model that was designed to accommodate the artificial ice shapes. The ice-accretion molds were used to fabricate one set of artificial ice shapes from polyurethane castings. The laser-scan data were used to fabricate another set of artificial ice shapes using rapid prototype manufacturing such as stereolithography. The iced-airfoil results with both sets of artificial ice shapes were compared to evaluate the aerodynamic simulation accuracy of the laser-scan data. For five of the six ice-accretion cases, there was excellent agreement in the iced-airfoil aerodynamic performance between the casting and laser-scan based simulations. For example, typical differences in iced-airfoil maximum lift coefficient were less than 3 percent with corresponding differences in stall angle of approximately 1 deg or less. The aerodynamic simulation accuracy reported in this paper has demonstrated the combined accuracy of the laser-scan and rapid-prototype manufacturing approach to simulating ice accretion for a NACA 23012 airfoil. For several of the ice-accretion cases tested, the aerodynamics is known to depend upon the small, three-dimensional features of the ice. These data show that the laser-scan and rapid-prototype manufacturing approach is capable of replicating these ice features within the reported accuracies of the laser-scan measurement and rapid-prototyping method; thus providing a new capability for high-fidelity ice-accretion documentation and artificial ice-shape fabrication for icing research.

  15. Validation of 3-D Ice Accretion Measurement Methodology for Experimental Aerodynamic Simulation

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Addy, Harold E., Jr.; Lee, Sam; Monastero, Marianne C.

    2014-01-01

    Determining the adverse aerodynamic effects due to ice accretion often relies on dry-air wind-tunnel testing of artificial, or simulated, ice shapes. Recent developments in ice accretion documentation methods have yielded a laser-scanning capability that can measure highly three-dimensional features of ice accreted in icing wind tunnels. The objective of this paper was to evaluate the aerodynamic accuracy of ice-accretion simulations generated from laser-scan data. Ice-accretion tests were conducted in the NASA Icing Research Tunnel using an 18-inch chord, 2-D straight wing with NACA 23012 airfoil section. For six ice accretion cases, a 3-D laser scan was performed to document the ice geometry prior to the molding process. Aerodynamic performance testing was conducted at the University of Illinois low-speed wind tunnel at a Reynolds number of 1.8 x 10(exp 6) and a Mach number of 0.18 with an 18-inch chord NACA 23012 airfoil model that was designed to accommodate the artificial ice shapes. The ice-accretion molds were used to fabricate one set of artificial ice shapes from polyurethane castings. The laser-scan data were used to fabricate another set of artificial ice shapes using rapid prototype manufacturing such as stereolithography. The iced-airfoil results with both sets of artificial ice shapes were compared to evaluate the aerodynamic simulation accuracy of the laser-scan data. For four of the six ice-accretion cases, there was excellent agreement in the iced-airfoil aerodynamic performance between the casting and laser-scan based simulations. For example, typical differences in iced-airfoil maximum lift coefficient were less than 3% with corresponding differences in stall angle of approximately one degree or less. The aerodynamic simulation accuracy reported in this paper has demonstrated the combined accuracy of the laser-scan and rapid-prototype manufacturing approach to simulating ice accretion for a NACA 23012 airfoil. For several of the ice-accretion cases tested, the aerodynamics is known to depend upon the small, three dimensional features of the ice. These data show that the laser-scan and rapid-prototype manufacturing approach is capable of replicating these ice features within the reported accuracies of the laser-scan measurement and rapid-prototyping method; thus providing a new capability for high-fidelity ice-accretion documentation and artificial ice-shape fabrication for icing research.

  16. Design and simulation of a cable-pulley-based transmission for artificial ankle joints

    NASA Astrophysics Data System (ADS)

    Liu, Huaxin; Ceccarelli, Marco; Huang, Qiang

    2016-06-01

    In this paper, a mechanical transmission based on cable pulley is proposed for human-like actuation in the artificial ankle joints of human-scale. The anatomy articular characteristics of the human ankle is discussed for proper biomimetic inspiration in designing an accurate, efficient, and robust motion control of artificial ankle joint devices. The design procedure is presented through the inclusion of conceptual considerations and design details for an interactive solution of the transmission system. A mechanical design is elaborated for the ankle joint angular with pitch motion. A multi-body dynamic simulation model is elaborated accordingly and evaluated numerically in the ADAMS environment. Results of the numerical simulations are discussed to evaluate the dynamic performance of the proposed design solution and to investigate the feasibility of the proposed design in future applications for humanoid robots.

  17. USAR Robot Communication Using ZigBee Technology

    NASA Astrophysics Data System (ADS)

    Tsui, Charles; Carnegie, Dale; Pan, Qing Wei

    This paper reports the successful development of an automatic routing wireless network for USAR (urban search and rescue) robots in an artificial rubble environment. The wireless network was formed using ZigBee modules and each module was attached to a micro-controller in order to model a wireless USAR robot. Proof of concept experiments were carried out by deploying the networked robots into artificial rubble. The rubble was simulated by connecting holes and trenches that were dug in 50 cm deep soil. The simulated robots were placed in the bottom of the holes. The holes and trenches were then covered up by various building materials and soil to simulate a real rubble environment. Experiments demonstrated that a monitoring computer placed 10 meters outside the rubble can establish proper communication with all robots inside the artificial rubble environment.

  18. Neural Networks for Rapid Design and Analysis

    NASA Technical Reports Server (NTRS)

    Sparks, Dean W., Jr.; Maghami, Peiman G.

    1998-01-01

    Artificial neural networks have been employed for rapid and efficient dynamics and control analysis of flexible systems. Specifically, feedforward neural networks are designed to approximate nonlinear dynamic components over prescribed input ranges, and are used in simulations as a means to speed up the overall time response analysis process. To capture the recursive nature of dynamic components with artificial neural networks, recurrent networks, which use state feedback with the appropriate number of time delays, as inputs to the networks, are employed. Once properly trained, neural networks can give very good approximations to nonlinear dynamic components, and by their judicious use in simulations, allow the analyst the potential to speed up the analysis process considerably. To illustrate this potential speed up, an existing simulation model of a spacecraft reaction wheel system is executed, first conventionally, and then with an artificial neural network in place.

  19. The vertical structure of gaseous galaxy discs in cold dark matter haloes

    NASA Astrophysics Data System (ADS)

    Benítez-Llambay, Alejandro; Navarro, Julio F.; Frenk, Carlos S.; Ludlow, Aaron D.

    2018-01-01

    We study the vertical structure of polytropic centrifugally supported gaseous discs embedded in cold dark matter (CDM) haloes. At fixed radius, R, the shape of the vertical density profile depends weakly on whether the disc is self-gravitating (SG) or non-self-gravitating (NSG). The disc 'characteristic' thickness, zH, set by the midplane sound speed and circular velocity, zNSG = (cs/Vc)R, in the NSG case, and by the sound speed and surface density, z_SG = c_s^2/GΣ, in SG discs, is smaller than zSG and zNSG. SG discs are typically Toomre unstable, NSG discs are stable. Exponential discs in CDM haloes with roughly flat circular velocity curves 'flare' outwards. Flares in mono abundance or coeval populations in galaxies like the Milky Way are thus not necessarily due to radial migration. For the polytropic equation of state of the Evolution and Assembly of GaLaxies and their Environments (EAGLE) simulations, discs that match observational constraints are NSG for Md < 3 × 109 M⊙ and SG at higher masses, if fully gaseous. We test these analytic results using a set of idealized smoothed particle hydrodynamic simulations and find excellent agreement. Our results clarify the role of the gravitational softening on the thickness of simulated discs, and on the onset of radial instabilities. EAGLE low-mass discs are NSG so the softening plays no role in their vertical structure. High-mass discs are expected to be SG and unstable, and may be artificially thickened and stabilized unless gravity is well resolved. Simulations with spatial resolution high enough to not compromise the vertical structure of a disc also resolve the onset of their instabilities, but the converse is not true.

  20. NASA Tech Briefs, September 2009

    NASA Technical Reports Server (NTRS)

    2009-01-01

    opics covered include: Filtering Water by Use of Ultrasonically Vibrated Nanotubes; Computer Code for Nanostructure Simulation; Functionalizing CNTs for Making Epoxy/CNT Composites; Improvements in Production of Single-Walled Carbon Nanotubes; Progress Toward Sequestering Carbon Nanotubes in PmPV; Two-Stage Variable Sample-Rate Conversion System; Estimating Transmitted-Signal Phase Variations for Uplink Array Antennas; Board Saver for Use with Developmental FPGAs; Circuit for Driving Piezoelectric Transducers; Digital Synchronizer without Metastability; Compact, Low-Overhead, MIL-STD-1553B Controller; Parallel-Processing CMOS Circuitry for M-QAM and 8PSK TCM; Differential InP HEMT MMIC Amplifiers Embedded in Waveguides; Improved Aerogel Vacuum Thermal Insulation; Fluoroester Co-Solvents for Low-Temperature Li+ Cells; Using Volcanic Ash to Remove Dissolved Uranium and Lead; High-Efficiency Artificial Photosynthesis Using a Novel Alkaline Membrane Cell; Silicon Wafer-Scale Substrate for Microshutters and Detector Arrays; Micro-Horn Arrays for Ultrasonic Impedance Matching; Improved Controller for a Three-Axis Piezoelectric Stage; Nano-Pervaporation Membrane with Heat Exchanger Generates Medical-Grade Water; Micro-Organ Devices; Nonlinear Thermal Compensators for WGM Resonators; Dynamic Self-Locking of an OEO Containing a VCSEL; Internal Water Vapor Photoacoustic Calibration; Mid-Infrared Reflectance Imaging of Thermal-Barrier Coatings; Improving the Visible and Infrared Contrast Ratio of Microshutter Arrays; Improved Scanners for Microscopic Hyperspectral Imaging; Rate-Compatible LDPC Codes with Linear Minimum Distance; PrimeSupplier Cross-Program Impact Analysis and Supplier Stability Indicator Simulation Model; Integrated Planning for Telepresence With Time Delays; Minimizing Input-to-Output Latency in Virtual Environment; Battery Cell Voltage Sensing and Balancing Using Addressable Transformers; Gaussian and Lognormal Models of Hurricane Gust Factors; Simulation of Attitude and Trajectory Dynamics and Control of Multiple Spacecraft; Integrated Modeling of Spacecraft Touch-and-Go Sampling; Spacecraft Station-Keeping Trajectory and Mission Design Tools; Efficient Model-Based Diagnosis Engine; and DSN Simulator.

  1. Estimation of urban runoff and water quality using remote sensing and artificial intelligence.

    PubMed

    Ha, S R; Park, S Y; Park, D H

    2003-01-01

    Water quality and quantity of runoff are strongly dependent on the landuse and landcover (LULC) criteria. In this study, we developed a more improved parameter estimation procedure for the environmental model using remote sensing (RS) and artificial intelligence (AI) techniques. Landsat TM multi-band (7bands) and Korea Multi-Purpose Satellite (KOMPSAT) panchromatic data were selected for input data processing. We employed two kinds of artificial intelligence techniques, RBF-NN (radial-basis-function neural network) and ANN (artificial neural network), to classify LULC of the study area. A bootstrap resampling method, a statistical technique, was employed to generate the confidence intervals and distribution of the unit load. SWMM was used to simulate the urban runoff and water quality and applied to the study watershed. The condition of urban flow and non-point contaminations was simulated with rainfall-runoff and measured water quality data. The estimated total runoff, peak time, and pollutant generation varied considerably according to the classification accuracy and percentile unit load applied. The proposed procedure would efficiently be applied to water quality and runoff simulation in a rapidly changing urban area.

  2. Cultural Modelling: Literature review

    DTIC Science & Technology

    2006-09-01

    of mood and/or emotions. Our review did show some evidence that artificial intelligence research has tended to depict human decision making as...pp. 72-79). The Society for the Study of Artificial Intelligence and the Simulation of Behaviour (AISB). Halfill, T., Sundstrom, E., Nielsen, T. M...M. & Thagard, P. (2005). Changing personalities: Towards realistic virtual characters. Journal of Experimental & Theoretical Artificial Intelligence

  3. Artificial heart for humanoid robot

    NASA Astrophysics Data System (ADS)

    Potnuru, Akshay; Wu, Lianjun; Tadesse, Yonas

    2014-03-01

    A soft robotic device inspired by the pumping action of a biological heart is presented in this study. Developing artificial heart to a humanoid robot enables us to make a better biomedical device for ultimate use in humans. As technology continues to become more advanced, the methods in which we implement high performance and biomimetic artificial organs is getting nearer each day. In this paper, we present the design and development of a soft artificial heart that can be used in a humanoid robot and simulate the functions of a human heart using shape memory alloy technology. The robotic heart is designed to pump a blood-like fluid to parts of the robot such as the face to simulate someone blushing or when someone is angry by the use of elastomeric substrates and certain features for the transport of fluids.

  4. [Effect of DMPP on inorganic nitrogen runoff loss from vegetable soil].

    PubMed

    Yu, Qiao-Gang; Fu, Jian-Rong; Ma, Jun-Wei; Ye, Jing; Ye, Xue-Zhu

    2009-03-15

    The effect of urea with 1% 3,4-dimethyl pyrazole phosphate (DMPP) on inorganic nitrogen runoff loss from agriculture field was determined in an undisturbed vegetable soil by using the simulated artificial rainfall method. The results show that, during the three simulated artificial rainfall period, the ammonium nitrogen content in the runoff water is increased 1.42, 2.82 and 1.95 times with the DMPP application treatment compared to regular urea treatment, respectively. In the urea with DMPP addition treatment, the nitrate nitrogen content is decreased 70.2%, 59.7% and 52.1% in the three simulated artificial rainfall runoff water, respectively. The nitrite nitrogen content is also decreased 98.7%, 90.6% and 85.6% in the three simulated artificial rainfall runoff water, respectively. The nitrate nitrogen and nitrite nitrogen runoff loss are greatly declined with the DMPP addition in the urea. Especially the nitrite nitrogen is in a significant low level and is near to the treatment with no fertilizer application. The inorganic nitrogen runoff loss is declined by 39.0% to 44.8% in the urea with DMPP addition treatment. So DMPP could be used as an effective nitrification inhibitor to control the soil ammonium oxidation, decline the nitrogen runoff loss, lower the nitrogen transformation risk to the waterbody and be beneficial for the ecological environment.

  5. Virtual network embedding in cross-domain network based on topology and resource attributes

    NASA Astrophysics Data System (ADS)

    Zhu, Lei; Zhang, Zhizhong; Feng, Linlin; Liu, Lilan

    2018-03-01

    Aiming at the network architecture ossification and the diversity of access technologies issues, this paper researches the cross-domain virtual network embedding algorithm. By analysing the topological attribute from the local and global perspective of nodes in the virtual network and the physical network, combined with the local network resource property, we rank the embedding priority of the nodes with PCA and TOPSIS methods. Besides, the link load distribution is considered. Above all, We proposed an cross-domain virtual network embedding algorithm based on topology and resource attributes. The simulation results depicts that our algorithm increases the acceptance rate of multi-domain virtual network requests, compared with the existing virtual network embedding algorithm.

  6. Control design based on dead-zone and leakage adaptive laws for artificial swarm mechanical systems

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaomin; Chen, Y. H.; Zhao, Han

    2017-05-01

    We consider the control design of artificial swarm systems with emphasis on four characteristics. First, the agent is made of mechanical components. As a result, the motion of each agent is subject to physical laws that govern mechanical systems. Second, both nonlinearity and uncertainty of the mechanical system are taken into consideration. Third, the ideal agent kinematic performance is treated as a desired d'Alembert constraint. This in turn suggests a creative way of embedding the constraint into the control design. Fourth, two types of adaptive robust control schemes are designed. They both contain leakage and dead-zone. However, one design suggests a trade-off between the amount of leakage and the size of dead-zone, in exchange for a simplified dead-zone structure.

  7. The effects of chain length, embedded polar groups, pressure, and pore shape on structure and retention in reversed-phase liquid chromatography: molecular-level insights from Monte Carlo simulations.

    PubMed

    Rafferty, Jake L; Siepmann, J Ilja; Schure, Mark R

    2009-03-20

    Particle-based simulations using the configurational-bias and Gibbs ensemble Monte Carlo techniques are carried out to probe the effects of various chromatographic parameters on bonded-phase chain conformation, solvent penetration, and retention in reversed-phase liquid chromatography (RPLC). Specifically, we investigate the effects due to the length of the bonded-phase chains (C(18), C(8), and C(1)), the inclusion of embedded polar groups (amide and ether) near the base of the bonded-phase chains, the column pressure (1, 400, and 1000 atm), and the pore shape (planar slit pore versus cylindrical pore with a 60A diameter). These simulations utilize a bonded-phase coverage of 2.9 micromol/m(2)and a mobile phase containing methanol at a molfraction of 33% (about 50% by volume). The simulations show that chain length, embedded polar groups, and pore shape significantly alter structural and retentive properties of the model RPLC system, whereas the column pressure has a relatively small effect. The simulation results are extensively compared to retention measurements. A molecular view of the RPLC retention mechanism emerges that is more complex than can be inferred from thermodynamic measurements.

  8. [Precision of digital impressions with TRIOS under simulated intraoral impression taking conditions].

    PubMed

    Yang, Xin; Sun, Yi-fei; Tian, Lei; Si, Wen-jie; Feng, Hai-lan; Liu, Yi-hong

    2015-02-18

    To evaluate the precision of digital impressions taken under simulated clinical impression taking conditions with TRIOS and to compare with the precision of extraoral digitalizations. Six #14-#17 epoxy resin dentitions with extracted #16 tooth preparations embedded were made. For each artificial dentition, (1)a silicone rubber impression was taken with individual tray, poured with type IV plaster,and digitalized with 3Shape D700 model scanner for 10 times; (2) fastened to a dental simulator, 10 digital impressions for each were taken with 3Shape TRIOS intraoral scanner. To assess the precision, best-fit algorithm and 3D comparison were conducted between repeated scan models pairwise by Geomagic Qualify 12.0, exported as averaged errors (AE) and color-coded diagrams. Non-parametric analysis was performed to compare the precisions of digital impressions and model images. The color-coded diagrams were used to show the deviations distributions. The mean of AE for digital impressions was 7.058 281 μm, which was greater than that of 4.092 363 μm for the model images (P<0.05). However, the means and medians of AE for digital impressions were no more than 10 μm, which meant that the consistency between the digital impressions was good. The deviations distribution was uniform in the model images,while nonuniform in the digital impressions with greater deviations lay mainly around the shoulders and interproximal surfaces. Digital impressions with TRIOS are of good precision and up to the clinical standard. Shoulders and interproximal surfaces scanning are more difficult.

  9. Spin Solid versus Magnetic Charge Ordered State in Artificial Honeycomb Lattice of Connected Elements

    PubMed Central

    Glavic, Artur; Summers, Brock; Dahal, Ashutosh; Kline, Joseph; Van Herck, Walter; Sukhov, Alexander; Ernst, Arthur

    2018-01-01

    Abstract The nature of magnetic correlation at low temperature in two‐dimensional artificial magnetic honeycomb lattice is a strongly debated issue. While theoretical researches suggest that the system will develop a novel zero entropy spin solid state as T → 0 K, a confirmation to this effect in artificial honeycomb lattice of connected elements is lacking. This study reports on the investigation of magnetic correlation in newly designed artificial permalloy honeycomb lattice of ultrasmall elements, with a typical length of ≈12 nm, using neutron scattering measurements and temperature‐dependent micromagnetic simulations. Numerical modeling of the polarized neutron reflectometry data elucidates the temperature‐dependent evolution of spin correlation in this system. As temperature reduces to ≈7 K, the system tends to develop novel spin solid state, manifested by the alternating distribution of magnetic vortex loops of opposite chiralities. Experimental results are complemented by temperature‐dependent micromagnetic simulations that confirm the dominance of spin solid state over local magnetic charge ordered state in the artificial honeycomb lattice with connected elements. These results enable a direct investigation of novel spin solid correlation in the connected honeycomb geometry of 2D artificial structure. PMID:29721429

  10. Design and control of an embedded vision guided robotic fish with multiple control surfaces.

    PubMed

    Yu, Junzhi; Wang, Kai; Tan, Min; Zhang, Jianwei

    2014-01-01

    This paper focuses on the development and control issues of a self-propelled robotic fish with multiple artificial control surfaces and an embedded vision system. By virtue of the hybrid propulsion capability in the body plus the caudal fin and the complementary maneuverability in accessory fins, a synthesized propulsion scheme including a caudal fin, a pair of pectoral fins, and a pelvic fin is proposed. To achieve flexible yet stable motions in aquatic environments, a central pattern generator- (CPG-) based control method is employed. Meanwhile, a monocular underwater vision serves as sensory feedback that modifies the control parameters. The integration of the CPG-based motion control and the visual processing in an embedded microcontroller allows the robotic fish to navigate online. Aquatic tests demonstrate the efficacy of the proposed mechatronic design and swimming control methods. Particularly, a pelvic fin actuated sideward swimming gait was first implemented. It is also found that the speeds and maneuverability of the robotic fish with coordinated control surfaces were largely superior to that of the swimming robot propelled by a single control surface.

  11. Design and Control of an Embedded Vision Guided Robotic Fish with Multiple Control Surfaces

    PubMed Central

    Wang, Kai; Tan, Min; Zhang, Jianwei

    2014-01-01

    This paper focuses on the development and control issues of a self-propelled robotic fish with multiple artificial control surfaces and an embedded vision system. By virtue of the hybrid propulsion capability in the body plus the caudal fin and the complementary maneuverability in accessory fins, a synthesized propulsion scheme including a caudal fin, a pair of pectoral fins, and a pelvic fin is proposed. To achieve flexible yet stable motions in aquatic environments, a central pattern generator- (CPG-) based control method is employed. Meanwhile, a monocular underwater vision serves as sensory feedback that modifies the control parameters. The integration of the CPG-based motion control and the visual processing in an embedded microcontroller allows the robotic fish to navigate online. Aquatic tests demonstrate the efficacy of the proposed mechatronic design and swimming control methods. Particularly, a pelvic fin actuated sideward swimming gait was first implemented. It is also found that the speeds and maneuverability of the robotic fish with coordinated control surfaces were largely superior to that of the swimming robot propelled by a single control surface. PMID:24688413

  12. A quantum annealing approach for fault detection and diagnosis of graph-based systems

    NASA Astrophysics Data System (ADS)

    Perdomo-Ortiz, A.; Fluegemann, J.; Narasimhan, S.; Biswas, R.; Smelyanskiy, V. N.

    2015-02-01

    Diagnosing the minimal set of faults capable of explaining a set of given observations, e.g., from sensor readouts, is a hard combinatorial optimization problem usually tackled with artificial intelligence techniques. We present the mapping of this combinatorial problem to quadratic unconstrained binary optimization (QUBO), and the experimental results of instances embedded onto a quantum annealing device with 509 quantum bits. Besides being the first time a quantum approach has been proposed for problems in the advanced diagnostics community, to the best of our knowledge this work is also the first research utilizing the route Problem → QUBO → Direct embedding into quantum hardware, where we are able to implement and tackle problem instances with sizes that go beyond previously reported toy-model proof-of-principle quantum annealing implementations; this is a significant leap in the solution of problems via direct-embedding adiabatic quantum optimization. We discuss some of the programmability challenges in the current generation of the quantum device as well as a few possible ways to extend this work to more complex arbitrary network graphs.

  13. This "Ethical Trap" Is for Roboticists, Not Robots: On the Issue of Artificial Agent Ethical Decision-Making.

    PubMed

    Miller, Keith W; Wolf, Marty J; Grodzinsky, Frances

    2017-04-01

    In this paper we address the question of when a researcher is justified in describing his or her artificial agent as demonstrating ethical decision-making. The paper is motivated by the amount of research being done that attempts to imbue artificial agents with expertise in ethical decision-making. It seems clear that computing systems make decisions, in that they make choices between different options; and there is scholarship in philosophy that addresses the distinction between ethical decision-making and general decision-making. Essentially, the qualitative difference between ethical decisions and general decisions is that ethical decisions must be part of the process of developing ethical expertise within an agent. We use this distinction in examining publicity surrounding a particular experiment in which a simulated robot attempted to safeguard simulated humans from falling into a hole. We conclude that any suggestions that this simulated robot was making ethical decisions were misleading.

  14. Simulation Testing of Embedded Flight Software

    NASA Technical Reports Server (NTRS)

    Shahabuddin, Mohammad; Reinholtz, William

    2004-01-01

    Virtual Real Time (VRT) is a computer program for testing embedded flight software by computational simulation in a workstation, in contradistinction to testing it in its target central processing unit (CPU). The disadvantages of testing in the target CPU include the need for an expensive test bed, the necessity for testers and programmers to take turns using the test bed, and the lack of software tools for debugging in a real-time environment. By virtue of its architecture, most of the flight software of the type in question is amenable to development and testing on workstations, for which there is an abundance of commercially available debugging and analysis software tools. Unfortunately, the timing of a workstation differs from that of a target CPU in a test bed. VRT, in conjunction with closed-loop simulation software, provides a capability for executing embedded flight software on a workstation in a close-to-real-time environment. A scale factor is used to convert between execution time in VRT on a workstation and execution on a target CPU. VRT includes high-resolution operating- system timers that enable the synchronization of flight software with simulation software and ground software, all running on different workstations.

  15. The Ongoing and Open-Ended Simulation

    ERIC Educational Resources Information Center

    Cohen, Alexander

    2016-01-01

    This case study explores a novel form of classroom simulation that differs from published examples in two important respects. First, it is ongoing. While most simulations represent a single learning episode embedded within a course, the ongoing simulation is a continuous set of interrelated events and decisions that accompany learning throughout…

  16. An Approach to Embedded Training for Future Leaders and Staff

    DTIC Science & Technology

    2009-10-01

    13. SUPPLEMENTARY NOTES See also ADA562526. RTO-MP-HFM-169 Human Dimensions in Embedded Virtual Simulation (Les dimensions humaines dans la...order to better capitalize on follow-on operations. 4.10 Theme 7: Sustain Unit Operations Theme 7 is defined as the ability of Soldiers and

  17. Assessment of a human computer interface prototyping environment

    NASA Technical Reports Server (NTRS)

    Moore, Loretta A.

    1993-01-01

    A Human Computer Interface (HCI) prototyping environment with embedded evaluation capability has been successfully assessed which will be valuable in developing and refining HCI standards and evaluating program/project interface development, especially Space Station Freedom on-board displays for payload operations. The HCI prototyping environment is designed to include four components: (1) a HCI format development tool, (2) a test and evaluation simulator development tool, (3) a dynamic, interactive interface between the HCI prototype and simulator, and (4) an embedded evaluation capability to evaluate the adequacy of an HCI based on a user's performance.

  18. Ab initio simulations of scanning-tunneling-microscope images with embedding techniques and application to C58-dimers on Au(111).

    PubMed

    Wilhelm, Jan; Walz, Michael; Stendel, Melanie; Bagrets, Alexei; Evers, Ferdinand

    2013-05-14

    We present a modification of the standard electron transport methodology based on the (non-equilibrium) Green's function formalism to efficiently simulate STM-images. The novel feature of this method is that it employs an effective embedding technique that allows us to extrapolate properties of metal substrates with adsorbed molecules from quantum-chemical cluster calculations. To illustrate the potential of this approach, we present an application to STM-images of C58-dimers immobilized on Au(111)-surfaces that is motivated by recent experiments.

  19. Signal coupling to embedded pitch adapters in silicon sensors

    NASA Astrophysics Data System (ADS)

    Artuso, M.; Betancourt, C.; Bezshyiko, I.; Blusk, S.; Bruendler, R.; Bugiel, S.; Dasgupta, R.; Dendek, A.; Dey, B.; Ely, S.; Lionetto, F.; Petruzzo, M.; Polyakov, I.; Rudolph, M.; Schindler, H.; Steinkamp, O.; Stone, S.

    2018-01-01

    We have examined the effects of embedded pitch adapters on signal formation in n-substrate silicon microstrip sensors with data from beam tests and simulation. According to simulation, the presence of the pitch adapter metal layer changes the electric field inside the sensor, resulting in slowed signal formation on the nearby strips and a pick-up effect on the pitch adapter. This can result in an inefficiency to detect particles passing through the pitch adapter region. All these effects have been observed in the beam test data.

  20. Artificial fish skin of self-powered micro-electromechanical systems hair cells for sensing hydrodynamic flow phenomena.

    PubMed

    Asadnia, Mohsen; Kottapalli, Ajay Giri Prakash; Miao, Jianmin; Warkiani, Majid Ebrahimi; Triantafyllou, Michael S

    2015-10-06

    Using biological sensors, aquatic animals like fishes are capable of performing impressive behaviours such as super-manoeuvrability, hydrodynamic flow 'vision' and object localization with a success unmatched by human-engineered technologies. Inspired by the multiple functionalities of the ubiquitous lateral-line sensors of fishes, we developed flexible and surface-mountable arrays of micro-electromechanical systems (MEMS) artificial hair cell flow sensors. This paper reports the development of the MEMS artificial versions of superficial and canal neuromasts and experimental characterization of their unique flow-sensing roles. Our MEMS flow sensors feature a stereolithographically fabricated polymer hair cell mounted on Pb(Zr(0.52)Ti(0.48))O3 micro-diaphragm with floating bottom electrode. Canal-inspired versions are developed by mounting a polymer canal with pores that guide external flows to the hair cells embedded in the canal. Experimental results conducted employing our MEMS artificial superficial neuromasts (SNs) demonstrated a high sensitivity and very low threshold detection limit of 22 mV/(mm s(-1)) and 8.2 µm s(-1), respectively, for an oscillating dipole stimulus vibrating at 35 Hz. Flexible arrays of such superficial sensors were demonstrated to localize an underwater dipole stimulus. Comparative experimental studies revealed a high-pass filtering nature of the canal encapsulated sensors with a cut-off frequency of 10 Hz and a flat frequency response of artificial SNs. Flexible arrays of self-powered, miniaturized, light-weight, low-cost and robust artificial lateral-line systems could enhance the capabilities of underwater vehicles. © 2015 The Author(s).

  1. Artificial fish skin of self-powered micro-electromechanical systems hair cells for sensing hydrodynamic flow phenomena

    PubMed Central

    Asadnia, Mohsen; Kottapalli, Ajay Giri Prakash; Miao, Jianmin; Warkiani, Majid Ebrahimi; Triantafyllou, Michael S.

    2015-01-01

    Using biological sensors, aquatic animals like fishes are capable of performing impressive behaviours such as super-manoeuvrability, hydrodynamic flow ‘vision’ and object localization with a success unmatched by human-engineered technologies. Inspired by the multiple functionalities of the ubiquitous lateral-line sensors of fishes, we developed flexible and surface-mountable arrays of micro-electromechanical systems (MEMS) artificial hair cell flow sensors. This paper reports the development of the MEMS artificial versions of superficial and canal neuromasts and experimental characterization of their unique flow-sensing roles. Our MEMS flow sensors feature a stereolithographically fabricated polymer hair cell mounted on Pb(Zr0.52Ti0.48)O3 micro-diaphragm with floating bottom electrode. Canal-inspired versions are developed by mounting a polymer canal with pores that guide external flows to the hair cells embedded in the canal. Experimental results conducted employing our MEMS artificial superficial neuromasts (SNs) demonstrated a high sensitivity and very low threshold detection limit of 22 mV/(mm s−1) and 8.2 µm s−1, respectively, for an oscillating dipole stimulus vibrating at 35 Hz. Flexible arrays of such superficial sensors were demonstrated to localize an underwater dipole stimulus. Comparative experimental studies revealed a high-pass filtering nature of the canal encapsulated sensors with a cut-off frequency of 10 Hz and a flat frequency response of artificial SNs. Flexible arrays of self-powered, miniaturized, light-weight, low-cost and robust artificial lateral-line systems could enhance the capabilities of underwater vehicles. PMID:26423435

  2. Liquid li structure and dynamics: A comparison between OFDFT and second nearest-neighbor embedded-atom method

    DOE PAGES

    Chen, Mohan; Vella, Joseph R.; Panagiotopoulos, Athanassios Z.; ...

    2015-04-08

    The structure and dynamics of liquid lithium are studied using two simulation methods: orbital-free (OF) first-principles molecular dynamics (MD), which employs OF density functional theory (DFT), and classical MD utilizing a second nearest-neighbor embedded-atom method potential. The properties we studied include the dynamic structure factor, the self-diffusion coefficient, the dispersion relation, the viscosity, and the bond angle distribution function. Our simulation results were compared to available experimental data when possible. Each method has distinct advantages and disadvantages. For example, OFDFT gives better agreement with experimental dynamic structure factors, yet is more computationally demanding than classical simulations. Classical simulations can accessmore » a broader temperature range and longer time scales. The combination of first-principles and classical simulations is a powerful tool for studying properties of liquid lithium.« less

  3. Bottom-up photonic crystal approach with top-down defect and heterostructure fine-tuning.

    PubMed

    Ding, Tao; Song, Kai; Clays, Koen; Tung, Chen-Ho

    2010-03-16

    We combine the most efficient (chemical) approach toward three-dimensional photonic crystals with the most convenient (physical) technique for creating non-close-packed crystalline structures. Self-assembly of colloidal particles in artificial opals is followed by a carefully tuned plasma etching treatment. By covering the resulting top layer of more open structure with original dense opal, embedded defect layers and heterostructures can be conveniently designed for advanced photonic band gap and band edge engineering.

  4. Survival and growth of human preantral follicles after cryopreservation of ovarian tissue, follicle isolation and short-term xenografting.

    PubMed

    Paulini, Fernanda; Vilela, Janice M V; Chiti, Maria Costanza; Donnez, Jacques; Jadoul, Pascale; Dolmans, Marie-Madeleine; Amorim, Christiani A

    2016-09-01

    In women, chemotherapy and radiotherapy can be harmful to the ovaries, causing loss of endocrine and reproductive functions. When gonadotoxic treatment cannot be delayed, ovarian tissue cryobanking is the only way of preserving fertility. This technique, however, is not advisable for patients with certain types of cancer, because of the risk of reintroducing malignant cells present in the cryopreserved tissue. Our objective is therefore to develop a transplantable artificial ovary. To this end, cryopreserved human preantral follicles were isolated and embedded in fibrin formulations prepared with 50 mg/ml fibrinogen and 10 IU/ml thrombin supplemented or not with 3% hyaluronic acid, and respectively xenografted to specially created right and left peritoneal pockets in eight nude mice. On days 0 and 7, the animals were killed and the matrices retrieved. On day 7, no difference was observed in the recovery rate of follicles embedded in fibrin alone (23.4%) or fibrin-hyaluronic acid (20.5%). Ki67 staining confirmed growth of the grafted follicles and terminal deoxynucleotidyl transferase)-mediated dUDP nick-end labelling assay revealed 100% of the follicles to be viable in both groups on day 7. In conclusion, fibrin seems to be a promising material for creation of an artificial ovary, supporting follicle survival and development. Copyright © 2016 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  5. Transforming Systems Engineering through Model-Centric Engineering

    DTIC Science & Technology

    2018-02-28

    intelligence (e.g., Artificial Intelligence , etc.), because they provide a means for representing knowledge. We see these capabilities coming to use in both...level, including:  Performance is measured by degree of success of a mission  Artificial Intelligence (AI) is applied to counterparties so that they...Modeling, Artificial Intelligence , Simulation and Modeling, 1989. [140] SAE ARP4761. Guidelines and Methods for Conducting the Safety Assessment Process

  6. Adaptive Modeling and Real-Time Simulation

    DTIC Science & Technology

    1984-01-01

    34 Artificial Inteligence , Vol. 13, pp. 27-39 (1980). Describes circumscription which is just the assumption that everything that is known to have a particular... Artificial Intelligence Truth Maintenance Planning Resolution Modeling Wcrld Models ~ .. ~2.. ASSTR AT (Coninue n evrse sieIf necesaran Identfy by...represents a marriage of (1) the procedural-network st, planning technology developed in artificial intelligence with (2) the PERT/CPM technology developed in

  7. Application of wavefield imaging to characterize scattering from artificial and impact damage in composite laminate panels

    NASA Astrophysics Data System (ADS)

    Williams, Westin B.; Michaels, Thomas E.; Michaels, Jennifer E.

    2018-04-01

    Composite materials used for aerospace applications are highly susceptible to impacts, which can result in barely visible delaminations. Reliable and fast detection of such damage is needed before structural failures occur. One approach is to use ultrasonic guided waves generated from a sparse array consisting of permanently mounted or embedded transducers for performing structural health monitoring. This array can detect introduction of damage after baseline subtraction, and also provide localization and characterization information via the minimum variance imaging algorithm. Imaging performance can vary considerably depending upon where damage is located with respect to the array; however, prior work has shown that knowledge of expected scattering can improve imaging consistency for artificial damage at various locations. In this study, anisotropic material attenuation and wave speed are estimated as a function of propagation angle using wavefield data recorded along radial lines at multiple angles with respect to an omnidirectional guided wave source. Additionally, full wavefield data are recorded before and after the introduction of artificial and impact damage so that wavefield baseline subtraction may be applied. 3-D filtering techniques are then used to reduce noise and isolate scattered waves. A model for estimating scattering of a circular defect is developed and scattering estimates for both artificial and impact damage are presented and compared.

  8. Generation of an artificial skin construct containing a non-degradable fiber mesh: a potential transcutaneous interface

    PubMed Central

    Cahn, Frederick; Kyriakides, Themis R

    2009-01-01

    Generation of a stable interface between soft tissues and biomaterials could improve the function of transcutaneous prostheses, primarily by minimizing chronic infections. We hypothesized that inclusion of non-biodegradable biomaterials in an artificial skin substrate would improve integration of the neodermis. In the present study, we compared the biocompatibility of an experimental substrate, consisting of collagen and glycosylaminoglycans, with commercially available artificial skin of similar composition. By utilizing a mouse excisional wound model, we found that the source of collagen (bovine tendon versus hide), extent of injury and wound contraction were critical determinants of inflammation and neodermis formation. Reducing the extent of injury to underlying muscle reduced inflammation and improved remodeling; the improved conditions allowed the detection of a pro-inflammatory effect of hide-derived collagen. To eliminate the complication of wound contraction, subsequent grafts were performed in guinea pigs and showed that inclusion of carbon fibers or non-degradable sutures resulted in increased foreign body response (FBR) and altered remodeling. On the other hand, inclusion of a polyester multi-stranded mesh induced a mild FBR and allowed normal neodermis formation. Taken together, our observations suggest that non-degradable biomaterials can be embedded in an artificial skin construct without compromising its ability to induce neodermis formation. PMID:18689926

  9. Numerical Simulation of Flow Through an Artificial Heart

    NASA Technical Reports Server (NTRS)

    Rogers, Stuart E.; Kutler, Paul; Kwak, Dochan; Kiris, Cetin

    1989-01-01

    A solution procedure was developed that solves the unsteady, incompressible Navier-Stokes equations, and was used to numerically simulate viscous incompressible flow through a model of the Pennsylvania State artificial heart. The solution algorithm is based on the artificial compressibility method, and uses flux-difference splitting to upwind the convective terms; a line-relaxation scheme is used to solve the equations. The time-accuracy of the method is obtained by iteratively solving the equations at each physical time step. The artificial heart geometry involves a piston-type action with a moving solid wall. A single H-grid is fit inside the heart chamber. The grid is continuously compressed and expanded with a constant number of grid points to accommodate the moving piston. The computational domain ends at the valve openings where nonreflective boundary conditions based on the method of characteristics are applied. Although a number of simplifing assumptions were made regarding the geometry, the computational results agreed reasonably well with an experimental picture. The computer time requirements for this flow simulation, however, are quite extensive. Computational study of this type of geometry would benefit greatly from improvements in computer hardware speed and algorithm efficiency enhancements.

  10. Materials for diabetes therapeutics.

    PubMed

    Bratlie, Kaitlin M; York, Roger L; Invernale, Michael A; Langer, Robert; Anderson, Daniel G

    2012-05-01

    This review is focused on the materials and methods used to fabricate closed-loop systems for type 1 diabetes therapy. Herein, we give a brief overview of current methods used for patient care and discuss two types of possible treatments and the materials used for these therapies-(i) artificial pancreases, comprised of insulin producing cells embedded in a polymeric biomaterial, and (ii) totally synthetic pancreases formulated by integrating continuous glucose monitors with controlled insulin release through degradable polymers and glucose-responsive polymer systems. Both the artificial and the completely synthetic pancreas have two major design requirements: the device must be both biocompatible and be permeable to small molecules and proteins, such as insulin. Several polymers and fabrication methods of artificial pancreases are discussed: microencapsulation, conformal coatings, and planar sheets. We also review the two components of a completely synthetic pancreas. Several types of glucose sensing systems (including materials used for electrochemical, optical, and chemical sensing platforms) are discussed, in addition to various polymer-based release systems (including ethylene-vinyl acetate, polyanhydrides, and phenylboronic acid containing hydrogels). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Heartbeat-based error diagnosis framework for distributed embedded systems

    NASA Astrophysics Data System (ADS)

    Mishra, Swagat; Khilar, Pabitra Mohan

    2012-01-01

    Distributed Embedded Systems have significant applications in automobile industry as steer-by-wire, fly-by-wire and brake-by-wire systems. In this paper, we provide a general framework for fault detection in a distributed embedded real time system. We use heartbeat monitoring, check pointing and model based redundancy to design a scalable framework that takes care of task scheduling, temperature control and diagnosis of faulty nodes in a distributed embedded system. This helps in diagnosis and shutting down of faulty actuators before the system becomes unsafe. The framework is designed and tested using a new simulation model consisting of virtual nodes working on a message passing system.

  12. Heartbeat-based error diagnosis framework for distributed embedded systems

    NASA Astrophysics Data System (ADS)

    Mishra, Swagat; Khilar, Pabitra Mohan

    2011-12-01

    Distributed Embedded Systems have significant applications in automobile industry as steer-by-wire, fly-by-wire and brake-by-wire systems. In this paper, we provide a general framework for fault detection in a distributed embedded real time system. We use heartbeat monitoring, check pointing and model based redundancy to design a scalable framework that takes care of task scheduling, temperature control and diagnosis of faulty nodes in a distributed embedded system. This helps in diagnosis and shutting down of faulty actuators before the system becomes unsafe. The framework is designed and tested using a new simulation model consisting of virtual nodes working on a message passing system.

  13. SPMHD simulations of structure formation

    NASA Astrophysics Data System (ADS)

    Barnes, David J.; On, Alvina Y. L.; Wu, Kinwah; Kawata, Daisuke

    2018-05-01

    The intracluster medium of galaxy clusters is permeated by μ {G} magnetic fields. Observations with current and future facilities have the potential to illuminate the role of these magnetic fields play in the astrophysical processes of galaxy clusters. To obtain a greater understanding of how the initial seed fields evolve to the magnetic fields in the intracluster medium requires magnetohydrodynamic simulations. We critically assess the current smoothed particle magnetohydrodynamic (SPMHD) schemes, especially highlighting the impact of a hyperbolic divergence cleaning scheme and artificial resistivity switch on the magnetic field evolution in cosmological simulations of the formation of a galaxy cluster using the N-body/SPMHD code GCMHD++. The impact and performance of the cleaning scheme and two different schemes for the artificial resistivity switch is demonstrated via idealized test cases and cosmological simulations. We demonstrate that the hyperbolic divergence cleaning scheme is effective at suppressing the growth of the numerical divergence error of the magnetic field and should be applied to any SPMHD simulation. Although the artificial resistivity is important in the strong field regime, it can suppress the growth of the magnetic field in the weak field regime, such as galaxy clusters. With sufficient resolution, simulations with divergence cleaning can reproduce observed magnetic fields. We conclude that the cleaning scheme alone is sufficient for galaxy cluster simulations, but our results indicate that the SPMHD scheme must be carefully chosen depending on the regime of the magnetic field.

  14. Evaluation of articulation simulation system using artificial maxillectomy models.

    PubMed

    Elbashti, M E; Hattori, M; Sumita, Y I; Taniguchi, H

    2015-09-01

    Acoustic evaluation is valuable for guiding the treatment of maxillofacial defects and determining the effectiveness of rehabilitation with an obturator prosthesis. Model simulations are important in terms of pre-surgical planning and pre- and post-operative speech function. This study aimed to evaluate the acoustic characteristics of voice generated by an articulation simulation system using a vocal tract model with or without artificial maxillectomy defects. More specifically, we aimed to establish a speech simulation system for maxillectomy defect models that both surgeons and maxillofacial prosthodontists can use in guiding treatment planning. Artificially simulated maxillectomy defects were prepared according to Aramany's classification (Classes I-VI) in a three-dimensional vocal tract plaster model of a subject uttering the vowel /a/. Formant and nasalance acoustic data were analysed using Computerized Speech Lab and the Nasometer, respectively. Formants and nasalance of simulated /a/ sounds were successfully detected and analysed. Values of Formants 1 and 2 for the non-defect model were 675.43 and 976.64 Hz, respectively. Median values of Formants 1 and 2 for the defect models were 634.36 and 1026.84 Hz, respectively. Nasalance was 11% in the non-defect model, whereas median nasalance was 28% in the defect models. The results suggest that an articulation simulation system can be used to help surgeons and maxillofacial prosthodontists to plan post-surgical defects that will be facilitate maxillofacial rehabilitation. © 2015 John Wiley & Sons Ltd.

  15. Solving Set Cover with Pairs Problem using Quantum Annealing

    NASA Astrophysics Data System (ADS)

    Cao, Yudong; Jiang, Shuxian; Perouli, Debbie; Kais, Sabre

    2016-09-01

    Here we consider using quantum annealing to solve Set Cover with Pairs (SCP), an NP-hard combinatorial optimization problem that plays an important role in networking, computational biology, and biochemistry. We show an explicit construction of Ising Hamiltonians whose ground states encode the solution of SCP instances. We numerically simulate the time-dependent Schrödinger equation in order to test the performance of quantum annealing for random instances and compare with that of simulated annealing. We also discuss explicit embedding strategies for realizing our Hamiltonian construction on the D-wave type restricted Ising Hamiltonian based on Chimera graphs. Our embedding on the Chimera graph preserves the structure of the original SCP instance and in particular, the embedding for general complete bipartite graphs and logical disjunctions may be of broader use than that the specific problem we deal with.

  16. Knowledge creation using artificial intelligence: a twin approach to improve breast screening attendance.

    PubMed

    Baskaran, Vikraman; Bali, Rajeev K; Arochena, Hisbel; Naguib, Rauf N G; Wallis, Matthew; Wheaton, Margot

    2006-01-01

    Knowledge management (KM) is rapidly becoming established as a core organizational element within the healthcare industry to assist in the delivery of better patient care. KM is a cyclical process which typically starts with knowledge creation (KC), progresses to knowledge sharing, knowledge accessibility and eventually results in new KC (in the same or a related domain). KC plays a significant role in KM as it creates the necessary "seeds" for propagating many more knowledge cycles. This paper addresses the potential of KC in the context of the UK's National Health Service (NHS) breast screening service. KC can be automated to a greater extent by embedding processes within an artificial intelligence (AI) based environment. The UK breast screening service is concerned about non-attendance and this paper discusses issues pertaining to increasing attendance.

  17. Fish attraction to artificial reefs not always harmful: a simulation study.

    PubMed

    Smith, James A; Lowry, Michael B; Suthers, Iain M

    2015-10-01

    The debate on whether artificial reefs produce new fish or simply attract existing fish biomass continues due to the difficulty in distinguishing these processes, and there remains considerable doubt as to whether artificial reefs are a harmful form of habitat modification. The harm typically associated with attraction is that fish will be easier to harvest due to the existing biomass aggregating at a newly deployed reef. This outcome of fish attraction has not progressed past an anecdotal form, however, and is always perceived as a harmful process. We present a numerical model that simulates the effect that a redistributed fish biomass, due to an artificial reef, has on fishing catch per unit effort (CPUE). This model can be used to identify the scenarios (in terms of reef, fish, and harvest characteristics) that pose the most risk of exploitation due to fish attraction. The properties of this model were compared to the long-standing predictions by Bohnsack (1989) on the factors that increase the risk or the harm of attraction. Simulations revealed that attraction is not always harmful because it does not always increase maximum fish density. Rather, attraction sometimes disperses existing fish biomass making them harder to catch. Some attraction can be ideal, with CPUE lowest when attraction leads to an equal distribution of biomass between natural and artificial reefs. Simulations also showed that the outcomes from attraction depend on the characteristics of the target fish species, such that transient or pelagic species are often at more risk of harmful attraction than resident species. Our findings generally agree with Bohnsack's predictions, although we recommend distinguishing "mobility" and "fidelity" when identifying species most at risk from attraction, as these traits had great influence on patterns of harvest of attracted fish biomass.

  18. Java simulations of embedded control systems.

    PubMed

    Farias, Gonzalo; Cervin, Anton; Arzén, Karl-Erik; Dormido, Sebastián; Esquembre, Francisco

    2010-01-01

    This paper introduces a new Open Source Java library suited for the simulation of embedded control systems. The library is based on the ideas and architecture of TrueTime, a toolbox of Matlab devoted to this topic, and allows Java programmers to simulate the performance of control processes which run in a real time environment. Such simulations can improve considerably the learning and design of multitasking real-time systems. The choice of Java increases considerably the usability of our library, because many educators program already in this language. But also because the library can be easily used by Easy Java Simulations (EJS), a popular modeling and authoring tool that is increasingly used in the field of Control Education. EJS allows instructors, students, and researchers with less programming capabilities to create advanced interactive simulations in Java. The paper describes the ideas, implementation, and sample use of the new library both for pure Java programmers and for EJS users. The JTT library and some examples are online available on http://lab.dia.uned.es/jtt.

  19. Java Simulations of Embedded Control Systems

    PubMed Central

    Farias, Gonzalo; Cervin, Anton; Årzén, Karl-Erik; Dormido, Sebastián; Esquembre, Francisco

    2010-01-01

    This paper introduces a new Open Source Java library suited for the simulation of embedded control systems. The library is based on the ideas and architecture of TrueTime, a toolbox of Matlab devoted to this topic, and allows Java programmers to simulate the performance of control processes which run in a real time environment. Such simulations can improve considerably the learning and design of multitasking real-time systems. The choice of Java increases considerably the usability of our library, because many educators program already in this language. But also because the library can be easily used by Easy Java Simulations (EJS), a popular modeling and authoring tool that is increasingly used in the field of Control Education. EJS allows instructors, students, and researchers with less programming capabilities to create advanced interactive simulations in Java. The paper describes the ideas, implementation, and sample use of the new library both for pure Java programmers and for EJS users. The JTT library and some examples are online available on http://lab.dia.uned.es/jtt. PMID:22163674

  20. A Model-Based Approach for Bridging Virtual and Physical Sensor Nodes in a Hybrid Simulation Framework

    PubMed Central

    Mozumdar, Mohammad; Song, Zhen Yu; Lavagno, Luciano; Sangiovanni-Vincentelli, Alberto L.

    2014-01-01

    The Model Based Design (MBD) approach is a popular trend to speed up application development of embedded systems, which uses high-level abstractions to capture functional requirements in an executable manner, and which automates implementation code generation. Wireless Sensor Networks (WSNs) are an emerging very promising application area for embedded systems. However, there is a lack of tools in this area, which would allow an application developer to model a WSN application by using high level abstractions, simulate it mapped to a multi-node scenario for functional analysis, and finally use the refined model to automatically generate code for different WSN platforms. Motivated by this idea, in this paper we present a hybrid simulation framework that not only follows the MBD approach for WSN application development, but also interconnects a simulated sub-network with a physical sub-network and then allows one to co-simulate them, which is also known as Hardware-In-the-Loop (HIL) simulation. PMID:24960083

  1. Light trapping in a-Si/c-Si heterojunction solar cells by embedded ITO nanoparticles at rear surface

    NASA Astrophysics Data System (ADS)

    Dhar, Sukanta; Mandal, Sourav; Mitra, Suchismita; Ghosh, Hemanta; Mukherjee, Sampad; Banerjee, Chandan; Saha, Hiranmoy; Barua, A. K.

    2017-12-01

    The advantages of the amorphous silicon (a-Si)/crystalline silicon (c-Si) hetero junction technology are low temperature (<200 °C) processing and fewer process steps to fabricate the device. In this work, we used indium tin oxide (ITO) nanoparticles embedded in amorphous silicon material at the rear side of the crystalline wafer. The nanoparticles were embedded in silicon to have higher scattering efficiency, as has been established by simulation studies. It has been shown that significant photocurrent enhancements (32.8 mA cm-2 to 35.1 mA cm-2) are achieved because of high scattering and coupling efficiency of the embedded nanoparticles into the silicon device, leading to an increase in efficiency from 13.74% to 15.22%. In addition, we have observed a small increase in open circuit voltage. This may be due to the surface passivation during the ITO nanoparticle formation with hydrogen plasma treatment. We also support our experimental results by simulation, with the help of a commercial finite-difference time-domain (FDTD) software solution.

  2. Distributed interactive virtual environments for collaborative experiential learning and training independent of distance over Internet2.

    PubMed

    Alverson, Dale C; Saiki, Stanley M; Jacobs, Joshua; Saland, Linda; Keep, Marcus F; Norenberg, Jeffrey; Baker, Rex; Nakatsu, Curtis; Kalishman, Summers; Lindberg, Marlene; Wax, Diane; Mowafi, Moad; Summers, Kenneth L; Holten, James R; Greenfield, John A; Aalseth, Edward; Nickles, David; Sherstyuk, Andrei; Haines, Karen; Caudell, Thomas P

    2004-01-01

    Medical knowledge and skills essential for tomorrow's healthcare professionals continue to change faster than ever before creating new demands in medical education. Project TOUCH (Telehealth Outreach for Unified Community Health) has been developing methods to enhance learning by coupling innovations in medical education with advanced technology in high performance computing and next generation Internet2 embedded in virtual reality environments (VRE), artificial intelligence and experiential active learning. Simulations have been used in education and training to allow learners to make mistakes safely in lieu of real-life situations, learn from those mistakes and ultimately improve performance by subsequent avoidance of those mistakes. Distributed virtual interactive environments are used over distance to enable learning and participation in dynamic, problem-based, clinical, artificial intelligence rules-based, virtual simulations. The virtual reality patient is programmed to dynamically change over time and respond to the manipulations by the learner. Participants are fully immersed within the VRE platform using a head-mounted display and tracker system. Navigation, locomotion and handling of objects are accomplished using a joy-wand. Distribution is managed via the Internet2 Access Grid using point-to-point or multi-casting connectivity through which the participants can interact. Medical students in Hawaii and New Mexico (NM) participated collaboratively in problem solving and managing of a simulated patient with a closed head injury in VRE; dividing tasks, handing off objects, and functioning as a team. Students stated that opportunities to make mistakes and repeat actions in the VRE were extremely helpful in learning specific principles. VRE created higher performance expectations and some anxiety among VRE users. VRE orientation was adequate but students needed time to adapt and practice in order to improve efficiency. This was also demonstrated successfully between Western Australia and UNM. We successfully demonstrated the ability to fully immerse participants in a distributed virtual environment independent of distance for collaborative team interaction in medical simulation designed for education and training. The ability to make mistakes in a safe environment is well received by students and has a positive impact on their understanding, as well as memory of the principles involved in correcting those mistakes. Bringing people together as virtual teams for interactive experiential learning and collaborative training, independent of distance, provides a platform for distributed "just-in-time" training, performance assessment and credentialing. Further validation is necessary to determine the potential value of the distributed VRE in knowledge transfer, improved future performance and should entail training participants to competence in using these tools.

  3. Artificial evolution: a new path for artificial intelligence?

    PubMed

    Husbands, P; Harvey, I; Cliff, D; Miller, G

    1997-06-01

    Recently there have been a number of proposals for the use of artificial evolution as a radically new approach to the development of control systems for autonomous robots. This paper explains the artificial evolution approach, using work at Sussex to illustrate it. The paper revolves around a case study on the concurrent evolution of control networks and visual sensor morphologies for a mobile robot. Wider intellectual issues surrounding the work are discussed, as is the use of more abstract evolutionary simulations as a new potentially useful tool in theoretical biology.

  4. Embedded correlated wavefunction schemes: theory and applications.

    PubMed

    Libisch, Florian; Huang, Chen; Carter, Emily A

    2014-09-16

    Conspectus Ab initio modeling of matter has become a pillar of chemical research: with ever-increasing computational power, simulations can be used to accurately predict, for example, chemical reaction rates, electronic and mechanical properties of materials, and dynamical properties of liquids. Many competing quantum mechanical methods have been developed over the years that vary in computational cost, accuracy, and scalability: density functional theory (DFT), the workhorse of solid-state electronic structure calculations, features a good compromise between accuracy and speed. However, approximate exchange-correlation functionals limit DFT's ability to treat certain phenomena or states of matter, such as charge-transfer processes or strongly correlated materials. Furthermore, conventional DFT is purely a ground-state theory: electronic excitations are beyond its scope. Excitations in molecules are routinely calculated using time-dependent DFT linear response; however applications to condensed matter are still limited. By contrast, many-electron wavefunction methods aim for a very accurate treatment of electronic exchange and correlation. Unfortunately, the associated computational cost renders treatment of more than a handful of heavy atoms challenging. On the other side of the accuracy spectrum, parametrized approaches like tight-binding can treat millions of atoms. In view of the different (dis-)advantages of each method, the simulation of complex systems seems to force a compromise: one is limited to the most accurate method that can still handle the problem size. For many interesting problems, however, compromise proves insufficient. A possible solution is to break up the system into manageable subsystems that may be treated by different computational methods. The interaction between subsystems may be handled by an embedding formalism. In this Account, we review embedded correlated wavefunction (CW) approaches and some applications. We first discuss our density functional embedding theory, which is formally exact. We show how to determine the embedding potential, which replaces the interaction between subsystems, at the DFT level. CW calculations are performed using a fixed embedding potential, that is, a non-self-consistent embedding scheme. We demonstrate this embedding theory for two challenging electron transfer phenomena: (1) initial oxidation of an aluminum surface and (2) hot-electron-mediated dissociation of hydrogen molecules on a gold surface. In both cases, the interaction between gas molecules and metal surfaces were treated by sophisticated CW techniques, with the remainder of the extended metal surface being treated by DFT. Our embedding approach overcomes the limitations of conventional Kohn-Sham DFT in describing charge transfer, multiconfigurational character, and excited states. From these embedding simulations, we gained important insights into fundamental processes that are crucial aspects of fuel cell catalysis (i.e., O2 reduction at metal surfaces) and plasmon-mediated photocatalysis by metal nanoparticles. Moreover, our findings agree very well with experimental observations, while offering new views into the chemistry. We finally discuss our recently formulated potential-functional embedding theory that provides a seamless, first-principles way to include back-action onto the environment from the embedded region.

  5. Field programmable chemistry: integrated chemical and electronic processing of informational molecules towards electronic chemical cells.

    PubMed

    Wagler, Patrick F; Tangen, Uwe; Maeke, Thomas; McCaskill, John S

    2012-07-01

    The topic addressed is that of combining self-constructing chemical systems with electronic computation to form unconventional embedded computation systems performing complex nano-scale chemical tasks autonomously. The hybrid route to complex programmable chemistry, and ultimately to artificial cells based on novel chemistry, requires a solution of the two-way massively parallel coupling problem between digital electronics and chemical systems. We present a chemical microprocessor technology and show how it can provide a generic programmable platform for complex molecular processing tasks in Field Programmable Chemistry, including steps towards the grand challenge of constructing the first electronic chemical cells. Field programmable chemistry employs a massively parallel field of electrodes, under the control of latched voltages, which are used to modulate chemical activity. We implement such a field programmable chemistry which links to chemistry in rather generic, two-phase microfluidic channel networks that are separated into weakly coupled domains. Electric fields, produced by the high-density array of electrodes embedded in the channel floors, are used to control the transport of chemicals across the hydrodynamic barriers separating domains. In the absence of electric fields, separate microfluidic domains are essentially independent with only slow diffusional interchange of chemicals. Electronic chemical cells, based on chemical microprocessors, exploit a spatially resolved sandwich structure in which the electronic and chemical systems are locally coupled through homogeneous fine-grained actuation and sensor networks and play symmetric and complementary roles. We describe how these systems are fabricated, experimentally test their basic functionality, simulate their potential (e.g. for feed forward digital electrophoretic (FFDE) separation) and outline the application to building electronic chemical cells. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  6. Real-time tracking of liver motion and deformation using a flexible needle

    PubMed Central

    Lei, Peng; Moeslein, Fred; Wood, Bradford J.

    2012-01-01

    Purpose A real-time 3D image guidance system is needed to facilitate treatment of liver masses using radiofrequency ablation, for example. This study investigates the feasibility and accuracy of using an electromagnetically tracked flexible needle inserted into the liver to track liver motion and deformation. Methods This proof-of-principle study was conducted both ex vivo and in vivo with a CT scanner taking the place of an electromagnetic tracking system as the spatial tracker. Deformations of excised livers were artificially created by altering the shape of the stage on which the excised livers rested. Free breathing or controlled ventilation created deformations of live swine livers. The positions of the needle and test targets were determined through CT scans. The shape of the needle was reconstructed using data simulating multiple embedded electromagnetic sensors. Displacement of liver tissues in the vicinity of the needle was derived from the change in the reconstructed shape of the needle. Results The needle shape was successfully reconstructed with tracking information of two on-needle points. Within 30 mm of the needle, the registration error of implanted test targets was 2.4 ± 1.0 mm ex vivo and 2.8 ± 1.5 mm in vivo. Conclusion A practical approach was developed to measure the motion and deformation of the liver in real time within a region of interest. The approach relies on redesigning the often-used seeker needle to include embedded electromagnetic tracking sensors. With the nonrigid motion and deformation information of the tracked needle, a single- or multimodality 3D image of the intraprocedural liver, now clinically obtained with some delay, can be updated continuously to monitor intraprocedural changes in hepatic anatomy. This capability may be useful in radiofrequency ablation and other percutaneous ablative procedures. PMID:20700662

  7. Magnetron Sputtered Pulsed Laser Deposition Scale Up

    DTIC Science & Technology

    2003-08-14

    2:721-726 34 S. J. P. Laube and E. F. Stark, “ Artificial Intellegence in Process Control of Pulsed Laser Deposition”, Proceedings of...The model would be based on mathematical simulation of real process data, neural-networks, or other artificial intelligence methods based on in situ...Laube and E. F. Stark, Proc. Symp. Artificial Intel. Real Time Control, Valencia, Spain, 3-5 Oct. ,1994, p.159-163. International Federation of

  8. Characterization and application of shape-changing panels with embedded rubber muscle actuators

    NASA Astrophysics Data System (ADS)

    Peel, Larry D.; Molina, Enrique, Jr.; Baur, Jeffery W.; Justice, Ryan S.

    2013-09-01

    Cylindrical soft actuators efficiently convert fluid pressure into mechanical energy and thus offer excellent force-to-weight ratios while behaving similar to biological muscle. McKibben-like rubber muscle actuators (RMAs) were embedded into neat elastomer and act as shape-changing panels. The effect of actuator spacing and modeling methods on the performance of these panels was investigated. Simulations from nonlinear finite element models were compared with results from test panels containing four RMAs that were spaced 0, 1/2, 1, and 1.3 RMA diameters apart. Nonlinear ‘laminated plate’ and ‘rod & plate’ finite element (FE) models of individual (non-embedded) RMAs and panels with embedded RMAs were developed. Due to model complexity and resource limitations, several simplified 2D and 3D FE model types, including a 3D ‘Unit Cell’ were created. After subtracting the ‘activation pressure’ needed to initiate contraction, all the models for the individual actuators produced forces consistent with experimental values, but only the more resource-intensive rod & plate models replicated fiber/braid re-orientation and produced more realistic values for actuator contraction. For panel models, the Full 3D rod & plate model appeared to be the most accurate for panel contraction and force, but was not completed for all configurations due to resource limitations. Most embedded panel FE models produced maximum panel actuator force and maximum contraction when the embedded actuators are spaced between 1/2 and 1 diameter apart. Seven panels with embedded RMAs were experimentally fabricated and tested. Panel tests confirmed that maximum or optimal performance occurs when the RMAs are spaced between 1/2 and 1 diameter apart. The tested actuator force was fairly constant in this range, suggesting that minor design or manufacturing differences may not significantly affect panel performance. However, the amount of axial force and contraction decreases significantly at greater than optimal spacing. This multi-faceted work provides useful design, simulation fabrication, and test characteristics for shape-adaptive panels. Bending panels were demonstrated but not modeled. Developers of future shape-adaptive air vehicles have been provided with additional simulation and design tools.

  9. Phrase-level speech simulation with an airway modulation model of speech production

    PubMed Central

    Story, Brad H.

    2012-01-01

    Artificial talkers and speech synthesis systems have long been used as a means of understanding both speech production and speech perception. The development of an airway modulation model is described that simulates the time-varying changes of the glottis and vocal tract, as well as acoustic wave propagation, during speech production. The result is a type of artificial talker that can be used to study various aspects of how sound is generated by humans and how that sound is perceived by a listener. The primary components of the model are introduced and simulation of words and phrases are demonstrated. PMID:23503742

  10. Artificial Intelligence and Expert Systems.

    ERIC Educational Resources Information Center

    Lawlor, Joseph

    Artificial intelligence (AI) is the field of scientific inquiry concerned with designing machine systems that can simulate human mental processes. The field draws upon theoretical constructs from a wide variety of disciplines, including mathematics, psychology, linguistics, neurophysiology, computer science, and electronic engineering. Some of the…

  11. CAT/RF Simulation Lessons Learned

    DTIC Science & Technology

    2003-06-11

    IVSS-2003-MAS-7 CAT /RF Simulation Lessons Learned Christopher Mocnik Vetronics Technology Area, RDECOM TARDEC Tim Lee DCS Corporation...developed a re- configurable Unmanned Ground Vehicle (UGV) simulation for the Crew integration and Automation Test bed ( CAT ) and Robotics Follower (RF...Advanced Technology Demonstration (ATD) experiments. This simulation was developed as a component of the Embedded Simulation System (ESS) of the CAT

  12. Calculation for simulation of archery goal value using a web camera and ultrasonic sensor

    NASA Astrophysics Data System (ADS)

    Rusjdi, Darma; Abdurrasyid, Wulandari, Dewi Arianti

    2017-08-01

    Development of the device simulator digital indoor archery-based embedded systems as a solution to the limitations of the field or open space is adequate, especially in big cities. Development of the device requires simulations to calculate the value of achieving the target based on the approach defined by the parabolic motion variable initial velocity and direction of motion of the arrow reaches the target. The simulator device should be complemented with an initial velocity measuring device using ultrasonic sensors and measuring direction of the target using a digital camera. The methodology uses research and development of application software from modeling and simulation approach. The research objective to create simulation applications calculating the value of the achievement of the target arrows. Benefits as a preliminary stage for the development of the simulator device of archery. Implementation of calculating the value of the target arrows into the application program generates a simulation game of archery that can be used as a reference development of the digital archery simulator in a room with embedded systems using ultrasonic sensors and web cameras. Applications developed with the simulation calculation comparing the outer radius of the circle produced a camera from a distance of three meters.

  13. Mixed reality simulation of rasping procedure in artificial cervical disc replacement (ACDR) surgery.

    PubMed

    Halic, Tansel; Kockara, Sinan; Bayrak, Coskun; Rowe, Richard

    2010-10-07

    Until quite recently spinal disorder problems in the U.S. have been operated by fusing cervical vertebrae instead of replacement of the cervical disc with an artificial disc. Cervical disc replacement is a recently approved procedure in the U.S. It is one of the most challenging surgical procedures in the medical field due to the deficiencies in available diagnostic tools and insufficient number of surgical practices For physicians and surgical instrument developers, it is critical to understand how to successfully deploy the new artificial disc replacement systems. Without proper understanding and practice of the deployment procedure, it is possible to injure the vertebral body. Mixed reality (MR) and virtual reality (VR) surgical simulators are becoming an indispensable part of physicians' training, since they offer a risk free training environment. In this study, MR simulation framework and intricacies involved in the development of a MR simulator for the rasping procedure in artificial cervical disc replacement (ACDR) surgery are investigated. The major components that make up the MR surgical simulator with motion tracking system are addressed. A mixed reality surgical simulator that targets rasping procedure in the artificial cervical disc replacement surgery with a VICON motion tracking system was developed. There were several challenges in the development of MR surgical simulator. First, the assembly of different hardware components for surgical simulation development that involves knowledge and application of interdisciplinary fields such as signal processing, computer vision and graphics, along with the design and placements of sensors etc . Second challenge was the creation of a physically correct model of the rasping procedure in order to attain critical forces. This challenge was handled with finite element modeling. The third challenge was minimization of error in mapping movements of an actor in real model to a virtual model in a process called registration. This issue was overcome by a two-way (virtual object to real domain and real domain to virtual object) semi-automatic registration method. The applicability of the VICON MR setting for the ACDR surgical simulator is demonstrated. The main stream problems encountered in MR surgical simulator development are addressed. First, an effective environment for MR surgical development is constructed. Second, the strain and the stress intensities and critical forces are simulated under the various rasp instrument loadings with impacts that are applied on intervertebral surfaces of the anterior vertebrae throughout the rasping procedure. Third, two approaches are introduced to solve the registration problem in MR setting. Results show that our system creates an effective environment for surgical simulation development and solves tedious and time-consuming registration problems caused by misalignments. Further, the MR ACDR surgery simulator was tested by 5 different physicians who found that the MR simulator is effective enough to teach the anatomical details of cervical discs and to grasp the basics of the ACDR surgery and rasping procedure.

  14. Mixed reality simulation of rasping procedure in artificial cervical disc replacement (ACDR) surgery

    PubMed Central

    2010-01-01

    Background Until quite recently spinal disorder problems in the U.S. have been operated by fusing cervical vertebrae instead of replacement of the cervical disc with an artificial disc. Cervical disc replacement is a recently approved procedure in the U.S. It is one of the most challenging surgical procedures in the medical field due to the deficiencies in available diagnostic tools and insufficient number of surgical practices For physicians and surgical instrument developers, it is critical to understand how to successfully deploy the new artificial disc replacement systems. Without proper understanding and practice of the deployment procedure, it is possible to injure the vertebral body. Mixed reality (MR) and virtual reality (VR) surgical simulators are becoming an indispensable part of physicians’ training, since they offer a risk free training environment. In this study, MR simulation framework and intricacies involved in the development of a MR simulator for the rasping procedure in artificial cervical disc replacement (ACDR) surgery are investigated. The major components that make up the MR surgical simulator with motion tracking system are addressed. Findings A mixed reality surgical simulator that targets rasping procedure in the artificial cervical disc replacement surgery with a VICON motion tracking system was developed. There were several challenges in the development of MR surgical simulator. First, the assembly of different hardware components for surgical simulation development that involves knowledge and application of interdisciplinary fields such as signal processing, computer vision and graphics, along with the design and placements of sensors etc . Second challenge was the creation of a physically correct model of the rasping procedure in order to attain critical forces. This challenge was handled with finite element modeling. The third challenge was minimization of error in mapping movements of an actor in real model to a virtual model in a process called registration. This issue was overcome by a two-way (virtual object to real domain and real domain to virtual object) semi-automatic registration method. Conclusions The applicability of the VICON MR setting for the ACDR surgical simulator is demonstrated. The main stream problems encountered in MR surgical simulator development are addressed. First, an effective environment for MR surgical development is constructed. Second, the strain and the stress intensities and critical forces are simulated under the various rasp instrument loadings with impacts that are applied on intervertebral surfaces of the anterior vertebrae throughout the rasping procedure. Third, two approaches are introduced to solve the registration problem in MR setting. Results show that our system creates an effective environment for surgical simulation development and solves tedious and time-consuming registration problems caused by misalignments. Further, the MR ACDR surgery simulator was tested by 5 different physicians who found that the MR simulator is effective enough to teach the anatomical details of cervical discs and to grasp the basics of the ACDR surgery and rasping procedure PMID:20946594

  15. Time-dependent wave packet simulations of transport through Aharanov-Bohm rings with an embedded quantum dot.

    PubMed

    Kreisbeck, C; Kramer, T; Molina, R A

    2017-04-20

    We have performed time-dependent wave packet simulations of realistic Aharonov-Bohm (AB) devices with a quantum dot embedded in one of the arms of the interferometer. The AB ring can function as a measurement device for the intrinsic transmission phase through the quantum dot, however, care has to be taken in analyzing the influence of scattering processes in the junctions of the interferometer arms. We consider a harmonic quantum dot and show how the Darwin-Fock spectrum emerges as a unique pattern in the interference fringes of the AB oscillations.

  16. An embedded controller for a 7-degree of freedom prosthetic arm.

    PubMed

    Tenore, Francesco; Armiger, Robert S; Vogelstein, R Jacob; Wenstrand, Douglas S; Harshbarger, Stuart D; Englehart, Kevin

    2008-01-01

    We present results from an embedded real-time hardware system capable of decoding surface myoelectric signals (sMES) to control a seven degree of freedom upper limb prosthesis. This is one of the first hardware implementations of sMES decoding algorithms and the most advanced controller to-date. We compare decoding results from the device to simulation results from a real-time PC-based operating system. Performance of both systems is shown to be similar, with decoding accuracy greater than 90% for the floating point software simulation and 80% for fixed point hardware and software implementations.

  17. Multi-robot task allocation based on two dimensional artificial fish swarm algorithm

    NASA Astrophysics Data System (ADS)

    Zheng, Taixiong; Li, Xueqin; Yang, Liangyi

    2007-12-01

    The problem of task allocation for multiple robots is to allocate more relative-tasks to less relative-robots so as to minimize the processing time of these tasks. In order to get optimal multi-robot task allocation scheme, a twodimensional artificial swarm algorithm based approach is proposed in this paper. In this approach, the normal artificial fish is extended to be two dimension artificial fish. In the two dimension artificial fish, each vector of primary artificial fish is extended to be an m-dimensional vector. Thus, each vector can express a group of tasks. By redefining the distance between artificial fish and the center of artificial fish, the behavior of two dimension fish is designed and the task allocation algorithm based on two dimension artificial swarm algorithm is put forward. At last, the proposed algorithm is applied to the problem of multi-robot task allocation and comparer with GA and SA based algorithm is done. Simulation and compare result shows the proposed algorithm is effective.

  18. The Thermal Regulation of Gravitational Instabilities in Protoplanetary Disks. IV. Simulations with Envelope Irradiation

    NASA Astrophysics Data System (ADS)

    Cai, Kai; Durisen, Richard H.; Boley, Aaron C.; Pickett, Megan K.; Mejía, Annie C.

    2008-02-01

    It is generally thought that protoplanetary disks embedded in envelopes are more massive and thus more susceptible to gravitational instabilities (GIs) than exposed disks. We present three-dimensional radiative hydrodynamic simulations of protoplanetary disks with the presence of envelope irradiation. For a disk with a radius of 40 AU and a mass of 0.07 M⊙ around a young star of 0.5 M⊙, envelope irradiation tends to weaken and even suppress GIs as the irradiating flux is increased. The global mass transport induced by GIs is dominated by lower order modes, and irradiation preferentially suppresses higher order modes. As a result, gravitational torques and mass inflow rates are actually increased by mild irradiation. None of the simulations produce dense clumps or rapid cooling by convection, arguing against direct formation of giant planets by disk instability, at least in irradiated disks. However, dense gas rings and radial mass concentrations are produced, and these might be conducive to accelerated planetary core formation. Preliminary results from a simulation of a massive embedded disk with physical characteristics similar to one of the disks in the embedded source L1551 IRS 5 indicate a long radiative cooling time and no fragmentation. The GIs in this disk are dominated by global two- and three-armed modes.

  19. Subsurface thermal behaviour of tissue mimics embedded with large blood vessels during plasmonic photo-thermal therapy.

    PubMed

    Paul, Anup; Narasimhan, Arunn; Das, Sarit K; Sengupta, Soujit; Pradeep, Thalappil

    2016-11-01

    The purpose of this study was to understand the subsurface thermal behaviour of a tissue phantom embedded with large blood vessels (LBVs) when exposed to near-infrared (NIR) radiation. The effect of the addition of nanoparticles to irradiated tissue on the thermal sink behaviour of LBVs was also studied. Experiments were performed on a tissue phantom embedded with a simulated blood vessel of 2.2 mm outer diameter (OD)/1.6 mm inner diameter (ID) with a blood flow rate of 10 mL/min. Type I collagen from bovine tendon and agar gel were used as tissue. Two different nanoparticles, gold mesoflowers (AuMS) and graphene nanostructures, were synthesised and characterised. Energy equations incorporating a laser source term based on multiple scattering theories were solved using finite element-based commercial software. The rise in temperature upon NIR irradiation was seen to vary according to the position of the blood vessel and presence of nanoparticles. While the maximum rise in temperature was about 10 °C for bare tissue, it was 19 °C for tissue embedded with gold nanostructures and 38 °C for graphene-embedded tissues. The axial temperature distribution predicted by computational simulation matched the experimental observations. A different subsurface temperature distribution has been obtained for different tissue vascular network models. The position of LBVs must be known in order to achieve optimal tissue necrosis. The simulation described here helps in predicting subsurface temperature distributions within tissues during plasmonic photo-thermal therapy so that the risks of damage and complications associated with in vivo experiments and therapy may be avoided.

  20. Fabrication and assessment of 3D printed anatomical models of the lower limb for anatomical teaching and femoral vessel access training in medicine.

    PubMed

    O'Reilly, Michael K; Reese, Sven; Herlihy, Therese; Geoghegan, Tony; Cantwell, Colin P; Feeney, Robin N M; Jones, James F X

    2016-01-01

    For centuries, cadaveric dissection has been the touchstone of anatomy education. It offers a medical student intimate access to his or her first patient. In contrast to idealized artisan anatomical models, it presents the natural variation of anatomy in fine detail. However, a new teaching construct has appeared recently in which artificial cadavers are manufactured through three-dimensional (3D) printing of patient specific radiological data sets. In this article, a simple powder based printer is made more versatile to manufacture hard bones, silicone muscles and perfusable blood vessels. The approach involves blending modern approaches (3D printing) with more ancient ones (casting and lost-wax techniques). These anatomically accurate models can augment the approach to anatomy teaching from dissection to synthesis of 3D-printed parts held together with embedded rare earth magnets. Vascular simulation is possible through application of pumps and artificial blood. The resulting arteries and veins can be cannulated and imaged with Doppler ultrasound. In some respects, 3D-printed anatomy is superior to older teaching methods because the parts are cheap, scalable, they can cover the entire age span, they can be both dissected and reassembled and the data files can be printed anywhere in the world and mass produced. Anatomical diversity can be collated as a digital repository and reprinted rather than waiting for the rare variant to appear in the dissection room. It is predicted that 3D printing will revolutionize anatomy when poly-material printing is perfected in the early 21st century. © 2015 American Association of Anatomists.

  1. The Role of Computer Simulation in an Inquiry-Based Learning Environment: Reconstructing Geological Events as Geologists

    ERIC Educational Resources Information Center

    Lin, Li-Fen; Hsu, Ying-Shao; Yeh, Yi-Fen

    2012-01-01

    Several researchers have investigated the effects of computer simulations on students' learning. However, few have focused on how simulations with authentic contexts influences students' inquiry skills. Therefore, for the purposes of this study, we developed a computer simulation (FossilSim) embedded in an authentic inquiry lesson. FossilSim…

  2. Data-driven agent-based modeling, with application to rooftop solar adoption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Haifeng; Vorobeychik, Yevgeniy; Letchford, Joshua

    Agent-based modeling is commonly used for studying complex system properties emergent from interactions among many agents. We present a novel data-driven agent-based modeling framework applied to forecasting individual and aggregate residential rooftop solar adoption in San Diego county. Our first step is to learn a model of individual agent behavior from combined data of individual adoption characteristics and property assessment. We then construct an agent-based simulation with the learned model embedded in artificial agents, and proceed to validate it using a holdout sequence of collective adoption decisions. We demonstrate that the resulting agent-based model successfully forecasts solar adoption trends andmore » provides a meaningful quantification of uncertainty about its predictions. We utilize our model to optimize two classes of policies aimed at spurring solar adoption: one that subsidizes the cost of adoption, and another that gives away free systems to low-income house- holds. We find that the optimal policies derived for the latter class are significantly more efficacious, whereas the policies similar to the current California Solar Initiative incentive scheme appear to have a limited impact on overall adoption trends.« less

  3. Robust Design of Biological Circuits: Evolutionary Systems Biology Approach

    PubMed Central

    Chen, Bor-Sen; Hsu, Chih-Yuan; Liou, Jing-Jia

    2011-01-01

    Artificial gene circuits have been proposed to be embedded into microbial cells that function as switches, timers, oscillators, and the Boolean logic gates. Building more complex systems from these basic gene circuit components is one key advance for biologic circuit design and synthetic biology. However, the behavior of bioengineered gene circuits remains unstable and uncertain. In this study, a nonlinear stochastic system is proposed to model the biological systems with intrinsic parameter fluctuations and environmental molecular noise from the cellular context in the host cell. Based on evolutionary systems biology algorithm, the design parameters of target gene circuits can evolve to specific values in order to robustly track a desired biologic function in spite of intrinsic and environmental noise. The fitness function is selected to be inversely proportional to the tracking error so that the evolutionary biological circuit can achieve the optimal tracking mimicking the evolutionary process of a gene circuit. Finally, several design examples are given in silico with the Monte Carlo simulation to illustrate the design procedure and to confirm the robust performance of the proposed design method. The result shows that the designed gene circuits can robustly track desired behaviors with minimal errors even with nontrivial intrinsic and external noise. PMID:22187523

  4. Data-driven agent-based modeling, with application to rooftop solar adoption

    DOE PAGES

    Zhang, Haifeng; Vorobeychik, Yevgeniy; Letchford, Joshua; ...

    2016-01-25

    Agent-based modeling is commonly used for studying complex system properties emergent from interactions among many agents. We present a novel data-driven agent-based modeling framework applied to forecasting individual and aggregate residential rooftop solar adoption in San Diego county. Our first step is to learn a model of individual agent behavior from combined data of individual adoption characteristics and property assessment. We then construct an agent-based simulation with the learned model embedded in artificial agents, and proceed to validate it using a holdout sequence of collective adoption decisions. We demonstrate that the resulting agent-based model successfully forecasts solar adoption trends andmore » provides a meaningful quantification of uncertainty about its predictions. We utilize our model to optimize two classes of policies aimed at spurring solar adoption: one that subsidizes the cost of adoption, and another that gives away free systems to low-income house- holds. We find that the optimal policies derived for the latter class are significantly more efficacious, whereas the policies similar to the current California Solar Initiative incentive scheme appear to have a limited impact on overall adoption trends.« less

  5. Robust design of biological circuits: evolutionary systems biology approach.

    PubMed

    Chen, Bor-Sen; Hsu, Chih-Yuan; Liou, Jing-Jia

    2011-01-01

    Artificial gene circuits have been proposed to be embedded into microbial cells that function as switches, timers, oscillators, and the Boolean logic gates. Building more complex systems from these basic gene circuit components is one key advance for biologic circuit design and synthetic biology. However, the behavior of bioengineered gene circuits remains unstable and uncertain. In this study, a nonlinear stochastic system is proposed to model the biological systems with intrinsic parameter fluctuations and environmental molecular noise from the cellular context in the host cell. Based on evolutionary systems biology algorithm, the design parameters of target gene circuits can evolve to specific values in order to robustly track a desired biologic function in spite of intrinsic and environmental noise. The fitness function is selected to be inversely proportional to the tracking error so that the evolutionary biological circuit can achieve the optimal tracking mimicking the evolutionary process of a gene circuit. Finally, several design examples are given in silico with the Monte Carlo simulation to illustrate the design procedure and to confirm the robust performance of the proposed design method. The result shows that the designed gene circuits can robustly track desired behaviors with minimal errors even with nontrivial intrinsic and external noise.

  6. Artificial Intelligence Applications to High-Technology Training.

    ERIC Educational Resources Information Center

    Dede, Christopher

    1987-01-01

    Discusses the use of artificial intelligence to improve occupational instruction in complex subjects with high performance goals, such as those required for high-technology jobs. Highlights include intelligent computer assisted instruction, examples in space technology training, intelligent simulation environments, and the need for adult training…

  7. Artificial organisms as tools for the development of psychological theory: Tolman's lesson.

    PubMed

    Miglino, Orazio; Gigliotta, Onofrio; Cardaci, Maurizio; Ponticorvo, Michela

    2007-12-01

    In the 1930s and 1940s, Edward Tolman developed a psychological theory of spatial orientation in rats and humans. He expressed his theory as an automaton (the "schematic sowbug") or what today we would call an "artificial organism." With the technology of the day, he could not implement his model. Nonetheless, he used it to develop empirical predictions which tested with animals in the laboratory. This way of proceeding was in line with scientific practice dating back to Galileo. The way psychologists use artificial organisms in their work today breaks with this tradition. Modern "artificial organisms" are constructed a posteriori, working from experimental or ethological observations. As a result, researchers can use them to confirm a theoretical model or to simulate its operation. But they make no contribution to the actual building of models. In this paper, we try to return to Tolman's original strategy: implementing his theory of "vicarious trial and error" in a simulated robot, forecasting the robot's behavior and conducting experiments that verify or falsify these predictions.

  8. Embedded System for Prosthetic Control Using Implanted Neuromuscular Interfaces Accessed Via an Osseointegrated Implant.

    PubMed

    Mastinu, Enzo; Doguet, Pascal; Botquin, Yohan; Hakansson, Bo; Ortiz-Catalan, Max

    2017-08-01

    Despite the technological progress in robotics achieved in the last decades, prosthetic limbs still lack functionality, reliability, and comfort. Recently, an implanted neuromusculoskeletal interface built upon osseointegration was developed and tested in humans, namely the Osseointegrated Human-Machine Gateway. Here, we present an embedded system to exploit the advantages of this technology. Our artificial limb controller allows for bioelectric signals acquisition, processing, decoding of motor intent, prosthetic control, and sensory feedback. It includes a neurostimulator to provide direct neural feedback based on sensory information. The system was validated using real-time tasks characterization, power consumption evaluation, and myoelectric pattern recognition performance. Functionality was proven in a first pilot patient from whom results of daily usage were obtained. The system was designed to be reliably used in activities of daily living, as well as a research platform to monitor prosthesis usage and training, machine-learning-based control algorithms, and neural stimulation paradigms.

  9. A model for a knowledge-based system's life cycle

    NASA Technical Reports Server (NTRS)

    Kiss, Peter A.

    1990-01-01

    The American Institute of Aeronautics and Astronautics has initiated a Committee on Standards for Artificial Intelligence. Presented here are the initial efforts of one of the working groups of that committee. The purpose here is to present a candidate model for the development life cycle of Knowledge Based Systems (KBS). The intent is for the model to be used by the Aerospace Community and eventually be evolved into a standard. The model is rooted in the evolutionary model, borrows from the spiral model, and is embedded in the standard Waterfall model for software development. Its intent is to satisfy the development of both stand-alone and embedded KBSs. The phases of the life cycle are detailed as are and the review points that constitute the key milestones throughout the development process. The applicability and strengths of the model are discussed along with areas needing further development and refinement by the aerospace community.

  10. Assessment of Bacterial Spores in Solid Materials: Curriculum Improvements Partnership Award for the Integration of Research (CIPAIR)

    NASA Technical Reports Server (NTRS)

    Lavallee, Richard J.

    2012-01-01

    This summer, we quantified the release, by cryogenic grinding at liquid nitrogen temperatures, of microbes present in 4 different spacecraft solids: epoxy 9309, epoxy 9394, epoxy 9396, and a silicone coating. Three different samples of each material were prepared: aseptically prepared solid material, powdered material inoculated with a known spore count of Bacillus atrophaeus, and solid material artificially embedded with a known spore count of Bacillus atrophaeus. Samples were cryogenically ground as needed, and the powders were directly cultured to determine the number of microbial survivors per gram of material. Recovery rates were found to be highly material-dependent, varying from 0.2 to 50% for inoculated material surfaces and 0.002 to 0.5% for embedded spores. A study of the spore survival rate versus total grinding time was also performed, with results indicating that longer grinding time decreases recovery rates of viable spores.

  11. Bio-Inspired Networking — Self-Organizing Networked Embedded Systems

    NASA Astrophysics Data System (ADS)

    Dressler, Falko

    The turn to nature has brought us many unforeseen great concepts and solutions. This course seems to hold on for many research domains. In this article, we study the applicability of biological mechanisms and techniques in the domain of communications. In particular, we study the behavior and the challenges in networked embedded systems that are meant to self-organize in large groups of nodes. Application examples include wireless sensor networks and sensor/actuator networks. Based on a review of the needs and requirements in such networks, we study selected bio-inspired networking approaches that claim to outperform other methods in specific domains. We study mechanisms in swarm intelligence, the artificial immune system, and approaches based on investigations on the cellular signaling pathways. As a major conclusion, we derive that bio-inspired networking techniques do have advantages compared to engineering methods. Nevertheless, selection and employment must be done carefully to achieve the desired performance gains.

  12. Stretchable biocompatible electronics by embedding electrical circuitry in biocompatible elastomers.

    PubMed

    Jahanshahi, Amir; Salvo, Pietro; Vanfleteren, Jan

    2012-01-01

    Stretchable and curvilinear electronics has been used recently for the fabrication of micro systems interacting with the human body. The applications range from different kinds of implantable sensors inside the body to conformable electrodes and artificial skins. One of the key parameters in biocompatible stretchable electronics is the fabrication of reliable electrical interconnects. Although very recent literature has reported on the reliability of stretchable interconnects by cyclic loading, work still needs to be done on the integration of electrical circuitry composed of rigid components and stretchable interconnects in a biological environment. In this work, the feasibility of a developed technology to fabricate simple electrical circuits with meander shaped stretchable interconnects is presented. Stretchable interconnects are 200 nm thin Au layer supported with polyimide (PI). A stretchable array of light emitting diodes (LEDs) is embedded in biocompatible elastomer using this technology platform and it features a 50% total elongation.

  13. Influence of the preparation design and artificial aging on the fracture resistance of monolithic zirconia crowns.

    PubMed

    Mitov, Gergo; Anastassova-Yoshida, Yana; Nothdurft, Frank Phillip; von See, Constantin; Pospiech, Peter

    2016-02-01

    The aim of this study was to evaluate the fracture resistance and fracture behavior of monolithic zirconia crowns in accordance with the preparation design and aging simulation method. An upper first molar was prepared sequentially with three different preparation designs: shoulderless preparation, 0.4 mm chamfer and 0.8 mm chamfer preparation. For each preparation design, 30 monolithic zirconia crowns were fabricated. After cementation on Cr-Co alloy dies, the following artificial aging procedures were performed: (1) thermal cycling and mechanical loading (TCML): 5000 cycles of thermal cycling 5℃-55℃ and chewing simulation (1,200,000 cycles, 50 N); (2) Low Temperature Degradation simulation (LTD): autoclave treatment at 137℃, 2 bar for 3 hours and chewing simulation; and (3) no pre-treatment (control group). After artificial aging, the crowns were loaded until fracture. The mean values of fracture resistance varied between 3414 N (LTD; 0.8 mm chamfer preparation) and 5712 N (control group; shoulderless preparation). Two-way ANOVA analysis showed a significantly higher fracture loads for the shoulderless preparation, whereas no difference was found between the chamfer preparations. In contrast to TCML, after LTD simulation the fracture strength of monolithic zirconia crowns decreased significantly. The monolithic crowns tested in this study showed generally high fracture load values. Preparation design and LTD simulation had a significant influence on the fracture strength of monolithic zirconia crowns.

  14. Embedding Research in a Field-Based Module through Peer Review and Assessment for Learning

    ERIC Educational Resources Information Center

    Nicholson, Dawn T.

    2011-01-01

    A case study is presented of embedding research in a final year undergraduate, field-based, physical geography module. The approach is holistic, whereby research-based learning activities simulate the full life cycle of research from inception through to peer review and publication. The learning, teaching and assessment strategy emphasizes the…

  15. High-speed event detector for embedded nanopore bio-systems.

    PubMed

    Huang, Yiyun; Magierowski, Sebastian; Ghafar-Zadeh, Ebrahim; Wang, Chengjie

    2015-08-01

    Biological measurements of microscopic phenomena often deal with discrete-event signals. The ability to automatically carry out such measurements at high-speed in a miniature embedded system is desirable but compromised by high-frequency noise along with practical constraints on filter quality and sampler resolution. This paper presents a real-time event-detection method in the context of nanopore sensing that helps to mitigate these drawbacks and allows accurate signal processing in an embedded system. Simulations show at least a 10× improvement over existing on-line detection methods.

  16. Thermal responses of shape memory alloy artificial anal sphincters

    NASA Astrophysics Data System (ADS)

    Luo, Yun; Takagi, Toshiyuki; Matsuzawa, Kenichi

    2003-08-01

    This paper presents a numerical investigation of the thermal behavior of an artificial anal sphincter using shape memory alloys (SMAs) proposed by the authors. The SMA artificial anal sphincter has the function of occlusion at body temperature and can be opened with a thermal transformation induced deformation of SMAs to solve the problem of severe fecal incontinence. The investigation of its thermal behavior is of great importance in terms of practical use in living bodies as a prosthesis. In this work, a previously proposed phenomenological model was applied to simulate the thermal responses of SMA plates that had undergone thermally induced transformation. The numerical approach for considering the thermal interaction between the prosthesis and surrounding tissues was discussed based on the classical bio-heat equation. Numerical predictions on both in vitro and in vivo cases were verified by experiments with acceptable agreements. The thermal responses of the SMA artificial anal sphincter were discussed based on the simulation results, with the values of the applied power and the geometric configuration of thermal insulation as parameters. The results obtained in the present work provided a framework for the further design of SMA artificial sphincters to meet demands from the viewpoint of thermal compatibility as prostheses.

  17. Design of a hydraulic analog of the circulatory system for evaluating artificial hearts.

    PubMed

    Donovan, F M

    1975-01-01

    A major problem in improving artificial heart designs is the absence of methods for accurate in vitro testing of artificial heart systems. A mock circulatory system has been constructed which hydraulically simulates the systemic and pulmonary circulations of the normal human. The device is constructed of 1/2 in. acrylic sheet and has overall dimensions of 24 in. wide, 16 in. tall, and 8 in. deep. The artificial heart to be tested is attached to the front of the device, and pumps fluid from the systemic venous chamber into the pulmonary arterial chamber and from the pulmonary venous chamber into the systemic arterial chamber. Each of the four chambers is hermetically sealed. The compliance of each chamber is determined by the volume of air trapped above the fluid in that chamber. The pulmonary and systemic resistances are set automatically by bellows-operated valves to simulate the barroreceptor response in the systemic arteries and the passive pulmonary resistance response in the pulmonary arteries. Cardiac output is measured by a turbine flowmeter in the systemic circulation. Results using the Kwan-Gett artificial heart show a good comparison between the mock circulatory system response and the calf response.

  18. An optimization of the FPGA trigger based on the artificial neural network for a detection of neutrino-origin showers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szadkowski, Zbigniew; Glas, Dariusz; Pytel, Krzysztof

    Observations of ultra-high energy neutrinos became a priority in experimental astro-particle physics. Up to now, the Pierre Auger Observatory did not find any candidate on a neutrino event. This imposes competitive limits to the diffuse flux of ultra-high energy neutrinos in the EeV range and above. A very low rate of events potentially generated by neutrinos is a significant challenge for a detection technique and requires both sophisticated algorithms and high-resolution hardware. A trigger based on a artificial neural network was implemented into the Cyclone{sup R} V E FPGA 5CEFA9F31I7. The prototype Front-End boards for Auger-Beyond-2015 with Cyclone{sup R} Vmore » E can test the neural network algorithm in real pampas conditions in 2015. Showers for muon and tau neutrino initiating particles on various altitudes, angles and energies were simulated in CORSICA and Offline platforms giving pattern of ADC traces in Auger water Cherenkov detectors. The 3-layer 12-10-1 neural network was taught in MATLAB by simulated ADC traces according the Levenberg-Marquardt algorithm. Results show that a probability of a ADC traces generation is very low due to a small neutrino cross-section. Nevertheless, ADC traces, if occur, for 1-10 EeV showers are relatively short and can be analyzed by 16-point input algorithm. For 100 EeV range traces are much longer, but with significantly higher amplitudes, which can be detected by standard threshold algorithms. We optimized the coefficients from MATLAB to get a maximal range of potentially registered events and for fixed-point FPGA processing to minimize calculation errors. Currently used Front-End boards based on no-more produced ACEXR PLDs and obsolete Cyclone{sup R} FPGAs allow an implementation of relatively simple threshold algorithms for triggers. New sophisticated trigger implemented in Cyclone{sup R} V E FPGAs with large amount of DSP blocks, embedded memory running with 120 - 160 MHz sampling may support to discover neutrino events in the Pierre Auger Observatory. (authors)« less

  19. Time reversal and charge conjugation in an embedding quantum simulator.

    PubMed

    Zhang, Xiang; Shen, Yangchao; Zhang, Junhua; Casanova, Jorge; Lamata, Lucas; Solano, Enrique; Yung, Man-Hong; Zhang, Jing-Ning; Kim, Kihwan

    2015-08-04

    A quantum simulator is an important device that may soon outperform current classical computations. A basic arithmetic operation, the complex conjugate, however, is considered to be impossible to be implemented in such a quantum system due to the linear character of quantum mechanics. Here, we present the experimental quantum simulation of such an unphysical operation beyond the regime of unitary and dissipative evolutions through the embedding of a quantum dynamics in the electronic multilevels of a (171)Yb(+) ion. We perform time reversal and charge conjugation, which are paradigmatic examples of antiunitary symmetry operators, in the evolution of a Majorana equation without the tomographic knowledge of the evolving state. Thus, these operations can be applied regardless of the system size. Our approach offers the possibility to add unphysical operations to the toolbox of quantum simulation, and provides a route to efficiently compute otherwise intractable quantities, such as entanglement monotones.

  20. Global Three-dimensional Simulation of the Solar Wind-Magnetosphere Interaction Using a Two-way Coupled Magnetohydrodynamics with Embedded Particle-in-Cell Model

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Toth, G.; Cassak, P.; Jia, X.; Gombosi, T. I.; Slavin, J. A.; Welling, D. T.; Markidis, S.; Peng, I. B.; Jordanova, V. K.; Henderson, M. G.

    2017-12-01

    We perform a three-dimensional (3D) global simulation of Earth's magnetosphere with kinetic reconnection physics to study the interaction between the solar wind and Earth's magnetosphere. In this global simulation with magnetohydrodynamics with embedded particle-in-cell model (MHD-EPIC), both the dayside magnetopause reconnection region and the magnetotail reconnection region are covered with a kinetic particle-in-cell code iPIC3D, which is two-way coupled with the global MHD model BATS-R-US. We will describe the dayside reconnection related phenomena, such as the lower hybrid drift instability (LHDI) and the evolution of the flux transfer events (FTEs) along the magnetopause, and compare the simulation results with observations. We will also discuss the response of the magnetotail to the southward IMF. The onset of the tail reconnection and the properties of the magnetotail flux ropes will be discussed.

  1. Time reversal and charge conjugation in an embedding quantum simulator

    PubMed Central

    Zhang, Xiang; Shen, Yangchao; Zhang, Junhua; Casanova, Jorge; Lamata, Lucas; Solano, Enrique; Yung, Man-Hong; Zhang, Jing-Ning; Kim, Kihwan

    2015-01-01

    A quantum simulator is an important device that may soon outperform current classical computations. A basic arithmetic operation, the complex conjugate, however, is considered to be impossible to be implemented in such a quantum system due to the linear character of quantum mechanics. Here, we present the experimental quantum simulation of such an unphysical operation beyond the regime of unitary and dissipative evolutions through the embedding of a quantum dynamics in the electronic multilevels of a 171Yb+ ion. We perform time reversal and charge conjugation, which are paradigmatic examples of antiunitary symmetry operators, in the evolution of a Majorana equation without the tomographic knowledge of the evolving state. Thus, these operations can be applied regardless of the system size. Our approach offers the possibility to add unphysical operations to the toolbox of quantum simulation, and provides a route to efficiently compute otherwise intractable quantities, such as entanglement monotones. PMID:26239028

  2. A Micro-Level Data-Calibrated Agent-Based Model: The Synergy between Microsimulation and Agent-Based Modeling.

    PubMed

    Singh, Karandeep; Ahn, Chang-Won; Paik, Euihyun; Bae, Jang Won; Lee, Chun-Hee

    2018-01-01

    Artificial life (ALife) examines systems related to natural life, its processes, and its evolution, using simulations with computer models, robotics, and biochemistry. In this article, we focus on the computer modeling, or "soft," aspects of ALife and prepare a framework for scientists and modelers to be able to support such experiments. The framework is designed and built to be a parallel as well as distributed agent-based modeling environment, and does not require end users to have expertise in parallel or distributed computing. Furthermore, we use this framework to implement a hybrid model using microsimulation and agent-based modeling techniques to generate an artificial society. We leverage this artificial society to simulate and analyze population dynamics using Korean population census data. The agents in this model derive their decisional behaviors from real data (microsimulation feature) and interact among themselves (agent-based modeling feature) to proceed in the simulation. The behaviors, interactions, and social scenarios of the agents are varied to perform an analysis of population dynamics. We also estimate the future cost of pension policies based on the future population structure of the artificial society. The proposed framework and model demonstrates how ALife techniques can be used by researchers in relation to social issues and policies.

  3. Optimization with artificial neural network systems - A mapping principle and a comparison to gradient based methods

    NASA Technical Reports Server (NTRS)

    Leong, Harrison Monfook

    1988-01-01

    General formulae for mapping optimization problems into systems of ordinary differential equations associated with artificial neural networks are presented. A comparison is made to optimization using gradient-search methods. The performance measure is the settling time from an initial state to a target state. A simple analytical example illustrates a situation where dynamical systems representing artificial neural network methods would settle faster than those representing gradient-search. Settling time was investigated for a more complicated optimization problem using computer simulations. The problem was a simplified version of a problem in medical imaging: determining loci of cerebral activity from electromagnetic measurements at the scalp. The simulations showed that gradient based systems typically settled 50 to 100 times faster than systems based on current neural network optimization methods.

  4. Classification of molecular structure images by using ANN, RF, LBP, HOG, and size reduction methods for early stomach cancer detection

    NASA Astrophysics Data System (ADS)

    Aytaç Korkmaz, Sevcan; Binol, Hamidullah

    2018-03-01

    Patients who die from stomach cancer are still present. Early diagnosis is crucial in reducing the mortality rate of cancer patients. Therefore, computer aided methods have been developed for early detection in this article. Stomach cancer images were obtained from Fırat University Medical Faculty Pathology Department. The Local Binary Patterns (LBP) and Histogram of Oriented Gradients (HOG) features of these images are calculated. At the same time, Sammon mapping, Stochastic Neighbor Embedding (SNE), Isomap, Classical multidimensional scaling (MDS), Local Linear Embedding (LLE), Linear Discriminant Analysis (LDA), t-Distributed Stochastic Neighbor Embedding (t-SNE), and Laplacian Eigenmaps methods are used for dimensional the reduction of the features. The high dimension of these features has been reduced to lower dimensions using dimensional reduction methods. Artificial neural networks (ANN) and Random Forest (RF) classifiers were used to classify stomach cancer images with these new lower feature sizes. New medical systems have developed to measure the effects of these dimensions by obtaining features in different dimensional with dimensional reduction methods. When all the methods developed are compared, it has been found that the best accuracy results are obtained with LBP_MDS_ANN and LBP_LLE_ANN methods.

  5. Effect of off-fault low-velocity elastic inclusions on supershear rupture dynamics

    NASA Astrophysics Data System (ADS)

    Ma, Xiao; Elbanna, A. E.

    2015-10-01

    Heterogeneous velocity structures are expected to affect fault rupture dynamics. To quantitatively evaluate some of these effects, we examine a model of dynamic rupture on a frictional fault embedded in an elastic full space, governed by plane strain elasticity, with a pair of off-fault inclusions that have a lower rigidity than the background medium. We solve the elastodynamic problem using the Finite Element software Pylith. The fault operates under linear slip-weakening friction law. We initiate the rupture by artificially overstressing a localized region near the left edge of the fault. We primarily consider embedded soft inclusions with 20 per cent reduction in both the pressure wave and shear wave speeds. The embedded inclusions are placed at different distances from the fault surface and have different sizes. We show that the existence of a soft inclusion may significantly shorten the transition length to supershear propagation through the Burridge-Andrews mechanism. We also observe that supershear rupture is generated at pre-stress values that are lower than what is theoretically predicted for a homogeneous medium. We discuss the implications of our results for dynamic rupture propagation in complex velocity structures as well as supershear propagation on understressed faults.

  6. Computer graphics testbed to simulate and test vision systems for space applications

    NASA Technical Reports Server (NTRS)

    Cheatham, John B.

    1991-01-01

    Research activity has shifted from computer graphics and vision systems to the broader scope of applying concepts of artificial intelligence to robotics. Specifically, the research is directed toward developing Artificial Neural Networks, Expert Systems, and Laser Imaging Techniques for Autonomous Space Robots.

  7. Artificial Neural Networks: an overview and their use in the analysis of the AMPHORA-3 dataset.

    PubMed

    Buscema, Paolo Massimo; Massini, Giulia; Maurelli, Guido

    2014-10-01

    The Artificial Adaptive Systems (AAS) are theories with which generative algebras are able to create artificial models simulating natural phenomenon. Artificial Neural Networks (ANNs) are the more diffused and best-known learning system models in the AAS. This article describes an overview of ANNs, noting its advantages and limitations for analyzing dynamic, complex, non-linear, multidimensional processes. An example of a specific ANN application to alcohol consumption in Spain, as part of the EU AMPHORA-3 project, during 1961-2006 is presented. Study's limitations are noted and future needed research using ANN methodologies are suggested.

  8. Path Planning for Robot based on Chaotic Artificial Potential Field Method

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng

    2018-03-01

    Robot path planning in unknown environments is one of the hot research topics in the field of robot control. Aiming at the shortcomings of traditional artificial potential field methods, we propose a new path planning for Robot based on chaotic artificial potential field method. The path planning adopts the potential function as the objective function and introduces the robot direction of movement as the control variables, which combines the improved artificial potential field method with chaotic optimization algorithm. Simulations have been carried out and the results demonstrate that the superior practicality and high efficiency of the proposed method.

  9. Modeling of steam distillation mechanism during steam injection process using artificial intelligence.

    PubMed

    Daryasafar, Amin; Ahadi, Arash; Kharrat, Riyaz

    2014-01-01

    Steam distillation as one of the important mechanisms has a great role in oil recovery in thermal methods and so it is important to simulate this process experimentally and theoretically. In this work, the simulation of steam distillation is performed on sixteen sets of crude oil data found in the literature. Artificial intelligence (AI) tools such as artificial neural network (ANN) and also adaptive neurofuzzy interference system (ANFIS) are used in this study as effective methods to simulate the distillate recoveries of these sets of data. Thirteen sets of data were used to train the models and three sets were used to test the models. The developed models are highly compatible with respect to input oil properties and can predict the distillate yield with minimum entry. For showing the performance of the proposed models, simulation of steam distillation is also done using modified Peng-Robinson equation of state. Comparison between the calculated distillates by ANFIS and neural network models and also equation of state-based method indicates that the errors of the ANFIS model for training data and test data sets are lower than those of other methods.

  10. Modeling of Steam Distillation Mechanism during Steam Injection Process Using Artificial Intelligence

    PubMed Central

    Ahadi, Arash; Kharrat, Riyaz

    2014-01-01

    Steam distillation as one of the important mechanisms has a great role in oil recovery in thermal methods and so it is important to simulate this process experimentally and theoretically. In this work, the simulation of steam distillation is performed on sixteen sets of crude oil data found in the literature. Artificial intelligence (AI) tools such as artificial neural network (ANN) and also adaptive neurofuzzy interference system (ANFIS) are used in this study as effective methods to simulate the distillate recoveries of these sets of data. Thirteen sets of data were used to train the models and three sets were used to test the models. The developed models are highly compatible with respect to input oil properties and can predict the distillate yield with minimum entry. For showing the performance of the proposed models, simulation of steam distillation is also done using modified Peng-Robinson equation of state. Comparison between the calculated distillates by ANFIS and neural network models and also equation of state-based method indicates that the errors of the ANFIS model for training data and test data sets are lower than those of other methods. PMID:24883365

  11. Implementation of a quantum metamaterial using superconducting qubits.

    PubMed

    Macha, Pascal; Oelsner, Gregor; Reiner, Jan-Michael; Marthaler, Michael; André, Stephan; Schön, Gerd; Hübner, Uwe; Meyer, Hans-Georg; Il'ichev, Evgeni; Ustinov, Alexey V

    2014-10-14

    The key issue for the implementation of a metamaterial is to demonstrate the existence of collective modes corresponding to coherent oscillations of the meta-atoms. Atoms of natural materials interact with electromagnetic fields as quantum two-level systems. Artificial quantum two-level systems can be made, for example, using superconducting nonlinear resonators cooled down to their ground state. Here we perform an experiment in which 20 of these quantum meta-atoms, so-called flux qubits, are embedded into a microwave resonator. We observe the dispersive shift of the resonator frequency imposed by the qubit metamaterial and the collective resonant coupling of eight qubits. The realized prototype represents a mesoscopic limit of naturally occurring spin ensembles and as such we demonstrate the AC-Zeeman shift of a resonant qubit ensemble. The studied system constitutes the implementation of a basic quantum metamaterial in the sense that many artificial atoms are coupled collectively to the quantized mode of a photon field.

  12. Comparison of Artificial Immune System and Particle Swarm Optimization Techniques for Error Optimization of Machine Vision Based Tool Movements

    NASA Astrophysics Data System (ADS)

    Mahapatra, Prasant Kumar; Sethi, Spardha; Kumar, Amod

    2015-10-01

    In conventional tool positioning technique, sensors embedded in the motion stages provide the accurate tool position information. In this paper, a machine vision based system and image processing technique for motion measurement of lathe tool from two-dimensional sequential images captured using charge coupled device camera having a resolution of 250 microns has been described. An algorithm was developed to calculate the observed distance travelled by the tool from the captured images. As expected, error was observed in the value of the distance traversed by the tool calculated from these images. Optimization of errors due to machine vision system, calibration, environmental factors, etc. in lathe tool movement was carried out using two soft computing techniques, namely, artificial immune system (AIS) and particle swarm optimization (PSO). The results show better capability of AIS over PSO.

  13. Numerical simulation of steady three-dimensional flows in axial turbomachinery bladerows

    NASA Astrophysics Data System (ADS)

    Basson, Anton Herman

    The formulation for and application of a numerical model for low Mach number steady three-dimensional flows in axial turbomachinery blade rows is presented. The formulation considered here includes an efficient grid generation scheme (particularly suited to computational grids for the analysis of turbulent turbomachinery flows) and a semi-implicit, pressure-based computational fluid dynamics scheme that directly includes artificial dissipation, applicable to viscous and inviscid flows. The grid generation technique uses a combination of algebraic and elliptic methods, in conjunction with the Minimal Residual Method, to economically generate smooth structured grids. For typical H-grids in turbomachinery bladerows, when compared to a purely elliptic grid generation scheme, the presented grid generation scheme produces grids with much improved smoothness near the leading and trailing edges, allows the use of small near wall grid spacing required by low Reynolds number turbulence models, and maintains orthogonality of the grid near the solid boundaries even for high flow angle cascades. A specialized embedded H-grid for application particularly to tip clearance flows is presented. This topology smoothly discretizes the domain without modifying the tip shape, while requiring only minor modifications to H-grid flow solvers. Better quantitative modeling of the tip clearance vortex structure than that obtained with a pinched tip approximation is demonstrated. The formulation of artificial dissipation terms for a semi-implicit, pressure-based (SIMPLE type) flow solver, is presented. It is applied to both the Euler and the Navier-Stokes equations, expressed in generalized coordinates using a non-staggered grid. This formulation is compared to some SIMPLE and time marching formulations, revealing the artificial dissipation inherent in some commonly used semi-implicit formulations. The effect of the amount of dissipation on the accuracy of the solution and the convergence rate is quantitatively demonstrated for a number of flow cases. The ability of the formulation to model complex steady turbomachinery flows is demonstrated, e.g. for pressure driven secondary flows, turbine nozzle wakes, turbulent boundary layers. The formulation's modeling of blade surface heat transfer is assessed. The numerical model is used to investigate the structure of phenomena associated with tip clearance flows in a turbine nozzle.

  14. Using a computer-based simulation with an artificial intelligence component and discovery learning to formulate training needs for a new technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hillis, D.R.

    A computer-based simulation with an artificial intelligence component and discovery learning was investigated as a method to formulate training needs for new or unfamiliar technologies. Specifically, the study examined if this simulation method would provide for the recognition of applications and knowledge/skills which would be the basis for establishing training needs. The study also examined the effect of field-dependence/independence on recognition of applications and knowledge/skills. A pretest-posttest control group experimental design involving fifty-eight college students from an industrial technology program was used. The study concluded that the simulation was effective in developing recognition of applications and the knowledge/skills for amore » new or unfamiliar technology. And, the simulation's effectiveness for providing this recognition was not limited by an individual's field-dependence/independence.« less

  15. Reward-based learning under hardware constraints-using a RISC processor embedded in a neuromorphic substrate.

    PubMed

    Friedmann, Simon; Frémaux, Nicolas; Schemmel, Johannes; Gerstner, Wulfram; Meier, Karlheinz

    2013-01-01

    In this study, we propose and analyze in simulations a new, highly flexible method of implementing synaptic plasticity in a wafer-scale, accelerated neuromorphic hardware system. The study focuses on globally modulated STDP, as a special use-case of this method. Flexibility is achieved by embedding a general-purpose processor dedicated to plasticity into the wafer. To evaluate the suitability of the proposed system, we use a reward modulated STDP rule in a spike train learning task. A single layer of neurons is trained to fire at specific points in time with only the reward as feedback. This model is simulated to measure its performance, i.e., the increase in received reward after learning. Using this performance as baseline, we then simulate the model with various constraints imposed by the proposed implementation and compare the performance. The simulated constraints include discretized synaptic weights, a restricted interface between analog synapses and embedded processor, and mismatch of analog circuits. We find that probabilistic updates can increase the performance of low-resolution weights, a simple interface between analog synapses and processor is sufficient for learning, and performance is insensitive to mismatch. Further, we consider communication latency between wafer and the conventional control computer system that is simulating the environment. This latency increases the delay, with which the reward is sent to the embedded processor. Because of the time continuous operation of the analog synapses, delay can cause a deviation of the updates as compared to the not delayed situation. We find that for highly accelerated systems latency has to be kept to a minimum. This study demonstrates the suitability of the proposed implementation to emulate the selected reward modulated STDP learning rule. It is therefore an ideal candidate for implementation in an upgraded version of the wafer-scale system developed within the BrainScaleS project.

  16. Reward-based learning under hardware constraints—using a RISC processor embedded in a neuromorphic substrate

    PubMed Central

    Friedmann, Simon; Frémaux, Nicolas; Schemmel, Johannes; Gerstner, Wulfram; Meier, Karlheinz

    2013-01-01

    In this study, we propose and analyze in simulations a new, highly flexible method of implementing synaptic plasticity in a wafer-scale, accelerated neuromorphic hardware system. The study focuses on globally modulated STDP, as a special use-case of this method. Flexibility is achieved by embedding a general-purpose processor dedicated to plasticity into the wafer. To evaluate the suitability of the proposed system, we use a reward modulated STDP rule in a spike train learning task. A single layer of neurons is trained to fire at specific points in time with only the reward as feedback. This model is simulated to measure its performance, i.e., the increase in received reward after learning. Using this performance as baseline, we then simulate the model with various constraints imposed by the proposed implementation and compare the performance. The simulated constraints include discretized synaptic weights, a restricted interface between analog synapses and embedded processor, and mismatch of analog circuits. We find that probabilistic updates can increase the performance of low-resolution weights, a simple interface between analog synapses and processor is sufficient for learning, and performance is insensitive to mismatch. Further, we consider communication latency between wafer and the conventional control computer system that is simulating the environment. This latency increases the delay, with which the reward is sent to the embedded processor. Because of the time continuous operation of the analog synapses, delay can cause a deviation of the updates as compared to the not delayed situation. We find that for highly accelerated systems latency has to be kept to a minimum. This study demonstrates the suitability of the proposed implementation to emulate the selected reward modulated STDP learning rule. It is therefore an ideal candidate for implementation in an upgraded version of the wafer-scale system developed within the BrainScaleS project. PMID:24065877

  17. Artificial emotion triggered stochastic behavior transitions with motivational gain effects for multi-objective robot tasks

    NASA Astrophysics Data System (ADS)

    Dağlarli, Evren; Temeltaş, Hakan

    2007-04-01

    This paper presents artificial emotional system based autonomous robot control architecture. Hidden Markov model developed as mathematical background for stochastic emotional and behavior transitions. Motivation module of architecture considered as behavioral gain effect generator for achieving multi-objective robot tasks. According to emotional and behavioral state transition probabilities, artificial emotions determine sequences of behaviors. Also motivational gain effects of proposed architecture can be observed on the executing behaviors during simulation.

  18. Miniature curved artificial compound eyes

    PubMed Central

    Floreano, Dario; Pericet-Camara, Ramon; Viollet, Stéphane; Ruffier, Franck; Brückner, Andreas; Leitel, Robert; Buss, Wolfgang; Menouni, Mohsine; Expert, Fabien; Juston, Raphaël; Dobrzynski, Michal Karol; L’Eplattenier, Geraud; Recktenwald, Fabian; Mallot, Hanspeter A.; Franceschini, Nicolas

    2013-01-01

    In most animal species, vision is mediated by compound eyes, which offer lower resolution than vertebrate single-lens eyes, but significantly larger fields of view with negligible distortion and spherical aberration, as well as high temporal resolution in a tiny package. Compound eyes are ideally suited for fast panoramic motion perception. Engineering a miniature artificial compound eye is challenging because it requires accurate alignment of photoreceptive and optical components on a curved surface. Here, we describe a unique design method for biomimetic compound eyes featuring a panoramic, undistorted field of view in a very thin package. The design consists of three planar layers of separately produced arrays, namely, a microlens array, a neuromorphic photodetector array, and a flexible printed circuit board that are stacked, cut, and curved to produce a mechanically flexible imager. Following this method, we have prototyped and characterized an artificial compound eye bearing a hemispherical field of view with embedded and programmable low-power signal processing, high temporal resolution, and local adaptation to illumination. The prototyped artificial compound eye possesses several characteristics similar to the eye of the fruit fly Drosophila and other arthropod species. This design method opens up additional vistas for a broad range of applications in which wide field motion detection is at a premium, such as collision-free navigation of terrestrial and aerospace vehicles, and for the experimental testing of insect vision theories. PMID:23690574

  19. Human habitat positioning system for NASA's space flight environmental simulator

    NASA Technical Reports Server (NTRS)

    Caldwell, W. F.; Tucker, J.; Keas, P.

    1998-01-01

    Artificial gravity by centrifugation offers an effective countermeasure to the physiologic deconditioning of chronic exposure to microgravity; however, the system requirements of rotational velocity, radius of rotation, and resultant centrifugal acceleration require thorough investigation to ascertain the ideal human-use centrifuge configuration. NASA's Space Flight Environmental Simulator (SFES), a 16-meter (52-foot) diameter, animal-use centrifuge, was recently modified to accommodate human occupancy. This paper describes the SFES Human Habitat Positioning System, the mechanism that facilitates radius of rotation variability and alignment of the centrifuge occupants with the artificial gravity vector.

  20. Designing artificial enzymes from scratch: Experimental study and mesoscale simulation

    NASA Astrophysics Data System (ADS)

    Komarov, Pavel V.; Zaborina, Olga E.; Klimova, Tamara P.; Lozinsky, Vladimir I.; Khalatur, Pavel G.; Khokhlov, Alexey R.

    2016-09-01

    We present a new concept for designing biomimetic analogs of enzymatic proteins; these analogs are based on the synthetic protein-like copolymers. α-Chymotrypsin is used as a prototype of the artificial catalyst. Our experimental study shows that in the course of free radical copolymerization of hydrophobic and hydrophilic monomers the target globular nanostructures of a "core-shell" morphology appear in a selective solvent. Using a mesoscale computer simulation, we show that the protein-like globules can have a large number of catalytic centers located at the hydrophobic core/hydrophilic shell interface.

  1. Application of artificial neural networks in hydrological modeling: A case study of runoff simulation of a Himalayan glacier basin

    NASA Technical Reports Server (NTRS)

    Buch, A. M.; Narain, A.; Pandey, P. C.

    1994-01-01

    The simulation of runoff from a Himalayan Glacier basin using an Artificial Neural Network (ANN) is presented. The performance of the ANN model is found to be superior to the Energy Balance Model and the Multiple Regression model. The RMS Error is used as the figure of merit for judging the performance of the three models, and the RMS Error for the ANN model is the latest of the three models. The ANN is faster in learning and exhibits excellent system generalization characteristics.

  2. Constraints on observing brightness asymmetries in protoplanetary disks at solar system scale

    NASA Astrophysics Data System (ADS)

    Brunngräber, Robert; Wolf, Sebastian

    2018-04-01

    We have quantified the potential capabilities of detecting local brightness asymmetries in circumstellar disks with the Very Large Telescope Interferometer (VLTI) in the mid-infrared wavelength range. The study is motivated by the need to evaluate theoretical models of planet formation by direct observations of protoplanets at early evolutionary stages, when they are still embedded in their host disk. Up to now, only a few embedded candidate protoplanets have been detected with semi-major axes of 20-50 au. Due to the small angular separation from their central star, only long-baseline interferometry provides the angular resolving power to detect disk asymmetries associated to protoplanets at solar system scales in nearby star-forming regions. In particular, infrared observations are crucial to observe scattered stellar radiation and thermal re-emission in the vicinity of embedded companions directly. For this purpose we performed radiative transfer simulations to calculate the thermal re-emission and scattered stellar flux from a protoplanetary disk hosting an embedded companion. Based on that, visibilities and closure phases are calculated to simulate observations with the future beam combiner MATISSE, operating at the L, M and N bands at the VLTI. We find that the flux ratio of the embedded source to the central star can be as low as 0.5 to 0.6% for a detection at a feasible significance level due to the heated dust in the vicinity of the embedded source. Furthermore, we find that the likelihood for detection is highest for sources at intermediate distances r ≈ 2-5 au and disk masses not higher than ≈10-4 M⊙.

  3. Predicting the Emplacement of Improvised Explosive Devices: An Innovative Solution

    ERIC Educational Resources Information Center

    Lerner, Warren D.

    2013-01-01

    In this quantitative correlational study, simulated data were employed to examine artificial-intelligence techniques or, more specifically, artificial neural networks, as they relate to the location prediction of improvised explosive devices (IEDs). An ANN model was developed to predict IED placement, based upon terrain features and objects…

  4. Research and applications: Artificial intelligence

    NASA Technical Reports Server (NTRS)

    Chaitin, L. J.; Duda, R. O.; Johanson, P. A.; Raphael, B.; Rosen, C. A.; Yates, R. A.

    1970-01-01

    The program is reported for developing techniques in artificial intelligence and their application to the control of mobile automatons for carrying out tasks autonomously. Visual scene analysis, short-term problem solving, and long-term problem solving are discussed along with the PDP-15 simulator, LISP-FORTRAN-MACRO interface, resolution strategies, and cost effectiveness.

  5. Combining hygrothermal and corrosion models to predict corrosion of metal fasteners embedded in wood

    Treesearch

    Samuel L. Zelinka; Dominique Derome; Samuel V. Glass

    2011-01-01

    A combined heat, moisture, and corrosion model is presented and used to simulate the corrosion of metal fasteners embedded in solid wood exposed to the exterior environment. First, the moisture content and temperature at the wood/fastener interface is determined at each time step. Then, the amount of corrosion is determined spatially using an empirical corrosion rate...

  6. On the Embedded Complementarity of Agent-Based and Aggregate Reasoning in Students' Developing Understanding of Dynamic Systems

    ERIC Educational Resources Information Center

    Stroup, Walter M.; Wilensky, Uri

    2014-01-01

    Placed in the larger context of broadening the engagement with systems dynamics and complexity theory in school-aged learning and teaching, this paper is intended to introduce, situate, and illustrate--with results from the use of network supported participatory simulations in classrooms--a stance we call "embedded complementarity" as an…

  7. Experimental study on cross-sensitivity of temperature and vibration of embedded fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Chen, Tao; Ye, Meng-li; Liu, Shu-liang; Deng, Yan

    2018-03-01

    In view of the principle for occurrence of cross-sensitivity, a series of calibration experiments are carried out to solve the cross-sensitivity problem of embedded fiber Bragg gratings (FBGs) using the reference grating method. Moreover, an ultrasonic-vibration-assisted grinding (UVAG) model is established, and finite element analysis (FEA) is carried out under the monitoring environment of embedded temperature measurement system. In addition, the related temperature acquisition tests are set in accordance with requirements of the reference grating method. Finally, comparative analyses of the simulation and experimental results are performed, and it may be concluded that the reference grating method may be utilized to effectively solve the cross-sensitivity of embedded FBGs.

  8. Spacecraft Jitter Attenuation Using Embedded Piezoelectric Actuators

    NASA Technical Reports Server (NTRS)

    Belvin, W. Keith

    1995-01-01

    Remote sensing from spacecraft requires precise pointing of measurement devices in order to achieve adequate spatial resolution. Unfortunately, various spacecraft disturbances induce vibrational jitter in the remote sensing instruments. The NASA Langley Research Center has performed analysis, simulations, and ground tests to identify the more promising technologies for minimizing spacecraft pointing jitter. These studies have shown that the use of smart materials to reduce spacecraft jitter is an excellent match between a maturing technology and an operational need. This paper describes the use of embedding piezoelectric actuators for vibration control and payload isolation. In addition, recent advances in modeling, simulation, and testing of spacecraft pointing jitter are discussed.

  9. Micromagnetics on high-performance workstation and mobile computational platforms

    NASA Astrophysics Data System (ADS)

    Fu, S.; Chang, R.; Couture, S.; Menarini, M.; Escobar, M. A.; Kuteifan, M.; Lubarda, M.; Gabay, D.; Lomakin, V.

    2015-05-01

    The feasibility of using high-performance desktop and embedded mobile computational platforms is presented, including multi-core Intel central processing unit, Nvidia desktop graphics processing units, and Nvidia Jetson TK1 Platform. FastMag finite element method-based micromagnetic simulator is used as a testbed, showing high efficiency on all the platforms. Optimization aspects of improving the performance of the mobile systems are discussed. The high performance, low cost, low power consumption, and rapid performance increase of the embedded mobile systems make them a promising candidate for micromagnetic simulations. Such architectures can be used as standalone systems or can be built as low-power computing clusters.

  10. Mitigating cutting-induced plasticity in the contour method, Part 2: Numerical analysis

    DOE PAGES

    Muránsky, O.; Hamelin, C. J.; Hosseinzadeh, F.; ...

    2016-02-10

    Cutting-induced plasticity can have a significant effect on the measurement accuracy of the contour method. The present study examines the benefit of a double-embedded cutting configuration that relies on self-restraint of the specimen, relative to conventional edge-crack cutting configurations. A series of finite element analyses are used to simulate the planar sectioning performed during double-embedded and conventional edge-crack contour cutting configurations. The results of numerical analyses are first compared to measured results to validate the cutting simulations. The simulations are then used to compare the efficacy of different cutting configurations by predicting the deviation of the residual stress profile frommore » an original (pre-cutting) reference stress field, and the extent of cutting-induced plasticity. Comparisons reveal that while the double-embedded cutting configuration produces the most accurate residual stress measurements, the highest levels of plastic flow are generated in this process. As a result, this cutting-induced plastic deformation is, however, largely confined to small ligaments formed as a consequence of the sample sectioning process, and as such it does not significantly affect the back-calculated residual stress field.« less

  11. Mitigating cutting-induced plasticity in the contour method, Part 2: Numerical analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muránsky, O.; Hamelin, C. J.; Hosseinzadeh, F.

    Cutting-induced plasticity can have a significant effect on the measurement accuracy of the contour method. The present study examines the benefit of a double-embedded cutting configuration that relies on self-restraint of the specimen, relative to conventional edge-crack cutting configurations. A series of finite element analyses are used to simulate the planar sectioning performed during double-embedded and conventional edge-crack contour cutting configurations. The results of numerical analyses are first compared to measured results to validate the cutting simulations. The simulations are then used to compare the efficacy of different cutting configurations by predicting the deviation of the residual stress profile frommore » an original (pre-cutting) reference stress field, and the extent of cutting-induced plasticity. Comparisons reveal that while the double-embedded cutting configuration produces the most accurate residual stress measurements, the highest levels of plastic flow are generated in this process. As a result, this cutting-induced plastic deformation is, however, largely confined to small ligaments formed as a consequence of the sample sectioning process, and as such it does not significantly affect the back-calculated residual stress field.« less

  12. Using Microcomputers Simulations in the Classroom: Examples from Undergraduate and Faculty Computer Literacy Courses.

    ERIC Educational Resources Information Center

    Hart, Jeffrey A.

    1985-01-01

    Presents a discussion of how computer simulations are used in two undergraduate social science courses and a faculty computer literacy course on simulations and artificial intelligence. Includes a list of 60 simulations for use on mainframes and microcomputers. Entries include type of hardware required, publisher's address, and cost. Sample…

  13. Analysis of hydrodynamic fluctuations in heterogeneous adjacent multidomains in shear flow

    NASA Astrophysics Data System (ADS)

    Bian, Xin; Deng, Mingge; Tang, Yu-Hang; Karniadakis, George Em

    2016-03-01

    We analyze hydrodynamic fluctuations of a hybrid simulation under shear flow. The hybrid simulation is based on the Navier-Stokes (NS) equations on one domain and dissipative particle dynamics (DPD) on the other. The two domains overlap, and there is an artificial boundary for each one within the overlapping region. To impose the artificial boundary of the NS solver, a simple spatial-temporal averaging is performed on the DPD simulation. In the artificial boundary of the particle simulation, four popular strategies of constraint dynamics are implemented, namely the Maxwell buffer [Hadjiconstantinou and Patera, Int. J. Mod. Phys. C 08, 967 (1997), 10.1142/S0129183197000837], the relaxation dynamics [O'Connell and Thompson, Phys. Rev. E 52, R5792 (1995), 10.1103/PhysRevE.52.R5792], the least constraint dynamics [Nie et al., J. Fluid Mech. 500, 55 (2004), 10.1017/S0022112003007225; Werder et al., J. Comput. Phys. 205, 373 (2005), 10.1016/j.jcp.2004.11.019], and the flux imposition [Flekkøy et al., Europhys. Lett. 52, 271 (2000), 10.1209/epl/i2000-00434-8], to achieve a target mean value given by the NS solver. Going beyond the mean flow field of the hybrid simulations, we investigate the hydrodynamic fluctuations in the DPD domain. Toward that end, we calculate the transversal autocorrelation functions of the fluctuating variables in k space to evaluate the generation, transport, and dissipation of fluctuations in the presence of a hybrid interface. We quantify the unavoidable errors in the fluctuations, due to both the truncation of the domain and the constraint dynamics performed in the artificial boundary. Furthermore, we compare the four methods of constraint dynamics and demonstrate how to reduce the errors in fluctuations. The analysis and findings of this work are directly applicable to other hybrid simulations of fluid flow with thermal fluctuations.

  14. Evaluation of Different Techniques of Active Thermography for Quantification of Artificial Defects in Fiber-Reinforced Composites Using Thermal and Phase Contrast Data Analysis

    NASA Astrophysics Data System (ADS)

    Maierhofer, Christiane; Röllig, Mathias; Gower, Michael; Lodeiro, Maria; Baker, Graham; Monte, Christian; Adibekyan, Albert; Gutschwager, Berndt; Knazowicka, Lenka; Blahut, Ales

    2018-05-01

    For assuring the safety and reliability of components and constructions in energy applications made of fiber-reinforced polymers (e.g., blades of wind turbines and tidal power plants, engine chassis, flexible oil and gas pipelines) innovative non-destructive testing methods are required. Within the European project VITCEA complementary methods (shearography, microwave, ultrasonics and thermography) have been further developed and validated. Together with partners from the industry, test specimens have been constructed and selected on-site containing different artificial and natural defect artefacts. As base materials, carbon and glass fibers in different orientations and layering embedded in different matrix materials (epoxy, polyamide) have been considered. In this contribution, the validation of flash and lock-in thermography to these testing problems is presented. Data analysis is based on thermal contrasts and phase evaluation techniques. Experimental data are compared to analytical and numerical models. Among others, the influence of two different types of artificial defects (flat bottom holes and delaminations) with varying diameters and depths and of two different materials (CFRP and GFRP) with unidirectional and quasi-isotropic fiber alignment is discussed.

  15. Artificial Neural Network-Based Early-Age Concrete Strength Monitoring Using Dynamic Response Signals.

    PubMed

    Kim, Junkyeong; Lee, Chaggil; Park, Seunghee

    2017-06-07

    Concrete is one of the most common materials used to construct a variety of civil infrastructures. However, since concrete might be susceptible to brittle fracture, it is essential to confirm the strength of concrete at the early-age stage of the curing process to prevent unexpected collapse. To address this issue, this study proposes a novel method to estimate the early-age strength of concrete, by integrating an artificial neural network algorithm with a dynamic response measurement of the concrete material. The dynamic response signals of the concrete, including both electromechanical impedances and guided ultrasonic waves, are obtained from an embedded piezoelectric sensor module. The cross-correlation coefficient of the electromechanical impedance signals and the amplitude of the guided ultrasonic wave signals are selected to quantify the variation in dynamic responses according to the strength of the concrete. Furthermore, an artificial neural network algorithm is used to verify a relationship between the variation in dynamic response signals and concrete strength. The results of an experimental study confirm that the proposed approach can be effectively applied to estimate the strength of concrete material from the early-age stage of the curing process.

  16. Artificial Neural Network-Based Early-Age Concrete Strength Monitoring Using Dynamic Response Signals

    PubMed Central

    Kim, Junkyeong; Lee, Chaggil; Park, Seunghee

    2017-01-01

    Concrete is one of the most common materials used to construct a variety of civil infrastructures. However, since concrete might be susceptible to brittle fracture, it is essential to confirm the strength of concrete at the early-age stage of the curing process to prevent unexpected collapse. To address this issue, this study proposes a novel method to estimate the early-age strength of concrete, by integrating an artificial neural network algorithm with a dynamic response measurement of the concrete material. The dynamic response signals of the concrete, including both electromechanical impedances and guided ultrasonic waves, are obtained from an embedded piezoelectric sensor module. The cross-correlation coefficient of the electromechanical impedance signals and the amplitude of the guided ultrasonic wave signals are selected to quantify the variation in dynamic responses according to the strength of the concrete. Furthermore, an artificial neural network algorithm is used to verify a relationship between the variation in dynamic response signals and concrete strength. The results of an experimental study confirm that the proposed approach can be effectively applied to estimate the strength of concrete material from the early-age stage of the curing process. PMID:28590456

  17. Determining the biofilm penetrating ability of various biocides utilizing an artificial biofilm matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McIlwaine, D.B.; Diemer, J.; Grab, L.

    1997-12-01

    The efficacy of many commonly used biocides is often determined by laboratory evaluations against a variety of planktonic microorganisms. While these tests provide some information as to the performance of a biocide against a particular microorganism, they may not predict how well the biocide will perform under actual field conditions against the more problematic sissile form of the organisms. In order to address the issue of how well a biocide penetrates and kills the problematic microorganisms contained within a biofilm, an artificial biofilm system utilizing microorganisms embedded in alginate beads has been used to compare the efficacy of biocide treatmentsmore » against both the planktonic and sessile form of the same organism. Pure cultures of Enterobacter aerogenes, as well as mixed field isolates, were used in the experiments. In addition, the alginate beads were prepared with actual system waters taken from a variety of industrial applications. In that way, all of the scale and corrosion inhibitors and other contaminants which are present in the actual system are also present in the model biofilm system. In all cases, the organisms contained within the artificial biofilm were significantly more difficult to kill than the corresponding planktonic microbes.« less

  18. Simulation and Gaming: Directions, Issues, Ponderables.

    ERIC Educational Resources Information Center

    Uretsky, Michael

    1995-01-01

    Discusses the current use of simulation and gaming in a variety of settings. Describes advances in technology that facilitate the use of simulation and gaming, including computer power, computer networks, software, object-oriented programming, video, multimedia, virtual reality, and artificial intelligence. Considers the future use of simulation…

  19. Finite-difference time-domain simulation of electromagnetic bandgap and bi-anisotropic metamaterials

    NASA Astrophysics Data System (ADS)

    Bray, Matthew G.

    The term "Metamaterial" has been introduced into the electromagnetic lexicon in recent years to describe new artificial materials with electromagnetic properties that are not found in naturally occurring materials. Metamaterials exhibit electromagnetic properties that are not observed in its constituent materials, and/or not observed in nature. This thesis will analyze two different classes of metamaterials through the use of the finite-difference time-domain (FDTD) technique. The first class of metamaterials are artificial magnetic conductors (AMC) which approximate the behavior of a perfect magnetic conductor (PMC) over a finite frequency range. The AMC metamaterials are created through the use of an electromagnetic bandgap (EBG) structure. A periodic FDTD code is used to simulate a full-wave model of the metallodielectric EBG structures. The AMCs developed with the aid of the FDTD tool are then used to create low-profile antenna systems consisting of a dipole antenna in close proximity to an AMC surface. Through the use of this FDTD tool, several original contributions were made to the electromagnetic community. These include the first dual-band independently tunable EBG AMC ground plane and the first linearly polarized single-band and dual-band tunable antenna/EBG systems. The second class of materials analyzed are bi-anisotropic metamaterials. Bi-anisotropic media are the largest class of linear media which is able to describe the macroscopic material properties of artificial dielectrics, artificial magnetics, artificial chiral materials, left-handed materials, and other composite materials. The dispersive properties of these materials can be approximated by the oscillator model. This model assumes a Lorentzian frequency profile for the permittivity and permeability and a Condon model for chirality. A new FDTD formulation is introduced which can simulate this type of bi-anisotropic media. This FDTD method incorporates the dispersive material properties through a Z-transform technique derived from the constitutive relations for bi-anisotropic media. This is the first FDTD formulation to be able to simulate dispersive chiral media on a single FDTD grid. This tool was also used to perform the first simulations of dispersive chiral frequency selective surfaces.

  20. Adaptive lighting controllers using smart sensors

    NASA Astrophysics Data System (ADS)

    Papantoniou, Sotiris; Kolokotsa, Denia; Kalaitzakis, Kostas; Cesarini, Davide Nardi; Cubi, Eduard; Cristalli, Cristina

    2016-07-01

    The aim of this paper is to present an advanced controller for artificial lights evaluated in several rooms in two European Hospitals located in Chania, Greece and Ancona, Italy. Fuzzy techniques have been used for the architecture of the controller. The energy efficiency of the controllers has been calculated by running the controller coupled with validated models of the RADIANCE back-wards ray tracing software. The input of the controller is the difference between the current illuminance value and the desired one, while the output is the change of the light level that should be applied in the artificial lights. Simulation results indicate significant energy saving potentials. Energy saving potential is calculated from the comparison of the current use of the artificial lights by the users and the proposed one. All simulation work has been conducted using Matlab and RADIANCE environment.

  1. Hybrid thermal link-wise artificial compressibility method

    NASA Astrophysics Data System (ADS)

    Obrecht, Christian; Kuznik, Frédéric

    2015-10-01

    Thermal flow prediction is a subject of interest from a scientific and engineering points of view. Our motivation is to develop an accurate, easy to implement and highly scalable method for convective flows simulation. To this end, we present an extension to the link-wise artificial compressibility method (LW-ACM) for thermal simulation of weakly compressible flows. The novel hybrid formulation uses second-order finite difference operators of the energy equation based on the same stencils as the LW-ACM. For validation purposes, the differentially heated cubic cavity was simulated. The simulations remained stable for Rayleigh numbers up to Ra =108. The Nusselt numbers at isothermal walls and dynamics quantities are in good agreement with reference values from the literature. Our results show that the hybrid thermal LW-ACM is an effective and easy-to-use solution to solve convective flows.

  2. Influence of the preparation design and artificial aging on the fracture resistance of monolithic zirconia crowns

    PubMed Central

    Anastassova-Yoshida, Yana; Nothdurft, Frank Phillip; von See, Constantin; Pospiech, Peter

    2016-01-01

    PURPOSE The aim of this study was to evaluate the fracture resistance and fracture behavior of monolithic zirconia crowns in accordance with the preparation design and aging simulation method. MATERIALS AND METHODS An upper first molar was prepared sequentially with three different preparation designs: shoulderless preparation, 0.4 mm chamfer and 0.8 mm chamfer preparation. For each preparation design, 30 monolithic zirconia crowns were fabricated. After cementation on Cr-Co alloy dies, the following artificial aging procedures were performed: (1) thermal cycling and mechanical loading (TCML): 5000 cycles of thermal cycling 5℃–55℃ and chewing simulation (1,200,000 cycles, 50 N); (2) Low Temperature Degradation simulation (LTD): autoclave treatment at 137℃, 2 bar for 3 hours and chewing simulation; and (3) no pre-treatment (control group). After artificial aging, the crowns were loaded until fracture. RESULTS The mean values of fracture resistance varied between 3414 N (LTD; 0.8 mm chamfer preparation) and 5712 N (control group; shoulderless preparation). Two-way ANOVA analysis showed a significantly higher fracture loads for the shoulderless preparation, whereas no difference was found between the chamfer preparations. In contrast to TCML, after LTD simulation the fracture strength of monolithic zirconia crowns decreased significantly. CONCLUSION The monolithic crowns tested in this study showed generally high fracture load values. Preparation design and LTD simulation had a significant influence on the fracture strength of monolithic zirconia crowns. PMID:26949485

  3. The Hospital of the Future. Megatrends, Driving Forces, Barriers to Implementation, Overarching Perspectives, Major Trends into the Future, Implications for TATRC And Specific Recommendations for Action

    DTIC Science & Technology

    2008-10-01

    Healthcare Systems Will Be Those That Work With Data/Info In New Ways • Artificial Intelligence Will Come to the Fore o Effectively Acquire...Education • Artificial Intelligence Will Assist in o History and Physical Examination o Imaging Selection via algorithms o Test Selection via algorithms...medical language into a simulation model based upon artificial intelligence , and • the content verification and validation of the cognitive

  4. Artificial neural network in cosmic landscape

    NASA Astrophysics Data System (ADS)

    Liu, Junyu

    2017-12-01

    In this paper we propose that artificial neural network, the basis of machine learning, is useful to generate the inflationary landscape from a cosmological point of view. Traditional numerical simulations of a global cosmic landscape typically need an exponential complexity when the number of fields is large. However, a basic application of artificial neural network could solve the problem based on the universal approximation theorem of the multilayer perceptron. A toy model in inflation with multiple light fields is investigated numerically as an example of such an application.

  5. Simulation of a pulsatile total artificial heart: Development of a partitioned Fluid Structure Interaction model

    NASA Astrophysics Data System (ADS)

    Sonntag, Simon J.; Kaufmann, Tim A. S.; Büsen, Martin R.; Laumen, Marco; Linde, Torsten; Schmitz-Rode, Thomas; Steinseifer, Ulrich

    2013-04-01

    Heart disease is one of the leading causes of death in the world. Due to a shortage in donor organs artificial hearts can be a bridge to transplantation or even serve as a destination therapy for patients with terminal heart insufficiency. A pusher plate driven pulsatile membrane pump, the Total Artificial Heart (TAH) ReinHeart, is currently under development at the Institute of Applied Medical Engineering of RWTH Aachen University.This paper presents the methodology of a fully coupled three-dimensional time-dependent Fluid Structure Interaction (FSI) simulation of the TAH using a commercial partitioned block-Gauss-Seidel coupling package. Partitioned coupling of the incompressible fluid with the slender flexible membrane as well as a high fluid/structure density ratio of about unity led inherently to a deterioration of the stability (‘artificial added mass instability’). The objective was to conduct a stable simulation with high accuracy of the pumping process. In order to achieve stability, a combined resistance and pressure outlet boundary condition as well as the interface artificial compressibility method was applied. An analysis of the contact algorithm and turbulence condition is presented. Independence tests are performed for the structural and the fluid mesh, the time step size and the number of pulse cycles. Because of the large deformation of the fluid domain, a variable mesh stiffness depending on certain mesh properties was specified for the fluid elements. Adaptive remeshing was avoided. Different approaches for the mesh stiffness function are compared with respect to convergence, preservation of mesh topology and mesh quality. The resulting mesh aspect ratios, mesh expansion factors and mesh orthogonalities are evaluated in detail. The membrane motion and flow distribution of the coupled simulations are compared with a top-view recording and stereo Particle Image Velocimetry (PIV) measurements, respectively, of the actual pump.

  6. Connecting Artificial Brains to Robots in a Comprehensive Simulation Framework: The Neurorobotics Platform

    PubMed Central

    Falotico, Egidio; Vannucci, Lorenzo; Ambrosano, Alessandro; Albanese, Ugo; Ulbrich, Stefan; Vasquez Tieck, Juan Camilo; Hinkel, Georg; Kaiser, Jacques; Peric, Igor; Denninger, Oliver; Cauli, Nino; Kirtay, Murat; Roennau, Arne; Klinker, Gudrun; Von Arnim, Axel; Guyot, Luc; Peppicelli, Daniel; Martínez-Cañada, Pablo; Ros, Eduardo; Maier, Patrick; Weber, Sandro; Huber, Manuel; Plecher, David; Röhrbein, Florian; Deser, Stefan; Roitberg, Alina; van der Smagt, Patrick; Dillman, Rüdiger; Levi, Paul; Laschi, Cecilia; Knoll, Alois C.; Gewaltig, Marc-Oliver

    2017-01-01

    Combined efforts in the fields of neuroscience, computer science, and biology allowed to design biologically realistic models of the brain based on spiking neural networks. For a proper validation of these models, an embodiment in a dynamic and rich sensory environment, where the model is exposed to a realistic sensory-motor task, is needed. Due to the complexity of these brain models that, at the current stage, cannot deal with real-time constraints, it is not possible to embed them into a real-world task. Rather, the embodiment has to be simulated as well. While adequate tools exist to simulate either complex neural networks or robots and their environments, there is so far no tool that allows to easily establish a communication between brain and body models. The Neurorobotics Platform is a new web-based environment that aims to fill this gap by offering scientists and technology developers a software infrastructure allowing them to connect brain models to detailed simulations of robot bodies and environments and to use the resulting neurorobotic systems for in silico experimentation. In order to simplify the workflow and reduce the level of the required programming skills, the platform provides editors for the specification of experimental sequences and conditions, environments, robots, and brain–body connectors. In addition to that, a variety of existing robots and environments are provided. This work presents the architecture of the first release of the Neurorobotics Platform developed in subproject 10 “Neurorobotics” of the Human Brain Project (HBP).1 At the current state, the Neurorobotics Platform allows researchers to design and run basic experiments in neurorobotics using simulated robots and simulated environments linked to simplified versions of brain models. We illustrate the capabilities of the platform with three example experiments: a Braitenberg task implemented on a mobile robot, a sensory-motor learning task based on a robotic controller, and a visual tracking embedding a retina model on the iCub humanoid robot. These use-cases allow to assess the applicability of the Neurorobotics Platform for robotic tasks as well as in neuroscientific experiments. PMID:28179882

  7. Connecting Artificial Brains to Robots in a Comprehensive Simulation Framework: The Neurorobotics Platform.

    PubMed

    Falotico, Egidio; Vannucci, Lorenzo; Ambrosano, Alessandro; Albanese, Ugo; Ulbrich, Stefan; Vasquez Tieck, Juan Camilo; Hinkel, Georg; Kaiser, Jacques; Peric, Igor; Denninger, Oliver; Cauli, Nino; Kirtay, Murat; Roennau, Arne; Klinker, Gudrun; Von Arnim, Axel; Guyot, Luc; Peppicelli, Daniel; Martínez-Cañada, Pablo; Ros, Eduardo; Maier, Patrick; Weber, Sandro; Huber, Manuel; Plecher, David; Röhrbein, Florian; Deser, Stefan; Roitberg, Alina; van der Smagt, Patrick; Dillman, Rüdiger; Levi, Paul; Laschi, Cecilia; Knoll, Alois C; Gewaltig, Marc-Oliver

    2017-01-01

    Combined efforts in the fields of neuroscience, computer science, and biology allowed to design biologically realistic models of the brain based on spiking neural networks. For a proper validation of these models, an embodiment in a dynamic and rich sensory environment, where the model is exposed to a realistic sensory-motor task, is needed. Due to the complexity of these brain models that, at the current stage, cannot deal with real-time constraints, it is not possible to embed them into a real-world task. Rather, the embodiment has to be simulated as well. While adequate tools exist to simulate either complex neural networks or robots and their environments, there is so far no tool that allows to easily establish a communication between brain and body models. The Neurorobotics Platform is a new web-based environment that aims to fill this gap by offering scientists and technology developers a software infrastructure allowing them to connect brain models to detailed simulations of robot bodies and environments and to use the resulting neurorobotic systems for in silico experimentation. In order to simplify the workflow and reduce the level of the required programming skills, the platform provides editors for the specification of experimental sequences and conditions, environments, robots, and brain-body connectors. In addition to that, a variety of existing robots and environments are provided. This work presents the architecture of the first release of the Neurorobotics Platform developed in subproject 10 "Neurorobotics" of the Human Brain Project (HBP). At the current state, the Neurorobotics Platform allows researchers to design and run basic experiments in neurorobotics using simulated robots and simulated environments linked to simplified versions of brain models. We illustrate the capabilities of the platform with three example experiments: a Braitenberg task implemented on a mobile robot, a sensory-motor learning task based on a robotic controller, and a visual tracking embedding a retina model on the iCub humanoid robot. These use-cases allow to assess the applicability of the Neurorobotics Platform for robotic tasks as well as in neuroscientific experiments.

  8. Laser-induced artificial fulgurites

    NASA Astrophysics Data System (ADS)

    Bidin, Noriah; Marsin Sanagi, Mohd; Farah, Mohammed; Naqiuddin Razali, M.; Khamis, Jamil

    2018-07-01

    Fulgurite is a natural glass created by lightning. Naturally it can be found at beaches or in deserts. Artificial fulgurite is created by immersing high-voltage electrodes in a tab of sand. Commonly, fulgurite is of interest among geoscientists, but its applications are still unknown. In the present paper, the concept of natural fulgurite generation is simulated to induce artificial fulgurite. Instead of lightning, a high-power laser beam is used as a source of transient heating. Syntactic sand from agrowaste is used as target material. Artificial fulgurite is generated after transient heating from a laser beam. The benefit of this finding can be used to extract silica from rice husk ash using laser technology.

  9. Examination of mitral regurgitation with a goat heart model for the development of intelligent artificial papillary muscle.

    PubMed

    Shiraishi, Y; Yambe, T; Yoshizawa, M; Hashimoto, H; Yamada, A; Miura, H; Hashem, M; Kitano, T; Shiga, T; Homma, D

    2012-01-01

    Annuloplasty for functional mitral or tricuspid regurgitation has been made for surgical restoration of valvular diseases. However, these major techniques may sometimes be ineffective because of chamber dilation and valve tethering. We have been developing a sophisticated intelligent artificial papillary muscle (PM) by using an anisotropic shape memory alloy fiber for an alternative surgical reconstruction of the continuity of the mitral structural apparatus and the left ventricular myocardium. This study exhibited the mitral regurgitation with regard to the reduction in the PM tension quantitatively with an originally developed ventricular simulator using isolated goat hearts for the sophisticated artificial PM. Aortic and mitral valves with left ventricular free wall portions of isolated goat hearts (n=9) were secured on the elastic plastic membrane and statically pressurized, which led to valvular leaflet-papillary muscle positional change and central mitral regurgitation. PMs were connected to the load cell, and the relationship between the tension of regurgitation and PM tension were measured. Then we connected the left ventricular specimen model to our hydraulic ventricular simulator and achieved hemodynamic simulation with the controlled tension of PMs.

  10. The Chinese House Game.

    ERIC Educational Resources Information Center

    Lee, James R.

    1989-01-01

    Discussion of the use of simulations to teach international relations (IR) highlights the Chinese House Game, a computer-based decision-making game based on Inter Nation Simulation (INS). Topics discussed include the increasing role of artificial intelligence in IR simulations, multi-disciplinary approaches, and the direction of IR as a…

  11. Cover crops in the upper midwestern United States: Simulated effect on nitrate leaching with artificial drainage

    USDA-ARS?s Scientific Manuscript database

    Fall-planted winter cover crops are an agricultural management practice with multiple benefits that includes reducing nitrate losses from artificially drained fields. While the practice is commonly used in the southern and eastern U.S., little is known about its efficacy in Midwestern states where a...

  12. Artificial Intelligence: Themes in the Second Decade. Memo Number 67.

    ERIC Educational Resources Information Center

    Feigenbaum, Edward A.

    The text of an invited address on artificial intelligence (AI) research over the 1963-1968 period is presented. A survey of recent studies on the computer simulation of intellective processes emphasizes developments in heuristic programing, problem-solving and closely related learning models. Progress and problems in these areas are indicated by…

  13. Statistical Classification for Cognitive Diagnostic Assessment: An Artificial Neural Network Approach

    ERIC Educational Resources Information Center

    Cui, Ying; Gierl, Mark; Guo, Qi

    2016-01-01

    The purpose of the current investigation was to describe how the artificial neural networks (ANNs) can be used to interpret student performance on cognitive diagnostic assessments (CDAs) and evaluate the performances of ANNs using simulation results. CDAs are designed to measure student performance on problem-solving tasks and provide useful…

  14. Artificial viscosity in Godunov-type schemes to cure the carbuncle phenomenon

    NASA Astrophysics Data System (ADS)

    Rodionov, Alexander V.

    2017-09-01

    This work presents a new approach for curing the carbuncle instability. The idea underlying the approach is to introduce some dissipation in the form of right-hand sides of the Navier-Stokes equations into the basic method of solving Euler equations; in so doing, we replace the molecular viscosity coefficient by the artificial viscosity coefficient and calculate heat conductivity assuming that the Prandtl number is constant. For the artificial viscosity coefficient we have chosen a formula that is consistent with the von Neumann and Richtmyer artificial viscosity, but has its specific features (extension to multidimensional simulations, introduction of a threshold compression intensity that restricts additional dissipation to the shock layer only). The coefficients and the expression for the characteristic mesh size in this formula are chosen from a large number of Quirk-type problem computations. The new cure for the carbuncle flaw has been tested on first-order schemes (Godunov, Roe, HLLC and AUSM+ schemes) as applied to one- and two-dimensional simulations on smooth structured grids. Its efficiency has been demonstrated on several well-known test problems.

  15. Corrosion Monitors for Embedded Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Alex L.; Pfeifer, Kent B.; Casias, Adrian L.

    2017-05-01

    We have developed and characterized novel in-situ corrosion sensors to monitor and quantify the corrosive potential and history of localized environments. Embedded corrosion sensors can provide information to aid health assessments of internal electrical components including connectors, microelectronics, wires, and other susceptible parts. When combined with other data (e.g. temperature and humidity), theory, and computational simulation, the reliability of monitored systems can be predicted with higher fidelity.

  16. Employing inquiry-based computer simulations and embedded scientist videos to teach challenging climate change and nature of science concepts

    NASA Astrophysics Data System (ADS)

    Cohen, Edward Charles

    Design based research was utilized to investigate how students use a greenhouse effect simulation in order to derive best learning practices. During this process, students recognized the authentic scientific process involving computer simulations. The simulation used is embedded within an inquiry-based technology-mediated science curriculum known as Web-based Inquiry Science Environment (WISE). For this research, students from a suburban, diverse, middle school setting use the simulations as part of a two week-long class unit on climate change. A pilot study was conducted during phase one of the research that informed phase two, which encompasses the dissertation. During the pilot study, as students worked through the simulation, evidence of shifts in student motivation, understanding of science content, and ideas about the nature of science became present using a combination of student interviews, focus groups, and students' conversations. Outcomes of the pilot study included improvements to the pedagogical approach. Allowing students to do "Extreme Testing" (e.g., making the world as hot or cold as possible) and increasing the time for free exploration of the simulation are improvements made as a result of the findings of the pilot study. In the dissertation (phase two of the research design) these findings were implemented in a new curriculum scaled for 85 new students from the same school during the next school year. The modifications included new components implementing simulations as an assessment tool for all students and embedded modeling tools. All students were asked to build pre and post models, however due to technological constraints these were not an effective tool. A non-video group of 44 students was established and another group of 41 video students had a WISE curriculum which included twelve minutes of scientists' conversational videos referencing explicit aspects on the nature of science, specifically the use of models and simulations in science. The students in the video group had marked improvement compared to the non-video group on questions regarding modeling as a tool for representing objects and processes of science modeling aspects as evident by multiple data sources. The findings from the dissertation have potential impacts on improving Nature of Science (NOS) concepts around modeling by efficiently embedding short authentic scientific videos that can be easily used by many educators. Compared to published assessments by the American Association for the Advancement of Science (AAAS), due to the curriculum interventions both groups scored higher than the average United States middle school student on many NOS and climate content constructs.

  17. Employing Inquiry-Based Computer Simulations and Embedded Scientist Videos To Teach Challenging Climate Change and Nature of Science Concepts

    NASA Astrophysics Data System (ADS)

    Cohen, E.

    2013-12-01

    Design based research was utilized to investigate how students use a greenhouse effect simulation in order to derive best learning practices. During this process, students recognized the authentic scientific process involving computer simulations. The simulation used is embedded within an inquiry-based technology-mediated science curriculum known as Web-based Inquiry Science Environment (WISE). For this research, students from a suburban, diverse, middle school setting use the simulations as part of a two week-long class unit on climate change. A pilot study was conducted during phase one of the research that informed phase two, which encompasses the dissertation. During the pilot study, as students worked through the simulation, evidence of shifts in student motivation, understanding of science content, and ideas about the nature of science became present using a combination of student interviews, focus groups, and students' conversations. Outcomes of the pilot study included improvements to the pedagogical approach. Allowing students to do 'Extreme Testing' (e.g., making the world as hot or cold as possible) and increasing the time for free exploration of the simulation are improvements made as a result of the findings of the pilot study. In the dissertation (phase two of the research design) these findings were implemented in a new curriculum scaled for 85 new students from the same school during the next school year. The modifications included new components implementing simulations as an assessment tool for all students and embedded modeling tools. All students were asked to build pre and post models, however due to technological constraints these were not an effective tool. A non-video group of 44 students was established and another group of 41 video students had a WISE curriculum which included twelve minutes of scientists' conversational videos referencing explicit aspects on the nature of science, specifically the use of models and simulations in science. The students in the video group had marked improvement compared to the non-video group on questions regarding modeling as a tool for representing objects and processes of science modeling aspects as evident by multiple data sources. The findings from the dissertation have potential impacts on improving Nature of Science (NOS) concepts around modeling by efficiently embedding short authentic scientific videos that can be easily used by many educators. Compared to published assessments by the American Association for the Advancement of Science (AAAS), due to the curriculum interventions both groups scored higher than the average United States middle school student on many NOS and climate content constructs.

  18. Advanced microprocessor based power protection system using artificial neural network techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Z.; Kalam, A.; Zayegh, A.

    This paper describes an intelligent embedded microprocessor based system for fault classification in power system protection system using advanced 32-bit microprocessor technology. The paper demonstrates the development of protective relay to provide overcurrent protection schemes for fault detection. It also describes a method for power fault classification in three-phase system based on the use of neural network technology. The proposed design is implemented and tested on a single line three phase power system in power laboratory. Both the hardware and software development are described in detail.

  19. System of fabricating a flexible electrode array

    DOEpatents

    Krulevitch, Peter; Polla, Dennis L.; Maghribi, Mariam N.; Hamilton, Julie; Humayun, Mark S.; Weiland, James D.

    2010-10-12

    An image is captured or otherwise converted into a signal in an artificial vision system. The signal is transmitted to the retina utilizing an implant. The implant consists of a polymer substrate made of a compliant material such as poly(dimethylsiloxane) or PDMS. The polymer substrate is conformable to the shape of the retina. Electrodes and conductive leads are embedded in the polymer substrate. The conductive leads and the electrodes transmit the signal representing the image to the cells in the retina. The signal representing the image stimulates cells in the retina.

  20. System of fabricating a flexible electrode array

    DOEpatents

    Krulevitch, Peter [Pleasanton, CA; Polla, Dennis L [Roseville, MN; Maghribi, Mariam N [Davis, CA; Hamilton, Julie [Tracy, CA; Humayun, Mark S [La Canada, CA; Weiland, James D [Valencia, CA

    2012-01-28

    An image is captured or otherwise converted into a signal in an artificial vision system. The signal is transmitted to the retina utilizing an implant. The implant consists of a polymer substrate made of a compliant material such as poly(dimethylsiloxane) or PDMS. The polymer substrate is conformable to the shape of the retina. Electrodes and conductive leads are embedded in the polymer substrate. The conductive leads and the electrodes transmit the signal representing the image to the cells in the retina. The signal representing the image stimulates cells in the retina.

  1. The Impact of a Simulation and Problem-Based Learning Design Project on Student Learning and Teamwork Skills. CSE Technical Report.

    ERIC Educational Resources Information Center

    Chung, Gregory K. W. K.

    This study examined a civil engineering capstone course that embedded a sophisticated simulation-based task within instruction. Students (n=28) were required to conduct a hazardous waste site investigation using simulation software designed specifically for the course (Interactive Site Investigation Software) (ISIS). The software simulated…

  2. The Effectiveness of Web-Based Multimedia Applications Simulation in Teaching and Learning

    ERIC Educational Resources Information Center

    Ziden, Azidah Abu; Rahman, Muhammad Faizal Abdul

    2013-01-01

    This study focuses on the effectiveness of using multimedia virtual simulation in Islamic Studies in Malaysia. Virtual simulation methods embedded in Microsoft PowerPoint was used in this study to determine the effectiveness of these modes to motivate students on the topic of pilgrimage in the Islamic Studies subject. Pilgrimage topic has been…

  3. A passive exoskeleton with artificial tendons: design and experimental evaluation.

    PubMed

    van Dijk, Wietse; van der Kooij, Herman; Hekman, Edsko

    2011-01-01

    We developed a passive exoskeleton that was designed to minimize joint work during walking. The exoskeleton makes use of passive structures, called artificial tendons, acting in parallel with the leg. Artificial tendons are elastic elements that are able to store and redistribute energy over the human leg joints. The elastic characteristics of the tendons have been optimized to minimize the mechanical work of the human leg joints. In simulation the maximal reduction was 40 percent. The performance of the exoskeleton was evaluated in an experiment in which nine subjects participated. Energy expenditure and muscle activation were measured during three conditions: Normal walking, walking with the exoskeleton without artificial tendons, and walking with the exoskeleton with the artificial tendons. Normal walking was the most energy efficient. While walking with the exoskeleton, the artificial tendons only resulted in a negligibly small decrease in energy expenditure. © 2011 IEEE

  4. An embedded checklist in the Anesthesia Information Management System improves pre-anaesthetic induction setup: a randomised controlled trial in a simulation setting.

    PubMed

    Wetmore, Douglas; Goldberg, Andrew; Gandhi, Nishant; Spivack, John; McCormick, Patrick; DeMaria, Samuel

    2016-10-01

    Anaesthesiologists work in a high stress, high consequence environment in which missed steps in preparation may lead to medical errors and potential patient harm. The pre-anaesthetic induction period has been identified as a time in which medical errors can occur. The Anesthesia Patient Safety Foundation has developed a Pre-Anesthetic Induction Patient Safety (PIPS) checklist. We conducted this study to test the effectiveness of this checklist, when embedded in our institutional Anesthesia Information Management System (AIMS), on resident performance in a simulated environment. Using a randomised, controlled, observer-blinded design, we compared performance of anaesthesiology residents in a simulated operating room under production pressure using a checklist in completing a thorough pre-anaesthetic induction evaluation and setup with that of residents with no checklist. The checklist was embedded in the simulated operating room's electronic medical record. Data for 38 anaesthesiology residents shows a statistically significant difference in performance in pre-anaesthetic setup and evaluation as scored by blinded raters (maximum score 22 points), with the checklist group performing better by 7.8 points (p<0.01). The effects of gender and year of residency on total score were not significant. Simulation duration (time to anaesthetic agent administration) was increased significantly by the use of the checklist. Required use of a pre-induction checklist improves anaesthesiology resident performance in a simulated environment. The PIPS checklist as an integrated part of a departmental AIMS warrant further investigation as a quality measure. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  5. Training Knowledge Bots for Physics-Based Simulations Using Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.; Wong, Jay Ming

    2014-01-01

    Millions of complex physics-based simulations are required for design of an aerospace vehicle. These simulations are usually performed by highly trained and skilled analysts, who execute, monitor, and steer each simulation. Analysts rely heavily on their broad experience that may have taken 20-30 years to accumulate. In addition, the simulation software is complex in nature, requiring significant computational resources. Simulations of system of systems become even more complex and are beyond human capacity to effectively learn their behavior. IBM has developed machines that can learn and compete successfully with a chess grandmaster and most successful jeopardy contestants. These machines are capable of learning some complex problems much faster than humans can learn. In this paper, we propose using artificial neural network to train knowledge bots to identify the idiosyncrasies of simulation software and recognize patterns that can lead to successful simulations. We examine the use of knowledge bots for applications of computational fluid dynamics (CFD), trajectory analysis, commercial finite-element analysis software, and slosh propellant dynamics. We will show that machine learning algorithms can be used to learn the idiosyncrasies of computational simulations and identify regions of instability without including any additional information about their mathematical form or applied discretization approaches.

  6. EdiPy: a resource to simulate the evolution of plant mitochondrial genes under the RNA editing.

    PubMed

    Picardi, Ernesto; Quagliariello, Carla

    2006-02-01

    EdiPy is an online resource appropriately designed to simulate the evolution of plant mitochondrial genes in a biologically realistic fashion. EdiPy takes into account the presence of sites subjected to RNA editing and provides multiple artificial alignments corresponding to both genomic and cDNA sequences. Each artificial data set can successively be submitted to main and widespread evolutionary and phylogenetic software packages such as PAUP, Phyml, PAML and Phylip. As an online bioinformatic resource, EdiPy is available at the following web page: http://biologia.unical.it/py_script/index.html.

  7. Signal recognition efficiencies of artificial neural-network pulse-shape discrimination in HPGe -decay searches

    NASA Astrophysics Data System (ADS)

    Caldwell, A.; Cossavella, F.; Majorovits, B.; Palioselitis, D.; Volynets, O.

    2015-07-01

    A pulse-shape discrimination method based on artificial neural networks was applied to pulses simulated for different background, signal and signal-like interactions inside a germanium detector. The simulated pulses were used to investigate variations of efficiencies as a function of used training set. It is verified that neural networks are well-suited to identify background pulses in true-coaxial high-purity germanium detectors. The systematic uncertainty on the signal recognition efficiency derived using signal-like evaluation samples from calibration measurements is estimated to be 5 %. This uncertainty is due to differences between signal and calibration samples.

  8. Facial recognition using enhanced pixelized image for simulated visual prosthesis.

    PubMed

    Li, Ruonan; Zhhang, Xudong; Zhang, Hui; Hu, Guanshu

    2005-01-01

    A simulated face recognition experiment using enhanced pixelized images is designed and performed for the artificial visual prosthesis. The results of the simulation reveal new characteristics of visual performance in an enhanced pixelization condition, and then new suggestions on the future design of visual prosthesis are provided.

  9. Rethinking History with Simulations.

    ERIC Educational Resources Information Center

    Corbeil, Pierre

    1988-01-01

    Suggests that simulations and new technologies present new ways to look at historical questions. Discusses approaches from basic board game simulations to the use of artificial intelligence. States that educators must accept new technologies as instructional tools and that the concept of history must be modified to work with these tools. (GEA)

  10. Unlearning of Mixed States in the Hopfield Model —Extensive Loading Case—

    NASA Astrophysics Data System (ADS)

    Hayashi, Kao; Hashimoto, Chinami; Kimoto, Tomoyuki; Uezu, Tatsuya

    2018-05-01

    We study the unlearning of mixed states in the Hopfield model for the extensive loading case. Firstly, we focus on case I, where several embedded patterns are correlated with each other, whereas the rest are uncorrelated. Secondly, we study case II, where patterns are divided into clusters in such a way that patterns in any cluster are correlated but those in two different clusters are not correlated. By using the replica method, we derive the saddle point equations for order parameters under the ansatz of replica symmetry. The same equations are also derived by self-consistent signal-to-noise analysis in case I. In both cases I and II, we find that when the correlation between patterns is large, the network loses its ability to retrieve the embedded patterns and, depending on the parameters, a confused memory, which is a mixed state and/or spin glass state, emerges. By unlearning the mixed state, the network acquires the ability to retrieve the embedded patterns again in some parameter regions. We find that to delete the mixed state and to retrieve the embedded patterns, the coefficient of unlearning should be chosen appropriately. We perform Markov chain Monte Carlo simulations and find that the simulation and theoretical results agree reasonably well, except for the spin glass solution in a parameter region due to the replica symmetry breaking. Furthermore, we find that the existence of many correlated clusters reduces the stabilities of both embedded patterns and mixed states.

  11. Characterization of a Method for Inverse Heat Conduction Using Real and Simulated Thermocouple Data

    NASA Technical Reports Server (NTRS)

    Pizzo, Michelle E.; Glass, David E.

    2017-01-01

    It is often impractical to instrument the external surface of high-speed vehicles due to the aerothermodynamic heating. Temperatures can instead be measured internal to the structure using embedded thermocouples, and direct and inverse methods can then be used to estimate temperature and heat flux on the external surface. Two thermocouples embedded at different depths are required to solve direct and inverse problems, and filtering schemes are used to reduce noise in the measured data. Accuracy in the estimated surface temperature and heat flux is dependent on several factors. Factors include the thermocouple location through the thickness of a material, the sensitivity of the surface solution to the error in the specified location of the embedded thermocouples, and the sensitivity to the error in thermocouple data. The effect of these factors on solution accuracy is studied using the methodology discussed in the work of Pizzo, et. al.1 A numerical study is performed to determine if there is an optimal depth at which to embed one thermocouple through the thickness of a material assuming that a second thermocouple is installed on the back face. Solution accuracy will be discussed for a range of embedded thermocouple depths. Moreover, the sensitivity of the surface solution to (a) the error in the specified location of the embedded thermocouple and to (b) the error in the thermocouple data are quantified using numerical simulation, and the results are discussed.

  12. Enhanced performance of microfluidic soft pressure sensors with embedded solid microspheres

    NASA Astrophysics Data System (ADS)

    Shin, Hee-Sup; Ryu, Jaiyoung; Majidi, Carmel; Park, Yong-Lae

    2016-02-01

    The cross-sectional geometry of an embedded microchannel influences the electromechanical response of a soft microfluidic sensor to applied surface pressure. When a pressure is exerted on the surface of the sensor deforming the soft structure, the cross-sectional area of the embedded channel filled with a conductive fluid decreases, increasing the channel’s electrical resistance. This electromechanical coupling can be tuned by adding solid microspheres into the channel. In order to determine the influence of microspheres, we use both analytic and computational methods to predict the pressure responses of soft microfluidic sensors with two different channel cross-sections: a square and an equilateral triangular. The analytical models were derived from contact mechanics in which microspheres were regarded as spherical indenters, and finite element analysis (FEA) was used for simulation. For experimental validation, sensor samples with the two different channel cross-sections were prepared and tested. For comparison, the sensor samples were tested both with and without microspheres. All three results from the analytical models, the FEA simulations, and the experiments showed reasonable agreement confirming that the multi-material soft structure significantly improved its pressure response in terms of both linearity and sensitivity. The embedded solid particles enhanced the performance of soft sensors while maintaining their flexible and stretchable mechanical characteristic. We also provide analytical and experimental analyses of hysteresis of microfluidic soft sensors considering a resistive force to the shape recovery of the polymer structure by the embedded viscous fluid.

  13. An embedding structure of the cross-tail CSs and its relation to the ion composition according to MAVEN observations in the Martian magnetotai

    NASA Astrophysics Data System (ADS)

    Grigorenko, E. E.; Shuvalov, S. D.; Malova, H. V.; Zelenyi, L. M.

    2017-12-01

    The multilayered (embedded) Current Sheets (CS) are often observed in the Earth's magnetotail. Simulations based on quasi-adiabatic dynamics of different ion components showed that the observed embedding structures can be reconstructed by taking into account the net electric currents carried by ions with different masses and, thus, with different gyroradii. The last determines the spatial scales of the corresponding current layers. The embedding can be quantitatively described by the ratio of the magnetic field value at the edges of a thin embedded layer Bext to the value of the magnetic field outside a thick CS, B0. For the Earth's magnetotail it was shown that there is a relation between the Bext/B0 and the relative densities of heavy and light ion components. In the Martian magnetotail the embedding feature is also often observed in the cross-tail CS formed by the draping of the IMF field lines. The analysis of 100 CS crossings by MAVEN spacecraft showed that in the Martian magnetotail the relation between the embedding characteristics and ion composition is similar to the one observed in the Earth's magnetotail and the spatial scales of the embedded layers are defined by the gyroradii of the current carrying ion component.

  14. The nature of very low luminosity objects (VeLLOs)

    NASA Astrophysics Data System (ADS)

    Vorobyov, Eduard I.; Elbakyan, Vardan; Dunham, Michael M.; Guedel, Manuel

    2017-04-01

    Aims: The nature of very low luminosity objects (VeLLOs) with the internal luminosity Lobj ≤ 0.1 L⊙ is investigated by means of numerical modeling coupling the core collapse simulations with the stellar evolution calculations. Methods: The gravitational collapse of a large sample of model cores in the mass range 0.1-2.0 M⊙ is investigated. Numerical simulations were started at the pre-stellar phase and terminated at the end of the embedded phase when 90% of the initial core mass had been accreted onto the forming protostar plus disk system. The disk formation and evolution was studied using numerical hydrodynamics simulations, while the formation and evolution of the central star was calculated using a stellar evolution code. Three scenarios for mass accretion from the disk onto the star were considered: hybrid accretion in which a fraction of accreted energy absorbed by the protostar depends on the accretion rate, hot accretion wherein a fraction of accreted energy is constant, and cold accretion wherein all accretion energy is radiated away. Results: Our conclusions on the nature of VeLLOs depend crucially on the character of protostellar accretion. In the hybrid accretion scenario, most VeLLOs (90.6%) are expected to be the first hydrostatic cores (FHSCs) and only a small fraction (9.4%) are true protostars. In the hot accretion scenario, all VeLLOs are FHSCs due to overly high photospheric luminosity of protostars. In the cold accretion scenario, on the contrary, the majority of VeLLOs belong to the Class I phase of stellar evolution. The reason is that the stellar photospheric luminosity, which sets the floor for the total internal luminosity of a young star, is lower in cold accretion, thus enabling more VeLLOs in the protostellar stage. VeLLOs are relatively rare objects occupying 7%-11% of the total duration of the embedded phase and their masses do not exceed 0.3 M⊙. When compared with published observations inferring a fraction of VeLLOs in the protostellar stage of 6.25%, we find that cold accretion provides a much better fit to observations than hybrid accretion (5.7% for cold accretion vs. 0.7% for hybrid accretion). Both accretion scenarios predict more VeLLOs in the Class I phase than in the Class 0 phase, in contrast to observations. Finally, when accretion variability with episodic bursts is artificially filtered out from our numerically derived accretion rates, the fraction of VeLLOs in the protostellar stage drops significantly, suggesting a causal link between the two phenomena.

  15. Dynamic virtual optical network embedding in spectral and spatial domains over elastic optical networks with multicore fibers

    NASA Astrophysics Data System (ADS)

    Zhu, Ruijie; Zhao, Yongli; Yang, Hui; Tan, Yuanlong; Chen, Haoran; Zhang, Jie; Jue, Jason P.

    2016-08-01

    Network virtualization can eradicate the ossification of the infrastructure and stimulate innovation of new network architectures and applications. Elastic optical networks (EONs) are ideal substrate networks for provisioning flexible virtual optical network (VON) services. However, as network traffic continues to increase exponentially, the capacity of EONs will reach the physical limitation soon. To further increase network flexibility and capacity, the concept of EONs is extended into the spatial domain. How to map the VON onto substrate networks by thoroughly using the spectral and spatial resources is extremely important. This process is called VON embedding (VONE).Considering the two kinds of resources at the same time during the embedding process, we propose two VONE algorithms, the adjacent link embedding algorithm (ALEA) and the remote link embedding algorithm (RLEA). First, we introduce a model to solve the VONE problem. Then we design the embedding ability measurement of network elements. Based on the network elements' embedding ability, two VONE algorithms were proposed. Simulation results show that the proposed VONE algorithms could achieve better performance than the baseline algorithm in terms of blocking probability and revenue-to-cost ratio.

  16. Method and Process for the Creation of Modeling and Simulation Tools for Human Crowd Behavior

    DTIC Science & Technology

    2014-07-23

    Support• Program Executive Office Ground Combat Systems • Program Executive Office Soldier TACOM LCMC MG Michael J. Terry Assigned/Direct Support...environmental technologies and explosive ordnance disposal Fire Control: Battlefield digitization; embedded system software; aero ballistics and...MRAD – Handheld stand-off NLW operated by Control Force • Simulated Projectile Weapon • Simulated Handheld Directed Energy NLW ( VDE ) – Simulated

  17. Quantum Fragment Based ab Initio Molecular Dynamics for Proteins.

    PubMed

    Liu, Jinfeng; Zhu, Tong; Wang, Xianwei; He, Xiao; Zhang, John Z H

    2015-12-08

    Developing ab initio molecular dynamics (AIMD) methods for practical application in protein dynamics is of significant interest. Due to the large size of biomolecules, applying standard quantum chemical methods to compute energies for dynamic simulation is computationally prohibitive. In this work, a fragment based ab initio molecular dynamics approach is presented for practical application in protein dynamics study. In this approach, the energy and forces of the protein are calculated by a recently developed electrostatically embedded generalized molecular fractionation with conjugate caps (EE-GMFCC) method. For simulation in explicit solvent, mechanical embedding is introduced to treat protein interaction with explicit water molecules. This AIMD approach has been applied to MD simulations of a small benchmark protein Trpcage (with 20 residues and 304 atoms) in both the gas phase and in solution. Comparison to the simulation result using the AMBER force field shows that the AIMD gives a more stable protein structure in the simulation, indicating that quantum chemical energy is more reliable. Importantly, the present fragment-based AIMD simulation captures quantum effects including electrostatic polarization and charge transfer that are missing in standard classical MD simulations. The current approach is linear-scaling, trivially parallel, and applicable to performing the AIMD simulation of proteins with a large size.

  18. A comprehensive overview of the applications of artificial life.

    PubMed

    Kim, Kyung-Joong; Cho, Sung-Bae

    2006-01-01

    We review the applications of artificial life (ALife), the creation of synthetic life on computers to study, simulate, and understand living systems. The definition and features of ALife are shown by application studies. ALife application fields treated include robot control, robot manufacturing, practical robots, computer graphics, natural phenomenon modeling, entertainment, games, music, economics, Internet, information processing, industrial design, simulation software, electronics, security, data mining, and telecommunications. In order to show the status of ALife application research, this review primarily features a survey of about 180 ALife application articles rather than a selected representation of a few articles. Evolutionary computation is the most popular method for designing such applications, but recently swarm intelligence, artificial immune network, and agent-based modeling have also produced results. Applications were initially restricted to the robotics and computer graphics, but presently, many different applications in engineering areas are of interest.

  19. Tribological performance of the biological components of synovial fluid in artificial joint implants

    NASA Astrophysics Data System (ADS)

    Ghosh, Subir; Choudhury, Dipankar; Roy, Taposh; Moradi, Ali; Masjuki, H. H.; Pingguan-Murphy, Belinda

    2015-08-01

    The concentration of biological components of synovial fluid (such as albumin, globulin, hyaluronic acid, and lubricin) varies between healthy persons and osteoarthritis (OA) patients. The aim of the present study is to compare the effects of such variation on tribological performance in a simulated hip joint model. The study was carried out experimentally by utilizing a pin-on-disk simulator on ceramic-on-ceramic (CoC) and ceramic-on-polyethylene (CoP) hip joint implants. The experimental results show that both friction and wear of artificial joints fluctuate with the concentration level of biological components. Moreover, the performance also varies between material combinations. Wear debris sizes and shapes produced by ceramic and polyethylene were diverse. We conclude that the biological components of synovial fluid and their concentrations should be considered in order to select an artificial hip joint to best suit that patient.

  20. Deepthi Vaidhynathan | NREL

    Science.gov Websites

    Complex Systems Simulation and Optimization Group on performance analysis and benchmarking latest . Research Interests High Performance Computing|Embedded System |Microprocessors & Microcontrollers

  1. Dominance of debonding defect of CFST on PZT sensor response considering the meso-scale structure of concrete with multi-scale simulation

    NASA Astrophysics Data System (ADS)

    Xu, Bin; Chen, Hongbing; Mo, Y.-L.; Zhou, Tianmin

    2018-07-01

    Piezoelectric-lead-zirconate-titanate(PZT)-based interface debonding defects detection for concrete filled steel tubulars (CFSTs) has been proposed and validated through experiments, and numerical study on its mechanism has been carried out recently by assuming that concrete material is homogenous. However, concrete is composed of coarse and fine aggregates, mortar and interface transition zones (ITZs) and even initial defects and is a typical nonhomogeneous material and its mesoscale structure might affect the wave propagation in the concrete core of CFST members. Therefore, it is significantly important to further investigate the influence of mesoscale structure of concrete on the stress wave propagation and the response of embedded PZT sensor for the interface debonding detection. In this study, multi-physical numerical simulation on the wave propagation and embedded PZT sensor response of rectangular CFST members with numerical concrete core considering the randomness in circular aggregate distribution, and coupled with surface-mounted PZT actuator and embedded PZT sensor is carried out. The effect of randomness in the circular aggregates distribution and the existence of ITZs are discussed. Both a local stress wave propagation behavior including transmission, reflection, and diffraction at the interface between concrete core and steel tube under a pulse signal excitation and a global wave field in the cross-section of the rectangular CFST models without and with interface debonding defects under sweep frequency excitation are simulated. The sensitivity of an evaluation index based on wavelet packet analysis on the embedded PZT sensor response on the variation of mesoscale parameters of concrete core without and with different interface debonding defects under sweep frequency voltage signal is investigated in details. The results show that the effect of the interface debondings on the embedded PZT measurement is dominant when compared to the meso-scale structures of concrete core. This study verified the feasibility of the PZT based debonding detection for rectangular CFST members even the meso-scale structure of concrete core is considered.

  2. Biomechanical validation of an artificial tooth–periodontal ligament–bone complex for in vitro orthodontic load measurement

    PubMed Central

    Xia, Zeyang; Chen, Jie

    2014-01-01

    Objectives To develop an artificial tooth–periodontal ligament (PDL)–bone complex (ATPBC) that simulates clinical crown displacement. Material and Methods An ATPBC was created. It had a socket hosting a tooth with a thin layer of silicon mixture in between for simulating the PDL. The complex was attached to a device that allows applying a controlled force to the crown and measuring the resulting crown displacement. Crown displacements were compared to previously published data for validation. Results The ATPBC that had a PDL made of two types of silicones, 50% gasket sealant No. 2 and 50% RTV 587 silicone, with a thickness of 0.3 mm, simulated the PDL well. The mechanical behaviors (1) force-displacement relationship, (2) stress relaxation, (3) creep, and (4) hysteresis were validated by the published results. Conclusion The ATPBC simulated the crown displacement behavior reported from biological studies well. PMID:22970752

  3. Surrogate Modeling of High-Fidelity Fracture Simulations for Real-Time Residual Strength Predictions

    NASA Technical Reports Server (NTRS)

    Spear, Ashley D.; Priest, Amanda R.; Veilleux, Michael G.; Ingraffea, Anthony R.; Hochhalter, Jacob D.

    2011-01-01

    A surrogate model methodology is described for predicting in real time the residual strength of flight structures with discrete-source damage. Starting with design of experiment, an artificial neural network is developed that takes as input discrete-source damage parameters and outputs a prediction of the structural residual strength. Target residual strength values used to train the artificial neural network are derived from 3D finite element-based fracture simulations. A residual strength test of a metallic, integrally-stiffened panel is simulated to show that crack growth and residual strength are determined more accurately in discrete-source damage cases by using an elastic-plastic fracture framework rather than a linear-elastic fracture mechanics-based method. Improving accuracy of the residual strength training data would, in turn, improve accuracy of the surrogate model. When combined, the surrogate model methodology and high-fidelity fracture simulation framework provide useful tools for adaptive flight technology.

  4. Medical image diagnoses by artificial neural networks with image correlation, wavelet transform, simulated annealing

    NASA Astrophysics Data System (ADS)

    Szu, Harold H.

    1993-09-01

    Classical artificial neural networks (ANN) and neurocomputing are reviewed for implementing a real time medical image diagnosis. An algorithm known as the self-reference matched filter that emulates the spatio-temporal integration ability of the human visual system might be utilized for multi-frame processing of medical imaging data. A Cauchy machine, implementing a fast simulated annealing schedule, can determine the degree of abnormality by the degree of orthogonality between the patient imagery and the class of features of healthy persons. An automatic inspection process based on multiple modality image sequences is simulated by incorporating the following new developments: (1) 1-D space-filling Peano curves to preserve the 2-D neighborhood pixels' relationship; (2) fast simulated Cauchy annealing for the global optimization of self-feature extraction; and (3) a mini-max energy function for the intra-inter cluster-segregation respectively useful for top-down ANN designs.

  5. Surrogate Modeling of High-Fidelity Fracture Simulations for Real-Time Residual Strength Predictions

    NASA Technical Reports Server (NTRS)

    Spear, Ashley D.; Priest, Amanda R.; Veilleux, Michael G.; Ingraffea, Anthony R.; Hochhalter, Jacob D.

    2011-01-01

    A surrogate model methodology is described for predicting, during flight, the residual strength of aircraft structures that sustain discrete-source damage. Starting with design of experiment, an artificial neural network is developed that takes as input discrete-source damage parameters and outputs a prediction of the structural residual strength. Target residual strength values used to train the artificial neural network are derived from 3D finite element-based fracture simulations. Two ductile fracture simulations are presented to show that crack growth and residual strength are determined more accurately in discrete-source damage cases by using an elastic-plastic fracture framework rather than a linear-elastic fracture mechanics-based method. Improving accuracy of the residual strength training data does, in turn, improve accuracy of the surrogate model. When combined, the surrogate model methodology and high fidelity fracture simulation framework provide useful tools for adaptive flight technology.

  6. Prediction of La0.6Sr0.4Co0.2Fe0.8O3 cathode microstructures during sintering: Kinetic Monte Carlo (KMC) simulations calibrated by artificial neural networks

    NASA Astrophysics Data System (ADS)

    Yan, Zilin; Kim, Yongtae; Hara, Shotaro; Shikazono, Naoki

    2017-04-01

    The Potts Kinetic Monte Carlo (KMC) model, proven to be a robust tool to study all stages of sintering process, is an ideal tool to analyze the microstructure evolution of electrodes in solid oxide fuel cells (SOFCs). Due to the nature of this model, the input parameters of KMC simulations such as simulation temperatures and attempt frequencies are difficult to identify. We propose a rigorous and efficient approach to facilitate the input parameter calibration process using artificial neural networks (ANNs). The trained ANN reduces drastically the number of trial-and-error of KMC simulations. The KMC simulation using the calibrated input parameters predicts the microstructures of a La0.6Sr0.4Co0.2Fe0.8O3 cathode material during sintering, showing both qualitative and quantitative congruence with real 3D microstructures obtained by focused ion beam scanning electron microscopy (FIB-SEM) reconstruction.

  7. Optical architecture design for detection of absorbers embedded in visceral fat.

    PubMed

    Francis, Robert; Florence, James; MacFarlane, Duncan

    2014-05-01

    Optically absorbing ducts embedded in scattering adipose tissue can be injured during laparoscopic surgery. Non-sequential simulations and theoretical analysis compare optical system configurations for detecting these absorbers. For absorbers in deep scattering volumes, trans-illumination is preferred instead of diffuse reflectance. For improved contrast, a scanning source with a large area detector is preferred instead of a large area source with a pixelated detector.

  8. Optical architecture design for detection of absorbers embedded in visceral fat

    PubMed Central

    Francis, Robert; Florence, James; MacFarlane, Duncan

    2014-01-01

    Optically absorbing ducts embedded in scattering adipose tissue can be injured during laparoscopic surgery. Non-sequential simulations and theoretical analysis compare optical system configurations for detecting these absorbers. For absorbers in deep scattering volumes, trans-illumination is preferred instead of diffuse reflectance. For improved contrast, a scanning source with a large area detector is preferred instead of a large area source with a pixelated detector. PMID:24877008

  9. Virtual Network Embedding via Monte Carlo Tree Search.

    PubMed

    Haeri, Soroush; Trajkovic, Ljiljana

    2018-02-01

    Network virtualization helps overcome shortcomings of the current Internet architecture. The virtualized network architecture enables coexistence of multiple virtual networks (VNs) on an existing physical infrastructure. VN embedding (VNE) problem, which deals with the embedding of VN components onto a physical network, is known to be -hard. In this paper, we propose two VNE algorithms: MaVEn-M and MaVEn-S. MaVEn-M employs the multicommodity flow algorithm for virtual link mapping while MaVEn-S uses the shortest-path algorithm. They formalize the virtual node mapping problem by using the Markov decision process (MDP) framework and devise action policies (node mappings) for the proposed MDP using the Monte Carlo tree search algorithm. Service providers may adjust the execution time of the MaVEn algorithms based on the traffic load of VN requests. The objective of the algorithms is to maximize the profit of infrastructure providers. We develop a discrete event VNE simulator to implement and evaluate performance of MaVEn-M, MaVEn-S, and several recently proposed VNE algorithms. We introduce profitability as a new performance metric that captures both acceptance and revenue to cost ratios. Simulation results show that the proposed algorithms find more profitable solutions than the existing algorithms. Given additional computation time, they further improve embedding solutions.

  10. Resonant scattering of energetic electrons in the plasmasphere by monotonic whistler-mode waves artificially generated by ionospheric modification

    NASA Astrophysics Data System (ADS)

    Chang, S. S.; Ni, B. B.; Bortnik, J.; Zhou, C.; Zhao, Z. Y.; Li, J. X.; Gu, X. D.

    2014-05-01

    Modulated high-frequency (HF) heating of the ionosphere provides a feasible means of artificially generating extremely low-frequency (ELF)/very low-frequency (VLF) whistler waves, which can leak into the inner magnetosphere and contribute to resonant interactions with high-energy electrons in the plasmasphere. By ray tracing the magnetospheric propagation of ELF/VLF emissions artificially generated at low-invariant latitudes, we evaluate the relativistic electron resonant energies along the ray paths and show that propagating artificial ELF/VLF waves can resonate with electrons from ~ 100 keV to ~ 10 MeV. We further implement test particle simulations to investigate the effects of resonant scattering of energetic electrons due to triggered monotonic/single-frequency ELF/VLF waves. The results indicate that within the period of a resonance timescale, changes in electron pitch angle and kinetic energy are stochastic, and the overall effect is cumulative, that is, the changes averaged over all test electrons increase monotonically with time. The localized rates of wave-induced pitch-angle scattering and momentum diffusion in the plasmasphere are analyzed in detail for artificially generated ELF/VLF whistlers with an observable in situ amplitude of ~ 10 pT. While the local momentum diffusion of relativistic electrons is small, with a rate of < 10-7 s-1, the local pitch-angle scattering can be intense near the loss cone with a rate of ~ 10-4 s-1. Our investigation further supports the feasibility of artificial triggering of ELF/VLF whistler waves for removal of high-energy electrons at lower L shells within the plasmasphere. Moreover, our test particle simulation results show quantitatively good agreement with quasi-linear diffusion coefficients, confirming the applicability of both methods to evaluate the resonant diffusion effect of artificial generated ELF/VLF whistlers.

  11. Comparative Developmental Toxicity of Desalination Brine and Sulfate-Dominated Saltwater in a Euryhaline Fish.

    PubMed

    Kupsco, Allison; Sikder, Rafid; Schlenk, Daniel

    2017-02-01

    Desalination is a promising sustainable solution to meet growing water needs of cities across the United States. However, the environmental impacts of the resulting filtrate (brine) discharged to surface water need to be evaluated before large-scale desalination can be successful in the United States. Developing fish are especially sensitive to changes in salinity and varying ionic composition. Limited research is available on the impacts of hypersalinity on chronic vertebrate embryonic development, particularly on sublethal effects. To investigate this, Japanese medaka (Oryzias latipes) embryos were treated with: (1) graphite filtered freshwater; (2) artificial seawater [17, 35, 42, 56, and 70 parts per thousand (ppt)]; (3) effluent from a desalination facility at Monterey Bay Aquarium, CA, diluted to 75, 50, and 25% with 35 ppt artificial seawater to simulate mixing (39, 42, 46, and 50 ppt); (4) artificial San Joaquin River water (CA, USA) (9, 13, and 17 ppt); and (5) artificial San Joaquin River water diluted to 75, 50, and 25% with artificial seawater to simulate estuarine mixing in the San Francisco Bay (13, 19, 24, and 30 ppt). Percent hatch, survival post hatch, deformities, swim bladder inflation, and median day to hatch were recorded to calculate EC 50 (50% effect concentration) and NOEC (no observable effect concentration) values. No significant difference was observed between artificial seawater and Monterey Bay aquarium effluent (EC 50  = 45-55 ppt). However, San Joaquin River water decreased survival post hatch and increased deformities in comparison to artificial seawater and San Joaquin River water mixed with seawater, suggesting that unique ion compositions may play a role in embryo and larval toxicity.

  12. MEDIC: medical embedded device for individualized care.

    PubMed

    Wu, Winston H; Bui, Alex A T; Batalin, Maxim A; Au, Lawrence K; Binney, Jonathan D; Kaiser, William J

    2008-02-01

    Presented work highlights the development and initial validation of a medical embedded device for individualized care (MEDIC), which is based on a novel software architecture, enabling sensor management and disease prediction capabilities, and commercially available microelectronic components, sensors and conventional personal digital assistant (PDA) (or a cell phone). In this paper, we present a general architecture for a wearable sensor system that can be customized to an individual patient's needs. This architecture is based on embedded artificial intelligence that permits autonomous operation, sensor management and inference, and may be applied to a general purpose wearable medical diagnostics. A prototype of the system has been developed based on a standard PDA and wireless sensor nodes equipped with commercially available Bluetooth radio components, permitting real-time streaming of high-bandwidth data from various physiological and contextual sensors. We also present the results of abnormal gait diagnosis using the complete system from our evaluation, and illustrate how the wearable system and its operation can be remotely configured and managed by either enterprise systems or medical personnel at centralized locations. By using commercially available hardware components and software architecture presented in this paper, the MEDIC system can be rapidly configured, providing medical researchers with broadband sensor data from remote patients and platform access to best adapt operation for diagnostic operation objectives.

  13. Numerical Simulation of Ground-Water Flow and Assessment of the Effects of Artificial Recharge in the Rialto-Colton Basin, San Bernardino County, California

    USGS Publications Warehouse

    Woolfenden, Linda R.; Koczot, Kathryn M.

    2001-01-01

    The Rialto?Colton Basin, in western San Bernardino County, California, was chosen for storage of imported water because of the good quality of native ground water, the known storage capacity for additional ground-water storage in the basin, and the availability of imported water. To supplement native ground-water resources and offset overdraft conditions in the basin during dry periods, artificial-recharge operations during wet periods in the Rialto?Colton Basin were begun in 1982 to store surplus imported water. Local water purveyors recognized that determining the movement and ultimate disposition of the artificially recharged imported water would require a better understanding of the ground-water flow system. In this study, a finite-difference model was used to simulate ground-water flow in the Rialto?Colton Basin to gain a better understanding of the ground-water flow system and to evaluate the hydraulic effects of artificial recharge of imported water. The ground-water basin was simulated as four horizontal layers representing the river- channel deposits and the upper, middle, and lower water-bearing units. Several flow barriers bordering and internal to the Rialto?Colton Basin influence the direction of ground-water flow. Ground water may flow relatively unrestricted in the shallow parts of the flow system; however, the faults generally become more restrictive at depth. A particle-tracking model was used to simulate advective transport of imported water within the ground-water flow system and to evaluate three artificial-recharge alternatives. The ground-water flow model was calibrated to transient conditions for 1945?96. Initial conditions for the transient-state simulation were established by using 1945 recharge and discharge rates, and assuming no change in storage in the basin. Average hydrologic conditions for 1945?96 were used for the predictive simulations (1997?2027). Ground-water-level measurements made during 1945 were used for comparison with the initial-conditions simulation to determine if there was a reasonable match, and thus reasonable starting heads, for the transient simulation. The comparison between simulated head and measured water levels indicates that, overall, the simulated heads match measured water levels well; the goodness-of-fit value is 0.99. The largest differences between simulated head and measured water level occurred between Barrier H and the Rialto?Colton Fault. Simulated heads near the Santa Ana River and Warm Creek, and simulated heads northwest of Barrier J, generally are within 30 feet of measured water levels and five are within 20 feet. Model-simulated heads were compared with measured long-term changes in hydrographs of composite water levels in selected wells, and with measured short-term changes in hydrographs of water levels in multiple-depth observation wells installed for this project. Simulated hydraulic heads generally matched measured water levels in wells northwest of Barrier J (in the northwestern part of the basin) and in the central part of the basin during 1945?96. In addition, the model adequately simulated water levels in the southeastern part of the basin near the Santa Ana River and Warm Creek and east of an unnamed fault that subparallels the San Jacinto Fault. Simulated heads and measured water levels in the central part of the basin generally are within 10 feet until about 1982?85 when differences become greater. In the northwestern part of the basin southeast of Barrier J, simulated heads were as much as 50 feet higher than measured water levels during 1945?82 but matched measured water levels well after 1982. In the compartment between Barrier H and the Rialto?Colton Fault, simulated heads match well during 1945?82 but are comparatively low during 1982?96. Near the Santa Ana River and Warm Creek, simulated heads generally rose above measured water levels except during 1965?72 when simulated heads compared well with measured water levels. Average

  14. The use of artificial neural networks in experimental data acquisition and aerodynamic design

    NASA Technical Reports Server (NTRS)

    Meade, Andrew J., Jr.

    1991-01-01

    It is proposed that an artificial neural network be used to construct an intelligent data acquisition system. The artificial neural networks (ANN) model has a potential for replacing traditional procedures as well as for use in computational fluid dynamics validation. Potential advantages of the ANN model are listed. As a proof of concept, the author modeled a NACA 0012 airfoil at specific conditions, using the neural network simulator NETS, developed by James Baffes of the NASA Johnson Space Center. The neural network predictions were compared to the actual data. It is concluded that artificial neural networks can provide an elegant and valuable class of mathematical tools for data analysis.

  15. Corrosion Behavior of AZ91D Magnesium Alloy in Three Different Physiological Environments

    NASA Astrophysics Data System (ADS)

    Zhou, Juncen; Li, Qing; Zhang, Haixiao; Chen, Funan

    2014-01-01

    Magnesium alloys have been considered as promising biomedical materials and were studied in different physiological environments. In this work, corrosion behavior of AZ91D magnesium alloy in artificial saliva, simulated body fluid (SBF), and 3.5 wt.% NaCl solution was investigated using electrochemical techniques and a short-term immersion test. In contrast with other physiological environments, the amount of aggressive ions in artificial saliva is small. In addition, a protective film is formed on the surface of samples in artificial saliva. Experimental results suggest that corrosion resistance of AZ91D magnesium alloy in artificial saliva is better than that in c-SBF and 3.5 wt.% NaCl solution.

  16. Feedback and Elaboration within a Computer-Based Simulation: A Dual Coding Perspective.

    ERIC Educational Resources Information Center

    Rieber, Lloyd P.; And Others

    The purpose of this study was to explore how adult users interact and learn during a computer-based simulation given visual and verbal forms of feedback coupled with embedded elaborations of the content. A total of 52 college students interacted with a computer-based simulation of Newton's laws of motion in which they had control over the motion…

  17. COGNITRON THEORY,

    DTIC Science & Technology

    ARTIFICIAL INTELLIGENCE , THEORY), NERVE CELLS, SIMULATION, SENSE ORGANS, SENSES(PHYSIOLOGY), CONDITIONED RESPONSE, MATRICES(MATHEMATICS), MAPPING (TRANSFORMATIONS), MATHEMATICAL MODELS, FEEDBACK, BIONICS

  18. Embedded real-time operating system micro kernel design

    NASA Astrophysics Data System (ADS)

    Cheng, Xiao-hui; Li, Ming-qiang; Wang, Xin-zheng

    2005-12-01

    Embedded systems usually require a real-time character. Base on an 8051 microcontroller, an embedded real-time operating system micro kernel is proposed consisting of six parts, including a critical section process, task scheduling, interruption handle, semaphore and message mailbox communication, clock managent and memory managent. Distributed CPU and other resources are among tasks rationally according to the importance and urgency. The design proposed here provides the position, definition, function and principle of micro kernel. The kernel runs on the platform of an ATMEL AT89C51 microcontroller. Simulation results prove that the designed micro kernel is stable and reliable and has quick response while operating in an application system.

  19. Study on digital teeth selection and virtual teeth arrangement for complete denture.

    PubMed

    Yu, Xiaoling; Cheng, Xiaosheng; Dai, Ning; Chen, Hu; Yu, Changjiang; Sun, Yuchun

    2018-03-01

    In dentistry, the complete denture is a conventional treatment for edentulous patients. The computer-aided design and computer-aided manufacturing (CAD/CAM) has been applied on the digital complete denture which is developed rapidly. Tooth selection and arrangement is one of the most important parts in digital complete denture. In this paper, we propose a new method of personalized teeth arrangement. This paper presents a method of arranging teeth virtually for a complete denture. First, scan and extract the feature points of the 3D triangular mesh data of artificial teeth (PLY format), then establish a tooth selection system. Second, scan and mark the anatomic characteristics of the maxillary and mandibular cast surfaces, such as facial midline, the curve of the arches. With the enter information, the study calculates the common arrangement lines of artificial teeth. Third, select the preferred artificial teeth and automatically arrange them virtually in the correct position by using our own software. After that, design the gingival part of the dentures on the basic of the arranged teeth on the screen and then fabricated it by using Computerized Numerical Control (CNC) technology, Rapid Prototyping (RP) technology or 3D printer technology. Finally, select artificial teeth were embedded in wax rims. This system can choose artificial teeth reasonably and the teeth placement can meet the dentist's request to a certain extent, whereas all the operations are based on the medical principles. The study performed here involves computer sciences, medicine, and dentistry, a teeth selection system was proposed and virtual teeth arrangement was described. This study has the capacity of helping operators to select teeth, which improved the accuracy of tooth arrangement, and customized complete denture. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. The 1988 Goddard Conference on Space Applications of Artificial Intelligence

    NASA Technical Reports Server (NTRS)

    Rash, James (Editor); Hughes, Peter (Editor)

    1988-01-01

    This publication comprises the papers presented at the 1988 Goddard Conference on Space Applications of Artificial Intelligence held at the NASA/Goddard Space Flight Center, Greenbelt, Maryland on May 24, 1988. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The papers in these proceedings fall into the following areas: mission operations support, planning and scheduling; fault isolation/diagnosis; image processing and machine vision; data management; modeling and simulation; and development tools/methodologies.

  1. Ionospheric modification - An initial report on artificially created equatorial Spread F

    NASA Technical Reports Server (NTRS)

    Ossakow, S. L.; Zalesak, S. T.; Mcdonald, B. E.

    1978-01-01

    A numerical simulation code for investigating equatorial Spread F in the collisional Rayleigh-Taylor regime is utilized to follow the evolution of artificial plasma density depletions injected into the bottomside nighttime equatorial F region. The 70 km diameter hole rapidly rises and steepens, forming plasma density enhancements at altitudes below the rising hole. The distribution of enhancements and depletions is similar to natural equatorial Spread F phenomena, except it occurs on a much faster time scale. These predictions warrant carrying out artificial injection experiments in the nighttime equatorial F region.

  2. Multibody dynamic simulation of knee contact mechanics

    PubMed Central

    Bei, Yanhong; Fregly, Benjamin J.

    2006-01-01

    Multibody dynamic musculoskeletal models capable of predicting muscle forces and joint contact pressures simultaneously would be valuable for studying clinical issues related to knee joint degeneration and restoration. Current three-dimensional multi-body knee models are either quasi-static with deformable contact or dynamic with rigid contact. This study proposes a computationally efficient methodology for combining multibody dynamic simulation methods with a deformable contact knee model. The methodology requires preparation of the articular surface geometry, development of efficient methods to calculate distances between contact surfaces, implementation of an efficient contact solver that accounts for the unique characteristics of human joints, and specification of an application programming interface for integration with any multibody dynamic simulation environment. The current implementation accommodates natural or artificial tibiofemoral joint models, small or large strain contact models, and linear or nonlinear material models. Applications are presented for static analysis (via dynamic simulation) of a natural knee model created from MRI and CT data and dynamic simulation of an artificial knee model produced from manufacturer’s CAD data. Small and large strain natural knee static analyses required 1 min of CPU time and predicted similar contact conditions except for peak pressure, which was higher for the large strain model. Linear and nonlinear artificial knee dynamic simulations required 10 min of CPU time and predicted similar contact force and torque but different contact pressures, which were lower for the nonlinear model due to increased contact area. This methodology provides an important step toward the realization of dynamic musculoskeletal models that can predict in vivo knee joint motion and loading simultaneously. PMID:15564115

  3. Learning and evolution in bacterial taxis: an operational amplifier circuit modeling the computational dynamics of the prokaryotic 'two component system' protein network.

    PubMed

    Di Paola, Vieri; Marijuán, Pedro C; Lahoz-Beltra, Rafael

    2004-01-01

    Adaptive behavior in unicellular organisms (i.e., bacteria) depends on highly organized networks of proteins governing purposefully the myriad of molecular processes occurring within the cellular system. For instance, bacteria are able to explore the environment within which they develop by utilizing the motility of their flagellar system as well as a sophisticated biochemical navigation system that samples the environmental conditions surrounding the cell, searching for nutrients or moving away from toxic substances or dangerous physical conditions. In this paper we discuss how proteins of the intervening signal transduction network could be modeled as artificial neurons, simulating the dynamical aspects of the bacterial taxis. The model is based on the assumption that, in some important aspects, proteins can be considered as processing elements or McCulloch-Pitts artificial neurons that transfer and process information from the bacterium's membrane surface to the flagellar motor. This simulation of bacterial taxis has been carried out on a hardware realization of a McCulloch-Pitts artificial neuron using an operational amplifier. Based on the behavior of the operational amplifier we produce a model of the interaction between CheY and FliM, elements of the prokaryotic two component system controlling chemotaxis, as well as a simulation of learning and evolution processes in bacterial taxis. On the one side, our simulation results indicate that, computationally, these protein 'switches' are similar to McCulloch-Pitts artificial neurons, suggesting a bridge between evolution and learning in dynamical systems at cellular and molecular levels and the evolutive hardware approach. On the other side, important protein 'tactilizing' properties are not tapped by the model, and this suggests further complexity steps to explore in the approach to biological molecular computing.

  4. Embedded Cohesive Elements (ECE) Approach to the Simulation of Spall Fracture Experiment

    NASA Astrophysics Data System (ADS)

    Bonora, Nicola; Esposito, Luca; Ruggiero, Andrew

    2007-06-01

    Discrepancies between the calculated and observed velocity vs time plot, relatively to the spall signal portion in terms of both signal amplitude and frequency, in numerical simulations of flyer plate impact test are usually shown. These are often ascribed either to material model or the numerical scheme used. Bonora et al. (2003 )[Bonora N., Ruggiero A. and Milella P.P., 2003, Fracture energy effect on spall signal, Proc. of 13^th APS SCCM03, Portland, USA] showed that, for ductile metals, these differences can be the imputed to the dissipation process during fracturing due to the viscous separation of spall fracture plane surfaces. In this work that concept has been further developed implementing an embedded cohesive elements (ECE) technology into FEM. The ECE method consists in embedding cohesive elements (normal and shear forces only) into standard isoparametric 2D or 3D FEM continuum elements. The cohesive elements remain silent and inactive until the continuum element fails. At failure, the continuum element is removed while the ECE becomes active until the separation energy is dissipated. Here, the methodology is presented and applied to simulate soft spall in ductile metals such as OHFC copper. Results of parametric study on mesh size and cohesive law shape effect are presented.

  5. Conceptual design and performance analysis of a novel flexible-valve micropump using magneto-fluid-solid interaction

    NASA Astrophysics Data System (ADS)

    Ehsani, Abbas; Nejat, Amir

    2017-05-01

    An electromagnetic actuated micropump with flexible sequence of valves is presented and investigated in the present article. Two flexible valves are placed inside the microchannel in order to bidirectionalize flow, employing the idea of rectifying mechanism of lymphangion in the lymphatic transport system. A time-dependent magnetic field exerts force on the soft magnetorheological elastomer (SMRE) wall, and therefore, the enclosed fluid is forced to move. The valve series are embedded in such a way that prevent flow from leaving the left terminal, and stop fluid flow entering from the right terminal. Therefore some fluid move left to right, which is called VNet. The net volume is considered as the target design for the performance of the micropump. A fully coupled time-dependent magneto-fluid-solid interaction (MFSI) simulation of two-dimensional incompressible fluid flow is conducted. The finite element method is used to solve all physics involved. Simulation results indicate capability of the proposed mechanism to propel fluid in one direction. A parametric study is performed to investigate the effect of key geometric, magnetic, and structural parameters on the net transported volume. Results show that under optimum conditions the micropump is able to transmit a net volume of fluid nearly two times more than the basic design. The final model is able to pump 0.055 (μl) of water (at 25 °C) in 1 s. The proposed micropump can operate in a wide range of applications, such as artificial organs, organ-on-chip, and aerospace applications.

  6. Consciousness: individuated information in action

    PubMed Central

    Jonkisz, Jakub

    2015-01-01

    Within theoretical and empirical enquiries, many different meanings associated with consciousness have appeared, leaving the term itself quite vague. This makes formulating an abstract and unifying version of the concept of consciousness – the main aim of this article –into an urgent theoretical imperative. It is argued that consciousness, characterized as dually accessible (cognized from the inside and the outside), hierarchically referential (semantically ordered), bodily determined (embedded in the working structures of an organism or conscious system), and useful in action (pragmatically functional), is a graded rather than an all-or-none phenomenon. A gradational approach, however, despite its explanatory advantages, can lead to some counterintuitive consequences and theoretical problems. In most such conceptions consciousness is extended globally (attached to primitive organisms or artificial systems), but also locally (connected to certain lower-level neuronal and bodily processes). For example, according to information integration theory (as introduced recently by Tononi and Koch, 2014), even such simple artificial systems as photodiodes possess miniscule amounts of consciousness. The major challenge for this article, then, is to establish reasonable, empirically justified constraints on how extended the range of a graded consciousness could be. It is argued that conscious systems are limited globally by the ability to individuate information (where individuated information is understood as evolutionarily embedded, socially altered, and private), whereas local limitations should be determined on the basis of a hypothesis about the action-oriented nature of the processes that select states of consciousness. Using these constraints, an abstract concept of consciousness is arrived at, hopefully contributing to a more unified state of play within consciousness studies itself. PMID:26283987

  7. Are Price Limits Effective? An Examination of an Artificial Stock Market.

    PubMed

    Zhang, Xiaotao; Ping, Jing; Zhu, Tao; Li, Yuelei; Xiong, Xiong

    2016-01-01

    We investigated the inter-day effects of price limits policies that are employed in agent-based simulations. To isolate the impact of price limits from the impact of other factors, we built an artificial stock market with higher frequency price limits hitting. The trading mechanisms in this market are the same as the trading mechanisms in China's stock market. Then, we designed a series of simulations with and without price limits policy. The results of these simulations demonstrate that both upper and lower price limits can cause a volatility spillover effect and a trading interference effect. The process of price discovery will be delayed if upper price limits are imposed on a stock market; however, this phenomenon does not occur when lower price limits are imposed.

  8. Are Price Limits Effective? An Examination of an Artificial Stock Market

    PubMed Central

    Zhu, Tao; Li, Yuelei; Xiong, Xiong

    2016-01-01

    We investigated the inter-day effects of price limits policies that are employed in agent-based simulations. To isolate the impact of price limits from the impact of other factors, we built an artificial stock market with higher frequency price limits hitting. The trading mechanisms in this market are the same as the trading mechanisms in China’s stock market. Then, we designed a series of simulations with and without price limits policy. The results of these simulations demonstrate that both upper and lower price limits can cause a volatility spillover effect and a trading interference effect. The process of price discovery will be delayed if upper price limits are imposed on a stock market; however, this phenomenon does not occur when lower price limits are imposed. PMID:27513330

  9. Experimental and Computational Studies of Sound Transmission in a Branching Airway Network Embedded in a Compliant Viscoelastic Medium

    PubMed Central

    Dai, Zoujun; Peng, Ying; Mansy, Hansen A.; Sandler, Richard H.; Royston, Thomas J.

    2015-01-01

    Breath sounds are often used to aid in the diagnosis of pulmonary disease. Mechanical and numerical models could be used to enhance our understanding of relevant sound transmission phenomena. Sound transmission in an airway mimicking phantom was investigated using a mechanical model with a branching airway network embedded in a compliant viscoelastic medium. The Horsfield self-consistent model for the bronchial tree was adopted to topologically couple the individual airway segments into the branching airway network. The acoustics of the bifurcating airway segments were measured by microphones and calculated analytically. Airway phantom surface motion was measured using scanning laser Doppler vibrometry. Finite element simulations of sound transmission in the airway phantom were performed. Good agreement was achieved between experiments and simulations. The validated computational approach can provide insight into sound transmission simulations in real lungs. PMID:26097256

  10. Experimental and computational studies of sound transmission in a branching airway network embedded in a compliant viscoelastic medium

    NASA Astrophysics Data System (ADS)

    Dai, Zoujun; Peng, Ying; Mansy, Hansen A.; Sandler, Richard H.; Royston, Thomas J.

    2015-03-01

    Breath sounds are often used to aid in the diagnosis of pulmonary disease. Mechanical and numerical models could be used to enhance our understanding of relevant sound transmission phenomena. Sound transmission in an airway mimicking phantom was investigated using a mechanical model with a branching airway network embedded in a compliant viscoelastic medium. The Horsfield self-consistent model for the bronchial tree was adopted to topologically couple the individual airway segments into the branching airway network. The acoustics of the bifurcating airway segments were measured by microphones and calculated analytically. Airway phantom surface motion was measured using scanning laser Doppler vibrometry. Finite element simulations of sound transmission in the airway phantom were performed. Good agreement was achieved between experiments and simulations. The validated computational approach can provide insight into sound transmission simulations in real lungs.

  11. Vessel Segmentation and Blood Flow Simulation Using Level-Sets and Embedded Boundary Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deschamps, T; Schwartz, P; Trebotich, D

    In this article we address the problem of blood flow simulation in realistic vascular objects. The anatomical surfaces are extracted by means of Level-Sets methods that accurately model the complex and varying surfaces of pathological objects such as aneurysms and stenoses. The surfaces obtained are defined at the sub-pixel level where they intersect the Cartesian grid of the image domain. It is therefore straightforward to construct embedded boundary representations of these objects on the same grid, for which recent work has enabled discretization of the Navier-Stokes equations for incompressible fluids. While most classical techniques require construction of a structured meshmore » that approximates the surface in order to extrapolate a 3D finite-element gridding of the whole volume, our method directly simulates the blood-flow inside the extracted surface without losing any complicated details and without building additional grids.« less

  12. Large-Scale First-Principles Molecular Dynamics Simulations with Electrostatic Embedding: Application to Acetylcholinesterase Catalysis

    DOE PAGES

    Fattebert, Jean-Luc; Lau, Edmond Y.; Bennion, Brian J.; ...

    2015-10-22

    Enzymes are complicated solvated systems that typically require many atoms to simulate their function with any degree of accuracy. We have recently developed numerical techniques for large scale First-Principles molecular dynamics simulations and applied them to study the enzymatic reaction catalyzed by acetylcholinesterase. We carried out Density functional theory calculations for a quantum mechanical (QM) sub- system consisting of 612 atoms with an O(N) complexity finite-difference approach. The QM sub-system is embedded inside an external potential field representing the electrostatic effect due to the environment. We obtained finite temperature sampling by First-Principles molecular dynamics for the acylation reaction of acetylcholinemore » catalyzed by acetylcholinesterase. Our calculations shows two energies barriers along the reaction coordinate for the enzyme catalyzed acylation of acetylcholine. In conclusion, the second barrier (8.5 kcal/mole) is rate-limiting for the acylation reaction and in good agreement with experiment.« less

  13. Dislocation dynamics in non-convex domains using finite elements with embedded discontinuities

    NASA Astrophysics Data System (ADS)

    Romero, Ignacio; Segurado, Javier; LLorca, Javier

    2008-04-01

    The standard strategy developed by Van der Giessen and Needleman (1995 Modelling Simul. Mater. Sci. Eng. 3 689) to simulate dislocation dynamics in two-dimensional finite domains was modified to account for the effect of dislocations leaving the crystal through a free surface in the case of arbitrary non-convex domains. The new approach incorporates the displacement jumps across the slip segments of the dislocations that have exited the crystal within the finite element analysis carried out to compute the image stresses on the dislocations due to the finite boundaries. This is done in a simple computationally efficient way by embedding the discontinuities in the finite element solution, a strategy often used in the numerical simulation of crack propagation in solids. Two academic examples are presented to validate and demonstrate the extended model and its implementation within a finite element program is detailed in the appendix.

  14. Preparation of Biocomposite Microfibers Ready for Processing into Biologically Active Textile Fabrics for Bioremediation.

    PubMed

    Kaiser, Patrick; Reich, Steffen; Greiner, Andreas; Freitag, Ruth

    2018-06-12

    Biocomposites, i.e., materials consisting of metabolically active microorganisms embedded in a synthetic extracellular matrix, may find applications as highly specific catalysts in bioproduction and bioremediation. 3D constructs based on fibrous biocomposites, so-called "artificial biofilms," are of particular interest in this context. The inability to produce biocomposite fibers of sufficient mechanical strength for processing into bioactive fabrics has so far hindered progress in the area. Herein a method is proposed for the direct wet spinning of microfibers suitable for weaving and knitting. Metabolically active bacteria (either Shewanella oneidensis or Nitrobacter winogradskyi (N. winogradskyi)) are embedded in these fibers, using poly(vinyl alcohol) as matrix. The produced microfibers have a partially crystalline structure and are stable in water without further treatment, such as coating. In a first application, their potential for nitrite removal (N. winogradskyi) is demonstrated, a typical challenge in potable water treatment. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Application of neural based estimation algorithm for gait phases of above knee prosthesis.

    PubMed

    Tileylioğlu, E; Yilmaz, A

    2015-01-01

    In this study, two gait phase estimation methods which utilize a rule based quantization and an artificial neural network model respectively are developed and applied for the microcontroller based semi-active knee prosthesis in order to respond user demands and adapt environmental conditions. In this context, an experimental environment in which gait data collected synchronously from both inertial and image based measurement systems has been set up. The inertial measurement system that incorporates MEM accelerometers and gyroscopes is used to perform direct motion measurement through the microcontroller, while the image based measurement system is employed for producing the verification data and assessing the success of the prosthesis. Embedded algorithms dynamically normalize the input data prior to gait phase estimation. The real time analyses of two methods revealed that embedded ANN based approach performs slightly better in comparison with the rule based algorithm and has advantage of being easily-scalable, thus able to accommodate additional input parameters considering the microcontroller constraints.

  16. A Study on the Data Compression Technology-Based Intelligent Data Acquisition (IDAQ) System for Structural Health Monitoring of Civil Structures

    PubMed Central

    Jeon, Joonryong

    2017-01-01

    In this paper, a data compression technology-based intelligent data acquisition (IDAQ) system was developed for structural health monitoring of civil structures, and its validity was tested using random signals (El-Centro seismic waveform). The IDAQ system was structured to include a high-performance CPU with large dynamic memory for multi-input and output in a radio frequency (RF) manner. In addition, the embedded software technology (EST) has been applied to it to implement diverse logics needed in the process of acquiring, processing and transmitting data. In order to utilize IDAQ system for the structural health monitoring of civil structures, this study developed an artificial filter bank by which structural dynamic responses (acceleration) were efficiently acquired, and also optimized it on the random El-Centro seismic waveform. All techniques developed in this study have been embedded to our system. The data compression technology-based IDAQ system was proven valid in acquiring valid signals in a compressed size. PMID:28704945

  17. A Study on the Data Compression Technology-Based Intelligent Data Acquisition (IDAQ) System for Structural Health Monitoring of Civil Structures.

    PubMed

    Heo, Gwanghee; Jeon, Joonryong

    2017-07-12

    In this paper, a data compression technology-based intelligent data acquisition (IDAQ) system was developed for structural health monitoring of civil structures, and its validity was tested using random signals (El-Centro seismic waveform). The IDAQ system was structured to include a high-performance CPU with large dynamic memory for multi-input and output in a radio frequency (RF) manner. In addition, the embedded software technology (EST) has been applied to it to implement diverse logics needed in the process of acquiring, processing and transmitting data. In order to utilize IDAQ system for the structural health monitoring of civil structures, this study developed an artificial filter bank by which structural dynamic responses (acceleration) were efficiently acquired, and also optimized it on the random El-Centro seismic waveform. All techniques developed in this study have been embedded to our system. The data compression technology-based IDAQ system was proven valid in acquiring valid signals in a compressed size.

  18. Software Reviews.

    ERIC Educational Resources Information Center

    Bitter, Gary G., Ed.

    1989-01-01

    Reviews three software packages: (1) "Physics," tutorial, grades 11-12, Macintosh; (2) "Hands On Math: Volume I," interactive math exploration/simulation of manipulatives use, grades K-7, Apple II; and (3) "A.I.: An Experience with Artificial Intelligence," simulation, grades 5-12, Apple II. (MVL)

  19. Biotribological evaluation of artificial disc arthroplasty devices: influence of loading and kinematic patterns during in vitro wear simulation.

    PubMed

    Grupp, Thomas M; Yue, James J; Garcia, Rolando; Basson, Janet; Schwiesau, Jens; Fritz, Bernhard; Blömer, Wilhelm

    2009-01-01

    Wear simulation is an essential pre-clinical method to predict the mid- and long-term clinical wear behavior of newly introduced devices for total disc arthroplasty. The main requirement of a suitable method for spinal wear simulation has to be the ability to distinguish between design concepts and allow for a direct comparison of predicate devices. The objective of our study was to investigate the influence of loading and kinematic patterns based on two different protocols for spinal wear simulation (ISO/FDIS 18192-1 (2006) and ASTM F2423-05). In vitro wear simulation was performed with six activ L lumbar artificial disc devices (Aesculap Tuttlingen, Germany). The applied kinematic pattern of movement was multidirectional for ISO (elliptic track) and unidirectional with a curvilinear shape for ASTM. Testing was done for 10 million cycles in the ISO loading mode and afterwards with the same specimens for 5 million cycles according to the ASTM protocol with a customized six-station servohydraulic spinal wear simulator (EndoLab Thansau, Germany). Gravimetrical and geometrical wear assessment, a slide track analysis correlated to an optical surface characterization, and an estimation of particle size and morphology were performed. The gravimetric wear rate for the first 10 million cycles was ISO(initial) = 2.7 +/- 0.3 mg/million cycles. During the ASTM test period (10-15 million cycles) a gravimetric wear rate of 0.14 +/- 0.06 mg/million cycles was estimated. The wear rates between the ISO and ASTM driven simulations differ substantially (approximately 20-fold) and statistical analysis demonstrates a significant difference (p < 0.001) between the test groups. The main explanation of divergency between ISO and ASTM driven wear simulations is the multidirectional pattern of movement described in the ISO document resulting in a cross-shear stress on the polyethylene material. Due to previous retrieval observations, it seems to be very unlikely that a lumbar artificial disc is loaded with a linear wear path.Testing according to ASTM F2423-05 with pure unidirectional motion does not reflect the kinematics of TDA patients' daily activities. Based on our findings it seems to be more reliable to predict the clinical wear behavior of an artificial disc replacement using the ISO/FDIS 18192-1 method.

  20. Biotribological evaluation of artificial disc arthroplasty devices: influence of loading and kinematic patterns during in vitro wear simulation

    PubMed Central

    Yue, James J.; Garcia, Rolando; Basson, Janet; Schwiesau, Jens; Fritz, Bernhard; Blömer, Wilhelm

    2008-01-01

    Wear simulation is an essential pre-clinical method to predict the mid- and long-term clinical wear behavior of newly introduced devices for total disc arthroplasty. The main requirement of a suitable method for spinal wear simulation has to be the ability to distinguish between design concepts and allow for a direct comparison of predicate devices. The objective of our study was to investigate the influence of loading and kinematic patterns based on two different protocols for spinal wear simulation (ISO/FDIS 18192-1 (2006) and ASTM F2423-05). In vitro wear simulation was performed with six activ® L lumbar artificial disc devices (Aesculap Tuttlingen, Germany). The applied kinematic pattern of movement was multidirectional for ISO (elliptic track) and unidirectional with a curvilinear shape for ASTM. Testing was done for 10 million cycles in the ISO loading mode and afterwards with the same specimens for 5 million cycles according to the ASTM protocol with a customized six-station servohydraulic spinal wear simulator (EndoLab Thansau, Germany). Gravimetrical and geometrical wear assessment, a slide track analysis correlated to an optical surface characterization, and an estimation of particle size and morphology were performed. The gravimetric wear rate for the first 10 million cycles was ISOinitial = 2.7 ± 0.3 mg/million cycles. During the ASTM test period (10–15 million cycles) a gravimetric wear rate of 0.14 ± 0.06 mg/million cycles was estimated. The wear rates between the ISO and ASTM driven simulations differ substantially (approximately 20-fold) and statistical analysis demonstrates a significant difference (p < 0.001) between the test groups. The main explanation of divergency between ISO and ASTM driven wear simulations is the multidirectional pattern of movement described in the ISO document resulting in a cross-shear stress on the polyethylene material. Due to previous retrieval observations, it seems to be very unlikely that a lumbar artificial disc is loaded with a linear wear path.Testing according to ASTM F2423-05 with pure unidirectional motion does not reflect the kinematics of TDA patients‘ daily activities. Based on our findings it seems to be more reliable to predict the clinical wear behavior of an artificial disc replacement using the ISO/FDIS 18192-1 method. PMID:19050942

  1. Groundwater-flow and land-subsidence model of Antelope Valley, California

    USGS Publications Warehouse

    Siade, Adam J.; Nishikawa, Tracy; Rewis, Diane L.; Martin, Peter; Phillips, Steven P.

    2014-01-01

    Results from the first scenario indicated that the total drawdown observed since predevelopment would continue, with values exceeding 325 ft near Palmdale; consequently, land subsidence would also continue, with additional subsidence (since 2005) exceeding 3 ft in the central part of the Lancaster subbasin. The second scenario evaluated redistributing pumpage from areas in the Lancaster subbasin where simulated hydraulic-head declines were the greatest to areas where declines were smallest. Neither a formal optimization algorithm nor water-rights allocations were considered when redistributing the pumpage. Results indicated that hydraulic heads near Palmdale, where the pumpage was reduced, would recover by about 200 ft compared to 2005 conditions, with only 30 ft of additional drawdown in the northwestern part of the Lancaster subbasin, where the pumpage was increased. The magnitude of the simulated additional land subsidence decreased slightly compared to the first, status quo, scenario but land subsidence continued to be simulated throughout most of the northern part of the Lancaster subbasin. The third scenario consisted of two artificial-recharge simulations along the Upper Amargosa Creek channel and at a site located north of Antelope Buttes. Results indicate that applying artificial recharge at these sites would yield continued drawdowns and associated land subsidence. However, the magnitudes of drawdown and subsidence would be smaller than those simulated in the status quo scenario, indicating that artificial-recharge operations in the Antelope Valley could be expected to reduce the magnitude and extent of continued water-level declines and associated land subsidence.

  2. The Outdoor Atmospheric Simulation Chamber of Orleans-France (HELIOS)

    NASA Astrophysics Data System (ADS)

    Mellouki, A.; Véronique, D.; Grosselin, B.; Peyroux, F.; Benoit, R.; Ren, Y.; Idir, M.

    2016-12-01

    Atmospheric simulation chambers are among the most advanced tools for investigating the atmospheric processes to derive physico-chemical parameters which are required for air quality and climate models. Recently, the ICARE-CNRS at Orléans (France) has set up a new large outdoor simulation chamber, HELIOS. HELIOS is one of the most advanced simulation chambers in Europe. It is one of the largest outdoor chambers and is especially suited to processes studies performed under realistic atmospheric conditions. HELIOS is a large hemispherical outdoor simulation chamber (volume of 90 m3) positioned on the top of ICARE-CNRS building at Orléans (47°50'18.39N; 1°56'40.03E). The chamber is made of FEP film ensuring more than 90 % solar light transmission. The chamber is protected against severe meteorological conditions by a moveable "box" which contains a series of Xenon lamps enabling to conduct experiments using artificial light. This special design makes HELIOS a unique platform where experiments can be made using both types of irradiations. HELIOS is dedicated mainly to the investigation of the chemical processes under different conditions (sunlight, artificial light and dark). The platform allows conducting the same type of experiments under both natural and artificial light irradiation. The available large range of complementary and highly sensitive instruments allows investigating the radical chemistry, gas phase processes and aerosol formation under realistic conditions. The characteristics of HELIOS will be presented as well as the first series of experimental results obtained so far.

  3. Comparability of Examinee Proficiency Scores on Computer Adaptive Tests Using Real and Simulated Data

    ERIC Educational Resources Information Center

    Evans, Josiah Jeremiah

    2010-01-01

    In measurement research, data simulations are a commonly used analytical technique. While simulation designs have many benefits, it is unclear if these artificially generated datasets are able to accurately capture real examinee item response behaviors. This potential lack of comparability may have important implications for administration of…

  4. Modeling and simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanham, R.; Vogt, W.G.; Mickle, M.H.

    1986-01-01

    This book presents the papers given at a conference on computerized simulation. Topics considered at the conference included expert systems, modeling in electric power systems, power systems operating strategies, energy analysis, a linear programming approach to optimum load shedding in transmission systems, econometrics, simulation in natural gas engineering, solar energy studies, artificial intelligence, vision systems, hydrology, multiprocessors, and flow models.

  5. Intelligence: Real or artificial?

    PubMed Central

    Schlinger, Henry D.

    1992-01-01

    Throughout the history of the artificial intelligence movement, researchers have strived to create computers that could simulate general human intelligence. This paper argues that workers in artificial intelligence have failed to achieve this goal because they adopted the wrong model of human behavior and intelligence, namely a cognitive essentialist model with origins in the traditional philosophies of natural intelligence. An analysis of the word “intelligence” suggests that it originally referred to behavior-environment relations and not to inferred internal structures and processes. It is concluded that if workers in artificial intelligence are to succeed in their general goal, then they must design machines that are adaptive, that is, that can learn. Thus, artificial intelligence researchers must discard their essentialist model of natural intelligence and adopt a selectionist model instead. Such a strategic change should lead them to the science of behavior analysis. PMID:22477051

  6. A study of using smartphone to detect and identify construction workers' near-miss falls based on ANN

    NASA Astrophysics Data System (ADS)

    Zhang, Mingyuan; Cao, Tianzhuo; Zhao, Xuefeng

    2018-03-01

    As an effective fall accident preventive method, insight into near-miss falls provides an efficient solution to find out the causes of fall accidents, classify the type of near-miss falls and control the potential hazards. In this context, the paper proposes a method to detect and identify near-miss falls that occur when a worker walks in a workplace based on artificial neural network (ANN). The energy variation generated by workers who meet with near-miss falls is measured by sensors embedded in smart phone. Two experiments were designed to train the algorithm to identify various types of near-miss falls and test the recognition accuracy, respectively. At last, a test was conducted by workers wearing smart phones as they walked around a simulated construction workplace. The motion data was collected, processed and inputted to the trained ANN to detect and identify near-miss falls. Thresholds were obtained to measure the relationship between near-miss falls and fall accidents in a quantitate way. This approach, which integrates smart phone and ANN, will help detect near-miss fall events, identify hazardous elements and vulnerable workers, providing opportunities to eliminate dangerous conditions in a construction site or to alert possible victims that need to change their behavior before the occurrence of a fall accident.

  7. Self-Assembled Epitaxial Au–Oxide Vertically Aligned Nanocomposites for Nanoscale Metamaterials

    DOE PAGES

    Li, Leigang; Sun, Liuyang; Gomez-Diaz, Juan Sebastian; ...

    2016-05-17

    Metamaterials made of nanoscale inclusions or artificial unit cells exhibit exotic optical properties that do not exist in natural materials. Promising applications, such as super-resolution imaging, cloaking, hyperbolic propagation, and ultrafast phase velocities have been demonstrated based on mostly micrometer-scale metamaterials and few nanoscale metamaterials. To date, most metamaterials are created using costly and tedious fabrication techniques with limited paths toward reliable large-scale fabrication. In this work, we demonstrate the one-step direct growth of self-assembled epitaxial metal–oxide nanocomposites as a drastically different approach to fabricating large-area nanostructured metamaterials. Using pulsed laser deposition, we fabricated nanocomposite films with vertically aligned goldmore » (Au) nanopillars (~20 nm in diameter) embedded in various oxide matrices with high epitaxial quality. Strong, broad absorption features in the measured absorbance spectrum are clear signatures of plasmon resonances of Au nanopillars. By tuning their densities on selected substrates, anisotropic optical properties are demonstrated via angular dependent and polarization resolved reflectivity measurements and reproduced by full-wave simulations and effective medium theory. Our model predicts exotic properties, such as zero permittivity responses and topological transitions. In conclusion, our studies suggest that these self-assembled metal–oxide nanostructures provide an exciting new material platform to control and enhance optical response at nanometer scales.« less

  8. Charge transfer mechanism in titanium-doped microporous silica for photocatalytic water-splitting applications

    DOE PAGES

    Sapp, Wendi; Koodali, Ranjit; Kilin, Dmitri

    2016-02-29

    Solar energy conversion into chemical form is possible using artificial means. One example of a highly-efficient fuel is solar energy used to split water into oxygen and hydrogen. Efficient photocatalytic water-splitting remains an open challenge for researchers across the globe. Despite significant progress, several aspects of the reaction, including the charge transfer mechanism, are not fully clear. Density functional theory combined with density matrix equations of motion were used to identify and characterize the charge transfer mechanism involved in the dissociation of water. A simulated porous silica substrate, using periodic boundary conditions, with Ti 4+ ions embedded on the innermore » pore wall was found to contain electron and hole trap states that could facilitate a chemical reaction. A trap state was located within the silica substrate that lengthened relaxation time, which may favor a chemical reaction. A chemical reaction would have to occur within the window of photoexcitation; therefore, the existence of a trapping state may encourage a chemical reaction. Furthermore, this provides evidence that the silica substrate plays an integral part in the electron/hole dynamics of the system, leading to the conclusion that both components (photoactive materials and support) of heterogeneous catalytic systems are important in optimization of catalytic efficiency.« less

  9. Grid Computing: Topology-Aware, Peer-to-Peer, Power-Aware, and Embedded Web Services

    DTIC Science & Technology

    2003-09-22

    Dist Simulation • Time Management enables temporal causality to be enforced in Distributed Simulations • Typically enforced via a Lower Bound Time...algorithm • Distinguished Root Node Algorithm developed as a topology-aware time management service – Relies on a tree from end-hosts to a

  10. Data Challenges of Leveraging a Simulation to Assess Learning

    ERIC Educational Resources Information Center

    Gibson, David; Jakl, Peter

    2013-01-01

    Among the unique affordances of digital simulations are changes in the possibilities for targets as well as the methods of assessment, most significantly, toward integration of thinking with action, embedding of tasks-as-performance of knowledge-in-action, and unobtrusive observational methods. This paper raises and briefly defines key data…

  11. Simulations with Elaborated Worked Example Modeling: Beneficial Effects on Schema Acquisition

    ERIC Educational Resources Information Center

    Meier, Debra K.; Reinhard, Karl J.; Carter, David O.; Brooks, David W.

    2008-01-01

    Worked examples have been effective in enhancing learning outcomes, especially with novice learners. Most of this research has been conducted in laboratory settings. This study examined the impact of embedding elaborated worked example modeling in a computer simulation practice activity on learning achievement among 39 undergraduate students…

  12. Designing Online Scaffolds for Interactive Computer Simulation

    ERIC Educational Resources Information Center

    Chen, Ching-Huei; Wu, I-Chia; Jen, Fen-Lan

    2013-01-01

    The purpose of this study was to examine the effectiveness of online scaffolds in computer simulation to facilitate students' science learning. We first introduced online scaffolds to assist and model students' science learning and to demonstrate how a system embedded with online scaffolds can be designed and implemented to help high school…

  13. Fundamental Theory of Crystal Decomposition

    DTIC Science & Technology

    1991-05-01

    rather than combine them as is often the case in a computation based on the density functional method.4 In the Case of a cluster embedded in a...classical lattice, special care needs to be taken to ensure that mathematical consistency is achieved between the cluster and the embedding lattice. This has...localizing potential or KKLP. Simulation of a large crystallite or an infinite lattice containing a point defect represented by a cluster and a

  14. Modeling the long-term effect of winter cover crops on nitrate transport in artificially drained fields across the Midwest U.S.

    USDA-ARS?s Scientific Manuscript database

    A fall-planted cover crop is a management practice with multiple benefits including reducing nitrate losses from artificially drained fields. We used the Root Zone Water Quality Model (RZWQM) to simulate the impact of a cereal rye cover crop on reducing nitrate losses from drained fields across five...

  15. The Use of Video Technology for the Fast-Prototyping of Artificially Intelligent Software.

    ERIC Educational Resources Information Center

    Klein, Gary L.

    This paper describes the use of video to provide a screenplay depiction of a proposed artificial intelligence software system. Advantages of such use are identified: (1) the video can be used to provide a clear conceptualization of the proposed system; (2) it can illustrate abstract technical concepts; (3) it can simulate the functions of the…

  16. A prototype of behavior selection mechanism based on emotion

    NASA Astrophysics Data System (ADS)

    Zhang, Guofeng; Li, Zushu

    2007-12-01

    In bionic methodology rather than in design methodology more familiar with, summarizing the psychological researches of emotion, we propose the biologic mechanism of emotion, emotion selection role in creature evolution and a anima framework including emotion similar to the classical control structure; and consulting Prospect Theory, build an Emotion Characteristic Functions(ECF) that computer emotion; two more emotion theories are added to them that higher emotion is preferred and middle emotion makes brain run more efficiently, emotional behavior mechanism comes into being. A simulation of proposed mechanism are designed and carried out on Alife Swarm software platform. In this simulation, a virtual grassland ecosystem is achieved where there are two kinds of artificial animals: herbivore and preyer. These artificial animals execute four types of behavior: wandering, escaping, finding food, finding sex partner in their lives. According the theories of animal ethnology, escaping from preyer is prior to other behaviors for its existence, finding food is secondly important behavior, rating is third one and wandering is last behavior. In keeping this behavior order, based on our behavior characteristic function theory, the specific functions of emotion computing are built of artificial autonomous animals. The result of simulation confirms the behavior selection mechanism.

  17. An Examination of Parameters Affecting Large Eddy Simulations of Flow Past a Square Cylinder

    NASA Technical Reports Server (NTRS)

    Mankbadi, M. R.; Georgiadis, N. J.

    2014-01-01

    Separated flow over a bluff body is analyzed via large eddy simulations. The turbulent flow around a square cylinder features a variety of complex flow phenomena such as highly unsteady vortical structures, reverse flow in the near wall region, and wake turbulence. The formation of spanwise vortices is often times artificially suppressed in computations by either insufficient depth or a coarse spanwise resolution. As the resolution is refined and the domain extended, the artificial turbulent energy exchange between spanwise and streamwise turbulence is eliminated within the wake region. A parametric study is performed highlighting the effects of spanwise vortices where the spanwise computational domain's resolution and depth are varied. For Re=22,000, the mean and turbulent statistics computed from the numerical large eddy simulations (NLES) are in good agreement with experimental data. Von-Karman shedding is observed in the wake of the cylinder. Mesh independence is illustrated by comparing a mesh resolution of 2 million to 16 million. Sensitivities to time stepping were minimized and sampling frequency sensitivities were nonpresent. While increasing the spanwise depth and resolution can be costly, this practice was found to be necessary to eliminating the artificial turbulent energy exchange.

  18. Preparing and Analyzing Iced Airfoils

    NASA Technical Reports Server (NTRS)

    Vickerman, Mary B.; Baez, Marivell; Braun, Donald C.; Cotton, Barbara J.; Choo, Yung K.; Coroneos, Rula M.; Pennline, James A.; Hackenberg, Anthony W.; Schilling, Herbert W.; Slater, John W.; hide

    2004-01-01

    SmaggIce version 1.2 is a computer program for preparing and analyzing iced airfoils. It includes interactive tools for (1) measuring ice-shape characteristics, (2) controlled smoothing of ice shapes, (3) curve discretization, (4) generation of artificial ice shapes, and (5) detection and correction of input errors. Measurements of ice shapes are essential for establishing relationships between characteristics of ice and effects of ice on airfoil performance. The shape-smoothing tool helps prepare ice shapes for use with already available grid-generation and computational-fluid-dynamics software for studying the aerodynamic effects of smoothed ice on airfoils. The artificial ice-shape generation tool supports parametric studies since ice-shape parameters can easily be controlled with the artificial ice. In such studies, artificial shapes generated by this program can supplement simulated ice obtained from icing research tunnels and real ice obtained from flight test under icing weather condition. SmaggIce also automatically detects geometry errors such as tangles or duplicate points in the boundary which may be introduced by digitization and provides tools to correct these. By use of interactive tools included in SmaggIce version 1.2, one can easily characterize ice shapes and prepare iced airfoils for grid generation and flow simulations.

  19. Using Intelligent System Approaches for Simulation of Electricity Markets

    NASA Astrophysics Data System (ADS)

    Hamagami, Tomoki

    Significances and approaches of applying intelligent systems to artificial electricity market is discussed. In recent years, with the moving into restructuring of electric system in Japan, the deregulation for the electric market is progressing. The most major change of the market is a founding of JEPX (Japan Electric Power eXchange.) which is expected to help lower power bills through effective use of surplus electricity. The electricity market designates exchange of electric power between electric power suppliers (supplier agents) themselves. In the market, the goal of each supplier agents is to maximize its revenue for the entire trading period, and shows complex behavior, which can model by a multiagent platform. Using the multiagent simulations which have been studied as “artificial market" helps to predict the spot prices, to plan investments, and to discuss the rules of market. Moreover, intelligent system approaches provide for constructing more reasonable policies of each agents. This article, first, makes a brief summary of the electricity market in Japan and the studies of artificial markets. Then, a survey of tipical studies of artificial electricity market is listed. Through these topics, the future vision is presented for the studies.

  20. Artificial pigs in space: using artificial intelligence and artificial life techniques to design animal housing.

    PubMed

    Stricklin, W R; de Bourcier, P; Zhou, J Z; Gonyou, H W

    1998-10-01

    Computer simulations have been used by us since the early 1970s to gain an understanding of the spacing and movement patterns of confined animals. The work has progressed from the early stages, in which we used randomly positioned points, to current investigations of animats (computer-simulated animals), which show low levels of learning via artificial neural networks. We have determined that 1) pens of equal floor area but of different shape result in different spatial and movement patterns for randomly positioned and moving animats; 2) when group size increases under constant density, freedom of movement approaches an asymptote at approximately six animats; 3) matching the number of animats with the number of corners results in optimal freedom of movement for small groups of animats; and 4) perimeter positioning occurs in groups of animats that maximize their distance to first- and second-nearest neighbors. Recently, we developed animats that move, compete for social dominance, and are motivated to obtain resources (food, resting sites, etc.). We are currently developing an animat that learns its behavior from the spatial and movement data collected on live pigs. The animat model is then used to pretest pen designs, followed by new pig spatial data fed into the animat model, resulting in a new pen design to be tested, and the steps are repeated. We believe that methodologies from artificial-life and artificial intelligence can contribute to the understanding of basic animal behavior principles, as well as to the solving of problems in production agriculture in areas such as animal housing design.

  1. Expert systems and simulation models; Proceedings of the Seminar, Tucson, AZ, November 18, 19, 1985

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The seminar presents papers on modeling and simulation methodology, artificial intelligence and expert systems, environments for simulation/expert system development, and methodology for simulation/expert system development. Particular attention is given to simulation modeling concepts and their representation, modular hierarchical model specification, knowledge representation, and rule-based diagnostic expert system development. Other topics include the combination of symbolic and discrete event simulation, real time inferencing, and the management of large knowledge-based simulation projects.

  2. Manipulating type-I and type-II Dirac polaritons in cavity-embedded honeycomb metasurfaces.

    PubMed

    Mann, Charlie-Ray; Sturges, Thomas J; Weick, Guillaume; Barnes, William L; Mariani, Eros

    2018-06-06

    Pseudorelativistic Dirac quasiparticles have emerged in a plethora of artificial graphene systems that mimic the underlying honeycomb symmetry of graphene. However, it is notoriously difficult to manipulate their properties without modifying the lattice structure. Here we theoretically investigate polaritons supported by honeycomb metasurfaces and, despite the trivial nature of the resonant elements, we unveil rich Dirac physics stemming from a non-trivial winding in the light-matter interaction. The metasurfaces simultaneously exhibit two distinct species of massless Dirac polaritons, namely type-I and type-II. By modifying only the photonic environment via an enclosing cavity, one can manipulate the location of the type-II Dirac points, leading to qualitatively different polariton phases. This enables one to alter the fundamental properties of the emergent Dirac polaritons while preserving the lattice structure-a unique scenario which has no analog in real or artificial graphene systems. Exploiting the photonic environment will thus give rise to unexplored Dirac physics at the subwavelength scale.

  3. Fatigue Behavior Degradation due to the Interlaminar Conditions in Lightweight Piezoelectric Composite Actuator (lipca)

    NASA Astrophysics Data System (ADS)

    Kim, Cheol-Woong; Yoon, Kwang-Joon

    The advanced piezoelectric ceramic composite actuator, which is called LIPCA (LIghtweight Piezoelectric Composite Actuator), replaced the Al foil and stainless steel in THUNDER with the FRP and the optimization of the laminate configuration was performed to maximize the stress transfer and the fiber bridging effect. This study evaluated the fatigue characteristics in LIPCA under the resonance frequency, and the changes of its interlaminar phase were also evaluated. Beside, the residual stress distribution was estimated. In conclusions, firstly, comparing with the fatigue life of LIPCA without the artificial delamination (intact LIPCA), the fatigue life of LIPCA embedded by the artificial delamination was decreased up to 50%. Secondly, the micro void growth and the coalescence of epoxy were actively made at the interlaminar phase subject to the large tensile stress. Finally, it was known that the harmonic configuration between the compressive residuals stress and the tensile one was made. The requirement of the performance displacement increment was satisfied.

  4. Artificial Fruit: Postharvest Online Monitoring of Agricultural Food by Measuring Humidity and Temperature

    NASA Astrophysics Data System (ADS)

    Hübert, T.; Lang, C.

    2012-09-01

    An online monitoring of environmental and inherent product parameters is required during transportation and storage of fruit and vegetables to avoid quality degradation and spoilage. The control of transpiration losses is suggested as an indicator for fruit freshness by humidity measurements. For that purpose, an electronic sensor is surrounded by a wet porous fiber material which is in contact with the outer atmosphere. Transpiration reduces the water content of the porous material and thus also the internal water activity. The sensor system, known as "artificial fruit," measures the relative humidity and temperature inside the wet material. Humidity and temperature data are collected and transmitted on demand by a miniaturized radio communication unit. The decrease in the measured relative humidity has been calibrated against the mass loss of tomatoes under different external influencing parameters such as temperature, humidity, and air flow. Current battery life allows the sensor system, embedded in a fruit crate, to transmit data on transpiration losses via radio transmission for up to two weeks.

  5. Pixel-by-pixel absolute phase retrieval using three phase-shifted fringe patterns without markers

    NASA Astrophysics Data System (ADS)

    Jiang, Chufan; Li, Beiwen; Zhang, Song

    2017-04-01

    This paper presents a method that can recover absolute phase pixel by pixel without embedding markers on three phase-shifted fringe patterns, acquiring additional images, or introducing additional hardware component(s). The proposed three-dimensional (3D) absolute shape measurement technique includes the following major steps: (1) segment the measured object into different regions using rough priori knowledge of surface geometry; (2) artificially create phase maps at different z planes using geometric constraints of structured light system; (3) unwrap the phase pixel by pixel for each region by properly referring to the artificially created phase map; and (4) merge unwrapped phases from all regions into a complete absolute phase map for 3D reconstruction. We demonstrate that conventional three-step phase-shifted fringe patterns can be used to create absolute phase map pixel by pixel even for large depth range objects. We have successfully implemented our proposed computational framework to achieve absolute 3D shape measurement at 40 Hz.

  6. Textile Functionalization and Its Effects on the Release of Silver Nanoparticles into Artificial Sweat.

    PubMed

    Wagener, Sandra; Dommershausen, Nils; Jungnickel, Harald; Laux, Peter; Mitrano, Denise; Nowack, Bernd; Schneider, Gregor; Luch, Andreas

    2016-06-07

    This study addresses the release of total silver (Ag) and silver nanoparticles (Ag-NPs) from textiles into artificial sweat, particularly considering the functionalization technology used in textile finishing. Migration experiments were conducted for four commercially available textiles and for six laboratory-prepared textiles. Two among these lab-prepared textiles represent materials in which Ag-NPs were embedded within the textile fibers (composites), whereas the other lab-prepared textiles contain Ag particles on the respective fiber surfaces (coatings). The results indicate a smaller release of total Ag from composites in comparison to surface-coated textiles. The particulate fraction determined within the artificial sweat was negligible for most textiles, meaning that the majority of the released Ag is present as dissolved Ag. It is also relevant to note that nanotextiles do not release more particulate Ag than conventional Ag textiles. The results rather indicate that the functionalization type is the most important parameter affecting the migration. Furthermore, after measuring different Ag-NP types in their pristine form with inductively coupled plasma mass spectrometry in the single particle mode, there is evidence that particle modifications, like surface coating, may also influence the dissolution behavior of the Ag-NPs in the sweat solutions. These factors are important when discussing the likelihood of consumer exposure.

  7. A novel approach for monitoring genetically engineered microorganisms by using artificial, stable RNAs

    NASA Technical Reports Server (NTRS)

    Pitulle, C.; Hedenstierna, K. O.; Fox, G. E.

    1995-01-01

    Further improvements in technology for efficient monitoring of genetically engineered microorganisms (GEMs) in the environment are needed. Technology for monitoring rRNA is well established but has not generally been applicable to GEMs because of the lack of unique rRNA target sequences. In the work described herein, it is demonstrated that a deletion mutant of a plasmid-borne Vibrio proteolyticus 5S rRNA gene continues to accumulate to high levels in Escherichia coli although it is no longer incorporated into 70S ribosomes. This deletion construct was subsequently modified by mutagenesis to create a unique recognition site for the restriction endonuclease BstEII, into which new sequences could be readily inserted. Finally, a novel 17-nucleotide identifier sequence from Pennisetum purpureum was embedded into the construct to create an RNA identification cassette. The artificial identifier RNA, expressed from this cassette in vivo, accumulated in E. coli to levels comparable to those of wild-type 5S rRNA without being seriously detrimental to cell survival in laboratory experiments and without entering the ribosomes. These results demonstrate that artificial, stable RNAs containing sequence segments remarkably different from those present in any known rRNA can be designed and that neither the deleted sequence segment nor ribosome incorporation is essential for accumulation of an RNA product.

  8. Soft but Powerful Artificial Muscles Based on 3D Graphene-CNT-Ni Heteronanostructures.

    PubMed

    Kim, Jaehwan; Bae, Seok-Hu; Kotal, Moumita; Stalbaum, Tyler; Kim, Kwang J; Oh, Il-Kwon

    2017-08-01

    Bioinspired soft ionic actuators, which exhibit large strain and high durability under low input voltages, are regarded as prospective candidates for future soft electronics. However, due to the intrinsic drawback of weak blocking force, the feasible applications of soft ionic actuators are limited until now. An electroactive artificial muscle electro-chemomechanically reinforced with 3D graphene-carbon nanotube-nickel heteronanostructures (G-CNT-Ni) to improve blocking force and bending deformation of the ionic actuators is demonstrated. The G-CNT-Ni heteronanostructure, which provides an electrically conductive 3D network and sufficient contact area with mobile ions in the polymer electrolyte, is embedded as a nanofiller in both ionic polymer and conductive electrodes of the ionic actuators. An ionic exchangeable composite membrane consisting of Nafion, G-CNT-Ni and ionic liquid (IL) shows improved tensile modulus and strength of up to 166% and 98%, respectively, and increased ionic conductivity of 0.254 S m -1 . The ionic actuator exhibits enhanced actuation performances including three times larger bending deformation, 2.37 times higher blocking force, and 4 h durability. The electroactive artificial muscle electro-chemomechanically reinforced with 3D G-CNT-Ni heteronanostructures offers improvements over current soft ionic actuator technologies and can advance the practical engineering applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Chemical evolution on planetary surfaces: from simple gases to organic macrocycles

    NASA Astrophysics Data System (ADS)

    Fox, Stefan; Strasdeit, Henry

    It is generally accepted that α-amino acids existed in the primordial ocean on the Hadean / early Archean Earth. They had been abiotically synthesized from smaller molecules such as H2 , CH4 , H2 O, NH3 , HCN, aldehydes, ketones, and alcohols [1-3]. Once the amino acids had been formed, they probably reacted to more complex molecules. One possibility is the thermal transformation at hot volcanic coasts. In a first step, amino acid-containing seawater evaporated in the vicinity of lava streams. A salt crust remained in which amino acids were embedded. In a second step, these embedded amino acids were thermally transformed to new compounds. In order to simulate this hot-volcanic-coast scenario artificial salt crusts with embedded amino acids were prepared and heated to 300-800 ° C in a slow stream of nitrogen gas. We found that in the salt crusts glycine, DL-alanine and -aminoisobutyric acid were chemically bonded to calcium or magnesium ions. This metal coordination prevents the sublimation of the amino acids and permits the thermal formation of pyridines, piperazine-2,5-diones, polycyclic aromatic hydrocarbons, and especially several alkylated pyrroles. Thus an abiotic source of pyrroles on young Earth-like planets may exist. Amino acids and pyrroles are building blocks of important biomolecules. It might seem plausible that amino acids formed peptides on the early Earth. However, in aqueous solution the condensation reaction is unfavorable, and even if short peptides would have formed they would have tended to hydrolyze. This argument is equally true for nucleic acid components [4]. In contrast to that, it is known that pyrrole, in aqueous HCl solutions, reacts with formaldehyde to form oligopyrroles [5]. Prebiotic oligopyrroles and their metal complexes may have been utilized by primitive metabolizing systems and later modified into porphyrin-like macrocycles such as chlorophyll. [1] Miller, S. L. (1953) Science, 117, 528. [2] Johnson, A. P., Cleaves, H. J., Dworkin, J. P., Glavin, D. P., Lazcano, A., Bada, J. L. (2008), Science, 322, 404. [3] Cronin, J. R., Pizzarello, S. (1983), Adv. Space Res., 3, 5. [4] Shapiro, R. (1984), Orig. Life, 14, 565. [5] Sobral, A. J. F. N., Rebanda, N. G. C. L., da Silva, M., Lampreia, S. H., Ramos Silva, M., Matos Beja, A., Paixão, J. A., and d'A. Rocha Gonsalves, A. M. (2003), Tetrahedron Lett., 44, 3971. a

  10. Results of using frequency banded SAFT for examining three types of defects

    NASA Astrophysics Data System (ADS)

    Clayton, Dwight; Barker, Alan; Santos-Villalobos, Hector

    2017-02-01

    A multitude of concrete-based structures are typically part of a light water reactor (LWR) plant to provide the foundation, support, shielding, and containment functions. Concrete has been used in the construction of nuclear power plants (NPPs) because of three primary properties; its low cost, structural strength, and ability to shield radiation. Examples of concrete structures important to the safety of LWR plants include the containment building, spent fuel pool, and cooling towers. This use has made concrete's long-term performance crucial for the safe operation of commercial NPPs. Extending reactor life to 60 years and beyond will likely increase susceptibility and severity of known forms of degradation. Additionally, new mechanisms of materials degradation are also possible. Specially designed and fabricated test specimens can provide realistic flaws that are similar to actual flaws in terms of how they interact with a particular Nondestructive Evaluation (NDE) technique. Artificial test blocks allow the isolation of certain testing problems as well as the variation of certain parameters. Because conditions in the laboratory are controlled, the number of unknown variables can be decreased, making it possible to focus on specific aspects, investigate them in detail, and gain further information on the capabilities and limitations of each method. To minimize artifacts caused by boundary effects, the dimensions of the specimens should not be too compact. In this paper, we apply the frequency banded Synthetic Aperture Focusing Technique (SAFT) technique to a 2.134 m × 2.134 m × 1.016 m concrete test specimen with twenty deliberately embedded defects. These twenty embedded defects simulate voids (honeycombs), delamination, and embedded organic construction debris. Using the time-frequency technique of wavelet packet decomposition and reconstruction, the spectral content of the signal can be divided into two resulting child nodes. The resulting two nodes can then also be divided into two child nodes with each child node containing half of the bandwidth (spectral content) of its parent node. This process can be repeated until the bandwidth of the child nodes is sufficiently small. Once the desired bandwidth has been obtained, the band limited signal can be analyzed using SAFT, enabling the visualization of reflectivity of a frequency band and that band's interaction with the contents of the concrete structure. This paper examines the benefits of using frequency banded SAFT.

  11. Automating Embedded Analysis Capabilities and Managing Software Complexity in Multiphysics Simulation, Part II: Application to Partial Differential Equations

    DOE PAGES

    Pawlowski, Roger P.; Phipps, Eric T.; Salinger, Andrew G.; ...

    2012-01-01

    A template-based generic programming approach was presented in Part I of this series of papers [Sci. Program. 20 (2012), 197–219] that separates the development effort of programming a physical model from that of computing additional quantities, such as derivatives, needed for embedded analysis algorithms. In this paper, we describe the implementation details for using the template-based generic programming approach for simulation and analysis of partial differential equations (PDEs). We detail several of the hurdles that we have encountered, and some of the software infrastructure developed to overcome them. We end with a demonstration where we present shape optimization and uncertaintymore » quantification results for a 3D PDE application.« less

  12. Thermomechanical response of NiTi shape-memory nanoprecipitates in TiV alloys

    NASA Astrophysics Data System (ADS)

    Maisel, S. B.; Ko, W.-S.; Zhang, J.-L.; Grabowski, B.; Neugebauer, J.

    2017-08-01

    We study the properties of NiTi shape-memory nanoparticles coherently embedded in TiV matrices using three-dimensional atomistic simulations based on the modified embedded-atom method. To this end, we develop and present a suitable NiTiV potential for our simulations. Employing this potential, we identify the conditions under which the martensitic phase transformation of such a nanoparticle is triggered—specifically, how these conditions can be tuned by modifying the size of the particle, the composition of the surrounding matrix, or the temperature and strain state of the system. Using these insights, we establish how the transformation temperature of such particles can be influenced and discuss the practical implications in the context of shape-memory strengthened alloys.

  13. Free energy landscape of electrocatalytic CO2 reduction to CO on aqueous FeN4 center embedded graphene studied by ab initio molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Sheng, Tian; Sun, Shi-Gang

    2017-11-01

    Experiments have found that the porphyrin-like FeN4 site in Fe-N-C materials is highly efficient for the electrochemical reduction of CO2 into CO. In this work, we investigated the reduction mechanisms on FeN4 embedded graphene layer catalyst with some explicit water molecules by combining the constrained ab initio molecular dynamics simulations and thermodynamic integrations. The reaction free energy and electron transfer in each elementary step were identified. The initial CO2 activation was identified to go through the first electron transfer to form adsorbed CO2- anion and the CO desorption was the rate limiting step in the overall catalytic cycle.

  14. Calibration and Validation of the Precision Nitrogen Management Tool for Artificially Drained Fields Under Maize

    NASA Astrophysics Data System (ADS)

    Marjerison, R.; Hutson, J.; Melkonian, J.; van Es, H.; Sela, S.

    2015-12-01

    Organic and inorganic fertilizer additions to agricultural fields can lead to soil nitrogen (N) levels in excess of those required for optimal crop growth. The primary loss pathways for this excess N are leaching and denitrification. Nitrate leaching from agricultural sources contributes to the formation of hypoxic zones in critical estuarine systems including the Chesapeake Bay and Gulf of Mexico. Denitrification can lead to the production of nitrous oxide (N2O), a potent greenhouse gas. Agricultural practices such as controlling the timing and location of fertilizer application can help reduce these losses. The Precision Nitrogen Management (PNM) model was developed to simulate water transport, nitrogen transformations and transport, and crop growth and nutrient uptake from agricultural fields. The PNM model allows for the prediction of N losses under a variety of crop and management scenarios. Recent improvements to the model include the option to simulate artificially drained fields. The model performs well in simulating drainage and nitrate leaching when compared to measured data from field studies in artificially drained soils in New York and Minnesota. A simulated N budget was compared to available data. The improved model will be used to assess different management options for reducing N losses in maize production under different climate projections for key maize production locations/systems in the U.S.

  15. Effect of headgroup size, charge, and solvent structure on polymer-micelle interactions, studied by molecular dynamics simulations.

    PubMed

    Shang, Barry Z; Wang, Zuowei; Larson, Ronald G

    2009-11-19

    We performed atomistic molecular dynamics simulations of anionic and cationic micelles in the presence of poly(ethylene oxide) (PEO) to understand why nonionic water-soluble polymers such as PEO interact strongly with anionic micelles but only weakly with cationic micelles. Our micelles include sodium n-dodecyl sulfate (SDS), n-dodecyl trimethylammonium chloride (DTAC), n-dodecyl ammonium chloride (DAC), and micelles in which we artificially reverse the sign of partial charges in SDS and DTAC. We observe that the polymer interacts hydrophobically with anionic SDS but only weakly with cationic DTAC and DAC, in agreement with experiment. However, the polymer also interacts with the artificial anionic DTAC but fails to interact hydrophobically with the artificial cationic SDS, illustrating that large headgroup size does not explain the weak polymer interaction with cationic micelles. In addition, we observe through simulation that this preference for interaction with anionic micelles still exists in a dipolar "dumbbell" solvent, indicating that water structure and hydrogen bonding alone cannot explain this preferential interaction. Our simulations suggest that direct electrostatic interactions between the micelle and polymer explain the preference for interaction with anionic micelles, even though the polymer overall carries no net charge. This is possible given the asymmetric distribution of negative charges on smaller atoms and positive charges on larger units in the polymer chain.

  16. [Simulation of lung motions using an artificial neural network].

    PubMed

    Laurent, R; Henriet, J; Salomon, M; Sauget, M; Nguyen, F; Gschwind, R; Makovicka, L

    2011-04-01

    A way to improve the accuracy of lung radiotherapy for a patient is to get a better understanding of its lung motion. Indeed, thanks to this knowledge it becomes possible to follow the displacements of the clinical target volume (CTV) induced by the lung breathing. This paper presents a feasibility study of an original method to simulate the positions of points in patient's lung at all breathing phases. This method, based on an artificial neural network, allowed learning the lung motion on real cases and then to simulate it for new patients for which only the beginning and the end breathing data are known. The neural network learning set is made up of more than 600 points. These points, shared out on three patients and gathered on a specific lung area, were plotted by a MD. The first results are promising: an average accuracy of 1mm is obtained for a spatial resolution of 1 × 1 × 2.5mm(3). We have demonstrated that it is possible to simulate lung motion with accuracy using an artificial neural network. As future work we plan to improve the accuracy of our method with the addition of new patient data and a coverage of the whole lungs. Copyright © 2010 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Chen, E-mail: chuang3@fsu.edu

    A key element in the density functional embedding theory (DFET) is the embedding potential. We discuss two major issues related to the embedding potential: (1) its non-uniqueness and (2) the numerical difficulty for solving for it, especially for the spin-polarized systems. To resolve the first issue, we extend DFET to finite temperature: all quantities, such as the subsystem densities and the total system’s density, are calculated at a finite temperature. This is a physical extension since materials work at finite temperatures. We show that the embedding potential is strictly unique at T > 0. To resolve the second issue, wemore » introduce an efficient iterative embedding potential solver. We discuss how to relax the magnetic moments in subsystems and how to equilibrate the chemical potentials across subsystems. The solver is robust and efficient for several non-trivial examples, in all of which good quality spin-polarized embedding potentials were obtained. We also demonstrate the solver on an extended periodic system: iron body-centered cubic (110) surface, which is related to the modeling of the heterogeneous catalysis involving iron, such as the Fischer-Tropsch and the Haber processes. This work would make it efficient and accurate to perform embedding simulations of some challenging material problems, such as the heterogeneous catalysis and the defects of complicated spin configurations in electronic materials.« less

  18. Artificial intelligence in nanotechnology.

    PubMed

    Sacha, G M; Varona, P

    2013-11-15

    During the last decade there has been increasing use of artificial intelligence tools in nanotechnology research. In this paper we review some of these efforts in the context of interpreting scanning probe microscopy, the study of biological nanosystems, the classification of material properties at the nanoscale, theoretical approaches and simulations in nanoscience, and generally in the design of nanodevices. Current trends and future perspectives in the development of nanocomputing hardware that can boost artificial-intelligence-based applications are also discussed. Convergence between artificial intelligence and nanotechnology can shape the path for many technological developments in the field of information sciences that will rely on new computer architectures and data representations, hybrid technologies that use biological entities and nanotechnological devices, bioengineering, neuroscience and a large variety of related disciplines.

  19. Artificial intelligence in nanotechnology

    NASA Astrophysics Data System (ADS)

    Sacha, G. M.; Varona, P.

    2013-11-01

    During the last decade there has been increasing use of artificial intelligence tools in nanotechnology research. In this paper we review some of these efforts in the context of interpreting scanning probe microscopy, the study of biological nanosystems, the classification of material properties at the nanoscale, theoretical approaches and simulations in nanoscience, and generally in the design of nanodevices. Current trends and future perspectives in the development of nanocomputing hardware that can boost artificial-intelligence-based applications are also discussed. Convergence between artificial intelligence and nanotechnology can shape the path for many technological developments in the field of information sciences that will rely on new computer architectures and data representations, hybrid technologies that use biological entities and nanotechnological devices, bioengineering, neuroscience and a large variety of related disciplines.

  20. Parallel Simulation of Subsonic Fluid Dynamics on a Cluster of Workstations.

    DTIC Science & Technology

    1994-11-01

    inside wind musical instruments. Typical simulations achieve $80\\%$ parallel efficiency (speedup/processors) using 20 HP-Apollo workstations. Detailed...TERMS AI, MIT, Artificial Intelligence, Distributed Computing, Workstation Cluster, Network, Fluid Dynamics, Musical Instruments 17. SECURITY...for example, the flow of air inside wind musical instruments. Typical simulations achieve 80% parallel efficiency (speedup/processors) using 20 HP

  1. Computational neural learning formalisms for manipulator inverse kinematics

    NASA Technical Reports Server (NTRS)

    Gulati, Sandeep; Barhen, Jacob; Iyengar, S. Sitharama

    1989-01-01

    An efficient, adaptive neural learning paradigm for addressing the inverse kinematics of redundant manipulators is presented. The proposed methodology exploits the infinite local stability of terminal attractors - a new class of mathematical constructs which provide unique information processing capabilities to artificial neural systems. For robotic applications, synaptic elements of such networks can rapidly acquire the kinematic invariances embedded within the presented samples. Subsequently, joint-space configurations, required to follow arbitrary end-effector trajectories, can readily be computed. In a significant departure from prior neuromorphic learning algorithms, this methodology provides mechanisms for incorporating an in-training skew to handle kinematics and environmental constraints.

  2. Testing for nonlinear dependence in financial markets.

    PubMed

    Dore, Mohammed; Matilla-Garcia, Mariano; Marin, Manuel Ruiz

    2011-07-01

    This article addresses the question of improving the detection of nonlinear dependence by means of recently developed nonparametric tests. To this end a generalized version of BDS test and a new test based on symbolic dynamics are used on realizations from a well-known artificial market for which the dynamic equation governing the market is known. Comparisons with other tests for detecting nonlinearity are also provided. We show that the test based on symbolic dynamics outperforms other tests with the advantage that it depends only on one free parameter, namely the embedding dimension. This does not hold for other tests for nonlinearity.

  3. Design and Simulation of Horn Antenna Using CST Software for GPR System

    NASA Astrophysics Data System (ADS)

    Joret, Ariffuddin; Sulong, M. S.; Abdullah, M. F. L.; Madun, Aziman; Haimi Dahlan, Samsul

    2018-04-01

    Detection of underground object can be made using a GPR system. This system is classified as a non-destructive technique (NDT) where the ground areas need not to be excavated. The technique used by the GPR system is by measuring the reflection of electromagnetic wave signal produced and detected by antenna which is known as the transmitter and the receiver antenna. In this study, a GPR system was studied by means of simulation using a Horn antenna as a transceiver antenna. The electromagnetic wave signal in this simulation is produced by current signal of an antenna which having a shape of modulation of Gaussian pulse which is having spectrum from 8 GHz until 12 GHz. CST and MATLAB Software are used in this GPR system simulation. A model of a Horn antenna has been designed using the CST software before the GPR’s system simulation modeled by adding a model of background in front of the Horn antenna. The simulation results show that the output signal of the Horn antenna can be used in detecting embedded object which are made from material of wood and iron. In addition, the simulation result has successfully developed a 3D model image of the GPR system using output signal of the Horn antenna. The embedded iron object in the GPR system simulation can be seen clearly by using this 3D image.

  4. A Comparison of the Predictive Capabilities of the Embedded-Atom Method and Modified Embedded-Atom Method Potentials for Lithium

    DOE PAGES

    Vella, Joseph R.; Stillinger, Frank H.; Panagiotopoulos, Athanassios Z.; ...

    2015-07-23

    Here, we compare six lithium potentials by examining their ability to predict coexistence properties and liquid structure using molecular dynamics. All potentials are of the embedded-atom-method (EAM) type. The coexistence properties we focus on are the melting curve, vapor pressure, saturated liquid density, and vapor-liquid surface tension. For each property studied, the simulation results are compared to available experimental data in order to properly assess the accuracy of each potential. We find that the Cui 2NN MEAM is the most robust potential, giving adequate agreement with most of the properties examined. For example, the zero-pressure melting point of this potentialmore » is shown to be around 443 K, while experimentally is it about 454 K. This potential also gives excellent agreement with saturated liquid densities, even though no liquid properties were used in the fitting procedure. Our study allows us to conclude that the Cui 2NN MEAM should be used for further simulations of lithiums.« less

  5. Impact of high-κ dielectric and metal nanoparticles in simultaneous enhancement of programming speed and retention time of nano-flash memory

    NASA Astrophysics Data System (ADS)

    Pavel, Akeed A.; Khan, Mehjabeen A.; Kirawanich, Phumin; Islam, N. E.

    2008-10-01

    A methodology to simulate memory structures with metal nanocrystal islands embedded as floating gate in a high-κ dielectric material for simultaneous enhancement of programming speed and retention time is presented. The computational concept is based on a model for charge transport in nano-scaled structures presented earlier, where quantum mechanical tunneling is defined through the wave impedance that is analogous to the transmission line theory. The effects of substrate-tunnel dielectric conduction band offset and metal work function on the tunneling current that determines the programming speed and retention time is demonstrated. Simulation results confirm that a high-κ dielectric material can increase programming current due to its lower conduction band offset with the substrate and also can be effectively integrated with suitable embedded metal nanocrystals having high work function for efficient data retention. A nano-memory cell designed with silver (Ag) nanocrystals embedded in Al 2O 3 has been compared with similar structure consisting of Si nanocrystals in SiO 2 to validate the concept.

  6. Research on Flow Field Perception Based on Artificial Lateral Line Sensor System.

    PubMed

    Liu, Guijie; Wang, Mengmeng; Wang, Anyi; Wang, Shirui; Yang, Tingting; Malekian, Reza; Li, Zhixiong

    2018-03-11

    In nature, the lateral line of fish is a peculiar and important organ for sensing the surrounding hydrodynamic environment, preying, escaping from predators and schooling. In this paper, by imitating the mechanism of fish lateral canal neuromasts, we developed an artificial lateral line system composed of micro-pressure sensors. Through hydrodynamic simulations, an optimized sensor structure was obtained and the pressure distribution models of the lateral surface were established in uniform flow and turbulent flow. Carrying out the corresponding underwater experiment, the validity of the numerical simulation method is verified by the comparison between the experimental data and the simulation results. In addition, a variety of effective research methods are proposed and validated for the flow velocity estimation and attitude perception in turbulent flow, respectively and the shape recognition of obstacles is realized by the neural network algorithm.

  7. Enhancing artificial bee colony algorithm with self-adaptive searching strategy and artificial immune network operators for global optimization.

    PubMed

    Chen, Tinggui; Xiao, Renbin

    2014-01-01

    Artificial bee colony (ABC) algorithm, inspired by the intelligent foraging behavior of honey bees, was proposed by Karaboga. It has been shown to be superior to some conventional intelligent algorithms such as genetic algorithm (GA), artificial colony optimization (ACO), and particle swarm optimization (PSO). However, the ABC still has some limitations. For example, ABC can easily get trapped in the local optimum when handing in functions that have a narrow curving valley, a high eccentric ellipse, or complex multimodal functions. As a result, we proposed an enhanced ABC algorithm called EABC by introducing self-adaptive searching strategy and artificial immune network operators to improve the exploitation and exploration. The simulation results tested on a suite of unimodal or multimodal benchmark functions illustrate that the EABC algorithm outperforms ACO, PSO, and the basic ABC in most of the experiments.

  8. Enhancing Artificial Bee Colony Algorithm with Self-Adaptive Searching Strategy and Artificial Immune Network Operators for Global Optimization

    PubMed Central

    Chen, Tinggui; Xiao, Renbin

    2014-01-01

    Artificial bee colony (ABC) algorithm, inspired by the intelligent foraging behavior of honey bees, was proposed by Karaboga. It has been shown to be superior to some conventional intelligent algorithms such as genetic algorithm (GA), artificial colony optimization (ACO), and particle swarm optimization (PSO). However, the ABC still has some limitations. For example, ABC can easily get trapped in the local optimum when handing in functions that have a narrow curving valley, a high eccentric ellipse, or complex multimodal functions. As a result, we proposed an enhanced ABC algorithm called EABC by introducing self-adaptive searching strategy and artificial immune network operators to improve the exploitation and exploration. The simulation results tested on a suite of unimodal or multimodal benchmark functions illustrate that the EABC algorithm outperforms ACO, PSO, and the basic ABC in most of the experiments. PMID:24772023

  9. Efficient sidelobe ASK based dual-function radar-communications

    NASA Astrophysics Data System (ADS)

    Hassanien, Aboulnasr; Amin, Moeness G.; Zhang, Yimin D.; Ahmad, Fauzia

    2016-05-01

    Recently, dual-function radar-communications (DFRC) has been proposed as means to mitigate the spectrum congestion problem. Existing amplitude-shift keying (ASK) methods for information embedding do not take full advantage of the highest permissable sidelobe level. In this paper, a new ASK-based signaling strategy for enhancing the signal-to-noise ratio (SNR) at the communication receiver is proposed. The proposed method employs one reference waveform and simultaneously transmits a number of orthogonal waveforms equals to the number of 1's in the binary sequence being embedded. 3 dB SNR gain is achieved using the proposed method as compared to existing sidelobe ASK methods. The effectiveness of the proposed information embedding strategy is verified using simulations examples.

  10. Preliminary studies on SMA embedded wind turbine blades for passive control of vibration

    NASA Astrophysics Data System (ADS)

    Haghdoust, P.; Cinquemani, S.; Lo Conte, A.

    2018-03-01

    Wind turbine blades are being bigger and bigger, thus requiring lightweight structures that are more flexible and thus more sensitive to dynamic excitations and to vibration problems. This paper investigates a preliminary architecture of large wind turbine blades, embedding thin sheets of SMA to passively improve their total damping. A phenomenological material model is used for simulation of strain-dependent damping in SMA materials and an user defined material model was developed for this purpose. The response of different architectures of SMA embedded blades have been investigated in the time domain to find an optimal solution in which the less amount of SMA is used while the damping of the system is maximized

  11. A biomolecular detection method based on charge pumping in a nanogap embedded field-effect-transistor biosensor

    NASA Astrophysics Data System (ADS)

    Kim, Sungho; Ahn, Jae-Hyuk; Park, Tae Jung; Lee, Sang Yup; Choi, Yang-Kyu

    2009-06-01

    A unique direct electrical detection method of biomolecules, charge pumping, was demonstrated using a nanogap embedded field-effect-transistor (FET). With aid of a charge pumping method, sensitivity can fall below the 1 ng/ml concentration regime in antigen-antibody binding of an avian influenza case. Biomolecules immobilized in the nanogap are mainly responsible for the acute changes of the interface trap density due to modulation of the energy level of the trap. This finding is supported by a numerical simulation. The proposed detection method for biomolecules using a nanogap embedded FET represents a foundation for a chip-based biosensor capable of high sensitivity.

  12. 1988 Goddard Conference on Space Applications of Artificial Intelligence, Greenbelt, MD, May 24, 1988, Proceedings

    NASA Technical Reports Server (NTRS)

    Rash, James L. (Editor)

    1988-01-01

    This publication comprises the papers presented at the 1988 Goddard Conference on Space Applications of Artificial Intelligence held at the NASA/Goddard Space Flight Center, Greenbelt, Maryland on May 24, 1988. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The papers in these proceedings fall into the following areas: mission operations support, planning and scheduling; fault isolation/diagnosis; image processing and machine vision; data management; modeling and simulation; and development tools methodologies.

  13. In silico preclinical trials: a proof of concept in closed-loop control of type 1 diabetes.

    PubMed

    Kovatchev, Boris P; Breton, Marc; Man, Chiara Dalla; Cobelli, Claudio

    2009-01-01

    Arguably, a minimally invasive system using subcutaneous (s.c.) continuous glucose monitoring (CGM) and s.c. insulin delivery via insulin pump would be a most feasible step to closed-loop control in type 1 diabetes mellitus (T1DM). Consequently, diabetes technology is focusing on developing an artificial pancreas using control algorithms to link CGM with s.c. insulin delivery. The future development of the artificial pancreas will be greatly accelerated by employing mathematical modeling and computer simulation. Realistic computer simulation is capable of providing invaluable information about the safety and the limitations of closed-loop control algorithms, guiding clinical studies, and out-ruling ineffective control scenarios in a cost-effective manner. Thus computer simulation testing of closed-loop control algorithms is regarded as a prerequisite to clinical trials of the artificial pancreas. In this paper, we present a system for in silico testing of control algorithms that has three principal components: (1) a large cohort of n=300 simulated "subjects" (n=100 adults, 100 adolescents, and 100 children) based on real individuals' data and spanning the observed variability of key metabolic parameters in the general population of people with T1DM; (2) a simulator of CGM sensor errors representative of Freestyle Navigator™, Guardian RT, or Dexcom™ STS™, 7-day sensor; and (3) a simulator of discrete s.c. insulin delivery via OmniPod Insulin Management System or Deltec Cozmo(®) insulin pump. The system has been shown to represent adequate glucose fluctuations in T1DM observed during meal challenges, and has been accepted by the Food and Drug Administration as a substitute to animal trials in the preclinical testing of closed-loop control strategies. © Diabetes Technology Society

  14. Discriminative graph embedding for label propagation.

    PubMed

    Nguyen, Canh Hao; Mamitsuka, Hiroshi

    2011-09-01

    In many applications, the available information is encoded in graph structures. This is a common problem in biological networks, social networks, web communities and document citations. We investigate the problem of classifying nodes' labels on a similarity graph given only a graph structure on the nodes. Conventional machine learning methods usually require data to reside in some Euclidean spaces or to have a kernel representation. Applying these methods to nodes on graphs would require embedding the graphs into these spaces. By embedding and then learning the nodes on graphs, most methods are either flexible with different learning objectives or efficient enough for large scale applications. We propose a method to embed a graph into a feature space for a discriminative purpose. Our idea is to include label information into the embedding process, making the space representation tailored to the task. We design embedding objective functions that the following learning formulations become spectral transforms. We then reformulate these spectral transforms into multiple kernel learning problems. Our method, while being tailored to the discriminative tasks, is efficient and can scale to massive data sets. We show the need of discriminative embedding on some simulations. Applying to biological network problems, our method is shown to outperform baselines.

  15. Circuit-Switched Memory Access in Photonic Interconnection Networks for High-Performance Embedded Computing

    DTIC Science & Technology

    2010-07-22

    dependent , providing a natural bandwidth match between compute cores and the memory subsystem. • High Bandwidth Dcnsity. Waveguides crossing the chip...simulate this memory access architecture on a 2S6-core chip with a concentrated 64-node network lIsing detailed traces of high-performance embedded...memory modulcs, wc placc memory access poi nts (MAPs) around the pcriphery of the chip connected to thc nctwork. These MAPs, shown in Figure 4, contain

  16. Simulation, Design Abstraction, and SystemC

    ERIC Educational Resources Information Center

    Harcourt, Ed

    2007-01-01

    SystemC is a system-level design and simulation language based on C++. We've been using SystemC for computer organization and design projects for the past several years. Because SystemC is embedded in C++ it contains the powerful abstraction mechanisms of C++ not found in traditional hardware description languages, such as support for…

  17. Using Artificial Soil and Dry-Column Flash Chromatography to Simulate Organic Substance Leaching Process: A Colorful Environmental Chemistry Experiment

    ERIC Educational Resources Information Center

    de Avellar, Isa G. J.; Cotta, Tais A. P. G.; Neder, Amarilis de V. Finageiv

    2012-01-01

    Soil is an important and complex environmental compartment and soil contamination contributes to the pollution of aquifers and other water basins. A simple and low-cost experiment is described in which the mobility of three organic compounds in an artificial soil is examined using dry-column flash chromatography. The compounds were applied on top…

  18. Cultured High-Fidelity Three-Dimensional Human Urogenital Tract Carcinomas and Process

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor); Prewett, Tacey L. (Inventor); Spaulding, Glenn F. (Inventor); Wolf, David A. (Inventor)

    1998-01-01

    Artificial high-fidelity three-dimensional human urogenital tract carcinomas are propagated under in vitro-microgravity conditions from carcinoma cells. Artificial high-fidelity three-dimensional human urogenital tract carcinomas are also propagated from a coculture of normal urogenital tract cells inoculated with carcinoma cells. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.

  19. Phase field modeling of rapid crystallization in the phase-change material AIST

    NASA Astrophysics Data System (ADS)

    Tabatabaei, Fatemeh; Boussinot, Guillaume; Spatschek, Robert; Brener, Efim A.; Apel, Markus

    2017-07-01

    We carry out phase field modeling as a continuum simulation technique in order to study rapid crystallization processes in the phase-change material AIST (Ag4In3Sb67Te26). In particular, we simulate the spatio-temporal evolution of the crystallization of a molten area of the phase-change material embedded in a layer stack. The simulation model is adapted to the experimental conditions used for recent measurements of crystallization rates by a laser pulse technique. Simulations are performed for substrate temperatures close to the melting temperature of AIST down to low temperatures when an amorphous state is involved. The design of the phase field model using the thin interface limit allows us to retrieve the two limiting regimes of interface controlled (low temperatures) and thermal transport controlled (high temperatures) dynamics. Our simulations show that, generically, the crystallization velocity presents a maximum in the intermediate regime where both the interface mobility and the thermal transport, through the molten area as well as through the layer stack, are important. Simulations reveal the complex interplay of all different contributions. This suggests that the maximum switching velocity depends not only on material properties but also on the precise design of the thin film structure into which the phase-change material is embedded.

  20. [Research progress on mechanical performance evaluation of artificial intervertebral disc].

    PubMed

    Li, Rui; Wang, Song; Liao, Zhenhua; Liu, Weiqiang

    2018-03-01

    The mechanical properties of artificial intervertebral disc (AID) are related to long-term reliability of prosthesis. There are three testing methods involved in the mechanical performance evaluation of AID based on different tools: the testing method using mechanical simulator, in vitro specimen testing method and finite element analysis method. In this study, the testing standard, testing equipment and materials of AID were firstly introduced. Then, the present status of AID static mechanical properties test (static axial compression, static axial compression-shear), dynamic mechanical properties test (dynamic axial compression, dynamic axial compression-shear), creep and stress relaxation test, device pushout test, core pushout test, subsidence test, etc. were focused on. The experimental techniques using in vitro specimen testing method and testing results of available artificial discs were summarized. The experimental methods and research status of finite element analysis were also summarized. Finally, the research trends of AID mechanical performance evaluation were forecasted. The simulator, load, dynamic cycle, motion mode, specimen and test standard would be important research fields in the future.

Top